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Abstract 

As new generations of microprocessors are to be developed, the speed gap between 

main memory and new processors is widened. To bridge the gap, fast but small 

size of cache memory was introduced. When the feature size of transistor in 

microprocessor is reduced, CPU designers can pack the cache memory into the 

same silicon die as the processor, they labeled the cache memory as first level (L1) 

cache. On the circuit board holding the microprocessor, system designers added 

another level of cache memory on the circuit board to reduce apparent memory 

latency, and it is labeled second level (L2) cache. The next logical step should 

be the integration of second level cache on the same chip as the microprocessor. 

The conventional usage of cache memory is by storing frequently used data 

in the cache, and when later retrieval is performed, the speed will be that of the 

fast cache memory, instead of the slower main memory. This behavior is termed 

"on-demand fetch". The saving in waiting time occurs only when the same data 

is referenced the second and later times. 

Rather than fetching on-demand, there are useful signals on the CPU which 

both the first and second level caches can make use of, in order to make predictions 

about future memory references of the processor, the cache memory can fetch 

those data from the main memory in advance, this introduces the notion of Cache 

Prefetching. Prefetching is risky, as if the prefetch is wrong, it does not only cost 

a waste of time for the prefetch, but, the wrong prefetch may replace a piece 
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of useful data that will be referenced by the processor later, because the cache 

memory is small in size. Therefore, an accurate prefetching is desirable. The 

reference pattern of the processor ultimately depends on the running program, 

therefore, with sufficient information from the running program, the cache system 

should be able to make accurate prefetching. 

In this dissertation, 13 different prefetching algorithms would be presented, 

among them five are new prefetching algorithms proposed in this thesis, with 

the reminding eight were proposed by other papers. One of the new prefetch-

ing algorithms proposed in this dissertation is Source Index Register Prefetching, 

it is a hardware prefetching algorithm which does not depend on the support 

of language compiler. Source Index Register Prefetching has similar or better 

performance compare with one of the regarded hardware prefetching algorithms 

proposed by Dr. Chen Tien-Fu and others in [CB92] called RPT. Source Index 

Register Prefetching has a substantial improvement on hardware overhead com-

pare with RPT. One of the major achievements from the Source Index Register 

Prefetching is the choice of index register in a machine instruction as index to the 

stride value table, instead of instruction address as used by the RPT. The selec-

tion of index register in Source Index Register Prefetching lowers the hardware 

overhead and guarantees the good performance of that algorithm. 

The memory access time by using the new prefetching algorithms can be 

reduced by more than 90% of the “on-demand fetch". The average saving in 

memory access time for the new prefetching algorithms is around 30%. 

Another major achievement in this study was the inclusion of Cache Line 

Concept in managing on-chip level one and level two cache. The use of line 

concept takes into consideration the different block sizes as commonly found on 

L1 and L2 cache. By using a single prefetching unit, and combined with Cache 

Line Concept, the prefetch behaviors for L1 and L2 cache will be different, and 
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they are tuned to the parameters for that particular level of cache. The single 

cache management unit actually ties both L1 and L2 cache together, and they 

work coherently to serve data that will be referenced in a short span of time. 

The unified cache management is beneficial to CPU designers as the prefetch-

ing algorithm used depends on CPU signals, that electrical loading is limited. 

One cache management unit means there will be just a single set of CPU signals 

running from the CPU core to the unit, and the inclusion of second level cache 

will not add further electrical loading to the CPU core logic. 
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Chapter 1 

Introduction 

The disparity between speed of microprocessors and main memory has been wors-

ened in the last decade. With today's technology, typical CPUs like UltraSparc 

runs at 167MHz [Gwe94], MIPS R10000 processor runs at 275MHz [AC95], Digi-

tal's Alpha 21164 runs at 333MHz [Ban95]. These clock rates correspond to cycle 

time of 5.9ns, 3.6ns and 3ns respectively. However, the random access time for 

typical transistor based dynamic memory is about 60ns [Bol94]. If a datum is 

to be retrieved from main memory, the processor will be stalled for 10-20 cycles. 

That means a degradation of performance in one order of magnitude. The situ-

ation would be even more demanding when UltraSparc, MIPS R10000 and DEC 

Alpha 21164 can execute at most four instructions [Gwe94] [AC95] [Ban95] per 

cycle. 

To bridge the speed gap between microprocessors and main memory, fast 

memory is inserted between the processor bus and the main memory. This type 

of memory is called cache memory [Smi82]. However, due to high cost to produce 

cache memory, its size is usually limited. The performance of the overall computer 

system can be improved if instructions and data that are to be referenced are kept 

in the cache memory [Prz90]. The less frequently used data are stored in the main 

memory. 
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1.1 Cache Memory 

In order to feed a processor with enough instructions and data without stalling, 

it is typical to include cache memory in the system design. Most modern mi-

croprocessors have on-chip cache memory implemented. UltraSparc has a 16k 

Bytes cache memory for instruction and a 16k Bytes cache memory for data 

Gwe94]. Intel's Pentium has 8k Bytes instruction cache and 8k Bytes data cache 

:CTR93]. MIPS R10000 has 32k Bytes instruction cache and 32k Bytes data 

cache [AC95]. These on-chip cache memory designs match the speed of the mi-

croprocessor [AC95] in general. If all instructions and data can be accessed from 

the on-chip cache, the processor can execute programs in high speed. 

The working principle of cache memory depends on locality, and there are two 

kinds of them. Temporal locality refers to the expectation that instructions and 

data that are currently in use, will be referenced again in the near future. Spatial 

locality refers to the likelihood of adjacent access to memory in a short span of 

time [Prz90]. The locality feature in a program depends on the general sequential 

execution flow and loops inside it. When requested instructions or data can be 

found in the cache, the processor can retrieve from the cache instead of from the 

main memory. There will be a saving of time, which is equal to the difference 

of access timing between the cache and the main memory. If the majority of 

processor memory requests can be satisfied from the cache, the memory latency 

as experienced by the processor will be that of the access time of the cache, 

instead of the slower main memory. 

Another layer of cache memory can be implemented on the system board level, 

which is called second level cache. Second level cache is usually larger in size but 

with a slower access time compare with the on-chip first level cache. There are 

newer generation processors with on-chip second level cache, such as DEC Alpha 

21164 and Intel Pentium Pro, whereas other processors have on-chip second level 
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cache controller, such as MIPS R10000, Sun UltraSparc I, and IBM/Motorola 

PowerPC 620. 

1.2 System Performance 

The performance of a computer system depends on the length of time that the 

CPU spent on computation and the time spent on moving data to/from memory. 

The total of the above adds up to a figure in number of clock cycles that the 

computer system used to execute a program. This figure can be used to show 

the performance of a computer system [HP90]. However, in order to compare 

performance across different programs, another measurement, which should be 

independent of the running program, is necessary. Cycles Per Instruction (CPI) 

is such a measurement that is independent of the complexity of the running 

program. CPI is defined as the number of CPU clock cycles for a program to run 

divided by the instruction count for that program [HP90]. 

For non-superscalar processor, the upper limit of CPI is 1. When CPI is 1, 

that means the processor can finish an instruction every cycle. For superscalar 

processor, as there are more than one function units in the CPU, it can process 

a few instructions in parallel. In theory, the upper limit of CPI of superscalar 

processor can be smaller than one, the limit should be the inverse of the maximum 

number of instructions that can be issued per cycle. 

1.3 Cache Performance 

There are a few quantities which can be used to measure cache performance. 

One of them is cache hit ratio (or hit rate, if the quantity is expressed as a pure 

number). Hit ratio is defined as the percentage of memory requests that can 

be found (a hit) in the cache [Prz90]. The upper limit of hit ratio is 100%, at 
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that time, all memory references can be satisfied by the cache memory, and the 

memory latency will be the access time of the cache. However, as the cache size 

is small compare with the main memory, it is seldom to have 100% hit ratio. For 

hit ratio lower than 100%, the memory latency can be calculated by the following 

formula: 

latency 二 hit rate * cache access time 

+(1 — hit rate) * lower level memory access time 

Hit rate can be used as a rough comparison guideline for memory hierarchy 

performance. The higher the hit rate, it is expected the system will have a higher 

performance. Hit rate is inherently easy to find by simulation, as the system has 

only to determine whether a memory reference is a hit or a miss in a cache. 

Due to the fact that the memory latency depends not solely on the hit rate, 

but also the cache access time, and lower level memory access time, for different 

computer systems, it will be misleading to compare hit rate for performance 

comparison. Eventhough a system may have a higher hit rate, we cannot conclude 

that it will have a higher performance, because the lower level memory access time 

is unknown. In [BC91], another measurement called Memory CPI (MCPI) was 

proposed. Memory CPI is the average number of cycles that the processor spent 

to retrieve a word from the memory hierarchy. For the MCPI figures reported in 

this dissertation, they are calculated by the following formula: 

MCPI = CPI — CPI with infinite fast memory 

CPI with infinite fast memory was found by stimulating a computer system 

with a 100% first level cache hit ratio, and the latency for the first level cache 

is zero cycle. That means, whenever the processor requests a word from the 

memory, the requested word will be presented to the processor without delay. 
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The CPI with infinite fast memory shows the processing computation overhead 

of the program, which that figure depends on the complexity of the running 

program. MCPI is a fair comparison for cache performance, because it does not 

depend on the number of instructions in the program, and it does not depend on 

the time required by the processor to do arithmetic calculations also. Assumed, 

the clock rate of two systems are equal, their MCPIs can be compared directly, 

whereas, the lower the MCPI, the faster the memory response. 

MCPI is harder to find by simulation compare with the hit rate, as the sim-

ulation has to be done in a cycle-by-cycle basis. Not only whether a memory 

access is a hit or a miss has to be determined, but the exact number of cycles 

that spent to fetch that memory request is required. When there are a number 

of memory levels in the system, and all these memory levels can initiate transfer 

in parallel, the demand on resolution of the simulator is great. 

There was an analytical model presented in [MeM92], which used a simplified 

model to calculate the CPI with certain cache configuration parameters. However, 

that model is hard to extend to cover a system with cache prefetching algorithm. 

Chang and Hsu in [ChH94] had proposed a method to reduce the overhead in 

simulating hit ratio. Obaidat and Khalid in [ObK95] refined hit ratio into Solo 

Hit Ratio, Local Hit Ratio and Global Hit Ratio. Lim, Bae, Jang, etc. did 

an analysis on worst case timing for a RISC processor using cache memory in 

LBJ95 . 

1.4 Cache Prefetching 

The performance of cache memory can be improved by cache prefetching. Cache 

prefetching is cache system initiated memory transfer, which the cache system 

predicts that the processor will access certain memory location in the near future. 
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When the cache prefetches are accurate, the hit rate of the cache system will be 

increased, and hence the MCPI can be reduced, because, more processor memory 

requests can be satisfied from the cache memory, instead of from the slower main 

memory. 

In general, the memory location to be prefetched can be found by two cate-

gories of methods. One is from cache hint instruction embedded in the running 

programming. These hint instructions are inserted by the language compiler. 

When the compiler detects a loop, the compiler can insert hint instructions to 

prefetch those data that will be used in the next iteration. Because, those hint 

instructions are inserted by compiler, this category of prefetching is called soft-

ware based prefetching. The accuracy of software prefetching is very high, as 

the compiler can perform rigorous analysis on the original source program, and 

the data to be accessed can be predicted with high precision. However, software 

based prefetching suffers from big overhead, as hint instructions are inserted in 

the program, they will in themselves increase the memory traffic and the pro-

cessor has to spend time to fetch those cache hint instructions, although it will 

perform nothing on those instructions. 

The other cache prefetching category uses pattern information from historical 

memory accesses. The cache management system keeps track of memory reference 

locations, and if a regular pattern is found, the later memory accesses can be 

predicted, and hence prefetching can be performed on those locations. This 

category is called hardware prefetching. Because there is no extra hint instruction 

in the program stream, there is no software overhead in hardware prefetching 

schemes. However, the performance of hardware prefetching algorithms depend 

on the ability to discover memory access patterns. It is one of the main goal of 

this dissertation to propose hardware prefetching algorithms for high performance 

cache system. 
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1.5 Organization of Dissertation 

Related studies of cache memory and multi-level cache hierarchy will be reported 

in the next chapter. Previous works on software based and hardware prefetching 

algorithms for cache will also be discussed. 

A multi-level memory hierarchy simulator was built to test prefetching al-

gorithms studied in this dissertation. A brief discussion of the features of the 

simulator will be presented in the third chapter. 

A few hardware prefetching algorithms for cache system are proposed in the 

forth chapter. The rationale to have a combined level one and two cache man-

agement system will be presented also in that chapter. 

Eight benchmark tests in the SPEC92 suite were used to measure the per-

formance of cache prefetching algorithms. In a particular benchmark, NASA7, 

as there are seven different programs inside it, a detail study on each program 

was done, and results gathered. All the benchmark results are to be presented in 

the fifth chapter. Total cycles consumed by each benchmark programs, Overall 

MCPI, partial MCPI due to Second Level Cache/Main Memory and hit rate for 

both level 1 and level 2 cache are included in that chapter. 

A conclusion on the achievement of this dissertation will be presented in the 

sixth chapter, and future directions are proposed in that chapter also. 

In the Appendix, data from the simulations are included there, and detail 

graphs of each benchmark tests can be found in that chapter. 
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Chapter 2 

Related Work 

In this chapter, research works done by other people would be summarized. 

Firstly, an introduction to the memory hierarchy used in a computer system 

would be discussed. Then, the configuration parameteres affecting the perfor-

mance of cache memory would be presented. One of the important properties 

that made cache memory works is the locality principle. The classification of it 

would be discussed. 

When cache memory does prove to work well in a broad range of programs, 

the reason why processor designers do not opt for a large on chip first level cache 

would be discussed. The trend is instead to implement on chip second level cache. 

Finally, three categories of cache prefetch algorithms would be presented at the 

end of this chapter. 

2.1 Memory Hierarchy 

If the memory references made by a processor to the memory system is truly 

random, the gain in performance by employing a small amount of faster memory 

complement with a large pool of slower memory will be minimal. Because the 

probability that the next memory reference will fall into the area contained in 
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the fast memory depends solely on the ratio of size of the faster memory to the 

slower memory. The assumption that the faster memory is small in size, makes 

the above probability small, and therefore, it will not be useful to improve system 

performance. 

From actual trace studies, we found that memory references are with patterns. 

We can make prediction to the forthcoming memory reference by history of previ-

ous memory references. Because of this property, if all the to-be-referenced data 

are stored in the faster memory, and the processor can access all the required 

data from that memory, there will be an appearance that the whole system is 

running out of the faster memory without knowing the existence of the slower 

memory. 

The faster memory is small in size, we still need the large pool of slower 

memory to hold programs and data. We just have to devise an algorithm to 

decide when we should promote a piece of data from the slower memory to the 

faster memory, and in turns, which piece of data in the faster memory is to be 

replaced. The algorithm is simply a comparison on the probabilities that which 

memory address will going to be accessed, and take the content of that memory 

address into the faster memory. 

By using similar arguments as above, we can have a hierarchy of memory 

layers, with the fastest memory and the smallest size at the top of the hierarchy, 

and each lower layer with progressively slower access time and larger in size. A 

hierarchy of layers is better than a two-layer architecture because system designers 

usually have more than two choices of memory with different cost/performance 

ratio and other physical characteristics. In general, the faster the memory, the 

higher the manufacturing cost and the converse is true for slower memory. Multi-

layer hierarchy is also desirable to minimize the penalty paid when a piece of data 

is requested by the processor but that cannot be found in the fastest memory. 
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With the backup of layers of progressively slower memory, it will have a high 

chance that the required data can be found in an intermediate layer instead of 

the lowest one. 

2.2 Cache Memory Management 

The configuration of cache memory can be classified by a few parameters. 

2.2.1 Configurat ion 

Block Size 

In order to manage a cache, it is seldom to use byte as unit to allocate memory 

in it, instead the whole cache is divided into cache blocks. The smallest unit to 

occupy in a cache is usually a block, although there are implementations of cache 

with sub-blocks. The size of a block is called block size, and in some literature, it 

is called line size. With a large block size, the number of blocks in a cache will be 

small, and vice versa. The hardware overhead to manage a cache, including the 

tag memory, valid bits, dirty bits, depends on the number of blocks. Therefore 

with a smaller block size, the overhead will be higher. 

It is common to have block size in a cache selected to be integer multiples of 

its data bus width. With a 64-bit data bus, the block size in a cache may be 8 

Bytes, 16 Bytes, 32 Bytes. The larger the block size, the higher the penalty when 

there is a cache miss. Because, the cache block allocated has to be fully filled 

from the lower level memory before the CPU can proceed to process, although 

there are implementations with "early available" feature, which the cache will 

selectively to load the portion of memory in the block that is requested by the 

processor. 

A block in a cache will act as a small look ahead buffer, because when the 
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CPU access a memory location in a block, the bytes ahead will also be fetched 

into the cache. If the memory access is going forward, the next reference can be 

done in the cache. Therefore, in general, a large block size will gives a higher 

hit rate for the cache. However, a large block size will decrease the number of 

available blocks in a cache, and more conflicts in allocating blocks are expected, 

this will decrease the usefulness of the cache. 

Set Associativity 

When there is a cache miss, a cache block will be allocated from the cache to hold 

the data to be transferred from memory. Which blocks can be selected to use 

depend on the associativity of the cache. For cache with associativity of one, or 

called direct mapped cache, there is only one block that can be selected. The block 

number is found by a simple modulus calculation from the miss address. When 

the set associativity is larger than one, the cache is called a set associative ccLche, 

the mapping function from address to cache block number will be one-to-many. 

When the processor requests a memory location, the same mapping function 

will be performed to find out the potential block which may hold the requested 

datum. The exact address of the memory reference will be compared with the 

tag value stored in the cache block, if there is a match, then that will be a cache 

hit. Because there is only one potential cache block per memory address in a 

direct mapped cache, the address comparison to be done is minimal. 

Direct mapped cache is the simplest to be implemented in hardware [Hil88], 

however, because there are many addresses in the main memory that will be 

mapped to a single cache block, there will be conflicts in using a cache block. 

The situation is bad especially when two data to be used in a program loop maps 

to the same cache block, then, these two data will replace each other in turns and 

causing a lot of cache misses. The situation can be improved by allowing more 
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than one cache blocks to serve a memory address. The number of blocks available 

to be used is called the associativity of the cache. With a cache of associativity 

two, that means, for every memory address, there are two blocks in the cache 

that can hold the data. The two blocks are termed a set, in a set associative 

cache. 

Set associative cache poses difficulties in hardware implementation. When 

the processor requests a memory location, the cache has to check all the blocks 

that are allowed to serve that location in order to determine whether it is a 

cache hit [Hil88]. In order to speed up the access, all the address comparisons 

have to be done in parallel. With a 4-way set associative cache, there should 

be four comparators in the cache to make address comparisons. It is a hardware 

difficulty to have a high number of cache blocks in a set, because each comparator 

will impose electrical loading on the CPU address bus, and the maximum loading 

allowed is usually a limited figure. 

In general, for first level cache, due to it is in the time critical path, the set 

associativity will not be a large number. However, in second level cache, it may 

be possible to implement set associative cache there. Yang and Adina in [YaA94 

suggested an innovative method to choose the set associativity for cache, in order 

to minimize the chance for conflict miss. 

