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Abstract 

Transaction management is recognized to be a fundamental need in commercial dis-

tributed databases. It is expected that in the near future, distributed systems will be 

extended to support mobile computations over a network with fixed and mobile hosts. 

The restrictions imposed by the wireless channels and the mobility of mobile hosts make 

the traditional ways of handling transactions inadequate. However, it is found that only 

a few schemes which bear in mind the concept of transactions have been developed in 

mobile computing environments [10, 22, 27, 32 . 

We present a scheme for transaction management in mobile computing environments, 

with the use of the transaction replication scheme as the replication control scheme in 

the fixed network [14]. Each mobile host has a limited cache space to store some of the 

data objects in the database. Transactions submitted at the mobile hosts consisting solely 

of read operations are executed locally there, with the use of the cached data to reduce 

the execution time. Before the transactions can start to execute, data cached there have 

to be updated in order to ensure seriaIizability. This is achieved by the broadcasting of 

data updated periodically to the mobile hosts. For those transactions consisting of both 

read and write operations, they are sent to the fixed hosts for execution. Results of the 

transactions are broadcasted back to the mobile hosts periodically. 

The proposed scheme has been implemented and analyzed with the use of simulation 

programs, and shows a good performance. It is found that with the use of the transaction 

replication scheme, transactions submitted at the mobile hosts with writes can achieve a 
\ 

high commit ratio; and the response time of transactions executed at the mobile hosts is 

ii 



kept low. Besides, it is verified through simulation that given a wireless channel that is 

unreliable, collecting data requested and sending them in batches to the fixed hosts provide 

a better performance than sending each request message individually. The scheme is also 

compared with a lock-based scheme which handles transactions by sending the operations 

of transactions to the fixed hosts for execution. The lock-based scheme is found to be 

inferior to our scheme in most cases and it outperforms our scheme only when the size 

of database is large and the transactions submitted at the mobile hosts contain read 

operations only. 

iii 



Acknowledgements 

First and foremost, I would like to thank my supervisor, Prof. Wai-chee Fu , for her 

support and encouragement to my research. She was just so patient to my silliness and 

always respected my opinions. Her comments on the contents and organization of the 

thesis improved the quality greatly. 

Special thanks also go to Prof. Tiko Kameda, Prof. M. H. Wong and Prof. C. Lu 

for serving on my thesis committee. Prof. Tiko Kameda carefully read the thesis, and 

provided many helpful suggestions for improvement. Its really my pleasure to have them 

revising my thesis. 

I would like to thank my colleagues in the graduate school for without their inexhaus-

tive support and encouragement I could not possibly make it. They gave me so much 

help whenever I came across any kind of problems. Among them, I would particularly like 

to thank Cothan Hwang Hoi Yee for his helpful comments to my graphics assignments; 

Johnson Chong Chiu Fai, for his expertise in using Matlab; Alice Ng Ching Ting, for 

solving all my problems about the transaction replication scheme; Phyllis Leung Wing 

Man, for her helpful tips in writing CSIM programs; Charles Cheng Sheung Hing and 

Derek Lam Ming Fan, for their excellent work in the simulation programs; Edward Tam 

Nai Biu, for always providing us with interesting magazines; Jeff Cheung Hon Kai, for 

telling us so much about his incredible experience. 

The staff of the department provided excellent support. They maintained the ma-

chines in good conditions and installed more powerful machines. These are all helpful in 

conducting this research. 

iv 

.7 



Last (but not least) grateful thanks to my family, who have put up with the noise from 

my hitting of the keyboard at midnight for so long. I am very grateful for their support. 

