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摘要 

這裡我們設計了二個自發性匿名群簽章：瞎自發性匿名群簽章和可分開的連 

結自發性匿名群簽章。瞎簽名為用戶提供一個途陛從簽署人獲得一個簽名，簽 

署人不能獲得關於所簽署文件內容。連結自發性匿名群簽章提供一個方式確定任 

何兩個簽章是否由同一人簽署。 

在自發性匿名群簽章，任一個實體可任意與其它成員組成一個群組。在簽名生成 

過程中成員對包括是未察覺的。它不需要設置階段或成員連接的程式，也不需 

要被信任的第三方，所以沒有人可以知道誰製造密文或簽章。它能夠提供無條件 

的私隱保護，即不論群組內的成員或群組外的人也不能分辨出誰是加密者或署名 

者。 

我們介紹二個添加了盲簽名和連結屬性的自發性匿名群簽章。這些自發性匿名群 

簽章提供不同的匿名屬性，以提供不同的匿名需求： 

1.(盲簽名）發送者身分是無條件地安全，並且簽署人也不能從盲自發性匿名群 

簽章中找到哪些人等曾參與製造這個簽名 

2.(連結屬性）發送者身分是保密，它能對同一簽署人簽發的電子文件作出聯 

繁 ° 

除盲自發性匿名群簽章和連結自發性匿名群簽章外，我們會簡介專門術語、自發 

性匿名群簽章和盲簽章的綜合概論及保安模型。最後，我們會總覽一些自發性 

匿名群簽章的應用例子。 



Abstract 

Here we present two results on the Spontaneous Anonymous Group (SAG) 

Signature - 1. Blind SAG Signature and 2. Separable Linkable SAG signature. 

Blind signature provides a mean for users to obtain a signature from a signer, 

in which the signer can obtain no information about the message. Linkable 

signature provides a way to determine wherever two messages are generated 

by the same signer. 

In spontaneous anonymous group (SAG) signature schemes, any entity can 

from arbitrary groups wi th other members and generate a signature on behave 

of the group. The members are unaware of the inclusion in the signature 

generation process. No setup stage or member joining procedure is required. 

No trusted th i rd party is present so that the anonymity of the actual signer is 

irrevocable. Unconditional protection on anonymity is provided so that neither 

insider nor outsider is able to find out the actual signer. 

We introduce two SAG signature variants by adding the blindness and link-

able properties. These signature variants provide different anonymity proper-

ties than the ordinary SAG signatures. Our work provides different anonymity 

requirements: (blindness) the blind signer's identity is unconditionally secure, 

and the blind signer cannot point out whether a given message-signature pair 

is generated by himself or not. (linkability) the sender identity is computa-

tionally secure, where i t ' l l be able to link the identity on different messages 

and if someone misbehaves. 

Chapter 1 we give introduction to cryptography. Chapter 2 we provide the 
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preliminaries in cryptography and the mathematics. Then in chapter 3 we go 

through the basics and the security models of digital signatures. Chapter 4 

we give introduction to spontaneous group signatures. In chapter 5 we present 

our results on blind SAG signature, our constructions, and the security proofs. 

Finally, we present our results on separable linkable SAG signature wi th a 

thresholding option in chapter 6. 

iii 



Acknowledgments 

I would like to take this opportunity to express my gratitude to some people. 

First of all, this thesis would not be completed without the help from my 

supervisor, Prof. Victor Wei, for his guidance and support during my graduate 

studies. I would also like to thank my colleague: Mr. Siu-Ting Ho and Mr. 

Adrian Sai-Wah Tarn, who enriched me wi th knowledge and provide valuable 

help on every aspect in my study. Next I would like to express my sincere 

gratitude to laboratory technician Mr. Hung-Kwong Yip who deserves thanks 

for giving pleasurable moments during the laboratory sessions. 

I have been happy to affiliate wi th the Department of Information-Engineering, 

and would like to thank all professors, staffs and friends for their encourage-

ment. Special thanks wil l be given to my colleagues in the Information Secu-

r i ty Laboratory: Mr. Patrick Pak-Kwong Tsang, Mr. Allen Man-Ho. Au, Mr. 

Tsz-Hon Yuen, Mr. Patrick Pak-To Chan, Mr. Robert Siu-Kuen Leung, Mr. 

Sebastian Fleissner, Miss Rosanna Yuen-Yan Chan, Prof. Joseph Kai-Sui Liu 

for fruit ful discussions and useful advises. 

Finally I would like to mention one people who mean a lot to me. W i th 

heartfelt thanks to Miss Kar-Yin Pung who always there for me, for her pa-

tience, care and love. 

iv 



Contents 

1 Introduction 1 

2 Preliminaries 4 

2.1 Notation 4 

2.2 Cryptographic Primitives 5 

2.2.1 Symmetric Key Cryptography 5 

2.2.2 Asymmetric Key Cryptosystem 6 

2.2.3 Secure Hash Function 7 

2.2.4 Digital Signature 8 

2.2.5 Digital Certificate and Public Key Infrastructure • • . • 8 

2.3 Provable Security and Security Model 9 

2.3.1 Mathematics Background 9 

2.3.2 One-Way Function 10 

2.3.3 Candidate One-way Functions 12 

2.4 Proof Systems 15 

2.4.1 Zero-knowledge Protocol 15 

2.4.2 Proof-of-Knowledge Protocol 17 

2.4.3 Honest-Verifier Zero-Knowledge (HVZK) Proof of Knowl-

edge Protocols (PoKs) 18 

2.5 Security Model 19 

2.5.1 Random Oracle Model 19 

V 



2.5.2 Generic group model (GGM) 20 

3 Signature Scheme 21 

3.1 Introduction 21 

3.2 Security Notation for Digital Signature 23 

3.3 Security Proof for Digital Signature 24 

3.3.1 Random Oracle Model for Signature Scheme 24 

3.3.2 Adaptive Chosen Message Attack 24 

3.4 Schnorr Identification and Schnorr Signature 25 

3.4.1 Schnorr's R〇S assumption 26 

3.5 Blind Signature 27 

4 Spontaneous Anonymous Group (SAG) Signature 30 

4.1 Introduction 30 

4.2 Background 30 

4.2.1 Group Signature 30 

4.2.2 Threshold Signature 31 

4.3 SAG signatures 33 

4.4 Formal Definitions and Constructions 35 

4.4.1 Ring-type construction 36 

4.4.2 CDS-type construction 36 

4.5 Discussion 37 

5 Blind Spontaneous Anonymous Signature 39 

5.1 Introduction 39 

5.2 Definition 40 

5.2.1 Security Model 41 

5.2.2 Definitions of security notions 41 

5.3 Constructing blind SAG signatures 43 

5.3.1 Blind SAG signature: CDS-type [1] 43 

vi 



5.3.2 Blind SAG signature: ring-type [2, 3] 44 

5.4 Security Analysis 44 

5.4.1 Multi-key parallel one-more unforgeability of blind sig-

nature 45 

5.4.2 Security of our blind SAG signatures 47 

5.5 Discussion 49 

6 Linkable Spontaneous Anonymous Group Signature 51 

6.1 introduction 51 

6.2 Related work 51 

6.3 Basic Building Blocks 52 

6.3.1 Proving the Knowledge of Several Discrete Logarithms . 53 

6.3.2 Proving the Knowledge of d Out of n Equalities of Dis-

crete Logarithms 55 

6.4 Security Model 57 

6.4.1 Syntax 57 

6.4.2 Notions of Security 59 

6.5 Our Construction 63 

6.5.1 An Linkable Threshold SAG Signature Scheme 63 

6.5.2 Security 65 

6.5.3 Discussions 67 

7 Conclusion 70 

Bibliography 72 

vii 



Chapter 1 

Introduction 

Since the bloom of digital communication in the 90s, the way of information 

manipulation has changed. Internet connects people around the world and 

provides an efficient communication channel, which has never been before. 

Sending transatlantic letter once need days or months by postal services; now 

can be done in just seconds by electronic means. Taking the advantage of effi-

ciency and convenience, global corporations and medium size enterprise make 

good use of Internet to conduct business. Meanwhile, the network also provides 

means for the attackers to acquire valuable and private information. Security 

concerns have been playing a crucial part in protecting our information today. 

Cryptography is the science to make a message of record incomprehensi-

ble to unauthorized persons and also methods to achieve security properties 

such as confidentiality, authentication, integrity and non-repudiation. Confi-

dentiality is the service to keep message secret from all but authorized receiver. 

Authentication provides as-certainty the origin of the information. Integrity 

ensures a message is not altered during transmission. For non-repudiation, a 

person cannot falsely deny the action that one has performed. Anonymity is 

another important properties, which hides the identity of an entity to a cer-

tain degree. The importances of these properties are growing rapidly as the 

demand for privacy in the society is rising during these years. 
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Chapter 1 Introduction 2 

Communication privacy is to hide the identity of the sender/receiver. Nowa-

days message confidentiality can be easily achieved by using cryptographic 

techniques such as public key encryption (RSA, ElGamal). However l i t t le pro-

gresses have been made to protect the identity of the communication parties 

unt i l the last 10 years. 

Group signature [4] and ring signature[5] are some of the most promising 

solution in providing identity protection, while preserving the authentication 

property. Both ring signature and group signature scheme allows a member 

of group to sign a message on behave of the group which preserving their 

anonymity, while group signature offers a option to revoke the identity of the 

signer in case of dispute. 

Tradit ional group signature schemes require a setup stage for a special key 

distr ibut ion and in addition a member joining protocol. The requirement of 

the setup stage incurs processing, and l imits the usefulness of those schemes in 

case where the group membership is highly dynamic. Some scheme may even 

require a powerful trusted th i rd party to perform the key distr ibut ion process, 

whom may have too much power over the group. Due to the inefficiency of 

those schemes, Spontaneous Anonymous Group (SAG) signature is proposed. 

For the spontaneous properties, there is no setup stage, no trusted th i rd party 

required. Also the group formation is dynamic, users can form a group with-

out any collaboration from other group members or any other entities. The 

anonymous properties of SAG cryptography protects privacy and achieves 1-

out-of-n anonymity, i.e. no person can figure out the actual signer. SAG 

signature provides exculpable anonymity as the anonymity is unconditionally 

irrevocable. 

The authentication and anonymity properties of Spontaneous Anonymous 

Group signature are perfect ingredient to authenticate a message in any ad-

hoc anonymous systems such as mix-net and onion routing. By introducing 

properties such blindness and l inkabil i ty into SAG signature, we achieved to 
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construct two SAG signature variants w i th different anonymity levels: 

• Blind SAG Signature, which provides perfect identity protections and 

message untraceability. A l l parties except the signature requester, are 

unable to figure out who signer the Bl ind SAG signature. Message-

signature relationships and signature-signer relationships are unlinkable 

during and after the protocol. 

• Linkable SAG Signature, which provides part ial identity protections. 

Given two linkable SAG signature, one can tel l whether these two signa-

tures are generated by the same actual signer. 

Here we compare the anonymity level provided by these SAG variants in 

figure 1.1. Bl ind SAG signature provides the best anonymity protection among 

all w i th its unconditional signer anonymity and message untraceability; While 

the linkable SAG signature provides a anonymity protection level which lies 

between the group signature and the ordinary SAG signature due to the part ial 

information provided by the linkable property. 

Security (need to investigate) 

- - Group Signature 

- - Linkable SAG Signature 

- - SAG Signature 

- - B l i n d SAG Signature 

Anonymity (need for privacy) 

Figure 1.1: Security vs Anonymity for Digital Signature Schemes 

Details of our bl ind SAG signature wi l l be discussed in Chapter 5 and 

Linkable SAG signature in Chapter 6. 



Chapter 2 

Preliminaries 

In this chapter, we describe the mathematical background and theories on 

cryptography and provable security. For this purpose, we first state the nota-

t ion used in this thesis in chapter 2.1. Next we discuss the basic primitives of 

cryptography in section 2.2. We are then ready to deal wi th provable security 

and security model in Section 2.3. For more details about provable security, 

the reader is referred to [6, 7]; 

2.1 Notation 

The following notation wi l l be used throughout the article: 

• {0,1}* denotes the space of finite binary strings, strings are finite unless 

we say otherwise. 

• a\\b denotes the concatenation of strings a and b 

• "PPT" stands for “probabilistic, polynomial time" 

• If ^ is a probabilistic algorithm then, for any inputs - • - the notation 

A(x, y) refers to the probability space which to the string cr, assigns the 

probability that A , on input , output a. 

4 
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• < P, V > (x) denotes the output of the interactive machine V after 

interacting wi th the interactive machine P on common input x. I f the 

interactive machine V is probabilistic, then it denotes the random vari-

able of the output V. 

2.2 Cryptographic Primitives 

2.2.1 Symmetric Key Cryptography 

Symmetric key cryptography is the earliest form of cryptography which can be 

aged to several thousands years ago. People have been attempting to conceal 

certain information that they wanted to keep secret by substituting parts of 

the information wi th symbols, numbers and pictures. 

