
A Cooperative and

Incentive-Based Proxy-and-Client

Caching System for On-Demand

Media Streaming

IP Tak Shun

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

©The Chinese University of Hong Kong

August 2005

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or whole of the materials in the thesis

in a proposed publication must seek copyright release from the Dean of the

Graduate School.

NSSH'brary systemxw

Abstract

Proxy caching is a key technique to reduce transmission cost for on-demand

multimedia streaming. The effectiveness of current caching schemes, how-

ever, is limited by the insufficient storage space and weak cooperations

among proxies and their clients, particularly considering the high bandwidth

demands from media objects.

In this thesis, we propose COPACC, a cooperative proxy-and-client

caching system that addresses the above deficiencies. This innovative ap-

proach combines the advantages of both proxy caching and peer-to-peer

client communications. It leverages the client-side caching to amplify the

aggregated cache space and rely on dedicated proxies to effectively coordi-

nate the communications. We propose a comprehensive suite of distributed

protocols to facilitate the interactions among different network entities in

COPACC. It also realizes a smart and cost-effective cache indexing, search-

ing, and verifying scheme. Furthermore, we develop an efficient cache al-

location algorithm for distributing video segments among the proxies and

clients. The algorithm not only minimizes the aggregated transmission cost

of the whole system, but also accommodates heterogeneous computation

and storage constraints of proxies and clients.

We also address the incentive issue of COPACC. That is, what motivates

each proxy to provide cache space to the system. To encourage proxies to

participate, we suggest a revenue-rewarding scheme to credit the cooperative

proxies according to the resources they contribute. Game-theoretic model is

i

used to analyze the interactions among proxies under the revenue-rewarding

scheme. Since no system-wide property is achieved in the non-cooperative

environment, we suggest two cooperative game settings that lead to socially

optimal situations, where the benefits of the network entities are maximized.

We have extensively evaluated the performance of the cooperative and

incentive-based proxy-and-client caching system under various network and

end-system configurations. The results demonstrate that it achieves remark-

ably lower transmission cost as compared to pure proxy-based caching with

limited storage space. On the other hand, it is much more robust than a

pure peer-to-peer communication system in the presence of node failures.

Meanwhile, its computation and control overheads are both kept in low lev-

els. Furthermore, with the incentive mechanism incorporated, the proxies

have a strong incentive to collaborate in COPACC, and the optimal net

profit and social welfare are achieved in the cooperative resource allocation

games.

ii

摘要

代理緩存（Proxy C a c h i n g)技術是降低隨選流式媒體傳输的一種關

鍵技術。但是，現今的緩存技術在應用於頻寬要求較高的流式媒

體時，會遇到存儲空間不足和代理間缺乏合作的問題。

在本篇論文裡，我們提出一個名叫C O P A C C的系統，它利用代理

伺服器和終端用戶的合作緩存技術來解決上述缺點。這種革新的

方法結合了代理緩存和對等用戶通訊的優勢。它透過集合對等用

戶所獻出的儲存空間來放大總計緩存空間，並且倚賴專用代理有

效地協調網絡實體之間的通訊。我們提議一套分散式通訊協議來

協調網絡中不同實體的交流。它實現了一個精明且具成本效益的

緩存索引、搜尋和認證功能。再者，我們開發了一套有效率的運

算方法把視像封包分發到代理和用戶的緩存上。該算法不僅使整

個系統的總計傳输減到最小，而且適用於不同代理和用戶的運算

和儲存上限。

我們亦注意到COPACC中的誘因問題 (Incent ive丨ssue)�換句話說’

在代理提供緩存空間給系統的背後究竟有什麼動機。為使代理參

與COPACC，我們建議一個收入回馈(Revenue—Rewarding)計畫，這個

計畫會根據代理所獻出的資源多少來決定回馈。我們利用赛局理

論模型（Game-Theoretic M o d e l)來分析各代理對收入回馈計畫的相

互作用。因這系統在非合作的情况下無法取得任何良好的特性，

所以我們建議兩個合作方案來使系統達到最理想的狀態。在那個

狀態下’所有網絡實體的利益是最大的。

我們在各種不同的網絡和終端系統配置下測試 C O P A C C 的性能。

結果證明它比一般代理緩存系統所需要的傳输費用較低。另一方

面’它在用戶故障的情況下比一般對等緩存系統更穩定。同時，

它的運算時間和額外開支都在於較低的水平。此外，在誘因機制

(Incentive Mechanism)的帶動下’代理十分樂意參加COPACC，從而令

整個系統獲得最佳的利湖和大眾利益。

iii

Acknowledgement

I would like to thank my supervisors Prof. John C.S. Lui and Prof. JiangChuan

Liu for their invaluable advices and guidance during my research study. I

would also like to thank Prof. Michael R. Lyu for his suggestions in my

research.

I am grateful to my friends, CJ, Hang, Hackker, Ken, Leo and Szeto, for

their kind discussions and helps during my study. I also appreciate the help

and fun all my friends gave me over these two years.

Finally, I would like to express my gratitude to my family and SzeKee

for their support and love throughout my life.

iv

This work is dedicated to my parents.

V

Contents

Abstract i

Acknowledgement iv

1 Introduction 1

1.1 Background 1

1.1.1 Media Streaming 1

1.1.2 Incentive Mechanism 2

1.2 Cooperative and Incentive-based Proxy-and-Client Caching . 4

1.2.1 Cooperative Proxy-and-Client Caching 4

1.2.2 Revenue-Rewarding Mechanism 5

1.3 Thesis Contribution 6

1.4 Thesis Organization 7

2 Related Work 9

2.1 Media Streaming 9

2.2 Incentive Mechanism 11

2.3 Resource Pricing 14

3 Cooperative Proxy-and-Client Caching 16

3.1 Overview of the COPACC System 16

3.2 Optimal Cache Allocation (CAP) 21

3.2.1 Single Proxy with Client Caching 21

vi

3.2.2 Multiple Proxies with Client Caching 24

3.2.3 Cost Function with Suffix Multicast 26

3.3 Cooperative Proxy-Client Caching Protocol 28

3.3.1 Cache Allocation and Organization 29

3.3.2 Cache Lookup and Retrieval 30

3.3.3 Client Access and Integrity Verification 30

3.4 Performance Evaluation 33

3.4.1 Effectiveness of Cooperative Proxy and Client Caching 34

3.4.2 Robustness 37

3.4.3 Scalability and Control Overhead 38

3.4.4 Sensitivity to Network Topologies 40

4 Revenue-Rewarding Mechanism 43

4.1 System Model 44

4.1.1 System Overview 44

4.1.2 System Formulation 47

4.2 Resource Allocation Game 50

4.2.1 Non-Cooperative Game 50

4.2.2 Profit Maximizing Game 52

4.2.3 Utility Maximizing Game 61

4.3 Performance Evaluation 74

4.3.1 Convergence 76

4.3.2 Participation Incentive 77

4.3.3 Cost effectiveness 85

5 Conclusion 87

A NP-Hardness of the CAP problem 90

B Optimality of the Greedy Algorithm 92

Bibliography 95

vii

List of Figures

3.1 The cooperative proxy-and-client caching architecture. . . . 17

3.2 Illustration of different portions of a video stream. The prefix

is to be cached by proxies, while the prefix-of-suffix by clients. 17

3.3 A logical view of multi-proxy with client caching 23

3.4 Greedy prefix allocation 28

3.5 Cache Lookup and Retrieval 31

3.6 An illustration of the cache lookup and retrieve operations. . 32

3.7 Transmission cost as a function of the total proxy-client cache

space. : = 1 : 1 34

3.8 Transmission cost at different paths with suffix mulitcast. . . 35

3.9 Transmission cost versus the fraction of the proxy cache space
in the total cache space, r = Sp/{Sp + x 100% 36

3.10 Transmission cost versus client failure probability 37

3.11 Transmission cost with different numbers of proxies and clients. 39

3.12 Control overhead with different number of proxies and stream-

ing rates 40

3.13 Transmission cost as a function of the number of proxies under

real and synthetic network topologies 41

4.1 The architecture of the cooperative proxy caching system. . . 45

4.2 Profit Maximizing Algorithm for the NSP in the Profit Max-

imizing Game 58

viii

4.3 A sample plot of total cache space q versus price p 59

4.4 A sample plot of net profit Ep{p) versus price p 60

4.5 Mechanism of the cost minimization protocol 68

4.6 Cost Maximization Protocol for the proxy coordinator 70

4.7 A sample plot of minimum cost versus cache quantity q. . . . 72

4.8 A sample plot of social utility versus cache quantity q 72

4.9 Cost and revenue functions being used in the evaluation. . . . 75

4.10 Quantity of cache supplied by each proxy 78

4.11 Net profit in each resource allocation game 79

4.12 Net profit of the NSP in the system with 9' varied from 0.01

to 0.08 79

4.13 Net utility of each proxy 81

4.14 Social utility in each resource allocation game 82

4.15 Social utility in the system with 6' varied from 0.01 to 0.08. . 82

4.16 Sum of the social utility and the net profit in each resource

allocation game with 6' varied from 0.01 to 0.08 84

ix

List of Tables

3.1 Parameters of the COPACC system 20

4.1 A summary of the notations 47

4.2 Parameters used in the resource allocation game 76

4.3 Cost per unit cache supplied by the proxies in different game. 85

X

Chapter 1

Introduction

Today's Internet has been increasingly used for carrying multimedia traf-

fic, and on-demand streaming for clients of asynchronous playback requests

is amongst the most popular networked media services. Given its broad

spectrum of applications, like NetTV and distance learning, it has attracted

much attention with many practical deployments in recent years [50]. The

limited server capacity and the unpredictable Internet environment, how-

ever, make efficient and scalable on-demand media streaming remain a chal-

lenging task.

1.1 Background

1.1.1 Media Streaming

To reduce server/network loads, an effective means is to cache frequently-

used data at proxies close to clients [35, 47]. Streaming media, particu-

larly those with asynchronous demands, could also benefit with a significant

performance improvement from proxy caching given their static nature in

content and highly localized access interests. However, media objects have

high data rates and long playback durations, which combined yield a huge

data volume. For illustration, a one-hour standard MPEG-1 video has a vol-

1

CHAPTER 1. INTRODUCTION 2

lime of about 675 MB; several such large streams will quickly exhaust the

cache space of a standalone proxy. As such, it is necessary to design partial

caching algorithms or group proxies to enlarge cache space [35, 12, 42, 51].

There have been extensive studies toward these directions, but the storage

space of existing proxies are still far from satisfactory for media objects, and

thus remains a bottleneck of the whole system.

Another approach is to generalize the proxy functionalities into every

client [14，26]. Such a peer-to-peer communication paradigm allows econom-

ical clients to contribute their local storage spaces for streaming. Specifically,

the video data originally provided by a server are spread among clients of

asynchronous demands, and each client can store the full or partial versions

of the video stream in its local cache. Then, one or more clients can col-

lectively supply cached data to other clients, thus amplifying the system

capacity with increasing suppliers over time. However, in contrast to the

reliable and dedicated servers or proxies, the loosely-coupled autonomous

end-hosts can easily crash or leave without notice. Given that a media play-

back lasts a long time and consumes huge resources, a pure peer-to-peer

system can be highly vulnerable in the Internet environment. As there are

no authoritative parties, it is also difficult to identify and penalize malicious

clients that intentionally inject forged data.

A hybrid caching system that combines the advantages of both proxy

caching and peer-to-peer client communication can be used to address the

above deficiencies. With the cooperation between the proxies and the clients

in the network, the total network traffic of the media streaming can be

significantly reduced.

1.1.2 Incentive Mechanism

The cooperative networks, especially P2P networks, have caught much at-

tention in recent years. In such systems, network entities collaborate with

CHAPTER 1. INTRODUCTION 3

each others by sharing their own resource, such as storage, bandwidth or

computational power, to form a resource pool, and this aggregated resource

pool helps to improve the system performance. Many real applications have

been deployed, such as distributed file sharing [32] [7], collaborative web

caching [49], P2P streaming [54], distributed computing [1], etc. It is gener-

ally agreed that the cooperative network performs significantly better than

the traditional server-client model in supporting large amount of users. In

short, it provides an inexpensive platform for application that requires scal-

ability, efficiency and robustness.

However, most cooperative systems assume that the peers (or network

entities) are "voluntary" to contribute. In fact, this assumption is not re-

alistic. The autonomous peers are selfish in nature, and without concrete

incentive, there is no motivation to contribute resources, by which they in-

cur service degradation or suffer from cost. A study in Gnutella file sharing

system [3] suggested that over 70% of users share little or no content. The

large-scale deployment of the cooperative systems are obstructed by the

free-riding problem, and motivating the peers to cooperate is critical to the

success of such systems.

To increase the involvement of network entities, participation incentive

mechanisms [36] have to be used to effectively encourage them to collabo-

rate in the network [41]. Different approaches have been proposed in the

literature. Better quality of service is given to the peers who contribute to

the network, while free-riders are discriminated against. However, effective

resource allocation that differentiates the contributors in a highly dynamic

network is complicated. Others suggested using the reputation based sys-

tem, where reputations of the participating peers are accumulated so as to

reflect their contribution. The major issue here is how to quantify the user's

contribution. Also, a secure and trusted reputation system is essential to

prevent fake reputation, but it is difficult to achieve without a centralized

CHAPTER 1. INTRODUCTION 4

authority. Nevertheless, whitewashing is possible for the malicious user by

pretending to be another user.

Another approach is to setup a contribution-rewarding mechanism to

credit the peers cooperating in the system. The reward may come from

the overall revenue of the cooperative network, by means of service pricing

or cost reduction. The simplest way to achieve this goal is to grant a fixed

credit to a peer whenever it participates. Such a scheme can be implemented

easily, but it is unfair to the peer who contribute more resource. We can

also reward the peers in proportional to the resources they contributed. This

scheme not only achieves proportional fairness, but also encourages peers to

supply sufficient amount of resource. By rewarding appropriately, sufficient

amount of resources are supplied by the peers, and the efficiency of the

overall system is improved.

1.2 Cooperative and Incentive-based Proxy-and-

Client Caching

In this thesis, we propose a cooperative and incentive-based proxy-and-client

caching system for on-demand media streaming. The system consists of

two components: Cooperative Proxy-and-Client Caching (COPACC) and

Revenue-Rewarding Mechanism.

1.2.1 Cooperative Proxy-and-Client Caching

We propose a novel cooperative proxy-and-client caching system called CO-

PACC. The innovative approach in COPACC combines the advantages of

both proxy caching and peer-to-peer client communications. We leverage the

client-side caching to amplify the aggregated cache space and rely on dedi-

cated proxies to effectively coordinate the communications. We develop an

efficient cache allocation algorithm that distributes video segments among

CHAPTER 1. INTRODUCTION 5

the proxies and clients. The algorithm not only minimizes the aggregated

transmission cost of the whole system, but also accommodates heteroge-

neous computation and storage constraints of proxies and clients. COPACC

also makes effective use of multicast delivery in local regions, which further

reduces the cost of the system.

COPACC also incorporates with a comprehensive suite of distributed

protocols to facilitate the interactions among different network entities.

Most operations in this protocol suite are executed by dedicated proxies.

As such, it is not only suitable for clients with limited computation power,

but also resilient to client failures. We also embed an efficient indexing and

searching algorithm for video contents cached across different proxies or

clients, as well as a signature verification mechanism, which can effectively

identify and block malicious clients.

The performance of COPACC is extensively evaluated under various

network and end-system configurations. The results demonstrate that it

achieves remarkably lower transmission cost as compared to proxy-based

caching with limited storage space. On the other hand, with the assistance

from dedicated proxies, it is much more robust than a pure peer-to-peer

system. Its transmission cost only slightly increases when a large portion of

clients fail, even though the clients contribute a significant fraction in the

total cache space. Moreover, it scales well to larger networks, and the cost

generally reduces when more proxies and clients cooperate with each other,

1.2.2 Revenue-Rewarding Mechanism

We also propose a revenue-rewarding scheme to address the incentive is-

sue. This incentive mechanism works complementary with COPACC in

stimulating participation from the proxies. In fact, a cost-profit analysis

has suggested that it is profitable to setup an incentive-based cooperative

system for media streaming [39].

CHAPTER 1. INTRODUCTION 6

Our scheme follows the contribution reward-based incentive approach to

reward the proxies by part of the transmission cost saved from COPACC. We

focus on how proxies' contributions are influenced by the revenue-rewarding

scheme. Game theoretic model is used to analyze the interaction between

proxies under different resource allocation games. We show that in the non-

cooperative environment, the proxies selfishly optimize its own utility. As

a result, the best total benefit received by the network nodes are not guar-

anteed. We further propose two cooperative resource allocation games that

lead to two different optimal situations. Both centralized and distributed

algorithms are presented for the games to achieve different optimal situation.

We examine the performance of the scheme in terms of profit maxi-

mization and utility maximization. By evaluating the net profit and the

social welfare received by the network entities, we demonstrate that the

proposed game settings motivate different entities in the network to cooper-

ate. In addition, two system-wide objectives: net profit and social welfare,

are achieved. Also, the resulted resource allocation is cost-effective as only

the proxies with low cost participate in the system.

1.3 Thesis Contribution

The major contributions of the thesis are in two folds. First, we propose

COPACC, a cooperative proxy-and-client caching system, to minimize the

network transmission cost for media streaming. Second, we address the in-

centive issue of the COPACC by suggesting a revenue-rewarding mechanism.

