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ABSTRACT 

Due to the maturing MEMS technology, research in microfluidics has advanced 

rapidly in the past decade. The polymer-MEMS fabrication technology realized the 

development of biocompatible devices, which was requisite in Bio-MEMS 

applications. With various microfluidic devices, many operations on chemicals and 

bio-fluids could be miniaturized to micro-liter scale. Therefore，developing a 

technology to integrate polymer-based microfluidic devices into a system would be a 

contributing direction of the research in microfluidics. 

This thesis describes several types of polymer-based vortex micropumps and 

piezoelectric active micromixers developed by the author. In a vortex micropump, 

fluid transmission with steady flow rate is driven by the circumrotating motion of 

the impellers. The discharge and pressure of micropumps have been investigated 

with experiments and an analytical model. The operation principle of the mixer is 

based on the mechanical vibration generated by a lead zirconate titanate (PZT) 

ceramic diaphragm. The characterization of micromixers has also been analyzed 

through experiments. The microfluidic devices discussed in this thesis can be 

fabricated with a compatible fabrication process and are all digitally controllable. 

Therefore the devices can be integrated into a single-chip system that can be 

controlled by digital signals. 
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Two integrated microfluidic systems, i) microfluidic flow planning system and 2) 

microfluidic mixing module array, were also successfully developed. The flow 

planning system was designed and fabricated with four microchambers and sixteen 

vortex micropumps. Based on the experimental result of the micropumps, a 

computer-controllable system, which consisted of multiple voltage generators, was 

also developed for the real-time microfluidic operation control. The approach of 

integrating an array of vortex micropumps with the control system will eventually 

automate many bio-molecular detection and drug discovery processes. Furthermore, 

the mixing module array integrated with active microfluidic mixers, micro vortex 

pumping devices and tesla microvalves were successfully fabricated using a single 

polymer-based fabrication process. The integrated mixing module further 

demonstrated the feasibility of chemical mixing and concentration control. The 

digitally controllability of the pumping and mixing systems could improve the 

accuracy, efficiency and, hence, the functionality of the microfluidic operations. 

Further integration of the microfluidic systems with other micro-sensing or 

micro-valving devices can potentially miniaturize the entire bio-fluid/chemical 

preparation systems in the future. 

Submitted by Raymond Hiu-wai Lam 

Supervised by Professor Wen J. Li 
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ABSTRACT (CHINESE) 

摘要 

現今微電機系統技術變得成熟，微流體學在近十年得以大大發展。基於聚合物 

的製程技術實現了其生物微電機系統所須的生物相容性。化學藥品及生物液體 

的處理程序亦能以多種微流體器件縮小至微公升的容積單位。因此，開發一種 

將微流體器件組成系統的技術將會有助於微流體學的研究發展。 

此論文描述了多種新開發的聚合物製的微系和壓電式主動微混合器。對於微 

栗，葉輪片的旋轉是用作推動液體的流勤，其流量及水壓會以實驗探討。而微 

混合器的運作則是基於壓電性所產生的振動，其特性亦會以實驗作分析。所有 

在此討論的微流體器件也具有相容的製程及數控特性。由此可知，以這些器件 

組成的單片系統亦能以數字信號操控。 

兩種合成微流體系統(微流體水流導向系統和微流體混合組列）己成功研製。水 

流導向系統擁有四個水腔和十六個微栗。基於微泵的性能，一個具有多個電壓 

输出的計算機可操控系統已製成並滿足實時微流體運作的要求°此種以微泵及 

數控系統的組合方式將能使多種生物份子和藥物的測試程序自動化。另外，微 

流體混合組列是由主動混合器、旋漏式微泉和特斯拉微活門以單一的聚合物製 

程所製成。這系統能進一步展示其化學藥物的混合功能和濃度控制。這兩種輸 

水及混合系統的數控性質能改善其運作的精確度、效率以及功能°以此系統與 

其他微測量或微活門器件作進一步組合將可以令整個生物液體/化學藥品產成 

系統得以微型化。 
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Introduction 1 

CHAPTER 

ONE 

INTRODUCTION 

1-1 OVERVIEW OF MEMS AND MICROFLUIDIC 
TECHNOLOGIES 

1-1-1 Microelectromechanical Systems (MEMS) 

Since early 1960s，integrated circuit fabrication was developed and enabled many 

laboratories to design and fabricate manifold integrated circuits (ICs). Some of the 

ICs included sensing and actuating components and greatly enhanced the 

applicability of the electronic chips. This kind of devices can be categorized as 

MEMS, which is defined as the device or system containing functional components, 

by electromechanical or electrochemical means，of sizes in 1 micrometer/micron 

(jam) to 1 millimeter (mm) [1]. The mature development of MEMS has given a great 

impetus to improve the preciseness, robustness and operation performance of 

microsystems in the past decade. 

With the MEMS technology, miniaturized systems could be designed as either 

sensors or actuators, such as micromotors [2]，microaccelerometers [3]， 

microgyroscopes [4]，microtubrines [5], inkjet print heads and micro-optical 

switches. In the silicon-based microsystems, energy transduction was typically based 

on electrostatic force, electromagnetic force, thermal expansion, piezoelectricity, 
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electrokinetic effect, capacitive force, polymerase chain reaction (PGR), etc [6]. This 

rapidly extended the applications of MEMS in many areas such as, inertial 

measurement, microfluidics, optics, pressure measurement and radio-frequency (RF) 

devices. 

The technologies used to manufacture such miniaturized devices are called 

microfabrication or micromachining technologies [6]. In the early stage of the 

MEMS fabrication development, the substrate of most MEMS devices was restricted 

to silicon wafer. Photolithography, thermal oxidation, physical/chemical vapor 

deposition focused only on the silicon-compatible micromachining processes [i]. 

Since the past decade, MEMS devices could also be fabricated on non-silicon 

substrates due to the mature Polymer-MEMS fabrication technology [7]. Such 

technology enabled micro-devices and microsystems to achieve the biocompatibility 

and, hence, to improve greatly on the applicability. One of the reformed areas was 

the Bio-MEMS application. The existing treatments on chemicals and bio-fluids, 

which contained organisms such as DNA and living cells, could also be miniaturized 

to micro-liter scale. Consequently, it induced the great demand on the development 

of the MEMS for micro-fluid treatments, i.e., the microfluidic systems. 

1-1-2 Microfluidic Systems 

Research on microfluidics has developed rapidly in the past years - from single 

channel devices [9] to complicated and multifunctional systems integrated with 

manifold microfluidic devices [10] • A Microfluidic system is defined as a system 

composed of one or more of the various microfluidic devices and it usually has chip 

area in the order of 1 cm^ with several layers. Research in microfluidic device have 
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emerged as a hot area and has been an essential branch of MEMS (It can be 

indicated by the increment of research publications from 1989 to 2000 as shown in 

Figure 1). Micropump [11] - [13], microvalve [14] - [15]，micromixer [16] - [17], 

microneedle [18] and microfluidic flow sensor [19] are some of the key microfluidic 

devices. Researchers have contributed to both of the implementation and theoretical 

analyses [20] - [22] on each device. 

70 

Micropumps 
60 Microflow sensors 

" … M I C R O T A S I 

5 0 - OTHERS I 

G MICROVALVE / 

I 4 0 - I — 丁 他 丨 / -

I 3 0 : J 

2 � 

1 0 -

Years 

Figure 1. Publications of microfluidics-related 

papers in international journals and conferences [8]. 

Device material is an important issue since many microfluidic devices are used in 

the applications of biochemistry and life sciences [23]. Therefore, the structural 

material of microchambers and microchannels is necessary to be transparent, 

chemically inactive and biocompatible. Otherwise, the chemical reactions between 

structural materials and fluid samples will affect the sample properties and should 

be avoided. With the advancement of MEMS technology, contemporary microfluidic 
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devices can have complicated structures and multiple layers and are no longer 

restricted to silicon-based. Polymer has been a vital material in microfluidic devices 

since it fulfills the above criteria, especially in bio-optical detection applications. 

Polymer-based microfluidic devices can be used in wide scope of applications. Many 

designs of the polymer-based devices have borrowed the concept of the traditional 

MEMS fabrication technique, i.e., the "layer-by-layer" fabrication. Moreover, with 

the channels and chambers made by polymer, microfluidic devices can reduce 

superfluous effects in their operations. 

Due to the superior performance of the existing microfluidic devices, biological and 

chemical sensing systems and analyses can be practically miniaturized. However, 

besides improving the signal acquisition capabilities of these miniaturized sensing 

systems, the preciseness of biochemical sample preparation and handling is also a 

vital requirement for the system miniaturization. This makes the integration of 

microfluidic devices become the next challenge of the microfluidic technology. 

1-2 LITERTURE REVIEW ON MICROFLUIDIC DEVICES 

1-2-1 Micropumps 

Micropump is an actuator that provides pressure to induce fluid flow inside a 

microchannel. In the device design, the main concerns are its occupied area, the 

applied voltage (or power), the flow rate induced and how much back pressure it can 

overcome. Some of the micropumps attain flow rates up to i ml/min and some are 

able to work against a back pressure higher than 105 Pa [24]. The lead zirconate 

titanate (PZT) valveless rectification micropump [25] is one of the conventional 

micropumps. The nozzle geometry of the inlet and outlet channels can increase the 
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unidirectional back pressure. The rectification property can also be achieved by 

check valves [26]. Rotary micro-pumping is another type of mechanical pumping 

approach, which can be based on electromagnetic force [27] or a compact disc (CD) 

platform [28]. Furthermore, fluid flow can also be driven by non-mechanical 

actuation forces such as electrophoresis force [29] and electro-osmosis effect [30]. 

1-2-2 Microvalves 

Microvalve is an important microfluidic component for fluidic flow control. The 

device size, response time，pressure resistance and biocompatibility are the major 

considerations in microvalve design. A passive valve does not require any external 

driving energy. Such device is usually applied in micropumps to reduce the fluid 

flow in a particular direction, which is called the rectification effect. Check valve [31]， 

diffuser [32] and tesla valve [33] are some of the typical designs. Besides，active 

microvalves can be actuated by various forces such as pneumatic, thermomechanical 

[34]，piezoelectric [35] and electrostatic forces [36]. Moreover, the active valves can 

be operated with other microfluidics components and, so, enable the internal flow 

control capability of the microfluidic devices. 

1-2-3 Micromixers 

For more complicated microfluidic systems, mixing of more than one fluid is often 

required. Fluid mixing is affected by the diffusion rate and the turbulence of fluid 

flow. However, because of the channel dimension, most fluid flow in microfluidic 

devices is laminar. Consider the Reynolds number (Re) of the flow inside a 

microchannel, 
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Re 二巡 - （1.1) 
M 

where p is the fluid density; jli is the viscosity coefficient; Vis the flow velocity and D 

is the length scale of flow, which is in the order of io-4 m in microchannels. Re is 

very small (<< looo) in microchannel flows, so it is necessary to design micromixers 

to enhance the mixing rate of fluid. The first micromixer uses four hundred 

micronozzles inside a microchamber to increase the fluid diffusion rate [37]. This 

micromixer is defined as a passive micromixer since no external energy is used to 

induce the turbulence of fluid flow and enhance the mixing rate of fluid. Other 

examples of the passive micromixing principles are parallel lamination and 

sequential lamination [38]. Moreover, micromixing can also be enhanced by 

actuation forces. Acoustic streaming and magneto hydrodynamic force are feasible 

mixing methods, which have been practically demonstrated ([17], [39] and [40]). 

The active micromixers can provide adjustable mixing rate, so they are more flexible 

in the microfluidic applications. 

1-2-3 Integration of Multiple Devices: Microfluidic Systems 

Integrating individual microfluidic devices into systems could miniaturize and 

intensifying many fluidic processes. The approach of microfluidic integration with 

external fluidic connection is called modular integration. Many research groups 

demonstrated various modular integrated microfluidic systems with promising 

operation performance [41] - [42]. Nevertheless, the systems did not standardize 

the fluidic and electrical connections and so they were inconvenient for chip 

reconfiguration. A stacked modular integration approach, which was developed by 

the Motorala Labs [43]，provided a more universal connection mechanism on an 

electrical circuit board platform. Multiple microfluidic chips could be vertically 
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plugged into the sockets on the electrical circuit base board while fluidic connection 

was achieved by linking the passageways between chip modules. 

Furthermore, the large-scale integrated microfluidic systems comprising of valves 

and channels using multiplayer soft lithography were developed by Quake's group in 

Stanford University [lo]. The microfluidic chips consisted of thousands of 

microvalves and hundreds of microchambers, which could potentially perform 

multiple bio-optical detection tasks. However, due to the limitations on fabrication 

processes, they could not integrate pumps or mixers into their chips. Furthermore, 

two silicon-based single chip integrated systems designed for multiphase mixing and 

reaction were developed by the MicroSystems Technology Laboratories of 

Massachusetts Institute of Technology [44]. In the first system, filter-like structures 

were fabricated near the outlets to accumulate catalytic particles and, so, to conduct 

heterogeneously catalyzed multiphase reactions. The other system trapped catalytic 

particles with an array of 50 |nm diameter columns, which provided an additional 

mixing capability. It is believed that the functionality of integrated microfluidic 

systems can be greatly enhanced by further integrating with the miniaturized 

detection devices. 

