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Abstract 

Automatic speech recognition has been a popular research topic. Both recognition 

accuracy and speed are the major concern. In our studies, template matching and 

statistical models for isolated word speech recognition are investigated. While tem-

plate matching based on Dynamic Time Warping (DTW) can solve the problem of 

mis-alignment between two speech utterances, statistical model of Hidden Markov 

Model (HMM) has proved to be a more powerful tool for automatic speech recogni-

tion. In an HMM based system, the model topology and the input acoustic features 

affect the performance the most. 2-dimensional features have been explored with an 

aim to develop a new model, 2-dimensional HMM (2dHMM), with added flexibil-

ity and control for an isolated-word speaker-dependent speech recognition system. 

Short-time spectral information and tone (pitch information) are used as features 

in two different dimensions and the system is tested with Cantonese speech. 

Experiments have been conducted to investigate the performance of the proposed 

2dHMM speech recognition method. Comparisons have also been made among 

DTW, HMM and 2dHMM with 40 English words selected from TI-46 which is 

a speaker-dependent isolated word corpus, published by Texas Instruments. It is 

found that accuracy performances ofHMM and 2dHMM based recognizers are better 

than one of DTW. By using a 20-English-word vocabulary selected from the TI-46 

isolated word database, recognition accuracy tests are conducted for HMM and 

2dHMM based recognizers only. The performances between them are similar from 

the results. By using Cantonese language, tests are conducted for recognition with 

tone feature. 5 pairs of utterances with same phonemes (Initial and Final) but tone 
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are used to build the vocabulary. The result shows that 2dHMM based recognizer 

has rather good capability to correctly recognize these confused words. Further, the 

vocabulary of 80 Cantonese syllables are used for evaluation. Besides words with the 

same syllable but tone do not easily recognized correctly, it is observed that words 

with the only difference in the Final of the syllable are also easily mis-recognized. 

A new architecture of HMM is proposed which is basically an 2dHMM and it 

models speech signals on two distinctive sets of features. Extensive experiments have 

been conducted to study the performance of the proposed 2dHMM speech recog-

nition system using both English and Cantonese syllables. By using the spectral 

and pitch information for Cantonese language as the two feature sets, the 2dHMM 

speech model achieves an improvement in terms of recognition accuracy. Based on 

a transputer multi-processing platform, a farming model is developed for the imple-

mentation of the recognition algorithm. It is found that the model may be expanded 

to suit for a larger vocabulary without the modification on program codes in system 

design. It is expected the 2dHMM together with the farming model provides a plat-

form for further exploration on feature type variations or even a Multi-dimensional 

HMM (MdHMM) system. 
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Chapter 1 

Introduction 

1.1 Automatic speech recognition and its appli-

cations 

Automatic speech recognition is one of the more fascinating research areas today. 

It will no doubt be integral to many potential applications in which speech is used 

as direct command. In military application, it will be helpful for a pilot to control 

the aircraft by voice in hands/eyes-busy situations [1, 2, 3]. In such circumstances, 

pilots can perform missions, such as formation flying or low-level navigation, faster 

and more accurately when using spoken control over various avionics subsystems, as 

compared with keyboard and multifunction-button data entry. On the other hand, it 

will also be useful to assist the disables to manage simple tasks, such as controlling 

the movement of an electric wheel-chair [4]. This kind of wheel-chair could help 

those motion disable persons who cannot drive it manually nor with a joystick and 

enable them to enjoy a higher quality of life. In survey, man-machine interaction by 

voice is much preferred by many computer users. Mobile phone users are also able 

to enjoy voice dialing through a special service provided by the base station [5]. This 

may decrease the hazards of using mobile phones during driving since voice dialing 

simplifies their use. The MTR (Mass Transit Railway) Telephone Hot Line Service 
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Chapter 1 Introduction 

in Hong Kong has already incorporated a speech recognizer in their voice control 

enquiry system. There are many other examples that show speech recognition is 

moving to an important position in man-machine interaction technologies. 
1 

Speech recognition involves three processes as shown in Figure 1.1. They are ex-

traction of acoustic parameters from the speech signal, calculation of matching score 

between the unknown utterance and an utterance in the vocabulary, and determina-

tion of the recognized utterance via a search among all possibilities. The first process 

；；>；;；；；；：；>；：；：̂：：；：：：：；；；：；；̂̂^̂ 

^ ^ i ^ n ~ 4 — ; N i ^ r ^ -
p — r s = : S r = n = / t h e 

the vocabulary vocabulaiy 
- , I - - ‘ - -…… . 

Digital Signal Processing """"""""̂ """""""""*"̂~~'"*“™"̂  ~~~"""""x</̂  "̂""""̂ ~~>~~«̂ """"-~""*"""“"*"""̂ ^ 
SpeechRecognition 

：̂；：'；：>；：:；!：；；̂：；̂ (e-g. template matching, statistical model, ̂ flcial intelligence approach) 
..:...:¾¾:.:::丨:效:::::::::::》思::;:丨:丨:::丨:闻::;:::影:孩:

二
:;:丨:丨:”::&::;:::丨::::〈
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丨::::::': :;¾¾:¾;;;:¾¾!¾¾;̂;̂¾;:¾̂ 

Figure 1.1: Processes involved in speech recognition. 

deals with the properties of acoustic signal. In this stage, signal modeling techniques 

in parameterization of an analog speech signal are considered. These algorithms are 

intended to produce a "perceptually meaningful" parametric representation of the 

speech signal where the parameters emulate some of the behavior observed in the 

human auditory and perceptual systems. Of course, and perhaps more importantly, 

these algorithms are also designed to maximize recognition performance [6]. Based 

on the extracted parameters, the second and third processes follow and deal with 

the recognition method. Some existing recognition methods are template matching 

with Dynamic Time Warping (DTW) [7, 8, 9，10], statistical model (Hidden Markov 

Model — HMM) [11, 12, 13] and artificial intelligence approaches (neural networks) 

14, 15]. Before performing the job of recognition, training is always required. The 

training may involve a huge amount of computation, so in most case it is designed 

to be done off-line. In spite of considerable research, neural networks have not yet 
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Chapter 1 Introduction 

shown significantly better performance than HMM algorithms [16]. In this the-

sis, we do not intend to study neural network based speech recognition algorithms. 

However, for completeness, the fundamental concept of these methods are briefly 

introduced. 

1.1.1 Artificial Neural Network (ANN) approach 

Artificial Neural Network (ANN) is a kind of artificial intelligence approaches to 

speech recognition. This approach is similar to the learning of human beings and 

attempts to have the ability like them. A neural network is basically a dense inter-

connection of simple, nonlinear, computation elements. Function of these elements 

is similar to that of neurons in human's brain. They have the capability of memory 

and are called artificial neurons. The connection between two neurons is called the 

synaptic junction or synapse. Like a real neuron, artificial neuron has many inputs, 

but has only a single output, which can fan out to many other artificial neurons in 

the network. Figure 1.2 shows a simple computation element of a neural network 

and the function f[xi) is nonlinear. It is assumed that there are N inputs {xo, xi, 

0̂ ^ ^ N ^ 

- " ^ ^ ^ 

input ： ^ ) ^ output 
： ^ i ^ x X 

.Z ^N- 1 
N-1 y = / ( E WiXi — ¢) 
i=0 

Figure 1.2: Simple computation element of a neural network. 

...，XM-i) which are summed with weights Wo, Wi, ...，w^-i, threshold 0, and then 
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Chapter 1 Introduction 

nonlinearly compressed to give the output y. 

N-1 

y = f{J2 ^i^i -利， （1.1) 
i=0 

where <j) is an internal threshold or offset, and f {x i ) is a nonlinearity of one of the 

following types: 

1. hard limiter 
’ +1, X < 0 

/ ⑷ = - ( 1 . 2 ) 

- 1 ， X < 0 
w 

or 

2. sigmoid functions 

f{x) 二 tanh(/^x), (3 > 0 (1.3) 

/ W = r ^ ： ^ ， P > 0 . ( 1 . 4 ) 

The sigmoid nonlinearities are most commonly used because their continuity and 

differentiability make mathematical analysis feasible. 

For the whole network, the relative information transmitted between different 

artificial neurons can be reflected by a quantity called a weight (or connection 

strength). The weight on the connection from zth neuron to jth neuron is de-

noted by Wij. The output y of a neuron corresponds to the firing frequency of it. 

It is complex and meaningful for the network to be built by large amount of indi-

vidual computation element, although each element is simple. The weights in the 

network are obtained through learning. There are three standard and well known 

topologies. They are single/multilayer perceptrons, Hopfield (recurrent) networks 

and Kohonen (self-organizing) networks. Due to the nonlinearity in the network, 

the overall performance is not just like a simple addition among elements. This is 

one of the characteristics of a human's brain. The other property of ANN is that the 

whole network will not be serious affected by failure of small amount of computation 

elements. It likes brain's cells, they die everyday and would not affect the operation 

4 



Chapter 1 Introduction 

of the brain. An example of ANN model for speech recognition can be found in 

Appendix A. 

1.2 Motivation 

The purpose of this project is to explore the different isolated word speech recog-

nition techniques and to develop an efficient and effective system with emphasis 

on both recognition accuracy and speed. Given the existing techniques, there are 

numerous ways to implement a speech recognition system. Since HMM has a solid 

theoretical basis and offers practical advantages, the work of this thesis will be based 

on this method. It is understood that the performance of an HMM based system 

depends on many factors, two of them are the topology of the models and the acous-

tic parameters. A good choice of model architecture and feature set can sensibly 

improve the recognition performance of the system [17]. We believe that it will 

be more effective if the model can accept two sets of features in different domains 

simultaneously. This approach will be explored in greater detail. A 2dHMM speech 

model is proposed and it is tested specifically with Cantonese speech. It is known 

that the dialect of Cantonese is a monosyllabic and tonal language. Since Cantonese 

has nine lexical tones, it is expected that this property could be used as a kind of 

acoustic feature to be modeled by the 2dHMM. 

Performance of the speech recognition algorithm is one of the main concerns. 

Most traditional methods of speech recognition can be implemented in real time by 

a single processor [18]. Recently, recognition algorithms, such as HMM, have be-

come so complex and computational intensive that a single processor system cannot 

achieve real time performance. By using several processors working together in a 

parallel processing fashion, it can theoretically increase the processing power in many 

folds thereby meeting the real time requirement. With the multi-processor environ-

ment, research works [19, 20] are carried out for the improvement of recognition time. 
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Chapter 1 Introduction 

In our work, we also explore the application of a transputer based multi-processor 

system for performance improvement of our speech recognition scheme. 

1.3 Background 

1.3.1 Speech recognition 

Research in automatic speech recognition by machine has been going on for over 

four decades. It is the process by which a computer maps an acoustic speech signal 

to text or to some form of abstract meaning of the speech. Basically, there are three 

different speech recognition systems. They are speaker dependent system, speaker 

independent system and speaker adaptive system. A speaker dependent system is 

developed to operate for a single speaker or within a group of designated speakers. 

A speaker independent system is developed to operate for any speaker. A speaker 

adaptive system is developed to adapt its operation to the characteristics of new 

speakers. 

The complexity, processing requirements and the accuracy of an automatic speech 

recognition system depends greatly on the size of vocabulary. Some applications only 

require a few words (e.g. numbers only), others require very large dictionaries (e.g. 

dictation machines). Tens of words can be classified as small vocabulary. Hun-

dreds of words can be classified as medium vocabulary. Thousands of words can be 

classified as large vocabulary. 

Speech signals are generally classified as either an isolated words or continuous 

speech. An isolated-word recognition system operates on words which are separated 

by pauses. Unlike an isolated-word system, there are no pauses between single words 

in a continuous speech system. It operates on speech in which words are connected 

together. An isolated-word system is the simplest form of recognition because the 
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Chapter 1 Introduction 

occurrences of words are more consistent, while a continuous speech system is more 

complicated because of a variety of effects, such as production of each phoneme is 

affected by the production of surrounding phonemes, and similarly the start and 

end of words are affected by the preceding and succeeding words. 

1.3.2 Parallel processing 

Most existing speech recognition algorithm are very sophisticated and involve ex-

tensive computation. In order to enable real-time processing, we either design more 

computationally efficient algorithm or we have to resort to more powerful engine 

with parallel processing capability. 

An instruction stream is a sequence of instructions as executed by the machine; 

a data stream is a sequence of data including input, partial, or temporary results， 

called for by the instruction stream [21]. In general, digital computers may be 

classified as: 

• Single-Instruction, Single-Data computer (SISD) 

• Single-Instruction, Multiple-Data computer (SIMD) 

• Multiple-Instruction, Multiple-Data computer (MIMD) 

Thus the computer shown in Figure 1.3 is called a Single-Instruction (because there 

is only one central processing unit (CPU) which executes one instruction at a time), 

Single-Data (because there is only one data store and one channel by which data 

is retrieved) SISD computer. SIMD (shown in Figure 1.4) and MIMD (shown in 

Figure 1.5) can be classified as a parallel processing. 

The SIMD organization is the classic form of an array processor. All processing 

elements which controlled by a master controller are identical. The communication 

between processors is typically limited to nearest-neighbor links and is also controlled 
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Chapter 1 Introduction 

by the master controller. All processors in the array operate synchronously (i.e. they 

execute the same instruction at the same time). 

Each processor of MIMD machines has its own independent instruction and data 

stream. No restrictions are placed on the synchronization of the separate processors 

in an MIMD configuration. Moreover, the communication between processors is de-

fined as minimal. Almost all multiprocessor systems in existence today are classified 

as MIMD machines. 

Information ^ ^ ^ ^ ^ ^ ^ ^ ^ ¾ 
Processor ^ ^ ^ Memory • 

Figure 1.3: The three parts of an SISD computer are a CPU, memory, and a com-
munication channel through which information passes. 

Controller 

^ P 一 ~P~] " ~ |T" 丨 fT"| Processors 
Instructions 

_ _ _ ‘ 个 ~ " J ~ ~ ~ ~ ~ ~ “ ™ 

W \1 \1 \! 

: ^ ^ J ^ ^ J ^ ^ J ^ ^ ^ Memory 

Figure 1.4: An SIMD computer executes one instruction at a time using many simple 
processors to process many data elements at once. 

The performance measurements are important for the effective use of any parallel 

computer [22]. These measurements are efficiency and speedup. The efficiency of a 

program running on a multi-processor system is: 

„ _ . Time on a single processor 
Efficiency = — — 

Time on parallel processor x Number of processors 

The speedup of a parallel processing is the ratio of its processing time to that of a 
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0 _ M • • M • • M • Local memory 
iSM^^a ^^^^H ^^^^M 

P P � P P Processors 

A A A A 

V V V V _ V 

Y 

Shared 
memory 丨 

Figure 1.5: A practical shared-memory MIMD computer with a small local memory 
for data cache and program storage as well as a common memory. 

single processing. 

Speedup — Time on a single processing 
Time on a parallel processing 

On the other hand, the speedup of a parallel processing compared to a single process-

ing is equal to the efficiency of the parallel processing times the number of processors 

in it. 

There are two different types of architectural models in a multiprocessor system. 

One is a tightly coupled system and the other is a loosely coupled system. Tightly 

coupled systems communicate through a shared main memory. For loosely coupled 

systems, they do not generally encounter the degree of memory conflicts experienced 

by tightly coupled systems. However, the degree of coupling in such a system is very 

loose. Loosely coupled systems are usually efficient when the interactions between 

tasks are minimal. Tightly coupled systems can tolerate a higher degree of interac-

tions between tasks without significant deterioration in performance. If high-speed 

or real-time processing is desired, tightly coupled multiprocessors may be used since 
I 
I loosely coupled multiprocessor may be too low for some applications that require 

: fast response times [21 . 
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Chapter 1 Introduction 

1.3.3 Parallel architectures 

There are three issues that must be considered for a parallel architecture. They 

are the granularity of the processing elements, the topology of the interconnections 

between processing elements and the distribution of control across the processing 

elements. Granularity refers to the power of each processing element in the archi-

tecture ranging from many single-bit processors to a few powerful general purpose 

ones. Topology refers to the pattern and density of the connections that exist be-

tween the processing elements. Control distribution is concerned with allocating 

tasks to processing elements and synchronizing their interactions. The parallel com-

puter architecture space with these three variables as the axes is illustrated in Figure 

1.6. Referring to this computer architecture space, the relative perspective of various 

^ ^ ^ 
Fine ^ | 

Granularity 

^ ~ X Tight 
y ^ y^"ontro l 

Coarse IZ_ ^ ^ ^ o o s e 
Lightly Topology Heavily 
Interconnected Interconnected 

Figure 1.6: Organizational space of parallel systems. 

architectures can be illustrated by showing their approximate position within the 

space. The criteria used to position the architectures are somewhat subjective and 

qualitative, because the various architectures are often so different in their structure 

and operations that a one-to-one comparison of their features is virtually impossible 

[23；. 
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The organizational space that array processors of SIMD machines are situated 

in is shown in Figure 1.7. The granularity of the processing elements ranges from 

single-bit to whole-word, and their instruction set typically does not include pro-

gram control instructions or sophisticated memory addressing mechanisms. The 

processing elements are considered finely grained processors. The topology of inter-

connection between the processing elements is fairly dense and highly synchronized. 

The operation of all processing elements is synchronized so that a single operation 

is performed on all data at once. The control for this action resides within the 

control unit at all times and is always synchronized with the main processor clock. 

Similarly, data transfers between processing elements must be orchestrated in such 

a way that all processing elements release and receive their data simultaneously to 

avoid access conflicts. Therefore, array processor control is defined tight. 

Fine i ( ^ ^ ^ ^ r ^ ^ / 
_ ； r I z y , z I • z 
I , y 
• z y 
I z y 
V^ • ̂  

Granularity 

^ ~ X Tight 
y ^ y ^ " o n t r o l 

Goarse L：^ ^ J ^ o o s e 
Lightly Topology Heavily 
Interconnected Interconnected 

Figure 1.7: Array processor region in the organizational space. 

The organizational space of interconnected network processors which may be 

in the form of SIMD-type operation or MIMD-type operation is shown Figure 1.8. 

Granularity ranges from fairly simple fine-grained processors to more sophisticated 

general-purpose processors. The topology is relatively lightly interconnected and 

each processor directly connects to at most several switches. Control in these types of 

11 



Chapter 1 Introduction 

systems varies greatly, from SIMD-type operation with synchronized data transfers 

between network stages to MIMD-type operation where the interconnections are 

packet-switched and communication occurs asynchronously. 

- f ^ ^ ^ 
Granularity , z ^ ^ ~^^ 

L ^ V^...y ^Tm 
y ^ y^Hontro l 

Coarse L ^ ^ / ^ . o o s e 
Lightly Topology Heavily 
Interconnected Interconnected 

Figure 1.8: Organizational space of parallel systems. 

1.3.4 Transputer 

The transputer is essentially a single-chip microcomputer with a simple but powerful 

microprocessor, RAM, and input/output circuitries including four high speed serial 

communication channels. By using these channels, a number of transputers may 

be interconnected to form a composite system. All the channels of a transputer 

can operate simultaneously, unlike a system using a bus to link together several 

processors in which the speed of communication is limited by the overall capacity 

of the connecting bus. Since each transputer contains its own program counter and 

executes from its own local memory, parallel systems built using transputers are 

inherently MIMD machines. 

12 
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1.4 Thesis outline 

The thesis is organized into six chapters. Chapter 2, Speech Signal Pre-processing, 

explains the techniques used in the design of an isolated word speech recognition 

system. It describes acoustic pre-processing of speech signal including end-point 

detection and extraction of features. Chapter 3，Speech Recognition Methods, de-

scribes three types of speech recognition methods which are template matching with 

Dynamic Time Warping (DTW), Hidden Markov Model (HMM) and 2-dimensional 

Hidden Markov Model (2dHMM). Specifically, the theory and topology of 2dHMM 

are introduced. Chapter 4, Implementation, describes the system implementation 

for performance evaluation of the recognition algorithm. The properties of transput-

ers including the architecture to be adopted in our implementation are described. 

The recognition algorithm has been decomposed into various sub-levels such that 

they can be processed in parallel simultaneously. Chapter 5, Experimental Result, 

presents the results of the experiments which illustrate the performance of various 

speech recognizers. The final chapter gives discussions and conclusions drawn from 

the project. 

13 



Chapter 2 

Speech Signal Pre-processing 

2.1 Determine useful signal 

Spoken speech, even if the same word by the same speaker, can vary according 

to circumstances, mood, and environmental effects [24]. It is known that people 

tend to speak in different rates. For automatic speech recognition purpose, the 

difference in time must be aligned somehow. In addition, if the environment is 

noisy, then we need to determine when the word starts and finishes. Furthermore, 

the variation in amplitude would need to be normalized, otherwise we may find that 

speech recognition systems will only respond to the loudness of the speech rather 

than to the actual content of the speech signal. 

To recognize spoken utterance, end-point detection is necessary to isolate the 

speech of interest from background noise for further processing (i.e. to be modeled 

or recognized). In practice, it is not easy to detect the uttered signal accurately so 

as to provide the "best" speech patterns for recognition. In an ideal case (i.e. no 

additive noise), the method used for determining the endpoints of isolated utterances 

is to consider the energy. The energy of the lowest-level speech sounds such as weak 

fricatives should still exceed the background noise energy and therefore can serve as 

a distinctive feature. 

14 



Chapter 2 Speech Signal Pre-processing 

In search for a suitable algorithm for end-point detection, a scheme proposed 

by L. R. Rabiner et al., 1975 [25] was adopted. Figure 2.1 shows the flow diagram 

of the endpoint-location algorithm. This method for end-point detection evaluates 

the energy and zero crossing rate of a frame. Comparing with other frames, useful 

signal frame is expected to contain higher energy. Zero crossing rate is auxiliary to 

locate the start of a week sound such as fricative (e.g. f, v, 0 are fricatives) and 

plosive (e.g. / t / and / p / in "top"). 

