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Abstract 
Wi th uncorrelated Gaussian factors extended to mutually independent factors 

beyond Gaussian, the conventional factor analysis is extended to what is re-

cently called independent factor analysis. Typically, i t is called Binary factor 

analysis (BFA) when the factors are binary, and called Non-Gaussian factor 

analysis (NFA) when the factors are from real non-Gaussian distributions. A 

crucial issue in both BFA and NFA is the determination of the number of 

factors. In the literature of statistics, there are a number of model selec-

tion criteria that can be used for this purpose. Also, the Bayesian Ying-Yang 

(BYY) harmony learning provides a new principle for this purpose. This thesis 

presents our work on model selection for BFA and NFA. Firstly, we present 

our analysis on automatic model selection during B Y Y harmony learning for 

BFA. Based on such an analysis we propose two heuristic methods and a com-

bination strategy to reduce or avoid the local minima and to obtain higher 

correct rate. Secondly, we investigate the B Y Y criterion or B Y Y harmony 
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learning wi th automatic model selection (BYY-AUTO) in comparison wi th 

existing typical criteria, including Akaike's information criterion (AIC), the 

consistent Akaike's information criterion (CAIC), the Bayesian inference crite-

rion (BIG), and the cross-validation (CV) criterion for the model selection of 

BFA and NFA respectively. The study is made via experiments on data sets 

wi th different sample sizes, data space dimensions, noise variances, and hidden 

factors numbers. For BFA, we present the comparison of B Y Y criterion and 

BYY-AUTO with other typical model selection criteria and the experiments 

have shown that in most cases BIC outperforms AIC, CAIC, and CV while 

the B Y Y criterion and BYY-AUTO are either comparable wi th or better than 

BIC. Furthermore, BYY-AUTO takes much less time than the conventional 

two-stage learning methods with an appropriate model automatically deter-

mined during parameter learning. For NFA, the comparison of B Y Y criteria 

wi th other model selection criteria is performed and experiment shows that, 

in most cases, B Y Y criterion is either comparable wi th or better than the 

best of other criteria. Furthermore, the algorithm derived from B Y Y harmony 

learning takes much less time than the conventional E M algorithm since the 

computational complexity grows exponentially wi th the number of factors in 

E M algorithm. Therefore, BYY harmony learning is a more preferred tool for 

the model selection in BFA and NFA. 
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摘要 

Binary factor analysis (BFA)和 non-Gaussian factor analysis (NFA)是两种著名的多元数据分 

析技术。在这两种技术手段中，一个共同的关键问题就是决定hidden factor的个数问题，也 

就是模荆选择的问题。我的论文阐述了我们对这两种多元数据分析技术中模型选择问题的研 

究。首先，我们分析了利用BYY学习方法进行BFA的自动模型选择问题。在这些分析的基 

础上，我们提出了两种启发性的方法和一种合成机制来减少算法中遇到的局部极小值问题， 

并且利用这些方法可以得到比较高的正确率。接下来，我们对现有的一些典型模型选择准则 

和BYY模型选择方法分别在BFA和NFA这两种技术中作了比较研究。研究是通过在各种 

不同的环境条件下进行实验时得出的。对BFA来讲，我们比较了 BYY准则以及BYY自动 

模荆选择与其他典型的模型选择方法，包括AIC,CAIC，BIC和CV。实验证明在大多数条件 

K，BIC的结果要优于其它儿种典型的模型选择方法，而BYY准则和BYY自动模型选择 

在大多数情况下的结果是等于或者优于BIC准则的。而且，BYY自动模型选择所需要的时 

间远远少于其他两步法的模型选择标准。对于NFA,我们比较了 BYY准则同现有的其他几种 

准则，结果同BFA类似，而且，BYY所需要的时间要远少于传统最大释然算法需要的时间。 

闪此，BYY学习方法对于BFA和NFA而言是一种更好的选择。 



Acknowledgment 
I would like to take this opportunity to express my gratitude to my supervisor, 

Prof. Lei Xi i , for his generous guidance and patience to me during my M.Phi l 

study. I am so lucy to be supervised by Prof. Xu, from whom I learned much 

in many ways. Particularly, I not only learned how to do the research in a 

motivated way, but also understood the importance of the basic concept and 

physical meaning in the research process. 

I thank the members of my thesis committee, Prof. Lai wan Chan, Prof. 

Dityan Yeung and Prof. Jun Wang, for squeezing much time on reading and 

commenting on my thesis. 

I would also like to show my gratitude to the Department of Computer 

Science and Engineering, CUHK, for the provision of the best equipment and 

pleasant office environment for high quality research. 

I want to give my thanks to my fellowship colleagues, Dr. Zhi Yong Liu, Dr. 

Kai Chun Chin, and Ms. Xuelei Hu, whom give me useful help on both research 

and other activities and with whom I shared my happiness and depression 

during my Mphi l period. I thank all the members in the computer science 

and engineering department and would like to thank in particular Mr. Calvin 

Tsang, Ms. Ivy Kwok, Ms. Temmy So, Ms. Cynthia, Ms. Y ik Siu Yee and 

Ms. Au Din Zee for their kindly assistance during the past two years. Sincere 

thanks also go to Mr. Shi Lu, Mr. Chu Hong Hoi, Ms. Yang Lu, Dr. Xinwen 

Hou, and Dr. Changyin Sun. 

My special thanks must go to my family and my friends who have given 

me the greatest support and encouragement, so that I can keep concentrated 

iv 



on my postgraduate study. 

V 



Contents 

Abstract ii 

Acknowledgement iv 

1 Introduction 1 

1.1 Background 1 

1.1.1 Review on BFA 2 

1.1.2 Review on NFA 3 

1.1.3 Typical model selection criteria 5 

1.1.4 New model selection criterion and automatic model se-

lection 6 

1.2 Our contributions 7 

1.3 Thesis outline 8 

2 Combination of B and BI architectures for BFA with auto-

matic model selection 10 

2.1 Implementation of BFA using B Y Y harmony learning wi th au-

tomatic model selection 11 

2.1.1 Basic issues of BFA 11 

vi 



2.1.2 B-architecture for BFA wi th automatic model selection . 12 

2.1.3 Bl-architecture for BFA wi th automatic model selection . 14 

2.2 Local minima in B-architecture and BI-architecture 16 

2.2.1 Local minima in B-architecture 16 

2.2.2 One unstable result in BI-architecture 21 

2.3 Combination of B- and Bl-axchitecture for BFA wi th automatic 

model selection 23 

2.3.1 Combine B-architecture and Bl-architecture 23 

2.3.2 Limitations of Bl-architecture 24 

2.4 Experiments 25 

2.4.1 Frequency of local minima occurring in B-architecture . 25 

2.4.2 Performance comparison for several methods in B-architecture 26 

2.4.3 Comparison of local minima in B-architecture and Bl-

architecture 26 

2.4.4 Frequency of unstable cases occurring in Bl-architecture 27 

2.4.5 Comparison of performance of three strategies 27 

2.4.6 Limitations of Bl-architecture 28 

2.5 Summary 29 

3 A Comparative Investigation on Model Selection in Binary 

Factor Analysis 31 

3.1 Binary Factor Analysis and M L Learning 32 

3.2 Hidden Factors Number Determination 33 

3.2.1 Using Typical Model Selection Criteria 33 

3.2.2 Using B Y Y harmony Learning 34 

vii 



3.3 Empirical Comparative Studies 36 

3.3.1 Effects of Sample Size 37 

3.3.2 Effects of Data Dimension 37 

3.3.3 Effects of Noise Variance 39 

3.3.4 Effects of hidden factor number 43 

3.3.5 Computing Costs 43 

3.4 Summary 46 

4 A Comparative Investigation on Model Selection in Non-gaussian 

Factor Analysis 47 

4.1 Non-Gaussian Factor Analysis and M L Learning 48 

4.2 Hidden Factor Determination 51 

4.2.1 Using typical model selection criteria 51 

4.2.2 B Y Y harmony Learning 52 

4.3 Empirical Comparative Studies 55 

4.3.1 Effects of Sample Size on Model Selection Cri ter ia . . . . 56 

4.3.2 Effects of Data Dimension on Model Selection Cri ter ia . 60 

4.3.3 Effects of Noise Variance on Model Selection Cri ter ia . . 64 

4.3.4 Discussion on Computational Cost 64 

4.4 Summary 68 

5 Conclusions 69 

Bibliography 71 

viii 



List of Tables 

2.1 Un-global result for B-architecture 17 

2.2 Unstable result in Bl-axchitecture 22 

2.3 Rates of the special local minima (SL), other local (OL) and 

correct cases (C) in B-architecture in 100 experiments 25 

2.4 Rates of the special local minima (SL), other local (OL) and 

correct cases(C) in comparison of different methods by 100 ex-

periments 26 

2.5 Rates of the local minima in original B-architecture and BI-

architecture in 100 experiments 27 

2.6 Rates of unstable cases (US), local minima (L) and correct cases 

(C) in Bl-architecture by 100 experiments 27 

2.7 Performance comparison of the three strategies, B-architecture, 

Bl-architecture, and the combination strategy 28 

2.8 Average results as cTq increases 29 

2.9 Average results as the mean value of x increases 29 

ix 



3.1 Rates of underestimating (U), success (S), and overestimating 

(O) by each criterion on the data sets wi th different sample sizes 

for BFA in 100 experiments 39 

3.2 Rates of underestimating (U), success (S), and overestimating 

(O) by each criterion on the data sets wi th different data di-

mensions for BFA in 100 experiments 41 

3.3 Rates of underestimating (U), success (S), and overestimating 

(0 ) by each criterion on the data sets wi th different noise vari-

ances for BFA in 100 experiments 43 

3.4 Rates of underestimating (U), success (S), and overestimating 

(O) by each criterion on simulation data sets wi th different hid-

den factors numbers for BFA in 100 experiments 44 

3.5 CPU times on the simulation data sets wi th n = 100, d — 9, 

and k = 3 for BFAby using the E M algorithm for AIC, BIC, 

C M C and CV, algorithm (3.10) for B Y Y criterion and (2.6) for 

BYY-AUTO 45 

3.6 CPU times on the simulation data sets wi th n = 100, d = d, and 

k = 3 for BFA by using the E M algorithm and the algorithm 

derived from BYY harmony learning where set the candidate 

k = 3 45 

4.1 Numbers of underestimating (U), success (S), and overestimat-

ing (O) by each criterion on the data sets wi th different sample 

sizes for selecting hidden factors number k wi th kj = 3 fixed for 

NFA in 50 experiments 57 

V 



4.2 Numbers of underestimating (U), success (S), and overestimat-

ing (O) by each criterion on the data sets wi th different sample 

sizes for selecting gaussians number kj wi th k = 3 fixed for NFA 

in 50 experiments 60 

4.3 Numbers of underestimating (U), success (S), and overestimat-

ing (0 ) by each criterion on the data sets wi th different data 

dimensions for selecting hidden factors number k wi th kj = 3 

fixed for NFA in 50 experiments 61 

4.4 Numbers of underestimating (U), success (S), and overestimat-

ing (0 ) by each criterion on the data sets wi th different data 

dimensions for selecting gaussians number kj wi th k = 3 fixed 

for NFA in 50 experiments 61 

4.5 Numbers of underestimating (U), success (S), and overestimat-

ing (O) by each criterion on the data sets wi th different noise 

variances for selecting hidden factors number k wi th fixing kj = 

3 for NFA in 50 experiments 65 

4.6 Numbers of underestimating (U), success (S)，and overestimat-

ing (O) by each criterion on the data sets wi th different noise 

variances for selecting gaussians number kj wi th fixing k = 3 

for NFA in 50 experiments 65 

4.7 CPU time results on the simulation data sets wi th n = 40, 

c? = 7, and /c = 3 for NFA by using the E M algorithm for AIC, 

BIG, C M C and CV, algorithm Eq. 4.22 for B Y Y criterion . . . 67 

xi 



4.8 CPU time results on the simulation data sets wi th n = 40, 

d 二 7, and k = 3 for NFA by using the EM algorithm and the 

algorithm derived from BYY harmony learning where set the 

candidate k = 3 68 

xii 



List of Figures 

3.1 The curves obtained by the criteria AIC, BIC, CAIC, 10-fold 

CV and B Y Y on the data sets of a 9-dimensional a: (ti = 9) 

generated from a 3-dimensional y {k = S) w i th different sample 

sizes for BFA 38 

3.2 The curves obtained by the criteria AIC, BIC, CAIC, 10-fold 

CV and B Y Y on the data sets of a re w i th different dimensions 

generated from a 3-dimensional y {k = 3) for BFA 40 

3.3 The curves obtained by the criteria AIC, BIC, CAIC, 10-fold 

CV and B Y Y on the data sets of a 9-dimensional x {d = 9) 

generated from a 3-dimensional (Â  = 3) w i th different noise 
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Chapter 1 