X 



Contents 

Abstract ii 

Acknowledgements iv 

1 Introduction 1 

1.1 Limitations of the Mobile Computing Environments 2 

1.2 Applications of Transaction Replication in Mobile Environments 5 

1.3 Motivation for Transaction Replication in Mobile Environments 5 

1.4 Major Simulation Results 6 

1.5 Roadmap to the Thesis 7 

2 Previous and Related Research 8 

2.1 File Systems 8 

2.1.1 Management of Replicated Files 8 

2.1.2 Disconnected Operations 10 

2.2 Database Management 12 

2.2.1 Data Replication Schemes 12 

2.2.2 Cache Invalidation and Query Processing 15 

2.2.3 Transaction Management in Mobile Environments 17 

3 System Model and Assumptions 21 

3.1 System Architecture 21 

3.2 Transaction and Data Model 23 

vi 



3.3 One-copy Serializability 25 

3.4 Assumptions 27 

4 Transaction Replication in a Mobile Environment 29 

4.1 Read-only Public Transactions 30 

4.1.1 Data Broadcasting 31 

4.1.2 Cache Update 33 

4.1.3 Cache Miss 36 

4.1.4 Execution of Read-only Public Transactions 37 

4.2 R / W Public Transactions 39 

4.3 Correctness Argument 41 

4.3.1 Correctness Proof 43 

4.4 Extension to Support Partition Failures 47 

5 Design and Implementation of the Simulation 49 

5.1 CSIM Language 49 

5.2 Simulation Components 50 

5.2.1 Fixed Network 50 

5.2.2 Mobile Host 50 

5.2.3 Wireless Channel 51 

5.2.4 Database and Transactions 52 

5.3 A Lock-based Scheme 53 

5.4 Graphing “ 54 

6 Results and Analysis 55 

6.1 Results Dissection 55 

6.2 Performance of the Scheme 56 

6.2.1 Parameters Setting . . 56 

6.2.2 Experiments and Results 59 

6.3 Comparison with the Lock-based Scheme 78 

• • 

Vll 



6.3.1 Parameters Setting 79 

6.3.2 Experiments and Results 80 

7 Conclusions and Future Work 93 

7.1 Conclusions 93 

7.2 Future Work 94 

A Implementation Details 96 

Bibliography 99 

viii 



List of Tables 

6.1 Parameters Setting 57 

6.2 Variable Parameters 58 

6.3 Variable Parameters Setting (experiment 1) 59 

6.4 Variable Parameters Setting (experiment 2) 61 

6.5 Variable Parameters Setting (experiment 3) 63 

6.6 Variable Parameters Setting (experiment 4) 65 

6.7 Variable Parameters Setting (experiment 5) 67 

6.8 Variable Parameters Setting (experiment 6) 71 

6.9 Variable Parameters Setting (experiment 7) 74 

6.10 Variable Parameters Setting (experiment 8) 76 

6.11 Variable Parameters Setting (experiment 9) 78 

6.12 Values for Parameters Used in Both Schemes 80 

6.13 Values for Parameters Used in Our Scheme 81 

6.14 Values for Parameters Used in the Lock-based Scheme 81 

6.15 Variable Parameters . . . 82 

6.16 Variable Parameters Setting (experiment 10) 82 

6.17 Variable Parameters Setting (experiment 11) 86 

6.18 Variable Parameters Setting (experiment 12) 86 

6.19 Variable Parameters Setting (experiment 13) . . 90 

6.20 Variable Parameters Setting (experiment 14) 90 

ix 



List of Figures 

3.1 The Mobile Computing System Model 22 

3.2 A History for the Execution of Transactions 27 

3.3 The Serialization Graph for H 27 

3.4 The RDSG for H 27 

4.1 Update of Mobile Computer's Cache 35 

4.2 Execution of Read-only Public Transactions at Mi 38 

4.3 An Execution of the Proposed Scheme 39 

5.1 Possible Moves for Mobile Hosts in Cell 1 & 2 50 

6.1 Variation of TRS Period 60 

6.2 Variation of Reliability of the System 62 

6.3 Variation of Inter-arrival Time of Public Transactions at Fixed Hosts . . . 64 

6.4 Variation of Execution Time for Global Batches 66 

6.5 Variation of the Length of Collection Period (CONNECT_PROB = 0.95) . 68 

6.6 Variation of the Length of Collection Period (CONNECT_PROB = 0.85) . 69 

6.7 Variation of the Length of Collection Period (CONNECT_PROB = 1.0) . . 70 

6.8 Performance of the Scheme with Different Access Patterns (RW_PROB = 

0.1) 72 

6.9 Performance of the Scheme with Different Access Patterns (RW_PROB = 

0.2) 73 

6.10 Cache Update Vs Cache Invalidation 75 

X 



6.11 Variation of HAND_OFF 77 

6.12 Variation of Clock Synchronization among Fixed Hosts 79 

6.13 Variation of Database Size 83 

6.14 Variation of Database Size (6000 data objects) 84 

6.15 Variation of Database Size with Read-only Transactions Only 85 

6.16 Variation of Popularity Ratio 87 

6.17 Variation of Inter-arrival Time of Transactions at Mobile Hosts 88 

6.18 Variation of Inter-arrival Time of Transactions at Mobile Hosts (read-only) 89 

6.19 Variation of Inter-arrival Time of Transactions at Fixed Hosts 91 

6.20 Variation of Number of Operations per Transaction 92 

7.1 Comparison with the Method without Cache Update and Invalidation . . . 95 

A.1 Simulation Model 96 

A.2 Simulation Model of a Mobile Host 97 

xi 



Chapter 1 

Introduction 

This thesis presents a scheme that handles transactions submitted at the mobile hosts in 

a mobile computing environment. The work is motivated by the following reasons: 

• The rapid expanding technology in wireless communication and the portability of 

computers make mobile computing possible. Yet the limitations of a mobile en-

vironment require the rethink of the ways of transaction management in mobile 

computing environments. 

• Studies have been carried out in supporting database management over the mobile 

computing environments. However, they all have some shortcomings. Some of them 

put their focus on the caching of data at the mobile hosts, with little consideration 

about transactions; Or there are many details missing in their proposals, and there 

is no performance analysis. 

Mobile hosts refer to portable computing devices that can move about while retaining 

network connection. Equipment like PCs, portables, laptops, notebooks, or palmtops can 

all be connected as mobile hosts. As is stated in [25], mobile hosts are characterized by 

their size, weight and the kind of power supply. In order for the mobile hosts to move 

around easily, they should be small in size and light in weight. Besides, since most of the 

mobile hosts are battery power-supplied, reducing power consumption should be one of 

the requirements in the design of mobile hosts. All these characteristics introduce new 

challenges to the computer science society. 

1 



Chapter 1 Introduction 2 

Mobile hosts should communicate with other larger and more powerful systems so 

that they can access the data and services provided there. To achieve this, each mobile 

host has a wireless interface augmented to it. Messages can then be sent in the air by 

modulating radio waves or pulsing infrared light. 

The resulting computing system is therefore known as the mobile computing system 

as it contains hosts that can move about while retaining network connection. It is a 

distributed system consisting of a set of powerful fixed hosts and a larger number of 

mobile hosts. 

It is expected that mobile computing will be used in applications which are information 

service oriented and mail-enabled [19]. With the mobility nature, users carrying mobile 

hosts can access online information through the computer terminals. The information may 

be location-dependent, such as locating the nearest cinema. One goal of mobile computing 

is to allow access to databases at anytime from anywhere within a geographical area. 

Most of the applications mentioned above require the use of transactions or transaction-

like services. However, owing to the inherent properties of the mobile environments, trans-

action management in mobile systems is different from that for traditional distributed 

systems. For example, owing to the frequent disconnections of mobile hosts, data may 

have to be downloaded before a mobile host is going to be disconnected so as to allow some 

transactions to execute during the period of disconnection. This requires the redesign of 

algorithms for transaction management. 

1.1 Limitations of the Mobile Computing Environ-

ments 

Recent advances in technology have made a step forward in mobile computing. However, 

there are still lots of technical challenges to be tackled. These challenges are the conse-

quences of the characteristics that are unique to the mobile computing environments [12]. 

They include: 
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• Wireless communication. Mobile hosts communicate with other parties through the 

wireless channels. However, the wireless channels are inferior to the wired channels 

in many dimensions. This generates a lot of problems, such as narrow bandwidth, 

frequent disconnection, security problems, etc. 

• Mobility. Mobility of mobile hosts results in the volatility of information. Such a 

characteristic introduces many challenging problems in data consistency. 

• Portability. For a mobile host to be portable, it should be small and light. However, 

these requirements are also the constraints in the power of mobile hosts. 
•1 

Wireless Communication 

Currently, a number of wireless networks are being used. They differ in the coverage 

‘ area as well as. the available bandwidth. Cellular network is used mainly for the transfer 

of voice data with hand-held phones. It cannot support a large number of users and the 

available bandwidth is very low. 

Wireless LAN is the traditional LAN with wireless interface added to communicate 
'i 

with the mobile hosts. It is designed to be used in local environments and its coverage 

area is smaller than that of the cellular network, 

j Wide-area wireless network covers a wide area with low bandwidth channels. However, 

its scale with a large number of users is unknown. 

Among the wireless networks mentioned, wireless LAN provides a data rate of about 

l-to-2 Mbps, which is much larger than that of wide-area wireless network. However, this 

value is still an order of magnitude less than what is available in fixed networks [3, 20]. 

The narrow wireless bandwidth becomes a major performance bottleneck for the mobile 

computing systems [12, 19, 30 . 

It is also believed that the frequency of network failure in wireless communication is 

much higher than that of the wired communication [3]. This is due to the fact that the 

mobile hosts are being used in much harsher conditions than the fixed hosts. They may 

be used in places with a lot of background noise, or may be dropped accidentally. There 
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is a choice of whether to spend efforts on preventing disconnections or to allow the mobile 

hosts to work under disconnections. 

Mobility 

Mobility of mobile hosts brings a lot of problems to the design of mobile computing 

systems. Problems arising from this issue can be classified into location management and 

configuration management [20, 19 . 

As a mobile host moves, its network address changes. This introduces problems in 

updating and querying this kind of data. Location management can also be viewed as a 

data management problem [19 . 

Many distributed computing algorithms depend on the logical structures (grid, tree) 

being imposed on the network. However, as the mobile hosts move, the system configura-

tion changes also. Besides, system resources have to be rearranged in order to cope with 

the dynamic changes of system configuration. These kinds of problems are known as the 

configuration management problems. 

