
Application-specific Instruction Set Processor 

for Speech Recognition 

CHEUNG Man Ting 

A Thesis Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Master of Philosophy 

in 

Electronic Engineering 

© T h e Chinese University of Hong Kong 

September 2005 

The Chinese University of Hong Kong holds the copyright of this thesis. Any 

person(s) intending to use a part or whole of the materials in the thesis in a 

proposed publication must seek copyright release from the Dean of the Graduate 

School. 



[Uf统系馆書因y\ 

i Q T ^ i 
UNIVERSITY 

\ "fj-K LIBRARY SYSTEMy>̂  



Acknowledgements 

I would like to thank my supervisor, Professor Choy Chiu-Sing. He gives 

me the vision, guidance and support that contribute to the formation of this 

thesis. He also provides me with excellent research and study environment in 

a well organized and established VLSI team. His intelligence, preciseness and 

patience make his students work conscientiously and always try to strive for 

excellence in the research. I would like to thank Professor Chan Cheong-Fat 

and Professor Pun Kong-Pang for their constructive comments on the work. 

Thanks also to Mr Yeung Wing-Yee, who maintains our laboratory equipment 

and design tools with great effort. Special thanks are given to Qin Chao for his 

continuous support and discussion on the speech algorithms and training toolkit. 

I am greatly grateful to the graduate students in VLSI laboratory, especially 

Yu Chun-Pong, Xin Ling, Xu Ke, Ha,n Wei, So Pui-Tak, Chan Chi-Hong, Leung 

Pak-Keung and Andy Kwok for their kind assistance throughout my resarch 

work. Lastly, I highly appreciate my parents for encouraging and supporting 

me during two-year MPhil study. 

ii 



Abstract of thesis entitled: 

Application-specific Instruction Set Processor for Speech 

Recognition 

Submitted by CHEUNG M A N TING 

for the degree of Master of Philosophy 

in Electronic Engineering 

at The Chinese University of Hong Kong in 

September 2005. 

This research presents an investigation on the implementation of automatic 

speech recognition (ASR) using Application Specific Instruction Set Processor 

(ASIP) methodology. The ASIP approach bridges the gap between traditional 

purely software and purely hardware designs. Combining the optimized hard-

ware datapaths with some application specific instructions, it can speed up the 

operation with significant improvement. 

Our research implements the double-mixture HMM-based isolated word 

speech recognizer. Specialized instructions have been developed for the com-

putationally intensive calculation of the output probability in the process of 

Viterbi search algorithm. 

The ASIP is fabricated with a 0.35 n CMOS technology. The time required 

to complete one recognition is about 1 second at the working frequency of 5 

MHz. This is at least one magnitude faster than a comparable design. Further 

enhancement can reduce this speed by a half, doubling the performance. The 

recognition time is fast enough in real-time speech applications. On the other 

hand, the proposed speech recognition running on ASIP platform attains the 

accuracy of 93.2 %, which is approximately the same recognition accuracy as 

the software recognition. It is obvious that our design can meet the stringent 

requirement of both time-critical and highly accurate speech application. 

iii 



摘要 

這次硏究的題目是利用專用指令處理器（Application Specific 

Instruction Set Processor, ASIP)來進行語音識別自動化的應 

用。專用指令處理器在傳統的純軟件和純硬件的設計中起了橋 

棵作用，它針對某一個應用，產生專用指令，並與經優化後的 

硬件運行路徑結合，從而大大提高了整體運行的效率。 

這次硏究是實現雙混合 (doub le -mixture )的隱馬爾可夫模型 

(Hidden Markov Model, HMM)的單字語音識別器。我們開發 

了 專 用 指 令 ， 用 來 執 行 運 算 量 巨 大 的 維 特 比 搜 尋 演 算 法 

(Viterbi search algorithm),以計算各輸出槪率 ° 

專 用 指 令 處 理 器 使 用 0 . 3 5 微 米 互 補 性 氧 化 金 屬 半 導 體 

(Complementary Metal-Oxide Semiconductor, CMOS )技術 

製造。此處理器可以在 5兆的時鐘頻率下以 1秒時間從單字的 

字庫中識別一個單字。與其他相近的硏究比較，此識別速度是 

異常迅速。若處理器利用專用指令來執行語音應用，其識別單 

字的速度將提升一倍，如此迅速的識別時間是可以進行實時 

(Real-time)語音應用的。另一方面，建議中的語音專用指令處 

理器的識別單字準確度達93.2%，這與使用相同算法的語音識 

別軟件一樣精確。由此可見，專用指令處理器能符合高要求的 

設計，可以在既快速又準確的要求下執行語音應用。 

iv 



Contents 

1 Introduction 1 

1.1 The Emergence of ASIP 1 

1.1.1 Related Work 3 

1.2 Motivation 6 

1.3 ASIP Design Methodologies 7 

1.4 Fundamentals of Speech Recognition 8 

1.5 Thesis outline 10 

2 Automatic Speech Recognition 11 

2.1 Overview of ASR system 11 

2.2 Theory of Front-end Feature Extraction 12 

2.3 Theory of HMM-based Speech Recognition 14 

2.3.1 Hidden Markov Model (HMM) 14 

2.3.2 The Typical Structure of the HMM 14 

2.3.3 Discrete HMMs and Continuous HMMs 15 

2.3.4 The Three Basic Problems for HMMs 17 

2.3.5 Probability Evaluation 18 

2.4 The Viterbi Search Engine 19 

2.5 Isolated Word Recognition (IWR) 22 

3 Design of ASIP Platform 24 

3.1 Instruction Fetch 25 

3.2 Instruction Decode 26 

3.3 Datapath 29 

V 



3.4 Register File Systems 30 

3.4.1 Memory Hierarchy 30 

3.4.2 Register File Organization 31 

3.4.3 Special Registers 34 

3.4.4 Address Generation 34 

3.4.5 Load and Store 36 

4 Implementation of Speech Recognition on ASIP 37 

4.1 Hardware Architecture Exploration 37 

4.1.1 Floating Point and Fixed Point 37 

4.1.2 Multiplication and Accumulation 38 

4.1.3 Pipelining 41 

4.1.4 Memory Architecture 43 

4.1.5 Saturation Logic 44 

4.1.6 Specialized Addressing Modes 44 

4.1.7 Repetitive Operation 47 

4.2 Software Algorithm Implementation 49 

4.2.1 Implementation Using Base Instruction Set 49 

4.2.2 Implementation Using Refined Instruction Set 54 

5 Simulation Results 56 

6 Conclusions and Future Work 60 

Appendices 62 

A Base Instruction Set 62 

B Special Registers 65 

C Chip Microphotograph of ASIP 67 

D The Testing Board of ASIP 68 

Bibliography 69 

vi 



List of Tables 

1.1 Trade-off Comparison among GPP, ASIP and ASIC 2 

3.1 The Architectural Parameters of the ASIP 24 

3.2 The Processor Usage of Different Functional Units 28 

3.3 Exploiting Data Parallelism by Observing Data Access Pattern . 33 

4.1 The Booth Encoding Table 40 

4.2 The Pointer Update Algorithm of Circular Addressing Mode . . 46 

4.3 The Speech Parameters for Recognition 53 

5.1 The Specification of Fabricated Chip 56 

5.2 The Simulation Results of Recognition Accuracy 58 

A.l The Data Processing Instructions 62 

A.2 The Bit Manipulation Instructions 63 

A.3 The Flow Control Instructions 63 

A.4 The Boolean Operation Instructions 63 

A.5 The Configuration Instructions 64 

A.6 The Memory Manipulation Instructions 64 

B.l The Organization of Special Purpose Registers 65 

vii 



List of Figures 

1.1 ASIP Fill the Gap Between Performance and Flexibility [1] . . . 2 

1.2 Overview of ASIP Design Flow 7 

1.3 The Short-time Stationary Characteristic of Speech Signal . . . 10 

2.1 Automatic Speech Recognition System 11 

2.2 The Algorithm for Front-end MFCC Computation 12 

2.3 The Simplified View of Hidden Markov Model 14 

2.4 The HMM with Single-mixture Distribution 16 

2.5 The HMM with Double-mixture Distribution 16 

2.6 The Lattice Structure of Simplified Viterbi Search 21 

2.7 The Training Process for Generating HMM Reference Models . 23 

2.8 Using HMMs for Isolated Word Recognition 23 

3.1 The Organization of the ASIP Architecture 25 

3.2 The Structure of Instruction Fetch Unit 26 

3.3 The Structure of Instruction Decoder 27 

3.4 The Structure of the Base Datapath 30 

3.5 The Structure of the Memory Hierarchy 31 

3.6 The Structure of Register File for Data Parallelism 33 

3.7 The Large-Scale View of Register File for Data Parallelism . . . 34 

3.8 The Datapath of Address Generation Unit 35 

4.1 The Datapath of MAC unit 38 

4.2 The Encoding of Booth Using Multiplier 39 

4.3 The Booth Encoding Logic 40 

4.4 The Diagram of 4:2 Compressor 40 

viii 



4.5 The CSA with 4-bit CLA 41 

4.6 The Whole Process of Fast Multiplication 42 

4.7 The Pipeline Organization of the Platform 43 

4.8 The Datapath of Saturation Logic 45 

4.9 The Output of FFT Algorithm 46 

4.10 The Structure of Loop Controller 48 

4.11 The Content of Stack 48 

4.12 Examples of Instruction Condensation and Distillation 54 

4.13 Examples of Instruction Condensation and Distillation 55 

5.1 The Program Skeleton of Viterbi Search 57 

5.2 The Simplified Diagram of PCB 57 

ix 



Chapter 1 

Introduction 

1.1 The Emergence of ASIP 

Application Specific Integrated Circuits (ASICs) was once the best solution for 

different applications. An ASIC implementation has fully customized datapaths 

and control logic. Though its performance can be optimized in terms of size, 

speed and power consumption, ASIC is not flexible enough since its focus is 

mainly on hardware part only. Any design errors found in the chip will lead to 

additional manufacturing delays and costs. 

On the contrary, Programmable implementations allow high degree of 

reusability by reprogramming the devices to perform various tasks. The key 

benefits of relying on software design part are lower development costs, shorter 

time-to-market cycles and easier adaptation to the modification of market re-

quirements. However, it is known that the programmable devices like general-

purpose processors reach limitations in running critical missions of real-time 

applications. Compared with ASICs, general-purpose processors dissipate more 

power and show lower performance. To balance the trade-off among perfor-

mance, flexibility and other design constraints as shown in Table 1.1, this leads 

to the development of Application Specific Instruction Set Processors (ASIP). 

ASIP is a programmable device whose architecture and instruction set are 

optimized for a specific application area. It speeds up the application by short-

ening the crucial path in the way of tuning the instrucion set and introducing 

1 



Chapter 1. Introduction 

GPP ASIP ASIC 

Performance Low High Very High 

Flexibility Excellent Good Poor 

H W Design Effort Nil Large Very Large 

S W Design Effort Small Large Nil 

Power Large Medium Small 

Engineering Cost Low Medium High 

Time-to-market Short Medium Long 

Market Volume Low Medium High 

Table 1.1: Trade-off Comparison among GPP, ASIP and ASIC 

special hardware accelerators. It turns out that defining an optimal instrucion 

set and formulating the composition of hardware functions and software func-

tions are the key tasks in ASIP design. For this reason, ASIP are currently 

developed to bridge the gap between the performance and flexibility of pure 

hardware and pure software solutions as shown in Figure 1.1. 

i i 

f ASIC j 

V ...�����V -x̂ v. 
a ff，* 
tS f-'〜？. ASJ P � �； 
rt ^ ^ � >!• sV vV .... ••..Jr 

Urn ^^^ � J> » 

( GPP J 

~ • 

Flexibility 

Figure 1.1: ASIP Fill the Gap Between Performance and Flexibility [1 

2 



Chapter 1. Introduction 

1.1.1 Related Work 

Currently existing ASIP design environments can be divided into two streams. 

Some design environments are just based on pre-defined processor platforms 

and provide limited options for user customization. Other environments provide 

architectural processor description language for the designers to describe their 

target architectures by inserting some user-defined structures in the base one. 

R.E.A.L of Philips [2], Xtensa of Tensilica [3], Jazz DSP processor of Im-

prov Systems [4] and ARCtangent-A5 of ARC [5] are the commercial design 

environments using pre-defined processor platforms approach. 

Xtensa of Tensilica is a configurable, extensible and synthesizable RISC 

(reduced instruction set computer) processor with load store architecture. Its 

base architecture has a compact 16- and 24-bit instruction set comprising of 80 

instructions. The configurable parameters include the choice of 32 or 64 general-

purpose 32-bit registers, the size of cache, the write buffer size, the availability 

of designer defined instruction execution unit and etc. Designers can define 

the mnemonic, the encoding, and the semantics of single cycle instructions 

using TIE language. In addition, the development environment includes ANSI 

C / C + + compiler, linker, assembler, debugger, code profiler, and instruction set 

simulator. 

The R.E.A.L of Philips is customizable DSP having two independent 16x16 

bit multipliers, four parallel 16-bit ALUs which can be combined into two 40-bit 

ALUs (including eight overflow bits each)，and a number of parallel shifters and 

saturators in base architecture. Besides a standard 16- and 32-bit instruction 

set, there are additional Application Specific Instructions (ASIs), which allow 

the full parallelism of the DSP to be exploited. The ASI concept allows up 

to 256 VLIW instructions in a 96-bit width look-up table inside the R.E.A.L. 

DSP. These are triggered by a special class of 16 bit instructions, stored in the 

normal program memory. The ASI look-up table can be a RAM (for prototype 

chips), ROM, a synthesized netlist, or a combination of these. If the ASI table 

is implemented in RAM, then its contents can be modified using the JTAG 

port, or under DSP program control by writing to dedicated registers within 

3 



Chapter 1. Introduction 

the DSP. 

