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Abstract 

The thesis consists of two parts. The first part is a discussion of the proposed 

wireless ATM system while the second part is the study of image compression 

using wavelet transform. 

By the concept of Asynchronous Transfer Mode (ATM), multiplexing sev-

eral independent sources statistically onto a single link with known probability 

density functions (pdf) of bit rate should result in a gain of network efficiency, 

such as a better use of the bandwidth and improvements of the quality of ser-

vice (QOS). To impose this idea onto the wireless communication, a hybrid 

system comprising of fixed-assignment FDMA and multi-carrier (MC) CDMA 

for supporting statistical multiplexing in a wireless multiple-access environment 

is thus proposed in part I. The FDMA portion is used to support minimum fixed 

transmission rate requirements, and the CDMA portion is used to support the 

variable transmission rate requirements. For the FDMA portion, the spectral 

width of each FDMA channel is service dependent. This means larger bandwidth 

will be assigned for services that are likely having higher data rate. On the other 

hand, the CDMA segment is shared by all kinds of services. This system fully 

utilizes the efficiency of FDMA to provide fixed-rate access and of multi-carrier 
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CDMA to provide shared, and possibly non-contiguous bandwidth. It is shown 

that the total number of users that can be accommodated, while maintaining 

low blocking rate, is increased over a benchmark system. 

Part II is the study of the subband image coding. Nowadays, the advent 

of multimedia boosts the demand for both still and moving images. To save 

storage space or transmission bandwidth, lossless or lossy compression methods 

of digital images are utilized. Recently, the wavelet theory is applied to all kinds 

of signal processing. In particular, good image compression results are obtained 

by the discrete wavelet transform which achieves good decorrelation of image 

coefficients. Benefit from this property, many image compression algorithms 

are thus proposed. One of them is the Embedded Zerotree Algorithm (EZW) 

proposed by Shapiro [3]. The main achievement of the EZW is that it can 

achieve better compression results, high compression ratios and high PSNR, 

when compared to some well known image compression schemes, such as JPEG. 

However, the EZW puts much cost on encoding the significant maps at each 

dominant pass. Also, in the subordinate passes, it may need extra memory for 

maintaining the subordinate list and order preserved sorting algorithms, which 

are usually slow, are required. Aiming at solving these drawbacks, a method 

called Residue Coding Using Embedded Zerotree Algorithm (RCZW) is proposed. 

It is found that RCZW has faster compression (decompression) speed than EZW 

despite having comparable compression results. 
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Chapter 1 

Introduction 

i 

1.1 Motivation 

In the evolution from the current wireless communication system towards 

the Personal Communication System (PCS), global communications of various 

kinds, such as voice, computer data and fascimile etc., should be transmitted 

with an acceptable rate through the air. To achieve this goal, the concept of 

Asynchronous Transfer Mode (ATM) should be realized in wireless communica- ' 

tion. This is important as services in fixed network, Broadband Integrated Service 

Digital Networks (BISDN), should also be supported in the wireless network. 

Various kinds of multiple access methods have been proposed for network 

communications. One of these is the Code Division Multiple Access (CDMA). 

There are three common types of CDMA system: direct sequence (DS), fre-

quency hopping (FH), and time hopping (TH). Recently, an additional CDMA 
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Chapter 1 Introduction 

system, referred to variously as multicarrier CDMA (MC-CDMA) [4], spread-

time CDMA (ST-CDMA) [3], or OFDM-CDMA [5], is proposed. It is an alter-

native spread spectrum modulation technique for multiple access applications. 

It offers interesting tradeoffs with other CDMA techniques. For example, MC-

CDMA is more convenient in utilizing non-contiguous frequency bands while 

direct sequence CDMA is more convenient in exploiting non-contiguous time 

frames. As a consequence, combining MC-CDMA with FDMA is more conve-

nient than combining DS-CDMA with FDMA in a hybrid system. 

Turning our attention to another direction, the concept of the Asynchronous 

Transfer Mode (ATM) is becoming popular [9]. In ATM, services with different 

QOS (Quality Of Services) requirements and variable-bit-rate coding require-

ments, such as video conferencing and standard TV, can be multiplexed statis-

tically onto a single link. As a result of resource sharing, network efficiency is 

often increased. 

To realize the concept of ATM in wireless communication, we propose an 

FDMA/CDMA hybrid modulation system for providing link-layer transmission 

services for a wireless ATM application environment. This system combines 

fixed-assignment FDMA and multi-carrier CDMA to provide statistical multi-

plexing of variable-bit-rate wireless services. The given system bandwidth is 

partitioned into two parts, the fixed-assignment FDMA and the MC-CDMA. 

The FDMA portion is used to support minimum fixed transmission rate re-

quirements while the CDMA supports the excess rate whenever an individual 

user's instantaneous data rate is larger than the fixed FDMA rate Re, see Fig-

ure 1.1. This system fully utilizes the efficiency of FDMA to provide fixed-rate 
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Figure 1.1: Typical Data Rate of a Source 

access, and of MC-CDMA to provide flexible transmission resource sharing over 

possibly non-contiguous bandwidth. 

The proposed idea can be used not only in wireless environment , 

via FDMA/MC-CDMA hybrid, but also in wireline network via optical ^ 

WDM/OOC-CDMA hybrid (WDM = Wavelength-Division-Multiplexing and 

0 0 C = Optical Orthogonal Codes). In the thesis, our main results compare 

the FDMA/MC-CDMA hybrid system with a pure FDMA system and a pure 

CDMA system. It is found that the proposed system, in general, supports more 

active calls. 
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Chapter 1 Introduction 

1.2 Thesis Organization (PART I) 

The layout of PART I is: Chapter 2 will discuss the basic knowledge of CDMA 

and ATM; Chapter 3 is the System Model of the proposed hybrid system; Chap-

ter 4 reports the results (system capacity) and Chapter 5, finally, is the conclu-

sion. 

t 
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Chapter 2 

Fundamentals 

2.1 Spread Spectrum 

Spread Spectrum[6] [7] [8] is a modulation and demodulation technique whose I 

transmission bandwidth is much greater than the minimum bandwidth required • 

for the transmission of the digital signals. This transmission bandwidth is occu- | 

pied by the signal energy and is approximately independent of the information ‘ 
i 

bit rate. As a result, the signal energy is spread out in the transmission band- ^ 

width and hence the name Spread Spectrum. 

2.1.1 Direct Sequence (DS) CDMA 

In Direct Sequence spread spectrum system , the modulated-signal is modulated 

by a very wideband spreading sequence. This wideband spreading sequence is 
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Figure 2.1: The transmitter and the receiver of DS-CDMA system 

designed in such a way that it is easy for an intended receiver to demodulate ‘ 

but is difficult for an unintended receiver to despread the transmitted signal. ‘ 

Therefore, in the receiver's point of view, it is easy to avoid jamming. One of i 

the possible sequences used for this purpose is the Pseudorandom (PN) Sequence. ‘ 
i 
i 

For DS-CDMA, Figure 2.1, after the information sequence has been encoded 

and has been phase or amplitude modulated, it is multiplied by the high rate 

PN sequence and is thus spread in the frequency domain before transmission. 

At the receiving end, the PN sequence generator should synchronize with that 

of the transmitter so as to recover the signal properly. 
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Chapter 2 Fundamentals 

2.1.2 Frequency Hopping (FH) CDMA 

In Frequency Hopping, each information bit is divided into L periods of length 

Tc = � and hops (transmits) over L frequencies, chosen by a spread code, in 

different periods T�dur ing each bit interval. At the receiving end, the actual 

signal can be recovered by mixing the frequency synthesizer output with the 

received spread signal. 

Figure 2.2 shows the FH-CDMA system. In the transmitter, the spread code �• 

generator controls the frequency synthesizer and a sequences of L frequencies, i 

with spacing equals the information bit rate, are produced. On the other hand, 

the receiver has similar structure but the frequency synthesizer must know the ‘ 

hopping pattern of the transmitter and must also lock onto the phase of the , 

pattern. ‘ 

2.1.3 Time Hopping (TH) CDMA 
I I 

Analogous to FH, the Time Hopping spread spectrum technique divides a time I 

interval, whose duration is larger than that of a information bit period, into ^ 

a large number of time slots. The coded information bits, in the form of one 

or many codewords, are then transmitted in a pseudorandomly selected time 

slot. Figure 2.3 shows the block diagram of a TH-CDMA system. Note that the 

buffers, in both the transmitter and the receiver, are used for handling bursty 

traffic. 
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Figure 2.2: The transmitter and the receiver of FH-CDMA system j 

2.1.4 MC-CDMA (Multicarrier-CDMA) | 

In [3] [4] [5], a new spread spectrum technique called Multicarrier (MC) CDMA or � 

Spread Time CDMA is proposed for bandlimited multiple access channels. With I 
•i 

MC-CDMA, the available bandwidth is partitioned into L narrowband channels, < 

where L is the processing gain. Each information symbol is thus transmitted 

over these L narrowband subcarriers which are phased modulated by a given 

spread code. Consequently, the resulting pulse is then taking inverse Fourier 

transform for transmission. At the receiving end, the information data can be 

recovered by sampling the output of the filter matched to a specific user pulse, 

or by taking the Fourier transform of the time windowed version of the received 
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Figure 2.3: The transmitter and the receiver of TH-CDMA system 

signal at each symbol interval. 
I 
I 

Since the time period of each of the L narrowbands is much greater than the 

symbol duration and the delay spread, the MC-CDMA signal will not suffer from j 

great intersymbol interference (ISI). Besides, it supports disconnected frequency �• 

bands as it is the time-frequency dual of DS-CDMA. 

2.2 Asynchronous Transfer Mode (ATM) 

The concept of Asynchronous Transfer Mode (ATM) [9] has been proposed for 

multiplexing various kinds of services on the same resource, bandwidth, say. It 
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Figure 2.4: The transmitter and the receiver of MC-CDMA system 

operates in a connection oriented mode and a call is rejected if there is no avail-

able bandwidth for the required service. By ATM, there should have a gain on ‘ 

network efficiency by statistical multiplexing of services onto a single link if there 

are enough independent sources. However, this statistical multiplexing gain can 

only be achieved when the system knows the probability density functions (pdf) � 

of all kinds of services, typical examples can be found in [9]. 
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Chapter 3 

System Model 

！ 

For the FDMA/CDMA hybrid system, Figure 3.1, the whole system bandwidth | 

is explicitly partitioned into two separate segments, the exclusive FDMA band ！ 

and the communal CDMA band. It is used to support a mixture of VBR 

(variable-bit-rate) services, such as standard TV and video conferencing, etc. ’ 
I 

When there is an incoming call, the system determines the type of service to , 

which the call belongs. A request process is thus initiated to see if there is an 

available FDMA channel to accommodate a call of this type. The call is said to j 

be rejected when it fails to get an FDMA band. 

On the other hand, when an user wants to transmit a VBR service, the 

terminal at the user end sends a signal containing the information of the service 

to the main system. If the connection is successfully made, the user gets an 

FDMA channel for its exclusive use until the user departs from the system. At 

departure, the user surrenders its FDMA channel back to the system. During 

12 
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小 i w FDMA 
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I 

Figure 3.1: The FDMA/MC-CDMA Hybrid System. ； 

using the service, the data rate fluctuates with time. When the instantaneous ‘ 
) 

data rate is lower than the capacity of its FDMA channel, Re, the user transmits '丨 

only in its exclusive FDMA channel. When the instantaneous data rate is greater , 
I than the capacity of a user's FDMA channel, the excess rate will be carried by 
I 

the communal CDMA portion. i 
1 

At any instant, the active calls in the system are said to be blocked whenever ‘ 
； 

the total data rate in the communal CDMA exceeds its capacity. 

