
Improving On-chip Data Cache
Using Instruction Register Information

- ‘ � . .

— \ ,.::.一：〜��A
/ � v �

/ - . . � - , , . . � � » � .' •• •- .必 ,' .

By r I
Lau Siu Chung • , .、工 . .二——" .

——.—..• "v . . ‘.. �. Z
% . . ,-- . - • • • • ,

��� : .•� . .….-

Supervised by: Dr. Chi Chi Hung

Submitted to Department of Computer Science and Engineering
in partial fulfillment of the requirement for the

Master ofPhilosophy
at the Chinese University of Hong Kong

June 1996

^̂ ^̂ ^̂ ŝ ^̂
(Cii^^^l
^ l N ^ Y l : y ^ ^ ^ ^ ^

^ediMted ta S^tmo^.,,

ABSTRACT
With advance of CMOS technology, the difference of speed between processors and
main memories is getting larger and larger. The introduction of fast cache memories
offers great help to tackle the problem. Because of their high speed and cost, the cache
memories found in current computer systems are usually small in size. In order to fuUy
utiUze these smaU cache memories, numerous hardware and software based prefetching
schemes have been proposed in the past two decades. In this dissertation, we propose
and evaluate a collection of three hardware cache control schemes, called the Instruction
Opcode and Addressing Mode Prefetching (IAP) scheme, that is based on the run-time
information obtained from the instruction register. It is found that in the latest processor
architecture design, there are certain instruction opcodes and addressing modes
containing valuable information about how data wiU be referenced in the near future.
Furthermore, these features have ah*eady been fuUy utilized by the current compiler
optimization techniques to produce highly efficient program codes. Since most of these
processors have on-chip data caches, it would be beneficial for the on-chip cache
controUers to use this information for efficient cache management. In this dissertation,
we wiU present [1] the problems of the memory systems that most of current computer
systems have, [2] the observation that gives us the motivation of our scheme, [3] the
evolution of our scheme from an intuitive idea to our final proposal, and [4] the
experimental results that show the substantial performance improvements obtained from
our scheme over the past prefetching schemes.

i

Acknowledgments
Just want to say THANKS.

ii

Contents

Abstract i

Acknowledgment ii

List of Figures v

Chapter 1 Introduction 1
1.1 Hiding memory latency 1
1.2 Organization of dissertation 4

Chapter 2 Related Work 5
2.1 Hardware controlled cache prefetching 5
2.2 Software assisted cache prefetching 9

Chapter 3 Data Prefetching 13
3.1 Data reference patterns 14
3.2 Embedded hints for next data references 19
3.3 Instruction Opcode and Addressing Mode Prefetching scheme 21

3.3.1 Basic IAP scheme 21
3.3.2 Enhanced IAP scheme 24
3.3.3 Combined IAP scheme 27

3.4 Summary 29

Chapter 4 Performance Evaluation 31
4.1 Evaluation methodology 31

4.1.1 Trace-driven simulation 31
4.1.2 Caching models 33
4.1.3 Benchmarks and metrics 36

4.2 General Results 41
4.2.1 Varying cache size 44
4.2.2 Varying cache block size 46
4.2.3 Varying associativity 49

iii

4.3 Other performance metrics 52
4.3.1 Accuracy of prefetch 52
4.3.2 Partial hit delay 55
4.3.3 Bus usage problem 59

4.4 Zero time prefetch 63
4.5 Summary 67

Chapter 5 Conclusion 68
5.1 Summary of our research 68
5.2 Future work 70

Bibliography 71

iv

List of Figures
Figure 3.1: Example of array transversal 17
Figure 3.2: Example of 2-D array transversal 18
Figure 3.3: Example of 2-D array transversal with memory placement stride 19
Figure 3.4: Operations of LOAD/STORE-UPDATE instructions 21
Figure 3.5: Architectural model for IAP scheme 22
Figure 3.6: Control flow of the basic IAP scheme 23
Figure 3.7: Multiple blocks prefetching 25
Figure 3.8: Next Cache Block vs. Next Data Prefetching 26
Figure 3.9: Control flow of the enhanced IAP scheme 28
Figure 3.10: Control flow of the combined IAP scheme 30

Figure 4.1: Trace-driven simulator using xtrace 33
Figure 4.2: Memory model of the simulator 35
Figure 4.3: Percentages of LOAD/STORE-UPDATEs in SPEC92 Benchmark Suite 39
Figure 4.4: Baseline CPIs of SPEC92 Benchmark Suite 41
Figure 4.5: MCPI and stall reduction of simulations with varying cache size 45
Figure 4.6: MCPI and stall reduction of simulations with varying block size 47
Figure 4.7: MCPI and stall reduction of simulations with varying associativity 50
Figure 4.8: Accuracy of prefetching 54
Figure 4.9: Percentage partial hit delay to overall delay for the basic IAP scheme 57
Figure 4.10: Partial hit delay reduction over the basic L\P scheme 59
Figure 4.11: Retry after prefetch killed 62
Figure 4.12: Number of successful prefetch blocks over the basic IAP scheme 63
Figure 4.13: Experimental results with zero time prefetch for espresso 66
Figure 4.14: Experimental results with zero time prefetch for nasa7 67

V

Chapter 1
Introduction
Starting in the 1990s, single chip processors have become the basic building block for
high performance computer systems, ranging from personal workstations, mainframes to
highly scalable parallel processing systems. With the maturity of CMOS technology,
today's processors akeady have over 3 million transistors and run at a clock speed of
over 100 MHz. It is expected that in the next three to five years, processors with more
than 5 to 10 milUon transistors and with clock speed of 300 to 500 MHz wiU be
available commercially. At the same time, the memory latency and bandwidth have also
been improved, but in a much slower rate. Due to cost and practical reasons, the speed
gap between the processors and the memory systems is kept increasing and the cache
miss penalties become relatively larger. When the cache hit rate is low, the processor
will be stalled most of the time, waiting for data to be fetched from the memory. This
results in low processor utilization. It is not difficult to observe that in future high
performance processors and computer systems, their primary performance bottleneck
wiU be in their supporting memory systems [HeP90] [Smi82]. To solve this speed gap
problem, one common approach is to use on-chip caches [Smi82]. It is generally agreed
that the performance of on-chip caches is one of the primary factors to determine the
overall system performance [HeP90].

1.1 Hiding memory latency
It is clear that the performance of a computer system will be greatly improved if the
memory latency is "hidden" from processor execution. That is, the processor is kept
running while data are fetched from or written back to the memory. Numerous

1

techniques have been proposed on this topic, for example, compiler(code) optimization,
which reduces the data and control dependence of program codes in order to minimize
the processor staUs [GiM86]; write buffer, which allows the processors to keep running
during memory update [Smi82].

One important technique to improve the system performance is cache prefetching
[Smi78a] [Smi78b] [Smi82] [HeP90]. By fetching data into the cache before they are
actually used, delay due to memory accesses might be able to overlap with the program
execution time, thus resulting in less processor idle time. In superscalar processors and
future processors, data prefetching will become more important. It is because the
consumption rate of data and instructions per unit time increases as the total number of
functional units increases, and hence increasing the demand for better cache performance
and higher chip VO data transfer rate.

For instruction references, even simple prefetching schemes Uke “one block look
ahead" and "prefetch-on-miss" [Smi82] are good enough to provide reasonable cache
performance. This is due to the strong sequential nature of instruction references. In
fact, many cache design techniques and control mechanisms such as prefetch buffer and
large cache block size are based primarily on the instruction reference characteristics.
However, for data references, most of current data prefetching schemes lose their
effectiveness. It is because the reference pattern of data is considered to be "random"
instead of "sequential" and is much less predictable when compared to the reference
pattern of instructions. As the accuracy for data prefetching decreases, cache poUution
can be so serious that any gain in data prefetching might be offset by the loss due to the
replacement of "useful" information in cache by '"useless prefetched" information. The

2

demand for extra bus bandwidth by the inaccurate data prefetch requests also
contributes to the degradation of cache performance.

In this dissertation, we propose a novel cache control scheme, called the
Instruction Opcode and Addressing Mode Prefetching (IAP), to perform very
accurate hardware driven data cache prefetching. It is found that in the design of latest
processor architectures, there are certain instruction opcodes and addressing modes
containing valuable information about how data will be referenced in the near future. For
example, each LOAD/STORE-UPDATE instruction in the IBM RS/6000 [IBM89] and
PowerPC series [Mot92] [WeS94] [IBM94] or LOAD/STORE-MODIFY instruction in
the HP Precision Architecture 1.1 [HP94] updates the content of one register used in the
address calculation for the current data reference and it is expected that this updated
register content wiU be used in the address calculation for some data references by the
same instruction in the near future. Furthermore, these new features have akeady been
fuUy utilized by current compiler optimization techniques to produce highly efficient
program code. Since most of these processors have on-chip data caches, it would be
beneficial for the on-chip cache controllers to use this information for efficient cache
management. Our experiments on the SPEC92 showed that with proper fine tuning of
the IAP scheme, the processor idle time due to memory accesses can be reduced
substantially, yet the additional hardware required is very simple. This IAP scheme is
especiaUy good in prefetching array data references with constant strides, where the
opcode used is the LOAD/STORE- UPDA TE, the addressing mode used is the index-
displacement, and the register used in the address calculation is updated by a constant
displacement specified in the instruction.

3

1.2 Organization of dissertation
The organization for the rest of this dissertation is as follows:

In Chapter 2, a brief survey on the current data prefetching schemes wiU be
given. Introductions to both the hardware controlled and software assisted cache
prefetching will be included.

In Chapter 3，our three IAP prefetching schemes — basic, enhanced and
combined, wiU be presented. In the basic IAP scheme, prefetch requests can be
generated for data with one iteration look ahead. Next, the concept of cache block
prefetching is introduced in the enhanced IAP scheme to tackle the problem of Umited
memory bus bandwidth. Finally, the combined IAP scheme, equipped with default
prefetching, try to exploit the spatial locality left by the former two schemes. The
general architectural model and control flow diagrams for the IAP schemes will also be
included in this chapter.

Chapter 4 will give the evaluations of the results of our experiments. The IAP
schemes are evaluated using trace-driven simulations of eight SPEC92 benchmarks
based on the architecture of an IBM RS/6000 machine. With comparison to the
traditional hardware controlled prefetching scheme — prefetch-on-miss, the results
show that the IAP schemes are generally more effective in reducing the memory latency
time by performing very accurate data prefetching.

FinaUy, the dissertation will be concluded in Chapter 5. Future development and
directions of the research will also be suggested in this chapter.

4

Chapter 2
Related Work
The concept of data cache prefetching is not new. The idea of fetching data into the
cache before they are used was first suggested in the early 1970s [Sak72]. Since then,
proposals on various cache prefetching schemes have been proposed and countless
efforts have been spent to fme-tune the effectiveness of cache prefetching. In general,
cache prefetching schemes can be classified either as hardware controUed or software
assisted.

2.1 Hardware controlled cache prefetching
Most hardware controUed cache prefetching schemes are based on the sequentiaUty
property of references [Smi78a] [Smi78b] [Smi82] [Lee87] [Jou90] [FuP91]. It is
suggested that when datum i is referenced, the probability for datum i+1 to be
referenced in the near future is very high. Thus, datum i+1 is a good candidate for data
prefetching. Under this approach, the two most commonly used prefetching techniques
are large cache block size and one block look ahead.

Cache block size is the basic unit of data transferred between the cache and the
main memory. When the cache block size is greater than one, data cache prefetching wiU
be achieved whenever a cache miss due to the reference of a single datum occurs. The
missing datum is fetched into the cache on demand while other data in the same cache
block are prefetched into the cache. Cache performance will be improved if the
prefetched data in the cache block are referenced. For instruction caches, large cache
block sizes (e.g. 16-32 bytes) are often found to be useful in improving cache
performance. However, this is not true for data cache. As the cache block size increases,

5

the average percentage of data in a cache block that will be referenced before the block
is replaced might decrease very quickly. For example, for array references with large
strides, since only one datum in each cache block might be referenced, increasing the
cache block size to perform data prefetching does not improve data cache performance.
On the other hand, the number of cache blocks that can be stored in a fDced size cache
decreases as the block size increases. This might result in the degradation of cache
performance because the amount of useful data that can be stored in cache decreases.
Furthermore, transferring a larger cache block would take longer time than transferring a
smaller cache block — another performance overhead. AU these factors impose a
practical Umit to the block size of data caches. In fact, the technique of using large block
size for data prefetching has been shown to be ineffective in data caches [Lee87] and
small block size (e.g. 4 bytes) is preferred, especially in multiprocessors.

One block look ahead [Smi82] is the other commonly used technique in
hardware controlled cache prefetching schemes. The basic idea of this technique is to
prefetch the iiext cache block from the current one being referenced. This prefetching
action can be triggered by different situations. Some of the common ones are:
[1] when a cache miss for a cache block occurs,
[2] when the beginning of a cache block is referenced, or
[3] when the end of a cache block is referenced.

Again, this technique is based on the sequentiality property of references and it
only works for instruction caches, not for data caches. In data caches, since the chance
for the prefetched data to be actually referenced is not high, prefetching might degrade
cache performance. It is because placing prefetched cache blocks into the cache means
replacing some blocks from the cache.

6

The basic reason why these two techniques do not work in data caches is that the
reference behavior of data, which is actually a mix of portions of different reference
patterns (see the next chapter for more details), is very different from the reference
behavior of instructions, which is highly sequential. Applying prefetching schemes that
are designed primarily for one type of reference behaviors to another type of reference
behaviors, of course, will not be effective.

Some variations of one block look ahead scheme have also been studied in many
previous researches. As proposed by Fu and Petal [FuP91], stride information carried by
vector instructions can be used for prefetching data in the vector processors. Instead of
only one block look ahead, multiple blocks are prefetched on a cache miss. The cache
load size 1 is defined as the number of bytes loaded into the cache when a miss occurs
and it will be equal to Q?+\)^b where p is the number of blocks prefetched on a miss and
b is the basic block size. Two prefetch-schemes are suggested based on the cache load
size:
[1] the sequential-prefetch scheme — when a miss occurs, the cache prefetches p

consecutive blocks for a reference which is a scalar or a short stride (i.e. the stride
< b) array access;

[2] the stride-prefetch scheme — in addition to sequential-prefetching, the cache
prefetches p blocks for long stride (i.e. the stride > b) vector accesses when a cache
miss occurs, where the blocks are separated by the stride.