1-3 MOTIVATION AND RESEARCH OBJECTIVES 

The integration of microfluidic devices is a great challenge in the advancement of 

microfluidic technology. In microelectronics manufacturing, the external connection 

often involves only electricity. However, the fluidic connection is also an essential 

factor in microfluidic systems. The preparation of fluids becomes an important issue 

for the system operations such as the tiny gas bubble filtering and the insufficient 
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mixing rate due to the low Re laminar flow in microchannels. 

On the other hand, the operations of microfluidic systems involve fluid transmission, 

fluid multiplexing, fluid mixing, temperature and electrical potential controls, etc. 

Some of the applications require complicated microfluidic systems, so designing 

microfluidic chips for specific applications may not be a cost effective approach. To 

achieve the microfluidic system with adjustable or even programmable functionality, 

all the microfluidic components in the system need to be digitally controllable. 

Hence，the development of small, low voltage-required microfluidic devices can 

highly improve the applicability of microfluidic systems. 

The structures of microfluidic devices are needed to be high aspect ratio. And 

optically transparent materials have to be used for bio-optical detection applications. 

In addition to the traditional polymer photolithography, micro molding replication 

technique [45] - [47] of transparent materials is a feasible approach to achieve the 

cost effectiveness and capability of bio-optical detections. 

The major objective of this research project is to develop integrated microfluidic 

systems that can perform digitally controllable operations on micro-fluid delivery 

and mixing, which are the most fundamental issues of the microfluidic operations. 

And such systems can be further integrated with other detection and manipulation 

devices, as an essential technology upon the multi-functional digitally controllable 

microfluidic systems. As mentioned previously, micropumps, micromixers and 

microvalves should also be developed with compatible the fabrication processes, 

such as 1) polymer photolithography, and 2) micro molding replication technique. 

Characterization of the developed devices is needed to be investigated, and 
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potentially help develop a technology for the device operation and integration. 

Furthermore, a computer-controllable electronic system would also be designed 

based on the input signal requirements of the individual microfluidic devices. 

Integrating the control system with the fluid manipulation and preparation chips 

could potentially achieve fast and precise microfluidic operations and potentially 

automating the bio-fluidic processes, for example the (SPR) detection [48]. 

1-4 THESIS OUTLINE 

Chapter 1 introduces an overview of the existing MEMS and microfluidics 

technology. This includes various device designs, actuating and sensing principles. 

The objectives of the research project and this thesis outline are described in the 

latter sections. Chapter 2 provides the fundamental theory on microfluidic flow, 

including the velocity profile, the pressure reduction and the bubble filtering 

technique. The preliminary understanding is useful to the device/system design 

considerations and the experimental results analysis presented in this manuscript. 

Chapter 3 describes the details of polymer-based vortex micropumps. The design 

and fabrication of different micropumps and rotary impellers are presented. It also 

discusses the principal design parameters based on the macro centrifugal pump 

theory, which can help analyze the experimental results described in the last section 

of this chapter. Chapter 4 presents two types of polymer-based mixers: the 

flat-surface diaphragm (FSD) and the pillared-surface diaphragm (PSD). This also 

involves the design, fabrication and performance characterization of both mixers. 

Chapter 5 describes an integrated microfluidic flow planning system based on the 

modular integration approach. The system consists of microfluidic channels, a 

chamber array and a computer-operated digital controller. An experiment result of 
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multiple fluids delivery is also reported. Chapter 6 presents the design and 

fabrication of a microfluidic mixing module array integrated with six vortex 

micropumps, six tesla valves and three PSD active micromixers. It also presents the 

operation principle and simulation result of the tesla valve. An approach of the 

mixing ratio estimation is described. Moreover, the experiment results are reported 

to illustrate the capability of the digitally-controlled mixing. Chapter 7 concludes 

this manuscript and Chapter 8 addresses the potential future development. 

Appendices include an adhesion test on the UV-epoxy resin, the circuit schematics of 

the digital controller and an additional microfluidic controlling system with superior 

functionality for future development. 
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C H A P T E R 

TWO 

FLUID FLOW IN MICROCHANNEL 

2-1 VELOCITY PROFILE IN A MICROCHANNEL 

Miniaturization of the bio-optical detection is one of the major applications in the 

research of microfluidic devices and systems. The structural material is necessary to 

be transparent so that the characteristics of fluids can be analyzed by the color or 

flow pattern inside an output chamber/channel. Therefore many microfluidic 

devices were fabricated with polymers and so the channel geometries were different 

from that of the silicon-based devices. Besides channel geometry, velocity profile is 

one of the major factors affecting the flow pattern in a microfluidic device and, hence, 

the performance of the whole detection process. In this section, the velocity profile 

inside a microchannel will be discussed. 

As a simple analysis, the velocity profile of an internal fluid flow inside a 

microchannel will be estimated based on the Newtonian laminar flow as illustrated 

in Figure 2. Distinct from the silicon-based microfluidic devices, the microchannels 

fabricated with polymer-MEMS technology are often rectangular in shape (width 2X 

and height 2Z). For a Newtonian laminar flow, the shear stress of a flowing fluid r is 

equivalent to that upon the yz-plane and along the y-axis direction Tyz\y [49]. It also 

decreases with the horizontal distance z from the center of channel. The flow profile 
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u(x, z) on the plane x = o can be approximated as, 

� � �Z (2.1) 

where ji is the dynamic viscosity and ki is a constant. 

一 一 . 一！：： /̂“““^丁“’ 

丨 ⑷ . 丨 丨 2 Z 

X 广 ^ ^ ^ y 氏 I , 
一—， . - ； _ _ _ _ _ — . „ . 善 — ZA 

Figure 2. Velocity profile and shear stress 

distribution of the steady laminar flow in a 

microchannel 

Integrating the above equation, u(o, z) can be resolved as 

k z2 

u(0,z) = — ^ + C (2.2) 

WHERE C IS A CONSTANT. 
SUBSTITUTING THE BOUNDARY CONDITION U(O, ±Z) 二 O, WE GET 

KZ^F Z 2 � 
U { 0 , Z ) = ^ . (2.3) 

2 / / �Z J 

CONSIDERING A VELOCITY PROFILE ON A GIVEN PLANE Z = ZO, WE CAN OBTAIN THE EXPRESSION 

SIMILAR TO EQUATION (2.3)，THAT IS, 

K X'F Z ' Y X2 ) 
= ^ 1 - 务 ( 2 . 4 ) 

� � ^ � Z � � J 

where ks is another unknown positive constant. 
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Since u(x, Zo) for all zosz can be expressed as equation (2.3) at x = o, equation (2.4) 

becomes 

( Y Jc2 ) 
u{x,z) = k 1 - — 1 - - ^ (2.5) 

V Z 入 A J 

where 

k 卑 = 手 〜 X . (2.5) 
2// 2ju 

It is obvious that the flow velocity is maximal along the centerline of channel. The 

velocity dissipation is mainly due to the shear force constrained by the zero 

boundary conditions of the channel walls. 

In the steady laminar flow condition, the discharge of the microchannel Q is the 

integral of velocity upon the cross-section area A = (2X)(2Z). Integrating u(x, z) in 

equation (2.5)，we obtain 

Q = \uclA - j\k dxdz = -k(2X)(2Z). (2.7) 
-z-x V ^ )\ ^ J 9 

The average flow velocity V is defined as the discharge over the cross-section area, 

thereby 

O 4 4 
V = ^ = = (2.8) 

A 9 9 匪 

The velocity profile u(x, z) can then be approximated by equations (2.5) and (2.8) 

with a given discharge value and a cross-section dimension. In the laminar flow, any 

initial velocity profile would gradually change to u(x, z) after flowing for a certain 

distance and so u(x, z) is also called the developed velocity profile [49]. A simulated 

example with an initial flow velocity profile u(x, o)\y=o = 1 + sin(7cx / 0.06 [jum^]), 

[cms'i] discharge 0 . 0 3 2 ml/min and channel dimension 6 0 0 x 1 0 0 |am is 
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illustrated in Figure 3 (a). The theoretical velocity profile can be calculated as u(x, 

o) = 2x(i-z^ [fim2] /100^)) [cms-i]. It indicates that the velocity profile a t y = 3 cm, 

u(x,o)\y=3[cmh is similar to the expected profile (Figure 3 (b)). 

Velocity Magnitude (cms-]) 
广IIiiiiH_iiiipi_ ”ii|_imiii|iiTr I iiHi^ 
0 0.4 0.8 1.2 1.6 2.0 

^ ^ 多 紅 惑 丨 | _ 寒 》 寒 

(a) 
1.8 1 1 1 I I 

X Simulation Results 

1 e _ ——Analytical Values _ 

- f , / 一 \ \ : 

N 
oJ/ 1 1 1 1 1  

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 

X Position along z = 0 (mm) 
(b) 

Figure 3. (a) Simulated velocity variation and (b) 

comparison between the simulated and analytical 

developed profile inside a microchannel. 

As mentioned previously, the velocity profile of fluid flow in a microchannel varies 

little with the geometry change, which is the major factor of insignificant mixing. A 

simulation experiment on an “L，，-shape microchannel is shown in Figure 4 (a). The 

dimension of channel cross-section (600 iim x 100 jim) and the discharge (0.032 
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ml/min) are the same as the previous example. In the simulation, the initial velocity 

was set as the analytical profile in order to investigate the change of flow velocity 

profile caused by the channel width variation. The simulation result in Figure 4 (b) 

illustrates that the velocity profile in the "L"-shape channel could be fully developed 

with a delivery distance y <1 mm. 

y = 0 [mm] y = 1 [mm] y = 2 [mm] 

m 
1 • j Velocity Magnitude (10—3 ms-i) 

• I • .fiiiiir 严 • mmt^ 
• 0 0.25 0.51 0.76 1.01 1.27 1.52 

i l l � 
2 1 1 I I I 一 

X SIMULATION PROFILE AT Y = 1 M M 

1 . 8 - X SIMULATION PROFILE AT Y = 2 M M -

ANALYTICAL VALUES 

1 . 6 - -

1 . 4 - -

I 0.8- / \ 

! � . 6 / \ 

：；/ \ : 

QĴ  1 ‘ 1 1 L V 
- 0 . 0 3 -0 . 02 -0 .01 0 0 . 0 1 0 . 0 2 0 . 0 3 

X Position along z = 0 (mm) 

(b) 

Figure 4. (a) Simulated velocity variation and (b) 

comparison between the simulated and analytical 

developed profile inside an “L”-shape microchannel. 
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2-2 PRESSURE DISSIPATION BY LAMINAR FRICTION 

In the macro-scale fluid flow, the pressure reduction due to laminar friction along a 

channel is often negligible. However, the flow pressure would dissipate significantly 

in a microchannel. In micro-scale steady flow, the flow velocities at the input and 

output cross sections are equal, which means the portion of fluid is in the 

equilibrium state. Hence, the net force acting on the fluid in a particular portion 

with length AL should be zero. The force diagram of the steady flow in a 

microchannel is illustrated in Figure 5. The balanced force is composed of shear 

force, gravitational force, normal force of the bottom channel wall, and forces 

induced by input and output flow pressures. The shear force i v is caused by the 

viscous resistance between the considered fluid body and its surrounding fluid. It is 

equal to the flow shear stress along the circumjacent area. Besides, the gravitational 

force would be cancelled by the normal force of the channel wall. So the net force 

becomes 

= (2.9) 

Fsf 

Pi I r T , I p. 
• t . z H � 丨 Z . . Z 

X I — , 1 " — … 
丄 Z 

Figure 5. Force diaphragm of the laminar flow 

inside a microchannel. 
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Substituting Xc = 2X,Zc = 2Z, P2 = Pi + APs/in equation (2.9) and assuming Fg = 0， 

X J I A +A/V) — 2(足 0 = 0. (2.10) 

where Tw is the shear stress of channel wall. 

Rearranging equation (2.10)，the pressure reduction by surface tension can be 

expressed as 

(2.11) 
V ^c^c J 

From the Bernoulli equation, the head loss hsf of a control volume with a horizontal 

steady-state laminar flow is 

Kf = ^ ^ (2.12) 
f pg 

where p is the fluid density. 

Substituting equation (2.11), the head loss becomes 

� ( 2 . 1 3 ) 
PgD pg y XcZc J 

From the above equation, it is obvious that the hydraulic diameter of the channel is 

D = 2 XcZc / (Xc + Zc). This result can also be used to calculate the Re of a 

rectangular microchannel [50]. 

