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Abstract 

Object-oriented database management systems have generated significant ex-

citement in the database community. They provide data management facilities 

for new application areas such as computer-aided design (CAD), computer-aided 

manufacturing (CAM), knowledge-based systems, AI systems, multimedia ap-

plications with images and sound. 

However, the support for large and complex data in object-oriented database 

management systems might downgrade the system performance, which is consid-

ered as an important factor on their acceptance in the new application domains. 

This thesis addresses the issues of efficient indexing support for query process-

ing in object-oriented database management systems and presents some indexing 

techniques that directly support the object-oriented paradigm. 

An indexing structure "Triple Node Hierarchy" is proposed for optimizing 

query processing in object-oriented database systems. The structure provides 

efficient support for object references along an aggregation hierarchy by main-

taining direct mapping between the objects of the two classes, while the inter-

mediate objects are maintained separately for update purpose. With suitable 

modifications, the Triple Node Hierarchy method can provide fast support for 

object navigation in both aggregation and inheritance hierarchies. Our results 

have showed that the Triple Node Hierarchy performs better than other methods 

in object-oriented query processing. 
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Chapter 1 

Introduction 

1.1 Motivation 

With the advance of the technology of computer systems, a number of tech-

nical application areas, such as computer-aided design (CAD), computer-aided 

manufacturing (CAM), knowledge-based systems, AI systems, multimedia ap-

plications with images and sound, benefit from the support of database technolo-

gies. These application domains require semantically rich modeling capabilities 

for representing and manipulating the structurally complex inter-relationships 

among data [21]. Traditional database systems, such as relational database sys-

tems do not adequately support these new application domains. This results in 

the development of new database technology with more suitable functionality. 

The object-oriented database technology supports a rich collection of sophis-

ticated data modeling and manipulation concepts. Intensive research towards 

the object-oriented database technology extends relational database system con-

cepts with data and procedural abstractions, and embellishes object-oriented 

programming languages with database capabilities. A large number of object-

oriented databases are available commercially or are being developed by many 
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Chapter 1. Introduction 

industry or academic research facilities, e.g. GemStone [10], 0 2 [1], Objectiv-

ity [27], ObjectStore [23], Ontos [28], VERSANT [32]. Such intensive research 

and commercialization activities demonstrate that object-oriented database sys-

tems constitute a promising approach towards supporting the new application 

domains. 

Although the object-oriented database technology addresses the needs of the 

new applications, the support for large and complex data might downgrade the 

performance of corresponding systems which is considered as an important factor 

on the acceptance of the object-oriented technology in the new application do-

mains. Efficient query optimization and access planning had been proven to be 

a cornerstone of relational systems performance, and will gain even more impor-

tance for semantically richer queries and complex data. Thus, object-oriented 

database application domains must provide excellent performance to meet the 

challenge due to large volume of complex data, and we believe that efficient 

indexing is critical in making object-oriented database systems competitive in 

terms of performance with traditional database systems. 

1.2 The Problem in Object-Oriented Database 

Indexing 

Indexing techniques have been widely investigated in the framework of conven-

tional databases, such as relational databases and several organizations have 

been proposed in the literature. For example, B-trees and hashing are some of 

the most common ways to implement an index. However, the novel features 

of object-oriented data models require index organizations beyond conventional 

techniques in order to provide efficient support for the queries that are possi-

ble in databases based on these advanced data models. We therefore need to 

develop new indexing techniques to support query processing in object-oriented 
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Chapter 1. Introduction 

database systems efficiently. 

1.3 Contributions 

This thesis focuses on indexing techniques for object-oriented databases and 

presents new indexing structures to improve the system performance. The main 

contributions of this thesis include the following research results: 

Support for aggregation hierarchy: We proposed an indexing technique, 

called the Triple Node Hierarchy, which supports fast navigations among ob-

jects and classes along path expressions in object-oriented databases. 

Overlapping of path expressions in an aggregation hierarchy: In an object-

oriented database, more than one index might be constructed on different path 

expressions along an aggregation hierarchy. We address the problem of over-

lapping subpaths in path expressions in an aggregation hierarchy, and illustrate 

how the Triple Node Hierarchy solves the problem. 

Support for the integration of aggregation hierarchy and inheritance hierar-

chy: We integrate the Triple Node Hierarchy with the CH-tree to construct an 

indexing structure, called the nested CH-tree, which supports efficient retrieval 

of instances against a class hierarchy on a nested attribute. The nested CH-tree 

constructs a CH-tree indexed on the nested attribute while the intermediate ob-

jects are maintained separately by the Triple Node Hierarchy. We demonstrate 

that the Triple Node Hierarchy can be integrated with other indexing structures 

that originally support the inheritance hierarchy. We show that this integration 

can achieve good performance. 
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Chapter 1. Introduction 

1.4 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 presents an overview of 

the basic concepts of an object-oriented data model. A comprehensive review 

of indexing techniques for object-oriented databases is presented in chapter 3. 

In chapter 4, a new index structure, called the Triple Node Hierarchy, is pro-

posed, which provides efficient support for object navigation along aggregation 

hierarchy. We have developed a cost model and the results have shown that the 

proposed structure outperforms other index structures. In chapter 5, we fur-

ther extend the Triple Node Hierarchy method to provide an integrated support 

for queries which have access scope along inheritance hierarchy and aggregation 

hierarchy. In chapter 6, we discuss the details on the decomposition of path 

expressions. Finally, chapter 7 concludes the thesis with a discussion on future 

research. 
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Chapter 2 

Object-oriented Data Model 

2.1 Object-oriented Data Model 

An object-oriented data model is based on five fundamental concepts [8 

• Each real world entity is modeled by an object. Each object is associated 

with a unique identifier (OID). 

• Each object has a set of attributes (or instance variables) and methods 

(operations), and the value of an attribute can be an object or a set of 

objects. The set of attributes of an object represents the object structure 

and the set of methods represents an object behavior. 

• The attribute values represent the state of an object. This state is accessed 

or modified by sending messages to the object to invoke the corresponding 

methods. 

• Objects sharing the same structure and behavior are grouped in classes. 

A class represents a template for a set of similar objects. Each object is an 

instance of some class. A class consists of a number of attributes, and the 

value of an attribute of an object belonging to the class is an object or a set 
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Chapter 2. Object-oriented Data Model 

of objects belonging to an arbitrary class. This results in an aggregation 

hierarchy. An attribute of any class on an aggregation hierarchy is a nested 

attribute of the root class in the hierarchy. 

• A class can be defined as a specialization of one or more classes. A class 

defined as specialization is called a subclass. A subclass inherits attributes, 

messages, and methods from its superclass(es). The superclass/subclass 

relationship results in an inheritance hierarchy, which is orthogonal to the 

aggregation hierarchy. 

2.2 Object and Object Identifiers 

In object-oriented databases, each real world entity is represented by an object. 

An object is associated a state and a behavior. The state is represented by the 

values of the attributes of the object while the behavior is defined by the methods 

acting on the state of the object upon invocation of corresponding operations. 

The identity of an object is independent of the values of the object attributes. 

A system that is identity-based allows an object to be referenced via a unique 

internally generated number, an object identifier, independent of the attribute 

values of the object. 

For performance reasons, if the domain of an attribute is a primitive class, 

such as integers or characters, the values of the attribute are directly represented; 

that is, instances of a primitive class have no identifiers associated with them. 

2.3 Complex Attributes and Methods 

In object-oriented databases, the domain of an attribute can be any class: both 

primitive and non-primitive. Object attributes may have complex values, such 

as sets or reference to other object. There are three kinds of complex attributes: 
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Chapter 2. Object-oriented Data Model 

reference attributes, collection attributes, and derived attributes. 

Reference attributes, or associations, are used to represent relationships be-

tween objects. They take on values that are objects. Normally, the object 

identifiers of the object entities that are being referenced are stored as the at-

tribute values. Reference attributes are analogous to pointers in a programming 

language, or to foreign keys in a relational system [11]. The ability to take an 

object as the value for an attribute greatly simplifies the modeling of a database 

and makes the modeling more straightforward and natural. 

Collection attributes is used for lists, sets, or arrays ofvalues. The collections 

may include simple attribute values and also references. Operations are provided 

for creating, inserting, or deleting an element from a collection. Many object-

oriented database systems support collections which reflect a real world need, 

for instance, to describe a person's hobbies(set), ordered preferences(list), etc. 

Derived attributes are those whose values can be defined procedurally rather 

than stored explicitly, by specifying a procedure to be executed when the value 

is retrieved or assigned. For example, we may store such personal information as 

birth date and age in a personnel database. The birth date will not change but 

the age does. It would be desirable to define a procedure for the age attribute so 

that it always represents the difference between the current date and the birth 

date. 

Methods are procedures used in object-oriented databases to encapsulate or 

"hide" the attributes of an object, providing the only interface to manipulate the 

object. This encapsulation provides a form of 'logical data independence' and 

means that the implementation of objects can be modified, without affecting 

the applications that use them. 
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Chapter 2. Object-oriented Data Model 

2.4 Class 

Class is used to group together objects that respond to the same message, use 

the same methods, and have variables of the same name and type. Each such 

object is called an instance of its class. All objects in a class share a common 

definition, though they differ in the value assigned to the variables [22]. 

Briefly, a class defines the structure (the attributes and relationships in which 

objects having this type can participate) and behavior (the methods associated 

with the type) of objects of a particular type. 

2.4.1 Inheritance Hierarchy 

In an object-oriented database scheme, it is often the case that several classes are 

similar. It would be desirable to define a representation for the common variables 

of these classes in one place. To do so, we place classes in a specialization 

hierarchy, in which a class, called subclass, is defined as a specialization of 

other class, called superclass. A subclass inherits all the attributes and methods 

of its superclass and can define its own attributes and methods. If a class 

inherits attributes and methods from only one class, this inheritance is called 

single inheritance. Otherwise, it is called multiple inheritance. In a system 

which supports single inheritance, the classes form a hierarchy, called inheritance 

hierarchy. 

2.4.2 Aggregation Hierarchy 

There exists another kind of hierarchy relating to classes, the aggregation hier-

archy. The fact that the domain of an attribute may be an arbitrary class gives 

rise to the nested structure of the definition of a class: a class consists of a set of 

attributes; the domains of some or all of the attributes may be classes with their 

own sets of attributes, and so on. This definition of a class results in a directed 
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Chapter 2. Object-oriented Data Model 

graph of classes rooted at that class, the aggregation hierarchy. However, this is 

not a hierarchy in the strict sense of the world, since the classes can be defined 

recursively. 

2.5 Sample Object-Oriented Database Schema 

Line ^ ^ 
• Flight ^ Sector ^ Airport 

name S n..mhAr 
number N nbr_hours N code S 

code N 
plane S departure_city S name S 

nationality S 
routing* destination S city S 

flights* ~ ~ 7 ~ \ ~ ~ 
^ Z \ depart_airports* type S 

/ \ arrival_airports* 

, � _ Inheritance relationship 
ItalianLine ExceptionalFlight WeeklyFlight ~ ~ coincidences* _ ^ ^ Aggregationrelationship 

soc.sec.nbr N dates* S days* S ^ String 
N Number 

Figure 2.1: Sample Object-Oriented Database Schema 

An example of object-oriented database schema is shown in figure2.1. In figure2.1, 

a class is represented by a box, and the attributes of the class are inside the box. 

Those attributes labeled with * denote multi-valued attributes. Two types of 

arcs are used in the representation. A simple arc from a class C to a class C' 

denotes that C' is the domain of an attribute of C. A bold arc from a class C 

to a class C' indicates that C' is a subclass of C. 
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Chapter 3 

Indexing in Object-Oriented 

Databases 

3.1 Introduction 

Indexing techniques in object-oriented databases can be classified as structural 

and behavioral. Structural indexing is based on object structure and behavioral 

indexing is based on object behavior. Structural indexing techniques support 

queries issued against aggregation hierarchy and inheritance hierarchy while be-

havioral indexing techniques support queries containing method invocations. 

3.2 Indexing on Inheritance Hierarchy 

In an inheritance hierarchy, an instance of a subclass is also an instance of its 

superclass. Hence, the access scope of a query against a class may generally 

include not only its instances, but also those of its subclasses. Two examples 

of such queries against the database schema of Figure 2.1 are shown in the 

following: 

• Retrieve all Italian lines whose nationality is British. 
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Chapter S. Indexing in Object-Oriented Databases 

• Retrieve all lines (including the Italian ones) whose nationality is British. 

The first query targets on only the class ItalianLine while the second query 

targets bn all classes rooted at the class Line. 

Queries based on some attributes of a class or a class hierarchy can also be 

classified as point queries and range queries. Point queries basically ask for all 

instances of a class or a class hierarchy with a particular value for the concerned 

attribute. Range queries, on the other hand, ask for instances of a class or a 

class hierarchy whose attribute value falls in a certain range. 

Kim et al. proposed the Class-Hierarchy tree (CH-tree) [20] which is based 

on B^-tiees and essentially maintains only one index tree for all classes of a class 

hierarchy. It clusters the OIDs of objects of all classes in the class hierarchy by 

the value of an indexed attribute. It has simple searching and update algorithms 

which are similar to those of B+-trees. The performance for point query is 

excellent, although range query may be inefficient. Also, searching for values in 

a single class is treated in the same way as searching for values in a hierarchy of 

classes. 

Low et al. presented an indexing structure called the H-tree [25] which is 

similar to _S+-trees. A H-tree is maintained for each class of the hierarchy. To 

index a class hierarchy on a common attribute, the H-tree of the root class of 

the hierarchy is nested with the H-trees of all immediate sub-classes of the root, 

and the H-trees of the subclasses are nested with the H-trees of their respective 

subclasses and so on. H-trees cluster the OIDs of objects of a single class with 

a given value of the indexed attribute together. 

To search on a single class for instances which satisfy the search condition, 

a H-tree is searched like a B+-tree by ignoring the nested tree pointers. For 

searching on multiple classes or the entire class hierarchy, the search begins on 

the H-tree of the root class, and follows the pointers to search the nested subtrees 

of classes of interest. 

11 



Chapter S. Indexing in Object-Oriented Databases 

The disadvantage of the H-tree is that the nesting of tree structure is rather 

complex and contains many physical pointers which make the tree difficult to 

implement. 

Kilger and Moerkotte introduced a set grouping index structure called the 

CG-tree [19] which maintains one tree and groups objects by the key values. 

Also, objects of the same class in a hierarchy are clustered together. The leaf 

pages of a CG-tree contain doubly-linked lists which link up all the indexes 

of single classes. The second level pages contain a special directory which is 

maintained on indexed sets. The upper levels are the same as the B^-tvee. The 

performance of the CG-tree on range searching is improved. 

Sreenath and Seshadri also presented a similar index structure called the 

hierarchy-class Chain tree (hcC-tree) [30]. The hcC-tree clusters the OIDs of 

objects of a single class and the class hierarchy with a given value of the indexed 

attribute together by storing information in two kinds of chains - hierarchy chain 

and class chain. To index a class hierarchy on a common attribute, one hcC-tree 

is constructed. 

To search on a single class for instances which satisfy the search condition, 

the hcC-tree searches the class chains. To search on a class hierarchy, the hcC-

tree searches the hierarchy chain. The drawback of the hcC-tree is that all data 

stored in class chains are replicated in the hierarchy chain, which makes the size 

of the hcC-tree extremely large. 