Introduction 

1.1 Background 

Factor analysis (FA) is a well-known multivariate analysis technique in help of 

• the following linear model [3, 39 

X = Ay c-\- e, (1.1) 

where x is a rf-dimensional random vector of observable variables, e is a cf-

dimensional random vector of unobservable noise variables and is drawn from 

Gaussian, Ais dx k loading matrix, c is a cZ-dimensional mean vector and 

y is a /c-dimensional random vector of unobservable mutually uncorrelated 

Gaussian factors, y and e are mutually independent. However, FA is not 

appropriately applicable to the real world data that can not be described as 

generated from Gaussian factors. W i th uncorrelated Gaussian factors extended 

to mutually independent factors beyond Gaussian, FA is extended to what is 

recently called independent factor analysis. Typically, i t is called Binary factor 

analysis (BFA) when the factors are binary, and called Non-Gaussian factor 

analysis (NFA) when the factors are from real non-Gaussian distributions. 
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Chapter 1 Introduction 2 

One other crucial issue in implementing BFA and NFA is appropriately 

determining the number of hidden factors, i.e., the dimension of y in Eq. 1.1, 

which is a typical model selection problem. Conventionally, i t needs a two-

phase style implementation that first conducts parameter learning on a set 

of candidate models under the maximum likelihood (ML) principle and then 

select the 'optimal ' model among the candidates according to a given model 

selection criterion. Such conventional model selection methodology is com-

putational ly inefficient because it involves enumeration of the objective func-

t ion for different candidate models. In contrast, model selection can be au-

tomatically done during parameter estimation in Bayesian Y ing Yang (BYY) 

harmony learning. Moreover, a model selection criterion has been also pro-

posed based B Y Y harmony learning. Among these model selection criteria 

and methods, which ones are suitable for binary factor analysis (BFA) as well 

as non-Gaussian factor analysis (NFA)? 

1.1.1 Review on BFA 

Being different from the conventional factor analysis where factors are assumed 

to be Gaussian, binary factor analysis (BFA) regards the observable variables 

as generated from a small number of latent binary factors. In practice, BFA 

has been widely used in various fields, especially in the social science such as 

poli t ical science, educational testing, psychological measurement as well as the 

tests of disease severity, etc [28]. Also, i t can be used for data reduction, data 

exploration, or theory confirmation [39]. 
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Many studies have been made on BFA in literature. One direction in-

cludes studies under the names of latent t ra i t model (LTA) and latent class 

model, both are called by a joint name latent structure model. The basic 

issue of them is to fit a latent t ra i t or class model under the I tem Response 

Theory ( IRT) approach, which is the study of test and i tem scores based on 

assumptions concerning the mathematical relationship between abilities and 

i tem responses [5，16]. Another typical example is the mult iple cause model 

that considers the observed samples generated from independent binary hidden 

factors, trained by either cost minimization or maximum likelihood. [24, 15 . 

I t differs from other models by permit t ing clusters not only to compete for 

data points, but also to cooperate wi th one another in accounting for ob-

served data [23]. One other example is the auto-association network that is 

trained by back-propagation via simply copying input as the desired output 

9，8]. Recently, one new model for BFA is proposed by X u w i th particular and 

attractive feature about model selection [36, 38，39]. That is, B Y Y harmony 

learning w i th one hidden layer of binary units (BHL-BYY) . I t can make model 

selection implemented either automatically during parameter learning or sub-

sequently after parameter learning via a new class of model selection criteria 

[ 3 8， 3 9 . 

1.1.2 Review on NFA 

111 the real world, data are usually generated from non-Gaussian factors. In 

such cases, conventional factor analysis is inappropriate. Non-Gaussian factor 

analysis (NFA) was proposed by X u in 1998 which generalizes the conventional 
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FA by assuming that each hidden factor follows non-Gaussian distr ibut ion [33 . 

NFA not only avoids the rotation and additive indeterminacies encountered by 

classical FA, but also relaxes the impractical noise-free assumption for indepen-

dent component analysis ( ICA) [42]. In fact, NFA can handle both noiseless 

mixing problem and the general case where the number of observables differs 

from the number of sources and the data are noisy [4]. Therefore, NFA is a 

very promising tool for the well-known bl ind source separation (BSS) problem, 

dependence reduction, and structure discovery problem [4，18 . 

In recent years, studies related to NFA have been carried out. One kind 

of examples consists of the efforts under the name noisy ICA. One example is 

given in [17] where a so-called joint maximum likelihood is considered to be 

maximized. However, a rough approximation is actually used there and also 

how to specify a scale remains a open problem yet [38]. Some other noisy 

ICA examples are also referred to [18，14]. In [20], an approach that exactly 

implements M L learning for the model Eq. (1.1) was firstly proposed. Similar 

to [31, 32], they considered modelling each non-Gaussian factor by a Gaussian 

mixture. In help of a trick that the product of summations is equivalently 

exchanged into a summation of products, the integral in computing likelihood 

becomes a summation of a large number of analytically computable integrals 

on Gaussians，which makes an exact M L learning on Eq. (1.1) implemented 

by an exact E M algorithm. The same approach has been also published in [4 

under the name of independent factor analysis. However, the number of terms 

of computable integrals on Gaussians grows exponentially w i th the number of 

factors, and i t correspondingly incurs exponentially growing computing costs. 

In contrast, computing costs of implementing the NFA algorithms in [36, 38 
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grow only linearly w i th the number of factors, as demonstrated in [40, 42 . 

1.1.3 Typical model selection criteria 

Determination of the hidden factors number is a crucial model selection prob-

lem in the implementation of BFA and NFA. This determination can be achieved 

via several existing statistical model selection criteria. However, in practice 

most studies sti l l assume a known model scale or determine i t heuristically. 

One main reason is that these criteria have to be implemented in a two-phase 

procedure that is very time-consuming. First, we need to assume a range of 

values of the model scale K from Kmin to Kmax which is assumed to contain 

the opt imal K . A t each specific model scale K , we estimate the parameters 6 

under the M L learning principle. Second, we make the following selection 

K = a rgmin {J (^ , K), K = Kmin,…’ Kmax}, (1-2) 

where J{6, K) is a given model selection criterion. 

Three typical model selection criteria are the Akaike's information criterion 

(AIC) [1，2], its extension called Bozdogan's consistent Akaike's information 

criterion (CAIC) [10], and Schwarz's Bayesian inference criterion (BIC) [25 

which coincides wi th Rissanen's minimum description length (MDL) criterion 

21, 6]. These three model selection criteria can be summarized into the fol-

lowing general form [26 

球 K) = -2L0) + B{n)Q{K) (1.3) 

A A 

where L{6) is the log likelihood based on the M L estimation 6 under a given 

K, and Q(K) is the number of free parameters in K-scale model. Moreover, 
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B{n) is a function wi th respect to the number of observations n as follows: 

• B(n) = 2 for Akaike's information criterion (AIC) [2, 1], 

• B{n) = ln(n) + l for Bozdogan's consistent Akaike's information criterion 

( C M C ) [10], 

• B{n) = ln(n) for Schwarz's Bayesian inference criterion (BIG) [25 . 

Another well-known model selection technique is cross-validation (CV). By 

this technique data are repeatedly partit ioned into two sets, one is used to 

bui ld the model and the other is used to evaluate the statistic of interest [27 . 

For the zth part i t ion, let Ui be the data subset used for testing and U - i be the 

remainder of the data used for training, the cross-validated log-likelihood for 

a i^-scale model is 

1 饥 

= (1-4) 
i=l 

where m is the number of partit ions, 9{U-i) denotes the M L parameter es-

t imations of A'-scale model from the zth training subset, and L{6{U-i)\Ui) is 

the log-likelihood evaluated on the data set Ui. Featured by m, i t is usually 

referred as making an m-fold cross-validation or shortly m-fo ld CV. 

1.1.4 New model selection criterion and automatic model 

selection 

Bayesian Ying-Yang (BYY) harmony learning was proposed as a unified sta-

tistical learning framework firstly in [30] and systematically developed in past 
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years. Prom the perspective of general learning framework, the B Y Y harmony 

learning consists of a general B Y Y system and a fundamental harmony learn-

ing principle as a unified guide for developing new regularization techniques, 

a new class of criteria for model selection, and a new family of algorithms 

that perform parameter learning wi th automated model selection. The B Y Y 

learning w i th specific structures applies to unsupervised learning, supervised 

learning, and state space approach for temporal modelling, w i th a number of 

new results. The details are referred to [35, 36，37, 38 . 

By applying B Y Y learning to BFA and NFA respectively, not only new 

criteria for model selection of BFA and NFA are obtained, but also adaptive 

algorithms are developed that perform BFA and NFA wi th an appropriate 

number of hidden factors automatically determined during adaptive learning 

[36 . 

1.2 Our contributions 

This section briefly summarizes the unique aspects and important contribu-

tions in this thesis, which fall in the following three main areas. 

1. We analyze the experiment results of two architectures of B Y Y harmony 

learning w i th automatic model selection during parameter estimation in 

implementation on BFA. Based on the analysis, we proposed two heuris-

tic methods and a combination strategy which can efficiently improve 

the correct rate for implementing BFA wi th model selection done auto-

matically. 
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2. We investigate the B Y Y model selection criterion and automatic model se-

lection abil i ty on the implementation of BFA, compared w i th the criteria 

of AIC, CAIC, BIG, and CV in various situations. Experiment results 

have shown that the performance of BIC is superior to A IC, CAIC, and 

CV in most cases. The B Y Y criterion and the B Y Y automatic model 

selection learning (BYY-AUTO) are, in most cases, comparable w i th or 

even superior to the best among of BIC, AIC, CAIC, and CV. More-

over, B Y Y - A U T O takes much less time than the conventional two-phase 

model selection methods. Thus, B Y Y learning is a more preferred tool 

for BFA. 

3. We make a comparison of the B Y Y model selection criterion and the 

criteria of AIC, CAIC, BIC, and CV on the implementation of NFA in 

various situations. Experiment results have shown that in most cases, 

the B Y Y criterion is comparable wi th or even superior to the best among 

AIC, BIC, CAIC, and CV. Moreover, experiments have also shown that 

the algorithm derived from B Y Y harmony learning converges faster than 

the E M algorithm of M L learning for the criteria BIC, A IC, CAIC, and 

CV. 

1.3 Thesis outline 

The thesis is organized as follows: 

Chapter 2 is devoted to analyze the experiment results of two architectures 
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for B Y Y harmony learning, B-architecture and Bl-architecture, on the imple-

mentation of BFA wi th automatic model selection. Based on the analysis, two 

heuristic methods are proposed for B-architecture to improve the correct rate. 

