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Abstract 

Proxy caching is a key technique to reduce transmission cost for on-demand 

multimedia streaming. The effectiveness of current caching schemes, how-

ever, is limited by the insufficient storage space and weak cooperations 

among proxies and their clients, particularly considering the high bandwidth 

demands from media objects. 

In this thesis, we propose COPACC, a cooperative proxy-and-client 

caching system that addresses the above deficiencies. This innovative ap-

proach combines the advantages of both proxy caching and peer-to-peer 

client communications. It leverages the client-side caching to amplify the 

aggregated cache space and rely on dedicated proxies to effectively coordi-

nate the communications. We propose a comprehensive suite of distributed 

protocols to facilitate the interactions among different network entities in 

COPACC. It also realizes a smart and cost-effective cache indexing, search-

ing, and verifying scheme. Furthermore, we develop an efficient cache al-

location algorithm for distributing video segments among the proxies and 

clients. The algorithm not only minimizes the aggregated transmission cost 

of the whole system, but also accommodates heterogeneous computation 

and storage constraints of proxies and clients. 

We also address the incentive issue of COPACC. That is, what motivates 

each proxy to provide cache space to the system. To encourage proxies to 

participate, we suggest a revenue-rewarding scheme to credit the cooperative 

proxies according to the resources they contribute. Game-theoretic model is 
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used to analyze the interactions among proxies under the revenue-rewarding 

scheme. Since no system-wide property is achieved in the non-cooperative 

environment, we suggest two cooperative game settings that lead to socially 

optimal situations, where the benefits of the network entities are maximized. 

We have extensively evaluated the performance of the cooperative and 

incentive-based proxy-and-client caching system under various network and 

end-system configurations. The results demonstrate that it achieves remark-

ably lower transmission cost as compared to pure proxy-based caching with 

limited storage space. On the other hand, it is much more robust than a 

pure peer-to-peer communication system in the presence of node failures. 

Meanwhile, its computation and control overheads are both kept in low lev-

els. Furthermore, with the incentive mechanism incorporated, the proxies 

have a strong incentive to collaborate in COPACC, and the optimal net 

profit and social welfare are achieved in the cooperative resource allocation 

games. 
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摘要 

代理緩存（Proxy C a c h i n g )技術是降低隨選流式媒體傳输的一種關 

鍵技術。但是，現今的緩存技術在應用於頻寬要求較高的流式媒 

體時，會遇到存儲空間不足和代理間缺乏合作的問題。 

在本篇論文裡，我們提出一個名叫C O P A C C的系統，它利用代理 

伺服器和終端用戶的合作緩存技術來解決上述缺點。這種革新的 

方法結合了代理緩存和對等用戶通訊的優勢。它透過集合對等用 

戶所獻出的儲存空間來放大總計緩存空間，並且倚賴專用代理有 

效地協調網絡實體之間的通訊。我們提議一套分散式通訊協議來 

協調網絡中不同實體的交流。它實現了一個精明且具成本效益的 

緩存索引、搜尋和認證功能。再者，我們開發了一套有效率的運 

算方法把視像封包分發到代理和用戶的緩存上。該算法不僅使整 

個系統的總計傳输減到最小，而且適用於不同代理和用戶的運算 

和儲存上限。 

我們亦注意到COPACC中的誘因問題 ( Incent ive丨ssue)�換句話說’ 

在代理提供緩存空間給系統的背後究竟有什麼動機。為使代理參 

與COPACC，我們建議一個收入回馈(Revenue—Rewarding)計畫，這個 

計畫會根據代理所獻出的資源多少來決定回馈。我們利用赛局理 

論模型（Game-Theoretic M o d e l )來分析各代理對收入回馈計畫的相 

互作用。因這系統在非合作的情况下無法取得任何良好的特性， 

所以我們建議兩個合作方案來使系統達到最理想的狀態。在那個 

狀態下’所有網絡實體的利益是最大的。 

我們在各種不同的網絡和終端系統配置下測試 C O P A C C 的性能。 

結果證明它比一般代理緩存系統所需要的傳输費用較低。另一方 

面’它在用戶故障的情況下比一般對等緩存系統更穩定。同時， 

它的運算時間和額外開支都在於較低的水平。此外，在誘因機制 

(Incentive Mechanism)的帶動下’代理十分樂意參加COPACC，從而令 

整個系統獲得最佳的利湖和大眾利益。 
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Chapter 1 

Introduction 

Today's Internet has been increasingly used for carrying multimedia traf-

fic, and on-demand streaming for clients of asynchronous playback requests 

is amongst the most popular networked media services. Given its broad 

spectrum of applications, like NetTV and distance learning, it has attracted 

much attention with many practical deployments in recent years [50]. The 

limited server capacity and the unpredictable Internet environment, how-

ever, make efficient and scalable on-demand media streaming remain a chal-

lenging task. 

1.1 Background 

1.1.1 Media Streaming 

To reduce server/network loads, an effective means is to cache frequently-

used data at proxies close to clients [35, 47]. Streaming media, particu-

larly those with asynchronous demands, could also benefit with a significant 

performance improvement from proxy caching given their static nature in 

content and highly localized access interests. However, media objects have 

high data rates and long playback durations, which combined yield a huge 

data volume. For illustration, a one-hour standard MPEG-1 video has a vol-
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CHAPTER 1. INTRODUCTION 2 

lime of about 675 MB; several such large streams will quickly exhaust the 

cache space of a standalone proxy. As such, it is necessary to design partial 

caching algorithms or group proxies to enlarge cache space [35, 12, 42, 51]. 

There have been extensive studies toward these directions, but the storage 

space of existing proxies are still far from satisfactory for media objects, and 

thus remains a bottleneck of the whole system. 

Another approach is to generalize the proxy functionalities into every 

client [14，26]. Such a peer-to-peer communication paradigm allows econom-

ical clients to contribute their local storage spaces for streaming. Specifically, 

the video data originally provided by a server are spread among clients of 

asynchronous demands, and each client can store the full or partial versions 

of the video stream in its local cache. Then, one or more clients can col-

lectively supply cached data to other clients, thus amplifying the system 

capacity with increasing suppliers over time. However, in contrast to the 

reliable and dedicated servers or proxies, the loosely-coupled autonomous 

end-hosts can easily crash or leave without notice. Given that a media play-

back lasts a long time and consumes huge resources, a pure peer-to-peer 

system can be highly vulnerable in the Internet environment. As there are 

no authoritative parties, it is also difficult to identify and penalize malicious 

clients that intentionally inject forged data. 

A hybrid caching system that combines the advantages of both proxy 

caching and peer-to-peer client communication can be used to address the 

above deficiencies. With the cooperation between the proxies and the clients 

in the network, the total network traffic of the media streaming can be 

significantly reduced. 

1.1.2 Incentive Mechanism 

The cooperative networks, especially P2P networks, have caught much at-

tention in recent years. In such systems, network entities collaborate with 
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each others by sharing their own resource, such as storage, bandwidth or 

computational power, to form a resource pool, and this aggregated resource 

pool helps to improve the system performance. Many real applications have 

been deployed, such as distributed file sharing [32] [7], collaborative web 

caching [49], P2P streaming [54], distributed computing [1], etc. It is gener-

ally agreed that the cooperative network performs significantly better than 

the traditional server-client model in supporting large amount of users. In 

short, it provides an inexpensive platform for application that requires scal-

ability, efficiency and robustness. 

However, most cooperative systems assume that the peers (or network 

entities) are "voluntary" to contribute. In fact, this assumption is not re-

alistic. The autonomous peers are selfish in nature, and without concrete 

incentive, there is no motivation to contribute resources, by which they in-

cur service degradation or suffer from cost. A study in Gnutella file sharing 

system [3] suggested that over 70% of users share little or no content. The 

large-scale deployment of the cooperative systems are obstructed by the 

free-riding problem, and motivating the peers to cooperate is critical to the 

success of such systems. 

To increase the involvement of network entities, participation incentive 

mechanisms [36] have to be used to effectively encourage them to collabo-

rate in the network [41]. Different approaches have been proposed in the 

literature. Better quality of service is given to the peers who contribute to 

the network, while free-riders are discriminated against. However, effective 

resource allocation that differentiates the contributors in a highly dynamic 

network is complicated. Others suggested using the reputation based sys-

tem, where reputations of the participating peers are accumulated so as to 

reflect their contribution. The major issue here is how to quantify the user's 

contribution. Also, a secure and trusted reputation system is essential to 

prevent fake reputation, but it is difficult to achieve without a centralized 
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authority. Nevertheless, whitewashing is possible for the malicious user by 

pretending to be another user. 

Another approach is to setup a contribution-rewarding mechanism to 

credit the peers cooperating in the system. The reward may come from 

the overall revenue of the cooperative network, by means of service pricing 

or cost reduction. The simplest way to achieve this goal is to grant a fixed 

credit to a peer whenever it participates. Such a scheme can be implemented 

easily, but it is unfair to the peer who contribute more resource. We can 

also reward the peers in proportional to the resources they contributed. This 

scheme not only achieves proportional fairness, but also encourages peers to 

supply sufficient amount of resource. By rewarding appropriately, sufficient 

amount of resources are supplied by the peers, and the efficiency of the 

overall system is improved. 

1.2 Cooperative and Incentive-based Proxy-and-

Client Caching 

In this thesis, we propose a cooperative and incentive-based proxy-and-client 

caching system for on-demand media streaming. The system consists of 

two components: Cooperative Proxy-and-Client Caching (COPACC) and 

Revenue-Rewarding Mechanism. 

1.2.1 Cooperative Proxy-and-Client Caching 

We propose a novel cooperative proxy-and-client caching system called CO-

PACC. The innovative approach in COPACC combines the advantages of 

both proxy caching and peer-to-peer client communications. We leverage the 

client-side caching to amplify the aggregated cache space and rely on dedi-

cated proxies to effectively coordinate the communications. We develop an 

efficient cache allocation algorithm that distributes video segments among 
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the proxies and clients. The algorithm not only minimizes the aggregated 

transmission cost of the whole system, but also accommodates heteroge-

neous computation and storage constraints of proxies and clients. COPACC 

also makes effective use of multicast delivery in local regions, which further 

reduces the cost of the system. 

COPACC also incorporates with a comprehensive suite of distributed 

protocols to facilitate the interactions among different network entities. 

Most operations in this protocol suite are executed by dedicated proxies. 

As such, it is not only suitable for clients with limited computation power, 

but also resilient to client failures. We also embed an efficient indexing and 

searching algorithm for video contents cached across different proxies or 

clients, as well as a signature verification mechanism, which can effectively 

identify and block malicious clients. 

The performance of COPACC is extensively evaluated under various 

network and end-system configurations. The results demonstrate that it 

achieves remarkably lower transmission cost as compared to proxy-based 

caching with limited storage space. On the other hand, with the assistance 

from dedicated proxies, it is much more robust than a pure peer-to-peer 

system. Its transmission cost only slightly increases when a large portion of 

clients fail, even though the clients contribute a significant fraction in the 

total cache space. Moreover, it scales well to larger networks, and the cost 

generally reduces when more proxies and clients cooperate with each other, 

1.2.2 Revenue-Rewarding Mechanism 

We also propose a revenue-rewarding scheme to address the incentive is-

sue. This incentive mechanism works complementary with COPACC in 

stimulating participation from the proxies. In fact, a cost-profit analysis 

has suggested that it is profitable to setup an incentive-based cooperative 

system for media streaming [39]. 



CHAPTER 1. INTRODUCTION 6 

Our scheme follows the contribution reward-based incentive approach to 

reward the proxies by part of the transmission cost saved from COPACC. We 

focus on how proxies' contributions are influenced by the revenue-rewarding 

scheme. Game theoretic model is used to analyze the interaction between 

proxies under different resource allocation games. We show that in the non-

cooperative environment, the proxies selfishly optimize its own utility. As 

a result, the best total benefit received by the network nodes are not guar-

anteed. We further propose two cooperative resource allocation games that 

lead to two different optimal situations. Both centralized and distributed 

algorithms are presented for the games to achieve different optimal situation. 

We examine the performance of the scheme in terms of profit maxi-

mization and utility maximization. By evaluating the net profit and the 

social welfare received by the network entities, we demonstrate that the 

proposed game settings motivate different entities in the network to cooper-

ate. In addition, two system-wide objectives: net profit and social welfare, 

are achieved. Also, the resulted resource allocation is cost-effective as only 

the proxies with low cost participate in the system. 

1.3 Thesis Contribution 

The major contributions of the thesis are in two folds. First, we propose 

COPACC, a cooperative proxy-and-client caching system, to minimize the 

network transmission cost for media streaming. Second, we address the in-

centive issue of the COPACC by suggesting a revenue-rewarding mechanism. 

The contributions are summarized as follows: 

Cooperative Proxy-and-Client Caching System: 

• An efficient yet optimal cache allocation algorithm is proposed to dis-

tribute video segments among proxies and clients such that the aggre-

gated network transmission cost is minimized. 
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• A comprehensive suite of distributed protocols are presented to facil-

itate the interactions among different entities in the cooperative net-

work. 

Revenue-Rewarding Mechanism: 

• A revenue-rewarding scheme is proposed to address the incentive issue 

in COPACC. It provides a strong incentive for the network entities to 

contribute in the system. 

• Game theoretic model is used to analyze the interactions among prox-

ies under the revenue-rewarding scheme. It shows that no system-wide 

property is achieved in non-cooperative game. 

• Two cooperative games are proposed to achieve different system-wide 

objectives. It shows that net profit and social welfare are maximized, 

and a cost-effective resource allocation is achieved in the cooperative 

games. 

1.4 Thesis Organization 

This thesis is organized as follows: 

• Chapter 1 is an introduction of this thesis. It gives an overview of the 

background of this work. It also briefly describes the proposed cooper-

ative and incentive-based proxy-and-client caching system. Moreover, 

it outlines the contribution and the organization of this thesis. 

• Chapter 2 gives a literature review about Media streaming, Incentive 

mechanism and Resource pricing. 

• Chapter 3 presents an overview of the COPACC architecture. It de-

rives an efficient algorithm for cache allocation, and describes the co-

operative caching protocol. It also evaluates COPACC with different 

performance metrics. 
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• Chapter 4 presents an incentive mechanism for COPACC. It gives an 

overview of the system, and presents the mathematical formulation. It 

describes the revenue-rewarding scheme applied in the three resource 

allocation games: Non-cooperative game, Profit maximizing game and 

Utility maximizing game. The performance of these games are also 

evaluated. 

• Finally, chapter 5 concludes the thesis. 

• End of chapter. 