Ramaswamy and Kanellakis proposed a class-division index [29] which is an 

extension of the CH-tree. It maintains unions of extends of the classes in the class 

hierarchy. Experimental results show that indexing by class-division performs 

better than the CH-tree for range searching, giving a small space tradeoff. 
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3.3 Indexing on Aggregation Hierarchy 

In an aggregation hierarchy, the value of an attribute of an object is an object or 

a set of objects. An attribute of any class on an aggregation hierarchy is logically 

an (nested) attribute of the root of the hierarchy. Hence, the access scope of a 

query may include the nested attributes, which are usually described in terms 

of path expressions. A path expression is basically a linear object reference 

chain leading from one object instance to another. It describes a branch in an 

aggregation hierarchy. 

Definition. Given an aggregation hierarchy H, a path P is defined as 

P = C1.A1.A2...An {n < 1) 

where: 

• Ci is a class in H., 

• Ai is an attribute of a class Ci； 

• Ai is an attribute of a class Ci in H, such that Ci is the domain of attribute 

Ai-i of class Ci_i, 1 < i < n; 

Two examples of such queries against the database schema of Figure 2.1 are 

presented as follows: 

• Retrieve all Italian lines whose nationality is British. 

• Retrieve all Italian lines having flights Boeing747. 

The first query is issued on the non-nested attribute nationality of the class 

ItalianLine while the second query is issued on the nested-attribute plane. 

Queries based on some attributes of a class may also be classified as forward 

queries and backward queries. Forward queries have a search predicate which is 

based on the attributes (either nested or non-nested). Backward queries, on the 
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other hand, have a search predicate which is based on the target class. Here are 

two examples of such queries against the database schema of Figure 2.1: 

• Retrieve all Italian lines whose nationality is British. 

• Retrieve all planes of Italian lines whose name is British Airways. 

The first query is a backward query having a search predicate based on the 

nationality attribute while the second query is a forward query based on an 

instance of ItalianLine. 

Maier and Stein [26] proposed an index organization for which a series of in-

dex components, indexes on each level of the nested attributes, are maintained 

for update propagations. Bertino and Kim [7] presented three index structures: 

the nested index, path index and multiindex. Nested index provides a direct 

association between an ending object and the corresponding starting objects 

along a path, and can be implemented using some variation of the B-tree struc-

ture or some hashing algorithms. A path index can be used to evaluate nested 

predicates on all classes along a path. In both the nested index and the path 

index, the key values can be instances of a primitive class or a non-primitive 

class, depending on the domain of the last attribute in the path. A path may be 

split into several subpaths, and a different index may be used for each subpath. 

A multiindex is an index which is built on top of a set of nested indexes. The 

problem of using the above three indexing techniques is that the cost will be 

very high when the path length is greater than three, and thus a long path is 

required to be divided into subpaths of a shorter length. 

Choenni et al. [13] proposed an optimal index configuration by splitting a 

long path expression into some shorter ones, and by indexing the shorter paths 

with the index structures in [7, 2 . 

Chawathe, Chen and Yu [12] took index interaction into consideration when 

selecting a set of nested indexes for nested object hierarchies. Index interaction 

14 



Chapter S. Indexing in Object-Oriented Databases 

refers to the phenomenon that the inclusion of one index might have impact on 

the benefit obtained by the other indexes if the former is overlapped with the 

latter ones. The problem of selecting an optimal index scheme is formulated 

as an optimization problem against an objective function. Experiments showed 

that the index selection improved the overall performance. These approaches 

only support associative retrieval of objects through nested attributes but not 

navigations in both directions along a reference chain. 

Kemper and Moerkotte [16, 17] presented a data structure, called the access 

support relation, which keeps the identifiers of the objects connected by the at-

tribute relationship in a path expression and can span over the reference chains 

of a path expression. The access support relation is very similar to conven-

tional indexes except that it provides entry points from both directions. Several 

alternatives including full, canonical, left and right extensions and the decom-

position of access support relations for a given path expression are discussed. 

The optimal one is determined according to some domain-specific information 

such as probabilities of different types of queries and updates. The storage size 

of each component in an access support relation could be large because all the 

identifier sequences of the joinable objects along an object path corresponding 

to the component are stored, and because any two objects in two classes could 

be connected by more than one object path. Further, an update on one object 

may need to be propagated to several components or to the entire access support 

relation, which could be costly. 

Hua and Tripathy [14] proposed a navigation structure, call the object skele-

ton, which essentially is a network of object identifiers. Two object identifiers 

are connected if the corresponding objects are associated by, for example, an 

attribute relationship. This approach is more general in the sense that the nav-

igations can be supported between two classes not only in a path expression 

but also over a network of classes. The navigations, however, are supported 
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efficiently only if the starting points of the navigations can be located by using 

some nested indexes such as those in [7, 2].Besides, an update is required to be 

propagated over the network of object identifiers and the nested indexes. 

Xie and Han proposed the Join Index Hierarchy method [33]which constructs 

a hierarchy of join indexes. Each join index node stores pairs of object identifiers 

of two classes that are connected via direct or indirect logical relationships. 

Three types of join index hierarchies including complete, partial and based, are 

discussed. Based join index hierarchy is too simple while complete join index 

hierarchy is too large. Partialjoin index hierarchy supports only frequently used 

navigations, has reasonably small space and update overheads, and speeds up 

query processing considerably in both forward and backward navigations. 

3.4 Indexing on Integrated Support 

Although extensive research has been done on object-oriented databases in-

dexing techniques, and various index organizations have been proposed in the 

literature for supporting queries on aggregation/inheritance hierarchies, as men-

tioned before, few of them discuss how the organizations are used when both 

aggregation hierarchy and inheritance hierarchy are taken into account. Queries 

having access scope of both aggregation and inheritance hierarchies may be any 

combination of the following four types: 

1. forward Vs backward 

2. nested attribute Vs non-nested attribute 

3. single class Vs class hierarchy 

4. point query Vs range query 

Two examples of such queries against the database schema of Figure 2.1 are 

listed in the following: 
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• Retrieve all Italian lines having a flight spending less than 2 hours on 

routing. 

參 Retrieve all lines (including the Italian ones) having a flight departing from 

the airport named Kai- Tak. 

The first query is a backward range query target on a single class ItalianLine 

issued against the nested attribute of the path expression 

P=Line.flights. routing, nbr_hours 

The second query is a backward point query target on all classes rooted at 

the class Line issued against the nested attribute name of the path expression 

P=Line.flights. routing, departure_city. name 

Bertino extended the work on nested index [7] to handle inheritance of classes 

appearing in a path expression [2]. The index provides an efficient evaluation of 

queries on nested attributes which target on a single class and on any number of 

classes in a given inheritance hierarchy. In other words, it provides an integrated 

treatment of indexing in the framework of both aggregation and inheritance 

hierarchies. 

The structure is similar to a B^-tiee. It groups the object identifiers ac-

cording to the key value of the tail attribute. Moreover, objects belonging to 

the head class and the intermediate objects in the path expression are grouped 

together in a class directory and stored in the primary record. 

An auxiliary index, which basically keeps the direct reference information 

between objects, together with the information in primary records are used to 

propagate updates. 

Although the work was defined only for paths having all single-valued at-

tributes, Bertino and Foscoli removed this restriction and extended the method 

to support multi-valued attributes, called Nested-Inherited Index structure [5]. 
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3.5 Indexing on Method Invocation 

Methods can be used in queries as a derived attribute method or as a predicate 

method. A derived attribute method has a function similar to that of an at-

tribute, which returns an object or a value upon execution. A predicate method 

returns a boolean value (True or False). The result can be used to evaluate 

boolean expression that determines which objects satisfy the query. Processing 

a query containing a method invocation may cause a method to be executed for 

each instance of the queried class, and the execution cost may be very difficult 

to be estimated. Therefore, we need an index technique based on precomputing 

method.results to speed up the query processing. 

In Kifer et al. [18], queries containing method invocations are expressed as 

method expressions, which are similar to path expressions. Traversing along 

method expressions results in an object or a set of objects (including primitive 

objects, i.e. values). Several techniques based on the precomputation of methods 

along method expressions have been proposed. The results are stored in an 

index or other access structures, so that queries containing method invocations 

can be efficiently evaluated, because the cost of method execution is transferred 

to compile time. 

In Jhingran [15], a quantitative analysis undertaken in the extended rela-

tional system POSTGRES showed that separate caching of precomputed POST-

QUEL attributes is almost always superior to caching within the tuples. In 

Kemper et al., precomputed function results are stored in a separate data struc-

ture called Access Support Relation [16, 17] and the results are disassociated 

from the argument objects. In Bertino [3], precomputed function results are 

stored in those objects upon which methods are invoked. This technique pro-

vides a greater flexibility with respect to object allocation and clustering. The 

drawback is that this technique can be applied to objects with methods which 

do not use properties of other objects. In Bertino and Quarati [9], the technique 
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was extended to remove this restriction. 

In general, any indexing techniques, which express the relationship between 

an object and the results of method expressions, can be useful in processing 

queries that involve method invocations. 

A major issue of this approach is how to detect when the computed method 

results are no longer valid. In order to do this, in most of the approaches pro-

posed, dependency information is kept. This keeps track of which objects, and 

possibly, which attributes of objects, have been used to compute a given method. 

When an object is modified, all the precomputed results of the methods which 

have used this object are invalidated. Various solutions have been proposed for 

the problem of dependency information, also in terms of the characteristics of 

the method. 

3.6 Indexing on Overlapping Path Expressions 

Several indexing schemes have been proposed to support fast navigation op-

erations between objects along the path expression [7，16, 17, 33]. With an 

indexing scheme, a special data structure is constructed to provide direct asso-

ciation between an ending object and the corresponding starting object along 

the path expression. The intermediate objects on the path expression are also 

stored, which are mainly used for update propagation. 

As there may be more than one indexed path expressions in the aggregation 

hierarchy, some of the path expressions may be overlapped. 

Definition. Given two path expressions Pi and i^: 

• Pi = C1,A1.A2...An 

• P2 二 C[.A[.A'2...A'^ 

where Ci not necessarily equal to C[. They are overlapping if there exists 
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a subscript j < min(n,m) such that the domain of Ai = Aj (i > l,j > 1) 

and Ai^r = Aj+r (?^=l,2,3,...). 

Two examples of such queries against the database schema of Figure 2.1 are: 

• Retrieve all Italian lines having a flight departing from the airport named 

Kai-Tak. (Q1) 

• Retrieve all Italian lines having a flight arriving at the airport named Kai-

Tak. (Q2) 

They represent two path expressions 

• i^=Line.flights.routing.depart_airports.name 

參 i^=Line.flights.routing.arrivaljirports.naxQe 

The subpath expression P'=Line.flights.routing is common in Pi and /¾. 

For a general case, consider the two overlapping path expressions: 

• Pa — Ci.Ai...Ai .A-i^i...Ai^j .A.i^j^i...A.n 
、 》\̂ ^ 

Ci 
‘ 

C^ 

• Pb 二 C[.Bi...Bi .Ai^i...Ai^j .B[...B' 
^ V ‘ 

Ce 
V ‘ 

Cr+J 

If the domain of the subpath expressions Ci.Ai...Ai and C[.Bi...Bi is the 

same, say Ci , then the two path expressions Pa and Pi are overlapped and they 

share the overlapping subpath Ci.Ai+i...Ai+j. 

It is clear that if we construct two indexes on F\ and /¾ separately without 

considering the overlapping condition, the cost of update on the overlapping 

subpath of the two path expressions may become higher than expected. This 

leads to great impact on the performance. 
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Bertino [6] proposed a splitted configuration which splits the path expressions 

into several subpaths and allocates an index on each subpath. Kemper and 

Moerkotte [16] proposed a decomposition policy which decomposes two path 

expressions into five partitions and construct five access support relations on 

each partition. The five partitions are: 

1. to.Ai...Ai 

2. t̂ .y4_̂ _j.ĵ ...yî '_j_j 

3. ^i+j '^i+j + l • • -^n 

4. SQ.Bi...Bi 

5. ti^ j • C\ ... Cq 

The major drawback of the splitted configuration and decomposition is that 

the performance on navigation will degrade because additional join operations 

are needed to derive the full relation. 

Xie and Han proposed the Join Index Hierarchy method [33] which decom-

pose a path expression into binary pairs and construct a hierarchy of Join indexes 

based on these. This method can be extended to consider the overlapping of 

different path expressions in the aggregation hierarchy. 

Clearly, the effect of index interaction needs to be taken into consideration 

when a set of indexes is built along the aggregation hierarchy. It is noted that 

as the granularity of data objects in an object-oriented databases becomes finer 

and the database schema tends to become more sophisticated nowadays, it has 

become increasingly important to explore the effect of building a set of indexes 

in the aggregation hierarchy [12]. 

Note that there may exist more than one semantic linkage between two ob-

ject classes. For example, queries Ql and Q2 (in previous page) represent two 

kinds of semantic associations between the class Line and the class Airport which 
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cannot be mixed up since they carry different semantics (different path expres-

sions). The schema paths should be stored in the schema (data dictionary) with 

the identification (such as by labeling) of each semantic linkage. 

I 
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Chapter 4 

Triple Node Hierarchy 

4.1 Introduction 

Query processing and optimization are crucial to the performance of object-

oriented database systems. The support of navigation among different classes 

and objects via class inheritance hierarchies and aggregation hierarchies is also 

essential. Navigations from one object in a class to objects in other classes, 

using object identity references, involve a lot of associative search for objects 
• I 

on secondary memory. Such navigations can lead to significant performance 

degradation. 

Different indexing techniques have been proposed to optimize the object 

reference operation of queries. Some techniques have access scope of instances 

of all classes in the inheritance hierarchy [20, 2, 24, 25, 30], and some have access 

scope of nested attributes in classes in the aggregation hierarchy, which can span 

over the reference chains of a path expression [7, 16, 17, 33 . 

It is noted that most of the previous work only considered indexing along 

a single path in an aggregation hierarchy. However, the effects of two indexes 

could be entangled, that is, the inclusion of one index could affect the benefit 

achievable by another index. This phenomenon is known as index interaction 
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12]. Index interaction has a larger performance impact when the global effect of 

indexing multiple query paths is considered. When many indexes are evaluated, 

the interaction among indexes significantly complicates the method to evaluate 

their costs and benefits globally. 

Following the study of Access Support Relation and Join Index Hierarchies, 

a new indexing structure, called the Triple Node Hierarchy is proposed in this 

thesis. The Triple Node Hierarchy supports object references by maintaining 

direct association between two objects along a path expression of arbitrary path 

length while the intermediate objects are stored separately. It had been shown in 

33] that only frequently referenced object pairs should be maintained. Moreover, 

the Triple Node Hierarchy supports multiple object pairs along multiple query 

paths of an aggregation hierarchy, minimizing the costs on overlapping path 

expressions. The Join Index Hierarchy, on the other hand, considers only the 

simple case of a single path expression. 

The Triple Node Hierarchy has the following advantages: 

First, in object-oriented database systems, one of the big performance penal-

ties is the object references using object identifiers which may scatter along a 

reference chain. This object reference operation may involve object faults and � 

disk read operations at widely scattered locations. The Triple Node Hierar-

chy supports direct mapping between two objects along a path expression, and 

provides a single lookup mechanism which reduces the I /O cost significantly. 

