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Abstract 

In this thesis, we introduce the data-disjunctive logic programs and concentrate on the 

data-disjunction. We define the model-theoretic semantics and fixpoint semantics of the 

data-disjunctive logic program. The minimal data-disjunctive model state is presented 

which contains the definite and indefinite information of the data-disjunctive logic pro-

gram. The contingency model is defined which stores the uncertainty information about 

the atoms. We develop a bottom-up evaluation method to compute the model of this 

logic program and show how to use the computed result to answer query. We prove that 

any disjunctive deductive database can be transformed to a data-disjunctive deductive 

database and show that the expressive power of the data-disjunctive logic program is the 

same as the disjunctive logic program. The concept of standard-form facts is presented 

and with this concept, a disjunctive deductive database can be transformed into the cor-

responding data-disjunctive deductive database where the bottom-up evaluation method 

can be applied. A rule rewriting technique similar to the magic sets techniques is proposed 

to solve query for the data-disjunctive deductive databases. With this technique, it be-

comes possible to constrain the computations to the relevant information in the database 

for a given query. We have built a prototype for performance evaluation of the bottom-up 

evaluation procedure and the rule rewriting method and we find that the procedure using 

the rule rewriting method can solve a query efficiently. 
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Chapter 1 

Introduction 

1.1 Objectives of the Thesis 

The study of disjunctive databases started around early 80's [26]. Minker and Grant [27 

first address the problem of computing answers to queries in disjunctive databases. Since 

then different methods and procedures have been presented [5, 16, 19, 36, 37]. Different 

data structures have been proposed to represent indefinite information [18, 19] and a data 

structure called minimal model tree is introduced in [11] as a structure-sharing approach 

to represent indefinite information which captures the semantics of disjunctive deductive 

databases. 

In this thesis, we consider disjunctive deductive databases, which do not contain negative 

literals in the body of rules. We develop a new model semantics for the disjunctive logic 

program with the concept of data-disjunction and data-disjunctive logic program. 

We define the model-theoretic and fixpoint semantics of this kind of disjunctive logic 

program. In our model, definite information and indefinite information can be deduced. 

Consider the program 

Go{swim) V Go{barbecue). 

Go{swim). 

Under the generalized closed world assumption (GCWA) [26] and the extended generalized 

closed world assumption (EGCWA) [36], the atom Go{harhecue) is assumed false. But 

1 



Chapter 1 Introduction 2 

from the program, we know that it is possible that the person go to barbecue. This 

information about uncertainty can be viewed as the maybe information which was first 

addressed in [19] but the paper only concerns about maybe information in relational 

databases. As we want to be able to give such information about uncertainty in the 

disjunctive deductive databases and use it to answer query, our new model contains a 

contingency model which expresses this kind of information. The contingency model 

can be viewed as the union of the set of true ground atoms and the set of possibly true 

ground atoms defined by the Possible World Semantics (PWS) [6] and we deduce an 

efficient algorithm to compute this contingency model. 

A data-disjunction is a disjunction of atoms with the same predicate. This kind of dis-

junction is a general form of restricted disjunction which has been argued to occur more 

often in practice [17]. A data-disjunctive clause is a clause of the form 

A{xi) V . . . V A{xn) — B{yi),. •., B{ym)-

where the atoms at the head of the clause have the same predicate. A data-disjunctive 

deductive database consists of a set of data-disjunctive clauses. 

The model of the data-disjunctive logic program, which is called the minimal data-

disjunctive model MMpD, consists of two components: The minimal data-disjunc-

tive model state and the contingency model. The minimal data-disjunctive model state 

contains the logical consequences with a single predicate of the program. 

Another reason for introducing data-disjunction is for efficiency in query evaluation. Con-

sider the program 

Bus{l) <r- Go{swim). 

Bus{2) ^ Go{barbecue). 

Go{swim) V Go(barbecue). 

where the first two clauses indicate the bus to be taken to go to a certain place, and the 

last clause states that one can either go to swim or barbecue. There are simply 2̂  = 4 
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logical consequences: ^ 

1. Go{swim) V Go{barbecue). 

2. Go{swim)vBus{2). 

3. Bus{l) V Go{barbecue). 

4. Bus{l)vBus{2). 

The minimal data-disjunctive model state of the program only contains the data-disjunc-

tions Go{swim) V Go{harhecue) and Bus{l)yBus{2). In general, for the data-disjunctive 

logic program, only disjunctions with a single predicate are concerned. 

According to the expectation of the user, a program can be transformed to another pro-

gram such that the minimal data-disjunctive model state of transformed program contains 

those disjunctions corresponding to the disjunction with more than one predicate in the 

original program. 

Take the last example on the relation Bus and Go. The program can be transformed to:^ 

T(Jms, 1 ) < — T[go, swim). 

T{bus, 2 )卜 T{go, barbecue). 

T[go, swim) V T[go, barbecue). 

where in the transformed program, T(bus,x), T[go,y) corresponds to Bus{x), Go{y) of 

the original program respectively. Then the minimal data-disjunctive model state of the 

transformed program is 

{ T{go, swim) V T{go, barbecue),T{go, swim) V T(bus, 2), 

T(bus, 1) V T(go, barbecue),T(bus, 1) V T(bus, 2) } 

where each disjunction in this model corresponds to a logical consequence of the original 

program. 

We introduce the concept of standard-form fact, which provides a strategy to transform 

the original program to a data-disjunctive program. The concept of standard-form fact 

iQnly those ground clauses not subsumed by other logical consequence are counted 
^detail of transformation can be found in chapter 5 
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is used in two different ways. Firstly, it is used for the transformation of a non-data-

disjunctive deductive database to a data-disjunctive deductive database. For example, 

for the program 

Father{X, Y) V Mother{X, Y) — Parent(X, Y). 

A fact of the form Father{-) V Mother{-) will be a standard-form fact. The program will 

be transformed where a new predicate, say S, is introduced such that a standard form 

fact is corresponding to a data-disjunction in the transformed program. The transformed 

program will be 

Father[X,Y) — S ' (X,y, l ) . 

Mother{X, Y) ^ S{X, Y, 2). 

5(X, y, 1) V S{X, y, 2) — Parent[X, Y). 

Moreover, the concept of standard form fact can be used by the user to indicate which 

kind of disjunction is useful and meaningful. Consider the previous program on Bus and 

Go. If the user expect that the information of the form Bus{x) V Go{y) is useful, he can 

insert the clause 

Bus{r])vGo{r}).^ 

into the original program. With this clause, the fact Bus{-) V Go{-) will be in standard-

form and the system will transform the program to the mentioned program on relation T 

consequently. 

In disjunctive logic program, we expect the answer to a query is not always a simple 'yes' 

or 'no' form. Consider the program on Bus and Go. Under the traditional definition of 

answer [1, 11], the set of answers for a query Q is defined to be 

{ Ai V . . . V Ak ： k > 0 and M |= Ai V . •. V Ak and Vi, Ai =^ 3Q } 

If the query 7-Go(swim) is given, the query reduces to a 'yes' or 'no' question as only 
Go{swim) implies Go{swim). Although Go{swim) is not a logical consequence of pro-
gram, we do not want to give a simple answer 'no' to the query since we know that 

T̂] is a default constant. 
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the person probably go to swim. The answer to the query should at least express this 

uncertainty. For example, an answer can be 

Probable: Go{swim) 

Alternatively, in a probably better way, the answer could express relevant knowledge to 

the query, for example, the answer can be 

Go{swim) V Go{barbecue) 

which expresses more information than the former case. 

In the scope of data-disjunctive deductive databases, we define the answer for a query Q, 

which we call the relevant answer set, to be the set of ground clause 

{A{xi) V . . . V A{xk) e M I 3i, A{xi) =^ 3Q } 

where M is the minimal data-disjunctive model state. With this definition, the query 

7-Go{swim) yields the answer 

Go{swim) V Go{barbecue). 

Consider another query 7-Bus{l) for the program. Under the traditional definition of 

answer, the answer for this query is an empty set which means that Bus{l) is not a 

logical consequence of the program. However, the answer Bus{l) V Bus{2) will be given 

under the new definition. 

One can see that all tuples in the answer set under the new definition are data-disjunctions. 

There are cases when the user expect the answer contain some logical consequences which 

are disjunctions of more than one predicate. For example, the user may find that the 

answer Bus{l) V Go{barbecue) is useful when the query Bus{l) is posted. In this case, 

the program should be first transformed to the program with predicate T mentioned 

above and then Bus{l) V Go{harhecue) will constitute an answer to the query as the 

corresponding disjunction T{bus, 1) V T{go, barbecue) is in the minimal data-disjunctive 

model state of the transformed program. 
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The set of minimal models are used to characterize the semantics of a disjunctive logic 

program in the GCWA [26] and the model tree method [10, 11]. For the model tree 

method, each branch of the model tree is one-to-one corresponding to a minimal model 

of the disjunctive program. 

Consider the program 

B(l)vB(2)V-"VB(m). 

B(m + 1) V B[m + 2) V .. • V B{2m). 

B{m{n — 1) + 1) V •.. V B{nm). 

With these n disjunctions, the program will have m" minimal models. In general, the 

number of minimal models for a program can be exponential with the number of disjunc-

tions in the program. Hence, it may not be practical to use these semantics, which are 

characterized by the set of minimal models, in solving a query. 

We propose a data-structure, which is called the derived term, to represent the indefinite 

information of the data-disjunctive deductive databases. With this data-structure, we 

propose a bottom-up evaluation method that can compute the minimal data-disjunctive 

model state of the program. According to the expectation of the user, a program is 

transformed to another program such that the evaluation method can be applied and 

answer is given consequently. 

With the presented bottom-up evaluation procedure for the data-disjunctive deductive 

databases, a rule rewriting method similar to the magic set rewriting method is developed 

which can be applied to this data-disjunctive deductive database. With this rule rewriting 

method, the answer for a given query can be obtained in a guided manner. 

We have built a prototype for performance evaluation of the proposed bottom-up evalua-

tion procedure and the rule rewriting method for the data-disjunctive deductive databases. 

We find that, in solving a query, the procedure using the rule rewriting method is much 

more efficient than the procedure that do not. We also compare our bottom-up evaluation 
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Chapter 7 Introduction 2 

procedure with the model tree method [10]. We find that, for the tested program, the 

proposed methods are much more efficient than the model tree method. 

1.2 Overview of the Thesis 

The thesis is organized as follows: A review of deductive databases and disjunctive de-

ductive database is given in chapter 2. In chapter 3, the notion of data-disjunctive logic 

program is introduced and we define the model of this data-disjunctive logic program 

and the model-theoretic and fixpoint semantics in chapter 4. In chapter 5, we prove that 

any disjunctive deductive database can be transformed into a data-disjunctive deductive 

database, and hence we can use those operational procedures to compute the logical con-

sequences of the disjunctive deductive database and use them for query answering. Rule 

rewriting algorithm, which is similar to the idea of magic set on deductive databases, is 

presented in chapter 6. Experimental results will be given in chapter 7 which is followed 

by the conclusions in chapter 8. 



Chapter 2 

Background and Related Work 

This chapter gives a review of the field of deductive databases together with an overview of 

the development in disjunctive deductive databases. As state in [9], the field of deductive 

databases is generally considered to be started in 1978 when the book Logic and Data 

Bases, edited by Gallaire and Minker, was published. The field of disjunctive deductive 

databases started around early 80's with the appearance of the paper by Minker [26 . 

2.1 Deductive Databases 

During the early 80's, a number of papers about deductive database systems where pub-

lished [12, 13, 14, 21, 22]. These database systems take first-order logic as the foundation. 

The foundation of logic programming can be found in [20]. A deductive database can be 

viewed as the union of two sets EDB and IDB, where the EDB is a set of ground atomic 

formulae and IDB is a set of definite rules of the form 

A 4— Bi，...，Bn 

where A and the Bi, 1 < i < n are atomic formulae, and n > 0. 

With respect to the EDB and IDB, the set of predicate symbols is partitioned into two 

disjoint sets: the set of base predicates and the set of virtual predicates. The deductive 

database is assumed to be function free which ensures that answers to queries are finite. 

8 



Chapter 2 Background and Related Work 9 

Analogous to the development of normal logic program from definite logic program, the 

field of deductive databases was extended to allow negated atoms in the body of an IDB 

clause and the clause of this extended deductive database has the form 

A — Bi, • . . , Bn, ~^Di, . . • ,，Dm 

where A, Bi and Dj,l < i < n,l < j < m, are atoms and this extended database is called 

normal deductive database. 

In the clause of a normal deductive database, a unary operator ~i is used to indicate a 

default rule of negation. This default rule of negation serves as a mechanism to compute 

negative information in the deductive databases which does not explicitly contain negated 

data. The close world assumption {CWA) and the negation as failure {NAF) are two 

commonly used rules of negation. The close world assumption states that the negation 

of an atom may be assumed if one cannot prove the atom. The negation as failure states 

that if an atom is in the SLD finite failure set of the program P, then the negation of the 

atom is inferred [7 . 