Definition 2.1. Symmetric Key Cryptosystem 

Let M be the message space, C be the ciphertext space and JC be the key 

space. A symmetric key cryptosystem consists the followings: 

1. an efficient probabilistic generation algorithm 

H入—/C 

2. an efficient encryption algorithm 

e-.MxK^C 

3. an efficient decryption algorithm 

V C X JC — M 

where denotes arbitrary string with length k. 
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For k e IC and m G M, we denote S{m, k) by Sk(m) and D(c, k) by Skic). 

I t is required that for all m G and k E K,, Vk{Ek{rn)) = m. Symmetric key 

cryptosystem can be classified into two categories: block cipher and stream 

cipher. For block ciphers messages are divided into blocks w i th predetermined 

block size, and the encryption algorithm handles each block independently; 

Stream ciphers handle the message 1 bit at a time. A t the t ime of wr i t ing , the 

standard block ciphers are AES[8] and 3DES , and the standard stream cipher 

is RC4 [9；. 

2.2.2 Asymmetric Key Cryptosystem 

Unlike symmetric key cryptosystem, asymmetric key cryptosystem allows the 

encryption key and the decryption key to be different. Syntactically, an asym-

metric key cryptosystem can be defined as follow: 

Definition 2.2. Asymmetric Key Cryptosystem 

Let M. be the message space, C be the ciphertext space and /C be the key 

space. An asymmetric key cryptosystem consists of the followings: 

1. an efficient key generation algorithm 

… 〜 ( / C , / C ' ) 

2. an efficient encryption algorithm 

S-.MxJC^C 

3. an efficient decryption algorithm 

V-.CxK,' ^M 

where denotes arbitrary string with length k. 
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For k,k' e JC and m G M, we denote k) by Sk{m) and D(c, k') by 

Sk>{c). I t is required that for all m G and k e JC, there exist a k' e JC such 

that T>k>{Sk{rn)) = m. 

Throughout the thesis we denote the publicly know encryption key k be 

PK, and the keep secret decryption key be SK. A t the t ime of wr i t ing the 

standard asymmetric key cryptosystems includes RSA [10], and Ell ipt ic Curve 

Cryptosystem (ECC). 

2.2.3 Secure Hash Function 

A secure hash function is a deterministic function which maps a bit string of 

an arbitary length to a hashed value which is a bit string of a fixed length L 

i / : (0,1)* (0, 

A secure hash function needs to satisfy the following properties: 

• [Pre-Image Resistance] 

Given y e (0’ 1)《，is i t computationally infeasible to find x such that 

H{x) = y\ 

• [Weak Collision Resistance] 

Given x, I t is computationally infeasible to find distinct x' w i th x' ^ x 

such that H(x) = h{x')\ 

• [Strong Collision Resistance] 

I t is computationally infeasible to find distinct x and x' such that h{x)= 

H{x'). 

In the conference of Crypto04, Biham and Chen[11] proposed a new hash attack 

targeting SHA-0, where MD5 and SHA-1 is depended on. Therefore these hash 

functions are at risk and should not be used. Stronger hash functions such as 

SHA-256 and SHA-512 are proposed and their resistance to this new attack is 

st i l l unknown. 
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2.2.4 Digital Signature 

Digital signature, likes i t handwritten counterpart, provides a mean to bind the 

signer's identity together w i th a message, and moreover i t protects the integrity 

of the message from being tamper. There's many types of signature w i th 

different structures and properties (e.g. Group Signature, Ring Signature), 

and in general they are two parties involved: 

1. Signer generates a signature from a message wi th his secret key. Then 

he pass the message and the signature to a verifier. 

2. Verifier check the signature to determine whatever i t is legitimate. 

Also a digital signature scheme must possess the following properties: 

1. Authentic The signature can convince the verifier that the signer de-

liberately signed the document. 

2. Unforgeable Only the signer, but no one else is able to produce the 

signature. 

3. non-Reusable The signature only bind the signer's identity to the par-

ticular document. No person can associate the signature to a different 

document. 

4. non-repudiatable The signer cannot deny having sign on the document 

once he did i t . 

2.2.5 Digital Certificate and Public Key Infrastructure 

Digital certificate is a digital signature issued by a trusted certificate author-

i t y (CA) , which contains the information of the owner,his public key and cer-

tif icate authori ty information. They do two things: 

1. They authenticate their owner are who they claimed to be. 
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2. They protects confidentiality by preventing Man-in-the-middle attack. 

Certificate Author i ty is usually a public trustworthy organizations such as 

Verisign, VISA. 

Public Key Infrastructure (PKI) is a integration of certificate authority, 

digital certificate and public key cryptography to provide confidentiality and 

integrity. I t forms a hierarchical of trust by delegating trust along a chain. 

For example a company can apply a company certificate from a certificate 

authority. Then the company can issue certificates for their employee. Since 

there is a chain of trust along the certificates, verifiers can assure the identity 

of the employee even the verifier only knows about the certificate in use. 

2.3 Provable Security and Security Model 

Since the early 80’s the concept of provable security have evolved. By assuming 

the existence of one-way functions (Section. 2.3.2), security of a system can 

be proved by reduction. The Rabin encryption [12] is an early example that 

had a reductionist security property in which he claims if someone who can 

find even a small percentage of the messages from the ciphertext must also be 

able to factor n, which is considered as an hard problem. 

In this section we wi l l first go through the mathematics required, following 

some important cryptographic theories wi l l be introduced. A t the end of this 

section we'll go through the security model we are going to used in our security 

proofs. 

2.3.1 Mathematics Background 

Here we define the probabil i ty ensembles that are commonly used in security 

proofs. 

Definition 2.3. A function / : N R+ is negligible if for all c eN there 
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exists /Cc G N such that for all k > kc, f{k) < A function is non-negligible 

if it is not negligible. • 

For two random variable X and Y over a finite domain D we let the sta-

tistical difference be 

SD[X, Y) = 1/2 Y^ \Pr[X = d]- Pr[Y = d]\ 
d&D 

A distribution ensemble is a sequence {X^}狀N where each is a random 

variable w i th finite domain D. 

Definition 2.4. For two distribution ensemble X and Y with finite domain D 

we say they are computationally indistinguishable (written as X ^ Y) 

if for all probabilistic polynomial time algorithm A: D —> {0,1} such that 

Pr[A{Xk) = 1] — Pr[A{Yk) = 1]| is negligible . We say they are statistically 

close (written as X ^Y) if k ^ SD{Xk： Vk) is negligible. We say they are 

identical (written as X = Y) if for all k e N and d e D, Pr[Xk = d = 

Pr[Yk = d]. • 

Definition 2.5. An NP-relation R is a relation over bitstrings for which there 

is an efficient algorithm to decide whether (rr，z) e R in time polynomial in 

the length of x. The -language Lr associated to R is defined as Lr = 

{x\{3z)[{x,z) e i?]}. • 

C C 0 s 

I t is easy to show that if X F and Y ^ Z, then X ^ Z. I f X y and 

Y k Z�then X ‘ Z. li X = Y andY = Z, then X = li X = Y, then 
S C 

^ ~ y , which in tu rn implies X ^Y. 

2.3.2 One-Way Function 

Before introducing the one-way function, we need the following definition re-

garding t ime required for computing a problem: 
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Definition 2.6. Efficient Algorithms An algorithm is said to be efficient 

if its execution time can be expressed by a polynomial in the size of the input. 

• 
Definition 2.7. Easy Problem An problem is said to be easy if there exist a 

probabilistic polynomial time algorithm which can compute with non-negligible 

success probability. • 

Definition 2.8. Hard Problem An problem is said to be hard if there does 

not exist any probabilistic polynomial time algorithm which can compute with 

non-negligible success probability. • 

Most of the public key cryptosystem depends on one-way functions and 

one-way trapdoor functions. Informally, a function f: X ^ Y is said to be 

one-way if: 

1. Given x e X, there exist efficient algorithm to compute f{x). 

2. Given y eY, it is hard to find an x such that f{x) = y. 

Definition 2.9. One- Way Function A function f is said to be one-way 

if for any probabilistic polynomial time function g. 

X 二 D,Pr[f[g[f[a:y)) = f(x)] is negligible in n 

.where x is draw uniformly from D and has length n and all numbers of length 

n are equally likely. • 

The existence of one-way function is sti l l unproved. The existence of one-

way function implies many other cryptography primitives such as pseudoran-

dom generator[13], even more an instance of one-way function can imply the 

complexity class P + NP. Many literature proposed candidate one-way func-

tions. 

One-way trapdoor function, which is a variant of one-way function, have 

the following properties: 
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Definition 2.10. A one-way trapdoor function, which we denote by ft{x): V —> 

IZ, is a one-way function, i.e. it is easy to easy to evaluate for all x eV and 

difficult to invert for almost all values in IZ . However, if the trapdoor in-

formation t is used, then for all values y 6 TZ it is easy to compute x E V 

satisfying y = ft{x). • 

In the following we wi l l go through some candidate one-way functions. 

2.3.3 Candidate One-way Functions 

Discrete logarithm is one of the major component of many cryptosystem in 

use today. This problem was originated by Diffie and Hellman. 

Discrete Logarithm Problem 

Definition 2.11. Discrete Logarithm Problem (in Zp Given a prime p, a 

generator g of Z* and an element y G Zp, find an integer x such that g^ 三 

y mod p. • 

A group G is said to be finite i f and only if there is an element g e G such 

that for all element a e G, there exist an integer i satisfying g^ = a. g is called 

the generator of G. DLP is a special case in which the group G is Z* where p 

is prime. 

There's a generalization of the DLP problem from a single basis to a set of 

baais. The generalized discrete logarithm problem (GDLP) can be stated as 

follow: 

Definition 2.12. Generalized Discrete Logarithm Problem (in finite abelian 

group G) Given a finite abelian group G, generated by n linearly independent 

elements { " i ， … ， o f prime order t.�and a element y in G. find an integers 

C i , . . . ,Cn such that [ ]二 i 9?三 9. • 



Chapter 2 Preliminaries 13 

Assumption 2.13. Discrete Logarithm Assumption The discrete loga-

rithm problem (DIP) is hard. 

Assumption 2.14. Generalized Discrete Logarithm Assumption The 

generalized discrete logarithm problem (GDLP) is hard. 

DLP is believed to be hard. Many existing cryptosystems depends on the 

intractabi l i ty of the discrete logarithm, for example, the El-Gamal Encryption 

reduces its security to the DLP problem. 

Computational Diffie-Hellman Problem 

the Computational Diffie-Hellman problem (CDHP) is proposed by Diffie and 

Hellman in [14 . 

Definition 2.15. Diffie-Hellman Problem Given a group G,and three elements 

g,g、gb e G, compute g^b. The advantage e of a PPT algorithm A is defined 

by 

e = —乂 (G’ 仏 力 ] 

• 

Decisional Diffie-Hellman Problem 

Definition 2.16. Diffie-Hellman Problem Given a group G,and four elements 

{g,ga,gb,gC、e G, determine whatever c = ah. The advantage e of a PPT 

algorithm A is defined by 

e = Pr[0 <- A{G,g�g\g\ + ah\ + Pr[l A{G,g,g\g\A c = ab] 

• 
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Gap Diffie-Hellman Group 

Gap Diffie-Hellman (GDH) group is a group where the Computational Diffie-

Hel lman(CDH) problem is hard but the Decisional Diffie-Hellman (DDH) prob-

lem is easy. The existences of such groups are shown in [15, 16, 17:. 

Definition 2.17. Gap Diffie-Hellman (GDH) A group G with order q is 

said to be be GDH if there exist a probabilistic polynomial time algorithm to 

solve the DDH problem in G and no probabilistic polynomial time algorithm in 

q to solve CDH problem with non-negligible probability of success. • 

Integer Factorization Problem 

The factoring problem is one of the oldest in number theory. I t 's simple to 

factor a number, but its time-consuming. Many cryptography elements such 

as RSA depends on the intractabil i ty of factoring larger integers. 

Definition 2.18. Integer Factorization Problem Given a positive integer 

n, find primes Pi and positive integers n such that n = Hp? • 

Many algorithms have been devised for determining the prime factors of a 

given number. A t the t ime of wr i t ing the fastest algorithm is Number Field 

Sieve which takes t ime in w i th c ^ 1.9. 

RSA problem 

RSA problem [10] was proposed by Rivest, Shamir and Adlemen in 1978. 

Among all public-key cryptosystems RSA is by far the easiest to understand 

and implement. RSA gets its security from the difficulties of factoring large 

numbers. 

The RSA function is a One-way trapdoor function and is as follows: 

Definition 2.19. RSA Function Given a RSA integer n = pq, which a 

product of two distinct large primes p and q, and let e be the integer such that 
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gcd{e, (fm) = 1. The RSA function is 

fn,e{^) ^ mod n 

The trapdoor information is d where ec?三 1 mod ((f){n)). • 

The RSA function is easy to compute but difficult to invert without the 

knowledge of d. This function is assumed to be a hard problem. 

Definition 2.20 (RSA Problem). Let n = pq, where p, q are primes and 

\p\ = \q\ = k. For every polynomial Q and every Polynomial Time Machine, 

A, there exists an integer ko such that \/k > ko. 