Cache Size 

The size of the cache memory is usually small. The cache size is determined by 

the block size, number of sets and associativity of the cache. The apparent cache 

size that can be utilized by programs can be found by the following formula: 

cache size = block size * associativity * number of sets 

The larger the cache size, usually, it will give the better performance. However 

with the same cache size, the difference in block size, associativity and number 
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of sets will give different cache performance [PHH88]. Moreover, there is hard-

ware overhead in implementing the cache tag memory, which is the area to hold 

the memory address of where the data in the cache block are come from. And 

additional memory has to be reserved to implement valid bits and dirty bits if 

the cache is a write back cache. These overheads are usually not reported in the 

cache size, but they do consume area in the CPU die. 

When the first level cache is partitioned into two parts, namely Instruction 

cache (I-cache), and Data cache (D-cache), the optimal size for them are not 

necessarily the same. Stone, Turek, etc. in [STW92] studied the conditions to 

find out a good allocation of size to respective caches. Boleyn, Debardelaben, 

etc. in [BDT93] studied the usage of a split data cache designed for superscalar 

processors, in particular how the integer unit and the floating point unit in the 

CPU can access the data cache in parallel. 

2.2.2 Replacement Algorithms 

With direct mapped cache, if a piece of data is requested by the processor, and the 

memory location is not currently held in the cache, there is only one block suitable 

to hold that data. If the cache block selected is occupied by some other memory 

locations, the original data will be replaced. As there is no choice for which block 

is going to be replaced, there is no alternate replacement algorithm. However, 

with set associative cache, there are more than one blocks which can hold the 

requested data, the replacement algorithm determine which block is selected for 

replacement. In general, there are two types of replacement algorithm for set 

associative cache. 
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Least Recently Used 

Least Recently Used replacement algorithm depends on the belief that the cache 

block which is least recently accessed will also have the least chance to be used 

again in the future. This assumption is usually true except in wield situations 

where the number of blocks required is larger than the set associativity of the 

cache. 

In order to implement LRU replacement algorithm, the cache system has to 

keep track to the last access time of each cache block. By using a time tag for 

each cache block, when it is necessary to do a block replacement, the block in 

a set with the smallest time tag will be selected. To memorize a big time tag 

field is usually a waste of memory space, therefore, most processors implements 

pseudo LRU replacement algorithm. The size of the time tag field is small, and 

the cache memory will periodically clear out all time tags in the cache. Then, 

only a running counter with a few values is used to mark the last access time. 

With 3 to 4 bits of time tag fields, the performance of the cache will be very close 

to the true LRU replacement algorithm. 

Random Replacement 

Another category of replacement algorithm is random replacement. When a cache 

block has to be selected for replacement in a set associative cache, the cache 

system will select a random block in the set for replacement. Random replacement 

does not depend on the time tag field, and therefore to use it, the time tag field is 

not required in the cache system. With a sufficiently large cache, the performance 

of random replacement is very close to LRU algorithm. 

There are other replacement algorithms designed for specific situations, such 

as First In First Out, or Last In First Out. Westerholz and Honal, etc. proposed 

in [WHP95] three methods to use processor runtime information to control the 
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cache replacement algorithms. These replacement algorithms are not covered in 

this thesis. 

2.2.3 Write Back Policies 

When a processor does only read operations on memory, the data content kept in 

the main memory will be the same as those kept in the cache. There is nothing 

to do when a cache block has to be replaced, the data content in the cache block 

can simply be discarded, because the main memory still has a copy of the latest 

value. However, when there are processor updates to certain memory locations, 

we have to deal with how the updated values are to be propagated to the main 

memory. Jouppli in [Jou93] studied the effect of different write policies including 

Write Through and Write Back cache. 

Write Through Cache 

Write Through is the simpler type of update policy. For every processor update 

to memory location, even when it is a cache hit, the updated value will write both 

to the cache memory and the main memory. The processor will only be allowed 

to proceed when both the cache update and main memory update are completed. 

In this type of update policy, the values kept in main memory are always the 

most update version, and the cache does not have to keep track whether there is 

processor update. On cache block replacement, the block selected to be replaced 

can simply be discarded. 

The benefit of Write Through cache is a simpler hardware implementation, 

however it suffers from the fact that the cache will only be useful to shorten 

memory latency for read operations. Write operations are always treated as 

cache miss in terms of memory latency. From trace analysis, we found that there 

were a lot cases that the same memory address is repeatedly updated and only 
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the last value is useful to the result. The processor performance can be improved 

if the cache writes to the main memory only when that cache block is replaced. 

Write Back Cache 

Write Back cache handles memory updates from processor more gracefully than 

the Write Through scheme. The updated values are stored only in the cache 

blocks and at the same time, a flag in the cache block called Dirty Bit is set. 

When that cache block is selected to be replaced, if the block is dirty as indicated 

by the Dirty Bit, the content in the cache block will be transferred to the main 

memory. If the processor updates a particular memory location in the cache for 

many times, all the updates will be made in the cache memory and the latency 

will be the speed of the cache. 

The Write Back scheme should give a superior performance compare with 

Write Through one. However, if there are multiple processors sharing the same 

main memory but they have corresponding private cache, there will be coherence 

problem. That is, the content in the main memory is not always the most updated 

version, and the private cache in each processor may have their own copy of 

'updated' values. 

2.2.4 Cache Miss Types 

Mark D. Hill in [Hil87] classifies cache miss into three categories. 

Compulsory Miss 

Compulsory Miss occurs when the processor references a memory location the first 

time. Assumed the cache memory supports on-demand fetch only, compulsory 

miss cannot be avoided, as it is the time when the data are read from the main 

memory and stored into a cache block. 
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Conflict Miss 

Conflict Miss occurs when two data are mapped to the same cache set, and they 

replace each other from the cache. With direct mapped cache, only one cache 

block is available to each memory address, and if two memory addresses which 

mapped to the same cache block are accessed, they will incur conflicts. With 

set associative cache, where there are more than one cache blocks in a set, the 

conflict miss will only occur when the number of data items mapped to the same 

cache set is greater than the set associativity of the cache. 

Capacity Miss 

Capacity Miss refers to the situation that the cache memory is not large enough 

to hold the working set of the program. The only way to reduce capacity misses 

is to increase the cache size. 

2.2.5 Prefetching 

Cache using on-demand fetching reduces the memory latency when the processor 

references a memory location the second time, when the content of that memory 

location is contained in the cache, then the access time for that location is of 

the speed of the cache. In order to further improve the memory access time, 

the cache system can initiate pro-active prefetching from the main memory. If 

the prefetched data are used by the processor in the future, the memory latency 

for the first access will also be the speed of the cache. Prefetching is workable 

as the processor does not access memory in constant pace. Usually, there are 

idle cycles when the processor is doing computation, and the memory bus is free. 

Prefetching algorithm makes use of these idle bus cycles, and transfer data from 

main memory to the cache. 

Just the same as processor initiated memory request, cache prefetching usually 
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consumes more than one cycle to complete the transfer of a cache block. There 

will be a situation when the cache is performing prefetching but the processor 

would make a memory request. In order to let the processor has the highest 

priority to retrieve the requested data, most cache prefetching algorithms will 

abort the prefetch transfer in place and give way to the processor memory request. 

Prefetching algorithm is one of the focus in this thesis, in later paragraphs, we 

will discuss some common cache prefetching algorithms. We are going to discuss 

the properties of memory reference pattern, including the nature of them, and 

the classification of patterns. 

2.3 Locality 

From program trace analysis, when a processor accesses a certain memory ad-

dress, there is a high probability that the memory references in the near future 

will fall into close vicinity of the current memory access, we call this property 

locality. Locality can be further classified into two types, one of them is related 

to space and is called Spatial Locality. The other one is related to time and is 

called Temporal Locality. 

2.3.1 Spatial vs. Temporal 

For machine instruction execution, there is very high tendency that the instruc-

tion reference pattern will be linear, which the memory address following the 

current one will be referenced in the next cycle. The exception will be some 

branch instructions. For conditional branches, the backward branch has a more 

than 80% of chance to be a taken branch due to most backward branches are 

actually the last statement in program loops. Whereas for a forward branch, the 

chance for the branch to be taken is around 50%. These forward branches are 
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usually instructions used in if-then statements. 

In general, with a current access to memory address a, the probability that 

a future memory access to address a + 8^ where 8 is a small integer, is very 

high. As 6 becomes larger, the probability for that address to be accessed will 

be diminished. The probability distribution across the memory address will have 

the shape as in figure 2.1. 

Probability Distribution of Future Access 

Probability 

E J 
a 

Linear Address 

Figure 2.1: Probability Distribution for Spatial Locality 

When the processor accesses memory address a, the cache memory should hold 

the contents from memory around a, then, the probability that the processor can 

find the future memory references in the cache will be high. We termed this kind 

of property Spatial Locality. The block size in a cache serves the spatial locality 

property by retrieving in advance some bytes around the referenced location. 

Other than instruction reference, data reference also exhibits spatial locality. 

In programs using matrices or arrays, it is common to have program loops to 
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process the whole matrix or array. The memory access pattern for data reference 

will follow the prediction of spatial locality. 

For instructions in a program loop, these instructions have a high chance to 

be used again in the next loop iteration. The probability depends on the loop 

iteration count. For some constants used in a program, the same data may be 

reused in the future. With the following code fragment: 

for (i=0; i<100; i++) 

a[i] = b[i] + c; 

The content in c is reused for 100 times and so do the instructions to be 

performed in the loop. When a memory location is accessed, the same location has 

a high probability to be accessed again in a short span of time. The probability 

for that location to be accessed will be decreased with time, that means, when 

a memory address is not accessed for a long time, that address will have a lower 

chance to be called in the near future. That property of memory reference is 

called Temporal Locality. The probability distribution of future access to the 

same address will have a shape of figure 2.2. 

When the processor accesses memory address a, the cache memory should 

hold the content in address a for future reference. When there is a short of space 

in the cache, the cache should replace the datum with the lowest chance to be 

accessed in the future. In general, the selected datum to be replaced will be that 

of the least recently used. 

2.3.2 Instruction Cache vs. Data Cache 

In order to make a fast processor, it is common to have separate instruction cache 

and data cache. There are a few reasons to support the split cache configuration. 

The first one is for memory transfer bandwidth consideration, with two separate 
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Figure 2.2: Probability Distribution for Temporal Locality 

caches serving instruction and data separately, the available memory transfer 

bandwidth is doubled compare with a unified cache. For machine instruction with 

data access, the processor has to fetch the instruction code and data to be accessed 

from memory. If the access path to instruction code and data is separated, both 

accesses can be carried out in parallel. In particular, the separation of instruction 

and data paths is called Harvard Architecture [Goo89 . 

The parameters for cache configuration that will give the best performance 

are not the same for instruction and data cache in general. 

From the above discussion, it is evident that for instruction cache, both the 

spatial locality and temporal locality will have dominant effect, and it will be 

seldom to have programs jumping around randomly in the code. The instruction 

cache should hold the next instructions to be needed, and the size of an instruction 
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is processor dependent. With today's RISC processor, the instruction size is 

usually 32-bit in length, the block size for instruction cache is best to be multiples 

of 32-bit. 

For data cache, the best block size depends on the data structure used in the 

program, and it will be varied from program to program. When a program uses 

small data, such as integers and floating point numbers, the optimal block size 

can be smaller, just to be enough to hold these small data. On the other hand, 

when a program processes big data records, the data cache block cache should be 

correspondingly larger. Therefore, in order to achieve optimal performance, the 

separation of instruction and data cache will allow for different parameters to be 

used. 

The third reason to have separate instruction and data cache is to avoid 

inter-displacement between instruction and data. The number of instructions in 

a program loop varies together with the data to be processed in that loop. In 

general, the size of instructions that will be frequently reused added to the size 

of data that will be referenced in a short span of time constitutes the working 

set for a program. If instruction and data cache is mixed together, it will have 

a situation that the fetching of some instructions may displace a portion of data 

already in the cache. By separation of instruction and data cache, these two 

types of memory will not be in conflict fighting for space in a cache. 

As data reference in a program may not exhibit the same locality property as 

instruction reference, Chen in [BC91] further classified the data access pattern 

into the following categories: 

Scalar Stride 

Stride is defined as the distance in address between a previous memory access 

and the current one. Scalar Stride refers to the situation when a simple variable 
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is used inside a program loop. In general, scalar access will occur when a constant 

is used, or a running total is accumulated to a memory address. The following 

program fragments show a scalar access to memory location holding variable c. 

for (i=0; i<100; i++) 

a[i] = b[i] + c; 

for (i=0; i<100; i++) 

c += a[i]； 

Zero Stride 

Zero stride refers to the situation when an element in an array is referenced 

repeatedly within a program loop. The difference between zero stride and scalar 

is that the subscript in the array of a zero stride access will not be changed in the 

program loop, but it may be changed outside the loop. The following program 

fragments show a zero stride access to memory location holding array c. 

for (i=0; i<100; i++) 

a[i] = b[i] + c[j]; 

for (i=0; i<100; i++) 

c[j] += a[i]； 

Zero stride and scalar access show the property of temporal locality, however, 

with sufficient number of registers in a CPU, the repeatedly referenced datum 

will usually be set aside in a CPU register, and the memory system will only be 

updated when the final result is saved. The repeat memory reference pattern will 

only be visible when the CPU cannot hold all the temporary results in registers 

and some of them has to be written out to memory. 
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Constant Stride 

Constant Stride means the address distance to the next memory reference is a 

constant compare with the previous memory access. This kind of pattern is 

typical for array or record access. As the current program loop may process only 

a single member in records, the data reference willjump in the forward direction 

with a constant distance between accesses. With the following code fragment, 

the memory access to array a and b shows the constant stride feature. 

for (i=0; i<100; i++) 

a[i] = b[i] + c; 

From main memory, the constant stride reference pattern can be shown in 

figure 2.3. 

The variable d is termed as the stride of the memory reference to array a 

(and D is the stride for array b). If d is smaller than the block size of the cache, 

that means in each cache block, there are more than one elements in it, then 

the transfer of the cache block provides prefetching property for the memory 

reference. If data consumption rate for the processor is slower than a cache 

block filling time, the memory latency for each reference will be that of the cache 

access time, except when a reference is started at the head of a cache block, 

at that location, the memory latency will be that of a cache miss, or the main 

memory access time. 

When the stride d is larger than the cache block size, for every memory 

reference, if the content of the memory location is not already in cache, there will 

be a cache miss, the memory latency will be very poor for this type of memory 

accesses. In order to improve the situation, we can make use of a larger block 

size, in order to encapsulate more than one elements in a cache block, however, 

it may be impractical, as the stride d may be a very large number, approaching 
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Figure 2.3: Constant Stride Reference Patterns 

or even larger than the cache size, it will not be good to have a small number of 

blocks in a cache, as the granularity is too coarse. 

Another method to improve memory latency for large stride access is through 

prefetching. In this thesis, most prefetching algorithms target on the constant 

stride access pattern, and their effect will be highly visible in large stride cases. 

Irregular Stride 

The third type of memory access pattern is irregular stride. In programs using 

linked list or memory pointer operation, the stride value will vary from time to 

time. The following code fragment shows an irregular stride access on ptr. 

for (ptr=start； ptr!=NULLj ptr=ptr->next) 

ptr->memberl = ptr->member2 + ptr->member3; 
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As a particular record address depends on the previous record's next pointer, 

we cannot make prediction on where the next record is until that one is accessed 

by the processor. There are studies to tackle irregular stride access pattern with 

prefetching, but they are out of the scope of this thesis. 

2.4 Why Not a Large L1 Cache? 

When today's processors can have tens of millions of transistors on a single die, 

it will be natural to use part of the available transistors to implement on-chip 

cache [Mel95]. On-chip cache has a few benefits over ofF-chip cache. On-chip 

cache has a shorter physical distance to the CPU core, and the transmission 

time spent on electrical wires is shortened. On-chip cache usually has a wider 

bus width compare with ofF-chip one, because there is lesser constrain in wiring 

inside a chip, then to go ofF-chip. The current generation of processors already 

has hundreds of pins to connect with the main board, it will be very difficult to 

add more pins to the packaging of chips. On-chip cache can make use of dedicated 

bus to communicate with CPU core, but for the same reason as the above, it may 

not be possible to reserve a large number of pins for dedicated ofF-chip cache bus. 

Whereas on-chip is justifiable, but why not to build a large on-chip single 

level cache? In fact, it is impractical to build single level cache up to certain size 

with some technologies (eg. GaAs) [BW88]. We will discuss two considerations 

in the following paragraphs. 

2.4.1 Critical Time Path 

From a hardware perspective, a large size cache is actually made up of smaller 

size memory chips. All these memory chips exert electrical loading onto the 

address bus, data bus, and control bus of the CPU core. However, the CPU core 
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is usually designed to drive a specific number of electrical loadings only. In order 

to drive a large number of chips, a component called bus driver can be inserted 

between the bus and the memory chips. Bus driver can boast the driving power 

of the bus to a few times of the original value. But bus driver incurs timing 

delay. With today's processor of running frequency around lOOMHz, each cycle 

is merely lOns, and the timing delay of bus driver is in the range of a few nano 

second. With a really large cache, it may require a two-tier or more bus drivers, 

which a clock cycle may already be spent in them. This factor limits the size of 

first level cache, because the memory latency will be significantly increased by 

inserting one more cycle per memory access. 

A better solution is to use multi-level cache hierarchy. The first level cache 

is kept to be small in size, and serving the most likely requested data. Another 

layer of cache serves the less likely requested data. Then, the number of chips on 

the first level cache can be kept to a minimum, the number of bus drivers and 

hence the timing delay can be reduced. 

2.4.2 Hardware Cost 

To build memory cells with access time in the nano second range is expensive. For 

dynamic memory cell, only a capacitor is required to hold a binary bit of datum. 

But dynamic memory cell is slow in access time, with current technology, the 

access time is around 50-70 nano second. Static memory cell has a faster access 

time. With 2 transistors per binary bit, they can build a memory cell with access 

time in the range of 20 nano second. In order to build still faster memory cells, 

a 6-transistor architecture can be used. However, the number of transistor count 

will be tripled. 

The first level cache is usually multiple-ported in current design, in order to 

let different units in the CPU to access the first level cache in parallel. To build 
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multiple-ported cache, one way is to duplicate the memory cells, then each bank 

of memory cells can serve a request from different units. The result is that, in 

order to make a very fast first level cache matching the cycle time of the CPU and 

to be multiple-ported, a lot of transistors are used to build memory cells. The 

number of transistor count to build a single memory cell for first level cache may 

be a few times the required number of transistor to build a second level cache. 

Therefore, only the most frequently requested data are justified to be placed into 

the first level cache. Other data will be best to be placed into slower, but cheaper 

to build, second level cache or main memory [Wan89 . 

2.5 Trend to have L2 Cache On Chip 

The above discussion shows why a large on-chip level one cache is not practical, 

instead with enough transistor budget, CPU designers tend to build multi-level 

cache on the CPU die. On chip second level cache is beneficial to the processor 

performance, as firstly, the total cache size can be increased without adding 

extra electrical loading on the CPU core. Secondly, the second level cache can be 

made of cheaper but slower design, because the majority of memory references 

are expected to be served by the first level cache. Thirdly, the on chip second 

level cache can make use of CPU signals that will not be available off chip. These 

CPU signals include current program counter, instruction type, addressing mode, 

name of CPU registers in use for the current instruction, branch prediction from 

the branch unit, prefetch queue information, etc. These CPU signals will be 

too cumbersome to be available off chip, as the number of pins required will be 

too large. These signals can help in making prediction for future CPU memory 

access. New prefetching algorithms can be devised for the cache to prefetch 

memory locations to be required in the future. 
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There were previous studies ([SL88], [MeM95], [TaS94], [Liu94], [HaJ92], 

:NeA91], [Sez93], [ChK91], [BuK90], [APB92], [OyW92], [JoW94]) for perfor-

mance on multi-level cache hierarchy, although they may not focus on the on 

chip second level cache design. For on chip second level cache, there were studies 

in [Hu094], they tried to find out the best configuration parameters for on chip 

multi-level cache, but not suggesting cache prefetching algorithm. The necessity 

to have more than a single level of cache to bridge the speed disparity is there 

for a long time. 