Chapter 2 

Related Work 

In this chapter, we review the works that are related to our proposed coop-

erative and incentive-based proxy-and-client caching system. Three kinds 

of work are presented here: Media streaming, Incentive mechanism and Re-

source pricing. 

2.1 Media Streaming 

Proxy Caching for Media Streaming 

Proxy caching for media streaming has attracted much attention in the past 

decade, and numerous algorithms have been proposed in the literature, e.g., 

run-length caching [13], prefix caching [42], and segment caching [12, 51, 38]; 

see a comprehensive survey in [35]. Considering the static nature of video 

contents and their intensive I/O demands, many of the algorithms employ a 

semi-static caching approach, where popular video portions are cached over 

a relatively long time period, rather than dynamically saved or replaced 

in response to individual client requests. COPACC also advocates semi-

static caching, and its cache allocation is closely related to the prefix-suffix 

partition and stream segmentation algorithms [46]. However, these studies 

generally focus on a single proxy case with no cooperation among proxies. 

9 
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It is well-recognized that proxies grouped together can achieve better 

performance than independent standalone proxies [16，28]. An example 

for media caching is MiddleMan [2], which operates a collection of proxies 

as a scalable cache cluster; media objects are segmented into equal-sized 

segments and stored across multiple proxies, where they can be replaced at 

a granularity of a segment. There are also several local proxies responsible 

to answer client requests by locating and relaying the segments. To achieve 

better load balance and fault tolerance, a Silo data layout is suggested in [10], 

which partitions a media object into segments of increasing sizes, stores more 

copies for popular segments, and yet guarantees at least one copy stored for 

each segment. Our work is motivated by these cooperative systems, and we 

enhance them by combining proxy caching and client-side caching, which 

greatly expands the aggregated cache storage with contributions from the 

less expensive clients. 

P2P Media Streaming 

Peer-to-peer communications have recently become a popular alternative to 

the traditional server-client paradigm. There are a series of pioneer works 

on peer-to-peer streaming, e.g., PROMISE [26], ZIGZAG [45], and CoopNet 

40], which have demonstrated the superior scalability of shifting all func-

tionalities to end-hosts. Yet, we are aware that, in contrast to the reliable 

and dedicated servers or proxies, the loosely-coupled autonomous end-hosts 

can easily crash, leave without notice, or even refuse to share its own data. 

Given that a media playback lasts a long time and consumes huge resources, 

we believe that dedicated proxies could still play an important role in build-

ing high-quality media streaming systems, as suggested in [11，55]. Different 

from COPACC which focuses on caching, the key issue addressed in these 

studies is the optimal construction of an overlay structure. For storage allo-

cation and management in a hybrid system, an optimal replication algorithm 
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is proposed in [27], and a cooperative algorithm between a single proxy and 

its clients in a local area network is presented in [20]. COPACC comple-

ments them by considering a more general system with multiple cooperative 

proxies with client caching. A two-level hybrid architecture is exploited in 

34], where an overlay network is used in the upper level to deliver videos 

from a central server to proxies and a collaborative-client network using 

loopback mechanism is applied in the lower level to transmit video data 

from proxy to clients. In loopback, cache is dynamically updated, which 

introduces an intensive disk I/O demand for the clients. Given that the 

video access pattern changes slowly, semi-static caching is adequate and it 

can be practically implemented. Moreover, Loopback concentrates on the 

collaboration between proxy and its clients only, but we also emphasize the 

importance of cooperative caching between proxies in reducing cost. 

2.2 Incentive Mechanism 

Recently a lot of efforts have been made to address the problems of free-

riding and tragedy of the commons [24] in the cooperative network. Various 

incentive mechanisms have been proposed to encourage the selfish nodes to 

cooperate by sharing their own resources with the community. 

Differential Service-based Incentive 

Differential service-based incentive has been well studied in the literature. 

Under such scheme, the peers that contribute more resource receive better 

quality of service, while the selfish peers contributing less are discriminated. 

A game theoretic framework has been suggested in [8] to improve the sys-

tem's performance by eliminating non-cooperative users. In this model, the 

requests from a user with large contribution has a higher probability to be 

served. In [37], the authors have proposed a service differentiated schedul-

ing policy that allocates bandwidth according to the peer's contribution. It 
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showed that the social welfare is maximized when all peers have the same 

contribution value. The authors in [23] have suggested to differentiate the 

service in peer selection process of P2P streaming. By using the rank-based 

peer-selection mechanism, the contributors are rewarded with flexibility and 

choice in peer selection, which results in high quality streaming. For the free-

riders, the options in peer selection are limited, and hence they receive low 

quality streaming. 

Reputation-based Incentive 

Another well-known incentive model is Reputation-based incentive. The rep-

utation reflects a peer's overall contribution to the network. The peers with 

high reputation value have extra privilege over the others. Reputation can 

also be used to identify how reliable and trustful a peer is. In fact, this kind 

of incentive has already been deployed in the KaZaA file sharing system [32j, 

which is called the participation level. It is defined base on the megabytes 

the user transferred and the integrity of the files served. Downloading prior-

ity is given to the users with high reputation score. In [21], the authors have 

suggested two alternative computation mechanisms to compute dynamically 

the reputation score of each peer in the network. The reputation score gives 

a general idea of the peers' level of participation in the system. The peers 

having high reputation is more likely to obtain better service. Based on the 

reputation system, [52] have suggested how to monitor the users behavior in 

a streaming network, and it tried to maintain a satisfactory level of service 

for the collaborative peers. The authors in [17] have used the generalized 

prisoner's dilemma to model the system, and they have proposed a family of 

incentive techniques. A history of a peer's actions is mapped to a decision 

whether to cooperate with or defect on that peer. The strategies, consisting 

of: 1) A decision function; 2) Action history; 3) A server selection mecha-

nism; and 4) A stranger policy, were designed to maximize both individual 
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and social benefit. Similar approach was adopted in [30]. They used it-

erated prisoner's dilemma to model the peers' interaction, and proposed a 

reputation-based trust model with incentive mechanism incorporated. 

Contribution Reward-based Incentive 

Our work is different from the above schemes that we follow the Contribu-

tion reward-based incentive approach, where monetary reward is given to 

the peers in proportional to their contribution. A micro-payment mecha-

nism have been proposed in [19] to reward users for upload. Game theoretic 

model was used to analyze the equilibrium of user's strategy under several 

different payment schemes. The results demonstrated that the users are 

encouraged not only to upload files, but also to share new files to the P2P 

system. In [44], a credit-based trading mechanism have been presented for 

P2P file sharing. In the model, peers ,who exchange pieces of a file, use 

a pairwise currency to reconcile trading differences with each other. As a 

result, the peers who set high upload rates receive high download rates in 

return. The authors also proposed a trading strategy that is good for both 

the network as a whole and the peers employing it. The monetary scheme 

provides a clean economic model for the incentive mechanism. However, 

it is argued to be impractical in P2P system, where a reliable accounting 

infrastructure has to be established to track the transactions between every 

peers. In contrast, it's application in our coordinated system with central-

ized authority is viable because the payment is made in a single direction 

only, i.e. from the service provider to the proxies. We are aware of a similar 

work in [48], which also considered revenue rewarding to the contributed 

peers. They model the P2P system as a Cournot Oligopoly game and used 

control-theoretic to maximize individual net gain. System performance re-

quirements, like storage utilization and bandwidth stress, were considered as 

the global desirable properties, and they were incorporated in the dynamic 
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payoff function of the proxies. Our work is different from it as we model the 

system as a Stackelberg game, and we focus on maximizing the net profit 

and social utility in the network. 

2.3 Resource Pricing 

Our work relies on pricing the resource in order to regulate users' contribu-

tion. The pricing aspects of P2P network have received little attention so 

far. Previous research appears mainly focus on server-client model. Game-

theoretic and economic model were applied to predict the influence of the 

price to the users' behavior. Some pricing mechanisms were suggested to 

maximize the revenue and the social welfare in the network. A charge-

per-usage pricing model was studied in [6], where the users are charged for 

their bandwidth usage. By analyzing the strategies of the users toward the 

price, the optimal price is computed to maximize the revenue of the ser-

vice provider. It also showed that the pricing scheme provides an incentive 

for the service provider to increase the network capacity. In [9], the au-

thors have proposed an adaptive pricing strategy that adjusts the price in 

realtime manner, and the objective is again to maximize the revenue for 

the service provider. Their work assumed prior knowledge about the user 

arrival pattern, and thus it may not be appropriate for the P2P system 

with highly dynamic nodes. On the other hand, [25] have proposed a fair 

revenue-sharing policy, based on the weighted proportional fairness crite-

rion, to distribute profit between cooperative provider. The fair allocation 

policy encourages collaboration among the providers, and hence produces 

higher profit for all the providers. We also adopt the proportional fairness in 

rewarding the revenue to the proxies. The authors in [22] described a pric-

ing strategy for carrying out lookups in P2P networks. Both the resource 

provider and intermediate nodes, which assists in routing, are compensated 

so as to cover their cost of providing service. Vickrey auction, where the 
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highest bidder wins the auction by paying the second highest bid, is used 

by the nodes to determine the price of the resource. The proposed protocol 

ensures that the rewards received by the involved nodes are maximized. We 

apply similar approach to reward the contributors in the cooperative proxy 

caching system, but suggest different pricing strategy to achieve different 

objective. 

• End of chapter. 



Chapter 3 

Cooperative 
Proxy-and-Client Caching 

In this chapter, we present COPACC [29], a novel cooperative proxy-and-

client caching system. We first give an overview of the COPACC system, and 

point out the key issues addressed in the COPACC architecture. Then, we 

present an efficient cache allocation algorithm as well as a comprehensive 

suite of cooperative caching protocols. Lastly, we evaluate the COPACC 

system with different performance metrics. 

3.1 Overview of the COPACC System 

Fig. 3.1 depicts a generic architecture of COPACC. A cluster of proxies 

are logically connected through direct or indirect peer links to form a proxy-

overlay, and each of them serves as the home proxy for a set of local clients. 

We assume that proxies and their clients are closely located with relatively 

low communication costs, e.g., they could be in the same ISP domain or 

in the same metropolitan area. A server storing the repository of videos, 

however, is far away from them, and the remote communications incur much 

higher costs. 

16 
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Figure 3.1: The cooperative proxy-and-client caching architecture. 
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Figure 3.2: Illustration of different portions of a video stream. The prefix is 

to be cached by proxies, while the prefix-of-suffix by clients. 
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The video data are cached across both proxies and clients. We assume 

that the storage space of a proxy or a client is limited; the videos thus can 

be partially cached only, and there is always a full copy at the server. Specif-

ically, as shown in Fig. 3.2，a video stream is partitioned into a prefix and 

a suffix, and the beginning part of the later is also referred to as the prefix-

of-suffix. The proxies are responsible to cache the prefix of video, whereas 

the clients cache the prefix-of-suffix of video. This setting not only reduces 

the initial playback latency but also facilitates the multicast delivery with 

dynamic clients, as will be illustrated later. When a client expects to play a 

video, it first initiates a playback request to its home proxy, which intercepts 

the request and computes a streaming schedule: when and where to fetch 

which portion of the video. It then accordingly fetches the prefix, prefix-of-

suffix’ as well as the remaining part of suffix, and relays the incoming stream 

to the client. If needed, a proxy may also perform a verification operation, 

which detects forged video data through a simple signature mechanism. 

Considering the video contents and their access patterns are relatively 

stable in several hours or even days, we advocate semi-static caching in 

COPACC. The cached contents are updated only when the system param-

eters have drastically changed, and a cache reconfiguration is then applied 

through a progressive cache filling mechanism. 

There are two key issues to be addressed in the COPACC architecture: 

• How to partition each video and allocate the prefixes and prefix-of-

suffixes to different proxy and client caches? The objective is to min-

imize the total transmission cost of the COPACC system given the 

video access patterns, the heterogeneous transmission costs, and the 

storage constraints. 

• How to manage, search, and retrieve the cached data in different p r o x - . 

ies and clients? These operations should be highly efficient so as to 

deploy COPACC in large-scale networks with intensive requests. 
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To address the above challenges, we present an efficient allocation al-

gorithm as well as a comprehensive suite of cache management and search 

protocols in the next two sections. Before proceeding our discussions, we 

first list the notations and parameters for COPACC, which are also summa-

rized in Table 3.1. 

We assume that there are H cooperative proxies, indexed from 1 through 

H, and proxy j serves as the home proxy for Kj local clients. The video 

repository at the server includes N Constant-Bit-Rate (CBR) videos, and 

video i has length U seconds and rate If bps, i = 1 , 2 , N . The total 

average access rate at proxy j is Xj，and the probability for accessing video 

i is f j (X) iLofj — 1). We assume such statistics are known a priori, or 

obtained through online monitoring. 

For cache allocation, there is a basic unit of u, also called cache grain, 

which is a hardware or operating system constraint, e.g., the size of a disk 

block. The cache space for proxy j is s^ units, and that for client k of proxy 

j is Sjĵ  units. The volume of video i is also represented as a number of 

units, i.e., V^ = h^Uju units. In practice, the aggregated cache space is 

less than the total volume of all the videos, i.e. + < where 

SP = and S" = E j L i E f i i ^ f c are the total proxy cache size and 

total client cache size. 

The cost for transmitting one unit of data from the server to a proxy 

is denoted by ujS—p, and, similarly, the unit cost from proxy j to proxy k 

and that from proxy j to its own clients are represented by w�工p and ^^�"^, 

respectively. 

We use P^ to denote the prefix size (in units) of video i, and, the 

prefix-of-suffix size. Both the prefix or prefix-of-suffix of a video are further 

partitioned into several segments and cached at a proxy or client. For video 

2, the size of a prefix segment cached in proxy j is represented by Pj, and 

the size of a prefix-of-suffix segment cached at the client k of proxy j is 
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Parameter Definition 

N Number of the videos. 

V^ Volume of video i (in units). 

H Number of proxies. 

K Number of clients. 

Kj Number of local client attached to proxy j . 

s^ Cache space of proxy j (in units). 

SP Total cache space of all proxies (in units), 

s义& Cache space of client k of proxy j (in units). 

Total cache space of all clients (in units). 

\j Total access rate at proxy j . 

fj Probability for accessing video i at proxy j. 

秘s—p Transmission cost per unit data from server to proxy. 

Transmission cost per unit data from proxy j to proxy k. 

w厂P Transmission cost per unit data from proxy j to its client. 

ŵ ^ Internal cost per unit data of a proxy 

pi Prefix size of videos i (in units). 

p) Size of the prefix segment of video i cached in proxy j. 

Q^ Prefix-of-suffix size of videos i (in units). 