Moreover, intermediate objects are stored separately for maintenance purpose. 

Second, The Triple Node Hierarchy provides a set-oriented navigation mech-

anism which is more efficient than traditional object-at-a-time navigation. 

Third, The Triple Node Hierarchy supports forward and backward naviga-

tions efficiently. 

Forth, The Triple Node Hierarchy considers the effect of indexes on overlap-

ping paths. The storage and update costs of constructing additional indexes is 
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minimized. 

4.2 Triple Node 

Given a path expression P = C1.A1.A2...An^ a triple node, denoted as Tri(i，j，k) 

(1 < i < j < k < n + 1) consists of a set of tuples <0ID(0^) , 0 I D ( 0 , ) , TYPE, 

m > where Oj is an object which belongs to class Cj and Ot is an object which 

belongs to either class C{ or class Ck, distinguished by the flag TYPE, and there 

exist m > 1 distinct object paths connecting the two objects Oj and Ot. A B+-

tree is constructed for the triple node, indexed on the OIDs of objects of class 

Cj. 

If there exist tuples < OID(Oj) , 0 ID(0 , ) , TYPE = i, m � > and < 0ID(0^) 

,OID(Ofc), TYPE = k, mi > in Tri(i,j,k), then there exist mo x rrii distinct 

object paths connecting 0{ and Ok via Oj. 

If there exists a tuple < OID(Oj) , OID(ft ) , TYPE = i, m � > , but there do , 

not exist any tuples < OID(Oj) , OID(Ofc), TYPE = k, mi > in Tri(i,j,k), then ； 

there exist object paths connecting 0^ and Oj but not emanating to any object , 

in Ck, and vice versa. � 

The triple node Tri(l , j ,k) contains only tuples <OID(Oj) , 0ID(0^) , m > 

and the triple node Tri(j,k,T) contains only tuples <OID(Ojt), OID(Oj), m> . 

In other words,丄 and T denote non-exist classes. 

It is noted that all attributes in the path except A^ have as domain non-

primitive classes. The domain of the last attribute An may be either primitive 

or non-primitive. If it is non-primitive, i.e., it is a value, the 5+-tree that is 

associated with the triple node Tri(i,n,T), i < n, will be indexed on the value. 

In this case, queries may be targeted on instances with a particular value or 

values that fall in a certain range for attribute An. 
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4.3 Triple Node Hierarchy 

The Triple Node Hierarchy is a hierarchy connecting triple nodes together. Nor-

mally, the triple node Tri(i , j ,k) is used to support forward object references 

from a set of objects of class Cj to objects of class Ck, while the triple node 

Tri(j,k,T) is used to support backward object references from a set of objects 

of class Ck to objects of class Cj. Moreover, update operations are propagated 

from triple nodes of lower levels. 

Suppose the triple node Tri(i,i ,k) is constructed to support the forward 

object references between objects of classes Ci and Ck on the path expression 

P(i,k) = Ci.Ai...Ak-i (or Tri(i,k,T) for backward object references), in order 

to support update operations of the triple node Tri(±,i,k) (or Tri(i,k,T)), a 

triple node Tri(i,j,k) , i<j<k, is constructed. Whenever there is an update on 

Tri(i,j,k), Tri(_L,i,k) (or Tri(i,k,T)) is also updated. Two triple nodes Tri(i,p,j) 

and Tri(j,q,k), where i < p < j , and j < q < k are then constructed to support 

updates on Tri(i,j,k). This relation connects a set of triple nodes together to , 

form a Triple Node Hierarchy. ‘ 
- i 

k 
4.3.1 Construction of the Triple Node Hierarchy 

A decomposition graph describes the sequence of decomposing a long path ex-

pression into shorter ones. For example, Figure 4.1 shows the decomposition 

graph of the path expression P(l,7), where 

P(l,7) is decomposed at 4 into P(l,4) and P(4,7), 

P(l,4) is decomposed at 2 into P(l,2) and P(2,4), 

P(2,4) is decomposed at 3 into P(2,3) and P(3,4), 

P(4,7) is decomposed at 5 into P(4,5) and P(5,7), and 

P(5,7) is decomposed at 6 into P(5,6) and P(6,7). 
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/ �“ ' - 1 
Decomposition Graph of P( 1,7) 

Figiire 4.1: Triple Node Hierarchy and decomposition graph for P(l ,7) 

An optimal decomposition graph is the one which minimizes (1) the total 

number of subpath expressions in the graph, and (2) the total length of the path 
1 

expressions in the decomposition graph. It can be generated by the algorithm 丨 

proposed in [33]. We will discuss the details and improvements on the generation 
1 of a decomposition graph in Chapter 6. ! 

Given a decomposition graph, a set of triple nodes can be identified by the 
- 1 

decomposition points in the graph. Suppose the path expression P(i,k) is decom- J 

posed at j into two subpath expressions, a triple node Tri(i,j,k) is constructed. 

For example, in Figure 4.1, P(l,7) is decomposed at 4 into P(l,4) and P(4,7). 

Thus, the triple node Tri(l，4,7) is included in the Triple Node Hierarchy. P(l,4) 

is decomposed at 2 into P(l,2) and P(2,4) and thus Tri(l,2,4) is also included. 

Similarly, the triple nodes Tri(2,3,4), Tri(4,5,7) and Tri(5,6,7) are also included. 

After identifying the set of triple nodes in the Triple Node Hierarchy, the 

level of a triple nodes Tri(i,j,k) is defined as the maximum value of j-i and k-j. 

For example, Tri(2,3,4) is level 1, Tri(l,2,4) is level 2 and Tri(l,4,7) is level 3. 

Therefore, the Triple Node Hierarchy can be constructed easily by construct-

ing the triple nodes from the lowest level up. A level 1 triple node Tri(i,i+l,i+2) 
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can be computed directly as classes Ci, C{^i and Ci+2 are connected by direct 

logical relationship. The result is indexed on class Q+i . Higher levels triple 

nodes can also be computed when their lower level triple nodes are computed. 

Finally, the triple node Tri(i ,s,t) or Tri(s,t,T) will be constructed. 

Thus, the Triple Node Hierarchy can be constructed as shown in Figure4.1. 

To construct a Triple Node Hierarchy supporting the triple node Tri(l,7,T) (or 

Tr i ( i , l ,7 ) ) on the path expression P(l,7), Tri(l,4,7) is constructed, which is in 

turn supported by the two triple nodes Tri(l,2,4) and Tri(4,5,7). Tri(l,2,4) is 

then supported by Tri(2,3,4) and Tri(4,5,7) is supported by Tri(5,6,7). 

Note that some systems do not store information between an object and the 

objects referencing it. In these systems, we need to store extra triple nodes 

Tri(i , i+l,T) (1 < i < n), for every class Ci+i in the path expression P = , 
. I 

C1.A1.A2...An except those where there is a triple node Tri(i,i+l,Y) (Y>i+1) 

being stored in the Triple Node Hierarchy. 彳 

The reason why we organize the decomposition graph in the form of a Triple | 
i 

Node Hierarchy instead of constructingjoin index nodes on each subpath expres- j 

sion to form a Partial Join Index Hierarchy is that update costs can be reduced 

in the process of update propagation. For example, suppose there is an update ^ 

in the relationship P(5,6) in a Partial Join Index Hierarchy, the update will prop-

agate upward to P(5,7) by performing a join operation on P(5,6) and P(6,7). 

This extra cost on join operations is reduced in the Triple Node Hierarchy as 

the triple node Tri(5,6,7) already stores the results. It can be demonstrated in 

the following section. 

The Triple Node Hierarchy can be used to support a set of frequently ref-

erenced object pairs. These object pairs lie on a set of path expressions in the 

aggregation hierarchy which may be overlapped. 

Consider the case shown in Figure 4.2. Suppose we have to support three 
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Figure 4.2: Overlapping Path Expressions 
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Figure 4.3: Triple Node Hierarchy supporting Tri(0,4,T) and Tri(i ,0,4) j 
I 
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Figure 4.4: Triple Node Hierarchy supporting Tri(0,6,T) and Tri(i,0,6) 
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Figure 4.5: Triple Node Hierarchy supporting Tri(l ' ,6 ' ,T) and Tri(i，r,6’) 
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Figure 4.6: Combined Triple Node Hierarchy 

frequently referenced object pairs on P(0,4), P(0,6) and P(l '6 ' ) , the decompo-

sition graphs of the three path expressions and the corresponding Triple Node 

Hierarchies are shown in Figure 4.3,Figure 4.4 and Figure 4.5. Figure 4.6 shows 

the combined Triple Node Hierarchy. 
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Update((^(i,j), Tri(x,i,j)) 
Input: a set of update operations J(ij) 

a triple node Tri(x,ij) 
Output: a set of update operations <^(x,j) 

for all tuples {OID{Oi),OID{Oj),m) in ^(i,j) 
z/there exists tuple < OID[Oi),OID[Oj),TYPE = j,rrii > in Tri(x,i,j) 

set A m = m i + m 
ifAm > 0 

replace the tuple with < OID{Oi), OID{Oj), TYPE = j , A m > 
else 

remove the tuple 
endif 

else ‘ 
set A m = m 1 
insert tuple < OID{Oi), OID{Oj), TYPE = j , Am > , 

endif I 
for all tuples < OID{Oi), 0ID{0^), TYPE = x, mo > in Tri(x,i,j) 

insert (07T>(Cg ,0 /L ) (0^ ,mo x Am) into S{x,j) i 
endfor 

endfor ！ 
( 

---̂ ^̂ ^̂ --î —̂--̂ —̂ —--->-̂ —̂—i—------—————̂ —̂ ^̂ —i—̂ —̂̂ —̂————i—̂ ^̂ ——i-̂ —̂~i—̂ ^̂ ^̂ —̂—̂  « 
I Figure 4.7: Algorithm Update | 
i 

4.3.2 Updates in the Triple Node Hierarchy � 
k 

Updates in object-oriented databases will be reflected in the index structure. 

An update in the relationship between two classes will affect the corresponding 

triple nodes in the Triple Node Hierarchy. 

Here we consider three types of update operations in the attribute relation-

ship Ai between two classes C{ and Cj : 

Insert operation : insert 0{+i into Oi.A{ 

This operation inserts an object Oi^i of class C^+i into the attribute Ai of an 

object Oi of class Ci. 

Delete operation : delete Oi+i from Oi.Ai 

This operation deletes an object O^+i of class Ci+i from the attribute A{ of an 
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Update_Propagation(J(i,j)) 
Input: a set of update operations ^(ij) 

for all triple nodes in the triple node hierarchy 
for all triple nodes with the format Tri(x,i,j), 

Update(<^(i,j), Tri(x,i,j)) 
Update_Propagation(^(x,j)) 

endfor 
for all triple nodes with the format Tri(i,j,y), 

Update((^(i,j), Tri(i,j,y)) 
Update_Propagation((^(i,y)) ！ 

endfor , 
endfor ‘ 

. i 
I 

Figure 4.8: Algorithm Update_Propagation j 

object Oi of class C{. j 

Modify operation : | 
! 

This operation modifies the attribute value of an object Oi of class Ci from an • 
( 

object Oi+i of class Ci^i to another object 0[^i of class Ci^i. This operation is j 
( 

performed by deleting O^+i from 0{.Ai and inserting OJ+i into Oi.Ai 

^(i,j) denotes a set of update operations on classes Ci and Cj. < (̂i,j) contains J 

a set of tuples {OID{Oi), OID{Oj)^ m), where m denotes the total number of 

object paths connecting Oi and Oj which are being updated, and a positive 

m implies that the operation is an insert operation while a negative m implies 

delete operation. 

Figure 4.7 shows an algorithm which performs a set of update operations 

^(i,j) in a triple node Tri(x,i,j) where x < i < j. The update operations in triple 

node Tri(i,j,Y) where i < j < Y can be done similarly. 

Figure 4.8 shows an algorithm which performs an update in the Triple Node 

Hierarchy. Update operations are always initiated by a set of update operations 

^(i,i+l), and propagated to higher level triple nodes. 
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Parameters semantics, derivation/default 
\Ci\ number of objects in class Cj 
fi average number of references from an object in Ci to objects 

in Cjj,i 
shari average number of objects in class Ci referencing the same 

object in C * i , = 銷 

P net size of page, = 4096 
OIDL size of object identifier, =8 
tnc size of the counter in a tuple of a triple node, =4 
type size of the TYPE flag in a tuple of a triple node, =1 
tn size of a tuple in a triple node, =OIDL x 2 + type + tnc 
PP size of page pointer, =4 ！ 

a average page occupancy factor, =70% | 
Bfan fan out of the B+ tree, Bjan - � p p ^ g ^ p z J j 

Table 4.1: Database Parameters 

4.4 Cost Model * 
I 

An analytical model is constructed to study the performance of the Triple Node | 

Hierarchy. The study focuses on several crucial performance measurements, j 

including storage size, navigation cost and update cost (propagated over the | 

Triple Node Hierarchy). Table 4.1 lists some system parameters used in the cost j 

analysis. ^ 

4.4.1 Storage 

The probability that an object in class Cj- i does not reference a particular 

object in class Cj is 

(\CA-i\ 

\ 力 - 1 / _ 1 fj-i 
(|C,| \ 两 

V 力 - 1 / 
The probability that m objects in class Cj—i do not reference a particular 
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objects in class Cj is 
/1 /j-l \m 

( i — M ) 

The probability that a particular object in class Cj is referenced by m objects 

in class Cj - i is 
i - ( i - ^ r 

Therefore, the number of objects in class Cj referenced by these m objects 

in class Cj - i is 

\Cj\x{i-{i-i^r) \ 
^3 \ 

Hence, the average number of distinct objects in class Cj referenced by a set ‘ 

of m objects in class Ci is 
, i 

, , , . . � b ( | C ' j i / i - i , ^ ) l , 3 = ^ + 1 t 
fwd{i,j,m) =^ ‘ 

lp{{Cjlfj-iJwd[i,j-l,m))] , j > i + 1 j 
and the average number of distinct objects in class Ci referencing a set of m | 

I 
objects in class Cj is ！ 

( 
, " . . � �p(|C;|,<s"ar“m)l , j = z. + l I 
hwdy%,2-,rn) — |i 

�7)(|Ci|,<s/iar“6toc?(2; + l，j,m))l , j > z ' + l ‘ 

where p(x,y,z) 二 a: x (1 - (1 — ^y) 

The number of tuples in a triple node Tri(i , i , j ) (and Tri(i,j,T)) is 

r r z ' ( l , A j ) | = |Ci| X fwd(i,j,l) 

The number of tuples in a triple node Tri(i,j,k) is 

Tri{iJ,k)l = \Cj\ x fwd(j,k,l) + \Ci\ x fwd{iJ,l) 

The approximate number of pages needed to store a triple node The number 

of pages needed to store a triple node is 

WTri{iJ,k) I =「力几 X \Tri{iJ,k)\ 
P X a 
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4.4.2 Query Cost 

From Yao [34], for accessing k records randomly distributed in a file of n records 

stored in m pages, the expected optimal number of page access is given by 

k 几— iL 一 i _L 1 

Yao{k, m, n) = \m x (1 一 H ——— )1 
i=i 几 一 z + 1 

Following Valduriez [31], the number of disk access for a forward navigation 

from a set of class rii objects in class Ci to objects in Cj in a triple node Tri ( l , i , j ) j 
• * 

is 
c. 