Furthermore, a combination strategy of B-and Bl-architecture is proposed to 

achieve the much higher correct rate. Experiments have been done to show 

the performance of these proposed methods. 

Chapter 3 describes the study on the B Y Y criterion and B Y Y harmony 

learning w i th automatic model selection (BYY-AUTO) in comparison wi th 

existing typical criteria AIC, BIC, CAIC, and CV for the model selection of 

bi l iary factor analysis. Comparative experiments are given in this chapter 

under various situations which have shown that the B Y Y criterion and the 

B Y Y automatic model selection learning (BYY-AUTO) are, in most cases, 

comparable w i th or even superior to the best among of BIC, A IC, CAIC, 

and CV. The comparison of computational cost shows that B Y Y - A U T O takes 

much less t ime than all the other two-stage model selection criteria. 

Chapter 4 describes the investigation on the B Y Y criterion in comparison 

w i th the typical criteria AIC, BIC, CAIC, and CV for the model selection 

of noil-Gaussian factor analysis. We present the experimental comparison in 

this chapter to show that in most cases B Y Y criterion is comparable or better 

than the other criteria and the running t ime for B Y Y criterion based on B Y Y 

harmony learning is less than the other criteria based on the E M algorithm. 

Finally, Chapter 5 concludes the whole thesis and discusses our future work. 



Chapter 2 

Combination of B and BI 

architectures for BFA with 

automatic model selection 

In this chapter, we concentrate on automatic model selection ability of B Y Y 

harmony learning for implementing BFA. We mainly analyze the experiment 

results for B-architecture and Bl-architecture, two typical architectures in 

B Y Y harmony learning. Based on the analysis, two heuristic methods to 

avoid local minima for B-architecture are proposed. Moreover, based on the 

analysis and comparison of these two architectures, we propose a combination 

strategy of them for making use of both advantages of them and getting high 

correct rate. 

10 
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2.1 Implementation of BFA using B Y Y har-

mony learning with automatic model se-

lection 

2.1.1 Basic issues of BFA 

The model Eq. 1.1 is called Binary Factor Analysis (BFA) when y is a binary 

random vector. Since the Bernoulli distr ibution is a most familiar binary dis-

t r ibut ion and the B Y Y harmony learning for BFA in [39] assumes y a Bernoulli, 

in our work we also assume that y comes from from the following multivariate 

Bernoull i distr ibution: [36’ 39 

k 

p { y ) = rife 冲“⑴）+ (1 - ⑷ - ⑴)]， （2.1) 

where qj is the probabil i ty that y。、takes the value 1. In this paper, we consider 

that e is from a spherical Gaussian distribution for the binary factor analysis 

model, i.e., p{x\y) has the following form: 

p(x\y) = G{x\Ay + c, a^I) (for BFA), (2.2) 

where G{x\Ay + c, a^I) denotes a multivariate normal (Gaussian) distr ibut ion 

w i th mean Ay -h c and spherical covariance matr ix cr^/, w i th I being ii d x d 

identi ty matr ix. 
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2.1.2 B-architecture for BFA with automatic model se-

lection 

Bayesian Ying-Yang harmony learning consider the world consists of a obser-

vation space X and the corresponding inner representation space y. On one 

hand, the observation x can be regarded as generated from the inner represen-

tat ion y via a backward path distr ibution 'p{x\y). On the other hand, we can 

interpret that each x is mapped into an invisible inner representation y via 

a forward path distr ibution p{y\x). Since the BFA model as Eq. 1.1 mainly 

focuses on the generative direction from inner representation domain to the 

observation domain, the following two architectures covering the generative 

direction in B Y Y harmony learning can be adopted for the implementation of 

BFA: 

1. Backward architecture (B-architecture): p{y\x) is structure-free a.nd p(x\y) 

is parametric. 

2. Bidirectional architecture (Bl-architecture): Both p{y\x), p(x\y) are para-

metric. 

In B-architecture, the structure of p{x\y) is pre-defined as Eq. 2.2 while 

p(y\x) is structure-free and is indirectly specified by the structures of p{y) 

and p{x\y). W i t h automatic determination of model scale which is the hidden 

binary factors number k in BFA, the parameter estimation and the determi-

nation of k share a same harmony function. So, these two subtasks can be 

implemented together via B Y Y harmony learning, i.e., 

(e,k) = 8 . igmaxH(9,k) , (2.3) 
6yk 
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where the parameters 6 need to be learned include the factor loading A, the 

mean vector c, the variance cr^, and the probabil ity qj for each factor y⑴. 

According to Sect.4.1 in [39], especially Eq. 21, Eq. 30，Eq. 31 and Eq. 32, 

the specific form of H{9, k) is given as following: 

Hie^k)=」lna2 — 丄 工广 4 广 " 2 
t~\ 

+去 E + (1 - " 尸 -办)]， (2-4) 
t=l 3=1 

where "p ) is the j - t h element in vector 饥，and 

Ht = argmaxi7(^,/c). (2.5) 
y 

This harmony function can be regarded as two parts. Maximizing i t means 

minimizing the front part | In + 去 ^ J L j and maximizing the 

latter part ^ ^ X i 々 叫 + (1 - y ? ) l n { l — qj)] synchronously. The 

action on the latter part wi l l lead to the fact that qj of each redundant factor 

y⑴ is pushed towards 0 or 1，thus we can discard the corresponding redundant 

fators [36’ 38，39]. Setting k large enough init ial ly (e.g., the dimensionality 

of X in this paper), we can implement the adaptive algorithm wi th model 

selection performed automatically. Shortly, we refer i t by B Y Y automatic 

model selection learning (BYY-AUTO) . 

Following the procedure given in Table 1 of [39] or the algorithm by Eq. 45 

in [41], we implement B Y Y - A U T O by the following adaptive algorithm: 

step 1: get Ut by Eq. 2.5， 

step 2: (a) update 

et = Xt- Ayt — c, 
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p w = ^old + ” et, 

where 77 is a step constant, 

(b) update q ' ^ = b ^ ^ by 

if either g f ^ -> 0 or g f ^ — 1， 

discard the jth dimension of y. (2.6) 

where 77 is the step length constant. 

2.1.3 Bl-architecture for BFA with automatic model se-

lection 

For Bl-architecture, except for p{x\y), the structure of piy\x) also needs to be 

prefixed. We introduce a specific sigmoid function as [39 

p{y\oc) = 6{ij - y{x)), y(x) 二 s(幻’ y = Wx-hv. (2.7) 

where and hereafter in this thesis, s(r) denotes a sigmoid function s(r)= 

+ 1. 

As given in Sect. 4.2 of [39], the Bl-architecture based adaptive algorithm 

for implementing BFA in [39] is wri t ten as following: 

step 1: yt = s{zt), Zt = Wxt + v, 

step 2: (a) update A, c, a^ as step 2 (a) in Eq. 2.6’ 

(b) update qj as step 2 (b) in Eq. 2.6 
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i f either g f ^ — 0 or g f ^ — 1’ 

discard the jth dimension of y, 

(c) update 

e? = 4。丨 d Tct 

幻new =幻。ld+々乃s(么t)e?’ 

Vrew = i yQ ld+々 / ^ s (々hV \ (2.8) 

where the notation Ds(u) denotes a diagonal matr ix w i th its diagonal elements 

<s'(n(i))’ …’ •sX^z⑷)]『，s'{r) = ds ( r ) / d r and s{r) denotes a sigmoid function. 

B-architecture is quite computational expensive since the process of get-

t ing yt by Eq. 2.5 needs to t ry all the possible value of y. Moreover, the 

process of maximizing the cost function k) in Eq. 2.4 causes the local 

minima problem which wi l l be discussed in the next subsection. In contrast, 

the computational cost can be efficiently saved in Bl-architecture by consid-

ering p{y\x) in an appropriate parametric structure, such as the special case 

in Eq. 2.7 that we used in our work. Furthermore, experiments have shown 

that the local minima caused by maximizing k) can be considerably re-

duced in Bl-architecture. In the next section, based on the analysis of B- and 

Bl-architecture a new strategy of combining these two architectures wi l l be 

proposed. 
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2.2 Local minima in B-architecture and BI-

architecture 

This section mainly analyzes the experiment results of B- and Bl-architecture 

w i th automatic model selection during parameter learning in BFA. 

2.2.1 Local minima in B-architecture 

One frequent case in B-architecture 

After a large number of experiments, we found that in B-architecture an excep-

tional but interesting result often appears especially when the dimensionality 

of X is very large. That is, there are one or more than one redundant qjs can't 

be pushed to 0 or 1 and the corresponding redundant hidden factors cannot be 

discarded automatically. But each of them is learned to be the same as some 

correct hidden factor. In another word, more than one factors are learned to 

be the same. 

We give an example to il lustrate this case. A data set includes 100 samples 

generated from a hidden binary y w i th 5 hidden factors (or components). The 

dimensionality of data x is 10，so the true loading matr ix is a 10 x 5 matr ix 

in the generative function. We apply this data set to the BFA model using 

B-architecture w i th the ini t ia l value of the hidden factors number k equal to 

10. There are 5 redundant components in y. Theoretically, the corresponding 

probabilit ies qjS of the 5 redundant components wi l l be pushed towards 0 or 

1 dur ing learning and then be discarded. But the experiment result contains 

6 components which means one redundant Qj can't be pushed to 0 or 1 and 
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all the five correctly learned components are contained in the result. Very 

interestingly, this redundant component is learned to be the same as some 

correct component such as •(卩）=y⑴ and the corresponding columns of these 

two components in the loading matr ix A are linear relevant. 

For clarity we idealize and abstract this result to the following Table. 2.1, 

where there is only one extra component that is yre and k is the true number 

of hidden factors. In this table, di means the z-th column of the loading matr ix 

A and all the variables wi th the subscript 0 such as CQ and ctq denote the true 

ones in the original generated function. 

Table 2.1: Un-giobal result for B-architecture. 

Para. Features 

卜 ⑴ ) 

工 a： = ( ai ... 4 are) "⑷ + e 

^ I aex + ai = aoi 
[ t t i = ioi for i = 2...k 

f y—) = y⑴=y?) 
双 \ y⑴=y^'^ for i = 2 …k 

C C = CQ 

a' a^ 二 ao2 

f (Ire =qi= qOi 
Qj < 

I gj = qq. for i = 2…k 
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Although this case breaches the fact that the hidden factors are indepen-

dent mutually, i t often happens in experiment results of B-architecture. Ta-

ble. 2.3 in sect. 2.4.1 shows that the frequency is 45% of appearing this case 

in B-architecture. 

After calculating the mean square error for x and y and checking out the 

first and second order differentials, we believe that the result is one kind of local 

minima. In conclusion, the local case described in this section often appears 

in the results of a B-architecture in implementing BFA. Al though there are 

many other local minima, a large number of experiments have shown that this 

special case is a most frequent local minima in B-architecture. 

Two heuristic methods to reduce the local minima in B-architecture 

111 the above section, we have presented a case of the local minima that often 

appears in a B-architecture. In this section, we present two heuristic methods 

to reduce these local minima. 

After analyzing, we found that the learning results are highly affected by 

the in i t ia l learning rate of parameter A, denoted by 770̂ . I f rjo^ is too small, 

the learning results wi l l easily fall into the local minima. Suppose the data are 

actually generated from k hidden factors. To obtain the correct rudiment of 

AQ relies not only on the init ial ization of A but also on the in i t ia l step length 

TJOA • I f this value is properly big enough, A wi l l be learned to rapidly obtain 

the rudiment of AQ w i th in 5-10 iterations. After several iterations, the learning 

rate of A can be reduced to a smaller constant or reduced step by step. We 

give an intui t ive explanation for the effect of this method. When 770̂  is big 
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enough, the value of A can jump acutely in each iteration and i t can rapidly 

f ind the global optimal value in a large range. In other words, i t can reduce 

the probabil i ty of fall ing into a local minimum for B-architecture. 