After performing some simulations on a 64K cache (32-byte block size, 2-way set
associative) with a load size of 128 bytes, the sequential-prefetch scheme improves the
system performance improvement by 30%-50%, while the stride-prefetch scheme shows
no significant improvement over the sequential prefetch.

7

After that, Fu and Patel [FuP92] carried on their work to the scalar processors.
In this scheme, data prefetching is based on the prediction of the execution of the
instruction stream. The prefetch requests are generated by a hardware history table,
which records the instruction address of LOAD/STORE instructions and the
corresponding memory addresses requested. Whenever a LOAD/STORE instruction is
encountered, its instruction address is checked with those from the table. If it is found in
the table, the stride is then calculated as the difference between the previous and current
memory address. A prefetch request will be sent out for the next datum with memory
address equal to the sum of current memory address and the stride. Their results show a
significant improvement for vectorized programs. That is, when the data references of
the programs are mainly of regular strides. However, due to the lack of control of
preventing prefetches for irregular data references, many unnecessary prefetches will be
generated and they may displace useful data out of the cache. As a result, the
performance improvement drops quickly for the non-vectorized programs. Moreover,
with only one iteration look ahead, the memory bus may not have enough time to finish
the prefetch request before the data are actually needed by the processor, introducing
another performance loss.

In order to tackle the above problems, Baer and Chen [BaC91] [ChB92]
[FuP91] from the University of Washington suggested their Data Preloading scheme.
The hardware for this data preloading scheme consists of a reference prediction table
(which is a refmed history table) and a look ahead program counter and its associated
logic. Each entry in the reference prediction table consists of a tag, a previous address,
stride and the state of preloading. As compared to the history table, the stride, in
addition to the instruction address and memory address, is also recorded in the reference

8

prediction table. The regular access pattern of data references is confirmed by comparing
the sum of the previous address and the stride in the reference prediction table to the
current reference address. If they are equal, a prefetch request for datum with address
equal to the sum of the current data reference address and the stride is sent out to the
cache. With this scheme, preloading of data with regular data reference patterns can be
achieved while preloading of data with irregular data reference patterns can be avoided.
The look ahead program counter is used to allow multiple iterations look ahead. The
result of this data preloading technique is very good and is very useful in scientific
computation appUcations, where data references mainly consist of array references with
constant strides. The major drawback of this scheme, however, is the size of the
reference prediction table required. It is reported [BaC91] that the size of the reference
prediction table needed to achieve good data preloading result is about hatf of the cache
size. This makes the preloading technique more suitable for the second level off-chip
cache than for the first level on-chip cache because the on-chip space available for data
cache is always very limited.

2.2 Software assisted cache prefetching
In the past few years, cache designers start to look for new ways to improve the
effectiveness of data cache prefetching. With advances in compiler optimization and in
data flow analysis, software assisted cache prefetching using PREFETCH instructions is
now possible. Recently, a number of software assisted (or compiler driven) cache
prefetching schemes [Tha81] [Bre87] [Por89] [GoG90] [CaK91] [ChM91] [KUL91]
[MoG91] [MoL92] have been proposed. All these schemes share some common
properties:

9

[1] Some non-blocking PREFETCH instruction is defined to preload a block of data
into the cache.

[2] PREFETCH instructions are inserted into some inner loops of a program by the
compiler.

[3] Prefetching candidates are array references with constant stride.
AU these software assisted prefetching schemes are very successful in prefetching

array references with constant strides. However, the use of these schemes is often
limited by their runtime overhead. When PREFETCH instructions are inserted into some
inner loops of a program, program execution time will be spent to execute these
instructions, independent of whether these PREFETCH instructions can help eUminating
cache misses. For any data caches with block size greater than one, the same
PREFETCH instruction in some loop of a program might execute more than once, each
time to prefetch the same cache block. In other words, to avoid one cache miss, the
runtime overhead introduced by these schemes might range from 1 instruction to
block—size instructions, where block_size is the size of the cache block. In fact,
Porterfield reported in [Por89] that using the computing intensive programs in RiCEPS
as the benchmark programs, he found that the percentage of PREFETCH instructions
that are found to be useful only ranges from 1.7% to 58.2%, with the average^ of
28.4%. However, the software prefetching overhead (in execution time) introduced is
substantial, ranging from 6% to 34%, with the average of 28%.

To reduce this runtime overhead of software assisted prefetching schemes,
Mowry and Lam [MoL92] proposed the concept of prefetch predicates, which
determines if a particular iteration needs to be prefetched. Then, with the loop spUtting

1 Even with overflow iteration technique [Por89], the average percentage of useful PREFETCH

instructions can only be improved to about 60%.

10

technique, the runtime overhead of data prefetching is reduced by decomposing the
loops into different sections so that the predicates for all instances for the same section
evaluate to the same value. This implies that either the first iteration of the loop is peeled
for temporal locaUty reason or the loop is unroUed by a factor of the cache block size for
spatial locality reason. This prefetch predicate concept definitely improves over previous
software prefetching schemes. However, there are a number of important issues which
still need to be solved by this predicate approach. As mentioned in their paper, for large
cache block size, peeling and unrolling multiple levels of loops can potentiaUy expand
the code by a significant amount; also existing optimizing compiler is often ineffective
for large procedure bodies. On the other hand, for small cache block size, the amount of
runtime overhead that can be reduced by this technique is smaU because their
improvement factor is a linear function of the cache block size. In fact, when the cache

/^

block size is one or when the distance between two successive array references is
greater than the cache block size, no reduction in runtime overhead can be achieved.
Furthermore, the algorithm for this peeling and unrolling for prefetch predicates is quite
complicated to be implemented in the compiler.

One other complication of using PREFETCH instructions is the amount of data
that should be prefetched by one PREFETCH instruction. Since there is some runtime
overhead associated with each PREFETCH instruction execution, one would prefer to
prefetch a larger block of data per instruction. In this way, the overall runtime overhead
of the scheme can be reduced. However, if a large block of data is prefetched into the
cache, the current working set of references in the data cache might be destroyed by the
prefetched data (especially for on-chip caches with a smaUer cache size). This will

2 This is the case for stride Row—Size or Column—Size array references and is found to be very common.

11

introduce additional cache misses. Furthermore, execution of the PREFETCH
instruction for a larger block of data might hold up the memory bus for too long and this
can cause unnecessary delay to other bus requests such as demand-driven cache misses.
One the other hand, if each PREFETCH instruction only prefetches a small block of
data, the performance gain by the software prefetching scheme might not be large
enough to offset its overhead.

People have been arguing that while the cost issue of software assisted data
prefetching in scalar machines is important, the cost of software cache prefetching in
superscalar machines is negligible. It is because the PREFETCH instructions wiU be
faUen into unused slots for free. We do not agree with this argument. First, the
PREFETCH instructions are not scheduled to fill in the free slots available. Instead, they
will be executed whenever they are encountered (because there is no data dependency).
Thus, the execution of PREFETCH instructions cannot be considered as free. Rather,
they should be treated as the execution for some additional data dependent free
instructions. Second, even if some free slots are found, they are still not free. If the same
slot is not occupied by the PREFETCH instruction, it can be used by some other
instructions. Decoding one PREFETCH instruction in superscalar machines also implies
that one fewer instruction is looked ahead and this can potentially reduce the paralleUsm
width.

Unless the problem of runtime overhead associated with PREFETCH
instructions is solved, software assisted cache prefetching schemes can only be used in
some very Hmited and specific situations such as some hand optimized engineering
library routines for vector processing.

12

Chapter 3
Data Prefetching
As we discussed in the last chapter, current prefetching schemes are not very effective in
reducing the processor idle time due to data memory accesses. Traditional hardware
driven data prefetching schemes are simple to implement, but the prefetching accuracy is
usuaUy not high enough to get significant improvement in data cache performance.
Accurate hardware driven prefetching of array data references with constant strides is
possible, but the hardware cost such as the reference prediction table is often too high
for them to be used in the first level on-chip data cache. Software cache prefetching
schemes can also be very accurate in prefetching array data references with constant
strides, but the runtime overhead of these schemes often limits their practical use.
Furthermore, software assisted prefetching schemes need architectural support (such as
the definition of some new PREFETCH instructions) and new compiler support�. These
might make the use of software assisted data prefetching schemes in current processors
and computer systems difficult.

In this chapter, we propose a new cache control mechanism, caUed the
Instruction Opcode and Address Mode Prefetching (IAP), to improve data cache
performance. The unique feature of this IAP scheme is that very accurate data
prefetching can be carried out using the runtime information in the instruction register.
The motivation of our schemes and the general data reference patterns will be presented
in Section 3.1. Section 3.2 will give a deeper understanding on how current processor
architecture embeds data reference hints in the instruction opcodes and addressing

3 Note that the compiler optimization tcchniques to support data cache prefetching for array referenccs
with constant strides are not too difficult to implement, but they need to be added to the current
compiler optimizers. Furthermore, fine tuning of software cache prefetching scheme such as loop
splitting will add another level of complexity to the compiler.

13

modes. Then, in Section 3.3, our three IAP schemes — basic, enhanced and combined
will be proposed. Finally, a summary of this chapter will be given in Section 3.4.

3.1 Data reference patterns
As we have discussed eariier，the reference behavior of data is actuaUy a mix of portions
of different reference patterns and this solely accounts for the failures of the traditional
hardware prefetch techniques. It is constructive for us to have a closer look on these
different reference patterns in order to have more insight for a successful prefetching
scheme.

As suggested by Baer and Chen [BaC91], the data references can be generaUy
classified into one of the four categories: scalar, zero stride, constant stride and
irregular. Suppose there is a program segment with m-nested loops with index /；, i2,...,

im and LPj be the set of instructions with data references in the loop of level j.
[1] Scalar type refers to those references to the simple non-array variables such as the

indexes of the loops and those variables used as the counters.
[2] Zero stride type refers to those references to the indexed array elements with the

indexes being unchanged in the inner loops but will be modified in the outer loops
(that is, it is zero stride in the inner loop but not in the outer loop). For example,
a[i1,i2] and RECORD[i2]. element are zero stride in LP3.

[3] Constant stride type refers to those references to the indexed array elements with
the indexes being increased (or decreased) linearly with the indexes of the loops.
For example, a[i2], a[i1,i2] and a[i2,i1] are constant stride in LP2.

14

[4] Irregular type refers to those references to the variables with strides between each
iteration but the strides are not constant, for example, a[b[ii]] in LP/ and some Unk-
listed variables.

For the scalar and zero stride references, the references for the next iteration are
just the same as current references. As the stride values of irregular type references are
kept changing from iteration to iteration, it is difficult to predict those stride values and
to find out the memory locations of next data references. Therefore, these types of
references offer us no hint to issue prefetch request. On the other hand, the strides of the
constant stride type references will remain unchanged for the whole loop execution. It is
easier to discover the stride values, find out the locations of next data references and
issue accurate prefetch requests. Obviously, a secure way to a successful prefetching
scheme is to single out the constant stride references from all the other data references
and generate prefetch requests for the corresponding next data references.

Beside singling out the constant type references, the next important issue is to
find out the strides of the references, since one can determine the location of the cache
block needed to be prefetched with the current memory address and the stride value.
However, this important information is simply neglected by one block look ahead
strategies and their prefetching actions are solely based on the memory block addresses
only. As a result, caches with these strategies can only generate correct prefetch requests
for constant stride data references when the strides are smaU and positive. However,
they may fail for cases like the following examples (all examples are based on the
assumption of 4 bytes element size and 16 bytes memory block size):
[1] when the direction of references is opposite to the memory placement — consider

the program segment in Figure 3.1(a), the elements of the array a is referenced in a

15

descending order which is usually opposite to the placement of data in memory. In
memory block level, the referencing pattern in memory wiU be block B, block B-
7,..., block B-7, as illustrated in Figure 3.1(b). If one block look ahead strategy is
used, block B+1 will be prefetched when block B is referenced, where the
prefetched block is not included in the array reference. The reference to block B-1,
block B-2,... and block B-7 will also issue a prefetch to a former referenced block
which will do no help to facilitate the memory traffic.

int a[32];
for i = 31 to 0

a[i] = a[i] + 1 ；

(a) an array transversal

； n f i f i f[\ n f i f i ：

a[25] |a[26] |a[27] |a[28] [a[29] |a[30]|a[31]|a[32]
I I I

、 cache block B -1 ‘ cache block B ‘

(b) memory reference pattern
Figure 3.1: Example of array transversal

[2] when the stride is larger than one memory block size — for example (as iUustrated
in Figure 3.2), there is a two-dimensional array (a matrix) a and the elements of a
are packed in memory in a row by row manner. That is, starting with a[lJ],
a[iJ+l]foWows a[i,j] when j+1 < 8 (i.e. the row size) and fl//+7,77follows a[i,8].
When the data are referenced with advancement of one row at a time, the stride wiU
be equal to 32 bytes (i.e. size_of_one_element * number_of_elements_each_row)
which is larger than the size of a memory block. In this example, each row is
perfectly fitted into two memory blocks and the referencing pattern will be Uke

16

block B’ block B+2, block B+4”", block B+14. With one block look ahead
strategy, only useless blocks B+1, B+3,... and B+15 will be prefetched, which wiU
not be referenced in this array transversal and may displace useful data out of the
cache.

int a[8,8];
for i = 1 to 8

a[i,1] = a[i,1] + 1;

(a) a two-dimensional array transversal

one cache block
I cache block B > / i

^ a[1,1]|a[1,2]|a[1,3][a[<g^^5j^1,6]|a[1，7]|a[1，8] ^

>「a[2，1]|a[2，2]|a[2，3]|a[2，4]|a[2，5]|a[2，6]|a[2，7]|a[2，8]

> a[3，1]|a[3，2]|a[3，3]|a[3，ia[3，5]|a[3，6]|a[3，7]|a[3，^

|a[4，1]|a[4，2]|a[4，3]|a[4，4]ia[4，5]|a[4，6]|a[4，7]|a[4，8] I I I I I I
(b) memory reference pattern

Figure 3.2: Example of two-dimensional array transversal
[3] when the stride or block size is not a multiple of another — if the block size is a

multiple of (or equal to) the stride, the memory block will be referenced one by one
and the reference pattern wiU be like block B, block B+1, block B+2,... (or block B,
block B-1, block B-2,... depending on the direction of the stride). On the other
hand, if the stride is a multiple of the block size, the reference pattern will be like
block B, block B+j, block B+2^j,... (or block B, block B-j, block 5-2*/.，...)，where j
=stride_size/block_size. In these two cases, their patterns are still quite “regular，，.