2.1.1 End point detection using energy 

Suppose a sampling frequency of 10 kHz and a window size (or a frame size) of 25.6 

ms with 256 sampling points are used. The energy of a frame is defined as 

255 

E{n) = ^\s{n + i)\, (2.1) 
i=0 

where s{n) are the sampled speech signals. To save computation time, a magnitude 

function is considered rather than a squared magnitude function. Further, the use of 

a magnitude can de-emphasize amplitude variations of speech. Therefore, compared 

with squared magnitude function, magnitude function can produce a smoother en-

ergy function. Having computed the energy function for the entire interval, E{n), 

the peak energy {IMX) and the silence energy {IMN) are used to set the lower 

threshold {ITL) and the upper threshold (ITU). 
\ 

I 

I II = 0.03 X {IMX - IMN) + IMN (2.2) 

/ 2 = 4 X IMN (2.3) 

ITL = mm{IlJ2) (2.4) 

ITU = 5 X ITL. (2.5) 

II and 12 are parameters for the lower threshold in Equation (2.4). 11 is a level 

which is 3 percent of the peak energy (adjusted for the silence energy), whereas 
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Speech signal 

Compute energy of 

Compute statistics of each frame (E(n)) 
zero crossing rate, 

IZC, O j z c ‘ 

during silence Compute 

peak energy (IMX) 

silence energy (IMN) 

Set 

threshold (IZCT) 

Compute 

lower energy threshold (ITL) 

upper energy threshold (ITU) 

Searching forward Searching backward 
from the first frame from the last frame 
for starting point of for ending point of 
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zero crossing rate > IZCT zero crossing rate > IZCT 

Figure 2.1: Flow diagram of endpoint detection algorithm. 
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12 is a level set at four times the silence energy. The lower threshold {ITL) is 

the minimum of these two conservative energy thresholds, and the upper threshold 

{ITL) in Equation (2.5) is five times the lower threshold. 

To make a first guess of the start point and the end point, the algorithms shown 

in Figure 2.2 and Figure 2.3 are employed. The algorithm to locate the start point 

START m=l 

m=i+l 
yes 

^ ^ Is \ ^ ^ yes ^ / ^ Is \ ^ no 
~ ~ K ^ E(m) >= ITL > J i=m K T E(i) < ITL > ^ ~ 

^ ^ ^ ^ ^ ^ ^ r ^ ^ " " ^ ^ 
no I 

m=m+l i=i+l 
b ^ ~ ~ ^ r ^ 

no 

y e s y ^ Is ^ s > ^ yes > / Is \ ^ 
Nl=i-1 < ^ < T i = m ^ > ^ ~ ~ < ^ E(i) >= ITU J ^ 

END \ ^ ^ / ^ ^ x ! / ^ 
no 

Nl=i < 

Figure 2.2: Estimation of the start point of a speech signal based on energy criterion. 
I 

I 
i 

begins by searching from the beginning of the interval until the lower threshold is 

exceeded. This point is preliminarily labeled as the beginning of the utterance unless 

the energy falls below ITL before it rises above ITU. These beginning and ending 

points are called N1 and N2 respectively. 
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START m=NU 

m=i-l 
yes 

^y^ Is ^ V yes y ^ Is X ^ no 
~ ~ 3 < E(m)>=ITL > > i=m ^ < E(i) < FTL > ^ ~ 

^ V ^ ^ ^ ^ ^ V " ' ^ 
no 

m=m-l i=i-l 

tzzi H H 
no 

yes y > ^ Is ^ s ^ yes > ^ Is ^ v 
N2=i+1 < — — ^ ^ i = m ^ > ^ ~ ^ ^ ^ E(i) >= ITU J ^ 

END \ ^ ^ \>L^ 
no 

N2=i < 

Figure 2.3: Estimation of the end point of a speech signal based on energy criterion. 

2.1.2 End point detection enhancement using zero crossing 

rate 

For unvoice sound, the signal energy would be small, therefore the energy crite-

rion cannot accurately locate the end points of a speech segment. To alleviate the 

problem, the measurement of zero crossing rate may be used to enhance detection. 

The zero crossing rate of a speech signal is defined as the number of zero crossings 

in a fixed time interval (25.6 ms). In most cases, it is a good way to indicate the 

presence or absence of unvoiced speech. It is assumed that the first 4 frames (102.4 

i ms) of the utterance do not contain speech. The statistics of the background silence 

S can be measured during this interval. The average zero crossing rate lZC and 

standard deviation o izc of the zero crossing rate are recorded and zero crossing 
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threshold is then calculated by Equation (2.6). 

IZCT = min(FT, JIC + 2aizc) (2.6) 

where IZCT is a zero crossing threshold and FT is a fixed threshold. The fixed 

threshold is set to be 63 crossings per 25.6 ms in our system. It is used as an 

upper bound preventing the threshold being set too large. Figure 2.4 illustrates the 

endpoint detection using energy criterion and enhanced with the use of zero crossing 

rate. The new beginning and ending points are N1' and N2'. 

Energy 

f \ 
upper threshold (ITU) ； / - K̂̂  - i 
lower threshold (ITL) _ - ~^^,^^^\z^^'^ '̂ -̂ '•̂ ZZZẐ '̂ '̂' -̂ ^4<^ ——•^^^^^^^^^^^^^^^^ 

" ^ *̂****"*"**̂  ； I 一""*"*** *** 卞 > 

Ni'\ \m 

Zero crossing rate 丨 ： 

ZCR threshold (IZCT) 丨 i 

…………――/:r̂  -_J 
•----^"-^'^"""“^ i K ^ V A , x ^ ^ � 

final estimate N1 ‘ final estimate N2 ‘ 
Figure 2.4: Endpoint detection using both energy and zero crossing rate of a sampled 
speech signal. 

I 
1 

2.2 Pre-emphasis filter 
i 

To process the voice signal, it must first be converted into a discreted signal by 

transducer (microphone) and analog-to-digital converter. During analog-to-digital 

conversion, the microphone usually introduces undesired side effects, such as line 
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frequency noise (50-Hz hum), loss of low- and high-frequency information, and non-

linear distortion [6 . 

Speech samples used in this project can be obtained either from a pre-recorded 

CD-ROM through a data acquisition device — GRADIENT or an analog-to-digital 

TRAM (transputer module). For processing of human speech, 10 kHz sampling 

frequency (5 kHz bandwidth) is acceptable. After digitizing the signal, digital post-

filtering is most often executed using a pre-emphasis filter. The motivation is to 

spectrally flatten the speech signal and to amplify important areas of the spectrum. 

Normally, the following filter function is used 

H{z) = 1 + az"^ (2.7) 

where a should be [-1.0, -0.4 ]. The frequency responses of pre-emphasis filters are 

plotted in Figure 2.5. 

2.3 Feature extraction 

Having determined the useful signal from a speech waveform, as described in Section 

2.1, a wide range of possibilities exists for parametrically representing the speech 

signal. This process is also called as feature extraction. Extraction of acoustic 

parameters from the speech waveform is a necessary step for all speech recognition 

systems. 

In our work, we have identified a number of parameters to represent the speech 

signal, namely, spectral amplitude, LPC coefficients, cepstral coefficients, zero cross-

ing rate, energy and pitch. The cepstrum analysis is considered as probably the most 

important parametric representation of speech and it is one of the dominant methods 

for speech recognition. Some examples of speech waveforms and their corresponding 

spectrograms are shown in Appendix B. It can be seen that similar speech wave-

forms can give quite distinct frequency plot in the spectrogram. The tone feature is 
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Figure 2.5: The frequency responses of common pre-emphasis filters. 
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used for tonal languages such as Cantonese and Mandarin. For the language of Can-

tonese, it is a monosyllabic and tonal language. Therefore tone feature is absolutely 

an essential element to be modeled for Cantonese speech. 

Feature extraction may be considered as a kind of data compression technique. 

It reduces a large number of data to a few parameters. In our prototype system, 

spectral information is used as the main features. The speech waveform is a non-

stationary signal. However, if a short segment (frame) of the signal is taken, it is 

assumed to be stationary. Thus, a speech segment can be represented by a set of 

model parameters. To deal with the non-stationary aspects of the signal, we will 

track the time variation of the model parameters of each small segment of speech. 

In order to avoid abrupt change between frames, overlapping segments are taken. 

To 

2.3.1 Filter-bank spectrum analysis model 

Fourier transform derived filter bank amplitudes is one of the spectral analysis meth-

ods [6] of speech signal. The discrete Fourier transform (DFT) [26] of a speech signal 

is defined as 

S{f) = E s(n>-^f, f = 0,1,..., N - 1 (2.8) 
n=0 

where oo = 等 and N is the number of sampled point. The rectangle window is used 

for each frame on taking DFT. Features are extracted by short time FFT (which is a 

fast algorithm of DFT) on every N sampled points with sampling frequency, /5 kHz 

(folding frequency is ^ kHz) as a frame. After end-point detection, total number 

of sampled points are truncated to the multiple of N sampled points. Features of 

each frame are obtained by using FFT as shown in Figure 2.6. The feature vector 

contains 12 elements, 

frame feature = {v1,V2, V3, ...，V12) (2.9) 

For each frame in the speech signal, spectral characteristics are extracted as distinc-

22 



Chapter 2 Speech Signal Pre-processing 
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,."“."丄|||]山||||||丨|丨||1| """""" 
肩 灣 臂 , | _ . 丨 | . _ 一 

^ 二丨= ^i" )r^ 
0 256 512 768 

V V V 
V V V 

V = frame feature 

Figure 2.6: Feature extracted to a 12-dimensional vector by FFT on each frame. 
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tive features [27]. The frequency range of interest are divided into 12 spectral bands 

in which frequencies are mapped to a 12-dimensional vector as shown in Table 2.1. 

The widths of spectral bands are varied from 200 Hz at lower frequencies to 600 Hz 

at higher frequencies. 

Table 2.1: Extracted frequencies are mapped to a 12-dimensional vector. 

Spectral band Frequency range (Hz) Band width (Hz) 
一 1 100-300 200 

2 — 250-450 - 200 
— 3 400-600 — 200 
~ ~ 4 550-750 — 200 
— 5 700-900 200 
— 6 900-1200 — 300 
— 7 1200-1500 300 
— 8 1500-1800 300 — 
— 9 1800-2300 500 一 

— 10 2300-2800 500 
— 11 2800-3400 600 
一 12 3400-4000 600 

Normalization 

Normalization of a frame vector is accomplished by subtracting the average value for 

that frame from the value of their spectral bands. The normalized values are shifted 

around the zero level and the sum of those normalized values will be equal to zero. 

This method can eliminate the enormous difference between the large amplitude 

signal and small amplitude signal. Moreover, log scale is used for more accurate 

representation of the speech signal in the spectral domain. Therefore, element of 

the normalized frame vector is accomplished by subtracting the average log energy 

for that frame from the log of the energy in each of the spectral bands, 

E log(/,-) 
fi = log/i - ' - ^ = ^ ~ ~ , forl < i < 12 (2.10) 
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where fi = normalized output of the 沖 spectral band of the frame and fi = energy 

iV 
in the i^^ spectral band of the frame. 

2.3.2 Linear Predictive Coding (LPC) coefficients 

LPC coefficients are commonly extracted as a spectral feature vector from a short-

time frame in speech signal. The idea is that a given speech sample at time n, s(n), 

can be approximated as a linear combination of the past p speech samples, such that 
p 

s{n) = ^ ais{n — i) + Gu{n), (2.11) 
i=i 

where the coefficients a1,a2,...,ap are assumed constant over the frame, u{n) is a 

normalized excitation and G is the gain of the excitation. The model of Equation 

(2.11) is shown in Figure 2.7. The linear combination of past speech samples as the 

excitation source speech signal 
u(n) s(n) 
~ ^ 0 — — • A(z) ~ ~ • 

digital filter 
G (vocal tract parameters) 
gain 

Figure 2.7: Linear prediction model of speech, 

estimate s(n) is defined as 
V 

s{n) = J2ais{n-i) (2.12) 
i=i 

Therefore, a1,a2, a3, ...，â  are used as feature elements to represent the frame signal. 

The prediction error, e(n), is defined as 
p 

e{n) 二 s(n) — s{n) = s(n) — ^ ajs(n — i) (2.13) 
i=l 

The set of predictor coefficients, {a^}, needs to be determined in such a way that 

the following error is being minimized. 
N-l+p 

E= E e2(m) (2.14) 
m=0 
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where N is the total sampling number in a frame, or 

N-l+p p 
E= Y1 {s{m)-^ais{m-i))'. (2.15) 

m=0 i=l 

To solve the predictor coefficients in Equation (2.15), E is first differentiated with 

respect to each â  and the result is then set to zero, 

dE 
^ = 0, i = l ,2 , . . . ,p 
dCLi 

Therefore, 
p 

r{x) = ^air{{x — z|), 1 < x < p (2.16) 
i=l 

N-l-r 
where the autocorrelation function, r(r) = J] s(m)s(m + r) r = 0,1, 2, ...,p 

m=0 

Equation (2.16) describes a set of p equations in p unknowns. They can be expressed 

in matrix form as 

r(0) r ( l ) r(2) ... r{p - 1) ai r ( l ) 

r ( l ) r(0) r ( l ) ... r{p - 2) a2 r(2) 

r(2 r ( l ) r(0) ... r{p - 3) a3 r(3) 

. . . . = . = . (2.17) 

• “ • _ • • 

• • • • • • 

r(p - 1) r(p - 2) r(p - 3) ... r(0) a^ r(p) 

The p X p matrix of autocorrelation values is a Toeplitz matrix (symmetric with all 

diagonal elements equal) and hence can be solved efficiently through several well-

known procedures such as the Levinson-Durbin's Recursive Algorithm [28, 29] which 

is used in our work. These p + 1 autocorrelations are converted into LPC coefficients 

by the procedure involved as 

Step ( 1 ) : 

E(o) = r(0) 

Step ( 2 ) : 
r ( i ) - E 4 ' - i ) " h . i ) 

ki =——)=1丑(一1) ， 1 < i < P 
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4 ' ) = ki 

<^ = c^-^-k4:P. l < j < i - l 

丑 ⑷ = ( 1 - A ; 2 ) ^ ( i - i ) 

Step ( 3 ) : 

back to Step (2)，for i from 1 to p 

Step ( 4 ) : 

dj = af\ 1 < j < P 

2.3.3 Cepstral coefficients 

The cepstral coefficients, which are the coefficients of the Fourier transform repre-

sentation of the log magnitude spectrum, have been shown to be a more robust, 

reliable feature set for speech recognition than the LPC coefficients [24]. Cepstral 

coefficients, Cn can be derived directly from the LPC coefficient set. The recursion 

used is 
Co = log 6̂  

n - l 
Cn = CLn + E (^)Cfctt^-fc, 1 < 71 < p 

k=l 
n-l 

Cn = E {-)ckan-k, n > p 
k=l 

where Ŝ  is the gain term in the LPC model. 

2.3.4 Zero crossing rate and energy 

Zero crossing rate [30] can be used as a special feature parameter for speech sig-

nals. For each frame, zero crossing rate is counted. A collection of these counted 

numbers could be the characteristic of a speech signal. Referring to Lau, 1986 [31]， 

these features can give quite a good representation of different words for a small 

vocabulary. Also, as described in Section 2.1.2, voiced and unvoiced sounds can be 
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distinguished by using zero crossing rate. Short-time energy described in Section 

2.1.1 can be used to separate a sampled speech signal from the background noise. 

Also, energy can be used to distinguish different speech signals since they have dif-

ferent energy profiles. The advantage of using zero crossing rate and energy is that 

they are derived directly from the speech signal and require less computation. 

2.3.5 Pitch (fundamental frequency) detection 

Pitch is defined as the fundamental frequency of quasi-stationary speech signal. 

Being a tonal language, the pronunciation of a Chinese character is characterized 

by its constituent phonemes and distinctive tone. Therefore, both phonemes and 

tone are essential to be considered as features in a Cantonese speech recognition 

system. This language, commonly used in Hong Kong and southeastern China, has 

nine lexical tones. Tones 1 to 6 are classified as non-entering tones and tones 7 to 

9 as entering tones. Figure 2.8 shows their relative pitch contours of nine lexical 

tones. Basically, the fundamental frequency is calculated by the technique of auto-

non-entering tones entering tones 
^ - ^ _ ^ ^ _ _ - > ^ _ _ _ _ , \ , ^ 

upper series lower series 
upper 

广 ^ \ / - 人 ~~-̂  middle 
1 , . . . , 1 . . lower 

小 level rising going level nsing going 

pitch --^ :Z :::::::::::::::::::::::::::::::::::;:::::::::::::::::::::::::~：：：：：：：：：̂：：：：：：：：：：" 

、- Z — ...rr —.. 
、、 

tone 1 tone 3 tone 5 tone 2 tone 4 tone 6 tone 7 tone 8 tone 9 

Figure 2.8: Relative pitch contours of nine lexical tones in Cantonese. 

correlation [32]. The auto-correlation function of a windowed discrete time sequence 

s(n) is defined as 
N-l-r 

r{r) = 5^ s(n)s(n + T), 
n=0 
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where r is the time delay and N is the window size. When the time delay, r, 

equals to the signal period or its multiple (harmonic), peaks occur for a periodic 

signal. However, the fundamental frequency of a signal can be found by searching 

the maximum peak value. 

A well developed pitch detection algorithm proposed by T. Lee [33] is adopted for 

extracting the tone feature in Cantonese. The flow diagram for the pitch detection 

is shown in Figure 2.9. The pitch extraction method is a modified version of the 

data sequence in a frame 
(speech signal) 

1 f 

3-level center 
clipping 

z z x z : 
auto-correlation 
function 

i n 
peak searching 

V 
pitch value 

Figure 2.9: Flow diagram of pitch detection algorithm. 

well-known 3-level center clipped algorithm [34，35]. Referring to the flow diagram, 

the function of 3-level center clipping is used to enhance the edge of the pitch 

(fundamental frequency) for the auto-correlation function. The auto-correlation 

function can estimate the pitch value. In peak searching, sometimes the peak at 

the real pitch position does not have the largest amplitude and more than one 

outstanding peaks may exist. An effective peak searching method to deal with this 

problem is proposed by Y. H. Cheng [35] and modified by T. Lee [33]. By using this 

algorithm, examples of nine different lexical tones in Cantonese are extracted. The 

29 



Chapter 2 Speech Signal Pre-processing 

different profiles among them are shown in Figure 2.10. They are listed in Table 

2.2. 

Table 2.2: Nine Cantonese syllables with different tones. 

Phonetic symbol Tone 
tol (多） upper level (tone 1) 

piu3 (表） upper rising (tone 3) 
pun5 (半） upper going (tone 5) 
fei2 � lower level (tone 2) 

jyn4 (軟） lower rising (tone 4) 
tai6 (大） lower going (tone 6) 
p^k7 (北） upper entering (tone 7) 
pak8 (百） middle entering (tone 8) 
hok9 (學） lower entering (tone 9) 

2.4 Discussions 

A number of feature sets commonly used for speech processing were discussed as well 

as their mathematical formulation. The choice of feature for speech recognition is 

important since it can directly affect the recognition performance. If the algorithm 

for extracting features is rather complicated, the computational time will be longer. 

If elements in the feature set are similar, the recognition accuracy will be affected. 

In practical situation, the end-point detection is also important to locate an isolated 

uttered signal from the background. Recognition methods using these feature sets 

will be described in Chapter 3. 
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Figure 2.10: The profiles among nine tones in Cantonese language are extracted by 
the pitch detection algorithm. 
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Chapter 3 

Speech Recognition Methods 

3.1 Template matching using Dynamic Time War-

ping (DTW) 

An acoustic model for a speech signal usually shows how it varies spectrally over 

the duration of the word. This is used as a template to describe a single typical way 

in which a word is pronounced. An unknown spoken word can then be identified 

by comparing it with all templates in the vocabulary and finding the best match. 

As described in the previous chapter, the filter-bank spectrum analysis model is 

considered as one of the effective parametric representations of speech signal. By 

using the parametric representation of the frequency time picture of a speech signal 

as a template for matching, a simple and effective speech recognition system can be 

realized. However, a word varies slightly from one pronunciation to another (e.g. it 

may be spoken quickly or slowly). In an attempt to handle this variation in speech 

recognition using template matching, Dynamic Time Warping (DTW) is used in the 

matching process [8, 9, 7]. The DTW is a pattern matching algorithm for computing 

the minimum distance between two patterns of different sizes with a nonlinear time 

normalization alignment. It can be formulated as a path finding problem over a 

finite grid formed from two patterns (Figure 3.1). A test pattern is denoted by 
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Figure 3.1: The matching between R{n) and T(m) by using DTW. 
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T(m), m = 1,2，..., M placed on the y-axis and a reference template is denoted by 

R{n),n = 1, 2,..., N placed on the x-axis. A common time axis k is necessary that 

both time axes, m and n to be expressed as functions of time axis k. Therefore, 

n = ik, k = {l,2,...,K}- m = jk, k = {l,2,...,K} (3.1) 

where K is the length of the common time axis k. An optimal warping function 

Ck = {ik^jk) = (n, rn) needs to be found to minimize the total distance function 

between two patterns. 

K 
D{R, T) = D{ck) = Y1 d{ik, 3k) (3.2) 

k=l 

where d{ik,jk) = |T(m) — R{n)\^ is the local distance measured between the point 

jk of the test pattern and the point ik of the reference pattern. The matching pair 

should give the smaller value of the distance D[R, T) between two patterns. For 

finding the best path in the (n, m) plane, several factors of the algorithm must be 

considered, they are: 

• Endpoint constraints 

The path is restricted to begin at the point (n 二 l,m = 1) and end at the 

point (n = N, m = M), i.e. 

H = 1，ji 二 1 and z^ = N, jK = M 

• Monotonicity constraints 

ik < k+i and jk < jk+i 

• Local path constraints 

Symmetric local path constraints are set to prevent excessive compression or 

expansion of the scale in the warping path. There are several local path 

constraints as proposed in [8]. Since the choice of local path constraint does 

not affect the accuracy very much. For simplicity, the Type II Constraint is 

chosen. It allows 3 possible predecessors. They are ( n - 2 , m - l ) , ( n - l , m - l ) 
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Figure 3.2: Local path constraints for DTW. 

and (n — l , m — 2). Figure 3.2 shows three valid paths to the grid point (n, 

m). 

• Global path constraints 

Since the local path constraints, certain parts of the (n, m) plan are excluded 

from the region which the optimal warping path can lie in. In Figure 3.2，the 

greatest slope (Emax) for all 3 possible paths is 2 (2/1), the smallest slope 

(Emin) is 0.5 (1/2). A set of relations can be obtained from the slope of 

warping function: 

Emin ^ y ~ ~ 7 < ^max (3.3) 
^k —丄 

Emin < ^ ^ < Emax (3.4) 

Equation (3.3) is used to limit the range of grid points that can be reached 

via a legal path from the point (1, 1). Similarly, Equation (3.4) is to limit 

the range to the point (iV, M). By substituting E m a x = 2 and Emin=l /2 into 

Equations (3.3) and (3.4), 

ik + 1 

- ^ y - < 3k < 2ik - 1 (3.5) 
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7. — Af 
M + 2{i, 一 N) < jk < - ^ ^ + M ( 3 . 6 ) 

• Distance measure 

The total distance along the path of length K, 

E d[ik.j,)W{k) 

^fe7.) = ^ - ^ ^ ^ (3") 

where W{k) is a weighting function of the k^^ point of the path, and N{W) 

is a normalization factor which is a function of the weighting function W. 