In other words, the FDMA part provides fixed-rate transmission which is 

often sufficient, while the CDMA portion supports the excess-rate transmission, 

i.e. the portion of the VBR data exceeding the FDMA support rate. Denote 

the total bandwidth available to the system by Wrotai- Denote the FDMA 

portion of the bandwidth by WpDMA^ and the CDMA portion by WcoMA- Then 

Wrotal = WpDMA + WcDMA-

13 
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Chapter 3 System Model \ 

iif 

Assume there are M^ active users of service type 丁, and each user of service 

type T is allocated an exclusive FDMA bandwidth 7¾,. Then it is required that 

WFDMA > E ^r X Re,r (3.1) 
Type T ‘ 

The system will continue to admit (i.e. connecting) users until the above in-

equality is violated. 

The communal CDMA part allows completely flexible multiple-access trans-
i 

mission of data. Each active user is allowed to transmit its excess-rate data in � 

the communal CDMA band without prior permission or coordination. Consider 

user i who is of service type r and whose VBR data rate is Ri{t). Its transmis- | 

sion rate in the communal CDMA band is max{0; Ri{t) — Re,r} at time t. We I 
I 

assume the CDMA transmission at time t is successful if and only if the total \ 

CDMA transmission rates from all users do not exceed an upper bound, i.e. 丨 

E max{0; E,(t) — i ^ � , ( , ) } < aWcDMA, (3.2) | 
all users i 

\ 

where r{i) is the service type of user i. We say blocking occurs if and only if the 

above inequality is violated. The system blocking occurs if any user is blocked. 
i 

There are many implementations which realize the assumptions made above. 一 

The assumption (3.1) can be implemented by orthogonal FDMA with BPSK 

modulation. The assumption (3.2) can be implemented by a Qualcomm-style 

CDMA scheme [2]: Each individual user varies its instantaneous transmission 

power in proportion to its instantaneous CDMA data rate. The reception of all 

users' data at time t is successful if the total instantaneous CDMA transmission 

power from all users does not exceed an upper bound. In an optical environ-

ment, the FDMA portion can be implemented by WDM, and the CDMA portion 

14 



Chapter 3 System Model 
1 ||| 

implemented by OOC. The value of the parameter a varies from one implemen- ll 

tation to another. However, we assume it satisfies 0 < a < 1. 

In our proposed system, the FDMA portion provides higher total transmis-

sion rate, (3.1), at the cost of no frequency reuse. The CDMA portion provides 

totally flexible resource sharing - minimal system administration or user coor-

dination is required. But we assume the cost of its flexibility is that the total 

transmission rate is reduced, (3.2). In the following, we will show that the pro-

posed FDMA/CDMA hybrid system merges the advantages of both components i 

and outperforms either the pure FDMA or the pure CDMA system. 
I 

I 
i 
i 

In certain environment，an MC-CDMA component is more suitable than , 
f 

conventional CDMA for our proposed system. We will discuss this issue later. � 

I 

I 
» 

I I ( 
� 
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Chapter 4 

«L 

System Capacity 

I 

We study the FDMA/MC-CDMA hybrid system in two cases: one homoge- ； 

neous user population or two homogeneous user populations. We assume the ‘ 

probability distribution of user data rate within each time slot is given, and 

the parameters Wxotai and a are given. Our goal is to determine optimal Re 
i and WpDMA in order to maximize the system capacity (the maximum number 

. I 
of users that can be connected) while keeping system blocking probability be- i 

low 1%. We consider a steady-state period, no user enters or leaves. In the � 

remainder of this paper, we assume the total system bandwidth is Wxotai = 20 

MHz. 

4,0.1 One Homogeneous User Population 

We assume all users in the system are transmitting data of the same service 

type, e.g. teleconferencing. Furthermore, we assume individual user's bit rate 

16 
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Figure 4.1: The bit rate distributions of the two services. � 

I 
within each time slot is independent and identically distributed. The probability i 

distribution of the bit rate is assumed to be binomial, Figure 4.1, distribution ‘ 

1，in solid line and on the left. Its probability density functions is given by 
I 

fl2\ 1 
p(zx50A,)= . W (4.1) . 

\ ^ / 乙 . I 
for % — 0 , 1 , 2 , . . . , 12. Keeping the system blocking probability no greater than ' 
1%, the system capacity is calculated for a pure FDMA system, a pure CDMA ^ 

system and a FDMA/CDMA hybrid system. 

A pure FDMA system can support 36 users maximally. The optimal param-

eter choice is ^ = 5 5 0 kbps, resulting in blocking probability 1 — (1 — 2—^2)36� 

0.9%. Note that system blocking occurs if any user's data rate exceeds Re in a 

pure FDMA system. On the other hand, using central limit theorem, the result 

of the pure CDMA system is calculated for a = 0.1, 0 .2 , . . . , 0.9 and is shown in 

Table 4.1. It is found that the system capacity is better than the pure FDMA 
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system when a > 0.7; and when a ^ 0.61, 36 users can be supported. 

Table 4.2 shows the results of the FDMA/CDMA hybrid system for various 

values of a. When the value of a decreases, Re should increase so that larger 

system capacity can be achieved. For example, if a — 0.6, then the optimal 

choice is to set Re = 300 kbps and supporting 52 users. If a = 0.1, the the 

optimal choice is Re — 450 kbps and 40 users can be supported. In general, the 

hybrid system can support more users than either the pure FDMA or the pure 
*s 

CDMA system for all values of a computed here. :! 
,! ;j 

Similar results were obtained for distribution 2 (Figure 4.1, in dashed line 

and on the right). Its probability distribution is given by , 

/20\ 1 ! 
p [ j X 50A^ + mi<) = . — (4.2) ‘ 

V J / 乙 i 

for j = 0,1,2,. . . , 20. The pure FDMA system can support 17 users with Re = ( 

1150 kbps. The results for the pure CDMA system are shown in Table 4.1 and 
I 

the results for the hybrid system are shown in Table 4.3. Note that with proper ‘ 

choices of Ro, the hybrid system also outperforms either the pure FDMA or the I 
I 

pure CDMA system for all values of a computed. ‘ 

4.0.2 Two Homogeneous User Populations 

In ATM networking, it is common to combine sources of several services on a 

given bandwidth. To be more realistic, we would like to study the capacity of 

the hybrid system by combining two source rate distributions, Figure 4.1, (Cf. 

9], Figure 5.4.). Assume that users of the two distributions are independent. 
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Chapter 4 System Capacity 

Table 4.1: The maximum number of users supported by a pure CDMA system 
using one of the two distribution while keeping blocking probability < 1%. 

a Distribution 1 Distribution 2 
0.1 II 5 2 
0.2 11 r 
0.3 17 ^ 
0.4 23 9 � 

0.5 29 11 “ ;j 
0.6 35 13 
0 . 7 4 2 1 6 ！ 

0.8 48 18 ; 
0.9 II 55 21 j 

( 

1 i 

I 
I !| 

Table 4.2: The maximum number of users supported by the hybrid system using \ 
distribution 1 while keeping blocking probability < 1%. j 

Re\a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 \ 
(kbps) 一 

" W 11 21 30 37 42 47 51 55 58 
250 15 27 ~ ^ 42 " T T 50 53 ~56 58 
300 22 35 4 ^ 46 ~ W 52 53 55 ~ W 
350 31 41 45 48 ~49~ 50 51 ~52~ 52 
400 38 43 ~l5~ 46 " T T 47 48 ~48 48 
450 40 42 1 ^ 43 1 F 43 43 43 43 
500 38 39 3J~ 39 39 “ 39 39 ~ W 39 

~ ^ 36 36 36 36 36 36 36 36 36] 
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Table 4.3: The maximum number of users supported by the hybrid system using 
distribution 2 while keeping blocking probability < 1%. 

Re\a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
(kbps) 
750 9 14 17 19 20 21 21 22 22 
800 11 16 1 ^ 20 20" 21 21 ~ W 22 
850 14 18 ~ J ^ 20 2 1 " ^ ! " 21 ^ T 22 
900 1 E ~ 19 ] 0 20 20 21 21 21 21 
950 " T ^ 19 20 20 20 20 20 2 F 20 

"l0Q0 18 19 —19 19 1 ^ 19 19 ~ J ^ 19 � 

1050 18 18 18 18 18 18 18 " T ^ 18 i 
1100 " T T 18 18 “ 18 18 18 18 18 18 , 
1150 17 17 17 17 17 17 17 17 I f ] | 

k 
I 

In addition, the system blocking probability should be no greater than 1%. The ！ 

system capacity of the hybrid system is found, and is compared with that of the | 
1 

pure FDMA system and that of the pure CDMA system, Figure 4.2 to Figure ： 

4.6. ‘ 

Table 4.4 shows the optimal values of Rê i and Re,2^ for distribution 1 and [ 

distribution 2 respectively, by which the maximum system capacity of the hybrid j 
. . . . . I 

system is achieved. Each user with rate distribution 1 is allocated an exclusive | 

一 

FDMA bandwidth i^,i and each user with rate distribution 2 is allocated an 

“ exclusive FDMA bandwidth Re,2. Excess rates of all users are transmitted in a 

single communal CDMA band. The maximum number of users of distribution 

2, M2, is ploted against the maximum number of users of distribution 1，Afl, 

in Figure 4.3 and 4.4. (The Central Limit Theorem is used to simplify the 

computations. Thus the results may be less accurate when either Mi or M2 

is small.) Then it is used as the basis of system admission policy: Users are 
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Table 4.4: In order to multiplex sources of the two services statistically, the two 
Re^ chosen by the hybrid system while keeping blocking probability < 1%. 

a II Rê i (kbps) i^,2 ( k b p ^ 
0.1 II 450 1050 “ 

T 2 ~ ~ 400 一 1000 
0.3 — 400 — 950 
0.4 — 350 900 
0.5 - 350 — 850 
0.6 一 300 — 850 
0.7 300 800 ^ 
0.8 250 800 i 

~ ^ " W " 7 ^ j 
T o 0 ^ ‘ 

U ( 
i 

admitted as long as the number of users (Mi, M2) is below (i.e. to the lower-left ！ 

of) the curve. | 
< i 
t 

In Figure 4.2, the pure FDMA and the pure CDMA systems are compared. j 

The CDMA system has comparable capacity with that of the FDMA system if j 

a = 0.7. However, the hybrid system performs the best, see Figure 4.6. With 1 

R0̂ 1 and Re,2 optimally set, the hybrid system outperforms the pure FDMA | 
I 

system even for very small values of a, a — 0.1, for instance. | 
^ 

To conclude, for each value of a, Rê i and RQ,2 can be optimally set so as 

to maximize the hybrid system's capacity. Under these parameter assumptions, 

the hybrid system has greater capacity than the FDMA system and the CDMA 

system. 
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Figure 4.2: Comparison of pure Figure 4.3: FDMA/MC-CDMA i 
CDMA with different a and pure with a = 0.1, 0.3, 0.5, 0.7 and — 
FDMA 0.9 for the lines counting upward � 

respectively | 

i 

\ 
25j 1 1 1 1 1 j 18r 1 1 1 1 1 1 1 1 

\ ^ hybrid | 

叙 -̂ X ， . . 丄 i ^ y ； 
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Figure 4.4: FDMA/MC-CDMA Figure 4.5: Comparison of pure 
with a = 0.2, 0.4, 0.6 and 0.8 for FDMA (max. users) and the hy-
the lines counting upward respec- brid system with a = 0.1 (max. 
tively users) 
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25| 1 1 1 1 1 ， 
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Figure 4.6: Comparison of pure j 
cdma, pure FDMA (max. users) | 
and FDMA/MC-CDMA (max. | 
users) with a — 0.7 ^ 
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ttw 

.. 