The proper ini t ia l learning rate of A is usually in the range of 0.1 to 0.6 

experimentally. One feasible approach in practice is to learn several times 

w i th the ini t ia l learning rate changing in some range such as 0.1 — 0.5 

and to find the best result. In the section of experiment, a comparison of the 

probabilit ies which the local minima occur using this heuristic method or not 

is given in Table. 2.4 of sect. 2.4.2. Prom the statistics， it can be found that 

the frequency of fall ing into local points has been obviously decreased when 

this heuristic method is used. 

Based on an analysis of the first heuristic method, we have another trick. 

That is, setting the ini t ia l values of parameter A so that the difference between 

its columns are distinct. I t can avoid some kinds of local minimum. But in 

this case, rjo^ st i l l needs to be large enough. So the combination of these two 

efforts wi l l be better to reduce local minima for B-architecture. 

Improved implementation for B-architecture with automatic model 

selection 

One key feature of the local minima described in the above section is that the 

independent condition of the hidden space y is broken. Correspondingly, the 

factor loading A has not ful l rank. In fact, we can remove this k ind of local 

min ima via making A non-singularity [41]. In implementation, we make the 

eigenvalue decomposition of A for each iteration. I f A has not ful l rank, we 
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can discard the 0 eigenvalue column of A and the corresponding hidden factors 

of in y to guarantee A non-singularity. An improved adaptive algorithm for 

B-architecture is given in the following equation [41]: 

step 1: get yt by Eq. 2.5, 

step 2: (a) update A, c, cr^as step 2 (a) in Eq. 2.6, 

(b) update qj as step 2 (b) in Eq. 2.6 

if either q!广 ^ 0 or g f ^ -> 1’ 

discard the j t h dimension of y, 

(c) make eigenvalue decomposition A = UKV. 

I f A is not full rank, make linear transform 

to A, then delete 0 value columns of A and 

the corresponding dimensions of y to 

guarantee A has ful l rank. (2.9) 

where ” is the step length constant. The above step (c) checks the satisfaction 

of equation (40) in [41] for a ful l rank independent space. To save computing 

cost, this can also be made via updating U,A,V as suggested by equation (470) 

in [41:. 

A l though this improved algorithm can remove the special local minima 

discussed in this section, there sti l l are some other local minima in the result 

of B-architecture, which can be found in Table. 2.4. These local minima sti l l 

have effect to the result of B-architecture. 
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2.2.2 One unstable result in Bl-architecture 

Because of introducing a sigmoid function which is highly non-linear in Bl-

architecture, most of the local minima can be avoided in Bl-architecture for the 

implementation of BFA wi th automatic model selection [39, 29]. Experiment 

in sect. 2.4.3 has confirmed this conclusion. Even so, the experimental results 

st i l l show some blemishes for Bl-architecture. Via experiments i t was found 

that there are many unstable cases in the results of Bl-architecture even if the 

i terat ion t ime is very large. I f such case occurs, there must be some components 

that cannot converge. There are some distinct features in such unstable results. 

We present one representative form of this case as in Table. 2.2. 

The unstable case il lustrated in Table. 2.2 is very difficult to converge in 

practical implementation because the redundant factor y^e can change wi th in 

the two binary numbers 0 and 1 at each learning iteration and probabil i ty Qre 

can also change wi th in the domain from 0 to 1 correspondingly. The unstable 

result described in sect.2.2.2 often occurs in Bl-architecture especially when 

the number of hidden factors increases. Table. 2.6 in sect. 2.4.4 shows that the 

frequency of occurring this case in Bl-architecture is high to 33%. 

We have made some analysis about this unstable case. As we have discussed 

in sect.2.1.2, B-architecture achieves automatic model selection via maximizing 

the harmony function Eq. 2.4 to push the probabilities qj towards 0 or 1 in 

most degree. Moreover, the method to get yt in each iteration is also a optimal 

process and more accurate than Bl-architecture. Therefore, if this unstable 

case occurs in B-architecture, i t wi l l rapidly convergent to the result that the 

unstable redundant ĝ e is pushed to 0 or 1 and then is discarded. In contrast, 
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Table 2.2: Unstable result in Bl-architecture. 

Para. Features 

("⑴、 
a； X = ( •.. 左re ) ⑷ + c + e 

y{re) 
/ 

^ \ ai = ，for i = l...k 

\ are = 0 

f ⑷ = V o ^ ,for j = 1 …k 
[ = arbitraty binary number in 0 and 1 

C c = Co 

<T2 Cr2 = CTq 

{ Q i = go ，for i = l...k 

Qex = Unstable number between 0 and 1 

for Bl-architecture there is no such powerful strength and the function is highly 

nonlinear. The value of qj only relies on the learning result of y⑴ , and qj can 

be learned towards 0 or 1 only when • ⑴ is pushed to 0 or 1 density for some j . 

However, in this unstable case, since the corresponding column dre of A trends 

to 0, the redundant component has no effect to the reconstruction data x 

and cannot converge. Thus, the corresponding gve cannot converge either and 

cannot be discarded. 
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2.3 Combination of B- and Bl-architecture for 

BFA with automatic model selection 

From the analysis in sect.2.2.2 we find that this unstable case can be easily 

solved by B-architecture. Moreover, Table. 2.5 shows that the local minima 

in B-architecture can also be much avoided in Bl-architecture. Therefore, 

we propose a method of combining B-architecture and Bl-architecture to get 

better performance for automatic model selection learning for implementing 

BFA. 

2.3.1 Combine B-architecture and Bl-architecture 

From sect.2.2.2, i t can be found that there is a complementation between B-

architecture and Bl-architecture. That is, the local minima can be considerably 

reduced in Bl-architecture, while the unstable case that often occurs in Bl-

architecture can converge. 

Thus, we propose a new strategy to combine these two architectures for 

implementing one learning process for BFA wi th automatic model selection, 

described as following steps: 

step 1: Implementing learning process using Bl-architecture in Eq. 2.8, 

step 2: Using the obtained parameter values in step 1 as the ini t ia l values 

for implementing B-architecture algorithm in Eq. 2.9. (2.10) 

Just as the comparison in sect. 2.1.3, the running time of Bl-architecture 

is much less than that of B-architecture. Table. 2.7 confirms this conclu-

sion. B£U3ecl on the result of Bl-axchitecture, a subsequent learning using 
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B-arcl i i tecture only needs a l i t t le t ime to converge. Conclusively, this com-

bination method can save more running time than B-architecture. Sect.2.4.5 

wi l l show an experimental comparison of the three strategies, B-architecture, 

Bl-architecture as well as the combination of them. 

There is no free lunch. Although this combination method has greatly 

improved the correct rate of automatic model selection learning and usually 

can work well, i t is not omnipotent for any case, which wi l l be discussed in the 

next section. 

2.3.2 Limitations of Bl-architecture 

In this section, some l imitations of Bl-architecture are discussed which usually 

occur when the variance of error and the mean value of data become too large. 

In these cases, Bl-architecture and the combination strategy cannot work well • 

any more and only B-architecture is suitable for BFA. 

One l imi tat ion is about the true variance of error ctq. The learning result of 

Bl-architecture is greatly affected by the variance of error. When the variance 

of error increases to more than 2，Bl-architecture even cannot work anymore. 

However, B-architecture is not so vulnerable by ctq. Experiment 7 in the 

next section shows the comparison. Also, i t is found that the results of Bl -

architecture can be affected by the value of CQ. When it is too large, the 

Bl-architecture cannot work. However, B-architecture is rarely affected by CQ. 

Experiment in sect.2.4.6 shows the comparison of them. 
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2.4 Experiments 

In this section extensive experiments are done to see if our heuristic methods 

for B-architecture and the combination strategy work well. 

The observation data Xt, t = 1, ...,n are generated from Xt = Ayt-\-c-\-et w i th 

yt randomly generated from a Bernoulli distribution and et randomly generated 

from G(:c|0，(72/). Each element of A is generated from 1). Experiments 

are repeated over 100 times to facilitate our observing on statistical behaviors 

and all the experimental results are derived from testing set. 

2.4.1 Frequency of local minima occurring in B-architecture 

This experiment shows frequency of the local minima in B-architecture we 

discussed in sect.2.2.1. In this experiment, the dimension of x is d = 15 and 

the dimension of y is /c = 5. The noise variance cr̂  is equal to 0.5 and the 

sample size n = 100. Table. 2.3 shows the frequency that this local minima 

occurs in a B-architecture based on 100 experiments. You can find that this 

special local min ima occurs much more often than the the correct case, as well 

as other local cases. 

Table 2.3: Rates of the special local minima (SL), other local (OL) and correct 
cases (C) in B-architecture in 100 experiments 

C SL OL Dimensionality of x Dimensionality of y 

38% 45% 17% 15 5 
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2.4.2 Performance comparison for several methods in 

B-architecture 

This experiment shows the performances of two heuristic methods and the 

improved algor i thm proposed in sect.2.2.1. A same data set is used to the 

different methods. A n proper ini t ial learning rate of A is usually in the range of 

0.1 to 0.6 experimentally. The experiment condition is the same as experiment 

in sect.2.4.1. Table. 2.4 is a comparison of the frequency that the local minima 

occur. Af ter using the two heuristic methods, the frequency of the special 

local min ima and other local minima rapidly decreases and the correct rate is 

improved from 38% to 55%. 

Table 2.4: Rates of the special local minima (SL), other local (〇L) and correct 
cases(C) in comparison of different methods by 100 experiments 

Methodology C SL OL Initial step length of A 

original B-architecture 3 8 % 4 5 % 17% ^ 

B-architecture with two heuristic methods 5 5 % 3 2 % 13% 0.5 

Improved B-architecture with two heuristic methods 8 7 % 0 13% 0.5 

2.4.3 Comparison of local minima in B-architecture and 

Bl-architecture 

In this experiment, you can easily find that local minima in BI-architecture 

are much less than that in B-architecture. The data is sti l l 15-dimension and 

the true binary factors number k is 5. The same data is used to both B- and 

BI-architecture. Table. 2.5 shows an comparison of the frequency that local 

min ima occur in B- and BI- architecture. In this table, you can also find that 
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the run t ime of Bl-architecture is much less than that of B-architecture. I t 

should be noted that the time given in Table 2.5 is an average of 100 experi-

ments. 

Table 2.5: Rates of the local minima in original B-architecture and BI-
architecture in 100 experiments 

Architecture local minima CPU time (in minutes) 

original B-architecture 6 2 % 5.2 

Bl-architecture 9 % 1.3 

2.4.4 Frequency of unstable cases occurring in Bl-architecture 

This experiment shows the frequency that the unstable cases occur in a Bl-

architecture. We use the same data as that of the experiment in sect.2.4.1. In 

table. 2.6, you can find that such unstable case described in sect.2.2.2 has high 

frequency 33%. 

Table 2.6: Rates of unstable cases (US), local minima (L) and correct cases 
(C) in Bl-arcl i i tecture by 100 experiments 

C US L Dimensionality of x Dimensionality of y 

6 0 % 3 0 % 9 % 15 5 

2.4.5 Comparison of performance of three strategies 

This experiment shows an performance comparison of three strategies, im-

proved B-architecture in Eq. 2.9，Bl-architecture in Eq. 2.8, as well as the 

combination of them in Eq. 2.10. A same data set is used to all these three 

strategies. The data set is the same as that in sect.2.4.1. Table. 2.7 shows 
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that the combination method has the highest correct rate wi th reasonable 

running time. Moreover, local minima has been considerably reduced by the 

combination method. 