The searching process for the path which gives the minimum distance D is 

described by 

D=min {D{ikJk)) (3.8) 
K,ik,3k 

The weighting function of Type C [8] is chosen. For each arc, there is a number 

which indicates the weight (Figure 3.3). This weighting method is based on 

the distance moved towards x direction. Therefore, 

參 • 參 • 

(n, m) 

• r ^ 
X 

Figure 3.3: Weighting function for DTW. 

W = ik — ik-i (3.9) 
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Hence, the normalization function is, 

N{W) = J2 W{k) = J2{ik - ik-i) = iK - io = N (3.10) 
k=i k=i 

• Axis orientation 

The test pattern and reference template are arbitrarily placed along the m and 

n axes. As suggested in [8], Type C weighting function should be combined 

with test pattern located in n axis [x direction) to improve accuracy. 

3.2 Hidden Markov Model (HMM) 

A hidden Markov model (HMM) is created from a large amount of data, statisti-

cally modeling the variation seen in that data. It is a finite-state statistical model, 

useful for modeling nonstationary signals whose time-varying characteristics may 

be described through a chain of statistical states. The assumption is based on the 

Markov process (Appendix D). There are some variations of HMM that are devel-

oped to improve the model itself. Some examples are continuous HMM [36，37, 38], 

semi-continuous HMM [39], explicit-duration HMM [40], etc. 

The basic HMM model parameters are A = (A,B,7r), where A is a transition 

probability matrix, B is an output probability matrix, and n is an initial state 

probability vector. A typical speech modeling recognition system is shown in Figure 

3.4. As the vocal tract is continuously variable, the speech sounds themselves become 

time varying [41] [42]. They are essentially non-stationary waveforms. However, by 

considering a small enough segment as a frame of the signal, the short time features 

can be obtained. 

Thus speech modeling involves the analysis of the short time properties (features) 

of individual sounds. This short time vector is generally called an observation. Ob-

servations are typically measured once every 10-30 ms. Frame overlapping is usually 

employed to avoid abrupt change between frames. The short time properties of an 
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Figure 3.4: Block diagram of a typical speech modeling recognition system. 

individual sound can be represented by a spectral measurement vector which can 

be obtained by using standard methods such as measurement of the discrete Fast 

Fourier Transform (FFT), Linear Predictive Coding (LPC) coefficients or cepstral 

coefficients. Let the feature vector at time t be Ot and the observed spectral se-

quence lasts from t — 1 to t = T, a deterministic sequence is then represented by 

0 — {ot]J=:,i 三{oi,02, •••，Or}. HMMs are further classified into two types. They are 

Discrete Hidden Markov Model (DHMM) and Continuous Hidden Markov Model 

(CHMM). In our work, discrete HMMs are used since they require less computa-

tion than the CHMM. However much time is consumed in calculating the required 

codebook. The output of an DHMM are discrete probability distributions, there-

fore, Vector Quantization (VQ) is necessary to convert feature vectors of the speech 

waveform into a finite set of prototypes. For simplicity and computation efficient, 

DHMM is more practical to be used in the speech recognition system. 

3.2.1 Vector Quantization (VQ) 

The results of spectral analysis methods for a speech signal such as Fast Fourier 

Transform (FFT) or Linear Predictive Coding (LPC) are a series of vectors char-

acterizing the time varying spectral characteristic of the speech signal. These vec-

tors contain many similar information concerning the speech waveform. For speech 
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recognition, the amount of information contained in the vector may be reduced by 

Vector Quantization (VQ). VQ is a source-coding (data compression) technique in 

communication and information theory. It is a procedure that encodes a vector into 

an index that is associated with an entry of a codebook. A given vector can be rep-

resented by one which is closest to a vector in a codebook. The codebook represents 

the underlying speech characteristic of the speech signals. Therefore, VQ can save 

the storage for spectral analysis information and reduce computation for determin-

ing the similarity of spectral analysis vectors. However, an inherent distortion is 

used in representing the actual vector and a codebook is needed. VQ is essential to 

DHMM. 

A codebook can be trained by a large set of spectral analysis vectors Vi, i = 

1，2,..., L. For the size of the VQ codebook being M = 2^ vectors {B-hit codebook), 

L must much greater than M to be able to find the best set of M codebook vectors. 

In practice, it has been found that L should be at least 10M in order to train a VQ 

codebook that works reasonably well [24 . 

The vector quantization quality has a significant influence on the recognition 

rates. It is a tradeoff between processing time and quantization error. If a codebook 

size is very large, the quantization error can be reduced. However, it will take time 

to do the computation. Therefore the optimized codebook size should be chosen 

wisely to fit different purposes. In our works, the codebook size of 32 is always to 

be used in experiments. 

VQ algorithm to generate a codebook 

There are several ways to generate a codebook for VQ. Fundamentally, a set of L 

training vectors can be clustered or quantized into a set of M codebook vectors. 

This method is so called K-means clustering algorithm (or Lloyd algorithm). The 

result of designing a VQ codebook by showing the partitioning of a spectral vector 
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space into distinct areas where can be represented by a centroid vector is illustrated 

in Figure 3.5. 

\ 
c c 

Y ^ c 

- ¾ ^ 

C is a centroid vector of its corresponding area 

Figure 3.5: Partitioning of a vector space into different areas where they are repre-
sented by a centroid vector. 

The one proposed by Y. Linde et al., 1980 [43] was used in the project. The 

algorithm is a modification of i^-means clustering algorithm. The advantage of this 

method is that the design starts with a 1-vector codebook and an M-vector codebook 

is produced by using a splitting technique on the code words and continuing the 

splitting process until the desired M-vector codebook is obtained. 

The codebook is constructed in following procedure: 

1. Design a codebook with size 1 (a vector), this vector is the centroid of the 

entire set of training vectors. 

2. The size of the codebook is increased by splitting each current codebook y^ 

according to the Equation (3.11) 

^n=yn(l + e), y- = Vn{l " ¢) (3.11) 

where n varies from 1 to the current size of the codebook, and e is a splitting 

parameter. 
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3. Finding the code word for each training vector in the current codebook that 

is closest (in terms of spectral distance) and vectors are assigned to their 

corresponding centroids. 

4. Updating centroids by using code words that belong to their centroids. 

5. Repeating steps (2), (3) and (4) until a codebook of size M is obtained. 

3.2.2 Description of a discrete HMM 

An HMM is uniquely defined by the following three sets of parameters: 

• 7T, the initial state-distribution vector 

it defines the probability of starting the Markov chain in a given state. 

• A, the transition probability matrix 

it defines the probability of jumping from one state, at any time t, to the next 

state, at time t + 1. 

• B, the output probability matrix 

it defines the probability of producing a given observation, in a given state, at 

any time t. 

Model parameters are summarized by A 二 {n,A,B). The matrices A and B, 

whose entries are in [0,1], and whose elements sum to 1 in each of their rows, are 

stochastic matrices. Also for a vector n, all entries are in [0,1] and elements sum is 

equal to one. All the probabilities of characteristic sequences can be expressed in 

terms of the model parameters A. For the left-to-right model, the sequence should 

start from state 1. Therefore 7Ti = 1, otherwise 7Tj = 0. 
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3.2.3 Probability evaluation 

For an observation sequence, the probability of its occurring can be obtained from 

a given model. For example, if an observation is {oi, 02, 03, 04, 05}. From a three 

states left-to-right HMM as shown in Figure 3.6 with the following parameters: 

aii tti2 ai3 
A 「 "̂  

^ ~ i^ijf — tt2i fl^22 «23 ‘ 

[^31 ^32 0,33 

I 6 “ 1 ) � � 6i(3) 6“4) • 

B = {bj{k)} = b2{l) 62(2) 62(3) 62(4), 

[bs{l) h{2) 63(3) ^(4) _ 

7T = [7r1,7r2,7r3. 

The joint probability of an observation and state sequence, P (0 , g'|A) is the product 

a " «22 ^33 

iJLM 
bj(k^^.^^ b2(k) ^^^^{k) 

^13 

Figure 3.6: State diagram of a left-to-right hidden Markov model, 

of the P(0|g, A) and P(g'|A). The probability of the observation sequence, P(0|A) is 
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obtained by summing this joint probability over all possible state sequences, there-

fore, 

P(0|A) 二 E P(0,g|A) 
¢1,92,...,95 

= E P(Ok,A)xP(g|A) 
91,92,...,95 (3 12) 

= E bg, {01)bq^{02)...bq^{05) X7Tqiaq^aq2q^.qq^q5 
¢1,92,-..,95 

= E 7Tg,bq^{Oi) aq^q^bq^{O2) a^bq“03)."qq^bq5(05) 
9 l > 9 2 v , 9 5 

Hence, Equation (3.12) can be used to calculate the probability of an observation 

sequence. Initially, the sequence starting at time t = 1 in state qi with probability 

7Tgi generates the symbol Oi with probability bq̂  (oi) in this state. Then the transition 

from time t = 1 to t = 2 is from state qi to state q2 with probability aĝ ĝ . Also, 

a symbol 02 is generated with probability hq {̂02). Similarly, the remain sequence 

follows until it reaches time t 二 T from state qr-i to state qr and generate symbol 

OT with probability ~了（0了). Finding of P(0|A) from direct definition involves a lot 

of calculations. Totally, there are (2T - l )N^ multiplications and N^ — 1 additions. 

It will not be practical to calculate the probability. However, there is an efficient 

way called forward algorithm that is capable to tackle the problem. Similarly, a 

backward algorithm calculating from backward exits to calculate the probability. 

For forward algorithm, a forward induction procedure allows evaluation of the 

probability P(0|A) to be carried out in the observation sequence with length T. For 

example, if there are four states in the model (i.e. N = 4) and the forward variable 

at{i) is defined as 

o^t{^ = P ( o i , 02, ...，Ot, qt = i|A) 

which is the probability of the partial observation sequence up to time t and state 

qt = i. Figure 3.7 shows a trellis structure implementation for the computation of 

o;tW-

• Forward algorithm 
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Step 1 : 

Initialize ai (i) 

Q!i(i) = 7Tibi(oi), for all states i 

(7Ti = 1; otherwise TTj = 0 for a left-to-right model). 

Step 2 : 

Calculate a() along the time axis for t = 2,…，T and all states j 
N 

o^t{j) = [J2at-i{i)aij]bj{ot) (3.13) 
i 

Step 3 : 

Probability is given by 

P(0|A) = Ŷ  arW (3.14) 
ieSr 

where Sp = {1,2,..., N} is a set of final states. 

• Backward algorithm 

Step 1 : 

Initialize Pr{^) 

"rW 二 1 

Step 2 : 

Calculate f3 () along the time axis for t = T — 1’ …，1 and all states j 

_ = Y.ajMot+i)Pt+i{̂  (3.15) 
i 

step 3 : 

Probability is given by 

P(0|A)=J]^A(oi)/5i(z) (3.16) 
ieSi 

where S! = {1} is a set of final states. 

Or 

P(0|A) = ̂ i6i(oi)AW 
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state 

q, . — A _ _ ^眷 ^ . 

^t-i ⑴ ^ ^ ^ $ ； > \ „ y ^ f « , (1) oc,+7 (1) 

, M 一 . 
^x-i � " ^ ^ ^ ^ ^ ^ \ ) K ^ Y / ^ a “ 2 ) cx,+7(2) 

..暮==. 
« r - i (3) ^ x V / \ V ^ c M 3 ) oc ,+7 (3 ) 

,萬一 
"4 • “^ • • 

^t-i � a “4 ) c W 4 ) 
A = a i , i 6 i ( O t ) 

B = a2,MOt) 
C = a s , M O t ) 

D = a,,ibi(Ot) 
at(l) = A a,_i ( l ) + B o^_i(2) + C a,_i(3) + D a^_i(4) 

Figure 3.7: A trellis structure for the calculation of the forward partial probabilities 
at() of an HMM with 4-state. 
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The forward or backward algorithms can reduce tremendous computation and make 

the HMM method efficient. The calculated probability can be viewed as matching 

score to indicate how well an unknown observation sequence matches a given model. 

3.2.4 Estimation technique for model parameters 

We have described how P(0|A) can be calculated. But we have not addressed how 

a speech signal (a word) can be modeled by HMM. For HMM modeling, it involves 

selecting the state size (topology of a model), and calculating the model parameters 

from an observation of a speech waveform. This is called training the model. An 

observation sequence of a speech signal that is used to train a model is called a 

training sequence. There is no analytical method to solve for the model parameters. 

However, an iterative method based on Maximum Likelihood (ML) can be used for 

obtaining a solution. For A = {A, B, w), its likelihood ofP(0|A) is locally maximized 

using an iterative procedure such as the Baum-Welch method [44] [45] [46 . 

• Baum-Welch re-estimation algorithm 

If the model parameters are known, the forward-backward algorithm can be 

used to evaluate probabilities produced by given model parameters and train-

ing sequence. Then, an estimation of original model parameters can be made 

based on current probabilities. P(0|A) should be the same whether it is cal-

culated from forward or backward probabilities, i.e. 

P(0|A) 二 Y^ ar(i) = E i A ( O i ) A W = E ^ ^ W A W - (3.17) 

ieSF ieSi i 

where 5/ is a set of initial states and Sp is a set of final states. 

By using the forward-backward algorithm on such a model, the posterior prob-

ability of transitions 7t(ij), from state i to state j at time t, conditioned on 
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the training sequence (0 ) and the model (A) can be computed as 

7t(i,j) = P{st = i,st^i - j | 0 , A ) 
=at{7)ai jbj {ot+1)pt^1{j ) 
- P{0\X) 
一 at{i)aijbj{ot+i)pt^i{j) 
~ ^ ^ ~ " (3.18) 

keSp 
The physical meaning of (¾ is the probability of the transition from state i to 

T - 1 T - 1 
State j. Thus the ratio E lt{hj)| E lt{i) is an estimate of the probability 

t=i t=i 

dij. This ratio may be taken as a new estimate, ^ - of � . 

T-1 
— E^ 7t(iJ) 
aij = 7^ 

E Zjt{iJ) t=i j 
T-1 
E 7t{iJ) 

= ^ — — (3.19) 
E 7t{i) t=i 

Similarly, the physical meaning of bj{k) is the probability of observation symbol 

Vk occurring in state j. This can be computed as the frequency of occurrence 

of observation symbol Vk relative to the frequency of occurrence of any ob-

servation symbol in state j. Summation of 7 (̂2) over the time index t is the 

expected number of times that state i is visited, bj{k) can be re-estimated as: 

E 7t{j) 
m = to~~ (3.20) 

E 7tU) t=i 
It can be shown that either: 

1. the initial model A defines a critical point of the likelihood function, where 

new estimates equal old ones, or 

2. model A is more likely in the sense that P(0|A) > P(0|A), i.e. new model 

estimates are more likely to produce the given training sequence 0. 

Repeating the reestimation calculation by using A in place of A, P(0|A) can 

be improved until a limiting point is reached. The result of this reestimation 
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procedure is an ML estimate of the HMM, and the proofis shown in Appendix 

E. 

3.2.5 State sequence for the observation sequence 

The evaluated probability of an HMM in Section 3.2.3 does not explicitly involve the 

state sequence, however it is important in many applications to have the knowledge 

of the most likely state sequence for several reasons [13]. There are several possible 

ways to find the optimal state sequence. For example, maximization of P{q\0, X) is 

equivalent to maximization of P(^', 0|A). 

I pf,OA)-^i^i^ 
I P ( " 。 ， l P(0|A) 
i 

It is because P(0|A) is not involved in the optimization process. The optimal state 

sequence can be solved by the Viterbi algorithm [47] [48]. It is similar to the DTW 

algorithm (solved by dynamic programming) discussed in Section 3.1. 

I The Viterbi algorithm can be used in score evaluation. The forward and (or) 

I backward algorithms can be used to calculate the probability P(0|A) which is the 

summation of P (0 , Q'|A) over all possible state sequences. For Viterbi algorithm, the 

probability is obtained from maximum of P(0 , g|A) over all state sequences. There-

fore, it is a special case of the forward-backward algorithm. The Viterbi algorithm 

is extremely efficient since it can operate in the logarithm domain using only addi-

tions; nevertheless, summation of P(0 , g'|A) over all possible state sequences is used 

in our project. From experiments, the approach of maximizing P(0 , |̂A) may not 

be better than EP(<^,g|A), especially in reestimating model parameters although 

the probabilities obtained from forward-backward and Viterbi algorithms may be 

very close. In such cases, the forward-backward algorithm may work more robustly 

than the Viterbi algorithm [12]. In the forward-backward algorithm all the paths 

are taken into account, however the time consumed is not a critical factor in our 

cases. 
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3.3 2-dimensional Hidden Markov Model (2dHMM) 

A 2-dimensional hidden Markov model (2dHMM) is designed to model two different 

feature sets of a speech waveform. The model consists of two statistically related 

HMMs. This configuration permits a more complete and an accurate characteriza-

tion of the speech signal. An observation consists of a couple of acoustic parameters, 

the first model is a standard HMM (A') and the second model is an HMM (A") whose 

parameters are probabilities functions of the state of the first model. In our work, 

^̂ \ ¾̂̂  ¾̂̂  

y a y , y 
Model V 0 _ _ ^ _ _ ^ _ _ ^ _ _ ^ 

〜 ， ^ ^ \ ^ _ ^ ^ ^ , { k ) 

^lli i = {l,2,3) 2̂2i i={l,2,3} ĴJi i = {l,2,3} 

n n A 
y . y . , y 

Model r - Q "72i i=(1.2.3,^Q "23i i = (1.2.3)Q 

W;W T̂iî >̂̂ (̂" •-^^^^^^^^s\W i = U.,3) 

7̂ii i = {l,2,3} 

Figure 3.8: State diagram of an 2dHMM with 3-state in A' and 3-state in A". 

we adopted a discrete 2-dimensional HMM for modeling speech signal. Since the 

output probabilities are discrete probability distributions, vector quantization (VQ) 

is necessary to convert the continuous speech signal into a finite set of prototypes. 

The choice of the state size is to let the number of states correspond roughly to the 
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number of sounds (phonemes) within the word [49]. Moreover, each word model is 

restricted to have the same number of states. 

3.3.1 Calculation for a 2dHMM 

For a couple of observation sequences, 

0 = W,"'} = of = {(o；,"/), (4，4'),..., K ， 4 ) } 

the probability can be obtained from a given model parameters (A) which are orga-

nized by two correlated models (A' and A"). The idea of 2dHMM is based on the 

work of F. Brugnara et al., 1991 [50]. The state notation for A' is q' and that for X" 

is q". The main difference between HMM and 2dHMM lies on the model topology. 

Therefore, given the 2dHMM, the joint probability of an observation sequence and 

the state sequence P(0,^|A) = P(of,gf|A) is defined as F(0\0",q\q"\X',X"). For 

notations oJ and qf, the lower index denotes the first element and the upper index 

denotes the last element. For example, of = (Oi, 02, ...，or) == {{o\ o'f), {0'2 0¾, . . . 

,(o'T 0 ) -

• Parameter definitions 

The model itself involves two correlated models, notations for them are defined 

as: 

for A'， 

<'j'三 PW = / k J - i = 0 , 

for 1 < i',j' < N' 

b'f{k')三 P W = 4 ' I 《 = / )， 

for 1 < k' < M'; 1 < j' < N' 

<' =PW - 0 , 

for 1 < i' < N' 
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(7ri, = 1; otherwise 7r-, = 0 for a left-to-right model), 

and for A〃， 

<' , / ' ,y 三 m'=fWt-i=i",q't=j% 

for 1 < i"J" < N"] 1 < j' < N' 

^j"A^")三?�o'i = ”'�i\q'{ = j",q't=j'), 

for 1 < k" < M"] 1 < j" < N"] 1 < j' < N' 

^h 三 P K = i " l � = 0， 

for 1 < i" < N"] 1 < i' < N' 

{7r'{n = 1; otherwise 7r-J, = 0 for a left-to-right model). 
I 

where N is the number of state in a model, M is the quantizational size for an 

observation in each state. 

For example, the model parameters for the 2dHMM shown in Figure 3.8 are: 

CLyy 仅1'2' 汉1'3' 

^' — {^'i>j'} — a2'l' ^2'2' ^2'3' ， 

^3'1' <̂ 3'2' <̂ 3'3' ^ • 

卜 ⑴ 6'i,(2) 6 ' “ 3 ) 糊 -

h' = {b'^,{k')}=的‘⑴ 6'2,(2)的‘⑶ 6'2'(4), 
[ & ⑴ ^ ⑶ ^ ⑶ • _ 

/ / r ]T 
7r' = {7T-,} == 7rJ, 7T2/ 7T&/ (wheie T is transpose), 

i 
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fl|//1� y dyf 2" 1' CLyf 3� 1, 

汉2〃 1〃 1' 汉2〃2〃 V 汉2〃 3〃 1' 

辽3'' 1'' 1' 仅3〃2〃 1' 汉3〃3〃 1' 

CLyf 1� 2/ Qj,l" 2� 2' Ci,l" 3� 2' 
n" — /n" \ — // n n 
« — \ a^n j"i' I — OL2" 1〃 2' ^2//2〃 2'仅2〃 3〃 2' ， 

仅3〃1〃2' 仅3〃2〃2' 汉3〃3〃2' 

汉1〃1〃3, 仅1〃2〃3' 仅1〃3〃3' 

仅2〃 1〃 3' 汉2〃 2〃 3' 仅2〃 3〃 3' 

_ ̂ 3"l"3' ^3"2"3' ^3"3"3' _ 
! 