A restricted class of normal deductive databases, which is known as stratified databases, 

were studied [2,15]. In this restricted class of program, recursion through negation is not 

allowed. With this restriction, one can divide the logic program (a deductive database can 

be viewed as a logic program) into layers such that answers to queries over the program 

can be obtained by execution over those layers consecutively. There was a unique model 

that characterizes the meaning of this stratified deductive database and this model was 

shown to be the perfect model of the program [30 . 

Different optimization techniques for query evaluation has been proposed [3，4, 29, 32, 

34]. Among these optimization techniques, magic sets is considered to be the most general 

and important one [31]. Magic-sets is a technique that rewrites the rules for each query 

form, so that both the advantages of top-down and bottom-up methods are achieved [3，4 . 

The advantage of top-down evaluation method such as Prolog evaluation procedure is that 

during the search, only relevant goals to the query are traversed. On the other hand, the 
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looping-freedom, easy termination testing, and efficient evaluation are the advantages of 

the bottom-up evaluation method. 

2.2 Disjunctive Deductive Databases 

The clause of a disjunctive deductive database is a generalization of the clause of the 

deductive database where disjunction of atoms is allowed in the head of a clause. In 

deductive databases, there is a single minimal model that characterizes the database. A 

disjunctive deductive database does not necessarily have a unique minimal model. Hence 

even when there are no negated atoms allowed in the clauses of the disjunctive deductive 

database, we may not have a Herbrand model that could characterize the semantics of 

the database. Take the disjunctive program {a V b} as example. The program has three 

models {a } , {6 } and {a, b}. Both models {a} and {6} are minimal and hence there is 

no unique minimal model for the program. Though there is not necessarily a unique 

minimal model for a disjunctive deductive database, there is a set of minimal models 

which can characterize the disjunctive deductive database. The model-state semantics 

was introduced [23] which captures the disjunctive logical consequences from a disjunctive 

logic program as a set of models. This model-state semantics will be described in chapter 

4. A state is a set of disjunctive ground clauses and this concept of state was used as the 

domain of a fixpoint operator Tp that characterizes the disjunctive logic programs where 

the fixpoint is a model state that contains the set of minimal models of the program [28 . 

A number of papers [5, 25, 33, 36] have studied the issue of how to deduce negated 

information, or in particular, solving negated queries in disjunctive deductive databases. 

The closed world assumption (CWA), which is a default rule of negation for deductive 

databases, is not sufficient to answer queries for the case when disjunction is allowed. 

Minker [26] provides a model theoretic definition of negation called generalized closed 

world assumption (GCWA), which states that negation of an atom is assumed true if the 

atom is not in any minimal model. Yahya and Henschen [36] extends the GCWA such 

that negation of conjunction of ground atoms can be determined. This default rule of 
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negation is termed as extended generalized closed world assumption (EGCWA). 

The query answering issue in disjunctive deductive databases has been studied for 

nearing a decade, which can be traced back to mid 80's [5, 10, 11，16, 19, 27, 37]. Grant 

and Minker [27] study the query answering problem in disjunctive databases, which is a 

restricted case of disjunctive deductive databases in which all predicates in the databases 

are in EDB. Maybe information was introduced in [19] where the relational model was 

generalized and the data structure M-table are used to represent the disjunctive data. The 

relational algebra is generalized to operate on the M-tables but this relational algebra is 

not complete. 

2.3 Model tree for disjunctive deductive databases 

The concept of model tree was introduced in [11, 10]. A model tree for a disjunctive 

deductive database is a tree structure in which the nodes are labeled by the atoms of 

the Herbrand base of the deductive database and each branch of the tree represents the 

models of the deductive database. 

Consider the following program P: 

a. 

bVc. 

dye. 

One of model trees is shown in Figure 2 1 } 

As there may be more than one minimal model for a disjunctive deductive database, the 

minimal model tree is defined for which there is a one-to-one correspondence between 

the minimal models and the branches of the minimal model tree. The paper [11] shows 

how one can compute sound and complete answers to queries in hierarchical disjunctive 

deductive databases, where recursion is not allowed. Algorithms for the incremental 

computation on model trees were introduced. Clauses are classified into three groups: 

iThe model tree formed is not unique as it depends on the order of the clauses processed. 



Chapter 2 Background and Related Work 12 

8 

I 
a 

八 
b c 

八 八 
d e d e 

Figure 2.1: A model tree for P 

1. Positive disjunctive ground clauses. 

2. Clauses with only one atom in their body. 

3. Clauses with more than one atom in their body. 

A positive disjunctive ground clause is called a disjunctive tuple. It is to be added during 

the computation of the model tree associated with the extensional part of the database. 

Those clauses with only one atom in their body are called selection rules, where these 

clauses only need one atom to be tme in a model in order to deduce the conclusion. The 

clauses with more than one atom in their body are called join rules and more than one 

atom need to be true in the same model for the conclusion to be true. An algorithm is 

built for the incremental computation on the model tree for each kind of these clauses. 

In [10], Fernandez et al. develop a fixpoint operator over model trees to capture the 

meaning of a disjunctive deductive database that allows recursion. The algorithm of 

constructing the minimal model tree is represented in this two papers but the minimal 

model tree constructed is not unique as different model tree will be built by changing the 

order in which the clauses are processed. In [35], Yahya et al. introduce the concept of 

ordered minimal model trees as the normal form for disjunctive deductive database. An 

order is imposed on the atoms of the Herbrand base of the database and is used to define 

the ordered minimal model tree, which is a special form of minimal model tree. With this 

concept, all minimal model equivalent databases will correspond to a uniquely ordered 

minimal model tree and the algorithms for constructing and performing operations on 

ordered minimal model trees are presented. 



Chapter 3 

Preliminary 

3.1 Disjunctive Logic Program 

For completeness, we quote some definitions from [24 . 

A disjunctive logic program clause is a program clause of the form: 

Ai V • • • V Ak ^ Bi,...,Bm 

with k > 1 and m > 0, where A i , . . . , Ak, Bi,..., Bm are atoms, defined using a FOL A. 

When m = 0, it is called a disjunctive assertion. When k = 1, it is called a definite 

clause. Throughout the context of the thesis, we assume A contain no function symbols. 

A disjunctive logic program is a program with a finite set of disjunctive logic program 

clauses. 

Definition 3.1 A ground clause A = Ai V • • • V A^ is a subclause of a ground clause 

B = Bi V • •. V Bm if for each Ai, 1 < i < n, there is a Bj such that Ai = Bj. The 

clause A is said to be a proper subclause of B if it is a subclause of B and there is a 

Bj, 1 < j < m, such that Bj is not in A. • 

As stated in the previous chapter, a disjunctive logic program does not necessarily have 

a unique minimal model. For the program that consists of a single clause {a V 6}, there 

are two minimal models {a] and {6}. From this example, firstly, we can see that there 

is no unique minimal model. Secondly, we can see that the model intersection property 

13 
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of definite logic programs does not in general apply to disjunctive logic programs as the 

intersection of model { a } n {6} is 0 which is not a model of the program. 

Though there is no unique minimal model for disjunctive logic program, the logical conse-

quences of a disjunctive logic program can be characterized by the set of minimal models 

of the program as stated by the following theorem derived in [26: 

Theorem 3.1 Let P be a disjunctive logic program. A positive ground clause C is a 

logical consequence of P if and only if C is true in every minimal Herbrand model of P. 

Given a disjunctive logic program, the disjunctive Herbrand base of P, DHBp, is the 

set of all disjunctive ground clauses which can be formed with distinct ground atoms from 

the Herbrand base of P, such that no two logically equivalent clauses are in the set. 

Definition 3.2 Let P be a disjunctive logic program. Let S be a set of positive ground 

clauses in P. The expansion of 5, denoted by exp(S), is defined as follows: 

exp{S) = {C e DHBp | 3 C' G S such that C' is a subclause of C} • 

Definition 3.3 Let A and B be two ground clauses, A is said to be subsumed by B, 

or B subsumes A, iff B is a proper subclause of A. • 

Example 1 Let Qi = A(1) V B(1) and Q2 = A{1) V B{1) V C(1) be two ground clauses, 

then Qi is a proper subclause of Q2. And we say that Qi subsumes Q2, or Q2 is subsumed 

byQi . 

3.2 Data-disjunctive Logic Program 

With the definitions of terminologies of disjunctive logic programming, we now describe 

the syntax of data-disjunctive logic program. 

Definition 3.4 A data-disjunctive clause is a clause of the form 

C { X i i , . • . ’ X i r ) V . . • V C { X n l , . . .，Xnr) — ^ 1 , • . . , ^ m 
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where r > 1, n > 1, m > 0 and each Xij is either a constant or a variable which appears 

in some atom Bk, 1 < k < m. The clause is represented in the form: 

C{Y) \ Ye{yu-..,yn}^Bi,...Bm 

where yi,s are tuples and pi = (Xn,..., Xir), 1 < i < n. And the above clause is said to 

be defining the predicate C. • 

A data-disjunctive logic program is a finite set of data-disjunctive clauses and definite 

clauses. 

Example 2 The program 

A{X,l)yA{X,2) ^B{X). 

E(3 )VB(4 ) . 

is data-disjunctive where the program 

A{X,1)VB{X,1)<-C{X). 

C(3)VC(4) . 

is not a data-disjunctive program as A{X^ 1) VB(X, 1) — C(X) . is not a data-disjunctive 

clause. 

Definition 3.5 A ground data-disjunctive clause is a data-disjunctive clause formed 

with ground atom. A ground instance C{yi) V C{y2) V .. • V C{yn) f - Bi,..., Bm where 

m > 0, n > 1，1 < i < n, is represented by 

C{Y) |l^“2/l，...,"n} — A...,5m 

where each Bj,l < j < m, is a ground atom and each yi is a tuple of constants. • 

We use C[ {r i , . . • ,Vn}] to represent the ground clause C{ri) V .. • V C{rn), where r :s are 

tuples of ground terms and we call this a data-disjunctive fact. 

Given a data-disjunctive logic program P, we can form the dependency graph on the 

predicates of P. The definition of dependency graph for data-disjunctive logic program 

is similar to that of a normal program [8 . 
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\ ̂\D 
Figure 3.1: The dependency graph for the example 

Definition 3.6 The dependency graph of a data-disjunctive logic program P has a 

node for each predicate symbol occurring in P and a directed edge from the node for 

predicate Q to the node for predicate P whenever predicate Q is in the body of some 

clause and P is in the head of the same clause. The length of a cycle in a dependency 

graph is the number of edges occurring in the cycle. • 

Example 3 The dependency graph of the program 

A{X,1)WA{X,2)^B{X). 

A{X,Y) ^E{X,Y). 

B{X) <-C(X),D(X). 

is as shown in Figure 3.1. 

A data-disjunctive logic program is directly recursive if its dependency graph does 

not contain a cycle of length greater than one. As any data-disjunctive logic program 

can be transformed to a directly recursive data-disjunctive logic program/ we make the 

assumption that the data-disjunctive logic program P is directly recursive throughout the 

thesis. With this assumption, we can establish an evaluation order of the clause efficiently 

and the bottom-up evaluation procedure will be shown in Chapter 4. 

iThis can be seen from Theorem 5.1 



Chapter 4 

Semantics of Data-disjunctive Logic 

Program 

4.1 Model-theoretic semantics 

In viewing that a data-disjunctive logic program is a restricted form of disjunctive logic 

program where only one single predicate is allowed in the head of a clause, the model-

theoretic semantics of a data-disjunctive logic program has some relation with that of a 

disjunctive logic program. Note that in the model state semantics of a disjunctive logic 

program [23] , 

MSp — {C G DHBp I C is a logical consequence of P} 

a logical consequence C can be any disjunctive ground clause. In a data-disjunctive 

logic program, only data-disjunctive facts are concerned. Hence, we define the data-

disjunctive model state semantics MSp^ to be 

MS^D = { C 二 ^(xi ) V •. • V A{xn) e DHBp I C is a logical consequence of P} 

i.e. the data-disjunctive model state semantics is a subset of the model state semantics. 

For each program P, there is a corresponding model state semantics. Suppose A G MSp^ 

is a logical consequence of the program, we know that all the ground clauses subsumed by 

A are also logical consequence of the program. This leads to the definition of minimal 

17 
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data-disjunctive model state semantics, denoted by MMSpD, where 

MMS^D = { c ^ MS^D 1^ c' in MS^^ s.t. C' subsumes C} 

Consider a program with relations Bus and Go as example, suppose P has the clause 

Bus{l) "f" Go{swim). 

Go{swim) V Go{barbecue). 

When we treat the program as a data-disjunctive logic program and use the data-disjunctive 

model state semantics to answer the query, no relevant information can be found in 

the model state semantics and an answer 'no' will be given for the query. Although 

Bus{l) V Go{barbecue) is not an expected answer for the query, it contains the informa-

tion that Bus{l) may hold. We use a model, which we call contingency model, to express 

this kind of information. 

We give the recursive definition of contingently support and then define the contingency 

model CMp. 