Table 2.7: Performance comparison of the three strategies, B-architecture, 
BI-architecture, and the combination strategy 

Strategy Correct result Local minima CPU time (in minutes) 

B-architecture 8 7 % 13% 5.2 

Bl-architecture 6 0 % 6 % 1.3 

Combination 9 4 % 6 % 2.5 

2.4.6 Limitations of Bl-architecture 

This experiment shows the l imitations of Bl-architecture mentioned in sect.2.3.2. 

One is about the variance of error represented by ctq, and the other is about 

the mean value of data represented by Cq. 

Table. 2.8 shows the reconstruction errors of x using B-architecture and 

Bl-architecture w i th the variance of error ctq increasing from 0.1 to 1.5. The 

data used in this experiment is 15-dimension vector and there are 5 real bi-

nary factors. The data size is n = 100. You can easily find the difference 

between these two architectures in this table. The result using Bl-architecture 

is seriously effected by ctq. In this table, when aQ increases to 1.5, the Bl-

architecture model even cannot work any more. However, the B-architecture 

is not so seriously affected by ctq. 

Also, i t is found that the results of Bl-axchitecture are closely related to the 

mean value cq. When the mean value of data is too large, the Bl-architecture 
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Table 2.8: Average results as ctq increases 

B-architecture 

Para. GQ = 0.1 o"o = 1 cto = 1.5 

Average error of x 0.0858 0.2164 0.6473 

Iteration number 200 500 1000 

Bl-architecture 

Para. ctq = 0.1 <7�= 1 cr。二 1.5 

Average error of x 0.0869 0.6192 1.890 

Iteration number 2000 6000 >20000 

cannot even work. However, B-architecture is rarely affected by cq. This is 

presented in table. 2.9. 

Table 2.9: Average results as the mean value of x increases. 

B-architecture 

Para. Averageco = 0.58 Averageco = 5.46 Averageco = 18.3 

Average error of x 0.0642 0.0693 0.0711 

Iteration number 300 300 300 

Bl-architecture 

Para. (Jq = 0.1 <7。二 1 cto = 1-5 

Average error of x 0.0802 0.7533 4.5361 

Iteration number 2000 6000 Inf 

2.5 Summary 

In this chapter, we concentrated on the abil ity of automatic model selection 

for the B Y Y learning for implementing BFA. We mainly analyzed the local 
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ni ini ina problems in B-architecture and Bl-architecture. 

For B-architecture, the local minima that often happens has been described. 

Furthermore, two heuristic methods to avoid such local minima were proposed 

and an improved algorithm to remove this local minima was given. Experi-

ments have proved that these methods are effective. 

For Bl-architecture, we also summarized the special cases often appear-

ing i l l experiments. One unstable case was emphasized because it often oc-

curs and can be rescued by B-architecture. Thus, we proposed a combination 

strategy for making use of the advantages of both adequately. Experiments 

have shown that this combination strategy efficiently avoids the local minima 

in B-architecture and solves the unstable problem in Bl-architecture. More-

over, the running t ime of the combination method is much less than that of 

B-architecture. 



Chapter 3 

A Comparative Investigation on 

Model Selection in Binary 

Factor Analysis 

This chapter investigates the B Y Y criterion and BYY harmony learning with 

automatic model selection (BYY-AUTO) in comparison with existing typical 

criteria, including AIC, BIC, CAIC, and CV criterion. This study is made via 

experiments on data sets wi th different sample sizes, data space dimensions, 

noise variances, and hidden factors numbers. Experiments have shown that 

the performance of BIC is superior to AIC, CAIC, and CV in most cases. In 

case of high dimensional data or large noise variance, the performance of CV is 

superior to AIC, CAIC, and BIC. The BYY criterion and the BYY automatic 

model selection learning (BYY-AUTO) are, in most cases, comparable with 

or even superior to the best among of BIC, AIC, CAIC, and CV. Moreover, 

selection of hidden factors number k by BIC, AIC, CAIC, and CV has to be 

made at the second stage on a set of candidate factor models obtained via 

31 
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parameter learning at the first stage. This two-phase procedure is very time-

consuming, while B Y Y - A U T O takes much less time than the conventional two-

pliase methods because an appropriate factors number k can be automatically 

determined dur ing parameter learning. 

3.1 Binary Factor Analysis and ML Learning 

In sect. 2.1.1, we have introduced the basic issues of binary factor analysis 

(BFA). The task of model selection for BFA is to determine the hidden factors 

number k. 

Given k and a set of observations one widely used method for 

est imating 9 = {A.c.a'^} is the maximum likelihood learning. That is, 

(9 = a r g m a x L ( ^ ) . (3.1) 
6 

where L{6) is the following log likelihood function 

n 

M = J2^n{P{xt)) 

t=l 

= ( 3 . 2 ) 

<=1 yeD 

where D is the set that contains all possible values of y. 

This opt imizat ion problem can be implemented by E M algorithm that i t-

erates fol lowing steps [7’ 34]: 

step 1: calculate p{;y\xt) by 

(^ X v{xt\y)v{y) (o ON 
咖 而 ) = E — ( 暴 ) . (3.3) 
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step 2: update A^ c and cr̂  by 
n n 

A = ( E E P i v M i x t - c ) y T ) C £ Y A y \ x t ) y y T ) - i , (3.4) 
t=l y£D i=l y&D 

越 （3.5) 

and 

。2 = i f ^ I > ( " W I W 2 (3.6) 
亡二1 yeD 

respectively, where et = Xt — Ay — c. 

3.2 Hidden Factors Number Determination 

3.2.1 Using Typical Model Selection Criteria 

As described in sect. 1.1.3, determination of hidden factors number k for BFA 

can be performed via several existing statistical model selection criteria. Such 

criteria include AIC, BIC, CAIC, CV, as well as MDL which formally coincides 

w i th BIC. These criteria have to be implemented in a two-phase procedure that 

is actually very time-consuming. First, we need to assume a range of values of 

k from kmin to kmax which is assumed to contain the optimal k. At each specific 

k, we estimate the parameters 6 under the ML learning principle. Second, we 

make the following selection 

k = a r g m i n { J(义 k), k = k„un, •••, km.ax}, (3.7) 
k 

where J{0, k) is a given model selection criterion. 

Eq. 1.3 in sect.1.1.3 gives the general form of the three model selection 

criteria AIC, CAIC, and BIC. Applying these criteria to BFA, L0) is the log 
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/N 

l ikelihood Eq. 3.2 based on the M L estimation 9 using the E M algorithm in 

Eq. 3.3 - Eq. 3.6 under a given k, and Q{k) = {d— l)k + d-\-2 is the number of 

free parameters in /c-factors model of BFA. B{n) has been given in sect.1.1.3. 

App ly ing another well-known model selection technique, cross-validation 

(CV) in Eq. 1.4，to the model selection of BFA, the cross-validated log-likelihood 

for a /.--factors model is 

j ( e , k ) = - - ' V m u ^ m ) (3.8) 

3.2.2 Using B Y Y harmony Learning 

Determining hidden factors by B Y Y criterion 

Apply ing B Y Y harmony learning to the binary factor analysis model, the 

fol lowing criterion is obtained for selecting the hidden factors number k [39 

J(9, k) = kln2 + 0.5dlna^. (3.9) 

Shortly, we refer i t by B Y Y criterion for BFA, where a^ can be obtained via 

B Y Y harmony learning, i.e., Eq. 2.3 in sect.2.1.2 which is implemented by 

either a batch or an adaptive algorithm. 

In sect.2.1.3, the adaptive algorithm of B Y Y harmony learning for BFA 

w i th automatic model selection has been given in Eq. 2.6. Now we give the 

parameter leaining algorithm of B Y Y harmony learning for implementing BFA 

w i t h two-phrase style. In a two-stage implementation, the parameters need to 

be learned include A, c, and a^, the probabil ity qj for each hidden factor • ⑴ 

is prefixed as 0.5. 
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W i t h k fixed, Eq. 2.4 can be implemented via the adaptive algorithm given 

by Table. 1 in [39]. Considering that typical model selection criteria are eval-

uated basing on the M L estimation via the E M algorithm made in batch, we 

also implement Eq. 2.4 in batch. Similar to the procedure given in Table. 1 of 

39], we iterate the following steps: 

step 1: get yt by Eq. 2.5, 

step 2: from 紐 丄 : ， = 0, {6 include A, c, d^), update 
uu 

et = X t - Ayt — c, 
_ E L i I N | 2 ’ 

dn ‘ 

A = (f>-c)2/r)(f>2/D-i， 

c = - J 2 { x t - A y t ) , (3.10) 
t=\ 

This iterative procedure is guaranteed to converge since i t is actually the spe-

cific form of the Yi i ig-Yang alternative procedure, see Sect.3.2 in [38 . 

W i t h k enumerated and its corresponding parameters obtained by the 

above Eq. 3.10, we can select a best value of k by B Y Y criterion for BFA 

in Eq. 3.9. 

Automatic hidden factor determination 

Furthermore, an adaptive algorithm has also been developed from implement-

ing B Y Y harmony learning w i th appropriate hidden factors automatically de-

terni ined dur ing learning [36, 38，39]. Instead of prefixing q.j, qj is learned 

together w i th other parameters 9 via maximizing H{6, k), which wi l l lead to 

that Qj on each extra dimension y⑴ is pushed towards 0 or 1 and thus we 
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can discard the corresponding dimension [36, 38’ 39]. Setting k init ial ly large 

enough (e.g., the dimensionality of x in this paper), we can implement the 

adaptive algor i thm wi th model selection made automatically. Shortly, we re-

fer i t by B Y Y automatic model selection learning (BYY-AUTO). The adaptive 

algor i thm of B Y Y harmony learning wi th automatic model selection has been 

given in sect.2.1.3 and sect.2.1.4 for two architectures respectively. In ex-

periments, we used a combination strategy Eq.2.10 via B Y Y automatic model 

selection learning ( B Y Y - A U T O ) in chapter 2 for getting higher correction rate 

and better performance for the implementation of BFA. 

3.3 Empirical Comparative Studies 

We investigate the experimental performances of the model selection criteria 

A IC , B IC, CAIC, 10-fold CV, B Y Y criterion and BYY-AUTO on four types 

of data sets w i th different sample sizes, data dimensions, noise variances, and 

numbers of hidden factors. In implementation, for AIC, BIC, CAIC and 10-

fold CV, we use E M algorithm Eq. 3.3- Eq. 3.6 to obtain the M L estimates of 

A, c and cr^. For B Y Y criterion we implement algorithm Eq. 3.10 for param-

eter learning. For B Y Y - A U T O , we use the combination algorithm Eq. 2.10 

for the most cases except the case when noise variance becomes large to 

1.5 and for this special case we use the algorithm Eq. 2.6 of B-architecture 

for automatic model selection during parameter learning. The observations Xt, 

t = 1,71 are generated from Xt = Ayt + c + ê  w i th yt randomly generated 

f rom a Bernoul l i d istr ibut ion w i th qj is equal to 0.5 and Ct randomly gener-

ated f rom G(a:|0, a^ I ) . Experiments are repeated over 100 times to facilitate 
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our observing on statistical behaviors. Each element of A is generated from 

G{x\0,1). Usually we set kmin = 1 and k^ax = 2k - 1 where k is the true 

number of hidden factors. In addition, to clearly illustrate the curve of each 

cri terion w i th in a same figure we normalize the values of each curve to zero 

mean arid uni t variance. 

3.3.1 Effects of Sample Size 

We investigate the performances of every method on the data sets wi th different 

sample sizes n = 20, n = 40, and n = 100. In this experiment, the dimension 

of X is d = 9 and the dimension oi y is k = 3. The noise variance cr̂  is 

equal to 0.1. The results are shown in Fig. 3.1. Table 3.1 illustrates the 

rates of underestimating, success, and overestimating of each method in 100 

experiments. 