I [ b'|.y{l) b'|uy{2) b'(,,y{3) b'{oy(4)‘ 

% ' " 1 ' ( 1 )的〃 1 , (
2
)均〃 1 , (

3
)均〃 1 , (

4
) 

I 的�1'(1) ^"i'(2)的〃1'(3) b'3',,i,(4) 
I 

&'/"2'(l) 6'/"2,(2) 6'/"2,(3) 6'/"2,(4) 
6- = { b ; ' . y ( n ) = ^,,2,(1) 6'2',,2,(2) 6 '2"2 ' (3)均"2 ' (4)， 

的"2,(1)的〃2,(
2
) ^'2'(3)的'〃2,(4) 

li 

6?〃3,(1) 6 ? . 3 ' ( 2 ) ^ 3 , ( ¾ 略 3 , ( 4 ) 
;| 

i 的〃3'(1) ^"3'(2) ^"3'(3)的〃3,(4) 

5 [ ^"3'(1) ^"3'(2) ^^'3'(3) ^,,3,(4) 

I r 
冗1〃1/ 兀1〃2' 兀1〃3' 

7T" — /7r" \ — “ // // 7T — t7Tj,/̂ ,j-— 兀2�1' 7Tj''2,兀�'3' • 

_ 兀3�1' ^J'2' ^3"3' _ 

(Note: the size of output probabilities of b' and 6" may be different.) 

To compute the probability that an 2dHMM generates a particular pair of sequences 

丨 of of , it can be obtained by summing the joint probability of the state sequences 

qf and observation sequences of over all the possible couples of state sequences. 

Given the model parameters (A = A'，A"), the joint probability of two observation 
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sequences and state sequences is P(of,gf|A). The probability is 

P(of|A) 二 E P K , g f | A ) 
<iT 

= E P ( « ， A ) x P ( _ (3.21) 
^1 ^ 1 

二 J < i < ^ 9 i 总 < “�+i%“ i ( ‘ iKV ’<^_ i ’ ‘ i% '+ i，g“ iWVi ) 

Therefore, direct calculation ofP(0|A) involves {3T+2)N'^N"^ multiplications and 

[N'TN"T - 1) sums. In fact there are N'^N"^ possible couples of state sequences of 

length T and, for each of them, (3T+2) multiplications and one sum are required. 

The computation is similar to HMM, it can be reduced by using the forward and 

backward algorithms. A trellis structure implementation for the computation of 

OH(i', i") with 2 states in model A' and 2 states in model A" is shown in Figure 3.9. 

• Forward algorithm 

The forward function is defined as the probability (at a given instant t) of 

having observed a partial sequence o\, while the models A' and \" are in states 

i' and i" respectively. 

at(i',n=P(qt = (t',i")), t = l 
(3 22) 

a^(z', i") = P{q, = (z', i"\ o\ = y{), 2 < t < T • 

or 

M^'^n=<'<'',i', t = l 

at(z',i") = .K�t-ia'，/'K,,,�,W)a^"^,’,(o;0, 1 < t < T (3.23) 
J )J 

• Backward algorithm 

Similarly, the backward function is defined as the probability (at a given in-

stant t) of observing the remaining part of the sequence of+” given that A' 

and A" are in states i' and i" respectively. 

M i ' , n = n o I + i h = (i'，i")), 1 < t < T - 1 
(3.24) 

Mi,,n=P(qt = (i,,n), t = T 
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state 

I 《1，，1” • — ^ ~ ~ - . ^參 

I a" (1，，l"̂ $̂>X̂  3̂ -̂̂ «. (1，，1") «计7 (1，，1") 

I ,慧-..__一 . 
«r-7 (2，，1’’)^^^^；^\ 乂 ^ ^ ^ «r (2', 1") oc,+7 (2，’ 1，，） 

.藝.= = . 
«.-7 (l''2") \ y / \ V ^ cMl，，2，，） a,,j (l',2") 

, 貝 . . . . . 1 . _ _ _ _ _ _ -

2̂' 2” ^ • • 
a,"(2，，2，’） a,(2',2") a,+"2，，2，，） 

A = a'y yb[,{0[) a'{n y, yh'{,,{0'|) 
B = (4'i,6i,(0;) <,,Vi,6'/,,(0;') 
C = ai,’i,6'i,(0;)a�"’i"’i,6i'"(0;') 
D = a'2,>i,(0;) a'2'":i,,>'/"(0;') 

at(l', 1") 二 A at-i(l\ 1") + B a “ 2 ' , 1") + C a,_i(l ' , 2") + D a “ 2 ' , 2") 
Figure 3.9: A trellis structure for the calculation of the forward partial probabilities 
atQ of an 2dHMM with 2-state in A' and 2-state in A". 
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or 

fW,n 二 1 

Pt{i'.i") = F � < A W + i ) < V , — k ‘ , ( ‘ i ) A + i ( / , / ' ) , 1 < t <T-1 
3,3 

( 3 . 2 5 ) 

Same as HMM in Section 3.2.4, Baum-Welch method can locally maximized the 

model's likelihood P(of|A). Therefore the reestimation of a',a",b' and b" can be 

found by this maximum likelihood (ML) method. 

• Transition Probabilities 

I By using the forward-backward algorithm on the model, the posterior proba-
1 
I bility of transitions 7(i ' , i",j',j") from state i' to state j' of A' and state i" to 

丨 state j" of X" is defined as, 
j 

！ j(J''J"J'J") = Pte = hqt+i=j\oJ,x) 
1 , 、 （ 3 . 2 6 ) 

= a , ( z ' , i � K ， ) ,《 , , > ' S ) a ; V y � V , > " S ) 

The reestimation of a-,^, is a ratio. The numerator of it is the expected number 

of times, given the observation set, that the hidden process q' undertakes the 

transition from i' to / ; the denominator represents the expected number of 

times, given the observation set, that the process q' is in state i'. Thus, the 

estimation of the probability a;, j , is, 

’ E E w , i " j , n 

_/ i=l i" ?•� 
^i'j' = ^ (3.27) 

E E lt{i'.i".j'.j") t=ij',i",j" 

and the estimation of the probability a;'〃,,，《 is, 

ZZ^t{i',i"J'.f) 
( " 二 • ^ ( 3 . 2 8 ) 

E E lt{i'.i"J'J") t=i i',j" 
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• Discrete Output Probabilities 

In the discrete case, the reestimation formula for the model A' is, 

E S{y', y{) E 7 t ( A " ' , / , / ) 
y, {y') = ^ ~ " ^ ^ (3.29) 

E E 7t{i',i"J'J") t=ii>,i",j" 

where 
f 

1 if m = n 
S{m, n)= < 

0 otherwise 
^ 

The output probabilities for \" are estimated as, 

| % " , 2 / ; ' ) E 7 t ( " ' , j ' , j " ) 
K ' , " . M ) = ^ ~ ~ ~ (3.30) 

E E lt{i'.i".3'.3") t=ii',i" 

3.4 Discussions 

Template matching with Dynamic Time Warping (DTW) is the first generation of 

technology used for speech recognition. However, the use of DTW involves massive 

computation in the matching process. There are also limitations in using DTW 

for matching with large vocabularies, continuous speech, and speaker independence 

since a single template can not describe the full variability of the pronunciations. 

An alternate approach which may solve the shortcomings is a statistical method — 

the Hidden Markov Model (HMM) [51]. This is a second generation of technology 

that put the variability in the model instead of the matching process. 

An HMM can be used to create word models from examples of full words, or 

to create them as phonetic models by putting together models of the phonemes 

composing the word. If the speech from which the word models were created comes 

from many speakers, the recognition system becomes speaker-independent. Some 

systems with a speaker-independent model can be made to adapt to an individual's 

speech characteristics by post training. 
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Discrete HMM models a single set of feature from the speech waveform. It is 

anticipated that if more features are used for modeling, high recognition rate might 

be obtained. It can be imagined that a speech signal will be more distinct from 

others if it is represented by various kinds of features in different domains. For 

example, if we want to recognize the way where we go, one method is to remember 

the properties of the road which could be a corner, traffic light, special building, 

etc. The chance to remember the way we want to go will increase, if we can observe 

more than one kind of properties at the same time. Therefore, if two different 

types of feature sets are extracted that can characterize a speech signal in different 

perspective, undoubtedly they can provide more information about the signal. The 

standard HMM theory is, therefore, extended to 2dHMM. 

The auxiliary HMM (A') is used to weight the main HMM (A") for calculating 

its model parameters. The probability of a state at a particular time of an aux-

iliary HMM is used to modulate the main HMM. This approach can enhance the 

modeling of the speech samples. For two feature sets of an 2dHMM to be the same, 

the auxiliary HMM in 2dHMM can be treated as a dummy which provides its state 

observation for the main HMM. Since the feature kind of this dummy HMM is the 

same as the main HMM, therefore, it is fed by the same observation sequence. This 

approach can be used to contrast a standard HMM. For example, two utterances 

with the same pronunciation generated at different time by a speaker (or differ-

ent speakers) are to be modeled by 2dHMM. Therefore two statistically models are 

merged into a single model, 2dHMM. In this methodology, there should be improve-

ment within limited speech training samples for 2dHMM comparing with HMM. 

It is because the training number in 2dHMM is virtually more than that of HMM 

with the same training number. Essentially, we allow inter-training of two different 

observation sequences in 2dHMM. However, two different kinds of feature should be 

used instead of one kind of feature in order to enhance the model further. Normal-

ization of two speech samples is necessary for training. The technique for it can be 
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achieved by using DTW to minimize error of phone duration between two signals. 
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Implementation 

4.1 Transputer based multiprocessor system 

Although systems with more than one microprocessor offer an attractive method of 

increasing the processing power of a microcomputer, problems arise because of the 

need for communication among the microprocessors. Because of the need to share 

the workload between the microprocessors, the communication overheads detract 

from the potential improvement which might be expected from using several micro-

processors. Hence adding extra processors may lead to a decrease in performance 

52]. The transputer represents a solution to this problem in which communication 

with similar devices is designed into the circuit at a fundamental level. There are 

three main types of first-generation transputers: 

• the 32 bit transputers with a floating point unit (known as the T8xx), 

• the 32 bit transputers without a floating point unit (known as the T4xx) 

• and the 16 bit transputers (known as the T2xx). 

All of them have the same architecture and essentially similar instruction sets. De-

tails of T800 transputer used for our work may be found in Appendix G. This 32 
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bit floating point transputer is designed for numerical applications. It has 4 kbytes 

of internal memory, and a floating-point unit (FPU) which is capable of operating 

to the IEEE-754 specification on 32- and 64-bit numbers. 

Transputer systems can be designed to be scalable, since a transputer system 

is naturally modular so that a design may be able to use one, two or hundreds of 

transputers. With carefully design, the performance of a product can be increased by 

adding more transputers without redesigning the software or interfaces. The INMOS 

standard hardware modules are called TRAMs (TRAnsputer Modules). They are 

produced by a range of manufacturers and all fit into standard board slots. 

4.1.1 Transputer Development System (TDS) 

The majority of transputer will probably end in embedded computer systems, where 

the transputers act as the controlling processors for a device such as a laser printer. 

These transputers will be completely under the control of the application program. 

It is very unlikely that they will be used with any underlying operating system [53 . 

However, for development purpose in our work, a server program that communicates 

with the transputer system resides in a host computer providing user interface. For 

changing to a different host, all that required to port to a new host is a relatively 

simple server program. The server model like this also has the advantage that 

developers can continue to use the facilities of a familiar operating system, such as 

its command language and utility programs. The INMOS Transputer Development 

System (TDS) is shown in Figure 4.1. The principal language provided with the 

TDS was occam. Besides occam, software toolset of C, Fortran, Ada and Pascal 

are available from different sources (vendors). The 'iserver' command in the toolset 

can load programs onto transputers and transputer boards. It loads the bootable 

file onto the transputer network and activates the host file server that provides 

communication with the host. 
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Keyboard Display 

\ r 
X \ Host 

Mouse ^ ( ^ e r v e ^ ^ ^ Transputer ^ > to transputer network 

7 > ¾ ^ ^ ^ " ^ 
Floppy Hard disk 

Figure 4.1: The INMOS TDS: the host is connected to the transputer network by a 
single link. 

4.1.2 System architecture 

At board level, a transputer system is based on a mother board with slots for plug 

in TRAM modules. A host computer is required to interface to a mother board 
1 

丨 to provide user interface and other peripheral resources. With a host computer 

and a TRAM mother board, a user is able to construct a multi-transputer system 

by mounting TRAMs onto the mother board. Each member of the TRAM family 

consists of one transputer and 1, 2，4 or 8 mega bytes of memory. Figure 4.2 shows 

a 1 Mbyte DRAM TRAM which is the smallest size of TRAM that measures about 

3.5 inches long by 1 inch wide. This is called a Size 1 TRAM. The size of larger 

|||f|jl:; . ...:,.�:.;,"n,„...l,̂ m̂̂ ::§,,.̂ • 

^ ll:hî 8̂: I I ,r 
_ _ _ .編 ^ ^ ^ 

1 Mbyte DRAM 
Figure 4.2: Compact transputer system size (IMS T800). 
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TRAMs is always a multiple of the Size 1 TRAM. For example, the Size 4 TRAM is 

about the size of four Size 1 TRAMs together. The Size 1 TRAM has 16 pins which 

plug into sockets on the motherboard. TRAMs are marked in one corner (pin 1) for 

orientation purposes. 

Each mother board has a software control cross bar switch for connecting TRAMs 

in configurations specified by the user. For each TRAM, four channels are provided 

for communication with other TRAMs. When they are installed onto a mother 

board, two of the channels are hardwired to form an array. The remaining two 

channels are connected to the cross bar switch. Being software programmable, the 

cross bar switch allows a user to configure its connections. This mechanism provides 

simple means to configure the architecture of a multi-transputer system. 

4.1.3 Transtech TMB16 mother board 

The TMB16 is a TRAM mother board designed to plug into a PC ISA bus. The 

board has 10 TRAM slots and an IMS C004 link switch to allow networks ofTRAMs 

to be set up under software control. Figure 4.3 shows a mother board which can 

accommodate 10 TRAM modules and is designed to interface to a PC through the 

ISA expansion slot. Note that the slots are not all oriented the same way and that 

the ordering of slots is not continuous. This allows better utilization of the mother 

board when plugging in TRAMs of different sizes. The mother board is specially 

wired so that if it is populated with Size 1 TRAMs then the transputers are all 

connected in a pipeline. This is achieved by connecting link 2 of one transputer to 

link 1 of the next transputer. Figure 4.4 shows the hardwired connection. 

The control architecture (shown in Figure 4.5) is that the host computer con-

trols only one transputer (the root or master transputer). This configuration is for 

TDS users where the transputer development system runs on the master proces-

sor. All other processors in the network are controlled from the master processor's 
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I - _ ^ - _ ^ _ ^ i i : l r ' i v : ' i ' i i v " “ ™ " ^ 1 

slot slot slot I slot slot slot r slot ;1 slot - slot M slot 
1 4 I = 1 2 . » ‘ ‘ n ' ‘ i 

yyyyyyyHtiHL 
to PC/AT bus 

Figure 4.3: TRAM layout of an interfacing mother board. 
linkO linkO / / link 0 

linkl slotO link2 linkl slotl link2 / / link 1 slot9 link2 

link 3 link 3 / / link 3 
Pipe Head 丨丨 Pipe Tail 

Figure 4.4: TMB16 mother board default transputer pipeline. 

subnetwork. This enables TDS to boot/debug user programs. 

subsystem control 

——L__^ ——t— t 
‘ ‘ 

control 
Host (PC) > TRAMO TRAM1 TRAM9 

Figure 4.5: The control architecture for TDS. 

When TRAMs which sizes are larger than one are used, they do not use all of the 

sites underneath them. The only active site is the one below pin 1 of the TRAM. 

This means that the pipeline is broken at the unused slots underneath the TRAM. 

To bridge these breaks, a special pipe jumper can be used. Figure 4.6 shows a pipe 

jumper. 
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I ,——I I Pin 1 marker • , , — ] 

l l l l l l l l 
Figure 4.6: Pipe jumper for TMB16 mother board. 

TRAM can exist in other forms such as an Analogue to Digital (A/D) converter. 

For example, the adtl08 A / D TRAM is 100kHz sampling Analogue to Digital Con-

verter Module built to the INMOS TRAM format. It is primarily designed to provide 

a flexible, low cost method of capturing real-time analog signals. The converted data 

output is via the standard INMOS link adapter to any one of the four links found in 

TRAM systems. The adtl08 is a Size 4 TRAM conforming to the INMOS electrical 

and mechanical format for TRAM modules. 

4.1.4 Farming technique 

A farming technique is a multi-processor structure that consists of a controller pro-

cessor and a pool of interconnected processors as a processor farm. The controller 

schedules and assigns tasks among the processors in the processor farm. Each farm-

ing processor performs its assigned task, returns the results of the task, and waits 

for new work as shown in Figure 4.7. The controller keeps track of which processors 

are busy or idling and repeats the assignment until the master process is completed. 

Farming technique for multi-processing is well suited for transputer implemen-

tation. The performance of farming technique can be evaluated by considering the 

time each processor dedicates for communication and the time actually used in com-

putation. An efficient system should keep the communication time to a minimum 

so that an increase in the number of processors in the network increases linearly the 

global processing speed. Also the computing time of the tasks should not be too 

short, otherwise the communication load could be comparable with the processing 
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• 龜 ® \ 
/ ^ ^ ^ P - ^ ^ \ 

眷 ^ _ ^ _ 譽 響 

Controller 评。* \ ^ ^ » 7 

\ ® ® W ^ ^ _ _ ^ ^ 
Workers 

Figure 4.7: A processor farm consists of workers and a controller which assigns tasks 
to the workers. 

load and the network efficiency would degenerate. Three possibles topologies of 

farm model are shown in Figure 4.8. Basically, the performance of them are similar. 

The most important factor is the algorithm itself. For maximum efficiency in any 

farm model, every processor should do the same amount of work (i.e. the work load 

should be evenly balanced among the processors). Our major advantage of farming 

is that the size of the processor farm can be expanded easily. 

Concerning with efficiency, any specific problem on a parallel machine requires 

that the problem is divided up into tasks is to be solved. Each task can be done 

by a processor. If the size of each task is very small, the problem is said to be 

fine-grained. If each task is large, the problem is said to be large-grained. The 

granularity (introduced in Section 1.3.3) of a problem is a measure of the size of the 

tasks which a problem is divided into. If a problem is inherently large-gained and 

the difficulty of each subtask is very different from that of other subtasks, it will be 

difficult to balance the computing load using a processor farm. However, processing 

in speech recognition can be divided up into increasingly smaller pieces and the 

granularity of the tasks can be arbitrarily decided. Such problems can be handled 

well with processor farms. Since the transputer is a single-chip microprocessor with 
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Figure 4.8: Farm models (linear array, ring and tree). 
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significant communications capability, it qualifies as a medium-grained computer. 

Thus a processor farm composed of transputers should be generally be given a col-

lection of medium-grained tasks [22]. Since speech recognition involves complicated 

computation, it will be suitable to employ farming technique with transputers. 

Transputer configuration in the system 

A PC based five-transputer system configured as processor farm was used as a 

development platform for our work. The block diagram of the system is shown in 

Figure 4.9. The 80486 (33 MHz) host PC had 8 Mbytes ofmemory, a 10 slot TRAM 

i TRAM T800 丨 
： with 1 Mbyte ： 
i DRAM I 

Personal ; TRAM T800 TRAM T800 TRAM T800 ： 

Computer ^ ： with 2 Mbytes ^ with 1 Mbyte < > with 1 Mbyte ; 

(Intel 80486) : DRAM DRAM DRAM | 

丨 TRAM TRAMT800 ： 
microphone ：~> with 1 Mbyte ： 

丨 A D C DRAM i 

Figure 4.9: Development system block diagram. 

mother board installed on ISA expansion slot and ran under the MSDOS operating 

system. 

The host PC provided the user interface and hard disk storage for program 

development. The software development platform was based on the INMOS ANSI 

C toolset [54] software cross-development system. ANSI C language is used to specify 

the components of a system in terms of communicating processes. The design can 

be directly expressed in the parallel constructs of the language. 
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4.2 Farming technique on extracting spectral am-

plitude feature 

To illustrate the potential of this development engine, spectral analysis (by taking 

FFT) of a speech segment is performed on each and every short-time frame. There 

are 30 about frames for a typical isolated syllable, therefore if FFT is needed to be 

done on each frame, it means a lot of duplication of process with different input 

data. Hence, it is well suited to employ farming technique for parallel processing in 

performing this task. The implementation is described as follows, 

1. For FFT calculation on 30 frames of speech waveform with a five transputer 

system, each transputer will take 6 frames to share the work. Three processes 

are required to complete the task. One for master transputer, one for junction 

transputer and one for slave transputers. The process in master transputer 

distributes data (part of digitized speech signal) and parameters to junction 

transputer. The junction transputer which receives the data and parameters 

retains its share of work, then distributes the rest of the work (data and param-

eters) to the 3 slave transputers. All transputers including master, junction 

and slave will start the FFT calculation as soon as they receive the data. The 

junction transputer waits for results from the slave transputers before send-

ing them to the master transputer together with its own result. On receiving 

the results from the junction transputer, the master transputer combines with 

its own to form the complete spectral analysis result. The source codes of the 

processes are written in parallel C language which is standard C language with 

additional function for concurrency such as channel communication. Figure 

4.10 shows the activities between trasnputers in the network. For communi-

cation between transputers, a path is defined as a channel between two trans-

puters at the programming level [55]. They are point-to-point unidirectional 

connections and the transfer of data is one way in order to provide maximum 
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End 
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result to master transputer 
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- ^ , ^ taking FFT 
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channel receive in parameters and 
send out parameters and _̂_̂ ,!!̂ ^̂ -̂-̂ ^ data from master transputer 
data (digitized speech signal) "̂ "̂  
to junction transputer 

Start master transputer junction transputer ^ ‘ 

3 slave transputers 

Figure 4.10: Activities among the transputer network for computing FFT on 30 
frames of speech signal. 

speed with minimal wiring. Therefore, processes which exchange data with 

each other must form a pair of channels. 

2. For transputers on TMB16 mother board, the connections between their link 
0 and link 3 are connected by the programmable link switch (IMS C004). 
In order to build the five-transputer network (its link connection is shown 
in Figure 4.11), TRAMs s3 and s4 are needed to be connected to TRAM sl 
through the softwired links. A text file (with extension ".wir") is edited as: 

y 

s l 0 t s4 0. 

s l 3 t s3 3. 

Then a program of network configuration software with the command "ncs" 

is run to read this file and make the connection. 