Pr[A{n,eJn,e{x)] < 

• 

Strong RSA Problem 

Definition 2.21 (Strong RSA Problem). [18, 19, 20]] Given a safe prime 

product N，and z € QR{N), find u e and e > I such that u^ = >2;(mod 

N) • 

2.4 Proof Systems 

2.4.1 Zero-knowledge Protocol 

Loosely speaking, a zero-knowledge protocol is a proof system which have 

the property of being convincing and yielding nothing beyond the validity of 

the asssertion. For example, you can proof you know a discrete logarithm of 

y = g工(mod p) to a verifier without lett ing the verifier knows about x. Also 

the verifier is convince that you actually know x w i th overwhelming property. 

We followed the definition of zero-knowledge from [21]: 
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Definition 2.22. Perfect Zero-Knowledge Let (P, V) be an interactive 

proof system of some language L. We say that (P, V) is perfect zero-knowledge 

(PZK) if for every probabilistic polynomial time interactive machine V there 

exist a probabilistic polynomial time algorithm M such that for every x E L 

the following two conditions hold: 

1. With probability at most 1/2, on input x, machine M output fail; 

2. Let m{x) be a random variable describing the distribution of M(x) con-

ditioned on M{x) • fail, then the following random variables are iden-

tically distributed: 

• < P,V > (a;) the output of the interactive machine V after inter-

acting with the interactive machine P on common input x; 

• m{x) the output of machine M on input x, conditioned not being 

fail 

M is called a perfect simulator for the interaction of V with P • 

Loosely speaking, perfect zero knowledge guarantee after the completion 

of the protocol, only one bit of information is leak to the verifier (the assure 

of the proof statement). However this perfect zero-knowledge is slightly too 

strict for the application on cryptography. The following two definition are 

relaxed form of PZK. 

Definition 2.23. Statistical Zero-Knowledge Let (P, V) he an interactive 

proof system of some language L. We say that (P, V) is statistical zero-

knowledge (SZK) if for every probabilistic polynomial time interactive ma-

chine V there exist a probabilistic polynomial time algorithm M such that the 

following two ensembles are statistically close as functions of size of x: 

1- {< P, V > The output of the interactive machine V after it 

interacts with the interactive machine P on common input x; 
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2. {M(x)}xeL The output of the machine m on input x; 

That is, the statistical difference between < P,V > (x) and M{x) is negligible 

in terms of size of x. • 

Definition 2.24. Computational Zero-Knowledge Let (P, V) be an inter-

active proof system of some language L. We say that (P, V) is computational 

zero-know ledge (CZK) if for every probabilistic polynomial time interactive 

machine V there exist a probabilistic polynomial time algorithm M such that 

the following two ensembles are computationally indistinguishable: 

1. { < P, V > {x)}xeL The output of the interactive machine V after it 

interacts with the interactive machine P on common input x; 

2. {M{x)}xeL The output of the machine m on input x; 

M is called a simulator for the interaction of V with P • 

Loosely speaking, perfect zero knowledge guarantee after the completion 

of the protocol, only one bit of information is leak to the verifier (the assure 

of the proof statement). However this perfect zero-knowledge is slightly too 

strict for the application on cryptography. The following two definition are 

relaxed form of PZK. 

2.4.2 Proof-of-Knowledge Protocol 

A PoK (Proof-of-Knowledge) is a three-move interactive protocol consist-

ing of (Prover, Verifier). Common input consists of a public key, PK. Prover 

has the additional input SK. The three moves are 1C=(T^ C, S)={commit, 

challenge, response). 

The security requirement of a proof-of-knowledge protocol are: 

1. Completness means, w i th all sides honest, results are as they should be. 
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V V 

r 
C 

Figure 2.1: Proof of Knowledge (PoK) 

2. Soundness means two random challenge-response pair to the same com-

mitment result in witness extraction. 

3. Special Soundness means: any two challenge-response pair w i th the same 

commitment result in witness extraction. 

2.4.3 Honest-Verifier Zero-Knowledge (HVZK) Proof of 

Knowledge Protocols (PoKs) 

In a Honest-Verifier Zero-Knowledge protocol, if the verifier honestly fol-

lows the protocol instruction, then the protocol is perfect zero-knowledge. In-

formally, an honest-verifier zero-knowledge (HVZK) proof of knowl-

edge ( P o K ) protocol for an NP-relat ion R is an two-party protocol such 

that a prover proves his/her knowledge of a witness a; of 2 in R. 

Every H V Z K proof can be turned into a signature scheme by setting the 

challenge to the hash value of the commitment together w i th the message to be 

signed [22]. Such a scheme is proven secure by [23] against existential forgery 

under adaptively chosen message attack [24] in the random oracle model [25]. 

Following [26], we call these signature schemes "signatures based on proofs 

of knowledge", SPK for short. Note that there always exists a corresponding 
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H V Z K PoK protocol for every SPK. 

2.5 Security Model 

2.5.1 Random Oracle Model 

The idea of Random Oracle Model (ROM) first appeared in [27] and was later 

formalized by Bellare and Rogaway [6] . The goal of this protocol is to bridge 

the disparity betwen the theoreticians' and practioners' view on cryptographic 

primitives. We capture some key properties of the ROM as follows: 

1. the Random Oracle is defined as H : {0 ,1}* — {0,1}°° 

2. H is collision resistant, i.e. i t is hard to get distinct x and y such that 

n{x) = Hiy) 

3. H is well defined: Given x = y, then H{x) = H{y) 

4. His d. random mapping such that given a input x where x has not been 

queried before, then no party can guess the output of correctly w i th 

non-negligible probability. Similarly i t is hard to guess the preimage for 

a given value. 

5. A l l hash function computation must be made via the random oracle. No 

parties in the model can distinguish the values generated by H from the 

real hash function. 

Under the random oracle model, hash functions are assumed to act as ran-

dom function (denoted as random oracle H ) and publicly accessible by all 

parties including adversary. After proving correct a protocol in a model where 

the parties have access to a random oracle and then instantiating that oracle 

w i th an appropriate cryptographic primit ive such as MD5 or SHA-1. However 

i t is obvious that no hash function would act like a random oracle in reality (all 
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hash function are deterministic), and therefore a protocol which is proven se-

cure in a random oracle model may not be instantiable or even insecure in 

practice[28, 29]. Despite the strong assumption requirements, the random ora-

cle model provides a foundation for a mathematical proof in protocol security, 

and t i l l the t ime of wriing no practical protocol proven secure under the ran-

dom oracle model hash been broken when used wi th a "good" hash function, 

such as SHA-1. For more details on the random oracle model, please refer to 

6 , 2 8 , 2 9 ； . 

2.5.2 Generic group model (GGM) 

We wi l l use the generic group model of [30, 31, 7]. Some highlights below. 

Only a restricted set of operations are allowed. They include random gen-

eration of integers and group elements, group computations, exponentiations, 

equality tests. There are only two data types: group elements and non-group 

data. 

I t is assumed the the discrete logarithm problem is uncomputable in the 

GGM[30]. 

We restrict ourselves to a polynomial number of steps. Therefore, there are 

only a polynomial number of unassociated group elements base g, public keys 

2/1, • • •, 2/n, commitments t i , • . . , tg^, randomly generated group elements Ui, 

• • •, UqG. The computation transcript at each step r consists of 

A = 广 , - i n " 广 ’ 似 ( 2 . 1 ) 
i i' i" 

Each computation can only depend on parameters in existence before that 

step, resulting in zero exponent for parameters that come into existence after 

that step. 
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Signature Scheme 

3.1 Introduction 

In public key cryptography, one can use his/her private to encrypt a message 

and the resultant ciphertext can be decrypted back to the original message 

using the one's public key. If the ciphertext is altered in any manner then the 

decryption process wi l l not yield the original message, and thus the ciphertext 

can play the role of a manipulation detection code (MDC). The MDC pro-

vides data integrity protection from the message, since anybody can obtain 

the corresponding public key to decrypt and compare the result to the accom-

panied message, verifying the correctness of the ciphertext. Moreover, since 

only the owner of the public key (who possess the private key) have the ability 

to construct the MDC, the MDC also provided a mean to bind a person to the 

message. Thus, this usage of public key cryptography can model precisely the 

property of a signature, i.e. a digital signature. 

Syntactically a digital signature scheme can be described as follow: 

Definition 3.1. A digital scheme consists of the following attributes: 

• a plaintext message space M ： a set of finite strings over some alphabet; 

• a signature space S: a set of possible signature; 

21 
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• a signing key space /C: a set of possible keys for signature creation; 

• a verification key space K!: a set of possible keys for signature verifica-

tion; 

• an ('probabilistic) polynomial time key generation algorithm 

KEY GEN. l^^JCxJC' 

• an (probabilistic) polynomial time signing algorithm 

SIGN： MxJC-^S 

• an (probabilistic) polynomial time verification algorithm 

VERIFY: MxS xJC' ^ {accept, reject} 

For any secret key sk e K and message m e M, we denote s — Sgkim) 

the signature transformation and read it as "s is a signature of m created using 

the key sk.，， 

For any secret key sk e K, the corresponding public key pk e K', and any 

message m G M, it is necessary 

I accept, with probability 1 if s 卜 Sskim)., 
VERIFYpj,{m, s)= < 

reject, with overwhelming probability if s ^ cSsjt(m). 
V 

where the probability space is taken over <S, M^IC and K!. • 

Note that the integer A of the key generation algorithm K E Y G E N is called 

the security parameter, which provides the size of output signing/verification 

keys. Since the K E Y G E N is efficient w i th running time polynomial t ime in 

the size of its input, the input value should be unary encoded. 

In the following sections we'll explore the security of a signature schemes. 
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3.2 Security Notation for Digital Signature 

In order to discuss about the security of the digital signature scheme, we need 

to first define the powerfulness of the adversary and the degree of severity of 

success in forging a signature. Here we classify the attack in ascending severity. 

1. Key-Only Attack: Only the verification key is available to the adver-

sary. The adversary is not able to get any signature samples to study. 

2. Known Signature Attack: In addition to the verification key, the 

adversary collects a number of message-signature pairs chosen from the 

legal signer. 

3. Chosen Message Attack: The adversary is allow to ask the legal signer 

to sign message chosen by the adversary. 

The severity of success in breaking a signature scheme is listed as follows 

in ascending order: 

1. Existential Forgery: The adversary can forge a signature of some 

message, not necessary of his choice. 

2. Selective Forgery: The adversary can succeed in producing a signature 

of some of the messages of his choice. 

3. Universal Forgery: Wi thout knowing the secret key the adversary can 

produce signature of any message of his choice. 

4. Total Break: The adversary can compute the secret key of the signer 

based on the public key and chosen signature-message pairs. 
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3.3 Security Proof for Digital Signature 

The security of digital signature depends on unforgeablility. In provable se-

curity, security proofs are usually done wi th “ reduction-to-contradition" phi-

losophy. By assuming a particular problem is hard (e.g. Discrete Log Prob-

lem), then the reduction of the signature forging problem to that hard problem 

wi l l yield a contradiction if the signature forging is easy. 

In our thesis all signature scheme wi l l be proved under the strongest adap-

tive chosen-message attack in the random oracle model. 

3.3.1 Random Oracle Model for Signature Scheme 

In an random oracle model based technique for security proof, both random 

oracles and a special agent called simulator wi l l be used. The simulator con-

trols every random oracle used in the model, and therefore everyone in the 

random oracle are unwitt ingly making random oracle query to the simulator. 

In addition, the simulator should able to simulate these oracles perfectly in 

probabilistic polynomial time. Typically a signature scheme consist of two 

random oracles: 

• Hash Oracle H: Given a string x of finite length, output random hash 

value This models the hash function used in reality. 

• Signing Oracle SO. Given a public key pk, a message m, output 

a signature cr such that verify (a, m,p/c) = accept. This models the 

abil i ty that the adversary can obtain signature-message pairs w i th any 

message of its choice. 

3.3.2 Adaptive Chosen Message Attack 

The existential forgery under adaptive chosen message attack is the strongest 

security for digital signature. A l l our signature schemes proposed in this thesis 
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are proven secured against existential forgery under adaptive chosen message 

attack in the random oracle model. Here we provide an informal definition for 

the game of adaptive chosen-message attack (adaptive CMA): 

Definition 3.2. Existential Forgery under Adaptive Chosen-Message 

Attack Let k be a positive integer. An adaptive forger against a signature 

scheme (KEYGEN, SIGN, VERIFY) is a probabilistic polynomial time (in 

k) algorithm. It takes an input public keypk, where {pk, sk) — KEYGEN{1^), 

and tries to forge signatures with respect to pk. The forge is allowed to request, 

and obtain, signatures of messages of its choice. This is modeled by allowing ！ 

the forger to access to the signing and hash algorithms, both polynomial (ink) 

times. 