Conclusion 
丨-
！ 

I 
We propose an FDMA/CDMA hybrid system for statistical multiplexing in a | 

wireless or wireline ATM e n v _ t . It combines the bandwidth efficiency 1 
. . . . . j 

of a fixed-assignment FDMA system and the resource sharing flexibility of a ‘ 
« 

CDMA or MC-CDMA system. The system capacity of the hybrid system can 
i 

be maximized by optimally choosing the rate of exclusive FDMA bands. It is j 
I 

shown that the hybrid system can support more calls than the pure FDMA | 

system or the pure CDMA system. — 

The proposed hybrid system offers many other advantages. No additional 

system delay or delay jitter is introduced. In addition, efficient resource sharing 

among mixed services is achieved. The quality of service (QOS) is improved be-

cause more important information can be assured of successful transmission via 

the exclusive FDMA bands, exposing only less important information to blocking 

in the CDMA band. The efficiency of statistical multiplexing is realized. There 
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is no complicated frequency re-use or other coordination mechanism. On the 

other hand, the disadvantages include receiver circuit complexity and potential 

codec delay. 

Several additional advantages are offered by MC-CDMA. Its ability to utilize 

non-contiguous frequency bands further simplifies the implementation. It can 

also be used to change the CDMA band allocation conveniently. In a mixed ser-

vice environment, different user mixtures may result in different optimal CDMA ^ 

bandwidth size. With MC-CDMA, an adaptive system which changes its CDMA f 

bandwidth size can be conveniently implemented, allowing more user call accom- ！ 
j 

modations. This strategy is already partly incorporated in our computations. ( 
i 
I 
？ 

<. 
I i f 
1 

I 
I 
i • 
I 

I 
I 
f ̂ 

25 



Bibliography 

tti 

1] A. J. Viterbi, “When Not to Spread Spectrum—a Sequel”，IEEE Commu- ！ 

nications Magazine, vol.23, no. 4, April 1985. ！ 
^ 
k 
k F 

2] A. J. Viterbi, "The Orthogonal-random Waveform Dichotomy For Digital f 
I 

Mobile Personal Communication.", IEEE Personal Communications 1:1 f 
ti 

First Quarter, pp. 18-24, 1994. | 

. . . . I 
3] P. Crespo, L. Honig, and A. Salehi, "Spread-time code Multiple Access", 1 ! 

IEEE Global Telecommunications Conference, pp. 0836-0840, 1991. | 
I 
I 

4] G. Fettweis, A. S. Bahai, and K. Anvari, “On Multi-Carrier Code Division I 
I 

Multiple Access (MC-CDMA) Modem Design", IEEE Vech. Tech. Conf., ' 

pp. 1670-1674, 1994. 

5] S. Kaiser, "OFDM-CDMA versus DS-CDMA : Performance Evaluation for 

Fading Channels", IEEE ICC, pp. 1722-1726, 1995. 

6] 0 . C. Yue, "Lecture Notes : Radio Communication", Dept of Info. Engg., 

The Chinese University of Hong Kong, 1994. 

'7] J. G. Proakis, Digital Communications^ 2— edition, McGraw Hill. 

26 



Chapter 5 Conclusion 

8] R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to Spread-

Spectrum Communications^ Prentice Hall, 1995. 

9] M. de Prycker, Asynchronous Transfer Mode ——Solution for Broadband 

ISDN, T^ edition, Ellis Horwood. 

m^ 
^ _ 
6 

！ » 

l' 
I * 

f 

I 
為 
( 
h. 

1 i； 
f 

！ ! 
( , 
I 
I > 

27 



I 

__丨 
丨、 

5 

Part II i 
i' k h * 
f： i 
為 f 

.._ 一 

Subband Image Coding 丨 
i 
I 
I ！ 1 
f 
I 

！ 

I 
一 

28 



Chapter 6 

^ 

Introduction | 
I ̂ 

,' 
k ^ 
ti 
A !. , 
秦 
( 

6.1 Motivation [ 
1； 
I 

！ 

The advent of multimedia increases the demand for both still and moving images. | 

However, these digital images are always giant in size and hence increasing • 
. . . . !, 

the cost for transmission and for storage. For the cost effective reason, image | 

compression thus addresses the problem of reducing the amount of data required j 

“ 
to represent a digital image while maintaining good visual quality. 

The basic idea in image compression is to eliminate the redundant informa-

tion contained in the image. Generally, there are three types of redundancy. 

1. Spatial Redundancy 

In natural images, the values of adjacent pixels are usually strongly corre-

lated. 
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2. Spectral Redundancy 

Natural images are always composed of many frequency bands. For the 

same pixel location, it may have many spectral values which are often 

strongly correlated. ‘ 

3. Temporal Redundancy (This is for video image only.) 

In video, the adjacent frames of the image sequence may be highly corre-

lated if there is little change in motion and in the scene, video conferencing 

in particular. I 
， 
! i 
卞 

•I 

Considering still images, the removal of the spatial and the spectral redundancies ； 

can be accomplished by transform coding and quantization techniques. On the ‘ 
. . . . . f other hand, the temporal redundancy found in video images can be eliminated i 

'! 
. . . . k 

by motion prediction and compensation. : 

A new technique called Multiresolution Analysis, which is based on the | 

wavelet theory, is proposed [4]. Using wavelet transform, the spatial and \ 

the spectral redundancies can be effectively identified because of the good | 

time(space)-frequency localization property of wavelet. Based on multiresolu- I 
fJ 

tion analysis, many kinds of compression algorithm have been proposed. One of 

the recent proposed algorithms is the Embedded Zerotree Algorithm (EZW) by 

Shapiro [3]. 

By Shapiro, a zerotree is a data structure which is analogous to zig-zag 

scanning and the End-Of-Block symbol used in discrete cosine transform (DCT). 

This idea is based on the assumption that natural images possess the property of 

decaying spectrums. Consequently, considering the transformed data, if a pixel 
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at the lower frequency is smaller than a threshold in magnitude, the pixels in 

the same spatial location at a higher frequency are likely to be smaller than that 

threshold. A tree is therefore built with the pixel at the lower frequency being 

the root and those at higher frequency being the children. Specially designed 

entropy coding and quantization methods are thus used for implementing this 

zerotree algorithm and impressive compression results are reported. 

Nevertheless, the EZW has to maintain two lists and thus needs more mem-
i*L 

ory. Besides, as sorting is needed during subordinate passes, this should slow i 
. . i down the process, especially at smaller thresholds. To improve EZW, a method \ 

,1 

called residue coding is proposed to be used with the zerotree algorithm. The \ 
fi 

resulting algorithm is called Residue Coding Using Embedded Zerotree Algorithm ‘ 
4 

. . . . . . ！ 

(RCZW). By RCZW, a significant coefficient is replaced by its residue, found : 
• . . . . i 

by the current threshold, instead of zero and the resulting significant map is ' 
. . . i zerotree coded. Consequently, there is no need to keep the subordinate list and , 

. . ‘ 
hence speeding up the compression (decompression) process. Furthermore, it is ^ 

• 

found that the RCZW has comparable compression results with the EZW. J 

I 
0» 

6.2 Thesis Organization (PART II) 

The layout of PART II is : Chapter 7 will discuss the fundamental fidelity criteria 

used for evaluating the image quality; Chapter 8 will give an introduction to the 

wavelet theory; Chapter 9 describes the common transform coding schemes; 

Chapter 10 is a brief description of the zerotree algorithm proposed by Shapiro; 

Chapter 11 is the proposed Residue Coding Using Embedded Zerotree Algorithm 
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(RCZW); and lastly, Chapter 12 is the summary of my study and suggestions 

for future researches. 

»1 

i' 

I 
I 
k 
J 
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I 
!• < ! > 
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ML 

» . 

Fundamentals \ 

f 

Before discussing the wavelet theory and the transform coding algorithms, I [ 

would like to introduce the criteria used in measuring image quality first. \ 

i 
‘ 

7.1 Image Fidelity Criteria “ 
I 

Given a visual system, there are two types of criteria used for rating and for ^ 

一 

evaluating the image quality. They are the subjective and the quantitative 

criteria. 
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7*1.1 Numerical (Quantitative) Measures 

Given a gray-scale N x M image with n bits per pixel, the peak signal-to-noise 

ratio (PSNR) in decibels (dB) is 

(on _ ])2 
PSNR = l O l o g i / MSE (7.1) 

where 

1 N M “ 
MSE = ; ^ E [ ( X — , n ) — :r(m，rz)]2 (7.2) � 

丄、M n=l m=l , 
I 

and X ( m , n) and F (m, n) are the original image data and the reconstructed . 
4 

image data respectively. , 
f 

However, someone would like to know the actual SNR for a given image. -

Then the equation for the SNR would be ！ 

QATTD 1 n 1 NM ̂ n=l Y^m=l X (m,72) ) 
SNR = l O l o g i o — ^ ^ (7.3) ( 

i • 

. . I 
7.1.2 Perceptual (Subjective) Measure j 

*•‘ 

It is very difficult to quantify the human visual perception mathematically. More-

over, there is no relation between perceptual measure and numerical measures. 

This means the visual quality can be very good but the results of the numeri-

cal measures are below standard. In general, the coding artifacts, such as the 

blocking effect, the contouring effect and the ringing effect etc., cannot be easily 

indicated by the numerical measures though they are always visible by human 

eyes. 
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Noise(dB) 

L 
年 

Spatial Frequency ^ 
i i { 

— - - • — •_--.一- I • —•• ‘ I 

k i 
Figure 7.1: The sensitivity of the eye to noise is greatest at low frequencies. ， 

'• 

s 

Extensive researches have found that human eyes are sensitive to noise at low : 

spatial frequency, Figure 7.1. At a result, high frequencies components can be 

quantized by a larger step size than those at low frequencies. Therefore, in order 

to obtain good visual quality while maintaining acceptable numerical measures, ‘ 
i» 

one has to incorporate the perceptual factor (such as different quantization step | 

size at different frequencies) into the image compression system. | 
1 

j 
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MN 

1 ‘ 

Wavelet Transform ； s J 
1 

i 
* 

/ 

Traditionally, it is a common practice to project signals onto a set of orthogonal :: 

basis functions so as to analyse or to compress them. In discrete case, the com- ^ 

monly used orthogonal transforms are the Discrete Cosine Transform (DCT) ‘ 

and the Discrete Fourier Transform (DFT). However, these transforms provide ” 
• 

good results with stationary signals only. For signals with non-stationary prop- , 
. . . . ？ erties, they fail to localize the energy of the signals in the time domain though . 