3. Before the program is compiled, a configuration file (fft.cfs) is necessary to be 
defined as: 

T800 (memory = 2M) root ; 
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link 0 

TRAM T800 
link 1 with 1 Mbyte link2 

DRAM (s3) 
Personal L _ _ ^ _ ^ _ _ 

Computer link 3 

(Intel 80486) 
(softwired) 

link 0 ylink3 link 0 

link 1 TRAMT800 litik2 link 1 TRAM T800 link2 link 1 TRAMT800 1她2 
with 2 Mbytes ^ with 1 Mbyte < with 1 Mbyte 
DRAM (sO) DRAM (sl) DRAM (s2) 

link3 “ linkO li^^3 

(softwired) 

ylinkO 

TRAM T800 
link 1 with 1 Mbyte link2 

DRAM (s4) 

link3 

Figure 4.11: Taking FFT for a speech signal on the five-transputer network with 
farming technique. 
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T800 (memory = lM) s[4]； 

connect r o o t . l i n k [ 0 ] to host; 

connect r o o t . l i n k [ 2 ] to s [ 0 ] . l i n k [ l ]； 

connect s[0] . l ink[0] to s [ l ] . l i n k[0]； 

connect s [0 ] . l ink [3] to s [3] . l ink[3]； 

connect s [0 ] . l i n k [ 2 ] to s [2] . l i n k [ l ]； 

input from_server; 

output to_server; 

process(stacksize=400k， heapsize=900k， 

interface(input HostInput, output HostOutput, 

input in, output out, 

input adt_in, output adt_out))master； 

process(stacksize=40k, heapsize=200k, 

interface(input up_in, output up_out, 

input down_in[3], int InputSize = 3, 

output down_out[3], int OutputSize = 3) ) junction; 

process(stacksize=40k， heapsize=200k， 

interface(input in, output out))slave[3]； 

connect master.HostInput to from_server; 

connect master.HostOutput to to_server; 

connect master.in to junction.up_out； 

connect master.out to j unct ion.up_in； 

rep i=0 for 3{ 

connect j unct ion.down_in[i] to s l a v e [ i ] . o u t ; 

connect junction.down_out[i] to s l a v e [ i ] . i n ; 

> 

use "m_f f t . lku " for master; 
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use " j _ f f t . l k u " for junction; 

rep i=0 for 3{ 

use " s _ f f t . l k u " for slave[i]； 

} 

place master on root； 

place junction on s[0]； 

rep i=0 for 3{ 

place s lave[ i ] on s [ i + l ] ; 

} 

place from_server on host； 

place to_server on host； 

place master.in on root.link[2]； 

place master.out on root.link[2]； 

place j unction.down_ in[0] on s[0] . link[0]； 

place junction.down_out[0] on s[0] . link[0]； 

place j unction.down_ in [1] on s[0] . link[2]； 

place j unction.down_ in[2] on s [0 ] . l ink[3]； 

place j unction.down_out[2] on s [0] . l ink[3]； 

From the configuration file, the source code "mJft.c" is defined as master, 

"jJft.c" is defined as junction and "sJft.c" is defined as slave. 

4. With source codes and configuration file, the designed program can be com-

piled. First, each source code is compiled individually by "icc" which is an 

ANSI standard C compiler with additional support for concurrency to form 

an object file in a standard intermediate code format which then linked (by 

"ilink") to generate a linked unit. Linked units can be used in configuration de-

scriptions to map software onto specific arrangements of transputers. Finally, 

"icconf" and "icollect" are used to generate a bootable file (with extension 

".btl") which can be directly loaded onto the transputer network by using the 
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host file server tool "iserver" which both loads the program and starts up the 

runtime environment that supports interaction with the host. The configurer 

"icconf" generates configuration information for transputer networks from the 

configuration file (fFt.cfs). The code collector tool "icollect" takes the data file 

generated by "icconf' and generates a single file that can be loaded and run 

on the transputer network. 

The batch file (make.bat) for the compiling procedure is: 

icc m _ f f t . c / t a 

icc j _ f f t . c / t a 

icc s _ f f t . c / t a 

i l ink m _ f f t . t c o / f startup.lnk / t a 

i l i n k j _ f f t . t c o / f startrd. lnk / t a 

i l ink s _ f f t . t c o / f startrd. lnk / t a 

icconf f f t . c f s 

i c o l l e c t f f t . c f b 

By making use of the transputer, it can be seen that the computation re-

quired in extracting feature parameters can be sub-divided into small tasks 

and performed in parallel. This enables the viability of implementing the 

speech recognition system in real time. 

4.3 Feature extraction for LPC 

In order to obtain an accurate result for performance evaluation. Hidden Markov 

Model Toolkit (HTK) was used to perform the pre-processing role, such as feature 

extraction and generation of a codebook. Since the toolkit was used, the system 

at this moment would not be implemented in real time. The software toolkit was 

hosted on "SUN" workstation. Details of using HTK can be referred to the reference 

manual [56 . 
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In the toolkit, there are totally 11 options for selecting the basic kind of speech 

feature. They are summarized as: 

1. sampled waveform 

2. linear prediction filter coefficients 

3. linear prediction reflection coefficients 

4. LPC cepstral coefficients 

5. LPC cepstra plus delta coefficients 

6. LPC reflection coef in 16 bit integer format 

7. mel-frequency cepstral coefficients 

8. log mel-filter bank channel outputs 

9. linear mel-filter bank channel outputs 

10. user defined sample kind 

11. vector quantized data 

Moreover energy, delta or acceleration coefficients can be appended optionally to its 

feature vector. 

In our case, feature of LPC cepstral coefficients were used for speech signals. 

The feature vector size was 10. An energy of a frame were appended to its feature 

vector to make the size being 11. In addition, delta features of them were further 

appended to the original feature vector. As a result, the feature vector contained 

22 elements. It was shown in Equation (4.1). 

frame feature = (Ci, C2, C3,..., Cio, E, SCu SC2,."’ 6Cio, SE) (4.1) 

"HCopy" and "HQuant" Tools 

• HCopy 
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The function of "HCopy" is to convert a raw data (waveform) file to a des-

ignated output file. The designated output in our case is LPC cepstral co-

efficients with energy and their delta information as in Equation (4.1). The 

function is invoked by typing the command line: 

HCopy -C config_filename input_filename output_filename 

The configure file, config_filename: 

SOURCEKIND = WAVEFORM 

SOURCERATE = 1000 # (*lOOns) ie 10.0 kHz 

TARGETKIND = LPCEPSTRA_E_D 

LPCORDER = 10 

NUMCEPS = 10 

TARGETRATE = 100000 # ie 10 msecs 

WINDOWSIZE = 260000 # ie 26 msecs 

ZMEANSOURCE = T 

USEHAMMING = T 

PREEMCOEF = 0 .97 

SAVEWITHCRC = F 

Parameters involved in the overall process is illustrated in Figure 4.12 which 

shows the sampled waveform being converted into a sequence of parameter 

features. In general, HTK regards both waveform files and parameter files as 

being just sample sequences, the only difference being that in the former case 

the samples are 2-byte integers and in latter they are multi-component vec-

tors. The sample rate of the input waveform will normally be determined from 

the input file itself. However, it can be set explicitly using the configuration 

parameter SOURCERATE. The period between each parameter vector deter-

mines the output sample rate and it is set using the configuration parameter 

TARGETRATE. The segment of waveform used to determine each parameter 
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vector is usually referred to as a window and its size is set by the configura-

tion parameter WINDOWSIZE. Notice that the window size and frame rate 

are independent. Normally, the window size will be larger than the frame rate 

so that successive windows overlap as illustrated in Figure 4.12. 

^ Window Duration 
- W I N D O W S I Z E ^ SOURCERAIE 

iWI_iM4̂  
“ ‘ I I 

Frame Period 
TARGETRATC 

Feature Vector Feature Vector 
TARGETKIND TARGETKIND 

Figure 4.12: Parameters for speech encoding process by HTK. 

• HQuant 

The function of "HQuant" is to creat a codebook from the speech samples into 

a parameterized form. Codebook construction consists of finding clusters in 

the training data, assigning an unique reference vector (the cluster centroid) to 

each, and storing the resultant reference vectors in a codebook. The function 

is invoked by typing the command line: 

HQuant _n S N codebook_filename -S train_files 

where S=stream, N=codebook size and trainJiles=script file. 
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4.4 DTW based recognition 

4.4.1 Feature extraction 

In template matching, one popular method to represent the characteristic of speech 

signal is to compute and record its spectral amplitude in frequency domain. The 

spectral amplitudes of the speech signal in each small segment are mapped to 12 

frequency bands forming feature vectors. Figure 4.13 shows the block diagram of a 

speech signal which the feature vectors are computed after end-point detection to 

be used as reference templates to be recognized. In this feature extraction process, 

‘ A ^ Speech signal 

^ ^ 

V J 1̂ "̂̂ "̂̂ """̂ ""̂ """̂ "̂̂ ^̂ ^̂ " 

end-point detection f ^ _̂ _̂̂ _______̂ _̂̂ ^̂ ^̂ ^̂ _̂____̂ ^̂ _ 

^ ^ ^ > V y 
time-domain \i 

spectral amplitude 

frequency-domain 

V 
spectral energy with 12 frequency bands 

V 

To be stored as a template or recognized by DTW 

Figure 4.13: Block diagram of a speech signal from which features are extracted after 
end-point detection and stored as template or recognized by template matching with 
DTW. 

the main algorithm that is used for computing the signal features in the frequency 
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domain is the FFT algorithm. It is possible to split the FFT calculation into par-

allel components to be run by different processors. However, we found that it was 

simpler and more effective to create multiple replications of the FFT process to 

run on individual processor. The programming example of it is shown in Section 

4.2. Each transputer takes a portion of the useful signal for processing. Figure 

4.14 shows the organization of the five-processor farm for operation on concurrent 

feature extraction. One of the transputers is used as controller which distributes the 
I 

task data to different workers (extracting spectral information on specified frames). 

While workers do their work, the controller is also doing the same task on different 

frames. After finishing the process, results will be passed back to the controller. 

X ^ ^ ^ ^ 
赢 . . m 響 _ 

c 。 一 _ � _ _ _ _ w -

Processor distributes number \ ^ ^ ^ ^ ,?-'/>;¾ / 

of frames to workers, takes \ ^ ^ ^ S , ， 、 （ ¾ ¾ ¾ / 

FFT on frames and receives X ^ T / g J ^ ^ ¾ / 

the feature vectors from them \s^^^^ ^ ¾ ¾ ¾ ^ ' ^^^^J^ 

Processors take FFT on frames 

Figure 4.14: Five transputers are used as a processor farm for feature extraction on 
a speech signal. 

4.4.2 Training and matching 

After the features of speech signals are normalized and extracted, they are stored as 

reference templates for recognition. Figure 4.15 shows the block diagram of 10 words 

stored in the transputer network. The feature vectors of each word are stored in 

local memories among transputers. Since five transputers are used, each transputer 

shares the loading and takes care of 2 words in the vocabulary. The stored templates 
i 
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words 5，6 
stored 

TRAM3 

A 

words 1, 2 words 3, 4 
stored | stored 

i 
I 

TRAM1 c ^ TRAM2 ^ ^ TRAM5 

I ' 、 八 words 9, 10 
stored 

——^~~ ~ ~ ^ ~ 
j 
i PC 

1 J TRAM4 ^ d s 7 , 8 
stored 

Figure 4.15: Features are extracted from 10 speech signals and stored in the trans-
puter network for template matching with DTW. 

are used for matching by using DTW. 

For many parallel algorithms, an important part of the solution is to balance 

the computational load among the processors. When farming technique is employed 

to perform the job, each processor is distributed with similar work load. With 

increasing vocabulary size, the matching process simply requires the addition of 

more transputers to the matching network. The software can easily be changed to 

adopt adding more transputers at the configuration level. In the five-transputer 

network with 10 words vocabulary, errors are calculated between a tested speech 

signal and prestored speech signals. The prestored speech signal with the minimum 

error should be chosen as the word that is matched to the tested word. Before 

matching, feature vectors of the tested word are distributed to each transputer. In 

matching, each transputer calculates the errors of 2 words in the vocabulary and 

chooses the minimum one. For junction TRAM, besides calculating its minimum 

error it receives a error from each slave TRAM. Therefore, it is necessary to choose 

the minimum one again from its minimum error and that of slave TRAMs. Finally, 
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the master TRAM can get the minimum error of all words in the vocabulary. It is 

illustrated in Figure 4.16. 

finding 
minimum error 
between two finding 
prestored words minimum error 
and tested word between two 

TRAM3 ^ ^ S S e M ; 
二 5 ’ 6 ^ ^ ^ ^ ^ r a ^ i i 
stored 广 in slave TRAMs 

T y 
finding � ‘ ^ ^ 
minimum error ^ Z 
認 二 二 TRAM1 _ _ ^ TRAM2 _ _ ^ TRAM5 = ^ f — r 
and tested word; wrnvk1 9 < wnrd ^ 4 < wrnvkQ 10 between two 

= = S L 二 ’ 二 ’ ^ ^ f f S M 
in junction TRAM jp| 1""| 

y w 
广 、 I 

PC TRAM 4 

V / words 7, 8 
stored finding 

minimum error 
between two 
prestored words 
and tested word 

Figure 4.16: Activities of a five transputers network in recognizing a speech sample 
with a 10-word vocabulary by template matching with DTW. 

4.5 HMM based recognition 

4.5.1 Feature extraction 

In the statistical matching method of discrete HMM, VQ is necessary to limit many 

possible feature vectors to a fixed number used in modeling. The codebook with 

size 32 could be obtained by HTK Toolkit as well as feature vectors. 
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4.5.2 Model training and matching 

When training model parameters, insufficient training data can affect the perfor-

mance of the recognizer. For discrete observation an HMM, the re-estimation of 

hj{k), Equation (3.20) of Section 3.2.4, requires a count of the expected number of 

times in state j and observing symbol Vk simultaneously. If the training samples 

are not large enough and there is no occurrence of this event, bj{k) become zero 

and will stay zero after re-estimation. As a result, P(0|A) would be zero for any 

observation sequence that includes {ot=Vk and qt=j)- By increasing the size of the 

training observation set, the problem can be solved. 

In re-estimation of model parameters,知 and bj{k) are attempted to be evaluated 

concurrently to adapt the parallel processing. Referring to their updating Equations 

(3.19) and (3.20), the computation effort of bj{k) relies mainly on aij. It is because 

that once jt{hj) is calculated for 〜， i t can be saved to calculate jt{j) for bj{k). 

Therefore, the main computation load goes to the re-estimation of a>ij. Comparing 

with aij, the re-estimation time of bj{k) is much shorter. It is not effective to re-

estimate them concurrently by using more than one processor. Before training, the 

features of speech signals have to be extracted, and quantized to a coded sequence 

in a codebook. After training, model parameters in the vocabulary are obtained and 

stored for matching purpose. For recognition, feature vectors with quantization of 

the tested word are distributed to each transputer for matching. The algorithm is 

shown in Figure 4.17. The larger probability with the word in the vocabulary will 

be treated as the matched one to the tested speech signal. 
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finding 
maximum probability 
between two finding 
prestored words maximum probability 
and sample word between two 

T — 3 ^ ^ ffi=Md; 
二 5 ， 6 ^ ^ = ¾ = 

^ in slave transputers 

T / 
finding � , >^ 
maximum probability ^ 
^ S d T o r d s T — 1 _ ^ Transputer2 _ ^ Transputer5 二 爪 probability 
and sample word; wnrrkl 9 < wmr13 d < wntvkQ 10 between two 
^ « d 二 ， 二 ’ 二 ， ^ 二 二 
in junction transputer rn lfl 

r ~ " ~ ~ ~ 
Hest Transputer 4 

1 y words 7，8 
stored finding 

maximum probability 
between two 
prestored words 
and sample word 

Figure 4.17: Activities of a five transputers network in recognizing a speech sample 
with a 10-word vocabulary by HMM method. 
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4.6 2dHMM based recognition 

4.6.1 Feature extraction 

In using 2dHMM for modeling speech signal, two distinctive feature sets can be used 

to characterize the speech waveform. Due to the natural characteristic of a speech 

signal, the extracted spectral information is good enough to represent it. On the 

other hand, the two feature sets can be the same for the model X' and model \" in 

2dHMM. The test done for modeling 2dHMM with the English vocabulary is using 

the two same feature sets of cepstral coefficients. 

Being a tonal language, the pronunciation of a Chinese character is characterized 

by its constituent phonemes and distinctive tone. For Cantonese, two different 

feature sets, namely tone and cepstral coefficient, are used. Since the two feature 

sets from a given speech signal are independent to each other, they can be extracted 

concurrently after the end points of the signal are detected as shown in Figure 4.18. 

Figures 4.19 and 4.20 show spectral amplitudes and tone features of two utterances 

pictorially. It can be seen that waveform of the word "tsinl" is similar to that of word 

"tsin2". However, the tone features of them are different. It is similar to HMM in 

Section 4.5.1, VQ is applied to limit feature vectors to a finite number. Furthermore, 

the pitch values of the tone profile are quantized linearly. The extraction of these 

two different feature sets can be obtained in parallel by using farming technique. 

4.6.2 Training 

Again, learning algorithm could be implemented in parallel in order to make training 

more efficient. For 2dHMM training, the re-estimation of a', a"，b' and h" can be 

implemented parallelly. On a single processor only, training of one iteration proceeds 

sequentially as shown at the top of Figure 4.21. The total time is the time required 
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‘ j ^ Speech signal 

Ht:hV 
V ) I 

end-point detection 

广 、 _̂_̂______̂____________̂̂̂_̂__ 

• K^o 
V y 

V features extracted in parallel 

V w 

pitch information spectral information 

�f \i 

quantization quantization 
M V 

observation sequence 1 observation sequence 2 
\f 

To be trained or recognized 

Figure 4.18: Block diagram of a speech signal which two distinctive features are 
extracted parallelly after end-point detection for 2dHMM method. 
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Waveform of the syllable "tsin1" 
1 I 1 1 1 

1 o "̂̂ "̂ "#l||||pj| ||||||pP^ -
> -0 .5 - ‘ I -

^ ‘ 
2 

- 1 - -

-1 .5 ' 1 ‘ ‘ ‘ ‘ 
0 0.1 0.2 0.3 0.4 0.5 0.6 

time (sec) 

Spectrum analysis of the syllable "tsin1" 

① 

1 K 
Q. 
E0.5s 

[。。^^^^^^^ 
' ^ > ^ ^ ^ ^ ^ ^ ^ � 4 � 

N̂r— “^ yin 60 
time (sec) 0 ^Q 20 叫 

frequency (Hz) 
Tone profile of the syllable "tsin1" 

1 ！ ！ ！ ！ ！ 

•g 0.8 - -
_i5 

E 0 . 6 - -
CO 
"S 
:^0.4- -
cc 
巨 
° 0 . 2 - ‘； -

0" ‘ ‘ ’~~‘ ‘ ^J 
0 10 20 30 40 50 60 

time frame 

Figure 4.19: Voice signal of a Cantonese syllable "tsinl" and its features that rep-
resent it. 
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Waveform of the syllable "tsin2" 
1| 1 ;~~I 1 1 1 
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Spectrum analysis of the syllable "tsin2" 
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Figure 4.20: Voice signal of a Cantonese syllable "tsin2" and its features that rep-
resent it. 
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to compute forward and backward parameters, and to re-estimate the new model 

parameters. Several of these steps may be done concurrently, as shown at the bottom 

of Figure 4.21. Here the forward and backward computations are pipelined with the 

A single processor ^^^|^^^j^j^^j^^^|^^^ 

^ a ^ p ^ a' ^a" H' H" 

Four processors ^^^^^^^|^j^^j^^|J^||^^ 

Processor t 议 t 以‘ 
#1 

Processor t o t ^>> 
#2 P 

Processor t 办' 
#3 

Processor t 卜‘' 
#4 

Figure 4.21: The difference of training time between single and multiple processors. 

re-estimate steps. The re-estimation of a', a", h' and h" are computed concurrently. 

Indeed, forward and backward can also be computed concurrently. The re-estimated 

model parameters may be obtained from the forward and backward parameters. 

Equations (3.27), (3.28), (3.29) and (3.30) show the transition probabilities and the 

output probabilities which are obtained from forward and backward parameters. 

4.6.3 Recognition 

Again, similar to the matching processes of HMM, computational load are dis-

tributed among the processors by farming technique. The prestored values after 

training are model parameters of the 2dHMM in the vocabulary. They are dis-

tributed among workers to share the work load. For a 10-syllable vocabulary and 
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a five-transputer network, each worker is assigned to be responsible for two words. 

Recognition begins with quantized feature vectors and quantized tone features of 

the sample speech signal being distributed to each transputer for computation of 

P(0|A). The transputers evaluate probabilities for their local stored words and 

choose the maximum probability. For junction transputer, besides calculating its 

local maximum probability, it receives probabilities of other words from the slave 

transputers and compares them. Therefore, the highest matching probability of a 

word among junction transputer and slave transputers is selected and passed to the 

master transputer. Finally, the master transputer picks the highest probability value 

and the word associated with it is the recognized word. 

4.7 Training convergence in HMM and 2dHMM 

The re-estimation algorithm based on ML is converged to local maximum. 10 English 

words from "zero" to "nine" were used for training of the HMM and 2dHMM. 

Convergence results with 30 iterations are plotted in Figures 4.22 to 4.26. 

The word "one" The word ̂wo" 

10-i�f r- , ！ ! ！ • 10-'% ! . • . . . 
:.•—: i : ； _的:__ i ^ : : : : 

l i o - - .^.........: 丨 i : l \ '("^^ \ i .\ 
1 j [ | 1 0 " ' ' - ' 

2 ； i .-.-HMM I ！ .-.-HMM 
2- ： 1 ——2dHMM 510^-' .......: : ； —2dHMM 

r-丨.......丨..........：.........丨............................“̂  !�........I.....................................：.......................:—— 
S •‘ 老 : 

|io-" 丨 i h^-.......丨 : i 
I ; l i o - - . . . . . . . . . . 丨 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ： . . . . . . . . . . . . ： . . . . . . . . . . . . 
m 0 
g l O - " ^ ^ •； f ,„-so： ； 

•5 0 1 0 - ； 

老 ^ 
1 lio--
1̂0̂  ： ； e 
‘ : i : %o--..........丨 i............； 

1 o-70 [ i 1 i i i 3 10"®s t i 1 i 1 1 

0 5 10 15 20 25 30 0 5 10 15 20 25 30 
iteration iteration 

Figure 4.22: Probability convergence of words "one" (left) and "two" (right) during 
training. 
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Chapter 4 Implementation 

From these figures, satisfactory results for both 2dHMM and HMM could be 

obtained after 10 iterations. The algorithm was able to converge to a stable point. 

Their convergence rates for training the same word are similar. The algorithm is 

only guaranteed to produce fixed-point solutions. Although in practice the lack of 

global optimality does not seem to cause serious problems in recognition performance 

57]. The Baum-Welch reestimation algorithm as described in Sections 3.2.4 and 

3.3.1 is a convenient, straightforwardly implementable solution to the ML estimation 

problem. 