The following are a few examples that commercially available processors have 

on-chip second level cache. 

2.5.1 Examples 

DEC Alpha 21164 

Digital's Alpha 21164 CPU has an 8k Bytes on-chip first level instruction cache, 

with 32 Bytes blocks. The first level instruction cache is direct mapped. There 

is also an 8k Bytes on-chip first level data cache. The block size is 32 Bytes, and 

the update policy is write through. There are two read ports on the data cache, 

that means two memory references can be outstanding simultaneously. 

The Alpha 21164 CPU also contains a second level cache of 96k Bytes. The 

second level cache is a mixed cache shared by instruction and data. The on chip 

second level cache uses write back update policy. The on-chip second level cache 

uses 64 Bytes blocks and it has a set associativity of 3. 

The following is an extraction from the designers of Alpha 21164 CPU to 

justify the reason to have two level cache architecture instead of a large single 

level cache. 

"Two-level Data Cache. Many workloads benefit more from a 

29 



reduced latency in the data cache than from a large data cache. We 

considered a single-level design for a large data cache. For circuit 

reasons, physically large caches are slower than small caches. To 

achieve a reduced latency, we chose a fast primary cache backed by 

a large second-level cache. As a result, the effective latency of reads 

is better in the Alpha 21164 CPU chip than it would have been in a 

single-level design. 

The two-level data cache has other benefits. The two-level design 

makes it reasonable to implement set associativity in the second-level 

cache. Set associativity enables power reduction by making data set 

access conditional on a hit in that set. The two-level design also al-

lows the second-level cache to hold instructions, which makes a larger 

instruction cache unnecessary." 

The Alpha 21164 CPU also contains logic to control off-chip cache. If that 

level of cache is implemented, it will become third level cache. The off-chip cache 

can have size range from lMBytes to 64MBytes. The third level cache is direct 

mapped, as the number of pins available on the CPU package is limited. The 

third level cache uses write back update policy. 

Intel Pentium Pro 

The Intel Pentium Pro contains an 8k Bytes on-chip instruction cache and an 8k 

Bytes on-chip data cache. The two on-chip first level caches are non-blocking, 

means the processor can proceed to process other instructions even when there 

is a cache miss. Only when there is dependency on the cache miss data that the 

processor has to stall and wait for the cache miss to be served. 

The Intel Pentium Pro processor also contains a 256k Bytes or a 512k Bytes 

on-package second level cache. The second level cache is actually implemented 
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on a separate die as the CPU core, however, all the CPU core together with the 

second level cache dies are housed in a single package. The 2-die approach is a 

tradeoff between size of second level cache and the ease of manufacturing. The 

256k Bytes second level cache is made of 15.5 million transistors and the CPU 

core is made of 5.5 million transistors. If all these 21 million transistors are made 

on the same die, the yield will not be commercially feasible for current technology. 

On the other hand, in order to make a large second level cache, a large number 

of transistors is required. The same packaging technique to house the CPU core 

and the second level cache makes the communication between them as fast as 

possible. And due to wire bondings are used to connect the 2 dies, there are 

more signals that can be propagated from the CPU die to the second level cache, 

because connection pins are not required. 

2.5.2 Dedicated L2 Bus 

There are some current microprocessors with on-chip second level cache control 

logic, but there is no memory cell implemented on chip. This can be a balance 

point to have the benefits of on-chip CPU signals for second level cache manage-

ment but does not incur the production difficulties to implement a large number 

of memory cells. The following are examples of this category of processors. 

MIPS R10000 

The MIPS R10000 processor has a 32k Bytes 2-way set associative, 2-way inter-

leaved on-chip first level data cache with LRU replacement policy. The block size 

of the on-chip data cache is 32 Bytes. The update policy of the on-chip data 

cache is write back. The MIPS R10000 also has a 32k Bytes 2-way set associative 

instruction cache. The block size of the on-chip instruction cache is 64 Bytes. 

There is also a dedicated 128-bit second level cache bus with all required signals 
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to drive off-chip static memory chips. The cache management logic for the sec-

ond level cache is built on chip. The cache implemented on the MIPS R10000 

processor is non-blocking. 

PowerPC 620 

The IBM/Motorola PowerPC 620 processor has a 32k Bytes 8-way set associative, 

non-blocking data cache. The on-chip data cache can be configured to use write 

back or write through update policy. There is a separate 32k Bytes 8-way set 

associative on-chip instruction cache. In the CPU die, there is second level cache 

management logic, the external interface is a dedicated second level cache bus 

with 128-bit bus width, and implementing a direct mapped mixed instruction 

and data ofF-chip cache. 

Nexgen Nx6x86 

The Nexgen Nx6x86 is an Intel Pentium compatible processor with 32k Bytes 2-

way set associative, dual-ported on-chip first level data cache. The Nx6x86 also 

contains a 16k Bytes 2-way set associative on-chip first level instruction cache. 

There is on-chip second level cache management logic, and the interface to the 

ofF-chip memory chips is a dedicated second level cache bus with bus width of 64 

bits. The ofF-chip second level cache is a mixed instruction and data cache using 

write back update policy. 

2.6 Hardware Prefetch Algorithms 

Due to locality property, it is possible to make predictions to future processor 

memory references by observing the memory access pattern. Hardware Prefetch-

ing makes use of historical data to deduce future memory access locations. In 
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order to reduce the memory latency for compulsory miss, prefetching can be per-

formed on cache memory when the memory bus is idle. If the prediction of future 

memory reference is accurate, the memory access time will be that of the cache 

memory instead of the slower main memory. 

2.6.1 One Block Look-ahead 

Alan Jay Smith in [Smi82] studied a general algorithm for hardware prefetching. 

The idea is when the processor accesses a cache block z, due to spatial locality, 

cache block i + 1 will also likely to be referenced in a short time. The prefetching 

algorithm is to trigger the transfer of cache block i + 1 from main memory if it is 

not already in cache. This type of prefetching algorithm is called One Block Look-

ahead (OBL). There are three variations in OBL that in [Smi82] had studied. The 

variation depends on when the prefetch will be performed. One way is to prefetch 

cache block i + 1 if reference to cache block i causes a cache miss, it is called 

Prefetch On Miss. The other way is to prefetch cache block i + 1 if reference to 

cache block i causes a cache hit, it is called Prefetch On Hit. The third way is to 

prefetch cache block i + 1, no matter reference to cache block i is a cache hit or 

miss, it is called Always Prefetch. 

The effect of OBL is similar to a cache system with larger cache block size. 

Just the memory transfer is broken down into smaller pieces in OBL case, whereas 

large cache block size initiates a lengthy transfer when there is a cache miss. 

However OBL improves over large cache block size by maintaining the larger 

number of blocks in a fixed size cache. The access to cache block i is treated as 

a confirmation that the cache block may be accessed again in the future due to 

locality. 

OBL and large cache block size work well in instruction cache, as the reference 

pattern has high sequentiality. However, in data cache, the stride value varies 
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from case to case. In order for large cache block size to reduce compulsory miss, 

the stride value should be smaller than the cache block size, or every access to a 

new datum will cause a cache miss. For OBL, the stride value has to be smaller 

than twice the block size, because whenever cache block i is referenced, cache 

block i + 1 will be fetched, this effectively doubles the apparent block size. With 

large stride value, both OBL and large cache block size will perform very poor, 

as the prefetching in OBL and the large cache block size will bring in pollution 

to the cache, the cache hit rate will be decreased. 

In [DDS95], Dahlgren, Dubois, etc. enhanced the OBL scheme to work on a 

shared memory multiprocessor environment. They proposed a method to adjust 

the look ahead level to tune the cache prefetch algorithm behavior. 

With a splitted instruction and data cache design, there were studies ([YoS93], 

YeP93]) of cache prefetch algorithm for the instruction cache. They focused on 

how the cache prefetch algorithm can continue to prefetch when there are branch 

instructions in the program. 

2.6.2 Chen's RPT & similar algorithms 

Baer and Chen in [BC91] proposed a hardware prefetching algorithm basing on a 

Reference Prediction Table (RPT), a Branch Prediction Table (BPT) and a Look-

ahead Program Counter (LA-PC). The RPT keeps track of CPU instructions to 

issue memory accesses, the difference in memory address from previous access 

and a state field. The LA-PC works with the BPT to make prediction to future 

Program Counter (PC) value, if the predicted PC address has a corresponding 

entry in the RPT, the future memory access location can be calculated by the 

formula 

future memory access location 二 previous memory access location + stride 

That future memory access location will be prefetched into the cache memory, 
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and if the LA-PC keeps a far enough distance from the actual PC, the prefetch 

may have time to complete the memory transfer before the datum is actually 

requested by the processor. 

The state field in each RPT entry is to filter out non-constant stride mem-

ory accesses and prevent the prefetching algorithm to issue erratic prefetches to 

pollute the cache memory. The state field has the following possible values: 

• initial 

• transient 

• steady 

• no prediction 

Cache prefetch will only be issued for RPT entry in steady state. 

Fu and Patel in [FP91] studied the stride values for memory access in vector 

processors. They measured the miss rate with no-prefetch, sequential-prefetch, 

and stride-prefetch algorithms. The sequential-prefetch and stride-prefetch algo-

rithms reduced the cache miss rate over no prefetch case. Between the sequential 

prefetch and stride prefetch algorithms, the later one had a better performance 

due to that one can make accurate predictions to large stride access pattern. 

Fu etc. in [FPJ92] further the above architecture to support non-vector pro-

cessor by using a Stride Prediction Table (SPT). The structure of SPT is similar 

to the RPT proposed by Chen, in [BC91:. 

Issues in Chen's RPT 

The Chen's RPT prefetching algorithm can tackle constant stride memory refer-

ence, no matter the stride value is smaller or larger than the cache block size. The 

cache pollution problem is reduced by using the state field to filter out uncertain 
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memory access patterns. In order to arrive the steady state, there should be two 

consecutive memory accesses by a CPU instruction with the same stride value. 

The Chen's RPT prefetching algorithm has a good performance, however, 

there are still issues in the design of the algorithm that we put forward for dis-

cussion. 

RPT Size One crucial component in the Chen's RPT scheme is the Reference 

Prediction Table. That table is used for storing the memory accessing CPU 

instructions, and stride values of their memory accesses. How many entries should 

be in the RPT? In a general RISC program, about 20% to 25% of instructions 

are load/store instruction with memory references. The RPT should capture 

the number of load/store instructions in the largest program loop in order to 

be effective in predicting future memory references. If the RPT is too small, an 

entry in it may be replaced by another instruction before the loop goes to the 

next iteration. In [BC91], Chen used a 512-entry RPT, and he estimated that 

the hardware overhead in implementing a 512 entry RPT is roughly equivalent 

to a 4k Bytes cache. 

The hardware overhead to implement RPT is significant. If that can be 

reduced in size and retaining a similar performance, the saved space can be used 

to implement a larger cache. 

The problem in the RPT implementation lies in using the instruction address 

as the index to the RPT. There are a lot of instruction addresses which contain 

load/store instructions. And they all have the potential to go into the RPT. 

The state field in the RPT stops the irregular stride memory access instructions 

from triggering prefetch, but it does not prevent the instruction address itself 

to pollute the precious RPT. In this thesis, we proposed a novel idea to use 

the source register in a load/store instruction as the index to a RPT like data 
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structure. Due to the limited number of registers in a processor that can be used 

as the source register, the data structure can greatly reduce in size, and at the 

same time, to retain prediction accuracy for cache prefetching. 

Replacement Algorithm in RPT The Chen's RPT is in itselflike an Instruc-

tion Cache without actual data fields. Just like normal cache, the associativity of 

the RPT affects where an entry can go into the RPT. In order to make RPT set 

associative, there require address comparators working in parallel to determine 

whether a hit is recorded in the RPT. 

In [Che93], Chen reported that the performance of a direct mapped RPT is 

not significantly differ from a set associative RPT. However, if set associative 

RPT is used, what replacement algorithm is appropriate for the RPT has not 

been discussed. Least Recently Used (LRU) algorithm is popular in set associa-

tive cache implementation, in RPT, LRU replacement algorithm may be a good 

choice. Another possibility may be First In First Out (FIFO), or even random 

replacement. 

LA-PC and BPT The LA-PC and BPT in Chen's RPT scheme are used to 

make prediction to instructions that the CPU will execute in the future. The 

LA-PC and BPT are in themselves complex hardware. The accuracy of the LA-

PC will degrade if the distance between the LA-PC and the actual PC is far 

away, due to insufficient information contained in the BPT. How far away should 

the LA-PC ahead of the actual PC? Chen in [Che93] suggested that the distance 

should be enough to compensate for the memory latency incurred to transfer a 

cache block from main memory, then, the prefetch will be fully completely when 

the processor requests the data. The number of entries in the BPT is an issue 

similar to the the RPT size. The more entries in the BPT, and if set associative 

BPT is used, the more useful will be the BPT. But all these features add to the 
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transistor count required to implement them. 

2.7 Software Based Prefetch Algorithm 

In contrast with hardware prefetch algorithm, software based prefetch algorithms 

make use of the static information generated and analyzed by the language com-

piler. Minimal additional hardware is required using software based prefetch 

algorithms as the compiler will insert special instructions into the executable 

code. The processor will ignore all these special instructions and treat them 

as NO-OPERATIONs (NOPs). The cache system will monitor the instruction 

queue, and act according to the special instructions. 

Omar in [Oma81] proposed models for software based cache management. In 

the Prompting model, two instructions were used, they are Prompt and Release. 

These instructions were used to allocate and deallocate a cache block explicitly. 

The model treated the cache memory similar to processor registers, as a cache 

block would not be loaded or replaced on demand, but according to the cache 

specific instructions. The language compiler had to decide when to load a cache 

block and when that block is not required anymore, just like the problem of 

register allocation. 

2.7.1 Prefetch Instruction 

Porterfield in [Por89] suggested to use language compiler to insert prefetch in-

structions into the executable code. These prefetch instructions would give the 

cache system a hit what memory locations are going to be accessed. It is common 

to insert prefetch instructions for memory locations required in the iteration i + 1 

when the processor is executing a loop in iteration i, then, the scheme is called 

One Iteration Look-ahead. In order for this scheme to work, the memory latency 
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for prefetching should be shorter than the time required to execute an iteration 

in a loop. The cache misses could be all eliminated if the above criterion is met. 

Porterfield reported such results on RiCEPS benchmark. 

Prefetch instruction consumes an entry in the instruction queue, which usually 

translates to at least a cycle of execution time. In modern CPU architecture, the 

instruction unit may ignore the prefetch instruction, however, the size of the 

instruction queue is effectively shortened by the prefetch instruction. If there are 

a lot of prefetch instructions in a row, the instruction queue may not contain 

another proper instruction without dependency for the execution unit to run, 

then the CPU will stall. 

In general, the prefetch instructions increase the instruction count in a pro-

gram, and these prefetch instructions will in themselves cause timing overhead on 

the processor. Whether a software based prefetch algorithm can improve perfor-

mance depends on the saving in memory latency for less cache miss compare with 

the extra time that the CPU has to spend in ignoring the prefetch instructions. 

There are other studies to improve software based prefetching algorithms in 

GGV90], [MLG92], [KL91], [Por89], etc. Basically, they tried to reduce those 

unnecessary prefetch instructions and hence to improve the overall performance of 

the system. They studied compiler designs, to dig out more information from the 

source programs, and memory hierarchy, in order to better schedule the timing 

for the prefetch instructions. 

Through software based prefetching, cache hit rate can be improved due to 

the advance information that is given by the prefetch instructions. There is 

relatively less cache pollution problem using software based prefetching compare 

with hardware prefetching algorithms, because the accuracy of prefetching is very 

high. However, there is non-negligible overhead in the prefetch instructions. In 

order for the whole system to improve performance, the save in memory latency 
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should be greater than the overhead. 

2,8 Hybrid Prefetch Algorithm 

In [Ho95], Ho proposed a prefetching scheme using a mix of compiler generated 

special instructions and a hardware table implemented in a processor for data 

prefetching. The scheme was designed to significantly lower the overhead of 

conventional software based prefetching scheme and at the same time, to make 

use of compile time generated and analyzed information from the source program, 

hence to retain the accuracy of prefetching. 

The hybrid prefetching scheme is called Stride CAM Prefetching. 

2.8.1 Stride CAM Prefetching 

The Stride CAM Prefetching scheme was proposed in [Ho95], a hardware struc-

ture called Content Associative Memory (CAM) was setup to hold the stride 

values that can be used to trigger cache prefetches. The scheme was designed 

to tackle constant stride access specifically. In this type of memory access, the 

stride value is an invariate inside a program loop. By using a new cache specific 

instruction called setcam, the stride value for a particular instruction is set inside 

the CAM. 

The CAM structure is similar to the RPT used in [Che93], but without the 

last data reference address and the state field. The structure is shown in figure 

2.4. 

The usage of the fields is the same as in the RPT algorithm. Just before the 

beginning of a program loop, a set of setcam instructions are to be inserted there 

to set the stride values fixed in compile time. When the loop is running, if there 

is a match on the instruction address in the CAM with the current Program 
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instruction address stride store bit 

0x12345678 8 1 

0x27629435 4 1 

0x34294927 64 1 

0x48267101 4 1 

0x28478291 32 1 

0x28190871 4 1 
• • • 

• 參 * 
• • • 

• « • • • • 

Figure 2.4: Content Associative Memory 

Counter, a prefetch will be trigger by adding the current memory access location 

(effective address) with the stride value stored in the CAM. That is why the last 

data reference address is not stored in the CAM as in RPT, because that address 

will be available during the run time. 

The Stride CAM prefetching scheme implements One Iteration Look-ahead 

normally as the current PC is compared with the instruction addresses in the 

CAM. 

The CAM is an associative memory. When the PC is compared with the 

entries in the CAM, all the comparisons will be done in parallel. However, for the 

setcam instruction, an explicit CAM entry number will be given as a parameter 

to set a specific entry inside the CAM. 

Due to the fact that the setcam instructions are executed outside the loop, 

the overhead for the processor to handle these instructions compare with the 

conventional prefetch instructions are greatly reduced. The complexity of the 

new prefetching algorithm is in the order of 0(1) instead of depending on the 
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number of iterations as with the conventional prefetch instructions. 

The hardware overhead to implement Stride CAM Prefetching is considerably 

less than that required to implement pure hardware scheme such as Chen's RPT. 

There is no need to have LA-PC and BPT in the Stride CAM Prefetching model, 

and the CAM contains less fields than Chen's RPT. The performance of the Stride 

CAM Prefetching should be better than that of Chen's RPT because the accuracy 

of prefetch is very high, there should be very little cache pollution caused by the 

Stride CAM Prefetching scheme. 

The Stride CAM prefetching is a great enhancement to other software based 

prefetching schemes, however, it still requires the compiler support to generate 

the setcam instructions. 
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Chapter 3 

Simulator 

A computer system simulator called Multi-level Memory Hierarchy Simulator 

(MMHS) was developed to gather performance data for the prefetching algo-

rithms tested in this study. The MMHS is a flexible, efficient and handy tool to 

try new algorithms. 

3.1 Multi-level Memory Hierarchy Simulator 

The MMHS is a set of programs which take an address trace stream as input, and 

follow the memory access cycle-by-cycle in all memory hierarchy levels. Prefetch-

ing algorithm to be tested can be plugged into holders designed in the MMHS. 

Performance statistics are recorded. The following are major metrics reported by 

the MMHS 

• Cycles Per Instruction 

• Hit Rate 

• Memory Latency 

• Memory Idle Percentage 
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• Total Memory References 

The MMHS supports the following configurable parameters. 