The ARCtangent-A5 of ARC is a four stages 32-bit RISC processor that 

can be configured and extended match the application requirements. Designers 

can customize the processor in two ways: configuration and extension. Con-

figuration is the ability to change existing features of the processor, such as 

the main-memory and auxiliary-bus widths; the size and organization of the 

instruction and data caches; or the size of local memory and DSP XY memory. 

Extension is the ability to add entirely new features to the processor such as 

a 32x32-multiply instruction, a USB peripheral and user-defined application-

specific extensions. The resulting core is generated to HDL code together with 

synthesis scripts, simulation make-files, documentation and an automated test 

environment. 

The Jazz DSP processor of Improv Systems is a configurable VLIW pro-

cessor for their proprietary Programmable System Architecture (PSA). Improv 

employs this architecture that can scale from a single, uniquely configured Jazz 

DSP processor core, to a system level platform implementation that consists 

of many of these uniquely configured Jazz processors in an interconnect struc-

ture defined by shared memory maps between the processors. Each processor 

instance can be customized by custom RTL blocks and instructions to create 

a designer-defined DSP core. The Jazz PSA Composer Tool Suite provides de-

signers with automatically generated synthesizable HDL code and a full set of 

software design tools including the debugger, simulator and profiler. 

Other design environments using architecture description languages include 

the design environment of Retarget Compiler Technologies [6]，LISA Processor 

Design Platform [7] [8], MetaCore [9] and PEAS-III [10:. 

The design environment of Retarget Compiler Technologies is based on the 

processor modelling language nML. nML offers designers the abstraction level 

for describing a processor architecture and instruction set (ISA), which serves 

as an input to the various tools. nML captures the specification of the proces-

sor's instruction set, together with sufficient structural information to enable 

efficient compilation. Processor designers can describe alternative instruction-

4 



Chapter 1. Introduction 

set architectures in nML. The support-tools for corresponding architecture are 

automatically available. Once the architecture has been optimized in nML, the 

processor description can be translated automatically into an HDL model. This 

HDL description can be synthesized with commercially available synthesis tools, 

for ASIC or FPGA implementation. 

The LISA Processor Design Platform (LPDP) tool-suite is based on the ma-

chine description LISA. Starting from architecture descriptions in the LISA lan-

guage, software development tools can be generated including HLL C-compiler, 

assembler, linker, simulator, debugger frontend. LISA is a language which aims 

at the formal description of programmable architectures, their peripherals, and 

external interfaces. The language elements of LISA enable the description of 

different aspects of processor architectures like behaviour, instruction set cod-

ing and syntax. The language LISA and its generic machine model are able to 

produce bit- and cycle/phase-accurate models of systems that consist of pro-

grammable architectures and peripheral hardware components. Moreover, syn-

thesizable HDL (VHDL, Verilog, SystemC) code of the target processor can be 

generated which can be processed by the standard synthesis tools. 

MetaCore is a DSP-oriented ASIP development system that can generate 

efficient ASIP using benchmark-driven design methodology. The heart of the 

MetaCore system is a predefined microarchitecture. The design style of the 

predefined microarchitecture is parameterized and pipelined. The architectural 

parameters include register file size, bus width, address space of each memory, 

and bit width of functional blocks. The specification of the target ASIP in the 

MetaCore system is described using the structural specification language MSL 

and behavioural specification language MBL. MSL is used to specify the data 

path structure of the target microarchitecture, while MBL is used to specify 

the architectural parameters and the behaviour of instructions for the target 

ASIP. The MSL description consists of declarations of hardware resources such 

as busses, latches, multiplexer, functional units, and interconnections among 

the hardware resources. A synthesis tool called SMART is used to translate 

the given processor specification into the corresponding HDL code of the target 

5 



Chapter 1. Introduction 

ASIP equipped with the user-defined application-specific instructions. 

PEAS-III is an architectural level processor design environment based on 

a micro-operation description of instructions. In the environment, designers 

model the target processor with the following five items: 

1. Architecture parameters such as the number of pipeline stages and the 

number of delayed branch slots 

2. Declarations of resources to be included in processor (e.g. ALUs, registers) 

3. Instruction format definitions which include interrupt conditions and the 

number of execution cycles of interrupt conditions and the number of 

execution cycles of interrupt 

4. Micro-operation descriptions of instructions and interrupts. PEAS-III 

synthesizes the datapath and the control logic of the processor, and gen-

erates a simulation model and synthesizable VHDL descriptions of the 

processor. 

1.2 Motivation 

We try to design the speaker-independent isolated word speech recognizer using 

ASIP methodology. There are many alternatives of accomplishing the speech 

recognition application, ranging from entirely hardware ASICs to completely 

software implementation. It is inflexible to cope with late design changes in 

ASICs approach while it largely ignores the potential enhancement in hardware 

structure in software approach. Related ASIP work mentioned in previous sec-

tion mainly emphasize the hardware architecture that is common to the generic 

DSP applications, but not a particular application domain. Their work also 

overlooks the possibility of optimizing the application in the eyes of software 

developers. It is equally important to consider the design from software's point 

of view in the hope of converting the complex algorithm into a simpler mathe-

matical form, extracting application-specific instruction for repetitive operations 

as well as fully integrating the inherent advantages of software and hardware 

6 



Chapter 1. Introduction 

co-design. We try to find out any optimizations which are feasible in the ASIP 

from both software and hardware designers' perspectives. 

1.3 ASIP Design Methodologies 

The philosophy of ASIP is the exploitation of optimized user-defined instruction 

set and datapath. It is an instruction-level programmable processor with an 

architecture and instruction sets tuned to a specific application. Design of 

ASIP requires a good balance between flexibility and performance to provide 

the most optimal solution. It also covers multi-disciplinary areas like computer 

architecture and logic design, DSP algorithm analysis, software programming 

and integration of the hardware platform. As a consequence, designing the 

ASIP represents a hardware/software co-design task. An overview of the entire 

ASIP design flow is depicted in Figure 1.2. 

,,"-"•Application witFT"̂ , . / design constraints \ Step 1 C (time, area & J 
�Derformance^.,.--^ 

Ar^^iw^j^ Architecture丨 Design 
Step 2 A叩丨丨;丨丨ysis Space Exploration 

I I (Hardware) 

q - Instruction Set Architecture Definition 
。访P ( S W / HW Co-Desgin) 

cs^fjl!…� I Hardware 

S t e p 5 Verification 

厂 � � �� 
( C o m p l e t e d ASIP ) 

� 

Figure 1.2: Overview of ASIP Design Flow 

There are mainly 5 steps for the ASIP design flow. 

1. The design flow starts with the consideration of targeted application, spec-

ification and design constraints such as timing, area and performance. 

7 



Chapter 1. Introduction 

2. It involves the partitioning of the software and hardware analysis. A high-

level language like C is written to have a thorough understanding on the 

algorithms. Possible architecture is also studied for a specific application 

that requires the minimum hardware costs. 

3. A new instruction set is defined to act as an interface between the software 

implementation and hardware platform. 

4. Programs are written by the pre-defined instructions while Hardware De-

scription Language (HDL) like VHDL/Verilog is used for hardware gen-

eration and logic synthesis. 

5. The final design must be verified to see if it still meets the specification 

requirements and works under different constraints. 

1.4 Fundamentals of Speech Recognition 

Classification of ASR systems 

Speaker-dependent versus independent System 

Speaker dependent recognition systems are trained to recognize some particular 

speaker's voice. This is accomplished through a training session, which allows 

the speakers to record their voice beforehand. The system is tailor-made to 

some specific speaker's pronunciations, inflections, and accents. The recognition 

accuracy is high since speaker's voice are pre-stored in database. 

In contrast, Speaker independent systems mean that any individual can 

speak directly to the computer without going through the training process of 

his own voice. That means speaker who utters via microphone may not nec-

essarily have his own voice pre-recorded in the database. Speaker-independent 

approaches are the only ones that make sense where speech training process 

is impossible. It is sometimes difficult to expect every user to go through the 

trouble of training his own voice first in the recognition system before they have 

8 



Chapter 1. Introduction 

any applications. The system may have lower recognition accuracy compared 

with speaker dependent systems, but it retains flexibility. 

Small versus Large Vocabulary Size 

The real issue is how big a vocabulary is required by the application and how 

much of the vocabulary can be made active at one time. For example, an 

office dictation application might require a vocabulary of 30,000 words while 

an industrial inspection task might require only 300 words. The maximum 

number of words that are active at one time can depend on memory availability, 

recognition accuracy, and response time required by different applications. It 

is obvious that the smaller the vocabulary size, the less memory required, the 

higher accuracy as well as the faster response time. 

Portable versus Non-Portable Hardware System 

Some speech recognition applications like manufacturing inspection or environ-

mental surveillance require portable hardware. Size, power, and memory loca-

tions are the major limitations of the design that must be considered. Other 

systems such as mainframe-based or stationary desktop computers tend to use 

more powerful processors and memory-intensive algorithms to achieve better 

speech recognition performance. 

The Properties of Speech 

Speech utterances are unpredictable, time-varying and random in nature. There 

are wide range of possibilities to represent a speech signal, including energy, 

pitch, tone and other related parameters. Probably, the most effective way of 

modeling the speech signal is the short-time stationary segmentation. By divid-

ing the speech into the same period region with overlapping, many seperated 

speech frames are formed. As the time period of each frame is very short (10 

� 2 0 ms), that segmented speech frame can be assumed to be stationary. Figure 

1.3 illustrates the short-time stationary characteristic of speech signal. 

9 -



Chapter 1. Introduction 

Frame (N+1) 

I “ II ^ I 

Frame N Frame (N+2) 

i i 
— — 1 Parameter 
— — > Vector 
=q pq J Size 

."V 
Speech Frames / Vectors 

Figure 1.3: The Short-time Stationary Characteristic of Speech Signal 

The final extracted vectors are the feature vectors that represent the special 

characteristics of the speech. It is these feature vectors that act as the input 

for the later process of speech recognition. 

1.5 Thesis outline 

The remainder of the thesis is organized as follows: 

Chapter 2 describes the completed procedure of automatic speech recogni-

tion in theory, including the front-end feature extraction and back-end HMM-

based Viterbi search. 

Chapter 3 briefly introduces the design of ASIP platform. Its focus is on 

the hardware architecture, functional description of each module and the design 

space of datapath exploration. 

Chapter 4 presents the practical implementation of speech recognition on the 

ASIP platform. There is wide discussion on different optimization techniques, 

the working mechanisms and design considerations. 

Chapter 5 proves the effectiveness of implementing speech recognition on 

ASIP by revealing the performance in terms of speed and recognition accuracy. 

Chapter 6 summarizes the overall research work and suggestions for the 

future work in this area. 

10 



Chapter 2 

Automatic Speech Recognition 

2.1 Overview of ASR system 

This section describes an HMM-based Isolated Word Recognition (IWR) system 

that can be divided into two parts, the front-end and back-end processing. The 

front-end includes data acquisition and feature extraction. Through the input 

via microphone and a codec from which digitized speech data are generated, 

it produces important and useful acoustic features for speech recognition. The 

back-end is the HMM-based Viterbi search where Gaussian mixture computa-

tion and memory usage take place frequently. This finally leads to the result of 

which word is being spoken. Figure 2.1 shows the block diagram of the speech 

recognition system. 

,   
i Front-End i i Back-End i 

^cousti^ i 一 Data Feature i ！ _ 已 二 ^ ^ Decision- j ^cognizA 
y^Ns^^ i Acquisition Extraction : ！ comparison Making > i^^eed^ 

广 — � 

Training ^ — 
Data Reference 

L.Model̂  

Figure 2.1: Automatic Speech Recognition System 

11 



Chapter 2. Automatic Speech Recognition 

2.2 Theory of Front-end Feature Extraction 

The acoustic feature generated by the signal processing front-end is Mel-

Frequency Cepstral Coefficients (MFCC), which are calculated using the real 

cepstrum, defined as the inverse Fourier transform of the log spectrum: 

Cs{n) 二 厂 log\Siw)\e''"''dw 

where S{w) is the spectrum of the speech signal. The acoustic features consist of 

12 cepstral coefficients together with energy. The features are energy normalized 

and cesptral mean normalized based on each short time segment. It is known 

that the performance of a speech recognition system can be greatly enhanced 

by adding dynamic time derivatives to basic static parameters. However, only 

the static coefficients and first-order dynamic time derivative coefficients are 

included in the feature vectors with consideration of tight memory as well as 

the extensive computation time. 

/^ms samples^ Hamming 
( ^ H z I 6 . b i ^ P r e - e m p h a s i s 一 window 

Logarithm of Mel-frequency DFT 
filter energies filter bank Computation 

Figure 2.2: The Algorithm for Front-end MFCC Computation 

In practice, the mel-frequency cepstral coefficients can be computed using 

the algorithm shown in Fig 2.2. 

The digitized speech signal s(n) derived from the data acquisition step is 

16-bit linear sampled at 8 kHz. It is a common practice to pre-emphasize the 

signal by applying the first-order differential equation, 

s(n) = s(n) — a . s{n — 1) 

12 



Chapter 2. Automatic Speech Recognition 

where a is the pre-emphasis coefficient which should be in the range 0 < a < 1. 

Then, the pre-emphasized speech signal s(n) is segmented into frames with size 

of 20 ms. With overlapping of 10 ms between frames, each frame is multiplied 

by a 160-point Hamming window w{n). 

x{n) 二 . s(n) 

Next the spectral magnitude of the windowed signal is computed by Discrete 

Fourier Transform (DFT). The magnitude is then processed by a series of over-

lapping triangular filters, Hm[k), which are centered at equally spaced frequen-

cies in the mel-scale, to find an estimation of mel-spectrum. The logarithmic 

scale is taken to produce a weighted log energy Y(m). This results in compu-

tation of the total energy in the mth band, 

'N-1 -

Y{m) = logio - Hmik) ,0<m<M (2.1) 
_fc=o . 

where X{k) is the DFT of the windowed speech signal, Hm(k) is the filter-

bank coefficients, N is the length of a frame and M is the number of filters. 