1 + Yao[ni,�^"^], |Ĉ i|) + Yao{ni, ||rH(i,z.,j)||，\Ci\) i 
bfan ， 

. I It is assumed that a B^-tree is of two levels. In the above equation, the 

constant "1" indicates that one page is accessed for retrieving the root node. ！ 

The second term is the number of page access to the leaf pages of the B^-tvee 
. . . . . . i in order to find the page pointers for rii object identifiers. The last term is the 

. . . . . I 
number of page access required to find the corresponding n{ object identifiers. 

I 
\ 

The number of disk access for a forward navigation from a set of nj objects in ' 
. . . . ... . I 

class Cj to objects in class Ck in a triple node Tri(i,j,k) is 

- C ' | 

1 + Yao{n,,�+LIC；；」）+ Yao{n,, \\Tri{i,j, A;)||, |C,|) ‘ 
J=>fan 

The case for backward navigation is similar. 

4.4.3 Update Cost 

Suppose there is an update on objects in class Ck which causes an update op-

eration 5{k,k + 1) (either insertion or deletion) on a triple node Tri(X,k,k+l), 

0 < X < k, with Uk number of identifiers of distinct objects of class Ck and Uk+i 

number of identifiers of distinct objects of class Ck+i in the tuples in 5{k^ k + 1). 

The cost of updating the triple node Tri(X,k,k+l) is 

- 广 • 

1 + Yao{rik,�^1, |Cy) + Yao{rik, ||TH(X, k, k + 1)||, |^|) 
J^fan 
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^-Yao{nk,\\Tri{X,k,k^-l)\\,\Ck\) 

In this equation, the first term (inside the square brackets) is the cost of 

navigating Uk tuples from the triple node, and the last term is the cost of write-

back operations for updating the related pages. 

Updates in triple node Tri(X,k,k+l) will generate a set of update operations 

(5(X, A: + 1). The number of identifiers of distinct objects of class Cx in S[X^ k^l) 

is estimated to be bwd[X, k, Uk) and the number of identifiers of distinct objects ] 

of class Cfc+i in J(X, k + 1) is n^+i- | 

Similarly, the cost of updating the triple node Tri(k,k+l,Y), for Y > k + 1 | 

is j 

Ck+i 
(1 + Yao{nk^i, [ +1 L|Ĉ fc+i|) + Yao{nk+i, \\Tri{k,k^ 1,> )̂||, |Q+i|)) ^ 

^fan • 

^Vao(uk+i, ||Tri(k,k^ l,F)||, |ft+i|) i 
j 

and the set of update operations S(k, Y) generated will consists of fwd{k + ^ 

1, y, Uk+i) number of identifiers of distinct objects of class Cy and n^ number 丨 

of identifiers of distinct objects of class Ck- j 

In general, for an update operation ^(z,j), with rii number of identifiers of , 

distinct objects of class Ci and nj number of identifiers of distinct objects of 

class Cj in the tuples in J(z,j), 

the cost of updating the triple node Tri(X,i,j) is 

(1 + Yao{m, [^l,|C,-|) + Yao{m, \\Tri{X,iJ)\\, |C,-|)) 
i^Jan 

+yao{n,,\\Tri{X,i,j)\\,\Ci\) 

the cost of updating the triple node Tri(i,j,X) is 

(1 + Yao{n,,�@l,|C^.|) + Fao(n,-, WTri{i,j,X)W , |Q|)) 
J^fan 

^Yao{nj,WTrz{iJ,X)W,lCA) 
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"dass II Co Ci C2 C3 C4 C5 Ce 
~\Ci\ 2000 1500 "2Q00" 1800 "2000" 1500 ~ I W 
“fartj 0.8s_ 0.9s T o T " 1.1s 0.8s 1.2s 1.8s 

class C,i Cg C ‘ 
~\Ci\ 1500 1500 ~Tm~ 

farij I 一 0.9s — “ 1.2s 1.8s 
s selectivity factor (variable) 

Table 4.2: Application-specific Parameters 
( 

the cost for updating the triple node Tri(i , i , j ) is 
.i 

I 
1 + Yao{m, \ ^ ] , \Ci\) + 2 X Yao{m, \\Tri{L, iJ)\\, \Ci\) j 

J=>fan 
. I 

the cost for updating the triple node Tri(i,j,T) is , 
I 

1 + Yao{rij, [ - ^ l , | C j | ) + 2 x Yao(rij, \\Tri{iJ, T)||, |C,-|) ！ 
^fan I 

. I 
4.5 Evaluation 

I ( 

In this section, we demonstrate the cost estimates for a few indexing techniques t 
ki 

including Access Support Relations, the Join Index Hierarchies, and the Triple �| 

Node Hierarchy. Our sample aggregation hierarchy is shown in Figure 4.2. The 

running example tries to support both forward and backward navigations be-

tween frequently referenced classes includes Co and C& (Q。，”，Co and C4 (Q。，”， 

and Cv and C& (Q^''®'). 

Two different types of Access Support Relations are compared in our cost 

model : the Full Access Support Relations, and the decomposed Access Support 

Relations . Three types of Join Index Hierarchies are also compared : Complete, 

Partial and Based. ^ 

Application-specific parameters are shown in Table4.2. Two Full Access 

Support Relations (labeled ASR) are constructed to support navigations. Five 

^see section 3.6 
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Access Support Relations (labeled SASR) including {ASW^^, ASB?^^, ASR^^^, 

A*S_Ri''4, ASR^'^'} are decomposed according to the rules on sharing of ASR[16]. 

The Partial Join Index Hierarchy structure maintains the set of target nodes 

{JI(0,4), JI(0,6), JI(l ' ,6 ' ) } for efficient navigation. The Partial Join Index Hi-

erarchy consists of four auxiliary join index nodes { JI(0,2), JI(2,4), JI(4,6), 

JI(l ' ,4), JI(4,6') } . The Triple Node Hierarchy maintains six triple nodes { 

Tri(0,4,T), Tri(i ,0,4), Tri(0,6,T), Tri(i,0,6), Tri(l ' ,6',T), Tri( l , l , ,6 , ) }• The ; 
'丨 

Triple Node Hierarchy is constructed as shown in Figure 4.6. ^ 
I 

Storage Cost Vs small fan out J 
10 r 1 1 1 1 1 1 1 1 q 2 

(* 
pj| ^ - ' I 

* CJI 来 z *"“ 
° Bji ^ > \ ^ i ——Triple * z 一 z ^>>^ ' 

103: --ASR ^ \^ \ ^ ： \ 
I : 乂 SASR ^ ^ : ^ ^ 
- 厂 ’ > ^ ^ X i; 
§ ) 一 " * 一 ^ > ^ « tf 8 S o <> 

I . ^ < : ^ ^ ^ « 只因 I 
1 � V ; . . ^ ^ / ^ ^ X ： 

J < < r ^ x 、 

Z ！ 
. 1 

*!丨 10̂  1 ‘ 1 1 1 1 1 1 •丨 i 
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

s scale on fan_outs J 

Figure 4.9: Storage Vs small fanout 

The fan-out (join selectivity) among classes is critical to the constructions 

of join index nodes, triple nodes and Access Support Relations. The storage 

costs of the six index structures against various fan-out factors are shown in 

Figure 4.9. 

In general, the storage costs increase as the fan-out factor increases. When 

the fan-out factor is small, the Triple Node Hierarchy, decomposed ASR, and 

the Based Join Index Hierarchy incur smaller storage costs than the others. 

Obviously, the costs of shared ASR and the Based Join Index Hierarchy increase 

more slowly than the others as the fan-out factor increases. This is due to their 
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g storage Cost Vs large fan out 
I U ： I t I I i I I ‘ I 

pj| 一 一 一 一 一 一 ： 

10̂  r * CJI 
o BJI z ^ 一 ‘ z 

— T r i p l e , 广 

10® r _ - ASR , z “ : 
I : X 讓 , z 来 . . ^ 来 供 ^ 来 、 “ 

f l�5� /^lZ^^"^“—— 
s : / ^ ^ - - ^ 

老 / 、 厂 
10、 , Z ； 

： , f . . X X X X X X > , 
1 。 : 丨 产 X 5 o ： ： 二 ° ° ° ° ° ° ° o ° “‘ ‘ 

/ 因 6 o I 
10̂  1 ‘ I 1 I I 1 1 

1 2 3 4 5 6 7 8 9 1 0 « 
s scale on fan-outs ,, 

I? 

Figure 4.10: Storage Vs large fanout ^ 

• . . . I 
simple structures. Figure 4.10 shows the rapid increase of the storage costs of 丨 

the index structures under large fan-out factors. | 
Navigation Cost Vs small fan out 1 

10 1 1 1 1 1 1 1 1 

--CJI,PJI,Triple * 
o BJI I 

- - A S R ^ z , ‘ )! 
X SASR ^ - z ‘ 

102: , Z _ jl 
8 : z " J 
B Z 

< z - z 
OT () 0 0 0 0 0 0 0 ‘ 0 0 0 0 0 0 0 0 0 0 () 
s 一 - " 

一 一 一 1): X X M̂  "x X X X X X X X X X X X X X ：： 
1 0 ： ^ ^ ‘ -,z «" 

1 0 ° ' 1 1 1 1 1 1 1 I 
0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6 1 . 8 2 

s scale on fan-outs 

Figure 4.11: Navigation Cost Vs small fanout 

Figure 4.11 shows the navigation costs of the six index structures. Here, 

we consider only the frequently referenced navigations , i.e. (Q°'®, Q°'^, Q^''®') 

with the same weight. We also assume that both the forward and backward 

navigations share the same weight. The navigation starts by only one object. 
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3 Navigation Cost Vs numb6r of objects selected 
1 0 ~ I I ~ ~ r 1 1 1 1 1 1 

--CJI,PJI,Triple 
o BJI 

- - A S R 
X SASR 

1 0 ^ ： 

U) 
p ^ o o o o o o o o o o o o i) < o o o o o o o o o o X X X X X K 
M o ° X X X X X ^ 八 

Q X X X 
“ V 入 一. 

X X - 一 10、 一 . - - " -y .,, , 
y 

/ 
/ 

• ！ 
lO�! I I I I I I I I I I T 

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 
number of object selected 1 

Figure 4.12: Navigation Cost Vs objects selected I 

. . . . i 
As the Complete Join Index Hierarchy, the Partial Join Index Hierarchy and 丨 

the Triple Node Hierarchy support navigations by maintaining direct mapping 

between frequently referenced object pairs, referenced navigations in Complete | 

Join Index Hierarchy, Index Hierarchy and Triple Node Hierarchy are from the , 

target nodes, therefore the navigation costs of the three index structures are the j 
I 

same. In fact, the navigation cost of the Complete Join Index is slightly lower 丨丨 

than the other two because it provides full support for non-frequent navigations, • 

which are considered as rare cases. For Full ASR, the navigations on Q°'® and 

Qi''6' are effective, because the indexes are clustered. However, the backward 

navigation cost on Q '̂̂  requires a higher cost because Q°'^ is not indexed and 

searching through the whole ASR is required. For the Base Join Index Hierarchy 

and decomposed ASR, a higher navigation cost is required because extra join 

operations are required. Figure 4.12 shows the navigation costs when the naviga-

tion starts from more than one object, and the selectivity factor is assumed to be 

1.5. Obviously, the Triple Node Hierarchy, the Complete Join Index Hierarchy 

and the Partial Join Index Hierarchy perform better in navigation operations. 

Figure 4.13 shows the update costs of the six index structures. We assume 
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^ Update Cost Vs small fan out 
10 I 1 1 1 1 1 1 1~~—I ： 

PJI 

* CJI 

o BJI 

10® r — Triple , , < 
: - - A S R 一 z - 一 “ 

X SASR 一 - ‘ 一 

w 一 一 

8 ^ ^ ^ J 来 M 来 * * * 来 一 ， 一 ^ * * 来 * * * ) � 

^10^r ^ ^ * ^ 一 - 广 -. 

^ 一 - - ： : 

S ： 一 . . - ： . 一 . 一 _ _ _ _ ： 
, — . 丨丨丨• — 一 ― ^ “ 

Z 
1C)1 X X X X X X X X X X X X X X X X X X X 3： ‘ 
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s scale on fan-outs j 

Figure 4.13: Update Cost Vs small fanout ^ 

Cost of Navigation and Update Mix ^ 
1 0 r 1 1 1 1 1 1 1 1 1 2 I 

： I I il 
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一 T r i p l e _ . 一 一 一 一 一 _ 一 一 _ 来 * )〔 | 

10' - ,.---' ASR'‘ 来 来 来 ： ‘ 

X SASR * 
u> „ t S5 来 
o w 

< . 来 _ _ - — — ^ 丨 

老 <> � __^—^^ f 
己 . - ^ ^ , ‘ 

1:� X . X ^̂ -̂̂ *̂  X X 8 g X X “ , 

V ^ 。。丨 ] 
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Figure 4.14: Navigation Update Mix (fanout set to 1.5) 

that the update probability of each class is the same. We also assume that the 

update operation starts with only one relation. It is obvious that the update 

costs of decomposed ASR and the Based Join Index Hierarchy are lower because 

of their simple structures. The Triple Node Hierarchy has a lower update cost 

than the Complete and Partial Join Index Hierarchies as well as Full ASR. These 

results match our expectation as each time when update is propagated to higher 

41 



Chapter 4- Triple Node Hierarchy 

level nodes in the Join Index Hierarchy, extrajoin operations are required. These 

costs, however, are saved in the Triple Node Hierarchy. 

Figure 4.14 describes the cost of navigation and update operation mix of the 

six index structures. The total cost is defined as (1 - p)x Navigation Cost+jox 

Update Cost, where p is the update probability. The update probability 二 0 . 6 

means that there are 60% updates and 40% navigations The fan-out factor is 

set to be 1.5. It can be shown that under a low update probability, the Triple ^ 
. i 

Node Hierarchy outperforms the other methods. 丨 

,i H 
'i 

4.6 Summary ！ 

. . . . ！ 
In this chapter, we have presented an indexing structure for object-oriented , 

* 

databases, called the Triple Node Hierarchy. The Triple Node Hierarchy sup- ( 

ports both forward and backward navigations among objects and classes along j 
I 

different path expressions. With suitable configuration, the cost on overlapping • 

path expressions can be reduced. We have developed an analytical cost model 丨丨 
I 

and the simulation results have shown that the Triple Node Hierarchy performs » 

better then other methods in object-oriented query processing, especially when ^ 

the effect of overlapping path expressions is taken into account. 
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Chapter 5 

Triple Node Hierarchy in Both 

Aggregation and Inheritance 

Hierarchies 

5.1 Introduction 

Structural indexing techniques discussed so far can be classified into techniques 

that provide support for nested predicates against nested attributes of an object 

(i.e. aggregation hierarchy) and into those that support queries issued against 

an inheritance hierarchy. 

In an aggregation hierarchy, an attribute A^ of any class is logically an at-

tribute of the root class, that is, the attribute A^ is a nested attribute of the 

root class. This nested attribute is inherited to the subclasses of the root class. 