In equation (2.13)，the shear stress Tw can be resolved by the Hagen-Poiseuille flow 

profile. Tw can be estimated by the average shear stress along the channel wall 

surface, that is, 

T =T =- (2.14) 

where s represents the set of points along the boundary of a channel cross section. 
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From equation (2.1) and (2.3)，it is shown that 

d u 2 / / ^ ( 0，Z ) 
、 义 = 土 广 土 厂 X “ X ‘ (2.巧） 

and (2.16) 

Thereby equation (2.14) can be rewritten as 

* /* 
2 Tw dz + 2 T^ dz 

r : 士i ， (2.17) 

\6juk UjuV 
and so ŵ = ^ t t ; = (using equation (2.8)). (2.18) 

Therefore, the laminar head loss of a rectangular microchannel becomes 

, 24juVAL 
K f - Y 7 • (2.19) 

In addition to the pressure dissipation due to the laminar friction APs/，fluid pressure 

can also be reduced by the geometry variation AP，The total pressure loss along a 

channel for incompressible flow Phss is, 

Pioss = (2.20) 

The geometry factor of pressure loss APgv includes 1) pipe entrance or exit, 2) 

sudden widening or reduction of channel, 3) gradual channel expansion or 

contraction, and 4) deformation of channel cross-section or any obstacle inside 

channel [49]. Though the analytical expressions of the pressure dissipation are 

complicated, it can be observed with experiments that similar channel geometries 

would have similar reduction properties. To approximate such pressure reduction, 

the loss coefficient K is used to characterize for the profile singularities. It is a factor 
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of the kinetic energy converted to irreversible internal energy by some impediment 

to flow. The pressure loss is expressed by 

AP^=~KpV\ (2.21) 

The factor K depends on the shape factor S, which is equal to the perimeter ratio 

between the smaller cross section and the larger cross section of a profile singularity. 

A simple approximation of K (from reference [51]) is 

-1)2 ，channel enlargement 
K{S) = f 1 — Y (2.22) 

i o . 5 9 + 0.41^^" J，channel reduction. 

The detailed approximation ofiiTcan be found in reference [50]. 

The estimation approach of pressure dissipation can be used in different microfluidc 

devices. As an example, the approach was applied to a diffuser geometry, with 

pattern and dimension illustrated in Figure 6. Substituting the parameters of 

diffuser (AL = 2000 jum, Xc = 500 jam and Zc = 100/zm), water {// = ioe-3 

kg/ms) and fluid flow {V = Q / XcZc = 1.333 ms—i)，the laminar pressure loss of the 

diffuser - APsf\diffuser could be resolved as 0.512 kPa. The pressure loss caused by 

geometry change could be divided into three portions: the sudden channel reduction 

at inlet (Si : 0.2)，the gradual channel enlargement along the diffuser (S2 = 0.5) and 

the sudden channel enlargement at outlet [S3 = 0.4). Hence the overall pressure loss 

should be estimated as 

1 fr 1 V 1 
P, - - A P . + 上 - - 1 - 1 ) ' +(^3 - 1 ) ' pV^ 

loss diffuser ^f 鄉聽 2 ^ 0.59 + 0 . 4 j ^ ' ' 

= 1 . 2 6 4 购 （2.23) 

where p = 998 kg / m3. 
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Figure 6. Top view of a dijfuser geometry. 

2-3 BUBBLE FILTERING 

When fluid is delivered into a microfluidic device, some tiny air bubbles would 

follow the fluid flow and enter the device. The air bubble problem is one of the 

important issues in microfluidic devices, especially in the integrated systems. Air 

bubble may greatly affect the operation performance of some devices, by blocking 

the sub-channel fluid flow or occupying the detection areas in the bio-optical 

measurement applications. This problem should be particularly avoided in the 

integrated systems since the failure of a single component would probably impair 

the functionality of the entire system. Therefore, bubbles should be filtered before 

delivering them into microfluidic devices/systems. 

To eliminate the air bubble problem, a microfluidic device, which included a 

microchamber with an array of pillars, was designed and fabricated successfully. The 

pattern of the component is illustrated in Figure 7. The latter half area of 

microchamber was fabricated with pillars, which were used to filter the air bubbles 
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inside fluids. And bubbles can then be trapped and accumulated at the former half of 

chamber. 

mm 
I R o ： - . � 

O — ^ \ ~ 0 

Outlet / Inlet 

Figure 7. Flow pattern and microscopic images of 

the bubble filtering module. 

An experiment was performed to examine the bubble filtering capability of the 

device as shown in Figure 8. A bubble from the inlet pipe was trapped inside the 

microchamber and was avoided further flowing to the outlet. This result indicates 

that bubbles can be excluded by designing such chamber structure along the 

microchannels. 

Trapped Bubble 

Outlet 

T "... •-：丨 y^jS^ife- ；,； 

Figure 8. Result of the bubble filtering 

experiment. 
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In the initialization stage of microfluidic devices, air bubbles often adhere along the 

internal surfaces of inlet tubes and inside chambers. And only few more bubbles will 

be delivered from the inlet reservoirs during operation. Hence, in addition to the 

inlet channels, the bubble filtering structure should be placed after each 

microchamber. This configuration would be effective to minimize the internal 

bubble problem in the microfluidic devices. 
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C H A P T E R 

THREE 

MICROFLUIDIC CENTRIFUGAL PUMPING 

3-1 VORTEX MICROPUMP 

3-1-1 Operation Principle and Device Design 

A vortex micropump can be viewed as the miniaturized version of a centrifugal 

pump, a kind of classical rotodynamic pumps. The vortex micropump uses the 

kinetic energy of an impeller and a circular pump chamber to move fluid. The micro 

impeller is placed inside the pump chamber. When fluid enters the micropump from 

the center of impeller axially，the rotating impeller blades would whirl the fluid to 

the perimeter, tangentially and racially. Hence, fluid pressure and velocity can be 

induced by the momentum increment of the continuous flow. 

The impeller blades can be designed as backward-curved, radical or forward-curved 

as illustrated in Figure 9 (a), (b) and (c)，respectively. Different designs of impeller 

blades slightly affect, mainly, the pressure enhancement of the micropump (The 

details will be discussed in section 3-3-3). The forward-curved design could cause 

pump surge when the impeller rotates at certain rotation speed [49]. The surge may 

greatly reduce the stability of pumping pressure and velocity thereby the 

backward-curved and radical blades are often applied in the impeller design� 
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Figure 9. Top views of impellers designed with (a) 

backward-curved, (b) radical and (c) 

forward-curved blades. 

A fabricated vortex micropump module (length 30 mm, width 20 mm and height 18 

mm) consists of two layers of structures as shown in Figure 10. The top layer 

structure provided inlet and outlet connections while the bottom layer contained a 

pump chamber, right below the inlet, and a flow channel. An impeller was mounted 

inside the 5 mm diameter pump chamber and was driven by a DC motor. The 

rotation of impeller, with diameter 4 mm, would induce pump pressure and velocity 

as mentioned previously. 

Since microfluidic devices are required to be transparent for bio-optical detection 

applications, we chose polymethyl methacrylate (PMMA) to be the structural 

material for both layers. The chamber and microchannel profiles of the micropump 

have been successfully fabricated by the micro molding replication technique and 

the photolithography of SU-8 negative photoresist. Detailed fabrication processes of 

both impeller and pump configuration designs will be presented in section 3-2. 
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Figure lo. Photograph of a fabricated vortex 

micropump. 

In the device design, the vortex micropump could transmit fluid through a 500 |im 

wide and 80 |im deep microchannel. Microchannels were enclosed by attaching a 

layer of polyester on the canaliform patterns on the bottom PMMA layer. The design 

of microchannel is one of the major factors of the pumping performance. A 

micropump containing flow channel with smaller cross-section area can resist 

higher back pressure and deliver with lower pump rate, and vice versa. 
3-1-2 Alternative Pump Design 

In the previous design, the motor is mounted below the PMMA substrate. Because of 

the length of motor (11 mm), stands should be added to lift up the whole device. The 

configuration is insignificant to the pumping performance, but this would highly 

increase the device height and constrain the compatibility to integrate with other 

microfluidic devices into a single substrate. The micropump stands can be 

eliminated by the modifications on motor orientation and channel path arrangement. 

The fluid in microchamber can be supplied from the bottom, instead of the top as 
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the original design. The motor can then be mounted on the top of the substrate using 

the inverted-chamber design. Besides, the output channel should be retained at the 

upper part of chamber. Fluid would fill up the entire microchamber before flowing 

into the output channel. This configuration is also effective to eliminate the initial 

air-trapping problem inside the chamber. 

The fabrication of the inverted-chamber micropump is slightly more complicated 

than the original process. SU-8 layers should be fabricated on both sides of the 

PMMA substrate. The microchannels on the top and bottom sides can be connected 

by drilling i mm diameter holes through the PMMA substrate. The inverted-

chamber design can be achieved by the modified microchannel route as illustrated in 

Figure i i (a). Fluid can flows into the microchamber through the channel at the 

bottom SU-8 layer (broken line in Figure i i (a)). A fabricated product without stands 

at the device corners is shown in Figure 11(b). 
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Figure ii. (a) Schematic and (b) photograph of the 

vortex micrompump fabricated with the 

inverted-chamber design. 

3-2 MICROPUMP FABRICATION 

3-2-1 Electroplated Impeller 

The rotating impeller is used to induce pressure and generate the fluid flow. The 

fabrication process of the single layer nickel structured impeller is shown in Figure 

12. A layer of 200 |im thick SU-8 negative photoresist should be spun on a nickel 
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substrate and be exposed under UV light with the mask of impeller pattern. After 

developing the SU-8 layer, a lOO \im thick nickel layer should be electroplated on the 

substrate. The micro impeller can then be fabricated after removing the nickel and 

SU-8 substrate. 

SU_8 丨》>'>弥叫 Spin coat and expose 
Ni L m i M i i L i ^ i i i i i i l L i i M — — ^ ^ 200um PR 

Develop SU-8 PR 

) Electroplate l o o u m 

• • • • • ^ " • " • " • • ^ • • • • • • • " • • • “ ― ^ Nickel 

h-伐科：:々 l Remove SU-8 PR 

Figure 12. Nickel micro impeller fabrication 

process [53]. 

Different designs and dimensions of impellers could be fabricated by the 

electroplating technique as shown in Figure 13 (a). The top view shape and 

dimension were defined by the mask design while the impeller thickness was 

controlled by the electroplating duration. The fringe profile highly depended on the 

developed edges of the SU-8 layer. An SEM image of the impeller blade (Figure 13 

(b)) showed that the edge surface is smooth enough for the pumping application. 
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Figure 13. (a) Photograph of different sizes of 

nickel micro impellers and (b) SEM image of one 

edge of the impeller blade. 

The pumping performance of the nickel impeller has been improved by a double 

layer design [52]. Retaining the blade pattern at the top layer, a circular plate was 

added to the bottom impeller layer at shown in Figure 14. The circular plate could 

constrain the direction of fluid flow on the plate to be tangential. This modification 

would greatly increase the pumping efficiency. The fabrication of the double layer 

design is similar to the single layer one except the photolithography process. Double 

layer of SU-8 should be patterned on the nickel. The top and bottom SU-8 layers 

contain the patterns of circular plate and blades, respectively. The electroplating 

time should be doubled because of the thickness increment of the patterned SU-8 

layers. 
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Figure 14. SEM image of the double layer 

structured nickel impeller. 

3-2-2 SU-8 Impeller 

A biocompatible impeller can be achieved by the SU-8 photolithography. The 

fabrication process of the SU-8 impeller is a sacrificial release of the patterned SU-8 

layer as shown in Figure 15. Gold should be firstly sputtered on a PMMA substrate. 

Thickness of the copper layer could be increased by electroplating (this 

copper-deposited substrate can be simply replaced by a photoresist-purged 

printed-circuit board). Afterwards the pattern of impeller should be fabricated by 

the photolithography of the circular plate layer and, then, the blades layer. Both 

layers of structures should be around 100 jum thick. After removing the copper layer 

by the corresponding enchant, SU-8 impeller would be eventually 

sacrificial-released. Replacing the copper-deposited substrate with a polyester sheet 

is another feasible fabrication approach. Impellers could be torn off after patterning 

two layers of SU-8 structures. 
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Figure 15. Fabrication process of SU-8 Impeller. 

Multiple impellers can be manufactured by a single chain of fabrication process. The 

yield of impellers is determined by the substrate size and mask design. For example, 

we fabricated 100 identical impellers on the 55 mm x 55 mm polyester substrate as 

shown in Figure 16. The compacted impeller mask design can highly enhance the 

fabrication productivity. 

Figure 16. Photograph of an array of fabricated 

impellers. 
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3-2-3 Micropump Fabricated by Micro Molding Replication 

Technique 

Micro molding replication technique is a low cost and flexible microfabrication 

method for the polymer-based microfluidic systems (the work on vortex micropump 

fabrication applied with micro molding replication technique was presented in [53]). 