Portability 

Computers are said to be portable if they are light, small, operational even under 

adverse situations, and requiring minimal power consumption. All these properties must 

be considered in the design of mobile hosts. 

Battery used by the mobile hosts contributes a large portion of the weight. However, 

the life of battery used by mobile hosts currently is very limited. It is foreseen that the 

battery capacity will not increase much in the near future. With the demand of faster 

processors, the power constraint is further worsened. 

With the size constraint on the mobile hosts, smaller user interfaces are required. 

Buttons, mouse, or even windowing environments may have to be sacrificed in order to 

save space. 

With the limited physical size and power supply, the possible storage space for a 

mobile host becomes limited. The large power consumption of nonvolatile storage further 

reduces the amount of storage space allowed. 
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1.2 Applications of Transaction Replication in Mo-

bile Environments 

The first question that should be asked when a research is to be carried out is how it 

would be used. One application of implementing transaction management in mobile en-

vironments is providing information services in the air. Users carrying mobile hosts can 

connect to the network and query for the required online information through their ter-

minals. The information ranges from electronic mails and news to yellow pages extended 

with online information, such as the movies showing in the cinemas [19]. This is also one 

of the core applications in mobile computing being predicted. 

Transaction management in mobile environments can also find its application in those 

systems where the update rate to the database is not high. As an example, consider an 

airline database system. It is believed that the update rate to the database is maintained 

at a moderate level. At present, seat reservation can only be done through the hosts 

dedicated to it. If the system is implemented in the mobile environments, customers can 

try to make their seat reservations through their own mobile hosts. They may be able to 

examine the schedules and seat plan in order to make their purchase decisions. 

1.3 Motivation for Transaction Replication in Mo-

bile Environments 

A scheme for replicated distributed database management, known as the transaction 

replication scheme, is proposed which is aimed at reducing the communication overhead 

in transaction management of distributed databases [14]. In this scheme, data are divided 

into two types: shared-private data and public data. Each shared-private data is owned 

by a particular host and can only be updated by transactions submitted at that host, 

transactions submitted from other hosts can only read the data. Public data can be read 

and modified by transactions submitted from every host. 
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Transactions are divided into two types, known as the local transactions and public 

transactions. Local transactions access only the shared-private data owned by the submis-

sion hosts, whereas public transactions may read public or shared-private data, and write 

only public data. The scheme reduces communication overhead in transaction execution 

by transaction replication. Public transactions are collected and broadcasted together 

with the latest committed values of the shared-private data to other hosts periodically. 

They are then executed without the need to communicate with other hosts before they 

tentatively commit. 

It is this broadcasting nature of the transaction replication scheme that motivates the 

study of the scheme in the mobile computing environments. Issues about the efficient 

access to data by a large number of mobile users have been discussed extensively in 

20, 30]. There are two fundamental methods: either by data broadcasting or on demand. 

For data broadcasting, it refers to the act of broadcasting data through the wireless 

channels periodically and requiring the mobile hosts to listen to it. Whereas the latter 

one requires the mobile hosts to uplink the requests and the fixed hosts respond by sending 

the required data back. 

It is believed that wireless broadcasting may be the better way to propagate data 

objects that are requested frequently to the large population of mobile users [18, 20 . 

Broadcasting can increase the number of queries that can be handled per unit time under 

a fixed wireless bandwidth. Besides, the cost of sending a batch of data is lower than 

sending the same number of data individually. Therefore a scheme with a broadcasting 

nature is more appropriate to be used in the mobile computing environments. It is believed 

that the transaction replication scheme can be applied with only minor changes needed. 

1.4 Major Simulation Results 

In this thesis, a scheme is designed and simulation is carried out to measure its perfor-

mance. It is found from the simulation of our scheme that the performance of transactions 

submitted at the mobile hosts is indeed quite good. 



Chapter 1 Introduction 7 

For those transactions with write operations, it is found that the commit ratio depends 

largely on the reliability of the wireless channels. Besides, it is found that with the 

use of transaction replication scheme, conflicts among data will have little effect on the 

performance of these transactions. 

Moreover, simulation of our scheme shows that collecting the requests for missed data 

and sending them in batches can greatly improve the commit ratio of transactions executed 

at the mobile hosts under unreliable wireless channels, though it may increase the response 

time of transactions. Also, if the access pattern of mobile hosts is known in advance, the 

cache hit ratio as well as the response time of transactions can be improved. It is verified 

also through simulation that updating the cached data periodically provides a better 

performance of transactions than removing the invalid data from the cache periodically. 

Concerning about the difference in performance between our scheme and a lock-based 

scheme, it is found that under most circumstances, our scheme outperforms the lock-

based scheme. It is only when the database size is very large and the conflict rate is very 

low that the performance of the lock-based scheme becomes comparable with ours. Also, 

if the transactions from mobile hosts contain read operations only, then the lock-based 

scheme can have a better performance than ours in a system with large database. 

1.5 Roadmap to the Thesis 

The remainder of the thesis is organized as follows. Chapter 2 summarizes previous and 

related work on mobile computing. Chapter 3 presents the system model and assumptions 

under which the scheme is proposed. Chapter 4 describes the scheme for transaction 

management in mobile computing systems, and gives a correctness proof. Chapter 5 

outlines the simulation created to conduct the research presented. Chapter 6 gives the 

simulation results on the proposed scheme and the comparison of it with a lock-based 

scheme. Chapter 7 presents the conclusions and suggests the work to be done for future 

research. 



Chapter 2 

Previous and Related Research 

Various proposals have been made in the past several years concerning different problems 

of mobile computing. In this chapter, summaries of some previous related work in several 

areas of mobile computing are given. In particular, proposals concerning the database and 

file systems issues are discussed. The summaries are grouped according to the problems 

they investigated. Each summary or group of summaries is cited at an appropriate point 

and is followed by a short discussion. 

2.1 File Systems 

Replication can be used to improve the availability of data in the file systems. However, 

with the introduction of mobile clients, the scheme for file replica management has to be 

redesigned under the new mobile environment. Besides, disconnections are very frequent 

in the mobile environments. File systems should be designed in order to support discon-

nected operations. Proposals discussed below take into account some of these issues. 

2.1»! Management of Replicated Files 

Tait and Duchamp [36] proposed an algorithm for managing replicas of a replicated file 

system with a new file system service interface to reduce latency induced by the mobility 

of mobile clients. The algorithm is proposed with the assumption that file access consists 

of sequential write-read sharing, with little concurrent sharing. 

8 
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Latency is reduced by the use of the primary-secondary replication scheme in which 

a mobile client communicates with its primary replica only. The primary replica then 

communicates asynchronously with the secondary replicas. The primary replica is chosen 

to be the one that is nearest to the mobile client. When the mobile client moves around, it 

chooses some nearby replica to become its new primary replica and possibly drops another 

replica. 