Qj Size of the prefix-of-suffix segment of video i cached at 
client k of proxy j. 

Table 3.1: Parameters of the COPACC system. 
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The segment sizes are to be determined by the cache allocation algorithm, 

and the exact positions of the segments are to be determined by the cache 

organization protocol. 

3.2 Optimal Cache Allocation (CAP) 

The optimal cache allocation problem (CAP) in COPACC can be formulated 

as follows, 

CAP:minCost({p5},{g}^J), (3.1) 

EjLiPj + E j L i E 么欢 fcSvS 

where Cost[{py\, {q^ is the function of the total transmission cost (per 

unit time) given allocation {pj} and {� ’& } ; the second and third constraints 

follow the cache space limit of proxy j and that of client k of proxy j•，respec-

tively; the forth constraint applies because we do not consider replication in 

this study. In this section, we start our discussion from a simple scenario of 

no cooperation between proxies, where the cache allocation for each proxy 

and its own clients can be examined independently. We derive an efficient 

optimal solution for this scenario, which is then extended to accommodate 

multiple cooperative proxies with client caching, i.e., a general COPACC 

system. 

3.2.1 Single Proxy with Client Caching 

As said, we focus on a single proxy and its clients, both of which contribute 

cache spaces, but there is no interactions with other proxies nor their clients. 
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Since the transmission costs between this proxy and all its clients are iden-

tical, we refer to this system as a homogeneous cost system. We drop the 

proxy index (subscript j) from the relevant parameters for ease of exposition. 

This homogeneous cost system has a nice property that the total trans-

mission cost depends only on how the video streams are partitioned into 

prefixes and prefix-of-suffixes for caching. This is because all prefixes are 

to be cached at the single proxy, and any allocation of the prefix-of-suffix 

segments across the local clients yield the same cost due to the uniform cost 

for proxy-client transmissions. As such, we can combine the cache of all the 

clients to form an aggregated cache space S ,̂ and, to derive the minimum 

transmission cost, we only need to find the optimal values of {P^} and {Q^} 

subject to cache space constraints S^ and S .̂ 

We define an auxiliary cost function which is the cost for 

delivering video i with prefix size P�and prefix-of-suffix size Note that 

Cosi({pj}, {^jjt}) is now equal to Q )̂ in this simple scenario. 

Moreover, minimizing it is equivalent to maximizing the cost saving against 

the system with no caching, i.e. maximizing 乂0,0) -

We use a dynamic programming approach to solve the problem. Let B 

be a three-dimensional matrix, where Bii.fP.t^) represents the maximum 

cost saving for videos 1 through i { l < i < N ) , when t̂  (0 < < S^) units 

of proxy cache and t�(0 < t^ < S^) units of client cache are used. We have 

0， z = 0, 0 < tP < 0 < < 

= max{B{i -l,tP- v^, t^ - ？；̂) + 0) -

0 <vP <tP,0 ^v"" < If, yP + v''^ V\ 
\ 

The matrix can be filled in plane-order starting from B(0,0’ 0) to B{N, S^, S�)� 

and the latter gives the maximum cost saving. The minimum total trans-

mission cost is therefore J] 吻 , 0 ) - B { N , 5"”，and the corresponding 

prefix and prefix-of-suffix partitioning can be obtained through backtracking 

the iterations. 
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Figure 3.3: A logical view of multi-proxy with client caching. 

This dynamic programming algorithm has time complexity 0 � N • ， S �• 

M), where M = maxi<i<Ar(l+ It is applicable with arbitrary cost 

function C^(P\ which can be instantiated given a specific transmission 

scheme. As an example, assume both a server-to-client and a client-to-client 

transmissions are unicast-based and relayed by a proxy, can be 

derived as A / � [ i / Z ^ i户 + 切 — 切 i n ( 户 + 

Q^)], where the first four terms in the second part respectively represent 

the costs for retrieving prefix, prefix-of-suffix, the remaining suffix, and the 

internal cost of the proxy, for each playback request. Note that A is the 

total access rate of the proxy, and ŵ ^ is the internal cost per unit data 

handled by the proxy. When there is no caching {P^ = Q̂  = 0), we have 

0) = V'XP- {w'^P + w^^P). 

In the end of this section, we further introduce multicast delivery to the 

system and derive the corresponding cost function. 
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3.2.2 Multiple Proxies with Client Caching 

We now consider the case of multiple cooperative proxies with client caching. 

Fig. 3.3 offers a logical view of this general COPACC system, in which the 

segment of prefix and prefix-of-suffix of a video are placed across different 

proxies and their clients, respectively, and the transmission of a video stream 

thus involve interactions among several proxies and clients. Moreover, the 

unit transmission costs for the proxy-to-proxy and client-to-proxy links can 

be heterogeneous. The cache allocation problem (CAP) thus becomes much 

more complex than in the homogeneous cost system. 

In fact, we formally prove that CAP is NP-hard in this general case 

(see Appendix A). We thus resort to a practically efficient heuristics, which 

consists of two phases: first, it partitions the prefix and prefix-of-suffix for 

each video; second, given the partitions, it allocates the segments of prefixes 

and prefix-of-suffixes to the proxies and clients. 

1) Partitioning of prefix and prefix-of-suffix: In this phase, we cal-

culate the optimal values of P^ and Q̂  for each video, and, to achieve a 

computationally efficient solution, we do not address their allocation across 

the proxies and clients. Instead, we approximate the system by a sin-

gle proxy system with aggregated proxy cache space S^ and aggregated 

client cache space S .̂ Other parameters are approximated as follows: video 

access rate A = Z^jLiA?.’ access probability f = (1/A) JZ^iAj / ] , unit 

transmission cost w^'^p = (1 /幻 E^Li^^O切】and internal cost w奴= 

that is, we consider the cost for proxy-to-proxy 

transmissions as an internal cost, and assume is 0 if j = k. 

Given the above transformation, an approximate solution can be directly-

obtained using the dynamic programming algorithm for the homogeneous 

cost system, 

2) Allocation to proxy and client caches: In this phase, we allocate 
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the prefix and prefix-of-suffix to the proxies and clients so as to meet the 

storage constraints at each proxy and client. Since given and obtained 

in the first phase, the allocation for prefixes to proxy caches is independent 

from that for prefix-of-suffixes to client caches, and vice versa, we separate 

the two allocation problems and solve them individually. 

We first consider the allocation for prefixes. Let be the trans-

mission cost when the segment of size p) from the prefix of video i is stored 

in proxy j . The problem for optimal prefix allocation is then formulated as 

PA : min X； fU E j , P ) ) (3-2) 

s.t. T.f=iP) = P\ 

For unicast delivery, WP{i,j,Pj) can be instantiated as 

= [ < 7 + 切 r i V / ) ' . (3.3) 

Let WP{i,j) = WjJ,̂  + Wj^^ V / j / ’ the optimization objective 

for problem PA can be re-written as ‘ P)- Note 

that, is independent of p》，and can be viewed as the transmission 

cost when each unit prefix data of video i cached in proxy j. The above 

formulation for PA thus can be relaxed as a linear programming problem 

if p) is not restricted to integers. In practice, this is generally viable, for 

a video stream that can be partitioned with fine-granularity, and the total 

data cached in any proxy is less than its maximum capacity for any optimal 

solution to the linear programming. 

Similarly, we can formulate the optimal allocation problem for prefix-of-

suffixes to be cached at clients as follows, 

S A : min X： f=i E f=i E � 4恢 c ( i ’ j, k, gj,,) (3.4) 



CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 26 

where j ’ fc, is the transmission cost when the segment of size q “ 
from the prefix-of-suffix of video i is stored in client k of proxy j. For unicast 
delivery, Wc(i，j,/c’�. J is given by 

+ + ^ n ^ f f h (3.5) 

which can be re-written as k) . qfj if we define 

j ’ k) = + � + 切 ; 1 Aj'/j,. (3.6) 

Obviously, both the cost function and the problem S A itself have similar 

structure as that of problem PA. The linear programming relaxation thus 

also applies. 

We will show later that such relaxation also holds for multicast delivery. 

3.2.3 Cost Function with Suffix Multicast 

So far we have focused on unicast delivery only, and presented the corre-

sponding cost functions. In this subsection, we further consider multicast 

delivery, which is known as an efficient vehicle for streaming to clients with 

requests close in time [46，4]. However, though IP multicast has been widely 

adopted within ISP networks, its deployment over the global Internet re-

mains confined. We thus assume multicast delivery at the path from a proxy 

to its local clients, but only unicast delivery from the server to a proxy or 

between two proxies. 

Even though multicast is only enabled at local paths, a proxy can still 

serve a series of requests from its local clients for the same video using a suffix 

batching technique. Specifically, assume the first request for video i arrives 

at time 0, the home proxy will fetch and relay the prefix of the video to this 

client through unicast, which takes P^u/h^ seconds; all the local requests 

arrive during interval [0’ P^u/U] will then be batched with a single copy of 

the suffix for video i being multicast to all the requested clients. In other 

words, the batching window is of size P^u/lf. 
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We now derive the cost function for the case of single-proxy 

with client caching. We assume that the video accesses follow a Poisson ar-

rival, that is, the average number of requests arrived in the batching window 

for video i is 1 + {P^u/b^){Xf). The cost per request for multicasting the 

suffix to batch of clients is thus — + vjCiQi + w^-^ îy^ - -

Q') + + {P'u/b'){Xf)]. Since a prefix is always delivered using 

unicast, the cost function Q )̂ is then given by: 

,切 yi _ pi) + + _pi_ gi) + ^iuQi 
了 t 1 + { P ' u / b ' ) { x p ) 十“"^ ) 上 . 

(3.7) 

Similarly, we can derive the cost function k) of problem SA. For 

a batching windows contains 1 + [P� /b i ) [Xj i f��requests from proxy we 

need only a single retrieval for the suffix distributed at client caches and the 

server. The cost function k) at proxy j is thus 

- J 

Regarding the cost function WP{i,j) of problem PA, it is exactly the 

same as that for unicast case because a prefix is delivery through unicast 

only. In addition, if / ! = = ••• = fn, we have the following observations 

for WP(iJ): 

• Given i�i' € [l.:.iV]’ WP{i,3)lWP[i'is a constant for any j e 

[1….机 

• Given j , j ' e [ l . . . i f ] , is a constant for any i 6 

[I...N]. 

Since clients often have common interests, it is likely that the distribu-

tions of video access probabilities are similar at different proxies, that is, 

f\ — fi. — ••• — fh holds. The above observation thus leads to an sim-

pler yet optimal greedy algorithm for problem PA, as shown in Fig. 3.4. 
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1: Sort proxies in ascending order of cost WP{l,j)； 

Store the results in j-List; 
2： Sort videos in descending order of cost 1); 

Store the results in z-List; 
3： j* first component of j-List; 

i* first component of z-List; 
4: Cache as many units as possible for the prefix of video i* to proxy 

r； 

5: If proxy j* has cache space left, then i* — next component of z-List; 
6: If prefix of video i* has not been fully cached, then j* — next com-

ponent of j-List; 
7: Repeat steps 4 to 6 until all prefixes are allocated. 

Figure 3.4: Greedy prefix allocation 

Intuitively, this algorithm always cache the most expensive prefix into the 

cheapest proxy, so as to minimize the total transmission cost. Its complex-

ity is 0{NlogN), which is generally lower than directly solving the linear 

programming problems (even if the simplex method [15] is used). A formal 

proof of the optimality of this greedy algorithm can be found in Appendix 

B. 

3.3 Cooperative Proxy-Client Caching Protocol 

As shown in Fig. 3.1, COPACC operates as a two-level overlay, where the 

first level consists of all the proxies, and the second level consists of each 

proxy and its own clients. The interactions among different entities in this 

two-level overlay are specified by a cooperative proxy-client caching proto-

col, which consists of three subprotocols: cache allocation and organization, 

cache lookup and retrieval, and client access and integrity verification. We 
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now detail the operations, and address the practical issues toward realizing 
the COPACC system. 

3.3.1 Cache Allocation and Organization 

All the cache allocation and organization decisions are implemented in prox-

ies. The protocol starts by establishing connections among the proxies, and 

an election algorithm is then executed to choose a coordinator. We currently 

employ the distributed Bully algorithm [18], which opts for the proxy of the 

highest computational power as the coordinator. The coordinator is respon-

sible for collecting parameters from all other proxies and then running the 

optimal cache allocation algorithm described in the previous section. 

Given = E^LiPj and Q �= E f = i E【么？丄̂：’ the interval of the 

prefix in video stream i is simply [0, and that of prefix-of-suffix is 

[P'-u/b^ Q^u/b ]̂. The coordinator should then determine the position of each 

segment to be allocated to proxies and clients in the prefix and prefix-of-

suffix, Since the total transmission cost depends only on the segment size, 

COPACC employs a simple organization scheme: for prefix of video i, allo-

cate segment of interval E^^iiPmV^S in the video stream to 

proxy j , and, for the prefix-of-suffix, allocate interval [ E C i E ̂：！工̂^̂’打収/石̂  

to the clients of proxy j�which further partitions this 

interval into segments to be cached in its local clients according to their cache 

spaces. Hence, the cache location of each interval of the stream can be eas-

ily calculated from { p � } and {《，)J. As the coordinator keeps a full copy 

of the allocations, a lookup request for the cache locations of a particular 

video stream can always be accomplished by contacting the coordinator. To 

balance the load of the proxies, the coordinator also distributes the lookup 

information uniformly to other proxies using a hash function /i(z); that is, 

for video i, a copy of its cache location information are kept by proxy h(i) as 

well. Since the proxies are persistent and reliable nodes, even the simplest 
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hashing like h{i) = (i mod H) I will work well in COPACC. In other 

words, COPACC does not have to rely on a flooding-based search, nor a 

complex and costly distributed hash table (DHT), as in many peer-to-peer 

systems. 

3.3.2 Cache Lookup and Retrieval 

For each playback request for video i from a client, its home proxy discovers 

and retrieves the video data on behalf of its clients. This is accomplished 

by first issuing a cache lookup request 丑Zoofcup [幻，which, according to the 

cache organization, can be directly submitted to proxy h[i). Upon receiving 

the location information from proxy h(i), the initiated proxy then issues a 

series of cache retrieval requests, Rretrieval [̂ ]) to corresponding proxies for 

retrieving and then relaying the segments cached at proxies or their clients. 

Finally, the un-cached part of the suffix is retrieved from the server. 

