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摘要 

我們研究的是一個含有運輸信息延遲的有限離散庫存繫統. 

此繫統含有三種不同的運輸糢式和兩種連續的運輸時間.對 

于最便宜的隨機運輸糢式，我們用一個隨機比例因子來刻畫 

它的隨機運輸時間和部分運輸.緊急運輸糢式和正常的運輸 

糢式擁有確定的運輸時間和全部運輸.如果實現的比例因子 

比較小，隻有隨機運輸糢式和緊急運輸糢式是有傚地運輸糢 

式；如果實現的比例因子比較閤適，隻有隨機運輸糢式是有 

傚地運輸糢式；如果實現的比例因子比較大，隻有隨機運輸 

糢式和正常運輸糢式是有傚地運輸糢式.除去一些特殊的比 

例因子的值，對于隨機運輸糢式來說，S存儲策略不再是最優 

的策略.但是依賴當前狀態的S存儲策略依然是緊急運輸糢 

式和正常運輸糢式的最優策略.我們同樣分析暸當前狀態對 

于最優值的影響.並且證明運輸信息的延遲會帶來更多的費 

用. 



Abstract 

This paper is concerned with a. finite periodic review inventory system with 

delivery information delay, two consecutive leadtimes, and three delivery modes. 

The stochastic delivery mode is the cheapest mode with a, stochastic leadtime and 

partial shipments that are generated by a random proportional factor, whereas 

the emergency delivery mode and the regular delivery mode are more expensive 

with deterministic leadtimes and full shipment. If the realized proportional factor 

is low, then only the stochastic delivery mode and the emergency delivery mode 

are efficient; if the realized proportional factor is medium, then only the stochastic 

delivery mode is efficient and if the realized proportional factor is high, then only 

the stochastic delivery mode and the regular delivery mode are efficient. Except 

for extreme values of the proportional factor, a. base-stock policy is not optimal 

for the stochastic delivery mode, but a, state-dependent base-stock policy is still 

optimal for either the emergency delivery mode or the regular delivery mode. We 

also investigate the impact of current states on optimal levels, and prove that 

delivery information delay can incur more costs than when there is no delivery 

information delay. 
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Chapter 1 

Introduction 

Most companies serve customers with different degrees of demand variability, 

and deal with suppliers with varying levels of supply uncertainty. Companies 

with a superior ability to forecast both demand and supply uncertainty can af-

ford to produce and deliver in inexpensive productions and logistics services. On 

the contrary, companies with an inferior ability to forecast supply and demand 

ability have to pay by using emergency production and logistics to respond to 

unexpected surges in demand and shortages in supply. 

Many companies have learned the importance of managing a portfolio of sup-

plies, and have recognized the value of learning about customer demand in ad-

vance. Ill addition, the advances in manufacturing technologies, logistics services, 

and globalization Imve made it possible for companies to satisfy the needs of their 

customers from sources that have different prices, leadtimes, and service quali-

ties. The cost of products and logistics services increases when shorter leadtimes 

and a more accurate delivery schedule are required, and it is therefore critical 

for companies to manage a portfolio of production and logistics technologies that 
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balances the tradeoff between the quality of demand and supply information and 

the cost of production and logistics services. 

For example, Hewlett-Packard's MODO boxes are assembled in its Singapore 

factory, but the factory allows Hewlett-Packard 's distribution centers to choose 

ocean shipment or emergency air delivery (Beyer and Ward(2000)). 

1.1 Related Literature 

There is a. large body of related research that deals with multiple delivery modes 

and leadtime uncertainties. 

The first work on inventory models with multiple delivery modes is that of 

Fukiida. (1964), who allows both expedited arid regular orders to be placed si-

multaneously and includes a fixed cost for ordering in a, multi-period inventory 

system. The most general modeling work is that of Whittmore and Saunders 

(1977), who construct a multi-period dynamic model and allow both the long 

and short leadtimes to be of arbitrary lengths. Whittmore and Saunders also 

derive two conditions under which one of the delivery modes is useless and only 

the other delivery mode is useful throughout the planning period. Scheller-Wolf 

and Tayiir (1998) study a Markovian production/inventory model with two con-

secutive delivery modes, and prove the optimality of a base-stock policy, when 

the base-stock levels depend on the current state of the underlying Markov chain. 

Ill connecting the forecast updating process with two and three delivery modes, 
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Sethi, Yan and Zhang model the process to be one that is analogous to peeling 

away the layers of an onion (Sethi, Yan and Zhang 2001 and 2003), in that is 

the information in any given period which is hidden in the core of the onion, has 

a number of sources of uncertainties that are resolved successively. With this 

process of demand information updating, Sethi, Yan and Zhang investigate the 

optimal inventory decision, and find that the optimal policy for the model with 

two consecutive delivery modes is a base-stock type. In follow up papers by Feng 

et al. (2003a, 2003b) It is demonstrated that the base-stock policy is not optimal 

for systems with more than two delivery modes. We refer the reader to a recent 

book by Sethi, Yan and Zhang (2005) for more detailed study of inventory models 

with deterministic multiple-delivery modes and demand information updates. 

Another related area of research is two echelon inventory models with expe-

diting deliveries. Lawson and Porteus (2000) study the classical serial multistage 

model with expediting. By reformulating the Clark-Scarf model, they add the 

new stage of high holding cost into the system so that the normal leadtime be-

tween stages is exactly one period. At each stage, a unit is shipped downstream by 

either the regular delivery mode or the emergency delivery mode in each period. 

Lawson and Porteus (2000) show that a top-down base-stock policy is optimal in 

each period. This model is generalized by Miiharremoglu and Tsitsiklis (2003), 

but their model differs from the additive cost structure of Lawson and Porteus, by 

allowing a more general cost structure. In Miiharremoglu and Tsitsiklis (2003), 

the extended echelon base-stock policies are shown to be optimal. 

The problem becomes much more difficult with a. stochastic delivery mode 

3 



than when delivery times are deterministic. Most of the work on this problem 

focuses on modeling the stochastic leadtime with the assumptions of no-order 

crossing, no partial shipment, and independence of supply and demand. Kaplan 

(1970) introduces a stochastic supply process, and focuses on a finite periodic 

review system that proves the optimality of the (s, S) policy. Ehrhardt (1984) 

extends the optimality to an infinite system with the objectives of minimizing 

the discounted cost and average cost. 

Song and Zipkin (1996) generalize these stochastic-leadtime models and model 

an exogenous supply process as a, queue, which is described as a discrete time 

Markov process. Using the notion of currently complete supply information, they 

demonstrate that the optimal policy is a state-dependent base-stock policy and 

obtain the interesting result that the base-stock level need not increase with the 

leadtime. Chen arid Song (2001) consider a multi-stage serial inventory system 

with Markov-modulated demand, in which the Markov-modulated leadtime can 

be regarded as Markov-modulated demand. They show that the optimal policy 

is an echelon base-stock policy with state-dependent order up to levels. 

Recently, Chen and Yu (2004) model the supply process with a finite-state 

Markov chain. Although it can be considered to be a. special case of the process of 

Song and Zipkin (1996), it can be implemented efficiently. Chen and Yu attempt 

to quantify the potential value of the delivery information, and using numerical 

examples show that the difference in cost can be as much as 41 percents. 

Yet another related area, is that of single stage models with multiple suppliers. 
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Gerchak and Parlar (1990) discuss the issue of two suppliers with random yield in 

EOQ setting. Parlar and Wang (1993) introduce two suppliers into a single-period 

model with both random supply and demand. Ramasesh et al (1991) analyze the 

dual sourcing problem for an (s, Q) system with random leadtimes. Ramasesh 

et al assume that both suppliers are identical, and demonstrate that significant 

benefits cause accrued from dual sourcing when leadtimes are random. Anupindi 

and Akella. (1993) discuss three inventory models with two stochastic suppliers. 