The weighted log energy is real and even, so the inverse Fourier Transform 

can be implemented as a Discrete Cosine Transform (DCT). This transforma-

tion decorrelates features so that the diagonal covariance matrices can be used 

instead of full covariance matrices. Cepstral coefficients have rather different dy-

namics, the higher coefficients show the smaller variance. It is desirable to have 

a constant dynamic range across coefficients for modeling purposes. One way 

to reduce these differences is to apply liftering windows which weight cepstral 

coefficients C (/c) differently, 

� =C �. | l + y - s i n ( 蒜 ) } � 0 S /c < M (2.2) 

where M is the number of filters. Finally, the first-order time derivatives of 

feature vectors are estimated to represent the dynamic characteristics of speech 

signals. 

13 



Chapter 2. Automatic Speech Recognition 

2.3 Theory of HMM-based Speech Recognition 

2.3.1 Hidden Markov Model (HMM) 

Though speech signal is well-known for its variability, the spectral properties of 

the frames of a pattern can be characterized by Hidden Markov Model (HMM), 

one well-recognized and widely used statistical method. The underlying as-

sumption of HMM is that the speech signal can be well modeled as a parametric 

random process. 

2.3.2 The Typical Structure of the H M M 

An HMM is characterized by the number of states N, the state transition prob-

ability matrix A, the observation symbol probability distribution B and the 

initial state distribution n. Given an HMM A = (A, B, tt) and an observation 

sequence 0，we wish to calculate the probability of the observation sequence 

P(0|A). These probabilities are a measure of how well the data match each 

state in the model. With left-to-right topology, the formal model for the HMM 

is shown in Figure 2.3. 

ai1 322 333 3a4 355 

/ X I I V \ 
/ \ \ \ I � � � ��� 

/ \ b2(03)\ I b.(05) 1 、\ 、、、bs(问 
b 例 / h 广〉 \ b3(6"4)\ 1 � � _ ) \ 

J h h h h h 
Observation 
Sequence 

I |1 I J J L—J ImmJ IJ 

01 02 03 04 05 06 07 

Figure 2.3: The Simplified View of Hidden Markov Model 

The state transition probability matrix A = {a^}, which indicates the prob-

14 



Chapter 2. Automatic Speech Recognition 

ability for state i to change to state j. 

ail Q'U 1̂3 ai4 ai5 

a2l 0,22 ti23 0'24 0̂25 

] = asi 032 033 au a35 

0 4 1 0-42 0^43 <^44 <2.45 

5̂1 a52 (253 5̂4 <̂55 

Note that the sum of the probabilities of all transitions with the same current 

state must be equal to one. 
N 

= 1 

The observation sequence 0 = = C0i~0 2----~0t), where I < t < T 

and T is the number of observations in the sequence. The observation symbol 

probability B = {6j("^t)}，it is the probability density function for each state 

and the argument ~0t is an acoustic feature vector. 

2.3.3 Discrete HMMs and Continuous H M M s 

There are two different forms of HMMs, including the discrete observation HMM 

and the continuous observation HMM. 

For the discrete observation HMM, it is restricted to the production of a 

finite set of discrete observations. Vector Quantization(VQ) is used to associate 

each continuous feature vector with a discrete value. Vector Quantization is a 

sampling process of continuous signals and this results in a serious loss of data. 

In reality, the observations are usually representations of continuous signals in 

most applications. VQ of these continuous signals can degrade the performance 

significantly. 

For the continuous HMMs, the observations are continuous (or vectors). It 

would be beneficial to model continuous speech signals directly with continuous 

observation densities. The most general representations of continuous observa-

tion density is in the form of Gaussian probability density function (pdf). Figure 

2.4 shows the single-mixture distribution, which means that there is only one 

pdf at each state in HMM. 

15 



Chapter 2. Automatic Speech Recognition 

V V V 

( i H ^ K S K f ) - © 

Figure 2.4: The HMM with Single-mixture Distribution 

For such a pdf mentioned above, it is not sufficiently flexible to accurately 

model the variation which occurs between different acoustic vectors that corre-

spond to a state. This is particular true if the models are used to characterize 

speech from a number of speakers. Thus, Gaussian double mixtures are typically 

used to model broad sources of variability. Figure 2.5 shows the double-mixture 

distribution, which means that there are two pdf at each state in HMM to 

accurately model the highly varied speech. 

\ 7 V 

Figure 2.5: The HMM with Double-mixture Distribution 

The most popular form of the output probability density function (pdf) is 

16 



Chapter 2. Automatic Speech Recognition 

Gaussian density, which is defined as 

bj � =N = . 1 e - M A - 巧广 "广 ( ‘ ^ 力（ 2 . 3 ) 
^(27rfdet(Uj) 

where Ot is the observation vector with the dimensionality of D at time t, and 

TV is a Gaussian pdf with mean vector Hj and the determinant of the covariance 

matrix Uj in state j . 

In practise, only one Gaussian distribution is not sufficient to appropriately 

estimate the speech parameters. Thus multi-variate Gaussian density, which is 

weighted sums of Gaussian densities, is often used. 

bj � = g c j 补 冬 -

(2.4) 

where Cjk is the mixture coefficient for the kih mixture in state j, M is the 

number of mixtures per state and iV is a multivariate Gaussian with mean 

vector Jljk and the determinant of the covariance matrix Ujk for the kih mix-

ture component in state j. The mixture coefficient Cjk satisfies the following 

constraints: 
M 

= l<j<N 
k=l 

Cjk > 0, l<k<M 

It is flexible to alter mixture densities to sufficiently approximate the arbitrary-

shaped densities if an appropriate number of components are used. 

2.3.4 The Three Basic Problems for H M M s 

Given HMM with model A = (A, B,7t) and the observation sequence O = 

{~0i~0 2----~0t), there are three basic problems that must be solved for the model 

to implement in real-world applications. These problems are listed as belows: 

1. How do we efficiently compute the probability of the observation sequence 

P(0|A) given the observation sequence O and the model A? 

2. How do we choose the corresponding state sequence q = 

that best describes the observations given the observation sequence O and 

the model A? 

17 

» 



Chapter 2. Automatic Speech Recognition 

3. How do we adjust the model A to maximize P{0\X)? 

Problem 1 is the recognition problem, given an output sequence and a model, 

what is the probability that the model could have created the sequence. The 

problem can also be viewed as calculating scores to find out how well a given 

model matches a given observation sequence. Comparing new data to the mod-

els of known signals can solve the recognition problem. If there are V words to 

be recognized, then there will be V distinct HMM to model each word seper-

ately. The recognition result of the unknown word is based on the final scores 

of each word model that match the given observation sequence (input feature 

vector). The word whose model score is the highest will be selected as the 

recognition output. 

Problem 2 is the sequence problem, given an output sequence and a model, 

what is the optimal and most likely sequence of states that could have created 

the output sequence. Segmenting the training sequence of each word into more 

states is the solution to sequence problem because it makes refinements of the 

model and improve its capability of modeling the spoken word sequences. 

Problem 3 is the training problem, given the output sequence and the topol-

ogy, how can the parameters of a model be adjusted to maximize the probability 

that the model creates the output sequence. The training problem can be solved 

by finding optimal model parameters of the known data and training the refer-

ence data to create the best models. 

2.3.5 Probability Evaluation 

To implement speech recognition, we need to calculate the probability of the 

observation sequence O = {~oi~0 2----~ot), given the HMM model A, i.e., P(0|A). 

The most straightforward way of calculating it is through enumerating every 

possible state sequence of length T . 

Consider one fixed N-state sequence q = ("?i"?2."."?t)，where ql is the 

initial state. The probability of observation sequence is obtained by summing 

18 



Chapter 2. Automatic Speech Recognition 

the probability over all possible state sequence q as 

•P(0|A) = ^ … ( 2 . 5 ) 

ql,q2,....qT 

From Equation 2.5, the interpretation of the probability computation can be 

illustrated as follows. Initially (at time t= l ) we are in state ql with probability 

TTgi, and generate the symbol "ô i in this state with probability bqi{~Oi). The 

time changes from t to t+1 (at time=2) and we make a transition from state 

ql to state q2 with probability dq卿 and generate symbol ~0 2 with probability 

bq2{~0 2)- This process continues until we reach the last transition (at time T) 

from state qt-i to state qt with probability ag^-igr' and generate symbol ~0t 

with probability bgrCor) [11 • 

The calculation of P(0\X) involves 2T • N? order of calculations because 

there are N possible states at every t = 1,2, ...，T, that can be reached (i.e., 

there are N ? possible state sequences), and for each such state sequence about 

2T calculations are required for each term in the summation of Equation 2.5. 

It is difficult or infeasible to compute probability in this way even for small 

values of N and T. For example, state N=2 of HMM with total frames T二200 

of the speech signal, there are 2.200.2舰 « computations. Fortunately, an 

efficient algorithm called Viterbi can be used to solve the problem. The main 

difference is that instead of summing the probabilities of transitions from all 

states in the previous method as shown in Equation 2.5, only the most probable 

transition is considered and the rest is discarded. But one more step is needed 

to trace back from the most probable final state which reveals the most probable 

state sequence. 

2.4 The Viterbi Search Engine 

The Viterbi algorithm aims at finding the best state sequence, q = 

for the given observation sequence O = The 

highest score 6t(i) is defined as 

St{i) = maxP[qiq2..…qt-i,qt = i�0i02"..0f|A 
q 

19 



Chapter 2. Automatic Speech Recognition 

6t{i) is the best score with the highest probability along a single path, at time t, 

which accounts for the first t observations and ends in state i. The array ipt (j) 

is used to keep track of the argument that maximized the probability for each 

t and j. The complete procedure for implementing the Viterbi algorithm [11 

can be stated in three steps: 

1. Initialization 

(i) = 1Tik (oi) , l<i<N 

机(i) = 0 

2. Recursion 

5t U) = \ max 卜 1 � ai,] . bj {ot)，1 < j < N, 2<t<T 

•t U) = arg max (̂ t-i �( k j 
l<i<N 

3. Termination 

P = ^maj^ (i) 

qx = arg m,ax [St ⑷： 

It should be clear that a lattice structure efficiently implements the computation 

of the Viterbi procedure as shown in Figure 2.6. The recursion forms the basis of 

the so-called Viterbi algorithm. This algorithm can be visualised as finding the 

best path through a matrix where the vertical dimension represents the states 

of the HMM and the horizontal dimension represents the frames of speech (i.e. 

time). Each large dot in the picture represents the probability of observing 

that frame at that time and each arc between dots corresponds to a transition 

probability. The path always goes in the direction with higher probability. For 

example, the starting point is at time二 1 and at state=A (i.e. lA). The path 

can go to two directions either. One direction is lA —̂  2B. Another is lA — 

2A. Suppose the route for lA — 2 B has a higher probability than the one for 

lA — 2A, then the path will simply go upwards with a 45-degree direction to 

reach point 2B. The paths are grown from left-to-right and column-by-column. 

The comparison process continues until it reaches both of the final state and 

the last speech frame (i.e. 5D). 

20 



Chapter 2. Automatic Speech Recognition 

s t a t e + I I I I I 
I I I I I 
I I I I I 
I I I I I 

D J 令 令 — i h -

！ I i / i 1 
v, I C ) — 令 — ^  
^ f I I A A i 

3 — — i Z k ^ — 上 
" " " I I I I I 

I I j I I S p e e c h 
I I I I I S 1 ‘ 1 ‘ ‘ ~ • Frame 
1 2 3 4 5 (Time) 

Figure 2.6: The Lattice Structure of Simplified Viterbi Search 

Alternative Viterbi Implementation 

The previous section of the Viterbi algorithm requires frequent operation of mul-

tiplication, which is unfavorable for the hardware implementation. By taking 

logarithms of the model parameters, there is no need to have any multiplication 

operations. The multiplication is converted to addition after taking logarithms. 

The main procedures of modified Viterbi algorithm [11] are shown as belows: 

1. Preprocessing 

亓i = log(7ri)，\<i<N 

bi {ot) = log [bi (o,)] , I <i<N, l<t<T 

hij = log(aij), 1 < i, j <N 

2. Initialization 

(i) = log 秘 ) ) = 7ri + bi (oi) ’ l<i<N 

也 ( i ) = 0 

3. Recursion 

式 U) = log(St (j)) = max St-i (i) + 知 + bj {ot) 

l < t < i V L J 21 



Chapter 2. Automatic Speech Recognition 

iPt U) = arg max (z) + a J , I < j < N, 2<t<T 
l<i<N L � 

4. Termination 

P = ^ma：}^ 5t [i) 

Qt = arg max It � 

1<Z<7V L � 

The calculation required for this alternative implementation is on the order of 

only N'^T additions plus the calculation for preprocessing. The preprocessing 

cost is negligible for most systems because it only performs once and the values 

are saved. 

2.5 Isolated Word Recognition (IWR) 

To build the speaker-independent HMM-based isolated word recognizer, assume 

there is a vocabulary of V words to be recognized and each word is modeled by 

distinct HMM, there are mainly two parts that are cruical for the implementa-

tion of isolated word recognizer. 

1. Offline Training 

2. Real-time Isolated Word Recognition 

Offline Training 

Each word in the vocabulary has a training set of K utterances of the word. 

Given a set of training utterances corresponding to a particular word model, the 

parameters of that model (A, B, n) can be determined automatically by a robust 

and efficient HTK toolkit, which is primarily designed for building HMM-based 

speech processing tools, in particular recognizers. Provided that a sufficient 

number of representative utterances of each word can be collected, a HMM 入v 

can be constructed which implicitly models all sources of variability inherent in 

real speech. The training procedure is shown in Figure 2.7. 