It includes the mastering, replication and bonding processes. Closed microfluidic 

structures, e.g. channels and chambers, can be achieved by bonding the patterned 

substrate with a flat substrate. 

The fabrication of the mastering process is illustrated in Figure 17 (a). High aspect 

ratio photolithography, electroforming and resist stripping are used to fabricate a 

micro mold, which functions as a replication master. The mold includes the pattern 

of the vortex micropump structure, which is shown in Figure 17 (b). A layer of 200 

]im thick SU-8 negative photoresist is patterned on a nickel substrate by 

photolithography. Then, a 3000 A thick sliver conductive layer should be sputtered 

on the substrate. The 300 |Lim thick nickel mold should then be fabricated on the 

silver layer by electroplating. 
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Figure 17. (a) Nickel micro mold fabrication 

process and (b) photograph of nickel micro mold 

pattern. 

The micropump replication and assembly processes are shown in Figure 18. 

Microstructures on the replication master can be transferred to a polymer substrate 

by the hot embossing machine. The microfluidic channels and chambers can be 

replicated by the hot embossing technique. To produce the micropump, a PMMA 

substrate should be firstly heated to 120 °C, which is slightly above its glass 

transition temperature (Tg = 105 °C). Then a pressure of 7 MPa is applied by a 
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hydraulic press to compress the mold towards the PMMA substrate. This causes the 

pattern of micro mold transformed to the PMMA substrate negatively. After the 

substrate and the mold cool down, the substrate should be released from the nickel 

mold. To increase the pump chamber volume, machining tools are used to deepen 

the chamber. An impeller and a DC motor should be assembled on the top and the 

bottom of the chamber, respectively. The inlet and outlet of micropump are 

produced by drilling holes through another flat PMMA substrate. Afterwards the flat 

substrate should be spun on with the UV-curing epoxy resin as the adhesive layer. 

Bonding the patterned PMMA with the flat PMMA forms closed channels between 

the two substrates eventually. 

Pressure 
t i i i i i ^ 

Nickel Mold Replicate the flow 

PMMA pattern of pump by hot 
— embossing 

个 个 个 个 个 个 个 个 
Pressure 

Modify the pump 
I_^^_I ‘ chamber with machining 

tools 

1 I Attach a motor and an 
I ； * I  

impeller 

UV-curing M M 
epoxy resin ^ Bond the substrate 

I > H _ _ f - L ^ with the top PMMA 
g 墓;I ‘ . ^ r 

layer (with faucets) 

Figure 18. Replication and Assembly Processes of 

the vortex micropump. 
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3-2-4 Inverted-chamber Vortex Micropump 

In the inverted-chamber design, a vortex micropump requires two layers of flow 

channels. The fabrication process is illustrated in Figure 19. The two layers of 80 )im 

deep channel patterns can be fabricated by the photolithography of SU-8. 

Afterwards machining processes should be performed to manufacture the inlet，the 

outlet, the 2 mm deep pump chamber and the 1 mm diameter connecting channels 

between flow layers. The microchannels can be enclosed by attaching a polyester 

film on each side of the substrate using UV-curing epoxy resin. Faucets should then 

be inserted to provide the inlet and outlet connections. An impeller can be fixed 

inside the microchamber by attaching it to a DC motor. Moreover, the motor should 

be lifted up by a 2 mm thick PMMA with a 2 mm diameter hole at the center. When 

fluid is filled inside the chamber, air will be trapped at the hole of the 2 mm thick 

PMMA to prevent the fluid flows inside the motor. 

P M m I F " ‘ ^n Pattern SU-8 layers on 
SU_8 tz： 1 I n~~ both sides of PMMA 

_ ——Manufacture chamber 
— i—* and flow channels by 

machining tools 
UV-curing 

Epoxy Resin 

— g | — I p-—1 g Bond polyester films 
二 "U f-' on b o ^ sides of 

L~>[r~L",一，�.……"…“,""^L … " " " “ s u b s t r a t e 

I l|||l I 
I _ 二 Insert faucets, a motor 

~~I —^ • 一 and an impeller 

Figure 19. Fabrication process of the vortex 

micropump applied with inverted-chamber design. 



Microfluidic Centrifugal Pumping 36 

3-3 ELEMENTARY CENTRIFUGAL PUMP THEORY 

3-3-1 Pumping Pressure and Discharge 

A vortex micropump consists of a flow chamber, a rotary impeller and the inlet and 

outlet channels. Its structure and operation principle are similar to the classical 

centrifugal pump as mentioned previously. In this section, a simplified model of the 

vortex micropump will be introduced, with extended description on the design 

considerations. Since the control volume of fluid is still far larger than the limiting 

volume, 10-9 mm3，in microchannels, fluid can be viewed as a continuum in the 

microfluidic pump and the classical centrifugal pump model is still adoptable. Not 

only are the fundamental characteristics of the pump described, but also the design 

considerations are discussed in the later section. Our group has recently developed a 

more applicable analytical model of the vortex micropump (Details of the analytical 

model were described in [55]). Nevertheless, the pumping performance will be 

analyzed mainly with the basic model in the following sections. In the centrifugal 

pump, it could be assumed that fluids are pumped from the center, or the eye, to the 

perimeter of the rotary impeller as illustrated in Figure 20. The impeller rotation, 

with rotational speed gj，induces the fluid flow with velocities Vi and V2 at the inner 

and outer blade terminals, respectively. The pumping discharge is related to the 

effective flow velocities Vm and Vn2, which are normal to the inner and outer tangent 

vectors of impellers Ui and U2. Therefore, the effective flow velocities would affect the 

pump rate and pressure of flow chamber and, hence, the whole pumping 

mechanism. 
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Figure 20. Top view diagram of fluid velocities at 

blade terminalsfor a micropump impeller. 

The vortex micropump basically activates fluid flow by enhancing the Bernoulli head 

of flow between the input and output channels of microchamber. Since the identical 

structure of the input and output channels, the difference between the channel flow 

rates is negligible. The 3 mm elevation of channel height, or the thickness of PMMA 

substrate, is also insignificant, comparing to the pressure increment. Assuming 

steady incompressible flow, the change of Bernoulli head, or pumping pressure, can 

be approximated as 

付 如 奈 + ：。 ]和 + f + 过 ， (3.1) 
IPg 2g J [pg 2g J pg 

or P = Po- Pi = PgH， （3.2) 

where p is fluid density, g is the constant of gravity, pu po，仏，Us, z/ and Zo are the 

input and output pressures, the input and output flow velocities, and the heights of 

input and output channels, respectively. 
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The output flow rate of the vortex micropump is equal to the rate of input fluid mass 

based on the conservation of mass transfer. The fluid flow rate from the impeller eye 

can be approximated by the curved surface area of the virtual eye cylinder times the 

normal velocity, Vm and Vn2, of inlet fluid on the surface. The discharge of the 

micropump then becomes 

Q = - i T t T i h v ( 3 . 3 ) 

where h is the thickness of impeller blades. 

Both discharge and pump pressure can be regulated by the rotation speed of 

impeller. It is easy to observe that Vm and Vn2 are related to co in equation (3.3). The 

Bernoulli head can also be varied with co and the relation will be explained in the 

next section. 

3-3-2 Fluid Horsepower 

The fluid horsepower required for the fluid delivery at certain discharge and pump 

pressure can be estimated by the rotational speed and shaft torque of the motor. The 

ideal torque of the impeller is expressed by Euler's turbine formula. Choosing the 

control volume as the ring region between radii r! and r̂ , the total moment about the 

center of rotation can be simplified as 

Z 溢 = (尸 2 X ? 2 ) 戏 - ( € X � ) 4 (34) 

where rrii and mo are the rates of change of input and output fluid masses, 

respectively. 
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Since the steady flow is assumed, the rates of change of fluid masses are both equal 

to the product of density and discharge. Hence the torque, in clockwise direction, 

becomes 

T = Y , M = pQ{r,v, , - ) = - . (3.5) 
CO 

The power delivered to the fluid is defined as the product of specific weight, the net 

change of Bernoulli head and the fluid discharge, that is, 

p = pgHQ (3.6) 

where Q is the fluid discharge. 

The above equation indicates that the Bernoulli head is related to the discharge of 

vortex micropump. The relation also induces the controllability of pumping pressure 

by the variation of impeller rotation. A vortex micropump with desired working 

discharge and pumping pressure could be designed and estimated by regulating the 

related parameters discussed above. 

Furthermore, the horsepower of a vortex micropump can also be related to the 

radical velocity. Thereby equation (3.5) can be rewritten as 

P = PQ�u�2 cot <92 cot(9i) (3.7) 

Q Q 

and = 27i:rh ‘ 二 Ijir h (recalled from equation (3.3)). (3.8) 

The micropump can be designed with 61 = 90°, such that Vm = Vi, for the optimal 

pumping efficiency [49]. The direction of fluid flow could eliminate the tangential 

velocity. The discharge with optimal efficiency is called the design flow rate. It is 

often used as the reference value of the flow rate performance. 
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3-3-3 Effect of Blade Angle 

Recall equation (3.5)，the theoretical fluid horsepower can be expressed as 

P = + ¥ , 2 ) . ( 3 . 9 ) 

SUBSTITUTING V �= U^ 一 V”I COT<FI AND V,2 = U^ - V”2 COT ^^, THE THEORETICAL BERNOULLI 

HEAD FROM EQUATION ( 3 . 1 ) SHOULD BE 

g 2;rhg[ r, r^ ) • 

SINCE Û  = R̂ CO AND U^ ^R^CO, THE HEAD BECOMES 

+ C O T《）， （3.II) 
g Inn CO _ 

or in the dimensionless form, 

H * = ( 2 = 1 - , , 尸 2 + 2�(cot A + cot A ) • (3.12) 
(厂广 + 厂2 )<!> lnnco{r^ + r?) 

The Bernoulli head of vortex micropump varies with the discharge as described in 

equation (3.11) and (3.12). Substituting the related parameters of the typical vortex 

micropump (n = 500 |im, r̂  = 2.25 mm and h = 100 jum) and assuming the case of 

optimal pumping (Oi = 90。）such that v"! « r̂ ŷtan P�，the heads and discharges can 

be calculated with different blade angles. A plot of the head against the pumping 

discharge in the dimensionless form is shown in Figure 21. For the radical blades 

design (fi = = 90。)，the head is constant at the shifting value {‘ + r ^ � / g . 

The slope is negative for the backward-curved blades (cotfz + cot^^ > 0)，and 

positive for the forward-curved blades. In the forward-curved design, the 

micropump can enhance the pumping pressure at a low fluid discharge. However, it 
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will cause the surge problem of the pumping for a high flow rate. The rapid 

increment of pumping pressure induces turbulences inside the pump chamber and 

so the performance of pumping will become unsteady. 

4 I I I 1 i 1~——I 1 1 1— 

2- ^ ： 

I - P i � � S s s : 

二 _4— -

I -e- � / = 1 > \ _ 
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I - \ . 
-10 - ^ ^ 
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Discharge Q [ml/min 

Figure 21. The analytical dimensionless Bernoulli 

head values corresponding to different design flow 

rates for different blade angles. 

3-4 PUMPING SPECIFICATION 

Pump pressure and discharge are the two essential considerations for the 

micropump applications. When a vortex micropump operates with a microfluidic 

chip containing complicated microchannel structure, the back pressure of the 

channel array would become significant. The micropump should generate sufficient 

pumping pressure to retain the fluid flow. Furthermore, an appropriate fluid flow 

rate is requisite in some microfluidic devices. For instance, some bio-chemical 

detection chips function only within a discharge range [48]. An optimal fluid 
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discharge could also shorten the delivery time. For an integrated microfluidic system, 

delivery time is one of the major considerations since the delay in the microfluidic 

components would accumulate and affect the performance of the entire system. The 

characteristics of the fabricated vortex micropumps will be analyzed by experiments 

in this section. 

The calibration result on the relationship between the rotational speed of impeller 

and its applied voltage is showed in Figure 22. In the experimental setup, the half 

portion of impeller was shaded with black paint. An infrared light beam was 

illuminated from the topside of micropump while an infrared light receiver was 

mounted at the bottom of pump. When the impeller was driven with a variable 

voltage to pump water, the paint of the impeller blocked the beam and hence the 

infrared receiver would obtain pulse signals. The rotational speed of impeller could 

be eventually obtained by counting the signal frequency. The calibration result can 

be viewed as the reference characteristics of pumping aqueous solutions. In some 

applications, the micropump could be used to pump colored fluid. Such operation 

would make the real-time measurement of rotational speed become difficult. In the 

later sections, the experiments related to vortex micropump will only show the input 

voltages, because of the measurement restriction. Nevertheless, the rotational speed 

can be estimated by the instantaneous input voltage based on the reference 

characteristics. 
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Figure 22. Calibration result of the impeller 

rotational speed corresponding to different input 

voltages. 