. . f they do a good job in the frequency domain. j 

In recent years, wavelets, a mathematical tool for hierarchically decomposing 

functions, have been popular in signal processing and signal analysis. Because 

of the elegant properties of good localization in both frequency and time (space) 

domains, it is particular suitable for image and speech signal processing, espe-

cially for signal data compression. In this chapter, a short review on wavelet 

transform will be discussed. For interested readers, please refer to [1] [10] [11 
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for details. 

8.1 Wavelet Theory 

By Heisenberg Uncertainty Principle, 

^time/space^frequency - 2 (8.1) » 
I i 

This inequality imposes a lower bound for the product of time and frequency ： 
i 

resolution. This also imposes a stringent requirement for signal analysis, in j 

which a signal is projected onto a set of orthogonal basis functions and hence ！ 

giving a representation of the signal's information content in both time and 

frequency domains. Since the time resolution ^time/space and the frequency 1 

resolution ^frequency cannot be made arbitrarily small at the same instant, 

there is no way to have sharp analysis (good resolution) in both domains. As ‘ 

. . . . . \ 
a result, one has to sacrifice frequency resolution to get good resolution in time ‘ 

. ？ 

and vice versa. ‘ 
t^ 

For signals in nature, the high frequency components (information content 

at high frequency) are localized in time while the low frequency components 

(the information at low frequency) are spread out in time. Thus, there is still a 

way to satisfy the Heisenbery inequality and to have good information content 

of a signal at a specific time-frequency resolution by varying ^time/space and 

^frequency h the time(space)-frequency plane. Wavelets is therefore a powerful 

candidate for this purpose in signal analysis. 
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In wavelets, the basis functions are generated by dilation and translation of 

a single function named the mother wavelet 於(力）.With a scaling factor a and a 

translation b, a signal can be represented by these wavelet basis functions. 

^a,6(t) = | a | ^ ^ ( — ) { a , b ) e R ^ a j ^ O (8.2) 
CL 

From (8.2), a < 1 corresponds to high frequency while a > 1 will be of " 
j 

low frequency. Moreover, the mother wavelet has to satisfy the admissibility | 
'j 
r 

condition -
� 
内 
/ 

冬 11 
广 ^M 2 � 
/ � ) duj < oo (8.3) 1 

J-oo L0 ‘ 
I \ 

where ^(cj) is the Fourier transform of ^{t). In addition, if the mother wavelet ( 

has a few oscillations (decay sufficiently), (8.3) can be rewritten as 

'? 
I 

� i ^ { t ) d t = 0 (8.4) — 
J — oo 

Similar to the Fourier series, the wavelet transform can be used to represent 

any arbitrary function f as a superposition of wavelets. This function f can 

thus be decomposed at different scales or resolution levels. In practice, the 

discretization of (a, 6) corresponds to (a^, nd^ho), for m, n G Z, a�> 1 and b�> 

1. For large positive values of m, the mother wavelet 少 is highly dilated and thus 

giving large values of b which are well adapted in this low frequency situation. 
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On the other hand, in high frequency case, the large negative values of m should 

result in small translation steps b. With constant time-frequency product, Figure 

8.1 shows the wavelets basis functions for decomposition and Figure 8.2 shows 

the decomposition functions for the short-time Fourier transform. 

Using wavelet decomposition, the function f is thus become 

f = E^rnAf)^m,n{t) (8.5) ‘ 
4 

where ； 

^ 

Cm,n{f) = (/,^^,n(0) ‘ 
^ poo • 

= / mrm,nm (8.6) ^ 
J — oo ： •, 

and f 
I 

VVnC0 = 2 � ^ 2 - � - n ) (8.7) j 

Note that a � = 2 and b�= 1 implies there exist special choices of the mother , 

wavelet x|j{t) whose ^>m,n{t) constitute an orthonormal basis. An example of this i 

is the Haar function which is the simplest. | 

一 

8.2 Multiresolution Analysis 

Multiresolution analysis, which was introduced by S. Mallat [4], is a powerful 

mathematical tool for image analysis using wavelet bases. Consider the spaces 

Vi C P[R) whose relationship is 

VN C Viv-1 C .. • C V2 C Vi C Fo (8.8) 

39 



Chapter 8 Wavelet Transform 

Frequency Frequency 

Time Time ' 
)‘ 

‘“‘ ‘‘ ‘‘ ‘ ‘ ““ i 

Figure 8.1: Tiling of the time- Figure 8.2: Tiling of the time- ； 

frequency plane : Wavelets frequency plane : Short Time \ 
Fourier Transform (STFT) ‘ 

� 

where \ 

U K- = Vo (8.9) , 
i=0 j 

These spaces describe successive approximation spaces and each space Vi has a ( 

resolution of 2~^. Lets denote the orthogonal complement of K+i in Vi by W{^i. | 
• 

Then ^ 

K- = K-+1 e Ĥ +̂1 (8.10) 3 
J 

and thus 

Vo = V̂1 ® "̂ 2̂ � . • . � V̂AT—i ® WN ® VN (8.11) 

This is the basic idea of the multiresolution analysis. Suppose the space Vm is 

spanned by <^m,n(0, which is the dilated and translated versions of the scaling 

function 4>{t). 

KAt) 二 2^^{2-^t — n) (m, n) G 沪 (8.12) 
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On the other hand, the wavelet functions ^pm,n{t) span Wm- Therefore, the pro-

jection of a function f onto the space Wm^ the coefficients ( / , ^>m,n{t))^ describes 

the information lost when going from an finer approximation of resolution 2^"^ 

to a coarser approximation of 2^, In order to realize the multiresolution analysis, 

the Mallat algorithm [4] gives 

Cm,n{f) = (/, ^m,n(0) 二 ^92n-kBm-l,k{f) 
k 

^m,n(/) = (/, 0̂ ,n(t)> = E h2n-kB,^-l,k(f) (8-13) . 
k ‘ 

j 

where h^ — 22 f (^(t-n)<^(20c^ and g � = (- l )^/ i_n+i- If the function f is ； 

given in sampled form, these samples can be treated as the projection of f : 
. . . ？ onto the space Vo, ^o,n(/)- Because of the relation given in (8.8), the Mallat ‘ 

‘ 1 
algorithm in (8.13) describes a subband coding algorithm of the sampled values <• 

of f employing low-pass filter h and high-pass filter g. Having association with 

the orthonormal wavelet bases, these filters give perfect reconstruction ； 

\ 

Bm-l,k(f) = ^l^2n-kBm,n(f) +^2n-A;C'm,n(/)] (8.14) • 
“ ,) 

I 

In words, the Mallat algorithm is the same as the structure of the conjugate ^ 
0 

quadrature filters (CQF), which is similar to the QMF's structure. Figure 8.3 

and Figure 8.4 give better illustration of the multiresolution decomposition of 

a signal f in sampled form. (Note that X is the point at which compression, 

coding, etc., may be carried out.) 
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Figure 8.3: Multiresolution de- Figure 8.4: Realization of the 
composition of a signal f in sam- Mallat algorithm using CQF for '‘ 
pled form. the one dimensional signal f. ‘ 

\ 
/ 

8.3 Quality Criteria for Wavelets \ 
s 

For images, different kinds of wavelet bases functions should results in different ‘ 
. . . . I 

performance, such as different degree of decorrelation of coefficients which should * 
• 

affect image compression. This section describes the criteria for the selection of 
I 

wavelets. ‘ 
'I 
j 

1. Regularity 

In general, an image is mostly smooth, except the occasional edges. Thus 

regular wavelets should be used as their regularity is related to the regu-

larity of the image signal. By Daubechies [11], the wavelet is considered to 

be regular if the scaling function </>(t) and the mother wavelet 執~1、belongs 

to class C^ and n G Z^. 
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2. Vanishing Moments 

If a wavelet x|^{t) has N vanishing moments, the wavelet coefficients of a 

signal f , whose degree is less than N, will be cancelled. This is significant 

for image compression as high compression ratio can be achieved. 

3. Second moment of <̂ (t) [i^{t)) 

With the probability density function defined as 

p{t) = j | ^ | ^ p{t) > 0 and J p{t)dt = 1 (8.15) ‘ 

The second moment ni2 of ¢(1) tells the energy concentration of <^(t), ‘ 

which determine the spatial length (localization) of 4>{t). These can also : 

be applied to |̂̂ {t). : 

[ 
), 

1 

8.4 Criteria for filters 丨 
1 
I 

For multiresolution analysis, the Mallat algorithm can be implemented using • 

CQF. There should have some constraints that the filters have to satisfy for 丨 

• • I image processing. ‘ 
^ 

1. Linear Phase (Lead to Symmetry for Wavelets) 

This is important because filters with nonlinear phase will cause severe 

visible phase distortion around the edges for image processing. However, 

linear phase and orthogonality are mutually exclusive. As a result, there 

is no nontrivial orthonormal linear phase FIR QMF with perfect recon-

struction. The only FIR QMF that is orthogonal and is linear phase is the 

Haar basis. 

43 



Chapter 8 Wavelet Transform 

2. Orthogonality 

With orthogonal filters, a unitary transform will be resulted. This guar-

antees the following 

(a.) Conservation of Energy 

(b.) The total distortion is the sum of the subband distortions. 

(c.) The total bit rate is the sum of the subbands' bit rates. Note that 

the above features can also be satisfied approximately for nearly or- • 
f » 

thogonal filters. , 

3. Filter Length 

Long filters should have high regularity but they may spread coding error, ‘ 
f 

great ringing effect resulted from coarse quantization and filtering, for : 

instance, and have slow computation. On the other hand, short filters ‘ 
> 

lack in smoothness. Consequently, there is always an intertwining between I 

filter length and smoothness of a filter. ‘‘ 
• 

4. Regularity ‘ 

An orthogonal filter is said to be regular if it converges to the scaling ‘ 
j 

function and the wavelet with some degree of regularity. This property 

generally allows great improvement in coding gain and in compression 

artifacts since most images are smooth in nature. 

To conclude, relatively short, linear phase, smooth and nearly orthogonal 

filters with some degree of regularity are desirable for image processing. 
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Row (Column) Column (Row) 

• p ^ h > 2 令 LL 

广 h >̂、, 2 > L — 

• ^ g > � f 2 令 LH 

IMAGE — 

: p ^ h > � f 2 令 HL 

^ g “^^ I 2 > H — 

• L ^ g > ., 2 令 HH 
g : High-pass Filter 
h : Low-pass Filter 
H: High Frequency 
L : Low Frequency 

« 

Figure 8.5: The forward discrete wavelet transform of a 2-dimensional image. , 

8.5 Orthogonal Discrete Wavelet Transform ‘ 
• 

For one dimensional signal, the discrete wavelet transform can be easily found ^ 

by CQF, Figure 8.4, which is equivalent to the Mallet algorithm. What will be ‘ 
jri 

the situation for the two dimensional signals such as images? This can be im-

plemented by cascading two separable one dimensional wavelet transform bases, 

Figure 8.5. The signal data in rows (columns) is passed through the low and the 

high pass filters and is downsampled by 2. Then the process will be repeated 

for the columns (rows). In this case, four subband images will be resulted (LL, 

LH, HL, HH). The LL portion is the mean (smooth) signal while the other three 

parts are the detail signals, which are directional sensitive. The LH portion 
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emphasizes the horizontal image features and the HL portion emphasizes the 

vertical features. In addition, the HH portion emphasizes the diagonal features. 