However, the situation becomes more complicated when the stride or block size is
not a multiple of the other one (that is，the elements are placed in the memory with

17

placement strides between the rows). For example, as shown in Figure 3.3, when

the stride = 6 * 4 bytes = 1.5 * block_size, the memory reference pattern will be

block B, block B+ 1, block B+3, The regularity of this constant type reference is

somewhat blurred out in the memory block level and this "irregular" pattern puts

further burden on the job of prefetching.

int a[8,6];
for i = 1 to 8

a[i,1] = a[i, 1] + 1 ;

(a) a two-dimensional array transversal

cache block B :

1 a[1, 1]1 a[1 ,2]la[1 ,3]la[1 ,4]la[1 ,5]la[1 ,6]la[2, 1]la[2,211

: :~
I a[2, 3]1 a[2,4]la[2, 5] 1 a[2, 6]la[3, 1] la[3,2] 1 a[3, 3]la[3, 4] I
: ~ :
I I I

la[3,5]la[3,6]la[4, 1]la[4,2]la[4,3]la[4,4]la[4,5]la[4,6]1
I~ I I
I I
I I~ ____ ------____ ~

one cache block

(b) memory reference pattern

Figure 3.3: Example of two-dimensional array transversal with memory placement stride

Up to this moment, the importance of classifying the data references and

determining the strides of data references to accurate prefetching is discussed. In next

section, we will go on to present how the data reference information is embedded in

instruction opcodes and how this information can be extracted and used to help issuing

accurate prefetch requests.

18

3.2 Embedded hints for next data references
It is very interesting to find out that in the design of latest processor architectures, the
instruction set often has some mechanism to support the address calculation for the
expected ftiture data references while the current datum is being referenced. And these
built-in features are usually found in the instruction opcodes and the address modes of
the architecture definition.

In RISC architecture, one technique to reduce the program execution pathlength
is to use compound instructions. From the program instrumentation and tracing, it is
found that certain simple RISC instructions often execute as a pair. Thus, it might be
useful to define a single compound or extended opcode that can execute the instruction
pair. This is especiaUy useful if the new instruction opcode does not affect the processor
clock cycle. For example, HP's Precision Architecture 1.1 has ADD-AND-BRANCH,
COMPARE-AND-BRANCH, LOADWORD-AND-UPDATE, etc.; IBM RS/6000 and
PowerPC has LOAD-UPDATE, STORE-UPDATE, LOAD-MULTIPLE, etc.. Note that
despite of the superscalar architecture design, many latest processors find these
compound or extended opcodes to be very useful. As a result, the total number of
instructions defined in current RISC processors ranges from 150 to 200, which is much
larger than the number of instructions defined in early RISC processors (about 50 to 70
instructions).

One type of compound instructions that we found to be very helpful in managing
on-chip cache activities is LOAD/STORE-UPDATE (or LOAD/STORE-MODIFY)
instruction. In typical programs, one major type of data references is array or pointer
references to a large set of data, that is, the constant stride type. Usually, this constant
stride type of accesses is done using "index-displacement" addressing mode and data will

19

be referenced successively one after the other (e.g. in some loops). Since this occurs so
frequently, many architectures have some mechanisms to speed up this data reference
process. For example, in RISC processors such as HP's Precision Architecture 1.1，IBM
RS/6000 and PowerPC series, compound opcodes such as LOAD-UPDATE and
STORE-UPDATE are defined. Besides loading or storing a datum into a register, each
of these instructions will update the content of one register used in the address
calculation for the current data reference with the current effective data reference
address. Figure 3.4 shows the operations of the LOAD-UPDATE and STORE-UPDATE
instructions using “index-displacement，，addressing mode.

LDU Rr,(Rx+Disp) STU Rr,(Rx+Disp)
Equivalent to Equivalent to
E f f . Addr. = (Rx)+Disp E f f . Addr. = (R,)+Disp
Rr = (E f f . Addr.) (Ejf. Addr.) = Rj
Rjc = E f f . Addr. R^ = E f f . Addr.

(a) (b)
Figure 3.4: Operations of (a) LOAD-UPDATE and (b) STORE-UPDATE using the

"index-displacement" addressing mode
The updating action of the LOAD-UPDATE or the STORE-UPDATE instruction

is to prepare the content of Rx needed for the address calculation for the next expected
data reference, which is equal to the sum of the current data reference address E f f . Addr
and the displacement Disp. Thus, accurate data cache prefetching can be carried out and
the prefetching data address is equal to (E f f . Addr. + Disp). Note that the values o f E f f .
Addr. and Disp are available to the cache prefetching unit during the execution of the
LOAD Rr,(Rx + Disp) or STORE RrARx + Disp) instruction.

20

3.3 Instruction Opcode and Addressing Mode Prefetching scheme
3.3.1 Basic IAP scheme
In the last section, we showed that certain instruction opcodes and addressing modes of
current processor architectures actually contain information about how data will be
referenced in the near future. Based on these hints of data references, we can now
propose our IAP scheme — a scheme that uses these hints for accurate data prefetching
for on-chip cache. To make our discussion easier, we wiU use the IBM POWER
architecture (or the PowerPC architecture) here as an example to show how the IAP
scheme should be designed and implemented. In the chapter of conclusion and future
work, we wiU discuss how the proposed IAP scheme in this section can be extended to
non-POWER architectures.

Execution Unit Ef fect iveDataAddrp _

Data Cache

lnstr. Register

" " ^ T ^ ^~r~^ Opcode Disp v

Adder 1 ^ ^ ^

Prefetch ^ z =
Queue

J LD/ST-Update| k Prefetch

1 Detected? J Unit

Figure 3.5: Architectural model for IAP scheme
Figure 3.5 shows the architectural model for the basic IAP scheme. For each

instruction I that is decoded and executed, its opcode is checked to see if it belongs to
the instruction type of LOAD-UPDATE or STORE-UPDATE. Whenever some LOAD-
UPDATE or STORE-UPDATE instruction is detected, the address of the next datum
that is expected to be referenced in the near future will be re-calculated using the same

21

addressing mode of I but with the updated values of all register contents used in the
address calculation of L Then, with this new address, the prefetch unit is able to
calculate the memory block address to be prefetched and this prefetch address will be
sent to the cache prefetch unit for accurate data prefetching. For example, an instruction
LOAD-UPDATE RM1024) is executed and the content oiRi is 1237. The addressing
mode of this instruction I is “index-displacement”，the index register is Ri, the
displacement value Disp is 1024; and the current data reference address of this
instruction is 2261 (i.e. 1237 + 1024). After the execution of instruction I’ the value of
Ri is updated from 1237 to 2261 and an address of 3285 (i.e. 2261 + 1024) wiU be
exported from the adder to the data prefetch unit and the corresponding memory block
address will be calculated and sent to the prefetch queue for accurate data prefetching.
The control flow of the basic LAP scheme is summarized in Figure 3.6.

get next instruction I

.¢^^^ I an L /S -Upda te^ no ^
^ ^ \ ^ instruction ？ ^ ' ^

yes

^;^^^^^^^i^^il^^i^i^^^^"^^^^^ other ^
^ \ ^ mode? ^ ^

index-displacement mode

calculate prefetch address

send prefetch address to
prefetch queue

Figure 3.6: Control flow of the basic IAP scheme

22

One point needed to be noted is that in aU current cache prefetching schemes, the
unit of data prefetching is always one cache block. For simple hardware driven cache
prefetching schemes such as one block look ahead, the concept of unit cache block
prefetching is obvious. In software assisted cache prefetching schemes such as the use of
PREFETCH instructions, only the starting (byte or word) address of the datum to be
prefetched is specified and only one cache block is prefetched^. However, the datum that
is expected to be referenced in the near future might be contained in multiple cache
blocks. It is because the size of the datum can be single, double, or quadwords, and the
alignment of the datum in memory can start with any memory address. As a result, if the
unit of cache prefetching is always assumed to be one cache block, it is possible that the
first part of the datum can be prefetched very accurately into the cache, but the reference
to the rest of the datum will cause cache misses. In cache designs where the cache block
size is smaU or in architectures where LOAD/STORE-MULTIPLE instructions are
available, this situation will become more serious.

For those cache prefetching schemes where the size of the prefetch datum is not
available, there is nothing that can be done. On the other hand, in the IAP scheme (and
also aU software assisted cache prefetching schemes), the size of the prefetch datum as
weU as the size of the current data reference can be made available to the cache prefetch
unit if it is required. Thus, to further improve the overall system performance by the
basic IAP scheme, the concept of multiple cache blocks prefetching (Figure 3.7) is
incorporated into the basic IAP scheme as follows.

4 Note that in software prefetching schemes, if multiple cache blocks prcfetching is implemented,
multiple PREEETCH instructions per datum will be needed. This will increase the runtime overhead
further and will make the schemes less effective.

23

Multiple blocks prefetching:
For each LOAD/STORE-UPDATE instruction that is executed, the size of the
prefetch datum from the IAP scheme is assumed to be the same as the size of the
current data reference. Furthermore, both the starting memory address and the size
of the prefetch datum will be sent to the prefetch unit. Then, either multiple cache
blocks requests, each of which is for one cache block, will be put into the prefetch
queue, or the data size will be tagged along with a single data prefetch request in
the prefetch queue for accurate data prefetching^.

Prefetch

^ ^ ^ ^ ^ ^ ^ ^ r ^ I I I I I I I I t I I I I I I (I t I I]] I t I I I
cache block i i + 1 i + 2 i + 3 i + 4 i + 5 i + 6 i + 7 I I I I I I I I I I I 1 I I) I I I

\ I I I I I I « I

^ — — I — — “ — — I — — ‘

datum a[1] a[2]

Figure 3.7: Multiple blocks prefetching

3.3.2 Enhanced IAP scheme
The basic model of the IAP scheme that we described so far seems to be very simple and
straight-forwards — whenever a LOAD/STORE- UPDA TE instruction is encountered, a
prefetch request with address that is calculated using the same address mode of the
instruction but with the updated register values wiU be issued to the prefetch queue.
However, after some initial experiments of the IAP basic scheme, we found out that
there are some hidden problems in the scheme. Detailed analysis showed that some

5 Of course, this assumes that the memory unit can accept and use the information — starting memory
address and the number of bytes to be fetched 一 for data fetching/prefetching.

24

enhancements needed to be made to tackle the problems and to have further
performance improvements.

Prefetch

I I ^ D ri r̂ R n n i
I a[1] I a[2] I a[3] | a[4]| a[5] | a[6] | a[7] | a[8] | — I I (

’ cache block i ‘ cache block i + 1 ‘

(a) next data prefetching
Prefetch . ^ ‘

1 I • I
_ I a[1] I a[2] I a[3] | a[4]| a[5] | a[6] | a[7] | a[8] | I I I

‘ cache block i ‘ cache block i + 1 ‘

(b) next cache block prefetching
Figure 3.8: Next Cache Block vs. Next Data Prefetching

All current software(compiler) assisted data prefetching schemes and the basic
IAP scheme proposed here try to prefetch the next datum that is expected to be
referenced in the near future. If the prefetched datum and the current referenced datum
are in the same cache block, no prefetching request will be issued. Consequently, this
will create a potential problem of insufficient time for the prefetch requests to be finished
in time for the data to be used by the processor. As an example, suppose an array of data
is referenced using constant stride of 1 (shown in Figure 3.8) in a loop and the cache
block size is 4 words (or 16 bytes). When a[l] is referenced, a[2] will be prefetched.
Since a[l] and a[2] are in the same cache block i, no prefetch request will be issued.
This situation wiU go on until datum a[4] is referenced. At this time, the next cache
block i+1 that contains a[5] will be prefetched. The potential danger of this approach is
that if there is not enough free bus cycles between the accesses of a[4] and a[5] for the
prefetching of cache block i+1 to finish, additional processor staU time will be

25

introduced. From our experiments, we found out that this actually happened very often.
In order to make up for this situation, what we would like to have is to predict the next
data reference based on the data reference addresses, hut to prefetch the next data
reference based on the cache block addresses. For example, when a[1] in cache block i
is referenced, cache block i+1 should be prefetched. This will give more time for the
prefetch request to fmish. It is because instead of one iteration look ahead prefetching,

• four iterations look ahead prefetching is resulted in this example. The enhancement of

the lAF scheme to accommodate this is summarized as follows.
Enhanced IAP Scheme:

For each data prefetch request that is generated by the IAP scheme, if the cache
block j containing the prefetch candidate is not the same as the cache block i
containing the current data reference, a prefetch request for block j will be issued.
On the other hand, if the cache block j and the cache block i are the same, then the
next cache block i+1 (or i-1 if the stride is negative) will be prefetched.

Figure 3.9 shows the control flow diagram of the enhanced IAP scheme.