The forger is said to {t{k), Adv{k))-break the signature scheme if in polyno-

mial time t{k) with non-negligible probability Adv{k) it outputs a valid forgery ‘ 

(m, s) such that verify(s, m^pk) = accept where m is a recognizable message j 

according the hash functions used in the scheme but is not one which has been i 
_ I 
input to a sign earlier by the signer. ：々  

；li 
I 

3.4 Schnorr Identification and Schnorr Signa-

ture 
Schnorr identification protocol is a basic building block for many cryptographic 

protocols. The security of this protocol can be reduced to the discrete log-

ar i thm problem. Also the Schnorr identification possess honest verification 

zero-knowledge properties, which means that if the verifier honestly follows 

the protocol instruction, then the protocol is perfect zero-knowledge. 

Definition 3.3, Schnorr's Identification Protocol Common Input: 

• P, q- two primes satisfying q\p — 1; 
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• 9- w i th ordp{g) = q\ 

• y\ y = g-a (mod p) 

We denote the tuple (p,q,g,y) be Alice's public key. 

Private Input of Alice: a < q; 

Protocol: 

1. Alice picks a random number r N and compute Commit <— g^ 

(mod p). she send Commit to Bob; 

2. Bob picks Challenges bfZg and send Challenge to Alice; 

3. Alice compute Response — r + aChallenge (mod q) and send Response 

to Bob; 

4. Bob checks Commit = gR^sponseyChallenge (mod p)- He abort and rejects 

i f the checking shows error, othervise Bob accepts. 

The Schnorr identification protocol can be converted to a digital signature 

scheme by the following transformation: 

Challenge <— H{Message, Commit) 

This transformation method is called Fiat-Shamir Transformation [32:. 

3.4.1 Schnorr,s ROS assumption 

Schnorr [7] presented a then-new algorithm to compute the parallel one-more 

forgery of Schnorr (resp. Okamoto-Schnorr) bl ind signatures. He showed the 

equivalence of the parallel one-more unforgery of those two bl ind signatures 

and the ROS Problem, in the random oracle model plus the generic group 

model. His technique also applied to many other bl ind signatures. In this 

paper, we wi l l use the following form of Schnorr's ROS Problem: 
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The ROS Problem: Given 1 < Qb < Qh, typically qb « Qh, and all 

computations are in Zq. Compute o-qH^QB matr ix A , such that the probability 

of computing the following problem is non-negligible: 

Given random c = [ci, . •.，c^^], compute J C { 1 ’ . . . , Qh} w i th 

J\ = Qb + 1, jo e J, {dj : j e J} w i th a)。— 0，and (3 such 

that Y^j^j Cj] = (3 and {A^ : j e J \ { i o } } are linearly 

independent. 

Note Aj denote the j-th row vectors of A , and [A j , Cj] denotes the lengthened 

vector by one more entry Cj. 

3.5 Blind Signature 

Bl ind signature scheme protects the confidentiality of the message, i.e. the 

signer w i l l not know about the content that one is going to sign. Consider 

someone give you a envelop which contains a carbon copy paper and a unknown 

message. When you sign the envelope on the outside, the carbon copy paper 

w i l l impr int your signature over the message. 

The bl ind signature is a key to many cryptographic services which provides 

anonymity and privacy, for example. 

A blind signature consists of the tuple (BlindSigner, Warden, Verifier) 

where the three components form an interactive protocol as follows: 

1. Common input to all three parties: PK. Addit ional input to BlindSigner: 

SK. 

2. BlindSigner sends t' (commitment) to Warden. 

3. Warden sends t to Verifier. 

4. Verifier sends message m to Warden. 
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5. Warden sends c' to BlindSigner. 

6. BlindSigner sends s' to Warden. 

7. Warden sends s to Verifier. 

8. Verifier confirms that (t, s) is a valid signature on m w.r.t. PK. 

Typically, Warden is instantiated as a tuple of mappings {ft, fc, fs) and that 

in various moves do the following: 

1. Warden randomly generates Ac and Ag, computes t := fi^PK, t\ Ac, A^), 

and sends t to Verifier. 

2. Verifier sends m to Warden. 

3. Warden computes c := H{t,m) c' := fc{PK, t',Ac,As,c) and sends c' to 

BlindSigner. 

4. BlindSigner computes s' and sends it to Warden. 

5. Warden computes s =从PK, t', A。A^, t, c, c', 5') and sends i t to Verifier. 

I f ( f , s') is a valid PoK, then so is [t�c, 5). We call these type of interactive 

proof Transfer Proof o f Knowledge (TPoK). 

BS W V 

^ r 
— C ‘ 

^ r 

^ S_ 

Figure 3.1: Transferred Proof of Knowledge (TPoK) 
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Some examples below. 

Schnorr blind signature[33]: Relation R = {{y = g'',x)\x E { 1，… , q } } w i th 

Cr,C,S:T = and T = T ' g 、 〜 , 

Okamoto-Schnorr blind signature [34]: Relation R = {{g'^^h^^, (rci, x2))\xi,x2 G 

{ ! , • • • w i th { r , C , S ) = ( c, (51,53) = {x i + nc , X2 + r sc ) ) 

Definition 3.4. Blindness: The signer of a blind signature has no infor-

mation about the message during and after a blind signature/TPoK protocol 

Given any message-signature pair，the signer cannot find out when and for 

whom it was signed. 口 
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Spontaneous Anonymous Group 

(SAG) Signature 

4.1 Introduction 

In this chapter we wi l l introduce the concept of spontaneous anonymous group 

(SAG) signature. We define SAG signatures the set of signature schemes which 

provides privacy to the signature signer, while the receiver can validate the 

signature and assure that the signer belongs to a certain set of people. This 

kind of signature can be instantiated by the use of ring signatures and signature 

blinding techniques. In this chapter we wil l go through these techniques which 

our works based on. First we wi l l visit the precursor of ring signature: group 

signature. 

4.2 Background 

4.2.1 Group Signature 

Group signatures, formalized by Chaum[35], is a generalization of a member-

ship authentication schemes which can convince the verifier that he belongs to 

a certain group without revealing his identity. In general, a group signature 

30 



Chapter 4 Spontaneous Anonymous Group (SAG) Signature 31 

scheme wi l l possess the following properties: 

1. Only registered members of the group can sign messages 

2. Receiver can verify that the signature is a valid group signature, however 

one cannot discover which group member generate it. 

3. I f there's any dispute, an group authority (called the group manager) 

can "open" the signature to revoke the identity of the signer. 

Group signature offers many attractive applications involving anonymity 

and privacy. For example, in a company there a server which stores confidential 

business secrets and only the board of executives are permitted to access those 

data. Any access to the server required authentication of the user. At the same 

t ime the company also wants to protect privacy, which the user's credential is 

kept secret during normal use. In case the system is being abused, the internal 

auditor can revoke the identity of the misbehave users for further actions. 

4.2.2 Threshold Signature 

I n t radi t ional cryptography the goal is for a single sender to encrypt or sign 

a message which is intent for a single receiver. However there's application 

which requires the share of power, for example, a important company decision 

may require a major i ty number of shareholders to sign with. 

Secret sharing[36, 37] is one of the most earliest form to share the power. 

The article "How to share a secret”, wr i t ten by Shamir [36], proposed a secret 

sharing scheme. A secret is divided into among n entities, in which any t of 

them can reconstruct the whole secret by using Lagrange polynomial interpo-

lat ion by a central trusted party. 

Since the scheme proposed by Shamir is not suited for signature appli-

cations as the share holders need to reveal their secret shares to a trusted 

party, this trusted party possess more power then other users which violates 
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the principle of power sharing. Threshold signature is different from secret 

sharing schemes in which the power to reconstruct the secret key is shared. 

Desmedt[38] proposed a threshold signature scheme in which the signature is 

generated by recombining t part ial signatures and eliminate the use of trusted 

party. 

The security goals of threshold cryptography are consists of but not l imited 

to the followings: 

• Unforgeability The unforgeability of a threshold signature is a general-

ization of unforgeability of ordinary digital signature. For a 亡-threshold 

signature scheme, a valid signature must be made by a set of t or more 

signer who possess the corresponding secret shares. 

• Robustness Robustness is the abil ity for the scheme to withstand incor-

rect part ial shares. The scheme can detect and prevent the malformed 

shares to corrupt the signing process. The malformed shares can either 

be corrected or discard. 

• Proactive Security The scheme should able to reduce the damage 

infl icted by stolen part ial shares. Many literature in proactive secret 

sharing scheme[39, 40, 41] and forward security [42, 43, 44]targets this 

problem. 

• No Trusted Dealer No one should have the power to obtain any shared 

secret f rom others during the signing process. 

Many threshold cryptographic schemes have been proposed. Gennaro et. 

al. [45] proposed a robust threshold signature scheme based on digital signa-

ture scheme (DSS) which is an industry standard. Boldyreva[46] proposed a 

threshold signature scheme based on Gap Diffie Hellman Group. More thresh-

old schemes can be found in [47, 48, 49'. 
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4.3 SAG signatures 

Recently a fundamental alternative has gained wide interests. In the spon-

taneity paradigm to group cryptography, there is no group secret. There is 

also no setup. Any single entity can arbitrari ly and spontaneously conscript 

n — 1 diversion members to form a group, and complete a signature without 

the participation, or even knowledge, of the diversion members. The resulting 

signature can be proven to be from one of the n group members. Yet the 

actual signer remains anonymous (signer-indistinguishable), wi th irrevocable, 

exculpable anonymity. The only requirement is that each group member has a 

published public key, for the purpose of signature verification. There are also 

^-out-of-n threshold versions where t entities joint to spontaneously conscript 

n — t diversion members. 

Compared w i th tradi t ional threshold signature schemes, spontaneous group 

signatures achieved the definition goal quoted at the beginning of this section. 

Yet there is no group secret. There is no group setup which requires the 

part ic ipat ion of non-insider members. 

Due to its flexibility and the ease (or lack) of setup, SAG cryptography has 

been deemed perfectly suitable for applications in ad hoc groups [2, 50, 16 . 

Any t members of a group of n members can joint ly demonstrate 

a knowledge concerning the group that no combination of t — 1 or 

fewer members can demonstrate. 

There are threshold signature schemes that require no less than t members 

to jo in t ly generate. There are threshold decryption schemes (cryptosystems) 

that require no less than t members to jo int ly decrypt. 

Since its inception, group cryptography and threshold cryptography have 

tradi t ional ly been achieved through the secret sharing technique. Also since 

its inception [51], anonymous (insider-indistinguishable) group cryptography 



Chapter 4 Spontaneous Anonymous Group (SAG) Signature 34 

has tradit ional ly been achieved by the technique of blind signatures or other 

forms of transfer proof-of-knowledge (TPoK). For further details, see [51, 52' 

Compared w i th tradit ional privacy (anonymity) protection schemes, spon-

taneous group cryptography is naturally anonymous. I t achieves anonymity 

wi thout using bl inding techniques. Furthermore, the anonymity in sponta-

neous anonymous group (SAG) cryptography is very strong: in its basic ver-

sion, the anonymity is unconditional (information-theoretic), irrevocable, and 

exculpable. The last property means that even if all communication sessions 

and all secret keys are subpoenaed, the anonymity cannot be revealed. Vari-

ants of SAG cryptography achieved different tradeoffs in anonymity based on 

candidate hard problems and optional revocability and optional culpability. 

We summarize the properties of SAG signature as follow: 

• Unforgeabil ity The unforgeability of a threshold signature is a generaliza-

t ion of unforgeability of ordinary digital signature. For a (t, n) threshold 

spontaneous anonymous group signature scheme, a valid signature must 

be made by a set of t or more signer who possess the corresponding secret 

shares. 

• Unl inkabi l i ty The unlinkabil i ty properties means that the identity of the 

signers cannot be reveal even if all the communication sessions and secret 

keys are subpoenaed. The anonymity is unconditional secure. 

• Spontaneity Unl ink ordinary group signature, there is no setup stage for 

an enti ty jo ining the group. The formation of group is ad-hoc. 

• Robustness Robustness is the abil i ty for the scheme to withstand incor-

rect part ia l shares. The scheme can detect and prevent the malformed 

shares to corrupt the signing process. The malformed shares can either 

be corrected or discard. 

• Proactive Security The scheme should able to reduce the damage inflicted 
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by stolen part ial shares. Many literature in proactive secret sharing 

scheme[39, 40，41] and forward security [42, 43，44]targets this problem. 

• No Trusted Dealer No one should have the power to obtain any shared 

secret f rom others during the signing process. 

4.4 Formal Definitions and Constructions 

I n this section we wi l l give a formal definition for SAG signatures and illustrate 

some of the SAG signature constructions using ring-type and CDS structures. 

First an formal SAG signature is as follow: 

Definition 4.1. Let L = {PKi,... , PKn} he a list of n public keys, 9 be an 

integer, I < 6 < n, m he a message, and (J =(亡i,...,艺n，Ci,... , Si, • • • , s„) 

be a tuple. Let H, Hi, •.., Hn he full-domain collision-free secure hashing 

functions. The tuple (L, n, 9, m, a) is a ring-type SAG signature [2, 3] if the 

following all hold: 

1. e = i 

2. For each i, I < i < n, we have Ci = Hi{L,n,m,ti-i) and {U, ci, Si) is a 

valid PoK conversation w.r.t. PKi. (to is interpreted as tn.) 