When a proxy receives a retrieval request, it first checks whether the 

requested data has been cached. If cached, it will stream the data to the re-

quested proxy; if not, it will retrieve the data from the server, stores a copy 

in its own cache or its clients' cache, depending on whether the content be-

longs to a prefix or to a prefix-of-suffix, and then stream to the initiated 

proxy. This leads to a passive filling scheme with no need for a synchro-

nized global replacement: the cache space are initially empty or represents 

an outdated allocation scheme; it is then filled up gradually following the 

requests from other proxies, which represents the updated allocation. An 

illustration of the steps for cache lookup and retrieval can be found in Fig. 

3.5 and Fig. 3.6. 

3.3.3 Client Access and Integrity Verification 

The client-side operations are relatively simple, which can be easily imple-

mented in economical but less powerful personal computers. In particular, 
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1： while Receive a request do 
2: if Rretrievai � from local client then 
3: Look up proxy j = h(i); get {pj} and { � } 
4: Send Rretrievai [̂ ] to proxy j for prefix of interval 

5: Send Rretrievall'i] to proxy j for prefix-of-suffix of interval 

6： Retrieval remaining interval [严 + L” from server 
7: Relay the stream to the request client 
8: else if Rretrievai [̂ ] for prefix of interval [a, b] then 
9: Prefix of interval [a, b] not exist in proxy cache —> retrieval from 

server and store in proxy cache 
10： Send prefix of interval [a, b] to requested proxy 
11: else if Rretrievai H for prefix-of-suffix of interval [a, b] then 
12： Prefix of interval [a, b] not exist in the cache of any local client 

—>• retrieval from server and store in a local client's cache 
13： Send prefix-of-suffix of interval [a, b] to requested proxy 
14： else if Riookup[i\ from another proxy then 
15: Reply {p]} and {gj} 
16： end if 
17： end while 

Figure 3.5: Cache Lookup and Retrieval. 
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(1) client request to home proxy for video %\ 

(2) location lookup request to proxy B = h(i)] 
(3) retrieve and relay prefix segments from proxy cache; 
(4) retrieve and relay prefix-of-suffix segments from clients; 

(5) retrieve and relay the remaining part of suffix from server. 

Figure 3.6: An illustration of the cache lookup and retrieve operations. 
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a client is not involved in managing the overlay, nor determining cache al-

location and organization. It simply reports its available spaces to its home 

proxy. The home proxy then determines and keeps the location for data 

cached in its local clients, and then instructs the clients for caching the 

data. For each cached segment in the client, the home proxy also save a 

signature of the copy, such as its SHA-1 hash value. A client contributes its 

cached data only upon a request from its home proxy. The home proxy will 

then relay the data to the proxy initiated the request, and if needed, verify 

the integrity of the data using the signature. As such, the system can easily 

identifies and blocks malicious clients. 

3.4 Performance Evaluation 

In this section, we evaluate the performance of COPACC. We focus on 

the transmission cost reduced by introducing cooperative caching among 

proxies and clients. We are also interested in examining the robustness and 

scalability of this system, as well as identifying the key influential factors. 

Unless otherwise specified, the following default settings are used in our 

evaluation. The video repository in the sever contains 100 CBR videos each 

of 512 Kbps rate. Their lengths are uniformly distributed in between 100 

and 140 minutes; the mean (120 minutes) is a typical length of a movie. 

As suggested by existing studies on media access patterns, we assume the 

access probabilities of the videos follow a Zipf distribution with skew factor 

9 = 0.271 [4]. The cache grain (unit) is set to the size of 2-minute video data. 

All the cache sizes discussed in this section are normalized by the total size 

of the video repository, and the transmission costs are normalized by the 

corresponding cost of a system with no cache. Therefore, our conclusions 

are also applicable to systems with proportionally scaled parameters. 
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Figure 3.7: Transmission cost as a function of the total proxy-client cache 

space. SP : = 

3.4.1 Effectiveness of Cooperative Proxy and Client Caching 

A primary design objective of COPACC is to reduce the transmission cost 

for streaming to clients of asynchronous requests. Hence, in the first set of 

experiments, we examine the cost reduction under various proxy and client 

configurations. 

We assume there are 4 proxies cooperated with each other, and the client 

access rate at each proxy is 50 requests per minutes. The ratio between the 

unit transmission costs of different paths is set to ŵ 一p : p : = 10 : 

3 : 1 . Note that, this setting is indeed conservative as compared to that in 

many previous studies [46]. In addition, we are interested in the normalized 

transmission cost, which depends on this ratio, while not the exact value at 

each path. 

Fig. 3.7 plots the transmission cost as a function of the total cache space 

in the system, where S^ : S^ = 1 : 1, i.e., the proxies and clients respectively 
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Figure 3.8: Transmission cost at different paths with suffix mulitcast. 

contribute half of the total cache size. Not surprisingly, increasing the total 

space reduces transmission cost. With unicast, the cost decreases linearly, 

while with suffix multicast, it decreases much faster. When the total cache 

space is 0.2 (20% of the video repository), the cost with suffix multicast has 

been reduced to 0.2; in other words, a 20% cache space leads to a 80% cost 

reduction, which implies that batching the requests from local clients can 

avoid a significant amount of remote transmissions (server-to-proxy). This 

can also be verified by Fig. 3.8，which shows the cost due to server-to-proxy 

transmissions quickly decreases with an increase of the cache space, and 

becomes a minor part in the total transmission cost when the cache space 

is over 0.4. 

In Fig. 3.7, we also show the cost when a proxy cooperates with its 

clients only, while not with other proxies. Clearly, the cost with cooperative 

proxies are much lower, particularly when multicast is also enabled in local 

paths. As such, in the following discussions, we focus on the results with 
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cooperative proxies and multicast delivery only. 

To further identify the respective contributions of proxy caching and 

client caching, Fig. 3.9 depicts the transmission cost versus the fraction of 

the proxy cache space in the total cache space. We can see that the transmis-

sion cost reduces when the proxies contribute a higher fraction in the total 

cache space of the system. Intuitively, the more cache space contributed by-

proxies, the more direct transmissions among proxies for delivering a video 

stream, which generally incur lower costs, because the video data fetched 

from a client's cache have to be relayed by proxies as well. The best perfor-

mance is thus achieved when all cache space is in the proxies. Nonetheless, 

it is often expensive to upgrade dedicated proxies and add more disk spaces. 

On the other hand, from Fig. 3.9, we find that, even if the proxy caches 

constitute a small part in the total cache space, a near optimal cost can still 

be achieved. As an example, when the total cache space is 0.6 and only 
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Figure 3.10: Transmission cost versus client failure probability. 

20% is from proxies, i.e., the total proxy cache space is only 0.12, the cost is 

already less than 0.13, which is quite close to the optimal value (around 0.1) 

when the fraction of proxy cache is 100%. In other words, client caching well 

complements proxy caching, making COPACC a very economical alternative 

to pure proxy caching. 

3.4.2 Robustness 

As in peer-to-peer streaming systems, the robustness in the presence of client 

failures is also a critical concern in COPACC. To evaluate this, we assume 

that each client has certain failure probability when its own cache is ac-

cessed, but the video access rate from all clients remains constant. In Fig. 

3.10，we show the transmission cost as a function of different client failure 

probabilities. The total cache space of the system is 0.4，and we vary, r, the 

fraction of the total proxy cache space in the total cache space from 0% to 

100%, which represents two extreme cases: when r = 0%, COPACC degen-
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erates to a pure peer-to-peer system, and, when r = 100%, it degenerates 

to a pure proxy-based system. 

We can see that, when there is no client failure, the costs for different 

r are quite close if there are certain cache spaces existing in proxies, and 

the pure proxy-based scheme is the best, which has been explained previ-

ously. More importantly, the cost of the pure proxy-based system remains 

unchanged when increasing client failures, and that for 0% < r < 100%, 

or a normal COPACC system, is also very stable. For illustration, even if 

r is 25%, the transmission cost only slightly increases with an increase of 

failure probability; when the failure probability is 1, the cost remains a low 

as 0.22. This is because even if a suffix is to be fetched from the server in the 

presence of client failures, the overhead, shared by a batch of clients, is not 

excessive. To the contrary, the cost of the pure peer-to-peer system quickly 

increases and reaches 1 (the cost of a zero-cache system), when all clients 

fail. Such results demonstrate that the use of dedicated proxies with suffix 

batching remarkably improves the robustness and resilience of COPACC in 

the presence of client failures, even if the total proxy cache space is minor 

as compared to the total client cache space. 

3.4.3 Scalability and Control Overhead 

We further explore the scalability of COPACC with larger number of proxies 

and clients. Fig. 3.11 shows the total transmission costs for different num-

ber of proxies and clients. In this set of experiments, the cache space of each 

proxy, sj, is set to 0.03’ and that of each client, sj^, is 0.005. The access 

rate from each client is set to 0.01 per minute. In other words, while a client 

joining the system contributes certain cache spaces, it also introduces more 

requests. Yet, we observe that the transmission cost slightly decreases with 

more clients, implying that client caching overcomes the increased loads. 

Note that the normalized cache space of each client is only 0.005’ or equiv-
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Figure 3.11: Transmission cost with different numbers of proxies and clients. 

alently, the half size of one video, which can be easily accommodated by 

personal computers. With an increase of the number of proxies, we have ob-

served a even more noticeable cost reduction, particularly when the number 

is changed from 1 to 5. This again confirms that proxy cooperation is worth 

considerations. 

The control overhead is also an important concern toward realizing CO-

PACC. We define the overhead of COPACC as the traffic volume of control 

messages (election, allocation, lookup, and retrieval, etc.) over the total 

traffic volume, which obviously depends on the scale and streaming rate of 

the system. In Fig. 3.12, we show the overhead with different number of 

proxies and streaming rates. The number of clients per proxy is set to 50. It 

can be seen that the overhead is reasonably low, which is less than 1% of the 

total traffic even with 20 proxies. In addition, the overhead decreases with 

higher streaming rates. This is mainly because the messages are quite short 

as compared to video segments, and most messages are locally exchanged. 
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3.4.4 Sensitivity to Network Topologies 

So far, we focus on regular network topologies with identical transmission 

costs between proxies. We have also investigated the performance of our 

system under various synthetic and real network topologies. Fig 3.13 shows 

the costs under three representative topologies: the 44-node SprintLink net-

work and the 100- and 200-node Transit-Stub (TS) networks. The Sprint-

Link network, representing the topology of a typical backbone network in 

north America, is obtained from the Rocketfuel project at the University of 

Washington [43]. The TS network is synthesized by the GT-ITM topology 

generator [53], which attempts to reproduce the hierarchical structure of the 

Internet by composing interconnected transit and stub domains. For both 

topologies, we randomly place the given number of proxies to the network 

nodes, and set the link cost inversely proportional to the bandwidth of each 

link. A shortest-path routing is then used to determine the path between 



CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 41 

1 . , 

W 0.8 • SprintLink network (44 nodes) 
8 TS network (100 nodes) —f -
c TS network (200 nodes) - B -
g � ‘ 

•w 
I 0.6 
w c 
5 
•g 0.4 
"(D 
I 

0 ‘ ‘ 
3 5 10 15 

Number of proxies 

Figure 3.13: Transmission cost as a function of the number of proxies under 

real and synthetic network topologies. 

proxies, and the cost of a path is the sum of costs across all the link of this 

path. The server is connected to these proxies through a remote link: in 

SprintLink network, it is assumed to be in Asia, and in TS network, we 

manually set the unit transmission cost to 5 times the average cost between 

proxies. 

It can be seen that, under all the three network topologies, the trans-

mission costs of COPACC are pretty low and generally decrease with an 

increase of the number of proxies. The performance under the TS topology 

is slightly better, suggesting that COPACC works well with a hierarchical 

network structure, where local transmission cost is much lower than remote 

transmission cost. It is worth noting that SprintLink network also follows a 

hierarchical structure, but many low-level nodes are abstracted into a single 

nodes. Moreover, the proxies in our evaluation are randomly placed. We 

thus expect a even better performance when the proxies are strategically 
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placed and cooperated with each other in closer distances. 

Overall, the evaluations demonstrate that COPACC achieves remarkably 

lower transmission cost as compared to a pure proxy-based caching with 

limited storage space. On the other hand, it is much more robust than a 

pure peer-topeer communication system in the presence of node failures. 

Meanwhile, its computation and control overheads are both kept in low 

levels. 

However, the merits of the COPACC rely on the active participation 

from the proxies and the clients. Thus, an incentive mechanism is essential to 

encourage the network entities to cooperate. Our Incentive-based COPACC 

achieves this by incorporating with a revenue-rewarding scheme to credit 

the proxies who contribute resource in the system. 

• End of chapter. 



Chapter 4 

Revenue-Rewarding 
Mechanism 

In this chapter, we present an incentive mechanism for COPACC to encour-

age the proxies to participate. A revenue-rewarding scheme is proposed to 

reward part of the aggregated transmission cost saved to the contributing 

proxies. We start by giving an overview of the considered proxy caching 

system derived from COPACC. We model the interaction between the prox-

ies under the revenue-rewarding scheme as a resource allocation game, and 

analyze the cache space contributed in a non-cooperative environment. We 

further suggest two cooperative games that achieve different system-wide 

properties. The performance of the three resource allocation games have 

been evaluated, and the results demonstrate that the revenue-rewarding 

scheme provides a strong incentive for different entities to cooperate in the 

network. 

43 
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4.1 System Model 

4.1.1 System Overview 

We consider a cooperative proxy caching system for multimedia streaming. 

The architecture of this caching system is shown in Fig. 4.1. It consists of 

a logical video server, a number of proxies and their clients, and a network 

service provider (NSP). The NSP provides solely the network connection 

service to the entities in the network. The client requests for videos, which 

are streamed from the far-located server to the client through the interme-

diate proxies. The proxies are capable of caching the video stream passing 

through them. Each video is divided into equal-sized segments for caching, 

and whether a segment is being cached in the proxy is determined by the 

cache allocation algorithm. In general, the frequently accessed video seg-

ments are cached in the local proxy to reduce network traffic. The proxies 

are logically connected by direct or indirect links. They cooperate with each 

others by sharing the cached segments among themselves, i.e. a proxy can 

request for a video segment cached in other proxies. 