26

get next instruction I

^^/1^ I an L /S-Upda te^ no ^
^ ^ instruction ？ ^ ^ ^

iyes
^ ^ ^ addressing ^ X ^ other
^ \ ^ mode? ^ ^

index-displacement mode

calculate prefetch address

^x^prefetch a d d r e s s ^ no ^̂ ĉurrent blockT̂ ^
yes

set prefetch address as
that of the preceding or

following block according
to the direction of stride

send prefetch address to
prefetch queue

I

Figure 3.9: Control flow of the enhanced IAP scheme •

3.3.3 Combined IAP scheme

The goal of the IAP scheme is to perform very accurate prefetching on those data that
are referenced using LOAD/STORE- UPDA TE instructions. For other non-
LOAD/STORE-UPDATE instructions, the IAP scheme will not issue any data prefetch
request. The advantage of this selective prefetching by the IAP scheme is that very
accurate data prefetching can be carried out and the potential problem of cache poUution
by the IAP scheme can be minimized. However, there is some drawback to this

27

approach — no cache prefetching is carried out for data that are referenced using non-
LOAD/STORE- UPDA TE instructions even though these data might process some
degree of spatial locality and they will be benefited by simple prefetching schemes such
as prefetch-on-miss. As a result, a default prefetching scheme is implemented on top of
the IAP scheme and the enhancement can be summarized as follows.
Combined IAP scheme:

For each LOAD or STORE instruction I that is executed, if I belongs to the
LOAD/STORE- UPDA TE instruction group, the enhanced IAP scheme will be used
for data prefetching, else the default prefetching scheme — the prefetch-on-miss
scheme will be used for data prefetching.

The control flow diagram of the combined IAP scheme is shown in Figure 3.10.

I

28

4 f

get next instruction I

^ x ^ I an iyS-Update^ no
^ s s ^ instruction ？ ^

,yes ，

<^^^^^^^j^^^^^other • generateadefaultprefetch —
index-displacement mode

calculate prefetch address

^ / ^ r e f e t c h addressX^ no
^ v ^ current block?^,^^

yes

set prefetch address as
that of the preceding or

following block according

to the direction of stride 丨

— 1 i
send prefetch address to <

prefetch queue
1
I

‘ 1
Figure 3.10: Control flow of the combined IAP scheme ‘

3.4 Summary
In this chapter, a general design for hardware controlled prefetching scheme is proposed.
By using information embedded in the instruction opcodes, our design wiU be able to
single out the data references with constant strides from the pool of all data references
and also able to find out the corresponding stride values. With this valuable information,
accurate prefetching can be accomplished and consequently, the CPU staU time due to
data cache misses can be reduced. Based on the time when a prefetch request is issued

29

and the present of a default prefetching action, three variations of IAP prefetching
schemes — basic, enhanced and combined are proposed. In the basic IAP scheme,
prefetch requests are generated for data with one iteration look ahead. Next, the concept
of cache block prefetching is introduced in the enhanced IAP scheme to tackle the
problem of limited memory bus bandwidth. However, in the basic and enhanced IAP
scheme, prefetch requests are issued only when LOAD/STORE- UPDA TE instructions
are encountered. In order to exploit the spatial locality left by the former two schemes,
the combined IAP scheme is equipped with default prefetching to issue prefetch requests
for the non-LOAD/STORE- UPDA TE instructions.

1

I

I
‘ 1

I

30

Chapter 4
Performance Evaluation
In this chapter, the three proposed IAP schemes are evaluated using trace-driven
simulation based on the architecture of IBM RS/6000 machine. In section 4.1, the
evaluation methodology, including a brief introduction of trace-driven simulation,
caching models, benchmarks and metrics used, will be presented. Next, in section 4.2，

the general results of the IAP schemes, with comparison to a traditional hardware
prefetching scheme — prefetch-on-miss, will be evaluated using "cycle ger instruction
due to memory (data cache) misses" (MCPI) as the main metric. To have a more
intensive study of how and why the IAP schemes work, some other impUcit performance
parameters will be investigated in section 4.3. FinaUy, results from experiments with the
zero time prefetching assumption will be shown to investigate the performance impacts
of the bus bandwidth on the IAP schemes.

1 4.1 Evaluation methodology i
4.1.1 Trace-driven simulation
In order to have a deeper understanding of the IAP schemes and to show their
potentials, detailed trace-driven cache simulation study was performed using SPEC92
(see Section 4.1.3) as our benchmark suite. With the help of xtmce facilities, each of the
benchmark programs in the SPEC92 suite was traced on the IBM RS/6000 workstation
and 100 miUion instructions per benchmark were collected. The process of trace-driven
simulation is summarized in figure 4.1.

31

executable code
y f

一 Prog.instrument

instrumented code y r
xtrace facilities Prog.xtrace

processor information (via a pipe) \ r
— Prog.interface

address/data trace
•

configurations » Simulator

y r
simulation results

Figure 4.1: Trace-driven simulator using xtrace
The SPEC92 benchmarks were compiled on the RS/6000 workstation. The

executable codes were then instrumented by the program instrument, which inserted
extra codes into the executable codes in order to extract the processor information
during the program execution. The instrumented codes were then handled by xtrace and
were executed on the RS/6000 machine. The processor information was then passed to
the program interface via an explicit pipe. The program interface could be defined by
the users to produce the desired trace format. In the simulation, the foUowing
information (a trace record) was recorded for each instruction that was traced:

Inst_address, Inst_content, <data_ref_address ifany>, <No._of_bytes_ref if any>
The simulator was configurable in the sense that it could read in the configuration
descriptions (for examples, cache size, set-associativity, block size and memory latency
time) and create simulation objects (the items model the CPU and the memory system)
based on these parameters. As the tracing processes were so time consuming, the trace
data were stored in hard disks and the data could be shared by a number of simulators

32

which ran in paraUel on different machines to speed up the simulations. The simulator
read in the trace records one by one. Then the content of each instruction was decoded
and the opcode, the addressing mode, and the registers used in the address calculation
were also found.

4.1.2 Caching models
An elementary architectural model, which consists of a processor with perfect pipeUned
and a 4-way associative data cache with a block size of 32 bytes and a total size of 16K
bytes, is defined for the simulations and the replacement algorithm is assumed to be
LRU (Least Recently Used). For comparison, each dimension of the cache (cache size,
block size and set associativity) is varied respectively for different simulations (cache
sizes range from 8 Kbytes to 32 Kbytes, block sizes from 16 bytes to 64 bytes, and set
associativities simulated from 1 to 4) while the other two are kept constant.

33

CPU

. ^ - " ^ .
^ - ^ ^

Cache

Z 、 ‘
Bus

‘ ^ ^ ^

Memory Memory Memory Memory
BankO Bank 1 Bank2 Bank3

(a) Interleaved memory

1̂ Ci >
e C2 ^

req I xfer i

I 1 1
req i +1 xfer i + 1

(b) Timing of data access
Figure 4.2: Memory model of the simulator

The memory model of the second level cache in the simulations is assumed to be
interleaved and its design and timing characteristics are shown in figure 4.2. The
memory is organized into a number of banks (or modules) to handle multiple words at
one time rather than a single word. Each bank is one word wide which is the same as the
fu"st level cache and the bus. A cache block usually consists of a number of words (for
example, a 32-byte block consists of 8 4-byte words). Whenever a cache miss occurs in
the first level cache and a fetching request is sent to the second level cache, the banks
wiU work simultaneously — bank 0 will start reading for the first word in the block,
bank 1，the second word, bank 2, the third word,... etc. However, since there is only one
memory bus between the first and second level cache, the transfers of the words must be

34

processed sequentiaUy. As a result, the time for a demand fetch request to transfer a
cache block between the fu-st level cache and the second level cache memory can
generaUy be summarized by the equation C； + C2 * (block_size - 1), where Cj is the
delay time for the first word to arrive after a cache miss (that is, startup_overhead +
transfer_time_for_a_word) and C2 is a parameter that indicates the bus bandwidth
between the first level cache and the second level cache (that is, transfer time for a
word). In our experiments, C； was assumed to be 6 and C2 to be 1.

For a given cache block size, the time for a demand fetch request (due to the first
level cache miss) to finish is assumed to be equal to the time for a prefetch request (to
the second level cache) to finish. The prefetch requests are resided in the prefetch queue
and the request Rp at the beginning of the queue will be sent to the second level cache if
the queue is not empty and the bus to the second level cache is free. If the address of the
pending prefetch request immediately follows that of the current request Rc (demand
fetch or prefetch) being processed in the second level cache (i.e. address_of_Rp =
address_of_Rc + 1), the interleaved memory, that is, the second level cache, does not
need to wait until the request Rc is completely finished. It can continue to process Rp
when some memory banks are free, although the memory bus may be stiU transferring
the data of Rc. In this case, the startup overhead of Rp can be hidden and the time for
completing the prefetch request will be equal to C2 * block_size.

The second level cache can only handle one request at a time, no matter it is a
demand fetch or prefetch request. When a demand fetch miss occurs in the first level
cache, it will try to fetch the data from the second level cache. However, it may be in a
situation that the second cache is serving a prefetch request. In case of such conflict, the

35

priority wiU be given to the demand fetch miss and the prefetch request will be aborted
and the demand fetch request will be started next cycle.

For simplicity, the second level cache(memory) is assumed to be infinitely large.
That is, there is no cache miss in the second level cache.

Each instruction is assumed to be executed in one cycle and no superscalar
architecture is simulated and cache access upon a cache hit is assumed to be one cycle.
Totally, five cache prefetch models were simulated:
[1] Data cache without any prefetching;
[2] Data cache with "prefetch-on-miss";
[3] Data cache with the basic IAP scheme — prefetch requests are issued only for data

referenced by LOAD/STORE-UPDATE instructions. Multiple-block prefetches will
be used for multiple-block data;

[4] Data cache with the enhanced IAP scheme — using the basic IAP scheme to issue
prefetch requests. If the prefetch address resides in the same memory block as the
address of the current datum, the next block (according to the direction of stride)
will be prefetched;

[5] Data cache with the combined IAP scheme — using the enhanced IAP scheme for
LOAD/STORE-UPDATE instructions and the default "prefetch-on-miss" for non-
LOAD/STORE-UPDATE instructions.

4.1.3 Benchmarks and metrics
Eight applications from the SPEC benchmarks are compiled on the RS/6000 with
optimization options enabled. Brief descriptions of them are presented here:

36

• Espresso: An integer benchmark performs set operations such as union, intersect and
difference. Espresso minimizes Boolean functions. It takes as input a Boolean
function and produces a logically equivalent function possibly with fewer terms.
Both the input and output functions are represented as truth tables.

• Spice2g6: A floating point benchmark, spice2g6 is a circuit simulation program for
nonUnear dc, nonlinear transient, and linear ac analyses. Circuits may contain
resistors, capacitors, inductors, mutual inductors, independent voltage and current
sources, transmission lines, and semiconductor devices: diodes, BJTs, JFETs, and
MOSFETS.

• Li: Li is a CPU intensive integer benchmark written in C. The benchmark performs
minimal VO. Li is a Lisp interpreter itself. The time li takes to solve the 9-queens
problem is measured in the program. The input file to the interpreter contains Lisp
code that defines the 9-queens problem.

• Compress: Compress reduces the size of the files using adaptive Lempel-Ziv coding.
The amount of compression obtained depends upon the size of the input, the number
of bits per character, and the distribution of common substrings. TypicaUy, text such
as program source code or English is reduced by 50-60%.

• Wave5: A large, single precision floating point FORTRAN benchmark and a two-
dimensional, relativistic, electromagnetic particle-in-ceU simulation code used to
study various plasma phenomena. Wave5 solves Maxwell's equations and particle
equations of motion on a Cartesian mesh with a variety of field and particle boundary
conditions.

37

• Tomcatv: Tomcatv is a highly vectorizable double precision floating point
FORTRAN benchmark. In this program, two-dimensional, boundary-fitted
coordinate systems around general geometric domains are generated and studied.

• Su2cor: The program is a vectorizable FORTRAN program with double precision
floating-point arithmetic. In this application program from the area of quantum
physics, masses of elementary particles are computed in the framework of the
Quark-Gluon theory. The data are computed with a monte carlo method taken over
from statistical mechanics.

• Nasa7: Nasa7 is a collection of 7 heavily floating point intensive kernels. For each
kernel, the program generates its own input data, performs the kernel and compares
the result against an expected result The seven kernels executes operations used
frequently in NASA applications, such as Fourier transforms and matrix
manipulations.

Percentage of lnstrudion Executed
Benchmark Total Total Total Total

LOAD LOAD-UPDATE STORE STORE-UPDATE LOAD/STORE LOAD/STORE-
- UPDATE

espresso ~22 .0 11.1 “ 3.9 _ 1.3 25.9 ‘ 12.4
J 25.4 — 0.8 - 15.2 “ 2.3 40.6 3.1 •

compress 21.5— 0.0 9.2 0 ^ 30.7 0.3
spice2g6 18.3~] A ^ 2J 28^ 2 ^
wave5 26.5 1.4 9.7 — 2.2 ~ 36.2 ~ ~ 3.6
tomcatv 29 .6_ 18.3 11.1 JOJ 40.7 28.4 —
su2cor 26.4 8.5 “ 14.1 6.1 40.5 14.6
nasa7 42.8 42.0 1.7 1.4 44.5 43.4

Figure 4.3: Percentages of LOAD/STORE-UPDATEs in SPEC92 Benchmark Suite
Figure 4.3 shows the percentages of the LOAD/STORE-UPDATE instructions

found in the instruction mixes of the SPEC92 benchmarks programs. The percentages in
the figure clearly confirm our statement that the current compiler technology is able to
fuUy utilize the LOAD/STORE- UPDA TE compound opcodes to produce highly efficient
code. The proportion ofLOAD/STORE instructions that also belongs to LOAD/STORE-

38

UPDATE instructions ranges from a few percent to over 95 percent. For example, in the
nasa7 benchmark, about 97.5% of the LOAD/STORE instructions executed are
LOAD/STORE-UPDATE instructions.