Mobile clients read files from their corresponding primary replicas. Updated files by 

the mobile clients are periodically 'pickup' by the primary replicas. They are then further 

propagated to the secondary replicas. A mobile client can purge the updated files only 

after enough secondary replicas have recorded the updates. In some cases, a mobile client 

can require for the pickup as a result of cache full. 

A new read interface, known as the loose read, is defined. The traditional read, now 

called strict read, tries to access all the servers and possibly some of the clients if they 

are known to have strict read the same file before, to retrieve the latest copy. On the 

contrary, loose read accesses the copy with lowest cost, but with no guarantee to the value 

returned. Each call of loose read results in the following steps being performed: 

1. The client's cache is checked. 

2. If no copy of the file is found, the primary server is checked. 
I； { 

g. 3. If none of the above contains the copy, then the secondary servers are checked. m 
..1 、 

I In order to make strict read as efficient as loose read, the currency token is introduced, 
i 

A mobile client that is shown to be the only writer of the file can obtain the currency 

1 token in response to the strict read of the file. A mobile client that succeeded in obtaining 
• 'j 

the currency token is guaranteed to find the file with the same sequence of steps followed 

^ by loose read. 
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2.1.2 Disconnected Operations 

Satyanarayanan and Kistler proposed the Coda file system to support disconnected opera-

tions [24, 34]. Similar to the proposal made in [36], Coda is designed for applications with 

low degree of write sharing and that are not highly concurrent. The system under which 

Coda is designed consists of a large number of clients connected to the servers through 

a high bandwidth network. These clients may disconnect from the network owing to the 

failure of the network or the detachment of portable clients. 

In Coda, two mechanisms are employed in order to achieve high availability of data. 

They are server replication and disconnected operations. For both of these mechanisms, 

optimistic replica control strategy is applied in order to provide the highest possible 

availability of data. 

Data are replicated at more than one of the servers in Coda. The cost of replication 

is kept low by caching data at the clients. However, data cached at the clients have to be 

updated periodically with the replicas at the servers in order to make them useful. 

When a client is disconnected from the network for whatever reasons, all the file 

system requests are serviced by the contents of its cache. In order to support disconnected 

operations, three states (hoarding, emulation and reintegration) are defined in which the 

cache manager of the client, called Venus, operates. Venus operates in the hoarding state 

if the client is connected to the network and relies on the server replication for data. 

In this state, Venus tries to store useful data for use during disconnection. Besides, it 

tries to balance the needs of disconnected and connected operations. This is done by 

periodically comparing the priorities of different data objects which is calculated by the 

reference history and user profiles. 

Upon disconnection, Venus enters and remains in the emulation state until recon-

nection. During this state, Venus acts as the pseudo-server to take over many actions 

performed by the servers. Cache management during this state is similar to the hoarding 

state. One of the differences is that updated data are assigned infinite priority so as to 

prevent them from being purged before reconnection. Each update activity is recorded in 
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the log so that it can be replayed when the client reconnects to the network. However, 

log space may eventually be used up. In this case, no further update activity is allowed 

before reconnection. 

When the client reconnects to the network physically, Venus changes its state to reinte-

gration. In this state, changes made during emulation are propagated back to the servers 

and the cache of client is updated in order to reflect the current server state. During 

this period, all update activities are suspended until reintegration completes. Venus then 

changes back to the hoarding state. 

If reintegration fails owing to write/write conflicts of files, the log records are written 

to a replay file and is repaired by the users later. Log records in the cache are then purged 

in order that subsequent references will be refetched from the servers. 

Huston and Honeyman proposed another file system similar to Coda, and is known 

as AFS [17]. AFS differs from Coda in that Coda has the additional support of server 

replication to achieve high availability. Also, for Coda, the log is propagated to all the 

accessible servers and is executed there; whereas for AFS, log records are executed at the 

clients. 

The proposals discussed above deal with the problem of consistency for a single file 

but do not provide consistency across a group of files. Ahamad and Smith [2] proposed 

another correctness criterion for detecting consistency among a group of files, which is 

appropriate for systems supporting disconnected operations. The technique is based on 

the causal ordering among operations executed and is known as the causal consistency. 

For two operations oi and 02 executed on a set of objects, Oi is said to causally precedes 

02 if one of the following conditions holds: 

• oi and 02 are executed in the same process and oi is executed before 02； 

• 02 reads an object written by the Oi； 

• if there exists another operation 03 such that oi causally precedes 03 and 03 causally 

precedes 02, then Oi causally precedes 02; 
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If oi and 02 are not causally ordered, then they are said to be concurrent. 

The cached copies of two files /1 and /2 are said to be causal consistent either if 

the operations that created the two cached copies are concurrent or there does not exist 

another write operation that have created another version for either /1 or /2 and the 

version is not present in the cached copy. The set of objects are said to be causal consistent 

if each pair of them is causal consistent. It is shown that causal consistency is weaker 

than one-copy serializability used commonly in the database community. 

All the proposals discussed above take into account the problem of file consistency. 

The correctness criteria employed by the proposals, causal consistency in [2] or one-copy 

UNIX serializability in [36], for example, are all weaker than one-copy serializability. 

Besides, they have no concept of transactions. Also, most of the proposals above make 

the assumption of low concurrent sharing of file accesses. For the Coda clients, they 

are connected to the servers through high bandwidth channels, which contradicts to the 

assumptions made to the wireless networks. 

2.2 Database Management 

Several problems have been studied about the database management issue. They include 

transaction management, caching and cache invalidation, data replication, etc. Some of 

the proposals concerning the problems stated above are discussed. 

2.2.1 Data Replication Schemes 

Data replication is used to reduce the communication cost as well as to increase the 

availability of data in a distributed system. However, static data replication schemes 

cannot be applied in the mobile environments owing to the mobile nature of mobile hosts. 

It is believed that dynamic replication schemes are more suitable to be applied in the 

mobile computing systems. A preliminary work about this issue has been reported in [5 . 

Another proposal can be found in [16]. 
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The proposal made by Badrinath and Imielinski in [5] discusses various replication 

schemes under a system with mobile servers and clients. The mobile computing system 

consists of a number of wireless mobile terminals. These terminals serve to be either 

servers or clients and are connected to the base stations through the wireless channels. The 

base stations, in turn, are connected to the location servers by the wired network. Location 

servers correspond to Mobile Switching Offices and are connected among themselves by 

the fixed network. There are about 60-100 base stations under a location server. 

Six different schemes have been given. For the first three schemes, the server may 

replicate a copy of the data at the mobile client, the location server of the client or 

the location server of the mobile server. Writes on the data are then propagated to the 

corresponding copy. The first case incurs a search cost in locating the mobile client. For 

the latter cases, writes are on static copies, therefore no search cost is required. However, 

reading cost by the mobile clients becomes larger. 

The remaining three schemes require caching and invalidation. Similar to the first 

three schemes, the copy can be cached at the location server of the mobile server or 

client, or at the client itself. These schemes require invalidation messages to be sent. If 

the cached copy is invalid, the mobile server should then be located for a valid copy. 