• Cache Block Size 

• Cache Set Size 

• Cache Associativity 

• Cadie Write Policy 

• Cache Replacement Policy 

• Cache Memory Set-up Cycle 

• Cache Memory Burst Cycle 

• Bus Width 

• Non-blocking Feature 

• Write Buffering Feature 

The priority arrangement of memory references in MMHS ensures all CPU 

demand fetches will have a higher priority than all prefetch requests. If memory 

requests with the same priority are in a queue, they will be served in a First In 

First Out (FIFO) manner. 

When a processor demand-fetch for a memory location is issued and a prefetch 

operation is taking place, the prefetch will be killed and let the demand fetch to be 

started. This assures that prefetch operations will not compete for bus bandwidth 

with processor demand-fetch. 

The simulation speed of the MMHS is an important factor for its usefulness. 

In order to study multi-layer memory hierarchy performance, a lengthy simula-

tion, in terms of CPU instructions, has to be run. Because the upper memory 
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layers may already have a high hit rate, and most memory requests are served in 

those layers. To simulate environments with enough memory references on lower 

memory layers, a fast and reliable simulator is necessary to make trial runs to be 

finished in reasonable time. 

The MMHS employs clever data structure and programming techniques to 

speed up simulation speed. The techniques include pre-sort scheduling queues, 

double link lists for fast forward/backward search, constants pre-calculated at the 

beginning of simulation, and use of shift operations instead of multiply/divide, 

strong favor to use integer arithmetic instead of floating point operations, etc. 

3.1.1 Multi-level Memory Support 

The Multi-level Memory Hierarchy Simulator based on a realistic model of com-

puter system. A typical configuration is shown in figure 3.1. 

Blocks in the above figure depict memory architecture layers in a computer 

system, and lines show bus interconnections between layers. 

The MMHS does not depend on a fixed layer model, but is flexible to configure 

with variable number of layers in the simulated environment. The interconnec-

tions between layers in MMHS are built during run time, and no program logic 

change is necessary to simulate a different setting. 

Write buffers can be configured to handle write operations. The number of 

entries in the buffer is configurable for each layer separately. 

3.1.2 Non-blocking Cache 

The Multi-level Memory Hierarchy Simulator supports transactional bus model 

with nonblocking feature. That means if a memory request is a miss in the current 

memory layer, another memory request can be started in the next cycle, provided 

that there is no data dependency on the missed datum. If the new memory 
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Figure 3.1: Multi-level Memory Hierarchy Simulator Configuration 

request is a hit, then the later memory request may actually be completed before 

the earlier request. 

Non-blocking cache is useful when processor(s) can issue multiple instructions 

in a clock cycle or when memory layers can issue their own prefetch requests. In 

that scenario, there may have multiple outstanding memory requests on each 

memory layer, and if that layer can serve multiple memory requests, the system 

throughput will be improved. 

The non-blocking cache feature can be turned off by a programmable flag in 

each memory layer separately. If it is off, whenever there is a miss in a particular 

layer, all further memory requests will be stalled until the miss is served. 
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3.1.3 Cycle-by-cycle Simulation 

The MMHS simulates the target system down to single CPU cycle. That means 

memory requests in different memory layers can be run in parallel and overlapping 

is allowed as long as the configuration permits. 

Cycle-by-cycle simulation also makes precise Cycles Per Instruction (CPI) 

measurement possible as oppose to only Hit Rate measurement. Because the 

memory latency from each memory layer can be counted with CPU cycle preci-

sion, the total number of cycles required to satisfy an CPU instruction can be 

accounted for by using the MMHS. Memory CPI (MCPI) as suggested by Chen 

in [BC91] can be computed by subtracting the number of cycles consumed by the 

processor for computation. 

The cycle-by-cycle simulation model makes system parameters such as mem-

ory cycle time and hit/miss penalty on each memory layer have complete flex-

ibility. Because the lowest common time unit in the MMHS is CPU cycle, the 

MMHS system can support arbitrary number of cycles in the above parameters. 

3.1.4 Cache Prefetching Support 

The MMHS supports cache prefetching algorithms on each memory layer. The 

prefetching algorithm can be different for each memory layer, and in fact, there 

is no requirement to have prefetching in all memory layers. 

Prefetching algorithm should be written as a C callable function. The prefetch-

ing function will be called each cycle after the activity in a memory layer is fin-

ished. The prefetching function can access to current statistics in all memory 

layers, issue prefetch memory request to any memory layer, or update statistics 

maintained by its own. 
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Chapter 4 

Proposed Algorithms 

In this chapter, three cache prefetch algorithms would be proposed. The justifi-

cation for each algorithm would be stated together with the detail architectural 

model. 

A section is devoted to discuss the rationale for a combined on chip first and 

second level cache management. The feasibility and usefulness of the idea would 

also be studied. 

4.1 SIRPA 

SIRPA stands for Source Index Register Prefetch Algorithm. It is a hardware 

cache prefetch algorithm which handles constant stride access pattern. SIRPA 

is a highly selective prefetch algorithm. The accuracy of it is very high, and the 

hardware overhead to support it is minimal. 

4.1.1 Rationale 

In RISC architecture, only load/store instructions are allowed to transfer data 

to/from main memory. This feature reduces the number of instruction types 

which are capable to work on the content in main memory. Due to limited 
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addressing modes in RISC, in order to access an array in main memory, it is 

common to use a CPU register to hold the current element address in the array. 

Whenever there is an access to the array, indirect addressing mode, or some 

variants of it, will be used to access the main memory. The CPU register used 

provides an important hint for the hardware to know which array is currently 

being accessed. By keep tracking the stride value of each array, it will be feasible 

to perform cache prefetching efficiently. 

The proposed Source Index Register Prefetching Algorithm (SIRPA) makes 

use of a hardware implemented table to keep track of the stride values. When 

there is a memory accessing CPU instruction using a register indirect addressing 

mode, the source register in that instruction will be used as the index to the 

above table. The difference between the current effective address and the previous 

effective address, which is stored in the table, will be compared with the stored 

stride value, if there is a match, that means at least two consecutive accesses 

to the main memory through that CPU register has the same increment (or 

decrement) in effective address, that will be a strong indicator for a constant 

stride access pattern. Cache prefetch will be fired by adding the stride value to 

the current effective address, where that address is predicted to be required in 

the next access. 

Source register in CPU instruction is a good candidate to discover stride 

values as it is logical to the compilation process. The SIRPA is a pure hardware 

oriented cache prefetching scheme. There is no need to modify the software or 

the instruction set to use SIRPA. That implies the very broad applicability of 

SIRPA, as it does not depend on a particular CPU architecture. 

The structure of the Stride Values Table (SVT) used in SIRPA is similar to 

Chen's RPT, with one big exception that the Source Index Register is being used 

as the index to the SVT, whereas in Chen's RPT, an instruction address is used 
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as the index. 

The cache prefetching accuracy of SIRPA should be very high, as there is a 

confirmation mechanism built in to verify the constant stride access. The cache 

pollution effect for the SIRPA should be very small. On the other hand, the 

majority of constant stride accesses should be captured by the SVT. The SVT 

will fail when there are a lot of arrays to be accessed in a program loop, so that 

the number of registers in the CPU are not enough to hold all the array addresses. 

However, as there are 32 or more CPU registers in today's RISC processors, it 

will be less likely that so large number of arrays has to be accessed in a program 

loop. 

4.1.2 Architecture Model 

SVT Size 

The SVT in SIRPA serves a similar role as the RPT in Chen's RPT scheme. 

However, due to only a fixed number of registers are capable to be used as source 

register in indirect addressing mode, the number of entries in SVT is determined 

readily. In general, only the integer registers in a RISC processor are capable to 

be used as source register, as opposed to the whole bank of floating point and 

integer registers. The number of integer registers is around 32 to 64 in today's 

RISC CPUs. 

The above fact compares favorably to Chen's RPT scheme. In Chen's RPT, 

the optimal number of entries in the RPT is not easy to be determined, as 

instruction address is used as index to the RPT. But the number of instructions 

in a program is variable. It is inevitable in RPT's case that a lot of program 

instructions will jam into the RPT, but they are not the candidates for constant 

stride access. 

Less number of entries in SIRPA's SVT is crucial. By using less memory 
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in implementing the SVT, more transistor count can be saved to make a larger 

on-chip cache or with a higher set associativity. The kind of memory cells to 

build the SVT should be very fast, as the processor has the potential to access 

the main memory through indirect addressing mode in consecutive sequence. In 

order to avoid blocking the processor and still be able to update the entries in 

the SVT, the speed of the SVT should be less than the access time of the first 

level cache. 

We have performed tests on similar configured SIRPA and RPT cache. To 

achieve comparable performance, the number of entries in RPT should be around 

four times the number of entries in SIRPA's SVT. 

Intuitive Replacement Algorithm 

As there are a fixed number of registers in a processor, we can build a SVT with 

sufficient entries to hold potential stride value for each register. The replacement 

algorithm being used in the SVT is intuitive, as there will be no "conflict" in the 

SVT itself. However, in other schemes, when the number of entries in the stride 

value discovery table is so much less than the number of possible candidates, 

there will be a design decision to use direct map or set associative organization 

in the table. 

For direct mapped design in the stride value discovery table, the replacement 

algorithm is straight forward. However, there will be conflicts for two or more 

potential candidates to fight for the same entry in the table. If set associative 

organization is used, the number of conflicts can be reduced, but it will require 

the technologically demanding associative comparators. Replacement algorithm 

being used in the set associative design is another issue for consideration, be-

cause different replacement algorithms, such as LRU, FIFO, random, will lead to 

different behaviors. 
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No LA-PC and BPT 

In the SIRPA scheme, there is no need to implement the LA-PC and BPT as 

in the Chen's RPT scheme. The triggering of cache prefetch is done when a 

CPU instruction is issued to the execution unit. If that instruction is a memory 

accessing instruction using register indirect addressing mode, the SVT will be 

used to check for constant stride access. If the stride calculated is the same as 

the value stored in the SVT, a cache prefetch for the next predicted memory 

address will be fired. If the CPU instruction causes a cache miss in the cache, 

the CPU instruction will be given priority to the cache prefetch request in using 

the memory bus. The SIRPA scheme is simple and easy to be implemented in 

hardware. 

The LA-PC and BPT as used in Chen's RPT scheme are very complex hard-

ware. The cost to make predictions to future program counter value is high. The 

BPT in itself is a cache to store the last branch actions performed by the proces-

sor. There are design issues to the number of entries in the BPT, organization 

and replacement algorithms being used in it. 

Hardware Support 

To implement the SIRPA scheme, the SVT has to be built between the CPU 

core and the cache management unit. Figure 4.1 is a block diagram showing the 

configuration of a SIRPA enhanced processor. 

The SVT is organized by using source register as index to the table. The SVT 

contains several data fields as shown in figure 4.2. 

The state field contains the current status for the entry and has the following 

values: 

參 initial 
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Instruction Stream SVT 
reg. no.| last ref. addr. stride state 

• current PC 

~~¥_^__I —— * svr 
opcode srcreg destreg offset ,̂ Q> 

^ 少 updotepS^ I “ State 
effectivt(^Pf^ reg. no. last ref. addr. stride state ‘ * TrOnSitiOPI 
address '" \ ^ ~ ^ ~ ^ LogiC 

cache prefetch request Cache Prefetch 
Unit 

¥ ‘ 

Memory ^ ^ ^ ^ ^ cache prefetch request 
Request Z Z Z I Z 
Queue Z Z Z Z I \A__L_ 

Memory ^ ^ ^ ^ ^ 
Request Z H Z Z 
Queue i：：;：!̂：! 

On-chip 
L1 
D-cache 

On-chip 
L1 Cache L2 
Miss D-cache 

To On-board 
Main Memory 

Figure 4.1: Block Diagram for Processor with SIRPA scheme 

• transient 

• steady 

• no prediction 

Details of the Algorithm 

Whenever the CPU executes the following instruction: 
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source reg. last ref. addr. stride state 

rl 0x10003456 0x8 transient 

r2 0x20003334 0x4 initial 

r3 0x20007654 0xC steady 

r4 0x38883333 0xE no prediction 

r5 0x87654321 0xC no prediction 

• • _ 華 

• • 參 • 

Figure 4.2: Source Register Indexed Stride Values Table 

ld rm<一一(rn+S) ;S is a displacement 

st rm->(rn+S) 

The value (rn+S), which is the effective address of the current access, will 

be calculated, and the entry in the SVT using rn as index, will be updated, the 

last reference address field will be updated with the (rn+S) value just calculated. 

The stride field will be the difference between the current (rn+S) value and the 

value before update. The state field will be updated by using the state transition 

diagram in figure 4.3. 

After the update is finished, if the state value is "steady" for the entry just 

updated, a prefetch for address: 

prefetch address = (last reference address + stride) 

will be fired. The state value of "steady" indicated that the stride value for 

the entry is confirmed by at least 2 consecutive updates of that entry. When a 

new stride value is discovered, the state value will be "transient", and if the next 

data reference has the same stride value as the last update, then the state value 

will be promoted to "steady", otherwise, the state value remains "transient". 
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Figure 4.3: SVT State Field State Transition Diagram 

The SIRPA scheme is very accurate for predicting the memory access of the 

following program fragment: 

f o r (n = 1; n < 100; n++) 

{ a[n] = b[n] + c[n]； 

d[n] = e [n] + i ； 

} 

The above program will likely be compiled into machine code where a CPU 

register (plus offset) will point to array a, and other registers pointing to array 

b, c, d, e respectively. The stride values for the above registers will then be the 

record size of the respective array. By recording the stride values, the access 

patterns can be predicted with high accuracy. The use of source register as the 

index in the stride discovery table reduces the size of the SVT, because most 

micro-processors nowadays have 32 registers, the maximum size of the SVT is 

limited by the number of registers that the processor contains. 
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The SIRPA scheme can be used to trigger cache prefetches for first and second 

level on-chip cache. Due to difference in block size in the two levels of cache, the 

cache block being prefetched may not be the same in them. 

4.2 Line Concept 

Line Concept is a technique to capture the cache block size information to fine 

ture a cache prefetch algorithm. By using Line Concept, the cache prefetch would 

have a longer time slot for the prefetch to take place. Hence, the chance to have 

a partial miss would be reduced. 

4.2.1 Rationale 

The benefit of cache prefetch can be realized when CPU computation and mem-

ory transfer for the cache block being prefetched can be overlapped. There are 

situations when the cache prefetch algorithm can make an accurate prefetch, but 

there is not enough time to transfer the cache block being prefetched onto the 

cache. Then, at the time when the processor requests a memory location, the 

cache block containing that location is still in transfer, we call it a partial miss 

(or partial hit). The method proposed in this section targets the partial miss and 

improves the timing when the cache prefetch is fired. 

Line Concept prefetch is not a standalone cache prefetching algorithm, but it 

has to work with other cache prefetching algorithms such as SIRPA. The idea of 

Line Concept is to capture the cache block size information in forming a cache 

prefetch request. Because a cache block is the smallest unit for cache memory 

transfer, it imposes a minimum time for a single transfer. The Line Concept 

approach lengthens the time available for cache prefetch to take place before the 

processor makes a memory request on the prefetched cache block. 
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The Line Concept also captures the directional information from the mem-

ory accessing patterns. The direction of access information is to let the cache 

prefetch to be fired at an earlier time and hence to make the probability of com-

putation /memory transfer overlap to be higher. 

The Line Concept works by observing the current memory address being 

accessed by the processor and the memory location of the cache prefetch being 

triggered. If the above two memory addresses fall onto the same cache block, and 

previous memory access pattern is in the forward direction, then the memory 

location following the current accessed one where it will map to a different cache 

block number will be prefetched into the cache memory. In essence, when the 

cache prefetch from a cache prefetching algorithm asks for the same cache block as 

the current processor requested location, the next cache block will be prefetched 

if Line Concept is used. On the other hand, if the memory access pattern is in 

the backward direction, the cache block previous to the current cache block will 

be prefetched. 

4.2.2 Improvement Over “Pure,，Algorithm 

Improved Prefetching Time 

In the SIRPA scheme, we found that the memory access pattern with a small but 

constant stride access on an array is like figure 4.4. 

CPU Memory Access Sequency 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

丨0。抛 -̂-̂ ^̂ "̂̂ >̂ "̂ "̂ >̂ "̂ "ŝ ^̂ î̂ ŝĝ i>̂ "̂ |̂̂ "̂ Ĵ̂ -̂̂ ^̂ !̂ ^̂ ^̂ ^̂ ^̂ p̂̂ >̂;)̂ ^̂ ^̂ ^̂ ^̂ ^̂ P̂̂ r 
L1 Cache blockx blockx + f [blockx + 2 ~~ blockx + 3 

•••••......,....................，..........水........,...........’........."........人...................（........,(.......A...................•...................A.........，~~ 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
Cache Prefetch Sequency 

Figure 4.4: CPU Access Sequence on Cache Blocks 

When CPU is accessing address at a, the prefetch calculated, assume previous 
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CPU Memory Access Sequency 
1 2 3 4 6 6 7 8 9 10 11 12 13 14 15 16 17 

丨一 ^ V " ^ h h p h h ^ ^ ^ A / ^ ^ ^ ^ ^ ^ ^ ^ h ^ ^ ^ r 
L1 Cache block x blockx + 1 blockx + 2 blockx + 3 

^ ^ . . . . . . . . . . . . . . . . . . . . . . . . . , i . . . . . . . . . . . . . . . . . . . . . . .....••••• 

•••"" •••••" “ 
1 2 3 4 

Line Concept Line Concept Line Concept Line Concept 
Cache Prefetch Cache Prefetch Cache Prefetch Cache Prefetch 

Figure 4.5: CPU Access Sequence with Line Concept Prefetch 

accesses have already made the SIRPA to work, will be at address b, however, 

due to the organization of cache memory, address b is in the same cache block 

(block x) as the first CPU access. The similar situation also happens when CPU 

accesses address c. Only when the CPU accessed at address d, then the prefetch, 

which calls for address at e will actually bring in another cache block (block 

X + 1) from lower memory hierarchy. The cache system may not have sufficient 

time for the lower memory to send the content for cache block x + 1 before the 

CPU actually accesses it, then a (partial) cache miss occurs, and the CPU will 

be stalled until the cache miss is served. We attributed the problem to be lack 

of consideration to the size of a cache block which will affect the highly accurate 

prefetch. 

One of the advantages of using Line Concept is to lengthen the time allowed for 

a cache prefetch to complete. In the above case, when the processor is accessing 

location a where that address is in cache block a:, the cache block to be prefetched 

is cache block x + 1, using Line Concept. Then the cache prefetch for block x + 1 

can be started as early as when the processor is accessing location a instead of 

when the processor is accessing location d, The effect of Line Concept is shown 

in the figure 4.5. 

58 



Higher Chance to Prefetch 

As CPU demand-fetch and cache prefetch have different priorities in using the 

memory bus, there may be situations when the cache prefetch fired is accurate, 

but the memory bus is occupied by the processor for other memory transfers. The 

cache prefetch would not have a chance to use the memory bus. By using Line 

Concept in the prefetching scheme, the cache prefetch will be fired substantially 

earlier than without using Line Concept, the chance that a cache prefetch will 

get a chance to be served will be higher. 

Line Concept together with the lengthened timing for cache prefetch improves 

the efficiency of the cache prefetching algorithm being used. We have performed 

experiments on SIRPA, SETCAM in [Ho95] and Chen's RPT in [Che93], with 

and without using Line Concept. The results are consistent that the version with 

Line Concept outperforms the one without. Detail results will be presented in 

the next chapter. 