4.8 Discussions 

Three speech recognition methods (DTW, HMM and 2dHMM) are described. The 

configurations of transputer networks for them are similar. For parts of feature 

extraction and matching, the computing load can be shared with the farming tech-

nique. Due to the more complicated algorithm of 2dHMM, it can be implemented 

concurrently. 
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Chapter 5 

Experimental Results 

In the Chapter, various experiments were designed to evaluate the performance of 

I different speech recognizers, especially for the 2dHMM based recognizer. Both the 

[| recognition accuracy and speed of processing were the major concern. We first 

j contrasted the performance between template matching method with DTW and 
I 
I j statistical approachs (HMM and 2dHMM). The vocabulary consisted of 40 English i 
j words. The comparison was described in detail in Section 5.1. For the comparison 

； between HMM and 2dHMM, a 20-English-word vocabulary was used and the exper-

imental detail will be described in Section 5.2.1. In Section 5.2.2, we describe several 

experiments that have been designed to test the performance of the 2dHMM based 
.I 

recognizer for Chinese language, specifically for Cantonese. A small vocabulary of 

10 Cantonese syllables were built to test the recognizer. Furthermore, 80 Cantonese 

syllables were collected as a relative large vocabulary to do another test that was 

designed to evaluate the performance of 2dHMM. It will be described in Section 

5.3. To contrast the computing time involved in these recognition algorithms, the 

effective algorithm and multi-transputer based system were designed to set up the 

test. Experimental details could be found in Sections 5.4 and 5.5. 

92 

d 



Chapter 5 Experimental Results 

5.1 Comparison of DTW, HMM and 2dHMM 

In the test, three isolated word speech recognizers using DTW, HMM and 2dHMM 

were implemented on a transputer based multi-processor system. A 40-English-word 

vocabulary was installed in each ofthe recognizers. Word samples were selected from 

an isolated word database published by Texas Instruments (TI 46-Word Speaker-

Dependent Isolated Word Corpus). Each word is represented by a numeral and the 

vocabulary is shown in Table 5.1. Totally, 360 samples were used (9 samples for 

Table 5.1: Word codes for 40 English words in the vocabulary. 

I Code Word Code Word || Code Word || Code Word 
1 ONE 11 A II 21 K II 31 U 

~ ~ 2 ~ TWO 12 ~~B~~ 22 L 32 V 
3 " T H R ^ 13 C - 23 M ~ 33 一 W 

4 F O t J ^ 14 D ~ 24 N 34 X 
5 ~ l W E ~ 15 E 25 0 ~35~~ Y — 
6 ^ " ^ ~ 16 F — 26 P 一 36 — Z 

~ ~ 7 " ~ SEVEN —17 G _ 27 ~ Q ~ 37 "ENTER 
~ " 8 ~ EIGHT 18 ~~H~" 28 R 38 “ ERASE 
~~9~~ NINE 19 I — 29 S 39 GO 

10 ZERO 20 J 30 T || 40 HELP 

I 
1 
I each word in the vocabulary) • The feature parameter used is the spectral amplitude 

with 12 elements (as shown in Equation 2.9). For modeling 2dHMM, the zero 

crossing rate is used as an additional temporal feature for the auxiliary model which 

provides state sequence to weight the main model. For the recognizer that was using 

the template matching with DTW method, the reference templates were one of the 

spectral amplitudes from 9 samples of each word. The HMM based recognizer was 

trained with 9 samples of each word. The accuracy of each recognizer was tested 
i= 

by feeding the same 9 samples of each word in the 40-English-word vocabulary 

for recognition. The results are shown in Table 5.2 for the template matching using 

DTW recognizer, Table 5.3 for the HMM and Table 5.4 for the 2dHMM. We attempt 

to compare the recognition performance between template matching and statistical 
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Chapter 5 Experimental Results 

models. Accuracy results were 75%, 89% and 89% for DTW, HMM and 2dHMM 

respectively. It can be observed that the recognition accuracy for both HMM and 

2dHMM based recognizers were better than template matching method. 
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Chapter 5 Experimental Results 

5.2 Comparison between HMM and 2dHMM 

5.2.1 Recognition test on 20 English words 

In this subsection, experiments for evaluating the performance in terms of both 

accuracy and unrecognized rates between 2dHMM and HMM under different sets of 

training samples are described. Word samples were selected from the TI 46-Word 

Speaker-Dependent Isolated Word Corpus. Training samples used for a word model 

in the experiments were 10, 20, 30, 40, 50, 60, 70 and 80 in experiments I to VIII 

respectively. Different combinations of 2-dimensional features for 2dHMM had been 

tried such as zero crossing rate, spectral amplitude, energy, LPC coefficients and 

cepstral coefficients, it was found that the spectral property of a speech signal was the 

best feature set to be used. From the result for accuracy performance in Section 5.1, 

the 2dHMM based recognizer with zero crossing rate as the other feature parameter 

for the auxiliary model which provides state sequence to weight the main model did 

not provide significant improvement in performance over that of HMM. Moreover, 

spectral analysis are the most important information to represent a speech signal. 

Therefore, two feature sets for two models (auxiliary and main) in 2dHMM were 

chosen to be the same. In other words, the 2dHMM based recognizer used one more 

observation sequence (feature set) than HMM. The observation sequence used for the 

auxiliary model in 2dHMM are the same for HMM based recognizer and the main 

model in 2dHMM. Cepstral coefficients, energy, delta cepstral coefficients and delta 

energy were used as the feature set for both HMM and 2dHMM. For recognition, 

2203 samples (roughly 112 samples for each word) were fed into both the HMM and 

2dHMM based recognizers in all experiments. The recognition accuracy and failure 

rate under different sets of training samples were summaried in Tables 5.5 and 5.6. 

From the experimental results, it is found that the performance of accuracy for 

both HMM and 2dHMM are similar at each set of training. This is shown clearly 
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Table 5.5: Recognition accuracy under different numbers of training samples. 

Number of samples used HMM | 2dHMM— 
in training a word model Accuracy rate (%) 

10 29.10 25.74 
20 — 59.96 - 61.28 
30 — 72.54 “ 72.31 
40 80.75 一 81.39 

50 87.38" 87.88 — 

60 89.38" 89.92 一 

70 90.51 “ 91.15 

80 I 91.19 91.74 

Recognition Accuracy on 20 English Words 

100| 1 1 1 1 1 1 

9。 ^ ^ ^ _ _ _ _ 

80- ^ ^ -

y ^ ——HMM 
7 0 - y ^ ——2dHMM -

g 60- 广 -

I 50- / -

丽 4 。 - / _ 

3o/ -

2 0 - -

1 0 - -

Q l I 1 1 1 I I 

10 20 30 40 50 60 70 80 
number of samples used in training a word model 

Figure 5.1: Recognition accuracies against different numbers of training samples. 
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Table 5.6: Unrecognized word under different numbers of training samples. 

Number of samples used HMM | 2dHMM 
in training a word model Number of unrecognized words 

10 ^ 2 9 4 1339 ^ ^ 
20 427 184 

— 30 163 89 
40 ~~Wr~ 47 — 

— 50 43 25 
— 60 —28 15 
一 70 16 9 

一 80 13 9 

Not recognized word for each set of models 

100| 1 1 1 1 1 I 

——HMM 

90 - • - - 2dHMM -

8 0 - -

7 0 - -

g 
^ 60 • -

1 5o\ -

& \ 
^ 4 0 - X -

^ 3�_ \ _ 

2 0 - � . V -

1。丨��.:^^^^rr^:^~^^_____^ -
% 20 30 40 50 60 70 80 

number of samples used in training a word model 

Figure 5.2: The graph of unrecognized word against different numbers of training 

samples. 
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in Figure 5.1. It is known that the model parameters of 2dHMM is more than that 

of HMM. In theory, more training samples are necessary in modeling 2dHMM than 

HMM since more parameters are needed to be trained in 2dHMM. It is expected 

that the overall unrecognition rate in 2dHMM should be higher than that of HMM. 

Referring to Figure 5.2, the main difference of unrecognition rate between HMM 

and 2dHMM existed when training samples were around 20. However, the accuracy 

rate between them was similar under different numbers of training samples. 

For under training, the performance of 2dHMM should be worst than HMM. It is 

due to the fact that the model cannot be well trained using too few training samples. 

However, this situation can be improved by performing inter-training within those 

training samples. Extra (inter) training can be allowed and performed in 2dHMM, 

since more than one type of feature set (observation sequence) are used. One feature 

set can be obtained from a speech sample whilest the other feature set can be 

obtained from another sample with the same pronunciation. Moreover, the technique 

of DTW is necessary for two different speech samples with the same pronunciation 

to be processed in order to normalize their length. From Section 5.2.1，the accuracy 

rate for HMM is 29.10% with 10 training samples per word model. For 2dHMM, 

the accuracy rate is 25.74%. Other experiments were done by inter-training of 2-

dimensional among 10 training samples. The results were summaried in Table 5.7. 

From the experiment, the accuracy result was improved from 25.74% to 33.41%, i.e. 

29.8% of improvement. 

Table 5.7: Inter-training performed in 2dHMM. 

number of training samples accuracy rate (%) 

“ 10 (original) � 25.74 

10 (original) + 70 (inter-training) 33.41 
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Conclusions 

From the test it was observed that there were not much difference between 2dHMM 

and HMM when only spectral information with energy were used as feature pa-

rameters. However in the situation of under training, recognition accuracy could 

be improved by performing inter-training in the 2dHMM based recognizer. It was 

concluded that the other distinctive feature set was necessary to be used for the 

auxiliary model in 2dHMM to achieve a better recognition result. It is anticipated 

that tone can be treated as a temporal feature set to represent speech signals in 

tonal language like Cantonese. Being a tonal language, Cantonese is characterized 

by its constituent phonemes and distinctive tone. Both phonemes and tone are es-

sential elements for Cantonese to be considered as features in modeling HMMs and 

2dHMMs. Therefore, Cantonese is chosen to build a vocabulary for further investi-

gation of the performance of an 2dHMM based recognizer. The experimental results 

were shown in Section 5.2.2. 

5.2.2 Recognition test on 10 Cantonese syllables 

Experiments were carried out to study the recognition performance when using 

a Cantonese vocabulary. Being a tonal language, the pronunciation of a Chinese 

character is characterized by its phonemes and distinctive tone. Tone is the varia-

tion of pitch which could be used as a kind of temporal feature for speech signal. 

Therefore, both phonemes and tone are essential to be considered as features in 

a Cantonese speech recognition system. This language, commonly used in Hong 

Kong and southeastern China, has nine lexical tones. Tones 1 to 6 are classified as 

non-entering tones and tones 7 to 9 as entering tones. The phonology divides each 

syllable into an Initial and a Final instead of smaller phonetic units [58, 59 . 

10 Cantonese syllables (shown in Table 5.8) were chosen to build the vocabulary. 
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In the vocabulary, each Cantonese syllable is similar to the other. Therefore, there 

are 5 pairs of Cantonese utterances. Each pair has the same phonemes with different 

tone. As shown in the Table, the tone of a syllable is represented by the last 

digit in its phonetic symbol i. Again, the feature set of spectral information was 

Table 5.8: 10 Cantonese syllables in the vocabulary. 
Syllable Initial Final Tone Chinese character (example) 
tsMnl tsh ~"hi~~ 1 “ 千 

tsMn2 — tsh in— 2 — 前 

k^u3 k ^u 3 九 

mai4 m ai 4 買 

man4 m an 4 晚 

k^u6 k ^u 6 舊 

mai6 m ai 6 賣 

man6 m an 6 萬 

j^t7 j ist 7 — 

j ^ t 9 ~ j iet 9 II 曰 

used. Owing to the limited speech samples, experiments were repeated by choosing 

different training samples from all samples, while the remaining samples were used 

for recognition. The only difference between them was the choice of training samples. 

In the test, only two male speakers' samples were used. Totally 19 sets of speech 

samples (11 sets from speaker 1 and 8 sets from speaker 2) were employed for training 

and recognizing purposes. Each set of samples had 10 syllables in the vocabulary. 

In each experiment, 15 sets of samples were used to train a syllable model and the 

remaining 4 sets of samples were to be recognized. Different combinations of them 

were used to construct 4 experiments (A-15, B-15, C-15 and D-15). Names of all 

sample sets were shown in Table 5.9. Ml = male speaker 1, M2 = male speaker 

2. For Ml, there were 11 samples (from Sl to S11). For M2, there were 8 samples 

(from Sl to S8). There were three tests corresponding to each experiment. 

iThe symbols used for indicating pronunciation are those of the International Phonetic 
Association 
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Table 5.9: Sample listing for two male speakers. 
Name of different sample set 

Speaker 1 (Ml) 11 M1_S1, Ml_S2, Ml_S3, Ml_S4, M l _ S 5 , = 
Ml_S6, Ml_S7, Ml_S8, Ml_S9, Ml_SlQ, M1_S11 

Speaker 2 (M2) M2_S1, M2_S2, M2_S3, M2_S4, M2_S5, 
M2_S6, M2,S7, M2_S8 

For Test 1 (T1) : the feature set of spectral information, (as in Equation 4.1) 

frame feature = (Ci, C2, C3,…，Cio, E, SCi, SC2, ...，SCio, ̂ E) 

was used to model HMM. 

For Test 2 (T2 ) : the feature set of spectral and tone information, 

frame feature = (Ci, C2, C3,..., Cio, E, 6Ci, 6C2,..., SCio, SE,pitch) 

was used to model HMM. 

For Test 3 (T3 ) : The feature set of spectral information for the main model in 

2dHMM and pitch information for the auxiliary model in 2dHMM, 

frame feature (main HMM) = (Ci, C2, C3, ...，Cio, E, SCi, 6C2, ...，SCio, SE) 

frame feature (auxiliary HMM) = pitch 

were used to model 2dHMM. 
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• Experiment A-15 

Samples used in training : M1_S1, Ml_S2, Ml_S3, Ml_S4, Ml_S5, Ml_S6, 

Ml_S7, Ml_S8, Ml_S9, M2_S1, M2_S2, M2_S3, M2_S4, M2_S5, M2_S6 

Samples to be recognized : Ml_S10, M1_S11, M2_S7, M2_S8 

T 1 : The result was shown in Table 5.10. 

Table 5.10: Recognition result (A-15, T1) : 3-state HMM with spectral and energy 
information as a set of feature. 

Recognized as Not Accuracy 

Syllable tŝ inl tŝ in2 k̂ u3 mai4 man4 k̂ u6 mai6 man6 ĵ t7 ĵ t9 recognized (%) 
tŝ inl 2 2 II 50 — 
tŝ in2 2 2 — — “ 一 — … 5 0 
k̂ u3 — 3— _ 1 — “ — _ 75 
mai4 — — 一 3 “ — ~ 1 _ 0 
man4 3 1 75 
k̂ u6 一 3 — - “ — 1 0 
mai6 一 4 _ 100 
man6 — 3 — — — 1 “ 0 
ĵ t7 — — — ~ 2 ~ 2 — _ 50 
ĵ t9 4 I" 100 

~ 5 0 ^ ~ 
(overall) 

T 2 : The result was shown in Table 5.11. 

Table 5.11: Recognition result (A-15, T2) : 3-state HMM with spectral, energy and 
pitch information as a set of feature. 

n Recognized as Not Accuracy 

Syl lable t s ^ i n l ts*Mn2 k^u3 m a i 4 m a n 4 k-eu6 m a i 6 m a n 6 j'et7 jiat9 recognized ( % ) 

tŝ inl 2 2 II 50 
ts^in2“ 1 3 75 
k^u3 g 1 1 50 -

~̂ ÎaH ~ ~ ~ 2 2 50 
man4 ? 1 1 50 

" H ^ 1 2 1 50 
" 1 ^ 1 3 75 
-liIi[̂ 6̂ 2 1 1 25 
- ^ 1 3 25 

ĵ t9 1 3 75 
“““ 52.50 

(overall) 

105 



Chapter 5 Experimental Results 

T 3 : The result was shown in Table 5.12. 

Table 5.12: Recognition result (A-15, T3) : 3x3-state 2dHMM with spectral and 
energy information as a set of feature and pitch information as the other set of 
feature. 

Recognized as Not Accuracy 
Syllable ts^inl ts în2 k^u3 mai4 man4 k'eu6 mai6 man6 j^t7 j^t9 recognized ( % ) 
ts^inl 1 3 25 
ts în2 一 3 — - — , “ 1 75 

k'eu3 — ~ ~ 4 ~ - — 100 
mai4 3 i 75 
man4 2 2 50 
k^u6 ~ ~ ~ 2 ~ “ — 1 — 1 25 
mai6 “ _ — — “ — 4 “ 100 
man6 3 1 75 
j^t7 - — “ 3 1 75 

“ j ^ t 9 4 100 
“ “7O0“ 

(overall) 
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• Experiment B-15 

Samples used in training : M1_S1, Ml_S2, Ml_S3, Ml_S4, Ml_S5, Ml_S6, 

Ml_S7, Ml-S10, M1_S11, M2_S1, M2_S2, M2_S3, M2_S4, M2_S7, M2_S8 

Samples to be recognized : Ml_S8, Ml_S9, M2_S5, M2_S6 

T 1 : The result was shown in Table 5.13. 

Table 5.13: Recognition result (B-15, T1) : 3-state HMM with spectral and energy 
information as a set of feature. 

Recognized as Not Accuracy 
Syllable tŝ inl tŝ in2 k̂ u3 mai4 man4 k'eu6 mai6 man6 ĵ t7 ĵ t9 recognized (%) 
tŝ inl 3 1 75 
tŝ in2 2 — 2 — _ — 一 50 
k̂ u3 — 4 — — — ~ 100 
mai4 — — 4 “ “ 100 
man4 3 1 75 
k̂ u6 2 - — 2 “ “ 50 
mai6 3 1 25 
man6 一 一 —2 1"~ “ 1 25 
ĵ t7 — — 2 2 50 
ĵ t9 1 3 75 

62.50““ 
(overall) 

T 2 : The result was shown in Table 5.14. 

Table 5.14: Recognition result (B-15, T2) : 3-state HMM with spectral, energy and 
pitch information as a set of feature. 

Recognized as Not Accuracy 

Syllable tŝ inl tŝ in2 k'eu3 mai4 man4 k'eu6 mai6 man6 ĵ t7 ĵ t9 recognized (%) 
tŝ inl 1 3 25 
tŝ in2 1 3 75 

~ k ^ ~ " 3 1 75 
mai4 2 2 50 
man4 Z Z Z； 1 ? 1 50 

“ V ^ ~ ~ ~~~~~_ 2 2 50 

mai6 : 3 Z I 2 2 50 
man6 ~^ZZ1- - - ^ 50 
ĵ t7 ; : i Z Z 2 2 50 

~ ] ^ ~ IZZZEZI3I^^^ 4 100 
“ 57.50 

(overall) 
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T 3 : The result was shown in Table 5.15. 

Table 5.15: Recognition result (B-15, T3) : 3x3-state 2dHMM with spectral and 
energy information as a set of feature and pitch information as the other set of 
feature. 

Recognized as Not Accuracy 
Syllable ts^inl ts^in2 k^u3 mai4 man4 kieu6 mai6 man6 j^t7 j^t9 recognized (%) 
ts^inl 4 100 
ts^in2 — 4 — “ • 100 
k'eu3 — ~ " 4 ~ “ 1 ^ 
mai4 — “ 4 l00 
man4 3 1 75 
kigu6 ~ “ — 4 — 100 
mai6 ~ 1 “ — 1 — 2 25 
man6 “ — 一 — 3 “ — “ 1 0 

ĵ t7 — — “ ~4 - 100 
j^t9 3 1 75 

“ 7 7 ^ “ 
(overall) 
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• Experiment C-15 

Samples used in training : M1_S1, Ml_S2, Ml_S3, Ml_S4，Ml_S5, Ml_S8, 

Ml_S9, Ml_S10, M1_S11, M2_S1, M2_S2, M2_S5, M2_S6, M2_S7, M2_S8 

Samples to be recognized : Ml_S6, Ml_S7, M2_S3, M2_S4 

T 1 : The result was shown in Table 5.16. 

Table 5.16: Recognition result (C-15, T1) : 3-state HMM with spectral and energy 
information as a set of feature. 

Recognized as Not Accuracy 
Syllable ts^inl ts^in2 k^u3 mai4 man4 k^u6 mai6 man6 j^t7 j^t9 recognized (%) 
ts^inl 4 100 
ts^in2 2 — 2 “ “ “ 50 
k^u3 — 3 — — “ 1 75 
mai4 — — 4 一 “ — 100 

man4 3 1 75 

k^u6 — ~ 2 ~ “ — 1 — 1 — 25 

mai6 — 2 “ — 2 50 

man6 — 2 ~ ~ 2 ~ ~ _ 50 

ĵ t7 — - 3 ~~i~ “ 75 
jBt9 1 2 1 50 

“ “ 6 ^ ~ 
(overall) 

T 2 : The result was shown in Table 5.17. 

Table 5.17: Recognition result (C-15, T2) : 3-state HMM with spectral, energy and 
pitch information as a set of feature. 

“ Recognized as — i ^ || Accuracy 
Syllable ts^inl ts^in2 k'eu3 mai4 man4 k^u6 mai6 man6 j'et7 j'et9 recognized (%) 
ts^inl 2 2 50 
ts^in2 1 ~ ~ 2 一 50 

- n ^ ^ " Z Z 1 1 1 50 
mai4 ; m Z 1 1 25 
man4 " I Z I . \ 1 1 25 

k̂ u6 : i I Z I 1 2 1 50 
mai6 ~ Z Z Z i - - 100 

- [ ^ 1 1 2 50 
-^1 1 1 1 1 25 
- ^ 1 3 75 

50.00 
(overall) 
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T 3 : The result was shown in Table 5.18. 

Table 5.18: Recognition result (C-15, T3) : 3x3-state 2dHMM with spectral and 
energy information as a set of feature and pitch information as the other set of 
feature. 