The inverse discrete wavelet transform is shown in Figure 8.6. It is just the 

reverse process of the forward transform. The four portions are first upsampled 

by 2 and the data is interpolated by the reconstruction filters, h{n) and g{n)^ 

in the horizontal (verticle) direction. Then the process repeats in the verticle 

(horizontal) direction so as to recover the original image. For dyadic orthogonal ^ 

discrete wavelet transform, we have 

h{n) — h{n) 

g{n) = g{n) ' 

g{n) = ( - l f / i ( - n + l ) (8.16) 
* 

where h{n) and g{n) are the low-pass and high-pass filter respectively. Moreover, 

{h{n)^g{n)) is used for the forward transform while {h(n)^g(n)) is for inverse ‘ 

transform. • 
1 

The coefficients at the LL portion grow as the number of wavelet transform 

performed on the image increases. Since orthogonal wavelet bases are used, the ^ 

image energy should be conserved before and after transformations. Generally, 

the transformation is lossless unless quantization is imposed on the transformed 

coefficients. In order to have higher compression ratio, the number of transfor-

mation should also be large. 
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Column (Row) Row (Column) 

LL — I 2 ~ > h 1 : 

— L 令 ' � 2 ~ " ^ h ~ " ^ 

LH 今 � 2 > g ~ ^ • 

— EMAGE 

HL 今 � 2 < ^ ~ ^ 
L w M M M M M M M j — H ^ 2 > g ~ ^ 

HH _^ 丨、2 ^- i ~ J : I 
: g : High-pass Filter 

h : Low-pass Filter 
H: High Frequency 
L : Low Frequency 

‘ ( 
Figure 8.6: The inverse discrete wavelet transform of a 2-dimensional image. 

8.6 Biorthogonal Discrete Wavelet Transform 

Since orthogonality and linear phase are mutually exclusive, one has to relax ‘ 
• . . . ！ 

the orthogonality requirement in order to obtain linear phase QMF filters. The ‘ 
m 

resulting system is called a perfect reconstrunction filter bank. Besides, the 

mother wavelet of the biorthogonal wavelet bases [2] [10] [11] obtained should 

have arbitrary high regularity. 

As in the orthogonal case, the biorthogonal discrete wavelet transform can 

also be realized using the CQF filter bank structure, Figure 8.4, 8.5 and 8.6. 
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The corresponding relationship of the filter impulse response is 

Y^h{n)h{n^2k) = S{k,0) 
n 

g{n) = ( - i r M - n + l) 

g{n) = ( - irM-^ + l) (8.17) 

In addition to linear phase, the analysis filters and the synthesis filters can 

be of different length. To have great energy compaction, the analysis filter •’ 

length should be longer than that of the synthesis filter. It is because the 

long analysis filter can compact more energy while the short synthesis filter will 

accummulate less quantization error. This will give better coding performance 

and will achieve higher compression ratio than the orthogonal transformation. 

Despite these merits, the P norm of quantization error cannot be preserved by 

the biorthogonal transformation. However, only a close approximation can be 

made. 

i 

8.7 Wavelet Packets Transform 
I 

• 

Conventionally, there are two kinds of wavelet transformation used for image 

processing, the pyramidal wavelet transform and the full wavelet transform. For 

the pyramidal wavelet transform, the decomposition is applied recursively to the 

lowest frequency subband image only, the LL portion. Thus the image content 

(smooth part) and the image boundaries (detail part) are well represented at 

different scales. On the other hand, the wavelet transform can be applied to 

each subband image to give a full tree representation. Since this approach lacks 
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Pyramida l Wave le t Trans form Full Wavelet Transform Wavelet Packets Trans form 

Quad-Tree Full Tree Arbitrary Binary Tree 

Figure 8.7: Comparison of the three kinds of multi-scale wavelet decompositions 
in 2-D signal (image). 

spatial localization properties, it is not good for energy compaction. 

A newly transformation called wavelet packets transform [10] [6] is intro-

duced. It is the generalization of the multi-resolution decompostion. In wavelet 

packets transform, an arbitrary binary tree decompositions will be carried out 

and choose the best tree according to the basis algorithm by Coifman, Meyer, 

Quake and Wickerhauser [10]. Using dynamic programming and an operational 

rate distortion criterion, the best time and frequency splittings can be obtained 

for achieving good image compression ratio while maintaining good visual qual-

ity, for instance. Figure 8.7 shows the difference of these three kinds of trans-

formation. 

49 



Chapter 8 Wavelet Transform 

8.8 Appendix 

8.8.1 QMF & CQF 

i l Sl2 

n ^ rn H H p h —2, ^2 — h "^ 

S _^ Analysis Synthesis 厂〉 八 

Filter Banks Filter Banks V ^ ^ 

L g — 2 | " 2 卜 g � 

L_J ^ L__J 
^ 1 ^ 2 

Figure 8.8: The quadrature filter banks (QMF or CQF). 

# ' 

Figure 8.8 shows the structure of a QMF filter banks. For the analysis/synthesis 

filters, h|h and g|g are the low-pass and high-pass filter respectively. After the 

signal S has been passed through the analysis filters, we have 

^i(o;) = H{u:)S{u) 

SHi{^) = G[u)S{uj) (8.18) 
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where H{uj) and G{u;) are the Fourier transform of h and g respectively. Down-

sampled by 2, we should have 

^(^) = ^[&i(^) + ^i(^ + ̂ )] 

- > ( > ( ^ ) + 丑 ( & 力 风 专 + 兀 ) ] 

SnH = ^[SHi{^) + SHi{^ + 7r)' 

=\[G{^)S{^) + G{^^n)S(^ + n)] (8.19) 

Similarly, we have the equations for upsampling by 2. [ 

SL2{^) = ^(¾!(^) + ^l(^ + 7r)] 

二 hH{u)S{u;) + H{uj + 7r)S{u + 7r)] ^ 

5W2M = ^[^i(^) + ^i(^ + 7r)] 

--[G{u;)S{Lj) + G{uj + 7T)S{uj + 7r)] (8.20) 
2 

The reconstructed information signal thus becomes 

S{L0) = SL2HE(CJ) + SH2HG(UJ) 

=^E(cj)[H(u;)S(u;) + H(u; + 7r)S(c0 + 7r)] + 
Zj 
$6(u0[Ĝ (Lc05"(u0 + Ĝ(u; + 7r)5Xu; + 7r)] -
^ 

二 hil{uj)H{uj) + G{uj)G{uj)]S{u) + 
J^ 

hH{iv)H{u; + 7T) + G{u)G{u + ir)]S{uj + 7r) (8.21) 
Li 

Therefore, the exact reconstruction and aliasing cancellation formulae are re-

spectively be 

E{uj)E{u:) + G<^uj)G{uj) 二 2 (8.22) 

E{uj)Eî uj + 7r) + G(cj)G(u; + 7r) = 0 (8.23) 
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Based on the above two equations, the quadrature mirror filter (QMF) and the 

conjugate quadrature filter (CQF) can be constructed. 

1. Quadrature Mirror Filter 

Esteban and Galand proposed the relationships between {H, H) and {G^ G) 

to construct the quadrature mirror filter. 

G{u;) = H{uj + 7r) 

H{uj) 二 G(cj + 7r) 丨 

G(u;) = -ff(u;^7r) (8.24) | 

Substituting these in (8.22), the exact reconstruction formula is 

B'(cv)-B'(u; + 7r) = 2 (8.25) 

2. Conjugate Quadrature Filter 

Smith and Barnwell proposed a different relationships for the filters and ' 

conjugate quadrature filter is obtained. 

G(cj) = -e-'^^H{iJ + 7r) 
(•' 

H{uj) = G{iJ + 7 r ) 

G{io) = - i f ( u ; + 7r) (8.26) 

Similarly, the exact reconstruction formula is 

\H{io)\^ + \H(u;^7r)\^ = 2 (8.27) 

Note that the filters used are not symmetrical. Furthermore, the CQF is 

a realization of the Mallet Algorithm. 
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8.8.2 Examples of Orthogonal Filters 

Table 8.1 are some of the Daubechies' filters [10] for some values of N, which is 

the number of vanishing moments of the corresponding wavelet (the number of 

zeros at the aliasing frequency). 

Table 8.1: Examples of the Daubechies' orthogonal filter coefficients and only 
that of the low-pass filters are given. 

h{n) N 二 2 N = 3 N 二 4 N = 5 N = 6 ； 

~0 0.482962910““0.332670““0.230377813309““0.160102390~~0.111540743350 | 
1 0.836516300 0.806891 0.714846570553 0.603829260 0.494623890398 � 

2 0.224143860 0.459877 0.630880767930 0.724308528 0.751133908021 
3 -0.129409522 -0.135011 -0.027983769417 0.138428140 0.315250351709 
4 -0.085440 -0.187034811719 -0.242294880 -0.226264693965 
5 0.035220 0.030841381836 -0.032244860 -0.129766867567 
6 0.032883011667 0.077571490 0.097501605587 
7 -0.010597401785 -0.006241490 0.027522865530 
8 -0.012580750 -0.031582039318 
9 0.003335725 0.000553842201 
10 0.004777257511 | 
11 I -Q.QQ10773Q1Q85 

8.8.3 Examples of Biorthogonal Filters *� 

Table 8.2 to 8.4 shows four spline filters which are biorthogonal filters. 
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Table 8.2: Examples of the biorthogonal filters. 

Filter Name n 0 ^ ^ ^ ^ 
一 一 一 — 

Filter 9-3 ||( l /V^)" (n)| 45/64 19/64 ~ ~ ~ A j s ~ ~ ~ “ “ - 3 / 6 4 “ “ 3/128 
{l/V2)hln) 1/2 1/4 0 0 0 

Filter 9-7 ( l /x /2) / i (n) 0.602949 0.266864 -0.078223 -0.016864 0.026749 
{l/V2)h{n) 0.557543 0.295636 -0.028772 -0.045636 0 

Filter 5-7 卞1/^/^;"(72) ^ ^ ^ ^ 0 0 • 
{l/V2)h{n) 17/28 73/280 -3/56 -3/280 0 | 

Table 8.3: Filter 9-15 (continue from the above table). 

n 0 ! l ! 2 +3 
{l/V2)h{n)'' 0 . 5 7 5 0 . 2 8 1 2 5 ^ ^ - 0 . 0 3 1 2 5 丨 

{l/y/2)h{n) 0.575291895604 0.286392513736 -Q.0523Q5116758 -0.039723557692 

- ' 

Table 8.4: Filter 9-15 (continue). 

n 二 4 二 5 二 6 二 7 

{l/V2)h{n) 0.0125 0 0 0 
{l/y/2)h{n) 0.015925480769 0.003837568681 -0.001266311813 -Q.QQQ5Q6524725 
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Transform Coding and 

Compression 

Transformation (subband filtering in some cases) of signals means mapping a 

signal in a domain to a specific domain. There should be no loss of signal in- ‘ 

formation and no coding gain is achieved after the transformation process. As 

a result, no compression of the original signal is achieved. Actually, the job 

of transformation is to express the signal in a specific format such that the re- •‘ 

dundancy can be identified. On removing or using less bits to represent these 

redundancy, one can compress the signal in any desired ratio. Nevertheless, er-

rors should be found from the reconstructed signal due to the loss of information 

in the compression process. 