The schemes are evaluated based on the read and write patterns and the search cost 

for locating the servers and clients. It is shown in the paper that mobility introduces a 

search cost which may make it no longer worth placing a replica of some data item to the 

mobile clients unless the read activity of the mobile clients is high enough to compensate 

for the search cost. � 

The proposal provided a preliminary work in this area. It shows how mobility affects 

the problem of data replication. However, in this proposal the system model is over-

simplified and no dynamic replication scheme is provided. 

Huang, Sistla and Wolfson [16] proposed several static and dynamic data allocation 

methods to the mobile hosts. The primary goal of the proposal is to minimize the com-

munication cost in accessing data objects. 

The study is based on a system with a single fixed host and a single mobile host. The 
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allocation method is to decide whether to replicate a particular data in the mobile host 

or not. Cost analysis is carried out for each of the methods to compare their performance 

under different situations. The expected cost, average expected cost and the cost in the 

worst case are calculated. Throughout the analysis of the methods, the cost of read by 

the fixed host and the cost of write issued by the mobile host are ignored since their costs 

are fixed for all the methods. 

Two schemes for data allocation, known as the one-copy and two-copies schemes, are 

presented. In the one-copy scheme only the fixed host has the data; whereas in the 

two-copies scheme, both the fixed host as well as the mobile host have that particular 

data. 

Based on these two schemes, the static and dynamic data allocation methods are pre-

sented. Static allocation method refers to the use of the same data allocation scheme 

throughout the whole execution time. That is, either the one-copy or the two-copies 

scheme is used throughout the execution time. In contrast, dynamic data allocation 

method changes the data allocation schemes continuously throughout the execution ac-

cording to the past k requests. If it is shown that the number of read requests is more 

than the number of write requests, then the two-copies scheme is applied. Otherwise, the 

one-copy scheme should be used. The read/write ratio is checked each time a request is 

received. The dynamic data allocation method is known as the sliding-window algorithm 

with window size equals k. 

The analysis is performed on two models. In the first model, known as the connection 

cost model, cost is calculated in terms of connection time. For the second model, known 

as the message cost model, cost is calculated by counting the number of messages passed, 

including both the data messages and the control messages. In both of the models, it is 

shown that both the average expected cost and the worst case cost of the dynamic method 

are better than that of the static methods. However, there is a tradeoff in selecting the 

value of k since the average expected cost of the dynamic method decreases as the value 

of k increases, but its cost of the worst case increases with the value of k. 

The paper has proposed data allocation methods that are quite close to the optimum. 
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However, only a single fixed host and a single mobile host is considered throughout the 

study. It is mentioned in [13] that the solution cannot be extended to a cell with many 

mobile hosts. The overhead of the algorithm in maintaining the window of requests is 

not shown. It is believed that the cost may increase sharply as the number of data in the 

database increases. Besides, the paper has no consideration of transactions. 

2.2.2 Cache Invalidation and Query Processing 

Several different caching algorithms have been proposed recently for the mobile comput-

ing environments [6, 7, 23, 39]. Barbara and Imielinski proposed in [6, 7] three different 

cache invalidation strategies, known as Broadcasting Timestamps (TS), Amnesic Termi-

nals (AT), and Signatures (SIG). These strategies make use of the periodic broadcast of 

invalidation reports by the servers in cache invalidation. A stateless server, which refers 

to a server with no information about the number of mobile clients that are currently in 

its cell and the data items that a particular client has cached, is used. In these meth-

ods, queries submitted at a mobile client are collected and not handled until the next 

invalidation report is received. 

The first two methods are similar. For the TS method, the invalidation report includes 

the identifiers as well as the timestamps of the latest change for the data items that have 

changed in the past w seconds. Each mobile client keeps a variable to hold the time when 

the last invalidation report is received. After a mobile client receives an invalidation 

report, it checks to see if the last invalidation report is received more than w seconds 

before. If so, the whole cache is purged; otherwise each data cached is checked against 

those included in the invalidation report. The data is either purged from the cache if the 

timestamp of the cached data is smaller than the one in the invalidation report, or the 

timestamp of the cached data is updated to the time when the report is broadcasted. 

For the AT method, the invalidation report includes the identifiers of the data objects 

that are updated after the past invalidation report is broadcasted. If a mobile client 

misses the previous invalidation report, the whole cache is purged after the current report 
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is received. Otherwise, data in the cache are checked individually. Data is purged if it is 

included in the invalidation report. 

For the SIG method, the invalidation report is formed by means of combined signatures 

that are used for comparing the copies of a file. Signatures are checksums computed over 

the values of data objects. An invalidation report is formed with a set of combined 

signatures of data objects. It can then be used to invalidate up to f data objects. If more 

than f data are updated after the previous report is broadcasted, there may be a high 

probability of false invalidation, i.e. a data is believed to be invalid although it is valid. 

It is found that if the mobile clients disconnect frequently, the signature strategy 

outperforms the others. However, if the clients rarely disconnect, the AT method is the 

best one. 

Jing, Bukhres, Elmagarmid and Alonso proposed another invalidation-report based 

algorithm in [23]. In this algorithm, the invalidation report consists of a set of binary bit 

sequences. Each of the sequences consists of a set of binary bits and a timestamp. Each 

bit represents a data object in the database. A bit is set to '1' if the corresponding data 

object has been updated since the time specified by the timestamp of the sequence. 

The invalidation report is organized as a hierarchical structure, with the highest rank 

sequence consisting of a number of binary bits equal the number of data objects in the 

database. The one following this sequence should have half the bits of the highest one, 

and so on. Half of the bits in any sequence can be set to 1 to indicate the data that are 

last updated. The kth bit in the zth sequence corresponds to the kth. 1 bit in the i + 1th 

sequence. If the highest sequence is reached, then the data represented by the kth 1 bit 

has been updated. 

The algorithm proposed has the advantage of small invalidation report size that is 

independent of the number of data objects to be invalidated. Besides, the algorithm can 

lessen the adverse effect caused by false invalidation, which is likely to happen in the SIG 

method mentioned above. 

The caching algorithms mentioned above make use of the cached data to answer queries 
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collected. However, the proposals do not provide any way of handling the updates gener-

ated by the mobile clients and they have not included the concept of transactions. Besides, 

they do not consider the distributed database protocol to be used in the fixed network. 

Our scheme tries to deal with these problems and its performance is studied. 

2.2.3 Transaction Management in Mobile Environments 

Pitoura and Bhargava [31, 32, 33] proposed a scheme to deal with the problem of data 

consistency with transaction support in mobile distributed environments. In this scheme, 

some of the fixed hosts are augmented with wireless interfaces to communicate with the 

mobile hosts and are known as the Mobile Support Stations (MSS). The coverage of a 

MSS's signal is known as its cell. Besides, the database is assumed to be distributed 

among the fixed hosts and the mobile hosts. It is partitioned into a set of clusters. 