4.2.3 Architectural Model 

Hardware Support 

The hardware support required by the Line Concept scheme is minimal. We 

only have to add an extra unit called Line Concept Unit (LCU) in front of the 

cache prefetch unit, and the LCU has to access the CPU core for current effective 

address, and issue the cache prefetch to the memory request queue. Figure 4.6 is 

a block diagram on a processor using SIRPA and Line Concept. 

Details of the Algorithm 

In theory, the Line Concept scheme makes the prefetch for SIRPA or like prefetch-

ing schemes to look-ahead farer when the stride value is smaller than the cache 
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Instruction Stream SVT 
reg. no.| last ref. addf. stride state “ 

» -- “ — 

Z Z Z m • current PC 

~ ^ ~ ~ j —— • SVT 
opcode srcreg destreg offset __Ŵ "̂ _̂  

^ 少 ” p d a t e p y i I ~ “ State 
effecth/eY+r̂ ^ reg. no. last ref. addr. stride state ( * TrOnSitiOPI 
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3 ? f n — P « h | c a c h e P r e f e t c h | Prefetch Une 
Concept request 丨！̂！十 request Concept 
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Main Memory 

Figure 4.6: Processor using SIRPA and Line Concept scheme 

block size. With conventional SIRPA, the cache prefetch address will be: 

prefetch address = (last reference address + stride) 

By using Line Concept, the cache prefetch address will now become: 

prefetch address = (last reference address + n * stride) 

where n is the smallest integer which will make the cache block number con-

taining the prefetch address to be different from the current access. With the 

example in figure 4.5, when CPU accesses at address a, the n chosen will be 4, 

as 4 is the smallest integer which will make the prefetch address falls on block 
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X + 1 instead of block x which the current CPU reference falls onto. 

In the new scenario, the cache will have a longer time-window to prefetch 

cache block x ^ l from lower memory hierarchy, in fact the time will be around four 

times the original value. With small stride value, which several CPU references 

fall onto a single cache block, the new method can greatly improve the prefetch 

efficiency. The small stride value cases account for around 50 percent of all 

memory access patterns. For large stride values, the n chosen will be 1, which is 

the same as the prefetch address as calculated in the original method. 

Due to different cache block size of L1 and L2 caches, which in normal case, 

block size in L2 will be about twice the block size in L1 cache, the same prefetch 

algorithm will trigger different prefetch addresses for L1 and L2 cache, because 

a different n will be chosen for L1 and L2 respectively. The net effect will be 

such that L1 cache will prefetch for cache block in the closer vicinity, which a 

high probability will be a hit in L2 cache. On the other hand, the L2 cache will 

prefetch for cache block farer away. The effect can be visualized in figure 4.7. 

CPU MemoryAccess Sequency 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

locations j>~>j»~~̂^̂ ^̂ ^̂ ĝ ^̂ ^̂ p̂ ^̂ ĵ ^̂ ^̂ Ĵ;}̂ ~̂ŷ ^̂ î̂ ~̂ N̂ !?̂ ~̂ Ĵ̂ ~̂̂ sĵ P̂~>̂ >̂̂ ^̂ ^̂ -̂~~̂ >̂̂ ~̂ ^̂ ^̂~~~̂ r̂ 
L1 Cache block x block x + 1 blockx + 2 i3lockx + 3 j 

••••• •••,•••• ••••,•,, • . . - ' ^ - . .-^ 
•••.., ...•••• ••-... ...••• •••.,._ _.,.-• •••.._ ...••• 

"•••••••... •••••••" '••••••• •••"" " " • • • •••••" "•••••••• -•-••••" 

1 2 3 4 
Line Concept Line Concept Line Concept Line Concept 
Cache Prefetch Cache Prefetch Cache Prefetch Cache Prefetch 

locations a b c d e f g h i j k 丨 m n o p q r 
L2 Cache blocky blocky + 1 

\ 7 ^ 7^ 
•••,. ,.••• •,... ,.•• 

1 2 
Line Concept Line Concept 
Cache Prefetch Cache Prefetch 

Figure 4.7: CPU Access Sequence on L1, L2 cache blocks w/Line Concept 

When CPU is accessing address at a, the L1 cache will call for prefetch at 

address e, where L2 cache will call for prefetch at address i. Then, when the CPU 
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is progressively moved to work on address at e, the L1 cache will prefetch cache 

block X + 2, which now will be likely to be already in L2 cache corresponding to 

line y + 1. 

Due to difference memory access time to fetch a cache block from memory 

hierarchy, usually, L2 cache will need a longer time to fill in a cache block than 

L1, by more aggressively to prefetch in L2, the longer memory access time can 

be compensated. 

Line Concept tunes the cache block to be prefetched according to the block 

size as used by respective cache on the processor chip. It is a major support to 

the combined first and second level cache management. By using Line Concept, 

the cache prefetch patterns for first and second level cache can be different and 

take into account the cache block size efFect. 

With combined first and second level on-chip cache management, a single 

cache management unit is required to drive both levels of on-chip cache. The 

saving in transistor counts, and especially the saving in extra electrical loadings 

exerted on the CPU bus will be significant. 

4.3 Combined Ll-L2 Cache Management 

Combined first and second level cache management would give a reduced hard-

ware overhead on the implementation, and at the same time to make available 

more information for the efficent management of both cache memory levels. 

4.3.1 Rationale 

As can be seen in the previous chapters, on-chip second level cache should be 

the trend for next generation processors. In order to maximize the performance 

of precious on chip memory, intelligent control can be built to manage first and 
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second level caches. By exploring processor information, which is easily available 

on chip, the CPU access patterns can be learnt by the memory hierarchy to 

predict for future access. Due to locality property, most of the time a program 

will access data in the close vicinity to the current access, therefore, a small high 

speed memory level will speed up CPU access. 

In order to build on-chip first and second level cache management logic, it 

will be beneficial to use a unified cache management unit to control both first 

and second level cache. On the one hand, the transistor count required can be 

reduced since the control mechanism for both levels is similar. On the other 

hand, by using a unified cache management unit, information can be shared 

between 2 level caches and more intelligence can be derived by considering cache 

configurations and other cache status for both levels. 

4.3.2 Feasibility 

In order to have a combined on-chip first and second level cache and management, 

we have to be convinced that firstly, it is feasible to build on-chip second level 

cache. Secondly, it is feasible to manage the first and second level cache through 

a single management unit. And it is beneficial to do so. 

On Chip L2 Cache 

In chapter two, the background study chapter, we have shown that the number 

of transistors in nowadays processor has been increased tremendously. The ulti-

mate goal of microprocessor manufacturer is to produce fast chips. One of the 

methods is to use as much hardware as possible to implement software instruc-

tions, this trend is realized in RISC processors. The hardware to be implemented 

includes barrel shifter, which can make multiple of bit shifts in a cycle, hardware 

multiplier, which reduces the time required to perform multiplication through 
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conventional method, hardware floating point unit, which can calculate floating 

point number arithmetics without complex conversions, branch prediction unit, 

which can keep the instruction prefetcher to work through conditional branch 

instructions [YeP93]. 

The other way to improve speed on a microprocessor is through parallel ex-

ecution units. In essence, the product will become a parallel computer on a 

chip, which in each processor cycle, the chip can process multiple number of 

instructions from a single program through different execution units. We have 

seen superscalar microprocessors in the niche market, and it will become popular 

in general purpose processors, A superscalar processor may contain two inte-

ger arithmetic units, one floating point unit, one unit dedicated for multimedia 

instruction, one load/store unit, one branch prediction unit, etc. When multi-

ple execution units are built into a chip, the transistor counts consumed will be 

multiple times of a conventional microprocessor. 

The third kind of way to use up the transistor count is to build a first level 

on-chip cache, as we explained in the previous sections, it is impractical to build 

a very large first level cache due to hardware constraints [BW88]. 

No matter how fast a microprocessor potentially can run, it still requires 

program instructions and data to process. If the instructions and data cannot be 

supplied on time, all the multiple execution units will just be idle. Therefore, in 

order to bridge the gap between microprocessor processing speed and on board 

memory speed, it is inevitable to make use of multiple layers of memory hierarchy 

with progressively faster speed towards the processor side. Majority of frequently 

used instructions and data will be kept in the fastest first level cache and it is 

backed by a relatively large and still speedy on-chip second level cache. 

The benefit of on chip second level cache includes, it can be made of simpler 

and cheaper two-transistor static memory cells, rather than the more expensive 
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but faster memory cells as used in the first level cache. The purpose of the on chip 

second level cache is as a large repository for instructions and data to be used by 

the processor. As the second level cache is on chip, it can have a wide data bus 

connected with other components with the first level cache and CPU core. The 

on chip second level cache can be a mixed cache containing both instructions and 

data as contrast with the usual configuration of split instruction and data cache as 

implemented in the first level. The purpose of split cache in first level is to double 

the available bandwidth for memory transfer from the cache to the processor. As 

the second level cache is not as critical in speed, the mixed cache configuration 

will better utilize the available space in it. Different programs may have different 

mix of program size and data size, a mixed cache will adjust automatically for 

the portion of cache blocks allocated to instructions and data [STW92], however, 

in a split cache, the partition of instruction and data cache size has been fixed in 

the CPU design stage. 

Second level cache can be implemented with set associative configuration. 

Compare with the first level cache, which speed is already the top priority con-

cern, associative comparator is not easy to be implemented there. However, set 

associative cache can reduce the number of conflict miss readily [GHP93]. 

If second level cache is built on board, bandwidth verse number of pins running 

out of the chip will be a design issue. Moreover, the cache management unit as 

well as cache prefetcher cannot be shared between the first and second level 

cache. In reality, current CPU statuses, such as instruction opcode, addressing 

mode, register in use, instruction dependency, branch predictions, etc. cannot be 

available to the second level cache. Conventional on board second level cache can 

only run in the demand fetch mode, which limits the benefits that can be got 

from the cache memory. 
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Information Available to Ll -L2 

In a combined and on chip first and second level cache management unit, due 

to the short distance between CPU core and the unit, it can grasp current CPU 

statuses readily. These CPU statuses can aid prefetching algorithms to determine 

the processor memory access pattern. 

In the SIRPA scheme, instruction addressing mode is used to find whether the 

current executing instruction is a load/store one using register indirect addressing 

mode. The current register in use is used in the SIRPA as index to it's SVT. 

Current effective address is required to update the SVT. When the SIRPA fires 

a cache prefetch, the priority of the request depends on whether the processor 

memory reference is a cache hit or a cache miss. All the above information is 

available on chip but hard to be obtained out of chip. 

With Line Concept added to the SIRPA scheme, the configurations of the 

on chip first and second level cache has to be available to the LCU and cache 

prefetches will be modified according to the current processor memory request 

and the cache block size in the respective first and second level cache. 

In Chen,s RPT scheme, instruction addressing mode, current effective ad-

dress, current program counter value and the instruction prefetch queue has to 

be accessible. The RPT, LA-PC and BPT in the scheme depend on the above 

information to make predictions to the future program counter, and in turn to 

fire cache prefetches in advance. 

4.4 Combine SIRPA with Default Prefetch 

Default Prefetch is a complement cache prefetch scheme to a highly selective 

prefetch algorithm, such as SIRPA. The Default Prefetch will issue cache prefetches 

even when the memory access patterns are not constant stride type. 
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4.4.1 Rationale 

The SIRPA scheme as described in previous section gives highly accurate prefetch 

predictions for constant stride access patterns. However, for non-constant stride 

accesses, such as irregular stride access patterns as exhibited by data structure of 

linked list and hash tables, the SIRPA will not be able to trigger cache prefetch. 

By the same principle of overlapping CPU computation and memory transfer 

from main memory to cache blocks, if we can derive a general purpose cache 

prefetch algorithm which can work on other kinds of stride access patterns, the 

memory latency as perceived by the processor can be further reduced. 

The SIRPA scheme is designed with built-in confirmation feature to filter 

out inappropriate cache prefetch. The kind of cache prefetches given out by 

the scheme is highly accurate. In environments with irregular memory access 

patterns, the SIRPA scheme will not issue cache prefetch. This creates a void 

in those programs without a large amount of constant stride access patterns, 

the pure SIRPA scheme will degenerate to a demand-fetch one, and hence the 

memory latency will not be shortened. 

Eventhough irregular stride access patterns cannot be tackled by the SIRPA 

scheme, they still show different degree of locality properties. The new scheme 

proposed in this section is to make use of a general purpose cache prefetch al-

gorithm augment with the highly accurate SIRPA scheme, in order to handle 

all general purpose programs with moderate performance in terms of memory 

latency. The SIRPA scheme will be given priority when a constant stride access 

patterns are discovered. However, when there is no cache prefetch that can be 

emitted by the SIRPA scheme, the general purpose scheme will be used to make 

predictions on the future memory access. 

The general purpose cache prefetch scheme selected should be a simple prefetch-

ing algorithm, which can handle all kinds of access pattern generally well. The 
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use of it is to backup the SIRPA for situations that SIRPA cannot make a pre-

diction. The general purpose scheme should be easy to implement together with 

other cache prefetch schemes, as we will run two cache prefetching algorithms 

together in the cache management unit. The extra hardware loading on the CPU 

bus should not be great, as we do not intend to further lengthen the critical 

time path by adding extra bus drivers. Therefore, we expect the general purpose 

scheme should use relatively less CPU information as compared with the SIRPA 

scheme. 

There were studies [Smi82] for general purpose prefetching algorithms. In 

them One Block Look-ahead (OBL) as introduced in the background study chap-

ter is a common scheme. With OBL, there are three variants, they are Prefetch on 

Hit, Prefetch on Miss and Always Prefetch. Prefetch on hit and Always prefetch 

are not considered here as the number of cache prefetches generated will be very 

large as the hit ratio in the first and second level cache is expected to be over 

80%. The memory bus bandwidth may not tolerate the loading exerted by the 

Prefetch on Hit and Always Prefetch schemes. 

Prefetch on Miss (PFONMISS) is a simple cache prefetch algorithm which 

suits the requirement that it gives acceptable results and the number of prefetches 

generated is not too many. PFONMISS works on the principal that whenever 

there is a cache miss, the cache block following the miss will be prefetched. 

When instructions and data exhibit spatial locality, the PFONMISS scheme 

can call in the neighborhood cache block which may be requested by the processor 

in the future. PFONMISS should give reasonable performance on random access, 

as long as the program still shows locality property. 

68 



4.4.2 Improvement Over “Pure” Algorithm 

PFONMISS for Small Stride Access 

In constant small stride application, where the stride values are smaller than 

the cache block size, PFONMISS gives similar performance as the SIRPA scheme 

plus Line Concept, because they will both call the next cache block into the cache 

when a given item is accessed. PFONMISS has the merit of simplicity. 

With scalar/zero stride and irregular stride accesses, the PFONMISS scheme 

still works if the stride values are still smaller than the block size of the cache. 

Therefore, for PFONMISS to work, a larger cache block size is favorable. 

On the down side, PFONMISS cannot be well adapted to constant large stride 

application and memory access patterns with large number of irregular accesses. 

Because PFONMISS does not distinguish the memory access patterns and hence 

there is no confirmation mechanism built in the scheme to filter out inappropriate 

cache prefetches. Cache pollution will be a problem in system using PFONMISS, 

as there may be cache blocks being replaced by the call-in blocks, where the 

prior one will be reused by the processor. Therefore, in a cache system using 

pure PFONMISS scheme, the performance of the system varies as the number 

of small stride access contained in the program. In general, if more than half of 

the memory access patterns are with small stride values, the PFONMISS scheme 

wins. 

SIRPA for Constant Stride Access 

SIRPA scheme works well in constant stride access patterns. The magnitude 

of stride values will not affect the accuracy of the SIRPA scheme, as they are 

recorded in the SVT and being used to calculate cache prefetch addresses. This 

property compliment with that of the PFONMISS scheme. PFONMISS scheme 

is sensitive to the magnitude of the stride value and works well with smaller ones. 
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On the other hand, SIRPA scheme is specifically designed to the constant 

stride access pattern with high accuracy, whereas the PFONMISS scheme is a 

more general purpose scheme, which works on a broad category of programs. 

The PFONMISS scheme will not be as accurate as the SIRPA scheme. 

With SIRPA complemented with PFONMISS as default prefetch scheme, the 

cache prefetches generated will cover a broader range of applications well and 

at the same time to retain the high accuracy of cache prefetches in the SIRPA 

scheme. 

4.4.3 Architectural Model 

Hardware Support 

The position of PFONMISS unit together with SIRPA supporting logic that can 

be used to control both the on chip first and second level cache is shown in figure 

4.8. 

The PFONMISS unit takes in the current cache access information including 

the cache block being accessed, and whether the access is a cache hit/cache miss, 

and fires a cache prefetch for the next cache block if the last access is a cache 

miss. 

The cache prefetch request from the PFONMISS unit will be fired after the 

current cache miss is served. If at the same cycle, another cache prefetch from 

the SIRPA scheme is present, the PFONMISS cache prefetch request will be 

discarded. 

Details of the Algorithm 

The PFONMISS scheme works on the spatial locality property in general memory 

access patterns. When a cache block i mapped to real address a is accessed, if 

the memory access causes a cache miss, the real address a + 8^ where 5 is the 
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Figure 4.8: Combined Prefetch Scheme 

smallest integer which can make the mapping of the resultant address to cache 

block i + 1 will be prefetched. 

The PFONMISS scheme brings in the next cache block when a cache miss is 

happened, the goal is to prevent further cache miss if the processor moves forward 

in the memory locations to be accessed. If the rate of processor consumption of 

data is slower than the time taken to transfer a cache block of memory from lower 

layer to the cache, a cache miss can then be avoided. 

The PFONMISS scheme assumes the direction of memory access is in the 
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forward direction, which is correct in the majority programs. When there is a 

program processing an array in the reverse order, the PFONMISS scheme will 

call in a lot of cache blocks which are already used in the last iteration. This will 

cause cache pollution. The cache pollution case will also happen when the next 

few items to be accessed are not in the current cache block nor in the next cache 

block, or the stride value is larger than the cache block size. 

With the combined prefetching scheme using SIRPA and PFONMISS, we 

expect the cache system performance will not fluctuate greatly among different 

variety of programs. For scientific oriented programs using lots of arrays, the 

SIRPA scheme will give superior performance. For other application types, the 

PFONMISS algorithm will still give a general performance advantage over the 

demand fetch scheme. 

The combined SIRPA scheme and the default prefetch of PFONMISS can also 

works with the Line Concept model. Only the SIRPA algorithm is modified by 

the Line Concept as the PFONMISS scheme will always choose the cache block 

different from the currently accessed one. In the result chapter, we will present 

benchmark tests by using pure PFONMISS scheme, SIRPA scheme with default 

prefetch, and SIRPA/Line Concept scheme with default prefetch. 
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Chapter 5 

Results 

In this chapter, we would state the benchmark programs that were used to test 

the proposed cache prefetch algorithms. The configurations of cache memory that 

we tested would be discussed in a section. Then, we would justify the validty of 

the results obtained. 

We made two major kinds of comparison, one is by the Overall MCPI values 

obtained, and the other is by the Second Level Cache & Main Memory MCPI 

values. The Overall MCPI comparison reflects the performance of a computer 

system with respect to the memory system, whereas the L2 Cache & Main Mem-

ory MCPI sheds the effect of an efficient and effective lower memory hierarchy 

design. 

In each type of comparison, we would present the results of the cache size 

effect, block size effect, and set associativity effect on both the hardware prefetch 

algorithms and software based prefetch algorithms. 

5.1 Benchmarks Used 

In order to test the proposed cache prefetch algorithms in the previous chapter, 

and to get comparisons with other cache prefetch algorithms in other publications, 
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extensive simulations had been done on the following benchmarks. The selected 

benchmark tests were come from the SPEC92 suite. 