This is the COPACC architecture proposed in Chapter 3，which is a 

cooperative proxy-and-client caching system. The COPACC system aims 

at reducing the aggregated transmission cost by allocating efficiently the 

video segments to the cache provided by the proxies and clients. According 

to the cache allocation algorithm, videos are partitioned into prefix (-P )̂, 

prefix-of-suffix (Q” and the remaining suffix, and the proxies and clients 

are responsible to cache the prefix and prefix-of-suffix respectively. Based 

on the video transmission scheme used (either unicast or multicast), the op-

timal partitioning of the videos are computed to minimize the aggregated 

transmission cost, i.e. the values of P^ and Q̂  are determined to minimize 

Ya Cost(P\ The optimal prefix and prefix-of-suffix are further divided 

into smaller segments in order to fit in multiple proxies and clients. Optimal 
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Figure 4.1: The architecture of the cooperative proxy caching system. 

placement of these segments into the proxies and clients is also considered 

to minimize the cost. The merit of the COPACC relies on the proxy co-

operation. However, COPACC did not address the incentive issues for the 

proxy's participation. That is, what motivates each proxy to provide the 

cache space and how much cache space should be allocated. We extend 

COPACC by proposing a revenue-rewarding scheme to provide incentive for 

the proxies to cooperate. 

In order to increase profit, the NSP is keen to admit new clients. How-

ever, since the capacity of the network links is limited, the NSP fails to serve 

a large number of video-streaming users having high bandwidth and short 

delay requirements. Unfortunately, upgrading the network facility is not 

desirable because the investment cost is usually high. A cost effective ap-

proach is to setup a COPACC system to reduce the aggregated transmission 

cost in the network. As such, the same link capacity can accomplish more 
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clients. Hence, the NSP has a strong incentive to encourage the proxies to 

participate in the COPACC system. 

In general, the more the cache, the better the performance of the system 

is. From the NSP's prospective, it wants more cache supplied because in-

sufficient cache space results in a small cost reduction. However, resources 

are not supplied for free. The proxy has to pay certain cost to maintain the 

resources, although the cost is usually implicit. Therefore, the proxies par-

ticipated in the incentive-based COPACC system have to decide carefully 

the amount of cache storage to be contributed. If they contribute too little 

storage, the reward is small; if they contribute too much storage, the cost of 

maintaining the cache is higher than the reward. It is assumed that the cost 

follows the general rule of increasing marginal cost, i.e. the cost of providing 

an additional unit of cache is higher than that of the previous unit. Thus, 

proxies are reluctant to provide too much resources to the system. 

As the consequence, a revenue-rewarding scheme is established by the 

NSP to reward the contributing proxies. The reward, in terms of credit, 

is determined based on the amount of resource shared by the proxy. It is 

proportional to the proxy's contribution. Proxies are rewarded regularly 

for every fixed period of time. Only the proxies with full participation 

throughout the period are qualified for the rewards. This encourages the 

proxies to stay in the network until the end of each period, thus avoiding 

the unpredictable proxy leave in the system. 

An authority, such as the NSP, is responsible to define a price value, 

which specifies how much credit per unit storage should be granted to the 

participating proxy. Ideally, the price should match the demand and supply 

of resource such that social optimal is achieved. However, it is not the 

case in a non-cooperative environment. Given that proxies are selfish in 

nature, they strategically allocate the amount of storage that maximizes 

their benefit only, i.e. maximize the reward minus cost, regardless of other 
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Parameter Definition 

H Number of proxies. 

Si Cache space supplied by proxy i. 

Si Storage capacity of proxy i. 

q Total cache space supplied to the system. 

Ci{si) Cost of supplying Si unit of cache space by proxy i. 

R(q) Revenue of the system with q units of cache space 
supplied. 

P{q) Credit granted to the proxy for each unit of cache 
space supplied. 

Ui(si) Utility of supplying Si unit of cache space by proxy i. 

E(q) Net profit of the NSP in the system with q units of 
cache space supplied. 

SU{si,S2,...’ sh) Social Utility of the system. 

Table 4.1: A summary of the notations. 

proxies. Meanwhile, the NSP wants to achieve the largest benefit by giving 

out less reward. This forms a non-cooperative game between the NSP and 

the proxies that often leads to a non-optimal situation. In this case, the 

proxies tend to over-supply the resource. 

4.1.2 System Formulation 

We use a game-theoretic approach to model the economic of the resource 

supplying from the proxies. There are two kinds of player, the NSP and 

the proxy. The NSP provides network connectivity to the proxies, while the 

proxy provides cache storage to reduce the transmission cost of the system. 

The notations used in this chapter are summarized in Table 4.1. 

There are H proxies cooperating in the system. Let Si be the unit 

of cache space that proxy i decided to allocate to the system, and Si be 
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the maximum storage capacity of the proxy. A feasible Si is the unit of 

cache space the proxy can supply, i.e. 0 < Sj < Si. The sum of the cache 

space supplied to the system is q = ^i- In order to supply Si units 

of cache space, proxy i has to pay Ci(Si), where Ci(si) is the cost function 

of supplying Si from proxy i, and the cost function can be heterogeneous 

between different proxies. In this chapter, we consider the cost function to 

be strictly increasing with convex shape. The cost function for proxy i is 

defined as follows: 
/ 

Aie叫s广bO’ 0 < Si < , � 
Ci{si) = (4.1) 

0， Si = 0. 
\ 

We argue that the exponential cost function is suitable because it reflects 

the general rule of increasing marginal cost. The parameter Ai defines the 

initial cost of setting up the proxy, while 6i determines the increasing rate 

of the cost. For example, a cost function with large value of Ai and 9i have 

a high cost. When 6i is set to zero, the cost function becomes a constant 

meaning that the cost is fixed regardless of the amount of cache supplied. 

Each proxy can assign its own cost function by adjusting the parameters Ai, 

6i and hi. 

The NSP is in charged to estimate the revenue R(q) in the system. For 

example, the revenue function can be obtained from the COPACC system 

by approximating the transmission cost reduction with respect to the total 

cache space q. In general, the more the resources supplied by the peers, 

the higher the revenue. However, the marginal revenue is decreasing as the 

resource increased. When the cache space reaches a specific amount, the 

cost reduction approaches the limit. Thus, we model the revenue function 

as a non-decreasing and concave function, which is defined as 

m = q>0. (4.2) 

In practice, A' and 6' are greater than zero, and A'/9' should be a finite 
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number, as it represents the revenue obtained when there is infinite amount 

of cache. It is less likely that Q' approaches to zero, in which the revenue 

also approaches to zero. 

The price is a function of g, and it is set according to the revenue curve. 

The product of the price and the total available cache unit q should not 

exceed the corresponding revenue. The NSP has its freedom to decide how 

much revenue is rewarded to the proxies, by setting an appropriate price 

function. We suggest two possible ways to define the price function. 

1. Total-rewarded pricing: The price function P(q) is defined as the 

revenue divided by the total resource supplied, i.e. P{q) = R(q)/q for 

q>0. 

2. Marginal-rewarded pricing: The price function P{q) is defined as 

the marginal gain of the system, i.e. = R'(q)-

In general, P{q) is a decreasing function with a convex shape. When 

the amount of resource tends to infinite, the price of each unit of resource 

approaches to zero. The total and marginal-rewarding price are defined as 

follows: 

P ⑷二命 1 - e 一 " ' ( " ' ) }， P O . (4.3) 

P �= A ' e - 伊 q > 0 (4.4) 

We like to emphasize that this methodology is not restricted to use in 

the caching system, but it may also be applied to other P2P system with 

the cost and the rewarding function setup properly. We now present the 

resource allocation game among the proxies in the COPACC. 
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4.2 Resource Allocation Game 

We model the behavior of the proxies and the NSP as a strategic game. All 

proxies (or system administrators who manage the proxy) are rational, and 

they strategically choose the amount of cache Si to maximize their benefit. 

We use a utility function to represent the level of satisfaction of the proxy. 

The utility Ui{si) of proxy i can be measured in terms of its net gain, which 

is equivalent to the reward earned minus the cost to provide the cache. The 

utility is expressed as follow: 

Ui{si) = SiP{q)-Ci{si) . (4.5) 

The resource allocation game is a repeated synchronous game. Each 

proxy can make or change its decision about the amount of cache at the 

beginning of each round. To be realistic and scalable, we assume imperfect 

knowledge of each proxy, meaning that the proxy only knows about the total 

cache space supplied to the system, q, and the price function, P{q). The 

NSP (or proxy coordinator) can publicize the current price and the total 

amount of cache space such that other proxies can obtain the information 

easily. Based on these information, the proxy updates its own strategy in 

each move to maximize its utility. 

4.2.1 Non-Cooperative Game 

In the non-cooperative game, the proxies make decision regardless of the 

other proxies. They choose Si based on the public information: the aggre-

gated cache space and the price function. The objective of each proxy is to 

maximize its own utility with respect to Si over [0，Si]: 

max Ui{si) = SiP{q) - Ci{si). (4.6) 
0<Si<Si 

Given the total cache space q and the price function P(q), the proxy can 

determine its best strategy Si by solving the maximization problem. Note 
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that q is implicitly depends on Sj. If the value of Si is changed, the value of q, 

as well as P(q)’ will be adjusted accordingly. Thus, in the optimization, the 

value of q would be better presented in terms of Si. Let s_i be the amount of 

cache collectively supplied by the proxies except proxy i, then s-i — q' — sj, 

where q' and s\ are the total amount of cache and the amount of cache 

supplied by proxy i respectively in the previous round. The equivalent 

optimization problem is shown as follows: 

max Ui{si) = SiP(si + s-i) - Ci(si). (4.7) 
0<Si<Si 

Specifically, in the COPACC system, the objective function can be writ-

ten as 
( 

S i A ' e - " �广 M - Aie日“Si—M, 0 < Si < 
max Ui{si) = (4.8) 

0 仏 試 0, Si = 0. 
\ 

The marginal-rewarded pricing is used here. This maximization problem 

is simple, and the first-order condition is sufficient to solve the optimal value 

of Si. In general, the game will converge to a Nash equilibrium. However, the 

Nash equilibrium may not be unique as the order of move will influence the 

equilibrium point. The first mover is more likely to get advantage over the 

later mover by supplying more cache space at the beginning. The outcome 

of this non-cooperative game is not desirable since there is no guarantee that 

the equilibrium is socially optimal. 

In the non-cooperative environment, the proxies act selfishly and blindly 

to maximize their utility. The outcome, however, does not meet their ex-

pectation. The utility may be worse than the achievable individual optimal, 

in which the proxies cooperatively decide how much cache to supply. Each 

proxy seems to optimize their individual benefit, but actually the system-

wide behavior does not reflect the optimization of any objective. Without 

the whole view of the system, it is difficult to determine whether the outcome 

(or the Nash equilibrium) is desirable or not. According to different kinds 
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of player in the game, either one of the following system-wide objectives can 
be achieved: 

1. Maximize the net profit of the NSP; 

2. Maximize the social utility among all proxies involved in the system. 

To achieve the above objectives, we suggest two cooperative resource 

allocation games, namely Profit Maximizing Game and Utility Maximizing 

Game. 

4.2.2 Profit Maximizing Game 

Being the NSP, the objective is obvious: it aims to maximize its net profit 

in using COPACC architecture. The net profit, E(q), of the NSP is defined 

as the revenue earned minus the reward paid to the proxies, i.e. 

E{q)=R{q)-qP{q). (4.9) 

It is clear that the net profit is always zero in the total-rewarded pricing. 

Therefore, it is better to use other reward pricing if the NSP wants to earn 

some profit. As shown in Equation (4.9), the net profit is determined by the 

total cache space q supplied to the system , and the NSP can only influence 

the value of q by setting the price function P(q) probably at the beginning 

of the game. Once the price function is set and publicized, the NSP has no 

control about the value of q�which is a Nash equilibrium converged from 

the moves of the proxies over many iterations. 

The non-cooperative game does not lead to a unique Nash equilibrium. 

The main reason is that the aggregated cache space currently supplied to 

the network does affect the price, and thus interferes the proxy's decision. 

For the same price function used, the system may converge to different equi-

librium. There is no guarantee for the NSP to set a particular marginal-

rewarded pricing function that leads to a desirable outcome, which maxi-

mizes its net profit. To ensure the existence of a unique, predictable Nash 
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equilibrium, we simplify the price function to a constant p, which remains 

the same regardless of how much cache is supplied to the network. By setting 

a constant price, we show that the game admits a unique Nash equilibrium, 

and the NSP can choose a proper price p to maximize its net profit. 

With this assumption, we have a Stackelberg game[5] that has one leader 

(the NSP) and H non-cooperative Nash followers (the proxies). The NSP 

strategically decides the price p, and the proxies react with the best amount 

of cache Si to supply. This defines a non-cooperative game between each 

independent proxy in the network, with the underlying solution being the 

Nash equilibrium. Each proxy selfishly selects Si to satisfy its objective 

function: 

max Ui{si) = SiP(q) - Ci(si) 二 Sip - Ci{si). (4.10) 

We assume that if the net utility of a proxy is less than or equal to zero, 

it will not participate in the system, and it will be removed from the list 

of proxies. Note that there is a boundary constraint for the variable Si, 

i.e. 0 < Si < Si. The problem is formulated as a constrained optimization, 

which can be solved by the method of Lagrangian Multiplier. 

Let {si*}仏1 be a set containing the amount of cache supplied by the 

proxies to the system such that it satisfies 

max Ui{si) = Ui(si*). (4.11) 
0<Si<Si 

One can analytically find the value of s* based on the value of p, using 

the first-order condition. 

in(Si)=p-Cl(Si) = Q (4.12) 

Clisi) = 胁广⑷ = p (4.13) 

+ (4.14) 
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By solving si in Equation (4.13), one can obtain the solution of s*. 

0，Si < 0 

A = Si, 0 < Si < (4.15) 

S~i�Si > Si* 
\ 

Obviously, there is only one value of s* that can satisfy the objective 

function in Equation (4.11). Thus, the game admits one and only one Nash 

equilibrium, i.e. there exists a unique for each value of p. 

Theorem 4.2.2.1. The profit 
TncbxiTYiizing go/me adTfiits one and only one 

Nash equilibrium 

Proof. Consider the second-order differential equation of the utility Ui{si), 

Ul'isi) = -C'/{si). (4.16) 

Since the cost function is defined as a strictly increasing function with 

convex shape, the second-order differential equation should always be posi-

tive, i.e. C;'(Si) > 0. It shows that C/f (si) is always less than zero, and the 

utility function admits at most one maximum. Thus, the strategy of proxy 

i is either s* that satisfies the Equation (4.13) if the maximum located in 

the range of (0, Si), or the boundary value 0 or Si. As each proxy has it own 

unique optimal strategy s* independent of others, a unique does 

exist. • 

Thus, given the value of price p, the NSP can predict the total cache 

space q* contributed to the system, that is 

= (4.17) 
i=l 

If the NSP knows the parameters Ai, 9i and bi of all the proxies, it can 

formulate its own maximization, which aims at maximizing the net profit 

with respect to q*. 
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設 E(q”=R(q*) 一 q*p (4.18) 

Since the total amount of cache space q* is solely depended on the value 

of price p through Equation (4.15) and (4.17), one can rewrite the objective 

function by substituting q* in terms of p. In the COPACC system, if all 

the Si do not violate the feasible constraints, the objective function can be 

rewritten as Equation (4.19). 