The first assumes that each supplier with a given probability either supplies the 

full order quantity immediately or supplies nothing. In the second model, each 

supplier delivers a random proportional order quantity, and the portion of the 

order that is unfilled is canceled. The third model is the same as the second 

model, except that the remaining quantity is delivered in the next period. All 

decisions are made before the decision maker knows the exact delivery informa-

tion. Anupindi and Akella. also show that the optimal policy includes two critical 

numbers: when the initial inventory exceeds an upper threshold, do not order; 

when it is between the lower and upper thresholds, order from the less reliable 

(that with a more certain leadtime) but cheaper supplier; and when it is below 

the lower threshold, order from both suppliers. 

In this paper, we study a finite periodic review inventory system with three 

delivery modes: a stochastic delivery mode of leadtime k and /c + 1 with a, proba-

bility of p and 1 —p, respectively; a regular delivery mode with a leadtime of /c+l ; 

and an emergency delivery mode with a leadtime of k. We model the system with 

these three delivery modes for cases with and without delivery information delay. 

We denote the scenario in which the stochastic leadtime is known before the or-
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dering decision is made as the case of no delivery information delay; and denote 

the scenario in which the stochastic leadtime is known after the order decision is 

made as the case of delivery information delay. For the cases both with and with-

out information delay we also allow partial shipments for the stochastic delivery 

mode. We use dynamic programming to derive the form of optimal policy that 

minimizes the expected cost function with respect to the ordering decision over 

three sources of supplies. We demonstrate that, both for the case of information 

delay and that of no-information delay, the optimal policy remains a base-stock 

type if partial delivery is not allowed. We also characterize the structure prop-

erty of the optimal policy, and classify the conditions under which the regular 

and emergency delivery modes are most effective. Moreover, we study the cost 

structure for a number of specialized cases. The ultimate purpose of this paper 

is to characterize the form of the optimal policy. 

In this paper, we only study the stochastic delivery mode with two possible 

leadtimes, i.e., k and /c + 1. For cases in which there is a stochastic leadtime 

with more that two outcomes, we demonstrate the optimal policy is no longer 

a base-stock type using a counter example. As distinct from the deterministic 

multiple-delivery modes, we allow a stochastic leadtime, and partial deliveries., 

and in contrast to the modes of stochastic leadtimes, we focus on the characteri-

zation of optimal policies with information delay. Our model differs from models 

of random yield in that we study a. multiple period, dynamic inventory system. 

The rest of this paper is organized as follows. The next section presents our 

notations and model formulation. In section 3, we show our detailed analysis and 
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derive the main results. Section 4 illustrates the nonoptimality of a base-stock 

policy using numerical examples. Finally, we summarize our contributions and 

end with a brief description of future work. 
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Chapter 2 

Notations and Model 
Formulation 

We consider a finite stochastic periodic review inventory model with stochastic 

leadtimes, partial shipments, and delivery information delay, as is shown in Fig-

ure 1. The product can be ordered from three sources with different costs and 

different leadtimes, and the delivery time can be either stochastic or determin-

istic. For deterministic delivery modes, the leadtime is known to the decision 

maker before a. replenishment decision is made, and the order will be fulfilled in 

one batch. In the stochastic delivery mode, in contrast, the partial shipment is 

allowed, and one order can also be fulfilled by two deliveries in two consecutive 

periods. The proportional factor can also be random. Moreover, the informa.-

tiori about the delivery schedule, including delivery time and quantities, may not 

be known to the decision maker before a replenishment decision is made. We 

regard this situation as case of the delivery information delay. We assume that 

the customer demand is random and that if the realized demand is unsatisfied, 

then the negative amount will be fulfilled in the next period. For each period, 
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Stochastic delivery mode 
1 

Emergency delivery mode 
»• Retailer *{ j , 

\ _ y Demand 
, On-hand 
T inventory-

Regular delivery mode 

Figure 2.1: The inventory model with three delivery modes 

the holding/shortage cost is evaluated. Our objectives are to find a.n optimal 

replenishment policy that minimizes the expected total costs and to derive its 

structural characteristics. 

For convenience and simplicity, we use the following notations in this paper. 

• < 1’ "〉： Time horizon, < 1’ iV >二 {1，2’ …,TV}. 

• Dt: The demand of period t with the density /((•) and distribution function 

m . 

• D[t, t -f L]: The total demand over periods t, i + 1, . . . , t + L. 

• k: The leadtime of the emergency delivery mode. 

• k + 1: The leadtime of the regular delivery mode. 

• Cs: The unit purchase cost for the stochastic delivery mode. 

• Ce： The unit purchase cost for the emergency delivery mode with leadtime 

k. 

• Cr： The unit purchase cost for the regular delivery mode with leadtime /c+1. 
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• Rt G [0,1]: The random proportional factor in period t with the density 

/"“.）and distribution function 

• n: The realized proportional factor in period t. 

• qf: The order quantit), of the stochastic delivery mode in period t. Random 

partial shipment Rtqt (or realized partial shipment rtqt) will arrive at period 

t + k, and the remaining part qt - Rtqt (or the remaining realized partial 

shipment qt — rtqt) will arrive at period 力 + /c + 1. 

• qf: The order quantity from the emergency delivery mode in period t. 

• ql： The order quantity from the regular delivery mode in period t. 

• Xt： The on-hand inventory at the beginning of period t. 

參 rcyv+i: The on-hand inventory at the end of the last period N• 

• It： The in-delivery order quantities at the beginning of period t. 

• t̂ = + It： The inventory position at the beginning of period t, where 

� 1 = Xi is the initial inventory position in the first period. 

• yf\ The inventory position immediately after an order is made from the 

stochastic delivery mode in period t. 

• yf: The inventory position immediately after an order is made from the 

emergency delivery mode in period t. 

• ul： The inventory position immediately after an order is made from the 

regular delivery mode in period t. 
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• H(-): The holding/shortage cost and it is a twice differential convex func-

tion. 

• Vt{-\ID)\ The optimal cost function over periods [t + k, N] for the case of 

delivery information delay. 

• Vt{-\NID): The optimal cost function over periods [t + k, N] for the case 

of no delivery information delay. 

• Vn+i{xj^+i): The terminal cost function and it is a twice differential convex 

function. 

In our model, there are two deterministic delivery modes and one stochastic 

delivery mode. One of the. deterministic delivery modes is the emergency delivery 

mode with the leadtin.'e k, and the other is the regular delivery mode with the 

leadtime A:+l. The stochastic delivery mode has a random proportional factor 

which belongs to [0,1]. If the order quantity is qt at period t, then R^qt will arrive 

at period t+k and the remaining portion of the order will arrive at period t + / c + l . 

The random variable Ri can be both deterministic and discrete as well. For 

example, if = 1 with a probability 1, then the leadtime of the stochastic de-

livery mode is k, and if Rt = 0 with a, probability 1，then the leadtime of the 

stochastic delivery mode is k + 1. These are both deterministic cases. We now 

look at a discrete case. Assume Rt = 0 with a probability 1/2 and Rt = 1 with a, 

probability 1/2. There is then a 1/2 probability that the order will be delivered 

in one batch with a, leadtime k or a leadtime k + 1. 
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Demand / ) f _ i realized Demand Dt realized 
Review of on-hand inventory xt Review of on-hand inventory Xt+i 

Inventory position t̂ observed Delivery information rt realized 
Delivery information Ri Decision qf is made 
Decision qf is made Decision q[ is made 

Orders arrive 

Decision point 1 Decision point 2 
* Period t  

Figure 2.2: Event sequences in the delivery information delay model 

Assume that the stochastic delivery mode is the cheapest of the three deliv-

ery modes. If the random proportional factor is 7?,/ = 0 with a probability 1 or 

Rt = 1 with a. probability 1，then the stochastic delivery mode replaces the regu-

lar delivery mode or the emergency delivery mode, respectively. The emergency 

delivery mode must be more expensive than the regular delivery mode because 

of its shorter leadtime, Otherwise the regular delivery mode is useless. Thus, we 

need the assumption Ce > Cr > Cg. 