The tuple is a CDSl- type SAG signature [1] if the following all hold 

1. Each tuple (ti,Ci,Si) is a valid PoK conversation w.r.t PKi, 1 <i <n. 

2. The polynomial f interpolated from f{i) = ck, 0 < i < n, has degree at 

most n - 9, where c � = H{L, n, • • • , tn). 

The tuple is a CDS2-type SAG signature if the following all hold 

1' Each tuple (ti,Ci, Si) is a valid PoK conversation w.r.t. PKi, 1 <i <n. 

忍.For each l < j <6, Zisi&ijci = Hj(L,nAm,ti,…A). 
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• 
To conserve bandwidth and storage space requirements, the representation 

of an SAG signature can be shortened. For example, if ( t i , . . . ’力n) can be 

efficiently constructed from (Ci , . . . ’ c”，So,...，s„), then i t can be omitted from 

the representation. In ring-type SAG signatures, (c2, • • • can be further 

omi t ted since they can be constructed from (ci,Si, • • • , In the context of 

this thesis the representation of a SAG signature wi l l not be shorten for the 

ease of easy understanding. 

4.4.1 Ring-type construction 

Ring type construction is proposed by Rivest et. a l p ] . I t is called "r ing" type 

due to the cyclic structure of the protocol construction. Here we present the 

construction of ring-type SAG signatures: 

Given a list of public keys L = { P i ^ i ’ . . . ’ PJ^n}, a message m, a suitable 

hash funct ion N , a secret key SK^ corresponding to PK̂ ：, a ring-type SAG 

signature can be constructed as follows: 

1. Randomly generate a commitment 

2. For each z = tt + 1, • • . , n, 1, . . . , tt — 1, compute Ci = H{L, m, T ^ . i ) 

and then simualate a PoK conversation [TuC i^^ i ) w.r.t. P K i . 

3. For i = TT, compute Ci = H{L,m,Ti_i) and then compute a PoK con-

versation (Ti,Ci’vSi) using the secret key SKi . 

4. Output SAG signature {L,n,9 = l , m , a) where a = (Ci,«Si, • • • ,Sn) 

(thus achieving bandwidth conservation). 

4.4.2 CDS-type construction 

CDS type construction is proposed by Cramer et. al. [1]. This construction 

is based on the difficulties to fit n independent points to a polynomial w i th 
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degree less then n — 1. Here we present the construction of CDS-type SAG 

signatures as follows: 

Given list of public keys L = {PKi,... , PKn}, message m, suitable hash 

function H. Let / C {1, • • • , n } , | / | = t. Given secret keys 冗：tt G / } , 

generate SAG signature as follows: 

1. For each i • I�simulate a PoK conversation ( T i , C i , S i ) . 

2. For each tt G / , randomly pick T V 

3. Compute C。= H{L, n, 0, m , T i , • • • , T J , and solve for CVs, tt € such 

that the polynomial f interpolated from f{i) = 0 < z < n, has degree 

no more than n — 6. (resp. for CDS2-type, solve for Ctt's, tt e I, such 

that E i < i < n ijCi = H八 L, , tn), l < i < 0.) 

4. For each n e I, compute a PoK conversation using SKT,. 

5. Output an SAG signature (L, n, Q, m, a) where a = ( / , <Si，• •.，Sn) (achiev-

ing bandwidth conservation). 

4.5 Discussion 

The SAG signature has statistical zero-knowledge property (SZK) about its 

actual signers. Therefore, the signer anonymity is unconditional and exculpa-

ble, which means that even w i th infinite computation power i t is not possible 

extract the identi ty of the signer from the signature unless the signer reveal 

himself. Furthermore, the SAG signature is a group signature which requires 

essentially no setup, especially in terms of group key setup or secret sharing 

of the group key. Any one user can conscript the public keys of another n - 1 

users to form an SAG signature wi thout the participation or even knowledge of 

the conscripted diversion signers. Such properties make SAG signatures useful 
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in diverse applications including whistle blowing[2], e-voting [53], and ad hoc 

group cryptography [50 . 



Chapter 5 

Blind Spontaneous Anonymous 

Signature 

5.1 Introduction 

Here we proposed a bl ind spontaneous anonymous signature scheme is a com-

bination of SAG signature and blind signatures. By allowing a user to obtain 

a bl ind signature from one of the group members, this user can construct a 

SAG signature on behave of the group. Our construction combines the mes-

sage unlinkabil ity properties from the blind signature and unconditional signer 

anonymity from the spontaneous anonymous signature, and is the first digital 

signature scheme provides the following special properties: 

1. As a bl ind signature, the singing group member wil l not know about the 

content of the message. 

2. As a SAG signature, the verifier is convinced that the signature is gen-

erated by one of the group member, however he cannot tell whom did 

i t . 

3. A l l parties except the user, are unable to figure out who signer the Blind 

SAG signature. Message-signature relationships and signature-signer re-

lationships are unlinkable during and after the protocol. 

39 
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4. As a result, the verifier is convinced that the user is authenticated by 

one of the group member. 

Credential systems, including electronic cash, digital passport, online vot-

ing systems, etc. which have privacy concern can be build by using our bl ind 

sag signature scheme. 

5.2 Definition 

Definition 5 .1 (A Bl ind SAG Signature). A blind SAG signature is a [n-\-

3)-tuple . . • V) , comprising (n + 1) interactive turing machines 

X i , • • • ,Xn and U, and two algorithms Q and V. 

• Q is a probabilistic polynomial-time key-generation algorithm which takes 

an input security parameter 1 知 and outputs a pair {PK, SK) of public 

and secret key. 

•工i, for i = {1, • • • n} and U are polynomially-bounded probabilistic In-

teractive Turing Machines, where all machines are given the (separate) 

tapes. Let {PKi, SKi) be a key pair of Ti generated by inputting 

to Q. Let L = {PKi,.. • , PKn) denote a list of public keys and J C 

{!,••• , n}, where \ J\ = t. For each Xi is given on its input tape a secret 

key SKi and corresponding public key,PKi. U is given on its input tape 

a message m E {0 ,1 } * and L. The length of inputs are polynomial in 

security parameter, k where k =min {/ci : i = 1’ • . . , For i e J, li 

and U engage in the interactive protocols of some polynomial in secu-

rity parameter number of rounds. At the end of the protocols, li outputs 

completed or not-completed and U outputs either (L, cr, m) or fail. 

• V is a probabilistic polynomial-time algorithm that takes (L, a, m) and 

outputs either accept or reject. 
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• 

5.2.1 Security Model 

In order to prove our scheme is secure in the random oracle model, we wi l l 

need the following oracles during the simulation: 

1. SO (Signing Oracle): Upon input a public key PK' and any message 

m', i t outputs a valid signature a'. 

2. SAGSign (SAG Signing Oracle): Upon input public key list L ' , length 

threshold 6', message m', i t outputs a valid SAG signature (L', n\ 9', m, a'). 

3. BlindSign (Bl ind Signing Oracle): Upon query, it conducts a 4-move in-

teractive protocol w i th the querier Q as follows: 

(a) Move-0: Q sends PK’. 

(b) Move-1: BlindSign sends a commitment t to Q. 

(c) Move-2: Q sends a challenge c to BlindSign. 

(d) Move-3: BlindSign returns s such that (t, s) forms a valid PoK w.r.t. 

PK'. 

4. Random Oracle H : Upon receiving a query, i t outputs a random number. 

A l l query-reply pairs are kept in record and no same reply for different 

queries. 

5.2.2 Definitions of security notions 

Definition 5.2. (Completeness) If all parties are honest in following the pro-

tocols, then the output of the interactions with various oracles will produce 

valid signatures. • 
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Game UF 

1. (Setup) Upon input a security parameter generate parameters n, 6, 

and invoke KeyGen n times to generate key pairs {SKi, PKi), 1 <i<n. 

The above, except the secret keys, are published. 

2. A forger, T makes qs (resp. qs, Qh, Qa) queries to the BlindSigner (resp. 

SO, random oracle, SAGSign). 

3. J^ delivers > qb/O valid SAG signatures (Li , rii, 9, rui, ai), 1 < z < ^s + l , 

none of which coincides w i th any SAGSign query output. 

Remark: For simplicity, we require T to deliver SAG signatures wi th the 

same threshold 6, and each public key used in SAG signatures delivered by 

T must have been generated in the Setup Phase of Game UF. In this paper, 

we restrict ourselves to at most a polynomially many queries in terms of the 

security parameter. 

Definition 5.3. (Parallel One-more Unforgeability (plm-uf)) A blind SAG 

signature scheme is parallel one-more unforgeable (against adaptive chosen-

message, chosen-public-key active attackers) if no PPT adversary can success-

fully complete Game UF with non-negligible probability. • 

Remark: Specializing to n = ^ = 1, the above definition is defining plm-uf 

of classic b l ind signatures. 

Definition 5.4. Blindness: A blind SAG signature scheme has blindness 

if the probability distribution of the signature produced by Warden is indistin-

guishable from the probability distribution of the signatures produced by Warden 

conditioned on the blindsign conversation that produced it. • 

Roughly speaking, 

p r I SAG signature BlindSign Oracle 1 ^ f SAG signature 1 

[ b y Warden conversation J | by Warden 
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5.3 Constructing blind SAG signatures 

We present the constructions of our bl ind SAG signatures. 

5.3.1 Blind SAG signature: CDS-type [1； 

Given a list of n public keys, L = {PKi, • • • , PKn}, message m, threshold 

6, and 9 accesses to b l ind signer w.r.t. public keys from L, the following 

protocol generates a CDSl- type SAG signature (resp. CDSl-type, CDS2-type) 

1. Select / C {!,••• ,n } , |/| = 9. 

2. For each z G {1, • • • , n } \ / , generate PoK triple {U, Ci, Si) w.r.t. P K i . 

3. In 9 sessions of the TPoK protocol, one for each i G I, act as Warden 

equipped w i th BlindSignerp；^. w.r.t. P K i , as follows: 

(a) Obtain commitment from BlindSignerp；^., for each i e I. 

(b) For each i G I, compute As,i, Ac,i, and U = ft(PKi, Ac,u 

(c) Compute Cq = H[L, n, ^ m,力 i ’ . . .， 

(d) Compute q for all z G / such that the polynomial f interpo-

lated from f(i) = Q, 0 < 2 < n, has degree at most n — 0. 

(resp. for CDS2-type, solve for C^'s, i € / , such that 巡n 此i = 

H j、L、n,e,m,h,…,t rO，1 < j < 0.) 

(e) For each i G / , compute c； = / ^ (PX i , t；, A^.i, q ) , and send c\ 

t o BlindSignerp；^.. 

(f) For each i e I, receive sj from BlindSigner i, and compute Si=fs{PKi,t[,Ac,i, 

八s’i, Ci, s'i). 

4. Outpu t a = ( / , s i , - . . ,Sn). 
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The bl ind signature for individual index i is referred to as the underlying 

blind signature scheme of the blind SAG signature scheme. 

5.3.2 Blind SAG signature: ring-type [2, 3 

Given a list of n public keys L = {PKi, • . . , PKn}, message m and accesses 

once to BlindSignerp^. w.r.t. PKi e L, the following protocol generates a 

ring-type SAG signature [L,n,m,(j)\ 

1. Select TT G {1, • • • , n } . 

2. Interact as Warden wi th BlindSignerp；^^ to obtain a commitment t'们 and 

compute U = /t(Pi^7r“;r ’ Ac’7r,么月’̂ )̂ wi th randomly generated Ac,n and 

A.,.). 

3. Sequentially for each i = tt+I, . . . , n，1，tt-I, compute q = H{L, m, n, ii—i), 

and then simulate a PoK triple {U, ci, si) w.r.t. PK i . 

4. Finish the interaction wi th BlindSignerpK开 by 

(a) Compute and send c'沉=/c(尸/Q，力Jr, 么石’̂̂  c^)-

(b) Receive s^ nd compute s^r = ^ c . t t , c^ r , s'^). 

5. Output o- = ( c i , . . . , c„’ s i , …， s j . 

5.4 Security Analysis 

We prove the completeness, the blindness, and the parallel one-more unforge-

ability of our bl ind SAG signature schemes. In the process, we also prove an 

extension of Schnorr's [7] ROS result from single public key to multiple public 

keys. 
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5.4.1 Multi-key parallel one-more unforgeability of blind 

signature 

The following results are well-known. 

T h e o r e m 5.5. [7] The parallel one-more unforgeability (plm-uf) of Schnorr 

(resp. Okamoto-Schnorr) blind signature is equivalent to the ROS Problem in 

the random oracle model plus the generic group model 

Proof. In Schnorr's security model [7], all queries to blindsign are w.r.t. a single 

public key PK. We generalize i t to multiple-key parallel one-more unforgeabil-

ity (mk-plm-uf) by allowing the Adversary to query blindsign wi th K different 

{ P K i ) , 1 < 2 < n, a to ta l of qb times in order to produce a total of + 1 

signatures each of which is verifiable against some members of the set of public 

keys { P K i , … ’ P K k } . We wi l l need this result. 