Therefore, we need an indexing structure to support queries issued against the 

nested attribute in the inheritance hierarchy. 

Previous indexing techniques have good performance in supporting queries 

issued against either an inheritance hierarchy or an aggregation hierarchy. How-

ever, few of them show how to support an integration of the inheritance hierarchy 
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and the aggregation hierarchy. 

In the previous chapter, we have proposed the Triple Node Hierarchy method 

which supports fast navigations among objects and classes along path expres-

sions. Forward object references from a set of objects of class Cj to objects 

of class Ck are supported by the triple node Tri(i, j ,k), while backward object 

references is supported by the triple node Tri(j,k,T). The intermediate objects 

are maintained by the corresponding Triple Node Hierarchy. 

In this chapter, we show how we can provide efficient support for queries 

against the integration of the inheritance hierarchy and the aggregation hierar-

chy. 

5.2 Preliminaries 

The Triple Node Hierarchy method presented in the previous chapter is designed 

for the support of aggregation hierarchy, i.e., navigations through a sequence of 

object classes via their attribute relationships. In a schema path which involves 

inheritance hierarchies, if a set of subclasses associated with the same higher-

level class has similar kinds of attributes, it could be beneficial to construct one 

combined triple node for all classes instead of a large number of small triple 

nodes for each class in the inheritance hierarchy. 

In this way, the tuples in the triple node Tri(i,j,k) may include OIDs of 

the instances from classes Ci, Cj and Ck, and all their subclasses which inherit 

the nested attribute from the superclasses. For the triple nodes Tri(i,j,T) and 

Tri(l ,i , j) which are used to support navigations, we may either construct a 

combined triple node for all classes or a large number of small triple nodes for 

each class in the inheritance hierarchy. 

For queries targeted on all classes in the inheritance hierarchy rooted at class 

Ci, the construction of a B+-tree on the combined triple nodes Tri(i,n,T) can 
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provide efficient support. We note, however, as the tuples in these nodes contain 

OIDs of instances of all classes in the inheritance hierarchy, this simple 伊 - t ree 

may not be able to provide efficient support for queries that target on one class. 

If we construct several small triple nodes Tri(zi,n,T), Tri(z2,n,T),... for each 

class in the inheritance hierarchy instead of a combined one, the support for 

queries that are targeted on a single class is efficient. Moreover, queries targeted 

on all classes in the inheritance hierarchy may require navigation on several 

small triple nodes, which may be costly. 

We note that there have been several indexing structures proposed in the 

literature which are able to solve this conflicting requirement and to provide 

efficient support for queries against an inheritance hierarchy. Examples are CH-

trees, H-trees, hcC-trees, CG-trees and CD-trees. It is therefore interesting to 

integrate these indexing techniques with the Triple Node Hierarchy as a solution 

for indexing in an integration of both inheritance hierarchy and aggregation 

hierarchy. 

We have investigated the integration of the Triple Node Hierarchy with the 

CH-tree. We choose CH-tree because it has a simple structure. Other methods, 

on the other hand, employ more complex data structures. Moreover, these 

methods have been proved by experiments that they have better performance 

than the CH-tree. We believe that the integration of the Triple Node Hierarchy 

with any one of these methods can achieve much better performance. 

5.3 Class-Hierarchy Tree 

Class-Hierarchy tree (CH-tree) was proposed by Kim et al. [20]. It has a simple 

structure based on the B+-tree. As subclasses inherit attributes from their 

superclass, it is possible to maintain an index on the common attribute for all 

classes in an inheritance hierarchy. The domain of an attribute may be either a 
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primitive class or a non-primitive class. Thus, the key values in the index can 

be either some primitive values or the OIDs of the instances of the domain class. 

Each entry contains the OIDs of the instances of any class in the inheritance 

hierarchy. 

The structure of a non-leaf node of a CH-tree is similar to that of a B^-tree 

while the structure of leaf nodes of a CH-tree has a different structure. 

^ RECORD • 

record key key class number of number of 
length length value directory OIDs ^OIDl,...,OIDn} o m s {OIDl,...,On)n} 

> i S ' 
number of 

classes classl offset class2 offset classN offset 

Figure 5.1: A leaf node record in CH-tree 

A leaf node of a CH-tree consists of (1) a key value and (2) a key directory. 

For each class in the inheritance hierarchy, a CH-tree leaf node also consists of 

(3) a list of OIDs of instances of the class that hold the key value in the indexed 

attribute and (4) the number of elements in the OIDs list. The key directory 

contains an entry for each class that has instances with the key value in the 

indexed attribute. An entry for a class consists of the class identifier and the 

offset in the index record at which the list of OIDs of the objects can be found. 

The leaf node of a CH-tree groups the list of OIDs for a key value in terms of 

the classes to which they belong. Figure 5.1 shows an example of a leaf node 

in a CH-tree. 
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5.4 The Nested CH-tree 

A Nested CH-tree (nCH-tree) is an CH-tree which is indexed on a nested at-

tribute. However, the intermediate objects are supported by the Triple Node 

Hierarchy. The nCH-tree supports a fast evaluation of queries issued against 

a class or all classes in the inheritance hierarchy by a nested attribute, in the 

scope of a path expression in an aggregation hierarchy ending with that indexed 

attribute. Update operations do not require object traversals. Instead, they are 

propagated from the Triple Node Hierarchy. Note that a CH-tree is a special 

case of a Nested CH-tree. In a CH-tree the indexed attribute is a non-nested 

attribute of the root class of an inheritance hierarchy and thus the tree does not 

require the support of the Triple Node Hierarchy. 

5.4.1 Construction 

nCH(l,5) 

r \ f ^ 
TRI(l,2,5) 

nCH(l,5) V nCH(2,5) 

r \ f ^ \ r \ f ^ 
TRI(l,3,5) TRI(2,3,5) 

个 \ \ nCH(3,5) 

/ \ \ r x f ^ 
TRI(l,2,3) TRI(3,4,5) TRI(3,4,5) nCH(4,5) 

(a) nCH(l,5) supported by (b) Nested CH-trees supported by 

Triple Node Hierarchy Triple Node Hierarchy 

Figure 5.2: nCH-tree organizations 

Let nCH-tree(i,j) denotes a nested CH-tree on an inheritance hierarchy rooted 

at class Ci indexed on the nested attribute Aj. Given a path expression P = 
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C1.A1.A2...An, to construct a nCH-tree(l,n) is the same as constructing a Triple 

Node Hierarchy supporting the triple node Tri(l,n,T). Moreover, the triple node 

Tri(l,n,T) is organized as a CH-tree indexed on the values of An. Figure 5.2a 

shows the index organization of a nCH-tree (nCH-tree(l,5)) supported by the 

corresponding Triple Node Hierarchy. Figure 5.2b shows the index organization 

of four nCH-trees, including nCH-tree(l,5), nCH-tree(2,5), nCH-tree(3,5) and 

nCH-tree(4,5), supported by the corresponding Triple Node Hierarchy. 

5.4.2 Retrieval 

A retrieval operation performed in a nCH-tree is similar to that in a CH-tree. 

In the nCH-tree(i,j), a predicate against the indexed attribute Aj on a single 

class is evaluated as follows. Let C be the class against which the predicate is 

issued. The index is scanned to find the leaf node record with the key value 

satisfying the predicate. Then the key directory is accessed to determine the 

offset in the index record where the list of OIDs of the instances of C is located. 

If there is no entry for class C, then there are no instances of C satisfying the 

predicate. If the query is against more than one class in the indexed inheritance 

hierarchy rooted at Ci, the predicate is processed in the same way, except that 

the lookup in the key directory is executed for each class involved in the query. 

Therefore, this access mechanism can be used when a query is applied only to 

some (not necessarily all) classes in the indexed graph. 

5.4.3 Update 

Update operation is propagated by the Triple Node Hierarchy to the nCH-tree. 

For a nCH-tree(i,j), an update in the attribute relationship within the scope of 

the nCH-tree may be reflected by an update operation S(i,j) propagated by the 

Triple Node Hierarchy. 
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System Parameters semantics, derivation/default 
n length of access path 
P net size of pages, which is set to 4096 
OIDL size of object identifiers, default is 8 
kl key length —2 
of offset length =2 
tnc size of the counter in a tuple of a triple node, =4 
type size of the TYPE flag in a tuple of a triple node, —1 
tn size of a tuple in a triple node, =OIDL x 2 + type + tnc 
PP size of page pointer, =4 
a average page occupancy factor, =70% 
Bjan fan out of the B+ tree, Bjan = � ^ p + g ^ j： ) ! ^ 

Ny number of contiguous key values in the range specified for 
a given query 

Ne number of entries in a leaf page 
hch Internal height of the nCH-tree 
hi,j,k Internal height of the triple node Tri(i,j,k) 
ni number of nodes at level 1 in a j5+-tree 

Table 5.1: System Parameters 

5.5 Cost Model 

An analytical model is constructed to study the performance of the nCH-tree. 

The study focuses on several crucial performance measurements, including the 

cost of navigations and the cost of updates. The cost model constructed in the 

previous chapter considers only a simple case of an aggregation hierarchy. Here 

such a cost model is extended to cover inheritance hierarchies. 

Table 5.1 lists some system parameters used in the cost analysis. Table 5.2 

and Table 5.3 list the database parameters. These parameters describe the 

classes in a path expression P = C1.A1.A2...An. Ci’i denotes the root class of 

the inheritance hierarchy having position i in the path expression. The details 

of the estimation of some of these parameters are in Appendix A. 
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Logical data parameters semantics, derivation/default 
nci Number of classes in the inheritance sub-hierarchy rooted 

at class Ci，i, 1 < i < n 
Di,j Number of distinct values for attribute A{ of class Ci,j, 1 < 

i < n, 1 < j < ncj 
Di Number of distinct values for attribute Ai for all instances 

in the inheritance sub-hierarchy rooted at class Ci，i; Di = 
T!Z A . ^ _ _ ^ _ _ 

Ni,j Number of instances of class Gi,j, 1 < i < n, 1 < j < nci 
Nhi Number of members of class Ci,i, 1 < i < n; Nh{ 二 

E?^i N^, 
fani,j Average number of references to members of class C^+i,i, 

contained in the attribute Ai for an instance of class Ci,j, 
1 < i < n and 1 < j < nc“ The average is computed 
with respect to all the instances of class Ci,j, 1 < i < n and 
1 < j < nci. 

farii Average number of references to members of class Ci+i，i, 
contained in the attribute A{ of a member of class Ĉ ，i, 1 < 
i < n. The average is computed with respect to all the 
members of class C^̂ i, 1 < i < n. The difference between 
this parameter and the previous is that this parameter is 
obtained as the average evaluated on all members of a class 
hierarchy, while in the previous the average is for each class. 
M X r Ynl\ d^wfarn,j 
Note: jarii = ~^^ml , 

2̂ 7 = 1 "̂ 'J 
di,j Number of instances of class Ci,j, having a value different 

from Null for attribute A^, 1 < i < n and 1 < j < nci 
di Number of members of class Ci,i, having a value different 

form Null for attribute Aj, 1 < i < n; dj 二 Y2]2i djj 
ki,j Number of instances of class Cij , having the same value for 

attribute Ai, 1 < i < n and 1 < j < nq; kij =知’产丄〜 
khi Number of members of class C{,i, having the same value for 

attribute A “ 1 < i < n Note: kh^ = ^ p 

Table 5.2: Database Parameters 
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Derived Parameters semantics, derivation/default 
ki,j Number of instances of class Ci j having the same value for 

the nested attribute An 1 < i < n, 1 < j < ncj 
fo,n- j Average number of objects held in the nested attribute An 

of an instance of the class Ci,j, 1 < i < n, 1 < j < nci. 
The average is computed with respect to all the instances 
of class Ci,j, 1 < i < n and 1 < j < nCj 

RefByh{i^ y, k) average number of values contained in the nested attribute 
Ay for a set of k members of class Ci,i, with 1 < i < y < n 
and 1 < k < Dy. 

Refh{i^ y, k) average number of members of class Ci,i having as value of 
the nested attribute Ay a value in a set of k elements, with 
1 < i < y < n. 

DefAn{i^) Number of instances of class Cij having at least one value, 
different from Null, for the nested attribute An^ 1 < i < n, 
1 < j < ncj 

Table 5.3: Derived Parameters 

5.5.1 Assumptions 
1. All key values have the same length. 

2. The number of classes containing instances with the indexed key value is 

the same for each key value. 

3. Key values are uniformly distributed among instances. 

4. The root class of a class hierarchy for which a nCH-tree is maintained is 

also the class against which a query is directed. 

5. Each non-leaf (non-root) index node has the same fanout. 

6. The cardinality of a class in a class hierarchy is independent of the cardi-

nality of any of its super/subclasses, e.g. abstract class has no instances 

at all. 

These assumptions are commonly found in analytical models for database access 

structures. Note: distribution of key values across classes of a class hierarchv is 
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important. 

5.5.2 Storage 

The average size of a primary (leaf-node) record of the nested CH-tree is: 

"nci -

XCH = OIDL * Y,ki^i + kl + {OIDL + of) * nci 
.i=l -

The number of tuples in a triple node Tri(i,j,k) is 

Tri{iJ,k)l 二 Nhj * RefByh{iJ, 1) + Nhj * RefMJ,k, 1) 

The number of pages needed to store a triple node is 

ii�(y.,Aoii = [ , w i C ( : , " ， " ) h 

5.5.3 Query Cost 

The average number of pages required to store a leaf-node record is given by: 

'XCH' 
npch = 

P 

Let c be the number of classes targeted by a query, i.e. c represents the number 

of classes whose instances must be retrieved from the index lookup. The average 

number of pages accessed for an index lookup for a point query is given by: 

广 ( , . 、，hck + 1 , XCH < P 
Cch[retrievepoint)= 

hch + npa,H + [1 - ^ ] , XCH>P 
V '^Pch 

where npach 二 Fao(c, npc/i, nci). npcLch represents the number of pages that are 

surely accessed, and 1 — : ; : = is the probability of accessing another page in 

the case when the class directory is not stored in one of the npach pages. If the 

target of the query is the set of all classes in the inheritance hierarchy, we have 

c = nci. 
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The number of entries in a leaf page of a nCH-tree is : 

N _ 丄 
e - ^XCH^ 

the average number of pages accessed for an index lookup for a range query 

having Ny number of contiguous values in the range is given by: 

Kh + � f " l , XCH < P 
Cch{retrieverange)= ‘ 

[ h , h + {npa^, + [1 - ^ ] ) * N, , XCH>P 

5.5.4 Update Cost 

Consider two types of update operations in the relationship between two classes: 

• Insert an instance Oi,t into the attribute A - i of another instance ft_i,s 

• Delete an instance Oi’t from the attribute Ai-i of another instance Oi_i,s 

In both cases, an update operation S{i — 1, i) will be generated (either insertion 

or deletion). This update operation will be propagated from the Triple Node 

Hierarchy to the nCH-tree. 

There are two different cases to be considered. 