The sequence of events in period t is as follows. There are two decision points 

in each period. At the first decision point, the retailer learns the distribution and 

density functions of the stochastic delivery mode, and then places an order from 

the stochastic deliveiy mode. At the second decision-point, the random propor-

tional factor is realized, and the retailer places orders from other deterministic 

delivery modes. The orders then arrive, and at the end of each period, demand 

occurs and the holding/shortage cost is evaluated. A timeline of the system dy-

namics and the ordering decisions is illustrated in Figure 2. 
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The inventory position dynamic equation can then be defined as 

6+1 + ql + eft + qt - Dt. 

The inventor}^ position at period t plus the order quantities that are placed at 

period t minus the demand of period t is the inventory position in the next period. 

Optimal Cost Function: Our first task is to choose a sequence of order quantities 

from the three delivery modes over time so as to minimize the total expected costs 

for the whole planning horizon. We use the dynamic programming approach to 

study the problem. For any period t G {1，…，TV — /c}, we are able to obtain the 

optimal cost function Vt{^t\^D) from period t + k to period N. Note that the 

shortest leadtime is k, and therefore orders that are placed in period t will be 

delivered after period t-\-k — l. As there are two decision points in each period, we 

start with the second decision point, for which the proportional factor is realized 

as T't, Let Gt{qf, denote the optimal cost function at the second decision 

point. 

Thus, when l<t< N -k, 

Giiqt,^t\rt) = min {c,{yt — nqt 一 6 ) + cAvl " Vt " (1 " n)qt) 
yf>rt<lf+^l 

yl>yfH^-ri)qf 
+EH{yt — D[t, t + k]) + Eo.Vt^.iyl - Dt\ID)}. (2.1) 

Oil the right-hand side of the equation, the first two items are the ordering 

costs from the emergency delivery mode and the regular delivery mode, respec-

tively. EH{yl - /,-：]) is the expected holding/shortage cost of period t + k. 

EotK+i一 Dt\W) is the dynamic part, which denotes the expected optimal 

cost function of future periods. We then go back to the first decision point. 
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Only the distribution and density functions of the random proportional factor 

are observed, and the optimal cost function can then be defined as 

V t m D ) == l y故 + �G t { q t , ^ t \ r t ) f R A r t ) d n } . (2.2) 
Jo 

By combining (2) and the terminal cost function, we can obtain the total 

optimal cost function 

Vo{^i\ID) = Y^H(xt - A ) + 
i=\ 

Assume that there are no external inputs in any of the period, which means that 

the iri-delivery order quantity at each period contains only what was ordered 

starting from the first period, and the first item is the summation of the hold-

ing/shortage costs of the first k periods. The second term is the optimal cost 

function from period /c + 1 to period N. 
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Chapter 3 

The Optimal Replenishment 
Policy 

3.1 Preliminaries 

Before making an analysis, we introduce the preliminary results. These results 

will be used throughout the paper. 

Lemma 3.1 H{y) is a twice differential convex function. D(e [0, +oo))and 

[0，I]) are random variables with density functions /d(-) and /；?(•), respectively. 

EH(y - D), EH{B,y), and EfiEoH{Ry — D) are thus convex on y. 

Lemma 3.2 (Feng et al. 2003a) Let g{-)and h{-) be convex functions with x and 

z as their respective unconstrained minima. For a given b > 0, let a minimize 

g(x) + h{x + b). Then, for any a, 

(g{a\/x)-^h{zy{a + b)), ifz>x + b, 
mill [(/(a;) + h(z)] = { 

‘"^•h’込‘计6 “ [ g{n, V a) + h{{a V a) + 6) if z < x + b . 
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There is (x* (b), z* (b)) e S = {(x, z)\x > a,z > x -h b}, which is independent of a 

but depends on b, that minimizes g{x) + h{z). 

M/)) 乂 ⑷ ） ： P ， 办 b ， 
[ ( a , a 4- 6), if z <x + b. 

In addition, when b is increasing, x*{b) is decreasing and z*{b) is increasing. 

Proof: The Lemma is cited from Feng et al. (2003)，and the reader is directed 

to this work for the proof and details. A 

g{x) + h{x + b) is also joint convex on x and b. Therefore, the function 

+ fi'{z)] = g(x*{b)) + h{z*{b)) is convex on b. 

Lemma 3.3 Suppose that g{-)and /i(-) are convex functions and a and b are 

positive constants, r is a given value that belongs to the interval (0,1). Let 

f(x, y) = ay + bx + g(y + rx) + h{y + a:). Then, the following are true. 

(1) f(x, y) is joint convex on x and y. 

(2) Assume that the optimal values are x*{r) and y*{r), which minimize 

f{x, y) and depend on r. When r is increasing, x*{r) is increasing and y*(r) 

is decreasing. 

(3) Consider the case in which y is given and f(x, y) is convex on x. Assume 

that the minimum point of f(x, y) is x*{y, r). Given r, as y is increasing, x*(y, r) 

is decreasing. Given y，as r is increasing, x*{y, r) is also decreasing, and x*{y, r) + 

y depends on y. 

Proof: See the Appendix. A 

To derive the optimal replenishment policy in each period of the model, we 

consider the optimal replenishment policy at the second decision point and the 
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first decision point of each period in sequence, and then combine them to form 

the optimal replenishment policy for each period. 

3.2 The optimal replenishment policy at the sec-

ond decision point 

Lemma 3.4 Assume that Vt+i{-\ID) is a convex function. At the second decision 

point of period t, the random proportional factor Rt is realized as rt and qt is given. 

The optimal policies for the emergency delivery and the regular delivery modes are 

both of base-stock type. We denote the optimal base-stock levels as Sf*{{l — rt)qf) 

for the emergency delivery mode and Sl*({l — rt)qf) for the regular delivery modes. 

Proof: We rewrite (1) as follows. 

Gticit^^tln) = min {[cM " ml - ^t) + EH{yl - D[t, t + k])] 

+ - yt 一（1 - rt)qt) + Eoyt+M - Dt\ID)]}. (3.1) 

As Vt+MID) is a convex function, 

is still convex on y] and yf. However, Ce{yl — nqf - ^t) + EH{yl - D[t, t + k]) 

is also convex on yf and thus according to Lemma 3.2 (Feng et al. 2003a), the 

optimal policies for the emergency delivery mode and the regular delivery mode 

are base-stock policies. A 

We have proved that the optimal policy for the emergency and the regular 

delivery modes are are base-stock policies. From (3) the respective optimal base-

stock levels are clearly functions of the proportional factor and the order quan-

tity from the stochastic delivery mode. The following proposition establishes a, 
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monotonic property with respect to the proportional factor and the stochastic 

order quantity. 

Proposition 3.1 (1) For a given order quantity qf from the stochastic delivery 

mode, the optimal base-stock level of the emergency delivery mode S^*((l — rt)ql)is 

increasing and the optimal base-stock level of the regular delivery mode — 

rt)ql) is decreasing with respect to the proportional factor rt. 

(2) For a given proportional factor rt, the optimal base-stock level for the 

emergency delivery mode Sf*{{l — rt)qf) is decreasing and the optimal base-stock 

level for the regular delivery mode 5'[*((1 — ri)q'l) is increasing with respect to the 

order quantity qf of the stochastic delivery mode. 

Proof: (1) Given qf , when 7\ is increasing, (1 - rt)ql is decreasing. According 

to Lemma 3.2, - n)qf) is increasing and 5'[*((1 - rt)qf) is decreasing. The 

proof is similar to that of (2).A 

At period t, an increase of (1 - rt)qf means that more units are delivered 

that affect the optimal cost function of future periods (dynamic part). Therefore, 

the emergency delivery mode plays a less important role in decreasing the cost 

function of future periods, which leads to a smaller optimal base-stock level for 

this mode. At the same time, an increase of (1 - rt)qt leads to a, higher optimal 

base-stock level for the regular deliveiy mode. 
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3.3 The optimal replenishment policy at the first 

decision point 

Using the results that were developed in the previous subsection, we can deal 

with the optimal decision making process for the stochastic delivery mode. We 

first present the existence property. 

Lemma 3.5 Assume that Vt+i(-\ID) is a convex function and that there is a 

unique optimal order quantity from the stochastic delivery mode. 