For natural images, transformation will give a significant number of coeffi-

cients that are very small or equals zero in the extreme case. Therefore, good 
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Original ^ , , Compressed 
Forward . ,. •. Symbol ^ 

~ > > Quantization > ~ > 
Image Transform Encoder j^^g^ 

C o m — Symbol Inverse R ^ t r u c t e d I 
~ ~ ^ > Dequantization > — \ 

Image Decoder Transform , 
Image (LOSS) 

Figure 9.1: Block diagram of transform coding and compression. 

compression ratio can be obtained by discarding or quantizing these coefficients | 

coarsely without causing much distortion. The quantized coefficients are then 

losslessly entropy coded before storage or transmission, Figure 9.1. 

•‘ 

9.1 Transformation Techniques 

In image compression, transformation tries to decorrelate the coefficients and 

to repack the energy in such a way that most of the coefficients are very small 

in magnitude. There are many kinds of transformation techniques, which can 

attain the above goal, in addition to the wavelet transform discussed in the 
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previous chapter. Some of these orthogonal transforms are : discrete Fourier 

transform (DFT), discrete cosine transform, discrete sine transform, and Walsh-

Hadamard transform. Among them, discrete cosine transform is the best in 

decorrelating the coefficients besides discrete wavelet transform. The choice of 

these transforms should depend on the error tolerance and the availability of the 

computation resources in an application. 

9.2 Quantization 

Quantization [16] is the process of mapping a continuous variable X into a 

discrete variable F , which is a finite set of n numbers {y1 ,y2, . . . , Vn)-

9.2.1 Scalar Quantization 

For a L levels quantizer, define a set of increasing transition (decision levels) 

{tfc, k = 1, 2 , . . . , L + l|ti < t2 < . . . < t^+i} and a set of reconstruction levels 

{rk,k — 1, 2 , . . . , L\ri < r2 < . . . < r^} where rk is the reconstruction value 

of the interval [t^, tk+i). With this definition, a value of rk will be given to a 

variable X if the actual value of X fall in [tkj tk+i). 

1. Uniform Quantizer 

This is the simplest and the most common quantizer. For the uniform 

scaler quantizer, the intervals [tk, tk+i)^ k = 1 , 2 , . . . , L should have the 
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same length and rk, 1 = 1, 2 , . . . , L, is the midpoint of that interval. There-

fore, 

tk+i — tk 二 Constant k = 1, 2 , . . . , L 

= T k + i - Tk k — 1 ,2 , . . . ,L - 1 (9.1) 

2. Non-uniform Quantizer 

a = fW =̂gW 丨 

广 《 n “ ^ 1 ^ j 

X — 一1一广 U n i t a — / 1 今 、 

J Quantizer j 

Compressor Expander 

Figure 9.2: The compandor. 

<i> 

The non-uniform quantizer can be realized by a compandor. Figure 9.2. 

The signal X to be quantized is first transformed by a nonlinear mem-

oryless function f(x). The result a is then uniformly quantized and is 

expanded by function g{h). The function f and g should be designed in 

such a way that the overall system approximates the Lloyd-Max quantizer, 

which will be described in the next section. 

g{^) = r\x) 
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/ ( . ) = 2 v { 5 [ 权 ( 幼 * 如 | - y ( 9 . 2 ) 

^f / r ' [Px (u ) ]^du^ 

where px(x) is the probability density function of the input variable X 

and [ - y , V] is the range of a over which the uniform quantizer operates. 

For detail, please refer to [16 . 

9.2.2 Llyod-Max Quantization 

Llyod-Max Quantizer is a scaler quantizer which minimizes the mean square i 

error for a given number of quantization levels L. Given the probability density 

function of the input variable X is px{x)- One has to find the decision level tk 

and the reconstruction level Tk so that 

L 产… 
minE[{x - y)^] 二 m i n [ ^ / {x - riYpx{x)dx] (9.3) 

i=i Jtt 

where y is the quantized value corresponding to x. With further calculation, 1 

Tk + Tk-l 
“ = — i L ^ 

rk = C ^ ^ (9.4) . 
Jt|;^'px{x)dx 

Solving these equation iteratively, the Llyod-Max quantizer can be found. 

9.2.3 Vector Quantization 

In [17], a vector quantizer Q of dimension k and size N is a mapping from 

a vector (a point) in A;-dimensional Euclidean space, R!% into a finite set C 
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containing N code vectors (codewords). 

Q : R^ — C 

C = {y1,y2,...,yN} Vz G R^ ,i = l,2,...,N (9.5) 

The set C is called the codebook (code). With these definition, the resolution 

of the vector quantizer is 

Rc = ¥ (9.6) 

Therefore, the resolution of the quantizer depends on the size of the codebook. | 

Generally, vector quantization approaches the Shannon lower bound, found '： 

by Shannon's rate distortion theory, as the dimension of the vector becomes 

large. Therefore, vector quantizer can give superior performance over scaler 

quantizer. Nevertheless, as the dimension of the vector increases, the computa-

tional cost should be high in designing a good vector quantizer. 

9.2.4 Successive Approximation Entropy-Coded Quan-

tization : 

This is a new quantization technique used in zerotree algorithm. Generally 

speaking, it helps in generating embedded code analogous to the binary rep-

resentation of an approximation to a real number [3]. Details will be given in 

chapter 10. 
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9.3 Entropy Coding 

Entropy coding is a lossless coding technique which reduces the number of bits 

used for representing a given information (a combination of symbols such as 

the alphabets used in English). This subject has been studied extensively in the 

literature and many kinds of coding methods have been found. A brief discussion 

of some of these methods will therefore be given here only, 

9.3.1 Huffman Coding 

Huffman coding [18] assigns variable-bit-length codewords to a set of symbols | 

according to their occurrence probabilities in a file. As a result, symbols with 

higher occurrence probabilities should be encoded with shorter codewords. The 

codebook design of Human coding involves the building of a tree with the sym-

bols, which are to be encoded, being the leaf nodes at the lowest tree level. i 

1. Write down all the symbols together with the associated probabilities. All 

these symbols are the leaf nodes of the lowest tree level. 

2. Choose two nodes with the lowest probability. A parentiov these two nodes 

is created with weight equal to the sum of their probabilities. 

3. In step 2, the child node with smaller probability is assigned '0' ( T ) while 

the other node is assigned T ('0'). 

4. Repeat step 2 and 3 until a root node with weight equal to 1 is found. 
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SYMBOL CODEWORD 

BM ~~！ " "^ A 001 

1 _ 
D0.3 — H y B 1 

^ 

A0.2 n "•' C 000 
_oJ 

0 »'3 
C 0 . 1 � D 01 

Figure 9.3: An example of Huffman coding. 

5. The codeword for a symbol is simply the concatenation of the '0's or T s 

along the path from the root to the desired symbol. Figure 9.3 shows an l 

example of Huffman coding. 

9.3.2 Arithmetic Coding 
？ 

In arithmetic coding [18], a portion of the real number line is assigned to a symbol 

according to its probability. As a result, for a given sequence of symbols, the 

arithmetic coder will give out a real number representing the final small portion 

of the real line after the last symbol has been read. The decoder can then find 

out all the symbols in that sequence using this real number. Figure 9.4 is an 

example illustrating the following processes. 

The encoding process : 
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1. For a given sequence of symbols, a portion of the real number line [0,1] is 

assigned to a symbol according to its occurrence probability. 

2. When a symbol is read, the encoder chooses the corresponding portion 

and partitions it using the symbols' occurrence probabilities. 

3. Repeat step 2 until the last symbol has been read. 

4. Choose the lower bound of the final interval obtained to be the encoder's 

output. 

The decoding process : 

1. With the information given by the header of the file, a portion of the real 

number line [0,1] is assigned to a symbol according to its probability. 

2. The real number found in step 4 of the encoding process is read from the 

header. A symbol is found (decoded) by choosing the portion in which 

this number falls. 

3. The line portion corresponding to the above decoded symbol is further 

partitioned using the symbols' occurrence probabilities. 

4. Repeat step 2 and 3 until the symbol 'END-OF-FILE' is detected. 

The encoding and the decoding processes seem to be a little bit different from 

that discussed in [18], which does describe a more practical approach, but the 

idea is the same. 
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Symbol A B C 

Probability 0.5 0.3 0.2 

0 0 0.4 0.45 

^ n T | 4 / ^ 
0.5 0.25 / 0.45 / 0.465 

" A — / - E = B __ 
B \ / D = B 

0.8__ \ 0 . 4 y E = Q 0.48 0.474__ 

c i.oI \ T “ r ^ T 
0.5 0.5 0.48 

Input Sequence : ACB E : Encode i 
Encoder's Output = 0.45 D : Decode | 

— I 
I 

. . i 
Figure 9.4: An example of arithmetic coding. 

9.3.3 Dictionary Based Coding 

Generally, with dictionary based coding [18], a dictionary is built using previ-

ously seen symbols. Pointers or indexes are then used to encode the variable- i 

length phases in the input text. Therefore, compression is achieved if the point-

ers used are shorter than the phase to be encoded. 
k 

. . s 
Suppose the dictionary now contains 'AABC' and a phase 'ABC' is inputed. ‘ 

The encoded information would be 
(STARTING POINT,NUMBER OF SYMBOL) = (2,3) 

As a result, two numbers are sufficient to represent the phase and compression 

is possible as the number of bits required for representing the numbers should 

be less than that required for the input sequence 'ABC'. 

Powerful algorithms are designed, and the LZ (Lempel Ziv) series [18], such 

64 



Chapter 9 Transform Coding and Compression 

as LZ77 and LZW etc., are good examples of the dictionary based coding algo-

rithms. 

9.3.4 Run Length Coding 

A binary source should contain a number of '0's between two successive '1'. 

Thus run length coding means the length of the runs of '0's are coded. High 

compression can therefore be obtained if large runs of '0,s are expected. If there 

are m bits, maximum length of '0's can be coded is N = 2^ — 1. The symbol 

consisting all ' l ' s means that the true length of '0's is 2^ — 1 plus the following 

symbol. For example, for m = 3, assume the input sequence is 

01000000001000001000000011 

j 

and the coded sequence should be j 
f 

001 111 001 101 111 000 000 i 

The run length coding is an effective compression method for Bit Plane 

Encoding in which a 256 gray level image is considered as a set of 8 1-bit planes. 1 

9.3.5 Example 

Here is an example using Daubechies' orthogonal filter coefficients when the 

number of vanishing moments equals 2. 

The original image of LENA is shown in Figure 9.5. By the concept of 

transform coding, it is first decomposed by discrete wavelet transform (DWT) 
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mm 
瞧_ •• 
Figure 9.5: LENA (Original Im- Figure 9.6: LENA (Transformed 
age). at Level 1). 