Definition 4.1 An ground atom A is said to be contingently supported by a clause 

C if either there is a ground instance of C, 

Ai V . . . V Ak — 

where A equals to some Ai, 1 < i < k, or there is a ground instance of C, 

AiV-"VAk^Bu"-,Bm 

where A equals to some Ai and each Bj is contingently supported by some clause in the 

program. • 

The contingency model CMp is defined by 

CMp 二 {C G HBp I C is contingently supported by some clause in P} 
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Definition 4.2 Given a data-disjunctive logic program P, the minimal data-disjunctive 

model of P, MMp^, is defined by the following ordered set: 

MM^D 二 (MMS^D, cMp) • 

Theorem 4.1 Given a data-disjunctive logic program P. The minimal data-disjunctive 

model of P, MM^D, jg unique. • 

Proof To prove the uniqueness of MMpD, we have to prove that both M M S p ^ and 

CMp are unique given a data-disjunctive program P. 

uniqueness of CMp 

Given the program P, we transform P to P' by replacing each clause 

AiV---WAn^Bi,...,Bm 

by 

Ai — Bi, . . . , Bm 

]2 — Bi, . . . , Bm 

^n ^“ Bi, . • . , Bm ‘ 

• 

Then P' will become a definite logic program and from the definition of contingently 

support and contingency model, we have 

CMp = Mp, 

hence CMp is unique by the uniqueness property of model of definite logic program, 

uniqueness of M M S ^ ^ 

It has been shown that the model state semantic, MSp, of a given program P is unique 

24]. The corresponding data-disjunctive model state semantic MSp^ is unique since it 

is the subset of MSp and is the set of all data-disjunction in MSp. For all x in DHBp, 

X G MMS^D 进 ^ e MS^D and x is not subsumed by y, where y G MS^D since the 

relation ‘subsume，form a partial order on DHBp, the collection of elements in MMSp^ 

is determined and unique. • 
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4.2 Fixpoint semantics 

As state in chapter 2, we mention that all data-disjunctive logic program P can be trans-

formed to be a directly recursive program. With this property, we have a partial order 

(^) on the predicates where for two distinct predicates A and B, we have A � B iff there 

is a path from B to A in the dependency graph. For each predicate, we define a rank for 

them. A predicate with no child in the dependency graph is assigned rank 0, where the 

rank of other predicates, rank{A) is defined by 

rank{A) 二 i^a>^rank[By) + 1 

And we assume that the predicates in the program P rank form 0 to q. 

In order to define the fixpoint semantics, we introduce two data structures, condition 

term and derived term. 

Definition 4.3 A condition term has the form C{ri,. . . ,rvJ, where r i , . . . , r^ are 

terms called arguments and one of the argument r̂  is being marked. • 丨 

I 
I 

We underline the marked argument in a condition term, i.e. a condition term will have ! 

the form C{vi , . ；., r^,. . . , r^}. 爭 

Definition 4.4 Let Ci , . . . , Cn be n condition terms. They are said to be complemen-

tary if each Cj has the same predicate and arguments ri,...，r^ and for each r̂ , 1 < i < n, 

there is a uniquely corresponding Cj, 1 < j < n such that r̂  is marked for Cj. The terms 

C i , . . . , Cn are called complementary condition terms. • 

Example 4 Let Ci 二 C^U,2,3}’C2 二 C{ l ,2 ,3 j ,C3 = C { l , 2 , ^ , then C1,C2 and C3 

are complementary condition terms. • 

A condition term C { r i , . . . , r^,. . . , r^} is said to be true if C(ri) is true. A set of condition 

terms is said to be true if each condition term in the set is tme. 

Definition 4.5 A derived term has the form C[{ri,...，rvJ, (Cond)], where {Cond) is 

a set of condition terms. • 
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Intuitively, the derived term C [ { r i , . . . , r^}, {Cond)] contains the information that C[{ri , 

. . . ,rn } ] is true if {Cond) is true. 

Example 5 Let C[{1, 2}, (J5{1, 2})] be a derived term, then its intuitive meaning is that 

if B{1) is true, we have C(1) V C(2) is true. • 

Definition 4.6 For a program P, a derived term 

C \^15 . . • , ̂ n}) (^ l { ' . • , ĵ l, • . • , j"5 . . . , ̂ m{* . . , §jm, • . •}). 

is true under P if the following statement holds: 

C [ { r i , . . . , rn} is a logical consequence of P U { s i , . . . , s^} , 

where Si, 1 < i < m, are the marked arguments in {Cond). 

Definition 4.7 For a program P, a set of derived terms is true under P if all the derived 

terms in the set are true under P. 

By the definition of derived term, it is obvious that a data-disjunctive fact is a derived term 
‘ I 

I 

with no condition terms and vice versa. Hence, a derived term C [ { r i , . . . , r^}, {Cond)] , 

with no condition term is a data-disjunction C [ { r i , . . . , r^}] and vice versa. Here, we ex- 1 

tend the definition of subsumption for the derived term. A derived term C [ { r i , . . . , r „ } , {Cond)] • 

is said to be subsumed by C[{si , . . . , Sm}] iff 
C(<5i) V • • • V C(sm) is a proper subclause of C(ri) V •. • V C(rn) 

We make use of the directly recursive property of the program to establish an evaluation 

order for rules in the databases so that each non-recursive clause needs to be evaluated 

only once during the computation of the fixpoint operators. The rank of the predicates is 

used to establish this evaluation order and correspondingly, we define the rank of condition 

term and derived term. 

Definition 4.8 Let C { r i , . . . , r^,.. . , r^} be a condition term, then its rank is defined by 

rank(C{ri , . . . , r^,.. •, r^}) — rank(C) 

• 
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Definition 4.9 Let {Cond) be a set of condition terms. Suppose C i , . . . , Cn are predi-

cates that appear in {Cond). Then the rank of (Cond) is defined by 

rank{{Cond)) = maxig{i,...,n} rank{Ci) 

• 

Definition 4.10 Let C [ { r i , . . . , r^}, (Cond)] be a derived term, then its rank is defined 

by 

rank{C[{ri^..., rvJ, {Cond)]) = rank{C) 

• 

Given a data-disjunctive logic program P, the minimal data-disjunctive model of P, M M p ^ 

defined by 
MMgD = (MMS^^,CMp) 

i 

has two parts: one is the minimal data-disjunctive model state and the other is the 
I 

contingency model. For each of these two components, there are corresponding operators. 丨 

I 

i 
4.2.1 Fixpoint operators corresponding to the MMSp^ 丨 

We present two fixpoint operators, the F operator and the B operator, to compute the • 

minimal data-disjunctive model state. 

The F and B operators 

Mq+i = 0 (empty set). 

For i = q,..., 0 

Fl = M,+i 

i ^ + i = F{Ft) = [c[{xi,.. . ,Xn}, {Cond)] I C is rank i and 

3 non-recursive data-disjunctive clause 

C I Y e { " 1 , . . . , ? ^ } [ Bi,...,Bm. n > l , m > 0. 

with ground instance 

C[{xi,...,Xn}]—历⑷’…，叫^；饥） 
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where Vj, 1 < j < m, either Bj[{zj}, {Condj)] G Fj% {Condj may be empty) 

or Bj[{zj, z[,...，4}, {Cond'j)] 6 F f , {Cond'j may be empty) where in this case 

s e t Condj = Bj{Zj，z[’ • . . , z'^} U Cond'j 

a n d Cond = Condi U • • • U Condm | 

U 

| c [ { r } , {Cond)] | C is a predicate of rank i and 

(1). 3 recursive data-disjunctive clause 

C I Y e {yi,.. .,yn) — Bi,.. .,Bm. n > l , m > 1. 

and S is the index set where Ms E <S, Bs is a literal with predicate C. 

(2). Vs e 5, C[{vsi,..., Vsh^. ’ . . . ’ VswA, {Conds)] G Fj" and 

3 a ground instance of the clause 
I 

C[{a;i’...,a;n}] — 5i(zi),...,5m(2;m), with zj = Vjh.j, Vj G S ^ 

I 

(3). Vj 送 S, either Bj[{zj), {Condj)] G F^, {Condj may be empty) ！ 
I 

or Bj[{zj,z[,..., z't), {Cond'j)] G F^, {Cond'- may be empty) where in this case 丨 

t 
. s e t Condj = Bj {z^, z[,..., z\} U Cond'j 

(4). Ts = {t^sl, . . . ’ Vsws } \ {VsK } 

厂—Us^S ̂ s U {Xi, • . •，Xn} 

Cond = Condi U • . . U Condm } U Fj" 

Bj+i，i = fixpoint of F^. 

For j, i + 1 < j < q 

B^+^ = B{Bl-) = { c [ { r } , (Cond)] | C is rank i and 

Vs, 1 < s < m, 3 C[ {rs i , . . .,rsn.,}, {Conds)] G Bf with rank{{Conds)) = j and 

3 rank j complementary condition terms in these m Conds, and 

m m 

Cond = U Conds \ the complementary condition terms and r = ( J {^si,...，�sr^,} | U Bj -
S = 1 S = 1 

5j+i,i = fixpoint of B^{Bl,) 
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Ci = Fixpoint of F^ U {derived terms in B^+i’< with no condition term} 

Mi = | c G Ci I ^ C' e Ci s.t. C' subsumes c } 

The F operator is used to deduce those derived terms when a clause is applied using the 

previously deduced derived terms. The F operator can be partitioned into two compo-

nents, the first component applies on the non-recursive clauses and the other component 

applies on the recursive clauses. The rank 'i' in the F operator is used to restrict which 

clauses are applied by the F operator. The set of derived terms deduced reach a fixpoint 

point for a certain rank i as the F operator act on the clauses recursively. The B operator 

is then used to deduce new information by 'combining' the derived terms according to 
I 

information of their condition terms. 
1 I 

Example 6 To illustrate the F operator on recursive clauses, consider the program: 丨 
^ 

A{X) <- B{X). 丨 

B{1)WB{2)VB{3). I 

In the program, the rank of A is 0, the rank of B is 1 and |' 

Fô  二 Ml = Ci = { B{1) V B(2) V B{3) }. I 
_ 

Applying the F operator，we have the following three derived terms 

FS = { A [ { l ] , { B { h 2 , 3 ) ) i A[{2>,(B{l,2,3}>], A [ {3> , (5 { l ,2 ,3 } ) ] } 

which is the fixpoint of the F operator. With this three derived facts, applying the B 

operator yields the data-disjunctive fact A{1) V A{2) V A{3). 

Example 7 To illustrate the F operator on recursive clauses, consider the program 

T(X, Y) V T(X, Z) — A(X, Y, Z). 

T(X,Y)^T(X,Z),E(Z,Y). 

^(1,2,3). 

^(2,4). 

£"(3,6). 
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T is rank 0, E and A are rank 1. i ^ = Mi = Ci = { A{l,2,3),E{2,4),E{3,6) }. 

Applying the F operator, from the first clause, we get T[ { ( l ,2) , (1,3)}] and is added to 

Fo and gives Fĝ , apply the F operator again, as T( l ,4 ) — T( l ,2 ) ,^ (2 ,4 ) is a ground 

instance of the second clause and T[{(1,2), (1,3)}] in F^, we get 

T [ { ( l , 3 ) , ( l , 4 ) } ] 

Similarly, since T(1,6) — T(1, 3), E{3,6) is a ground instance of the first clause, we get 

T [ { ( l , 2 ) , ( l , 6 ) } ] 

and F^ becomes 

{ T[{(1, 2), (1, 3)}], T[{(1, 2), (1,6)}], T[{(1, 3), (1,4)}]，A(1, 2, 3), E{2,4)，E(3, 6) } 1 
I 

Similarly, by the ground instance T(1,4) — T(1, 2), E{2,4) and T[{(1, 2), (1,6)}] in F^, | 

we get 
( 

T[ { ( l , 4 ) , ( l , 6 ) } ] ( 
I 

this disjunctive fact is also deduced from the ground instance T ( l , 6 ) 卜 T(1, 3), £"(3, 6) ？ 
I 

and T[{(1, 3), (1,4)}] in F^. Hence, F^ becomes 5 

i 
{ T[{(1, 2)，(-1, 3)}], T[{(1, 2), (1，6)}]，T[{(1,3)，(1,4)}], • 

T[ { ( l ,4 ) , ( l ,6 ) } ] , A(l ,2,3), ^(2,4), E{3,6) } 

An example is also shown in section 5.4 which illustrates the use of the above operators. 

4.2.2 Fixpoint operator corresponding to the contingency model, 

CMp 

Define a fixpoint operator TcM '• 2^^ ^ 2^^ where HB is the Herbrand base. 

TcM{S) = |p I p V qi V . • • V Qn — Si , . . . , Sm is a ground instance of a clause 

and Vi, 1 < i < m, Si e Sj 

Define the powers of TcM as follows: 
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TcM 个 0 = [p I p V qi V • • • V Qn — is a ground instance of a clause of P } 

TcM 个�i + 1) = TcM{TcM t W) 

TcM t 0； = luh{TcM t (i) I i < oj} 

4.3 Equivalence between the model-theoretic and 
1 

fixpoint semantics 

In this section, several theorems on the fixpoint operators will be derived. We first identify : 
i 

the underlining semantics of the derived terms. A derived term 丨 

C .{厂1, • . . , ̂ s}? (^l{^ll ’ • . • ’ ^lii, . . • , ̂ lni } , • • •， m̂{̂ m̂l, • • •，Qirnim , • . • , ^rnnm }). | 

contains the information that if ] i ( a n J , . . . , Am(flmim) are true, then C [ { r i , . . . , r*s}] is j 

true. i 

, 丨 

Theorem 4.2 The F operator is sound, i.e. suppose a set of derived terms F^ is true i 

under P, then F ( F , ) is true under P. • ！ 
！ 

Proof Assume F|^ is true under P. We want to show that the derived terms computed j' 

by the F operator is true under P. We prove only the case in which the clause is a _ 

non-recursive data-disjunctive clause, other cases are similar. 