Data stored in the same or neighbouring hosts form a cluster; whereas data stored in 

disconnected or remote hosts are considered to be in different clusters. Based on this 

definition, data contained in a MSS and in the mobile hosts residing in the MSS's cell 

form a cluster, while those residing in another MSS as well as the mobile hosts in its cell 

form another cluster. Given that the disconnection of mobile hosts is predictable, the 

configuration of clusters is dynamic in the sense that clusters can be created or merged 

upon a disconnection or connection of a mobile host. 

In order to deal with the problem of data inaccessibility caused by network contention 

or disconnections, two new types of transactions, known as the weak and strict trans-

actions, are defined. Weak transactions consist of operations accessing data copies that 

belong to the same cluster. These data are usually not strictly consistent and the opera-

tions are known as the weak read and weak write operations. Strict transactions consist 

of traditional read and write operations, and strict data consistency can be guaranteed. 

Each transaction submitted from the mobile or fixed host has to be decomposed into a 

number of weak and strict subtransactions. 

A weak read operation on data x reads a locally available copy of x, with the value of 
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X written by the last weak or strict write operation in the cluster. A weak write operation 

on X writes a local copy of x. A weak transaction has to commit locally at the cluster and 

globally after cluster merging. Data updated by a weak transaction become permanent 

only when it is committed globally. For example, a weak transaction may be executed at 

a mobile host that is disconnected from the network. The operations are therefore served 

by the data available locally in the mobile host. When the mobile host reconnects to the 

network later (cluster merging), the transaction has to commit globally in order to have 

its updated data become permanent. 

For a strict read operation, it reads the value that is written by the last strict write 

operation. This strict write operation is required to write several copies of the data. 

It can be observed that strict data consistency can be maintained for data located in 

the same cluster, while different degrees of inconsistency are allowed for data in different 

clusters. 

M-degree consistency is defined to bound the divergence of data versions created by 

weak transactions from those created by strict transactions. The degree M can be the 

number of weak writes at each cluster, the number of weak transactions allowed at each 

cluster, etc. 

The scheme allows transactions to be executed locally at the mobile hosts under ad-

verse network conditions by defining a new correctness criterion on the transaction ex-

ecution. However, some details about the scheme are not mentioned. For example, the 

algorithm for the global commit of weak transactions upon cluster merging has not been 

given, and no clear definition for the formation of clusters are provided. Besides, it is 

believed that a high abort rate of weak transactions upon cluster merging may result 

owing to the data conflicts. However, no performance analysis has been given concerning 

this issue. 

Jing, Bukhres and Elmagarmid proposed a lock-based scheme for transaction manage-

ment in mobile computing environments [22]. The scheme allows the read lock and unlock 

of a data object to be executed at different copies, hence reduces the message cost over 

the fixed network. Data are replicated in order to reduce the message cost further. An 
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optimistic read-one-write-all concurrency control approach is used, in which read locks 

are granted immediately while write locks are deferred until commitment. 

It is assumed that a mobile host will move away from a cell only when the results of 

all the operations submitted from it are received, and that only one transaction may be 

initialized by a mobile host at any time. 

Before the method can be applied, several problems have to be solved. First of all, it 

is observed in 2-phase locking that a lock has to be held by a transaction until no new 

lock request is required by it. However, if the read locking and unlocking can be executed 

at different fixed hosts, this requirement is not guaranteed. This is solved by comparing 

the version number of the data copies in the local fixed host with the one obtained at lock 

time. If the two numbers agree, then the serialization order can still be maintained. 

Besides, it must be able for an update transaction to determine that a data is not 

locked by another transaction for reading. This can be done by sending two rounds of 

messages to all the fixed hosts in order to obtain the information about the status of the 

data copies as well as granting the write locks. In the first round of message exchange, 

the transaction coordinator collects the lock/unlock information from all the fixed hosts. 

If it is shown that each read lock is matched with an unlock for the data to be written, 

write locks are set and updates are performed in the second round of message exchange. 

In order to keep the message cost to the minimum, these messages are merged in the 2 

phase commit protocol. 

The enforcement of write operations is guaranteed by the introduction of a new lock 

mode, known as the write intend lock (WJNTEND). A W_INTEND lock is not compatible 

with a write lock or a W_INTEND. Besides, a granted WJNTEND is not compatible with 

a requested read lock but a requested W_INTEND is compatible with a granted read lock. 

In the first round of message exchange, W_INTEND is set for a copy if no conflicting lock 

is granted there; otherwise it is blocked. In the second phase, a W_INTEND is changed 

to a write lock if the coordinator decides to commit the transaction. In this way, updates 

can be performed even with the existence of pending read locks. 

In order to solve the problem of frequent disconnection of mobile hosts, timeout is 
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used to abort a transaction submitted by a mobile host that is disconnected for a time-

out period. The timeout parameter can be specified by users in order to support their 

applications effectively even during a period of disconnection. 

The primary goal of the proposal is to reduce the message cost in the fixed network. 

However, the commit ratio of transactions is not considered. It is believed that a high 

abort rate of transactions may result owing to the high ratio of data conflict. Besides, the 

utilization of the wireless channels is not studied. Our scheme tries to provide results about 

these and shows that data conflict has little effect on the performance of transactions. 



Chapter 3 

System Model and Assumptions 

In this chapter, a system model under which the scheme is proposed is given. It is then 

followed by the correctness criteria as well as the assumptions made on the system. 

3.1 System Architecture 

One of the major components in the mobile computing system is the mobile hosts. In our 

system architecture, mobile hosts known as the walkstations are supported. [19]. These 

mobile hosts have their own resources and do significant amount of processing. They 

have their own disks with a limited amount of space [cache space) which can cache a 

portion of the database. The cached data can then be accessed and updated. However, a 

mobile host may use the resources of a fixed host occasionally owing to its inferiority to 

the fixed host. In order for the mobile hosts to be able to communicate with the rest of 

the network, some special purpose machines, known as the mobile support stations (MSS) 

21], are required. A MSS can be thought of as a fixed host augmented with a wireless 

interface to communicate with the mobile hosts. It is assumed that MSSs have the same 

functionalities as fixed hosts. 

The cellular networks with frequency reuse network topology is used [29], in which the 

large service area is divided into smaller areas, known as the cells. Each cell is covered 

by the signal of a MSS and is serviced by it. Communications between the MSS and a 

mobile host is possible only if the mobile host is located physically within the cell and 

identified itself with it. The mobile host is then said to be local to that particular cell. 

21 
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The cells are allowed to overlap, but a mobile host can be local to at most one MSS at 

any point of time. A mobile host that is not local to any MSS is said to be disconnected. 

A mobile host may disconnect from the network voluntarily, when it physically detaches 

from the network; or involuntarily, when network failure occurs [32 . 
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Figure 3.1: The Mobile Computing System Model 

Communications to and from a mobile host in a cell should pass through and be 

controlled by the MSS [29]. A message sent from a mobile host MCi to another mobile 

host MC2 will first be received by the local MSS of MCi. This MSS then forwards the 

message to the local MSS of MC2 which forwards it to MC2 over the wireless network. 

This may incur a large overhead in searching the current MSS that MC2 is local to owing 

to the mobility nature of mobile hosts [4 . 