• • 
Figure 9.7: LENA (Transformed Figure 9.8: LENA (Transformed 
at Level 2). at Level 3). 
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(8,8) (S,16) , ‘ ^ ¾ ^ ^ ^ ^ ¾ � A ^ S 
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Figure 9.9: The is the quantiza- Figure 9.10: The reconstructed 
tion format of the example where image of LENA quantized by the 
the values in a parenthesis means format shown on the left. (PSNR 
(BIT, STEP SIZE). = 33.72dB) 

to level i (scales i) giving 3z+l subbands. In this case, i equals 3 and 10 subbands 

of the image are obtained, Figure 9.6-9.8. After the wavelet transformation, the i 
I 

image should then be quantized by a quantizer which functions according to 

Figure 9.9. Note that the sign of each wavelet coefficient, except those of the 

lowest frequency subband and those being allocated 0 bit, are stored separately 

by 1 bit. Under this scheme, the compression ratio is 4.3:1 and the PSNR is 
1 

33.72dB at the output of the quantizer, Figure 9.10. Also, Figure 9.11 to 9.12 

show another result whose compression ratio is 64:1 but the PSNR is 24.51 dB. 

Higher compression ratio is expected after having losslessly compressed by the 

entropy coder, especially when arithmetic coder is used. 
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Figure 9.11: This is another Figure 9.12: The reconstructed 
quantization format where only image of LENA quantized by the 
the subband of the lowest fre- format shown on the left. (PSNR 
quency is considered. 二 24.51dB) 
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Chapter 10 

Embedded Zerotree Algorithm 

Shapiro [3] proposes a remarkably effective image compression algorithm called 

Embedded Zerotree Algorithm Using Wavelet Transform (EZW). In this algo-

rithm, the compressed (output) bits can be generated in order of importance 

and hence giving a fully embedded code. As a result, the encoder (decoder) 

can terminate at any instance or when the target distortion metric is met. Ex-

cellently, the algorithm requires no training, no pre-stored tables or codebooks, 

and no prior knowledge of the image sources but the compression result is com-

petitive with some well known algorithms. 

The EZW compression consists of five procedures : (1) perform the discrete 

wavelet transform on the given image source; (2) code the significant map re-

sulted with a given threshold T; (3) refine the significance coefficients found in 

step (2) by successive approximation; (4) repeat step (2) and (3) till the dis-

tortion metric is met; (5) a stream of symbols representing the image source is 
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MH H L ,l | f | 
p ^ ^ _ ^ H L , i : ^ ^ _ H L , 

LH2\ HH^Xi LH2 HH! ^ ^ 

t ^ ^ 壬： 
LHi \ 冊 1 LHi 冊 1 

, v ^ 
^ 3 ^ 5 
Figure 10.1: The parent-child re- Figure 10.2: The scanning order 
lationship between the subbands. of the subbands for encoding a 

significance map. 
generated and is losslessly entropy coded by an arithmetic coder. 

10.1 Significance Map Encoding 

Performing discrete wavelet transform on a image, the lowest frequency band 

at level i is decomposed into four subbands, LL{^i, LH{+i, HL{+i and HH{+i 

at level i + 1, Figure 10.1. With the hierarchical subband system obtained, 

the coefficients at the coarser levels can be related to the coefficients at the 

finer levels as indicated by the arrows in Figure 10.1. The coefficients at the 

coarser levels are the parents while those corresponding to the same spatial 

orientation at the finer levels are the children. Except the coefficients in the 

lowest frequency and those in the highest frequency, which have three children 

and no child respectively, all coefficients should have four children. As a result, 
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a tree is built. 

In order to code the subbands' coefficients (the significance map), the co-

efficients should be scanned in such a way that no low frequency coefficients 

precedes high frequency coefficients, i.e. no child is scanned before its parent. 

One of the possible scanning patterns is shown in Figure 10.2. During the 

scanning process, the significance map is coded by thresholding. For a given 

threshold T, a coefficient x is said to be insignificant if and only if 

H < T (10.1) 

By equation (10.1), a zerotree can be defined with coefficient x being the tree 

root if and only if 

1. X is insignificant for the current threshold T. 

2. The children of x are insignificant for the current threshold T. 

3. There is no parent of x being insignificant for the current threshold T. 

Therefore, four symbols would be enough to encode the significance map at any 

instance. 

1. A symbol 'POS' is assigned to a coefficient x if equation (10.1) is not 

satisfied and x > 0. 

2. A symbol 'NEG' is assigned to a coefficient x if equation (10.1) is not 

satisfied and x < 0. 

3. A symbol 'ZTR' is assigned to a coefficient x if it is a zerotree root. 
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4. A symbol 'Z' is assigned to a coefficient x if it has no child and equation 

(10.1) is satisfied. Thus x should be in the highest bands, such as LHi, 

HLi and HHi shown in Figure 10.2. 

5. A symbol 'IZ' is assigned to a coefficient x if it is insignificant and there 

should have at least one of its children that is significant. 

10.2 Successive Approximation Entropy 

Coded Quantization 

Successive approximation entropy coded quantization (SAQ) is an efficient em-

bedded code analogous to the binary representation of an approximation to a 

real number. A sequence of thresholds To, T1,T2,. . . , T^- i , T/v are used for ze-

rotree coding the significance map and for refining the significant coefficients 

found. The thresholds are chosen so that the following equations are satisfied. 

rp T j - l 
Tt = — 

max{|transform coefficients Xj\} < 2To (10.2) 

Having relation to bit plane encoding, the thresholds should be powers of 2. In 

general, the thresholds need not be powers of 2. Then To can be expressed in 

terms of a threshold that is a power of 2 

To = M2^ (10.3) 

where M is a constant mantissa and E is an integer. 
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In SAQ, during encoding or decoding, it maintains two separate lists, the 

dominant and the subordinate lists, at any instance. The dominant list contains 

the coordinates of those coefficients that have not been found to be significant 

in the scanning order described in section (10.1). In other words, the dominant 

list is an updated significance map at a threshold. On the other hand, the sub-

ordinate list contains the magnitudes of those coefficients found to be significant 

by the thresholds. 

In the dominant pass with threshold Ti, the significance map is zerotree 

coded using the symbols POS, NEG, ZTR, Z and IZ. Whenever a coefficient is 

encoded as significant, its magnitude is appended to the subordinate list, and the 

significance map is updated with its value set to 0 so as to allow the occurrence 

of a zerotree in future dominant passes with smaller thresholds. Note that the 

magnitude of the coefficient should fall in the confident interval [T ,̂ 2T{) and is 

l.5Ti for MINIMAX optimal reason. 

In the subordinate pass with the current threshold T], all the coefficients in 

the list are refined to an additional bit of precision. 

1. The confident interval of each coefficient is cut in half, an upper interval 

and an lower interval. 

2. A symbol T is put in the output stream if the magnitude of a coefficient 

falls in the upper interval; otherwise, a symbol '0, is assigned instead. 

3. Because of the MINIMAX optimal reason, the reconstruction value for 

that coefficient is thus the mid-value of the interval in which it falls. 
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4. Sorting is then carried out for these new magnitudes of the coefficients in 

descending order. Note that the order should be preserved in the sorting 

process, i.e. if a and b have the same value and a precedes b, a should be 

in front of b after having been sorted. 

The process continues alternating between dominant and subordinate passes 

till the distortion metric or the bit budget is met. The stream of symbols 

obtained is losslessly entropy coded and compressed. In [3], an arithmetic coder 

is used for achieving good compression ratio. For the decoding process, similar 

procedures are needed to recover the image. 

10.3 Example 

To illustrate, lets consider the example in [3 . 

Figure 10.3 shows the coefficients of a 3-level wavelet transform of an 8x8 

image. Using equation (10.2), the initial threshold To equals 32. Following the 

scanning order depicted in Figure 10.2, we have : 

1. First dominant pass for To 二 32 

(a.) Since |63| > |32|, it is significant and its current confident interval 

is [32,64). The current reconstruction value is therefore 48. The 

other significant coefficients (-34, 49 , and 47) are treated in the same 

manner. 
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6 3 - 3 4 4 9 10 7 13 -12 7 
0 0 0 10 7 13 -12 7 

- 3 1 2 3 14 - 1 3 3 4 6 -1 
-31 2 3 14 - 1 3 3 4 6 -1 

15 14 3 - 1 2 5 -7 3 9 
15 14 3 -12 5 -7 3 9 

-9 -7 -14 8 4 -2 3 2 
-9 -7 -14 8 4 -2 3 2 

-5 9 -1 47 4 6 -2 2 
-5 9 -1 0 4 6 - 2 2 

3 0 - 3 2 3 -2 0 4 
3 0 -3 2 3 -2 0 4 

2 - 3 6 -4 3 6 3 6 
2 -3 6 -4 3 6 3 6 

5 11 5 6 0 3 -4 4 5 11 5 6 0 3 - 4 4 

Fiffure 10.3: Example of 3-level „ . …,^7^, , , , . ,^ ° , ^ ^ p . � � . Fiffure 10.4: The updated signili-waveiet transiorm oi an 8x8 im- & � ^ 丄 cance map aiter tne nrst pass. age. 

(b.) The children of 49 are (7,13,3,4). They are insignificant and are 

encoded by the symbol Z since they have no descendant. 

(c.) Though -31 is insignificant, its child 47 is significant. It is thus en-

coded by the symbol IZ. Similarly, a symbol IZ is also assigned to the 

coefficient 14 in LH2. 

(d.) The coefficient 23 is the zerotree root as all of its descendants are 

insignificant. There are many zerotree roots for To — 32. The results 

are tabulated in Table 10.1. 

2. First subordinate pass for To 二 32 

(a.) After the first dominant pass, 4 significant coefficients are appended 

to the subordinate list. They are ordered according to the scanning 

pattern, Table 10.2. 

(b.) The confident interval of these significant coefficients is [32, 64) which 
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is halved to give the lower interval [32,48) and the upper interval 

[48,64). 

(c.) Since 63 falls in the upper interval, a symbol '1，is put in the output 

stream and the reconstruction magnitude becomes 56. The results 

for the other significant coefficients are shown in Table 10.2. 

(d.) The significant coefficients are sorted using the reconstruction mag-

nitudes as the main key, Table 10.3. Note that the order is preserved. 

This explains why 34 still precedes 47. 

Table 10.1: The result of the first dominant pass when To — 32. 

Subband Coefficient Value Symbol Reconstruction Value 
LLs 63 POS 48 — 

~ ~ W T s ~ -34 “ NEG 一 -48 
LH3~ - 3 1 IZ 0 一 

H H ' s ~ 23 ZTR 0 — 
H L 2 ~ 49 POS 48 — 

~~HL2 10 ZTR — 0 
~ W L 2 ~ 14 - ZTR Q 
~ ~ F I ^ ~ -13 “ ZTR 0 

LH2 15 - ZTR 0 
~ L H 2 ~ 14 IZ 一 Q 

LH2 -9 ZTR — 0 
~"TW2~~" -7 ZTR 0 

H L � — 7 Z — 0 
HLr 13 ~ ~ Z 0 -
H L i ~ ~ 3 ~~ Z 0 — 
HLi — 4 Z 0 
LH^ — -1 Z — 0 
LHi 47 POS — 48 
LHi -3 ~ Z 0 “ 
LHi II -2 Z 0 

76 



Chapter 10 Embedded Zerotree Algorithm 

Figure 10.4 shows the resulting significance map after the first pass. The 

process continues between alternating dominant and subordinate passes till the 

stopping condition or the target rate is reached. 

10.4 Comments on EZW 

The EZW is an excellent algorithm that is image independent. Impressive com-

pression results are reported without the use of pre-stored tables or codebooks. 