Let C [ { x i , . . . , Xn}] — Bi { z i ) , . . . , Bm{zm) be a ground instance of a non-recursive data-

disjunctive clause in the program P. If we have Bj[{zj, z[,..., z'^}, {Cond!^)], we know that 

Bj[{zj, z[,..., z'^}] is true if {Cond'-) is true. Hence Bj[{zj)] is true if {Bj{zj, z[, •.., z'^}) 

and {Cond'j) are true. Let {Condj) be {Bj{zj, z[,..., z'^}) U {Cond'-), then Bj{zj} is true 

if {Condj) is true. Therefore, 

Bi{zi] is true if(Condi) is true, Vz, 1 < i < m. 

By C[{xi,..., Xn}] — Bi{zi),.. •, Bm{zm), we have C[{xi,...，Xn}] is true if {Condi) is 

true, Vz, 1 < i < m. Hence 

C[{xi,.. .,Xn}, {Cond)], where {Cond) = U£i{Condi) • 
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L e m m a 4.1 Let S be a set of derived terms. Define a function Q : 2^ ~> {true, false] 

where 

Q{S) is true iff for all derived term 

c {^1, . . .，r̂ }, (^l{<2ll, • • . , OLli^，• • •，<̂lni }, • . . , ̂ m{^ml, . • . , Q^mim , • . • , ̂ rnum }). ^ S, 

for any s, 1 < s < m, either 

As[{asi,...，ttsnJ] is true or 丨 

As[{asi , . . . , ttsn^}] is true if Aj{aji^) are true, Vj where Aj's rank is larger I 

than As's rank. • 
] 

'i 
We have Q ( i f ) and Q{Mi) are true, VA:, and Vz, 0 < i < q. • 丨 

_ f 

Theorem 4.3 The B operator is sound, i.e. suppose a set of derived terms 5 ] is true 

under P, then B(B)) is true under P.. • | 

P r o o f Assume B^ - is sound. We want to show that derived terms computed by the B op- ^ 

erator is sound. Suppose we have C[{rgi,..., r^n^}, {Conds)] G B^i, 1 < s < m. We know , 

that C[{rsi,...，Vsus}] is true if {Conds) is true. Suppose {Rg) = {R{xi, •.. ,^^,..., Xm}) | 

are complementary condition terms in {Conds) respectively, 1 < s < m. Let {Cond'^) 二 j 

{Conds) \ {Rs), then R[{xi,..., Xm}] is tme if {Condg) \ {Rs) is true (by the lemma), for — 

any particular s. Hence if {Condg) \ {Rs) is true for all 5,1 < s < m, we have 

C[{r5i,. •., rsn^}] is tme if R{xg) is true and R[{xi^. . . , Xm} 

Hence C[r] is true, r = U^i{^si, •. •，^sn,}, if UT=ii^ond'^) is true. • 

The following theorem states the correspondence of the model-theoretic semantics and 

the fixpoint semantics. 

Theorem 4.4 Let M be the set of derived terms in Mo computed from the fixpoint 

operators with no condition terms. Then M = MMSp^. • 

Proo f The soundness part of the theorem follows from Theorem 4.2 and 4.3. So, to 

prove Theorem 4.4，it suffices to show that the fixpoint operator is complete in the sense 

that Vx G MMSpD, X can be deduced by the fixpoint operator. 
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For a definite program, we know that a derivation tree can be built for each atom x 

which is a logical consequence. For disjunctive logic program, the logical consequences 

are disjunctions of atoms. To prove the theorem, we first have to show that a similar tree 

(we call it a disjunctive derived graph) can be built for the logical consequence of the 

disjunctive program. 

First, a ground fact Ai V • • • V An in the program is represented by the derivation graph: , 
< 

/ / \ \ 
Ai A2 . . . An 丨 

t 

We follow the immediate consequence operator of disjunctive logic program to build the ^ 
M 

derivation graph. Suppose Bi V Ci,. . . ,Bm V Cm are logical consequences of the program 
j 

and Ai V • • • V An 卜 B i , . . . , Bm is a ground instance of a clause, by the immediate ^ 

consequence operator, Ai V A2 V • • • V A^ V Ci V C2 V • • • V Cm will be a logical consequence ^ 
I of the program^. This operation can be represented by the graph: 
f 

c r � B i z � I 
B2 C2 I e : ^ 

^-_^^'^^ "**"****̂**̂  ĝ  
C^ B^n 

/ / \ 
^1 A2 . • . An 

In the graph, there are two kinds of endnodes, the endnodes labelled with e are called the 

root nodes, where all other endnodes are called leaf nodes. Hence, the consequence of the 

immediate consequence operator corresponds to the disjunction of leafnodes of the above 

graph. 

We can build the derivation graph recursively by following the immediate consequence 

operator. Suppose G i , . . . , Gm are derivation graph for Bi V Ci, •.., Bm V Cm respectively 

and if Ai V • • • V An — B i , . . . , Bm is a ground instance of a clause, we build a new 

derivation graph based on Gi, •.., Gm by attaching each Bi of G{, 1 < i < m, to a trunk 

iwith removal of duplicate atoms 
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T as follows: 

Gi > ^ G2 
� z 
B2 

Gm ： 

\ « T 
^m 

J^!^2^An 
( 

i I 

where trunk T is the block containing Bi,...，Bm, and we call the set of nodes Ai,..., An 
. i 

a branching point. By the structure of the data-disjunctive logic program, all atoms J 

appear in a particular branching point must have the same predicate. Since all logical | 

consequences can be deduced by the immediate consequence operator, we can assume that : 

each logical consequence of the disjunctive logic program has a corresponding derivation ^ 

graph. Here we want to prove that all logical consequences which are data-disjunctive ^ 

facts can be deduced by the fixpoint operator. We prove by induction from Mq to Mo. 1 
r 

In the fixpoint operator, when i = q, the F operator is reduced to the immediate conse- |, 

quence operator since when the rank of the predicate is g, the clause can only be of the | 
丨1 

following form: j' 

A{Xi) V . •. V A{Xr,) — A (Fi ) , . . . , A(y^). ‘ 

where there is only one predicate in each clause and the body of the clause could be 

empty. 

As the F operator reduces to the immediate consequence operator, there are no derived 

terms with non-empty condition terms deduced by the F operator, and hence the B 

operator is not used and Mq contains all logical consequences in M M S p ^ with rank q. 

Suppose Mfc+i contains all logical consequences in MMSp^ with rank > k + 1, we want 

to prove Mk contains all logical consequences in MMSp^ with rank > k. 

For any x G DHBp, if x G MMSp�, a derivation graph can be formed for x where there 

are m leafnodes for the graph and each leafnode is C{Yi}, where {Yi} U .. • U { ¥ ^ } = 

{o : i , . . . , Xn}- Let X be rank k. The atoms at each branching point in the derivation graph 
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must have the same predicate. We can see that each leafnode C{Yi} is deducible by the 

fixpoint operator and represents by the derived term C[{Yi], {Condi)] where Condi is 

the set of condition terms which indicate the branching points of the branch of leafnode 

C{Yi}. These derived terms are combined by the B operator to form a graph in which 

the set of leafnodes are the same as the derived graph. 

Since in the fixpoint operator, during the computation of Mi from Q , some derived terms , 
I 

are removed if they are subsumed by a data-disjunctive fact in Ci. We have to prove | 

that this removal of derived terms will not lead to the inability in deducing some data-

disjunctive facts in MMS^D \ 
ii 

Suppose not, let x be a data-disjunctive fact in MMSp^ where the derivation graph for x : 

has nodes at some branching point which are removed in the fixpoint operator. Without 
I 

loss of generality, let A { x i , . . . , x^} be this set of nodes at the branching point. Since it 

is removed by the fixpoint operator, we have some data-disjunctive fact A { z i , . . . , Zm} € ^ 

MSp, where {zi,..., Zm} is a proper subset of {xi , . •., x^}. Hence there is another graph 
i' 

which replace this derivation graph by removing those branches Xi 幸{zi^..., Zm} and ]� 
'I 

the resulting graph will represents x or some oc' which subsumes x. Hence the removal j 

of derived terms by the fixpoint operator will not lead to the inability to deduce those _ 

data-disjunctive facts in MMSp^. • 
Theorem 4.5 TcM 个 � is equal to CMp, the contingency model of P. • 

Proof Follows directly from the definitions of contingently support and TcM operator. • 

4.4 Operational Semantics 

When we are dealing with disjunctive deductive databases, the fixpoint semantics becomes 

operational as the termination of the operations is guaranteed. We can view the operations 

of the fixpoint semantics as the bottom-up naive evaluation procedures. 
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4.5 Correspondence with the I-table 

In the context of indefinite and maybe information, a data structure called /-table is used 

which is capable of representing definite, indefinite and maybe information [19 . 

Given a program P, once the minimal data-disjunctive model MMp^ is found, the set 

of maybe information can be identified accordingly. For a relation (or predicate) Q, the 

/-table of Q is represented by T = <T^>,T/,T_/v̂ ) where To is the definite component of : 
? 

the /-table and consists of tuples that refer to as definite tuples. T/ is the indefinite ., 
. ) 

component of the /-table and consists of the indefinite tuple sets. Each indefinite tuple is ,, 
i 

represented by a set of atoms, hence T/ is a set of atoms and is corresponding to the set , 
I' 

of disjunctions. Tj^ is the maybe component of the /-table and consists of tuples which * 
i 

is referred to as maybe tuples. Each of these components can be computed identified j 

easily once we get the minimal data-disjunctive model. Let MMp^ = {MMSp^, CMp) ^ 

and suppose S be the set of atoms in CMp which is not appeared in MMSp^. Then || 

the set of definite facts of Q in MMSp^ will be equal to ^ , the definite tuples. The !， 

set of disjunctions of Q in MMSp^ corresponds to Tj and the set of atoms of Q in S is t 
I corresponding to the maybe tuples TM- | 
0i 

For example, suppose we have the following program: 

Q(i). 

Q(l)vQ(2). 
Q(3)VQ(4) . 

then we have To - {Q(1)} , T/ = { {Q(3) ,Q(4) } } and TM = {Q(2)} . 

It should be easily seen that the data-disjunctive model state semantics is 

MS^^ = {Q(1), Q( l )VQ(2) , Q(3)vg(4)} 

After removing the disjunction which are assumed by others, we get the minimal data-

disjunctive model state semantics 

MMS^^ = {Q(1), Q(3)VQ(4) } 
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and the contingency model CMp will be {Q( l ) ,Q(2) ,Q(3) ,Q(4) } . Hence the minimal 

data-disjunctive model is 

MM^D = _ s r , CMp) = ({Q(1), Q(3) V Q(4)}, {Q( l ) ,Q(2) , Q(3), Q(4)}) 

With this data-disjunctive model state semantics, we can see that the set of non-disjunctive 

facts in M M S p ^ corresponds to component To, the set of disjunctive facts in M M S p ^ 丨 

corresponds to the component Tj and S = {Q(2)} is the set of maybe tuples Tu. | 
！ 

The minimal data-disjunctive model extends the /-table in the sense that it contain the ‘ 

definite, indefinite and maybe information of a data-disjunctive deductive database rather ‘ 
J 

than a relational database. Those non-disjunctive ground facts in M M S p ^ are the defi- ‘ 
I 

nite information, the disjunctive ground facts in M M S p ^ are the indefinite information 
I and all the other atoms in CMp constitute the maybe information. 
I 
'̂ 

1 1» i 
. il� … 

i _ 



Chapter 5 

Disjunctive Deductive Databases ； 
I* ji 
ii 11 

5.1 Disjunctions in deductive databases ； 
I 

For each query posted for a disjunctive deductive database, a set of answer should be I 
1 

deduced accordingly. For a non-disjunctive databases DB, the set of answers to a query ‘ 
i 

Q can be defined by the set of ground atoms, ^ 
1 

{ A G MoB ： A ^ 3Q } ：. 

i 
where M o s denotes the unique minimal model of DB. For disjunctive deductive databases, \ 

there are different definitions of answer. In tradition, the set of answers for a query is ^ 
_ 0i 

defined to be [1, 11 

{ Ai V . . . V Ak ： k > 0 and V minimal model M, M \= Ai V . . . V Ak and Vz, Ai =^ 3Q ]-

We call this set of answer the traditional answer set. Under this definition of an-

swer, given a query ?-A(l, X), and knowing that the ground clauses A{1, a) V ^(1,6), 

A{1, a) V A{2, a) are logical consequences of the databases, the clause A{1, a) V A{1, h) 

constitutes answer to the query as both A{l,a) and A{l,b) imply 3X, [A(l,X)]. The 

ground clause A{1, a) V A{2, a) does not constitute an answer because A{2, a) does not 

implies 3X, [A{l,X)[. 