SPEC92 benchmark suite is a complex set of programs intended to test the 

performance of computer systems. The SPEC92 benchmark suite was designed by 

the Standard Performance Evaluation Corporation (SPEC). It is an independent 

body specialized in creating fair and objective benchmarks to measure computer 

performance. 

SPEC provides continue effort to update her benchmark suite for the computer 

industry to make accurate and adequate performance measurements of current 

generation computer systems. The first version of SPEC benchmark suite was re-

leased in 1989 and it was referred to as SPEC89. The version of SPEC benchmark 

suite used in this thesis is the version released in 1992, and therefore it is called 

SPEC92. In SPEC92, there are a number of real application-based programs for 

measuring and comparing computer system performance. There are in general 

two groups of programs in SPEC92 that are tailored to test the performance of 

integer arithmetic and floating point arithmetic in a computer system, they are 

called SPEC CINT92 and SPEC CFP92 respectively. 

SPEC92 is chosen because it is designed to be computationally intensive appli-

cation, and does not assess the ability of a system under test to handle intensive 

I/O operations. The cache system design is best measured by such application as 

only when the processor is busily doing computation, that the memory latency 

from the cache system will make a performance difference. For I/O bound pro-

grams, usually the determination criterion for performance is the I/O bandwidth 

which is not the research interest in this thesis. 

SPEC92 is widely adopted by computer manufacturers as well as academic 

field to be used for computer performance comparison. Although SPEC has 

released a new version of benchmark suite in 1995 (SPEC95), not many bench-

74 



mark results are published on that version. SPEC95 is designed to cope with 

the ever growing trend in computation speed with current generation of proces-

sors. Therefore, to run SPEC95 is a much lengthier task than with SPEC92. As 

SPEC benchmark suite in general is to test real computer systems, if software 

simulator is used to run SPEC benchmarks, which the software simulator may 

run at a reduced speed of 1/1000^/z of the hardware speed, it will not be possible 

to complete the SPEC95 in reasonable time. The above are the reasons that we 

still chose SPEC92 benchmark suite for the work in this thesis. 

5.1.1 SPEC92int and SPEC92fp 

SPEC92 contains 14 floating point intensive benchmark programs in CFP92 and 

6 integer intensive benchmark programs in CINT92. We have chosen randomly 

3 integer programs from CINT92 and 5 floating programs to test the proposed 

cache prefetch algorithms by using our simulator. For each benchmark programs, 

we compiled the program using default compilation flags on an IBM RS/6000 

workstation. The compilers used are the supplied C compiler and FORTRAN 

compiler by the vendor. 

All the benchmark programs after compilation are then traced with an address 

trace generator program. The first 100 million instructions or the number of CPU 

instructions that required to make a complete run in each program are stored in 

respective trace files. One hundred million instructions are chosen because we 

have to make sufficient number of accesses to the on-chip second level cache to 

show the true performance of it. In the appendix, the average number of accesses 

to the first and second level cache is included for each configuration tested. 

NASA7 is one of the floating point benchmark programs we used in the 

CFP92. It in itself consists of 7 different portions of code (called kernels) to 

perform different styles of floating point arithmetic operations. We found that 
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the first 100 million instructions cannot cover all the 7 kernels, so we take addition 

traces for each kernel. That set of traces include at least a complete execution 

of one iteration of the outer loop for each kernel. The number of instructions in 

some of the kernel traces exceeds three million. 

The following is a brief description of the benchmark programs used. Source 

of information was obtained from SPEC92 document files. 

COMPRESS 

COMPRESS is an integer benchmark program in CINT92. The purpose of COM-

PRESS is to compress an input file using Lempel-Ziv coding. The program cor-

responds to a UNIX utility with the same name. The compress ratio by using 

the LZ coding for English based text file should be around 50-60%. 

This benchmark has a very high code locality and the instruction cache hit 

rate is very high. For a 32k Bytes direct mapped instruction cache, the hit rate 

is around 99.5%. However, the COMPRESS benchmark exercises extensively the 

data cache. The static code size for COMPRESS is around 50k Bytes^nd the 

data size is round 500k Bytes. COMPRESS was written in C language. 

ESPRESSO 

ESPRESSO is an integer benchmark program in CINT92. The purpose of ESPRESSO 

is to perform set operations such as union, intersect and difference. It tries to 

minimize boolean functions by producing a logically equivalent function to the 

input but with fewer terms. As arrays of unsigned integers are used to imple-

ment sets, this benchmark contains a large amount of constant stride memory 

accesses. The array sizes used in ESPRESSO are typically less than 200 members. 

ESPRESSO was written in C language. 
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NASA7 

NASA7 is a floating point benchmark program in CFP92. NASA7 was written 

in FORTRAN language and contains 7 different sub-programs called kernels. 

NASA7 consumed around 8 megabytes of data space and around 100k Bytes of 

code. 

The functions performed by each kernel in NASA7 are the following. 

• btrix - Block tridiagonal matrix solution along one dimension of a four 

dimensional array 

• cholsky - Cholesky decomposition in parallel on a set of input matrices 

• emit - Creates new vortices according to certain boundary conditions 

• c2fft2d - Complex radix 2 FFT on 2D array 

• gmtry - Sets up arrays for a vortex method solution and performs Gaussian 

elimination on the resulting arrays 

• mxm - Matrix multiply 

• vpenta - Inverts 3 matrix pentadiagonals in a highly parallel fashion 

SPICE 

SPICE is a floating point benchmark in CFP92, however, SPICE performs both 

integer and floating point arithmetics. SPICE is a hardware circuit simulator to 

test circuits made by resistors, capacitors, inductors, mutual inductors, voltage 

and current sources and semiconductors, such as diodes, BJTs, JFETs and MOS-

FETs. The properties measured by SPICE are nonlinear dc, nonlinear transient 

and linear ac. SPICE is a moderate size program with code size of around 200k 

Bytes and data size of around 500k Bytes. 
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When SPICE is running, a program space of 300k Bytes and virtual data space 

of around eight megabytes are consumed. SPICE was written in FORTRAN 

language. 

SU2COR 

SU2COR is a floating point benchmark in CFP92. The majority of floating point 

arithmetic is carried out in double precision. SU2COR was written in FORTRAN 

language and being vectorizable. SU2COR computes the masses of elementary 

particles in quantum physics by using the framework of the Quark-Gluon theory. 

SU2COR contains a large number of DO loops which should be good candi-

dates for testing constant stride memory access. SU2COR consumes around 4 

megabytes of data space, whereas the code size is around 3 megabytes. 

TOMCATV 

TOMCATV is a floating point benchmark in CFP92. The majority of floating 

point arithmetic is carried out in double precision. TOMCATV was written in 

FORTRAN language and being highly vectorizable. The code size of TOMCATV 

is around one megabytes and the array size in use in the program is around 3.7 

megabytes. TOMCATV is a mesh generation program. 

WAVE5 

WAVE5 is a floating point benchmark in CFP92. The majority of floating point 

arithmetic is carried out in single precision. The purpose of WAVE5 is to study 

various plasma phenomena on a two-dimensional, relativistic, electro-magnetic 

particle-in-cell environment. WAVE5 works on a 500,000-particle problem on a 

50,000 grid points. The code solves Maxwell's equations and particle equations 

of motion on a Cartesian mesh with field and particle boundary conditions. 
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It is estimated that 16 megabytes of working space is required by the WAVE5 

program. 

XLISP 

XLISP is an integer benchmark program in CINT92. XLISP is a LISP interpreter 

written in C language. The purpose of the XLISP program in CINT92 is to solve 

the 9-queen problem. 

5.2 Configurations Tested 

5.2.1 Prefetch Algorithms 

The following thirteen prefetch algorithms were tested. The tokens in parenthesis 

are used as headers in the results reported in Appendix. 

• (base) Baseline - demand-fetch only 

• (pomiss) PFONMISS - Prefetch On Miss 

• (wash) Chen's RPT scheme 

• (wash.li) Chen's RPT scheme with Line Concept 

• (wash.fa) Chen's RPT scheme with Fully Associative RPT entries 

• (indxrg) SIRPA - Source Index Register Prefetch Algorithm 

• (indxrg.li) SIRPA with Line Concept 

• (idx.pf) SIRPA with Default Prefetch 

• (idx.pf.li) SIRPA with Line Concept and Default Prefetch 

• (prefch) Software Prefetch Instruction 
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• (prefch.li) Software Prefetch Instruction with Line Concept 

• (setcam) Software SETCAM Instruction 

• (setcam.li) Software SETCAM Instruction with Line Concept 

Due to the Software Based Prefetch Algorithms (prefch, prefch.li, setcam, 

setcam.li) depend on specialized instructions inserted into the program code, 

only the 7 kernels in the NASA7 benchmark were performed on these algorithms. 

The trace files for the NASA7 kernels used are the same as those used in [Ho95]. 

All the cache prefetch algorithms are applied on both first and second level 

on chip cache. 

5.2.2 Cache Sizes 

All the tests performed assume a split on chip first level cache. The first level 

instruction cache is of infinite size, as this study concentrates on data access 

patterns. The first level data cache is of 16k Bytes, direct mapped, block size is 

16 Bytes, and using a write back write allocate policy. Non-blocking feature is 

enabled in the first level data cache. 

Two sizes of on chip second level cache were tested. They were 64k Bytes 

and 128k Bytes. The sizes were chosen basing on several factors. Firstly, the 

size of on chip second level cache on current generation of processors, eg. DEC 

Alpha 21164 contains a 96k Bytes on chip second level cache. This shows the 

approximate number of transistor counts available for on chip second level cache. 

Secondly, the size of the on chip second level cache should be at least four times 

the on chip first level cache, because if the size difference is not large enough, 

the contents in both cache layers will be substantially similar, the effect of the 

second level cache will not be significant. Thirdly, the number of instructions 

which can make a reasonable number of access to the second level cache. As 
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the trace files used are with around 100 million instructions, they may not be 

sufficient to test a much larger second level cache. The time required to take a 

dependable performance figure was also considered. 

Other than the above two sizes of on chip second level cache, another set of 

testes assuming an infinitely large second level cache was also performed. This set 

of data is to record the approximate overhead spent in the first level cache when 

the second level cache has a 100% hit rate. There would be no miss penalty on 

the second level cache. The MCPI attributed to second level cache is computed 

by the following formula. 

MCPI due to L2 cache = MCPI due to memory - MCPI due to L1 cache 

5.2.3 Cache Block Sizes 

Two cache block sizes on the on chip second level cache were chosen to be tested. 

They were 32 bytes and 64 bytes cache blocks. The chosen values reflects the 

general design principal to have larger block size in the second level cache than 

on the first level cache. But the cache block size cannot be substantially larger 

than the data bus width, because a cache block is the smallest transfer unit from 

the main memory. 

5.2.4 Cache Set Associativities 

Cache set associativities of 1, 2 and 4 were tested on the on chip second level 

cache. These are the common values used in implementing second level cache. 

5.2.5 Bus Width, Speed and Other Parameters 

The data bus width between the on chip first level cache and the second level 

cache is assumed to be 128 bits wide. This figure is four times the register width 
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of today's 32-bit processor and reflects the internal data path width of current 

top performing processors. 

Speed of the first level cache is assumed to match the processing speed of 

the CPU. That is, the instruction and data will be available to the processor on 

the same cycle if the memory request is a cache hit in first level cache when the 

processor is running that instruction. The penalty for a first level cache miss but 

a second level cache hit is 6 CPU cycles for the first word of data and 1 CPU 

cycle thereafter. The figures chosen approximate to a real computer system with 

a CPU running at 200MHz, and the second level cache is made up of memory 

cells with accessing speed of 30ns. 

When there is a second level cache miss and the data have to be transferred 

from the main memory, the timing requirement is assumed to be 10 CPU cycles to 

access the first word in the data and 6 CPU cycles thereafter. The figures corre-

spond to a real computer system using 50ns dynamic memory chips to implement 

the main memory. 

The on chip second level cache supports non-blocking feature as the same as 

on chip first level cache. The write policy of the on chip second level cache is write 

back write allocate and a write buffer of 8 entries are assumed to be available on 

the second level cache. 

The processor in the tests is assumed to be a scalar processor which can 

process at most one instruction in a CPU cycle. If all the instruction code and 

data are available to the CPU, the instruction is assumed to be finished at the next 

CPU cycle. This assumption does not correspond to many real life processors. 

However, as this thesis is targeted for the performance of on chip cache design, 

the computation unit in the CPU is not a concern. With the assumption of 

a very high performance computation unit, the consumption of instruction and 

data exerts a high demand on the cache system. If a cache design with prefetch 
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algorithm performs well in the test, it should perform even better in a CPU with 

slower computation power, as there will be more time for the computation and 

memory transfer overlap. 

For Chen's RPT scheme used in this study, there were 128 entries in the 

RPT, and use direct mapped scheme in the RPT, with the exception of the fully 

associative test on Chen's RPT, which in that case, the RPT had fully associative 

RPT entries, using LRU replacement algorithm in the RPT. The LA-PC and BPT 

were set to run ahead of the CPU program counter for one loop iteration. 

For the SIRPA scheme used in this study, there were 32 entries in the SVT, 

and the number corresponds to the number of integer registers in the target 

CPU. Only integer registers in the target CPU can be used in register indirect 

addressing mode. 

5.3 Validity of Results 

With thirteen cache prefetch algorithms, fifteen benchmark programs, and com-

binations of cache sizes, cache block sizes and set associativities, a total of 167 

simulations were run. The total running time for the MMHS to simulate all these 

testes on a 50MHz SUN SuperSparc processor is more than 1.5 CPU years. We 

believe that we had made an extensive and fair study on the performance of 

multi-layer hierarchy of cache system. 

5.3.1 Total Instructions and Cycles 

In each trace file, there are a number of CPU instructions captured in it. The 

smallest trace file used in this study is the mxm kernel in NASA7, which contains 

10.8 million instructions. The largest trace file used in this study is the gmtry 

kernel in NASA7, which contains 344 million instructions. The total number of 
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instructions in all the benchmark programs exceeds 1.3 billion. 

As the above 1.3 billion instructions were tested with different configurations, 

a total of 14.2 billion instructions had been run through the MMHS. 

The total number of CPU cycles run in the simulations was around 36 billion. 

Borg, Kessler, etc. in [BKW90] supported the notion to use a very long address 

trace to measure the real performance of memory system. 

5.3.2 Total Reference to Caches 

When a computer system with cache memory is freshly started, the cache memory 

contains no valid cache block, therefore, in a period, almost all memory accesses 

from the processor cause cache miss. We call the phenomenon, cache cold start. 

The performance of the cache memory will be stabilized when the cache cold start 

period is over, and the usually accessed data are already in the cache. In order to 

study the real behavior of a cache prefetching algorithm, we would measure the 

performance data when the cache memory is warmed up. To minimize the effect 

of cache cold start, we have to make sure each cache block will have chance to be 

exercised for sufficient number of memory transfers. The following discusses the 

number of memory requests presented to different level of cache memory in the 

simulations performed. 

First Level Cache 

The number of memory requests presented to the first level cache is independent 

of the cache configuration. Because all memory requests on first level cache is from 

the processor running a particular program, which the processor configuration is 

an invariant in this study. 

The number of memory requests per simulation on the first level cache ranges 

from 4 million in the vpenta kernel of NASA7 to 207 million in the gmtry kernel 

84 

:i 



of NASA7. The average number of memory requests per simulation on first level 

cache is 39 million. 

Compare with the number of cache blocks in the first level cache, which in all 

our simulations are fixed at 1024, the average number of references to each cache 

block is 38 thousand times. We would not doubt the first level cache in each of 

the simulations had been fully warmed up and the performance measured should 

well be stabilized to reflect the real behavior of the particular configuration for 

the benchmark programs. 

Second Level Cache 

The number of memory requests presented to the second level cache depends on 

the cache configurations, the efficiency of the first level cache and the program 

behavior. The number of cache prefetches on the first level cache will also affect 

the number of memory requests on the second level cache, as a L1 cache prefetch 

is considered as a normal memory request in the L2 cache. If the first level cache 

has a high hit rate, the number of memory requests for the second level cache 

will be lower, and vice versa. 

The number of memory requests per simulation on the second level cache 

ranges from 755 thousand times in mxm kernel of NASA7 to 117 million times 

in gmtry kernel of NASA7. The maximum number of memory requests on the 

second level cache for a particular benchmark program is usually at least 2 times 

the minimum number. It showed that the first level cache configurations and the 

cache prefetch algorithms used do make a big difference in reducing the memory 

requests on the second level cache. 

The second level cache size, block size, set associativity and prefetch algorithm 

used change in each configuration. The average number of access to the second 

level cache blocks varies from 200 times to 451 thousand times. We believe that 
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all the performed simulations did warm up the second level cache in test and the 

performance figures obtained should reflect a stabilized cache memory. 

5.4 Overall MCPI Comparison 

Overall Memory Cycles Per Instruction (MCPI) is the portion of time an CPU 

instruction had spent in waiting the memory system for a data. The computation 

time for that instruction has been removed, therefore, the figure should be a 

system independent value. 

For the thirteen cache prefetch algorithms that we proposed in previous chap-

ters, we had grouped them into a few categories: 

1. Base, without cache prefetch 

2. PFONMISS 

3. Chen's RPT family 

4. SIRPA family 

5. Software Based Cache Prefetch Algorithms 

We compared the results on overall MCPI for Baseline case (in category 1), 

PFONMISS (in category 2), Chen's RPT scheme (in category 3), and SIRPA 

scheme with Line Concept (in category 4) in the following section. The Cache 

Size effect, Cache Block Size effect and Cache Set Associativity effect would be 

analyzed. Then, the effect of Line Concept and Default Prefetch schemes would 

be studied. Finally, the Hardware Prefetch Algorithms would be compared with 

Software based Prefetch Algorithms. 
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5.4.1 Cache Size Effect 

For the two cache size configurations used in second level cache, which are 64k 

Bytes and 128k Bytes, we plotted a chart for each benchmark programs. Because 

we run twelve combinations of cache configuration for each benchmark programs, 

other than the variation in cache size, the other two parameters are cache block 

size and set associativity, in all the charts shown, we kept these two parameters 

constant. The selected values are 32 Bytes cache blocks and 4-way set associative 

configuration. These values gave the best performance in all configurations tested 

in general. 

The Overall MCPI values are plotted against the L2 cache sizes for each 

benchmark programs in figures 5.1 - 5.3. The lower the MCPI implies the better 

performance of a configuration. In figures 5.4 - 5.6, the percentage reduction in 

Overall MCPI using the Baseline case as lOOshown, the higher the percentage 

reduction, the better a cache prefetch algorithm to shorten memory lattency. 

From the Overall MCPI charts, we observed that almost all cache prefetch 

algorithms work better in 128k Bytes second level cache. However, the improve-

ment in memory latency varies from different cache prefetch algorithms. The 

bigger improvements in overall MCPI occur in compress, and spice benchmark 

programs. This is not surprise as both of them work with large amount of data, 

and the working set size was expected to be large. For other benchmarks, the 

difference in overall MCPI between 64k Bytes and 128k Bytes second level cache 

was minimal. 

We can find a general trend from the charts that, there are consistent im-

provements in MCPI by using SIRPA with Line Concept or Chen's RPT scheme 

for various benchmarks. The performance of SIRPA scheme and the Chen's RPT 

scheme is quite similar. However, for the PFONMISS scheme, the performance 

fluctuates greatly. 
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Figure 5.1: Overall MCPI comparison by cache size 
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Figure 5.2: Overall MCPI comparison by cache size (cont.) 
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Figure 5.3: Overall MCPI comparison by cache size (cont.) 
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The PFONMISS scheme improves the overall MCPI in compress, espresso, 

tomcatv, su2cor, nasa7, btrix, cholsky, cfFt2d, emit, gmtry, mxm and vpenta 

benchmarks. But it decreases the memory system performance in spice2, wave5, 

and xlisp benchmarks. The fluctuation is due to the imprecise mechanism used in 

PFONMISS, which for large stride access, the scheme will cause cache pollution. 