_ = R ^ p J ^ + M) - P . p l ^ + (4.19) 

The derivative of q* and Ep{p) with respect to p are shown below. The 

optimal price, p*, can be obtained by solving the first-order condition in 

Equation (4.23). 

^ = (4.20) 
dp pjri^i 

I— 1 

五 = — ( 4 . 2 1 ) 

= 广 I * (4.22) 

Kip) = 0. (4.23) 

Although it is hard to find the close-form solution of the optimal price 

p* for Equation (4.23)，one can solve this optimization efficiently using nu-

merical method. Once the NSP find the optimal price, it can calculate the 

value of all s* using Equation (4.15). If all s* are inactive, i.e. they satisfy 

the condition 0 < sj < 5i, the net profit of the NSP is guaranteed to be 

maximum by setting the optimal price to p*. 
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What if some of the constraints are active, they do not satisfy the bound-

ary condition of Sj? The problem becomes more complicated, but one can 

still find the optimal value of p mathematically. The solution is based on 

the techniques of Lagrangian multiplier. It can be shown that the objective 

function Ep{p), without considering the cache constraints, is a concave func-

tion, and all the constraints regarding Si are linearly. Thus, it is a concave 

programming problem, and there exists a unique solution that satisfies the 

KKT-condition in Equation (4.25)-(4.30). 

H H 

L = E M - f,\si + ^ fiRsi - (4.24) 
i=l i=l 

1=1 i=l 

Mi>0, i = (4.26) 

/̂ r > 0 , i = l,…,11 (4.27) 

/n-Si = 0, i = l,…,H (4.28) 

- Si) = 0, i = l,...,H (4.29) 

0 < Si < Si, i = l,...,H. (4.30) 

We now present an algorithmic approach to find the optimal value of 

p, which is derived directly from the KKT-condition. Fig. 4.2 shows the 

profit maximizing algorithm for the NSP in the profit maximizing game. 

It first assumes that the boundary constraints of all Si are inactive, i.e. 

all the cache space Si lie between 0 and Si. Thus, the Equation (4.28) 
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and (4.29) hold only if the and fi^ are zero. The optimization problem 

is now similar to the unconstrained problem in Equation (4.19), and we 

can apply the numerical method stated previously to calculate the optimal 

price p* as well as all Sj. If the Si are feasible, we have obtained the best 

solution. Otherwise, we know that some of the boundary constraints are 

violated, and the corresponding values of ii\ or nf are not equal to zero. In 

that case, the value of Si is forced to be the boundary value (either 0 or Si) 

followed by Equation (4.28) or (4.29). We can identify the active constraints 

of Si from the result obtained in Equation (4.23). If the optimal Si found 

in the unconstrained optimization is less than zero, the proxy should not 

participate in the system. Therefore, we remove the proxy from the system 

by setting Si = 0. If the optimal Si is greater than the maximum capacity 

the proxy can provide, the proxy supplies Si units only, and Si = Si. After 

hard-setting the value of certain Si, we execute the algorithm again to find 

the numerical solution for the optimal value of p. If the outcome of all Si 

are feasible, we get the best solution. Otherwise, we repeat the previous 

steps to adjust the value of Si and execute the algorithm until the resulted 

Si are feasible. In practice, integral value of cache quantity is desired. Thus, 

an additional checking on�Si"| and [ŝ J as the solution should be made to 

assure optimality. 

Until now, we assume the NSP knows the characteristic of the cost func-

tion of each proxy such that it can determine the behavior of the proxies, 

and it can construct its own objective function. But one interesting ques-

tion to ask is whether the NSP can maximize its net profit without knowing 

the individual cost function of each proxy. As such, the NSP can only ob-

serve the action of each proxy by setting a probing price. The NSP keeps 

adjusting the price gradually until a desirable profit is obtained. It is analo-

gous to a commodity market, where the optimal price is determined through 

numerous iterations of refinement. 
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Profit Maximizing Algorithm: 

1: declare P = { 1, 2, ... , // indexes of proxy that it's Si 
has not been determined yet 

2: declare = {}; / / indexes of proxy that it's Si is zero 
3: declare P" = {}; / / indexes of proxy that it's Si is Si 
4: for i 1 to H 
5: Si = 0; 
6: end for 
7: while (true) do 
8: q = Ziep Si + Eie尸u A = Eiepi^^^^ + H + Eiepu Sf. 
9: Solve the optimal price p that maximize Ep(p) = R(q) -p - q 

(or find p s.t. E'p{p) = 0); 
10: for i:=lto H 
11: Si = ln{p/Ai9i)/ei + hi] 
12: end for 
13: if 0 < Si < Vz G P then 
14: break; / / end the while loop 
15: end if 
16: declare P^ = {}; / / a temporary set 
17: for i:=lto H 
18: if Si < 0 then 
19: P^ = P^U{i}； 

20: end if 
21: end for 
22: if (Pt - PO ^ 0 then 
23: pi =户； 

24: P = P-户； 

25: continue; / / next iteration of the while loop 
26: end if 
27: for each i e P 
28: if Si > Si then 
29: P " = U {{}• 
30: P = 
31: end if 
32: end for 
33: end while 
34: return p; / / p is the optimal price 

Figure 4.2: Profit Maximizing Algorithm for the NSP in the Profit Maxi-
mizing Game. 
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Figure 4.3: A sample plot of total cache space q versus price p. 

Although the NSP does not know the exact amount of total cache space 

q supplied to the system for each p, it is always true that increasing the 

price leads to a non-decreasing movement of the total cache space. Fig. 

4.3 plots a sample relationship between the total cache space q and the 

price p. Both p and q move non-linearly in the same direction. Due to 

the boundary constraints of Sj, the function relating p and q is continuous 

but not differentiable. Fig. 4.4 plots a sample relationship between the net 

profit Ep{p) and the price. We observe that the value of Ep(p) in Equation 

(4.19) generally increase for small value of p. Then it reaches the global 

maximum, and decreases with increased value of p. 

We now construct a Price Establishing Protocol for the NSP to determine 

the optimal price used in the system. Let's assume the proxies choose the 

best Si to maximize their net utility, stated in Equation (4.10), based on the 

price p given from the NSP. The NSP keeps announcing different value of 

price p, and the proxies reply to the NSP with the amount of cache space 
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Figure 4.4: A sample plot of net profit Ep(p) versus price p. 

it agrees to contribute. Based on the total cache space q supplied by the 

proxies, the NSP decides the best pricing strategy to maximize its net profit. 

It can be thought as a search problem for an optimal value of p without a 

formal equation. 

At the beginning of the protocol, the NSP makes an initial guess of the 

probing price, say p. It announces the price to the proxies, and retrieves the 

corresponding value of q. The net profit Ep{p) can be calculated based on 

the value of p and q. In each iteration, the NSP decides a new probing price 

based on the old price and the percentage change of the net profit. It then 

sets a new price and measure the change of the net profit as compared with 

the old one. The process goes on until the price converges to an optimal 

value, which achieves the maximum profit. 

The search method stated above is the simplest one of the zero-order 

method (or maximization method without derivatives) in the literature. 

Some advanced direct search methods can also be applied in the Price Estab-
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lishing Protocol to achieve global optimization with fast converging speed. 

We suggest to use Pattern Search Method [33] to find the optimal price in 

the protocol. Moreover, other search method that guarantee global optimal 

can also be applied here. 

So far we have presented the way for the NSP to maximize its net profit 

by setting up proper price. Sometimes, the NSP has no preference about 

maximizing its net profit. Instead, the proxies may prefer to maximize 

the social utility among themselves. In this situation, the objective of the 

optimization becomes maximizing the social utility, which is defined as the 

total net utility summed over all proxies. In what follows, we will present 

the utility maximizing game. 

4.2.3 Utility Maximizing Game 

Another system-wide property we would like to achieve is the social utility. 

It reflects the level of satisfaction of the proxies participating in the net-

work. In this subsection, we present a resource allocation game that aims 

at maximizing the social utility of the system. Cooperation of the proxies 

is essential in this optimization. 

The net utility Ui{si) of each proxy supplying Si units of cache is shown in 

Equation (4.5). We define the social utility as the individual utility summed 

over all proxies, which is 

H 

(4.31) 
i=l 

The global objective is to maximize the social utility with respect to Si 

subjected to the boundary constraints 0 < ŝ  < Si, that is 
H H 

max y]Ui{si ) = max Y^[siP(q) - Ci{si)]. (4.32) 

As the value of q equals to JD^i Si and the current price is calculated 

based on the value of q � t h e net utility Ui{si) of proxy i does not solely 
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depends on Si supplied by itself, but also depends on the cache space s- i 

contributed by the other proxies. The multi-variable optimization of the 

above objective function becomes difficult. Even the form of the partial 

derivative with respect to Si is complicated. It is desirable to break down 

the problem into smaller subproblems, and each subproblem can be handled 

easier. 

Fortunately, the objective function in Equation (4.32) can be simplified 

as: 
H r H 

max "^Uiisi) = max q • P { q ) C i { s i ) • (4.33) 
0<Si<5i 二 0<Si<Si [ f^ 

The first term is equivalent to the credit rewarded to the proxies, while 

the second term represents the total cost of providing q units of cache by 

the proxies. Note that with the fixed quantity of cache space q, the first 

term is always constant regardless of the ŝ . The social utility varies only 

by adjusting the allocation of ŝ . Hence, the best social utility with a fixed 

cache quantity can be obtained when the total cost of providing the cache 

is minimized. The objective function in Equation (4.32) can be rewritten as 

below: 
H � H 

max Ui{si) = max q • P{q) - min y ^ Ci{si) (4.34) 
0<Si<Si 0<q<g [ 0<Si<Si ^ _ 

H 

S.t. q = Xsi (4.35) 
t=l 

H . 

Q = Y . S i . (4.36) 
i=l 

Thus, the problem can be decomposed into two subproblems, namely 

Minimal cost caching problem and Optimal cache quantity problem. 

1. Minimal Cost Caching Problem(MinCost): Find the minimal 

cost to provide q units of cache by the cooperative proxies with respect 

to Si. 
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2. Optimal Cache Quantity Problem(OptQ): Find the quantity of 

cache space q that guarantee best social utility. 

These two subproblems are linked together by the common variable q. In 

the first subproblem, given the value of q, we claim that it is always possible 

to find a unique set of allocation Si that minimizes the total cost. Thus, there 

is a one-to-one mapping between q and Once the first subproblem 

is solved, the whole problem depends only on the variable q, while not the 

actual allocation We then solve the second subproblem by finding 

the optimal value of q, as well as the price P(q), to generate maximum social 

utility. 

We now present the concrete formulation and the proposed solution to 

the subproblems. 

Minimal Cost Caching Problem 

As the name minimal cost caching implied, this subproblem is about finding 

the cheapest way to supply q units of cache space among the proxies. We 

are also interested in the cache space allocated by the proxies that 

minimize the total cost. 

The minimal cost caching problem is formulated mathematically as: 

H 

MinCost: MinCost{q) = min ̂  Ci{si) (4.37) 
i=l 

S.t. 0<Si< Su i = l,…,H (4.38) 

H 

Y^Si = q. (4.39) 
i=l 

The formulation like Equation (4.37) is rather common in the field of 

optimization. It can be solved algorithmically using the well-known dynamic 

programming method. Let B(i,j) be a two-dimensional matrix that stores 
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the minimum cost of contributing j units of cache by the first i proxies, 

where I <i < H and 0 < j < q. 
‘ 

C i ( i ) , 0 < i < Sx 

BiiJ) = oo, i = l, Si<j<q 

mill . B{i 一 l,j -k) + Ci(k), 2 <i<H, 0<j<q. 
�0<k<j,k<Si 

(4.40) 

The matrix can be filled in plane-order starting from B{1,0) to B{H, q), 

and the latter gives the minimum cost of providing q units of cache. The 

corresponding Si of each proxy can be obtained through backtracking the 

iterations. This dynamic programming algorithm has time complexity 0{q-

H . M), where M = maxi<i<H 

Although the dynamic programming method solved the MinCost prob-

lem, it is not always desirable because it requires a powerful and dedicated 

node in the network to execute the algorithm centrally. As a consequence, 

a distributive algorithm is generally preferred to solve the problem in the 

network. 

Before proceeding, it is a good idea to understand the mathematical 

solution of this cost minimization problem using optimization theory. Con-

sider the problem stated in Equation (4.37), it is proven as a constrained 

convex optimization problem. 

Theorem 4.2.3.1. MinCost is a constrained convex optimization problem. 

Proof. To show this, we have to prove the truth of the following two state-

ments. 

1. The feasible region of the solution space Si under the constraints is 

convex. 

2. The summation of the individual cost function is a convex function. 
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Statement (1) follows directly from the fact that all the constraints for 

Si are linear. It is obvious that the equality constraint involving q and the 

boundary constraints for each Si are linear equation of Si. Thus, the feasible 

region is a convex set. 

Consider the Hessian matrix of the total cost function, 

C;'(si) 0 0 0 

o ̂  0 C''{S2) 0 0 
� ] = (4.41) 

0 0 (7�(S3) 0 

0 0 0 

or 
o A 0, i ^ j 

= { (4.42) 

Cl'isi), i = j. 

Since the cost function Ci(Si) is strictly increasing, the value Cf (si) are 

always positive. The Hessian matrix is positive semi-definite. Thus, the 

total cost function is a convex function. Statement (2) holds. • 

Convexity is a nice property in constrained optimization. In a convex 

optimization, the local minimum is indeed the global minimum. As a result, 

the KKT-condition is the sufficient and necessary condition for optimality. 

In other words, a set of {sJ^q that satisfies the KKT-condition is the 

solution to our cost minimization problem. The KKT-condition for the 

MinCost problem is shown below: 

H H H H 

L{si) = Ciisi) - Si-q)-Y^ + -台i) (4.43) 
1=1 i=l i=l 1=1 

^ r 

^ = C [ { s i ) + = i = …’ H (4.44) 

fi[ > 0, i = l,…,H (4.45) 
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/i?>0, i = l,…,H (4.46) 

fi[si = 0, i = …,H (4.47) 

- Si) = 0, i 二 1,…,11 (4.48) 

0 < Si < Si, i = l,…,H (4.49) 

H 

= (4.50) 
i=l 

The MinCost is a convex optimization problem, meaning that there ex-

ists a unique solution {si}仏！ satisfying the Equation (4.44)-(4.50). The 

optimal cache allocation Si can be determined by solving the set of linear 

equations. We are now ready to present our distributed approach to the 

cost minimization problem. The algorithm is emerged from the mathemat-

ics above. 