Proof: For a given proportional factor r̂ , Lemma. 3.2(Feng et al. 2003a) indi-

cates that Gt{ql, (̂l?̂ ,) is still convex in ql a n d L e m m a , 3.1 further indicates that 

fo Gt(q^,^tln.)fRi(r(.)dri preserves the convexity and thus that the optimal order 

quantity is from the stochastic delivery mode. In addition, 

is also a convex function. A 

We suminarize our characterization of the optimal policy in the following 

theorem. 

Theorem 3.1 (1) For any period t, Vt{-\ID) is a convex function. 

(2) At any period t, the optimal replenishm.ent policy is as follows. At the first 

decision-point, optimal order quantity is placed from the stochastic 

delivery mode. At the second decision-point, the random proportional factor is 

realized as tv Order up to the optimal base-stock level Sf*{{l — rt)qf*{^t\^D)) 

from the emergency delivery mode and order up to the optimal base-stock level 

SI*{{1 — rt)qi*(^t\ID)) from the regular delivery mode. 
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Proof:(l) As we mentioned in the proof of Lemma 3.5, if Vt+i{‘\ID) is a 

convex function then we can also obtain Vt{-\ID) as a convex function. Then, by 

induction, we can complete our proof. 

(2) is obvious from two previous lemmas.A 

We can prove that an optimal order quantity for the stochastic delivery mode 

exists, but whether it is subject to a base-stock policy is still unknown. After 

studying the following no delivery information delay model, we will be able to 

demonstrate that a base-stock policy is not optimal for the stochastic delivery 

mode. 
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Chapter 4 

Specialized Case: No Delivery 
Information Delay Model 

We first consider a special case in which delivery information from the stochastic 

delivery mode is known before the decision is made. When delivery information 

is present, that is, when the proportional factor is known, the decision maker 

knows the leadtime and delivery schedule, and the decision on how much to order 

from these sources is made jointly. The results that are derived from this case 

allow us to further investigate the impact of delivery information delay. 

Specially, there are three sources of supply: the emergency delivery mode 

with a leadtime of k\ the regular delivery mode with a leadtime of /c + 1; and the 

stochastic delivery mode with rtql and (1 - rt)ql for leadtimes of k and /c + 1, 

respectively. 

As the realized proportional factor is known, the sequence of events is simpler. 

At the beginning of each period, the stochastic proportional factor is known, and 
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Demand D t - i realized Demand Dt realized 
Review of on-hand inventory Xt Review of on-hand inventory Xt+i 

Inventory position observed Orders arrive 
Delivery information realized 
Decision qf is made 
Decision qf is made 
Decision ql is made 

l_ Period t — -H 

Figure 4.1: Event sequences in the no delivery information delay model 

the retailer then places orders from all delivery sources. The orders arrive, and at 

the end of each period, demand occurs and the holding/shortage cost is evaluated. 

The sequence of events is depicted in Figure 3. 

The assumption Cg > ĉ  > Cg is still required, and in addition we call a, de-

livery mode inefficient in the current period if it is not used under the optimal 

replenishment policy, because of its high cost or long leadtime compared to other 

delivery modes. 

In particular, if the proportional factor r, is binary, i.e., rt = 0 or 1, then an 

order from the stochastic delivery mode will be delivered in a complete batch with 

leadtime k or leadtime k+1，respectively. As we have indicated in section 2, this 

case corresponds to the case in which there is no partial shipment, which has been 

studied as an inventory model with two-consecutive leadtimes in the literature. 

Base-stock policies are still optimal for the two efficient delivery modes. In the 

subsequent sections, we summarize these results. 
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4.1 Special Case 1: The Realized Proportional 

Factor r力=0 

When the realized proportional factor is 0 at current period t, then full order 

quantity from the stochastic delivery mode will arrive at period 亡+ /c +1. The reg-

ular delivery mode is inefficient because the stochastic delivery mode is cheaper, 

although the two modes have the same leadtime A: + 1. 

Theorem 4.1 (1) Assume that Vi+i{-\NID) is a convex function. When rt = 0， 

the regular- delivery mode is inefficient. The optimal policies for the stochastic 

delivery mode and the emergency delivery mode are base-stock policies, and there 

are two optimal base stock levels S^*{rt)\rt=o = and S'f*(rf)|r(=o =对*(•)• 

Furthermore, (0) > S f (0). 

(2) The optimal replenishment policy is as follows. When [t < order 

the emergency delivery mode up to and the stochastic delivery mode up 

to 广(0). When Sf*{0) > ^t > order the stochastic delivery mode up to 

Sf*{0). Otherwise, place no order. 

Proof: The optimality of a base-stock policy can be demonstrated by using 

Lemma 3.2 (Feng et al. 2003a).A 

4.2 Special Case 2: The Realized Proportional 

Factor rt = 1 

When the realized proportional factor is 1 at current period t, then full order 

quantity from the stochastic delivery mode will arrive at period t + k. The 
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emergency delivery mode with the same leadtime k is thus inefficient because of 

its high cost. 

Theorem 4.2 (1) Assume that Vt+i{-\NID) is a convex function. When rt = 1, 

the emergency delivery mode is inefficient. The optimal policies for the stochastic 

delivery mode and the regular delivery mode are base-stock policies. There are 

two optimal base-stock levels S^*(rt)\rt=i = and Sl*{rt)\rt=i = *^�*(1). 

Furthermore, S'P(l) 2 广 ( 1 ) . 

(2) The optimal replenishment policy is as follows. When ^t < order 

the stochastic delivery mode up to and the regular delivery mode up to 

5[*(1). When SI*{1) > ^t > 5^(1) , order the regular delivery mode up to 5[*(1). 

Otherwise, make no order. 

Proof: The optimality of a base-stock policy can be demonstrated by using 

Lemma 3.2 (Feng et al. 2003a).A 

4.3 Comparison of the Two Special Cases 

We list the optimal base-stock levels of the two special cases in Table 4.1. Fac-

tually, from another point of view, these two special cases can be a, stochastic-

leadtime inventory model. In this case, the stochastic delivery mode has the 

leadtime k with one probability and the leadtime A: + 1 with the other proba-

bility, and it would thus be interesting to explore the order relationships among 

these four optimal base-stock levels. We know that if the full order quantity from 

the stochastic delivery mode is delivered at period 亡 + fc + 1，i.e., rt = 0, then 

the optimal level of the stochastic delivery mode is greater than the optimal level 

of the emergency delivery mode, i.e., > 5f*(0); If the full order quantity 
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Tt = 1 rf = 0 

The regular delivery mode 5[*(1) 

The stochastic delivery mode (1) S f (0) 

The emergency delivery mode S'®*(0) 

Table 4.1: Optimal base-stock levels in two special cases 

from the stochastic delivery mode is delivered at period t + k, i.e., rv. = 1, then 

the optimal level of the regular delivery mode is greater than the optimal level of 

the stochastic delivery mode, i.e., 5[*(1) > 

Proposition 4.1 (1) Assume that Vt+i(-\NID) is a convex function. The opti-

mal base-stock level of the stochastic delivery mode in case rt = I is larger than 

the optimal base-stock level of the emergency delivery mode in case rt = 0； i.e., 

srw > srio). 

(2) If 颜 叫 ) > 0 and 〜丑咖•「職+1丨则 < —Cr at point 

Sril), thenSriO) > Sr(l). / /讓讲叩 > 0 a n 严 十 長 丑 … 丨 < 

- Q at point srw, then 5 f(0) > 5^(1). However, if both 膽(.";，糾丨 and 

〜〜/…丄广/^…丨则 at po饥t srw are less than zero, then Sr{0) < 

^ r ( i ) -

(3). If the optimal base-stock level of the stochastic delivery mode in case n = 

0 is less than the optimal base-stock level of the stochastic delivery mode in case 

rt = 1, i.e, Sf*{0) < then the optimal cost function of case n = 1 is less 

than the optimal cost function of case n = 0，i.e., 1\NID) < 0\NID). 