T h e o r e m 5.6. The multiple-key parallel one-more unforgeability (mk-plm-uf) 

of Schnorr (resp. Okamoto-Schnorr) blind signature is equivalent to the ROS 

Problem in the random oracle model plus the generic group model 

Proof of Theorem We mimick Schnorr's [7] proof. The generic mk -p lm 

attacker is as follows: 

1. Obta in commitments: I < k < K,1 <i < qB,k\ where Ylk = Qb-

2. Compute and then send challenges Ck,i, 1 < k < K, 1 <i < qB,k-

3. Receive responses s^.i- Output + 1 signatures {U j , Sej) on messages 

^ i d where te j = g 、 介 , c e j = H(kj,rhe， j); and 1 < ^ < 1 < j < 

互B,i, H而,e = Q's + 1 

The oracle conversations can be arbitrar i ly interleaved. The hash query Cij = 

me j ) must have been made. 

Let fr{e,j) = for some index mapping r . 
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In Eq(2.1), we can treat Ui = Vq^+i- The Ui,s can be used as public keys in 

querying the Signing Oracle. I f they are not used as such, then set qB,gB+i — 0. 

They cannot be used as public keys in the delivered signatures, if the conditions 

so require. Therefore, we can omit the u,s w.l.o.g. Expanding the subscript of 

the t's f rom one to two according to the current convention, we obtain 

Mej) = g'^'^vT' 

fc' k i 

= n n n>s、f 广⑶’ 
k' k i 

and 

1 =产’(J. 丄 f o r each i j , 
k' 

where 

k i 

= -cejS{i, k') + ar{£,j),k' + ^ Ck'，A似兄i. 
i 

where the Kronecker delta S(u, v) = 1 when u = v and equals 0 otherwise. 

Note that the last two A-coefficients are computable by the generic adversary, 

but not by the Simulator. Therefore rewinding wi l l not enable the Simulator 

to extract any secret key. 

Case (1)： A s j j = Ac,£j,k' = 0 for all j, k'. Then the generic adversary 

has solved the ROS Problem: 

色id = + all 
i 

where q j ' s are Qb + I hash outputs. 

Case (2): the opposite. Then the generic adversary has computed a nontriv-

ial linear dependence among discrete logrithms of yk', i.e. the generic adversary 

has solved the one-more discrete logari thm problem. 
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Remark: In the generic group model (GGM), the above linear dependence 

is a form of discrete logarithm collision. I t can be deducted in GGM that the 

probabi l i ty of a P P T algorithm being able to compute a discrete logarithm 

collision, including the k ind above, is negligible. • 

5.4.2 Security of our blind SAG signatures 

The security proof of our bl ind spontaneous group signature is based on the 

mult iple-key parallel one-more unforgeability of Schnorr signature, random 

oracle model(ROM) and the Generic Group Model(GGM). 

Theorem 5.7. (Completenessj Our blind SAG signature has completeness. 

Proof. Reader can show the completeness by tr iv ial calulations. • 

Theorem 5.8. (Blindness) Assume L, n, 6 are fixed. Our ring-type (resp. 

CDS 1-type, CDS2-type) blind SAG signature has blindness provided the un-

derlying blind signature also has it. 

Proof. Proof Sketch: Denote the SAGBIindSign session communication tran-

scripts by JCi = (Xi,Ci,Si), 1 < i < 0, and the SAG signature in ques-

t ion by (L, n, 0, m, a) where cr=(ti,.. • ’ tn,Ci,... , Si, • . . , Sn). By the mes-

sage indist inguishabil i ty of the underlying bl ind signatures, ( U , S i ) is zero-

knowledge w.r.t . (T i ,C i ,S i ) . Furthermore, the non-blind SAG signatures pro-

tocol are witness indistinguishabil i ty about which secret key actually generated 

i t . Therefore, the resulting b l ind SAG signature has message indistinguisha-

b i l i t y and signer anonymity. • 

Theorem 5.9. (Unforgeability^ Our ring-type (resp. CD Si-type with 9 = 1, 

CDS2-type with 9 > I) SAG blind signature based on Schnorr or Okamoto-

Schnorr blind signature is parallel one-more unforgeable (plm-uf) provided 

Schnorr，s ROS Problem is hard, in the generic group model (GGM) plus the 

random oracle model (ROM). 
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Proof. We prove for CDSl-type, 0=1, first. The generic attacker in GGM 

of p l m - u f of b l ind Schnorr SAG signature is as follows: 

1. Input: a list of public keys L = {^/ i , . • • ,?/„}• 

2. Receive commitments tk,u 1 < z < qB,k from BlindSigner尸仏.Note 

Efc qB�k = QB-

3. Send challenges Cfc’i, receive responses s^^j. 

4. Output SAG signatures a j = ( ‘ i , . . . , fj’n，〜’i’. •.，〜’n, % i ’ … ， o n 

message m j , 1 < j < + 1. 

The queries dj’o = H ( L , n , 0 , i h j J j 、 i , . . . A n ) , 1 < i < + 1, must have 

been made. Let the Lagrange interpolation be indicated 二 0. 

By GGM, there exists a index mapping r such that, for 1 < j < + 1 and 

he = g'-'y?' 

="a 軌-iJI"产 'IK:广)“ 
f k,i 

V k,i 

1 = where 

= -Sj,e + ar(j,e),-i + ^ Sk ’ ib_ ’ k , i , all i , i 
k,i 

= i ' ) + ^ a八消、t, + ^ Ck,ibrij,e),k,u al l j, t、I' 
t' k,i 

The negligibi l i ty of discrete logari thm collision leads to 

0 = + ^ 0'T{j,e'),e' + ^ Cfc’i?v(j’")’fc’i, all j , i 
v k,i 

n 

e'=i 

i<e'<n e' k,i 
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for I < j < Qb + 1- The generic adversary has solved the above ROS Problem, 

where dj,o are + 1 hash outputs. 

CDS2-type, ^ > 1. Similar to the above, wi th the following modificaitons: 

The hash queries are c f j = He> (L, n, 6, ? % ’ . . . ， ‘ n ) , 1 < j < + 1, 

l < 0 ' < e , have been made. The ROS Problem is 

—V 〒‘） -〜 。 , 

= ^ if^(JZ aru,)’更'+ 

l<e'<n V k,i 

where c fo ' s are Qb + I hash outputs expressed in terms of qb commitments 
Cfc /S . 

ring-type: The proof is similar and omitted. • 

Remark: The reduction in Theorem 5.5 is actually to the ROS Problem 

or the Discrete Logari thm Problem (DLP). The reduction in Theorem 5.6 

(resp. Theorem 5.9) is actually to the ROS Problem or the one-more discrete 

log (ImDL) problem. (The ImDL Problem: compute all discrete logarithms 

logp 2/t for 1 < y < gDL + 1, given ^^andyi, Vq^L+i and a total of Qdl queries 

to a Corrupt ion Oracle, which returns the discrete logarithms of qualified query 

values.) In the GGM, i t can be deducted that the probability of computing 

dicrete log collisions, which include DLP and ImDL, is negligible for PPT 

algorithms. 

5.5 Discussion 

We have constructed bl ind SAG signatures, both ring-type and CDS-type. We 

have reduced their parallel one-more unforgeability against adaptive chosen-

plaintext, adaptive chosen-public-key attackers, to the parallel one-more un-

forgeability of the component bl ind signature, and a candidate hard prob-

lem, in two cases: where the underlying bl ind signature is the Schnorr (resp. 



Chapter 4 Spontaneous Anonymous Group (SAG) Signature 50 

Okamoto-Schnorr) bl ind signature. 

The security and privacy (anonymity) of the bl ind SAG signature based 

on Schnorr b l ind signature is an interesting topic. The result of Schnorr[7 

reduced the security of the Schnorr bl ind signature to the ROS (Randomized 

Oversampled Solvable system) Assumption. Recently, Wagner [54] gave a sub-

exponential t ime algorithm to solve the ROS problem. If the array entries 

are all elements of a binary field, then the ROS Problem can be solved in 

polynomial t ime by a method from [55] or [56:. 

I t w i l l be interesting to generalize Schnorr ROS reduction to the Schnorr-

based bl ind SAG signature. Since Schnorr identification scheme does not have 

zero-knowledge, i t w i l l also be interesting to explore the exact zero-knowledge 

properties of that bl ind SAG signature. 



Chapter 6 

Linkable Spontaneous 

Anonymous Group Signature 

6.1 introduction 

The notion of linkable spontenous group signature was introduced by Liu, et 

al. [57]. They are based on SAG signatures, but added with linkability in 

which such signatures allow anyone to determine if two signatures are signed 

by the same group member. Such signatures are said to be “linked”, If the 

signer only signed once on behalf of a group, the signer can still retain the 

anonymity as in the conventional SAG signature scheme. However if the user 

signs more than once on behalf for the same group, then valid parties can 

revoke the identity of the signer from these signatures. This properties have 

many useful application in electronic cash, whistle blowing, electronic voting 

systems [57 . 

6.2 Related work 

Linkable Threshold SAG Signatures. In [57], a (d,n)-threshold extension to 

its original linkable SAG signature scheme is constructed by concatenating d 

linkable SAG signatures. We note that the construction, though simple and 

51 



Chapter 6 Linkable Spontaneous Anonymous Group Signature 52 

t r iv ial , is not efficient. In particular, the space and time complexities are both 

0{dn). Here we propose a construction wi th time and space complexities both 

being 0{n). 

Event- Oriented Linkability. In [57], one can tel l if two SAG signatures 

are linked or not if and only if they are signed on behalf of the same group 

of members. We call this “group-oriented,, linkability. We introduce a new-

l inking criterion that we call “ event-oriented,, linkability, in which one can 

tel l if two signatures are linked if and only if they are signed for the same 

event, despite the fact that they may be signed on behalf of different groups. 

Event-oriented linkable SAG signatures are comparatively more flexible in ap-

plication. e.g. For a dynamic ad-hoc groups the set of group members keep 

changing frequently, the group-oriented linkable SAG signature wi l l mostly 

signed on behave of different groups, which renders group-oriented linkability 

v i r tual ly useless. 

Another advantage of using event-oriented linkability is that you may con-

t ro l the l inkabil i ty between different events. Consider another scenario: The 

CEOs of a company vote for business decisions. Using linkable SAG signatures, 

they can vote anonymously by SAG-signing their votes. However, as the group 

is fixed throughout the polls, votes among polls can be linked by anybody and 

information can be derived which means anonymity is in jeopardy.This can be 

prevented when an event-oriented scheme is used. 

6.3 Basic Building Blocks 

In this section, we describe some three-move interactive honest verifier zero-

knowledge proof of knowledge (HVZK PoK) protocols that we wi l l use as 

basic bui lding blocks for our event-oriented linkable threshold SAG signature 

scheme. These protocols all work in finite cyclic groups of quadratic residues 

modulo safe prime products. For each z = 1 , . . . , n, let A î be a safe-prime 
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product and define the group GI = QR{NI) such that its order is of length 

ii — 2 for some ii 6 N . Also let gi, hi be generators of Gi such that their 

relative discrete logarithms are not known. 

Let 1 < e € R be a parameter and let H : {0,1}* — Zg be a strong 

collision-resistant hash function, where ^ is a «-bit prime for some security 

parameter keN. Define A^ ; {1，•.. ’ n } and r^ ; {—2《乂’ … ’ {2^'qY}. 

Our security proof wi l l require the following mathematical assumption: 

Definition 6.1 (Strong RSA Problem). [18, 19, 20]] Given a safe prime prod-

uct N, and z G QR{N), it is infesible to find u E Z]^ and e > 1 such that 

u^ = z{modN) in time polynomial in length of N 

Definition 6.2 (Decisional Diffie-Hellman (DDH) over QR(N) Assumption). 

Given a generator g of a cyclic group QR{N), where N is a composite of two 

primes，the distribution ensembles (p工，沪’ g^) and {g^, g^, g工”，where x, y, z Er 

1, ord(g)], are computationally indistinguishable by all PPT algorithm in time 

polynomial in the size of N. 

6.3.1 Proving the Knowledge of Several Discrete Loga-

rithms 

This protocol is a straightforward generalization of the protocol for proving the 

knowledge of a discrete logarithm over groups of unknown order in [18]. This 

allows a prover to prove to a verifier the knowledge of n discrete logarithms 

xi,... ,Xn e Z oi elements yi,...,yn and to the bases gi,...,gn respectively. 

Using the notat ion in [26], the protocol is denoted by: 

n 

i=l 

A prover V knowing x i , . . . G Z such that YI = G^' for alH = 1 , . . . , n can 

prove to a verifier V his/her knowledge as follows. 
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• (Commit.) V chooses ri Gi? Z(2fig)e and computes U for all i = 

1, . . •，n. V sends (亡 i ’ . . . , tn) to V. 

• (Challenge.) V chooses c Er Zq and sends i t to V. 

• (Response.) V computes, for a l H = 1 , . . . , n, ŝ  n - cXi (in Z). V 

sends (Si’ … , t o V. 