Different access methods are used for messages sent to and from the mobile hosts 

through the wireless channels. Broadcasting of messages from the MSSs to the mobile 

hosts uses the Time Division Multiplexing (TDM) scheme, in which each channel user 

owns the entire bandwidth for a short period of time periodically [37]. Messages sent by a 

mobile host to its MSS uses the CSMA/CD method [37]. It is mentioned in [1] that TDM 

is the general method for multiplexing from the MSS to the mobile hosts. The papers 

'29, 40] describe that versions of CSMA methods are the most popular multiple access 

methods in mobile computing systems. 

The whole picture of a mobile computing system therefore consists of a set of reliable 

and powerful fixed hosts, with some of them act as the mobile support stations, and a 
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larger number of mobile hosts. The set of fixed hosts together with the large bandwidth 

communication paths among them form the fixed network. The fixed network has a num-

：,； ber of low-bandwidth wireless networks connected to it. Each of these wireless networks 

consists of a MSS and a number of mobile hosts that are physically located within the 

MSS's cell. Figure 3.1 shows the global architecture to support mobile wireless computing 

i [19:. 

3.2 Transaction and Data Model 

The database is a collection of n named data objects. It contains information about one 

particular enterprise. It is assumed that the database is fully replicated in all the fixed 

hosts, although the assumption can be relaxed. Each of these fixed hosts is said to be 

holding a copy of the data. 

In our system, user jobs are carried out in the form of transactions. A transaction is 

a program unit that accesses and possibly updates various data objects in the database 

[26]. It consists of a set of read and write operations, as well as either a commit or an 

I abort operation at the end to indicate whether the transaction completes its execution 

successfully. Each data accessed by a transaction is read exactly once by the transaction 

and written at most once if the data is updated. When a transaction is first sent to a 

host, the transaction is said to originate from (be submitted at) this host. 

Transaction Replication Scheme (TRS) [14] is applied as the replicated database pro-

tocol for the fixed network. As is defined in [14], data objects can be of either one of the 
j following types: 
.j 

• shared-private data owned by fixed host f. Only transactions submitted at f can 

perform writes, and these transactions access only shared-private data at / . 

.i 

• public data. Transactions submitted at any host can perform reads and writes. 

In order to handle two different types of data in the database, two types of transactions 

are identified: 

•S 

5 
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j • local transaction. Transaction submitted at a fixed host f accessing shared-private 

j data that are owned by f. 

• public transaction. Non-local transaction that may read public and/or shared-

private data, and that can write only public data. 

In TRS, the set of clock values are divided into a number of fixed intervals of [^1,^2), 

where t2 — ti is a constant value equal to S. Each of these intervals is called a TRS period. 

Public transactions submitted at a fixed host during a TRS period are collected. In con-

trast, local transactions submitted at a fixed host are executed there immediately. Their 

latest committed values, together with the public transactions collected, are broadcasted 

at the end of the TRS period. When a fixed host receives all the broadcasting messages 

from other fixed hosts, it starts executing the public transactions. 

An unique timestamp is assigned to each public transaction before it starts execution. 

The timestamp can either be the value of a global system clock or the value of a global 

logical counter that is incremented after a new timestamp has been assigned. Suppose 

that a transaction T, has been assigned a timestamp ti at host a. If a new transaction Tj 

is submitted at host a, then its timestamp, say tj, should be assigned such that ti < tj. 

The timestamps determine the serialization order (see section 3.3) among public trans-

actions. TRS ensures that the result of transaction execution is equivalent to a serial 

schedule where local transactions are executed immediately before the public transac-

tions submitted in the same period. This requires a fixed host to remember the values of 

the shared-private data it owns until the set of public transactions is received. However, 

before the set of public transactions arrives, some local transactions may have assigned 

new values to some of the shared-private data. Therefore it is required for each fixed host 

to keep several values of the shared-private data. Each of these data values is tagged 

with a version number. The version number measures how up-to-date each value is. A 

write operation will give a data value with version number greater than the latest written 

value of the same data object by one. A data value, together with the version number 

tagged with it, forms a version for a data object. A version of a shared-private data can 
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be discarded only when the set of public transactions requiring this version is completed, 

i.e. either committed or aborted. 

3.3 One-copy Serializability 

In a one-copy database, it is expected that the concurrent execution of transactions to be 

equivalent to a serial execution of those transactions. Such an execution is called serial-

izable. In order to determine if the concurrent executions of transactions are serializable, 

the serialization graph (SG) is defined [8]. A serialization graph is a directed graph whose 

nodes are the transactions and an edge between two nodes exists if some of the operations 

between the two transactions involved conflict. Given T,- and Tj be two transactions. 

An edge Ti — J) exists if one of T:s operations precedes and conflicts with one of Tj,s 

operations in the execution of the transactions. 

This correctness criterion is extended to a replicated database as the one-copy serial-

izability which requires the interleaved execution of transactions in a replicated database 

to be equivalent to a serial execution of the transactions in a one-copy database. 

In a replicated database, a data object and its copies are called logical data object and 

physical data objects respectively [14]. Operations of a transaction submitted specify the 

accesses of logical data objects, and are known as the logical operations. These logical 

operations, upon execution, are translated by some translation function r into a set of 

physical operations, i.e. operations accessing physical data objects. 

Transaction execution in a replicated database system can be modeled by a replicated 

history. As is mentioned in [8], a replicated history H over a set of transactions T 二 

{ T o , . . . , Tn} is a partially ordered set L = (E(T) , < ) where 

1. H = T(U?=oTO, where r is the translation function for T̂ ; 

2. there exist two dummy transactions % and T/ such that Th is translated into a set 

of physical write operations for each copy of each data object and T/ is translated 

into a set of physical read operations for each copy of each data object. Operations 
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in Th precede all other physical operations and operations in T/ are preceded by all 

other physical operations; 

3. for each Ti and any two operations pi and qi in T“ if pi <i g“ then every operation 

in r{pi) is related by < to every operation in r{qi); 

4. all pairs of conflicting physical operations are related by < , where two physical 

operations conflict if they operate on the same physical copy of a data object and 

at least one of them is a write; 

A committed transaction Tj reads-x-from another transaction Ti in a replicated history 

if there exists some copy Xa such that 

1. Wi[xa] is a physical write operation in Ti and rj[xa] is a physical read operation in 

丨 Ty, 

2. U){ X̂ i ^ ^j 3̂ a., 

3. there is no physical write operation Wk[xa] by Tk such that Wi[xa] < Wk[xa] < Vj[xa . 

A history H is one-copy serial if H consists only of logical operations and for any two 

transactions T,-, Tj that appear in H, either all operations in Ti appear before all operations 

in Tj or vice versa. A history Hi is equivalent to another history H2 if both Hi and H2 

have the same reads-from relationships. A replicated history is one-copy serializable if it 

is equivalent to a one-copy serial history over the same set of transactions. 

In order to determine if a replicated history is one-copy serializable, a replicated data 

serialization graph (RDSG) [8] is used. A RDSG for a replicated history H is a SG with 

enough edges added such that the following conditions hold. 