The contributions are summarized as follows:

Cooperative Proxy-and-Client Caching System:

• An efficient yet optimal cache allocation algorithm is proposed to dis-

tribute video segments among proxies and clients such that the aggre-

gated network transmission cost is minimized.

CHAPTER 1. INTRODUCTION 7

• A comprehensive suite of distributed protocols are presented to facil-

itate the interactions among different entities in the cooperative net-

work.

Revenue-Rewarding Mechanism:

• A revenue-rewarding scheme is proposed to address the incentive issue

in COPACC. It provides a strong incentive for the network entities to

contribute in the system.

• Game theoretic model is used to analyze the interactions among prox-

ies under the revenue-rewarding scheme. It shows that no system-wide

property is achieved in non-cooperative game.

• Two cooperative games are proposed to achieve different system-wide

objectives. It shows that net profit and social welfare are maximized,

and a cost-effective resource allocation is achieved in the cooperative

games.

1.4 Thesis Organization

This thesis is organized as follows:

• Chapter 1 is an introduction of this thesis. It gives an overview of the

background of this work. It also briefly describes the proposed cooper-

ative and incentive-based proxy-and-client caching system. Moreover,

it outlines the contribution and the organization of this thesis.

• Chapter 2 gives a literature review about Media streaming, Incentive

mechanism and Resource pricing.

• Chapter 3 presents an overview of the COPACC architecture. It de-

rives an efficient algorithm for cache allocation, and describes the co-

operative caching protocol. It also evaluates COPACC with different

performance metrics.

CHAPTER 1. INTRODUCTION 8

• Chapter 4 presents an incentive mechanism for COPACC. It gives an

overview of the system, and presents the mathematical formulation. It

describes the revenue-rewarding scheme applied in the three resource

allocation games: Non-cooperative game, Profit maximizing game and

Utility maximizing game. The performance of these games are also

evaluated.

• Finally, chapter 5 concludes the thesis.

• End of chapter.

Chapter 2

Related Work

In this chapter, we review the works that are related to our proposed coop-

erative and incentive-based proxy-and-client caching system. Three kinds

of work are presented here: Media streaming, Incentive mechanism and Re-

source pricing.

2.1 Media Streaming

Proxy Caching for Media Streaming

Proxy caching for media streaming has attracted much attention in the past

decade, and numerous algorithms have been proposed in the literature, e.g.,

run-length caching [13], prefix caching [42], and segment caching [12, 51, 38];

see a comprehensive survey in [35]. Considering the static nature of video

contents and their intensive I/O demands, many of the algorithms employ a

semi-static caching approach, where popular video portions are cached over

a relatively long time period, rather than dynamically saved or replaced

in response to individual client requests. COPACC also advocates semi-

static caching, and its cache allocation is closely related to the prefix-suffix

partition and stream segmentation algorithms [46]. However, these studies

generally focus on a single proxy case with no cooperation among proxies.

9

CHAPTER 2. RELATED WORK 10

It is well-recognized that proxies grouped together can achieve better

performance than independent standalone proxies [16，28]. An example

for media caching is MiddleMan [2], which operates a collection of proxies

as a scalable cache cluster; media objects are segmented into equal-sized

segments and stored across multiple proxies, where they can be replaced at

a granularity of a segment. There are also several local proxies responsible

to answer client requests by locating and relaying the segments. To achieve

better load balance and fault tolerance, a Silo data layout is suggested in [10],

which partitions a media object into segments of increasing sizes, stores more

copies for popular segments, and yet guarantees at least one copy stored for

each segment. Our work is motivated by these cooperative systems, and we

enhance them by combining proxy caching and client-side caching, which

greatly expands the aggregated cache storage with contributions from the

less expensive clients.

P2P Media Streaming

Peer-to-peer communications have recently become a popular alternative to

the traditional server-client paradigm. There are a series of pioneer works

on peer-to-peer streaming, e.g., PROMISE [26], ZIGZAG [45], and CoopNet

40], which have demonstrated the superior scalability of shifting all func-

tionalities to end-hosts. Yet, we are aware that, in contrast to the reliable

and dedicated servers or proxies, the loosely-coupled autonomous end-hosts

can easily crash, leave without notice, or even refuse to share its own data.

Given that a media playback lasts a long time and consumes huge resources,

we believe that dedicated proxies could still play an important role in build-

ing high-quality media streaming systems, as suggested in [11，55]. Different

from COPACC which focuses on caching, the key issue addressed in these

studies is the optimal construction of an overlay structure. For storage allo-

cation and management in a hybrid system, an optimal replication algorithm

CHAPTER 2. RELATED WORK 11

is proposed in [27], and a cooperative algorithm between a single proxy and

its clients in a local area network is presented in [20]. COPACC comple-

ments them by considering a more general system with multiple cooperative

proxies with client caching. A two-level hybrid architecture is exploited in

34], where an overlay network is used in the upper level to deliver videos

from a central server to proxies and a collaborative-client network using

loopback mechanism is applied in the lower level to transmit video data

from proxy to clients. In loopback, cache is dynamically updated, which

introduces an intensive disk I/O demand for the clients. Given that the

video access pattern changes slowly, semi-static caching is adequate and it

can be practically implemented. Moreover, Loopback concentrates on the

collaboration between proxy and its clients only, but we also emphasize the

importance of cooperative caching between proxies in reducing cost.

2.2 Incentive Mechanism

Recently a lot of efforts have been made to address the problems of free-

riding and tragedy of the commons [24] in the cooperative network. Various

incentive mechanisms have been proposed to encourage the selfish nodes to

cooperate by sharing their own resources with the community.

Differential Service-based Incentive

Differential service-based incentive has been well studied in the literature.

Under such scheme, the peers that contribute more resource receive better

quality of service, while the selfish peers contributing less are discriminated.

A game theoretic framework has been suggested in [8] to improve the sys-

tem's performance by eliminating non-cooperative users. In this model, the

requests from a user with large contribution has a higher probability to be

served. In [37], the authors have proposed a service differentiated schedul-

ing policy that allocates bandwidth according to the peer's contribution. It

CHAPTER 2. RELATED WORK 12

showed that the social welfare is maximized when all peers have the same

contribution value. The authors in [23] have suggested to differentiate the

service in peer selection process of P2P streaming. By using the rank-based

peer-selection mechanism, the contributors are rewarded with flexibility and

choice in peer selection, which results in high quality streaming. For the free-

riders, the options in peer selection are limited, and hence they receive low

quality streaming.

Reputation-based Incentive

Another well-known incentive model is Reputation-based incentive. The rep-

utation reflects a peer's overall contribution to the network. The peers with

high reputation value have extra privilege over the others. Reputation can

also be used to identify how reliable and trustful a peer is. In fact, this kind

of incentive has already been deployed in the KaZaA file sharing system [32j,

which is called the participation level. It is defined base on the megabytes

the user transferred and the integrity of the files served. Downloading prior-

ity is given to the users with high reputation score. In [21], the authors have

suggested two alternative computation mechanisms to compute dynamically

the reputation score of each peer in the network. The reputation score gives

a general idea of the peers' level of participation in the system. The peers

having high reputation is more likely to obtain better service. Based on the

reputation system, [52] have suggested how to monitor the users behavior in

a streaming network, and it tried to maintain a satisfactory level of service

for the collaborative peers. The authors in [17] have used the generalized

prisoner's dilemma to model the system, and they have proposed a family of

incentive techniques. A history of a peer's actions is mapped to a decision

whether to cooperate with or defect on that peer. The strategies, consisting

of: 1) A decision function; 2) Action history; 3) A server selection mecha-

nism; and 4) A stranger policy, were designed to maximize both individual

CHAPTER 2. RELATED WORK 13

and social benefit. Similar approach was adopted in [30]. They used it-

erated prisoner's dilemma to model the peers' interaction, and proposed a

reputation-based trust model with incentive mechanism incorporated.

Contribution Reward-based Incentive

Our work is different from the above schemes that we follow the Contribu-

tion reward-based incentive approach, where monetary reward is given to

the peers in proportional to their contribution. A micro-payment mecha-

nism have been proposed in [19] to reward users for upload. Game theoretic

model was used to analyze the equilibrium of user's strategy under several

different payment schemes. The results demonstrated that the users are

encouraged not only to upload files, but also to share new files to the P2P

system. In [44], a credit-based trading mechanism have been presented for

P2P file sharing. In the model, peers ,who exchange pieces of a file, use

a pairwise currency to reconcile trading differences with each other. As a

result, the peers who set high upload rates receive high download rates in

return. The authors also proposed a trading strategy that is good for both

the network as a whole and the peers employing it. The monetary scheme

provides a clean economic model for the incentive mechanism. However,

it is argued to be impractical in P2P system, where a reliable accounting

infrastructure has to be established to track the transactions between every

peers. In contrast, it's application in our coordinated system with central-

ized authority is viable because the payment is made in a single direction

only, i.e. from the service provider to the proxies. We are aware of a similar

work in [48], which also considered revenue rewarding to the contributed

peers. They model the P2P system as a Cournot Oligopoly game and used

control-theoretic to maximize individual net gain. System performance re-

quirements, like storage utilization and bandwidth stress, were considered as

the global desirable properties, and they were incorporated in the dynamic

CHAPTER 2. RELATED WORK 14

payoff function of the proxies. Our work is different from it as we model the

system as a Stackelberg game, and we focus on maximizing the net profit

and social utility in the network.

2.3 Resource Pricing

Our work relies on pricing the resource in order to regulate users' contribu-

tion. The pricing aspects of P2P network have received little attention so

far. Previous research appears mainly focus on server-client model. Game-

theoretic and economic model were applied to predict the influence of the

price to the users' behavior. Some pricing mechanisms were suggested to

maximize the revenue and the social welfare in the network. A charge-

per-usage pricing model was studied in [6], where the users are charged for

their bandwidth usage. By analyzing the strategies of the users toward the

price, the optimal price is computed to maximize the revenue of the ser-

vice provider. It also showed that the pricing scheme provides an incentive

for the service provider to increase the network capacity. In [9], the au-

thors have proposed an adaptive pricing strategy that adjusts the price in

realtime manner, and the objective is again to maximize the revenue for

the service provider. Their work assumed prior knowledge about the user

arrival pattern, and thus it may not be appropriate for the P2P system

with highly dynamic nodes. On the other hand, [25] have proposed a fair

revenue-sharing policy, based on the weighted proportional fairness crite-

rion, to distribute profit between cooperative provider. The fair allocation

policy encourages collaboration among the providers, and hence produces

higher profit for all the providers. We also adopt the proportional fairness in

rewarding the revenue to the proxies. The authors in [22] described a pric-

ing strategy for carrying out lookups in P2P networks. Both the resource

provider and intermediate nodes, which assists in routing, are compensated

so as to cover their cost of providing service. Vickrey auction, where the

CHAPTER 2. RELATED WORK 15

highest bidder wins the auction by paying the second highest bid, is used

by the nodes to determine the price of the resource. The proposed protocol

ensures that the rewards received by the involved nodes are maximized. We

apply similar approach to reward the contributors in the cooperative proxy

caching system, but suggest different pricing strategy to achieve different

objective.

• End of chapter.

Chapter 3

Cooperative
Proxy-and-Client Caching

In this chapter, we present COPACC [29], a novel cooperative proxy-and-

client caching system. We first give an overview of the COPACC system, and

point out the key issues addressed in the COPACC architecture. Then, we

present an efficient cache allocation algorithm as well as a comprehensive

suite of cooperative caching protocols. Lastly, we evaluate the COPACC

system with different performance metrics.

3.1 Overview of the COPACC System

Fig. 3.1 depicts a generic architecture of COPACC. A cluster of proxies

are logically connected through direct or indirect peer links to form a proxy-

overlay, and each of them serves as the home proxy for a set of local clients.

We assume that proxies and their clients are closely located with relatively

low communication costs, e.g., they could be in the same ISP domain or

in the same metropolitan area. A server storing the repository of videos,

however, is far away from them, and the remote communications incur much

higher costs.

16

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 17

‘ 邏 I
Client

I _ ！ Proxy overlâ X̂

m) r^iP
» » / 垂 / Z 4 M Server / ||P / Z IsliiF l\f=^

m^m Z Proxy J

\ l-'-jj^ P Ciieru

H M H I _ p —
Client j ^ g } Client g Client cache

Client

Figure 3.1: The cooperative proxy-and-client caching architecture.

Profix-of-suffix ^
tVix 小 Suffix _ _ ^

•ii_iiiiiii_^ '丨…-卜” I I I - ...-I ~ n
0 •

PlaybacK time

Figure 3.2: Illustration of different portions of a video stream. The prefix is

to be cached by proxies, while the prefix-of-suffix by clients.

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 18

The video data are cached across both proxies and clients. We assume

that the storage space of a proxy or a client is limited; the videos thus can

be partially cached only, and there is always a full copy at the server. Specif-

ically, as shown in Fig. 3.2，a video stream is partitioned into a prefix and

a suffix, and the beginning part of the later is also referred to as the prefix-

of-suffix. The proxies are responsible to cache the prefix of video, whereas

the clients cache the prefix-of-suffix of video. This setting not only reduces

the initial playback latency but also facilitates the multicast delivery with

dynamic clients, as will be illustrated later. When a client expects to play a

video, it first initiates a playback request to its home proxy, which intercepts

the request and computes a streaming schedule: when and where to fetch

which portion of the video. It then accordingly fetches the prefix, prefix-of-

suffix’ as well as the remaining part of suffix, and relays the incoming stream

to the client. If needed, a proxy may also perform a verification operation,

which detects forged video data through a simple signature mechanism.

Considering the video contents and their access patterns are relatively

stable in several hours or even days, we advocate semi-static caching in

COPACC. The cached contents are updated only when the system param-

eters have drastically changed, and a cache reconfiguration is then applied

through a progressive cache filling mechanism.

There are two key issues to be addressed in the COPACC architecture:

• How to partition each video and allocate the prefixes and prefix-of-

suffixes to different proxy and client caches? The objective is to min-

imize the total transmission cost of the COPACC system given the

video access patterns, the heterogeneous transmission costs, and the

storage constraints.

• How to manage, search, and retrieve the cached data in different p r o x - .

ies and clients? These operations should be highly efficient so as to

deploy COPACC in large-scale networks with intensive requests.

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 19

To address the above challenges, we present an efficient allocation al-

gorithm as well as a comprehensive suite of cache management and search

protocols in the next two sections. Before proceeding our discussions, we

first list the notations and parameters for COPACC, which are also summa-

rized in Table 3.1.

We assume that there are H cooperative proxies, indexed from 1 through

H, and proxy j serves as the home proxy for Kj local clients. The video

repository at the server includes N Constant-Bit-Rate (CBR) videos, and

video i has length U seconds and rate If bps, i = 1 , 2 , N . The total

average access rate at proxy j is Xj，and the probability for accessing video

i is f j (X) iLofj — 1). We assume such statistics are known a priori, or

obtained through online monitoring.

For cache allocation, there is a basic unit of u, also called cache grain,

which is a hardware or operating system constraint, e.g., the size of a disk

block. The cache space for proxy j is s^ units, and that for client k of proxy

j is Sjĵ units. The volume of video i is also represented as a number of

units, i.e., V^ = h^Uju units. In practice, the aggregated cache space is

less than the total volume of all the videos, i.e. + < where

SP = and S" = E j L i E f i i ^ f c are the total proxy cache size and

total client cache size.

The cost for transmitting one unit of data from the server to a proxy

is denoted by ujS—p, and, similarly, the unit cost from proxy j to proxy k

and that from proxy j to its own clients are represented by w�工p and ^^�"^,

respectively.

We use P^ to denote the prefix size (in units) of video i, and, the

prefix-of-suffix size. Both the prefix or prefix-of-suffix of a video are further

partitioned into several segments and cached at a proxy or client. For video

2, the size of a prefix segment cached in proxy j is represented by Pj, and

the size of a prefix-of-suffix segment cached at the client k of proxy j is

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 20

Parameter Definition

N Number of the videos.

V^ Volume of video i (in units).

H Number of proxies.

K Number of clients.

Kj Number of local client attached to proxy j .

s^ Cache space of proxy j (in units).

SP Total cache space of all proxies (in units),

s义& Cache space of client k of proxy j (in units).

Total cache space of all clients (in units).

\j Total access rate at proxy j .

fj Probability for accessing video i at proxy j.

秘s—p Transmission cost per unit data from server to proxy.

Transmission cost per unit data from proxy j to proxy k.

w厂P Transmission cost per unit data from proxy j to its client.

ŵ ^ Internal cost per unit data of a proxy

pi Prefix size of videos i (in units).

p) Size of the prefix segment of video i cached in proxy j.

Q^ Prefix-of-suffix size of videos i (in units).

Qj Size of the prefix-of-suffix segment of video i cached at
client k of proxy j.

Table 3.1: Parameters of the COPACC system.

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 21

The segment sizes are to be determined by the cache allocation algorithm,

and the exact positions of the segments are to be determined by the cache

organization protocol.

3.2 Optimal Cache Allocation (CAP)

The optimal cache allocation problem (CAP) in COPACC can be formulated

as follows,

CAP:minCost({p5},{g}^J), (3.1)

EjLiPj + E j L i E 么欢 fcSvS

where Cost[{py\, {q^ is the function of the total transmission cost (per

unit time) given allocation {pj} and {� ’& } ; the second and third constraints

follow the cache space limit of proxy j and that of client k of proxy j•，respec-

tively; the forth constraint applies because we do not consider replication in

this study. In this section, we start our discussion from a simple scenario of

no cooperation between proxies, where the cache allocation for each proxy

and its own clients can be examined independently. We derive an efficient

optimal solution for this scenario, which is then extended to accommodate

multiple cooperative proxies with client caching, i.e., a general COPACC

system.