7 
V verifies by checking, for a l H = 1 , . . . , n, if t j = gpyf. 

Theorem 6.3. If the Strong RSA assumption holds, the protocol in Sec-

tion 6.3.1 is an Honest Verifier Zero-Knowledge Proof of Knowledge (HVZK-

PoK)protocol. 

Proof. We omit the proof as i t is a straightforward extension of the proof of 

Lemma 1 in [18]. • 

By applying Fiat-Shamir transformation, the HVZK PoK protocol can be 

turned into a signature scheme by replacing the challenge by the hash of the 

commitment together w i th the message M to be signed: 

C — 川 … 丨 |("n,:2/n)|| 力 i l l …11力 rJIM) 

In this case, the signature is (c, Si, •..，Sn) and the verification becomes: 

C = n{{guy,)\\ . . . Wign.ynWl'yiW . • • WgnVnlW) 

Following [26], we denote this signature scheme by: 

n 

i=l 
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6.3.2 Proving the Knowledge of d Out of n Equalities of 

Discrete Logarithms 

This protocol is constructed using the techniques described in [58], by combin-

ing the PoK for discrete logarithm in [18] and the secret sharing scheme due 

to Shamir [59]. This allows a prover to prove to a verifier his/her knowledge 

of some d out of n integers xi,... where xt = log^. yi = log^. Vi for all 

i = 1 , . . . , n. The protocol is denoted by: 

v [ 八 = " 广 = > 

. jQAf,\J\=d \iej / > 

A prover V knowing, for all i e X, Xi e Z such that yi = gf' and Vi = h?, 

where X is some subset of N such that \X\ = d, can prove his/her knowledge 

to a verifier V as follows. 

• (Commit.) V does the following: For i e select Ci ^ Zg. For all 

i ^ M, select 7\ ^ Ti^^ti^y. Compute 

十 j 9?. ieX, \ 拟 
t i 卜々 and T i ^ < 

[ 9 M � \ i e M\X. 

V sends ( t i , …， t n , T \ , … , T n ) to V. 

• (Challenge.) V chooses c Er Zg and sends i t to V. 

• (Response.) V does the following: Compute a polynomial f of degree 

< n - d over Z^ such that /(O) = c and / (z) = Q for all i G M\I. 

Compute Ci — f{i) for all i e 1. Set 

( 
Ti — C^Xi, i〔工, 

Si^ < 
[ n , ie Af\I. 

V sends ( / , S i , … ’ s J to V. 
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V verifies by checking if (1) / is a polynomial of degree <n — d over Z^, (2) 

/(O) = c, and (3) U = and Ti = v{(%t、 for all i 二 1’...，n. 

Theorem 6.4. If the Strong RSA assumption holds, the protocol in Sec. 6.3.2 

is an Honest Verifier Zero-Knowledge Proof of Knowledge (HVZK PoK) pro-

tocol 

Proof. To prove the theorem, i t suffices to show that the protocol is correct, 

sound and statistical HVZK. 

• (Correctness.) Straightforward. 

• (Soundness.) I t suffices to show how a witness can be extracted if given 

two valid protocol conversations wi th the same commitment but different 

challenges. Denoting the two conversation transcripts by ( ( t i , • • . ,亡…Ti , . . .， 

(c), ( / ’ s i， . . . ’s„ )〉and〈 ( t i ,…,亡Ti， . . .，T„ ) , (c')’ ( / ' , s'” . . . ’ sJJ〉’ we 

have c — c' and thus /(O) + / '(O). As the degrees of f and f are at 

most n — d, there are at least d distinct values t t i , . . . , t t ^ G { 1 , . . . , n } 

such that /(TTi) — /'(TTi) for all i = 1 , . . . ’丄 Using arguments in [18], 

/ ( t t ) - /'(TT) divides s'̂  - s ,̂ and therefore an integer x such that = g， 

and VT, = h ^ can be computed as: x^, — ( s 冗 一 _ / W ) . 

Hence a witness ( 全 冗 ” … ” 全 兀 」 c a n be computed from two such tran-

scripts. 

• (Statistical HVZK. ) To simulate a transcript, a simulator S first chooses 

uniformly at random a polynomial f of degree n-d over Zg. For all i = 

1, • . . , n, S picks uniformly at random s- Gr Z(2<ig” and computes t[— 

g f y f ⑴ . T h e simulated transcript is: {{t[,..., t。T；,...，7；)，(/'(O)), ( / ' ’ s ； , . . . , < ) ) . 

To prove that the simulation is statistical indistinguishable from real 

protocol conservations, one should consider, for each i = l ’ . . .，n, the 

probabi l i ty distr ibut ion Ps人Sj) of the responses of the prover and the 
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probabil i ty distr ibut ion Ps'.{s'^ according to which S chooses sj. The 

statistical distance between the two distributions can be computed to be 

at most: 2(2^0(9 — < 2 / ( 2 “ g ” - i . The result follows. 

• 
Again by employing Fiat-Shamir transformation, this protocol can be turned 

into a signature scheme by replacing the challenge by the hash of the commit-

ment together w i th the message M to be signed: 

In this case, the signature is ( / ,S i , . • • ,5n) and step (3) of the verification 

becomes: 

7 

C=H{ {gi,yuhi,Vi)\\ • • . \ \{gn,yn,hn,yn)\ 

We denote this signature scheme by: 

{ (ai，... ’ : V ( 八 2/i = gr A 二 "『^ | (M) 

[ JcJ\f,\J\=d \iej J > 

6.4 Security Model 

We give our security model and define relevant security notions. 
6.4.1 Syntax 

A linkable threshold SAG signature, (LTRS) scheme, is a tuple of five algorithms 

(Key-Gen, Init, Sign, Verify and Link). 

• {ski ,pki) Key-Gen(l入” is a PPT algorithm which, on input a security 

parameter Aj G N , outputs a private/public key pair {ski^pki). We 

denote by SJC and VJC the domains of possible secret keys and public 
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keys, resp. When we say that a public key corresponds to a secret key 

or vice versa, we mean that the secret/public key pair is an output of 

Key-Gen. 

• pa ram Init(入)is a PPT algorithm which, on input a security parameter 

A, outputs the set of security parameters pa ram which includes A. 

• a'=(e,n,d,y,cr)— Sign(e, n, d, 乂 A", M) which, on input event-id e, group 

size n, threshold d G { 1 , . . . , n } , a set y of n public keys in VIC, a set 

A! of d private keys whose corresponding public keys are all contained in 

y , and a message M , produces a signature a'. 

• 1/0 Verify(M, a') is an algorithm which, on input a message-signature 

pair (M，a') returns 1 or 0 for accept or reject, resp. If accept, the message-

signature pair is valid. 

• 1/0 Link ( o\ , u'̂  ) is an algorithm which, upon input two valid 

signature pairs, outputs 0 or 1 for linked or unlinked. In case of linked i t 

addit ionally outputs the public key pk* of the suspected "double-signer". 

Remark: Our l inkabil i ty is accusatory meaning i t outputs the public key 

of the suspected “ double signer". The linkabil ity in [57] is not accusatory - i t 

only outputs linked or unlinked without suspect identity. 

Correctness. 

LTRS schemes must satisfy: 

• (Verification Correctness.) Signatures signed according to specification 

are accepted during verification. 

• (L inking Correctness.) I f two signatures are signed for the same event 

according to specification, then they are linked if and only if the two 
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signatures share a common signer. In the case of linked, the suspect 

output by Link is exactly the common signer. 

6.4.2 Notions of Security 

Security of LTRS schemes has three aspects: unforgeability, anonymity and 

linkability. Before giving their definition, we consider the following oracles 

which together model the abil ity of the adversaries in breaking the security of 

the schemes. 

• pki <r- JO{l.). The Joining Oracle, on request, adds a new user to the 

system. I t returns the public key pk E VJC of the new user. 

• ski CO(pki). The Corruption Oracle, on input a public key pki G VJC 

that is a query output of JO, returns the corresponding secret key ski e 

SK. 

• cr' SO{e, n, d, y, V, X, M). The Signing Oracle, on input an event-id 

e, a group size n, a threshold d G { 1 , . . . , n} , a set y of n public keys, a 

subset V of w i t h |V| = d, a set of secret keys X whose corresponding 

public keys are all contained in V, and a message M , returns a valid 

signature & . 

Remark. A n alternative approach to specify the SO is to exclude the signer 

set V from the input and have SO select i t according to suitable random 

distr ibution. We do not pursue that alternative further. 

Unforgeability. 

Unforgeability for LTRS schemes is defined in the following game between the 

Simulator S and the Adversary A in which A is given access to oracles JO, 

CO and SO: 
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1. S generates and gives A the system parameters pa ram. 

2. A may query the oracles according to any adaptive strategy. 

3. A gives S an event-id e € STD, a group size n G N , a threshold d G 

{1 , . . .，n} , a set y of n public keys in VJC, a message M e M and a 

signature cr G S. 

A wins the game if: (1) Verify(M,a')=l，（2) all of the public keys in are 

query outputs of JO, (3) at most (d - 1) of the public keys in ；V have been 

input to CO, and (4) a is not a query output of SO on any input containing 

M . We denote by A d v二 ( A ) the probability of A winning the game. 

Definition 6.5 (unforgeability). An LTRS scheme is unforgeable if for all PPT 

adversary A, AdvJ-^(A) is negligible. 

Linkable Anonymity. 

Anonymity for LTRS schemes is defined in the following game: 

Game LA 

1. {Initialization Phase) S generates and gives A the system parameters 

param. 

2. [Probe-1 Phase) A may query the oracles according to any adaptive 

strategy. 

3. (Gauntlet Phase) A gives S event-id e^, group size rig, threshold dg e 

{1，• •.，rig}，message Mg, a set yg of n public keys all of which are query 

outputs of JO、a subset V^ of yg with |Vg| = dg, a set of secret keys Xg 

wi th \?Lg\ = dg — 1 and whose corresponding secret keys are all contained 

in Vg. The lone public key yg e Vg whose corresponding secret key is not 

contained in Xg has never been queried to CO and has been included in 

the insider set V in any query to Signing Oracle SO. 
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Then S flips a fair coin to select b G {real, ideal}. Case 6=real: S queries 

CO w i th Ug to obtain its corresponding secret key Xĝ  and computes a'g 

= S i g n (e^, rig, dg, yg, Xg U {rr^}, Mg), Case 6=ideal: S computes a'g = 

SO {eg, rig, dg, yg, Vg, Xg, Mg). 

S sends cr; to A. 

4. {Probe-2 Phase) A queries the oracles adaptively, except that yg cannot 

be queried to CO or included in the insider set V of any query to SO. 

5. {End Game) A delivers an estimate h G {real, ideal} of b. 

A wins the game if 6 = 6. Define the advantage of A as 

Adv，o"(入）=Pr[乂 wins] - 1/2. 

Definition 6.6 (Linkable-anonymity). An LTR5 scheme is linkably-anonymous 

if for any PPT adversary A, Adv；^"抓(入)is negligible. 

Remark: Linkable anonymity is a form of computational zero-knowledge: 

the attacker cannot computationally distinguish the real world from the ideal 

world. Note that the anonymity notions in [60, 61, 62] appear to be also com-

putat ional zero-knowledge. Our attacker model is not a fully active attacker: 

queries relevant to the gauntlet public key, yg, are ruled out. The anonymity in 

57] is also w i th respect to the above model. We note that [60], p.623, argued 

that anonymity and l inkabil i ty cannot coexist in their security model. 

Linkability. 

Linkabi l i ty for LTRS schemes is defined in the following game between the 

Simulator S and the Adversary A in which A is given access to oracles JO, 

CO and SO: 

1. S generates and gives A the system parameters pa ram. 
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2. A may query the oracles according to any adaptive strategy. 

3. A gives S an event-id e G STD, group sizes ni, 712 G N , thresholds 

di G { 1 , . . . , n i } , G { 1 , . . . , 722}’ sets and 3̂ 2 of public keys in VIC 

of sizes TIL and N) resp., messages MI, M2 E M and signatures cji, A2 G E. 

A wins the game if (1) all public keys in J^i U are query outputs of JO, 

(2) Ver i fy(Mi,cr;)=l for z = 1,2, (3) CO has been queried at most {di + — 1) 

times, and (4) L i n k ( o " ' i ， W e denote by A d v义 " " t h e probability of A 

winning the game. 

Definition 6.7 (Linkabi l i ty). An LTRS scheme is linkable if for all PPT ad-

versary A, Adv么切& is negligible. 

Non-Slanderability. 

Non-Slanderability for LTRS schemes is defined in the following game between 

the Simulator S and the Adversary A in which A is given access to oracles 

JO, CO and SO: 

1. S generates and gives A the system parameters param. 

2. A may query the oracles according to any adaptive strategy. 

3. A gives S a signature C7i G E and a tuple (^2, (̂ 2’ 3̂ 2，M2’ o"2). 

A wins the strong game if (1) Verify(M2,(72)=l, (2) Unk(c7'i, and 

(3) none of the public keys in V has been input to CO. A wins the weak game 

if the following addit ional constraint holds: (4) the signature a i is a query 

output of SO. (Let (e,ni,di,yi,V, Ml) be the associated input tuple), We 

denote by ( resp. Adv^^^(X) ) the probability of A winning the 

strong (resp. weak) game. 
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Definition 6.8 (Non-Slanderability). An LTRS scheme is strongly (resp. weakly) 

non-slanderable if for all PPT adversary A, Advf^^(A) ( resp. Adv^^^(A)) 

is negligible. 