Experiments with the elementary caching model, with varying caching
parameters, are performed. Two main metrics are used here to evaluate the
performances of different caching schemes. The fu*st one is "cycle ger instruction due to
memory (data cache) misses" (MCPI). As its name suggests, this performance parameter
measures the average additional processor stall time due to the first level cache misses. It
also helps to show the degree of degradation of CPU performance due to the data cache
misses in terms of memory cycle stalls per instruction. Generally, it can be calculated
with the execution CPI and baseline CPI by the equations:

MCPI = C*P/aa„^„ — CPIb_iine
total_ numher_ of_ cycles— executed

where CPI—m = , ~, “ “ . “ .
totaL_ number— oj 一 instructions

total_ number_ of_ cycles_ executed— for_ no_ cache_ miss
and CPI baseline : ~~j ； 7~~i~~: 了. •

total number of instructions
— — t j — 丨 •

We feel that this is a better measurement parameter than the cache hit (or miss) ratio
because the penalty of a cache miss depends on the cache block size. More important,
with limited bus bandwidth between the first level cache and the second level
cache(memory), there were always situations when a cache block i is being prefetched,
the cache block i is actually referenced. This is what we called the partial cache hit (or
miss) situation. The data prefetching will be allowed to finish and then the requested
data are sent to the CPU. Under this situation, the penalty of this kind of partial cache
hits is not a constant ——it ranges from 1 to (maximum cache miss penalty - 1) (i.e. C； +
G * block_size - 1) - 1). This makes the cache hit ratio even more difficult to reflect the

39

actual cache performance because some part of the data fetching time is overlapped with
the processor execution while the other part of the data fetching time is visible to the
processor.

Since we assume that the processor can execute each instruction in one cycle and
there is an ideal instruction cache in the system, one may intuitively deduce that the
baseUne CPI is always equal to one. However, this assertion may be wrong due to the
fact that the memory bus between the processor and the first level cache is only 32-bit
(4-byte) wide. It also means that at most 4 bytes can be transferred between the
processor and the first level cache in one cycle. If the data needed to be loaded or stored
by an instruction is longer that 4 bytes, the instruction can only be finished after all
required data are loaded in the processor and the execution time is sure to be longer than
one cycle even when there is no cache miss. For examples, a LOAD/STORE-
DO UBLEWORD instruction will be executed for two cycles even when the data needed

I

is found in the cache. As a result, the baseline CPI will probably be greater than one and
this effect is more significant in the double precision floating point benchmarks such as
tomcatv and nasa7, in which most of the data are doublewords of eight bytes long. ‘
Figure 4.4 shows the baseline CPIs found for the eight benchmarks programs used in our
simulations.

Benchmark baseline CPI
espresso 1.011

li 1.075
compress 1.032
spice2g6 1.084

wave5 1.124
tomcatv 1.407

— s u 2 c o r — 1.286
nasa7 1.444

Figure 4.4: Baseline CPIs of SPEC92 Benchmark Suite

40

The other metric used is "percentage memory stall time reduction over no prefetch",
which is defined as:

%_ stall_ reduction = 一^^-—一一-舰動^^為-一 ^ •
memory_ stall^_p_ch_cache

The metric can be used to show the extent that memory stall time due to data cache miss
is reduced with respect to an elementary cache using no prefetch scheme.

4.2 General Results
In this section, the experimental results are presented to show the benefits of the
prefetching schemes. The architecture with the elementary caching model using no
prefetch scheme is compared with the same architecture augmented by each of our three
prefetching schemes. As a reference, the architecture with prefetch-on-miss scheme is
also included. The results for caching models with varying cache size, block size and
associativity wiU be presented one by one. However, we would like to summarize some
common observations here since they can be generally found from experiments for all
the varying models. ‘

• All the prefetching schemes seem to have no effect on the benchmark compress — as
we can find out in Figure 4.3, only 0.3 percent of the total instructions (less than 1
percentage of LOAD/STORE instructions) is of the type LOAD/STORE-UPDATE,
As described in the previous sections, the prefetching actions of our IAP schemes are
triggered by the LOAD/STORE-UPDATE instructions. With this inconsiderable
amount of LOAD/STORE-UPDATE instructions in the compress program, only a few
prefetch requests will be generated for the basic and enhanced IAP schemes and their
effects wiU be negligible, as we can find that the curves corresponding to these

41

schemes overlap with that of the model with no prefetch. Moreover, the combined
IAP scheme will revert back to a simple prefetch-on-miss scheme and the two
schemes suffer a slight performance degradation with respect to the no prefetch
cache, which is probably due to the lack of constant stride references in the program
(as reflected by the lack of LOAD/STORE- UPDATE instructions).

• Prefetch-on-miss, the traditional hardware prefetching scheme, generaUy has some
improvements over most of caching models tested except for the benchmark
compress. The basic IAP scheme shows performance improvement over all caching
models for almost all benchmarks used (except compress). The enhanced IAP scheme
has similar performance as the basic IAP scheme does when the cache block size is
small (the explanation will be given in Section 4.2.2) but it outperforms the basic IAP
scheme over aU other models tested. Although these two schemes show no
improvement over the compress program, they also cause no degradation in the same
time. It is because only highly accurate prefetches can be issued under these schemes.

• The effects of the combined IAP scheme, which adds a default prefetch-on-miss
scheme on top of the enhanced IAP scheme to handle data referenced by non-
LOAD/STORE- UPDATE instructions, can be classified into two main streams. For
some of the benchmarks such as nasa7, tomcatv and su2cor, the default prefetching
scheme seems to have no impact to the cache performance. The curve for the
enhanced IAP scheme and the curve for the combined IAP scheme almost overlap
with each other. However, for espresso, li, spice2g6 and wave5, adding the default
prefetch-on-miss scheme to the enhanced IAP scheme helps to reduce the memory
stall time further. This can be explained as follows. In the nasa7, su2cor and tomcatv
programs, most of data references with strong spatial locality are referenced by

42

LOAD/STORE- UPDA TE instructions and they can be prefetched very accurately by
the enhanced IAP scheme. Thus, the addition of the default prefetch-on-miss scheme
to the enhanced IAP scheme cannot provide additional improvement in cache
performance. However, for espresso, li, spice2g6 and wave5, a significant portion of
the data references with strong spatial locality are referenced by non-LOAD/STORE-
UPDATE instructions. They cannot be prefetched by the enhanced IAP scheme. On
the other hand, these non-LOAD/STORE-UPDATE references can be prefetched
quite accurately by simple cache prefetching schemes such as the prefetch-on-miss
scheme. This also shows the flexibility of the IAP schemes. The IAP schemes can be
implemented together with other prefetching algorithm to achieve better cache
performance.

• The memory stall time reduction that can be achieved by the enhanced IAP scheme or
by the combined IAP scheme ranges from about a few percentages to over 90%, with
an average of about 50%. These figures really show the potentials of the IAP
schemes. This kind of improvement in cache performance over a wide range of
benchmark programs (instead of some small routines or kernels such as Livermore
Kernels) is really substantial. Furthermore, this performance improvement can be
obtained by just modifying the on-chip cache hardware and no change to the
processor architecture (such as the instruction set) is required. This makes the IAP
schemes even more attractive.

43

4.2.1 Varying cache size
0.7 T 0.25 T ~ T cache only

— A — prefetch-on-miss oo/ T ——+——basic IAP
„ ^ 'J>/° \ ~ e ~ enhanced IAP 0.6 • • ^^^^=r̂ ^Zo "Kŷ ~ H ~ combined IAP

� 5 ^ ^ ^ � 2 C^
塁：:： 、 ^ ^ ^

0.05 - 52or-C::^
0.1 •• 48% 0 1 1 1 1 0 J 1 1 1 1

8 16 32 8 16 32
cache size in Kbytes cache size in Kbytes (a) conpress (b) expresso

0.1 j _ 0.9 j

0 .09 . \ o.8-- ^ ^ ^ ^ ~ - - ^

i : % . ： ： _ A
E \ 、 : ： ^
0.01 -- 4 4 % 。.1 •• 8 3 % 8 3 % \ ^ ^ \

0 J 1 1 1 1 0 J 1 1 T̂ flfi% 1
8 16 32 8 16 32

cache size in Kbytes cache aze in Kbytes (c) li (d) nasa7
0.9 j 1.8 j

。.8' ^ 16_. 5 ^ ^ ,

. ： ： > , : : : \
® 0.4 -- 3 2 ° / r ^ ^ ^ v ^ ^ = 0.8 -- V ^

0.3. 3 4 % 0.6-. \

0.2 -- 0.4 -- 3 6 %

0.1 -• 0.2--0 1 1 1 1 0 "I 1 1 1 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes
(e) spice2g6 (f) su2cor

Figure 4.5: MCPI and stall reduction of simulations with varying cache size

44

2.5丁 0.Q8j cacheonly
\ A prefetch-on-miss

- 1 % 0 07 .- + \ • " I ^ basic IAP
y u‘u, W ~ e ~ ~ enhanced IAP

2 • - fc \ \ ——X——combined IAP

• : \ ‘ 丨 : \
oJ 1 1 ^ X a a % 1 oJ 1 1 |78%——I

8 16 32 8 16 32
cache size in Kbytes cache size in Kbytes (g) tomcatv (h) wave5

Figure 4.5 (cont.): MCPI and stall reduction of simulations with varying cache size
Figure 4.5 shows the simulation results for the eight benchmark programs using cache
size varies from 8K to 32 K bytes. All experiments are done with caching models of 32-
byte block size and 4-way associativity. The numbers attached show the “percentage
stall reduction over no prefetch" of the combined IAP schemes.

As expected, one can find that the MCPI decreases as the cache size increases.
However, for some benchmarks, such as su2cor and tomcatv, the IAP schemes show
Uttle improvement when the cache size is small, that is, 8K bytes, but exhibit substantial
improvement when the cache is increased to 16K and 32K bytes. For tomcatv (shown in
Figure 4.5(g)), when the cache size is very smaU (8K bytes), the combined IAP scheme
actuaUy degrades the performance instead of improving it. This is probably due to the
smaU cache size and the aggressive cache prefetching scheme. Even though the
prefetching can be very accurate, those accurately prefetched data wiU replace each
other away from the data cache before they have the chance to be used. However, as the
cache size increases from 8 Kbytes to 16 Kbytes, this cache conflict problem is
minimized and the three IAP schemes start to have substantial cache performance
improvement.

45

4.2.2 Varying cache block size
1 j — cache only 0_16丁

——A— prefetch-on-miss Ao/ _
09 -- " ~ I ~ ~ basic IAP " ^ ^ ¾ ^ ^ ^

~ ~ e ~ enhanced IAP / r 0.14-- ^ ^ > v ^ ^ s ^
0.8 - — ^ combinedlAP / / 广^/^<：^

% j 7 塁：^fe^%
^ F = ^ " ^ ^ . 0.04- 39%

。2-- 5% “ 。

0 . 1 - 。.02-

0 1 1 1 1 1 1 0 \ 1 1 1 1 1 1
4 8 16 32 64 4 8 16 32 64

block size in bytes block size in bytes

(a) compress (b) expresso
0.12 J 2.5 J

" : ^ x v ^ .- \
0.04-- 4 3 ^ ^ ^ ^ Z : : ^ g ^ ^ ^ \ ^ ^ \ ^ ^ _ ^ ^~~~~—x^^^31% ^ \ ~̂ ~~~
0 . 0 2 - 4 7 % 4 1 % 0 . 5 - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

o l _ _ , _ _ , _ _ ^ _ _ • , _ _ , _ _ , o l _ 8 ; � / � 4 ^ ^ ^ " ^ ^ ^ y ^ % ,
4 8 16 32 64 4 8 16 32 64

block size in bytes block size in bytes

(c) li (d) nasa7
0.9 J 2.5 J A : jC \ /

广 ： : ^ : ^ ^ ^ ^ = ^ 4 % 广 ^ _ > ^ ^ 7 %

= 0.4.. g - ^ ^ ^ 1 0 % 32% s ^ ^ < ^ ^ ^ ^ ^

0 . 3 - 2 7 % 1 4 % 1 “ ^ 慨

。-2.- 0 . 5 -

0.1 . -

0 \ 1 1 1 1 1 1 0 J 1 1 1 1 1 1
4 8 16 32 64 4 8 16 32 64

block size in bytes block size in bytes

(e) spice2g6 (f) su2cor

Figure 4.6: MCPI and stall reduction of simulations with varying block size

46

T 丁 ——— cache only
呻 ——A——prefetch-on-miss
\ ~ 4 ~ basic IAP

2 5 . . \ 01 - - T ——0——enhanced IAP
\ \ ~ X ~ combined IAP

2- \ 0.08- \

' : : ^ ^ m "： ̂ .
66/o 65% 60% 0 1 1 1 1 1 1 0 1 1 1 1 1 1

4 8 16 32 64 4 8 16 32 64
block size in bytes block size in bytes (g) tomcatv (h) wave5

Figure 4.6 (cont.): MCPI and stall reduction of simulations with varying block size
Figure 4.6 shows the simulation results for the eight benchmark programs using different
prefetching schemes. The experiments are done with caching models of 16K-byte cache
size, 4-way associativity and varying cache block size from 4 to 32 bytes.

The MCPI curves for IAP schemes generally have U-like shapes. That is, the
MCPIs of the programs first decline from small block size to the optimal block size.
Then, the directions of the curve reverses and the MCPIs keep rising after the optimal
block sizes. These observations are common to be found in most of the cache
simulations. As the block size increases, more data will be fetched one time and the
spatial locaUty between these data may be beneficial to processor execution. Moreover,
it is also more economical on average to fetch a larger block one time than to fetch a
smaUer block several times separately because the time to fetch a block from memory is
equal to C； + C2 * {block_size - 1). As the block size increases from the smaUest size to
the optimal one, these effects are dominant and the MCPI continues to drop in this
range. However, as the block size keeps increasing after that point, using larger cache
block size for sequential prefetching seems to be not so effective. As the block size
further increases, greater portions in the blocks will contain data that wiU not be

47

referenced in the near further and the blocks will be kicked out without these data being
touched. Moreover, increasing the cache block size elongates the time for fetching a
block from the memory. This means the CPU must wait longer for the same amount of
data needed (for example, the CPU is stalled longer for a 4-byte datum in a 64-byte
block than a 4-byte datum in a 32-byte block). At the same time, this also increases the
risks of kiUing the prefetches by demand fetches caused by real cache misses. Finally, the
larger block size reduces the total number of distinct blocks that can be put into the data
cache and increases the conflicts between blocks in the cache which may cause some
useful data to be kicked out before it is referenced by the CPU. When these adverse
effects of larger block size outweigh the benefits brought, increasing block size wiU
mean higher miss rate, more processor idle time and lower CPU performance. These
explain why the MCPI curves rise after passing the optimal block sizes.