3.2.1 Single Proxy with Client Caching

As said, we focus on a single proxy and its clients, both of which contribute

cache spaces, but there is no interactions with other proxies nor their clients.

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 22

Since the transmission costs between this proxy and all its clients are iden-

tical, we refer to this system as a homogeneous cost system. We drop the

proxy index (subscript j) from the relevant parameters for ease of exposition.

This homogeneous cost system has a nice property that the total trans-

mission cost depends only on how the video streams are partitioned into

prefixes and prefix-of-suffixes for caching. This is because all prefixes are

to be cached at the single proxy, and any allocation of the prefix-of-suffix

segments across the local clients yield the same cost due to the uniform cost

for proxy-client transmissions. As such, we can combine the cache of all the

clients to form an aggregated cache space S ,̂ and, to derive the minimum

transmission cost, we only need to find the optimal values of {P^} and {Q^}

subject to cache space constraints S^ and S .̂

We define an auxiliary cost function which is the cost for

delivering video i with prefix size P�and prefix-of-suffix size Note that

Cosi({pj}, {^jjt}) is now equal to Q)̂ in this simple scenario.

Moreover, minimizing it is equivalent to maximizing the cost saving against

the system with no caching, i.e. maximizing 乂0,0) -

We use a dynamic programming approach to solve the problem. Let B

be a three-dimensional matrix, where Bii.fP.t^) represents the maximum

cost saving for videos 1 through i { l < i < N) , when t̂ (0 < < S^) units

of proxy cache and t�(0 < t^ < S^) units of client cache are used. We have

0， z = 0, 0 < tP < 0 < <

= max{B{i -l,tP- v^, t^ - ？；̂) + 0) -

0 <vP <tP,0 ^v"" < If, yP + v''^ V\
\

The matrix can be filled in plane-order starting from B(0,0’ 0) to B{N, S^, S�)�

and the latter gives the maximum cost saving. The minimum total trans-

mission cost is therefore J] 吻 , 0) - B { N , 5"”，and the corresponding

prefix and prefix-of-suffix partitioning can be obtained through backtracking

the iterations.

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 23

"1
Video I

Repository m^ 3

Internet J

f ， F Intranet p n̂ p .

pr�xy i r y ^ t r y

Client l I c ^ j i i i ^ j c l c ^ J

Figure 3.3: A logical view of multi-proxy with client caching.

This dynamic programming algorithm has time complexity 0 � N • ， S �•

M), where M = maxi<i<Ar(l+ It is applicable with arbitrary cost

function C^(P\ which can be instantiated given a specific transmission

scheme. As an example, assume both a server-to-client and a client-to-client

transmissions are unicast-based and relayed by a proxy, can be

derived as A / � [i / Z ^ i户 + 切 — 切 i n (户 +

Q^)], where the first four terms in the second part respectively represent

the costs for retrieving prefix, prefix-of-suffix, the remaining suffix, and the

internal cost of the proxy, for each playback request. Note that A is the

total access rate of the proxy, and ŵ ^ is the internal cost per unit data

handled by the proxy. When there is no caching {P^ = Q̂ = 0), we have

0) = V'XP- {w'^P + w^^P).

In the end of this section, we further introduce multicast delivery to the

system and derive the corresponding cost function.

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 24

3.2.2 Multiple Proxies with Client Caching

We now consider the case of multiple cooperative proxies with client caching.

Fig. 3.3 offers a logical view of this general COPACC system, in which the

segment of prefix and prefix-of-suffix of a video are placed across different

proxies and their clients, respectively, and the transmission of a video stream

thus involve interactions among several proxies and clients. Moreover, the

unit transmission costs for the proxy-to-proxy and client-to-proxy links can

be heterogeneous. The cache allocation problem (CAP) thus becomes much

more complex than in the homogeneous cost system.

In fact, we formally prove that CAP is NP-hard in this general case

(see Appendix A). We thus resort to a practically efficient heuristics, which

consists of two phases: first, it partitions the prefix and prefix-of-suffix for

each video; second, given the partitions, it allocates the segments of prefixes

and prefix-of-suffixes to the proxies and clients.

1) Partitioning of prefix and prefix-of-suffix: In this phase, we cal-

culate the optimal values of P^ and Q̂ for each video, and, to achieve a

computationally efficient solution, we do not address their allocation across

the proxies and clients. Instead, we approximate the system by a sin-

gle proxy system with aggregated proxy cache space S^ and aggregated

client cache space S .̂ Other parameters are approximated as follows: video

access rate A = Z^jLiA?.’ access probability f = (1/A) JZ^iAj /] , unit

transmission cost w^'^p = (1 /幻 E^Li^^O切】and internal cost w奴=

that is, we consider the cost for proxy-to-proxy

transmissions as an internal cost, and assume is 0 if j = k.

Given the above transformation, an approximate solution can be directly-

obtained using the dynamic programming algorithm for the homogeneous

cost system,

2) Allocation to proxy and client caches: In this phase, we allocate

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 25

the prefix and prefix-of-suffix to the proxies and clients so as to meet the

storage constraints at each proxy and client. Since given and obtained

in the first phase, the allocation for prefixes to proxy caches is independent

from that for prefix-of-suffixes to client caches, and vice versa, we separate

the two allocation problems and solve them individually.

We first consider the allocation for prefixes. Let be the trans-

mission cost when the segment of size p) from the prefix of video i is stored

in proxy j . The problem for optimal prefix allocation is then formulated as

PA : min X； fU E j , P)) (3-2)

s.t. T.f=iP) = P\

For unicast delivery, WP{i,j,Pj) can be instantiated as

= [< 7 + 切 r i V /) ' . (3.3)

Let WP{i,j) = WjJ,̂ + Wj^^ V / j / ’ the optimization objective

for problem PA can be re-written as ‘ P)- Note

that, is independent of p》，and can be viewed as the transmission

cost when each unit prefix data of video i cached in proxy j. The above

formulation for PA thus can be relaxed as a linear programming problem

if p) is not restricted to integers. In practice, this is generally viable, for

a video stream that can be partitioned with fine-granularity, and the total

data cached in any proxy is less than its maximum capacity for any optimal

solution to the linear programming.

Similarly, we can formulate the optimal allocation problem for prefix-of-

suffixes to be cached at clients as follows,

S A : min X： f=i E f=i E � 4恢 c (i ’ j, k, gj,,) (3.4)

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 26

where j ’ fc, is the transmission cost when the segment of size q “
from the prefix-of-suffix of video i is stored in client k of proxy j. For unicast
delivery, Wc(i，j,/c’�. J is given by

+ + ^ n ^ f f h (3.5)

which can be re-written as k) . qfj if we define

j ’ k) = + � + 切 ; 1 Aj'/j,. (3.6)

Obviously, both the cost function and the problem S A itself have similar

structure as that of problem PA. The linear programming relaxation thus

also applies.

We will show later that such relaxation also holds for multicast delivery.

3.2.3 Cost Function with Suffix Multicast

So far we have focused on unicast delivery only, and presented the corre-

sponding cost functions. In this subsection, we further consider multicast

delivery, which is known as an efficient vehicle for streaming to clients with

requests close in time [46，4]. However, though IP multicast has been widely

adopted within ISP networks, its deployment over the global Internet re-

mains confined. We thus assume multicast delivery at the path from a proxy

to its local clients, but only unicast delivery from the server to a proxy or

between two proxies.

Even though multicast is only enabled at local paths, a proxy can still

serve a series of requests from its local clients for the same video using a suffix

batching technique. Specifically, assume the first request for video i arrives

at time 0, the home proxy will fetch and relay the prefix of the video to this

client through unicast, which takes P^u/h^ seconds; all the local requests

arrive during interval [0’ P^u/U] will then be batched with a single copy of

the suffix for video i being multicast to all the requested clients. In other

words, the batching window is of size P^u/lf.

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 27

We now derive the cost function for the case of single-proxy

with client caching. We assume that the video accesses follow a Poisson ar-

rival, that is, the average number of requests arrived in the batching window

for video i is 1 + {P^u/b^){Xf). The cost per request for multicasting the

suffix to batch of clients is thus — + vjCiQi + w^-^ îy^ - -

Q') + + {P'u/b'){Xf)]. Since a prefix is always delivered using

unicast, the cost function Q)̂ is then given by:

,切 yi _ pi) + + _pi_ gi) + ^iuQi
了 t 1 + { P ' u / b ') { x p) 十“"^) 上 .

(3.7)

Similarly, we can derive the cost function k) of problem SA. For

a batching windows contains 1 + [P� /b i) [Xj i f��requests from proxy we

need only a single retrieval for the suffix distributed at client caches and the

server. The cost function k) at proxy j is thus

- J

Regarding the cost function WP{i,j) of problem PA, it is exactly the

same as that for unicast case because a prefix is delivery through unicast

only. In addition, if / ! = = ••• = fn, we have the following observations

for WP(iJ):

• Given i�i' € [l.:.iV]’ WP{i,3)lWP[i'is a constant for any j e

[1….机

• Given j , j ' e [l . . . i f] , is a constant for any i 6

[I...N].

Since clients often have common interests, it is likely that the distribu-

tions of video access probabilities are similar at different proxies, that is,

f\ — fi. — ••• — fh holds. The above observation thus leads to an sim-

pler yet optimal greedy algorithm for problem PA, as shown in Fig. 3.4.

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 28

1: Sort proxies in ascending order of cost WP{l,j)；

Store the results in j-List;
2： Sort videos in descending order of cost 1);

Store the results in z-List;
3： j* first component of j-List;

i* first component of z-List;
4: Cache as many units as possible for the prefix of video i* to proxy

r；

5: If proxy j* has cache space left, then i* — next component of z-List;
6: If prefix of video i* has not been fully cached, then j* — next com-

ponent of j-List;
7: Repeat steps 4 to 6 until all prefixes are allocated.

Figure 3.4: Greedy prefix allocation

Intuitively, this algorithm always cache the most expensive prefix into the

cheapest proxy, so as to minimize the total transmission cost. Its complex-

ity is 0{NlogN), which is generally lower than directly solving the linear

programming problems (even if the simplex method [15] is used). A formal

proof of the optimality of this greedy algorithm can be found in Appendix

B.

3.3 Cooperative Proxy-Client Caching Protocol

As shown in Fig. 3.1, COPACC operates as a two-level overlay, where the

first level consists of all the proxies, and the second level consists of each

proxy and its own clients. The interactions among different entities in this

two-level overlay are specified by a cooperative proxy-client caching proto-

col, which consists of three subprotocols: cache allocation and organization,

cache lookup and retrieval, and client access and integrity verification. We

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 29

now detail the operations, and address the practical issues toward realizing
the COPACC system.

3.3.1 Cache Allocation and Organization

All the cache allocation and organization decisions are implemented in prox-

ies. The protocol starts by establishing connections among the proxies, and

an election algorithm is then executed to choose a coordinator. We currently

employ the distributed Bully algorithm [18], which opts for the proxy of the

highest computational power as the coordinator. The coordinator is respon-

sible for collecting parameters from all other proxies and then running the

optimal cache allocation algorithm described in the previous section.

Given = E^LiPj and Q �= E f = i E【么？丄̂：’ the interval of the

prefix in video stream i is simply [0, and that of prefix-of-suffix is

[P'-u/b^ Q^u/b]̂. The coordinator should then determine the position of each

segment to be allocated to proxies and clients in the prefix and prefix-of-

suffix, Since the total transmission cost depends only on the segment size,

COPACC employs a simple organization scheme: for prefix of video i, allo-

cate segment of interval E^^iiPmV^S in the video stream to

proxy j , and, for the prefix-of-suffix, allocate interval [E C i E ̂：！工̂^̂’打収/石̂

to the clients of proxy j�which further partitions this

interval into segments to be cached in its local clients according to their cache

spaces. Hence, the cache location of each interval of the stream can be eas-

ily calculated from { p � } and {《，)J. As the coordinator keeps a full copy

of the allocations, a lookup request for the cache locations of a particular

video stream can always be accomplished by contacting the coordinator. To

balance the load of the proxies, the coordinator also distributes the lookup

information uniformly to other proxies using a hash function /i(z); that is,

for video i, a copy of its cache location information are kept by proxy h(i) as

well. Since the proxies are persistent and reliable nodes, even the simplest

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 30

hashing like h{i) = (i mod H) I will work well in COPACC. In other

words, COPACC does not have to rely on a flooding-based search, nor a

complex and costly distributed hash table (DHT), as in many peer-to-peer

systems.

3.3.2 Cache Lookup and Retrieval

For each playback request for video i from a client, its home proxy discovers

and retrieves the video data on behalf of its clients. This is accomplished

by first issuing a cache lookup request 丑Zoofcup [幻，which, according to the

cache organization, can be directly submitted to proxy h[i). Upon receiving

the location information from proxy h(i), the initiated proxy then issues a

series of cache retrieval requests, Rretrieval [̂]) to corresponding proxies for

retrieving and then relaying the segments cached at proxies or their clients.

Finally, the un-cached part of the suffix is retrieved from the server.

When a proxy receives a retrieval request, it first checks whether the

requested data has been cached. If cached, it will stream the data to the re-

quested proxy; if not, it will retrieve the data from the server, stores a copy

in its own cache or its clients' cache, depending on whether the content be-

longs to a prefix or to a prefix-of-suffix, and then stream to the initiated

proxy. This leads to a passive filling scheme with no need for a synchro-

nized global replacement: the cache space are initially empty or represents

an outdated allocation scheme; it is then filled up gradually following the

requests from other proxies, which represents the updated allocation. An

illustration of the steps for cache lookup and retrieval can be found in Fig.

3.5 and Fig. 3.6.

3.3.3 Client Access and Integrity Verification

The client-side operations are relatively simple, which can be easily imple-

mented in economical but less powerful personal computers. In particular,

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 31

1： while Receive a request do
2: if Rretrievai � from local client then
3: Look up proxy j = h(i); get {pj} and { � }
4: Send Rretrievai [̂] to proxy j for prefix of interval

5: Send Rretrievall'i] to proxy j for prefix-of-suffix of interval

6： Retrieval remaining interval [严 + L” from server
7: Relay the stream to the request client
8: else if Rretrievai [̂] for prefix of interval [a, b] then
9: Prefix of interval [a, b] not exist in proxy cache —> retrieval from

server and store in proxy cache
10： Send prefix of interval [a, b] to requested proxy
11: else if Rretrievai H for prefix-of-suffix of interval [a, b] then
12： Prefix of interval [a, b] not exist in the cache of any local client

—>• retrieval from server and store in a local client's cache
13： Send prefix-of-suffix of interval [a, b] to requested proxy
14： else if Riookup[i\ from another proxy then
15: Reply {p]} and {gj}
16： end if
17： end while

Figure 3.5: Cache Lookup and Retrieval.

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 32

/ S i ^m \ ^^-^yiA：.
C l i e ^ ^ ^ Z server

Client ^ / \ Client 匕 圓 /
F=V Client / J

V B y
X^^Client^^

(1) client request to home proxy for video %\

(2) location lookup request to proxy B = h(i)]
(3) retrieve and relay prefix segments from proxy cache;
(4) retrieve and relay prefix-of-suffix segments from clients;

(5) retrieve and relay the remaining part of suffix from server.

Figure 3.6: An illustration of the cache lookup and retrieve operations.

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 33

a client is not involved in managing the overlay, nor determining cache al-

location and organization. It simply reports its available spaces to its home

proxy. The home proxy then determines and keeps the location for data

cached in its local clients, and then instructs the clients for caching the

data. For each cached segment in the client, the home proxy also save a

signature of the copy, such as its SHA-1 hash value. A client contributes its

cached data only upon a request from its home proxy. The home proxy will

then relay the data to the proxy initiated the request, and if needed, verify

the integrity of the data using the signature. As such, the system can easily

identifies and blocks malicious clients.

3.4 Performance Evaluation

In this section, we evaluate the performance of COPACC. We focus on

the transmission cost reduced by introducing cooperative caching among

proxies and clients. We are also interested in examining the robustness and

scalability of this system, as well as identifying the key influential factors.

Unless otherwise specified, the following default settings are used in our

evaluation. The video repository in the sever contains 100 CBR videos each

of 512 Kbps rate. Their lengths are uniformly distributed in between 100

and 140 minutes; the mean (120 minutes) is a typical length of a movie.

As suggested by existing studies on media access patterns, we assume the

access probabilities of the videos follow a Zipf distribution with skew factor

9 = 0.271 [4]. The cache grain (unit) is set to the size of 2-minute video data.

All the cache sizes discussed in this section are normalized by the total size

of the video repository, and the transmission costs are normalized by the

corresponding cost of a system with no cache. Therefore, our conclusions

are also applicable to systems with proportionally scaled parameters.

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 34

1 , , ^ ^
‘ Unicast w/6 proxy cooperation —e—

Multicast w/o proxy cooperation -h—
Unicast w/ proxy cooperation - B -

^ no ^ ^ ^ ^""^'^"-Mylticast w/ proxy cooperation

| � . 6 . \ -

10.4 k •

� � . 2 V ^ ^
义

0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

Total cache space

Figure 3.7: Transmission cost as a function of the total proxy-client cache

space. SP : =

3.4.1 Effectiveness of Cooperative Proxy and Client Caching

A primary design objective of COPACC is to reduce the transmission cost

for streaming to clients of asynchronous requests. Hence, in the first set of

experiments, we examine the cost reduction under various proxy and client

configurations.