Furthermore, the output bit stream can be generated in the order of importance 

and is ideal for progressive transmission. On the other hand, this algorithm has 

to maintain two lists, the dominant and the subordinate lists, during compres-

sion or decompression and it thus requires much memory, especially at smaller 

thresholds. It also uses much bit budget on encoding the significant maps. Im-

portantly, some fast sorting algorithms, such as QUICK SORT, cannot be used 

for sorting the significant coefficients during the subordinate passes. It is be-

cause the order of these coefficients should be preserved. Despite these facts, it 

leads image compression to a new age by exploiting the self-similarity inherent 

in the wavelet coefficients across the scales of the same spatial orientation. Many 

researches or studies based on this idea have been reported in the literature. 
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Table 10.2: The result of the first subordinate pass before sorting. 

abs(Coefficient) Symbol Reconstruction Magnitude 
— 63 1 56 一 

34 一 0 — 40 
49 1 — 56 

— 47 0 40 — 

Table 10.3: The result of the first subordinate pass after sorting. 

abs(Coefficient) Symbol Reconstruction Magnitude 
— 63 1 56 — 
— 49 — 1 “ 56 — 
— 34 0 40 
— 47 Q 40 
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Residue Coding Using 

Embedded Zerotree Algorithm 

In the previous chapter, the Embedded Zerotree Algorithm (EZW) has been 

described. In EZW, during both the dominant and the subordinate passes, 

the magnitudes of the significant coefficients are reconstructed with precision 

specified by the values of the thresholds. At a specific threshold, the signs and 

the positions of the significant coefficients are explicitly expressed by the encoded 

significant map. But the stream of symbols generated during subordinate passes 

tells nothing except the refined values of the significant coefficients. This implies 

that the subordinate list may be redundant if the dominant list can take its 

role. On the other hand, most of the wavelet coefficients are very small in 

magnitude. The cost of encoding the significant map may therefore be high at 

smaller thresholds as few zerotree roots may be identified. 
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Aiming at overcoming the drawbacks stated in section (10.4) , a residue 

method introduced in [8] is proposed to be used with the EZW. The resulting 

algorithm, Residue Coding Using Embedded Zerotree Algorithm (RCZW), works 

with dominant list only. Whenever a wavelet coefficient is identified being sig-

nificant, the significant map will be updated with its residue instead of zero. 

Indeed, this may increase the cost at large thresholds as the residues may pre-

vent the occurrence of a zerotree on future passes. However, the effect is small 

since the residues are usually small in magnitude. As a result, it is expected 

that the RCZW performs better than the EZW. 

11.1 Residue Coding 

In section (10.2), successive approximation quantization (SAQ) is described. By 

SAQ, the confident interval of a significant coefficient is [T, 2T) at any threshold 

T and the reconstruction magnitude is 1.5T for MINIMAX optimal reason. 

Making use of this reconstruction value, the subordinate list can be removed by 

updating the significant map with the significant coefficients' residues instead of 

zero. 

For a given threshold 7\ and a significant wavelet coefficient X, the residue 

is defined as 

，X - C, if X > 0 
ft 二 （11.1) 

X + C, if X < 0 

k 

where Ci 二 1.5Ti. With i^s, the significant map is encoded by the zerotree algo-

rithm stated in the previous chapter. In the decoding process, the reconstruction 
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A. 

value X after the 产 pass would be 

文 = S V : 7 o + &C^i + ... + ^_iC;^-i (11.2) 

where Si equals 1 or -1 corresponding to the symbol 'POS' or 'NEG' respectively. 

11.2 Results 

Restricting only four types of symbols in the output stream, the EZW and the 

RCZW are implemented for 512x512 8bpp gray images. The entropy coder used 

is the zero order arithmetic coder in [18]. With that arithmetic coder, the size 

of the header is 8 bytes, 7 bytes for the statistics of the symbols and 1 byte for 

the maximum threshold To. Note that the performance of this arithmetic coder 

is not good. It is used here since the main goal is to compare the performance 

of EZW and RCZW in addition to its simplicity in structure. 

In the experiments, the test images are LENA (Figure 11.1) and BARBARA 

(Figure 11.2). Six scales of the 4 taps Daubechies filter were applied to these 

two images. Using a specific threshold being the stopping condition, the results 

for LENA and BARBARA are tabulated in Table 11.1-11.2 and Table 11.3-11.4 

respectively. 

From these results, the RCZW has nearly the same compression ratios as the 

EZW under comparable PSNRs. Also, Figure 11.3-11.10 are some of the images 

named by the 'Picture Number' in the above tables. It is found that the visual 

quality is about the same, too. On the other hand, the two algorithms cannot 

code the edges well enough to avoid the contouring effect. 
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圓鼷 
• 1 J H H i i i H ^ ^ W 1 — H H H M H B i l M M t f t e i i a i a H i 
Figure 11.1: LENA (Original Im- Figure 11.2: BARBARA (Origi-
age). nal Image). 

Table 11.1: Coding results for LENA using EZW. 

"Picture Number SIZE (byte) Rate (bpp) Compression Ratio PSNR (dB) 
— E Z W L1 29288 0.89 9.0:1 35.59 一 

EZW L2 14567 — 0.44 18.0:1 — 32.26 
— E Z W L3 — 6657 0.20 39.4:1 — 28.84 — 
— E Z W L4 — 2787 0.09 94.1:1 25.77 — 
— E Z W L5 1093 0.03 239.8:1 23.04 

EZW L6 474 0.01 553.0:1 20.81 — 

Table 11.2: Coding results for LENA using RCZW. 

"Picture Number SIZE (byte) Rate (bpp) Compression Ratio PSNR (dB) 
— R C Z W L1 23409 0.71 11.2:1 35.57 — 
— R C Z W L2 11932 0.36 22.0:1 32.30 
— R C Z W L3 5654 0.17 — 46.4:1 — 28.83 
— R C Z W L4 2601 0.08 100.8:1 25.70 

RCZW L5 1016 — 0.03 — 258.0:1 “ 23.03 “ 
RCZW L6 443 0.01 591.7:1 21.19 — 
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Table 11.3: Coding results for BARBARA using EZW. 

T ic ture Number SIZE (byte) Rate (bpp) Compression Ratio PSNR (dB) • 
— E Z W B1 58906 1.80 4.5:1 34.36 “ 
_ E Z W B 2 29255 0.89 9.0:1 29.43 — 
一 E Z W B 3 11357 0.35 23.1:1 — 25.32 — 
— E Z W B4 ~ ~ 3296 0.10 79.5:1 “ 22.40 “ 

EZW B5 1210 0.04 216.6:1 — 20.74 — 
— E Z W B 6 497 0.02 527.5:1 18.98 — 

Table 11.4: Coding results for BARBARA using RCZW. 

"Picture Number SIZE (byte) Rate (bpp) Compression Ratio PSNR. (dB) 
— R C Z W B1 47243 1.45 5.5:1 34.38 ‘ 
— R C Z W B 2 — 23946 0.73 10.9:1 “ 29.49 
— R C Z W B 3 ~ 10258 0.31 25.6:1 — 25.38 — 
— R C Z W B 4 ~ 3320 0.10 79.0:1 22.40 — 
— R C Z W B 5 ~ 1125 0.03 233.0:1 20.63 — 
— R C Z W B6 417 0.01 628.6:1 18.96 ‘ 

i l 關 
Figure 11.3: LENA (EZW L2). Figure 11.4: LENA (RCZW L2). 
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匿0 ^^^w 
I^^J 1^^ 

Figure 11.5: LENA (EZW L4). Figure 11.6: LENA (RCZW L4). m^m f ^ p 
_ _ 
Figure 11.7: BARBARA (EZW Figure 11.8: BARBARA (RCZW 
B2). B2). 
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rn^m • 暴 驟 
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_ 痛 
Figure 11.9: BARBARA (EZW Figure 11.10: BARBARA 
B3). (RCZW B3). 

All in all, considering the speed and the memory used, the RCZW performs 

better. It, however, has comparable compression results with the EZW. 
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Conclusion 

Extensive researches or studies of applying wavelet theory in the field of signal 

analysis and compression have been carried out in the current decade. Because of 

the elegant properties of good localization in both frequency and time domains, 

discrete wavelet transform is therefore good for decomposing a signal giving 

uncorrelated wavelet coefficients. High compression ratios can be obtained by 

quantizing these wavelet coefficients appropriately. 

By Mallat, the technique of multiresolution analysis is introduced, and Mal-

lat Algorithm is also created for realizing multiresolution analysis using wavelet 

transform. Technically, the Mallat Algorithm can be implemented by the con-

jugate quadrature filter (CQF). The original signal is thus decomposed into 

subbands of wavelet coefficients. For images in nature, it is found that good 

compression results will be obtained if one can identified the quantization step 

size and the bit budget required for the subbands based on their respective 

86 



Chapter 12 Conclusion 

statistics so as to meet a specific rate distortion requirement. 

Based on the work of Mallat, many innovative image compression algorithms 

are proposed. One of them is the embedded coding method using zerotree 

algorithm (EZW) proposed by Shapiro [3]. This EZW algorithm is based on 

: ( 1 ) hierarchical subband decomposition by discrete wavelet transform; (2) self-

similarity inherent in the transformed image across the scales of the same spatial 

orientation; (3) successive approximation quantization. In [3], this scheme can 

achieve competitive compression results while no training, no pre-stored tables 

or codebooks, and no prior knowledge of the image source are required. 

However, since the EZW algorithm maintains two lists, the dominant and 

the subordinate lists, during encoding and decoding processes, this costs a lot 

of memory. Besides, the algorithm puts much cost on encoding the significant 

map at each dominant pass. The last drawback of the algorithm is the need to 

do sorting at each subordinate pass. As the order of the significant coefficients 

should be preserved, some fast sorting algorithms, such as QUICK SORT, can-

not be used. As a result, the speed of compression (decompression) should be 

decreased when the number of significant coefficients identified increases, espe-

cially at lower thresholds. A better solution is to make use of the reconstruction 

value at each dominant pass and residue coding is used. The method is : (1) 

maintains the dominant list only; (2) whenever a significant coefficient x is found 

at the threshold Ti, the significant map is updated with {x — Ti) when x > 0 

or {x + Ti) when x < 0 instead of zero, i.e. the residue. Under this scheme, 

Residue Coding Using Embedded Zerotree Algorithm (RCZW), no subordinate 

list is needed and no sorting is performed. Thus RCZW is faster and uses less 
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memory than EZW. Furthermore, it is found that the RCZW gives comparable 

visual quality and compression results with the EZW. 

Since errors of edges usually have little effect on MSE, the visual quality 

may be poor though PSNR is above 30 dB. As a result, trying to find a good 

algorithm, which can identify the important information of edges while main-

taining low calculation complexity (burden) and acceptable compression results, 

deserves further researches. On the other hand, images are often compressed in 

wireless communication. A little information loss or a few errors should degrade 

the image quality much. As a result, strong error correction coding method 

should be used but a large overhead will be resulted, which is undesirable when 

the image size is very small. In the light of the hierarchical structure obtained 

by wavelet transform, the total cost of the overhead can be reduced. This can 

be done by applying stronger error protection code to subbands at higher levels. 

What kinds of error correction codes used in each subband and how to achieve 

ATM like error performance need further study. Similar work has been done by 

Yow-Jong Liu and Ya-Qin Zhang [9 . 
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