22 



Chapter 2. Automatic Speech Recognition 

Word 1 Word 2 Word V 

UtterancelGGGG • • • • • • • • • • • 
Utterance 2 ] 

• • • • • • • • 
• • • 
• m • 

Utterance K [ ] QDDD DDDD D D D D E 

Estimated f T • • • • • 
( : ) A 丨 义2 ^ 

Figure 2.7: The Training Process for Generating HMM Reference Models 

Real-time Isolated Word Recognition 

For each unknown word to be recognized, the processing shown in Figure 2.8 

must be carried out. The front-end process of the real-time speech extracts 

the useful features and represents those features in the form of observation 

sequence O. The likelihood of each model generating that observation sequence 

O of unknown word is calculated and the most likely model identifies the word. 

In other words, it is necessary to have calculation of model likelihoods for all 

possible models, P(0|A), 1 < v < V. The recognition result can be found by 

selecting the word whose model likelihood is the highest. 

f Real-time \ tŝ  Feature 
V Speech J ‘ V Extraction 

Unknown 0 « 

_ / 1 \ 
Reference (hMM for Word l) (hMM for Word̂  • • • •(hMMfor Word̂  Word Model 

c P : : 卞 ( & 司 I 叩 i H • • • H • 义 V ) 
V ^ J 

V 
Choose Maximum 

Probability P 

Figure 2.8: Using HMMs for Isolated Word Recognition 

23 



Chapter 3 

Design of ASIP Platform 

Our ASIP processor [12] mainly focuses on the digital signal procssing applica-

tions like speech, audio and video. In order to meet the real-time requirements 

of various applications, the ASIP processor has been specially designed for ap-

plications which are computationally intensive and repetitive. 

The design goal of the processor is to maximize the degree of reusability by 

re-programming it with efficient application specific instruction set and mini-

mizing the impact on timing and power consumption when changing the archi-

tectural parameters. 

The proposed architecture of the processor is divided into four parts，namely 

instruction fetch, instruction decode, datapath and register file system as showil 

in Figure 3.1. The selected architectural parameters are listed in Table 3.1. 

Architectural Parameters Values 

Instruction Addressing 16 bits 

Instruction Width 24 bits 

Data Addressing 2 x 16 bits 

Data Width 16 bits 

Register File 2 x 64 x 16 bits 

Table 3.1: The Architectural Parameters of the ASIP 

24 



Chapter 3. Design of ASIP Platform 

； ; ~ 5 — ‘ ^ ^ p - ^ : , 

r ^ ！ Processor | MAC f ：‘ | 

L n J 萄 iJ^.； 

会 — i - 。 ： ^ 

Figure 3.1: The Organization of the ASIP Architecture 

3.1 Instruction Fetch 

The Instruction Fetch Unit (IFU) is responsible for reading instructions from 

program memory, passing them to the instruction decoder and updating the 

program counter. 

The structure of the instruction fetch unit is shown in Figure 3.2. It con-

sists of five major modules, including program counter, address selector, branch 

controller, loop controller and subroutine controller. 

IFU begins to operate autonomously as soon as reset is released. The pro-

gram counter is a register that stores the current position of the program. This 

stored value is used as the instruction address for fetching instructions. On 

the other hand, this value is also passed to the instruction decoder for being 

a reference for branching and other program flow control activities. When a 

branch is executed, the fetch unit must stop fetching instructions from the cur-

rent stream and change the program counter to the new value. When the loop 

or subroutine is called, the value of program counter is stored into stack and 

later this value will be retrieved when the loop is completed or return from the 

25 



Chapter 3. Design of ASIP Platform 

�l .1 f 
Branch Address Branch ' 
Branch Coniroi — j — • Controller I 

I I 
I I 

Loop Address — j L o o p Address __ Program Final 
Loop Control • Controller Selector Counter ^ ^ ^ ^ Address 

I I 
I I 

Sub Address j » Subroutine _ Control I 
Sub Control ~ ~ I p - Controller I 

I 1 I 
Instruction ^ 

I , — � � 
, 、 、 ^ ) \ _,«Instruction^J 

I Decoder I 一 \ Memory / 

\ 乂 � - -

Figure 3.2: The Structure of Instruction Fetch Unit 

subroutine. The program counter updates its content autonomously with the 

new address provided by the address selector. The address selector controls the 

content of the program counter. It calculates the new address based on the 

addresses from instruction decoder or other addresses with the control signals 

of branch, loop and subroutine operations. Depending on the status of the 

processor and the requests from those modules, the address selector supplies 

the appropriate address to update the program counter. In this way, branches, 

loops and subroutine calls can be realised. 

3.2 Instruction Decode 

The instruction decoder is responsible for converting the fetched instruction into 

useful information for different parts of the processor. Basically, it has three 

tasks to do : 

1. Identify the fetched instruction 

2. Interpret the encoded part of the instruction and generate the correspond-

ing control signals and opcodes 

3. Dispatch the decoded information to the corresponding modules 

26 



Chapter 3. Design of ASIP Platform 

In ASIP design, different application specific instructions are introduced to ac-

commodate different applications needs. Inevitably, the instruction decoder 

needs to be redesigned frequently, which is not favoured in design reuse. To 

meet our design goal, the changing part must be isolated in order to minimize 

the modification effort. Therefore, a highly modulized instruction decoder is 

designed. The structure of the instruction decoder is shown in Figure 3.3. The 

decoding of parallel instructions and complex instructions is separated from the 

decoding of base instructions. Two internal decoder modules are dedicated for 

these application specific instructions. The contents of the parallel and complex 

instruction decoder can be changed without altering the others. 

勢 一 ， 「 （：：⑨ 
Address | I X Bank address 

Control ^ I Instruction l Ŷ Bank address 
- J Decoder I Spoclal register 
‘ >S  

stage 1 C " " " " 
Jump ^ j — — • I -
Loop • I I Program Counter 
Sub I I I ~ ^ � 

-乂 ( ~ ~ T 1 7 1 ‘ (芒乡 
� ” Parallel Complex Base “ 

Instruction Instruction Instruction 
Decoder Decoder Decoder 

Stage 2 Stage 2 Stage 2 

r ’ ：； ,； � 

(̂ rlr̂ ) opcodas opcodes opcodes | 

Figure 3.3: The Structure of Instruction Decoder 

Secondly, the whole decoder is divided into two levels in order to match the 

pipeline organization. It is natural that the instructions involving execution of 

datapath is assigned to the second level which is closer to the datapath. This 

partitioning has two advantages : 

1. The numbers of pipeline registers can be saved because the data that 

passed along the pipeline stages is the encoded part of the instruction 

instead of the massive control signals and opcodes 

2. The unused modules can be turned off efficiently. 

27 



Chapter 3. Design of ASIP Platform 

Table 3.2 lists the modules that are activated in the execution of different 

classes of instructions. It shows that the second level can be disabled when 

the processor is doing flow control, configuration and memory manipulation. 

Moreover, the first level can activate one of the modules in second level only, 

as the base instructions, parallel instructions and complex instructions are in-

dependent. 

Instruction Processor Address General Special 

Classification Fetch Control Generation Register Register Datapath 

Unit Unit Unit File File 

Data Processing \/ \/ V 

Bitwise \/ \/ V 

Manipulation 

Boolean J 

Operation 

Flow Control < ^ 

Configuration >/ 

Memory ^ \J 

Manipulation 

Table 3.2: The Processor Usage of Different Functional Units 

Referring to Figure 3.3 and Table 3.2，the ASIP can be partitioned into 

different units for easier design and maintenance. The Instruction Fetch Unit 

(IFU) and Processor Control Unit (PCU) are responsible for the flow control 

operations, namely break, jump, loop and subroutine call and return. The 

Address Generation Unit (AGU) calculates the new address based on the various 

addressing modes. The Datapath executes the corresponding operation via 

General Register File. All data processing, bitwise manipulation and boolean 

operations require the input values to be stored in the register before they can 

be further processed. Special Registers allows the programmer to initialize the 

parameters at the beginning of the code segments. The programmer can pre-

28 



Chapter 3. Design of ASIP Platform 

define parameters like the memory/register start address, size and step. 

To make good use of this partition, the class of the fetched instruction has to 

be identified as soon as possible. Hence, the instruction encoding is first based 

on the classification of the instructions then the number of bits needed for the 

arguments, so that the fetched instruction can be classified within the first few 

bits. 

3.3 Datapath 

The base datapath is designed for general DSP application. Similar to other 

general digital signal processors, the number representation is two's complement 

and the heart of this datapath is a multiplier-and-accumulator (MAC). The 

structure of the base datapath is shown in Figure 3.4. In the centre is a 16x16 

40-bit MAC. It is made of 3:2 compressors in Wallace tree configuration, an 

adder and a 40-bit register for accumulation. The most significant eight bits 

are guard bits for avoiding overflow. The adder in the MAC is also responsible 

for addition and subtraction operations. 

For shift operation, a barrel shifter is used in the datapath. It can shift 

the accumulator by at most thirty two bits to left and to right in arithmetic 

or logical manner. The shift distance can be defined by the immediate value 

from the instruction or the value stored in the register file. In addition, this 

shifter is also used to implement normalization operation. After the exponent 

instruction, the exponent of the current accumulated value is stored into a 

special register. This stored value is used as the shift distance of the shift 

operation when executing the normalization instruction. 

There are also other modifiers for the accumulator : 1) logical unit for 

bitwise logic manipulation including AND, OR, XOR and NOT; 2) absolute 

unit for working out the absolute value of the accumulator; 3) negation unit for 

converting the accumulator to its opposite sign. The modified value is stored 

back to the accumulator. 

Besides data processing, there is a comparison unit for comparing the two 

29 



Chapter 3. Design of ASIP Platform 

I] H] I 
Operand Selector 

CMP I  

16x16 

S “ r I Shifter 

A ——i—H r ^ 40 bit / j l 
4 x p o ^ EXP ABS Logic Adder/ / / 

‘ Subtrator / / NEG 

^ T / i ? 

Accumulator    

Figure 3.4: The Structure of the Base Datapath 

values in the register file or comparing the accumulator with one stored value 

in the register file. The comparison unit can report six conditions : 1) equal; 2) 

not equal; 3) greater than; 4) less than; 5) greater than or equal; 6) less than 

or equal. The result is stored as conditional flags in special register. 

A complete instruction set description is tabulated in Appendix A. 

3.4 Register File Systems 

3.4.1 Memory Hierarchy 

In common with other current DSPs, the platform uses a dual Harvard architec-

ture where one program memory and two separate data memories (labelled X 

and Y) are used. This avoids conflicts between program and data fetches, and 

many DSP operations map naturally onto dual memory space. For example, 

the data for convolution or cross correlation can be stored separately in X and 

Y memories. 

30 



Chapter 3. Design of ASIP Platform 

X Data Memory /I 1\ A X Register 
6 4 K X 1 6 b i t \ | i / \ j ~ ~ \ / 6 4 X 1 6 bit 

、像• 

Load 
Store 
Unit  

Y Data Memory /I N̂ ：：^̂ / K Y Register 
6 4 K X 1 6 b i t \ | ~ ] / 64 X 16 bit 

_ 

Figure 3.5: The Structure of the Memory Hierarchy 

In order to allow high degree of data reuse, a large register file is highly 

recommended. The memory hierarchy is shown in Figure 3.5. The register file 

is partitioned into X and Y banks for matching the organization of the data 

memory. To interface with the data memories, a load store unit is used. It is 

designated for reading from and writing to the data memories in bulk. 

3.4.2 Register File Organization 

To supply enough operands to the parallel datapath without introducing any 

conflict, the register file is designed to be multi-ported. However, when the 

number of ports grows, the performance of the register file deteriorates in terms 

of delay, area and power consumption. Previous research work presented the 

impact to the performance of a register file with increasing number of arithmetic 

units in [13]. It showed that for N arithmetic units, the area of the register file 

grows as N^，the delay as N鄉,and the power consumption as N^ • The 

main reason is that more arithmetic units need more ports for parallel execu-

tion, which implies an exponentially growth in the complexity of the address 

decoder and the interconnection between the arithmetic units and the register 

file. Inevitably, this can cause a great impact to the platform when scaling up 

the parallel datapth. Partitioning register file into multiple banks was reported 

to be an effective solution to slowing down the performance deterioration in [13 

14] [15] [16]. The design philosophy of multi-banked register files is to distribute 

31 



Chapter 3. Design of ASIP Platform 

the ports to different register banks, so that the number of ports per bank can 

be reduced. This method can alleviate the complexity of the interconnection, 

but the drawback is that each port is confined to access the corresponding bank 

only. The primary challenge of this scheme is to avoid the number of simul-

taneous accesses to any bank that exceeds the available ports on each bank. 

Our design is based on the observation that the data which need to be accessed 

simultaneously can be uniformly assigned to different banks for many DSP al-

gorithms. In other words, data conflict can be omitted if the data is carefully 

assigned to suitable banks. 

It is a good practice to study the data access pattern of DSP algorithms. Our 

focus is on the convolution and correlation algorithms, which are fundamental 

and commonly implemented in most DSP applications. They also show a huge 

amount of parallelism and favour the analysis of parallel data access pattern. 

The general mathematical form for both of the convolution and correlation 

algorithms can be combined as 

N-l 

i=0 

where P{n) and Q{n) are the two digitized input signals, N is the length of 

P(n) or Q{n), y[n) is the output signal. It is assumed that N = 8 and there are 

four functional units (FU) in the parallel datapath. In the table, the bold items 

are the arithmetic operations. The operation mul represents a multiplication; 

operation mac is a multiplication-and-accumulation; operation add is an ad-

dition. The four functional units have their own accumulator for temporary 

storage which are notated in acc and t indicates a particular time instant. 

Observing the data dependency of the access pattern in Table 3.3, it is 

possible to further partition each register bank into two blocks. The first block 

contains data with index 2n and the second one contains index with 2n+l. 