We assume there are 4 proxies cooperated with each other, and the client

access rate at each proxy is 50 requests per minutes. The ratio between the

unit transmission costs of different paths is set to ŵ 一p : p : = 10 :

3 : 1 . Note that, this setting is indeed conservative as compared to that in

many previous studies [46]. In addition, we are interested in the normalized

transmission cost, which depends on this ratio, while not the exact value at

each path.

Fig. 3.7 plots the transmission cost as a function of the total cache space

in the system, where S^ : S^ = 1 : 1, i.e., the proxies and clients respectively

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 35

1

• Server-to-proxy cost

0.8 - • Proxy-to-proxy cost
0
c • Client-to-proxy cost
•w
1 0.6 -

c

？ 0.4 -

兰 I •
• 0.2 - I

o i L K I x iTl^ J U JT^ n^
0.02 0.1 0.2 0.4 0.6 0.8 1

Total cache space

Figure 3.8: Transmission cost at different paths with suffix mulitcast.

contribute half of the total cache size. Not surprisingly, increasing the total

space reduces transmission cost. With unicast, the cost decreases linearly,

while with suffix multicast, it decreases much faster. When the total cache

space is 0.2 (20% of the video repository), the cost with suffix multicast has

been reduced to 0.2; in other words, a 20% cache space leads to a 80% cost

reduction, which implies that batching the requests from local clients can

avoid a significant amount of remote transmissions (server-to-proxy). This

can also be verified by Fig. 3.8，which shows the cost due to server-to-proxy

transmissions quickly decreases with an increase of the cache space, and

becomes a minor part in the total transmission cost when the cache space

is over 0.4.

In Fig. 3.7, we also show the cost when a proxy cooperates with its

clients only, while not with other proxies. Clearly, the cost with cooperative

proxies are much lower, particularly when multicast is also enabled in local

paths. As such, in the following discussions, we focus on the results with

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 36

1 . . . ,

w 0.8 - Total cache space = 0.2
8 <s Total cache space = 0.4 —i—
c \ Total cache space = 0.6 -a—

I 0.6 • \

�� . 2 .

0 ‘ ‘ ‘ ‘
0 20 40 60 80 100

Fraction of proxy cache space r (%)

Figure 3.9: Transmission cost versus the fraction of the proxy cache space

in the total cache space, r = Sp/{SP + x 100%

cooperative proxies and multicast delivery only.

To further identify the respective contributions of proxy caching and

client caching, Fig. 3.9 depicts the transmission cost versus the fraction of

the proxy cache space in the total cache space. We can see that the transmis-

sion cost reduces when the proxies contribute a higher fraction in the total

cache space of the system. Intuitively, the more cache space contributed by-

proxies, the more direct transmissions among proxies for delivering a video

stream, which generally incur lower costs, because the video data fetched

from a client's cache have to be relayed by proxies as well. The best perfor-

mance is thus achieved when all cache space is in the proxies. Nonetheless,

it is often expensive to upgrade dedicated proxies and add more disk spaces.

On the other hand, from Fig. 3.9, we find that, even if the proxy caches

constitute a small part in the total cache space, a near optimal cost can still

be achieved. As an example, when the total cache space is 0.6 and only

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 37

1 1 . 1 1 ^^^^

% 0.8 • ^ ^ ^ ^ ^ ^
c r = 0%
•i r = 250/0 十
•尝 0.6 - r = 50% -I r=100% -X—-c

"S 0.4 -
.N
"to
E
V—
Z 0.2 I 1 ‘ “

„ B B B B

0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

Client failure probability

Figure 3.10: Transmission cost versus client failure probability.

20% is from proxies, i.e., the total proxy cache space is only 0.12, the cost is

already less than 0.13, which is quite close to the optimal value (around 0.1)

when the fraction of proxy cache is 100%. In other words, client caching well

complements proxy caching, making COPACC a very economical alternative

to pure proxy caching.

3.4.2 Robustness

As in peer-to-peer streaming systems, the robustness in the presence of client

failures is also a critical concern in COPACC. To evaluate this, we assume

that each client has certain failure probability when its own cache is ac-

cessed, but the video access rate from all clients remains constant. In Fig.

3.10，we show the transmission cost as a function of different client failure

probabilities. The total cache space of the system is 0.4，and we vary, r, the

fraction of the total proxy cache space in the total cache space from 0% to

100%, which represents two extreme cases: when r = 0%, COPACC degen-

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 38

erates to a pure peer-to-peer system, and, when r = 100%, it degenerates

to a pure proxy-based system.

We can see that, when there is no client failure, the costs for different

r are quite close if there are certain cache spaces existing in proxies, and

the pure proxy-based scheme is the best, which has been explained previ-

ously. More importantly, the cost of the pure proxy-based system remains

unchanged when increasing client failures, and that for 0% < r < 100%,

or a normal COPACC system, is also very stable. For illustration, even if

r is 25%, the transmission cost only slightly increases with an increase of

failure probability; when the failure probability is 1, the cost remains a low

as 0.22. This is because even if a suffix is to be fetched from the server in the

presence of client failures, the overhead, shared by a batch of clients, is not

excessive. To the contrary, the cost of the pure peer-to-peer system quickly

increases and reaches 1 (the cost of a zero-cache system), when all clients

fail. Such results demonstrate that the use of dedicated proxies with suffix

batching remarkably improves the robustness and resilience of COPACC in

the presence of client failures, even if the total proxy cache space is minor

as compared to the total client cache space.

3.4.3 Scalability and Control Overhead

We further explore the scalability of COPACC with larger number of proxies

and clients. Fig. 3.11 shows the total transmission costs for different num-

ber of proxies and clients. In this set of experiments, the cache space of each

proxy, sj, is set to 0.03’ and that of each client, sj^, is 0.005. The access

rate from each client is set to 0.01 per minute. In other words, while a client

joining the system contributes certain cache spaces, it also introduces more

requests. Yet, we observe that the transmission cost slightly decreases with

more clients, implying that client caching overcomes the increased loads.

Note that the normalized cache space of each client is only 0.005’ or equiv-

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 39

Normalized
transmission cost

20 1 per proxy

Figure 3.11: Transmission cost with different numbers of proxies and clients.

alently, the half size of one video, which can be easily accommodated by

personal computers. With an increase of the number of proxies, we have ob-

served a even more noticeable cost reduction, particularly when the number

is changed from 1 to 5. This again confirms that proxy cooperation is worth

considerations.

The control overhead is also an important concern toward realizing CO-

PACC. We define the overhead of COPACC as the traffic volume of control

messages (election, allocation, lookup, and retrieval, etc.) over the total

traffic volume, which obviously depends on the scale and streaming rate of

the system. In Fig. 3.12, we show the overhead with different number of

proxies and streaming rates. The number of clients per proxy is set to 50. It

can be seen that the overhead is reasonably low, which is less than 1% of the

total traffic even with 20 proxies. In addition, the overhead decreases with

higher streaming rates. This is mainly because the messages are quite short

as compared to video segments, and most messages are locally exchanged.

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 40

Control overhead

Rate 丨es

Figure 3.12: Control overhead with different number of proxies and stream-

ing rates.

3.4.4 Sensitivity to Network Topologies

So far, we focus on regular network topologies with identical transmission

costs between proxies. We have also investigated the performance of our

system under various synthetic and real network topologies. Fig 3.13 shows

the costs under three representative topologies: the 44-node SprintLink net-

work and the 100- and 200-node Transit-Stub (TS) networks. The Sprint-

Link network, representing the topology of a typical backbone network in

north America, is obtained from the Rocketfuel project at the University of

Washington [43]. The TS network is synthesized by the GT-ITM topology

generator [53], which attempts to reproduce the hierarchical structure of the

Internet by composing interconnected transit and stub domains. For both

topologies, we randomly place the given number of proxies to the network

nodes, and set the link cost inversely proportional to the bandwidth of each

link. A shortest-path routing is then used to determine the path between

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 41

1 . ,

W 0.8 • SprintLink network (44 nodes)
8 TS network (100 nodes) —f -
c TS network (200 nodes) - B -
g � ‘

•w
I 0.6
w c
5
•g 0.4
"(D
I

0 ‘ ‘
3 5 10 15

Number of proxies

Figure 3.13: Transmission cost as a function of the number of proxies under

real and synthetic network topologies.

proxies, and the cost of a path is the sum of costs across all the link of this

path. The server is connected to these proxies through a remote link: in

SprintLink network, it is assumed to be in Asia, and in TS network, we

manually set the unit transmission cost to 5 times the average cost between

proxies.

It can be seen that, under all the three network topologies, the trans-

mission costs of COPACC are pretty low and generally decrease with an

increase of the number of proxies. The performance under the TS topology

is slightly better, suggesting that COPACC works well with a hierarchical

network structure, where local transmission cost is much lower than remote

transmission cost. It is worth noting that SprintLink network also follows a

hierarchical structure, but many low-level nodes are abstracted into a single

nodes. Moreover, the proxies in our evaluation are randomly placed. We

thus expect a even better performance when the proxies are strategically

CHAPTER 3. COOPERATIVE PROXY-AND-CLIENT CACHING 42

placed and cooperated with each other in closer distances.

Overall, the evaluations demonstrate that COPACC achieves remarkably

lower transmission cost as compared to a pure proxy-based caching with

limited storage space. On the other hand, it is much more robust than a

pure peer-topeer communication system in the presence of node failures.

Meanwhile, its computation and control overheads are both kept in low

levels.

However, the merits of the COPACC rely on the active participation

from the proxies and the clients. Thus, an incentive mechanism is essential to

encourage the network entities to cooperate. Our Incentive-based COPACC

achieves this by incorporating with a revenue-rewarding scheme to credit

the proxies who contribute resource in the system.

• End of chapter.

Chapter 4

Revenue-Rewarding
Mechanism

In this chapter, we present an incentive mechanism for COPACC to encour-

age the proxies to participate. A revenue-rewarding scheme is proposed to

reward part of the aggregated transmission cost saved to the contributing

proxies. We start by giving an overview of the considered proxy caching

system derived from COPACC. We model the interaction between the prox-

ies under the revenue-rewarding scheme as a resource allocation game, and

analyze the cache space contributed in a non-cooperative environment. We

further suggest two cooperative games that achieve different system-wide

properties. The performance of the three resource allocation games have

been evaluated, and the results demonstrate that the revenue-rewarding

scheme provides a strong incentive for different entities to cooperate in the

network.

43

CHAPTER 4. REVENUE-REWARDING MECHANISM 44

4.1 System Model

4.1.1 System Overview

We consider a cooperative proxy caching system for multimedia streaming.

The architecture of this caching system is shown in Fig. 4.1. It consists of

a logical video server, a number of proxies and their clients, and a network

service provider (NSP). The NSP provides solely the network connection

service to the entities in the network. The client requests for videos, which

are streamed from the far-located server to the client through the interme-

diate proxies. The proxies are capable of caching the video stream passing

through them. Each video is divided into equal-sized segments for caching,

and whether a segment is being cached in the proxy is determined by the

cache allocation algorithm. In general, the frequently accessed video seg-

ments are cached in the local proxy to reduce network traffic. The proxies

are logically connected by direct or indirect links. They cooperate with each

others by sharing the cached segments among themselves, i.e. a proxy can

request for a video segment cached in other proxies.

This is the COPACC architecture proposed in Chapter 3，which is a

cooperative proxy-and-client caching system. The COPACC system aims

at reducing the aggregated transmission cost by allocating efficiently the

video segments to the cache provided by the proxies and clients. According

to the cache allocation algorithm, videos are partitioned into prefix (-P)̂,

prefix-of-suffix (Q” and the remaining suffix, and the proxies and clients

are responsible to cache the prefix and prefix-of-suffix respectively. Based

on the video transmission scheme used (either unicast or multicast), the op-

timal partitioning of the videos are computed to minimize the aggregated

transmission cost, i.e. the values of P^ and Q̂ are determined to minimize

Ya Cost(P\ The optimal prefix and prefix-of-suffix are further divided

into smaller segments in order to fit in multiple proxies and clients. Optimal

CHAPTER 4. REVENUE-REWARDING MECHANISM 45

y T / A
Spli P I

H I (
I l i l l J / Client

VideoServer / f ^

\ J ^ C l i e n t

„ 1 Q f f l i feg^P Network service
Client Client provided by NSP

Client

Figure 4.1: The architecture of the cooperative proxy caching system.

placement of these segments into the proxies and clients is also considered

to minimize the cost. The merit of the COPACC relies on the proxy co-

operation. However, COPACC did not address the incentive issues for the

proxy's participation. That is, what motivates each proxy to provide the

cache space and how much cache space should be allocated. We extend

COPACC by proposing a revenue-rewarding scheme to provide incentive for

the proxies to cooperate.

In order to increase profit, the NSP is keen to admit new clients. How-

ever, since the capacity of the network links is limited, the NSP fails to serve

a large number of video-streaming users having high bandwidth and short

delay requirements. Unfortunately, upgrading the network facility is not

desirable because the investment cost is usually high. A cost effective ap-

proach is to setup a COPACC system to reduce the aggregated transmission

cost in the network. As such, the same link capacity can accomplish more

CHAPTER 4. REVENUE-REWARDING MECHANISM 46

clients. Hence, the NSP has a strong incentive to encourage the proxies to

participate in the COPACC system.

In general, the more the cache, the better the performance of the system

is. From the NSP's prospective, it wants more cache supplied because in-

sufficient cache space results in a small cost reduction. However, resources

are not supplied for free. The proxy has to pay certain cost to maintain the

resources, although the cost is usually implicit. Therefore, the proxies par-

ticipated in the incentive-based COPACC system have to decide carefully

the amount of cache storage to be contributed. If they contribute too little

storage, the reward is small; if they contribute too much storage, the cost of

maintaining the cache is higher than the reward. It is assumed that the cost

follows the general rule of increasing marginal cost, i.e. the cost of providing

an additional unit of cache is higher than that of the previous unit. Thus,

proxies are reluctant to provide too much resources to the system.

As the consequence, a revenue-rewarding scheme is established by the

NSP to reward the contributing proxies. The reward, in terms of credit,

is determined based on the amount of resource shared by the proxy. It is

proportional to the proxy's contribution. Proxies are rewarded regularly

for every fixed period of time. Only the proxies with full participation

throughout the period are qualified for the rewards. This encourages the

proxies to stay in the network until the end of each period, thus avoiding

the unpredictable proxy leave in the system.

An authority, such as the NSP, is responsible to define a price value,

which specifies how much credit per unit storage should be granted to the

participating proxy. Ideally, the price should match the demand and supply

of resource such that social optimal is achieved. However, it is not the

case in a non-cooperative environment. Given that proxies are selfish in

nature, they strategically allocate the amount of storage that maximizes

their benefit only, i.e. maximize the reward minus cost, regardless of other

CHAPTER 4. REVENUE-REWARDING MECHANISM 47

Parameter Definition

H Number of proxies.

Si Cache space supplied by proxy i.

Si Storage capacity of proxy i.

q Total cache space supplied to the system.

Ci{si) Cost of supplying Si unit of cache space by proxy i.

R(q) Revenue of the system with q units of cache space
supplied.

P{q) Credit granted to the proxy for each unit of cache
space supplied.

Ui(si) Utility of supplying Si unit of cache space by proxy i.

E(q) Net profit of the NSP in the system with q units of
cache space supplied.

SU{si,S2,...’ sh) Social Utility of the system.

Table 4.1: A summary of the notations.

proxies. Meanwhile, the NSP wants to achieve the largest benefit by giving

out less reward. This forms a non-cooperative game between the NSP and

the proxies that often leads to a non-optimal situation. In this case, the

proxies tend to over-supply the resource.

4.1.2 System Formulation

We use a game-theoretic approach to model the economic of the resource

supplying from the proxies. There are two kinds of player, the NSP and

the proxy. The NSP provides network connectivity to the proxies, while the

proxy provides cache storage to reduce the transmission cost of the system.

The notations used in this chapter are summarized in Table 4.1.

There are H proxies cooperating in the system. Let Si be the unit

of cache space that proxy i decided to allocate to the system, and Si be

CHAPTER 4. REVENUE-REWARDING MECHANISM 48

the maximum storage capacity of the proxy. A feasible Si is the unit of

cache space the proxy can supply, i.e. 0 < Sj < Si. The sum of the cache

space supplied to the system is q = ^i- In order to supply Si units

of cache space, proxy i has to pay Ci(Si), where Ci(si) is the cost function

of supplying Si from proxy i, and the cost function can be heterogeneous

between different proxies. In this chapter, we consider the cost function to

be strictly increasing with convex shape. The cost function for proxy i is

defined as follows:
/

Aie叫s广bO’ 0 < Si < , �
Ci{si) = (4.1)

0， Si = 0.
\

We argue that the exponential cost function is suitable because it reflects

the general rule of increasing marginal cost. The parameter Ai defines the

initial cost of setting up the proxy, while 6i determines the increasing rate

of the cost. For example, a cost function with large value of Ai and 9i have

a high cost. When 6i is set to zero, the cost function becomes a constant

meaning that the cost is fixed regardless of the amount of cache supplied.

Each proxy can assign its own cost function by adjusting the parameters Ai,

6i and hi.