When the sample size is only 20，we see that B Y Y and BIC select the right 

number 3. C M C selects the number 2. AIC, 10-fold CV select 4. When the 

sample size is 100, all the criteria lead to the right number. Similar obser-

vations can be observed in Table 3.1. For a small sample size, CAIC tends 

to underestimate the number while AIC, 10-fold CV tend to overestimate the 

immber. B Y Y criterion has a l i t t le risk of overestimation, and B Y Y - A U T O is 

comparable w i th BIC. 

3.3.2 Effects of Data Dimension 

Next we investigate the effect of data dimension on each method. The dimen-

sion of y is k = 3, the noise variance cr̂  is equal to 0.1, and the sample size 
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Figure 3.1: The curves obtained by the criteria AIC, BIC, CAIC, 10-fold CV 
and B Y Y on the data sets of a 9-dimensional x {d = 9) generated from a 
3-dimensional y (k = 3) w i th different sample sizes for BFA. 
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Table 3.1: Rates of underestimating (U), success (S), and overestimating (0 ) 
by each criterion on the data sets w i th different sample sizes for BFA in 100 
exper iment 

n = 20 n = 40 n = 100 

criteria U S O U S O U S 0 

A I C 5 53 42 1 78 21 0 89 11 

B IC 15 81 4 3 97 0 0 100 0 

C M C 32 67 1 10 90 0 1 99 0 

10-fold CV 3 62 35 1 79 20 0 90 10 

B Y Y 3 75 20 1 94 5 0 100 0 

B Y Y - A U T O 4 80 16 0 93 7 1 99 0 

is n = 80. The dimension oi x is d = 6, d = 15, and d 二 25. The results are 

shown in Fig. 3.2. Table 3.2 illustrates the rates of underestimating, success, 

and overestimating of each method in 100 experiments. 

When the dimension of x is 6, we observe that all these criteria tend to 

select the r ight number 3. However, when the dimension of x is increased to 25, 

B Y Y , 10-fold CV and A I C get the right number 3’ but C M C and BIC choose 

the number 2. Similar observations can be obtained in Table 3.2. For a high 

dimensional rr, B Y Y , B Y Y - A U T O , and 10-fold CV sti l l have high successful 

rates but C A I C and BIC tend to underestimating the hidden factors number 

k. A I C has a slight risk to overestimate the hidden factors number. 

3.3.3 Effects of Noise Variance 

We further investigate the performance of each method on the data sets wi th 

different scales of noise added. In this example, the dimension oi x is d = 9, 

the dimension of ^ is A: = 3, and the sample size is n = 80. The noise variance 
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Figure 3.2: The curves obtained by the criteria AIC, BIC, CAIC, 10-fold CV 
and B Y Y on the data sets of a a: w i th different dimensions generated from a 
3-diniensioiial y {k = 3) for BFA. 
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Table 3.2: Rates of underestimating (U), success (S), and overestimating (0 ) 
by each criterion on the data sets w i th different data dimensions for BFA in 
100 experiments 

d = Q 1 5 d 二 25 

criteria U S O U S 0 U S 0 

A I C 0 89 11 0 86 14 2 83 16 

B IC 0 98 2 3 96 1 30 69 1 

C A I C 0 100 0 7 93 0 48 52 0 

10-fold CV 0 90 10 0 86 14 0 89 11 

B Y Y 0 99 1 1 95 4 10 89 1 

B Y Y - A U T O 1 99 0 1 93 6 3 87 10 

is equal to 0.05, 0.75, and 1.5. The results are shown in Fig. 3.3. Table 3.3 

i l lustrates the rates of underestimating, success, and overestimating of each 

method in 100 experiments. 

When the noise variance is 1.5，we see that only A IC and 10-fold CV select 

the r ight nuinber 3, BIC, CAIC and B Y Y select 2 factors. When the noise 

variance is 0.05 or 0.75，all the criteria lead to the right number. Similar obser-

vations can be observed in Table 3.3. Prom this table we can find, for a large 

noise variance, BIC, CAIC, BYY , and B Y Y - A U T O are high likely to under-

estimate the number, A I C and 10-fold CV have a slight risk of overestimate 

the nuinber. For a small noise variance, CAIC, BIC, B Y Y and BYY-AUTO 

have high successful rates while A IC and 10-fold CV sti l l have a slight risk of 

overestimating the number. 
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Figure 3.3: The curves obtained by the criteria AIC, BIC, CAIC, 10-fold CV 
and B Y Y on the data sets of a 9-dimensional x (d = 9) generated from a 
3-climeiisioiial y (k = 3) w i th different noise variances for BFA. 
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Table 3.3: Rates of underestimating (U), success (S), and overestimating (0 ) 
by each cri terion on the data sets w i th different noise variances for BFA in 100 
exper imen t 

0*2 = 0.05 = 0.75 0"2 = 1.5 

criteria U S O U S O U S O 

A I C 0 89 11 0 82 18 6 78 16 

B IC 0 100 0 2 97 1 40 58 2 

C M C 1 99 0 6 94 0 57 43 0 

10-fold CV 0 86 14 0 86 14 1 81 18 

B Y Y 0 100 0 1 99 0 42 52 6 

B Y Y - A U T O 0 99 1 2 98 0 24 50 26 

3.3.4 Effects of hidden factor number 

Finally, we consider the effect of hidden factor number, that is, the dimension 

of y on each method. In this example we set n = 80, d = 15, and a"^ 二 0.1. 

The dimension oi y is k = 3, k = Q, and k = 10. Table 3.4 illustrates the 

rates of underestimating, success, and overestimating of each method in 100 

experiments. 

As shown in Table 3.4，when hidden factors number is small all criteria 

have good performance. When hidden factors number is large A IC get a risk 

of overestimating. 

3.3.5 Computing Costs 

A l l the experiments were carried out using M A T L A B R12.1 v.6.1 on a P4 

2GHz 512KB R A M PC. We list the computational results in Table 3.5 for the 

first example described in sect. 2.4.1 w i th a sample size n 二 100. For AIC, 
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Table 3.4: Rates of underestimating (U), success (S), and overestimating (0 ) 
by each cri ter ion on simulation data sets w i th different hidden factors numbers 
for BFA in 100 experiments 

k = 3 k = Q A : = 1 0 ^ 

criteria U S O U S O U S O 

A I C 0 86 14 0 85 15 0 72 28 

B IC 2 98 0 4 96 0 9 91 0 

C A I C 6 94 0 9 91 0 11 89 0 

10-fold CV 0 85 15 0 85 15 0 81 19 

B Y Y 2 98 0 4 95 1 10 86 4 

B Y Y - A U T O 1 99 0 4 93 0 11 86 3 

B IC, C A I C and 10-fold CV, we list the total time of implementing the E M 

algor i thm and of evaluating the criteria by kmax — /cmin + l = 5 times. For B Y Y 

cr i ter ion we list the tota l t ime of implementing the algorithm Eq. 3.10 and of 

evaluating the cri teria also by kmax — kmin + 1 = 5 times. For BYY-AUTO, we 

list the t ime of implementing the algorithm Eq. 2.6 as well as Eq. 2.8 to make 

ini t ia l izat ion. I t should be noted that all the values given in Table 3.5 are the 

average of 100 experiments. 

Moreover, in Table 3.6 we list the running time of both B Y Y harmony 

learning by Eq. 3.10 and E M algorithm Eq. 3.3- Eq. 3.6 when k = 3 using 

the same data as above. This table shows that the the algorithm derived 

f rom B Y Y harmony learning takes much less time than the conventional E M 

algor i thm. 

The hidden factor number determination by AIC, BIC, CAIC takes a sim-

ilar C P U t ime and takes more t ime than that by B Y Y criterion since the 

E M algor i t l i in needs more iterations than the algorithm Eq. 3.10 needs. The 
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Table 3.5: C P U times on the simulation data sets wi th n = 100, d = 9, 
and /c 二 3 for BFAby using the E M algorithm for AIC, BIC, CAIC and CV, 
algor i thm (3.10) for B Y Y criterion and (2.6) for BYY-AUTO 

method CPU time (in minutes) 

B Y Y - A U T O 1 

B Y Y criterion 5.2 

A IC , CAIC, B IC 15.3 

10-fold CV 58.5 

Table 3.6: C P U times on the simulation data sets wi th n = 100，d = 9, and 
k = 3 for BFA by using the E M algorithm and the algorithm derived from 
B Y Y harmony learning where set the candidate k = 3 

method CPU time (in minutes) 

B Y Y harmony learning 0.9 

E M algorithm 2.2 

m- fo ld cross-validation method consumed the highest computing cost because 

parameters have to be estimated by m times on each candidate model. The 

comput ing costs of all these criteria are much higher than that of BYY-AUTO. 

In a summary, the performances by B Y Y criterion and B Y Y - A U T O are either 

superior or comparable to those by typical statistical model selection criteria, 

while B Y Y - A U T O saves computing costs considerably. That is, B Y Y harmony 

learning is much more favorable. 
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3.4 Summary 

We have made experimental comparisons on determining the hidden factor 

number in implementing BFA. The methods include four typical model se-

lection cri teria A IC , BIC, CAIC, 10-fold CV, and B Y Y criterion as well as 

B Y Y learning w i th automatic model selection. We have observed that the 

performances by B Y Y criterion and B Y Y - A U T O are either superior or com-

parable to other methods in most cases. Both B Y Y criterion and BYY-AUTO 

have high successful rates except the cases of large noise variance. BIC also 

got a high successful rate when the data dimension is not too high and the 

noise variance is not too large. CAIC has an underestimation tendency while 

A I C and 10-fold C V have an overestimation tendency. Moreover, BYY-AUTO 

needs a much less computing t ime than all the considered criteria including 

B Y Y criterion. 



Chapter 4 

A Comparative Investigation on 

Model Selection in 

Non-gaussian Factor Analysis 

Noil-Gaussian factor analysis (NFA) is a recently proposed technique for the 

multivariate data analysis wi th non-Gaussian latent factors. A crucial issue in 

NFA is the determination of the hidden factors number and the model complex-

i ty of each factor. This chapter investigates the BYY criterion in comparison 

wi th existing typical criteria, AIC, BIC, CAIC, and CV, on the model selec-

t ion of NFA. This comparative study is made via experiments on the data 

sets wi th different sample sizes, data space dimensions, and noise variances. 

Experiments have shown that in most cases BIC outperforms AIC, CAIC, and 

CV while the B Y Y criterion is either comparable with or better than BIC. Fur-

thermore, the algorithm derived from BYY harmony learning takes much less 

t ime than the conventional E M algorithm since the computational complexity 

grows exponentially wi th the number of factors in EM algorithm. 

47 
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4.1 Non-Gaussian Factor Analysis and ML Learn-

ing 

Non-Gaussian factor analysis (NFA) generalizes the classic factor analysis (FA) 

Eq. 1.1 by assuming y is -d non-Gaussian random vector [4’ 40]. In this paper 

we consider each factor y⑴ is derived from a Gaussian mixture distribution 

20’ 36’ 38: 

k kj 

p { y ) = r i f e ( " ⑴ ) 1 ’ p 納 = ( 4 . 1 ) 

where denotes a normal (Gaussian) distribution wi th mean 

lij^q. and variance aj^^.. We consider e is drawn from a Gaussian distribution, 

thus p{x\y) has the following form: 

p{x\y) = G(x\Ay,l：), (4.2) 

where H is the covariance matr ix of error e. 