In this arrangement, each functional unit possesses a block of X bank and a 

block of Y bank. The functional units only need to access data from the local 

blocks, and there is no need to access data across other blocks. As a result, 

each block is only required to provide one read port for the functional unit. 

32 



Chapter 3. Design of ASIP Platform 

t FUO FUl 

0 mul Pq QN mul Pi QN±I 

1 mac P2 Qn±2 Accq mac P3 (5„�3 Acci 

2 mac P4 (5ri±4 Accq mac P5 (5„�5 Acci 

3 mac Pq 士 6 Accq mac P7 土 7 ACCI 

4 add Acco Acci 

Table 3.3: Exploiting Data Parallelism by Observing Data Access Pattern 

The corresponding structure of the register file is shown in Figure 3.6. P(n) and 

Q(n) are supposed to be stored in X and Y banks separately. This structure 

illustrates a way to assembly an four read ports register file with four individual 

local read port register block. It is easy to scale up the architecture for further 

Address Generation Unit 

‘ � , 4 � 
I XBank I I I Y Bank i 
I X(2n) X(2n)+1 | 1 Y(2n) Y(2n)+1 I 

I X Block X Block j | Y Block Y Block j 

� : � ‘ 1 -‘ 

T i i r o i 

Operand 0 Operand 1 Operand 2 Operand 3 

Figure 3.6: The Structure of Register File for Data Parallelism 

exploiting data parallelism as shown in Figure 3.7. For J functional units and N 

data length, the index of X，Y block starts from yn , y n + 1, y n + 2, .... to the 

last index y n + ( y — l ) , where N is the power of 2 and J is an even number. It 

is particularly suitable for computationally intensive DSP algorithms because 

many calculations can be done simultaneously, though using more hardware 

resources for rapid operations. 

33 



Chapter 3. Design of ASIP Platform 

Address Generation Unit 

X Bank Y Bank 
- - - 厂 ― ’ ,： ：—、1 

I X(Nn/J) X(Nn/J+1) • • • x(Nn/j.(N/j.i)) | | Y(Nn/J) Y(Nn/J+1) • • • Y(Nn;j»<N/J-i)) | 

I X Block X Block X Block 丨 I Y Block Y Block Y Block 丨 

、 丄 — 了 」 」 _ 二 | : „ ! _ „ Tljj、！了二」―丄—二：」 � J 

( S e l e c t o r ^ ( S e l e c t o r ) 

Operand 0 Operand 1 • 拳 參 ••鲁 Operand (N/2-1) Operand N/2 

Figure 3.7: The Large-Scale View of Register File for Data Parallelism 

3.4.3 Special Registers 

The special registers are created for several reasons. Firstly, it marks the sta-

tus flags indicating the occurrence of overflow, carry, equal/not equal, less 

than/greater than, less than or equal/ greater than or equal for instructions 

like CMP, ADD and SUB. Secondly, it allows the programmer to initial-

ize the parameters that access memory and register through Load Store Unit 

(LSU). For memory/register access and instructions like LOAD and STORE, 

parameters like memory/register start address, size and step can be initialized 

at the beginning of the code segment. It is also feasible to set up the special-

ized addressing mode (e.g. circular/bit-reversed) through the special registers. 

The organization of special registers provide the high degree of flexibility. It is 

applicable to base instructions as well as parallel instructions. The details of 

special registers are shown in Appendix B. 

3.4.4 Address Generation 

The function of the address generation unit is to provide the addresses of the 

operands required to carry out the DSP operations. Since many instructions, 

34 



Chapter 3. Design of ASIP Platform 

such as the multiply instruction, require more than one operand for their ex-

ecution. The address generation unit should work fast enough to provide the 

addresses within the time constraints imposed by the instruction execution re-

quirements. 

There are lots of address calculation keeping the address generation unit 

busy. The variety of special addressing modes, including indirect addressing, 

circular (modulo) addressing and bit-reversed addressing modes, burden the 

main ALU with heavy workload. In order to efficiently compute those ad-

dresses, a separate arithmetic unit is required to compute addresses in the DSP 

implementation. 

I Offset  
Modulo Buffer ‘ 

Length ，r ‘ 

” I ；, I Add/Sub “ I 

Bit-reversed Circular __ . , 
Unit Unit 

Next Address 
Register 

Next Address 

Figure 3.8: The Datapath of Address Generation Unit 

The diagram of address generation unit is shown in Figure 3.8. It typically 

involves the following operations : 

1. Getting the immediate address from a register, memory location or in-

struction operand. 

35 



Chapter 3. Design of ASIP Platform 

2. Adding or subtracting the current address by 1 for program counter to 

fetch the instruction from memory. 

3. Incrementing or decrementing the current address by an offset for jump, 

loop operations and subroutine calls. 

4. Generating new address by applying circular addressing algorithm to han-

dle a continuous stream of incoming data samples. 

5. Generating new address by applying bit-reversed addressing mode to im-

plement some DSP algorithms like the Fast Fourier Transform (FFT). 

3.4.5 Load and Store 

Load and store are the two operations for accessing the data memory, and they 

are the only bridge between the data memory and the register file. A dedicated 

hardware, load store unit, is responsible for the tasks in transferring data from 

data memory to register file or vice versa. The duties of the load store unit are 

providing addresses, generating control signals and dispatching the fetched data. 

To accommodate the X-Y bank organization of the memory, the load store unit 

has independent address datapaths for the two banks. For each bank, there are 

one address datapaths for memory, one for reading from register file and one for 

writing to register file. The address datapaths are the same as those in address 

generation unit and the special registers that attached to the address datapath 

are also organized as in Appendix B. 

36 



Chapter 4 

Implementation of Speech 

Recognition on ASIP 

4.1 Hardware Architecture Exploration 

Application Specific Instruction Set Processor (ASIP) differs from general DSP 

Processor because ASIP targets at a specific class of application. ASIP involves 

thorough analysis of the algorithm in the hope of optimizing both the struc-

ture of datapath and application-oriented instruction set. Different techniques 

will be discussed in the following section for speaker-independent isolated word 

recognition system. 

4.1.1 Floating Point and Fixed Point 

DSP algorithm implementations deal with signals and coefficients. To use a 

fixed-point DSP device efficiently, one must consider to represent feature co-

efficients using fixed-point 2's complement representation. Typically, the coef-

ficients are fractional numbers. Floating-point numbers can provide wide dy-

namic range of numerical representation by normalizing all numbers into the 

same format with sign bit, exponent and mantissa. Though floating-point com-

putation can provide calculation with a good precision, it suffers from speed 

degradation since it requires more execution time and more complex hardware 

to run the routine compared with the fixed-point computation. For example, 

37 



Chapter 4- Implementation of Speech Recognition on ASIP 

floating-point additions require the exponents to be normalized before the ad-

dition of the mantissas. While floating-point multiplications require addition of 

exponents besides the multiplication of mantissas. 

Our ASIP is a 16-bit fixed-point processor, the only format allowed for each 

number is a 16-bit integer, which ranges from 0 to 65535 for unsigned number 

or -32768 to +32767 for signed number. 

4.1.2 Multiplication and Accumulation 

Miiltiply-accumulate (MAC) operations are useful features for matrix opera-

tions, such as convolution for filtering, dot product and even for polynomial 

evaluation. They are used to implement the mathematical function in the form 

of A + BC. It is important for most DSP applications which require the accu-

mulation of the products of a series of successive multiplications. In our design, 

MAC consists of a 16 X 16 multiplier followed by the 40 bit adder/subtracter 

unit and an additional register called accumulator. In general, the product of 

A B 

16 Z Z 16 
\ } ” 

Multiplier 

32 Z 40 J 

\Adder I Subtractoy^ 

Guard ^ r , 
bits 40 Z 

8 Accumulator 32 

Figure 4.1: The Datapath of MAC unit 

38 



Chapter 4- Implementation of Speech Recognition on ASIP 

a 16 X 16 multiplication is 32 bits. The extra most significant 8 bits in the 

adder/subtracter unit and accumulator are guard bits. When repetitive MAC 

operations are performed, the accumulated sum grows with each MAC operation 

if the inputs of the multiplier are not normalized. This increases the number 

of bits required to represent the result without loss of accuracy. One way of 

handling this growth is to provide extra bits in the accumulator. These extra 

bits, the so-called guard bits, allow for the growth of the accumulated sum as 

more and more product terms are added up. The datapath of MAC unit is 

shown in Figure 4.1. 

The most critical part of MAC unit is the multiplier. Efficient algorithm 

of multiplication [17] can enhance the computational speed remarkably. The 

multiplier is divided into three parts, namely the Booth encoding, Wallace tree 

and the addition. That means all partial products are first generated using 

Booth encoding, followed by blocks of 4:2 Wallace tree that compress the 4 

inputs into 2 outputs (sum and carry) and the final 32-bit addition. 

Booth Encoding 

Booth Encoding requires both multiplicand (A) and multiplier (B) to be its 

inputs. The generation of partial product (pp) depends on the encoding of 

multiplier as shown belows : 

in7 in5 in3 inl 
I /~^^ / ~ ^ ^ r - ^ r - ^ I 

B:bi5 bisibis bi4 bi3 bi2 bii bio b9 bs b? be bs b4 ba bz bi bo i 0 
W f ^ W K 

inS I in6 m4 iQ2 inOi 

Figure 4.2: The Encoding of Booth Using Multiplier 

1. An zero is inserted in the position of the least significant bit of multiplier 

B (i.e. bit 0). 

2. Two sign extended bits are inserted in the position of the most significant 

bit of multiplier B (i.e. bit 15). 

39 



Chapter 4- Implementation of Speech Recognition on ASIP 

3. Consecutive three bits form one "word" and act as the input of Booth 

encoder. 

4. Partial product (pp) is the output of Booth encoder which depends on the 

multiplicand A. The Booth encoding table is shown as follows : 

MSB Multiplier B LSB  

I I I I [TTI • in2 irii ino output (pp) 

11 T 0 0 0 0 
-2A 2A -A A 0 0 0 1 A 

� -| 0 1 0 A 

I \ + + + + + /in2 I O i l 2A 
I \ M U X [ M I  

I \ / fflO I I 1 0 0 -2A 

I I 1 0 1 -A 

Partial Product _ } J °  
I l l 0 

Figure 4.3: The Booth Encoding Logic Table 4.1: The Booth Encoding Table 

Wallace Tree Compressor 

In this multiplier, both the Booth algorithm and Wallace tree array block [18 

are used to speed up the multiplication process by enhancing parallelism. The 

Cln F _ I J ^ 

Coia 

c 

Figure 4.4: The Diagram of 4:2 Compressor 

40 



Chapter 4- Implementation of Speech Recognition on ASIP 

Wallace array block is made of numbers of 4:2 compressor, which means there 

are four inputs and two outputs in each compressor as shown in Figure 4.4. 

The inputs are partial products (XI, X2, X3, X4) and outputs are sum (S) and 

carry (C). The addition of the partial products uses the 4:2 compressor to sum 

up the partial products concurrently. In other words, it compresses four partial 

products into two new partial products (S’C) simultaneously. 

The final 32-bit Addition 

The final 32-bit adder is carry select adder (CSA) and it is constructed from a 

eight 4-bit carry lookahead adder (CLA) to propagate the carry at high speed. 

It pre-computes two possible outputs (sum) with carry=0 or carry=1 and select 

the appropriate output according to the carry. The structure of CSA is shown 

in Figure 4.5. 

A 32:29 B 32:2B A/�* 87:4 A3:o 

「 = 员 。 「 = 莎 

s 32:29 7̂:4 3̂:0 

Figure 4.5: The CSA with 4-bit CLA 

Combining the preceding 3 parts, including Booth encoder, Wallace array 

block and the final 32-bit addition, the fast multiplication process can be im-

plemented and illustrated as shown in Figure 4.6. 

4.1.3 Pipelining 

Pipelining is a technique that exploits the parallelism among the instructions 

in sequential instructions. The platform is a typical pipelined processor with 

41 



Chapter 4- Implementation of Speech Recognition on ASIP 

Multiplier B Multiplicand A 
(16 bits) (16 bits) 

广  

Booth Ecoder 
Booth J X 1 r 
Block * 

Partial Product Generator — 

PPO, r p p l l p p s i p p s , f 卯4， r P p s i p p B ^ p ? , f 

r ~ h ^ ~ ~ W ~ 
Compressor Compressor 

Wallace 「乂 H H � 

S i \ i i / 412 
� Compressor 

, , f I P 7 
二t { 32-bit Adder (CLA & CSA) 

Product (32 bits) 

Figure 4.6: The Whole Process of Fast Multiplication 

five stages. It means that an instruction is divided into five stages. There are 

at most five instructions that will be in execution during any single clock cycle. 

The organization of the pipeline is illustrated in Figure 4.7. The first stage is 

instruction fetch (IF). In this stage, the instruction fetch unit provides instruc-

tion address to the instruction memory and fetches the corresponding instruc-

tion into the processor. Then the processor moves to decode stage (DEC). The 

fetched instruction is decoded into commands and operands. Meanwhile, the 

address generation unit calculates for operand address calculation. The third 

stage is read stage (RD). The major task is to read the operands from the regis-

ter file. Similarly, the load store unit also accesses the register file for preparing 

store operation. Some instruction decoding works that related to datapath is 

completed in this stage. The forth stage is execution stage (EX). All the data 

processing, Boolean manipulation tasks are performed there. The load store 

unit accesses the data memory in this stage. The last stage is writeback (WB). 

The processed data is written back to the register file. On the other hand, the 

42 



Chapter 4- Implementation of Speech Recognition on ASIP 

： 綱 H i 喷 

Figure 4.7: The Pipeline Organization of the Platform 

load store unit puts the loaded data into the register file. 

4.1.4 Memory Architecture 

The simplest processor memory structure is a single bank of memory that con-

tains single set of address and data lines. Both program instructions and data 

are stored in the single memory. It is called the Von Neumann architecture, 

which is common in most non-DSP processors. 