The NSP is in charged to estimate the revenue R(q) in the system. For

example, the revenue function can be obtained from the COPACC system

by approximating the transmission cost reduction with respect to the total

cache space q. In general, the more the resources supplied by the peers,

the higher the revenue. However, the marginal revenue is decreasing as the

resource increased. When the cache space reaches a specific amount, the

cost reduction approaches the limit. Thus, we model the revenue function

as a non-decreasing and concave function, which is defined as

m = q>0. (4.2)

In practice, A' and 6' are greater than zero, and A'/9' should be a finite

CHAPTER 4. REVENUE-REWARDING MECHANISM 49

number, as it represents the revenue obtained when there is infinite amount

of cache. It is less likely that Q' approaches to zero, in which the revenue

also approaches to zero.

The price is a function of g, and it is set according to the revenue curve.

The product of the price and the total available cache unit q should not

exceed the corresponding revenue. The NSP has its freedom to decide how

much revenue is rewarded to the proxies, by setting an appropriate price

function. We suggest two possible ways to define the price function.

1. Total-rewarded pricing: The price function P(q) is defined as the

revenue divided by the total resource supplied, i.e. P{q) = R(q)/q for

q>0.

2. Marginal-rewarded pricing: The price function P{q) is defined as

the marginal gain of the system, i.e. = R'(q)-

In general, P{q) is a decreasing function with a convex shape. When

the amount of resource tends to infinite, the price of each unit of resource

approaches to zero. The total and marginal-rewarding price are defined as

follows:

P ⑷二命 1 - e 一 " ' (" ') }， P O . (4.3)

P �= A ' e - 伊 q > 0 (4.4)

We like to emphasize that this methodology is not restricted to use in

the caching system, but it may also be applied to other P2P system with

the cost and the rewarding function setup properly. We now present the

resource allocation game among the proxies in the COPACC.

CHAPTER 4. REVENUE-REWARDING MECHANISM 50

4.2 Resource Allocation Game

We model the behavior of the proxies and the NSP as a strategic game. All

proxies (or system administrators who manage the proxy) are rational, and

they strategically choose the amount of cache Si to maximize their benefit.

We use a utility function to represent the level of satisfaction of the proxy.

The utility Ui{si) of proxy i can be measured in terms of its net gain, which

is equivalent to the reward earned minus the cost to provide the cache. The

utility is expressed as follow:

Ui{si) = SiP{q)-Ci{si) . (4.5)

The resource allocation game is a repeated synchronous game. Each

proxy can make or change its decision about the amount of cache at the

beginning of each round. To be realistic and scalable, we assume imperfect

knowledge of each proxy, meaning that the proxy only knows about the total

cache space supplied to the system, q, and the price function, P{q). The

NSP (or proxy coordinator) can publicize the current price and the total

amount of cache space such that other proxies can obtain the information

easily. Based on these information, the proxy updates its own strategy in

each move to maximize its utility.

4.2.1 Non-Cooperative Game

In the non-cooperative game, the proxies make decision regardless of the

other proxies. They choose Si based on the public information: the aggre-

gated cache space and the price function. The objective of each proxy is to

maximize its own utility with respect to Si over [0，Si]:

max Ui{si) = SiP{q) - Ci{si). (4.6)
0<Si<Si

Given the total cache space q and the price function P(q), the proxy can

determine its best strategy Si by solving the maximization problem. Note

CHAPTER 4. REVENUE-REWARDING MECHANISM 51

that q is implicitly depends on Sj. If the value of Si is changed, the value of q,

as well as P(q)’ will be adjusted accordingly. Thus, in the optimization, the

value of q would be better presented in terms of Si. Let s_i be the amount of

cache collectively supplied by the proxies except proxy i, then s-i — q' — sj,

where q' and s\ are the total amount of cache and the amount of cache

supplied by proxy i respectively in the previous round. The equivalent

optimization problem is shown as follows:

max Ui{si) = SiP(si + s-i) - Ci(si). (4.7)
0<Si<Si

Specifically, in the COPACC system, the objective function can be writ-

ten as
(

S i A ' e - " �广 M - Aie日“Si—M, 0 < Si <
max Ui{si) = (4.8)

0 仏 試 0, Si = 0.
\

The marginal-rewarded pricing is used here. This maximization problem

is simple, and the first-order condition is sufficient to solve the optimal value

of Si. In general, the game will converge to a Nash equilibrium. However, the

Nash equilibrium may not be unique as the order of move will influence the

equilibrium point. The first mover is more likely to get advantage over the

later mover by supplying more cache space at the beginning. The outcome

of this non-cooperative game is not desirable since there is no guarantee that

the equilibrium is socially optimal.

In the non-cooperative environment, the proxies act selfishly and blindly

to maximize their utility. The outcome, however, does not meet their ex-

pectation. The utility may be worse than the achievable individual optimal,

in which the proxies cooperatively decide how much cache to supply. Each

proxy seems to optimize their individual benefit, but actually the system-

wide behavior does not reflect the optimization of any objective. Without

the whole view of the system, it is difficult to determine whether the outcome

(or the Nash equilibrium) is desirable or not. According to different kinds

CHAPTER 4. REVENUE-REWARDING MECHANISM 52

of player in the game, either one of the following system-wide objectives can
be achieved:

1. Maximize the net profit of the NSP;

2. Maximize the social utility among all proxies involved in the system.

To achieve the above objectives, we suggest two cooperative resource

allocation games, namely Profit Maximizing Game and Utility Maximizing

Game.

4.2.2 Profit Maximizing Game

Being the NSP, the objective is obvious: it aims to maximize its net profit

in using COPACC architecture. The net profit, E(q), of the NSP is defined

as the revenue earned minus the reward paid to the proxies, i.e.

E{q)=R{q)-qP{q). (4.9)

It is clear that the net profit is always zero in the total-rewarded pricing.

Therefore, it is better to use other reward pricing if the NSP wants to earn

some profit. As shown in Equation (4.9), the net profit is determined by the

total cache space q supplied to the system , and the NSP can only influence

the value of q by setting the price function P(q) probably at the beginning

of the game. Once the price function is set and publicized, the NSP has no

control about the value of q�which is a Nash equilibrium converged from

the moves of the proxies over many iterations.

The non-cooperative game does not lead to a unique Nash equilibrium.

The main reason is that the aggregated cache space currently supplied to

the network does affect the price, and thus interferes the proxy's decision.

For the same price function used, the system may converge to different equi-

librium. There is no guarantee for the NSP to set a particular marginal-

rewarded pricing function that leads to a desirable outcome, which maxi-

mizes its net profit. To ensure the existence of a unique, predictable Nash

CHAPTER 4. REVENUE-REWARDING MECHANISM 53

equilibrium, we simplify the price function to a constant p, which remains

the same regardless of how much cache is supplied to the network. By setting

a constant price, we show that the game admits a unique Nash equilibrium,

and the NSP can choose a proper price p to maximize its net profit.

With this assumption, we have a Stackelberg game[5] that has one leader

(the NSP) and H non-cooperative Nash followers (the proxies). The NSP

strategically decides the price p, and the proxies react with the best amount

of cache Si to supply. This defines a non-cooperative game between each

independent proxy in the network, with the underlying solution being the

Nash equilibrium. Each proxy selfishly selects Si to satisfy its objective

function:

max Ui{si) = SiP(q) - Ci(si) 二 Sip - Ci{si). (4.10)

We assume that if the net utility of a proxy is less than or equal to zero,

it will not participate in the system, and it will be removed from the list

of proxies. Note that there is a boundary constraint for the variable Si,

i.e. 0 < Si < Si. The problem is formulated as a constrained optimization,

which can be solved by the method of Lagrangian Multiplier.

Let {si*}仏1 be a set containing the amount of cache supplied by the

proxies to the system such that it satisfies

max Ui{si) = Ui(si*). (4.11)
0<Si<Si

One can analytically find the value of s* based on the value of p, using

the first-order condition.

in(Si)=p-Cl(Si) = Q (4.12)

Clisi) = 胁广⑷ = p (4.13)

+ (4.14)

CHAPTER 4. REVENUE-REWARDING MECHANISM 54

By solving si in Equation (4.13), one can obtain the solution of s*.

0，Si < 0

A = Si, 0 < Si < (4.15)

S~i�Si > Si*
\

Obviously, there is only one value of s* that can satisfy the objective

function in Equation (4.11). Thus, the game admits one and only one Nash

equilibrium, i.e. there exists a unique for each value of p.

Theorem 4.2.2.1. The profit
TncbxiTYiizing go/me adTfiits one and only one

Nash equilibrium

Proof. Consider the second-order differential equation of the utility Ui{si),

Ul'isi) = -C'/{si). (4.16)

Since the cost function is defined as a strictly increasing function with

convex shape, the second-order differential equation should always be posi-

tive, i.e. C;'(Si) > 0. It shows that C/f (si) is always less than zero, and the

utility function admits at most one maximum. Thus, the strategy of proxy

i is either s* that satisfies the Equation (4.13) if the maximum located in

the range of (0, Si), or the boundary value 0 or Si. As each proxy has it own

unique optimal strategy s* independent of others, a unique does

exist. •

Thus, given the value of price p, the NSP can predict the total cache

space q* contributed to the system, that is

= (4.17)
i=l

If the NSP knows the parameters Ai, 9i and bi of all the proxies, it can

formulate its own maximization, which aims at maximizing the net profit

with respect to q*.

CHAPTER 4. REVENUE-REWARDING MECHANISM 55

設 E(q”=R(q*) 一 q*p (4.18)

Since the total amount of cache space q* is solely depended on the value

of price p through Equation (4.15) and (4.17), one can rewrite the objective

function by substituting q* in terms of p. In the COPACC system, if all

the Si do not violate the feasible constraints, the objective function can be

rewritten as Equation (4.19).

_ = R ^ p J ^ + M) - P . p l ^ + (4.19)

The derivative of q* and Ep{p) with respect to p are shown below. The

optimal price, p*, can be obtained by solving the first-order condition in

Equation (4.23).

^ = (4.20)
dp pjri^i

I— 1

五 = — (4 . 2 1)

= 广 I * (4.22)

Kip) = 0. (4.23)

Although it is hard to find the close-form solution of the optimal price

p* for Equation (4.23)，one can solve this optimization efficiently using nu-

merical method. Once the NSP find the optimal price, it can calculate the

value of all s* using Equation (4.15). If all s* are inactive, i.e. they satisfy

the condition 0 < sj < 5i, the net profit of the NSP is guaranteed to be

maximum by setting the optimal price to p*.

CHAPTER 4. REVENUE-REWARDING MECHANISM 56

What if some of the constraints are active, they do not satisfy the bound-

ary condition of Sj? The problem becomes more complicated, but one can

still find the optimal value of p mathematically. The solution is based on

the techniques of Lagrangian multiplier. It can be shown that the objective

function Ep{p), without considering the cache constraints, is a concave func-

tion, and all the constraints regarding Si are linearly. Thus, it is a concave

programming problem, and there exists a unique solution that satisfies the

KKT-condition in Equation (4.25)-(4.30).

H H

L = E M - f,\si + ^ fiRsi - (4.24)
i=l i=l

1=1 i=l

Mi>0, i = (4.26)

/̂ r > 0 , i = l,…,11 (4.27)

/n-Si = 0, i = l,…,H (4.28)

- Si) = 0, i = l,...,H (4.29)

0 < Si < Si, i = l,...,H. (4.30)

We now present an algorithmic approach to find the optimal value of

p, which is derived directly from the KKT-condition. Fig. 4.2 shows the

profit maximizing algorithm for the NSP in the profit maximizing game.

It first assumes that the boundary constraints of all Si are inactive, i.e.

all the cache space Si lie between 0 and Si. Thus, the Equation (4.28)

CHAPTER 4. REVENUE-REWARDING MECHANISM 57

and (4.29) hold only if the and fi^ are zero. The optimization problem

is now similar to the unconstrained problem in Equation (4.19), and we

can apply the numerical method stated previously to calculate the optimal

price p* as well as all Sj. If the Si are feasible, we have obtained the best

solution. Otherwise, we know that some of the boundary constraints are

violated, and the corresponding values of ii\ or nf are not equal to zero. In

that case, the value of Si is forced to be the boundary value (either 0 or Si)

followed by Equation (4.28) or (4.29). We can identify the active constraints

of Si from the result obtained in Equation (4.23). If the optimal Si found

in the unconstrained optimization is less than zero, the proxy should not

participate in the system. Therefore, we remove the proxy from the system

by setting Si = 0. If the optimal Si is greater than the maximum capacity

the proxy can provide, the proxy supplies Si units only, and Si = Si. After

hard-setting the value of certain Si, we execute the algorithm again to find

the numerical solution for the optimal value of p. If the outcome of all Si

are feasible, we get the best solution. Otherwise, we repeat the previous

steps to adjust the value of Si and execute the algorithm until the resulted

Si are feasible. In practice, integral value of cache quantity is desired. Thus,

an additional checking on�Si"| and [ŝ J as the solution should be made to

assure optimality.

Until now, we assume the NSP knows the characteristic of the cost func-

tion of each proxy such that it can determine the behavior of the proxies,

and it can construct its own objective function. But one interesting ques-

tion to ask is whether the NSP can maximize its net profit without knowing

the individual cost function of each proxy. As such, the NSP can only ob-

serve the action of each proxy by setting a probing price. The NSP keeps

adjusting the price gradually until a desirable profit is obtained. It is analo-

gous to a commodity market, where the optimal price is determined through

numerous iterations of refinement.

CHAPTER 4. REVENUE-REWARDING MECHANISM 58

Profit Maximizing Algorithm:

1: declare P = { 1, 2, ... , // indexes of proxy that it's Si
has not been determined yet

2: declare = {}; / / indexes of proxy that it's Si is zero
3: declare P" = {}; / / indexes of proxy that it's Si is Si
4: for i 1 to H
5: Si = 0;
6: end for
7: while (true) do
8: q = Ziep Si + Eie尸u A = Eiepi^^^^ + H + Eiepu Sf.
9: Solve the optimal price p that maximize Ep(p) = R(q) -p - q

(or find p s.t. E'p{p) = 0);
10: for i:=lto H
11: Si = ln{p/Ai9i)/ei + hi]
12: end for
13: if 0 < Si < Vz G P then
14: break; / / end the while loop
15: end if
16: declare P^ = {}; / / a temporary set
17: for i:=lto H
18: if Si < 0 then
19: P^ = P^U{i}；

20: end if
21: end for
22: if (Pt - PO ^ 0 then
23: pi =户；

24: P = P-户；

25: continue; / / next iteration of the while loop
26: end if
27: for each i e P
28: if Si > Si then
29: P " = U {{}•
30: P =
31: end if
32: end for
33: end while
34: return p; / / p is the optimal price

Figure 4.2: Profit Maximizing Algorithm for the NSP in the Profit Maxi-
mizing Game.

CHAPTER 4. REVENUE-REWARDING MECHANISM 59

200 . . ,

！"15�•

|ioo •

- - /
0 0 0 0 0 0 0 ‘ ‘
0 1 2 3 4

Price (p)

Figure 4.3: A sample plot of total cache space q versus price p.

Although the NSP does not know the exact amount of total cache space

q supplied to the system for each p, it is always true that increasing the

price leads to a non-decreasing movement of the total cache space. Fig.

4.3 plots a sample relationship between the total cache space q and the

price p. Both p and q move non-linearly in the same direction. Due to

the boundary constraints of Sj, the function relating p and q is continuous

but not differentiable. Fig. 4.4 plots a sample relationship between the net

profit Ep{p) and the price. We observe that the value of Ep(p) in Equation

(4.19) generally increase for small value of p. Then it reaches the global

maximum, and decreases with increased value of p.

We now construct a Price Establishing Protocol for the NSP to determine

the optimal price used in the system. Let's assume the proxies choose the

best Si to maximize their net utility, stated in Equation (4.10), based on the

price p given from the NSP. The NSP keeps announcing different value of

price p, and the proxies reply to the NSP with the amount of cache space

CHAPTER 4. REVENUE-REWARDING MECHANISM 60

400 . . ,

350 -

: � J \
r f \
f200 f \
QI

|150 - \

100 \

50- \
0 000006 ‘ — ‘ i——̂

0 1 2 3 4
Price (p)

Figure 4.4: A sample plot of net profit Ep(p) versus price p.

it agrees to contribute. Based on the total cache space q supplied by the

proxies, the NSP decides the best pricing strategy to maximize its net profit.

It can be thought as a search problem for an optimal value of p without a

formal equation.

At the beginning of the protocol, the NSP makes an initial guess of the

probing price, say p. It announces the price to the proxies, and retrieves the

corresponding value of q. The net profit Ep{p) can be calculated based on

the value of p and q. In each iteration, the NSP decides a new probing price

based on the old price and the percentage change of the net profit. It then

sets a new price and measure the change of the net profit as compared with

the old one. The process goes on until the price converges to an optimal

value, which achieves the maximum profit.

The search method stated above is the simplest one of the zero-order

method (or maximization method without derivatives) in the literature.

Some advanced direct search methods can also be applied in the Price Estab-

CHAPTER 4. REVENUE-REWARDING MECHANISM 61

lishing Protocol to achieve global optimization with fast converging speed.

We suggest to use Pattern Search Method [33] to find the optimal price in

the protocol. Moreover, other search method that guarantee global optimal

can also be applied here.

So far we have presented the way for the NSP to maximize its net profit

by setting up proper price. Sometimes, the NSP has no preference about

maximizing its net profit. Instead, the proxies may prefer to maximize

the social utility among themselves. In this situation, the objective of the

optimization becomes maximizing the social utility, which is defined as the

total net utility summed over all proxies. In what follows, we will present

the utility maximizing game.