1. The object Oi,t has a Null value for the nested attribute An\ 

2. The object Oi,t has values different from Null for the nested attribute An\ 

For case 1, no leaf node records in the nCH-tree are updated. Only the Triple 

Node Hierarchy is updated and the cost is estimated as follows^: 

For an update operation (^(z,j), with n̂  number of identifiers of distinct 

objects of class Ci and rij number of identifiers of distinct objects of class Cj in 

the tuples in ^(z,j), 

the cost of updating the triple node Tri(X,i,j) is 

Ctri^etrive{ni,X,iJ) = VisBtrce {rii, Nhi, htx,i,j) + yao[rii, \\Tri{X,i,j)\\ ,Nhi) 

^see sections 4.3.3 and 4.4.3 for the details of the update propagation 
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the cost of updating the triple node Tri(i,j,X) is given by: 

Ctri^etrive{nj,iJ,X) = VisBtree[nj,Nhj,hti,j,x)+Yao[Tij, \\Tri{iJ,X)\\,Nhj) 

where VisBtree{k, n, h) denotes the cost of the batch scanning of a 5+-tree 

of height h with a total number of n keys to retrieve k keys. Suppose that the leaf 

node records may be stored in only one page, then the value of VisBtree(k, n, h) 

is given by : 

h 
VisBtree(k, n, h) 二 ̂  npai 

i=i 

where npai denotes the number of page accessed at level 1 in a _B+-tree. 
• 

Yao(k, n“ n) ， 1 = h 
npai — 

Fao(npa/_j_i,n/, n/+i) , l<h 

and ni denotes the number of nodes at level 1 in a B^-tree, with Uh 二「 ^ " ^ ^ 

and m = l i ^ l l < l < h . 

For case 2, both the nCH-tree and the Triple Node Hierarchy are updated. 

The number of updated leaf pages of the nCH-tree is 

I y a o ( 7 ^ , , „ L P , , , ^ ) , XCHSP 
DNPchil,t) = , r i\ 

‘ 7 ^ “ * � N P C c h + [l - ^ ] ) , else 

where NPCch =「吼"/沉1 . 

The update cost of the nCH-tree is given by: 

CHur>date{i.t) = 2 * DNPch{i,f) + VisBtree\j^0Dr^,hch) 

The probability that case 1 occurs is: 

PY_Ni,t-DefAji,t) 

— N“ 
The total update cost can be estimated by merging case 1 and case 2. 
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5.6 Evaluation 

We have conducted a large number of simulation experiments on the basis of the 

mathematical cost model for the evaluation of the performance of the nCH-tree. 

We compare the nCH-tree with the nested-inherited index (NIX) [5]. NIX was 

proposed by Bertino that provides an efficient evaluation of nested predicates 

for both queries having as a target a single class and queries having as a target 

any number of classes in a given inheritance graph. As both the nCH-tree and 

the NIX can provide an integrated treatment of indexing in the framework of 

both aggregation and inheritance hierarchy, it is appropriate to compare the 

performance of the two index structures. The cost model for the NIX is given 

in Appendix B. 

The system parameters in Table 5.1 are set according to common imple-

mentations of the B^-ivee index. We variate the parameters in Table 5.2 for all 

classes in the path expression. 

5.6.1 Storage Cost 

To evaluate the storage requirements of the nCH-tree and the NIX organization, 

we have performed a set of experiments by varying the number of classes, and 

hence the total number of instances, and the fanout parameter. 

We consider a path expression P = C1.A1.A2.A3.A4 with length = 4. We 

assume that there are four inheritance hierarchies associated with each class in 

the path expression, and each of these hierarchies carries the same number of 

classes and there are 10000 instances in each class. The parameters d, D, and N 

are set to 10000 for all classes. The key value is the nested attribute A4, which 

is an attribute of class Ĉ 4,i. 

As the NIX organization provides support for every class in the scope of 

the path expression, in order to have a fair comparison, we constructed four 
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storage Cost Storage Cost 
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Figure 5.3: Storage Cost 

nCH-trees, one for each class in the path expression. However, as the nCH-trees 

support only frequently referenced navigations, the storage cost of nCH-trees 

may be actually lower than the results reported here; this happens when some 

of these nCH-trees are considered as non-frequently navigations. 

Figure 5.3a shows the storage cost of the nCH-tree and NIX organization 

against the number of classes in each inheritance hierarchy. The fanout parame-

ter is set to 1 for all classes, except for the classes rooted at C 4̂,i, which is set to 

20. As the number of classes in each inheritance hierarchy increases, the total 

number of object instances also increases, and thus more space is needed. This 

factor is reflected in the storage cost graph. 

Figure 5.3b shows the storage cost of the nCH-tree and NIX organization 

against the fanout parameter. The number of classes in each inheritance hier-

archy is set to 3, and the fanout is the same for all classes. Obviously, the costs 

of both structures increase as the fanout parameter increases. 

Although the results show that the nCH-tree has a higher storage cost than 

the NIX organization, this may not be crucial because large capacity storage 

devices are widely available in the market. Therefore, it may be preferable to 

privilege organizations which provide good performance, even if they have large 

storage requirements. 
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5.6.2 Query Cost 

In the query efficiency study, we have performed several simulation experiments 

by varying different factors that influence the performance of the indexing struc-

tures. 

These factors include 

1. The number of classes in the inheritance hierarchies rooted at the classes 

in a path. 

2. The query range. 

3. The path lengths. 

4. The position of large fanout. 

In the experiments reported here, the parameters d, D, and N are set to 10000 

for all classes. We consider a path expression with length set to 4. In oder to 

compare the nCH-tree with the NIX organization, we constructed four nCH-

trees, one for each class in the path. The nCH-tree and the NIX are indexed 

on the nested attribute A4, which is an attribute of class C4̂ 1. We assume that 

there are four inheritance hierarchies in the path expression, each having the 

same number of classes. The retrieval cost is calculated by averaging the cost 

on retrieval operations on each of the four classes. 

In the first experiment, we measured the retrieval cost against the number of 

classes in the inheritance hierarchies rooted at the classes in a path. The value 

of the fanout parameter fan is set to 1 for all classes except those rooted at C4,1, 

which is set to 20. The range queries cover 0.001% of the available key values. 

Fig5.4 shows the average retrieval cost of the nCH-tree and NIX organization 

against the number of classes in the inheritance hierarchies, for queries targeted 

on a single class and on all classes in the inheritance hierarchy. Obviously, the 

nCH-tree has a lower retrieval cost in both cases. The retrieval cost of the NIX 
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Figure 5.4: Retrieval Cost Vs number of classes in the inheritance hierarchies 
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Figure 5.5: Retrieval Cost Vs position of class having large fanout 

increases faster than that of the nCH-tree. It is because of the rapid growth of 

the size of the leaf node record in the NIX. 

In the second experiment, we measured the retrieval cost against the position 

of the classes with the large fanout parameter fan. The value of the fanout 

parameter fan is set to 1 for all classes except the classes rooted at the position 

being measure, which is set to 20. The range queries cover 0.001% of the available 

key values. 

Fig5.5 shows the average retrieval cost of the nCH-tree and NIX organization 

against the number of classes in the inheritance hierarchies, for queries targeted 

on a single class and on all classes in the inheritance hierarchy. The number 
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Figure 5.6: Retrieval Cost Vs position of class having large fanout 

of classes in each inheritance hierarchies is set to 3. Obviously, the nCH-tree 

has a lower retrieval cost in both cases. The retrieval cost of the nCH-tree 

and NIX increase as the position of classes having a large fanout shifts towards 

the indexed attribute. This is because for an object with a large fanout, the 

instances that reference this object will also have a large fanout. Therefore, as 

the position of classes having a large fanout shifts towards the indexed attribute, 

the number of objects having the same key value increases. The growth of the 

size of the leaf node record incurres more on the retrieval cost. 

Fig5.6 shows the rapid growth of the retrieval cost of the NIX organization, 

when the number of classes in each inheritance hierarchy is set to 10. 

In the third experiment, we measured the retrieval cost against the range of 

key values covered by the queries. The values of the fanout parameter fan is 

set to 1 for all classes except the classes rooted at C44, which is set to 20. The 

range of key values covered by the queries is varied to cover from 0.001% of the 

available key values to 0.010%. 

Fig5.7 shows the average retrieval cost of the nCH-tree and NIX organization 

against the range of queries targeted on a single class and on all classes in the 

inheritance hierarchy. The number of classes in each inheritance hierarchies is 

set to 3. Obviously, the nCH-tree has a lower retrieval cost in both cases. The 
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Figure 5.7: Retrieval Cost Vs range of key values covered by the queries 
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Figure 5.8: Retrieval Cost Vs range of key values covered by the queries 

retrieval cost of the NIX increases faster than the nCH-tree because the size of 

the leaf node records of the NIX is greater than that of the nCH-tree, which 

does not favor range search. 

Fig5.8 shows the rapid growth of retrieval cost of the NIX organization, when 

the number of classes in each inheritance hierarchies are set to 10. 

In the forth experiment, we measure the retrieval cost against the length of 

the path expression. The values of the fanout parameter fan is set to 1 for 

all classes except the classes rooted at the last class of the path expression, i.e. 

Cn,i, which is set to 20. The range of key values covered by the queries is set to 

0.001% of the available key values. 
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Figure 5.9: Average Retrieval Cost Vs path length 

Fig5.9 shows the average retrieval cost of the nCH-tree and NIX organiza-

tion against the length of the path expression. The number of classes in each 

inheritance hierarchies is set to 3. Increasing the length of the path does not 

affect the number of classes in each inheritance hierarchy, but the number of 

inheritance hierarchies increases. The retrieval cost of the nCH-tree keeps very 

low in both cases while the retrieval cost of the NIX increases as the path length 

increases. This is because as the path length increase, the size of the leaf node 

records of the NIX also increases to store the additional information on classes. 

The nCH-trees, on the other hand, stores only the information on a single in-

heritance hierarchy, and thus, it is not affected by additional classes in different 

positions. 

Conclusions on retrieval cost 

From the experiments that have been performed, the results match our expec-

tation, that is, navigations by the nCH-tree structures offer better performance 

than the NIX organization in most cases. The nCH-tree stores only the OIDs 

of the target classes in the inheritance hierarchy with the indexed key value, 

while the intermediate objects that are irrelevant to the navigation operations 

are stored separately in the Triple Node Hierarchy. This simple structure allows 
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the nCH-tree to have a smaller leaf node size and thus more leaf nodes can be 

stored in a page. This small leaf node size is beneficial for range queries which 

involves the retrieval of records for contiguous key value. Moreover, the small 

leaf node size also lowers the height of the B+-tree in some cases. These factors 

make the nCH-tree achieve better performance. The NIX organization, on the 

other hand, stores all OIDs of all classes within the scope of the path expression 

in the leaf node records. The size of a leaf node record in the NIX could be 

quite large in some cases. Moreover, the height of the ^+-tree structure in the 

primary record of the NIX organization may be higher than that of nCH-tree in 

some cases. The performance on range queries is then affected. 

We note that the cost of NIX depends on the total number of classes within 

the scope of the path expression. The cost of nCH-tree, however, depends on 

only the total number of classes in the target inheritance hierarchy. 

These evaluations are also valid for point queries. In that case, the retrieval 

cost depends mainly on the height of the B^-tvee structures associated with the 

index organization. 

5.6.3 Update Cost 

To demonstrate the update cost of the nCH-tree and NIX organization, we have 

performed a set of experiments in which the path expression has a length of 4. 

We assume that each class in the path expression has two subclasses, i.e. each 

inheritance hierarchy carries 3 classes. There are 10000 instances in each class 

and the parameters d, D, and N are set to 10000 for all classes. The key value is 

the nested attribute A4 which is an attribute of class CU,[ The running example 

tries to index on the root class with the nested attribute at the end of the path. 

Figure 5.10 shows the average update costs of the two index structures. We 

assume that the update probability of each class is the same. We also assume 

that the update operation starts by only one relation. In Figure 5.10, the upper 
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Figure 5.10: Update Cost 

bound and the lower bound of the update cost of NIX are estimated. It is 

shown that the nCH-tree has an update cost in between the boundaries of the 

NIX organization. In general, the NIX has a lower update cost when the update 

is performed on the starting of the path. As the updated classes shift towards 

the ending of the path, the update cost increases. This is because the auxiliary 

index is need to be accessed. As the path length gets longer, it can be expected 

that the update cost of the NIX will be higher. The nCH-tree does not show 

this problem. 

5.7 Summary 

In this chapter, we have addressed the need for index organizations which sup-

port both aggregation and inheritance hierarchies and have presented the nCH-

tree which is an integration of the Triple Node Hierarchy and the CH-tree. The 

nCH-tree supports a fast evaluation of queries on the nested attribute issued 

against a class or all classes in the inheritance hierarchy. We have developed an 

analytical cost model and our simulation results show that navigations through 

the nCH-tree offer a better retrieval performance in most cases. Update opera-

tions propagated from the Triple Node Hierarchy require a reasonable cost which 
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is highly dependent on the frequently referenced object topologies. In general, 

if several nCH-trees are constructed on overlapping path expressions, update 

operations supported by the Triple Node Hierarchy offer a better performance. 

The nCH-tree shows a possibility of integrating the Triple Node Hierarchy 

method with other indexing methods. It would be interesting to integrate the 

Triple Node Hierarchy with, say the CD-tree, to construct a nested CD-tree 

organization and to compare the performance. We believe that the construction 

of different nested tree structures supported by the Triple Node Hierarchy could 

be a promising candidate towards the indexing support on query processing. 
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Decomposition of Path 

Expressions 

6.1 Introduction 

As the set of triple nodes maintained in a Triple Node Hierarchy is determined 

by the decomposition sequences of the path expressions it covers, it is reasonable 

to select the best decomposition sequences of these path expressions so that an 

optimal configuration can be determined with minimum costs. 

In [33], an algorithm was proposed to derive an optimal configuration which 

minimizes (1) the total storage costs; and (2) the total number of update op-

erations in an update propagation. The set of overlapping path expressions is 

modeled by a set of target nodes, and the decomposition of these target nodes is 

modeled by a set of auxiliary nodes. This algorithm selects the minimum set of 

auxiliary nodes by searching all possible combinations of nodes, i.e. by testing 

all possible decomposition sequences. This algorithm is shown in Appendix C. 

The algorithm can determine the optimal configuration because it tests all 

possibilities. We note, however, that the performance of this algorithm can be 

quite bad as the total number of possible combination increases. Appendix D 
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shows the total number of different combinations on a path expression with a 

path length n is ^*2n-2 Cn-i. A lot of computing power and storage are required 

to execute the algorithm when the path length is long. 

140| , , , , , 35| ‘ i ‘ ‘ ~ 

120. - 30. ^ ^ 

1��. . f ^ ^ . 

|8�_ / _ r / 

“ . / . f - / 
40. y - 10- y ^ • 

20 y^ - 5 ^ 

n l I I ‘ I ： 1 1 o ' 1 1 1 1 1 
1 2 3 4 5 6 7 1 2 3 4 5 6 7 

path length Number of different paths 

(a) Searching Space Vs path length (b) Searching Space Vs number of different paths 

(assume path length = 7) 

Figure 6.1: Performance measurement of original algorithm 

Figure 6.1a shows that the search space (i.e. the total number of different 

possible combinations to be tested) increases exponentially as the path length 

increases. Figure 6.1b shows that the search space increases when the number 

of different path expressions increases. In general, when k different path expres-

sions in the aggregation hierarchy are taken into account, the total number of 

different combinations becomes: 

k 1 
n — *2ni-2 Cm-1 
i=l叫 

We note that the length of the path expressions may be very long in some 

cases. The number of overlapping path expressions, on the other hand, is lim-

ited to a small number because only path expressions with frequently referenced 

object pairs are maintained. Based on this observation, we present an alterna-

tive algorithm which can be used to configure the decomposition of the path 

expressions when the original algorithm does not perform well. 
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6.2 Configuration on Path Expressions 

6.2.1 Single Path Expression 

To configure the decomposition of a single path expression, a simple solution is 

to balance the length of the two new subpath expressions. 