Such memory architecture, however, is not sufficient to handle large amount 

of data with considerable access speed in DSP applications. Thus, our design 

adopts Harvard architecture, which holds program instructions and data sepa-

rately in three distinct memory locations labeled as instruction ROM, X and Y 

data memory. The instructions are stored in the ROM, while feature vectors of 

the real-time incoming speech and the speech reference parameters are stored 

in X and Y data memory respectively. 

43 



Chapter 4- Implementation of Speech Recognition on ASIP 

4.1.5 Saturation Logic 

Many DSP applications involve summing up a series of values using MAC in-

struction. When the number is accumulated, the magnitude of the number will 

grow. Eventually, the magnitude of the sum may exceed the maximum value 

that can be represented by the accumulator or register. Overflow is occurred 

under that situation. On the other hand, if the magnitude of the number is too 

small to represent it by the minimum value, underflow is said to occur. 

There are two solutions to overflow and underflow problems. Firstly, satu-

ration arithmetic can be used to represent numbers that are out of range. The 

overflow value will be replaced by the largest value that can be represented by 

the processor while the underflow value will be replaced by the smallest value. 

Secondly, modular arithmetic can be seen as an alternate solution. When the 

values of data lie out of the range of the largest and smallest represent able num-

bers, these values are wrapped around into the range using modular arithmetic 

relative to the smallest representable number. Modular arithmetic is sometimes 

referred to 'clock arithmetic' for integers, where numbers 'wrap around' after 

they reach a certain value (the modulus). For example, while 8 + 6 equals to 14 

in conventional arithmetic, the actual answer is 2 if it is implemented in modulo 

12 arithmetic. It is because 2 is the remainder after dividing 14 by the modu-

lus 12. Thus, it is better to use saturation arithmetic instead of the modular 

arithmetic to avoid an error known as the wrap around error. The datapath 

of the saturation logic is shown in Figure 4.8. It is particularly useful in the 

parallel instruction to enhance the accuarcy by eliminating the arithmetic right 

shift operation that scales down the values significantly. 

4.1.6 Specialized Addressing Modes 

Different addressing modes can be employed to speed up the DSP real-time 

implementation, namely circular addressing mode and bit-reversed addressing 

mode. They are used for various DSP algorithms like filtering or Fast Fourier 

Transform (FFT), which require the large amount of data to be handled as well 

44 



Chapter 4- Implementation of Speech Recognition on ASIP 

Y 

——n I 32767 | -1 “ 

r T ^ ,, 丁 r ^ M a x > Y 
M I \ i o v V 

Saturated Y 

Figure 4.8: The Datapath of Saturation Logic 

as a fixed address index pattern can be observed. The following sections will 

have a detailed discussion on these specialized addressing modes. 

Circular Addressing Mode 

The circular addressing mode is usually used to handle a continuous stream of 

incoming data samples (coefficients). There is a buffer that act as a storage 

place for those samples. Usually the length of buffer depends on the number 

of samples. The more the samples, the larger the buffer. Sometimes, it wastes 

lots of memory saving numerous coefficients without further re-using it again 

when those stored data are no longer needed afterwards. To reserve the tight 

memory for other purposes, it is better to keep the data in a circular buffer 

instead of a general buffer. In a circular buffer, successive data samples are 

stored in sequential buffer locations until the end of the buffer is reached. Then 

the next incoming data will be saved at the beginning of the buffer once the 

previous data is stored in the end of the buffer. The actual operation of the 

circular addressing mode can be represented in a mathematical form 

next address = {current address 土 step)%size 

where step is the movement range of the pointer (PTR) which holds current 

address and size is the buffer length. The PTR can be incremented or decre-

45 



Chapter 4- Implementation of Speech Recognition on ASIP 

mented. There are two additional registers to mark the position of the start 

address and end address of the circular buffer. They are called start address 

register (SAR) and end address register (EAR). There are total four cases for 

calculating the updated PTR of circular buffer : 

Condition 1 Condition 2 Updated PTR 

SAR < EAR (current address + step) > size (current address + step) - size 

SAR < EAR (current address + step) < size (current address + step) + size 

SAR > EAR (current address - step) > size (current address - step) - size 

SAR > EAR (current address - step) < size (current address - step) + size 

Table 4.2: The Pointer Update Algorithm of Circular Addressing Mode 

Bit-reversed Addressing Mode 

Special data access capability is important in the Fast Fourier Transform (FFT) 

algorithm implementation. The FFT is a fast algorithm that transforms a time-

domain signal into its frequency-domain representation. However, there is a 

drawback of FFT operation. It takes the input in a natural order, but results 

in an irregular outputs shown in Figure 4.9. Note that the bit-reversed pattern 

is just a mirror reflection of the original input pattern. 
xo I Xo Input (Natural Output (Bit-

Order) reversed) 

XI ~ • — ^ 0 0 0 0 0 0 
X2 ~ • • X2 0 0 1 1 0 0 
X3 ~ • ~ • X6 0 1 0 0 1 0 
X 4 — 0 1 1 1 1 0 

Y 1 0 0 0 0 1 
X 5 ~ ^ 1 0 1 1 0 1 
X6 ~ • ~ • X3 1 1 0 0 1 1 
X7 • ~ • X7 1 1 1 1 1 1 

Figure 4.9: The Output of FFT Algorithm 

46 



Chapter 4- Implementation of Speech Recognition on ASIP 

Fortunately, there is still a traceable rule to generate the bit-reversed pat-

tern. From Figure 4.9，the length of FFT is 8. The actual operation of the 

bit-reversed addressing mode can be represented in a mathematical form 

next address = {current address + ^ {FFT Length)) 
ZD 

In the example, the start address is 0 and half of FFT length is 8/2=4，thus 

next address is equal to current address 000 + half FFT length 100 = 100 

with no carry generated. The next address becomes current address. However, 

current address 100 + half FFT length 100 does produce a carry. Please notice 

that the carry is propagated in the reverse direction (i.e. from right to left) as 

shown belows. 

Carry propagate in  
reverse direction 

Current address 0 0 0 � • Current address 1 0 0 

Half FFT length + 1 0 0 Half FFT length + 1 0 0 

Next address 1 0 0 Next address 0 1 0 
Carry 

4.1.7 Repetitive Operation 

Loops are complicated tasks for instruction fetching. A dedicated controller 

is used to maintain the current status of a loop and to handle the address 

calculation. The structure of the controller is shown in Figure 4.10. The internal 

control logic interacts with the request from instruction decoder, controls the 

operation of the stack and the loop counter. The status of the loop is temporarily 

stored in the stack. The content of the stack is shown in Figure 4.11. The first 

one bit field indicates if the loop operation is currently running or not. The 

second field indicates the number of lines of instructions covered by a loop. 

The third field indicates the start position of a loop. The forth field states the 

number of iteration left. When a static loop is set up, the current status and the 

setup data of the loop (start address and size) are pushed into the stack and the 

loop tag is set to one. The number of iterations is stored in the loop counter. 

47 



Chapter 4- Implementation of Speech Recognition on ASIP 

End address 

PC t = d 
Loop control, k Control Logic 

from decoder ‘ ^̂  status  
A A “ I I 

Loop Start 
control size , � address 

control 

Loop Counter 一 ‘ _ _ stack — ： 

Q Selector ) ‘ 

Loop setup 
data ‘ ‘ 

Start address 

Figure 4.10: The Structure of Loop Controller 

loop loop size start address iteration 

Figure 4.11: The Content of Stack 

Based on the setup data, the control logic can figure out the end position of 

the loop and the current relative position of the program in the loop. At the 

end of each iteration, the loop counter is decreased by one, and the program 

counter is updated with the start address of the loop. Once the loop counter 

reaches zero, the stored loop status is popped out and the previous status can 

be maintained. 

Sometimes, the application maybe so complicated that multiple nested levels 

of static loops are required. The total number of levels depends on the number 

of entries of the stack. Hence the size of the stack should be considered in 

application analysis in order to match the behaviour of the target application. 

48 



Chapter 4- Implementation of Speech Recognition on ASIP 

4.2 Software Algorithm Implementation 

4.2.1 Implementation Using Base Instruction Set 

The front-end that extracts useful feature vectors from incoming speech is pre-

processed and saved in the X memory. All of the word models are trained 

offline by efficient HTK toolkit and pre-stored in the Y memory for back-end 

Viterbi search operation. Both feature vectors and model parameters are 16-bit 

fixed-point arithmetic. 

The front-end processing is straightforward and less computationally inten-

sive than the back-end Viterbi Search. The procedure for feature extraction 

is standardized and the processing time can be negligible compared with the 

time-consuming Viterbi Search. Thus, we mainly focus on the back-end Viterbi 

search in our project. 

Recall from Section 2.3.3 and 2.4, the simplest implementation is single-

mixture Viterbi search. The recognition result is found by calculating the output 

probability density function recursively 

bj {ot) = N{ouilj,Uj) , 1 < j < iV, 2<t<T 

= 1 —p 言'-A 广“广（言'-A) (4.1) 

t̂ U) = ^t-i �( k j . bj (ot) (4.2) 

= • m a x & 一 1 � . ) ^ e - H - t - l ^ j f 昨 “ j ) 

J ^ ( 2 n f d e t ( U j ) 

where ot is the observation vector with the dimensionality of D at time t) and 

N is a Gaussian pdf with mean vector p,j and the determinant of the covariance 

matrix Uj in state j . 

The probability value is small and further multiplications lead to an interme-

diate result which is so small that the computer cannot represent it accurately. 

Underflow is expected under this situation. To solve the problem, the logarithm 

49 



Chapter 4- Implementation of Speech Recognition on ASIP 

of probability is taken (i.e. natural log). The Equation 4.2 can be re-written as 

式 0") = (j)] = ln[max (i). an, St-i (i) . . bj (ot) 

= m a x St-i (i) + da, St-i (i) + dij + bj (ot) 

= m a x St-i (i) + da,呂t-i � + S^j + In iV [ot, ]!” Uj) 

卜 ~ 1 1 = m a x 5t-i {i) + an, 6t-i (i) + dij + In 

+ (4.3) 

\ ^ J 

From Equation 4.3, the first term max 5t-i (i) + an, St-i (i) + â - is the se-

lection of higher probability from two possible search paths (stay in the same 

state or advance to next state).呂t-i � is calculated previously because the 

search is a recursive process. Both da and a^ are model parameters that can 

be pre-stored in the memory. The second term is simply a constant since vec-

tor size D and covariance Uj are known before the implementation. As there 

is growing concern in the computation efficiency of different arithmetic oper-

ations, it is realized that addition and multiplication compute faster than di-

vision in most hardware platform. To avoid division, we need to pre-compute 

the inverted data. We can pre-calculate and pre-store the constant *兀丨“丨 

instead of \ Uj\ for the Gaussian probability computation. The third 

term 去{ot - {ot 一 Jlj)) are composed of 1 X 26 Ot , 1 X 26 巧 and 

1 X 26 as there are 26 elements (D=26) for each parameter that forms a 

vector. Thus, the third term of Equation 4.3 can be analyzed in the following 

way : 

- fljf U-' {ot - Jlj) 

On — Jiji 
Ot2 - � 1 1 I 

='2 - Uj, -巧 1 Ot2 — -

Ot26 ~ "j-26 

50 



Chapter 4- Implementation of Speech Recognition on ASIP 

The complicated matrix form of the third term can actually be viewed from 

a simple perspective using subtraction, multiplication and addition. Since the 

equation displays the accumulated summation property, MAC instruction can 

be used to speed up the operations. Remember that all the arithmetic oper-

ations supply the input through the registers. The efficiency of operation can 

be further enhanced if specific registers are assigned for storing the input val-

ues. The address of registers can be generated (incremented by 1) automatically 

through the address generation unit, assuming that the address of registers align 

in a sequential order. It bypasses the datapath of the ALU unit because there 

is no need to have any addition to find out the next updated address. To reduce 

the number of used registers, circular addressing mode can be utilized to over-

ride the previous loaded input data by the next incoming ones. It is feasible to 

do so as the vector size is fixed (26 parameters) for each speech frame. 

To model the wide variability of speech appropriately, we can consider im-

plementing the speech recognition process with double mixture Viterbi search. 

Recall from Section 2.3.3, the output probability density function with double 

mixture is defined as 

� =f ： ， 昨 t , J l ] k , U j k �= 妄 ， I - 节 推 

— (4.4) 

where Cjk is the mixture coefficient for the k t h mixture in state j , M is the 

number of mixtures per state and iV is a multivariate Gaussian with mean 

vector and the determinant of the covariance matrix Ujk for the k t h mixture 

component in state j . To have a simple expression, rewrite equation (4.1) as 

N = BeJ (4.5) 

Thus equation (4.4) can be expressed as 
M M 

bj (ot) = [ CkBke"' = ’ = c i ^ 
k=l k=l 

/ M \ 
ln[6, (o , ) ]=ln (4.6) 

\k=i J 
51 



Chapter 4- Implementation of Speech Recognition on ASIP 

where Gk is constant for the kth mixture of each state and can be pre-calculated 

and pre-stored in ROM. A simple and accurate method can be developed 

for the log-add operation (In XI ̂ ^p) in equation (4.6). As we use a double-

mixture Gaussian model (M=2) throughout our implementation, select the 

larger Gk max̂ '̂ '' """"in equation (4.6) and divide each operand of add operation 

by it 

Hbj PO] = In Gk max + Jk ma. + In { fl + J] \ 
I \ k=l,k神 max •工 / J 

Since min QJk min-Jk max [g always kept less than one, 
Gfc max 

( l + y ^ , . Gj^^e-Jk min-Jk mâ ) ig less than M. This makes 
V ‘ max Gk max / 

(1 + y^Jli . f̂c min e^k min-Jk max ] lie in a finite region which is al-
乂 ^―'«=!,«；Ttfc max Gfc max J 

ways greater than one but less than two. It is recommended to ignore this 

complicated term for easier implementation since its value is small and the 

removal of this term will not degrade the recognition accuracy significantly. 