Even in benchmarks where PFONMISS shows positive performance, the im-

provement is consistently not as good as those using SIRPA scheme or Chen's 

RPT scheme. The reason may be similar to the above that PFONMISS nonethe-

less will introduce cache pollution. 

There are three cases that increase the second level cache size did result in a 

increase in overall MCPI, they are tomcatv, btrix kernel in NASA7, and cholsky. 

We attribute the anomaly to the mapping between the cache blocks in the first 

level cache to the cache blocks in the second level cache. The anomaly is not 

significant, as for all the three benchmarks, the increase in overall MCPI is very 

minimal. 

5A.2 Cache Block Size Effect 

We had plotted the two different cache block sizes of 32 Bytes block and 64 Bytes 

block used in the second level cache against overall MCPI for all benchmark 

programs in figures 5.7 一 5.9. The reduction in Overall MCPI by using Baseline 

case as lOOfigures 5.10 一 5.12. 

There is a consistent observation that the increase in cache block size from 

32 Bytes to 64 Bytes gives a lengthier overall MCPI, with the exception in the 

mxm kernel in NASA7 benchmark. 

The poor performance of a large cache block size may due to three reasons. 

1. The transfer time per cache block is longer for a larger cache block size. In 

the simulations performed, from main memory to the second level cache, 
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Figure 5.4: Overall MCPI Reduction comparison by cache size 
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Figure 5.5: Overall MCPI Reduction comparison by cache size (cont.) 
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Figure 5.6: Overall MCPI Reduction comparison by cache size (cont.) 
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Figure 5.7: Overall MCPI comparison by block size 
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Figure 5.8: Overall MCPI comparison by block size (cont.) 
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Figure 5.9: Overall MCPI comparison by block size (cont.) 
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Figure 5.10: Overall MCPI Reduction comparison by block size 
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Figure 5.11: Overall MCPI Reduction comparison by block size (cont.) 
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Figure 5.12: Overall MCPI Reduction comparison by block size (cont.) 
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the startup time for the first bus width word is 10 CPU cycles, where the 

following word will be available at a rate of 6 CPU cycles. That equates to a 

transfer time of 28 CPU cycles per a 32-Byte second level cache block, as a 

128-bit bus from the main memory to the second level cache was simulated. 

With a 64-Byte second level cache block, the transfer time required from 

the main memory to the second level cache is 52 CPU cycles. That means 

with a second level cache miss using 64 Bytes cache block, the processor 

may have to stall for 52 cycles before it can continue. Therefore it is no 

doubt that a smaller cache block size is preferred. 

2. The spatial locality gained by using a larger cache block size is minimal. 

With a 32-Byte cache block, it may already contain an element or two in an 

array for processing, the gain in further calling in more elements by using 

a larger cache block is very less. Or there were significant amount of large 

stride access that the stride value is far larger than 32 Bytes or 64 Bytes. 

3. The larger cache block size used in a fixed amount of cache memory means 

the number of sets in the cache will be decreased. With a 128k Bytes 

cache, using 2-way set associative organization, there are 2048 sets if 32 

Bytes cache block is used. However, with the same cache parameters, but 

using 64 Bytes block, there are 1024 sets available. The fewer number of 

sets means more memory addresses will be mapped to the same set, which 

the chance for conflict miss will become higher. 

5.4.3 Set Associativity Effect 

The three set associativity values, which are 1, 2 and 4, for the second level cache 

are plotted against the overall MCPI for all the benchmark programs in figures 

5.13 — 5.15. The reduction in Overall MCPI charts are shown in figures 5.16 -
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5.18. 

There is a consistent trend that increasing the set associativity value improves 

the overall MCPI. 

The decrease in overall MCPI is sharp when the set associativity is increased 

from 1 (direct mapped cache) to 2 (2-way set associative). It showed that there 

were some amount of conflict misses in all benchmarks when a direct mapped 

cache was used. However, the decrease in overall MCPI is leveled off when the 

set associativity is further increased from 2 to 4. The slope changes are different 

for different benchmarks. It showed that for some benchmarks, a higher set 

associativity is beneficial, even with a 4-way set associative organization, there 

is still room for overall MCPI improvement by reducing cache conflict misses. 

However, for the majority of benchmarks, the number of conflict miss had been 

reduced sharply with a 2-way set associative organization for the second level 

cache. 

From all the tests we have performed, we can group the results on Overall 

MCPI into the following categories. 

• Hardware Prefetch Algorithms 

• Software Based/Hybrid Prefetch Algorithms 

5.4.4 Hardware Prefetch Algorithms 

SIRPA family and similar schemes 

In the Hardware Prefetch Algorithms, we had performed tests on fifteen differ-

ent benchmarks. The best performers in terms of MCPI in the corresponding 

benchmark test are: 

SIRPA and its enhanced versions won 8 out of 15 benchmark tests. The 

remaining winners were enhanced versions of Chen's RPT scheme. 
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Figure 5.13: Overall MCPI comparison by associativity 
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Figure 5.14: Overall MCPI comparison by associativity (cont.) 
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Figure 5.15: Overall MCPI comparison by associativity (cont.) 
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Figure 5.16: Overall MCPI Reduction comparison by associativity 
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Figure 5.17: Overall MCPI Reduction comparison by associativity (cont.) 
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Benchmark: gmtry Benchmark: mxm 
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Figure 5.18: Overall MCPI Reduction comparison by associativity (cont.) 
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Table 5.1: Best Prefetch Algorithm Producing Smallest Overall MCPI 

Benchmark Best Prefetch Algorithm (Smallest MCPI) 

compress SIRPA w/ Line Concept w/ Default Prefetch 

espresso Chen's RPT w/ Fully Associative Entries 

spice2 Chen's RPT w/ Fully Associative Entries 

su2cor SIRPA w/ Line Concept w/ Default Prefetch 

tomcatv SIRPA w/ Line Concept 

wave5 Chen's RPT w/ Line Concept 

xlisp Chen's RPT w/ Fully Associative Entries 

nasa7 SIRPA w/ Default Prefetch 

btrix Chen's RPT w/ Fully Associative Entries 

cholsky Chen's RPT w/ Fully Associative Entries 

emit SIRPA w/ Line Concept w/ Default Prefetch 

cfFt2d SIRPA w/ Line Concept 

gmtry SIRPA w/ Line Concept w/ Default Prefetch 

mxm SIRPA w/ Line Concept 

vpenta Chen's RPT w/ Fully Associative Entries 

In numerical sense, we listed out the top performers for respective benchmark 

tests by using SIRPA family and Chen's RPT family of cache prefetch algorithms. 

The values listed are the MCPI for the respective benchmark programs. The 

ratios listed are the result by dividing the two numbers. The values without 

bracket mean the SIRPA family performed better, and the ratios listed with 

brackets mean the Chen's RPT's family performed better. 

The results showed that SIRPA family of prefetching algorithms performed 

slightly better than the Chen's RPT family. However, the difference on the top 
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performers from both families is quite small. It is not surprised as both the 

SIRPA and Chen's RPT cache prefetch algorithms tackle the constant stride 

access patterns in programs. 

The difference in performance between SIRPA and Chen's RPT algorithms 

can be attributed to the following reasons. 

1. When the entries in Chen's RPT are frequently replaced, some of the in-

struction addresses that should have a constant stride access pattern may 

be flushed out from the RPT by other instruction address. This point can 

be deduced from the above table that most top performing cache prefetch 

algorithms using Chen's RPT have to use fully associative RPT. When a 

direct mapped RPT is used, the conflict in RPT entries would be more 

likely to happen. 

2. When the number of arrays used in a program loop has exceeded the number 

of available registers to hold the array addresses, register reuse may make 

the SIRPA's SVT unable to detect the constant stride patterns. 

The SIRPA scheme has much less hardware overhead compare with the Chen's 

RPT scheme, because the SVT size in SIRPA can be significantly smaller. In all 

the tests performed, the number of entries in SVT is 32 verses the number of 

entries in RPT is 128. There is no LA-PC and BPT in the SIRPA scheme. As 

shown in the above table, the cache performance of SIRPA is on par with Chen's 

RPT, but with the same number of transistors available on chip, the chip using 

SIRPA can make a much bigger cache which the same area is occupied by the 

larger RPT, LA-PC and BPT in Chen's RPT scheme. 

Compare with the PFONMISS scheme, either SIRPA or Chen's RPT consis-

tently performs better. The following in a table showing the best MCPI by using 

PFONMISS, SIRPA and RPT. The values in bracket show the percentage using 
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the value in the PFONMISS column as a base. 

We must aware that even the simple PFONMISS scheme may perform as well 

as the more sophisticated SIRPA and Chen's RPT schemes in some benchmarks 

(compress, su2cor, emit, gmtry). However, the built-in stride value checking 

mechanism in the SIRPA and Chen's RPT schemes assures the above two schemes 

would not degrade the system performance when the majority of memory access 

is not constant stride type. The above two schemes would just fire no cache 

prefetch at all when the memory access pattern is not certain, and the cache 

system become to use demand fetch only. 

On the other hand, the PFONMISS scheme may cause cache pollution if the 

majority of memory access is with large stride values. As can be seen from the 

wave5 benchmark (in graph containing in Appendix), the best performing cache 

configuration using PFONMISS still cause the MCPI to degrade by 19.58com_ 

paring with the base without using any cache prefetch algorithm. The worst case 

using PFONMISS on wave5 made the memory latency almost 70than without 

cache prefetch at all. 

Although pure SIRPA and Chen's RPT schemes may still degrade memory 

latency, the effect is much less severe than the PFONMISS scheme. The degra-

dation experienced may due to the limited size of cache memory, which the 

prefetched cache block replaced another block that is called by the processor 

earlier than the prefetched one. The most severe degradation in MCPI is a mere 

2.8benchmark. 

Line Concept 

We can observe from the top performing algorithms' table that, both the Line 

Concept and the Default Prefetch did help in the cache prefetch algorithms. 8 out 

of 15 top performing algorithms required the Line Concept to improve the MCPL 
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From the data in Appendix, we found that almost all tests show that the Line 

Concept is useful in improving performance. The Line Concept is equally well 

performed with the SIRPA scheme, Chen's RPT scheme and even the software 

prefetch instruction scheme. 

The Line Concept is a new enhancement with Chen's RPT scheme. The 

further reduction in MCPI could be 6Line Concept with other cache parameters 

the same. The Line Concept gave an even higher performance boast when using 

with SIRPA scheme. The further reduction in MCPI could be as high as 91using 

Line Concept with other cache parameters the same. 

The Line Concept is useful when the stride value is small, and a few data 

items have been mapped to the same cache block. The Line Concept will call in 

the next cache block earlier than without. The overlapping in computation and 

memory transfer can then be enhanced. 

In figures 5.19 - 5.21, the Overall MCPI values of using Line Concept with 

SIRPA scheme and Chen's RPT scheme are shown. The corresponding MCPI 

values due to L2 and Main Memory are plotted in figures 5.22 — 5.24. 

Default Prefetch 

5 out of 9 SIRPA family algorithms in the top performing table required the 

Default Prefetch scheme. The further reduction in MCPI could be 285emit kernel 

of NASA7 by using Default Prefetch with other cache parameters the same. 

The Default Prefetch scheme is useful when the constant stride accesses are 

not too many, but the program still exhibits a majority of spatial locality. There 

are benchmark programs with a very large reduction in MCPI by using PFON-

MISS. By using Default Prefetch with SIRPA, the reduction in MCPI will also 

be very high in these benchmark programs. 

When Default Prefetch is added on the pure SIRPA scheme, in the bench-
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Figure 5.19: Overall MCPI Comparsion of Line Concept 
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Figure 5.20: Overall MCPI Comparsion of Line Concept (cont.) 
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Figure 5.21: Overall MCPI Comparsion of Line Concept (cont.) 
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Figure 5.22: L2/Main Mem MCPI Comparsion of Line Concept 
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Figure 5.23: L2/Main Mem MCPI Comparsion of Line Concept (cont.) 

117 



Benchmark: gmtry Benchmark: m x m 

MCPI due to L2, M a i n M e m MCPI due to L2, Ma in M e m 

0.72 0.14 — 

0.71 y ^ 0.12 ^ " " ^ ^ ^ ^ 

0.70 y ^ y ^ 0.10 ^ ^ ^ > ^ 

0.69 3T y ^ 0.08 x « ^ ^ ^ " \ ^ ^ ^ 

0.68 ^ ^ 0.06 ^^^-~^^ 
0.67 - # - w a s h 0.04 - ^ w a s h 

" H " w a s h . l i - * — w a s h . l i 
0.66 ~ A ~ indxrg 0.02 - A r - indxrg 

- ^ indxrg.li - ^ < - indxrg.li 
0.65 1 0.00 1 
MCPI 64kB L2 128kB L2 MCPI 64kB L2 128kB L2 

Benchmark: vpenta 
MCPI due to L2, Ma in M e m 

0.30^ ^ ^ ^ ^ 

0.3。 ^ _ ^ ^ ^ 

0.30 y ^ 

0.30 > ^ 

0.29 y ^ 

0.29 y ^ 

0.29 r 
0.29 - 4 - w a s h 

0.29 -̂ wash.li 
A indxrg 

0.28 
~»<~ indxrg.li 

0.28 
MCPI 64kB L2 128kB L2 

Figure 5.24: L2/Main Mem MCPI Comparsion of Line Concept (cont.) 
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marks that PFONMISS performed poorly, the MCPI generated by using SIRPA 

with Default Prefetch will also be degraded. The same problem of cache pollution 

will be added into the SIRPA with Default Prefetch scheme. 

The Overall MCPI values for SIRPA scheme with and without using Default 

Prefetch enhancement are shown in figures 5.25 - 5.27. The corresponding MCPI 

values due to L2 and Main Memory are shown in figures 5.28 一 5.30. 

5.4.5 Software Based Prefetch Algorithms 

In this study, two different software based prefetch algorithms were tested. They 

are Software Prefetch Instruction (PREFETCH) and SETCAM scheme [Ho95 . 

The Line Concept was applied to both of the two software based prefetch algo-

rithms to test any possible benefit. 

Only the 7 kernels in NASA7 has the appropriate special instructions embed-

ded into the trace files, and the software based prefetch algorithms can be tested 

on these files. 

The best reduction in MCPI by using software based prefetch algorithms is 

summarized in the following table. 

The clear cut winner in software based prefetch algorithm is without doubt 

SETCAM w/ Line Concept scheme. The only benchmark that PREFETCH won 

is the cfFt2d, but the margin was too small to be significant. The reduction in 

MCPI by using PREFETCH with Line Concept is 0.75MCPI by using SETCAM 

with Line Concept is 0.74 

The results were consistent with those presented in [Ho95]. However, in the 

tests performed in this study involves 2 level cache hierarchy, but in [Ho95], the 

results were simulated by using 1 level cache memory. 

Line Concept is again proved to be useful in improving the tested software 

based prefetch algorithms. The only exception is the cholsky benchmark, which 
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Figure 5.25: Overall MCPI Comparison of Default Prefetch Scheme 
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Figure 5.26: Overall MCPI Comparison of Default Prefetch Scheme (cont.) 

121 



Benchmark : gmtry Benchmark: m x m 
Overa l l MCPI Overal l MCPI 
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Figure 5.27: Overall MCPI Comparison of Default Prefetch Scheme (cont.) 
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Benchmark: compress Benchmark: espresso 
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Figure 5.28: L2/Main Mem MCPI Comparison of Default Prefetch Scheme 
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Figure 5.29: L2/Main Mem MCPI Comparison of Default Prefetch Scheme 

(cont.) 
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Benchmark: gmtry Benchmark: mxm 
MCPI due to L2, Main Mem MCPI due to L2, Main Mem 
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Figure 5.30: L2/Main Mem MCPI Comparison of Default Prefetch Scheme 

(cont.) 
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by using Line Concept, the reduction in MCPI is 1.6using Line Concept. 

The main difference in PREFETCH and SETCAM is the instruction overhead 

to make a cache prefetch. The results show that when the instruction overhead 

can be reduced greatly, the performance of the software based prefetch algorithm 

will be much improved. 

When comparing with hardware prefetch algorithms, we got the following 

table. 

SIRPA family of hardware prefetch algorithms won all but the btrix and 

mxm benchmarks. The difference in reduction of MCPI in btrix benchmark 

is a mere 1.5%, and in mxm benchmark, 0.04%. However, in the cfft2d and 

gmtry benchmarks, the difference in performance of the SIRPA scheme and the 

SETCAM scheme is very sharp. 

It is generally believe that software based prefetch algorithms will perform 

better than hardware prefetch algorithms, as the language compiler can take ex-

tensive code analysis on the executable code, and insert special instructions for 

cache prefetch accordingly. All cache prefetches will be accessed and there will 

be no cache pollution problem. If the instruction overhead can be minimized, 

software prefetch algorithm should be preferred to hardware ones, because hard-

ware prefetch algorithms can only work with the executable code and data access 

pattern, which a lot of useful information contained in the source program may 

be lost. In the above table, we can observe that, with a highly accurate and effi-

cient hardware prefetch algorithm, such as SIRPA, the performance can actually 

be better than a software based prefetch algorithm. 

The even more important impact is that, software based prefetch algorithms 

always depend on the support of a specialized language compiler and hardware. 

Both the compiler and the processor has to support the special instructions in-

serted in the executable code before any benefit of the prefetch algorithm can be 
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seen. There will be no software compatibility with previous code. However, with 

SIRPA, there is no requirement in the compiler nor the processor support. The 

SIRPA scheme can be implemented as a separate function unit on the same chip 

as the processor, but the CPU has the freedom to use instruction set compatible 

with previous processors without SIRPA. Software compatibility can be assured 

but the memory latency can be improved. 

Overall MCPI values for SIRPA with Line Concept scheme (a hardware cache 

prefetch algorithm) and other software based cache prefetch algorithms are shown 

in figures 5.31 and 5.32 

For the seven kernels in NASA7, which software based cache prefetch al-

gorithms can be tested together with other hardware prefetch algorithms, we 

found that the performance of SETCAM scheme is consistently superior than 

the PREFETCH instruction scheme. The overall MCPI produced by using SET-

CAM scheme is similar to the hardware prefetch algorithm like SIRPA, with the 

exception of cfft2d and gmtry kernels, which the SETCAM scheme was not so 

effective. 

5.5 L2 Cache & Main Memory MCPI Com-

parison 

MCPI due to second level cache and main memory is a calculated value. A set 

of simulations assuming an infinitely large second level cache is run. The results 

showed the timing information when all second level cache access resulted in 

cache hit. The results were deducted from the overall MCPI, and the reminders 

should be attributed to the timing requirement for the second level cache to main 

memory transfer. 
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Figure 5.31: Overall MCPI Comparison by Software/Hardware Prefetch Algo-

rithms 
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Benchmark: gmtry Benchmark: mxm 
Overall MCPI Overall MCPI 
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Figure 5.32: Overall MCPI Comparison by Software/Hardware Prefetch Algo-

rithms (cont.) 
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5.5.1 Cache Size Effect 

The charts in figures 5.33 - 5.35 are those plotted the second level cache size 

against the MCPI due to second level cache and main memory for each benchmark 

program. In figures 5.36 - 5.38, the reduction in MCPI due to second level cache 

and main memory for benchmark programs are shown. The results were similar 

to the overall MCPI comparison. 