Another experiment of the micropump was performed to investigate the relationship 

between the impeller rotational speed and the flow rate. The inlet and outlet of 

pump were connected to the reservoirs filled with distilled water. Before experiment, 

the liquid in the reservoirs were regulated to same liquid level to eliminate the initial 

flow due to gravitation. Water was pumped to the outlet with different driving 

voltage throughout the experiment. The pump discharge could be calculated by 

measuring the weight increment at the outlet reservoir with the relation Q = Am / 

(pu； X At), where Am is the change of outlet mass, pw is the density of water and At is 

the pumping duration. Because of the insignificant volumetric delivery, comparing 

to the water masses in reservoirs, the fluid flow actuated by the fluid level change 

was negligible. Experiments were performed for the single-layer impeller design, the 

double-layer design with original and inverted chamber configurations. Based on the 
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micropump characteristic in Figure 22, the analytical and measured flow rates with 

different input voltages were calculated as illustrated in Figure 23. The micropump 

impellers were designed with the same dimension (r! = 500 |Lim, rs = 2.25 mm and h 

=100 î m). The flow rate increases linearly with the applied voltage for both designs. 

However, different levels of discharge loss could be observed in the micropumps. 

The loss is caused by 1) the friction loss by laminar and turbulent fluid flows and 2) 

the geometry and surface roughness of impeller and pump chamber [49]. It 

indicates the pumping efficiency of the double-layer impeller pump (-80.22 %) is 

higher than that of the single-layer design ( � 6 3 . 7 3 %). This is because the circular 

plate of the double-layer impeller can constrain the flow direction and enhance the 

normal fluid velocity. The inverted chamber configuration slightly reduces the 

pumping efficiency by -7.69 %. It also indicates the flow rate of the vortex 

micropump can achieve 0.758 ml/min，1.02 ml/min and 0.850 ml/min at � 2 . 5 V 

applied voltage for the single-layer design, the double-layer impeller designs with 

original and inverted chamber configurations, respectively. 
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Figure 23. Relationship between the flow rate of 

different micropumps designs and the applied 

voltage. 

The pump pressure analysis was based on the elevation of outlet fluid level 

generated by a vortex micropump. The micropump outlet was connected to a vertical 

polyurethane tube in the experimental setup. Different constant voltages were 

applied to pump distilled water throughout the experiment. The fluid level of pump 

outlet raised and stopped at a maximum height. Similar to the flow rate experiment, 

the change of inlet fluid level was also neglected. The weight of elevated fluid would 

balance the pump pressure and therefore the pumping pressure could be estimated 

hy P = pwx g X ht, where pw is the density of water and ht is the elevation of fluid 

level. Different output pressure values were measured on the original and 

inverted-chamber micropumps, actuated with the double-layer impellers as shown 

in Figure 24. Pump pressure increased with the applied voltage for both 

micropumps. It could reach 1.831 kPa and 1.556 kPa, at -2 .5 V input voltage, for 

original and inverted-chamber designs, respectively. 
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Figure 24. The pumping pressures of vortex 

micropump actuated with double layer SU-8 

impeller corresponding to different input voltages. 
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C H A P T E R 

FOUR 

MIXING BASED ON MECHANICAL VIBRATION 

4-1 MICROMIXER DESIGN 

4-1-1 Oscillating Diaphragm Actuated Microfluidic Mixing 

A thorough micromixing of two of more fluids is based on the molecules diffusion. 

The effective mixing requires low interfacial tensions along the interface fluids，low 

fluid viscosities and large concentration gradient between fluids [57]. However, the 

requirements are arduous to be achieved in the microfluidic devices. The extensively 

high velocity of fluid in microchannel with <10" m^ cross-section area is essential in 

microchannels for the significant discharge of 1 - 10 ml/min. This will cause a 

considerable interfacial tension of fluids and greatly reduce the mixing rate. 

The mixing of microfluidic flow can be enhanced by multiplying the interfacial area 

or generating the vorticity of fluid. Our group has practically demonstrated the swap 

pumping approach that could effectively increase the interfacial area between the 

sample fluids (water and red dye) [54]. The interfacial area was further increased by 

passing fluids into a microchamber with larger cross-section a r e a , �i c r s mm. The 

fluids would be mixed after certain distance of flow. Furthermore, the turbulence 

induction is another feasible approach for mixing enhancement. The microfluidic 
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active mixing originated by the PZT driven mechanical vibration was presented in 

[58]. The silicon-based micromixer contained a 6 mm x 6 mm x 600 \xm chamber. 

The laminar flows of water and uranine solution were mixed under the 

PZT-diaphragm oscillation with ultrasonic-range frequency (-60 kHz). The 

diaphragm vibration could generate vorticity, acting as convection current, and 

agitate the fluids inside the mixing chamber. In this project, biocompatible 

microfluidic mixers based on the PZT diaphragm oscillation were designed, 

fabricated and experimentally investigated. The details will be described in the 

following sections. 

4-1-2 Flat-surface Diaphragm Active Micromixer 

The polymer based flat-surface diaphragm (FSD) active micromixer consists of a 

PMMA substrate, a polyester layer, a metallic diaphragm and a piezoelectric lead 

zirconate titanate (PZT) ceramic. The mixing operation is based on the mechanical 

vibration generated by the PZT ceramic as mentioned previously. In the design of 

the FSD active micromixer, the mixing chamber, which contains an oscillating 

diaphragm, acts as an active microfluidic mixing component. When voltage is 

applied with the same direction of the poling field, the PZT ceramic will contract 

laterally, and vice versa. Moreover, when a square wave signal is applied to the PZT 

film, the residual stress will cause the ceramic to contract and to expand 

continuously and therefore the metallic diaphragm will vibrate horizontally. The 

material of diaphragm should be manufactured with metal, or other materials that 

are electrically conductive and provide sufficient Young's modulus for the horizontal 

vibration. However, some metal may react with particular bio-fluids or chemical 

solutions. The biocompatibility can be achieved by selecting appropriate substrate 
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material, i.e. PMMA, and coating the metallic diaphragm with polymer. The polymer 

layer should be thin and deformable to minimize its interference in the diaphragm 

vibration (parylene C and poly-dimethylsiloxane (PDMS) are feasible choices). 

The mixromixer was designed to combine the fluid flow from the two device inlets, 

to amalgamate the fluids in the microchamber, and to export the mixed fluid to the 

outlet. The substrate was fabricated with an 80 |im deep cavernous pattern 

containing a mixing chamber with 11 mm diameter, two 300 |im wide inlet channels 

and a 600 \xm wide outlet channel. The profile of the patterned PMMA substrate is 

illustrated in Figure 25. The flow of inlet fluids are combined at the confluence 

region at the "Y"-shape channel (the loox microscopic image in Figure 25). The 

microchamber, which has a larger cross-section area around 8.8 x l o " m ,̂ reduces 

the fluid velocity and，hence，extends the duration of fluid staying inside the 

chamber. This can also provide a more applicable condition for mixing as described 

in section 4-1-1. A cross-section view of the mixing chamber is shown in Figure 26. A 

circular brass layer, with 11 mm diameter and 100 |im thickness, is bonded with the 

pattern side of the PMMA substrate. A piezoelectric PZT ceramic, with 9 mm 

diameter and 20 [im thickness, adheres to the brass layer. The PZT ceramic can be 

driven by a signal generator and a power amplifier to provide the mechanical 

oscillation. Furthermore, the mixed fluids will eventually pass to the outlet after full 

mixing occurs. 
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Figure 25. Pattern on the PMMA substrate 

designed for the vibration-driven active 

micromixers. 
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Figure 26. Cross section view of the fluid chamber. 

4-1-3 Mixing Enhancement by Pillared Chamber Profile 

The mixing time of the FSD micromixer ( � 1 - 2 min) would be a significant factor in 

some microfluidic applications. Microfluidic mixing can be viewed as a result of the 

turbulent flow of multiple fluids inside a channel or chamber. In the previous 

micromixer design, mixing is enhanced by the external PZT diaphragm-driven 

vibration, which is one of the factors for turbulent flow [57]. The turbulent flow can 

further enhance by the chamber geometry design. Some previous researches showed 
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that the passive microfluidic mixing could be achieved by particular channel 

structures [31]. Thereby the pillared-surface diaphragm (PSD), which had a 

modified chamber geometry, was designed to improve the performance of vibration 

based mixing. 

The PSD active micromixer was designed for the mixing of chemicals since the flow 

of the bio-molecules or cells in bio-fluids may be blocked by the pillars. In the 

modified micromixer, the device structure is identical to the FSD micromixer except 

the chamber profile as shown in Figure 27. An array of Pillars should be fabricated 

on the topside of the chamber wall (The pillar design and dimension will be 

described in section 4-2-2). Because the chamber should provide a vertical gap for 

the fluid flow and diaphragm vibration, the chamber wall must be thicker than the 

pillars. The pillared surface can effectively reduce the laminar flow at the upper 

portion of the microchamber, so a smaller amplitude of the diaphragm vibration is 

required for the thorough mixing. 

j H y …“111' I 

W ,f ‘ 
J.M‘‘ 

Figure 27. Photograph of a fabricated PSD active 

micromixer. 
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4-2 FABRICATION PROCESS 

4-2-1 Flat-surface Diaphragm Active Micromixer 

The fabrication process of the FSD active micromixer is illustrated in Figure 28. 

PMMA substrate is used because of its biocompatibility. The walls of channels and 

chamber are patterned by photolithography. M i c r o C h e m ™ SU-8 2075 photoresist 

was spun on the substrate at 3000 rpm rotational speed. After soft bake at 65 °C for 

5 min and 80 °C for 40 min, the SU-8 layer should be exposed under the mask with 

the channels and chamber pattern for 60 s. Post bake should be performed at 5 0 � C 

for 30 min. The baked SU-8 should then be immersed in MicroChem's SU-8 

Developer for 60 min at room temperature. The channels and chamber profile could 

be obtained after brief rinse with isopropyl alcohol (IPA) and DI water. The inlets 

and outlet can be made by drilling holes with diameter 2.8 mm at the pattern 

terminals to allow the insertion of faucets. Then a polyester film, with a 10 mm 

diameter hole, should be bonded with the substrate using a layer of UV-curing epoxy 

resin, spun on at 4,000 rpm for 40 s. After UV-exposure, the closed channels can be 

built between the substrate and the film. The biocompatible diaphragm can also be 

fabricated by spinning a 40 \im layer of PDMS, with 10:1 ratio, on an 11 mm 

diameter brass diaphragm. The PDMS layer should then be baked at 90 for 90 

min. The biocompatible diaphragm can also be achieved by depositing a layer of 0.1 

jam parylene C instead of PDMS. Then the diaphragm can be bonded around the 

hole of polyester layer. Since a PZT ceramic layer is adhered under the diaphragm, 

the region below the mixing chamber could provide the mechanical oscillation of 

fluid. The upper and lower sides of the PZT ceramic are connected with electrical 

wires to receive the driving voltage. 
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Figure 28. Fabrication process of the FSD active 

micromixer. 

A photograph of the fabricated micromixer is shown in Figure 29. Red ink was 

inserted inside the channel to illustrate the pattern of fluid flow. After the sample 

was cut by a diamond saw, the cross-section view of the 600[am wide microchannel 

was captured by the microscope with 250X magnification. Another l o o x microscope 

image was captured at the merging region of the fluid. It indicates the UV-curing 

epoxy resin can provide a satisfying bonding profile (A detailed bonding experiment 

of UV-curing epoxy resin will be discussed in Appendix A). 



Mixing Based on Mechanical Vibration 54 

A , 

a o 
J ^ ^ 〈 偏 • 漏 

Figure 29. Photograph of the micromixer and 

microscope images of the channel features. 

4-2-2 Pillared-surface Diaphragm Active Micromixer 

A PSD active micromixer was successfully developed and fabricated to farther 

enhance the mixing performance. The fabrication of the PSD active micromixer 

(Figure 30) was the similar to the FSD one except for the photolithography process. 

The PSD active micromixer used double layer of SU-8 to create a more complicated 

geometry. In the fabrication process, the first 80 |im thick SU-8 layer is patterned 

with the pillars, the walls of channels and chambers. The height of the chamber and 

channel walls should then be doubled by the second SU-8 layer. Thereby pillars can 

be created on the topside of the mixing chamber after flipping the substrate. The 

height of the chamber wall is twice that of the pillars, so the diaphragm can vibrate 

freely under the chamber. The inlets and outlet are made by drilling holes and 

inserting faucets. Afterwards the microchannels should be closed by bonding a 

polyester film, which contains a 10 mm diameter hole at the chamber region, below 

the SU-8 layer using UV-curing epoxy resin. The mixing chamber can be 
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accomplished by attaching a brass-PZT diaphragm, which is pre-coated with PDMS, 

below the hole in polyester film. 
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Figure 30. Fabrication process of the PSD active 

micromixer. 