The completed equation that implements the Viterbi search [19] is simplified as 
• "I ~ 

St ( j ) = \n[6t (j)l = max St-i (i) + da, St-i (i) + + bj {ot) 
- -

= m a x 各_i (i) + da, St-i (i) + + In Gk max + Jk max 
-

厂 ~ ~ ~ • ~ 1 1 =max 6t-i (i) + flu, ̂ t-i � + 知 + In Ck max ,—— 
L L ([/,). 

26 1 

+ D o r 汚 於 ( 4 - 7 ) 
i=\ 

To have a systematic way of viewing the implementation of speech recogni-

tion, the whole program flow can be illustrated as follows: 

1. Initialize registers for storing the address of look-up table of various model 

parameters, including mean, variance, transition probability, etc. 

2. Compute Jkmax i.e., T ^ Z M i " Subtraction is performed 

first, followed by the multiplication and arithmetic right shift. The right 

shift can prevent the overflow of the intermediate values. MAC instruction 

is finally executed for the accumulated sum and multiplication. 

52 



Chapter 4- Implementation of Speech Recognition on ASIP 

3. Compute InfCfc maa：] i.e., In [ck max] + In , � � �. O n l y one addi-
L V det([;j.)」 

tion is required since both Ck max and Uj are constants, which means the 

logarithm of those two terms can be pre-calculated and pre-stored in the 

memory. 

4. Calculate max{&_i {i) + an, 5t-i (i) + aij} . The term 瓦—i(i) can be ob-

tained from previous step while da and â j are constants. There are totally 

two additions plus one selection of the path with higher output probability. 

5. Repeat procedures 2 � 4 until all speech frames are processed and all word 

models are compared with the feature vectors of the incoming speech. 

LOOP instruction can be used for repetitive tasks. 

To enhance the recognition speed, multiple-stage pipeline discussed in Section 

4.1.3 can be applied to speech recognizer. Given that the speech parameters 

shown in Table 4.3，the design takes 6 cycles to calculate one output probability 

Speech Parameters Value 

Number of Words 11 

Number of Frames 190 

Number of States 8 

Number of Mixtures 2 

Feature Vector Size 26 

Table 4.3: The Speech Parameters for Recognition 

S, there are 4 cycles for two consecutive multiplications and other operations 

like reading constants from memories, subtraction, shift, addition, comparison 

and selection are all executed within that 6 cycles. Thus it requires 6 x 11 x 

190 x 8 x 2 x 2 6 ? ^ 5 x 10® clock cycles to recognize one word. It implies that 

it is possible to recognize one word in 1 second if the operating frequency is 5 

MHz. 

53 



Chapter 4- Implementation of Speech Recognition on ASIP 

4.2.2 Implementation Using Refined Instruction Set 

The refinement of software implementation is based on the instruction-level 

design enhancement. There are two methods of optimization derived from the 

pre-defined base instruction set, mainly distillation and condensation. 

Distillation corresponds to the process of eliminating the infrequently used 

pre-defined instructions. This can save the special hardware resources imple-

menting that pre-defined instruction by replacing it with a sequence of instruc-

tions. On the contrary, condensation is the process of replacing a frequently 

used instruction sequence by a newly defined application specific instruction. 

Extra hardware deployment is expected to have a perfect match between the 

architecture and the refined instruction set. Figure 4.12 shows an example of 

Instruction Condensation 

LDACC X08, FF ； X08 = FF 
MPY X01,Y02 ; X01 = X01 • Y02 

Condensat ion^^. .^—- -^MAX X03,Y04 ； X03 « MAX{X03,Y04) 

ABS X08 ； X08 = 01 
MAC X05.Y06 ； X05 = Acc + X05 ‘ Y06 

LDACC X08. F F / 1 x 0 8 » FF 
MPY X01 ,Y02 / ； X01 » X01 * Y02 p  

{ LDACC X08. FF ； X08 = FF 
| A D D _ W ； X03-X03 + Y03 MPY X01.Y02 ； X01=X01*Y02 
AOO X04.Y(» I X04 « X04 + Y04 
eMP X 0 i X04 ： If (X03 < X04) P 0 1 8 ADD X03, Y03 ； X03 = X03 + Y03 
BGi i fa f l . i a ADD X04. Y04 ; X04 = X04 + Y04 

I • ,,,, ,, CMP X03. X04 
ABSX08 ； X08 = 01 ^ ^ ^ ^ t l o n BGTflag, 18 : i f(X03< Y04) PC=18 
MAC X05.Y06 ; X05 ^ Acc X05 * Y06 - J O l f l P ^ . d ~ ； if {X08>0) PC=19 

Original Instruction Sequence 

MAC X05.Y06 ； XQ5 « Acc + X05 * YOB 

Instruction Distillation 

Figure 4.12: Examples of Instruction Condensation and Distillation 

instruction distillation and instruction condensation [9]. In our project, pre-

defined instructions such as ABS, N O R M and EXP are seldom used. Those 

instructions are transformed into a new instruction sequence by distillation, i.e., 

substitution of the instruction ABS (absolute value) by a three-instruction se-

quence. It takes more clock cycles to run while lowering the hardware costs. 

Conversely, the repetitive and frequent operation occurs in the implementation 

54 



Chapter 4- Implementation of Speech Recognition on ASIP 

of add/compare selection of the Viterbi search process. Only the path with the 

highest output probability will be considered. Additional hardware functional 

unit called Add, Compare, Select Unit (ACSU) [20] is particularly designed for 

the sake of optimized implementation of instruction M A X . The structure of 

ACSU is shown in Figure 4.13. It can be seen that an instruction sequence 

5t-i(i) aii 5i-i(i-l) ay 

I ” u u f I 

I Adder Adder | 

I ^ ^ _ _ I 
I Comparator | 

I I 
I decision A ^ ^ / I 

I " M U X / I 

u 
Max 

Figure 4.13: Examples of Instruction Condensation and Distillation 

can be replaced by a new instruction M A X through condensation. Without 

M A X instruction, the inefficient branch action is required to access different 

code segments after the comparison of two register values. The register that 

holds the larger value is selected and the corresponding code segments will be 

executed. The use of M A X instruction speeds up the Viterbi search proce-

dure. It takes fewer clock cycles by eliminating the overhead of branch process. 

It is possible to recognize one word in 0.5 second if the operating frequency is 5 

MHz. Compared with the base instruction set, the recognition time is reduced 

to half of the original one if refined instruction set is used at the same operating 

frequency. 

55 



Chapter 5 

Simulation Results 

A speaker-independent speech recognizer with double-mixture HMM is devised. 

Its major focus is mainly on the Cantonese isolated words. The design specifica-

tion is written first, followed by the modeling of Verilog HDL using behavioral 

description. The functional verification of the design is performed under simula-

tion environment SimVision. If there is no error found, the design is synthesized 

in the Design Compiler of Synopsys. The physical design like floor planning, 

automatic placement and routing is done in Silicon Ensemble with AMS 0.35-

micron 4 metal 2 poly CMOS technology. The specification of fabricated chip 

is depicted in Table 5.1 while the chip microphotograph is shown in Appendix 

C. 

Specification Value 

CMOS Technology 0.35 fi m 

Area (NAND2 equ.) 132K 

Area m x /i m) 2600 x 2600 

Number of Pads 120 

Operating Voltage 3.3V 

Table 5.1: The Specification of Fabricated Chip 

The whole speech recognizer is implemented by writing programs based on 

the base instruction set, which is defined by the platform. Figure 5.1 outlines 

the simplified program skeleton. The main theme of Viterbi algorithm is to 

56 



Chapter 5. Simulation Results 

find the maximum likelihood of the word model that matches the incoming 

speech. The details of program flow are also discussed in Section 4.2.1. By first 

Max = 0 
for V = 1 to V " n o of words 

for f = 1 to T //no of frames 

for / = 1 to S " n o of states 

P(t) = 0 
for y = 1 to S 

P(t) = max (P(t-1)) + log aij 
+ log bj (ot) 

end for 
end for 

end for 
if Max < P(v), then Max = P(v) 
end for 

Figure 5.1: The Program Skeleton of Viterbi Search 

implementing the algorithm in high level language (HLL), it is easy to convert 

it to the ASIP platform using completed base instruction set in Appendix A. 

To verify the ASIP chip, a PCB board is made in Appendix D. Figure 5.2 

is a brief diagram of the PCB. The program is preloaded in the ROM. The X 

( V D D ) 

V / X RAM Y RAM 

data address address data 

；§ ^ , clK ^ 
^ ~ preload A S I P result R 
O. 1 ___J 

Q ！5! i 

g H - . r > ] = 问 

Program Program 
R0M{1) ROM (2) 

Figure 5.2: The Simplified Diagram of PCB 

57 



Chapter 5. Simulation Results 

RAM and Y RAM store the extracted feature vectors and trained parameters of 

word models respectively. When the chip is power-on, the start signal indicates 

the beginning of the recognition process. The code segments describing the 

Viterbi search algorithm will be executed sequentially. The LED displays the 

recognition result. 

Simulation results using software (HTK) [21] and our hardware platform are 

shown in Table 5.2 respectively. The accuracy of hardware simulation is only 

0.7 % lower than software one. 

Software Hardware 

Acciiracy(%) 93.9 93.2 

Table 5.2: The Simulation Results of Recognition Accuracy 

In our speech recognition system, the sampling rate of the speech is 8 kHz, 

the frame period is 20 ms and frame rate is 10 ms. The vocabulary in our 

experiment contains 11 Cantonese words. Each word has two syllables. Training 

data include 2200 utterances from 5 male and 5 female native speakers. Each of 

the word is modeled by an HMM, which are trained offline by the HTK toolkit. 

734 utterances from another 10 male and 10 female native speakers are used 

for performance evaluation. Both training and testing utterances are recorded 

via microphone channel under the similar acoustic environment with signal-

to-noise ratio (SNR) of 10 dB. The time required to complete one recognition 

is about 1 second at the working frequency of 5 MHz. The recognition time 

can be reduced to 0.5 second if refined instruction is used. Profiling of time 

information can be achieved based on the calculation in Section 4.2.1. According 

to the simulation results from Static Timing Analysis (STA) using PrimeTime, 

the maximum operation frequency can reach 86 MHz. This allows the chip 

to recognize one word in only 47 ms. The recognition time is fast enough in 

real-time implementation. 

Compared with the past research work [22], it takes 60 seconds for their chip 

to recognize the word with working frequency of 17 MHz. Their vocabulary is 

58 



Chapter 5. Simulation Results 

moderately-sized with around 60 monosyllable words and the technology for 

fabricated chip is CMOS. It is possible for our design to extend the vocabulary-

size by occupying more memory. The recognition time is approximately 6 sec-

onds for 60 words. This is at least one magnitude faster than the previous work. 

Further refinement reduces this speed by a half. Moreover, that previous work 

operates its chip at a higher working frequency. It implies that more power is 

expected to be consumed. Our proposed platform shows great improvement in 

terms of execution time and power consumption. The achievement is particu-

larly important in real-time applications. 

59 



Chapter 6 

Conclusions and Future Work 

Conclusions 

This work aims at converting the conventional speech recognition algorithm 

from a research engine to a practical real-time system on ASIP platform. It 

targets at the isolated word recognition on an arbitrary moderately-sized vo-

cabulary. The proposed ASIP design methodology is proven to be effective in 

the practical implementation. The time required to complete one word recogni-

tion is about 1 second at the working frequency of 5 MHz. The recognition time 

can be reduced to half of the original one if refined instruction is used. As our 

platform can reach the maximum operation frequency 86 MHz, this allows the 

chip to recognize one word in only 47 ms. The recognition time is fast enough 

in real-time speech applications. On the other hand, the proposed speech recog-

nition running on ASIP platform attains approximately the same recognition 

accuracy as the software recognition. It is obvious that our design can meet 

the stringent requirement of both time-critical and highly accurate speech ap-

plication. Most importantly, our research demonstrates the beauty of ASIP 

methodology by having software/hardware co-design. The speech algorithm is 

thoroughly analyzed in order to convert the complicated algorithm into simple 

mathematical form. Special hardware Add-Compare-Select Unit(ACSU) is de-

ployed for the frequently repetitive Viterbi search. Finally, application-specific 

instruction set is exploited to bridge the gap between the software and hardware 

60 



Chapter 6. Conclusions and Future Work 

parts. It is believed that the ASIP approach requires multi-disciplined exper-

tise with background in digital signal processing, software engineering practice, 

logic and arithmetic design as well as computer architectures. 

Future Work 

The ASIP design provides a framework of implementing DSP algorithm effi-

ciently. The research mainly focuses on the double mixture HMM-based speech 

recognizer. The recognition accuracy can be enhanced further if higher-order 

mixture is considered. However, the computation will be increased accordingly. 

This arouses the issue of scaling up the base platform to meet more stringent 

requirement. Scaling up the design is not a difficult task because the original 

platform can be extended to a more complicated one. More powerful instruction 

sets can be developed in parallel and complex forms. By selecting the useful 

instructions from the base one, the mixed utilization of originally selected base, 

newly defined parallel and complex instructions can show tremendous improve-

ment in the demanding application. 

In addition to higher-order mixture, there are many other speech algo-

rithms that can be executed, including speaker identification, speech verifi-

cation, speech synthesis for text-to-speech, etc. Since our ASIP platform has 

different instruction sets, it is feasible for developer to shift from one application 

to another with programmable instruction set. They can also define another 

set of instructions that are specific to their application. In this way, the ASIP 

design is flexible and powerful enough to have multiple applications. 