4.2.3 Utility Maximizing Game

Another system-wide property we would like to achieve is the social utility.

It reflects the level of satisfaction of the proxies participating in the net-

work. In this subsection, we present a resource allocation game that aims

at maximizing the social utility of the system. Cooperation of the proxies

is essential in this optimization.

The net utility Ui{si) of each proxy supplying Si units of cache is shown in

Equation (4.5). We define the social utility as the individual utility summed

over all proxies, which is

H

(4.31)
i=l

The global objective is to maximize the social utility with respect to Si

subjected to the boundary constraints 0 < ŝ < Si, that is
H H

max y]Ui{si) = max Y^[siP(q) - Ci{si)]. (4.32)

As the value of q equals to JD^i Si and the current price is calculated

based on the value of q � t h e net utility Ui{si) of proxy i does not solely

CHAPTER 4. REVENUE-REWARDING MECHANISM 62

depends on Si supplied by itself, but also depends on the cache space s- i

contributed by the other proxies. The multi-variable optimization of the

above objective function becomes difficult. Even the form of the partial

derivative with respect to Si is complicated. It is desirable to break down

the problem into smaller subproblems, and each subproblem can be handled

easier.

Fortunately, the objective function in Equation (4.32) can be simplified

as:
H r H

max "^Uiisi) = max q • P { q) C i { s i) • (4.33)
0<Si<5i 二 0<Si<Si [f^

The first term is equivalent to the credit rewarded to the proxies, while

the second term represents the total cost of providing q units of cache by

the proxies. Note that with the fixed quantity of cache space q, the first

term is always constant regardless of the ŝ . The social utility varies only

by adjusting the allocation of ŝ . Hence, the best social utility with a fixed

cache quantity can be obtained when the total cost of providing the cache

is minimized. The objective function in Equation (4.32) can be rewritten as

below:
H � H

max Ui{si) = max q • P{q) - min y ^ Ci{si) (4.34)
0<Si<Si 0<q<g [0<Si<Si ^ _

H

S.t. q = Xsi (4.35)
t=l

H .

Q = Y . S i . (4.36)
i=l

Thus, the problem can be decomposed into two subproblems, namely

Minimal cost caching problem and Optimal cache quantity problem.

1. Minimal Cost Caching Problem(MinCost): Find the minimal

cost to provide q units of cache by the cooperative proxies with respect

to Si.

CHAPTER 4. REVENUE-REWARDING MECHANISM 63

2. Optimal Cache Quantity Problem(OptQ): Find the quantity of

cache space q that guarantee best social utility.

These two subproblems are linked together by the common variable q. In

the first subproblem, given the value of q, we claim that it is always possible

to find a unique set of allocation Si that minimizes the total cost. Thus, there

is a one-to-one mapping between q and Once the first subproblem

is solved, the whole problem depends only on the variable q, while not the

actual allocation We then solve the second subproblem by finding

the optimal value of q, as well as the price P(q), to generate maximum social

utility.

We now present the concrete formulation and the proposed solution to

the subproblems.

Minimal Cost Caching Problem

As the name minimal cost caching implied, this subproblem is about finding

the cheapest way to supply q units of cache space among the proxies. We

are also interested in the cache space allocated by the proxies that

minimize the total cost.

The minimal cost caching problem is formulated mathematically as:

H

MinCost: MinCost{q) = min ̂ Ci{si) (4.37)
i=l

S.t. 0<Si< Su i = l,…,H (4.38)

H

Y^Si = q. (4.39)
i=l

The formulation like Equation (4.37) is rather common in the field of

optimization. It can be solved algorithmically using the well-known dynamic

programming method. Let B(i,j) be a two-dimensional matrix that stores

CHAPTER 4. REVENUE-REWARDING MECHANISM 64

the minimum cost of contributing j units of cache by the first i proxies,

where I <i < H and 0 < j < q.
‘

C i (i) , 0 < i < Sx

BiiJ) = oo, i = l, Si<j<q

mill . B{i 一 l,j -k) + Ci(k), 2 <i<H, 0<j<q.
�0<k<j,k<Si

(4.40)

The matrix can be filled in plane-order starting from B{1,0) to B{H, q),

and the latter gives the minimum cost of providing q units of cache. The

corresponding Si of each proxy can be obtained through backtracking the

iterations. This dynamic programming algorithm has time complexity 0{q-

H . M), where M = maxi<i<H

Although the dynamic programming method solved the MinCost prob-

lem, it is not always desirable because it requires a powerful and dedicated

node in the network to execute the algorithm centrally. As a consequence,

a distributive algorithm is generally preferred to solve the problem in the

network.

Before proceeding, it is a good idea to understand the mathematical

solution of this cost minimization problem using optimization theory. Con-

sider the problem stated in Equation (4.37), it is proven as a constrained

convex optimization problem.

Theorem 4.2.3.1. MinCost is a constrained convex optimization problem.

Proof. To show this, we have to prove the truth of the following two state-

ments.

1. The feasible region of the solution space Si under the constraints is

convex.

2. The summation of the individual cost function is a convex function.

CHAPTER 4. REVENUE-REWARDING MECHANISM 65

Statement (1) follows directly from the fact that all the constraints for

Si are linear. It is obvious that the equality constraint involving q and the

boundary constraints for each Si are linear equation of Si. Thus, the feasible

region is a convex set.

Consider the Hessian matrix of the total cost function,

C;'(si) 0 0 0

o ̂ 0 C''{S2) 0 0
�] = (4.41)

0 0 (7�(S3) 0

0 0 0

or
o A 0, i ^ j

= { (4.42)

Cl'isi), i = j.

Since the cost function Ci(Si) is strictly increasing, the value Cf (si) are

always positive. The Hessian matrix is positive semi-definite. Thus, the

total cost function is a convex function. Statement (2) holds. •

Convexity is a nice property in constrained optimization. In a convex

optimization, the local minimum is indeed the global minimum. As a result,

the KKT-condition is the sufficient and necessary condition for optimality.

In other words, a set of {sJ^q that satisfies the KKT-condition is the

solution to our cost minimization problem. The KKT-condition for the

MinCost problem is shown below:

H H H H

L{si) = Ciisi) - Si-q)-Y^ + -台i) (4.43)
1=1 i=l i=l 1=1

^ r

^ = C [{ s i) + = i = …’ H (4.44)

fi[> 0, i = l,…,H (4.45)

CHAPTER 4. REVENUE-REWARDING MECHANISM 66

/i?>0, i = l,…,H (4.46)

fi[si = 0, i = …,H (4.47)

- Si) = 0, i 二 1,…,11 (4.48)

0 < Si < Si, i = l,…,H (4.49)

H

= (4.50)
i=l

The MinCost is a convex optimization problem, meaning that there ex-

ists a unique solution {si}仏！ satisfying the Equation (4.44)-(4.50). The

optimal cache allocation Si can be determined by solving the set of linear

equations. We are now ready to present our distributed approach to the

cost minimization problem. The algorithm is emerged from the mathemat-

ics above.

We start with a simplified version of the MinCost problem in Equation

(4.37), having the storage constraints removed from each proxy. It becomes

an equality constrained problem, which can be solved by the method of La-

grange multiplier. The necessary condition is similar to the KKT-condition

stated previously, but with the equations involving ji\ and /x" omitted. Note

that the plus or minus sign of the multiplier term does not affect the solution.

H H

L{si) = Y. Ci�-入(E Si - q) (4.51)
z = l i = l

Q J^
— = C [{ s i) - A = 0, i = l,…,H (4.52)

CHAPTER 4. REVENUE-REWARDING MECHANISM 67

H

^ S i = q. (4.53)
1=1

We instantiate the cost function according to the COPACC system.

Given Equation (4.52)，we can derive Si in terms of A.

C'iisi) = AiOie '̂̂ ''- '̂̂ = A (4.54)

The variable A is called shadow price, which is introduced by the proxies

to establish implicitly the best cache allocation among them. The equation

of Si is similar to the one shown in Equation (4.14), but in here we have one

more condition about the total cache quantity (in Equation (4.53)) to hold.

By substituting Si to Equation (4.53), we can solve the value of A, and thus,

the values of all Sj.

(4.56)
1=1 L � -

A = e . (4.57)

If we have all the parameters about the individual cost function of each

proxy, we can find the optimal A as well as the Si directly. However, in

the distributed approach, we must rely on iteratively refining the value of

A until the optimal value is reached. The resulted total cache space is used

as an indicator for optimality. The minimal cost is achieved when Si

is equal to q. In order to use the distributive algorithm, we assume the

proxies are cooperative, and they do follow the cost minimization protocol

to determine the amount of cache contributed to the system. The protocol

runs collaboratively with assistance from a proxy coordinator.

CHAPTER 4. REVENUE-REWARDING MECHANISM 68

fCoordinatoi I Proxy 1 I I Proxy 2 1 … (P r o x y H 1

^ O k � V3； z O * XSJ
〜：：、、、 一 S1 一 Z zZSh

一 一 一 z
X<^X+Xri(q-ESi)/q 、 、 〜 〜 一 一 一 一 Si=ln(A/Ai9i)/ei+bi

一 一 一 一 — — 一 一

Figure 4.5: Mechanism of the cost minimization protocol.
The coordinator first make an initial guess of the shadow price A, and

notifies the proxies. Each proxy reacts to the shadow price with a Si ob-

tained by Equation (4.55), which is privately known to the proxy. Then,

the coordinator updates the shadow price based on the total cache space

contributed to the system. If the total cache space is more than required,

i.e. E仏 1 Si > q, the shadow price is set too high, and it should be reduced.

If the cache supply is insufficient, the shadow price should be increased. The

process continues until the optimal value is achieved, where the total cache

supplied matches the requirement, i.e. YliLi Si = q.

The most crucial part remained is how to update the shadow price ac-

cording to the cache supplied. The updating rule should be selected carefully

as it determines the effectiveness of the protocol. Since the problem is proven

to exist only one minimum, even the simplest numerical search method guar-

antees optimal solution. Other advanced search method, of course, can be

used to obtain the same result.

Fig. 4.5 shows the mechanism of the cost minimization protocol. We

adopt to a simple updating rule, which increase/decrease the value of A in

proportional to the difference between the desirable cache space q and the

total contributed cache from the proxies. The updating rule of 入 is

A ^ A + (4.58)

The learning rate, 77，is a factor that controls the converging speed and

the accuracy of the protocol. A large value of rj is used initially to speed up

CHAPTER 4. REVENUE-REWARDING MECHANISM 69

the convergence, and it starts to decrease gradually in order to obtain an

accurate solution. The protocol is executed periodically to ensure that the

cost remains minimal after any join or leave of the proxies. In steady state,

the A leads to a cache allocation with minimal cost.

The solution of this simplified MinCost problem can be extended to the

original problem with the cache constraints. The participating proxies react

to the shadow price similarly as in the simplified MinCost problem. The only

difference is that the proxy coordinator has an additional task to determine

whether the cache constraints of the proxies are violated.

Consider the Equation (4.47) in the KKT-condition, either equals zero

or Si equals zero. Similarly in Equation (4.48), either fi^ equals zero or Si

equals Si. To solve the set of linear equations, we have to examine whether

and /if are equal to zero. Assume both fJ- and fif are zero, the formulation

of the original problem reduces to the simplified version. We apply the cost

minimization protocol to obtain the best cache allocation for a total of q

units of cache space. However, the resulted Si may not satisfy the boundary

constraints specified in Equation (4.49). In that case, depending on the

value of Si, one of the fi[and /i" is not zero. If Si is less than or equal to zero

for certain proxy z, we are sure that this Si has optimal value of zero, and

the corresponding is not zero. The proxy is not eligible for contributing

as the cost of supplying the cache is comparatively high. Similarly, if Si is

greater than Si, we are sure that the Si of the proxy has optimal value of

Si. This proxy should provide as much cache as possible since the cost is

comparatively low. Thus, we can eliminate some proxies, whose value of

Si is known already, from the problem formulation and resolve the Si for

the remaining proxies. Note that the total required cache space q of the
A,

eliminated problem should be updated accordingly, by subtracting the Si of

the oversupplied proxies. The algorithm for the cost minimization protocol

used by the coordinator is shown in Fig. 4.6.

CHAPTER 4. REVENUE-REWARDING MECHANISM 70

Cost Minimization:

1： declare P = { 1, 2, ... , H}\ // indexes of proxy that it's Si
has not been determined yet

2: declare pi = {}; / / indexes of proxy that it's Si is zero
3: declare P" = {}; / / indexes of proxy that it's Si is Si
4: while (true) do
5: the new cache requirement q' = q — J^ieP^"
6: solve the Simplified MinCost Problem distributively with

the cache requirement of q' among proxy i e P and get
the optimal Si for proxy i e P]

7: if Vi G P, 0 < Si < Si then
8: break; / / end the while loop
9: end if
10: declare pt = {}; / / a temporary set
11: for each i e P
12: if Si < 0 then
13: pt = ptD {i}；

14: end if
15: end for
16: if 0 then
17: p / ^ p i ^ p t .

18: P = P - pt�

19: continue; / / next iteration of the while loop
20: end if
21: for each i € P
22: if Si > Si then
23: =
24: P= P-{i};
25: end if
26: end for
27: end while

Figure 4.6: Cost Maximization Protocol for the proxy coordinator.

CHAPTER 4. REVENUE-REWARDING MECHANISM 71

By the cost minimization protocol with a given fixed total cache quantity,

the proxies can cooperatively allocate the best amount of cache space to

achieve minimal cost.

Optimal Cache Quantity Problem

The next problem is to determine the optimal amount of cache quantity. The

optimal cache quantity problem refers to the problem of finding the total

quantity that results in maximum social utility. Let M(q) be the minimum

cost of providing q units of total cache. For each q, the value of M(q) can

be evaluated by solving the corresponding MinCost problem, using the cost

minimization protocol. The OptQ problem can be formulated as

OptQ: max [q . P{q) - M{q)] (4.59)
0<g<g

H

where Q = ^ Si.
i=l

Obviously, the objective function depends on the variable q only, where

P{q) is a decreasing function of q and M{q) is an increasing function of q

(see Fig. 4.7), In fact, the objective function may contain multiple maxima,

depending on the cost functions and revenue function used in the system.

Fig. 4.8 plots the revenue, minimum cost and social utility with respect to

cache quantity in the COPACC system. In this example, the social utility

is calculated using the total-rewarded price, and the maximum is achieved

when the cache quantity is around 75.

Since we do not have the close form solution for the MinCost problem,

we cannot rely on any optimization method that involves derivative of the

objective function. In order to find the optimal cache quantity, we suggest

to use direct search method, which is similar to the one used in the profit

maximizing game. Pattern search with multiple initial guesses is a good

approach to the optimal cache quantity problem.

CHAPTER 4. REVENUE-REWARDING MECHANISM 72

2000 . ： . ： r

一1500 i -

j /
恳000 - / -

I J
500 J ^

0 50 100 150 200 250
Total cache quantity (q)

Figure 4.7: A sample plot of minimum cost versus cache quantity q‘

800 . . 1 . 1

Minimum Cost —e— /
700 Revenue —f— /

Social Utility I
600 • / .

500 • I _ I I I ~ ~ I I

3 � � .

2 � � ' / Z
1

0 50 100 150 200 250
Total cache quantity (q)

Figure 4.8: A sample plot of social utility versus cache quantity q.

CHAPTER 4. REVENUE-REWARDING MECHANISM 73

In the pattern search method, an initial step size s is chosen and the

search is initiated from a starting point q. The method involves the steps of

exploration and pattern search. In the exploration step, it tries to probe the

value of the social utility by increasing or decreasing the cache quantity. Let

q' = q, the objective function is evaluated at q' + s. If the value increases,

then q' is updated to q' + s. Otherwise, the function is evaluated at q' — s.

If the value increases, q' is updated to q' — s. In case both of them fail in

the test, the original value of q' is retained. An exploration is said to be

successful if the function valued at q' is higher than g by a predetermined

amount. The pattern search algorithm starts from a quantity q. The explo-

ration step is made in q. If the exploration fail, the step size is reduced by

a factor of r, i.e. s rs. Otherwise, a new base point of q is established

according to the exploration. The search continues until the cache quantity

q converged. The solution obtained may not be global maximum. To ensure

that the solution does not trap in the local maxima at steady state, the

proxy coordinator should periodically probe the system with different cache

quantity to see if it is still optimal. A random value with large difference

from the solution is chosen for the probe.

The solution of the optimal cache quantity problem is indeed the optimal

quantity for the original utility maximizing problem. It guarantees maximal

social utility in the network. Moreover, the optimal cache space supplied by-

each individual proxy is determined through the cost minimization protocol,

and the price is set according to the price function.

In this subsection, we have presented the utility maximizing game, which

aims at maximizing the social welfare of the proxies in the network. The

performance of the three resource allocation games are being evaluated in

the next section.

CHAPTER 4. REVENUE-REWARDING MECHANISM 74

4.3 Performance Evaluation

The main focus of this section is to evaluate the effectiveness of the proposed

revenue-rewarding scheme in encouraging the participation of the NSP and

the proxies. We show that the scheme can provide a strong incentive for

different entities to join the system. We have examined the use of revenue-

rewarding in the three resource allocation games, i.e. non-cooperative game

{NonCoop), profit maximizing game (ProfitMax), and utility maximizing

game (UtilMax). We have studied the net profit of the NSP as well as

the social utility of the proxies in the games. We have also compared the

individual utility of the proxies in each game. The results demonstrate that

under different resource allocation games, different level of incentive are

given to different entities in the network. Moreover, an economical cache

supply is achieved in the ProfitMax and the UtilMax, where the "good"

peers, which have cheaper cost in providing cache, are retained to participate

in the system.