As disjunction is considered in disjunctive logic program, we expect that the answer to a 

query is not always in a simple ‘yes，or 'no' form. Suppose we have a program consisting 

of one single ground clause 

33 
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Colour(car, blue) V Colour{car, red) 

which states that the car is either blue or red in colour. If the query 7-Colour{car^ blue) is 

given, under the previous definition of answer, the query reduces to a ‘yes，or ‘no，question 

as only Colour{car, blue) implies Colour{car^ blue). Although Colour{car, blue) is not a 

logical consequence of the program, we do not want to give a simple answer 'no' to the 

query since we know that the car is probably blue in colour. The answer to the query . 

should at least express this uncertainty (or possibility) of the car being blue. For example, I 

an answer could be j 
^ 

'̂ 

Probable: Colour(car, blue) ) 
I I Alternatively, in a probably better way, the answer could express relevant knowledge to , 
s 

the query, for example, the answer can be j 
•i 

Colour(car, blue) V Colour[car, red) ^ 

which expresses more information than the former case. i 
1 

In the scope of data-disjunctive deductive databases, we define the answer for a query Q 了 
i 

to be the set of ground clause � 

1 
-{A(xi) V •. • V A(x,) e MMS^D I 玉，彻） ^ 3Q } . 

and this answer set is called the relevant answer set. 

Consider the program 

Bus{l)vBus{2). 

Bus{l). 

For the query 7-Bus{2), both the traditional answer set and the relevant answer set are 

not able to express the possibility that Bus{2) is true. Hence, in addition to the relevant 

answer set, we define the contingency answer set for the query Q to be 

{A(x) G CMp \A{x) => 3Q } 

This contingency answer set contains all those atoms which 'match' with the query and 

is contingency support by the program. 
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5.2 Relation between predicates 

In order to compute the set of answers with relevant knowledge to a given query, one can 

naively compute the set of all logical consequences of the deductive database and project 

those relevant ones from these logical consequences. The set of all logical consequences 

can be unconditionally large. For example, if an atom A is a logical consequence of the 

deductive databases, any ground clause subsumed by A will also be a logical consequence. ‘ 
t 

So it is not reasonable to compute all the logical consequences of a deductive database. For ‘ 
f 

simplicity, we only need to compute those logical consequences which are not subsumed ) 
il 

by others. In this way, we can reduce the number of logical consequences to be computed. )丨 
? 

Another way to reduce the size of computed logical consequences is by restricting the ,' 

possible form of disjunctive ground clauses. Suppose we have the following deductive J 

database: , 
T 

Father{X, Y) V Mother{X, Y) — Parent{X, Y) ^ 

Grandfather{X, Y) V Grandmother{X, Y) — Parent{X, Z), Father(Z, Y) ： 
i' 

Parent{terri^ peter) i 
'i 

Parent(joe, terri) | 
^i 

The logical consequence of the program is exp{M), where M is 

{ Parent{terri, peter), 

Parent{joe, terri), 

Father{terri, peter) V Mother{terri, peter), 

Father{joe, peter) V Mother{joe,peter), 

Grandfather{joe,peter) V Grandmother{joe,peter) V Mother{terri,peter)} 

Then the query 7-Mother{terri, peter) will yield the two answer 

1. Father{terri, peter) V Mother{terri,peter), 

2. Grandfather{joe, peter) V Grandmother{joe,peter) V Mother{terri, peter) 

On the other hand, it is unnatural to have the answer 

Grandfather{joe,peter) V Grandmother{joe, peter) V Mother{terri, peter) 



Chapter 5 Disjunctive Deductive Databases 36 

for the query. This is because, from the program, we do not normally expect that a fact 

in the form 

Grandfather(') V Grandmother{-) V Mother{-) 

to be deduced. On the other hand, in viewing of the clause 

Father{X, Y) V Mother{X, Y) — Parent(^X, Y) 
4 

we would likely expect that some disjunctive facts of the form Father{-) V Mother{-) will 丨丨： 

be deduced. Similarly, from the clause J 

Grandfather(X, Y) V Grandmother{X, Y) — Parent{X, Z), Father(Z, Y) Sl 
f 

we would expect that the disjunctive facts of the form Grandfather(-) V Grandmother{-) , 
s 

will be deduced if the conditions in the body of the clause are satisfied. This investigation ^ 

leads to the definition of standard-form disjunctive fact. '| 

Definition 5.1 Given a disjunctive logic program P, a fact G\ 1 
!r 

Ai V •.. V A, , n > 1 J 
'I • <> 

is called a standard-form fact if there exists a clause C in P sudi that for all predicate ‘ 

A, A appear in G if A is in the head of the clause C. • 

Example 8 Suppose one of the clauses of a program is 

A{X) V B{X) — C{X) 

then all the facts A(1) V B{1), A(1) V B{1) V B(2), A{1) V .4(2) V A{3) V B(1) are in 

standard form. • 

If we have the program 

AiVBi. 

B2^B1. 

Bs <— B2. 
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Bn — Bn-1. 

Then the query ?-Ai will yield the answers 

{ ^ i V ^ i , 

^1 V ^2, 

AiVBs, * 
1» 
丨, 

1» 
Ai V Bn } 丨 

il 
)i 

We can see that all the elements in the answer are deduced from the fact Ai V Bi, and ( 

note that the only element in standard form is Ai V Bi, hence if we make the assumption i 
i 

that all interesting facts are in standard form, we can reduce the answer to {Ai V ^ i } ^ 

only. 乂 

Naturally, we have to sacrifice something when we assume that the only interesting facts i 

are in standard form. For, example, consider the program f 
i 

Mother{X, Y) V Father(X, Y) — Parent(X, Y) '' 
ii 

Grandfather{X, Z) — Father{X, Y),Parent{Y, Z) :‘ 

Grandmother(X, Z) — Mother{X, Y),Parent{Y, Z) 

Parent{terri^peter) 

Parent{peter, mary) 

Then when the query is l-Grandmother{terri, mary), we cannot get the answer 

Grandfather{terri, mary) V Grandmother{terri, mary) 

since it is not in standard form. In fact, this problem can be solved by adding a sim-

ple clause to the program. As we expect that the facts of the form Grandfather{-) V 

Grandmother{') is interesting, we add a clause 

Grandfather{r)) V Grandmother{r]). 

to the program, where 77 is a default constant. In this way, the fact 
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Grandfather{terri, mary) V Grandmother {terri, mary) 

will be in standard form. 

In fact, the concept of 'standard-form fact, provides a strategy for the system to identify 

which kinds of disjunction are interesting and expected by the user. This strategy is used 

in the transformation from the original program to the program which the evaluation 

method can be applied. * 
丨, I, 
'f \ 

5.3 Transformation of Disjunctive Deductive Data- ,, 
11 

bases ‘ 
！ 

Theorem 5.1 Given a disjunctive logic program P, we can transform it to a data- L 

disjunctive logic program such that all logical consequences of the program P will be | 

logical consequences of the transformed program. J 
r 

Proof Given any disjunctive logic program 尸，a trivial transformation can be done as 丨丨丨 
(' 

follows: 丨 
？: 

Let Pi,..., Pn be the predicates^ of P. As for each predicate, it has a unique num- "' 

ber of arguments. Let k be the maximum number of arguments of the predicates in 

P. We introduce a new predicate, say T, with k + 1 arguments, and a new constant, 

say 77. We transform the program P by replacing^ each m-ary term P{{Xi,... ,X^) by 

T ( X i , . . . , Xm, T], T|,..., T|, i) in all clauses of P and add the clause 

Pi{Xi,..., Xm) — T[Xi,..., Xm, r/, T),.. •, rj, i) 

for each predicate Pi. 口 

From the proof, we note two things: first, we can see that any disjunctive logic program, 

even if it has cycles of length more than one in the dependency graph, can be transformed 

iwhen we deal with disjunctive deductive database, only the predicates defined in IDB is considered 
2for disjunctive deductive database, those terms with predicates defined in EDB is not replaced 
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to a directly recursive data-disjunctive logic program. Hence we see that the expressive 

power of the directly recursive data-disjunctive logic program is the same of the disjunctive 

logic program. Secondly, we use the trivial transformation to show that any disjunctive 

logic program can be transformed to a data-disjunctive logic program. But it should be 

noted that many different transformations are possible to transform a disjunctive logic 

program into a data-disjunctive logic program. For example, let P be 
M 

Male{X) V Female{X) 4 - Human^ :: 
)f 

Human{terri) '< 
.1 

Then P can be transformed into the following directly recursive data-disjunctive logic 丨 
！ 

program P': 丨’ 

Male{X) — T(X, 1) [ 

Female{X) — T(X, 2) i 
\ 

T(X, Y) I y G {1, 2} — Human{X) f 

Human{terri) ,丨 
I |i, 

In facts, the aim of the transformation is to replace a clause with more than one predicates ''� 
«•' 

in the head by a data-disjunctive clause. We can see that the performance of the evaluation 产 

- 一丨 

method depends on the transformation chosen. A general strategy is: do not use a new 

predicate to replace too many predicates if it is unnecessary. As the last example, we 

found that the clause 
Male{X) V Female{X) — Human{X) 

has two different predicates in its head, hence a new predicate T must be used to replace 

the predicate Male and Female, but we do not use this predicate T to replace the 

predicates Human since it is not necessary to do so. This is one of the strategies that can 

be used for choosing the transformation but discussion on this issue is beyond the scope 

of this thesis. 

Once we get the transformed data-disjunctive program, we can apply the procedure 
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of the operational semantics to the transformed program to find the minimal data-

disjunctive model state. For the last example, we found that the logical consequence 

Male{terri)VFemale{terri) of the original program P corresponds to the data-disjunctive 

fact T{terri, 1) V T{terri, 2) of the data-disjunctive program P'. The correspondence of 

logical consequence between the original program and the transformed program is stated 

by the following theorem: 

Theorem 5.2 Given a disjunctive deductive database P and a transformed data-disjunct-

ive deductive database P'. Any logical consequence of P which is in standard form cor-

responds to a data-disjunctive fact of P' in the following sense: 

Suppose 

Ai{Xi)V---VAn{Xn) 

is a standard-form fact which is a logical consequence of the original program P, it cor-

responds to a data-disjunctive fact 

T { x i , r j , . . . , 77, s i ) V •.. V T { x n , r / , . . •, ” , Sn) 

where the clause 

MXi) — T{Xi, 7 7 , . . . , T), 5,) is in P', Vz, 1 < i < n. • 

Proof As discussed above. 

From now on, we shall use the terms data-disjunctive deductive databases and deductive 

databases interchangeably. 

5.4 Query answering for Disjunctive Deductive Data-

bases 

In this section, we give an example of disjunctive deductive databases to illustrate how the 

evaluation procedure compute the data-disjunctive facts which are logical consequences 

of the transformed program. 
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Let the deductive database P be 

Mother{X, Y) V Father{X, Y) — Parent{X, Y) 

Grandfather{X, Z) — Father{X, Y), Parent{Y, Z) 

Grandmother{X, Z) — Mother{X, Y), Parent(Y, Z) 

Grandparent{X^ F ) <r- Grandfather(X, F ) 

Grandparent{X, Y) — Grandmother{X^ Y) 

Parent{terri^ peter) 

Parent(j)eter, mary) 

First, we transform P to a data-disjunctive logic program P', where P, is 

Mother{X,Y) ^T{X,Y,1) 

Father{X,Y) ^ T (X , F, 2) 

T{Z) I Z G { ( X , y , 1), ( X , y , 2 ) } — Parent(X, Y) 

Grandfather{X, Z) ^ Father{X, Y),Parent(Y, Z) 

Grandmother{X, Z) ^ Mother{X, F), Parent{Y, Z) 

Grandparent{X^ Y) ^ Grandfather[X,Y) 

Grandparent(X,Y) ^ Grandmother{X^ Y) 

Parent{terri^ peter) 

Parent[peter, mary) 

After transforming the program, we compute the rank of the predicates of the transformed 

program. 

rank Predicate 

0 Grandparent 

1 Grandfather, Grandmother 

2 Father, Mother 

3 T 

4 Parent 

we have q, the maximum rank of the predicates, equals to 4. 
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C4 = { Parent{terri,peter), Parent(peter, mary)} 

M4 = C4, F3i = M4 
B ] 3 = F| = ^^T[{{terri,peter, 1), {terri,peter,2)]],T[{{peter, mary, 1), {peter, mary,2)}]^ U F^ 

C3 = if, Ms = C3, Fi = Ms 
F| = I Mother[{terri,peter}, {T{{terri,peter, 1), {terri,peter, 2)})], 

Father[{terri,peter], {T{{terri,peter, 1), {terri,peter, 2)})], 

Mother[{peter, mary}, {T{{peter, mary, 1), (peter, mary, 2)})], 
Father[{peter^ mary), {T{{peter, mary, 1), {peter, mary, 2) ) ) ]| U F^ 

Bl2 = Bl2 = Fi, C2 = Fl M2 = C2, Fl = M2 
Fi = I Grandmother[{terri,mary}, {T{{terri,peter, 1), {terri,peter,2)})], 

Grandfather[{terri,mary), {T{{terri,peter, 1), {terri,peter,2)})]^ U F / 

^l,i = Bl, = Bl, = Fl Ci = Ff, Ml = Ci, FJ = Mi 
Fo = I Grandparent[{terri,mary}, (T{(terri,peter, 1), (terri,peter,2)})], 

Grandparent[{terri, mary}, (T{(terri,peter, 1), (terri,peter, 2 ) ) ) ]| U i ^ 

^3,0 = ^2,0 = ^i,o = 0̂ 
B3 0 = { Grandparent(terri, mary)} U_B|� 

Co = Fo U {Grandparent(terri, mary)} 

Mo = {Grandparent{terri, mary)} U Mi 

CMp = { Parent{peter,mary), Parent{terri,peter), 

T(peter, mary, 1), T{peter, mary, 2), 

T{terri,peter, 1)， T(terri,peter, 2), 

Mother{peter, mary), Mother{terri,peter), 

Father{peter, mary), Father(terri,peter), 

Grandmother[terri, mary), Grandfather[terri, mary), 

Grandparent(terri, mary). } 

Suppose the query l-Father{terri, peter) is posted. As we found that the term Father{X, Y) 

is replaced by T(X, F, 2) during the transformation. The query l-Father{terri,peter) 

of the original program is corresponding to the query 7-T(terri,peter,2) to the trans-

formed program. As the data-disjunctive fact T(terri,peter,Vj V T{terri,peter^ 2) is 

found in Mo and T{terri,peter, 1) corresponds to Mother{terri,peter), we get the an-

swer Father{terri, peter) V Mother{terri,peter). 