We start with a simplified version of the MinCost problem in Equation 

(4.37), having the storage constraints removed from each proxy. It becomes 

an equality constrained problem, which can be solved by the method of La-

grange multiplier. The necessary condition is similar to the KKT-condition 

stated previously, but with the equations involving ji\ and /x" omitted. Note 

that the plus or minus sign of the multiplier term does not affect the solution. 

H H 

L{si) = Y. Ci�-入(E Si - q) (4.51) 
z = l i = l 

Q J^ 
— = C [ { s i ) - A = 0, i = l,…,H (4.52) 
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H 

^ S i = q. (4.53) 
1=1 

We instantiate the cost function according to the COPACC system. 

Given Equation (4.52)，we can derive Si in terms of A. 

C'iisi) = AiOie '̂̂ ''- '̂̂  = A (4.54) 

The variable A is called shadow price, which is introduced by the proxies 

to establish implicitly the best cache allocation among them. The equation 

of Si is similar to the one shown in Equation (4.14), but in here we have one 

more condition about the total cache quantity (in Equation (4.53)) to hold. 

By substituting Si to Equation (4.53), we can solve the value of A, and thus, 

the values of all Sj. 

(4.56) 
1=1 L � -

A = e . (4.57) 

If we have all the parameters about the individual cost function of each 

proxy, we can find the optimal A as well as the Si directly. However, in 

the distributed approach, we must rely on iteratively refining the value of 

A until the optimal value is reached. The resulted total cache space is used 

as an indicator for optimality. The minimal cost is achieved when Si 

is equal to q. In order to use the distributive algorithm, we assume the 

proxies are cooperative, and they do follow the cost minimization protocol 

to determine the amount of cache contributed to the system. The protocol 

runs collaboratively with assistance from a proxy coordinator. 



CHAPTER 4. REVENUE-REWARDING MECHANISM 68 

fCoordinatoi I Proxy 1 I I Proxy 2 1 … ( P r o x y H 1 

^ O k � V3； z O * XSJ 
〜：：、、、 一 S1 一 Z zZSh 

一 一 一 z 
X<^X+Xri(q-ESi)/q 、 、 〜 〜 一 一 一 一 Si=ln(A/Ai9i)/ei+bi 

一 一 一 一 — — 一 一 

Figure 4.5: Mechanism of the cost minimization protocol. 
The coordinator first make an initial guess of the shadow price A, and 

notifies the proxies. Each proxy reacts to the shadow price with a Si ob-

tained by Equation (4.55), which is privately known to the proxy. Then, 

the coordinator updates the shadow price based on the total cache space 

contributed to the system. If the total cache space is more than required, 

i.e. E仏 1 Si > q, the shadow price is set too high, and it should be reduced. 

If the cache supply is insufficient, the shadow price should be increased. The 

process continues until the optimal value is achieved, where the total cache 

supplied matches the requirement, i.e. YliLi Si = q. 

The most crucial part remained is how to update the shadow price ac-

cording to the cache supplied. The updating rule should be selected carefully 

as it determines the effectiveness of the protocol. Since the problem is proven 

to exist only one minimum, even the simplest numerical search method guar-

antees optimal solution. Other advanced search method, of course, can be 

used to obtain the same result. 

Fig. 4.5 shows the mechanism of the cost minimization protocol. We 

adopt to a simple updating rule, which increase/decrease the value of A in 

proportional to the difference between the desirable cache space q and the 

total contributed cache from the proxies. The updating rule of 入 is 

A ^ A + (4.58) 

The learning rate, 77，is a factor that controls the converging speed and 

the accuracy of the protocol. A large value of rj is used initially to speed up 
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the convergence, and it starts to decrease gradually in order to obtain an 

accurate solution. The protocol is executed periodically to ensure that the 

cost remains minimal after any join or leave of the proxies. In steady state, 

the A leads to a cache allocation with minimal cost. 

The solution of this simplified MinCost problem can be extended to the 

original problem with the cache constraints. The participating proxies react 

to the shadow price similarly as in the simplified MinCost problem. The only 

difference is that the proxy coordinator has an additional task to determine 

whether the cache constraints of the proxies are violated. 

Consider the Equation (4.47) in the KKT-condition, either equals zero 

or Si equals zero. Similarly in Equation (4.48), either fi^ equals zero or Si 

equals Si. To solve the set of linear equations, we have to examine whether 

and /if are equal to zero. Assume both fJ- and fif are zero, the formulation 

of the original problem reduces to the simplified version. We apply the cost 

minimization protocol to obtain the best cache allocation for a total of q 

units of cache space. However, the resulted Si may not satisfy the boundary 

constraints specified in Equation (4.49). In that case, depending on the 

value of Si, one of the fi[ and /i" is not zero. If Si is less than or equal to zero 

for certain proxy z, we are sure that this Si has optimal value of zero, and 

the corresponding is not zero. The proxy is not eligible for contributing 

as the cost of supplying the cache is comparatively high. Similarly, if Si is 

greater than Si, we are sure that the Si of the proxy has optimal value of 

Si. This proxy should provide as much cache as possible since the cost is 

comparatively low. Thus, we can eliminate some proxies, whose value of 

Si is known already, from the problem formulation and resolve the Si for 

the remaining proxies. Note that the total required cache space q of the 
A, 

eliminated problem should be updated accordingly, by subtracting the Si of 

the oversupplied proxies. The algorithm for the cost minimization protocol 

used by the coordinator is shown in Fig. 4.6. 
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Cost Minimization: 

1： declare P = { 1, 2, ... , H}\ // indexes of proxy that it's Si 
has not been determined yet 

2: declare pi = {}; / / indexes of proxy that it's Si is zero 
3: declare P" = {}; / / indexes of proxy that it's Si is Si 
4: while (true) do 
5: the new cache requirement q' = q — J^ieP^" 
6: solve the Simplified MinCost Problem distributively with 

the cache requirement of q' among proxy i e P and get 
the optimal Si for proxy i e P] 

7: if Vi G P, 0 < Si < Si then 
8: break; / / end the while loop 
9: end if 
10: declare pt = {}; / / a temporary set 
11: for each i e P 
12: if Si < 0 then 
13: pt = ptD {i}； 

14: end if 
15: end for 
16: if 0 then 
17: p / ^ p i ^ p t . 

18: P = P - pt� 

19: continue; / / next iteration of the while loop 
20: end if 
21: for each i € P 
22: if Si > Si then 
23: = 
24: P= P-{i}; 
25: end if 
26: end for 
27: end while 

Figure 4.6: Cost Maximization Protocol for the proxy coordinator. 
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By the cost minimization protocol with a given fixed total cache quantity, 

the proxies can cooperatively allocate the best amount of cache space to 

achieve minimal cost. 

Optimal Cache Quantity Problem 

The next problem is to determine the optimal amount of cache quantity. The 

optimal cache quantity problem refers to the problem of finding the total 

quantity that results in maximum social utility. Let M(q) be the minimum 

cost of providing q units of total cache. For each q, the value of M(q) can 

be evaluated by solving the corresponding MinCost problem, using the cost 

minimization protocol. The OptQ problem can be formulated as 

OptQ: max [q . P{q) - M{q)] (4.59) 
0<g<g 

H 

where Q = ^ Si. 
i=l 

Obviously, the objective function depends on the variable q only, where 

P{q) is a decreasing function of q and M{q) is an increasing function of q 

(see Fig. 4.7), In fact, the objective function may contain multiple maxima, 

depending on the cost functions and revenue function used in the system. 

Fig. 4.8 plots the revenue, minimum cost and social utility with respect to 

cache quantity in the COPACC system. In this example, the social utility 

is calculated using the total-rewarded price, and the maximum is achieved 

when the cache quantity is around 75. 

Since we do not have the close form solution for the MinCost problem, 

we cannot rely on any optimization method that involves derivative of the 

objective function. In order to find the optimal cache quantity, we suggest 

to use direct search method, which is similar to the one used in the profit 

maximizing game. Pattern search with multiple initial guesses is a good 

approach to the optimal cache quantity problem. 
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In the pattern search method, an initial step size s is chosen and the 

search is initiated from a starting point q. The method involves the steps of 

exploration and pattern search. In the exploration step, it tries to probe the 

value of the social utility by increasing or decreasing the cache quantity. Let 

q' = q, the objective function is evaluated at q' + s. If the value increases, 

then q' is updated to q' + s. Otherwise, the function is evaluated at q' — s. 

If the value increases, q' is updated to q' — s. In case both of them fail in 

the test, the original value of q' is retained. An exploration is said to be 

successful if the function valued at q' is higher than g by a predetermined 

amount. The pattern search algorithm starts from a quantity q. The explo-

ration step is made in q. If the exploration fail, the step size is reduced by 

a factor of r, i.e. s rs. Otherwise, a new base point of q is established 

according to the exploration. The search continues until the cache quantity 

q converged. The solution obtained may not be global maximum. To ensure 

that the solution does not trap in the local maxima at steady state, the 

proxy coordinator should periodically probe the system with different cache 

quantity to see if it is still optimal. A random value with large difference 

from the solution is chosen for the probe. 

The solution of the optimal cache quantity problem is indeed the optimal 

quantity for the original utility maximizing problem. It guarantees maximal 

social utility in the network. Moreover, the optimal cache space supplied by-

each individual proxy is determined through the cost minimization protocol, 

and the price is set according to the price function. 

In this subsection, we have presented the utility maximizing game, which 

aims at maximizing the social welfare of the proxies in the network. The 

performance of the three resource allocation games are being evaluated in 

the next section. 
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4.3 Performance Evaluation 

The main focus of this section is to evaluate the effectiveness of the proposed 

revenue-rewarding scheme in encouraging the participation of the NSP and 

the proxies. We show that the scheme can provide a strong incentive for 

different entities to join the system. We have examined the use of revenue-

rewarding in the three resource allocation games, i.e. non-cooperative game 

{NonCoop), profit maximizing game (ProfitMax), and utility maximizing 

game (UtilMax). We have studied the net profit of the NSP as well as 

the social utility of the proxies in the games. We have also compared the 

individual utility of the proxies in each game. The results demonstrate that 

under different resource allocation games, different level of incentive are 

given to different entities in the network. Moreover, an economical cache 

supply is achieved in the ProfitMax and the UtilMax, where the "good" 

peers, which have cheaper cost in providing cache, are retained to participate 

in the system. 

Unless otherwise specified, the following default settings were used in 

the evaluation. We considered a proxy caching network consisting of five 

proxies, which operated under the same NSP. The revenue function was 

approximated by the experimental results from the cost reduction in the 

COPACC system. Each proxy was assigned with an exponential cost func-

tion. The parameters used for the cost and revenue functions are shown in 

Table 4.2，and the corresponding functions are plotted in Fig. 4.9. Note that 

proxy 1,2 and 3 have similar cost function with different level of expensive-

ness. Proxy 4 supplies cache with low initial cost but high variable cost. In 

contrast, proxy 5 has high fixed cost but low variable cost. For simplicity, 

each proxy has the same storage capacity. Lastly, the marginal-rewarded 

pricing was applied in the non-cooperative game and the utility maximizing 

game. 

The evaluation of different rewarding schemes were done based on math-
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Figure 4.9: Cost and revenue functions being used in the evaluation. 



CHAPTER 4. REVENUE-REWARDING MECHANISM 76 

Proxy i Ai 6i bi Si Cost 

1 10 0.06 0 50 Normal 

2 10 0.06 15 50 Low 

3 15 0.08 0 50 High 

4 8 0.12 10 50 Low for small quantity, high for large quantity 

5 10 0.04 0 50 High for small quantity, low for large quantity 

A' 6' h' 

15 0.03 0 

Table 4.2: Parameters used in the resource allocation game. 

ematical simulation, which was implemented in MATLAB 7.0. The built-in 

Pattern Search Tool, provided in the Genetic Algorithm and Direct Search 

Toolbox of MATLAB, was used to solve the search problem. 

4.3.1 Convergence 

The first issue we are looking at is the convergence. It is a basic requirement 

that the resource allocated by the proxies should converge in each game. We 

analyze the behavior of each game based on the cache contributed at the 

steady state. Fig. 4.10 depicts the quantity of cache supplied by the five 

proxies in each iteration. It demonstrates that all three resource allocation 

games converge to a steady state after a number of iterations. It is observed 

that the NonCoop converges fast, while it takes more iterations for the Prof-

itMax and the UtilMax to stabilize. For the ProfitMax and the UtilMax, the 

speed of convergence is depended on the direct search method implemented. 

In the pattern search method, a large step size is used initially, therefore, 

the cache quantity varies dramatically at the beginning. As the step size de-

creases gradually, the cache quantity stabilizes and converges to the optimal 

value. Fortunately, the converging speed does not affect the performance of 
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the game. As long as the search method converges to an optimal value, the 

corresponding objective function is optimized, and the goal is achieved. 

4.3.2 Participation Incentive 

The primary design objective of this work is to present an incentive mech-

anism to encourage participation of the entities in the network. The eval-

uation results show that this incentive mechanism applied in the COPACC 

system provides a strong incentive for both the NSP and the proxies. In ad-

dition, the incentive for the NSP is different from that of the proxies. The 

NSP is motivated by the attractive net profit to setup the COPACC system 

in its network, while the proxies are encouraged by the positive net utility 

to supply cache to the system. Hence, in this subsection, we evaluate the 

two incentives in the three resource allocation games. 

Net Profit 

Fig. 4.11 plots the net profit of the NSP in the three resource allocation 

games. As we expected, the profit maximizing game generated the highest 

net profit among the three games. The net profit of the ProfitMax was 

352.8, which was 21% higher than that of the NonCoop, and it was 2.26 

times of the net profit in the UtilMax. The UtilMax performed the worse 

because it tried to maximize the benefit in other dimension, social utility, 

by trading off the net profit. 

We also evaluated the performance of the three games under systems 

having different revenue function. All the revenue functions had the same 

ratio of A'/6\ but the value of 9' varied from 0.01 to 0.08. Remember that 

the larger the 6', the higher the revenue is for the same quantity of cache. 

The net profit of the NSP in the systems with different revenue function 

is plotted in Fig. 4.12. The result further illustrates that the ProfitMax 

achieves the highest net profit among the three games. 
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Note that the revenue earned by the NSP in each game was different, 

depending on the cache quantity supplied to the system. The revenue, in 

terms of cost reduction, obtained in the COPACC system under the Prof-

itMax was 426.7. It is attractive to the NSP that by rewarding 17% (i.e. 