Security. 

Summarizing we have: 

Definition 6.9 (Security of LTRS Schemes). An LTRS scheme is secure if it 

is unforgeable, linkably-anonymous, linkable and weakly non-slanderable. 

6.5 Our Construction 

6.5.1 An Linkable Threshold SAG Signature Scheme 

In this section, we give a concrete construction of an LTRS scheme. We then 

show that such a construction is secure under the security model defined in 

the previous section. 

• Key-Gen. On input a security parameter the algorithm randomly picks 

two distinct primes pi, Qi of the form Pi 二 "Iv'i + 1 and qi = + 1, where 

Pi, q'i are both { { i i - 2) /2)-bi t primes, and sets N i 一 p池.It then picks a 

random generator 仿 of QR{Ni) and a random Xi ^ r Z献 and computes 

Vi 一 g?�It picks a strong collision-resistant hash function Hi : {0,1}* 

{h\{h) = QR{Ni)}. I t sets the public key to ph — Ni, g“ yi, Hi), and 

the secret key to ski — {vu Finally i t outputs {ski.pki). 

• Init. On input security parameters ^ g N , l < e G R and k G N , the 

algori thm randomly picks a Ac-bit prime q and a strong collision-resistant 

hash function H : {0 ,1 } * —> Z^. I t outputs the system parameters 

param = 
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• Sign. On input the system parameters pa ram = e, q, H), an event-id 

e e {0 ,1}* , a group size n € N, a threshold d G { 1 , . . . ,ri}, a public key 

set ；V = {pki, •.. where each pki = (A, Ni,识，y^ Hi) is s.t. ii > 1� 

a private key set X = {s/Ct^, . . . , s/Ctt̂ }, where each = 工Tq) 

corresponds to pkj^. e y , and a message M G {0,1}* , Define M = 

{ 1 , . . . , n } and I = { t t i , . . . ,7： }̂ C Af, the algorithm does the following: 

1. For all i e Af, compute hi，e Fi(param,pA;i, e) and the tags 

~ f ^ e J ; 
y. <~ / 

[ /l-；^, i e J\f\I, (k ^ 

2. Compute a signature ( / , s i , … ’ Sn) for 

r ( w 
V K v i : qT A 仏’ e = Ke W -

� JcM,\J\=d \iej / / 

In particular, this requires the knowledge of o^tt” ...，̂：冗“.We wi l l 

refer to this signature scheme as SPKi. 

3. Compute a signature (c, s'” ...，sJJ for 

[ A , . . . ’ / W : I人1 仏’ e = " f t p M -

In particular, this requires the knowledge of Xi for alii e l and ai 

for al l i e Af\I. We wi l l refer to this signature scheme as SPK2. 

4. The signature is 

7 —〈(tel’e’ …，Vn ê)̂  ( / ’ "Si, . . . ’ Sn), (c, ^ i , • • • , < ) ) • 

Note that a signature is composed of three parts: the tags, a signa-

ture for SPKi and a signature for SPK2. 

• Verify. On input a tuple (param, e, n, rf, M , a), the algorithm parses 

pa ram into e, k:, g, iJ ) , 3； into {p /c i , . . . where p h = { i i , Nu gi^Vi, Hi) , 



Chapter 6 Linkable Spontaneous Anonymous Group Signature 65 

and (J into〈（(力丄， . . . , ( / , S i ’ . . . ’ sj，(c, s；,..., s'J). I f any ii < £，the 

algori thm returns w i th 0. Otherwise i t does the following: 

1. For i G jV", compute h��i^i(param,pA;i, e). 

2. Verify if ( / ’ Si,…，Sn) is a correct signature for S P K i . 

3. Verify if (c, 5 - , . . . , s'^) is a correct signature for SPK2. 

• Link. On input a tuple (param, e, (n i , di , M i , cti), (n2’ <̂ 2，3̂ 2, Ms, o"2)) 

s.t., for j = 1,2, V e r i f y t h e algorithm first parses, for j 二 1，2’ 

y j into y j = {pk[^\ ...，p/ci^)} and a j into 

mt…，趙)J, ( /� ,4气…,sii^ (c�,4�’…,S：{力)〉. 

I f there exists tt i G { 1 , . . . , n i } and 兀2 ^ {1, • • • ,^2} s.t. pk^^ 二 pk、為 

and 公识e =恋2)’e, i t returns 1 and additionally p/cl^- Otherwise i t returns 

0. 

The correctness of the about signature scheme is straightforward. 

6.5.2 Security 

We state the security theorems here and provide proof sketches. 

Theorem 6.10 (Unforgeability). Our construction is unforgeable under the 

Strong RSA assumption in the random oracle model. 

{Proof Sketch) Roughly speaking, our underlying SAG signature is similar 

to [63] which has proven unforgeable, and that implies unforgeability w i th our 

linkable SAG signatures. • 

Theorem 6.11 (Linkable-anonymity). Our construction is anonymous under 

the Strong RSA assumption and DDH over QR(N) assumption in the random 

oracle model 
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Proof. Simulating Signing Oracle, SO: Upon input (e, n, d, y, V，X, M ) , 

generate a valid signature as follows: For each i G randomly generate â  

and compute 仏已=巧.For each i E V, randomly generate â  and backpatch 

the random oracle to hi,e = Hi(param，pA;“ e) = g? and compute ^^g = 

Ensure consistency w i th other oracles from the beginning. Generate Cq, .••， 

such that they interpolate a polynomial f w i th degree <n — d and f{i) = q 

for 0 < i < n. For each i, simulate the corresponding 3-move conversation 

in Step (2) of Sign w i th randomly generated responses Si, • • •, to produce 

the commitments. Backpatch the random oracle so that the commitments 

are hashed to cq. This completes up to Step (2) in Sign. The rest is easy: 

Randomly generate challenge c, simulate the SPK in Step (3) of Sign wi th 

randomly generate responses s、, . . . ’ s'^. 

Setting up the gauntlet for solving DDH: Similar to proof of anonymity in 

57]. Let Qj be the number of JO queries. Denote the Gauntlet DDH Prob-
A, ^ 

lem as (TV, g, 沪，『、where 7 = a/3 wi th probability 1/2. In the Gauntlet 

Phase, Simulator S sets up the witness extraction mechanism as follows: Ran-

domly select r e {1’ … ， R e t u r n pk* — (/, iV, g, §、H) in the i*-th JO 

query, backpatch Random Oracle HOi* to hi’e = g^ • There is a non-negligible 

probabi l i ty that pk* = yg, the gauntlet public key. Generate the Gauntlet 

signature a'g w i th 仏，已=為’ and simulate the SPK's. W i t h 1/2 probability, 

aP = ^ and i t can be shown that the gauntlet signature is indistinguishable 

f rom one generated using Sign. Otherwise, w i th 1/2 probability, a(5 ^ ^ and 

i t can be shown that a'g is indistinguishable from one generated using SO. 

I f A returns S = 1, 5 answers Yes to the DDH question. Otherwise, S 

answers No. «S's advantage in D D H equals 义，s advantage in winning Game 

LA. • 

Theorem 6.12 (Linkabi l i ty) . Our construction is linkable under the Strong 

RSA assumption in the random oracle model. 
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Proof. Similar to proof of l inkabil i ty in [57]. I f Adversary can produce two 

unlinked signatures, then he is rewound twice to produce two sets of witnesses 

of set-size di and d。respectively. I f the two sets overlap, then the threshold 

signatures should have already been linked. If the two sets do not overlap, 

then we would have obtained a total of d i + 6,2 witnesses while Adversary only 

corrupted at most ^1+^2 — 1 witnesses, which have negligible probability under 

the Strong RSA assumption. • 

Theorem 6.13 (Non-slanderability). Our construction is weakly non-slanderable 

under the Strong RSA assumption in the random oracle model 

Proof. The weak non-slanderability is protected by Step (3) of Sign. Given 

a signature from SO, Adversary does not know the discrete logarithm of any 

Vi, and therefore cannot produce a signature containing some y j and prove 

knowledge of logari thm of y^ as in Sign's Step (3). • 

Remark: Our scheme does not have strong non-slanderability: User j and 

User k can agree to use the same y^ to slander User i. User i can vindicate 

himself by proving that logarithm of his public key yi does not equal to the 

logari thm of y^. However, that can be a hassle. 

Summarizing, we have: 

Theorem 6.14 (Security). Our construction is secure under the Strong RSA 

Assumption and the DDH over QR(N) Assumption in the random oracle 

model 

6.5.3 Discussions 

Separable Linkable SAG Signatures. We achieved separable linkable SAG sig-

natures where individual users choose their own safe RSA modulus Ni. In 

our construction, indiv idual user's key pair are constrained to reside in Discret 

Logar i thm (DL) over a composite moduli. In fact, our method can be easily 
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modified to allow user key pairs from DL over a prime modulus, i.e. (sk, pk)= 

(x, y = g工(mod Pi)). Therefore, our signatures can be easily modified to 

support a mixture of composite DL and prime DL. 

Ring-type SAG signature. Although our construction utilizes the CDS-type 

structure, meaning the structure from Cramer, et al. [58], the technique can 

be easily adapted to construct the first separable linkable SAG signature of 

the RST-type, meaning the structure from Rivest, et al. [5]. Simply follow 

57] but use different y^ for different users i instead using a single y. y^ = h"'' 

wi th randomly generated â  except 仏 = h ^ ' w i th signer s. Then simulate the 

Proof-of-Knowledge {(工灰):？/j = g^'八仏=h^'} along the ring, computing 

Hash{commitmentSi) = challengei+i and simulating, except for the actual 

signer. The resulting linkable SAG signature is separable, supporting a mixture 

of composite DL and prime DL key pairs. 

Bandwidth Efficiency. The length of our signature is 0{n) {n being the group 

size). This improves upon [57] whose length if 0{nd). However, our scheme is 

not non-interactive while [57] is. 

Event-IDs. Event-ids should be chosen carefully to according specific appli-

cations. We give two examples here. (1) When an event-oriented linkable 

(threshold) SAG signature scheme is used to leak sequences of secrets, the 

whistle-blower should choose a unique event-id when leaking the first secret 

and stick to using the same in the sequel. This makes sure that the sequence 

of secrets cannot be linked to other sequences. (2) When used in electronic 

voting, i t is usually the voting organizer (e.g. the government) who decides 

on an event-id. Each eligible voter should therefore, before they cast a vote, 

make sure that the event-id has not been used in any previous voting event, 

so as to secure the intended privacy. 

Linkability in Threshold SAG Signatures. Linkabil i ty in threshold SAG signa-

tures requires a more precise definition. In particular, there are two possible 
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flavors: two signatures are linked if and only if (1) they are signed by exactly 

the same set of signers, or (2) they involve a common signer. We call sig-

natures of the former type “ coalition-linkable” while those of the latter type 

“ indi/uidual-linkable”. 

In a coalition-linkable scheme, users are able to sign multiple times without 

their signatures being linked, as long as they are not collaborating wi th exactly 

the same set of signers again. However, in an individual-linkable scheme, a user 

signing more than once wi l l have the signatures linked, no matter who other 

collaborating signers are. The scheme we present in this paper falls into the 

later category. 



Chapter 7 

Conclusion 

In our thesis, we introduce the first bl ind spontaneous group signature scheme 

wi th thresholding option. W i t h our modular construction, any SAG signa-

ture schemes can be combined wi th blind signature by using transfer proof 

of knowledge technique. I t inherits special features from these two signatures 

to create new and created new properties: the actual signer cannot point out 

whatever a message-signature pair is generated by oneself. We managed to 

prove the security of both ring-type and the CDS type blind SAG signature 

is reducible to Schnorr's Randomized Oversampled Solvable (ROS) assump-

tion. I t is existential unforgeable under adaptive chosen message attack in 

the generic group model and random oracle model. Both signer anonymity 

and message-signer l inkability remains unconditional. This perfect anonymity 

properties assures the privacy the user and can help enforce the freedom of 

speech in many applications. 

Follows we given here the first separable linkable SAG signature scheme, 

which also supports an efficient thresholding option. We have also presented 

the security model and reduce the security of our scheme to well-known hard-

ness assumptions. In particular, we have introduced the security notions of 

accusatory linkability and non-slanderability to linkable SAG signatures. The 

anonymity and l inkabil i ty provides a good starting point for applications such 

as electronic cash and electronic voting systems. 
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Chapter 7 Conclusion 71 

There are st i l l a number of open problems in this area such as to provide 

an efficient way to provide efficient proof of interacting protocols or an con-

structing short linkable signatures. We believe there remain plenty of research 

opportunit ies in this field. 
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