For the query l-Grandparent{terri, mary), we found that the fact Grandparent {terri, mary) 
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is in Mo, hence Grandparent{terri, mary) holds. For the query 1-Grandfather {terri, mary), 

we cannot find any relevant disjunctive fact in Mo but as Grandfather(terri,mary) is found 

in CMp, we get 

Probable : Grandfather{terri^ mary) 

which indicates that Terri maybe a grandfather of Mary. 

Note that we can get the fact Grandfather{terri, mary) V Grandmother{terri, mary) if 

we transformed the program in a different way by replacing the clauses 

Grandfather{X, Z) — Father{X, Y),Parent{Y, Z) 

Grandmother{X, Z) <- Father{X, Y),ParentO^, Z) 

by 

S{X, Z, 1) — Father{X, F), Parent{Y, Z) 

S{X, Z, 2) — Father{X, Y), Parent{Y, Z) 

Grandfather{X, Y) — 5(X, F, 1) 

Grandmother{X, Y) — S{X, Y, 2) 

This shows that the number of logical consequences deduced by the evaluation method 

depends on the transformation of the program. As in the last example, we have the 

knowledge that the disjunction of atoms with relation Grandfather and Grandmother is 

meaningful and useful, we should transformed the program in the later way. 



Chapter 6 

Magic for Data-disjunctive 

Deductive Database 

In this chapter, we propose a rule rewriting method that can be applied to the data-

disjunctive deductive database such that when a query is posted, the answer set can be 

computed efficiently with the usage of the constraint propagated from the query to the 

subgoals as the search tree is traversed. 

We assume the query is atomic throughout this chapter, which means that there is only 

one term in the query. We make use of the magic set method for the definite deductive ； 

database in the rule rewriting algorithm for the data-disjunctive deductive database and ‘ 

details of this magic set method can be found in [4 . 

6.1 Magic for Relevant Answer Set 

As stated in the previous chapter, we define the answer for a query Q for the disjunctive 

deductive database to be the set of ground clause 

{ A i V . •. V Afc G M M S ^ D I 3A ^ . � 3 Q } 

This definition is different from the traditional definition of answer, but clearly, when 

the query is atomic, the set of answers yielded by the new definition is a superset of the 

traditional answer set. Hence, if we can develop a rule rewriting method and bottom-up 

44 
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evaluation method to find the relevant answer set, we can easily get the traditional answer 

set also. 

For a query 7 - Q ( X i , . . . , Xk) where Xi is either a constant or variable, the answer can 

be found by solving the query 7-Q(Vi, . . . , Vk), where all Yi's are variables and find those 

relevant answers from this set of answers obtained. If we evaluate the query in this 

way, the information known in the value of Xi will not be used in guiding the searching 

progress. This information is used in projecting relevant tuples from a larger set only. We 

want to develop a query evaluation procedure similar to the magic set method of definite 

deductive database such that the searching process is constrained by the knowledge on 

the bindings of the query. 

Use a simple example to illustrate the searching process in disjunctive deductive database, 

suppose P is a program with the following clauses: 

A{X) — B{X) 

B{l)yB{2) 

B{2) V B(3) 

5(9) V B{10) 

A simple query ?-A{2) should yield the answer { A ( l ) vA(2 ) , A{2)vA{3) }. If the query 

evaluation method finds the answer for ?-A(Y) first, the set of answer { A{i) V A(i + 1) : 

1 < i < 9 } is computed and the answer for the query ?-^(2) is projected from this 

set. In fact, the information of Y binding to the value 2 in the query can be used in the 

evaluation process. Firstly, as in SLD resolution, A{2) is unified with the first clause with 

the variable X binded to 2. Then, the evaluation process continues to solve the subquery 

l-B{2). Only the ground clauses B{l) V B{2) and B{2) V B(3) contain atom B(2) which 

match with the subquery 7-B(2). Applying the bottom-up evaluation algorithm on these 

two ground clauses the answer { A{1) V A(2), A{2) V A(3) } is obtained. 

In the example, we should note that the query answering procedure can be viewed as two 

parts: A top-down procedure and a bottom-up procedure. The top-down part contributes 
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to the passing of information obtained by the query to the subquery. In this procedure, 

those relevant ground clauses {B{1) V B{2) and B{2) V B(3) in the example) are marked. 

In the bottom-up part, we make use of those ground clause that are marked relevant to 

derive the answer tuples for the query. 

In the definite deductive database, the magic set method rewrites the clauses of the 

program such that the information passing procedure can be done in a bottom-up manner. 

We would like to develop a rewriting method applicable to disjunctive deductive database 

such that the answer of a query can be computed by the proposed bottom-up evaluation 

algorithm. As disjunction is considered, we do not expect that the magic set rewriting 

method can be applied directly. Before introducing the rewriting method for the data-

disjunctive deductive database, we define some terms first. 

Definition 6.1 Given a program P and a query 7-T(xi,.. •, x^). The set of relevant 

clauses of T is defined recursively as follows: 

1. All clauses defining predicate T are relevant clauses. 

2. Let P be a predicate that appears in a relevant clause of T, all clauses defining predicate 

P are relevant clauses. • 

Definition 6.2 All predicates appear in the relevant clauses are defined as relevant 

predicates of T. • 

6.1.1 Rule rewriting algorithm 

INPUT: A set of clauses and a query 7-T(Xi, •.., Xn) (or T in short), where Xi is either 

a variable or a constant. 

OUTPUT: A set of clauses such that applying the bottom-up evaluation procedures yields 

answer to the query. 

Details: Let the output set of clauses be 5, then the program is rewritten in two sets of 

clauses, Si and S2, where Ŝ UŜ 2 二 S. The clauses of Si correspond to the original magic 

set rewriting method while S2 is specialized in data-disjunctive deductive database. 
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A. Assume all relevant clauses have single atom at the head part 

Generation of 5i： 

The set of clauses is generated by the magic set rewriting method [4 . 

Generation of S2： 

1. Add T{X) — ST{X). into S2. 

2. For all relevant predicates Pi in IDB, add 

mgspAX)^SPi{X). 

3. For all relevant clauses 

A i~ Bi,.. •, BjT^. 

add 

SA i~ SBi^...，SBm-

4. VA:, 1 < k < m, suppose SBj, 1 < j < m and j • k are the predicates connected to 

SBk in the clause, then for all clauses define SBj of the form 

SBj{X) i— Dji,..., Djs. 

add 

SBj{X) — mgsB,{Y). ^i,.. •, E” 

where 

(a) Eji = Dji if predicate of Dji is in EDB. 

(b) Eji = SDji if predicate of Dji is in IDB. 

(c) The list of terms Y is defined by the knowledge on the connected terms between 

SBk and SBj in the clause such that the corresponding connected terms in X and 

Y have the same variables. 
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B. General case of data-disjunctive clauses 

The above algorithm is used when the clauses of the program have only one atom in the 

head. In general, for a given predicate P, the clauses defining P may have more than one 

atom in the head as the form 

p ( x i ) v . . . v i ^ ( x j — ^ , . . . , 5 m 

Both the magic set rewriting method and the specialized algorithm defined above have to 

be modified for these predicates. 

Generation of Si： 

As in the magic set method, there are two modes of information passing in the evaluation 

of a query. The first mode is identified as unification. For deductive database, the 

unification between goal and head of predicate is well-defined as there is only one atom in 

the head of a clause. However, this unification differs in the case of disjunctive deductive 

database since for a query P(Y), as in unification, P(Y) maybe “unify" with anyone of 

P{Xi)^ 1 < i < n. So the clause should be viewed as n distinct clauses 

P{^i) <— Bi,..., Bm 

When applying the magic set rewriting method, a corresponding clause 

P{Xi) 4 - a list of magic predicates, Bi,...，Bm-

will be generated and we rewrite these n corresponding clauses by replacing the head part 

P{Xi) by the original head P{Xi) V . . . V P(Xn). 

Generation of S2： 

1. Add T(X) i- ST{X). into S2. 

2. For all relevant predicates Pi in IDB, add 

mgspAX) — SP,{X). 

3. For all relevant clauses 

A{Xi)V---yA{Xn)^Bu...,Bm^ 

add 
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SA{Xi) V • • • V SA{Xn) — SBu ..., SBm. 

4. Mk, 1 < k < m, suppose SBj, 1 < j < m and j + k are the predicates connected to 

SBk in the clause, then for all clauses define SBj of the form 

SB^{Xi) V •.. V SBj{Xn) — Dji, •. •, Djs. 

add n clauses with variable t, 1 < t < n 

SBj {Xi ) V . . . V SBj{Xn) — mgsB,{Yt).Eji, •..，Ej, 

where 

(a) Eji = Dji if predicate of Dji is in EDB. 

(b) Eji 二 SDji if predicate of Dji is in IDB. 

(c) The list of terms Y is defined by the knowledge on the connected terms between 

SBk and SBj in the clause such that the corresponding connected terms in Xt, 

1 < t < n, and Y have the same variables. 

6.1.2 Bottom-up evaluation 

Once the set of clauses S is generated, the bottom-up evaluation is used to compute the 

answer for the query with the following rules: 

1. When a ground fact P{xi) V . • • V P{xn) is used in producing any atom the stimulated 

fact SP{xi) V •.. V SP�Xn) is added. 

2. The magic predicates are used for constraining the search tree. We do not store the 

disjunction of atoms of magic predicate. Suppose mgp{xi) V • •. V mgp{xn) is deduced, 

then mgp{xi)^ 1 < i < n, is assumed. 

6.1.3 Examples 

Example 9 Program: 

T{X,Z)^A{X,Y),B(Y,Z). 
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A(1 ,3 )VA(2 ,3 ) . 

jB(3，4). 

Query: 

7 - T ( l , X ) 

Apply the rule rewriting algorithm, the program is rewritten into: 

^ : 

clause 1: mgT{l). 

clause 2: T (X , Z) — mgT{X),A{X, Y),B{Y, Z). 

S2: 

clause 3: T{X,Y) <- ST{X, Y). 

clause 4: ST{X, Z) ^ SA{X, Y), SB{Y, Z). 

clause 5: m^^sA(^y) — SA{X, Y). 

clause 6: SB{X, Y) — mgsA{U, X),B{X, Y). 

clause 7: mgsB{X,Y) — SB{X,Y). 

clause 8: SA{X, Y) ^mgsB{y.V),A{X, Y). 

Evaluation procedure: 

1. mgT(Vj. 

2. From clause 2, we get T[(l ,4), (A{( l ,3) , (2,3)})； 

stimulate A[(1,3), (2,3)], so add SA[{1,3), (2,3): 

from clause 5, get m5'5^(l, 3) and mgsA{^, 3). 

from clause 6, get SB{3,4). 

3. From clause 4，deduce 5T[(l ,4) , (A{(l ,3) , (2,3)})] and ST[(2,4), (A{(1,3),(2,3)})； 

deduce ST[(l,4),(2,4): 

4. Deduce T[(l ,4), (5T{ ( l ,4 ) , (2,4)})] and T[(2,4), (5T{( l ,4) , (2 ,4) } ) ] from clause 3 

which can deduce T[(l,4), (2,4)] by the bottom-up evaluation procedure. 
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Example 10 For the program 

T(X, Y) V T(y , Z) — A{X, Y),B{Y, Z). 

7 - T ( l , X ) 

is rewritten into: 

^: 

mgT(l). 