We observed large improvement in L2, Main Memory MCPI in compress, 

spice2, su2cor and mxm benchmarks. In espresso, wave5, xlisp, nasa7, cfFt2d, 

emit, gmtry, and vpenta benchmarks, the performance in L2, Main Memory 

MCPI is leveled off by increasing the L2 cache size. 

There were anomalies in the cache size effect, in the benchmark of tomcatv, 

wave5, btrix and cholsky, the L2 cache, Main Memory MCPI actually increases 

as the cache size increases. The reasons for the anomalies are similar to those 

presented in the section discussing overall MCPI. One more suggestion may due 

to the fact that with a larger second level cache, the number of transfer from the 

main memory to the cache is smaller, compare with a smaller second level cache. 

The L2, Main Memory MCPI recorded may have a higher portion of cache cold 

start transfer in the 128k Bytes second level cache. 

5.5.2 Cache Block Size Effect 

The charts in figures 5.39 - 5.41 are those plotted the second level cache block size 

against the L2, Main Memory MCPI for each benchmark program. In figures ？? 

_ ？?, the reduction min MCPI due to L2 and Main Memory are plotted against 

the change in cache block size. 

The results were consistent with the overall MCPI charts. All benchmark pro-

grams showed an increase in L2, Main Memory MCPI when the second level cache 

block increases from 32 Bytes block to 64 Bytes block, with the only exception 
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Benchmark: compress Benchmark: espresso 
MCPI due to L2, Main Mem MCPI due to L2, Main Mem 
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Figure 5.33: L2/Mem MCPI comparison by cache size 
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Benchmark: xlisp Benchmark: nasa7 
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Figure 5.34: L2/Mem MCPI comparison by cache size (cont.) 
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Benchmark: gmtry Benchmark: mxm 
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Figure 5.35: L2/Mem MCPI comparison by cache size (cont.) 
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Benchmark: compress Benchmark: espresso 
MCPI due to L2, Main Mem Reduction MCPI due to L2, Main Mem Reduction 
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Figure 5.36: L2/Mem MCPI Reduction comparison by cache size 
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Benchmark: xlisp Benchmark: nasa7 
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Figure 5.37: L2/Mem MCPI Reduction comparison by cache size (cont.) 
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Benchmark: gmtry Benchmark: mxm 
MCPI due to L2, Main Mem Reduction MCPI due to L2, Main Mem Reduction 
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Figure 5.38: L2/Mem MCPI Reduction comparison by cache size (cont.) 
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Figure 5.39: L2/Mem MCPI comparison by block size 
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Figure 5.40: L2/Mem MCPI comparison by block size (cont.) 
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Benchmark: gmtry Benchmark: mxm 
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Figure 5.41: L2/Mem MCPI comparison by block size (cont.) 
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Benchmark: compress Benchmark: espresso 
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Figure 5.42: L2/Mem MCPI Reduction comparison by block size 
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Figure 5.43: L2/Mem MCPI Reduction comparison by block size (cont.) 
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Benchmark: gmtry Benchmark: mxm 
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Figure 5.44: L2/Mem MCPI Reduction comparison by block size (cont.) 
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of mxm kernel in NASA7. 

The reasons for the decrease in performance are similar to those presented 

in the previous section discussing overall MCPI. The increase in L2, Main Mem-

ory MCPI was even sharper when compare with the overall MCPI charts. It 

showed that the first level cache, which was an invariant part in the simulations, 

already shielded off the majority of memory accesses, and the bad effect of using 

a larger cache block size was contributed at large by the second level cache to 

main memory transfers. 

5.5.3 Set Associativity Effect 

Charts with the set associativity values used in the second level cache plotted 

against the L2, Main Memory MCPI for each benchmark program are shown in 

the figures 5.45 - 5.47. L2, Main Memory MCPI reduction against the change in 

L2 cache set associativity is plotted in figures ??12:reduction:set: 1 - 5.50. 

The results are in general an amplified version of the charts that presented 

in the overall MCPI section. The effect of using a higher set associativity is 

more important in improving the L2, Main Memory MCPI. It is a proof that the 

simulations done in this thesis gave a more complete view on a real computer 

system with a multiple hierarchy of memory levels. A set associative second level 

cache is inevitable in the design. For most of the benchmarks tested, there were 

a sharp improvement in L2, Main Memory MCPI when the set associativity was 

increased from 1 to 2. The further improvement by increasing the set associativity 

from 2 to 4 depends on different programs. 
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Figure 5.45: L2/Mem MCPI comparison by associativity 
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Figure 5.46: L2/Mem MCPI comparison by associativity (cont.) 
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Figure 5.47: L2/Mem MCPI comparison by associativity (cont.) 
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Figure 5.48: L2/Mem MCPI Reduction comparison by associativity 
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Figure 5.49: L2/Mem MCPI Reduction comparison by associativity (cont.) 
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Benchmark: gmtry Benchmark: mxm 
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Figure 5.50: L2/Mem MCPI Reduction comparison by associativity (cont.) 
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Table 5.2: Best Overall MCPI by using SIRPA k RPT family Algorithms 

Best MCPI by Best MCPI by 

Benchmark SIRPA family Wash. RPT family Ratio 

compress 0.24612 0.24979 1.0 

espresso 0.05145 0.05064 (1.0) 

spice2 0.26036 0.22352 (1.2) 

su2cor 1.08390 1.11053 1.0 

tomcatv 0.68474 0.79914 1.2 

wave5 0.06387 0.06362 (1.0) 

xlisp 0.10620 0.10495 (1.0) 

nasa7 0.35351 0.38674 1.1 

btrix 0.30295 0.28570 (1.1) 

cholsky 0.67255 0.66393 (1.1) 

emit 0.04198 0.04521 1.1 

cfft2d 1.00582 1.06920 1.1 

gmtry 1.45718 1.72924 1.2 

mxm 0.14724 0.24979 1.7 

vpenta 0.71672 0.70720 (1.0) 
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Table 5.3: Best Overall MCPI by using PFONMISS/SIRPA/RPT Algorithms 

Best MCPI by Best MCPI by Best MCPI by 

Benchmark PFONMISS SIRPA family RPT family 

compress 0.24723 0.24612 (100%) 0.24979 (101%) 

espresso 0.05777 0.05145 (89%) 0.05064 (88%) 

spice2 0.30970 0.26036 (84%) 0.22352 (72%) 

su2cor 1.08854 1.08390 (100%) 1.11053 (102%) 

tomcatv 0.82086 0.68474 (83%) 0.79914 (97%) 

wave5 0.10083 0.06383 (63%) 0.06362 (63%) 

xlisp 0.12358 0.10620 (86%) 0.10495 (85%) 

nasa7 0.40998 0.35351 (86%) 0.38674 (94%) 

btrix 0.40565 0.30295 (75%) 0.28570 (70%) 

cholsky 0.74303 0.67255 (91%) 0.66393 (89%) 

emit 0.04417 0.04198 (95%) 0.04521 (102%) 

cfft2d 1.18129 1.00582 (85%) 1.06920 (91%) 

gmtry 1.49627 1.45718 (97%) 1.72924 (116%) 

mxm 0.20791 0.14724 (71%) 0.24979 (120%) 

vpenta 0.82674 0.71672 (87%) 0.70720 (86%) 
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Table 5.4: Benchmarks with high reduction in MCPI by using Default Prefetch 

Best MCPI by Best MCPI by Best MCPI by 

Benchmark PFONMISS Pure SIRPA SIRPA w/ Def. Prefetch 

emit 0.04417 0.15239 0.04403 

compress 0.24723 0.25373 0.24688 

su2cor 1.08854 1.13396 1.08465 

tomcatv 0.82086 0.85102 0.75393 

Table 5.5: Best Software Based Prefetch Algorithm 

Benchmark Software Based Prefetch Algorithm 

btrix SETCAM w/ Line Concept 

cholsky SETCAM 

emit SETCAM w/ Line Concept 

cfft2d PREFETCH w/ Line Concept 

gmtry SETCAM w/ Line Concept 

mxm SETCAM w/ Line Concept 

vpenta SETCAM w/ Line Concept 
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Table 5.6: Overall MCPI by using SETCAM k SIRPA family Algorithms 

Best MCPI by Best MCPI by 

Benchmark SETCAM family SIRPA family 

btrix 0.29597 0.30295 

cholsky 0.68265 0.67255 

cfft2d 1.46480 1.00582 

emit 0.04641 0.04198 

gmtry 1.74663 1.45718 

mxm 0.14717 0.14724 

vpenta 0.71777 0.71672 
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Chapter 6 

Conclusion 

In this thesis, we proposed a new cache prefetch algorithm based on the register 

usage and addressing mode of CPU instructions. The SIRPA scheme has a supe-

rior performance compared with conventional OBL schemes such as PFONMISS. 

The accuracy of SIRPA scheme is very high, and the scheme performs consis-

tently well across a wide range of benchmark programs. The SIRPA scheme 

tracks the common constant stride access patterns and fires cache prefetch for 

the next memory address where the process will access in the next loop iteration. 

The scheme compares well in performance with more sophisticated scheme like 

the Chen's RPT scheme, however, the hardware complexity is greatly reduced 

due to lack of large size RPT, LA-PC and BPT in SIRPA. 

A major achievement by using the SIRPA scheme is the selection of source 

register as the target for use as index in the SVT. As the number of registers in 

a processor is fixed, the number of entries in the SVT corresponding with each 

register is readily determined. The number of targets for checking constant stride 

access patterns is small due to the fact that the addresses to arrays in memory 

are usually stored in registers in RISC processors. The SVT will not be polluted 

by other non-constant stride memory accesses compare with other scheme using 

instruction address the index to stride discovery table. 
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By using a good hardware cache prefetch algorithm, like the SIRPA, the 

improvement in memory latency can match that of the software or hybrid cache 

prefetch scheme, such as the SETCAM. The benefit of hardware cache prefetch 

scheme is software compatibility with already available software, no instruction 

set modification and no need to have language compiler support. 

Two enhancements to current cache prefetch scheme were studied. One is 

Line Concept scheme, which makes a cache prefetch to fire earlier than the 

scheme without using it. The improvement includes a higher chance that the 

cache prefetch will be carried out, because there is a longer period that the cache 

prefetch may find an idle memory bus. Another improvement is to increase the 

available cache prefetch time and hence improve the computation and memory 

transfer overlap. The end result is a reduced memory latency for the whole sys-

tem. We had applied the Line Concept scheme to the SIRPA scheme, the Chen's 

RPT scheme, the SETCAM scheme and the software PREFETCH instruction 

scheme. We found that the Line Concept scheme is effective to a broad range of 

cache prefetching algorithms especially for the hardware cache prefetching algo-

rithms. 

The other enhancement to cache prefetch schemes proposed in this thesis 

is the Default Prefetch scheme. The Default Prefetch scheme helps when the 

memory access pattern is not predominantly constant stride, but still with high 

spatial locality. The scheme effectively brings the benefit of PFONMISS and 

SIRPA together. 

In this thesis, we had studied a variety of on chip first and second level cache 

configurations with unified cache management system. We had shown that a 

unified system is desirable in the on chip environment due to reduced hardware 

overhead and electrical loadings on the CPU bus. The information on the CPU 

chip can aid the cache prefetch algorithm to make accurate predictions to future 
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memory access. The performance of both levels of cache is good on a range of 

benchmark programs. 

In conclusion, unified on chip cache management schemes with cache prefetch 

algorithms for the first and second level cache were studied, the impact to the 

memory latency was simulated and measured by a set of well accepted benchmark 

programs. The results showed that the on chip cache system can bridge the 

disparity in speed between the processor and the on board main memory. The 

trend to include on chip second level cache is undeniable. A coherent and pro-

active method to manage on chip cache memory is necessary to realize the highest 

yield that the small size memory can give out. The data presented in this thesis 

is a firm foundation to support a good hardware design of on chip cache system. 
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Chapter 7 

Future Directions 

The cache prefetch algorithms and cache management schemes proposed in this 

thesis can be further enhanced. The following is a few suggestions that future 

study can be based on with elementaryjustifications. The author intends to pub-

lish results in the future by using the methods suggested in the next paragraphs. 

7.1 Prefetch Buffer 

Cache prefetches may increase memory latency, and hence decrease system per-

formance, if the prefetched cache block replaces another block which is required 

by the processor. This creates a conflict miss. In cache prefetch scheme like 

SIRPA, the prefetches are highly accurate, the prefetching action can overlap 

computation with memory transfer time, that it will be unwise to stop the cache 

prefetch in order to minimize the cache for conflict miss. How can we circumvent 

the paradox? 

One suggestion is to make use of a small buffer which is designed to hold 

cache prefetch blocks in it [Jou90]. When the prefetched blocks and the normal 

cache blocks are separated, there will be no conflict miss possible between them. 

The prefetch buffer should be small in size, 16-32 blocks in the buffer should be 
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enough as those prefetches are for look ahead memory accesses and the majority 

of programs may not have a program loop using more than 32 arrays inside it. 

The replacement management of the prefetch buffer should be very simple, we 

do not expect there will be high temporal locality in the prefetch buffer, because 

most of the prefetches detected by the SVT in SIRPA is due to spatial locality. 

One simple replacement algorithm that can be used in the prefetch buffer is First 

In First Out (FIFO). 

When a block in the prefetch buffer is accessed by the processor, we may have 

two possible schemes to handle the case. One is to put the block in the prefetch 

buffer back to the normal cache. Then, the replacement management thereafter 

will be that of the normal cache, which may be LRU. Another method is to let 

the prefetch block remains in the prefetch buffer. There are merits and demerits 

in both schemes. The prefetch buffer for the first and second level cache should 

be separated. 

The configuration of a system with prefetch buffer is shown in figure 7.1. 

7.2 Dissimilar Ll-L2 Management 

In the experiments performed in this study, the cache management scheme in 

the first and second cache is the same. The benefit of using a unified scheme to 

handle both level of cache memory is reduced hardware overhead and electrical 

loading on the CPU bus. However, the details of the cache prefetch scheme and 

other parameters used in the cache management can be different in the first and 

second level caches, in order to fine tune the cache behavior of respective cache 

levels. 

One method may use a reduced strength cache prefetch algorithm on the 

first level cache, in order to shorten the critical time path. But use a more 
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Figure 7.1: Processor with Prefetch Buffer 

sophisticated cache prefetch algorithm in the second level cache. Certain cache 

prefetching schemes may be more suitable for a larger cache, whereas others may 

perform better with smaller cache block size. In the previous chapters, the Line 

Concept scheme and the Default Prefetch scheme were shown to be effective 

in general benchmarks, but there are cases where the above schemes may not 

perform as good. 

The Line Concept is good for small cache block size, as the scheme will com-

pensate for the less cache prefetch time in small size cache blocks. A small block 

size cache will make the number of cache blocks to be larger, which will help in 
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reducing conflict miss. 

The Default Prefetch scheme will perform better with a large cache memory. 

The accuracy of the Default Prefetch (PFONMISS) is not as high as the SIRPA 

scheme. However, the Default Prefetch can fill in the void when the SIRPA 

cannot fire a cache prefetch. We expect the Default Prefetch will introduce a 

small amount of cache pollution, the pollution effect will be less destructing for a 

larger cache. With a very small size cache like those used in the first level cache, 

the tolerance for cache pollution will be very low. 

Different combinations of cache prefetch schemes for the first and second level 

caches may make the overall memory latency to be smaller. The effect of dif-

ferent cache prefetch schemes should be studied with respect to different cache 

parameters. The unified on chip cache management can be modified to apply 

tuned algorithms for the first and second level cache. 

7.3 Combined LRU/MRU Replacement Pol-

icy 

In a cache, due to limited space to hold data, an algorithm has to be devised 

to choose a cache block to be discarded when a new block has to be called in. 

The best solution is to choose the cache block that will not be accessed for the 

longest period of time in future. However, without a pre-run of the program, one 

cannot know in advance which cache block will not be accessed for the longest 

time. A pre-run is simply not a solution for the majority computer systems in 

use, therefore, approximation algorithms have to be devised. A well accepted 

algorithm is Least Recently Used (LRU) algorithm. Due to temporal locality, for 

the cache block which was not accessed for the longest time is assumed to be not 

useful in the future, and that cache block will be chosen for replacement. The 
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other side of the algorithm implies that, for whatever cache block just accessed, 

it will have low chance to be chosen for replacement. 

The LRU algorithm works for the majority of cases, which temporal local-

ity exhibits, however, there are situations where the opposite to LRU, ie. Most 

Recently Used (MRU) replacement will be the optimal solution. The following 

simplified example shows the phenomenon: 

Assumed the following cache blocks accessed in a program loop in sequence: 

1, 2, 3, 1, 2, 3 

Cache slots to be available are 2 

If LRU replacement is used, the cache replacement activities are shown in 

table 7.1. 

Table 7.1: LRU Replacement Example 

Step Slot 1 Slot 2 

1 block 1 empty 

2 block 1 block 2 

3 block 3 (replacement) block 2 

4 block 3 block 1 (replacement) 

5 block 2 (replacement) block 1 

6 block 2 block 3 (replacement) 

Total replacement: 4 

If MRU replacement is used, the cache replacement activities are shown in 

table 7.2 

The above shows that LRU may not be the best algorithm in all cases, however 

we do not want to pay the price where non-LRU replacement algorithm gives a 

terrible prediction. 
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Table 7.2: MRU Replacement Example 

Step Slot 1 Slot 2 

1 block 1 empty 

2 block 1 block 2 

3 block 1 block 3 (replacement) 

4 block 1 block 3 (hit, no replacement) 

5 block 1 block 2 (replacement) 

6 block 1 block 3 (replacement) 

Total replacement； 3 

With on chip first and second level cache using SIRPA, we can improve the 

LRU replacement algorithm by extracting data from the SVT as described in the 

following. 

In the prefetch address calculation, which is: 

prefetch address = current effective address + stride 

If stride value is found to be positive and large, that means the next access 

will fall on another cache block. It is a strong hint that the current accessed 

cache block will not be accessed soon, as the stride value confirms that the access 

pattern is going forward. We can place such cache block on a MRU queue, which 

the head of the queue will be chosen for replacement if another cache block has 

to be called in. 

For other memory accesses, the conventional LRU algorithm will apply, which 

whenever a cache block is accessed, the block will be placed onto the tail of the 

LRU queue, which that block will have the least chance to be replaced. 

The combined LRU/MRU replacement policy should improve the efficiency 

of the cache system, as less conflicts will be expected. The net result of the 
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cache system will be similar to a cache design with larger cache size. The new 

replacement algorithm can be implemented separately in on-chip first and second 

level cache. 

7.4 N Loops Look-ahead 

In the SIRPA scheme proposed in the previous chapter, the cache prefetches 

issued are those look-aheaded memory accesses by the processor for one loop. 

The scheme checks the current executing instruction, if the addressing mode is 

register indirect, and the entry in the SVT corresponds with a constant stride 

access pattern, a cache prefetch will be fired with address: 

prefetch address 二 current effective address + stride 

The prefetch address should correspond to the next element in the same array 

where the processor will reference in the next loop iteration. It is a One Loop 

Look-ahead scheme. It will be easy to modify the scheme to make N Loops Look-

ahead^ the new formula to compute the prefetch address will become: 

prefetch address = current effective address + N * stride 

The determination of the value N will be a complex task, as the farer the cache 

prefetches, the more chance that the prefetched blocks will cause conflict miss in 

the cache. Moreover, at the end of the loop iterations, the extra predictions to 

the outside of an array will cause cache pollution. 

One method is to adjust the value of N dynamically, and N is stored in each 

entry in the SVT. The other method is through the use of prefetch buffer as 

mentioned in the above paragraphs. 
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