Unless otherwise specified, the following default settings were used in

the evaluation. We considered a proxy caching network consisting of five

proxies, which operated under the same NSP. The revenue function was

approximated by the experimental results from the cost reduction in the

COPACC system. Each proxy was assigned with an exponential cost func-

tion. The parameters used for the cost and revenue functions are shown in

Table 4.2，and the corresponding functions are plotted in Fig. 4.9. Note that

proxy 1,2 and 3 have similar cost function with different level of expensive-

ness. Proxy 4 supplies cache with low initial cost but high variable cost. In

contrast, proxy 5 has high fixed cost but low variable cost. For simplicity,

each proxy has the same storage capacity. Lastly, the marginal-rewarded

pricing was applied in the non-cooperative game and the utility maximizing

game.

The evaluation of different rewarding schemes were done based on math-

CHAPTER 4. REVENUE-REWARDING MECHANISM 75

r i ^ ^ ^ ^ y t ^
Proxy 1 P /

o200 - Proxy 2 + 厂 /
Q- Proxy 3 - e - / i J
^ Proxy 4 / f /
0) Proxy 5 号 - 戶 / /

F " / / / .

G 0 10 20 30 40 50
Cache supplied by Proxy i (si)

(a) Cost functions of the proxies.
600 1 ‘ ‘

乂00 - ,

i /
| 3 0 0 d

^200 - t
100 -1

OO ‘ ‘— ‘
0 50 100 150 200 250

Total cache quantity (q)

(b) Revenue function of the system.

Figure 4.9: Cost and revenue functions being used in the evaluation.

CHAPTER 4. REVENUE-REWARDING MECHANISM 76

Proxy i Ai 6i bi Si Cost

1 10 0.06 0 50 Normal

2 10 0.06 15 50 Low

3 15 0.08 0 50 High

4 8 0.12 10 50 Low for small quantity, high for large quantity

5 10 0.04 0 50 High for small quantity, low for large quantity

A' 6' h'

15 0.03 0

Table 4.2: Parameters used in the resource allocation game.

ematical simulation, which was implemented in MATLAB 7.0. The built-in

Pattern Search Tool, provided in the Genetic Algorithm and Direct Search

Toolbox of MATLAB, was used to solve the search problem.

4.3.1 Convergence

The first issue we are looking at is the convergence. It is a basic requirement

that the resource allocated by the proxies should converge in each game. We

analyze the behavior of each game based on the cache contributed at the

steady state. Fig. 4.10 depicts the quantity of cache supplied by the five

proxies in each iteration. It demonstrates that all three resource allocation

games converge to a steady state after a number of iterations. It is observed

that the NonCoop converges fast, while it takes more iterations for the Prof-

itMax and the UtilMax to stabilize. For the ProfitMax and the UtilMax, the

speed of convergence is depended on the direct search method implemented.

In the pattern search method, a large step size is used initially, therefore,

the cache quantity varies dramatically at the beginning. As the step size de-

creases gradually, the cache quantity stabilizes and converges to the optimal

value. Fortunately, the converging speed does not affect the performance of

CHAPTER 4. REVENUE-REWARDING MECHANISM 77

the game. As long as the search method converges to an optimal value, the

corresponding objective function is optimized, and the goal is achieved.

4.3.2 Participation Incentive

The primary design objective of this work is to present an incentive mech-

anism to encourage participation of the entities in the network. The eval-

uation results show that this incentive mechanism applied in the COPACC

system provides a strong incentive for both the NSP and the proxies. In ad-

dition, the incentive for the NSP is different from that of the proxies. The

NSP is motivated by the attractive net profit to setup the COPACC system

in its network, while the proxies are encouraged by the positive net utility

to supply cache to the system. Hence, in this subsection, we evaluate the

two incentives in the three resource allocation games.

Net Profit

Fig. 4.11 plots the net profit of the NSP in the three resource allocation

games. As we expected, the profit maximizing game generated the highest

net profit among the three games. The net profit of the ProfitMax was

352.8, which was 21% higher than that of the NonCoop, and it was 2.26

times of the net profit in the UtilMax. The UtilMax performed the worse

because it tried to maximize the benefit in other dimension, social utility,

by trading off the net profit.

We also evaluated the performance of the three games under systems

having different revenue function. All the revenue functions had the same

ratio of A'/6\ but the value of 9' varied from 0.01 to 0.08. Remember that

the larger the 6', the higher the revenue is for the same quantity of cache.

The net profit of the NSP in the systems with different revenue function

is plotted in Fig. 4.12. The result further illustrates that the ProfitMax

achieves the highest net profit among the three games.

CHAPTER 4. REVENUE-REWARDING MECHANISM 78

30 . . .
Proxy 1 —0—
Proxy 2 +

二25 • Proxy 3 - S -
& Proxy 4 ^
0 Proxy 5 - 'v -

LA
Z ^'--iHg-ft-fir-ft…..ft…ft….分..�•….錢—务…央—ft…..分..妾各.众—1-”
t
謹 1 0

a-0)
1 5. 0

0 5 10 15 20
Iteration (i)

(a) Non-cooperative Game

一50 • Y Proxy 1 —o—
t w v Proxy 2 +

t Proxy 3 - s -
? I l .1 Proxy 4 —

. ' Proxy 5 .

1 jr I �l l ^ p p ^ 闲 辦 iWW.......？......T.......T-V

I" M i l I
\ilflliM

0 10 20 30 40 50 60
Iteration (i)

(b) Profit Maximizing Game

^ 5 0 Proxy 1 - e - •
Proxy 2 —i—

•- Proxy 3 - a -
^ Proxy 4 -x—
2 40 Proxy 5 "••�.-.

^ Y Y
|30 • ‘ i A

. 2 � • I I WyVVyysKN-^——I——I——

� 1� : i i f H 广.....̂......̂-̂......̂...̂
0 L̂ ielietê eiijKstaEsraesinaoossfaEsta®-13..…ss…….‘…….© o lis

0 10 20 30 40
Iteration (i)

(c) Utility Maximizing Game

Figure 4.10: Quantity of cache supplied by each proxy.

CHAPTER 4. REVENUE-REWARDING MECHANISM 79

500 . . . ‘

NonCoop
ProfitMax -^―

400 - • • UtilMax -

|2��_||j 丨 V

0 ~ILL ‘ ‘ ‘
0 10 20 30 40 50

Iteration (i)

Figure 4.11: Net profit in each resource allocation game.

600 . 1 1 1~——1 >
NonCoop
ProfitMax -h—

500 UtilMax - e -

S � � . ^ ^ ^ ^ ^ ^ ^ " ^：： ! ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^〉

y � �_
^200 - / /

/ ^ n - ^ B B B £]

0 ‘ ‘ ‘~-——‘ ‘ ‘
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Figure 4.12: Net profit of the NSP in the system with 0' varied from 0.01

to 0.08.

CHAPTER 4. REVENUE-REWARDING MECHANISM 80

Note that the revenue earned by the NSP in each game was different,

depending on the cache quantity supplied to the system. The revenue, in

terms of cost reduction, obtained in the COPACC system under the Prof-

itMax was 426.7. It is attractive to the NSP that by rewarding 17% (i.e.

73.60) of the total revenue to the proxies, which were willing to participate

due to positive net utility, the NSP can enjoy 83% of the revenue as its

net profit. Hence, we conclude that the profit maximizing game provides

a strong incentive for the NSP to setup the revenue-rewarding scheme in

the COPACC system. We argue that even for the UtilMax, the NSP still

has incentive to deploy the incentive mechanism as it can retain 37% (i.e.

108.28) of the revenue as its profit.

Social Utility

In this subsection, we evaluate the social utility in different games. Fig.

4.13 demonstrates the individual utility of the proxies under different games.

Only the proxies having positive net utility supplied cache to the system. It

illustrates that the positive net utility provides an initiative incentive to the

rational proxies to cooperate.

Fig. 4.14 shows the social utility of all proxies in the three games. The

social utility achieved by the UtilMax was the highest among the three. In

this example, the social utility of the UtilMax was 161.7, which was much

higher than that of the ProfitMax (16.1) and the NonCoop (69.9). In Fig.

4.15’ the social utility of different games were examined under the systems

with different revenue function. The result also agrees that the UtilMax

outperforms other games in utility maximization.

Since the ProfitMax is designed to maximize the net profit by trading off

the social utility, the utility achieved in the ProfitMax is the lowest. Note

that the social utility of the ProfitMax and the NonCoop decreased with an

increase of 9'. It shows that more utility is traded for the net profit when

CHAPTER 4. REVENUE-REWARDING MECHANISM 81

140 . . .
? Proxy 1

iPn . Proxy 2 十
1 � Proxy 3 - B -

Proxy 4 --^―
5100 Proxy 5 •

0 80

1
書 6 0 .

！ 40 • V
~~I~~I~I~IIIIIII"""I~I~II~II——

V?' < ^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • • [!] • • • • •
0 5 10 15 20

Iteration (i)

(a) Non-cooperative Game
80 —

y'
Proxy 1

70 Proxy 2 —i—
！ Proxy 3 -E3-

60 Proxy 4 斗 .
芸叫 Proxy 5 ””.•-

e

s30 . Il V'

10. MlMAyvv̂ i……I" 11 ‘ 11 •
0 10 20 30 40 50 60

Keration (i)

(b) Profit Maximizing Game
200 • ‘ ‘

Proxy 1 —0—
Proxy 2 —)—
Proxy 3 - e -

150 . t Proxy 4 - x -
5 + \ Proxy 5 ..“.•....

2 + I I I I I I I I I I I I I I I -
1̂00 V

•5

m

邏r r
0 l̂ WjfteiisfeteQKSeSSteaOTOTSOSJSSOSSOTOTOCSSSKJESOT!!!

0 10 20 30 40
deration (i)

(c) Utility Maximizing Game

Figure 4.13: Net utility of each proxy.

CHAPTER 4. REVENUE-REWARDING MECHANISM 82

250 . ‘ ‘
o

, NonCoop
I ProfitMax -h—

200 UtilMax - a -

, 5 � 丨 -

c§100 .

^ loOOOOOOOOOOOOOOOOOOOOOOOO 0 0 0 0 0 0 0 <>

ulJJV …I 111 -
0 10 20 30 40 50

Iteration (i)

Figure 4.14: Social utility in each resource allocation game.

250 . . ‘ ‘ ‘ —^
NonCoop
ProfitMax ^ ―

UtilMax - B -
2 0 0 -

I
(glOO -

50 • ^ ^ ^ ^ ^ i>

1 1 H 1 1 h
o' • — — ‘ ‘ •

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Figure 4.15: Social utility in the system with varied from 0.01 to 0.08.

CHAPTER 4. REVENUE-REWARDING MECHANISM 83

the is large.

We are also interested in the total reward received by the proxies and

the cost in providing the cache. As the UtilMax performs better in utility

maximizing, we focus this specific game. The total reward granted to the

proxies was 182.1，and among those, 20.4 (around 11% of the reward) was

used to maintain the cache. The remaining of the reward (about 89% of

the total) was owned by the proxies. When we consider the return on in-

vestment, which is defined as the ratio between the utility and the cost, i.e.

7.9, it can definitely encourage the proxies to participate. In contrast, the

return on investment of the ProfitMax was 0.28. Thus, under the UtilMax,

the proxies have a strong incentive to contribute cache in the system.

Discussion

In fact, the ProfitMax and the UtilMax have different design objective: the

former one optimizes the net profit, while the later one optimizes the social

utility. The key discussion here is which approach, the ProfitMax or the

UtilMax, is better. There is no strict answer to this question. It depends

on the objective of implementing the incentive mechanism, and whether to

benefit the NSP or the proxies. There is a trade-off between the net profit

and the social utility.

Indeed, one can compare the performance of the ProfitMax and the

UtilMax by looking at the sum of the social utility and the net profit as

shown in Fig. 4.16. It can be seen that the UtilMax is not performing

well as compared to the ProfitMax and the NonCoop. The reason is that

under marginal-rewarded pricing, the price of resource drops quickly as the

quantity increases. As a consequence, the UtilMax tries to keep a high

price by avoiding large quantity of cache supplied to the system. Thus, only

a small revenue is obtained, and the achievable sum of the social utility

and the net profit becomes less. We also examined the UtilMax using the

CHAPTER 4. REVENUE-REWARDING MECHANISM 84

500 . . , , , ,

NonCoop
450 • ProfitMax - h -

UtilMax - a -
UtilMax(Total) —x— ^"""""

. 3 5 � .

150 ‘ ‘ ‘ ‘ ‘ •
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Figure 4.16: Sum of the social utility and the net profit in each resource

allocation game with & varied from 0.01 to 0.08.

total-rewarded pricing, in which the net profit of the NSP is always zero.

The UtilMax(Total) showed in Fig. 4.16 demonstrates that by using total-

rewarded pricing, it achieves the best performance. In fact, we can show that

the social utility obtained in UtilMax(Total) is equivalent to the maximal

achievable sum of the social utility and the net profit. Consider the objective

function of maximizing the sum of the social utility and the net profit, that

is
• H 1 r H

max E � + y^Ui(Si) = max R{q)-Y'Ciisi) . (4.60)
0<Si<Si [^ J 0<Si<Si [^

Since P{q) = R{q)/q in the total-rewarded pricing, the optimization

objective of the UtilMax(Total) is equivalent to the above objective. Hence,

it is the maximal achievable social utility.

In general, the ProfitMax is suitable for the system that contains a

centralized authority, like the NSP, and the UtilMax is good for a non-

CHAPTER 4. REVENUE-REWARDING MECHANISM 85

Cache supplied (Cost per unit cache)

NonCoop ProfitMax UtilMax

Proxy 1 13 (1.68) 0 (-) 0 (-)

Proxy 2 21 (0.68) 26 (0.74) 20 (0.67)

Proxy 3 0 (-) 0 (-) 0 (-)

Proxy 4 13 (0.88) 12 (0.85) 9 (0.79)

Proxy 5 20 (1.11) 25 (1.09) 0 (-)

Overall system 67 (1.04) 63 (0.9) 29 (0.71)

Table 4.3: Cost per unit cache supplied by the proxies in different game.

coordinated P2P-like application. By applying the revenue-rewarding scheme,

the network entities are stimulated to participate in the system.

4.3.3 Cost effectiveness

It can be seen in Fig. 4.10 that not all the proxies playing in the resource

allocation game participate in the system at the steady state. In fact, all .

the proxies in the network used the same strategy to decide the amount of

cache to contribute, excepted that they had heterogenous cost function. In

this subsection, we study how the cost function influences the behavior of

the proxies. We show that only the cost-effective proxies contribute cache

to the system.

Table 4.3 lists the quantity of cache supplied in each game. The quantity

of cache admitted in each game was different. The NonCoop admitted the

largest amount of cache, while the UtilMax admitted the smallest. It is due

to the underlying game rule, which induces the "best" quantity (or price) of

cache for the system. Clearly, the overall cost for a unit cache in the UtilMax

should be the lowest because it equips with a cost minimization protocol

to achieve the lowest cost. In addition, the UtilMax tends to employ few

proxies, which have low cost among the proxies, to participate. Hence, we

CHAPTER 4. REVENUE-REWARDING MECHANISM 86

conclude that the UtilMax provides a cost-effective resource supply to the

system.

We further investigate the cost of maintaining the cache for each in-

dividual proxy, which is listed in Table 4.3. Actually, the three resource

allocation games implicitly choose the best proxies to cooperate. We ob-

served that Proxy 3 was rejected in all the games because its cost was the

most expensive. Proxy 2 had a low cost function, thus, it contributed cache

in all the games. Proxy 4 only contributed small amount of cache as the

cost for large quantity was high. In contrast, Proxy 5 supplied large quantity

due to the lowest cost. These results illustrated a desirable property of the

system: the game automatically admits the best set of proxy to contribute,

depending on the heterogenous cost function adopted by the proxies.

In summary, the evaluation results demonstrated that the proposed

revenue-rewarding scheme applied in incentive-based COPACC system pro-

vides a strong incentive for both the NSP and the proxies to participate in

the system, and the gaming approach yields a cost-effective resource alloca-

tion from the proxies.

• End of chapter.

Chapter 5

Conclusion

In this thesis, we have introduced a cooperative and incentive-based proxy-

and-client caching system for on-demand media streaming. Two major

components: Cooperative proxy-and-client caching and Revenue-rewarding

mechanism, have been discussed.

Ill summary, COPACC is a novel cooperative proxy-and-client caching

system that combines the best features of proxy caching and peer-to-peer

communications. It leverages the client-side caching to amplify the aggre-

gated cache space and relies on dedicated proxies to effectively coordinate

the communications. We have developed an efficient cache allocation al-

gorithm for distributing video segments among the proxies and clients. A

comprehensive suite of protocols are presented to facilitate the interactions

among different network entities. It also enables smart and cost-effective

cache indexing, searching, verifying operations in this hybrid caching sys-

tem. However, COPACC does not address the incentive issue. That is,

what motivates each proxy to provide cache space and how much cache

space should be allocated. We have extended COPACC by suggesting a

revenue-rewarding scheme to encourage proxy cooperation. In this scheme,

credits are granted to the proxies for their contribution. Game theoretic

model is used to analyze the interactions between proxies under different

87

CHAPTER 5. CONCLUSION 88

resource allocation games. It is shown that no system-wide property is

achieved in a non-cooperative environment. We have further proposed two

cooperative resource allocation games that lead to two different optimal

situations: Maximized net profit and Maximized social welfare. Both cen-

tralized and distributed algorithms are presented for the games to achieve

different optimal situation.