For some programs (compress, espresso, spice2g6 and su2cor), the MCPI curves
show that the caches work better when the block size is small (4 bytes). It is probably
because the data of consecutive references are separated far apart and do not reside in
the same block. As a result, only small portions of the large blocks fetched from the
secondary memory will be referenced in the near future and the locality introduced by
the large block size does not help much. On the other hand, with the smaller block size,
the cache with the same size can contain more blocks and it gives more flexibiUty for the
IAP schemes to do accurate prefetching. As conclusion, smaller cache block size is
preferred in these situations. This also agrees with what people found [Lee87] about
smaller block sizes for data cache.

However, for espresso (Figure 4.6(b)), the increasing MCPI curves of the IAP
schemes turn around and begin to drop when the block size increases from 32 bytes to

48

64 bytes (similar phenomena are also observed for the cache only and prefetch-on-miss
curves when the block size increases from 16 bytes to 32 bytes). Although the
explanation for this phenomenon is not very clear, we suspect that this is related to the
data accesses with large stride values of 32 to 64 bytes in the program. From 4 bytes to
32 bytes cache block size, the number of blocks that can be stored in the cache is
reduced by hatf each time when the block size is doubled. However, if the stride size of
the data accesses is large, a smaU increase in the block size does not capture more useful
data. Consequently, increasing the cache block size below 32 bytes block size only
causes cache poUution and results in poor cache performance. When the cache block
size is increased from 32 bytes to 64 bytes, sequential data prefetching using large block
size starts to have some effect and the cache performance is improved.

4.2.3 Varying associativity
—————cache only n 7 n 1 a A— prefetch-ofi-miss 0-7丁 0.18丁 __I_ basiclAP .0/ ^\^ G enhanced IAP 'y° 0.16 -- . ^ - ^ ~ X ~ combined IAP 。.6 • - "^==^=^•^� -2% ^ ^ ^ ~» o.i4-- ^ ^ ^ 0.5 -- ^^^^

� . i2- A ^ ^ ^
- 0 . 4 - 一 0.1 -- v ^ \ ^ ^ 0.3 - L - ^ ~ ~ ：

^ X
0 . 0 6 - - 5 2 % 5 2 % 0 . 2 - - 0.04--

0.1 --
0 . 0 2 - • 0 1 1 1 1 0 \ 1 1 1 1 1 2 4 1 2 4

set assodativity set associativity

(a) compress (b) expresso

Figure 4.7: MCPI and stall reduction of simulations with varying associativity

49

——•——cache onty ——A——prefetch-on-miss
n oe n Q 1 basic IAP 0.25 T 0.9 T Q enhanced IAP

io/5 "̂ -̂ ^ ——X——combined IAP
� 2 . . \ � . ” ^ - - ^ ^ - ^

(W 目 ： : ^ ^
��5. . 2 ^ ^ - \

41% oi_. 83% 83% 0 "1 1 1 1 1 0 "1 1 1 1 1
1 2 4 1 2 4

set assodativity set associativity (c) li (d) nasa7
0.7 T ~ ~ 1.8 丁 ^ —»=^^^z^ 0.6- ^ 1.6.- ^ ^ ^ ^ ^ ^

1.4.- 9 ^ 5 % 7。/。 0-5 - A A A X X 12
0.4- 34% 3 5 % 32%

K K 1
u u ^ 0.3 - ® 0.8 -

0 . 6 - •
0 . 2 --

0.4 --
0.1 . -

0 . 2 - -

0 1 1 1 1 0 \ 1 1 1 1
1 2 4 1 2 4

set assodativity set associativity

(e) spice2g6 (f) su2cor

1.2 j 0.25 j

。 : ^ ^ ^ ^ �‘ ' \
1 - ^ ^ ^ 4 % ！ ： \

。.4.. ^ ^ ^

�2 � � 5 2 ^ ^ ^ ^
ol , , , , oJ , , _ _ , 60%__ .

1 2 4 1 2 4
set assodativity set associativity

(g) tomcatv (h) wave5

Figure 4.7 (cont.): MCPI and stall reduction of simulations with varying associativity
Figure 4.7 shows the effect of increasing the cache set associativity. As it is expected,
from the set associativity of 1 to 2, the performance is generally improved (except the

50

benchmark su2cor). With a one-way associativity (direct mapping) cache, every block
can be placed at only one position. If it happens that two sequences of data accesses, for
example, two arrays inside the same loop, are mapped to similar sets, they will
continuaUy displace each other's data block in the cache, although the displaced block
may contain data that will be referenced in the near future. As a consequence, miss rate
will be increased and the cache performance will be degraded. It accounts for the large
improvement from one-way to two-way set associative cache. This effect is more
obvious for the benchmark nasa7 (Figure 4.7(d)). From Figure 4.3，we can fmd that
almost aU (over 90%) of the data references belong to the LOAD/STORE- UPDA TE
(constant stride) type and are mainly chains of array or pointer references. With this
large amount of constant stride references, the chance of conflicts induced by the
address mapping will probably be very high. However, the cache performance is more or
less the same for 2-way and 4-way set associativity. Although increasing the
associativity gives more flexibility for cache block placement, at the same time, the
number of sets in the cache will be halved and the performance will be less dependent on
the associativity in these situations.

One exception needed to be noted is that — for the benchmark su2cor, the
performance of a one-way associative cache is superior to the other two configurations.
The results are not surprising in the sense that the MCPIs are quite high for the program
(about 1.5 cycle). The 16 Kbytes cache is unable to hold the full working set and the
miss rates are high for the program. Under these situations, the conflict between the
cache block is so serious that a rigid mapping scheme may help separating the cache
blocks and reduce the conflict to give a better performance. This is similar to what Smith
and Goodman suggested [SmG83] that a small cache using direct mapping could

51

consistently outperform one using fully associative with least recently used replacement
scheme.

4.3 Other performance metrics
In the last section, we showed the performance of our IAP schemes with some “explicit，’

metrics, which can always give the users of the system a direct feeling of how the
memory system performs. For example, the users can feel that the system is faster when
it execute programs with smaller MCPIs or bigger stall time improvement over the cache
only model. Now, we would like to have a more intensive study to see why and how the
IAP schemes work and to measure the performance with some “implicit，，parameters.
They are somewhat hidden but can give one more confidence that the IAP schemes wiU
general perform well in other applications. For the sake of brevity, only representative
results are shown here.

4.3.1 Accuracy of prefetch
Up to now, the IAP schemes are always emphasized with their accuracy. We would like
to define the accuracy of prefetching as:

—numher_ of_ prefetched— lines_ referenced— before_ displaced
Accurcicy — X1 uU total_ number_ of_ lines— prefetched

In other words, it is the percentages of prefetched lines that are actuaUy referenced at
least once when they are in cache. The results for the program nasa7 and tomcatv are
presented in Figure 4.8.

52

1 0 0 % J H r l / l / ^ 1 0 0 % j ̂ i : l y ^ y , . \ ^ I : ̂\ I : ̂y y /

1 9 4 % : ̂ I _ : < \ K ^ /

j 9 2 % : ̂ i : \ /

_ 9 0 % : ̂ 5 0 % : \ \ \ L ^

^ 8 8 % : 卿 4 0 % : 、

则 咖

M 8 6 % . , g 3 0 % —,

A p r e f e t c h - o n - m i s s

8 4 % . , 2 0 % - , — — 1 — — b a s i c I A P

6 e n h a n c e d - A P

8 2 % : 1 0 % . . ~ X — c o m b i s d l A I =

8 0 % _ 1 _ 1 0 % - I 1 _ _ _

8 1 6 3 2 8 1 6 3 2

c a c h e s i z e i n K b y t e s c a c h e s i z e i n K b y t e M

(a) n a s 7 (b) t o m c a t v

1 i J « - 1 - J ̂ _. 1 8 % J & 广

i : 7 ^ ^ ^ J ^ I : ̂̂ 7 V

9 6 % : / / / / / 一 I : ̂^ / / T X X X X ^

g > 9 4 % : ̂ y ^ ̂ 叩 7 0 % : \ \ t —

_ 9 2 % : \ j I I . ̂c \

| - 9 0 % : \ l ̂ g % : ̂

^ 8 8 % : ̂ 4 0 % :

咖 咖

g 8 6 % . , g 3 0 % — .

8 4 % - , 2 0 % - .

8 2 y o . , 1 0 % :

8 0 % _ _ 1 1 _ 1 0 % - I _ _ 1 _ _ 1

A 8 1 6 3 2 6 4 仁 8 1 6 3 2 6 4

t > _ o c k s i z e i n l o > y t e O T b l o c k s i z e i n K b y t e w

(c) i a 7 (d) t o m c a t v

1 0 0 % H V X 1 8 % y

9 8 % - . A \ \ ^ ̂ ^ — i ; i ; y ^ _ - _.

I i : \ 一 _ l f i v T l - - - «

胁 9 2 % . , < . / I 6 0 % . , « M « « \

I " i ; / I " i ； v l n

啊 i , , / ̂ i : \ ^ ^ ^ ^ ^ ^

§ 8 6 % . , i y 3 0 % . .

8 4 % - . 2 0 % . ,

8 2 % , : 1 0 % :

8 0 % 1 _ _ _ 0 % _ _ _ _

1 2 ̂ 1 2 ̂

s e t a s s o c i a t i v i t y s e t a s s o c i a t i v i t y

(e) n a s 7 3 t o m c a t v

F i g u r e 4 . 8 : A c c u r a c y o f p r e f e t c h i n g

5 3

The results show that the basic IAP scheme has very high prefetching accuracy
of more than 80% and it is generally higher than the accuracy of the "prefetch-on-miss"
scheme. As it is expected, the basic IAP scheme only prefetches data when the
LOAD/STORE- UPDATE instructions are encountered and the data to be prefetched for
the next iteration are not in the cache. It is almost certain that the prefetched cache block
wiU be referenced in the near future. The deviation of the accuracy of basic IAP scheme
from 100% may be probably due to [1] the conflict between the cache blocks which
causes the prefetched blocks to be displaced out before they are referenced, and [2] the
last elements of arrays (or pointer references) reside at the ends of the cache blocks and
inappropriate prefetch requests for other irrelevant data are issued. The enhanced IAP
scheme generally has a slightly lower accuracy. With more than one iteration look ahead
in the scheme, the cache blocks are brought into the cache earlier and it increases the
chance of the blocks being displaced without being referenced. Moreover, the prefetched
block will be required to stay longer in the cache before it is referenced and this further
increases the conflict of cache blocks in the cache. Furthermore, in the enhanced IAP
scheme, the same "last element effect", which causes inaccurate prefetch to be issued,
will occur even if the last elements do not reside at the ends of the blocks. The combined
IAP scheme, which incorporates the less accurate prefetch-on-miss scheme as a default
scheme, has a lower accuracy than the former two IAP schemes as expected.

The only situation where the prefetching accuracy of the basic IAP scheme is
below 80% is when the cache size of 8 Kbytes is applied to tomcatv (Figure 4.8(b)).
Further analysis shows that this relatively low percentage is not related to the accuracy
of prefetching. Instead, it is due to the high conflict between the cache blocks at this
small cache size, resulting in the replacement of accurately prefetched blocks from cache

54

before they have the chance to be used. Note that we also found that these replaced
blocks are often referenced soon after they are replaced from cache.

Although the enhanced and combined IAP schemes have accuracy lower than
that of the basic IAP scheme, it does not imply that they have worse performances. As
iUustrated in the following section, the enhanced IAP scheme offers great help in
reducing the memory stall time caused by the partial hits. The combined IAP scheme can
stiU perform accurate prefetching for the LOAD/STORE- UPDA TE instructions, its lower
accuracy is due to the default prefetches issued for the non-LOAD/STORE- UPDA TE
instructions. However, these less accurate prefetches are still benefitical to the cache
performance, although with a smaller improvement than those brought up by the
accurate prefetches issued for the LOAD/STORE- UPDA TE instructions.

4.3.2 Partial hit delay
As explained earUer, with limited bus bandwidth between the first and second level cache
memory, there are always cases when a cache block is being prefetched, it is actually
referenced by the processor. The delay time caused in this situation is called partial hit
(or miss) delay and the problem will become more severe if [1] the cache block size is
large and the time to retrieve a block from memory is longer, and [2] the time between
two successive references to two different blocks is short. The basic IAP scheme,
although equipped with a highly accurate prefetching mechanism, suffers great
performance loss due to the partial hit delay with only one iteration look ahead. In order
to study the effect, the "percentage partial hit delay" is defined as:

� . , , . , , memory delay time due to partial hit
%_ partial_ hit_ delay 二 — — =————厂 =~~ x 100

overall_ memory— delay_ time

55

to show the percentage of overall memory stall time due to partial hit. The results for
nasa7 and wave5 are shown in the Figure 4.9.

80% j 70% j

孤" y^ 6o%-. f
>.60% -- y ^ ^ /
I H K | 5 0 % - . /

a 50% • X / £ £ / <5 « 40%- / i40%-. I /
S> S, 30%- /
S 30% - - S ^ _ ^ ^

S § 20%-- ^ - ' ^ ^ s_ 20% •. s_
10%-- 10%--
0% 1 1 1 1 0% J 1 1 1 1

8 16 32 8 16 32
cache size in Kbytes cache size in Kbytes

(a) nasa7 (b) wave5

80% j 70% j

70%-- 60% --

Ss 60% - - __^ >. 1 ^^^_ , y K - - ^ !50%--
£ 50% - \ / •？

芸 \ / € • -i — \ / I S> V S. 30%-S 30% - - S ^ K^
g g ^ A ^ ^ ^ ^ ^ 8 g 20% -• ^ ^ S_ 20% -- a _̂ X̂"̂

10o/o - • - -

0% 1 1 1 1 1 (0% J 1 1 1 1 1 1
4 8 16 32 64 4 8 16 32 64

block size in bytes block size in bytes

(c) nasa7 (d) wave5

80% J 70% J

70%-- 60%--
>• 60% - - _ ^ s,
盡 _ l ^ _ , ^ " ^ ^ ^ « 5 0 % - -s ~̂~< / 名 2 50%- \ / 2
« \ / •^狐--”%.. \ / I
s, V S>30%--
S 30% • - S ^ ^ ^ ^ ^ . ^ K ^ _ ^ _ ^ ^ 8 8 20%-- ^ , ,y^^
S. 20% -- & _(^^

io%.. io%--0% 1 1 1 1 1 1 0% 1 1 1 1 1 1
4 8 16 32 64 4 8 16 32 64

block size in bytes block size in bytes (c) nasa7 (d) wave5
Figure 4.9: Percentage partial hit delay to overall delay for the basic IAP scheme

56

As shown in Figures 4.9, for the basic IAP scheme, an average of about 20% of
the memory stall time in the program wave5 is caused by the partial hits. The situation is
more serious in the program nasa7, where the partial hit delay accounts for more than
50% of the total memory delay for most cases.