The chamber profile of a fabricated PSD active micromixer is illustrated in Figure 31. 

Pillars with dimensions 500 |im x 500 阿 x 80 jam was evenly distributed inside the 

chamber (Figure 31 (a) and (b)). The walls of the chamber and microchannels were 

160 \xm in height (Figure 31 (c)) and so the distance between pillars and the 

diaphragm was around 80 \im. Fluid could flow fluently in the chamber since the 

amplitude of the diaphragm oscillation was around 2 |im. A thorough comparison of 

the experimental mixing time between the FSD and PSD active micromixers will be 

presented in section 4-3. 
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Figure 31. (a) Top view of mixing chamber and (b) 

isometric views of pillars and (c) microchannels. 

4 - 3 EXPERIMENTAL ANALYSIS OF MIXING PERFORMANCE 

An experiment was performed to analyze the mixing performance of the FSD and 

PSD active micromixers as shown in Figure 32 (a). For the FSD-based experiment, 

two vortex micropumps were connected to the FSD active micromixer with 2.0 mm 

internal diameter tubes (Figure 32 (b)). A dual-output power supply was used to 

drive the micropumps. The working voltages of the micropumps were 0.4 - 2.5 V. To 

illustrate the mixing performance, two fluids with different colors (water and red dye) 

were chosen as solution entering through the inlets. In the mixing chamber, the 

mechanical vibration of the piezoelectric diaphragm was used to enhance mixing 

rate. The voltage input of the diaphragm was produced by a signal generator and a 

power amplifier. Afterwards, the mixed fluid was passed to the mixer outlet. 
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Figure 32. Configuration of the mixing 

performance experiment. 

In an initial experiment, both micropumps were driven by 0.9 V input voltage. When 

fluids were pumped into the chamber, they could not mix up because of the laminar 

flow as shown in Figure 33 (a). A sharp and straight interfacial line between water 

and red dye indicated the balanced pump pressure between the two micropumps. A 

55 V peak-to-peak square wave signal was applied to the FSD active micromixer at 
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10 s. The mechanical vibration could greatly enhance the mixing rate inside the 

chamber (Figure 33 (b)). The resonant frequency of the diaphragm was obtained 

with 0.9 kHz input frequency. Fluid could be thoroughly mixed and be retained after 

1 min (Figure 33 (c)). After we turned off the signal generator at 1 min 20 s, the fluid 

inside the chamber was reverted to be half red and half transparent. The typical 

restoring time was around 1 min 30 s (Figure 33 (d) 一（e)). At 4 min o s, the input 

signal was applied to the micromixer again. Then the mixer was turned off at 5 min 5 

s. Repeatable results could be obtained in our experiment (Figure 33 (f) - (i)). 

Outi^ m , X / I Met A 

u I . I — 
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Figure 33. Fluid inside mixing chamber during 

experiment at (a) o s，(b) 20 s，(c) 1 min 10 s，(d) 1 

min 47 s, (e) 2 min 55 s, (f) 4 min 18 s，(g) 5 min 5 s, 

(h) 5 min 45 s and (i) 6 min 40 s. 

Another initial experiment was also performed to verify the mixing capability of the 

PSD active micromixer. The experimental setup was the same as the one shown in 

Figure 32 except for the micromixer and the variation of the input frequency. The 
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FSD active micromixer was replaced with the PSD active micromixer, which was 

driven by 55 V peak-to-peak bipolar square wave voltage at a frequency of 1.4 kHz. 

The fluid pattern inside the chamber during experiment is shown in Figure 34. The 

mixing time was about 5 s (Figure 34 (a) - (c)) and the restoring time remained 1 

min 30 s (Figure 34 (c) 一（e)). Moreover, the results are reproducible (Figure 34 

(e) - (i)). This demonstrated that adding pillars inside the mixing chamber could 

help further induce significant improvement on the mechanical vibration based fluid 

mixing. 

(A) (B) (C) 
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Figure 34. Fluid inside the mixing chamber of the 

PSD active micromixer during experiment at (a) o s， 

(b) 1 s，(c) 5 s，(d) 15 s，(e) 95 s，(f) 97 s, (g) 100 s, (h) 

111 s and (i) 176 s. 

The input voltage frequency, peak-to-peak voltage and fluid flow rate are the 

important factors for the FSD and PSD active mixing performance, other than the 

chamber geometry. The relationship between the mixing time and the related factors 

were investigated experimentally. The mixing time of the FSD and PSD active 



Mixing Based on Mechanical Vibration 60 

micromixers for different input frequencies, peak-to-peak voltages and fluid flow 

rates are shown in Figure 35. For the microfluidic mixing with 55 v peak-to-peak 

voltage and 1.2 ml/min fluid flow rate (Figure 35 (a)), the mixing time could be 

regulated by the oscillating frequency. Thorough mixing occurred when the input 

frequencies were greater than 0.6 kHz and 0.5 kHz for the FSD and PSD active 

micromixers, respectively. For input frequency greater than 9 kHz, the mixing 

enhancement by the diaphragm vibration became insignificant. The optimal mixing 

time of the FSD active micromixer was 60 s at a frequency of 0.9 kHz, and the 

optimal mixing time of the PSD active micromixer was 2 s at a frequency of 1.5 kHz. 

In the mixing experiment with controlled 1.5 kHz oscillating frequency and 1.3 

ml/min flow rate (Figure 35 (b))，a driving power with higher peak-to-peak voltage 

could contribute to the mixing performance. Mixing inside the chamber could be 

obtained with 44 V and 49 V peak-to-peak voltages for the FSD and PSD mixers, 

respectively. With 83 V peak-to-peak voltages, the mixing time could be shortened 

to 11 s for FSD mixer, and 2 s for PSD mixer. Furthermore, less mixing time was 

required for the slow fluid flow. In the experiment with constant input frequency (1.5 

kHz) and peak-to-peak voltage (55 V)，the pumping discharge was a determinative 

factor for the microfluidic mixing (the fluids could not be mixed with >1.6 ml/min 

discharge in the FSD active micromixer). When the fluids were in static state, o 

ml/min discharge, the mixing performance could be further improved to 23 s and 2 s 

for the FSD and PSD micromixers, respectively. 
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Figure 35. Mixing Time of the FSD and PSD active 

micromixers corresponding to different (a) input 

frequencies, (b) peak-to-peak voltages and (c) fluid 

flow rates. 



Mixing Based on Mechanical Vibration 62 

It can be observed that the optimal input frequency for the mixing of the FSD active 

micromixer is 0.9 kHz, and the optimal input frequency for the mixing of the PSD 

active micromixer is 1.5 kHz, which are related to the resonant frequencies of the 

diaphragms. The mixing performance can be enhanced by higher peak-to-peak 

voltage and lower fluid flow rate. The experimental results are coincident to the 

conditions discussed in section 4-1-1. Moreover, all experimental results indicate 

that the pillars could further shorten the required mixing time. The exhaustive 

experimental data obtained from our micromixers can greatly help microfluidic 

device designers to develop optimal and effective FSD or PSD micromixers for 

different applications in the future. 
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CHAPTER 

FIVE 

MICROFLUIDIC FLOW PLANNING SYSTEM 

5-1 SYSTEM DESIGN 

5-1-1 Chip Design and Fabrication 

Most microfluidic devices are designed with planar structures, which contain inlets 

and outlets for fluidic connections. With the conformable fluidic adaptors, tubes can 

be used to link up the individual devices as an integrated system. The microfluidic 

system can perform the complete functionality for a particular application. The 

experimental setup introduced in section 4-3 is an example of the modular 

integration. In this section, a microfluidic system integrated with a polymer-based 2 

X 2 chamber array and sixteen vortex micropumps is presented. This can also 

demonstrate the capability of fluid flow control using the controllable pumping 

sequence of multiple micropumps. 

The schematic of the integrated microfluidic system, which has multiple detection 

chambers that can allow diverse bio-solutions to be transported, is illustrated in 

Figure 36. This system was successfully built and tested with rudimentary 

experiments. The microfluidic chip consisted of four microchambers and sixteen 

inlets. Solutions were pumped to the inlets by vortex micropumps. In each chamber, 



Microfluidic Flow Planning System 64 

any combination of the four inlet chemicals could be prepared by adjusting the flow 

rate of micropumps (A - D). With the designed channel configuration, samples 

could be delivered to the four target chambers (i 一 4) by micropumps. Each 

micropump was used to adjust the fluid flow rate from a particular chemical inlet to 

a target chamber. The combination and concentration of chemicals were controlled 

by the pump rate ratios among the micropumps. Integrating with the motor control 

system discussed in the next section, the system enabled the parallel sample 

preparations of the four microchambers, with different pump rates and chemical 

combinations. 

Micropump lA — \ y — Micropump 4A 
Micropump IB ^ N ( y Micropump 4B 
Micropump IC ^ ^眷 \ ” ^ ^ Micropump 4C 
Micropump ID ~ - ^ — Micropump 4D 
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Micropump 2A ~ i ^ ^ ！ ~ Micropump 3A 
Micropump 2B ‘~~ji > ~ I — Micropump 3B 
Micropump 2C y ~ Micropump 3C 
Micropump 2D ~ ^ w y ~ Micropump 3D 

I N ^ _ / 
I ^ ^ I l ^ J 

Chamber 1 Chamber 2 Outnet Chamber 3 Chamber 4 

Figure 36. Pattern design of the microfluidic 

system integrated with four microchambers and 

sixteen inlets connected with micropumps. 

The complete polymer microfluidic chip is shown in Figure 37. Red dye was inserted 

into the channels and chambers to illustrate the fluid flow pattern. The chamber and 

channel patterns on the substrate were fabricated with SU-8 photoresistive polymer. 

Further machining processes were performed to construct the sixteen inlets. 
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Figure 37. Photograph of the SU-8 channels on the 

PMMA substrate of the microfluidic system with 

parallel sample preparation capability. 

5-1-2 Digital Controlling System 

The interface hardware and software were developed to control the vortex micro 

pumps and eventually automate the entire bio-fluid delivery and transport process. 

As mentioned earlier, fluid pump rate can be controlled by the rotational speed of 

pump impeller. Hence, the real-time automatic fluid delivery can then be controlled 

by a computer. A motor control system was developed to operate multiple 

micropumps as shown in Figure 38 (a) and the schematic is shown in Figure 38 (b). 

Users could input commands with an interface program to control the pump rates of 

micropumps. Transmitting signals via the serial port, the motor controller would 

collect and decode the received commands. The motor controller was integrated 

with IC chips AT90S8515, MAX232 and two operational amplifier arrays (The 

detailed circuit design is illustrated in Appendix B). It could simultaneously activate 

up to sixteen micropumps simultaneously. The output signals of the motor 
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controller were programmed in pulse-width modulation (PWM) format. Since the 

ratio of the equivalent output voltage Veq and the peak voltage Vpeak was equal to the 

ratio of its pulse width tpuise and signal period T，the rotational speed of micromotors, 

and hence the pump rate, could be adjusted by the output pulse width. In our system, 

Vpeak was 5 V and T is 3.9 ms. The desired Veq could be obtained by regulating tpuise 

between � 0 . 4 ms and ms. 
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Figure 38. (a) Motor controller developed for 

micropump operations and (b) schematic design of 

the motor control system. 
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The interface program for the motor controller is illustrated in Figure 39. Users can 

control the operation of the flow planning system by switching the check boxes on 

the interface. After the 'Update' button is pressed, computer will encode and send 

the commands to the controlling circuit and so the driving voltages of vortex 

micropumps would update simultaneously. Besides the manual operation, the 

interface program can load a text file containing prescheduled operation scripts. 

Consequently, the operation of the flow planning system can be fully automated. 
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Figure 39- Interface program of the microfluidic 

flow planning system. 

5-1-3 Operation Mechanism 

The operation of the microfluidic system often requires parallel operation, i.e., 

multiple micropumps can operate with different pump rates at the same moment. 

However the information contained by each serial port data package is limited to 8 

bits. An appropriate transmission protocol was designed for our application. In the 

motor control system, the rotational speed values of target micropumps were 

temporarily stored in the controller buffer. The micropumps would keep their 

previous rotational speeds until the updated command is sent. This approach could 
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ensure the parallel operation of micropumps. The flow diagrams of implementation 

are illustrated in Figure 40. In the system, the microcontroller AT90S8515 processed 

the command data and the output PWM signals with UART and timer interrupt 

functions, respectively. The microcontroller kept swapping the output voltages and 

generated PWM signals by the timer interrupt. When an external command was 

received from the serial port, the UART interrupt function would instantly transfer 

the rotational speed values to the buffer storage and check whether the updating of 

the output voltages was needed. To update the signal outputs, the system would 

change the pump rates of all micropumps instantaneously. 
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(A) (B) 
Figure 40. Flow diagrams of (a) UART and (b) 

timer interrupt functions adopted in the motor 

control system. 
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5 - 2 EXPERIMENTAL RESULTS 

An experiment was also performed to illustrate the flow pattern inside the 

microchambers. Micropumps A and C were inserted with DI water while 

micropumps B and D were used to pump red dye. The flow pattern (Figure 41) 

indicates that all micropumps could successfully deliver inlet fluids into the target 

microchambers. This result shows that the parallel fluid manipulation can be 

achieved by 1) fabricating an array of chambers on a transparent polymer substrate, 

and 2) using an array of micropumps to transport different chemicals /bio-fluids into 

different microchambers. Essentially, the technology that we have developed is 

scalable, i.e., the number of vortex micropumps and number of fluid chambers can 

be dictated entirely by the experimental needs. 