Recognized as Not Accuracy 
Syllable ts*Mnl ts^in2 k^u3 mai4 man4 k^u6 mai6 man6 j^t7 j^t9 recognized (%) 
ts^inl 4 II 100 
ts^in2 — 2 “ • — 2 . 50 — 
k^u3 ~ 3 ~ ~ • — 1 • 25 — 
mai4 — 4 “ ~ ‘ 100 — 
man4 “ _ 3 “ — 1 “ — 75 
k^u6 - 3 “ 1 75 — 
mai6 一 4 100 — 

man6 2 “ 1 — 1 25 

j^t7 — - 2 _ 2 50 — 

j^t9 3 1 75 

67.50 (93.10) 

(overall) 
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• Experiment D-15 

Samples used in training : M1_S1, Ml_S2, Ml_S3, Ml_S6, Ml_S7, Ml_S8, 

Ml_S9, Ml_S10, M1_S11, M2_S3, M2_S4, M2_S5, M2_S6, M2_S7, M2_S8 

Samples to be recognized : Ml_S4, Ml_S5, M2_S1, M2_S2 

T 1 : The result was shown in Table 5.19. 

Table 5.19: Recognition result (D-15, T1) : 3-state HMM with spectral and energy 
information as a set of feature. 

Recognized as Not Accuracy 
Syllable ts^inl ts^in2 keu3 mai4 man4 k^u6 mai6 man6 jiet7 j'et9 recognized (%) 
tshinl 3 1 75 
ts^in2 2 — 1 — 1 25 
k^u3 — — 一 2 — 2 0 

mai4 — 4 “ — — 100 

man4 — — 3 — 1 — 75 

k̂ u6 2 _ — 1 . 1 ^ 
mai6 — 2 — — 2 " 50 

man6 — — 1 — _ 2 1 50 

j^t7 — — — 1 3 — 25 

j^t9 1 3 75 

~ 5 O 0 “ 
(overall) 

T 2 : The result was shown in Table 5.20. 

Table 5.20: Recognition result (D-15, T2) : 3-state HMM with spectral, energy and 
pitch information as a set of feature. 

0 Recognized as Not Accuracy 
Syllable ts^inl ts^in2 k^u3 mai4 man4 k^u6 mai6 man6 j^t7 j^et9_ recognized (%) 
ts^inl 2 1 1 II 50 
tŝ in2 i~~ 2 ~ 1 50 
k^u3 3 1 75 
mai4 4 0 
man4 1 0 
k̂ u6 “ ~ Z I Z 1 - 75 

~ ^ ^ ^ ~ ~ 1 3 75 
man6 1 1 1 1 25 
j^t7 3 1 75 
H ^ I 4 100 

52.50 
(overall) 
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T3 : The result was shown in Table 5.21. 

Table 5.21: Recognition result (D-15, T3) : 3x3-state 2dHMM with spectral and 
energy information as a set of feature and pitch information as the other set of 
feature. 

Recognized as Not Accuracy 
Syllable ts*Mnl ts^in2 k'eu3 mai4 man4 kiau6 mai6 man6 j'et7 ĵ t9" recognized (%) 
ts^inl 3 1 75 “ 
ts^in2 — 2 _ ‘ 2 “ 50 
k^u3 ~ 2 ~ “ 2 50 
mai4 4 — — 100 
man4 — ‘ 4 一 — 100 

k̂ u6 — ~ 2 ~ — — 2 0 
mai6 _ 2 “ 1 1 ^ 

man6 — “ 1 ~ 1 2 50 

j^t7 一 4 100 

j^t9 1 3 25 

~ ~ W T b ^ 

(overall) 

In Experiments (A-15, B-15, C-15 and D-15), 10 Cantonese syllables were chosen 

to evaluate the accuracy performance between 2dHMM and HMM. Each Cantonese 

syllable was similar to another one in the vocabulary. The average accuracy for 

HMM was 51.25% while for 2dHMM was 65.63%. The unrecognized rates were 7.5% 

and 24.38% for HMM and 2dHMM respectively. From the results, it is apparent 

that the training samples were not enough. The models were not well trained since 

the unrecognized rate for 2dHMM was 24.38%. For HMM with pitch feature merged 

into feature vectors, the accuracy rate was improved to 53.13% (from 51.25%). 

The other test was designed for 2dHMM, 4 extra samples from other 3 male 

speaks were involved in training a model. The overall accuracy result was 68.13% 

with unrecognized rate 20%. With more training samples, the performance of 

2dHMM was a bit better than before, even the extra training samples were not 

obtained from the two male speakers. It proved that improvement was achieved 

with more training samples. 
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Conclusions 

Accuracy rates in all experiments was not impressive, it is due to the limited collec-

tion of speech samples. However, our experiments have shown the important point 

that the performance of 2dHMM with two distinctive feature sets used in Cantonese 

vocabulary was better than HMM even these feature sets are used together as one 

for HMM. In the next experiment, the evaluation of performance would be concen-

trated on 2dHMM recognizer only. The relative large vocabulary of 80 Cantonese 

syllables was built to test the recognizer. Syllables in the speech corpus was designed 

to cover 9 lexical tones and most Initials and Finals in Cantonese (which includes 

20 Initials and 36 Finals). The result was analyzed in Section 5.3. 

5.3 Recognition test on 80 Cantonese syllables 

In this test, 80 Cantonese syllables were selected to build the database. The exper-

iment was designed to assess the accuracy performance of 2dHMM. The listing of 

these syllables is shown in Table 5.22. Again, the two distinctive feature sets used 

for 2dHMMs were 

frame feature (main HMM) = (Ci, C2, C3, ...，Cio, E, SCu SC2,..., SCw, 6E), 

and 

frame feature (auxiliary HMM) = pitch. 

The pre-processing state was done by the HTK Toolkit. Each syllable was trained 

by using 16 samples. 

For recognition, 320 samples (4 samples for each syllable) were fed into the 

2dHMM recognizer to evaluate the performance. The result was summarized in 

Table 5.23. 

Referring to Figure 5.23, every syllable in the vocabulary has the chance to be 
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Table 5.22: 80 Cantonese syllables in the vocabulary. 
Syllable Chinese Syllable Chinese 

Syllable index character (e.g.) Syllable index character (e.g.) 
~~pak8 i f ~ ~ J ^ 4l X 

pat8 2 八 jyn4 42 軟 

por]6 3 碎 jyt9 43 月 

pisk7 4 北 khei2 44 期 

pun5 5 半 khpn4 45 近 

tai6 6 大 leg5 46 親 

tim3 7 點 loeg4 47 兩 

tin6 8 電 luk9 48 六 

tol 9 多 mai4 49 買 

tml 10 低 mai6 50 賣 

tog l 11 東 man4 51 晚 

tso3 12 左 man6 52 萬 

tsugl 13 中 mou4 53 母 

fai5 14 快 mienl 54 蚊 

fogl 15 方 mign2 55 文 

fenl 16 分 nam2 56 南 

fu6 17 父 nei4 57 你 

kei3 18 幾 nin2 58 年 

kog3 19 講 r4y4 59 女 

ko5 20 個 go4 60 我 

koul 21 高 0m4 61 五 

k^ml 22 金 pheg2 62 平 

k^u3 23 九 saml 63 三 

kmi6 24 舊 sei5 64 四 

k-anl 25 關 sir]l 65 星 

k^^i5 26 季 sinl 66 先 

har]2 27 行 siu3 67 小 

ha6 28 下 soeg6 68 上 

hoegl 29 香 s^il 69 西 

h(|)y5 30 去 sBi5 70 細 

hDil 31 開 sBp9 71 十 

hok9 32 學 syt8 72 説 

hou3 33 好 thal 73 他 

h^i6 34 系 ts4nl 74 千 

h^u6 35 後 tshin2 75 前 

jg6 36 夜 tsh(|ml 76 春 

ji6 37 二 tsh(j)t7 77 七 

j^p9 38 入 t s � t 7 78 出 

j^t7 39 一 ts^^ul 79 秋 

j^t9 40 5 wai6 80 ^ 

114 



Chapter 5 Experimental Results 

Table 5.23: Recognition accuracy of 80 Cantonese syllables. 

A-20 II B-20 C-20 11 D-20 11 E-20 F-20 total 
Syllable wrong not wrong ~ n o I w r o n g ~ ~ n o t w r o n g ~ ~ “ n ^ wrong~~~"noI w r o n g ~ ~ ~ n o I ~ incorrect 

rec,d rec'd rec'd rec'd rec'd rec'd rec'd rec'd rec'd rec'd rec'd rec'd rec'd 
1 .一 1 — 2 “ ‘ — 2 3 ~ ' 2 — 10 — 
2 1 — 2 - ‘ — 3 i 3 — 10 — 
3 2 ~' 1 2 1 — i 1 8 
4 1 1 一 _ . — 1 2 ~ ' 2 7 — 5 1 — “ . — 1 “ — 2 2 6 — 
6 3 ~ i 2 1 2 1 10 
7 — 2 ~ ~ i ~ 1 4 
8 1 2 1 2 2 8 

9 “ “ 1 - 2 “ •— 3 6 — 

10 " 1 — 1 1 — — 1 一 3 7 

11 ~' — 1 — Z!̂ ^ZZ^^ZI^ 2 . 1 “ 2 6 ~ 
12 _. ~ 1 — 1 — — i 3~ 6 “ 
13 ~ 1 1 2 
1 4 [^]]|^^ “ “ 1 “ “ 1 2 - 2 6 — 

15 — “ “ 1 _ 一 - . — 1 2 — 
16 _. ~ 1 “ 1 - 1 - 1 1 “ . — 1 6 — 
17 一 . — . - 1 “ 3 “ — 1 i 6 
18 ". 1 4 — — 1 — 1 ~ 7 
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recognized correctly in either set of experiments (A-20, B-20, ... , F-20). The total 

number of incorrect recognition for all 80 Cantonese syllables in the vocabulary 

varied from 2 to 16. On the other hand, the total number of incorrect recognition 

for different sets of experiments (A-20, B-20, C-20, ... F-20) varied from 61 to 

151. The variation between them is quite substantial. The overall recognition rate, 

=^^^92o^" X 100% = 73.44%, is not high. This is because training samples are not 

enough. However the result is satisfactory by using 16 samples to train 2dHMMs. 

Recall from Section 5.2.2 that the maximum accuracy rate is 65.63% for the 10-

Cantonese-syllable vocabulary (5 pairs of utterances with the same syllable but 

different tone) under 15 training samples. 

In Table 5.23, some unrecognized results are analyzed. The overall maximum 

unrecognized number is the syllable "40"(曰).It is found that there is over 30% of 

mis-recognition between the syllable “40” and the syllable " 3 8 " (入). I t is because 

they have the same tone and Initial. Again, over 30% of mis-recognition between the 

syllable "52"(萬）and the syllable "51"(晚).It is because they have the same Initial 

and Final. Some syllables with less the chance of confusion are shown in Table 5.24. 

If these 9 Cantonese syllables are used to build a vocabulary, the recognition rate 

would be much high. 

Table 5.24: Syllables with less chance to be unrecognized. 

Syllable index example 

13 中 = 

15 方 

23 九 

35 後 

39 — 

42 軟 

6 2 平 

65 星 

8 0 壤 

To analyze the incorrect recognition corresponding to their 9 lexical tones, the 
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results are shown in Figure 5.3. There is not too much different in their relative 

percentage of wrong recognition for 9 tones. It is concluded that the pitch detection 

algorithm used is suitable to extract tone features for Cantonese syllables, since 

incorrect rates are distributed all over 9 lexical tones. 

Distribution of incorrect recognizing Cantonese words classified by "tone" 
14| 1 1 1 1 1 1 1 I I 

1 2 - -

1 0 - -
40<^ •• • - — „ • , 

^ —— 
>Ŵ  0) 
1 8- -
c 0) J:? o a 
0 6 - -

rt 
2 

4- -

2 - -

• 1 I U—I——U—I——U—I U I U I U I U I U I 
tone 1 tone 2 tone 3 tone 4 tone 5 tone 6 tone 7 tone 8 tone 9 

Figure 5.3: Distribution of incorrect recognizing Cantonese syllables corresponding 
to their 9 lexical tones. 
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5.4 Speed matching 

The system recognition (matching) time for each of the recognition methods, tem-

plate matching with DTW, HMM and 2dHMM are tabulated in Table 5.25. Results 

are based on a five-transputer system with a ten-syllable vocabulary. The state 

size of HMM is 3 and for 2dHMM is 3 in A' and 3 in A". It can be seen that the 

Table 5.25: Comparison of matching speed for DTW, HMM and 2dHMM. 

Processing time (sec.) in 
Recognition FFT VQ after ZCR quantization matching overall 
method features FFT features after ZCR 

—DTW 1.182 - - - 0.5468 1.7288 — 
"HMM 1.182 "0.1 - - 0.1041 1.3861 — 
"2dHMM I 1.182 0.1 0.4 0.01 0.8591 !2.5511 — 

recognition speed of using 2dHMM is the slowest. This may be explained from Ta-

ble 5.25 which shows that extra computation was required for extracting the zero 

crossing rate (ZCR) and quantizing the values for the 2dHMM method. Further, 

the 2dHMM topology which consists of two statistically related HMMs required ex-

tra computation for probabilities calculation. Recognition by template matching 

with DTW required a considerable amount of computation time for matching. This 

shows the computation intensiveness of the DTW algorithm. Therefore, the most 

efficient recognition method was HMM. Moreover, the pre-stored data as reference 

templates for HMM and 2dHMM are less than that of DTW. 
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5.5 Computational performance 

The performance of the transputer system is commonly evaluated by the two factors 

described in Section 1.3.2. They are speedup and efficiency. 

c i — time required by a sequential task 
P P — time required by parallel algorithm doing the same task 

Efficiency 二 ~ . f e d u p 
J number oi processor used 

5.5.1 Training performance 

In template matching, the feature set extracted can be used directly as a reference 

template. Therefore, there is no training processing for template matching type 

recognition. This is not the case for statistical models such as HMM and 2dHMM 

when they are used to model speech samples. Training processing is required to 

initialize the word models based on features extracted from speech samples. In 

Section 4.5.2, we mentioned that the re-estimation of model parameters, ^ and 

bj(k) of HMM can not be implemented effectively by using more than one processor. 

Referring to their updating Equations (3.19) and (3.20), the computation effort of 

bj(k) relies mainly on aij. It is because that once j t { h j ) is calculated for ^ it 

can be saved to calculate j t { j ) for bj{k). Therefore, the mainly computation is for 

the re-estimation of CHj. Comparing to ^ , the re-estimation time of bj{k) is much 

shorter. 

For the 2dHMM, as shown in Figure 4.21 in Section 4.6.2, clearly the re-estimation 

of model parameters must start after a() and fi{) has been calculated. Therefore, 

the training algorithm can be decomposed into two steps. The first step is to cal-

culate a() and f3{). The next step is the re-estimation of model parameters {a', a", 

b' and b") from a{) and � ( ) • The first step may be decomposed into two concurrent 

processes and the second step may also be decomposed into four concurrent pro-

cesses as shown in Figure 5.4. The efficiency of the decomposition may be estimated 
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(^^^ (^^^^ 
a ^ 1 

~ - ~ first step ^ « P 2 concurrent processes 

^ ^ H ^ ~ H 
__ wait 

~ " ^ _ 1 _ y , , y _ _ i _ 
a , 

^ a ‘ a，’ b ‘ b，， 4 concurrent processes 

a" ^-^ ^~^.H~~^ HH 
second step 

b' --— 

b" (^^ 

(̂ ên̂  

Figure 5.4: The training algorithm consists of 2 steps, each can be decomposed into 
a number of concurrent processes. 

by using the diagram in Figure 5.5. Assuming the processing time for each sub 

block is t, hence, for a one transputer the processing time for one training iteration 

will be 6t. For two transputers, as the processes may be executed concurrently, the 

processing time is 3t. It can be seen that minimum processing time and best uti-

lization of a processor can be achieved when the transputer number is four. Further 

increasing the number of transputer does not improve the speed nor the efficiency. 

The estimations based on Figure 5.5 were confirmed by testing the transputer sys-

tem with different number of transputer and the measured efficiencies are shown in 

Table 5.26. Therefore, the overall speedup in re-estimation should be approximately 

equal to three by using four transputers. 

5.5.2 Recognition performance 

Recognition speed is an important factor for successful real time speech recognition 

application. Speed is less important for training, as this can be done off-line in most 

cases. All of the three recognition methods, template matching with DTW, HMM 
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H" 

H' 
a 

I ,«’， 

.¾ ^̂ ~̂̂ ^̂ ~ ‘ '• “ 1" - • r̂ ~~̂ ^̂ ~ 

H 
g ta' H' H" H' 

t P ta" ^a' ^a" ^ b" ^ a' ^ a" ^ b" ^a' ^ b' ^a" H" ^a' H' idle 

t a t a t p t „ t p idle t a t p idle idle t a t p idle idle idle 

#1 #1 #2 #1 #2 #3 #1 #2 #3 #4 #1 #2 #3 #4 #5 

1 transputer 2 transputers 3 transputers 4 transputers 5 transputers 

Figure 5.5: Activities of transputer in a one to five-transputer system for the pro-
cessing of one iteration of re-estimation of model parameters for 2dHMM method. 

Table 5.26: Training performance in re-estimating model parameters of 2dHMM. 

Speedup Efficiency (%) 
1 transputer 1.000 100 
_2 transputer^ 1.803 90.15 
~3 transputers" 2.228 74.27 
~A transputers" 3.012 75.30 

5 transpute^ 3.012~~ 60.24 
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and 2dHMM are well suited to be implemented by farming technique. 

The recognition procedure can be broadly divided into a two-step sequence, fea-

ture extraction, and matching. In the feature extraction step, since the features are 

extracted frame by frame by using the farming technique, the controller distributes 

the work evenly among the worker transputers. Figure 5.6 shows the architecture 

of the transputer network connected for farming. Transputer 'A' directly commu-

cluster. _ � cluster 一 ^ 
,'' 、 、 广‘一 、 、 
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‘ \ ‘ \ 
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Figure 5.6: 5-transputer network can be expanded by adding more transputers. 

nicates with the host computer which provides the user interface such as keyboard, 

monitor, etc. The two free links in the transputer 'A' may be used to interface to 

analog-to-digital transputer module. We call this transputer 'master，. The trans-

puter 'B' is called 'junction'. The remain transputers (such as 'C', 'D' and 'E') are 

called 'slave'. The architecture may be expanded by adding cluster of 3 transput-

ers. For example, transputer 'F', ‘G，，'H' as a cluster may be added to the network 

without any modification to the program code. However, the network configuration 

definition will has to be adjusted to reflect the new topology. In addition, trans-

puter 'D' will become a 'junction' and this will also has to be updated to allow the 

'junction' program code to be downloaded to this transputer. 122 
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In the recognition step, this applies to all three recognition methods, speech 

samples are matched against all the word models or templates and probabilities or 

matching scores are ranked for the determination of the best match. Since indepen-

dent matching calculation has to be done on all the works in the vocabulary, they 

can be implemented concurrently. By using farming technique, the word models or 

templates are distributed among the worker transputers and when a speech sample 

is given for recognition. The sample is copied to all worker transputers for matching. 

Each worker transputer would calculate independently the matching probabilities 

or matching scores and return them to the master transputer for the determination 

of the best match. This farming arrangement allows easy expansion of the size of 

the worker transputers, hence increasing the recognition speed without modification 

of the program code. Figure 5.7 depicts the 2dHMM matching step (it is similar 

for both HMM and template matching case). For 2dHMM based recognition, with 

0 = {{o;,oV), {O2,oV}, . . •，{oV.oV'}} 

———— ,———— , i .‘ ———— 

model model model model 

1 2 3 I 

* w W V w 

p(oiXi)J [p(0a2)) [p(01>>3)] i i |p(oi>.,) 

^ ¾ ^ 
X ML = arg max P(0 I X^) 

i = {i,2,...’1} 
Figure 5.7: Matching processing for 2dHMM. 

a 10 word vocabulary, the computational performance of the matching processing 

for one transputer to five transputers are shown in Table 5.27. The speedups and 

efficiencies are further plotted in Figure 5.8 and Figure 5.9. From these Figures, the 
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Table 5.27: Recognition performance in matching of 2dHMM. 

Number of transputer(s) Recognition time (sec) Speedup Efficiency (%) 
1 : 4.2486 1.000 = 100 
2 2.3771 1.787 — 89.37 — 
3 — 1.6957 2.506 ~ 83.52 — 
4 1.2679 3.351 83.77 一 

5 0.8616 4.931 98.62 — 

6| 1 1 1 1 1 1 1 1 1 7 
： ： ； ： . / • 

5.5-........丨 \ ： ； ； ；......:,Z...._ 
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Figure 5.8: 2dHMM recognition speedup. 
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Figure 5.9: 2dHMM recognition efficiency. 

highest efficiency of 98.62% is obtained when 5 transputers are used in the system. 

It is because 5 transputers can share the same number of word templates from the 

10-word vocabulary. 

However, speedup will not be increased linearly if too many transputers to be 

processed for a small vocabulary. It is due to the problem of communication over-

head. Different number of transputer should be designed to suit for a particular 

vocabulary size to obtain the optimum performance. It is easy to modify the system 

since the transputer is scalable and the farming model may be expanded without 

modification on program codes for performance improvement. 
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Discussions and Conclusions 

Automatic speech recognition involves many practical problem such as end-point de-

tection of a speech signal, and variations arise from different speakers or even from 

the same speaker. Many different approaches have been attempted to deal with the 

problem of speech recognition. Both recognition accuracy and speed are much con-

cerned. In our studies, template matching and statistical models were investigated. 

The method of template matching with Dynamic Time Warping (DTW) can solve 

the problem of mis-alignment between two speech signals of the same word. For 

statistical modeling of Hidden Markov Model (HMM), the advantage is that it can 

be modeled by multiple observations in order to make the model more useful for 

practical applications. A modified model of HMM which takes into account of two 

distinctive feature sets was developed for accuracy improvement. Prototype systems 

were constructed for evaluation. 

Comparing the results (in Section 5.1) obtained by template matching with DTW 

for the vocabulary of 40 English words where samples were extracted from TI-

46 speech database, the recognizing methods of HMM and 2-dimensional HMM 

(2dHMM) performed better than template matching with DTW, even a small code-

book size for the two discrete models was 32. One of the major differences between 

these two approaches is the vector quantization process which is necessary for the 
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HMM and 2dHMM based recognizers. It is expected that vector quantization error 

affected the recognition results. As the size of the codebook increases, the quanti-

zation error deceases but requiring more computation for quantization. Therefore, 

it is a trade off between codebook size and computing time. 

Having proved HMM and 2dHMM were better methods than template matching 

with DTW for recognition, further tests were devised to focus the comparison be-

tween HMM and 2dHMM. The results showed that HMM and 2dHMM performed 

similarly with spectral, energy and their delta change information as a feature set, 

but the performance of them was quite dependent on the number of training. 