In order to handle the problem, the enhanced IAP scheme incorporates the
concept of cache block prefetching — based on the stride, the scheme will prefetch the
cache block that foUows the current referencing block if the prefetched address and
current address correspond to the same cache line. Actually, it has similar effect as a
scheme with multiple iterations look ahead. The number of iterations look ahead wiU be
equal to cache_block_size/stride_size. Figure 4.10 shows the percentage partial hit delay
reduction of the enhanced IAP scheme over basic IAP scheme for the program nasa7
and wave5.

. partial_ hit_ delay-ic iAP " partial_ hit_ delay-^j j^
%_ reduction = : =~ X 100 partial_ hit— delayb^(iAp

57

1 0 0 % J o e o 1 0 0 % y ̂ ^

9 0 % - . 9 0 % - ’ Q \ x x x \ ^

n 8 0 % : i ;

. 2 . 2

^ 7 0 % - . 1 7 。 ％ . -

r e " i

K 6 0 % - . ̂ 6 0 % - ,

h Z
•_ 5 0 % : •_ 5 0 % :

M . a
 ̂4 0 % . . ̂ 4 0 % - -

鄉 I *

如 3 0 % ‘ - 的 3 0 % . ,

抓 r e

T C . 2 0 % - , r e . 2 0 % , -

1 0 % : 1 0 % :

0 % - I 1 _ _ _ 0 % - I _ _ _ _

8 1 6 3 2 8 1 6 3 2

c a c h e s i z e i n K t > y t e w c a c h e s i z e i n l c b y t e M

(a) n a s a 7 (b) w a v e 5

1 i j o e _ 、。y v o

9 0 % . - 9 0 % - - o \ \ x \ ^

n 8 0 % : n i :

• 2 . 2 • I 7 0 % ^ • § 7 0 % , ,

d d

r e r e

 ̂6 0 % - . u 6 0 % - ,

! E . M

抛 g % : . 1 5 0 % :

2 . ̂

m w 4 0 % - . 伊 4 0 % - ,

3 t e

她 3 0 % : 咖 3 0 % :

r e 抓

s . 2 0 % , , s . 2 0 % - -

1 0 % : 1 s / 0 - ,

0 % - I _ _ _ 1 0 % _ 1 _ _

8 1 6 3 2 8 1 6 3 2

c a c h n s i z e i n K b y t e M c a c h e s i z e i n K b y t e w

(a) n a s a 7 (b) w a v e 5

1 _ y o e o 合 0 % 叫 ̂ V 0

9 0 % : 9 0 % : Q \ \ \ \ ^

8 0 % - , n 蒙 , _

_ g . 2

• • I 7 0 % : • § 7 0 % ;

初 初

u 6 0 % - - t 6 0 % :

• 旧 m

触 s ; . 1 5 0 % :

a M .
 ̂4 0 % - . ̂ 4 0 % . -

础 3 0 % . , ^ 3 0 % , ,

g g

S . 2 0 % - , 2 . 2 0 % - -

1 0 % : 1 0 % :

0 % - I _ _ _ _ 0 % _ 1 1 1

8 1 6 3 2 8 1 6 3 2

c a c h e s i z e i n K t > y t e w c a c h e s i z e i n K b y t e M

(a) n a s a 7 (b) w a v e 5

F i g u r e ̂. 1 0 : F * a r t i a l h i t d e l a y r e d u c t i o n o v e r t h e b ^ i c I A P s c h e m e
5 ^

From the results, we are confident that the enhanced IAP scheme has substantial
improvement over the basic IAP scheme in reducing the partial hit delay. In most cases,
over 90% of partial hit delay is eliminated by the enhanced IAP scheme. However, when
observing the curves with varying block size (Figure 4.10(c,d)), one can find out that the
enhanced IAP scheme seems to have no effect when the block size is small (4 or 8 bytes)
and the percentage only rises after the block size is increased. The results are not
surprising and let us take nasa7 as an example for explanation. Nasa7 is a double
precision floating point benchmark and the data used in the program are solely 8 bytes in
size. That is, the stride size will probably greater than 8 bytes. With a cache block size of
only 4 or 8 bytes, as the formula cache_block_size/stride_size suggests, the enhanced
IAP scheme will have only one iteration look ahead and will revert back to the basic IAP
scheme and shows no improvement over the basic IAP scheme. The situation wiU be
better for wave5, since it is a single precision program and the enhanced IAP starts to
show some effect for 8 bytes cache block size.

4.3.3 Bus usage problem
In most of the current memory designs, one will probably find that there is only one
memory bus between the first and second level cache. With the capability of serving only
one request at a time, there are always situations when one type of requests is being
served, the other type of requests collides — the bus contention problem. The processor
must be staUed until the data needed is available in the first level cache because any delay
to the demand fetch requests will definitely introduce extra processor stall time.
Therefore, demand fetch requests are always given higher priorities to use the bus than
prefetch requests. That is, if a demand fetch request due to some cache miss is issued

59

and the bus is busy serving another prefetch request, the prefetch request will be killed
and then the demand fetch request is served. This kind of bus contention problem is
quite annoying, as all the efforts spent on the killed prefetch request will be in vain.
Moreover, in common cache designs, if there is an on-going prefetch request on the bus
and the request needs to be kiUed, a one cycle penalty for killing the current fetch
request on the bus would probably be introduced. So, killing a prefetch request is not
completely free. On the other hand, since the accuracy of the prefetch requests
generated by the IAP scheme is very high, killing a prefetch request might imply that a
cache miss will be encountered later. This cache miss will issue a demand fetch which
may further kiU another prefetch request in the memory bus, thus starting a chain of bus
collisions.

In the basic IAP scheme, if the address of the prefetched data and that of the
current referenced data corresponds the same address, no prefetch will be issued. In this
case, actual prefetch requests will be issued only when the current data are located at the
ends of the cache blocks. If these prefetch requests are accidentally killed by other
demand fetch requests, no further action will be executed by the scheme even if the bus
is free after the kiUing demand fetch requests are finished. With high prefetching
accuracy of the basic IAP scheme, the killings of the prefetch requests are almost sure to
cause other cache misses and consequently, serious bus contention problems.

However, in the enhanced IAP scheme, the prefetching actions are issued based
on the cache block addresses. Prefetch requests are sent out once the data at the
beginnings of the blocks are referenced. In previous section, it has been shown that this
enhancement offers more time for the prefetch requests to be finished, thus avoiding the
partial hit delay problem. In addition to this advantage, the enhanced IAP scheme is also

60

more reUable in prefetching data. For example, as shown in Figure 4.11, when a[l] is
referenced, a prefetch request to the cache block i+1 wiU be sent out. If this request is
kiUed by other demand fetch request, another prefetch request to the same cache block
i+1 will be issued when a[2] is referenced. The scheme will keep on retrying to prefetch
the block until [1] the block is successful brought into the cache by prefetching, or [2]
when a[5] is referenced. A real cache miss is occurred in case [2] and the block i+1 will
be brought into the cache by a demand fetch request.

killed
Prefetch _ y r

1 八 r j I

I 丨• •
I I • [
| a [1] | a [2] | a [$ | a[4] |a[5] |a[6] |a[7] |a[8] |
I I I
I cache block i i cache block i + 1 ‘

Figure 4.11: Retry after prefetch killed
In order to study how this "concept of retrying" helps, the "number of successful

prefetch blocks over the basic IAP scheme" is defined. It is the ratio of the total number
of the successful prefetch blocks of the enhanced and combined IAP scheme to that of
the basic IAP scheme, where successful prefetch blocks refer to those cache blocks
brought into the first level cache by prefetch requests and are referenced at least once by
the processor before they are replaced. The results for espresso and tomcatv are shown
in Figure 4.12.

61

800% j 140% j 9 enhanced IAP
——X~~ combined IAP ^ < s ^ * ^

运丽。 - . y < . - - ^ ^ ^ ^ ^ ^ ^ ^ ^ " \ ^ 0 600% -. / o
1 Z I 100% -
I 500%- K ^ I 0 尺 o 80% --
«4。0%一 。

1 否 6 0 % --

| - 300% -- ^

f I
s 0 © — _ _ _ _ W 40% --8 200% - - ~~e 8 1 I
供 1 0 0 % - 讲 2 0 % -

0% J 1 1 1 1 0% J 1 1 1 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

(a) espresso (b) tomcatv

800% J 140% J

0_ 7— .. a — - - ^ ® ^ ' ^ ' ^ ^ ^ ^
o 600% - - o X ^^X^ w « 100% -- o er 2 _ ^ S
6 500% - - X " " " ^ ^ ® 0 广 o 80% - •
1 400% - / I S / S 60% --
^ 300% -- / \

i200%-. . x i ^ ^ ^ ' ^ ^ ^4o%
尝丽》- . ^ ^ = = = ^ ^ ^ ^ ^ ^ ^ ^ " 2 0 % - .

0% \ 1 1 H 1 1 1 0% \ 1 1 1 1 1 1
4 8 16 32 64 4 8 16 32 64

block size in bytes block sze in bytes

(c) espresso (d) tomcatv

800% T 140% T

700%- 120%- ^ . . ^ - < ^ ^ " ~ “

1 I ^
苦 600%— 1 100%- Y 2 S
I 500% - X I 5 ^^"""^^ ° 80% --I 400%- x^""^ I
g £ 6 0 % --

^ 300% • • 3
a •© g 40% --8 200% • • 0 “® 8
g 呂
明 1 0 0 % - . 讲 2 0 % - -0% 1 1 1 1 0% \ 1 1 1 1

1 2 4 1 2 4

set associativity set associativity

(e) espresso (f) tomcatv

Figure 4.12: Number of successful prefetch blocks over the basic L\P scheme
As the results iUustrate, the enhanced IAP scheme is more successful than the

basic IAP scheme in prefetching blocks into the cache except the cases when the block

62

sizes are smaU. As explained in last section, it is due to the reason that the enhanced IAP
will revert back to a basic IAP scheme when the block sizes are smaller or equal to the
size of data used in the programs. The combined IAP scheme, incorporated with default
prefetching, attains more successful prefetch blocks than the other two schemes. For
expresso, the results for the combined IAP scheme are more significant, as a large
portion of LOAD/STORE instructions belongs to non-LOAD/STORE-UPDATE type
(refer to Figure 4.3) and the number of prefetch requests triggered by the default
prefetching is large. The results also show that the enhanced and combined IAP schemes
are more aggressive in prefetching data and this helps explaining why the enhanced and
combined IAP scheme have better performances than the basic IAP scheme even though
their accuracy of prefetching are a bit lower than that of the basic IAP scheme.

4.4 Zero time prefetch
Figure 4.13(b，d，f) and Figure 4.14(b,d,f) repeat the experiments for expresso and nasa7
with the assumption of zero time prefetching. That is, data prefetching is assumed to be
infinitely fast and no prefetching request wiU be killed in the middle due to the bus
contention with demand fetch requests. The purpose of this study is to find out how
effective our IAP schemes can overlap the data fetching time with the processor
execution. For the basic IAP scheme, zero time prefetching can help the cache
performance significantly. With only one iteration look ahead in the basic IAP scheme,
all prefetch requests must be finished in one iteration time in order to have no processor
staUs. This bursty traffic requirement significantly increases the bus traffic demand of the
basic IAP scheme, resulting in the insufficient bandwidth to aUow data to return in time
to be used. On the other hand, by comparing the curves of Figure 4.13(a,c,e) and Figure

63

4.14(a,c,e) with Figure 4.13(b,d,f) and Figure 4.14(b,d,f), we can see that the
performance difference between the combined IAP scheme with non-zero prefetch time
and the combined IAP scheme with zero prefetch time is very small, only a few percents.
The introduction of zero time prefetching to the combined IAP scheme has almost
negligible effect to the cache performance. This shows that the combined IAP scheme
can prefetch data into the cache accurately as well as overlapping the data fetching time
with the program execution time effectively.