T(X , Y) V T(y, Z) — mgT{X),A{X, Y),B{Y, Z). 

nX, Y) V T(y, Z) — mpr (y ) ,A (X , y ) , B{Y, Z). 

S2： 

T{X,Y) ^ST{X,Y). 

ST{X, Y) V ST{Y, Z) ^ SA{X, Y),SB{Y, Z). 

mgsA{X,Y)^SA{X,Y). 

SB{X,Y)^mgsA{U,X),B{X,Y). 

mgsB{X,Y)^SB{X,Y). 

SA{X, Y) — mgsB{y. V),A{X, Y). 

Example 11 For the program 

T{X,Y) ^P(X,Y). 

P{X, Y) V P(Y, Z) ^ A(X, V), B(V, Z). 

7-T(l,X) 

is rewritten into: 

^: 

mgr(!). 

T(X,Y)^mgT(X),P(X,Y). 

mgp{X) <- mgT{X). 

P{X, Y) V P(y, Z) — mgp^, A{X, Y),B{Y, Z). 

P(X, Y) V P(y, Z) — mgp{Y),A{X, Y),B{Y, Z). 

S2-. 
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T{X,Y)i-ST{X,Y). 

ST{X,Y)^SP{X,Y). 

mgsp{X,Y)^SP{X,Y). 

SP{X, Y) V SP{Y, Z) — SA{X, y ) , SB(X, Z). 

mgsA{X,Y)^SA{X,Y). 

SB{X, Y) — mgsA[U, X),B(X, Y). 

mgsB{X,Y)^SB{X,Y). 

S4X,y)—m^B(y,V),4X,lO. 

6.1.4 Discussion on the rewriting algorithm 

From the discussions, it is obvious that we only need to consider those relevant clauses 

and predicates when we solve the query. When the program is not disjunctive, the trans-

formation degenerates into the original magic-set method for deductive database. Hence, 

the answer can be obtained accordingly with a bottom-up evaluation. When the program 

contains disjunctions, the idea of the evaluation method is as follow: we first solve the 

query in a top-down manner. At some point, a disjunctive fact is found which is partially 

supporting the atom in the query or subquery. We then have to check if this disjunctive 
'_ 

fact could deduce other atom with the same predicate as in the query. For example, 

suppose the program has the clause: 

B{X) ^ A{X) 

and if the program has the fact A(1) V A(2). For the query 7-B{l), when we solve the 

query in a top-down manner, the fact A{1) V A{2) is reached and is partially supporting 

the fact B{1). At this point, we have to check if A{2) could deduce other atoms in the 

form B{x), where we could deduce B{1) V B{x) for this case. Hence in our rule-rewriting 

method proposed, the rules generated in S2 are used to deduce the derived terms which 

are supported by the disjunctive facts reached when solving the query in the first stage. 

A point has to be noted for the rule rewriting algorithm. By the definition of relevant 

answer set, an answer which is subsumed by another fact should not be deduced. For 
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example, suppose A{1) V A{2) and A{2) are ground facts of a program with the clause: 

B{X) f- A{X). 

the program has only one minimal model { A{1), B{1) }. For our rule rewriting algorithm 

for relevant answer set query, when the query ? - 5 ( l ) is posted, the rewritten program 

will be: 

mgB{l) 

B{X)^mgB{X),A{X). 

B{X) — SB{X). 

SB{X) — SA{X). 

m ^ Z ^ — SApO. i 

By the bottom-up evaluation procedure, clause 2 will stimulate the disjunction SA{1) V 

5A(2) and consequently SB{1) V SB{2) is deduced by clause 4. We then get B{1) V B{2) , 
( 

as an answer by clause 3. We can see that the answer B{1) V B{2) is sound although it 

is subsumed by B{2). 丨 

By the definition of the relevant answer set, the data-disjunctive fact B{1) V B{2) should 

not be deduced as it is not in MMS£j^ since it is subsumed by B{2). However, the answer 

^(1) V B{2) can be viewed as an additional information that related to the query posted. 

One can obtain the relevant answer set by the following procedure. For each answer 

Ti V T2 V . . . V Tn obtained by the rewriting algorithm, we post a query 1-Ti for each Ti 

which does not match the original query. We then check and remove the answer of the 

original answer set if it is proper subsumed by the answer of this query. The relevant 

answer set will be obtained after this removal procedure. 

As for the last example, when we get B{l) V B{2) as answer, we post the query ?-B(2), 

and get B(2) by the bottom-up evaluation procedure. This answer B(2) subsumes the 

disjunctive fact B(1) V B(2) of the original answer set and hence jB(l) V B(2) is removed. 

Therefore, the relevant answer set for the query ?-B(l) is empty set as expected. 

Hhis clause is removed as mgsA is not used in other clauses 
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Generally, much more computation will be needed for this subsumption checking and 

removal procedure. In practice, as the answer set obtained are sound and related to the 

query, this subsumption checking and removal procedure is not necessary to be applied. 

6.2 Alternative algorithm for Traditional Answer 

Set 

We have developed the rule rewriting method for the data-disjunctive deductive databases. 

As argued before, the traditional answer set can be obtained by this rule rewriting method 

also as the relevant answer set contain the traditional answer set. However, if only the 

traditional answer set is needed, a simpler rewriting method can be applied and no effort 

will be wasted to solve for the whole relevant answer set. 
( 

6.2.1 Rule rewriting algorithm 

In the rule rewriting method for the relevant answer set, the set of rules in S2 are respon-

sible in the deduction of those atoms which can be generated by the disjunctive facts that 

are partially supporting an atom match with the query. For the traditional answer set, '“' 

all atoms in an answer match with the query, hence the deduction of these atoms can be 

solved by the rules in 5i. Therefore, the set of rules generated in S2 can be removed and 

the rules generated are as follow: 

INPUT: A set of clauses and a query 7-T(Xi , . . . , X^) (or T in short), where Xi is either 

a variable or a constant. 

OUTPUT: A set of clauses such that applying the bottom-up evaluation procedures yields 

answer to the query. 

Let S be the output set of clauses. This set is similar to the output of the rewriting method 

for relevant answer except that the set S2 is removed. Hence the set S is generated as 

follows: 
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For all relevant clauses 

p ( x i ) v � v p ( x , ) — 5 i ” . . , 5 m . 

the clause is viewed as n distinct clauses 

P(Xi)—Bi,...,Bm,imm 

When applying the magic set rewriting method, a corresponding clause 

P { X i ) 卜 a list of magic predicates, B i , . . . , Bm. 

will be generated and we rewrite these n corresponding clauses by replacing the head part 

P ( J Q by the original head P(Xi ) V . . . V P(Xn). 

6.2.2 Examples 

Example 12 For the program 

T(X , V) V T(V, Z) — A{X, r ) , B{Y, Z). . 

7 - T ( l , X ) 

is rewritten into: 

mgT{l)-

T(X , Y) V T(y, Z) — mgT{X),A{X, Y), B(Y, Z). “ 

T(X , V) V T(V, Z) — mgT(X), A(X, K), B(Y, Z). 

Example 13 For the program 

T(X,Y)^P(X,V). 

P(X, V) V P(V, Z) — A(X, V),B(Y, Z). 

7 - T ( l , X ) 

is rewritten into: 

mSfT(l). 

T(X,Y)^mgT(X),P(X,Y). 

mgp(X) — mgriX). 

P(X , Y) V P (r , Z) — mgp[X), A{X, F), B{Y, Z). 

P{X, Y) V P(y, Z) — mgp{Y), A{X, Y),B{Y, Z). 
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6.3 Contingency answer set 

As stated in Section 5.1, the Contingency answer set for a query Q of a program P is 

defined by 

{A{x) e CMp \A{x) =^ 3Q } 

This contingency answer set provides additional information about the uncertainty of 

those atoms 'match，with the query. From theorem 4.1, the contingency model of a 

program P can be found by transforming P to P' by replacing each clause 

Ai V • • • V An <- Bi , . . . ,Bm. 

by 
< 

Ai i— Bi^ • • • , Bm. 1 
I i 

^2 — Bi, . . • , Bm-
• • • 

^n ^“ ^15 • • • ？ ^m • 

and then compute the model of this definite program P'. Hence, in order to compute the 

contingency answer set for a query Q, we can apply the magic set rule rewriting method '' 

to the program P' and the query Q to obtain a rewritten program and those atoms in 

the contingency answer set can be found by a bottom-up evaluation procedure on this 

rewritten program. 



Chapter 7 

Experiments and Comparison 

We have proposed the data-disjunctive deductive databases which is general enough to 

express all disjunctive deductive databases with no negated literals. In the presented 

bottom-up evaluation, the data structure derived term is used. This derived term is 

used to represent the indefinite information and the conditions where the disjunction is 

supported. 

The model tree method uses a tree structure to represent the set of minimal models of 

the deductive database. On solving a query, the model tree method has to traverse all 

clauses within the cluster and build the whole model tree. The model tree method does 

not make use of the information of the query and those propagated by the incremental 

solving of the subgoals as the magic set rule rewriting method do. Hence, for the model 

tree method, the complexity of building the model tree for the query l-Q{a) will be the 

same as building the model tree for the query l-Q{X) where all the terms are variables. 

7.1 Experimental Results 

We have built a prototype for performance evaluation of the proposed evaluation pro-

cedures and the magic-set method for the data-disjunctive deductive databases. This 

prototype is written by C programming language and run on the SPARCstation 20 and 

SPARCcenter 2000 workstation. The evaluation procedure are tested for the program of 

transitive closure which have the clauses: 

57 
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P ( l , 2 ) . P ( l , 3 ) . P(2 ,4) . P(2 ,5 ) . P (3 ,6 ) . 
P(3 ,7 ) . P (4 ,8 )orP(4 ,9 ) . P(4,10) . P ( 5 , l l ) o r P ( 5 , 1 2 ) . P{5,13). 

P(6,14) . P(6,15) . P(7,16)orP(7,17) . P(8,18) . P(9 ,19)orP(10,19) . 
P(10,20) . P(11,21). P(12,22)orP(12,23). P(13,24)orP(14,24) . P(15,25)orP(15,26) . 
P(15,27) . P(16,28). P(17,29). P(18，30). P(19,31)orP(20,31) . 
P(21,32) . P(22,33). P(26,34). P(28,35). P(29,36) . 

Table 7.1: The sample ground facts for relation P 

T ( x , y ) : - p ( x , y ) . 

T ( x , y ) : - T ( x , z ) , p ( z , y ) . 

This program of transitive closure is chosen because it is the most common recursive 

predicate and the performance of evaluating information on recursive predicate is critical 

for deductive databases. 

We view the predicate P as the parent relation where the predicate T represents the 

ancestor relation. The sample ground facts for the predicate P is listed in Table 7.1 

which can be represented by the family tree in Figure 7.1} 

We test the performance of the evaluation procedure and the magic-set method for four 

different cases.̂ - These four cases are: 

1. Traditional answer set with magic-set method 

2. Traditional answer set without magic-set method 

3. Relevant answer set with magic-set method 

4. Relevant answer set without magic-set method 

7.1.1 Results for the Traditional answer set 

We first run the experiments on the traditional answer set. For each query, we ask for 

the descendant of a particular node in the tree. Table 7.2 shows the running time for 

solving these queries with and without using the magic-set method. In the case without 

^ Jointed arrows represent the corresponding disjunctions 
^The experiments for both traditional and relevant answer set were run on a SPARCstation 20 machine 

with 128M memory. 
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Figure 7.1: Family tree representing the ground facts for relation P 

using magic-set method, we use the information on the query to remove those irrelevant 

derived terms before applying the B operator, i.e. suppose the query is ? -T( l , Y), after 

applying the F operator we can get: 

T[(l,8)，〈P{(4，8),(4，9)}�] 

T[(4，9)，〈P{(4,9),(4,9)}�] 

Though the above two terms can be 'joined，to deduce the disjunctive fact T[(1,8), (4, 9)], 

the derived term T[(4,9),�P{(4，9), (4 ,9) }� ] can be removed as the term T(4, 9) does not 

match the query. 

The figures in Table 7.2 show that the program using the magic-set method work better 

than that without. In the magic-set method, we found that the lower the level of n, 

the shorter the running time for solving the query. This characteristic is found as the 

magic-set method use the magic predicate in guiding the search space, where when the 

level of n is lower, less derived terms will be formed and the computation time is shorter 

accordingly. 
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Query 7-T{n, Y) with magic (in sec) without magic (in sec) 
n = l 一 0.12 0.45 
n=2 — 0.06 0.41 
n=3 0.03 0.40 
n=4 ~ 0.02 0.40 
11二5 0.02 0.40 

n=6 “ 0.02 - 0.39 “ 
n=7 — 0.02 0.39 
n=8 — 0.01 0.39 
n=9 — 0.01 0.39 

n=lQ — 0.01 0.39 
n = l l — 0.01 0.39 
n=12 0.01 0.39 
n=13 — 0.01 0.39 
n=14 — 0.01 0.39 
n=15 “ 0.01 0.39 
n=16 — 0.01 0.39 
n=17 0.01 0.39 

Table 7.2: Comparison for Traditional answer set with and without using magic-set 
method 

Generally, the parent relation would store the facts for more than one family tree. In the 

next two experiments, we study the effect of increasing the number of family trees on the 

performance of the evaluation method. For simplicity, we assume that the structure of 

different family trees are identical. In this way, another family tree can be viewed as the 

same tree as in Figure 7.1 but with different label A1, A2,..., A36. We test for four sets 

where Set 1 is the original case, Set 2 has two such trees, Set 3 has three and Set 4 has 

four. 