For simplif ication, we preprocess the observable data to be zero mean such 

that the unknown parameter c in Eq. 1.1 can be ignored. In implementation 

of NFA, the unknown parameters 6 consists of the mixing matr ix A, the co-

variance matr ix S, and the parameters 6j = {Pj,qj, fij,qj, (Tĵ q.} for each factor 

y⑴.Given a number k of factors and the number kj for each factor y⑴(de-

noted by K = {k, { / c j } } ) as well as a set of observations {xt}t=i, maximum 

l ikel ihood learning by Eq. 3.1 is st i l l used for estimating 9, w i th the following 

log l ikel ihood function: 

n 

m = x > ( p ⑷） 
t=i 
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= [ p { x t \ y ) p ( y ) d y ) , (4.3) 

which can not be implemented by the E M algorithm as the integral in this 

function is analytically intractable. In [20], a missing data q =[豹,仍，..•，办. 

is used to indicate which factor is generated by the corresponding Gaussian 

component, and then ])[y、in Eq. 4.5 is expressed as a mixture of Gaussian 

products. As a result, the integral becomes a summation of a large number 

of analyt ical ly computable integrals on Gaussians, which makes an exact M L 

learning on Eq. 1.1 implemented by an exact E M algorithm. The same ap-

proach has been also published in [4] under the name of independent factor 

analysis. 

Specifically, each state qj in q indicates the factor y⑴ generated by the qjih. 

Gaussian component and each state q corresponds to a A;-dimensional Gaussian 

density w i th the mix ing proportions /？̂, mean fiq^ and diagonal covariance 

mat r ix Vg as follows: 

- k 

f̂ q = 丄 丄 ft’9j. = A,91 . . . . . > 
J = 1 

— iT 
f-^q ~ [Ml,915 •••) Mfc.q-fcJ , 

l/q = (4.4) 

where the notat ion diag(f/ i , . . . ’ denotes a diagonal matr ix wi th the diagonal 

elements being d i , . . . , dk. 

Thus, the form of p(y) in Eq. 4.5 can be rewritten as 

M = TAG<^y \h ,Vq、 , (4.5) 
q 

where the summation ^ ^ = Î qi，...’Z)gfc. Also, the form of p{q) and p{x\q) 



Chapter 4 A Comparative Investigation on Model Selection in Non-gaussian Factor Analysis 50 

can be writ ten as 

p { q ) = 

p{x\q) = G(x\Aii,,AV,A^ + (4.6) 

The EM algorithm for solving Eq. 4.3 is given in the following steps [20’ 4]: 

step E: calculate p(q\xt) by 

= • 树 y f i、 ’ (4.7) 
E g P ⑷ p(而 k ) 

P i Q j M = P ⑷ A ) , (4-8) 

where ^ [̂̂ ‘}‘幻 denotes summation over {qi^tj}, holding qj fixed, 

step M: update A, E and Pj^q., fij^q., aj^. by 

A = j y t < y [ > d 2 < y t y ^ > ” , (4.9) 
t=i t=i 

‘ = ELp(二〈"丨力2〉-‘ (,12) 

(4.13) 
n t=i 

respectively, where 

< y j > = J ] K # t ) / 、 ’ 
q 
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< ytvl > = E p ( g | z t ) ( V 《 + Mg)’ 
q 

< "t⑴2 > - ^ p ( q l x t ) ( h X + 

Mq = ( 竹 + 

hq = + (4.14) 

where {hq)j means the j t h element of vector hq. 

Obviously, the number of terms in the summation Y,q 二 Sgi，…’ S ^ t grows 

exponentially w i th k, and correspondingly incurs that computing costs expo-

nentially grows w i th k. This is a serious disadvantage of this approach. 

4.2 Hidden Factor Determination 

4.2.1 Using typical model selection criteria 

Determinat ion of K = {A;, kj} can be performed via several existing statistical 

model selection criteria such as AIC, BIC, CAIC, and CV which have to be 

inipleineiited via a two-stage style. First, we need to assume a range of values 

of k f rom k„iin to kmax and a range of values of each kj from to kj•工 

which are assumed to contain the optimal /c, k j . This wi l l construct a domain 

U for K = •[人'，/!；」}• A t each specific K 6 U, we estimate the parameters 9 

under the M L learning principle. Second, we make the following selection 

k = a rgmin {J ( ^ , K), K eU], (4.15) 
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where J(6, K) is a given model selection criterion. 

Eq. 1.3 in sect.1.1.3 gives the general form of the three model selection 

criteria A IC, CAIC, and BIC. Applying these criteria to NFA, L{9) is the log 

likelihood Eq. 4.3 based on the M L estimation 9 using the E M algorithm in 

Eq. 4.7 - Eq. 4.14 under a given K, and Q{K) = [d - 2)k + 0.bd(d + 1) + 

— 1) + 1 is the number of free parameters in iC-model of NFA. B(n) 

has been given in sect.1.1.3. 

App ly ing another well-known model selection technique, cross-validation 

(CV) in Eq. 1.4，to the model selection of NFA, the cross-validated log-likelihood 

for a /c-factors model is 

1 

J{OJ<) = — - T L i H U - m ) (4.16) 

In implementation, determining the hidden factors number k together wi th 

the Gaussians number k j for each factor is a complex procedure since the 

domain U consists of all possible combinations of the values of k and each 

k j . For simplif ication, we can determine them separately and set all factors 

Gaussians number k j as a same integer. That is, hold the Gaussians number 

kj fixed when determining the factors number k and fix k when determining 

the number k j . 

4.2.2 B Y Y harmony Learning 

Apply ing B Y Y harmony learning to the non-Gaussian factor analysis model, 

the fol lowing criterion is obtained for selecting K = {k, k j } [38, 40] 

球 K ) = \ In |S| + 臺(1 + ln(27r)) + ^ f ] ‘ 人 \ h � — h / W . (4.17) 
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Shortly, we refer i t by B Y Y criterion for NFA where 6 can be obtained via 

B Y Y harmony learning by a batch or an adaptive algorithm, i.e., 

0 = a,igmax H{9,k). (4.18) 
9 

According to Sec. IV .A in [40], especially Eq. 52 in [40], the specific form 

of H(9, K) is given as follows 

t=l 3=1 

t=l 

et = Xt - Ayt, (4.19) 

where is given in Eq. 4.5 and yl』、is the j - t h element in vector yt, and 

yt = = aigmaxH{e,K). (4.20) 
y 

Given Xt, yt can be obtained via a nonlinear optimization algorithm. In this 

paper, we use the fixed posterior approximation to get yt via iterating the 

fol lowing two steps [36，42]: 

Step ( a ) : 巧 一 产 ’ 减 ， 。 ’ 

Step (b): 2 / 厂 = ( ^ ^ E - M + diag(6i,…， 

(4.21) 

W i t h K = {A^/cj.} fixed, Eq. 4.19 can be implemented via the algorithm 

given by Eq. 57 in [40]. Similar to the procedure given in Eq. 57 of [40], we 



Chapter- 4 A Comparative Investigation on Model Selection in Non-gaussian Factor Analysis 54 

i terate the following steps: 

Yang step: get yt by Eq. 4.21, 

Y ing step: (a) updating parameters in p{x\y) 

et = xt- Ayt, 

S 丨而 = ( 1 - r e s o l d + 

A 丽 = / l o i d + ” 

(b) updating parameters in p{y) 

ft. ’ 到秘 V ’ 乂 ） 

= ( 1 - w j j 4 《 d + • 细 -

I, . — V ^ /-jnew new 
Ab - Pj,qj ’ 

9j = l 

fci 
\、/onew new 

〜 . = 〜 ’ 
<7j = l 

„new _ ( 的 Z — new _ ^J.^j (A 00) 
〜 i 一 ^ " " "’〜】• — ( ) 

where '"’ r/() are step length constants. In this paper, for simplification, we set 
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all kjS as a same integer. This iterative procedure is guaranteed to converge 

since i t is actually the specific form of the Ying-Yang alternative procedure, 

see Sec. I l l in [36]. 

W i t h K enumerated as in Eq. 4.15 and its corresponding parameters ob-

tained by the above Eq. 4.22, we can select a best K by B Y Y criterion in 

Eq. 4.17. 

Besides the above criterion based selection, adaptive algorithm has also 

been developed from B Y Y harmony learning such that an appropriate K can 

be automatically determined during adaptively learning [36, 38, 40]. The hid-

den factors obtained via either this automatic determination or the above 

criterion have no difference. The difference is that the automatic determina-

t ion saves significantly computational costs of implementing the conventional 

two stage style of statistical model selection. Thus, i f the performances by 

the criterion from B Y Y harmony learning are comparable or even superior to 

typical statistical model selection criteria of AIC, CAIC, BIC, and CV in the 

most cases, we certainly prefer to use B Y Y harmony learning as a tool for 

determining hidden factors number k and gaussians number k j . 

4.3 Empirical Comparative Studies 

We investigate the experimental performances of the model selection criteria 

A IC, BIC, CAIC, 10-fold CV and B Y Y criterion for NFA on three types of 

data sets w i th different sample sizes, data dimensions, and noise variances. 

In implementation, the E M algorithm Eq.4.7 - Eq. 4.14 is used to obtain M L 

estimates of all the parameters 9 which consist of A, E and Pj、q” fij^qj, for 
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AIC, BIC, CAIC and 10-fold CV. For B Y Y criterion we implement algorithm 

Eq. 4.22 for parameters learning. The observations Xt , t = 1, ...,n are generated 

from Xt = Ayt + et w i th each /̂t⑴ randomly generated from a Gaussian mixture 

w i th 3 Gaussians and et randomly generated from A/'(0, S). Each element of A 

is generated from AA(0,1). Experiments are repeated over 50 times to facilitate 

our observing on statistical behaviors. 

In our experiments, we assume all the numbers of Gaussian components k j 

for factor '以(力 are equal wi th each other thus K need to be determined via model 

selection criterion consists of two numbers k and k j . For simplification, in our 

experiments k and kj are determined separately. That is, hold the Gaussians 

number kj 二 3 fixed when determining the factors number k and the number 

k is given when determining the number kj. Usually we set kffiin ~ 1 and 

kjnax = 2k — l where k is the true number of hidden factors and kjmin = 1 and 

kjmax = 5 since the true number of k j is 3. In addition, to clearly il lustrate the 

curve of each criterion wi th in a same figure we normalize the values of each 

curve to zero mean and unit variance. 

4.3.1 Effects of Sample Size on Model Selection Criteria 

We investigate the performances of every criterion on the data sets w i th dif-

ferent sample sizes n = 20, n = 40, and n = 100. In this experiment, the 

dimension of x is cJ = 7 and the dimension of y is k = S. The noise covariance 

matr ix S is equal to 0.1/ ( / is a 7 x 7 identity matr ix). The results w i th dif-

ferent factors number k and fixing kj as 3 are shown in Figure 4.1. The results 
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Table 4.1: Numbers of underestimating (U), success (S), and overestimating 
(O) by each criterion on the data sets wi th different sample sizes for selecting 
hidden factors number k wi th kj = 3 fixed for NFA in 50 experiments 

n = 20 n = 40 n = 100 

criteria U S O U S O U S O 

A I C 4 25 21 2 32 16 1 40 9 

B IC 10 38 2 8 42 0 1 49 0 

CAIC 19 31 0 14 36 0 4 46 0 

10-fold CV 1 27 22 1 34 15 0 42 8 

B Y Y 3 34 13 1 41 8 0 48 2 

w i th different kj and fixing k as 3 are shown in Figure 4.2. Table 4.1 and Ta-

ble 4.2 i l lustrate the numbers of underestimating, success, and overestimating 

of each method for selecting k and kj respectively in 50 experiments. 

When the sample size is only 20’ we see that B Y Y and BIC select the right 

hidden factors number 3. CAIC selects the number 2. AIC, 10-fold CV select 4. 

When the sample size is 100，all the criteria lead to the right number. Similar 

observations can be observed in Table 4.1. For a small sample size, CAIC tends 

to underestimate the number while AIC, 10-fold CV tend to overestimate the 

nuinber. B Y Y criterion has a l i t t le risk of overestimation while BIC has a l i t t le 

risk of underestimation. 