I I I " ' ' • I t 

Figure 41. Fluid Pattern of the microchambers 

pumped with DI water (inlets B and D) and red dye 

(inlets A and C) 
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CHAPTER 

SIX 

MICROFLUIDIC MIXING MODULE ARRAY 

6-1 SYSTEM CONFIGURATION 

6-1-1 Microfluidic Chip Design 

Due to the rapid advancement on the performance of the existing microfluidic 

devices, biological and chemical sensing systems and analyses can be practically 

miniaturized. However，besides improving the signal acquisition capabilities of these 

mini-sensing systems，the preciseness of sample preparation and handling is also a 

vital requirement for the system miniaturization. Most biochemical sensing 

components can function well within only specific ranges of environmental 

condition parameters. The flow rate, temperature and sample concentration control 

are some of the requisite factors in the biochemical sensation. The condition control 

in the current biochemical detection systems is achieved by macro-equipment with 

superior stability and accuracy. Nevertheless, the controlling equipment highly 

reduces the portability of the miniaturized microfluidic systems. The microfluidic 

system can only operate at the places where the controlling equipment is available. 

Moreover, the bulky fluid and electricity connections are other significant problems. 

Consequently, the sample preparation components and the controlling equipment 

should also be miniaturized and integrated into the microfluidic chip. 
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A digitally controllable microfluidic chip consisting of multiple mixing modules for 

chemical sample preparation was developed for the bio-fluid preparation 

applications. The microfluidic chip was capable of mixing fluid with adjustable 

mixing ratio, a function which could be used in applications such as surface plasmon 

resonance (SPR) detection of the concentration level of bio-chemicals [48]. A 

schematic diaphragm of the device design is shown in Figure 42. Six vortex 

micropumps, six tesla valves [59] and three active micromixers were integrated into 

a microfluidic chip using an identical Polymer-MEMS process. 

In the mixing module array, we chose pillared-surface diaphragm active micromixer 

because it provided greater mixing rate enhancement when compared to the FSD 

active micromixer. For each module, two vortex micropumps were connected to the 

PSD active micromixer with 500 |am wide microchannels. The discharges of inlet 

fluids were adjustable with different input voltages of micropumps. As mentioned in 

section 1-2-3, when fluids were first pumped into the mixing chamber, they could 

not mix easily due to the laminar flow in the chamber. But, by applying appropriate 

input voltage, the micromixer could enhance the mixing rate inside the chamber by 

the mechanical vibration of diaphragm. The mixing performance of each mixing 

module was identical to the characteristics of the PSD micromixer discussed in 

section 4-4. In each mixing module, a chemical could be pumped into an inlet，while 

another inlet was pumped with DI water (or any given solution). The concentration 

of chemical could be controlled by the pumping rate ratio between the two vortex 

micropumps. After the fluids mixed thoroughly inside the microchamber, a specific 

chemical with desired concentration could be obtained at the outlet of each mixing 

module. 
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Figure 42. Schematic drawing of the digitally 

controllable mixing module array. 

6-1-2 Backward Flow Elimination by Tesla Valve 

In each mixing module, the fluid pumping of a micropump can induce backward 

fluid flow in another pump channel. A typical example is a “Y，，-shape microchannel 

with two micropumps as illustrated in Figure 43. When micropump A is on and 

micropump B is off, the pumping pressure of micropump A causes backward flow in 

pump channel B (Figure 43 (a)), and vice versa (Figure 43 (b)). The flow leakage 

problem will reduce the pumping efficiency and, at the same time, cause an 

unexpected flow in the adjacent channel. 



Microfluidic Mixing Module Array 73 

Micropump A Micropump A 

(ON) ^ ^ ^ (OFF) 

Micropump B Micropump B 
鄉 (OFF) (ON) 
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Figure 43. Backward fluid flows in "Y'-shape 

microchannel caused by (a) micropump A and (b) 

micropump B. 

To eliminate the interference of the pressure between different micropumps, tesla 

valves can be added in the inlet channels. The geometry design of tesla valve is 

illustrated in Figure 44. When the fluid passes through the valve in the backward 

direction, the flow direction of the turning channel should be from A to B. The flow 

pressure induced at region B can reduce the further backward flow and retain the 

flow rate of the adjacent output channel. 

Figure 44. Top view and isometric view of the tesla 

valve geometry. 
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A simulation on the fluid flow in a tesla valve was performed to investigate the 

backward flow resistance by the valve geometry. Average flow velocity of 3 cms-i was 

set at the valve inlet for forward fluid flow while the same velocity was set at the 

outlet for backward flow. Results showed that the back pressure in the forward flow 

and backward flow simulations were 0.41656 kPa and 1.28528 kPa, respectively. The 

pressure difference between the flows in different directions shows that the flow 

rectification property can effectively reduce the backward flow problem in 

microchannel networks. 
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Figure 45. Simulation results of (a) forward and 

(b) backward flows of tesla valve. 
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6-1-3 System Controller and Operation Mechanism 

The microfluidic mixing module array could be controlled by the identical digital 

control system described in section 5-1-2. Based on the fluid flow characteristics of 

vortex micropump, multiple fluids with variable proportion could be pumped with 

digital input voltage. Besides, the microfluidic mixer used square wave input voltage 

to actuate the diaphragm vibration. Therefore, a digitally controllable microfluidic 

mixing system can be integrated with the mixing and pumping devices. However, 

the control system needs to be modified before connecting to the mixing module 

array. A supplementary oscillating signal generator should be added in the output 

ports of micromixers (The circuitry design is presented in Appendix B). Furthermore, 

the interface program was modified as illustrated in Figure 46. Because the 

supplementary module required constant input voltage, the signal output of the 

mixer channels was set to steady voltages, instead of that in PWM format. 

Integrating the control system with the mixing module array could potentially 

automate the bio-fluidic manipulation and preparation. 
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Figure 46. Layout of the interface program for the 

mixing module array application. 
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6-2 FABRICATION 

The fabrication process of the microfluidic mixing module array is illustrated in 

Figure 47. The dimension of a fabricated microfluidic chip is 42.5 mm x 60 mm, and 

contains three mixing modules (Figure 48). PMMA substrate is used because of its 

biocompatibility and transparency. The walls of channels and chambers are 

patterned by photolithography. MicroChem'^^ SU-8 2075 photoresist is spun on the 

substrate at 3000 rpm rotational speed. After soft bake at 50 °C for 5 min and 70 °C 

for 40 min, the SU-8 layer should be exposed under the mask with the channels and 

chamber pattern for 60 s. Post bake should be performed at 50 °C for 30 min. The 

baked SU-8 should then be immersed in MicroChem's SU-8 Developer for 20 min at 

room temperature. The pillars could be obtained after brief rinse with isopropyl 

alcohol (IPA) and DI water. The second layer with chambers and channels patterns 

should be fabricated with the same photolithography technique. The inlets and 

outlet can be made by drilling holes with diameter of 2.9 mm at the patterned 

terminals to allow the insertion of faucets. Then a polyester film, with predrilled 

holes for micropumps and mixing chambers, should be bonded with the substrate 

using a layer of UV-curing epoxy resin, spun on at 4,000 rpm for 40 s. After 

UV-exposure, the closed channels can be built between the substrate and the film. 

Then the brass diaphragm can be bonded around the hole of polyester layer. A 

biocompatible diaphragm can be achieved by spinning a 40 |im layer of PDMS on 

the brass layer. Since a PZT ceramic layer is adhered under the diaphragm, the 

region below the mixing chamber could provide the mechanical oscillation of fluid. 

The upper and lower sides of the PZT ceramic are connected with electrical wires to 
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receive the driving voltage. The micropump modules, each consists of a motor and 

an SU-8 impeller, should then be adhered to the cavity below each inlet. 
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^ ^ 
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J 

T ^ N /R\ JT A 
I-/1\/| A 1 1 G I ' L L 1 丄丄VJJLV丄 TYV̂  

^ I——I 门 ri 门 ri 门 门 I——I R Pattern 2nd layer of SU-8  
by photolithography 

(Flipped) ""“ Drill holes for inlets and 
B 丨 b J U U u u u u ^ ' y outlets 

Outlets ~ ^ ^ ~ Inlets 

��̂  ^ ； — Insert faucets into the 
丨 u u u u u u I P M M A 
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epoxy resin r ^ Bond a polyester film with 
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‘ L ^ j i - ^ ^ 

PZT ceramic 

A A 
, : Assemble micropumps and 

~ ~ j u u LJ u LJ LJ| _I 卞 bond them below the inlets 

Micropumps 

Figure 47. Fabrication process of the microfluidic 

mixing module array. 
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Micropump 6 ~ v 

Micropump 5 ~ V “ , l S f l l 

Micropump 4 v i ,暮丨藝丨 

Micropump 3 丨 : ‘ , , • 

— 办 � u 二 

’ ' ' ' ' ' ' 、 臺 ; I , 

Figure 48. Photograph of an array of digitally 

controllable microfluidic mixing modules. 

6 - 3 MIXING RATIO ESTIMATION 

The estimation of the pumping ratio between two inlet fluids in a micromixer is 

complicated. Due to the geometry variation of chambers and channels, the pressure 

reduction of fluid flow cannot be directly predicted. Besides the approach of 

calculating the pumping pressure difference between two inlet channels, the ratio 

can also be approximated by the chamber pattern. When the micromixer is 

inactivated, an interfacial line can be observed inside the mixing chamber. The 

position of interfacial line is related to the discharge ratio, and so it can also be 

viewed as the visual feedback of the mixing ratio. 

The discharge ratio of fluid 1 and 2 can be roughly estimated by the equation of 

continuity. It is assumed that the flow velocity is evenly distributed on the selected 

cross-section area such that the velocities of the two fluids are the same, i.e., Vi = V2 
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= V . The intermediate cross-section, z = z\ should be selected to estimate the 

discharge ratio. Along the cross-section, the interfacial line between fluids is 

sharpest since the passive mixing caused by the change of chamber geometry is 

minimal (5x / 5y = 0). Given the position of an interfacial line x,, the discharge ratio 

of fluid 1 and 2 would be 

a = VA = x - 而 

a 一 厂2 為 — V ( 2 Z ) ( X + x.)~ X + x.‘ �小 1) 

where X equals the half of chamber width, referring to Figure 2. 

However, the above linear estimation is accurate only for small \xi/ X\ because the 

velocity profile should be in the form of equation (2.5). Recall equation (2.7)，the 

discharge of fluid 1 and 2 can be adjusted to 

‘ 2 X 

^ , . (4.2) 

、 5 ^ -X 

HENCE THE DISCHARGE RATIO CAN THEN BE EXPRESSED AS 

『 2 ; ^ 3 + 3 X 广 〜 3 . ( 4 . 3 ) 

Note that /c is a constant. Therefore the relation holds for fluids with different 

properties such as density and viscosity. 

6-4 EXPERIMENTAL RESULTS 

To illustrate the interfacial line and mixing performance in our experiment, DI water 

and red dye were used as the inlet fluids (Figure 49 (a)). When the fluids were 

pumped into the microchamber, the width ratio (or the ratio of cross-section area) of 

fluid flow, di / d2，could indicate the ratio of pumping volume due to the pressure 
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imbalance inside the chamber. The flow patterns for different pumping ratio are 

shown in Figure 49 (b) - (d). It indicates that the mixing performance depends on 

the overall flow rate inside the chamber, rather than the individual fluid flow rate. 