Proof: See the Appendix. A 

25 



When n = 1, the stochastic delivery mode primarily influences the expected 

holding/shortage cost EH{y - D[t, t + k]). When r! 二 0, the stochastic delivery 

mode primarily influences — Rt^i\NID), which is the optimal 

cost function in future periods.細(％f.’糾丨)> 0 and � 驗 丨 剛 < 

—Cs at point mean that compared to case rt = 1, the order from the sto-

chastic delivery mode in case n 二 0 mainly influences the future periods, and 

we can still order more quantities from the stochastic delivery mode to decrease 

the optimal cost function of these future periods. If 旭叫"^丨^计叩 > 0 and 

〜 厂 队 " . … 丨 < �a t point S r ( l ) ’ in case n = 0, then more 

quantities from the regular delivery mode can decrease the optimal cost func-

tion of future periods. Therefore regardless of which event occurs, the optimal 

base-stock level of the stochastic delivery mode in case rt = 0 is greater than 

the optimal base-stock level of the stochastic delivery mode in case n = 1, i.e, 

S r (0) > S r (1). However, if both 膽 丨 “ 斗 叫 and 崎十】彻(乂 +̂！^̂ 。知‘丨肌巧 

at point 广（1) are less than zero, then the delivery mode with the leadtime k 

that affects the expected holding/shortage cost and optimal cost function of fu-

ture periods plays a crucial role. Thus, 广(0) < Sf*{l). 

Only two delivery modes are efficient for both special cases, but they are for 

each case different. More interesting results will be derived in the analysis of the 

case with partial delivery. 

4.4 The Case with Partial Delivery { n E (0,1)) 

When the proportional factor n is between 0 and 1, then partial shipment is 

allowed. Partial shipment affects the inventory position of periods k and /c + 1. 
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As the goods that are ordered from the emergency delivery mode are delivered 

at period 力 + /c, the expected holding/shortage cost of period t-\- k is directly af-

fected. Thus, the decision on the stochastic delivery mode should be made based 

on the decision on the emergency delivery mode. Decisions should be made as 

the emergency delivery mode first, then the stochastic delivery mode, and finally 

the regular delivery mode. 

When the realized proportional factor r̂  belongs to the interval (0,1), it is 

not possible for all three delivery modes to be efficient at the same time. We have 

observed that only two delivery modes are efficient in each special case, and this 

property is extended to the case with partial delivery. 

Lemma 4.1 When rt G (0,1)，the stochastic delivery mode is always efficient. 

However, the emergency delivery mode and the regular delivery mode can not be 

efficient at the same time, and thus we can only order a positive amount from 

either the emergency delivery mode or the regular delivery mode. 

Proof: If all three delivery modes are efficient, then assume that the opti-

mal quantities are gf*(n’6,)’ and Then, order a. little more 

quantity from the stochastic delivery mode, say qf*{rt,^t) + 八，where A ( > 0) 

is small enough. Order - r^A from the emergency delivery mode and 

— (1 — rt)A from the regular delivery mode. The ordering costs will 

decrease by CeVtA + cv(l - n)八—c^A, but at the same time the expected hold-

ing/shortage cost and optimal cost function of future periods remain the same, 

which is a, contradicts the optima,lity of qf* ( r , q f * ( r ^ ，队 and q[* (rt’�,).Hence, 

only two delivery modes can be efficient in each period. 

Here, we demonstrate that the stochastic delivery mode is always efficient. 
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Otherwise, if there is a. realized proportional factor rt that makes only the emer-

gency delivery mode and the regular delivery mode efficient, then we suppose that 

their optimal order quantities are and (?「(〜，CO. ^^Qrin^^i) > , 

then we order 【(：；:产)from the stochastic delivery mode instead of the order 

quantity (“ /二，产)from the regular delivery mode. This means that the ordering 

cost is less and the other costs are the same, which contradicts the optimality of 

力）and If < "「【(二’严),then similar actions and results 

can be taken for the emergency delivery mode, and therefore the stochastic de-

livery mode is always efficient.A 

Apparently, there is a situation in which only the emergency delivery mode is 

efficient, which means that we order nothing from the stochastic delivery mode. 

We can regard this situation as a special case of the situation in which the emer-

gency delivery mode and the stochastic delivery mode are efficient. A similar 

analysis can also be applied to the regular delivery mode. Thus, we have three 

different situations in our model: One in which the emergency delivery mode 

and the stochastic delivery mode are efficient; the one in which the stochastic 

delivery mode is efficient; and the one in which the regular delivery mode and 

the stochastic delivery mode are efficient. 

Lemma 4.2 There is [r/*, rf*] C [0’ 1] for which only the stochastic delivery 

mode is efficient. When rt G [0, rj*), only the emergency delivery mode and the 

stochastic delivery mode are efficient. When rt G (rf*, 1], only the regular delivery 

mode and the stochastic delivery mode are efficient. Meanwhile, Vt{^t, rt\NID) is 

continuous on�and r^. 

Proof: See the proof of Proposition 4.2. A 
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As the realized proportional factor rt increase from 0 to 1, the main influence 

of the stochastic delivery mode moves from the cost function of future periods 

to the expected holding/shortage cost. When the stochastic delivery mode pays 

more attention to the cost function of future periods, rt is low and the emer-

gency delivery mode is efficient as a, primary force that affects the expected hold-

ing/shortage cost. When the stochastic delivery mode pays more attention to 

the expected holding/shortage cost, rt is large and the regular delivery mode is 

efficient as a primary force that affects the cost function of future periods. 

If only the stochastic delivery mode is efficient, then we can regard this situa-

tion as a special case of the other two situations simultaneously. We then rewrite 

the optimal cost function for the case with partial delivery for two possible situ-

ations. The first is the situation in which the stochastic delivery mode and the 

emergency delivery mode are efficient. The corresponding optimal cost function 

is given by 

Kte,n\NID) = min {c^qt + cM " 6) + EH{yt + ml k]) 

+ - (4.1) 

The other situation is that in which the stochastic delivery mode and the 

regular delivery mode are efficient. The corresponding optimal cost function is 

given by 

Vt(^un\NID) = mill {csQl + cM 一一qt) + EH{nql — t + 

- DuB,^,\NID)}. (4.2) 

Using these two optimal cost functions, we can investigate the optimal replen-
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ishment policies for these two optimal cost functions. Lemma 4.2 tells us the kind 

of proportional factors lead to efficiency of the emergency delivery mode and the 

stochastic delivery mode (or the regular delivery mode and the stochastic delivery 

mode). 

Theorem 4.3 (1) For each period t and any n, Vt[it,rt\NID) is convex on the 

inventory position &. 

(2) When rt G [0, rj*), the emergency delivery mode and the stochastic deliv-

ery mode are efficient, and there are two optimal values 广(?，() and qrin^^t)-

The optimal policy is as follows. When & < Sf*{rt), order the emergency deliv-

ery mode up to Sf*{rt), then order qfift,�) from the stochastic delivery mode. 

When ^t > Sf*{rt), order nothing from, the emergency delivery mode, then order 

qt*irt,^t) from the stochastic delivery mode. Otherwise, order nothing. 

(3) When rt G [r]* only the stochastic delivery mode is efficient. There 

exist one optimal value q^^n,认 The optimal policy is that order gf (n’ ^t) from 

the stochastic delivery mode. 

(4) When rt G {rf*, I], the regular delivery mode and the stochastic delivery 

mode are efficient, and there are two optimal values SJ* and qf 乂t). The 

optimal policy is to order 广(n，<̂i) from, the stochastic delivery mode. When 

S[* > qf*{rt,^t) +�order the regular delivery mode up to S[*. Otherwise, order 

nothing. 

Proof: The results can be derived from Lemma, 4.2 directly. We need to use 

the method of induction for (1).A 

Whatever the value of n , only two delivery modes can be efficient, one of 

which must be the stochastic delivery mode. In spite of the uncertainty of the 
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delivery schedule, the low cost of the stochastic delivery mode makes it efficient all 

the time. A state-dependent base-stock policy is still optimal for the emergency 

delivery mode and a base-stock policy is optimal for the regular delivery mode. 

As can be seen, the optimal order quantity of the stochastic delivery 

mode depends on the current states rt a n d a n d the optimal base-stock level 

of the emergency delivery mode also depends on the realized proportional factor 

rt. The impact of these states on the optimal levels will be studied. 