73.60) of the total revenue to the proxies, which were willing to participate 

due to positive net utility, the NSP can enjoy 83% of the revenue as its 

net profit. Hence, we conclude that the profit maximizing game provides 

a strong incentive for the NSP to setup the revenue-rewarding scheme in 

the COPACC system. We argue that even for the UtilMax, the NSP still 

has incentive to deploy the incentive mechanism as it can retain 37% (i.e. 

108.28) of the revenue as its profit. 

Social Utility 

In this subsection, we evaluate the social utility in different games. Fig. 

4.13 demonstrates the individual utility of the proxies under different games. 

Only the proxies having positive net utility supplied cache to the system. It 

illustrates that the positive net utility provides an initiative incentive to the 

rational proxies to cooperate. 

Fig. 4.14 shows the social utility of all proxies in the three games. The 

social utility achieved by the UtilMax was the highest among the three. In 

this example, the social utility of the UtilMax was 161.7, which was much 

higher than that of the ProfitMax (16.1) and the NonCoop (69.9). In Fig. 

4.15’ the social utility of different games were examined under the systems 

with different revenue function. The result also agrees that the UtilMax 

outperforms other games in utility maximization. 

Since the ProfitMax is designed to maximize the net profit by trading off 

the social utility, the utility achieved in the ProfitMax is the lowest. Note 

that the social utility of the ProfitMax and the NonCoop decreased with an 

increase of 9'. It shows that more utility is traded for the net profit when 
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Figure 4.13: Net utility of each proxy. 
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the is large. 

We are also interested in the total reward received by the proxies and 

the cost in providing the cache. As the UtilMax performs better in utility 

maximizing, we focus this specific game. The total reward granted to the 

proxies was 182.1，and among those, 20.4 (around 11% of the reward) was 

used to maintain the cache. The remaining of the reward (about 89% of 

the total) was owned by the proxies. When we consider the return on in-

vestment, which is defined as the ratio between the utility and the cost, i.e. 

7.9, it can definitely encourage the proxies to participate. In contrast, the 

return on investment of the ProfitMax was 0.28. Thus, under the UtilMax, 

the proxies have a strong incentive to contribute cache in the system. 

Discussion 

In fact, the ProfitMax and the UtilMax have different design objective: the 

former one optimizes the net profit, while the later one optimizes the social 

utility. The key discussion here is which approach, the ProfitMax or the 

UtilMax, is better. There is no strict answer to this question. It depends 

on the objective of implementing the incentive mechanism, and whether to 

benefit the NSP or the proxies. There is a trade-off between the net profit 

and the social utility. 

Indeed, one can compare the performance of the ProfitMax and the 

UtilMax by looking at the sum of the social utility and the net profit as 

shown in Fig. 4.16. It can be seen that the UtilMax is not performing 

well as compared to the ProfitMax and the NonCoop. The reason is that 

under marginal-rewarded pricing, the price of resource drops quickly as the 

quantity increases. As a consequence, the UtilMax tries to keep a high 

price by avoiding large quantity of cache supplied to the system. Thus, only 

a small revenue is obtained, and the achievable sum of the social utility 

and the net profit becomes less. We also examined the UtilMax using the 
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total-rewarded pricing, in which the net profit of the NSP is always zero. 

The UtilMax(Total) showed in Fig. 4.16 demonstrates that by using total-

rewarded pricing, it achieves the best performance. In fact, we can show that 

the social utility obtained in UtilMax(Total) is equivalent to the maximal 

achievable sum of the social utility and the net profit. Consider the objective 

function of maximizing the sum of the social utility and the net profit, that 

is 
• H 1 r H 

max E � + y^Ui(Si) = max R{q)-Y'Ciisi) . (4.60) 
0<Si<Si [ ^ J 0<Si<Si [ ^ 

Since P{q) = R{q)/q in the total-rewarded pricing, the optimization 

objective of the UtilMax(Total) is equivalent to the above objective. Hence, 

it is the maximal achievable social utility. 

In general, the ProfitMax is suitable for the system that contains a 

centralized authority, like the NSP, and the UtilMax is good for a non-



CHAPTER 4. REVENUE-REWARDING MECHANISM 85 

Cache supplied (Cost per unit cache) 

NonCoop ProfitMax UtilMax 

Proxy 1 13 (1.68) 0 (-) 0 (-) 

Proxy 2 21 (0.68) 26 (0.74) 20 (0.67) 

Proxy 3 0 (-) 0 (-) 0 (-) 

Proxy 4 13 (0.88) 12 (0.85) 9 (0.79) 

Proxy 5 20 (1.11) 25 (1.09) 0 (-) 

Overall system 67 (1.04) 63 (0.9) 29 (0.71) 

Table 4.3: Cost per unit cache supplied by the proxies in different game. 

coordinated P2P-like application. By applying the revenue-rewarding scheme, 

the network entities are stimulated to participate in the system. 

4.3.3 Cost effectiveness 

It can be seen in Fig. 4.10 that not all the proxies playing in the resource 

allocation game participate in the system at the steady state. In fact, all . 

the proxies in the network used the same strategy to decide the amount of 

cache to contribute, excepted that they had heterogenous cost function. In 

this subsection, we study how the cost function influences the behavior of 

the proxies. We show that only the cost-effective proxies contribute cache 

to the system. 

Table 4.3 lists the quantity of cache supplied in each game. The quantity 

of cache admitted in each game was different. The NonCoop admitted the 

largest amount of cache, while the UtilMax admitted the smallest. It is due 

to the underlying game rule, which induces the "best" quantity (or price) of 

cache for the system. Clearly, the overall cost for a unit cache in the UtilMax 

should be the lowest because it equips with a cost minimization protocol 

to achieve the lowest cost. In addition, the UtilMax tends to employ few 

proxies, which have low cost among the proxies, to participate. Hence, we 
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conclude that the UtilMax provides a cost-effective resource supply to the 

system. 

We further investigate the cost of maintaining the cache for each in-

dividual proxy, which is listed in Table 4.3. Actually, the three resource 

allocation games implicitly choose the best proxies to cooperate. We ob-

served that Proxy 3 was rejected in all the games because its cost was the 

most expensive. Proxy 2 had a low cost function, thus, it contributed cache 

in all the games. Proxy 4 only contributed small amount of cache as the 

cost for large quantity was high. In contrast, Proxy 5 supplied large quantity 

due to the lowest cost. These results illustrated a desirable property of the 

system: the game automatically admits the best set of proxy to contribute, 

depending on the heterogenous cost function adopted by the proxies. 

In summary, the evaluation results demonstrated that the proposed 

revenue-rewarding scheme applied in incentive-based COPACC system pro-

vides a strong incentive for both the NSP and the proxies to participate in 

the system, and the gaming approach yields a cost-effective resource alloca-

tion from the proxies. 

• End of chapter. 



Chapter 5 

Conclusion 

In this thesis, we have introduced a cooperative and incentive-based proxy-

and-client caching system for on-demand media streaming. Two major 

components: Cooperative proxy-and-client caching and Revenue-rewarding 

mechanism, have been discussed. 

Ill summary, COPACC is a novel cooperative proxy-and-client caching 

system that combines the best features of proxy caching and peer-to-peer 

communications. It leverages the client-side caching to amplify the aggre-

gated cache space and relies on dedicated proxies to effectively coordinate 

the communications. We have developed an efficient cache allocation al-

gorithm for distributing video segments among the proxies and clients. A 

comprehensive suite of protocols are presented to facilitate the interactions 

among different network entities. It also enables smart and cost-effective 

cache indexing, searching, verifying operations in this hybrid caching sys-

tem. However, COPACC does not address the incentive issue. That is, 

what motivates each proxy to provide cache space and how much cache 

space should be allocated. We have extended COPACC by suggesting a 

revenue-rewarding scheme to encourage proxy cooperation. In this scheme, 

credits are granted to the proxies for their contribution. Game theoretic 

model is used to analyze the interactions between proxies under different 

87 
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resource allocation games. It is shown that no system-wide property is 

achieved in a non-cooperative environment. We have further proposed two 

cooperative resource allocation games that lead to two different optimal 

situations: Maximized net profit and Maximized social welfare. Both cen-

tralized and distributed algorithms are presented for the games to achieve 

different optimal situation. 

We have evaluated the performance of the cooperative and incentive-

based proxy-and-client caching system under various network and end-system 

configurations. Our key findings can be summarized as follows: 

1. With an amplified total cache spaces, cooperative proxy-and-client 

caching significantly reduces the transmission cost for on-demand me-

dia streaming. 

2. With the assistance from dedicated proxies, it is much more robust 

than a pure peer-to-peer system, even though the proxies may con-

tribute only a small fraction of the total cache space. 

3. COPACC scales well in larger network, and the cost generally reduces 

when more proxies and clients cooperate with each other. 

4. The monetary incentive scheme, revenue-rewarding, strongly moti-

vates the network entities to cooperate in the system. 

5. The non-cooperative environment is undesirable, while the two coop-

erative games can achieve different system-wide objectives: Net profit 

and Social utility. 

6. The two cooperative games yield a cost-effective resource allocation 

from the proxies. 

In the future, we can perform more experiments to compare the perfor-

mance of COPACC to other P2P streaming systems, such as CoolStreaming 
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54] and Loopback [34]. The reliability of COPACC can also be enhanced 

by considering replication of cache among proxies. Note the incentive mech-

anism is only applied to the proxies in the system, we can further extend 

the mechanism to encourage the clients to participate. 

• End of chapter. 



Appendix A 

NP-Hardness of the CAP 
problem 

In this appendix, we prove the NP-hardness of the general optimal cache 

allocation problem (CAP). We show this by transforming the optimal re-

source allocation problem (RAP) to CAP in polynomial time. It is known 

that RAP is NP-hard and its decision version is NP-complete [31]. 

In RAP, there are M kinds of resources to be allocated to N activities, 

indexed from 1 through N, and the total available quantity of resource 

[1... M]) is Nj. The objective is to minimize the cost in allocating the 

resources to activities, which can be formulated as: 

^•^•JLiLiXij < NjJ = l ’ 2 ’ . " ’ m ’ 

Xij e 

where Xij is the quantity of resource j allocated to activity i, dij is the 

effectiveness for each unit of resource j allocated to activity i�and fi{) is a 

convex and non-increasing cost function for activity i with given allocations. 

Note that the resources and activities in RAP are analogous to the cache 
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spaces and videos in CAP, respectively. Given an instance of RAP, we can 

create a CAP problem with the following settings: Sj = Nj 二 0, and 

V) 二 ccij, i e [l...N]J e [1 … G [l...Kj]. Since C7ost({p�}’ {g)’jJ) can 

be arbitrary function, we set it as We further set V^ to 

E容liV力 such that the constraint Z f = i P � + < in CAP 

is always satisfied. Given this transformation, it is obvious that an optimal 

solution to CAP, p), leads to an optimal solution to RAP: Xij = p^i e 

[l...iV], j G [1..H]. Since transformation is in polynomial time, it follows 

that problem CAP is NP-hard. 

• 



Appendix B 

Optimality of the Greedy 
Algorithm 

In this appendix, we prove the optimality of the proposed greedy algorithm 

for PA with f i = f i = … = f \ j . 

We define the matrix of the unit transmission costs after exe-

cuting step 1 through 2 as: 

( W P { 1 , 2 ) WP(l,H)� 

iyP(2,l) ^^(2,2) WP{2,H) 
• • . . • 

！ ！ ‘‘ 

； ‘： wp{ij) •: 

• • . • 
« • • • 

^ WP{N, 1) WP{N,2) WP(N,H) ^ 

where WP{iJ) = + 切 S i n c e f j = f], for all j + /’ 

we can drop subscript j of fj and simplify the calculation of as 

p . + w�广P Xj'. We have the following two observations on 

wp{ijy. 

Observation 1. Given e [1... iV], WP{iJ)/WP{iJ) is a constant 
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for any j 6 [1... iJ]. 

Proof. WP{iJ)/WP{lj) 

=f. EjLi K / + f ] AW/ • EiLi H 7 + ^ r ] V 
=P/f 

= WP(iJ)/WP{lj). 

Observation 2. Given j j 6 [1...丑]’ WP{iJ)/WP{iJ) is a constant 

for any i 6 [1... iV] • 

Proof. WP{iJ)/WP{iJ) 

=f. EjLi +̂ ri V / 产 . + ^ r ] V 
=EjU + V/EjLi + 切r1 V 
= WP{iJ)/WP(lj). 

Note that the proxies are sorted in ascending order of cost and 

the videos are sorted in descending order of cost 1) in the greedy 

algorithm, that is, WP{i,j) < WP(iJ') for j < j' and WP(iJ) > WP{i',j) 

for i < i'. We then have another two observations: 

Observation 3. j) - j - j) <Wp{i- I j) -WP(i-1 j - j) 

for z G [1... (i - 1)] and j e [I . . . ( j - 1)]. 

Proof. From observation 1’ we have WP{iJ)/WP{i-iJ) = WP{iJ-j)/WP{i-

2, j — j) = a, where a is a constant. This is equivalent to WP{i,j)= 

a . WP{i - ij) and WP{i,j - 3) = a • WP{i - I j 一 j). Here, 0 < a < 1 

because W^iiJ) < WP{i - i j ) for z > 0. It follows that 

二 a . WP(i - l j ) - a - WP{i - i j - j) 

Observation 4. WP{iJ+j) -WP{iJ) > + 

for i e [I... {N-i)] and J e [I... {H- j)]. 

Proof. Prom observation 1’ we have WP{i + iJ)/WP{iJ) = + i, j + 

j)/WP{i, j + j ) = b, where 6 is a constant. This is equivalent to WP(i+i, j)= 
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b • WP{iJ) and WP(i -\-iJ+j) = b- WP{i,j + j). Here, 0 < 6 < 1 because 

WP{i + I j ) < WP{iJ) for z > 0. It follows that 

WPiiJ+j)-WP{iJ) 

The above two observations imply that swapping one unit data of video 

i in proxy j with that of video i' {i' E [1... (i - 1)]) in proxy j' ( / e 

[1... ( j 一 1)]) yields the same or higher total cost, and, similarly, swapping 

one unit data of video i in proxy j with that of video i丨{i' € [(i + 1). . . N]) in 

proxy f (f e [{j + 1)...H]) yields the same or higher cost. As the prefixes 

are fully packed to the proxies and there is no space left, the solution given 

by the greedy algorithm is optimal. 
• 
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