Table 7.3 and Table 7.4 show that the running time for solving a query increases when the 

number of family trees increases. We found that the order of increasing is much smaller 

for the program that use the magic-set method. This happens because the program with 

magic-set method use the constant in the query to guide the search space and would 

not form any derived terms using the facts in the other irrelevant family trees. For the 

program without using magic-set method, all facts in all the family trees are used in 

forming the derived terms and the computation take much more time as the number of 

family trees is increased. 
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~ ^ e r y l-T{n,Y) Set 1 (in sec) Set 2 (in sec) Set 3 (in sec) Set 4 (in s ^ 
n = l • 0.12 0.15 0.19 — 0.22 

一 n=2 0.06 一 0.08 0.10 0.12 
n=3 0.03 0.05 一 0.06 “ 0.07 ~ ~ " 
n=4 — 0.02 0.03 — 0.05 “ 0.06 
n=5 ‘ 0.02 0.03 0.05 0.06 
n=6 0.02 0.02 0.03 0.05 
n^7 0.02 0.03 0.04 0.04 

Table 7.3: Effect of no. of family trees with magic-set method for traditional answer set 

"Query 7-T{n,Y) Set 1 (in sec) Set 2 (in sec) Set 3 (in sec) Set 4 (in sec) 
n = l — 0.45 1.54 — 3.32 5.89 ~ ~ 
n=2 — 0.41 1.51 — 3.31 5.87 一 

n=3 — 0.40 1.48 3.30 “ 5.84 — 
n=4 — 0.40 1.49 — 3.29 5.83 一 

n=5 — 0.40 1.49 一 3.29 5.84 — 
一 n=6 0.39 1.49 3.27 5.82 

n=7 0.39 一 1.49 3.30 5.83 

Table 7.4: EfFect of no. of family trees without magic-set method for traditional answer 
set 

7.1.2 Results for the Relevant answer set 

The following experiments test the running time of solving query for the relevant answer 

set. Similar to the case for the traditional answer set, for each query, we ask for the 

descendant of a particular node in the tree. Table 7.5 shows the running time of these 

queries with and without using the magic-set method. For the program using magic-set 

method, we only apply the bottom-up procedure for the query once and get all related 

sound answer without applying the subsumption checking and removal procedure. 

The figure shows that the program using magic-set method work better than that without 

using magic-set method. In the magic-set method, we found that the lower the level of 

n, the shorter the running time for solving the query. This characteristic is found as the 

magic-set method use the magic predicate in guiding the search space, where when the 
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Query 7-T(n, Y) with magic (in sec) without magic (in sec) 
n = l — 0.79 22.80 
n=2 0.47 22.58 
n=3 0.08 22.52 — 
n=4 0.07 22.60 
n=5 — 0.07 22.75 
n=6 — 0.03 22.53 
n=7 0.03 22.61 
n=8 — 0.01 22.18 
n=9 一 0.03 22.88 
n=10 一 0.02 22.73 

n=ll 0.01 22.49 

n=12 — 0.03 22.36 
n=13 — 0.02 22.52 
n=14 — 0.01 22.90 
n=15 — 0.02 22.57 
n=16 — 0.01 22.55 
n=17 0.02 22.56 

Table 7.5: Comparison for Relevant answer set with and without using magic-set method 

level of n is lower, less derived terms will be formed and the computation time is shorter 

accordingly. 

Table 7.6 and Table 7.7 show that the running time for solving a query increase when the 

number of family trees increase. We found that the order of increasing is very smaller for 

the program that use the magic-set method. This small increment of computation time 

is due to the increase in time for the matching of the database as the size of database is 

increased. For the program without using magic-set method, all facts in all the family 

trees are used in forming the derived terms and the computation take much more time 

as the number of family trees is increased. Moreover, we can see that the computation 

time increase to (0.9) * i? times approximately as there are i family trees. This order 

of increasing in time for computation is due to the duplication removal process where a 

derived term need to compare with the other derived terms. 
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"Query 7-T(n, Y) Set 1 (in sec) Set 2 (in sec) Set 3 (in sec) Set 4 (in s ^ 
n ^ l 0.79 一 0.88 1.00 — 1.09 
n=2 _ 0.47 0.54 一 0.61 “ 0.68 
n=3 0.08 一 0.13 0.16 — 0.21 
n=4 “ 0.07 0.11 0.14 0.18 
n=5 0.07 0.10 — 0.13 “ 0.17 
n=6 — 0.03 0.05 — 0.09 “ 0.11 
n=7 0.03 0.06 0.08 0.10 

Table 7.6: Effect of no. of family trees with magic-set method for relevant answer set 

Query 7-T(n, Y) Set 1 (in sec) ratio Set 2 ratio Set 3 ratio Set 4 ratio 
a a /a b b / a c c ^ d d /a 

^ 22.80 1 82.61 ~ 3 ^ 183.87 8.1 " ^ 0 . 7 0 14.1 “ 
^ 22.58 1 “ 82.83 ~577 182.57 8.1 " ^ 0 . 5 5 14.2 “ 
i ^ 22.52 1 84.02 ~ 3 T ~ 184.02 8.2 320.62 14.2 “ 
^ ^ 22.60 1 83.13 ~~3?r~ 183.46 8.1 ^ 0 . 4 3 14.2 
^ ^ 22.75 1 82.85 3.6 "l84.Q8 8.1 319.87" 14.1 
i ^ 22.53 — 1 “ 82.98 " T " 7 183.24 8.1 320.52 14.2 “ 
n=7 22.61 1 83 39 3.7 183.96 8.1 320.57 14.2 

Table 7.7: Effect of no. of family trees without magic-set method for relevant answer set 

7.2 Comparison with the evaluation method for Model 

tree 

The concept of a minimal model tree for disjunctive deductive databases was introduced 

in [11] as a structure-sharing approach to represent the set of minimal model of the 

deductive databases. 

Consider a simple disjunctive database { a V 6,c V d }. There are only two disjunctive 

facts in the database but there are four minimal models: {a,c),{a,d|,{b,c} and {b,d}. 

Two possible model trees can be built to represent these models as in Figure 7.2. 

There are three problems in using the model tree method for answering query in the 

disjunctive deductive databases. First, it is obvious that the number of minimal models 

for a disjunctive deductive databases can be exponential in the size of the database. For 

a simple case, suppose a disjunctive database (without intensional part) is { ai V 61,a2 V 
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8 £ 

/ \ / \ 
a b c d 

八 A 八 八 
c d c d a b a b 

Figure 7.2: Model trees for { a V h, c V d } 

b2,...，an^bn }, then the model tree will have 2" branches. Generation and storage of this 

model tree will become very inefficient or even impossible as the number of disjunction in 

the database increase. Second, the model tree method do not make use of the information 

of the query in restricting the search space. Third, the method incrementally builds the 

model tree that represents the set of models of the deductive database. Though the model 

tree keeps all the information on the model of the deductive databases, these information 

have to be retrieved in order to answer a query. This retrieval of relevant information is 

inefficient as the number of branches of the model tree increases. 

We have tested the performance of the evaluation method using model trees. The model 

tree method is divided into the following parts: 

(a) Build the tree for the ground facts. 

(b) Apply the clauses with non-empty body by using the algorithms for the computation 

on the tree. 

(c) Collect the supporting atoms in the model tree to get the answer tree. 

(d) Compute the minimal interpretations of this answer tree. 

We test the evaluation method on solving query for the traditional answer set and assume 

that the answer to the query can be obtained once the model tree is obtained. Hence, 

it is no need to compute and retrieve information to answer the query. The results are 

shown in Figure 7.8.3 since there are eight disjunctive ground facts in one family tree 

^The program was run on a SPARCcenter 2000 machine with 512M memory. 
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in our sample, the model tree built for the ground facts for this family tree will have 

28 = 256 branches. For the experiment on Set 2, there are 2̂ ® = 65536 branches as two 

family trees is considered. The experimental result in Figure 7.8 shows the exponential 

increasing in computation time as the number of branches of the model tree increases. In 

the experiment of Set 3 and Set 4，the query cannot be solved as memory is not enough 

for the model tree evaluation method. From the figure, we can also see that the proposed 

bottom-up evaluation is much more efficient than the model tree method for solving this 

query. 

Method used Set 1 (in sec) Set 2 (in sec) Set 3 (in sec) Set 4 (in sec) 
Model tree method “ 6.22 9128.19 - “ -

Proposed method without magic 0.45 1.54 3.32 5.89 
Proposed method with magic 0.12 0.15 0.19 0.22 “ 

Table 7.8: Running time for different methods to answer the query ?-T(l , Y) 



Chapter 8 

Conclusions and Future Work 

In this thesis, we present the data-disjunctive logic programs. We define the model-

theoretic semantic of these data-disjunctive logic programs and present the contingency 

model which stores the uncertainty information about atoms. We develop a bottom-up 

evaluation method to compute the model of this logic program and show how to use the 

computed result in answering queries. 

We prove that any disjunctive deductive database can be transformed to a data-

disjunctive deductive database and show that the expressive power of the data-disjunctive 

logic program is the same as the disjunctive logic program. We introduce the concept 

of standard-form facts which state what kind of facts are interested generally. With the 

concept of standard-form facts, we can transform a disjunctive deductive database to a 

data-disjunctive deductive database which the bottom-up evaluation method can be ap-

plied. Whenever a query is posted, answer can be computed by means of this evaluation 

method. In the evaluation procedure, a rank is assigned to every predicate in the pro-

gram. The data-disjunctive facts can be computed rank by rank by the better structure 

of the clauses of the data-disjunctive deductive database. 

A rule rewriting technique similar to the magic sets techniques is proposed to solve 

query for the data-disjunctive deductive databases. With this rule rewriting technique, it 

becomes possible to constrain the computation to the relevant information in the database 

for a given query. Among our knowledge, this thesis is the first to attempt to make use 

of the rule rewriting method in the field of disjunctive deductive database. 

66 
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We have built a prototype for performance evaluation of the proposed bottom-up evalua-

tion procedure and the rule rewriting method for the data-disjunctive deductive databases. 

We find that, in solving a query, the procedure using the rule rewriting method is much 

more efficient than the procedure that does not. We also compare our bottom-up evalu-

ation procedure with the model tree method [10]. We find that, for the tested program, 

the proposed methods are much more efficient than the model tree method. 

Future work includes the extension of the data-disjunctive deductive database and eval-

uation method that can handle negated atom in the body of the clauses. The realization of 

system based on the rule rewriting method and the bottom-up evaluation procedure is an-

other work to be done. The optimization of the rule rewriting method for the disjunctive 

deductive databases is also an interesting research topic. 
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ĝ
^̂
^̂
^̂
^̂
^̂
î̂
K̂
g;ggê
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ĝ
〒rfv.lr$,?̂
j.:"--̂
-r̂
l(、-、.t
 ..-j..i..

 
.

 
.

 ̂
^
i
l
u
-

 ̂-.„

 -
 ;
:
r
 .
l
.
;
l
 -
.
、
’
)

 
\
-
1
，
-
^
、
、
-
-
 "--̂
i、,
 
•

 'r.̂
'
 -
•
:
>
 -
-
^
3:
)
：
，
’
.
-
-
J
、
。
Y
,
:
f
。
-
)
;
v
\
」
>
:
.
i
:
【
-
"
^
、
-
,
?
)
J
「
r
v
^
r&
々
;
.
.
.
％
^
r
.
、
A
S
"
v
-
.
?
:
>
!
?
a
^
^
s
^
™
^
j
—
t

 -
:
•

 :---、_i"
 J
>
、
0
¾
¾
=
-
 -
l
-
i
v
.
、
-
f
^
v
u
^
^
f
^
!
w
?
;
^
1
1，
”
、
.
T
^
7
?
f
^
^
l
p
B
E
?
?
l
?
^
^
f
i
?
f
"
f
^
*
^
^
f
!
;
M
^
-
:
l
f
^
A
"
?
^
?
s
"
:
^
^
^
^
 

『
「
.
:
v
v
"
 ..

 
- ..
 
-

 
I

 
I
 

:
T

 
:

 ：
秦
疆
 

，〕
 .
•
 
.

 
‘

 
.

 
-

 ？
急
 

””
 
办

 <.
i
 

.̂

 .

 、-
、
f

《
&
 

«

 u,

 
i

 
 ̂d
h
y
^
 

.
.
卜
4

 :
〒
•
 

.
-
:
r
>
^
 

T

 
 ̂
«

 
,
 

d
 
广
％
 

,
 .
^
 

,
\
 

-
 

<
 

f

 
_

 
.
 

.̂
.

 .

 ;
-

.
 .

 .,•#
 

」

 -

 

、
％
 
.
 

-



hTbDT5EDD 

iimiwm seLJBjqLH >lHnD 