We have evaluated the performance of the cooperative and incentive-

based proxy-and-client caching system under various network and end-system

configurations. Our key findings can be summarized as follows:

1. With an amplified total cache spaces, cooperative proxy-and-client

caching significantly reduces the transmission cost for on-demand me-

dia streaming.

2. With the assistance from dedicated proxies, it is much more robust

than a pure peer-to-peer system, even though the proxies may con-

tribute only a small fraction of the total cache space.

3. COPACC scales well in larger network, and the cost generally reduces

when more proxies and clients cooperate with each other.

4. The monetary incentive scheme, revenue-rewarding, strongly moti-

vates the network entities to cooperate in the system.

5. The non-cooperative environment is undesirable, while the two coop-

erative games can achieve different system-wide objectives: Net profit

and Social utility.

6. The two cooperative games yield a cost-effective resource allocation

from the proxies.

In the future, we can perform more experiments to compare the perfor-

mance of COPACC to other P2P streaming systems, such as CoolStreaming

CHAPTER 5. CONCLUSION 89

54] and Loopback [34]. The reliability of COPACC can also be enhanced

by considering replication of cache among proxies. Note the incentive mech-

anism is only applied to the proxies in the system, we can further extend

the mechanism to encourage the clients to participate.

• End of chapter.

Appendix A

NP-Hardness of the CAP
problem

In this appendix, we prove the NP-hardness of the general optimal cache

allocation problem (CAP). We show this by transforming the optimal re-

source allocation problem (RAP) to CAP in polynomial time. It is known

that RAP is NP-hard and its decision version is NP-complete [31].

In RAP, there are M kinds of resources to be allocated to N activities,

indexed from 1 through N, and the total available quantity of resource

[1... M]) is Nj. The objective is to minimize the cost in allocating the

resources to activities, which can be formulated as:

^•^•JLiLiXij < NjJ = l ’ 2 ’ . " ’ m ’

Xij e

where Xij is the quantity of resource j allocated to activity i, dij is the

effectiveness for each unit of resource j allocated to activity i�and fi{) is a

convex and non-increasing cost function for activity i with given allocations.

Note that the resources and activities in RAP are analogous to the cache

90

APPENDIX A. NP-HARDNESS OF THE CAP PROBLEM 91

spaces and videos in CAP, respectively. Given an instance of RAP, we can

create a CAP problem with the following settings: Sj = Nj 二 0, and

V) 二 ccij, i e [l...N]J e [1 … G [l...Kj]. Since C7ost({p�}’ {g)’jJ) can

be arbitrary function, we set it as We further set V^ to

E容liV力 such that the constraint Z f = i P � + < in CAP

is always satisfied. Given this transformation, it is obvious that an optimal

solution to CAP, p), leads to an optimal solution to RAP: Xij = p^i e

[l...iV], j G [1..H]. Since transformation is in polynomial time, it follows

that problem CAP is NP-hard.

•

Appendix B

Optimality of the Greedy
Algorithm

In this appendix, we prove the optimality of the proposed greedy algorithm

for PA with f i = f i = … = f \ j .

We define the matrix of the unit transmission costs after exe-

cuting step 1 through 2 as:

(W P { 1 , 2) WP(l,H)�

iyP(2,l) ^^(2,2) WP{2,H)
• • . . •

！ ！ ‘‘

； ‘： wp{ij) •:

• • . •
« • • •

^ WP{N, 1) WP{N,2) WP(N,H) ^

where WP{iJ) = + 切 S i n c e f j = f], for all j + /’

we can drop subscript j of fj and simplify the calculation of as

p . + w�广P Xj'. We have the following two observations on

wp{ijy.

Observation 1. Given e [1... iV], WP{iJ)/WP{iJ) is a constant

92

APPENDIX B. OPTIMALITY OF THE GREEDY ALGORITHM 93

for any j 6 [1... iJ].

Proof. WP{iJ)/WP{lj)

=f. EjLi K / + f] AW/ • EiLi H 7 + ^ r] V
=P/f

= WP(iJ)/WP{lj).

Observation 2. Given j j 6 [1...丑]’ WP{iJ)/WP{iJ) is a constant

for any i 6 [1... iV] •

Proof. WP{iJ)/WP{iJ)

=f. EjLi +̂ ri V / 产 . + ^ r] V
=EjU + V/EjLi + 切r1 V
= WP{iJ)/WP(lj).

Note that the proxies are sorted in ascending order of cost and

the videos are sorted in descending order of cost 1) in the greedy

algorithm, that is, WP{i,j) < WP(iJ') for j < j' and WP(iJ) > WP{i',j)

for i < i'. We then have another two observations:

Observation 3. j) - j - j) <Wp{i- I j) -WP(i-1 j - j)

for z G [1... (i - 1)] and j e [I . . . (j - 1)].

Proof. From observation 1’ we have WP{iJ)/WP{i-iJ) = WP{iJ-j)/WP{i-

2, j — j) = a, where a is a constant. This is equivalent to WP{i,j)=

a . WP{i - ij) and WP{i,j - 3) = a • WP{i - I j 一 j). Here, 0 < a < 1

because W^iiJ) < WP{i - i j) for z > 0. It follows that

二 a . WP(i - l j) - a - WP{i - i j - j)

Observation 4. WP{iJ+j) -WP{iJ) > +

for i e [I... {N-i)] and J e [I... {H- j)].

Proof. Prom observation 1’ we have WP{i + iJ)/WP{iJ) = + i, j +

j)/WP{i, j + j) = b, where 6 is a constant. This is equivalent to WP(i+i, j)=

APPENDIX B. OPTIMALITY OF THE GREEDY ALGORITHM 94

b • WP{iJ) and WP(i -\-iJ+j) = b- WP{i,j + j). Here, 0 < 6 < 1 because

WP{i + I j) < WP{iJ) for z > 0. It follows that

WPiiJ+j)-WP{iJ)

The above two observations imply that swapping one unit data of video

i in proxy j with that of video i' {i' E [1... (i - 1)]) in proxy j' (/ e

[1... (j 一 1)]) yields the same or higher total cost, and, similarly, swapping

one unit data of video i in proxy j with that of video i丨{i' € [(i + 1). . . N]) in

proxy f (f e [{j + 1)...H]) yields the same or higher cost. As the prefixes

are fully packed to the proxies and there is no space left, the solution given

by the greedy algorithm is optimal.
•

Bibliography

[1] K. Aberer. P-grid: A self-organizing access structure for p2p infor-

mation systems. In Proceedings of the 9th International Conference

on Cooperative Information Systems table of contents (Coop IS 2001),

2001.

[2] S. Acharya and B. Smith. Middleman: A Video Caching Proxy Server.

In Proceeding of International Workshop on Network and Operating

Systems Support for Digital Audio and Video (NOSSDAV'OO), June

2000.

[3] E. Adar and B. A. Huberman. Free riding on gnutella. First Monday,

2000.

[4] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. On Optimal Batching

Policies for Video-on-Demand Storage Servers. In Proceedings of the

IEEE International Conference on Multimedia Computing and Systems

(ICMCS’96)�June 1996.

[5] T. Basar and G.J. Olsder. Dynamic noncooperative game theory. SI AM

Series in Classics in Applied Mathematics, 1999.

[6] T. Basar and R. Srikant. Revenue-maximizing pricing and capacity ex-

pansion in a many-users regime. In Proceedings of the IEEE INFO COM

2002, 2002.

95

BIBLIOGRAPHY 96

[7] BitTorrent. http://www.bittorrent.com.

[8] C. Buragohain, D. Agrawal, and S. Suri. A game theoretic framework

for incentives in p2p systems. In Proceedings of the 3rd International

Conference on Peer-to-Peer Computing (P2P’03), Sweden, 2003.

[9] E. Campos-Nanez and S. D. Patek. On-line tuning of prices for network

services. In Proceedings of the IEEE INFOCOM 2003, 2003.

[10] Y. Chae, K. Guo, M. M. Buddhikot, S. Suri, and E. W. Zegura. Silo,

Rainbow, and Caching Token: Schemes for Scalable, Fault Tolerant

Stream Caching. IEEE Journal on Selected Areas in Communications,

20(7):1328-1344, September 2002.

[11] Y. Chawathe, S. McCanne, and E. Brewer. An Architecture

for Internet Content Distribution as an Infrastructure Service.

http://www. cs. berkeley. edu/yatin/papers/scattercastps.

[12] S. Chen, B. Shen, S. Wee, and X. Zhang. Designs of High Quality

Streaming Proxy Systems. In Proceedings of the IEEE INFOCOM 2004,

Hong Kong, March 2004.

[13] S. Chen, B. Shen, Y. Yan, S. Basu, and X. Zhang. SRB: Shared Running

Buffers in Proxy to Exploit Memory Locality of Multiple Streaming

Media Sessions. In Proceedings of the 24th International Conference

on Distributed Computing Systems (ICDCS'04), Tokyo, Japan, March

2004.

[14] Y. Cui, B. Li, and K. Nahrstedt. oStream: Asynchronous Streaming

Multicast in Application-Layer Overlay Networks. IEEE Journal on

Selected Areas in Communications, 22(1), January 2004.

[15] G. B. Dantzig. Linear Programming and Extensions. Princeton Uni-

versity Press, 1963.

http://www.bittorrent.com
http://www

BIBLIOGRAPHY 97

[16] S. G. Dykes and K. A. Robbins. A Viability Analysis of Cooperative

Proxy Caching. In Proceedings of the IEEE INFOCOM 2001, April

2001.

[17] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Incentive techniques

for peer-to-peer networks. In Proceedings of the ACM Conference on

Electronic Commerce (EC，04)�May 2004.

[18] H. Garcia-Molina. Elections in A Distributed Computing System. IEEE

Transactions on Computers, 31(l):48-59, January 1982.

19] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge. Incentives

for sharing in peer-to-peer networks. In Proceedings of the ACM Con-

ference on Electronic Commerce (EC,01), Tampa, Florida, 2001.

[20] L. Guo, S. Chen, S. Ren, X. Chen, and S. Jiang. PROP: A Scalable

and Reliable P2P Assisted Proxy Streaming System. In Proceedings of

the 24th International Conference on Distributed Computing Systems

(ICDCS'04), Tokyo, Japan, March 2004.

[21] M. Gupta, M. Ammar, and P. Judge. A reputation system for peer-

to-peer networks. In Proceeding of International Workshop on Network

and Operating Systems Support for Digital Audio and Video (NOSS-

DAV'03), 2003.

[22] R. Gupta and A. K. Somani. A pricing strategy for incentivizing selfish

nodes to share resources in peer-to-peer (p2p) networks. In Proceedings

of the IEEE International Conference on Networks, Singapore, 2004.

[23] A. Habib and J. Chuang. Incentive mechanism for peer-topeer media

streaming. In Proceedings of the International Workshop on Quality of

Service (IWQoS，04), 2004.

24] G. Hardin. The tragedy of the commons. Science, 162:1243-1248, 1968.

BIBLIOGRAPHY 98

[25] L. He and J. Walrand. Pricing and revenue sharing strategies for in-

ternet service providers. In Proceedings of the IEEE INFO COM 2005,

Miami, USA, 2005.

[26] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava. PROMISE:

Peer-topeer Media Streaming using CollectCast. In Proceedings of the

ACM Multimedia, November 2003.

[27] M. M. Hefeeda, B. K. Bhargava, and D. K.-Y. Yau. A Hybrid Ar-

chitecture for Cost-Effective On-Demand Media Streaming. Computer

Networks, 44(3):353-382, February 2004.

[28] M. Hofmann, T. E. Ng, K. Guo, S. Paul, and H. Zhang. Caching Tech-

niques for Streaming Multimedia over the Internet. Technical Report,

April 1999, Bell Labs.

[29] A. T. S. Ip, J. Liu, and J. C. S. Lui. Copacc: A cooperative proxy-client

caching system for on-demand media streaming. In Proceedings of the

IFIP Networking 2005, May 2005.

[30] J. Jiang, H. Bai, and W. Wang. Trust and cooperation in peer-to-peer

systems. In Proceedings of the Grid and Cooperative Computing (GCC

2003), 2003.

[31] N. Katoh, T. Ibaraki, and H. Mine. Notes on the Problem of the

Allocation of Resources to Activities in Discrete Quantities. Journal of

Operational Research Society, 31:595-598, 1980.

[32] Kazaa. http://www.kazaa.com.

[33] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct

search: new perspectives on some classical and modern methods. SI AM

Review, 45(3):385-482, 2003.

http://www.kazaa.com

BIBLIOGRAPHY 99

[34] E. Kusmierek, Y. Dong, and D. H.-C. Du. Loopback: exploiting collab-

orative caches for large-scale streaming. In Proceedings of the Twelfth

Annual Multimedia Computing and Networking (MMCN'05), Califor-

nia, USA, 2005.

[35] J. Liu and J. Xu. Proxy Caching for Media Streaming over the Internet.

IEEE Communications, August 2004. (to appear).

[36] S. Lui, K. R. Lang, and S. Kwok. Participation incentive mechanisms

in peer-to-peer subscription systems. In Proceedings of the 35th Annual

Hawaii International Conference on System Sciences^ 2002.

[37] R. T. B. Ma, S. C. M. Lee, J. C. S. Lui, and D. K. Y. Yau. Incentive re-

source distribution in p2p networks. In Proceedings of the International

Conference on Distributed Computing Systems (ICDCS 2004), Tokyo,

Japan, 2004.

38] Z. Miao and A. Ortega. Scalable Proxy Caching of Video Under Stor-

age Constraints. IEEE Journal on Selected Areas in Communications,

20(7):1315-1327, September 2002.

[39] A. H. Mohamed M. Hefeeda and B. Bhargava. Cost-profit analysis of a

peer-to-peer media streaming architecture. Technical report, CERIAS

TR 2002-37, Purdue University, 2003.

40] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai.

Distributing Streaming Media Content Using Cooperative Networking.

In Proceeding of International Workshop on Network and Operating

Systems Support for Digital Audio and Video (NOSSDAV，02), May

2002.

[41] K. Ranganathan, M. Ripeanu, A. Sarin, and I. Foster. To share or

not to share: An analysis of incentives to contribute in collaborative

BIBLIOGRAPHY 112

file sharing environment. In Workshop on Economics of Peer-to-Peer

Systems 2003, 2003.

[42] S. Sen, J. Rexford, and D. Towsley. Proxy Prefix Caching for Multime-

dia Streams. In Proceedings of the IEEE INFOCOM 1999, New York,

NY, March 1999.

[431 N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies

with Rocketfuel. In Proceedings of the ACM SIGCOMM，02, August

2002.

[44] K. Tamilmani, V. Pai, and A. Mohr. Swift: A system with incentives

for trading. In Proceedings of the Second Workshop on the Economics

of Peer-to-Peer Systems, 2004.

[45] D. A. Tran, K. A. Hua, and T. Do. ZIGZAG: An Efficient Peer-to-peer

Scheme for Media Streaming. In Proceedings of the IEEE INFOCOM

2003, San Francisco, CA, USA, April 2003.

[46] B. Wang, S. Sen, M. Adler, and D. Towsley. Optimal Proxy Cache

Allocation for Efficient Streaming Media Distribution. In Proceedings

of the IEEE INFOCOM 2002, New York, June 2002.

[47] J. Wang. A Survey of Web Caching Schemes for the Internet. ACM

Computer Communication Review (CCR), 29(5), October 1999.

[48] W. Wang and B. Li. To play or to control: A game-based control-

theoretic approach to peer-to-peer incentive engineering. In Proceedings

of the International Workshop on Quality of Service (IWQoS '03).,

2003.

[49] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and

H. M. Levy. On the Scale and Performance of Cooperative Web Proxy

Caching. In Proceedings of the SOSP'99, December 1999.

BIBLIOGRAPHY 113

[50] D. Wu, Y. T. Hou, and Y.-Q. Zhang. Transporting Real-time Video

over the Internet: Challenges and Approaches. Proceedings of the IEEE,

88(12), December 2000.

[51] K.-L. Wu, P. S. Yu, and J. L. Wolf. Segment-Based Proxy Caching of

Multimedia Streams. In Proceedings of the 10th international confer-

ence on World Wide Web (WWW-10), Hong Kong, May 2001.

[52] S. Ye and F. Makedon. Collaboration-aware peer-to-peer media stream-

ing. Ill Proceedings of the ACM International Conference on Multime-

dia, New York, USA, 2004.

[53] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to Model an

Internetwork. In Proceedings of the IEEE INFOCOM 1996, SF, CA,

March 1996.

[54] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum. Donet/coolstreaming: A

data-driven overlay network for live media streaming. In Proceedings

of the IEEE INFOCOM 2005, Miami, USA, 2005.

[55] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Ku-

biatowicz. Bayeux: An Architecture for Scalable and Fault-tolerant

Wide-area Data Dissemination. In Proceeding of International Work-

shop on Network and Operating Systems Support for Digital Audio and

Video (NOSSDAV，01), NY, June 2001.

CUHK Libraries

0 0 4 2 7 8 8 9 9