Rule 1: balance-load-decomposition 

Given a path expression P[i, k) = Ci.Ai...Ak-i^ the two subpath expressions 

generated are P{i,j) and P(j,k) where i < j < k and the value of j is: 

华 , i + kisodd j 二 . _ 
'+” , i + kiseven 2 

With this rule, the length of the two new subpath expressions is balanced and 

the changes between any two logically connected objects in the path expression 

will have similar effect and update costs. 

P(lJ) 

A 
A_ / V .........,..-.,........... 

P(l,2) P(2,3) P(3,4) P(4,5) P(5,6) P(6,7) • • • ‘ 

• : ： .:1.. .:.. :: ... 
1 2 3 4 5 6 7 

Figure 6.2: Decomposition Graph for P(l,7) 

By applying the balance-load-decomposition recursively, we can obtain the 

decomposition graph. For example, if we apply the rule to the path expression 
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P(l,7), the decomposition graph is described as: 

P(l ,7) is decomposed at 4 into P(l,4) and P(4,7), 

P(l ,4) is decomposed at 2 into P(l,2) and P(2,4), 

P(2,4) is decomposed at 3 into P(2,3) and P(3,4), 

P(4,7) is decomposed at 5 into P(4,5) and P(5,7), and 

P(5,7) is decomposed at 6 into P(5,6) and P(6,7) 

as shown in figure 6.2. 

P(l,7) 

八 
P(l,4) P(4,7) 

八八 
P(l,2) P(2,4) P(4,5) P(5'7) 

/ \ / \ 
P(2,3) P(3,4) P(5,6) P(6,7) 

Decomposition Graph ofP(l,7) 

Figure 6.3: Decomposition Graph for P(l,7) 

6,2.2 Overlapping Path Expressions 

There may be cases where a set of frequently referenced object pairs are sup-

ported. These object pairs lie on a set of path expressions in the aggregation 

hierarchy which may be overlapped. We have demonstrated how to generate 

the decomposition sequence of a single path expression in the previous section. 

For overlapping path expressions, we need another approach to determine the 

decomposition sequence of these path expressions. 

Suppose we have to support two frequently referenced object pairs which lie 

on two overlapping path expressions P(i,j) and F(m, n). There are two cases: 
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1. P ( i , j ) inc ludesP(m,n) : 

The path expression P(m, n) is part of another path expression P(^i,j), 

where i < m and j > n. 

Rule 2: inclusive-decomposition 

P(J>,j) needs to be decomposed into 3 partitions, P(i, m), P(m, n), P(n,j) 

to share the subpath expression P(m, n). 

P(l,7) 

/ \ P ( 3 , 7 ) 

/ p(XX 
P ( l , 3 ^ / 外4，6 \ 

. 
P(l,2) P(2,3) P(3,4) P(4,5) P(5,6) P(6,7) • •• ,' .' • • ,..• : ••' ••‘ .. 

1 2 3 4 5 6 7 

Figure 6.4: Decomposition Graph for {P(l ,7), P(3,6)} 

Figure 6.4 shows the decomposition graph for P(1, 7) and P(3,6). P(1, 7) 

includes P(3,6) and thus P(1, 7) is decomposed at at 3 into P(1,3) and 

P(3, 7). P(3, 7) in turn includes P(3,6). Finally, P(3,6) is decomposed at 

4 into P(3,4) and _P(4,6) according to rule 1. 

Note that the path will be decomposed into two partitions when i — m or 

n = j. 

2. P{i^j) intersects P(m, n) at P(a,b): 

There exists a subpath expression P(a, b) such that P(m, n) includes P(a, 6) 

andP(Aj) includesP(a,6) . 
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Rule 3: intersect-decomposition 

The path P(z , j ) needs to be decomposed into 3 partitions, P(i , a), P(a, h) 

and P(b,j). P(m, n) needs to be decomposed into 3 partitions, P ( m , a )， 

P�a, b) and P(6, n) in order to share the path P(a, 6). Each of the subpaths 

can be further decomposed. 

P(l,7) P(3,9) 

/ ynx7) \ 

Y � � � � t \ y^(3,5) ySyP(5,7) y^(7,9) 
. " ' . •‘ • . .• - • •"• 

P(U) P(2,3) P(3,4) P(4,5) P(5,6) P(6,7)P(7,8) P(8,9) 
. • . •. • . • ." .. 

... .. ... ... .• 

1 2 3 4 5 6 7 8 9 

Figure 6.5: Decomposition Graph for {P(l ,7) , P(3,9)} 

Figure 6.5 shows the decomposition graph for P(1, 7) and P(3,9). _P(l,7) 

intersects P(3,9) at P(3,7). P(1,7) is therefore decomposed at 3 into 

P ( l , 3 ) and P(3,7) while P(3,9) is decomposed at 7 into P(3,7) and 

P(7,9). P(3, 7) is then decomposed according to rule 1. 

Note that inclusive-decomposition is a special case of intersect-decomposition 

when m = a and n = b. 

6.3 New Algorithm 

We have presented two decomposition rules to determine the decomposition 

sequence of a pair of overlapping path expressions. For a set of overlapping 
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Path_Decompose() 
Input: a set of path expressions { P ( m o , n o ) , P(mi,ni) , . . .， P [ m k , n^)} 
Output: a decomposition graph for the set of path expressions 
1. For each of the path expressions, find the set of their decomposition points 

for i = 1 to k 
for j = 1 to k — i 

if P(mi, rii) includes P(mj, rij) 
mark rrij and nj to denote a decomposition point 

else if P(mi,rii) intersects with P(mj ,n j ) at P{rrix^ n^) 
mark m^ and n̂； to denote a decomposition point 

end for 
end for 

2. For each decomposition point in the set of path expressions, generate a set 
of subpaths. The subpaths are a decomposition of the target path according to 
the decomposition point determined. For example, if P(i,j) has a decomposition 
point at k, then the set of subpaths will include the set P(i,k),P(k,j). Notice 
that any subpaths included in the set of path expressions will be removed from 
the set of subpaths. If there is an empty set resulted from this removal, return 
the empty set. 
For each of the path expressions in the set, if it has 1 sets of subpaths, make 1 
copies of path expressions, and add each set of subpaths to a 1 copy to form 1 
new sets. 

This process repeats until no new decomposition point can be found. For all 
paths remained in the set, apply the balance-load decomposition to obtain a set 
of subpaths. The result is the decomposition graph for the set of path expressions 
with minimum costs. 

Figure 6.6: Construction of Decomposition Graph for a set of Overlapping Path 
Expressions 

path expressions, the decomposition sequence is complicated because each path 

expression may have different overlapping regions and thus may have more than 

one overlapping subpath expressions. Figure 6.6 outlines the algorithm used to 

determine the decomposition sequence. 
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( ^ @ A ^ K ^ © 

A > ® ~ ~ ^ © ^ \ 
© ^ A3 A4 \ ^ ^ ^ ^ g ^ 0 

Figure 6.7: Overlapping Path Expressions 

6.3.1 Example 

We use an example to demonstrate how the algorithm works. Suppose we have 

an aggregation hierarchy as shown in figure6.7, and our target is to support for-

ward and backward navigations between frequently referenced classes (Co,Ce), 

(Co, C4) and (C{，C^)‘ Therefore, the decomposition graph is determined as 

follows: 

Initially, the set of path expressions is {{P(0,4), P(0,6), P( l ,6 , ) } } . 

The path expression P(0,4) has 1 decomposition point which is at 2, and will 

be decomposed into {P(0,2),P(2,4)}. 

The path expression P(0,6) has 2 decomposition points, at 2 and 4, and will 

be decomposed into either {P(0,2),P(2,6)} or {P(0,4),P(4,6)}. In the second 

set, P(0,4) is in the set of path expressions to be removed. 

The path expression P(l ' ,6') has 2 decomposition points at 2 and 4. and will 

be decomposed into either P(l',2),P(2,6') or P(l',4),P(4,6'). 

Therefore, there are totally 1x2x2 = 4 possible decompositions: 

1. {P(0,2),P(2,4),P(2,6),P(l',2),P(2,6')} 

2. {P(0,2),P(2,4),P(2,6),P(l',4),P(4,6')} 

3. {P(0,2),P(2,4),P(4,6),P(l',2),P(2,6')} 

4. {P(0,2),P(2,4),P(4,6),P(l',4),P(4,6')} 

In the first set P(2,6) has one decomposition point at 4 and P(2,6') has one de-

composition point at 4. The resulting set of subpaths is {P(2,4),P(4,6),P(4,6')} 
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and P(2,4) will be removed. P(0,2) and P(2,4) are decomposed into {P (0 , l ) ,P ( l , 2 ) } 

and {P(2,3),P(3,4)} respectively by rule 1. Finally, P(4,6) and P(4,6,) are de-

composed into P(4,5),P(5,6) and P(4,5'),P(5',6') respectively by rule 1. The 

process stops at the point when no more decomposition points can be found 

in the above subpaths. The set generated is {P(0,2), P(2,4), P(2,6), P( l ' ,2) , 

P(2，6’)，P(4,6), P(4,6'), P(0,1), P(l,2), P(2,3), P(3,4), P(4,5), P(5,6), P(4,5’)， 

P(5，,6，)} 

Similarly, we obtain the following sets of subpaths 

{ P(0,2), P(2,4), P(2,6), P(l ' ,2) , P(2,6'), P(4,6), P(4,6'), P(0,1), P(l ,2) , 

P(2,3), P(3,4), P(4,5), P(5,6), P(4,5'), P(5',6') } 

{ P(0,2), P(2,4), P(2,6), P(l ' ,4) , P(4,6'), P(0,1), P(l ,2) , P(2,3), P(3,4), 

P(4,6), P(l ' ,2) , P(4,5'), P(5',6'), P(4,5), P(5,6) } 

{ P(0,2), P(2,4), P(4,6), P(l ' ,2) , P(2,6') P(0,1), P(l,2), P(2,3), P(3,4),P(4,5), 

P(5,6), P(4,6'), P(4,5,), P(5',6') } 

{ P(0,2), P(2,4), P(4,6), P(l ' ,4), P(4,6,) P(0,1), P(l ,2), P(2,3), P(3,4), 

P(4,5), P(5,6), P(l ' ,2) , P(4,5'), P(5',6') } 

It is found that the fourth set is more preferable than others because it has 

a smaller number of join operation counts and has a lower update cost. 

Thus, the decomposition graphs of the three path expressions are composed 

of: 

P(0,6) decomposed at 4 into P(0,4) and P(4,6), 

P(0,4) decomposed at 2 into P(0,2) and P(2,4), 

P(0,2) decomposed at 1 into P(0,1) and P(l,2), 

P(2,4) decomposed at 3 into P(2,3) and P(3,4), 

P(4,6) decomposed at 5 into P(4,5) and P(5,6), 

P(l ' ,6 ' ) decomposed at 4 into P(l ' ,4) and P(4,6'), 

P(l ' ,4) decomposed at 2 into P(l ' ,2) and P(2,4), and 

P(4,6') decomposed at 5，into P(4,5') and P(5',6'). 

73 



Chapter 6, Decomposition of Path Expressions 

P(0,6) 

z \ 
P(0，4) P(0,4) P(4,6) 

- 八 /\ 八 
P(02) P(24) P(0,2) P(2,4) P(4,5) P(5'6) 

/\八 /\八 
P(0,1) P(l,2) P(2,3) P(3,4) p(o,i) P(i,2) P(2,3) P(3,4) 

Decomposition Graph of P(0,4) Decomposition Graph of P(0,6) 

Figure 6.8: Decomposition Graph of P(0,4) and P(0,6) 

P(l',6') 

z \ 
P(l',4) P(4,6') 

/ \ 八 ， 

P(l',2) P(2,4) P(4,5') P(5 ’6 ) 

/ \ 
- P(2,3) P(3,4) 

Decomposition Graph of P(l',6') 

Figure 6.9: Decomposition Graph of P(l,,6,) 

The decomposition graphs of the three path expressions are shown in fig-

ure 6.8a,figure 6.8b and figure 6.9. Note that figure 6.8a is part of figure 6.8b. 
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6.4 Evaluation 

CPU time Vs path length System time Vs path length 
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Figure 6.10: CPU Time and System Time Vs path length 

In order to demonstrate the effectiveness and performance of the new algorithm, 

we performed a test on the two algorithms. We tried to find the auxiliary node 

sets for the set {P(0,n), P(l,n+1), P(2,n+2)} using the two algorithms. We 

implemented the two algorithms and executed in a SPARC20 machine. For the 

old algorithm, it has been shown that (^ *2n-2 Cn-iY different combinations of 

nodes were searched. 

We measured both the CPU time and the system time required to perform 

the task. The results are shown in figure 6.10a and 6.10b. When n is small(i.e. 

the paths are short) the system responds immediately in both algorithms. How-

ever, as n increases, the response time for the old algorithm increases exponen-
！ . 

I tially. For the new algorithm, the response time is still fast. For n = 7, the 

system time for the old algorithm is 2648 seconds while the CPU time is 268 

seconds. The large difference between the system time and the CPU time is 

caused by the large amount of data being kept in the virtual memory, and thus 

much swapping into and out of the memory is required. 

Obviously, the new algorithm has a better performance over the old one, 

especially under long path lengths. The experiment has shown that in long path 
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expressions, the old algorithm performs poorly due to the large search space 

requirement. The experiment cannot be completed for the old algorithm for a 

large n (say for n = 10). 

6.5 Summary 

In this chapter, we have presented an algorithm which configures the decomposi-

tion of a set of path expressions and generates a decomposition graph supporting 

the construction of the Triple Node Hierarchy. The algorithm is derived based 

on the observation that the length of the path expressions may be very long 

in some cases while the number of overlapping path expressions is limited to a 

small number because only path expressions with frequently referenced object 

pairs are maintained. The algorithm can be used to configure the decomposi-

tion of the path expressions when performing tests on all possible decomposition 

sequences is not possible. Our analysis has shown that the algorithm performs 

well. 
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Conclusion and Future Research 

7.1 Conclusion 

Object-Oriented Database systems provide powerful modeling facilities, but re-

quire efficient query evaluation to achieve high performance in advanced applica-

tions. In this thesis, we have investigated the influence of indexing structures on 

query optimization. As a result, several important issues have been identified, 

including the support for efficient navigation. The following research results 

constitute the major contributions of the thesis. 

• Triple Node Hierarchy for fast navigations among objects and classes along 

path expressions. 

• Configuration of the Triple Node Hierarchy on overlapping path expres-

sions. 

• Integration of the Triple Node Hierarchy with the CH-tree for fast navi-

gations in both aggregation hierarchy and inheritance hierarchy. 
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7.2 Future Research 

The work reported in this thesis can be extended along several directions. 