Proposition 4.2 (1) Given &，when 1�is increasing in the interval [0,rj*), 

is increasing and is decreasing; When n is increasing in the 

interval [r/Vf*], is decreasing, and when n is increasing in the inter-

val is decreasing. 

(2) Given n G [0,rl*), when & increases to Sf^in), qrin^^t) is independent 

of^f When & increases after S^*(rt), qr(n,^t) decreases to 0 and 

depends on & Given n G [r广’ 1], qrin^^t) is decreasing and qr{rt,^t) + ^t also 

depends onHence, a base-stock •policy is not optimal for the stochastic delivery 

mode. 

Proof: See the Appendix. A 

Moreover, when n increases from 0 to r}*, the influence of the emergency 

delivery mode on the expected holding/shortage cost becomes smaller, and its 

optimal base-stock level decreases. In contrast, the role of the stochastic delivery 

mode becomes more important, although its proportional factor is rather low. 

Thus, the order quantity from the stochastic delivery mode is increasing, and 

when rt increases from r}* to rf*, the stochastic delivery mode is the only ef-
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Given ^^ n e n e r f l n e ( r f ’ 1] 

Optimal level of regular mode 0 0 SI* 

Order quantity of stochastic mode q f (r“�eO T i qr{rt,^t)i 

Optimal level of emergency mode Sf*(rt) i 0 0 

Table 4.2: Impacts of the proportional factor on the optimal levels 

ficient delivery mode. An increasing percentage of the order quantity from the 

stochastic delivery mode is distributed to affect the expected holding/shortage 

cost, and the larger proportional factor leads to a lower order quantity. When rt 

inceases from r}* to 1, quite a. large percentage of the order quantity from the sto-

chastic delivery mode still results in a decrease in the order quantity. However, as 

the stochastic delivery mode primarily influences the expected holding/shortage 

cost, the cost function of future periods will be affected by the regular delivery 

mode, and thus the regular mode is the efficient delivery mode. 

Proposition 4.2 also demonstrates that the optimal policy of the stochastic 

delivery mode is not a base-stock policy in the general case, because the partial 

shipments do not make the order quantity plus the inventory position appear as 

a whole item. The optimality of a base stock policy is lost even in the model with 

two consecutive leadtimes. 
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4.5 Comparison of the Delivery Information De-

lay Model and the No Delivery Information 

Delay Model 

Our final objective is to quantify the effects of delivery information delay, which 

we can carry out by comparing the delivery information delay model with the 

no delivery information delay model. A new model is introduced as follows to .. 

continue our comparison. 

At period t, assume that there is no delivery information delay in current 

period only, and that there is a. delivery information delay in each future period. 

The optimal cost function of future periods is therefore the same as in the delivery 

information delay model. At current period t, given a realized proportional factor 

ri, suppose that the optimal cost function is VDt{^t,n)- Using a, similar proof to 

that of Theorem 4.3 and Proposition 4.3, we can obtain results. Assume that the 

optimal levels are SDt*{rt), and SD]\ There is [rL>;*’rLf ] C [0，1]. 

Given “ when n is increasing in interval [O.rDl*), qDl*{rt,^t) is increasing 

and SDl*{rt) is decreasing and when n is increasing in interval [rL>J*,rDf*], 

qD^*{rt,^t) is decreasing; when n is increasing in interval ( r D f , 1], gL>r(ri，<^t) is 

decreasing. Moreover, q D f * ( j “ Q is decreasing, as n is given a n d �i s increasing. 

However, qDf*{rt,^t) + depends on & and t\. 

We now compare the delivery information delay model with this new model. 

We can place an upper bound and a lower bound on the optimal order quan-

tity from the stochastic delivery mode in the delivery information delay model. 
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Delivery ID model New model No delivery ID model 

Current period t Information delay No delay No information delay 

Future periods Information delay Delay No information delay 

Notation Vt(^t\ID) Vt{^t.rt\NID) 

qri^iUD) qDrivu^t) 

sr{rt,qrmD)) sDnn) sr(n)  

srivugrmp)) sDr ^ r 

Table 4.3: Comparison of the three models (ID = Information delay) 

The order relationship of the optimal cost functions among the three previously 

mentioned models is shown in Theorem 4.5. 

Theorem 4.4 (1) The optimal order quantity qf*{^t\ID) is less than qDf*{rDl\^t), 

but is greater than mm{qDI*{0,^t),qDf*(l,^t)}• qri^tUD) is decreasing as is 

increasing, but the optimal policy of the stochastic delivery mode in the delivery 

information delay model is not a base-stock policy, because + depends 

on ^t • 

(2) For any given inventory position�Vt{^t\ID) > VDti^t^n) > V瓜 rt\NID�. 

Proof: See the Appendix. A 

The theorem proves that a base-stock policy is not optimal for the stochastic 

delivery mode in either the no delivery information delay model or the delivery 

information delay model. 

The cost difference Vt{xi\ID) — Vt(xt,rt\NID) is called the delivery informa-

tion cost. Intuitively, delivery information delay incurs greater costs, and from 
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another point of view, also complicates the decision setting. We need to consider 

each possible case and balance all these cases, which leads to more unexpected or-

der quantities and generates a delivery information cost. Hence, sharing delivery 

information definitely decreases the total cost of the system. 
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Chapter 5 

Nonoptimality of a Base-Stock 
Policy in Numerical Examples 

In the previous analysis, we focus on an inventory model with two consecutive 

leadtimes and demonstrate that when the stochastic delivery mode has two par-

tial shipments, i.e., n ^ 0 and 1, a base-stock policy is not optimal. However, 

when rt is an extreme value, such as 0 or 1, a base stock policy is still optimal for 

the two efficient delivery modes. In this section, we illustrate this phenomenon 

using a. numerical example. 

The numerical example is a stationary inventory system with a planning hori-

zon of two periods. Only the stochastic delivery mode exists, which has a realized 

proportional factor r. The ordering cost for the stochastic delivery mode is c = 5, 

and the holding/shortage cost function is H{x) = x^. The demand D is 10 with 

a. probability 1/2 and 5 with a. probability 1/2. The initial inventory is x^. 
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The optimal cost function of the system is as follows. 

Vi(rri) = I织 + l/2(:ci + n/f — 5)2 + l/2(:ci + n/f — 10)2 

+ 1/2[1/2(0：1 + ql — 10)2 + l /2 ixi + ql - 15)'] 

+ l/2[l/2(a;i + 15)' + l/2(a;i + - 20)']}. (5.1) 

The optimal order quantity is then qf* = 歡 : ” ) - ； I f a base-stock 

policy is optimal, then ^ ^ should be 1，which means that r = 0 or 1. If it is not 

the case, then the optimality of a base-stock policy is lost. 

The explanation is as follows. The proportional factor leads to two partial 

shipments. We can not regard the order quantity and the inventory position as 

a, whole, as in other studied models in the literature, because only partial ship-

ment of the order and the inventory position affect the corresponding expected 

holding/shortage cost. Therefore, a base-stock policy is no longer optimal. 

Moreover, if we allow the stochastic delivery mode to have three consecutive 

leadtimes, then we will find that a base-stock policy is no longer optimal, even 

if the realized proportional factors are extreme values. Feng et al. (2003) give a 

counter example with three periods to illustrate this problem. 

The main reason for the nonoptimality of a base-stock policy is that the 

Markovian property is lost from the decision process. In other models in which 

a base-stock policy is optimal, there are no additional decisions and inputs after 

the decision period and before the order arrival period. However, in an inventory 

model with three periods, there are three deterministic delivery modes with three 

different leadtimes (fast, medium, and slow). Suppose that we place an order 
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from the slow delivery mode with a leadtime 3 in the first period. We can still 

make an additional order from the fast delivery mode with a leadtime 1 in period 

2, which arrives immediately. The decision for the slow delivery mode with a 

leadtime 3 in period 1 can not be made based on the state in period 1, because 

it is influenced by the decisions of period 2. Therefore the Markovian property is 

lost. 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

We consider finite periodic review inventory systems with delivery information 

delay, two consecutive leadtimes, and three delivery modes, one of which is sto-

chastic and the other two deterministic. The stochastic delivery mode is the 

cheapest with a. stochastic leadtime and partial shipments that are generated by 

a random proportional factor. The deterministic delivery modes are more expen-

sive with deterministic leadtimes and full shipment. A state-dependent base-stock 

policy is optimal for the deterministic delivery modes, but not for the stochastic 

delivery mode. For the special case of the no delivery information delay model, at 

most two delivery modes are efficient for each realized proportional factor. In the 

range of proportional factor [0,1], there are three intervals [0,rj*), [rj*,rj*], and 

(r，，1], In [0,rl*), only the stochastic delivery mode and the emergency deliv-

ery mode are efficient. In [r” ’”?*] ’ only the stochastic delivery mode is efficient. 