61 



Appendix A 

Base Instruction Set 

Mnemonic Input —> Output Description 

M A C (Reg, Reg, Acc) —> Acc Multiply two values of registers and accumulate 

M P Y (Reg, Reg) 一 Acc Multiply two values of registers 

A D D (Reg, Reg) 一 Acc Add two values of registers together 

SUB (Reg, Reg) -> Acc Subtract one value of registers from another one 

A D D C (Reg, Reg, Flag) Acc Add two values of registers together with carry 

SUBB (Reg, Reg, Flag) -> Acc Subtract one value of registers from 

another one with borrow 

A D D A (Reg, Offset, Acc) -> Acc Add an offset-able value of register to accumulator. 

SUBA (Reg, Offset, Acc) — Acc Subtract an offset-able value of register 

from accumulator. 

NEG Acc —» Acc Invert the sign of the accumulator. 

ABS Acc — Acc Take the absolute value of the accumulator. 

E X P Acc —> SReg Determine the exponent of the accumulator. 

N O R M (Acc, SReg) —> Acc Normalize the accumulator to the exponent 

stored in the special register. 

SH (Acc, Reg) — Acc Shift the accumulator with the signed value in 

a register ( + left, - right). 

SHK (Acc, Value) —> Acc Shift the accumulator with the immediate 

signed value ( + left, - right) 

Table A.l: The Data Processing Instructions 

62 



Mnemonic Input —>• Output Description 

N O T Acc -> Acc Bitwise NOT of the accumulator 

OR (Reg, Offset, Acc) —> Acc Bitwise OR of the accumulator with an 

offset-able value from register. 

AND (Reg, Offset, Acc) — Acc Bitwise AND of the accumulator with an 

offset-able value from register. 

X O R (Reg, Offset, Acc) —> Acc Bitwise X O R of the accumulator with an 

offset-able value from register. 

Table A.2: The Bit Manipulation Instructions 

Mnemonic Input —> Output Description 

BEQ Flag —> PC Branch if equal to flag is asserted. 

BNE Flag —> PC Branch if not equal to flag is asserted. 

BLT Flag —> PC Branch if less than flag is asserted. 

B G T Flag —> PC Branch if greater than flag is asserted. 

BLE Flag — PC Branch if less or equal to flag is asserted. 

BGE Flag —> PC Branch if greater or equal to flag is asserted. 

SR Value -> (PC, stack) Subroutine call 

JP Value PC Unconditional jump 

LOOP (size, cycle) — (PC, stack) Static looping 

RET stack —> PC Return from subroutine call or break a static loop. 

NOP NA No operation 

Table A.3: The Flow Control Instructions 

Mnemonic Input — Output Description 

CMP (Reg, Reg) —> Flag Compare two values from registers and assert the 

condition flag. 

CMPACC (Reg, Offset, Acc) — Flag Compare the accumulator with a value from 

register and assert the condition flag. 

Table A.4: The Boolean Operation Instructions 

63 



Mnemonic Input —» Output Description 

C 0 N F 4 (Value, Pos) —> SReg Write a nibble to a special register without altering 

other bits. 

C 0 N F 8 (Value, Pos) SReg Write a byte to a special register without altering 

other bits. 

C 0 N F 1 6 Value —> SReg Write a word to a special register. 

Table A.5: The Configuration Instructions 

Mnemonic Input —> Output Description 

M O V Reg —> Reg Move a register content to another register 

l o a d Mem — Reg Load a value from data memory to register. 

STORE Reg — Mem Store a register content to data memory. 

LDACC L O P / R O P (bypass DP) — Acc Load an immediate value to accumulator. 

LOP/ROP[15:0] — ACC 

STACC Acc —> Reg Store the accumulator to register. 

Table A.6: The Memory Manipulation Instructions 

Reg - register content 

Acc - accumulator content 

Flag - status and conditional flags 

Offset - shift the value to the left by 16 bits 

Offset-able - a value can be set to be offset 

SReg - special register content 

PC - programme counter 

Stack - programme stack 

Value - immediate value 

Size - the number of instructions within a static loop 

Cycle - the number of iterations of a static loop 

NA - not available 

Pos - a position of a nibble or a byte in a 16 bits value (O:low word, l:high word) 

Mem - data memory 

64 



Appendix B 

Special Registers 

Table B.l: The Organization of Special Purpose Registers 
15 8 7 0 

0 INT (RESERVED) 

1 ov40 ov32 EQ NE LT GT LE GE 0 0 EXP 

2 LSU XDATA address 

3 LSU XDATA size 

4 LSU XDATA step 

5 LSU YDATA address 

6 LSU YDATA size 

7 LSU YDATA step 

8 0 0 LSU XREG LD address 0 0 LSU XREG LD size 

9 0 0 LSU YREG LD address 0 0 LSU YREG LD size 

10 0 0 LSU XREG LD step 0 0 LSU YREG LD step 

11 0 0 LSU XREG ST address 0 0 LSU XREG ST size 

12 0 0 LSU Y R E G ST address 0 0 LSU YREG ST size 

13 0 0 LSU XREG ST step 0 0 LSU YREG ST step 

14 LSU Configuration 

15 0 X / Y SFU LOP address 0 0 SFU LOP size 

16 0 X / Y SFU ROP address 0 0 SFU ROP size 

17 0 0 SFU LOP step 0 0 SFU ROP step 

18 0 X / Y SFU W B address 0 0 SFU W B size 

19 0 0 0 0 SFU Conf 0 0 SFU W B step 

20 PFUO �P F U 3 Configuration 

65 



21 0 X / Y PFUO LOP address 0 0 PFUO LOP size 

22 0 X / Y PFUO HOP address 0 0 PFUO ROP size 

23 0 0 PFUO LOP step 0 0 PFUO ROP step 

24 0 X / Y PFUO W B address 0 0 PFUO W B size 

25 0 0 0 0 PFUO interval 0 0 PFUO W B step 

26 0 X / Y PFUl LOP address 0 0 PFUl LOP size 

27 0 X / Y PFUl ROP address 0 0 PFUl ROP size 

28 0 0 PFUl LOP step 0 0 PFUl ROP step 

29 0 X / Y PFUl W B address 0 0 PFUl W B size 

30 0 0 0 0 PFUl interval 0 0 PFUl W B size 

31 0 X / Y PFU2 LOP address 0 0 PFU2 LOP size 

32 0 X / Y PFU2 ROP address 0 0 PFU2 ROP size 

33 0 0 PFU2 LOP step 0 0 PFU2 ROP step 

34 0 X / Y PFU2 W B address 0 0 PFU2 W B size 

35 0 0 0 0 PFU2 interval 0 0 PFU2 W B size 

36 0 X / Y PFU3 LOP address 0 0 PFU3 LOP size 

37 0 X / Y PFU3 ROP address 0 0 PFU3 ROP size 

38 0 0 PFU3 LOP step 0 0 PFU3 ROP step 

39 0 X / Y PFU3 W B address 0 0 PFU3 W B size 

40 0 0 0 0 PFU3 interval 0 0 PFU3 W B size 

PFUn一3 �PFUn Configuration 

0 X / Y PFUn LOP address 0 0 PFUn LOP size 

0 X / Y PFUn ROP address 0 0 PFUn ROP size 

0 0 PFUn LOP step 0 0 PFUn ROP step 

0 X / Y PFUn W B address 0 0 PFUn W B size 

0 0 0 0 PFUn interval 0 0 PFUn W B size 

66 



Appendix C 

Chip Microphotograph of ASIP 

m m Q U Q u m n i i m ^ p m 

67 



p

 ̂W
H
^
^
^
S
^
M
^
^
B
M
M
^

 I

 ̂

 

.
汉
.
t
o

 nn
^
l
^
^
^
^
p
H
S
 

p

 e
 

p

 h
 

A

 T
 



Bibliography 

[11 J G Cousin, 0 . Sentieys, and D. Chillet, "Multi-algorithm asip synthesis 

and power estimation for dsp applications," in IEEE International Sympo-

szum on Cvrcuits and Systems, pp. 621 - 624’ May 2000. 

2] P. Kievits, E. Lambers, C. Moerman, and R. Woudsma, "R.e.a.l. dsp tech-

nology for telecom baseband processing," in Proceedings of ICS PAT, 1998. 

[31 R. E. Gonzalez, "Xtensa: a configurable and extensible processor," IEEE 

Micro, vol. 20’ issue. 2, pp. 60 - 70, Mar-Apr 2000. 

[4] ‘‘Improv systems inc., jazz psa/jazz dsp." http://www.improvsys.com. 

[5] ‘‘Arc cores ltd., arctangent processor." http://www.arccores.com. 

6] "Target compiler technologies, chess/checkers is a retargetable tool-suite." 
http://www.retarget.com/products-more.html. 

7] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen, 

A. Wieferink, and H. Meyr, "A novel methodology for the design of 

application-specific instruction-set processors (asips) using a machine de-

scription language," IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, vol. 20, issue. 11, pp. 1338 - 1354, Nov 

2001. 

8] "Institute of integrated signal processing systems, aachen university of tech-

nology, germany, lisa processor design platform." http://www.iss.rwth-

aachen.de/lisa/lpdp.html. 

69 

http://www.improvsys.com
http://www.arccores.com
http://www.retarget.com/products-more.html


[9] J. H. Yang, B. W. Kim, S. J. Nam, Y. S. Kwon, D. H. Lee, J. Y. Lee, 

C. S. Hwang, Y. H. Lee, S. H. Hwang, I. C. Park, and C. M. Kyung, 

“Metacore: An application-specific programmable dsp development sys-

tem," IEEE Journal of Solid-State Circuits, vol. 8，issue. 2，pp. 173 - 183’ 

Apr. 2000. 

[10] M. Itoh, S. Higaki, J. Sato, A. Shiomi, Y. Takeuchi, A. Kitajima, and 

M. Imai, "Peas-iii： an asip design environment," in Proceedings of Inter-

national Conference on Computer Design, pp. 430 - 436’ Sept. 2000. 

Ill L. Rabiner and B. H. Juang, Fundamentals of Speech Recognition. Engle-

wood Cliffs, NJ: Prentice Hall, 1993. 

12] Y. L. Kwok, "Design of application-specific instruction set processors with 

asynchronous methodology for embedded digital signal processing applica-

tions," M.Phil, thesis, The Chinese University of Hong Kong, The Depart-

ment of Electronic Engineering, Nov. 2004. 

13] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J. D. 

Owens, "Register organization for media processing," in Proceedings of 

International Symposium on HPCA-6, pp. 375 - 386，Jan. 2000. 

14] J. H. Tseng and K. Asanovic, "Banked multiported register files for 

high-frequency superscalar microprocessors," in Proceedings of 30th ISC A, 

pp. 62 - 71, June 2003. 

15] I. Park, M. D. Powell, and T. N. Vijaykumar, “Reducing register ports for 

higher speed and lower energy," in Proceedings of MICRO-35, Nov. 2002. 

[16] V. Zyuban and P. Kogge, "The energy complexity of register files," in 

Pwccediugs of 1998 International Symposium on Low Power Electronics 

and Design, pp. 305 - 310’ Aug. 1998. 

17] J. Mori, M. Nagamatsu, M. Hirano, S. Tanaka, M. Noda, Y. Toyoshima, 

K. Hashimoto, H. Hayashida, and K. Maeguchi, "A 10 ns 54x54-b paral-

70 



lei structured full array multiplier with 0.5-"m cmos technology," IEEE 

Journal of Solid-State Circuits, vol. 26, issue. 4, pp. 600-606’ Apr. 1991. 

[18] M. Nagamatsu, S. Tanaka, J. Mori, K. Hirano, T. Noguchi, and 

K. Hatanaka, "A 15-ns 32x32-b cmos multiplier with an improved parallel 

structure," IEEE Journal of Solid-State Circuits, vol. 25，issue. 2’ pp. 494 

- 4 9 7 , Apr. 1990. 

[19] w . Han, K. W. Hon, C. F. Chan, T. Lee, C. S. Choy, K. P. Pun, and P. C. 

Ching, "A real-time Chinese speech recognition ic with double mixtures," 

in Proceedings of 5th International Conference, pp. 926 — 929，Oct. 2003. 

[20] G. Fettweis and H. Meyr, "High-speed parallel viterbi decoding: algorithm 

and vlsi-architecture," IEEE Communications Magazine, vol. 29, issue. 5’ 

pp. 46 - 55，May 1991. 

[21] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. Ollason, 

V. Valtchev, and P. Woodland, The HTK Book (for HTK Version 3.1). 

Cambridge University Engineering Department, 2001. 

22] K. Nakamura, Q. Zhu, S. Maruoka, T. Horiyama, S. Kimura, and 

K. Watanabe, “Speech recognition chip for monosyllables," in Design Au-

tomation Conference, Proceedings of the ASP-DAC, pp. 396 — 399’ Feb 

2001. 

71 



•‘
 

；
 

.
 

.
：

•
 

_
 

-
 

.
 

.
 

• 
- 

. 
• 

V.
 

• 
, 

:.
•*

•’
 

.. 
. 

.. 
‘••

 
• 

. •
 

•
 

- 
. 

.
.

� 
. 

..‘ 
.� 

‘. 
• 

. 
‘ 

• 
• 

•
 

•
 

, 
‘ 

.
. 

�
. 

- 
�

•
.

 
�

-.
..

 
•

 
：

 
*
 •

 
,
 

‘
 

.
 

.
 

.
 

.
 

.、
..
_
 

：
,
 

- 
••-•

 
. 

... 
V-

.
 

•
 

,
 

：
 

-

‘ 
. 

.> 
- 

• 

•,
 .
 

.
 

.
 
•

.
：

 
’
 ’

 

.. 
. 

, 
• 

/ 
‘ 

.
 

•
 

,.
 

•
 .
 ：

 
. 

. 
. 

..
 

• 
• 

V
 

•
‘
、

 



CUHK Libran-Pc 
_ _ _ _ 

0 0 4 2 7 0 4 3 8 