Further tests were conducted by using tonal language, 10 Cantonese syllables 

were used to build the vocabulary. By the use of spectral and pitch information for 

Cantonese language as the two distinctive sets of features that the 2dHMM models 

on, the result on accuracy was improved significantly. In order to completely test 

the recognizer, a 80-Cantonese-syllable vocabulary which cover 9 lexical tones and 

most Initials and Finals in Cantonese was used. 

The ultimate aim for an speech recognition system is to operate in real time 

with fast response. The complexity of the DTW, HMM and 2dHMM algorithms 

draws on heavy computing power to meet this requirement. One solution is to 

employ multi-processing. To address this issue, a transputer base multi-processing 

farming model was developed for the implementation of the algorithm. This model 

mimics the co-ordination of a controller and a group of workers. By decomposing 

the algorithm into communication processes and worker processes, the tests with 

the transputer system showed that the arrangement was highly efficient and yielded 

a linearly speedup with additional transputers (up to 5 transputers) for the 10 

words vocabulary, particularly in the recognition process. As the training of speech 

vocabulary for recognition is mostly done off-line, computational efficiency for the 

training process is secondary. 
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Not only the multi-processing model is well suited for DTW, HMM and 2dHMM 

based recognition processing, another advantage is that the physical transputer net-

work may be expanded in a cluster of 3 transputers. The advantage is without any 

modification of the program code. The only adjustment required is the network 

configuration file which reflects the new network configuration and the transputers' 

identities for program download. Although this implies that the transputer network 

may be expanded indefinitely for large vocabulary application, the communication 

overhead between the controller and the worker at the end of the array will become 

too large. It means the performance will be degraded if too many processors. There-

fore, there should be an optimum number of processors for a particular recognition 

system. However, the algorithm can be designed to adapt different situations. One 

solution to this shortcoming is by arranging the sub-vocabulary words at each trans-

puter in a fashion such that frequent occurring words are near the controller and less 

frequent words are near the end of worker array. By choosing a suitable threshold 

value, the controller may be made to watch for a matching result that exceeds the 

threshold for a first guess instead of sorting through the complete set of matching 

results. 

In conclusion, the use of statistical modeling of HMM in isolated word speech 

recognition was found to perform better than template matching with DTW. The 

HMM was improved by the development of 2dHMM which models speech signals 

on two distinctive sets of features. Based on transputer multi-processing, a farming 

model was development for the implementation of different recognition algorithms. 

The model may be expanded without modification on program codes for performance 

improvement when it is necessary. It is expected the 2dHMM together with the 

farming model provides a platform for further exploration on feature type variations 

or even a Multi-dimensional HMM (MdHMM) which models on M sets of features. 
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Appendix A 

An ANN Model for Speech 

Recognition 

Since conventional ANNs (like multilayer perceptrons) are used to deal with static 

patterns, it is not suitable for the use of speech signal which is inherently dynamic 

in nature. Hence, some modifications are necessary to conventional ANNs. The 

simple one of these modifications is to use the Time Delay Neural Network (TDNN) 

computational element (by A. Waibel et al. [60]) which is shown in Figure A.1. This 

structure extends the input to each computational element to include N frames of 

a speech signal [24 . 
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Figure A.1: Time Delay Neural Network (TDNN) computational element. 
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Appendix B 

A Speech Signal Represented in 

Fequency Domain (Spectrogram) 

A way of characterizing the speech signal and representing the information associ-

ated with the sounds is via a spectral representation. Figures B.1, B.2, B.3, B.4 and 

B.5 show speech signals of English words and their spectrograms. The grey scale 

shows the amplitude of spectral energy. The points of high spectral energy (more 

darkness) in the spectrogram corresponds to the estimated formant frequencies. 
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Figure B.1: Spectrograms of English words "one" (left) and "two" (right). Their 

corresponding time-domain signals are plotted below spectrograms. 
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Figure B.2: Spectrograms of English words "three" (left) and "four" (right). Their 

corresponding time-domain signals are plotted below spectrograms. 
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Figure B.3: Spectrograms of English words "five" (left) and "six" (right). Their 
corresponding time-domain signals are plotted below spectrograms. 
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Figure B.4: Spectrograms of English words "seven" (left) and "eight" (right). Their 

corresponding time-domain signals are plotted below spectrograms. 

142 



"nine" "ten" 

6 哪 | ^ ] 6 0 0 0 | ， ： I 

I：霞.:：i： • 
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Figure B.5: Spectrograms of English words "nine" (left) and "ten" (right). Their 

corresponding time-domain signals are plotted below spectrograms. 
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Appendix C 

Dynamic Programming 

From the Equation (3.7) in Section 3.1, it can be solved by the technique of dynamic 

programming without exhaustively searching all possibilities of the warping function 

Cfc. Only the numerator is considered since the denominator is a normalizing factor. 

Let g{ikJk) be the cumulative function that storing the cumulative distance from 

the beginning point (1,1) to the point {ikJk) along the optimum path. 

k 
g{ck) 二 g{ik, 3k) = , min {Y. d{cp)W{p)) (C.1) C1,C2,-"ĴA! 1 p=l 

where d{ck) is distance function ready for a valid path from Ck to Ck+i- For initial-

ization, ff(l, 1) is equal to d(l, 1) which is the beginning point for all possible paths. 

For using Type II Constraint (local path constraints) [8], three possible paths can 

reach the point (i,j)- The cumulative distance is 
, V 

ff(^-^,j) 

g{iJ) = minl ^ ( z - l , j - l ) (C.2) 

^ 9{iJ - 1) ^ 

Hence the total normalized distance is 

力 = ， (C.3) 

A 

Comparing with others, the one with smaller value of D is most likely to be the 

reference template. 
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Appendix D 

Markov Process 

Let S be a finite or countable set and Xo, Xi, X2,…be a sequence of random variables 

whose ranges are contained in S. The sequence is a Markov process if 

F[Xn+l 二 j\Xo 二 io，...,^n = in] = P[^n+1 = j|^n = n̂] - ^ij (D.1) 

Equation (D.1) may be interpreted as stating that, for a Markov process, the con-
m 

ditional distribution of any future state Xn+i given the past states and depends 

only on the present state. The value P^ represents the probability that the process 

transits from state i to state j. Since probabilities are in the range [0, 1] and the 

process must make a transition into some states, we have that 
N 

Fij, N>iJ>0- 5 > i r l , i = 0,l,...,N 
j=o 

where N is the total number of state in the process. 
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Appendix E 

Maximum Likelihood (ML) 

Maximum likelihood (ML) is a method to solve the estimation problem of model 

parameters A. For A, P(0|A) is maximized for the given training sequence 0. For 

unobservable data which are a sequence of hidden state {qt)^=i, the Q-function of 

models A and A can be defined as 

Q(A,A) = p ^ E m # ) l o g ( 0 , # ) (E.1) 

Q is a function of A in the maximization procedure and P(0|A) is considered as a 

constant. With this auxiliary function, 

Q(A,A) > Q(A,A) =^ P(0|A) > P(0|A) (E.2) 

Considering, 

P(Q|A) ^ „ P(Q, q\X) ^ ^ P(Q, q\X) P (0 , g|A) 
P p W " , P(0|A) " V P(0|A) P(0,^|A) 

and taking log on both sides, 

w M = ; ^ l o g % ^ g l ^ 
i � g p ^ Y ^ P(0|A) P(0,g|A) 

^ ^ P(Q,g|A) 1 P(0,g|A) 
S + T ^ ^ g ^ ^ f ^ 
二 拟 习 - 肌 入 ） 

The reestimation formulas of Equations (3.19) and (3.20) in Section 3.2.4 can be 

derived directly by maximizing the auxiliary function Q(A, A). Since 

_ T-1 T _ 

logP(0,g|A) = log^gi + Y1 l o g ^ , ^ i + E)log^t(ot) 
t=i t=i 
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therefore 

Q(A, A) 二 Q,(A, 7T) + j 2 Qai (A, ai) + f ： Qt, (A, b^) 

i=l i=l 

where 

7T = [7ri,7r2, ...,7TAr], 
Cli = [0'il 5 0,i2 5 ..., CLiN], 

hi =[h{l)M{^).-M{K)] 

and 
Q.(A,7T) = E P ( 0 , ^ i - z | A ) log7Ti, 

i=l 
N T-1 

QaiiKdi) = E E P(0, qt = i, qt+i = i|A) logai^, 
j=l t=l 

Q6.(A,M =ZnO,qt = i\X)\ogbi{ot) 
t=i 

Therefore these individual terms are to be maximized to achieve the maximization 

of Q ( A , ^ over A. The individual auxiliary functions (Q7r,Qai,Qbi) are all in the 

form 
N 

T^WjYo^yj 
j=i 

and it is a function of {Vj)f=i which is subject to the stochastic constraints. There-

fore, each function attains a global maximum at the single point 

yQj 
Vj — ~jv ， j — 1，2，…’ N 

E Wi 
i=l 

Hence, 

—P(0,qi=iW) — F(0,qi=HX) 

‘ ~ EP(0,.=.|A) “ ？ 剛 
t=i 

T - 1 T - 1 

J2 ^{0,qt=i,qt+i=jl^) X) P{0,qt=i,gt+i=j\y) 
77 _ t=i — i^ 
^ij 一 N T-1 — T - 1 

E E ^{0,qt=i,qt+l=m E P(C,gt=i|A) 
j=l t=l t=l 

_ j2^{0,qt=ilX)5{ot,Vk) 
Uk) =t_^ 

E P(C,gt=i|A) t=i 
where 

f 

r, � 1 if Ot = Vk 
0{OuVk)= < 

0 otherwise 
w 
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By using forward-backward algorithm, 

T - 1 

2 at(i)aij6j(ot+i)^t+i(j) 
n . . — 1^ 
^lj — T 

E Mm(i) 
t-1 

T 
_ Y , at{i)|3t{i)S{ot,Vk) 

Uk) - ^ 
E Mm(i) t-i 
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Appendix F 

Multiple Training 

For increasing the accuracy in modeling of HMM or 2dHMM, multiple training is 

necessary from multiple observation sequences [24]. For a single observation se-

quence to train a model (i.e., for reestimation of model parameters), the transient 

nature of the states within a model allows only a small number of observations for 

any state (until a transition is made to a successor state). Therefore, using multiple 

observation sequences can make reliable estimates of all model parameters. For a 

set of K observation sequences as 

0 = (0,(1),0(2), . . . ,0W) 

where 0(於）二 (ot,og,...,c4) is the k^^ observation sequence. Each observation 

sequence is independent of every other observation sequence. The parameters of the 

model is adjusted to maximize 

P ( 0 | A ) = n P ( 0 ^ | A ) = n P i t (F.1) 
k=l k=l 

Since the reestimation formulas are based on frequencies of occurrence of various 

events, the reestimation formulas for multiple observation sequences are modified 

by adding together the individual frequencies of occurrence for each sequence. The 

modification of the reestimation procedures for HMM and 2dHMM are in Sections 

F.1 and F.2. 
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F.1 HMM 

The modified reestimation formulas for aij and hj[l) are 

E ^^'t'at{i)aiMoU)Ph1(3) 
^ = “ 二 “ T “ (F.2) 

E • E ^ W A " W 
k=i [k t=i 

and 
E ^ E 彻 彻 

T n\ k=l 丄 k t&ot=vi /^ q\ 
^•(0 = 1 ~ ^ w (F.3) 

E ^ E ^ A ' W k=l [k t=l 
and 7T is not reestimated since 7r1 = 1，lu = 0 for i + 1. 

F.2 2dHMM 

The modified reestimation formulas for ^,,萄,尸，^,(y ' ) and h'l»j»^j,{y") are 

E ^ ¾ ' E a “ " ,na;,， j 'K ' ( "S)^，,, j'^>?〃，>"S)A+i(/，/) 

U!"= '=' V 1 " ' (F.4) 
’ E + £ E atKi"X,,j'b'j,0'\l�a';,�j,,,j,4,j,��"\%_�Pt+iU',jn 

k=i ^fc t=i j',i",j" 

and the estimation of the probability a'|u j,,̂ i, is, 

E 少 ^ ' E c^S', n o ! , A ' ( ^ ' m ) < ' j " , / ^ y ' j ' ( " t ) i ) A + i ( f , f ) 
-ff �，_ k=i ^ fc t=i i' (F.5) 

' ' , ' " E ^ ¾ ' E 叫( ; ' , " ' )（, '巧 ' ( 0 ' ^ _ \ )略,’, '吟’>〃如休+ 1 ( /，,） 
k=l ^fc i=l i',j" ,J J � J J 

In the discrete case, the reestimation formula for the model A' is, 

E ^ E E c^t ( i ' , i〃)<，_A("S)a? ' ’A ) '&k , ' ( "1&"m( / , / ) 
- , ( " , ) = f c = i h tec/,=v[i'^",j" [_;^_^ 

3' E ^ ¾ ' E c^t ( " , ?Vz ' , _A(o 'S )a ; ;7， j ,&?�’>"^)A+i ( j ' ’ j " ) k=i ^k t=i i',i",j" “ J “ 
(F.6) 

where 
( 

1 if m 二 n 
6{m, n)= < 

0 otherwise 

150 



The output probabilities for A� are estimated as, 

E ^ E E at-i(z', i")a[^j>b'j>(4^)<",/',y^/'j'{o'i%)PMU', j") 
y," � ’ � = f c = i fe teo'l^v'； i',i" 

‘，'，） E ^ ¾ ' E Mi'. i")a', j'b'j' (^ 'm)< ' j " , /^ / ' , / (^''S)A+i U'. j") 
k=i rtc t=i i',i" 口 J 

(F.7) 
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Appendix G 

IMS T800 Transputer 

G.1 IMS T800 architecture 

The IMS T800, with its on-chip floating point unit, is only 20% larger in area than 

the IMS T414. The small size and high performance come from a design with 

takes careful note of silicon economics. This contrasts starkly with conventional 

co-processors, where the floating point unit typically occupies more area than a 

complete micro-processor, and requires a second chip (or in the case of the Weitek 

1167 floating point processor for the Intel 80386, second, third and fourth chips). 

The architecture of the IMS T800 is similar to that of the IMS T414. How-

ever, in addition to the memory, links, central processing unit (CPU), and external 

memory interface, there is a micro-coded floating point unit (FPU) which operates 

concurrently with and under the control of the CPU. The block diagrams below 

indicate the way in which the major blocks of the IMS T800 and IMS T414 are 

interconnected. The CPU of the IMS T800, just like that ofthe IMS T414, contains 

three registers (A, B and C) used for integer and address arithmetic, which form a 

hardware stack. Loading a value into the stack pushes B into C, and A into B, before 

loading A. Storing a value from A pops B into A and C into B. In addition there is 

an 0 register which is used in the formation of instruction operands. Similarly, the 

FPU includes a three register floating-point evaluation stack, containing the AF, BF 

and CF registers. When values are loaded onto, or stored from the stack the AF, 

BF and CF registers push and pop in the same way as the A, B and C registers. 
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The addresses of floating point values are formed on the CPU stack, and values 

are transferred between the addressed memory locations and the FPU stack under 

the control of the CPU. As the CPU stack is used only to hold the addresses of 

floating point values, the wordlength of the CPU is independent of that of the FPU. 

Consequently, it would be possible to use the same FPU together with, for example, 

a 16 bit CPU such as that used on the IMS T212 transputer. 

The IMS T800, like the IMS T414, operates at two priority levels. The FPU 

register stack is duplicated so that when the IMS T800 switches from low to high 

priority none of the state in the floating point unit is written to memory. This results 

in a worst-case interrupt response of only 2.5 /xs (-30)，or 3.7 "s (-20). Furthermore, 

the duplication of the register stack enables floating point arithmetic to be used in 

an interrupt routine without any performance penalty. 

G.2 Instruction encoding 

All transputers share the same basic instruction set. It contains a small number 

of instructions, all with the same format, chosen to give a compact representation 

of the operations most frequently occurring in programs. Each instruction consists 
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of a single byte divided into two four bit parts. The four most significant bits are 

Function Data 

7 4 3 0 

a function code, and the four least significant bits are a data value. The sixteen 

functions include loads, stores, jumps and calls and enable the most common in-

structions to be represented in a single byte. As this encoding permits only 4 bits 

of operand per instruction two of the function codes [prefix and negative prefix) are 

used to allow the data part of any instruction to be extended in length. Another 

of the sixteen functions {operate) treats its data portion as an operation on values 

held in the processor registers. This allows up to 16 such operations to be encoded 

in a single byte instruction. 

All instructions are executed by loading the four data bits into the least signif-

icant four bits of the 0 register, which is then used as the instruction's operand. 

All instructions except the prefix instructions end by clearing the 0 register, ready 

for the next instruction. The prefix instruction loads its four data bits into the 0 

Function Data 

7 4 3 0 
y 

Operand Register 

register, and then shifts the 0 register up four places. The negative prefix instruc-

tion is similar, except that it complements the operand register before shifting it 

up. Consequently operands can be extended to any length up to the length of the 

operand register by a sequence of prefix instructions. 

The prefix functions can be used to extend the operand of an operate instruction 

just like any other. The instruction representation therefore provides for an indefi-

nite number of operations. The encoding of operations is chosen so that the most 
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common operations, such as add and greater than, are represented without a prefix 

instruction. 

The IMS T800 has additional instructions which load into, operate on, and store 

from, the floating point register stack. It also contains new instructions which sup-

port color graphics, pattern recognition and the implementation of error correcting 

codes. These instructions have been added whilst retaining the existing IMS T414 

instruction set. This has been possible because of the extensible instruction encoding 

used in transputers. 

G.3 Floating point instructions 

The core of the floating point instruction set was established fairly early in the design 

of the IMS T800. This core includes simple load, store and arithmetic instructions. 

Examination of statistics derived from Fortran programs suggested that the addition 

of some more complex instructions would improve performance and code density. 

Proposed changes to the instruction set were assessed by examining their effect on 

a number of numerical programs. For each proposed instruction set, a compiler was 

constructed, the programs compiled with it, and the resulting code then run on a 

simulator. The resulting instruction set is now described. 

In the IMS T800 operands are transferred between the transputer's memory and 

the floating point evaluation stack by means of floating point load and store instruc-

tions. There are two groups of such instructions, one for single length numbers, one 

for double length. In the description of the load and store instructions which follow 

only the double length instructions are described. However, there are single length 

instructions which correspond with each of the double length instructions. 

The address of a floating point operand is computed on the CPU's stack and the 

operand is then loaded, from the addressed memory location, onto the FPU's stack. 

Two new addressing operations have been added to the CPU to improve access 

to double-word (64-bit real and integer) values. The first of these, word subscript 

double, is used to index double-word values. The second of these, duplicate, is used 
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when the CPU has to manipulate the addresses of both the more significant and 

less significant words of a double word object. 

Operands in the floating point stack are tagged with their length. The operand's 

tag will be set when the operand is loaded or is computed. The tags allow the number 

of instructions needed for floating point operations to be reduced; there is no need, 

for example, to have both floating add single and floating add double instructions; a 

single floating add will suffice. 

There are two instructions to load double length floating point numbers into the 

floating point evaluation stack from the transputer's memory. These are floating 

load non-local double and floating load indexed double. The floating load non-local 

double instruction loads the value pointed to by the A register of the CPU's stack. 

The floating load indexed double instruction has the same effect as the instruction 

word subscript double followed by floating load non-local double. The value in the 

B register is used as a double-word offset from the base pointer in the A register 

and the selected double length value is loaded into the AF register. The diagram 

below shows the effect of executing a floating load indexed double instruction. The 

Before execution 

CF: undefined C: undefined 2.5 base + 1 6 

BF: 3.0 B: 2 base + 8 

AF: 1.5 A: ^ base 

After execution 

CF: 3.0 C: undefined 2.5 base+16 

BF: 1.5 B: undefined base + 8 

AF: 2,5 A: undefined base 

effect of the floating load indexed instructions can be achieved by a sequence of 

just two instructions. However, their presence does decrease code size; the floating 

load indexed double instruction is encoded in only two bytes, whereas the equivalent 
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instruction sequence would require four bytes. This appears to be a worthwhile 

optimization as this instruction sequence would be compiled for every array access. 

However, there are just two floating store instructions, floating store non-local 

single and floating store non-local double. These both store the value in the AF 

register into the location pointed to by the A register. There are no floating store 

indexed instructions. This may be surprising given that the floating load indexed 

instructions exist; however, in any program there are less store operations than load 

operations and, therefore, there is less to be gained by optimizing store (write to 

memory) operations than optimizing load (read from memory) operations. 

The common floating point operations of addition, subtraction, multiplication 

and division are provided by single instructions. These instructions operate on 

values in the AF and BF registers, storing the result of the operation into the AF 

register and popping the CF register into the BF register. Similarly, the floating 

point comparison operations, floating point greater than and floating point equality, 

\ compare values stored in the AF and BF registers; however, they load the result of 
t; 

j the comparison into the A register of the CPU. 

.| 

G.4 Optimizing use of the stack 

The depth of the register stacks in the CPU and FPU is carefully chosen. Floating 

point expressions commonly have embedded address calculations, as the operands 

of floating point operators are often elements of one dimensional or two dimensional 

arrays. The CPU stack is deep enough to allow most integer calculations and address 
： 
j calculations to be performed within it. Similarly, the depth of the FPU stack allows 
I 
！ most floating point expressions to be evaluated within it, employing the CPU stack 

1 
j to form addresses for the operands. 

No hardware is used to deal with stack overflow. A compiler can easily examine 

expressions and introduce temporary variables in memory to avoid stack overflow. 

The number of such temporary variables can be minimized by careful choice of the 

evaluation order; an algorithm to perform this optimization is given in [61]. The 
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algorithm, already used to optimize the use of the integer stack of the IMS T414, is 

also used for the main CPU of the IMS T800. 

G.5 Concurrent operation of FPU and CPU 

In the IMS T800 the FPU operates concurrently with the CPU. This means that it 

is possible to perform an address calculation in the CPU whilst the FPU performs 

a floating point calculation. This can lead to significant performance improvements 

in real applications which access arrays heavily. This aspect of the IMS T800's 

performance was carefully assessed, partly through examination of the 'Livermore 

Loops'. These are a collection of small kernels designed to represent the types of 

calculation performed on super-computers. They are of interest because they contain 

constructs which occur in real programs which are not represented in such programs 

as the Whetstone benchmark. In particular, they contain accesses to two and three-

dimensional arrays, operations where the concurrency within the IMS T800 is used 

to good effect. In some cases the compiler is able to choose the order of performing 

address calculations so as to maximize overlapping; this involves a modification of 

the algorithm mentioned earlier. 
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