64

0-25 T 0.25 j _ _ _ cache only ~A——prefetch-on-miss \ ^ ——4——basic IAP 大\ \ ——0——enhanced IAP 0.2 - \ ^ 0.2 - \ \ ~ H ~ combined IAP •: ^¾ •: ^
0.05-. 52?r̂ ^̂ ^ 0.05- 53%̂ ^̂ ^

48% 49% 0 1 1 1 1 0 J 1 1 1 1 8 16 32 8 16 32
cache size in Kbytes cache size in Kbytes (a) expresso (b) espresso (zero time prefetch)

0.16 J 0.16 J

3̂ _ ^ ^ $ i _ ^ ^ ^ ^ ':'^^^^^^.. ' __ . ^ ^ ^ ^ = " " ^ 1 %
0.04-- 39% 0.04-- ^ 407o 0.02 - • 0.02 --

0 \ 1 1 H 1 1 1 0 1 1 1 1 1 1 4 8 16 32 64 4 8 16 32 64
block size in bytes block size in bytes

(c) expresso (d) espresso (zero time prefetch)

0.18 j 0 .18--

�16 ^^^:^_ - �16 ^^^^^
0.14 - ® " \ ^ ^ 0.14-. G<^^^^^ ^

。12 Ĉ̂^̂̂ ® 。12 A . ^ ^ ^ ^

i r m^^^^^^^;;zz; 塁：^^^^—：
0.06-- 52% 52% o.06-- 53% 53%

0.04-- 0.04--
0 . 0 2 - - 0 .02 - -

0 1 1 1 1 o] 1 1 1 1
1 2 4 1 2 4

set associativity set associativity (e) espresso (f) espresso (zero time prefetch) Figure 4.13: Experimental results with zero time prefetch for espresso

65

°-®T 0 - 9 j cacheonly
"----......̂ _ •••—-.._ ——A——prefetch-on-miss

0.8 - • -""-""---^ 0.8 . - ^""-"""-"--"^^ ——I——basic IAP

\ \ e enhanced IAP
0.7 .- \ 0 . 7 - \ - ^ ^ combinedlAP

0.6-- \ 0.6 \

i : ^ ^ \ 塁： “~~\\
: ^ ^ ：： \ \
�.1.- 8 ^ ~ S ^ ^ ^ � . [8 ^ ~ ~ ^ ^ ^ > A
oJ , , >flfi% , oJ , ^ ~ ~ ^ ^ 89%——,

8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

(a) nasa7 (b) nasa7 (zero time prefetch)

2.5 T 2.5 了 _

\ \
1.5-- \ 1.5 \

-̂ v v ^ � < ^
。.5-. ^^^Z^^^ '''" ^ A

8^~^^===*::mlill---"：；<^。， 97% 95% 93% 8 7 % j 6 % o J — — 8 ” ，/o l � , n ftfo 7 ^ % _ , 0 甲 m f ^ ^ - ^ " ,
4 8 16 32 64 4 8 16 32 64

block size in bytes block size in bytes

(c) nasa7 (d) nasa7 (zero time prefetch)
0.9 丁 0.9 丁

� 8 " ^ ^ _ _ _ _ _ _ ^ ^ � 8 ^ ^ \ _ _ ^ ^
0.7 -- A 0.7-.

0.6 - • \ ^ 0.6 - " \ ^
=05 XX______•么 �0.5- \^
- 0 . 4 - 4 4 ^ X ^ - ^ io.4-. 5 2 � \ ^

0 3 \ ^ \ 0 .3- ° \

� 2 \ � 2 \
o_i'_ 83% 83% 0.1 -- * « 87% 87% 0̂ ‘ 1 1 1 0 1 1 1 1

1 2 4 1 2 4
set assodativity set associativity

(e) nasa7 (f) nasa7 (zero time prefetch)

Figure 4.14: Experimental results with zero time prefetch for nasa7

66

4.5 Summary
In this chapter, the performance of the basic, enhanced and combined IAP scheme is
evaluated using cycle by cycle simulations of the eight SPEC92 benchmarks. For
comparison, the performance of a traditional hardware prefetching scheme, prefetch-on-
miss, is also included. Cache models with varying cache size, block size and associativity
are simulated. Except the slight performance degradation for the benchmark program
compress, the results show that the IAP schemes are generally effective in reducing the
data access penalty in almost all the other benchmark programs tested. It is observed
that the enhanced IAP scheme has moderate improvement over the basic IAP scheme
and the combined IAP scheme shows performance improvement over the enhanced IAP
scheme in some cases where the spatial locality of data is not fully exploited by the
enhanced IAP scheme.

Next, an intensive study of the IAP schemes is carried out using some implicit
performance parameters — accuracy of prefetching, partial hit delay time reduction and
number of successful prefetch blocks to investigate why and how the IAP schemes
work. The results obtained help to illustrate that the IAP schemes can prefetch data
accurately and the enhanced and combined IAP are useful in reducing the delay time
caused by partial hits and also more aggressive and successful in prefetching data into
the cache.

FinaUy, the experiments are repeated with zero time prefetch, that is, the caching
model wkh the assumption of infinitely fast data prefetching. The results show that the
IAP schemes can prefetch data into the cache accurately and as well as successfully
overlap the data fetching time with the program execution time effectively.

67

Chapter 5
Conclusion
5.1 Summary of our research
In this dissertation, three IAP (Instruction Opcode and Addressing Prefetching)
schemes, the basic, enhanced and combined, are proposed one by one based on the
following observations from various experiments:
• We observe that certain important and very common instruction opcodes and

addressing modes actually contain valuable information about what data are expected
to be referenced in the near future.

• Most current data prefetching schemes (both hardware and software) only prefetch
one cache block, independently of what kind of prefetching strategies they use. That
is, they do not have the concept of multiple cache blocks prefetching. However, the
next datum which consists of multiple bytes (depending on whether it is single,
double, or quadwords), might fall into multiple blocks. Thus, if the datum faUs into
two or more cache blocks and only the first block is prefetched into the cache, the
rest of the datum will still cause cache misses.

• In current software assisted prefetching schemes, the cache activities generated by the
PREFETCH instruction are based on the data address instead of the cache block
address. Consequently, the time period between the issue of a prefetch request and
the use of the datum might be too short for the prefetching to be finished in time.

• We found that most software assisted data prefetching schemes using PREFETCH
instructions might have a very important potential problem of request collisions
between demand data fetch requests and very accurate data prefetch requests. That
is, while a data prefetch request is being served, a data cache miss occurs and both

68

requests try to use the same data bus. This is usually due to the one iteration look
ahead in software assisted data prefetching scheme and the lack of cache block
concept in the PREFETCH instruction. As a result, even though prefetch requests
issued by software prefetching schemes can be very accurate, they might be killed in
the middle of their data prefetching by some data demand fetch requests. This
introduces more demand fetch requests when the data are actuaUy referenced in the
next iteration. The newly introduced demand fetch requests may then kill other on-
going prefetch requests. As a result, a chain of demand fetch misses may be caused.
This coUision problem will be more serious if [1] the speed gap between the
instruction execution rate and the data fetching time is large, or [2] the cache hit ratio
is low (e.g. less than 70%).

We propose a collection of three new hardware driven data prefetching schemes,
called the IAP schemes, to improve data cache performance. From our simulation study,
we saw that the potential of these IAP schemes is very good and the processor idle time
due to memory accesses can easily be reduced substantially by the IAP schemes. The
nice things about these IAP schemes are: [1] the additional hardware required is very
simple, [2] no change in the architecture is required, [3] no new compiler optimization
technique is required, [4] the IAP scheme can work with other data prefetching schemes
to obtain further cache performance improvement, and [5] the potential performance
improvement obtained by the IAP is very big. Furthermore, several observations and
enhancements that we made for the IAP schemes (as were discussed in Chapter 3) can
also be appUed to most software assisted cache prefetching schemes to further improve
the cache performance.

69

5.2 Future work
The IAP schemes that we proposed so far requires the definition of LOAD/STORE-
UPDATE compound instructions in the architecture. An example of such an architecture
is the POWER series, as in the IBMMotorola/Apple PowerPC and in the IBM
RS/6000. However, the question that needs to be answered is _ can the IAP schemes
be extended easily to other architectures without LOAD/STORE- UPDA TE instructions?

There are two answers to this question. First, some architectures have some
compound instructions that are functionally equivalent to the LOAD/STORE- UPDA TE
instructions defmed in the IBM PowerPC or RS/6000 series. As is mentioned in Chapter
3, the HP's Precision Architecture (PA RISC) 1.1 has LOAD/STORE-MODIFY
instructions. Thus the IAP schemes can be extended easily to this type of architectures
without any difficulties. Second, for architectures such as SPARC, where no such
compound instructions are defined, it is still possible to implement the IAP schemes
provided that an update-counter per register is available. The main purpose of this
update-counter UC is to book-keep if its corresponding register R(UC) is an index
register used by some LOAD/STORE instructions using "index-displacement" addressing
mode in a loop. If the answer is yes, the value of the stride used by the "index
displacement" LOAD/STORE instructions will be learnt during the first iteration of the
loop and it wiU be stored in the update-counter UC. After that, very accurate data
prefetching similar to the IAP schemes can be carried out in the rest iterations of the
loop to improve the cache performance.

夕

70

Bibliography
[BaC91] Baer, J.L., Chen, T.F.，"An effective on-chip preloading scheme to reduce

data access penalty," Proceedings of the 1991 International Conference on
Supercomputing, November 1991，pp. 176- 186.

[Bre87] Brent, G.A., "Using program structure to achieve prefetching for cache
Memories," Ph.D Thesis, University of Illinois at Urbana-Champaign,
January 1987.

[CaK91] CaUahan, D., Kerlnedy, K.，Porterfield, A., “Software prefetching,"
Proceedings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, April 1991，

pp. 40-52.
[ChB92] Chen, T.F., Baer, J.L., "Reducing memory latency via non-blocking and

prefetching caches," Proceedings of the Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems,
October 1992，pp.51-61.

[ChM91] Chen, W.Y., MaWke, S.A., Chang, P.P., Hwu, W.W., "Data access
microarchitectures for superscalar processors with compiler-assisted data
prefetching," Proceedings of Microcomputing 24, 1991.

[FuP91] Fu, W.C., Patel, J.H., "Data prefetching in multiprocessor vector cache
memories," Proceedings of the l8th Annual Symposium on Computer
Architecture, May, 1991 , pp.54-63.

[FuP92] Fu, W.C., Patel, J.H., "Stride directed prefetching in scalar processors，”

Proceedings ofthe 25th International Symposium on Computer Architecture,
1992, pp. 102-110.

71

[GiM86] Gibbons, P.B., Muchnick, S.S., "Efficient instruction scheduling for a
pipeUned architecture," Proceedings of SIGPLAN Symposium on Compiler
Construction, 1986.

[GoG90] Gornish, E., Granston, E., Veidenbaum, A., "Compiler-directed data
prefetching in multiprocessor with memory hierarchies," Proceedings of the
1990 International Conference on SuperComputing, 1990, pp.354-368.

[HeP90] Hennessy, J., Patterson, D.， Computer Architecture: A Quantitative
Approach, Morgan Kauffmann, 1990.

[HP94] Hewlett-Packard, Inc., PA-RISC 1.1 Architecture and Instruction Set
Reference Manual, HP Part Number 09740-90039，third Edition; February
1994.

[IBM89] IBM AIX V3.2 for RISC Systems/6000: Assembler Language Reference
SC23-2197-01, 1989.

[IBM94] IBM, The PowerPC Architecture, edited by May, C., SiUia, E., Simpson, R.,
Warren, H., Morgan Kauffmann, 1994.

[Jou90] Jouppi, N.P., "Improving direct-mapped cache performance by the addition of
a smaU fully-associative cache and prefetch buffers," Proceedings of the 18th
Annual Symposium on Computer Architecture, May 1990, pp.364-373.

[KlL91] Klaiber, A.C., Levy, H.M., "An architecture for software controlled data
prefetching," Proceedings of the 18th Annual Symposium on Computer
Architecture, May 1991, pp.43-53.

[Lee87] Lee, R.L., "The effectiveness of caches and data prefetch buffers in large-
scale memory multiprocessors," Ph.D Thesis, Department of Computer
Science, University ofIllnois at Urbana-Champaign, May 1987.

72

[MoG91] Mowry, T.C., Gupta, A., “Tolerating latency through software-controUed
prefetching in shared-memory multiprocessor," Joumal of Parallel and
Distributed Computing, Volume 1，Number 2，June 1991，pp.87-106.

[MoL92] Mowry, T.C., Lam, M.S., Gupta, A., “Design and evaluation of a compiler
algorithm for prefetching," Proceedings of the Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, October 1992, pp. 62-73.

[Mot92] Motorola Inc., PowerPC 601 RISC Microprocessor User's Manual,
Publication Number MPC601UM/AD,1992.

[Por89] Porterfield, A.K., "Software methods for improvement of cache performance
on supercomputer application", Technical Report COMP TR 89-93’ Rice
University, May 1989.

[Sak72] Sakalay, F.E., "Storage hierarchy control system," IBM Technical Disclosure
Bulletin, Volume 15，Number 4，September 1972, pp.llOO.

[SmG83] Smith, J.E., J.R. Goodman, "A study of instruction cache organisations and
replacement policies," Proceedings of the Tenth Annual Symposium on
Computer Architecture, June 1983, pp. 132-137.

[Smi78a] Smith, AJ., "Sequentially and prefetching in data base systems," ACM
Transactions on Data Base Systems, Volume 3, Number 3，1978, pp.223-
247.

[Smi78b] Smith, A.J., "Sequential program prefetching in memory hierarchies," IEEE
Computer, Volume 11, Number 12, 1978, pp.7-21.

[Smi82] Smith, A.J., “Cache memories," ACM Computing Survey, Volume 14，

Number 3, September 1982, pp.473-530.

73

[Tha81] Thabit, K.D., "Cache management by the compiler," Ph.D Thesis, Rice
University, November 1981.

[WeS94] Weiss, S., Smith, J.E., POWER and PowerPC, Morgan Kauffmann, 1994.

74

T

 .^

 」

/

 .

i

 1

 .

 •

 •

 ̂

.

-

j
 .

-

.

.

.
 ..

 ”

-
减

.

.

 .

 1

^

 -
.

 ,

 .

 .

r
^
.
:
-
,

 .

 ,

*.̂
 I

,
-
-

<
 -
广

 ...

 -
^

^

:

.

.

•

.

.

 ..

l
:
i
-

;
-

 .

?
>
.
-
」.

 ...

-7.,v,.

 ,

^

^
f
.
.
^
r
.
.
 .
.
「
，
,
.
.
.
•

.

.

.

I
i

 ,

P
J
，
•
:

?

 ,“：

¢
^

广

.

 、、

 "
：
i

&
「
、

厂

 V

 �
.
:
」

_"
 •》，「

；

.

 .

 r

 •

 ..
,

〗

.̂̂
w-;.̂
(-r
 .

 :

 。

\
K
.

,
-
.

 ,、.

，
>
v
 .
:

‘
-
h
:

 ,

 ,

 .

.

.

:

^
^
^
f
f
.
'
l
f
^
L
-
.
.
-
.
 .;
.
-
s
-
?
>

 .

 .

 .

 1

 ,

 ,

 ,

 -

 ̂'
K
-
^
^
l

 ,
-
?

 i-
-

 „

 i-
-
.
f
-

 r
y
,
i
i
a
s
i
i
s
i
s
i
f
^

\

CUHK L i b r a r i e s

圓__11_111丨
DD3SimbE