In (rf*’ 1], only the stochastic delivery mode and the regular delivery mode are 

efficient. If the realized proportional factor is an extreme value, such as 0 or 1, 
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then the optimal replenishment policy is a base-stock policy, but if that is not 

the case, then a base-stock policy is no longer optimal for the stochastic delivery 

mode. However, a, state-dependent base-stock policy is still optimal for either the 

emergency delivery mode or the regular delivery mode. 

We also investigate the impact of current states on the optimal levels. When 

the proportional factor increases, the optimal order quantity for the stochastic 

delivery mode at first increases and then decreases. Hence, we can place an up-

per bound and a lower bound on the optimal order quantity from the stochastic 

delivery mode in the delivery information delay model. The optimal order quan-

tity from the stochastic delivery mode depends on the inventory position 仏 and 

as t̂ is increasing, it is decreasing. In addition, the two corresponding changed 

amounts are different because of the nonoptimality of a base-stock policy. We 

prove that delivery information delay incurs greater costs than when there is no 

delivery information delay. Finally, numerical examples in the section 5 tells us 

that the optimality of a base-stock policy is indeed lost when the realized pro-

portional factor is not an extreme value. 

6.2 Future Work 

We can also handle the stochastic delivery mode in a non-proportional way. As-

sume that there is a. stochastic number S that is generated after the placement 

of an order from the stochastic mode a.t each period. If the order quantity qt is 

less than S，then the full shipment can be delivered; otherwise, only S can be 

delivered at first and the remaining quantity will arrive k + l periods later. What 
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does the optimal policy look like? Assume that the holding/shortage cost H{-) is 

a, convex function, then the partial shipment minis', qt} allows EH{mm{S, qt}) 

to have the same minimum point as H[.). Although EH(mm{S, qt}) can still 

be convex on the left of the minimum point, it loses convexity on the right of 

the minimum point and maintains the increasing property. If this extension is 

applied to in a new model, then the partial shipment min{S"，^} will appear in 

holding/shortage cost H{-), which means that the convexity on the right of the 

minimum point of EH(.) will be lost, and will become a iinimodal function. It is 

a well known result that we can not keep the property of unimodal except under 

some special conditions, such as special demand distribution functions. Thus, it 

should be a challenge to study such a model for general demand distribution. 

There are other directions that future work could taste. Naturally, we could 

extend our models to infinite inventory systems, and another extension would be ！ 

to consider a more general stochastic process, such as that in Song and Zipkin 

(1996). Unfortunately, even in models with deterministic delivery modes and j 

three consecutive leadtimes, the optimal policy is not a base-stock policy, but i 

we can build up some special situations to expand our studied models. Similar 丨 

work has been carried out by Gross and Soriano (1972) and Chiang and Gutierrez 

(1996, 1998). We could also look at the quantification of the performance under 

a non-optimal but implementable policy, as Tagaras and Vlachos (2001) have 

undertaken in a. model with deterministic delivery modes. 
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Chapter 7 

Appendix 

Proof of Lemma 3.3: (1) To prove the joint convexity of f{x,y), we simply 

need to check wether its Hessian is positive semidefinite. 

y)/dx^ 二 r^g"{y + rx) + h"ix + y) 

d^fix, y)/dxdy = rg"{y + rx) + h"{x + y) 

d2f[x, y)/dydx = rg"[y + rx) + h!'{x -\-y)= y)/dxdy 

y)ldi/ = g"[y + rx) + h"{x + y). 

The Hessian can then be written as: 

_ f d'f(x,y)/dx' d'f{x,y)/dydx ^ 

—[d'f(x,y)/dxdy , ‘ 

Apparently, detH > 0, and it is easy to verify the Hessian H is positive 

semidefinite. Therefore, f{x,y) is joint convex on x and y. Assume that the 

optimal values are x*{r) and y*(r), which are functions of r. 
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(2) As x*{r) and y*{r) minimize/(x, df(x*{r),y*(r))/dx = 0 and df {x*{r), y*{r))/dy = 

0, equally, 

b + rg'{rx*ir) + y*ir)) + h'{x*(r) + y*{r)) = 0 

and 

a + g'{rx*{r) + i/(r)) + h'{x*{r) + y*{r)) = 0. 

Thus, 

and 

+ 二 g —a. 

When r is increasing, - f f j： is decreasing, and r.T*(r)+?/(r) is decreasing. At 

the same t i m e , 台 - a is increasing, and x*(r) + y*{r) is increasing. From these 

two observations, we can derive that x*{r) is increasing and i/{r) is decreasing. 

(3) Given y, f(x, y) = ay + bx + g(y + rx) + h�y + x) is convex on x. Thus, 

an optimal value x*{y,r) exists, which makes df{x,y)/dx = 0. Then br^g'{y 

rx*(y, r)) + h'{x*{y, r) + y) = 0. Given r, as y is increasing, rc*(y, r) is decreasing. 

Given y, as r is increasing, x*{y,r) is also decreasing. Rewrite b + r^g'(y + 

rx*{y,r)) + h'{x*(%j,r) + 以）=0 in the following way: 

b + r V ( ( l 一 r)y + r{y + r))) + h'{x*{y,r) + y) = 0. 

Apparently, x*{y,r) + y depends on y and r .A 

P r o o f of Propos i t ion 4.1:(1) For any period t, when the proportional factor 

N = 0, S^IO) > S^*{0). If 5^(0) = S'f*(0), then there is no order from the 

stochastic delivery mode and only the emergency delivery mode is efficient. In 
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Given & Case n = 0 The new model Case n = 1 

The emergency delivery mode S'f*(0) Yf* 0 

The stochastic delivery mode S f ( 0 ) 0 5 f ( l ) 

The regular delivery mode 0 0 5'[*(1) 

Table 7.1: Comparison of the three cases 

this situation, the result can also be verified by the following proof. Assume 

(0) > 5^(0) . It is not easy to prove 5^(1) > 5^(0) directly. 

First, we need to introduce a new model to help us complete the proof. The 

new model is as follows. At current period t, assume that we can only place an 

order from the emergency delivery mode, which means that only the emergency 

delivery mode is efficient. The other features of the model are the same as our 

studied model, for example, the cost function of future periods is the same. Ap-

parently, it is optimal to adopt a base-stock policy for the emergency delivery 

mode in period t. Suppose that the optimal base-stock level is Yf*. 

Looking at Table 7.1，it can be seen that the process of finishing the proof 

is as follows. It is obvious that Yf* is smaller than S'f (1). If we can prove that 

ŷ e* > 广 ( 0 ) ’ then 广 ( 1 ) > 5^(0) and the proof is finished. 

Assume that (0) > Y"广.We then take instead of the optimal 

level (S'f*(0), S^*(0)). Compare the cost functions that are generated by these two 

pairs. (Q - Cs)(<Sf*(0) — is the additional ordering cost for the optimal case. 

According to the definition of optimality, EH{YF* - D[t,t + /c]) - E H { S r { 0 ) -

Dlt,t + k]) should be greater than ( c e - c , ) ( ^ r ( 0 ) In interval ’ (•)]， 

崎十广|腳)< —cs，otherwise, 5^(0) < S f (0). This contradicts our assump-

tion that SriO) > 5^(0) , and thus 丑 ( 片 * - Dt\NID�- E K + i(对* ( 0 ) -
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Dt\NID) > c , ( 5 r ( 0 ) — vr). Then, 

EH(Yte* — D[t,t^ A;]) + 丑 - Dt\NID) 

-[EH{St*{0) - D[t,t + /c]) + -

�Q(5r(o) -yr) . 