First of all, the Triple Node Hierarchy can be combined with other index-

ing structures, such as hcC-trees, CG-trees, CD-trees, to enhance the abilities in 

supporting inheritance hierarchies. These structures have been proved by exper-

iments that they have better performance than the CH-tree. Thus, it is expected 

that the integration of the Triple Node Hierarchy with any one of these meth-

ods can achieve much better performance. Moreover, some system parameters 

such as the fanout factors may impact on the costs of the indexing structures. 

Thus, an extensive comparison on the costs and performance among the com-

bined organizations is essential. In addition, the combined organizations can 

be integrated with query optimization strategies to support efficient process-

ing of complex queries containing several nested predicates. Furthermore, as 

the cost of the Triple Node Hierarchy may be reduced by selecting an optimal 

decomposition graph of path expressions, it is therefore necessary to develop ef-

fective algorithms to configure the splitting of long path expressions into several 

subpath expressions. 
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Evaluation of some Parameters 

in Chapter 5 

The probability that a given Oi+i, member of class ft+i，i and belonging to the 

definition domain of attribute Ai of cardinality Di, is not referenced by a given 

member of class Ci,i is: 1 — {farii/Di) 

if khi > 1, the probability that Oi + 1 is not referenced by any object belong-

ing to a set of member of class C^ ,̂ with attribute Ai having a set of values 

{O l j , O l j , . " , O l j } all different form Null is the following : 

PrD{i,k) = f l - ^ ^ y 
V Di ； 

if khi =1, 
k-i ( ffj^. \ 

PrD,(i,k) = n 1 -7~~——— 
y=o \ ( A - " * / c m " 

Let RefBy(i,s,y,k) (0 < i < y < n, 1 < s < nci and 1 < k < Dy) denote the 

number of values contained in the nested attribute Ay for a set of k instances of 

class Ci,s' 
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， 

Di,s * (1 — v{i, s) * Pr(z, 5, k)-

o .D /. M (l — iK��s))*Pr'(��s，AO) y = i 
HejBy[i,s,y,k)= 

Dy * (1 — v,(t) * PrD(y, RefBy(i, s, y — 1, k) * i % - i ) -

(1 — i / ( 0 ) * PrD,[y’ RefBy(i, s, y - 1，k) * P^, 一 1)) y > i 

where 
, . � 1 K s > 1 

v{l^ s)= 

0 else 

1 khi > 1 
V � = < 

0 else 

The number of values contained in the nested attribute Ay for a set of k members 

of class Ci,i is 
Di*(l-v,(i)*PrD(i,k)-

… … 7 � {l-v'{z))^PrD'{z,k)) y = i 
RejByh{i,y,k)= 

Dy * (1 — v'{i) * PrD{y, RefByh{i, y - 1, k) * P^^_i ) -

(1 — t / (0 ) * PrD,(y, RefByh{i, y — 1, k) * P^, - 1)) y > i 

Thus, the average number of objects held in the nested attribute An of an 

instance of the class Ci’” 1 < i < n, 1 < j < nci is: 

f^i,j = RefBy{iJ,n,l) 

For the formulations kij and DefA^Xi,j), two other parameters must be de-

rived; Ref{i^j, y, k) and Refh[i, y, k). These parameters represent, respectively, 

the average number of instances of class Ci,j which have a value in a set of k 

elements (1 < i < y < n and 1 < j < nci) as the value of the nested attribute 

Ay^ and the average number of members of class C{,i which have a value in a 

set of k elements (1 < i < y < n) as the value of the nested attribute Ay. The 

formulation of these parameters follows the same approach as the formulation of 
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the parameters RefBy{i,j^ y, k) and RefByh{i, y, k). A detailed description of 

the formulations of these parameters is given in [4]. The following is obtained; 

hj = Ref(i,j,n,V| and DefA^{iJ) = Ref{iJ,n,Dn). 
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Cost Model for 

Nested-Inherited Index 

Table B.1 lists the parameters that are used to derive the cost model for the 

NIX structure. The derivations for these parameter can be found in [4]. The 

cost model is quite similar to that given in [5 . 

B.1 Storage 

The average size of a primary (leaf-node) record XNI is given by: 

n nci _ � n ‘ 
XNI - OIDL * J2Y,hj + kl + {OIDL + of + pp) * X>c,. 

j=i j=i J u=i . 

The average number of pages required to store a leaf-node record is 

'XNf 
np = 

P 

The average size of a 4-tuples of an auxiliary record associated with the class 

Ci,j is 

AUXij = OIDL * (1 + khi_i) + pp * J^i,j 
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Derived Parameters semantics, derivation/default 
ki,j Number of instances of class Cij having the same value for 

the nested attribute An 1 < i < n, 1 < j < ncj 
khi Number of members class Ci,i having the same value for the 

nested attribute A„, 1 < i < n 
~ 3 ^ - • 

k (i,j) Number of instances of class C{j having a given object as 
value of attributeAi,l < i < n,l < j < nc{ and i < t < n 

kh- Number of members of class Ci,i having a given object as 
value of attributeA^,l < i < n, and i < t < n 

kj^^{i^j) number of instances of class Ci j having the same value for 
the nested attribute A^ and having a given object as value 
of attribute A ,̂ 1 < i < n, 1 < j < nCi and i < t < n 

fan- j Average number of objects held in the nested attribute An 
of an instance of the class Ci,j, 1 < i < n, 1 < j < nci. 
The average is computed with respect to all the instances 
of class Ci,j, 1 < i < n and 1 < j < nci 

fan- j Average number of objects held as value of the nested at-
tribute At of an instance of the class Ci,j, 1 < i < n, 
1 < j < nci, i < t < n. The average is computed with 
respect to all the instances of class Cij, 1 < i < n and 
1 < j < ncj 

RefValArXi,j,t) Number of instances of class C{j that contain at least one 
value of S in the nested attribute An where S is a subset of 
the definition domain of the attribute An of cardinality t, 
1 < i < n, 1 < j < nci,t > 0 

Refout-k(i,j,y,m) Number of instances of class Ci,j that are roots of at least 
one instantiation I ofthe path with the following characteris-
tic. Let be S a subset of m elements of the definition domain 
ofthe attribute Ay and 0 an object member of the class Ck,i 
Then the instantiation I must not contain 0 and must have 
as last value an element of S, 1 < i < n, 1 < j < nci, 
i < y < n, % < k < y, m > 0. Note that the instantiation 
I may be also partial on condition that I has such length as 
to contain an instance of C{,j and a member of Cy,i 

DefAn{hj) Number of instances of class Cij having at least one value, 
different from Null, for the nested attribute v4 ,̂ 1 < i < n, 
1 < j < ncj 

DefhAn{^) Number of members of class Cî i having at least one value, 
different from Null, for the nested attribute An, 1 < i < n 

Table B.1: Database Parameters 
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Appendix B. Cost Model for Nested-Inherited Index 

The average size of a 4-tuples of an auxiliary record is 

^ [ E L ^ S - ^ i ^ ^ ^ * ^ . . ] 
皿 = E ^ 

The number of leaf pages of the auxiliary _B+-tree is 

T p _ l^2^^i AUX,,^N,,] 
hfA = p 

B.2 Query Cost 

The average number of pages accessed for an point query targeted on a number 

c of classes is: 

hp + 1 , XNP < P 
C{retrievepoint) 二 

[ = K + — + [1 - ^ ] , XNP�P 

where npa = Yao{c^ np, YJi=i ^^i) 

the average number of pages accessed for an index lookup for a range query 

having Ny number of contiguous values in the range is given by: 

hp + [f-] , XNI < P 
C{retrievCrange) = e 

K + — + [1 - ^ ] ) * N, , XNI > P 

B.3 Update 

Two types of update operations in the relationship between two classes is con-

sidered: 

Insert Oi’t into Oi_i,s.Ai_i 

delete 0{̂ t from Oi_i,s-^i-i 

If we insert an object Oi,t as the attribute A{-i of another object ft-i,s, we 

may need to insert pointers in the auxilliary records which points to primary 

records. If we delete an object Oi,t from the attribute A^_i of another object 
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Oi_i,s, we may need to delete the pointers in the auxilliary records which points 

to primary records. 

In both cases, the update cost is the same. 

There are two cases for an update operation in NIX: 

Case 1. The object 0{̂ t has a Null value for the nested attribute An] 

Case 2. The object ( ¾ has values different than Null for the nested attribute An\ 

For case 1, since no primary record is accessed, only tuple of Oi,t is updated 

by removing 0 “ i ’ s from the parent list. The cost is given by: Cindef = ^A +2. 

Case 2. The number of updated leaf pages of primary B^-tvee is 

^ … ] . , 、 ‘ Y a o { 7 ^ , ^ , , L P p , D n ) , XNISP 
DNPp{i,t,i- 1 ,5) = 

fariit * [npu + [l — ̂ J j , else 

where npu = Yao{{l + Yl]Zl nct), np, Yl^^i nck) 

The number of 4-tuples auxiliary records being updated is 

D N R A [ i , t , i - 1 , 5 ) = 

1 / \ \ 
Refout�—i�k,m,n,fan“,s� 

i-2 nck . 1 F,~^ 
2 + E E C * l - . a / ( f c , m ) * A ^ ^ ^ ^ " ^ f 

fc=2m=i RefVdArXk,m,farii_i,s) 
p - i 

V \ k̂,m / 

The second term of the sum represents the average number of tuples associ-

ated with the ancestors of Oi_i,s that contains pointers pointing to the primary 

records being updated. This value is maximum when val(k,m) = 0 and is mini-

mum when val(k,m) = 1. 

Therefore, the number of pages of the auxiliary _B+-tree to be updated is 

J Yao{DNRA{i, t, i - 1 , s), LPA, EL2 Nh,)，ZZ7Z$P 
i ^ 7 V T _ A ( z , � z _ l , s ) = 

DNRA{i,t^ i — 1 , s) , else 
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The total cost for the case 2 is 

Cdef{i, t, i - 1, s) = 2 * DNPp{i, t, i - 1, s) 

/ n \ 
^VisBtree DNRA[i, t, i — 1, s), [ Nhk, "A + 2 * DNPA[i, t, i - 1, s) 

\ k=2 / 
The probability that case 1 occur is 

_ N,,-DefA^z,t) 
1二 Wt 

By merging the two cases, the update cost is 

C{delete)i^t,i-i,s = Cindef[i,t,i- l,<s) * Pi + Cdef{i,t,i- l,<s) * (1 一 Pi) 
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Appendix C 

Algorithm constructing a 

minimum auxiliary set of JIs 

Input: A set of classes Co,...,Cn and a set of target JI nodes in the path 

Co.Ai.A2'"^n 

Output: A minimum set of auxiliary JIs nodes. 

Method: The method collects the set of auxiliary nodes which are used to 

generate the set of target nodes, and then selects those containing the minimum 

numbers of nodes, as shown below. 

la. Starting with the set of target nodes, find S: the set of their immediate 

auxiliary nodes. Notice that the set of immediate auxiliary nodes for a (target or 

auxiliary) node JI(i,j) is {JI(i,k), JI(k,j)} for i<k<j with the removal of JI(i,k) 

or JI(k,j) if it is a target node or a base node. If there is an empty set resulted 

from this removal, return the empty set. Otherwise, if there are more than one 

such k available, each k generates one set, and the result is a set of sets. Thus, 

S is in the form of {{JI(i,k), ..., JI(k,j)}, ..., {JI(i,m), ..., JI(m,j)}}. 

lb. For each JI in the set s in S, find its immediate auxiliary nodes. 

lc. If its immediate auxiliary nodes consists of 1 sets, ai,..., ai make 1 copies 
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Appendix C. Algorithm constructing a minimum auxiliary set of JIs 

of s, and add each of a; (1< i < 1) to a copy, which forms 1 new sets. 

ld. This process repeats until no new immediate auxiliary node can be found. 

The result is a set of auxiliary node sets which are used sets which are used for 

generating the set of target nodes. 

2. For each set s in the generated set of auxiliary nodes, count the number 

of auxiliary nodes. Only those with the minimum number of nodes are retained. 

3. From the retained sets obtained in step 2, calculate the number of join 

operations required for updating each set and select the one which requires the 

minimum number of join operations. 
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Appendix D 

Estimation on the number of 

possible combinations 

(With reference to the algorithm in previous section) 

Consider step 1: 

If we have a target node JI(i,j) at level n (n=j-i), the set of immediate 

auxiliary nodes will be: 

J / ( � j ) = J / ( z， z + l ) J / ( z + l， j ) + J / ( M + 2 ) J / ( z + 2 , j ) + . . . + J / ( z , j — l V / ( j - l , j ) 

Let the searching space of a JI node be � w h e r e n is the level of JI node. 

The searching space becomes: 

<^n = aian-l + ^2<^n-2 + ••• + ^i^'i+l + . . . + Q'n-lO'l 

Observe that the right-hand side of this equation is simply the coefficient of 

x^ in the product g(x)g(x) = (0 + aix + ... + GnX̂  + . . . f 

Using the power series summation method, 

X X 

g{x) - X 二 Y^ anX^ = Y^[aian-i + a 2 a ^ _ 2 + ... + a , a , + i + ... + an-iai)x^ = {g{x)f 
n = 2 n=2 
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Appendix D. Estimation on the number of possible combinations 

To solve the equation : 

g{x) - X = {g{x)Y 

{g{x))^-g{x)^x = 0 

g{x) = - ( i ±yr^) 

As ao = 0 =4> 5r(O) = 0 

Therefore, g{x) = |(1 — ^1 —句 

Consider (1 + y)i = y/l — 4x, where y = _4x, 
/ 1 \ 

(i + y)' = E ‘ / 
k==i 乂 k ) 

where 

、 ） 二 全 (全一 1 ) (全一 2》 . . ( | - (於一 1 ) ) 

h k\ 
\ ^ J 

= | ( - | ) ( - | ) . . . ( - | ( 2 f e - 3 ) ) 

- h\ 
二 ( - l ) ^ - ^ ( | ) ^ ( l ) ( 3 ) . . . ( 2 f e - 3 ) 

— k\ 

The coefficient of x^ in V̂ 1 — A:X is 

( \ \ . 4 � n — ( - l ) - i ( | ) 1 1 ) ( 3 ) . . . ( 2 n - 3 ) 

(—4) — ^ (—4) 
\ ^ 

一 ( - l ) ( l ) ( 3 ) ( 5 ) . . . ( 2 n - 3 ) , , 

— n^ ^ 

= ( - 1 ) ( : ! ^ 二 “ ) ( “ ) ! ( 2 ” 

= ^ ^ ^ _ ( 6 ) . . . ( - - 2 ) ( 2 ) 

= ( - l ) ( 2 n - 2 ) ! f j 
— ( n ! ) ( n - l ) ! � J 

2 ( 2n — 2 � 

= 、 （ n - 1 j 
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Appendix D. Estimation on the number of possible combinations 

Therefore, g(x) = |(1 — y/l — Ax) becomes : 

^ 1 ( 2k - 2 \ , 

'w=Fj k 1 ‘ 
k=i y K —丄 y 

and ttn, the coefficient of x^ in g(x) is : 

1 \ 1 2n - 2 

— ^ { - - i y 
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