Hence, the ratio of fluid flow rates can be adjusted flexibly. Based on the 

characteristics of vortex micropump, the pumping ratio could be estimated to obtain 

the desired concentration of red dye after mixing. Multiple chemicals concentration 

control could be achieved by replacing red dyes with the chemicals in the array of 

mixing modules. 

m 
Pumpl: 0.3V Pumpl: OAV Pumpl: 0.6V 

^1； jj Pump2: 0.8V Pump2: OAV PumpI: 03V 
‘ di/d2 -0.389 di/d2 �0.923 di/dz �2.15 

h ""̂  丨 爾 _ i i | | 2 | | | ' I ' l l : � I 

Inlet 1 I ^ Met 2 �| l | | | | 需 f 賺丨： 
(DI water) | _ d dye) 1 �W , ！ ‘ 彳 ‘ ， • 

t p I X ：1： J：： 
1 \ % ‘ J ) 

MICROMIXER | 一 — 
OUTLET 1 R ‘ , 

(A) (B) (C) (D) 

Figure 49. (a) Top view of a mixing module during 

operation. Ratios of pumping volume and the typical 

chamber patterns of mixing operations 

corresponding to different pump voltage inputs: (b) 

O.3V:O.6V, (C) o.4V:o.4Vand (d) o.6V:o.3V. 
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C H A P T E R 

SEVEN 

CONCLUSION 

The polymer-based vortex micropumps, active micromixers and tesla microvalves 

were successfully developed in this project. The microfluidic devices could be 

fabricated by hot embossing process or polymer-photolithography. In a vortex 

micropump, the flow rate was proportional to its applied voltage 0.4 V - 2.5 V) or 

impeller rotational speed (up to � 5 4 2 2 rpm in water). Experiments showed that the 

double layer impeller design could improve the pumping efficiency. In our designs, 

the flow rate and the pumping pressure actuated with the double layer impeller 

design could achieve 1.02 ml/min and 0.850 kPa at � 2 . 5 V，respectively. The 

inverted chamber configuration of vortex micropump was also developed, which 

could potentially be integrated with other devices into a single chip system. 

Furthermore, the pump model indicated that the dimension and geometry of the 

impeller could be adjusted for different application requirements. 

Two types of micromixers, FSD and PSD active micromixers, based on the 

piezoelectric mechanical vibration were designed, fabricated and investigated with 

experiments. The experimental setup was integrated with two vortex micropumps 

and an active micromixer. It showed that the oscillating frequency, pump rate and 

peak-to-peak voltage were key factors affecting the microfluidic mixing in the 
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micromixing chambers. The optimal frequencies of the input oscillating voltages for 

the FSD and PSD pumps were 1.5 kHz and 0.9 kHz, respectively. This also indicated 

that adding pillars could shorten the mixing time to <5 s. 

We have also developed the microfluidic chip integrated with four microchambers 

and sixteen micropumps for the potential application of the parallel detection with 

multiple microchambers. The computer-controlled system could potentially 

automate the multiple fluid delivery and bio-detection process. Furthermore, 

arrayed sensing surface with multiple analyses and parallel detection chambers will 

certainly be a very exciting direction for the further development. 

The polymer-based vortex micropump, PSD active micromixers and tesla 

microvalves were integrated into a microfluidic mixing module array capable of 

delivering and mixing multiple bio-fluids/chemicals with adjustable fluid ratios. The 

vortex micropumps could deliver a wide range of flow rates and pumping pressure. 

Moreover, the tesla valves eliminated backward flow by increasing the backpressure 

of the inactive pump channels. It has been shown that the proportion between two 

inlet fluids can be estimated analytically and be regulated with different input 

voltages of micropumps. We have also demonstrated the functionality of the mixing 

module array on chemical concentration control. The system can be extended to 

further integrate with other microfluidic systems, which can potentially miniaturize 

the fluid preparation, delivery and detection processes into a single polymer 

microfluidic chip. In essence，this system demonstrates a technology that can be 

extended to build large-scale integrated microfluidic system. 



Future Work 83 

C H A P T E R 

EIGHT 

FUTURE WORK 

8-1 SELF DRIVEN MICROFLUIDIC FLOW PLANNING SYSTEM 

Further integration of the microfluidic flow planning system can greatly reduce the 

chip size and inlet connections as illustrated in Figure 50. The microfluidic chip 

consists of four microchambers and sixteen micropumps. It is designed to prepare 

samples with any combination of the four crude chemicals (A - D). The pattern 

design can reduce the fluidic connection from sixteen to four inlets. In the 

microfluidic chip, the dual-layer configuration of the microchannels would 

effectively increase the capability of fluid flow manipulation. Channel patterns are 

fabricated on both upper and lower sides of the substrate, linked with the vertical 

microchannels (diameter 5001am). The channel pattern on the substrate should be 

fabricated with SU-8. Further machining processes should then be performed to 

construct inlets, outlets, impeller chambers and the linking holes between upper and 

lower microchannels. 

With the designed channel configuration, samples could be delivered to the four 

target chambers (1 - 4) by micropumps. Each micropump is used to adjust the fluid 

flow rate from a particular chemical inlet to a target chamber. The combination and 

concentration of chemicals can be controlled by the pump rate ratios among the 
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micropumps. Integrated with the motor control system discussed in section 5-1-2， 

the system potentially enables the parallel sample preparations of the four 

microchambers, with different pump rates and chemical combinations. 

B I H Upper Channels 了 • 了 „ ^ ^ ^ _ 
, T 1 Innet A Innet B Innet C Innet D 

I I Lower Channels C • 

Micropump CI —| X"'"' v / ^ A “ | Micropump C2 
Micropump A1 ~ | � J J ^ Micropump A2 
Micropump B1 “‘丨丨 < ^ . - 4 ~ Micropump B2 
Micropump Dl �卞 广 ” : ��A i Z ^ ~ Micropump D2 

Micropump D2 , •‘ T ； w ^ 1 Micropump D4 
Micropump B2 L \ � \ 1 Micropump B4 
Micropump A2 ~ ！ \ • ^ 1 Micropump A4 
Micropump C2 ~ K r O ^ » x H Micropump C4 

Chamber 1 Chamber 2 Outnet Chamber 3 Chamber 4 

Figure 50. Channel design of the microfluidic 

system integrated with four microchambers and 

sixteen micropumps. 

8-2 MIXING ENHANCEMENT BY CAVITATION MICROSTREAMING 

The micromixing can also be enhanced by the bubble-induced acoustic 

microstreaming [60], in addition to the chamber diaphragm vibration. When an 

acoustic wave is transferred into a solution, the air bubbles inside the solution will 

vibrate under the frequency of the applied wave. The expansion and contraction of 

the bubbles can be viewed as the oscillation of a circular membrane. It was also 

discovered in [61] that the performance of mixing enhancement was predominantly 

determined by the resonance characteristics of air bubbles. The relation between the 

resonance frequency/and the radius r of an air bubble can be expressed as 
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f J ^ (8.1) 
Int 

where y is the specific heat of air, P is the hydrostatic pressure in dynes/cm^ and p is 

the solution density in g/cc. 

A bubbled-surface diaphragm (BSD) active micromixer using the technique of 

cavitation microstreaming can be achieved by a modified chamber design as 

illustrated in Figure 51. In the modified micromixer, the mixing enhancement 

element is an array of air bubble, instead of the SU-8 pillars. Multiple air bubbles 

with fixed size can be trapped by the cylindrical caves fabricated on the top size of 

the microchamber. When a fluid is pumped into the micromixer, it will not fill into 

the caves because of significant cave depth. The optimal dimension of the cave can 

be estimated using equation (8.1). For instance, with y = 1.4, P = 106 dynes/cm^, p = 

1.0 g/cc and the resonant vibration frequency / =5 kHz, the cave radius can be 

calculated as 0.65 mm [43]. Furthermore, the BSD active micromixer can still retain 

the flat geometry on the top side of microchamber, and so this design should be 

applicable for solutions and fluids that containing mixtures. 

Air Bubble Trapped as a 
Z Vibrating Diaphragm  

: [ J _ l j L u _ U — U - U J - J U 

I 
^ PZT Diaphragm 

Figure 51. Cross section schematic of a BSD active 

micromixer. 
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The proposed fabrication process of the BSD mixer is identical to the PSD one. 

Double-layer photolithography process should be used to fabricate the flow patterns 

as illustrated in Figure 52. The first layer of SU-8 can construct the structure of air 

traps while the second layer of SU-8 should contain the pattern of chamber and 

channels. The complete fabrication process can be referred to section 4-2-2 (except 

the pattern of the photolithography process). 

Caves 
i i i i ^ 

SU-8 [—1 I——I I~I I~I I~11~I I——I |—I Pattern 1st layer of SU-8 
PMMA by photolithography 

^ I——I I~~I I~~I I~~11~I I——I R Pattern 2nd layer of SU-8  
by photolithography 

Figure 52. Photolithography process of the BSD 

active micromixer. 

It has been shown an acoustic based on cavitation microstreaming could induce 

micromixing for 2 min [43]. The device was actuated with only 5 V peak-to-peak 

voltage at 5 kHz frequency. The chamber design of the BSD mixer is a combination 

of two mixing components: a PZT-oscillating diaphragm and an array of passively 

vibrating bubbles. By varying the dimension of cylindrical caves, the resonant 

vibration frequency of trapped bubbles could match that of the diaphragm and 

obtain the optimal mixing performance. Hence, the BSD active micromixer can 

potentially further enhance the PZT-driven mixing performance. 
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A P P E N D I X 

A 

BONDING TEST ON UV-CURING EPOXY RESIN 

Polymer is a kind of materials that is non-reactive to many chemicals and is 

biocompatible. Therefore, the adhesion between polymer layers becomes a challenge 

on the fabrication process. Adhesives are usually used to provide the bonding force 

between layers. Hence, an appropriate adhesive is necessary to be chosen to achieve 

the desirable bonding profile of channels. 

UV-curing epoxy resin was used as adhesive in both the micropump and the 

micromixer. To examine the quality of adhesion, a bonding strength test was 

performed by the MTS system as shown in Figure 53. A layer of UV-curing epoxy 

resin was used to bond a polyester film with two PMMA substrates. Two external 

PMMA sheets adhered to both the top and bottom surfaces of the sample using 

Chloroform. After the PMMA sheets were mounted on the machine, the bonding 

strength of an adhesion layer was measured by vertically pulling the sample. The 

bonding strength was >0.856 MPa, which was sufficient to bond the polymer layers. 

Thickness of the interfacial layer did not have significant effect on the bonding 

strength. However, a larger bonding area contributed to a stronger bonding 

strength. 
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Figure 53. The tensile bonding test used MTS 

tensile testing machine. In the experimental setup, 

two PMMA adhered to the top and bottom surfaces 

of the bonded substrates to fit the grippers of the 

machine. 
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B 

CIRCUIT SCHEMATIC OF DIGITAL CONTROLLER 

The circuit design of the digital control system described in section 5-1-2 and 6-1-3 is 

illustrated in Figure 54. The driving power of the system (port A) required 9 V 

voltage and 1 A current. The 3 V and 5 V step-down regulators were used to adjust 

input voltages for the signal processing board and the amplifier arrays, respectively. 

Operation commands were read from the serial port (port C). The microprocessor 

8515 would decode the received commands and generate the output voltage in PWM 

format with two ports (PA and PC). The microprocessor board was connected to two 

amplifier arrays (Each array contained eight amplifiers). Because of the input 

voltage of amplifiers, the PWM signals would scale down to 3 V on-state voltage with 

larger maximum current. Connecting to the output ports (port D and E), target 

microfluidic devices could be controlled by the controller interface program 

eventually. 

Some microfluidic devices require oscillating driving power, for example the 

micromixers presented in this dissertation. Hence an additional signal conversion 

circuitry should be inserted between the controller output port and the target device. 

The circuit schematic is illustrated in Figure 55. In the signal-generating module, 

capacitances of Ci and C2 could control the oscillating frequency while the module 
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Figure 55. Circuit schematic of the oscillating 

signal generator. 
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c 
ADVANCED DIGITAL MICROFLUIDIC CONTROLLER 

The fluid manipulation control circuit, which has been developed by Micro and 

Nano Automation Laboratory in Shenyang Institute of Automation recently, consists 

of a digital-to-analog (DA) interface card and a power amplifier board for the power 

control of motors (Figure 56 (a)). Multiple micropumps, up to sixteen channels, 

could be driven simultaneously using the control system. The built-in function of the 

interface card enabled the direct execution using a computer, which induced a faster 

response time than the serial port connection. A simple interface program was also 

developed. It was designed to generate real-time output signals with variable 

voltages and currents. An extended amplifier board was designed to control the 

output signals with sufficient driving currents ( � 1 A per channel) for the motors in 

the vortex micropumps. The board was mainly composed of sixteen PA60EU motor 

controllers with fast response (1.1 MHz bandwidth) and flexible outputs (bipolar 

voltage). The elementary circuit diagram for a controller unit is shown in Figure 56 

(b). The voltage values from the interface card were fed to the positive input channel 

of the controller unit. The steady rotation of the micropump impellers could be 

accomplished by regulating the resistances of Ri and R2. 
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Figure 56. Schematics of (a) fluid manipulation 

control system and (b) controller unit. 

The developed control system hardware is shown in Figure 57. The DA interface card 

supports sixteen output analog channels with 0 - 5 V voltage and 4 - 2 0 mA current. 

This system can have higher output stability because the signal processing ICs and 

voltage regulators are included in the card. Signals can be passed to the amplifier 

board via a connection cable. With further development of the interface program, it 

is believed that the control system could potentially generate different signal formats 

and operate various microfluidic devices. 
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Figure 57. Interface card and circuit board of the 

advance digital controller for intergrated 

microfludic system. 
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