Ill the new model, only the emergency delivery mode is efficient at period 

t, and its optimal policy is a. base-stock policy. The inequality affirms that the 

base-stock level S'f (0) leads to the better performance of the new model than the 

optimal level Yf* (our assumption), which is Obviously a contradiction. Hence 

(0) < and 5^(1) > (0). 

(2) is obvious. (3) If S r � > Sr (0 ) > Sr(0 ) , then both 犯 卯 叩  

and 肪D而…、,…二广尺…丨则 at point 5^(1) are less than zero. Of course, 

Proof of Proposition 4.2: For simplicity and convenience, we take EH(y-

k]) 二 L(y) and _ Dt,Rt+i\NID) = G(y) in this proof. 

Lemma. 4.7 and (1): The proof consists of four steps. In Table 7.2，we divide 

the cost function into three parts: ordering cost, the expected holcling/shorta,ge 

cost, and the cost function of future periods to enable us to compare each part 

directly. 

Assume that there are ij and rf = r} + A, which belong to (0,1) and A > 0, 

where A is small enough. 

• Step 1: The optimal cost function Vti^t,rt\NID) is continuous on n. 

If at rj, then the regular delivery mode and the stochastic delivery mode are 
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Given & 

Ordering cost cqf + Ceqf + 

The expected holding/shortage cost L�yt) 

The cost function of future periods 

Table 7.2: Cost structure of the cost function at period t 

efficient, and the optimal levels are qf , & ) and S[*. However, in case rf， 

suppose that we can only make orders from the regular delivery mode and 

the stochastic delivery mode. Let us take q阶 ^ G ) = ^q^*{rl, ^t). Without 

loss of generality, if K f c , r?|iV/D) < K f e , r?|7V/D), then\Vt{^t.rl\NID)-

< ( c . - = ( c . - c 寧 I f at r?, 

then the emergency delivery mode and the stochastic delivery mode are effi-

cient, and the optimal levels are q�*(r?，� ) and However, in case rj , 

suppose that we can only place orders from the emergency deliveiy mode 

and the stochastic delivery mode. Let us take qf(rl,(t) = {^拔*(?"•?’O 

and Sf(r l ) = S^ir f ) . Without loss of generality, if Vt{^t,r}\NID) > 

Vti&,rf\NID), then mUt ,rf\NID)-Vt{^ur}\NID)\ < ( c e - c ^ ) ^ ^ , - 6 ) = 

(ce - Cs )Y^� ' * (7 f ’&). Remember that A is small enough, and thus the op-

timal cost function is continuous on r；,. 

• Step 2: If only the stochastic delivery mode is efficient at a given interval, 

then qr(^t) (given & let n ) = (jf (n)) is decreasing as n is increasing. 

If at both rj and rf, then only the stochastic delivery mode is efficient. 

Assume that ql*(7j) and ) are optimal order quantities. To com-

pare these two optimal order quantities, suppose that we still order g广(rj) 

from the stochastic delivery mode as in case rf，i.e., qi(rf) = q�*(r}). The 
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ordering cost is the same, that is, + Qti'^t)) — ^i^t + ( / f W ) ) and 

L{r'^qf {rf) + ^t) = L{rlqf*{rl) + & + Aqf*(rl)). Assume that we order less 

from the stochastic delivery mode in case rj, say q�*(rt) — e, where e is a 

positive infinitesimal. As the changes in the ordering cost and the cost func-

tion of future periods are the same, we focus our attention on the changes 

ill the expected holding/shortage cost. If L'(r}qf*(r}) + is negative, then 

L\r}q^*(rl) + + Aq^*(r})) < L'(jjq況)+ � .B e c a u s e of the optimality 

ofCW) incase rj, L(r;. qf* (r}) + & _�1 e) - L ( r } � ) + > 0. However, | 

Lirlcrrir}) + 6 + Aqr(rl) 一 r}e) - L ( r �r ! ) + (t + Aqr(r})) < 丨 
J 

L{rlqr{rl) + ^ — - + 认 丨 

Therefore, qrOi) < qt(rf) = qf*{rl). If L'(rjqf"{r}) + ^t) is positive, and 

L ' ( r } q � } ) + (t + Aqf*{rl)) > L ' ( j j q � } ) + 队 Because of the optimality 

of qr(Tl) in case r；, L(rlq!*(rl) + 6 - r/e) - L{rlqr(rl ) + ^t) < 0. On the 

other hand, 

LirUnrl) + + Agr(W) — r j e ) - 喻 、 — ! ) +6 + Aqr(r})) < 
L(rlqr(rl) + — r } e ) - 喻 、 } ) + 

Therefore, qt*(rf) < (/f(rf) = Hence, when the stochastic delivery 

mode is the only efficient delivery mode, q厂(ft) is decreasing as rt increasing. 

• Step 3: If the stochastic delivery mode and the regular delivery mode are 

efficient at a, given interval, then (/广(n) (given《,，let qr(Xt,n) = q r i n ) ) is 

decreasing as rt is increasing. 

If at both r} and rf, then the stochastic delivery mode and the regular de-

livery mode are efficient, and ^ /� ( r } ) and SJ* are optimal levels for case rj. 
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Factually, as a supplementary delivery mode, the decision on the regular 

delivery mode is always made last, and its optimal base-stock level is deter-

mined by its unit purchase cost cv and the cost function of future periods 

G(y). Therefore, is independent of r/, and and S[* are optimal 

levels for case rf. As in the previous analysis, g®*(rj) is decreasing as rt is 

increasing. 

• Step 4: If the stochastic delivery mode and the emergency delivery mode : 

are efficient at a given interval, g广(n) ( g i v e n �l e t ( ? 广 = q f is 
I 

increasing and S^*(rt) is decreasing as n is increasing. 

Use Lemma. 4.3. 

Based on the results of the four steps, if the emergency delivery mode and the 

stochastic delivery mode (alternatively the stochastic delivery mode or the regular 

delivery mode and the stochastic delivery mode) are efficient at rj and rj, then 

they are efficient in the interval Furthermore, there is a C [0,1: 

where only the stochastic delivery mode is efficient, and when rt E [0,r/*), only 

the emergency delivery mode and the stochastic delivery mode are efficient. When 

rt E (rf*，1], only the regular delivery mode and the stochastic delivery mode are 

efficient. Lemma 4.7 and (1) are thus proved. 

(2) can be derived from Lemma. 4.3. A 

Proof of Theorem 4.4: Compare the delivery information delay model with 

the new model. As the dynamic part is the same, we focus on the current period 

t. If there is no delivery information delay, then all decisions are made under full 

information. If there is delivery information delay, then we evaluate each case with 

a given proportional factor rt and integrate all of them. Thus, we can only obtain 
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an optimal quantity of the stochastic delivery mode under the expectation of 

proportional factor Rf. However, the optimal order quantity is between 

the upper bound and lower bound of the new model, which are that qf*{^t\ID) 

is less than qDf*[rD}\� and is greater than For 

any case, g f * �/ D ) is generally not optimal, and thus the optimal cost function 

Vt(^t\ID) is greater than VD^n). 

We can prove that VDt[^f> f̂ t) > by induction. 

• Step 1: At period N — k — 2, according to previous analysis, we know that 

V DN-k-2{iN-k-2,rN-k-2) > VN-k-2{ANN—k—2\N ID). 

• Step 2: At period t, assume that VDt+ii^t+un+i) > Vt+i(^t+i,rt+i\NID). 

If VDt(^t,n) < m^t^nlNID) , then we can simply take the policy for the 

new model to be the optimal policy for the no delivery information delay 

model. The optimal cost function should then be less than V t + i， r t + i \ N I D ) , 

which contradicts the optimality of VDt+i{(t+iy'i^t+i)i and thus rt) > 

Vt(^urt\NID). 

• Step 3: For any period t, we have VDti^t^n) > Vt{^t,rt\NID).A 
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