When the sample size is only 20, A IC and B Y Y select the right gaussians 

nuinber 3 for each gaussian mixture of y j . BIC select the number 2 and CAIC 

select the number 1. 10-fold CV select the number 4.When the sample size is 

100, only CAIC leads to the number 2, all the other criteria select the right 

nuinber 3. Similar observations can be observed in Table 4.2. CAIC tends to 

underestimate even the sample size is large enough. 
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Figure 4.1: The curves obtained by the criteria AIC, BIC, CAIC, 10-fold CV 
and B Y Y for selecting the factors number k w i th kj = 3 fixed on the data sets 
of a 7-dimensional x (d = 7) generated from a 3-dimensional y {k = 3) w i th 
different sample sizes for NFA. 
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Figure 4.2: The curves obtained by the criteria AIC, BIC, CAIC, 10-fold CV 
and B Y Y for selecting the gaussians number kj w i th k = 3 fixed on the data 
sets of a 7-dimensioiial x {d = 7) generated from a 3-dimensional y {k — 3) 
wi th different sample sizes for NFA. 
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Table 4.2: Numbers of underestimating (U), success (S), and overestimating 
(O) by each criterion on the data sets wi th different sample sizes for selecting 
gaussians number kj w i th k = 3 fixed for NFA in 50 experiments 

n = 20 n = 40 n = 100 

criteria U S O U S O U S O 

A I C 9 31 10 4 34 12 1 41 8 

B IC 22 26 2 17 32 1 5 43 2 

CA IC 28 22 0 21 29 0 15 35 0 

10-fold CV 6 29 15 3 32 15 0 39 11 

B Y Y 7 31 12 4 37 9 1 44 5 

4.3.2 Effects of Data Dimension on Model Selection Cri-

teria 

Next we investigate the effect of data dimension on each criterion. The di-

mension of y is k = 3, the noise covariance matr ix S2 is equal to 0.1/，and 

the sample size is n = 80. The dimension of x is d = d = 10，and d = 20. 

The results w i th different factors number k and fixing kj 二 3 are shown in 

Figure 4.3. The results wi th different k j and fixing /c = 3 are shown in Fig-

ure 4.4. Table 4.3 and Table 4.4 illustrate the numbers of underestimating, 

success, and overestimating of each method for selecting k and kj respectively 

in 50 experiments. 

When the dimension of x is 5, we observe that all these criteria tend to 

select the right hidden factors number 3. However, when the dimension of 

X is increased to 20’ BYY, 10-fold CV get the right number 3, but CAIC 

and B IC tend to underestimate the hidden factors number and A IC tend to 

overestimate the hidden factors number. Similar observations can be obtained 
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Table 4.3: Numbers of underestimating (U), success (S), and overestimating 
(O) by each criterion on the data sets wi th different data dimensions for se-
lecting hidden factors number k w i th kj = 3 fixed for NFA in 50 experiments 

d = 5 d = 1 0 d = 20 

criteria U S O U S O U S O 

A I C 2 42 8 0 39 11 0 36 14 

B IC 3 47 0 10 40 0 13 34 3 

CAIC 4 46 0 13 37 0 20 29 1 

10-fold CV 0 40 10 0 40 10 0 39 11 

B Y Y 0 47 3 1 44 5 2 40 8 

Table 4.4: Numbers of underestimating (U), success (S), and overestimating 
(O) by each criterion on the data sets wi th different data dimensions for se-
lecting gaussians number kj w i th k = 3 fixed for NFA in 50 experiments 

d = 5 d = 10 d = 20 

criteria U S O U S O U S O 

A I C 0 40 10 2 38 10 1 37 12 

B IC 5 43 2 11 38 1 13 33 4 

CA IC 10 40 0 14 35 1 22 24 4 

10-fold CV 1 39 10 0 39 11 0 40 10 

B Y Y 3 43 4 4 37 9 5 32 13 

in Table 4.3. 

When the dimension of x is 20, A IC and 10-fold CV get the right gaussians 

number 3 of k j , B IC and CAIC tend to underestimation while B Y Y criterion 

has a risk of overestimation. Similar observations can be obtained in Table 4.4. 
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Figure 4.3: The curves obtained by the criteria AIC, BIC, CAIC, 10-fold CV 
and B Y Y for selecting the factors number k w i th fixing kj = 3 on the data 
sets of a a: w i th different dimensions generated from a 3-dimensional y {k = 3) 
for NFA. 
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Figure 4.4: The curves obtained by the criteria AIC, BIC, CAIC, 10-fold CV 
and B Y Y for selecting the gaussians number kj w i th fixing k = 3 on the data 
sets of a X w i th different dimensions generated from a 3-dimensional y (k = 3) 
for NFA. 
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4.3.3 Effects of Noise Variance on Model Selection Cri-

teria 

We further investigate the performance of each criterion on the data sets wi th 

different scales of noise added. In this example, the dimension of a; is (i = 7，the 

dimension of 7/ is A: = 3, and the sample size is n = 80. The noise covariance 

matr ix S is equal to 0.05/，0.5/, and 1.5/. Because the results w i th different k j 

are similar to the results w i th number /c, they are shown in the same Figure 4.5 

. T a b l e 4.5 and Table 4.6 il lustrate the numbers of underestimating, success, 

and overestimating of each method for selecting k and kj respectively in 50 

experiments. 

When the noise covariance matr ix is 1.5/, we see that only A IC and 10-

fold CV select the right hidden factors number 3，BIC, CAIC select 2 factors 

while B Y Y criterion select 4 factors. Similar observations can be observed in 

Table 4.5. Prom this table we can find, for a large noise variance, CAIC is high 

likely to underestimate the number, A IC and 10-fold CV have a slight risk of 

overestimate the hidden factors number. 

For the Gaussians number k j . Table 4.6 shows that the results are similar 

to the results of determining the hidden factors number k. 

4.3.4 Discussion on Computational Cost 

A l l the experiments were carried out using M A T L A B R12.1 v.6.1 on a P4 2GHz 

512KB R A M PC. We il lustrate the computational results in Table 4.7 for the 

experiment to determine the hidden factors number k in the first example de-

scribed in subsection 4.3.1 w i th sample size n = 40 by using the E M algorithm 
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Table 4.5: Numbers of underestimating (U), success (S), and overestimating 
(O) by each criterion on the data sets wi th different noise variances for selecting 
hidden factors number k w i th fixing kj = 3 for NFA in 50 experiments 

E = 0.05/ E = 0.5/ E = 1.5/ 

criteria U S O U S O U S O 

A IC 0 41 9 1 41 8 1 37 12 

BIC 3 47 0 4 45 1 15 28 5 

CAIC 5 45 0 6 44 0 25 21 4 

10-fold CV 0 40 10 0 41 9 1 39 10 

B Y Y 0 47 3 3 43 4 10 26 14 

Table 4.6: Numbers of underestimating (U), success (S), and overestimating 
(O) by each criterion on the data sets wi th different noise variances for selecting 
gaussians number k j w i th fixing /c = 3 for NFA in 50 experiments 

E = 0.05/ E = 0.5/ E = 1.5/ 

criteria U S O U S O U S O 

A I C 0 40 10 1 39 10 2 38 10 

B IC 6 43 1 7 43 0 20 25 5 

C A I C 10 40 0 9 41 0 29 21 0 

10-fold CV 2 38 10 1 39 10 0 40 10 

B Y Y 0 45 5 2 43 5 8 26 16 
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Figure 4.5： The curves obtained by the criteria AIC, BIC, CAIC, 10-fold CV 
and B Y Y for selecting the factors number k and the gaussians number k j on 
the data sets of a 7-dimensional x {d = 7) generated from a 3-dimensional y 
(k = 3) w i th different noise variances for NFA. 
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Table 4.7: CPU time results on the simulation data sets w i th n = 40, d = 7, 
and k = 3 for NFA by using the E M algorithm for AIC, BIC, CAIC and CV, 
algori thm Eq. 4.22 for B Y Y criterion 

method CPU time (in seconds) 

B Y Y criterion 58 

A IC , CAIC, BIC 103 

10-fold CV 698 

from Eq. 4.7 - Eq. 4.14 for AIC, BIC, CAIC and 10-fold CV, Eq. 4.22 for B Y Y 

criterion. I t should be noted that all values given in Table 4.7 are the average 

of 50 experiments. In Table 4.8 we list the running time of both B Y Y harmony 

learning by Eq. 4.22 and E M algorithm Eq. 4.7- Eq. 4.14 when k = 3 using 

the same data as sect. 4.3.1. This table shows that the the algorithm derived 

from B Y Y harmony learning takes much less time than the conventional E M 

algorithm. 

Hidden factors number determination by AIC, BIC, CAIC takes similar 

CPU t ime and takes more t ime than that by B Y Y criterion since the E M 

algor i thm need more iterations. The m-fold cross-validation method requires 

the highest computational cost because for each candidate model the param-

eters have to be estimated m times. Moreover, the computational cost grows 

exponentially w i th the number of factors k in E M algorithm but empirically 

grows linearly w i th k based on B Y Y harmony learning [40]. Since experiments 

have shown that B Y Y criterion is superior or comparable to typical statistical 

model selection criteria, corresponding B Y Y automatic model selection algo-

r i t hm is less computationally intensive such that B Y Y harmony learning are 

considered more favorable for non-Gaussian factor analysis. 
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Table 4.8: CPU time results on the simulation data sets wi th n 二 40，c? = 7’ 
and k = 3 for NFA by using the E M algorithm and the algorithm derived from 
B Y Y harmony learning where set the candidate k = 3 

method CPU time (in seconds) 
B Y Y harmony 13 
E M algori thm 31 

4.4 Summary 

We have made an experimental comparison on several typical model selection 

criteria by using them to determine hidden factors number and the Gaussians 

number for each factor. The considered criteria include four typical model se-

lection criteria A IC, BIC, CAIC, 10-fold CV, and the model selection criterion 

obtained from B Y Y harmony learning, namely B Y Y criterion. We observe 

that B Y Y criterion is superior or comparable to other methods and has high 

successful rate in most cases. BIC also got a high successful rate when the 

data dimension is not too high. CAIC has an underestimation tendency while 

A I C and 10-fold CV have an overestimation tendency. The cross-validation 

method requires a highest computing cost. 
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Conclusions 

In this thesis, we first analyze the experiment results of two architectures 

of B Y Y harmony learning with automatic model selection during parameter 

estimation in implementation of BFA. Based on the analysis, we proposed two 

heuristic methods and a combination strategy which can efficiently improve the 

correct rate for implementing BFA with model selection done automatically. 

Secondly, we have made experimental comparisons on determining the hid-

den factor number in implementing BFA. The methods include four typical 

model selection criteria AIC, BIC, CAIC, 10-fold CV, and BYY criterion as 

well as B Y Y learning wi th automatic model selection. We have observed that 

the performances by BYY criterion and BYY-AUTO are either superior or 

comparable to other methods in most cases. Both BYY criterion and BYY-

A U T O have high successful rates except the cases of large noise variance. BIC 

also got a high successful rate when the data dimension is not too high and the 

noise variance is not too large. CAIC has an underestimation tendency while 

A IC and 10-fold CV have an overestimation tendency. Moreover, BYY-AUTO 

needs a much less computing time than all the considered criteria including 

69 
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B Y Y criterion. 

Thirdly, we have made an experimental comparison on these typical model 

selection criteria and B Y Y criterion by using them to determine hidden fac-

tors number and the Gaussians number for each factor for NFA. We observe 

that B Y Y criterion is superior or comparable to other methods and has high 

successful rate in most cases. BIC also got a high successful rate when the 

data dimension is not too high. CAIC has an underestimation tendency while 

A I C and 10-fold CV have an overestimation tendency. The cross-validation 

method requires a highest computing cost. Therefore, B Y Y harmony learning 

is a more preferred tool for the model selection in BFA and NFA. 
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