Suppose that T“ Tj and Tk are transactions, for all data items cc, 

1. if Ti and Tk write x, then either a path exists from Ti to Tk or vice versa; 

2. if Tj reads-x-from Ti, Tk writes some copy of cc, and a path exists from T) to Tfc, 

then a path exists from Tj to Tk. 
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A graph satisfying condition (1)/(2) is said to induce a write/read order for H. If H 

has an acyclic RDSG, then H is one-copy serializable [8 . 

Consider an example as shown in [8]. In this example, a database with data objects 

X and y with copies x^, Xb, Vc and yd is given. Figure 3.2 shows a history H with three 

transactions To, Ti and T2. Note that XaU denotes the failure of the copy Xa-

wO[xa] . ii[xa] *̂ ycin~̂ wl[yc] ^cl 

w _ ^x / V 
H= ^^cO X 

wO[yc] . ^ ^ ^ \ ^ / \ 

wO[yd]/̂  \ r2[yd] ^ xa 门 ~~̂  w2[xb] ~ ^ c2 

Figure 3.2: A History for the Execution of Transactions 

It is found that H is not one-copy serializable. However, the serialization graph of the 

history as shown in Figure 3.3 does not contain any cycle. 

Z ^ 
SG= TO • T l T2 

Figure 3.3: The Serialization Graph for H 

Figure 3.4 shows the RDSG of H. Since T\ reads-x-from To, T2 writes cc, and To — T2, 

therefore T\ ~> T2 appears in the graph. It is found that the graph has a cycle, which 

i means that the history is not one-copy serializable. 
k! 
i ^ ^ ~ ^ 

RDSG = TO • T1 *• T2 

Figure 3.4: The RDSG for H 

3.4 Assumptions 

Before going on to present our scheme, the following assumptions are made for the data 

and network model: 

• assumptions about the network: 
,,:j 

i 
1 

,s 

I 
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- e a c h fixed host and mobile host has an unique ID; 

— a single channel exists between the mobile hosts and their local MSS through 

which messages sent are received in the first in first out order; 

- t h e underlying network protocol does not handle message loss in the wireless 

channels; the scheme proposed should therefore take into account the problems 

incurred by it; 

- a l l the fixed hosts act as mobile support stations and the terms MSS and fixed 

host are used interchangeably ； 

—no bound is placed on the time interval between a mobile host disconnects from 

the network and reconnects to it and on the time delay in sending a message 

through the wireless channels; 

� 一 t h e fixed network is synchronized to within S, where S is sufficiently small. 

That is, the difference of clock reading between any two non-faulty fixed hosts' 

clocks is smaller than S. It is assumed also that S < < TRS period; 

• assumptions about data and transactions: 

—mobile hosts do not have any shared-private data of their own; 

- e a c h public transaction pre-declares supersets of its readset and writeset, which 

are supersets of data objects that the transaction reads and writes respectively; 

-transactions submitted at the mobile hosts are not interactive; 

- a t most one version of a data object can be cached in the mobile hosts at any 

point of time; 

- t h e ratio of R / W transactions (transactions containing write operations) sub-

i mitted at the mobile hosts is low; 

Note that some proposals have made the assumption that the underlying network 

protocol handles message loss in the wireless channels. For example, the proposal [22 

assumed the network handles message loss by retransmission, or the proposal does not 

work. 

1 
j 
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• In this chapter, a scheme for transaction management in a mobile computing environment 
1 • 

: is proposed. We focus on the basic scheme first. The extension of the scheme to deal with 

: the problem of partition failure in the fixed network is discussed later. 

” Transactions can be submitted at either the fixed hosts or mobile hosts. However, since 

: the mobile hosts do not have any shared-private data of their own, no local transaction 

‘ is submitted there. 
^ Local transactions and public transactions submitted at the fixed hosts during a TRS 

“ period [̂ 1,̂ 2) are executed at different times. Local transactions submitted at a fixed host _. 
； s are executed there immediately according to some local concurrency control mechanism. 

： At the end of the TRS period, their latest committed values, together with the batch of 

? public transactions accumulated locally at s are broadcasted to all the other fixed hosts. 
I 
j 、 

� This batch of public transactions is called the local batch of s at t2. The set of all public 

transactions collected in [t1,t2) is called the global batch at t2. 
• 

； For each fixed host 5 , s implicitly broadcasts at t2 the latest committed version for 
i each shared-private data owned by it. If a data object is not updated during the period 
i 
‘ [ 力 1 ， 力 2 ) , then its current committed value is implicitly broadcasted, though no version is 
溢 

s physically broadcasted. 
m 
目 After the global batch is received, the new versions of the shared-private data sent 
=1. 

( from other fixed hosts, if any, are written to the local copies. Public transactions in the 

i' 29 
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i 
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global batch are then executed according to the timestamp protocol. A public transaction, 

if it has to read some shared-private data, should read, the version that is broadcasted at 

t2. This requires each fixed host to keep multiple versions of the shared-private data it 

owns. After the execution of the global batch is completed, this version of shared-private 

data is discarded. 

For the public transactions submitted at the mobile hosts, they are further divided into 

two types, known as the read-only public transactions and R/Wpnhlic transactions. Read-

only public transactions consist of read operations only, while R / W public transactions 

contain read and write operations. For the read-only public transactions submitted at the 

mobile hosts, since they involve no change to the database, they are collected in batches 

and executed locally at the mobile hosts in order to reduce the response time. In order for 

these transactions to be serialized with other transactions, the cached data are required 

to be updated before the transactions are executed. The method for cache update and 

execution of read-only transactions are described in section 4.1. 

On the other hand, owing to data conflicts, it is believed that poor performance may 

result if the R / W transactions are executed at the mobile hosts. They are therefore sent 

to the fixed network for execution under TRS, where data conflicts will have little effect. 

Results of transactions, either committed or aborted, are broadcasted back to the mobile 

hosts. The method for transaction execution at the fixed network and the broadcasting 

of results are described in section 4.2. 

A correctness proof of the scheme is given in section 4.3. The extension of the scheme 

to support partitioning failures in the fixed network is described in section 4.4. 

4.1 Read-only Public Transactions 

In order for the read-only public transactions to be executed locally at the mobile hosts, 

some of the data objects should be cached in the mobile hosts in advance. This is achieved 

by the broadcasting of data from the MSSs to the mobile hosts. However, data cached 

may become invalid some time later and some mechanism is needed to inform the mobile 
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hosts about the changes of the cached data. 

4.1.1 Data Broadcasting 

In order to execute public transactions locally at the mobile hosts, both the shared-private 

and public data should be broadcasted to the mobile hosts periodically. Broadcasting the 

latest committed values of shared-private data at the end of each TRS period as is used 

in the fixed network no longer works here. A new mechanism has to be designed. 

Each fixed host keeps multiple versions of each shared-private data it owns. In order 

to have the transactions executed at the mobile hosts serializable with other transactions, 

a correct version of the shared-private data should be broadcasted to the mobile hosts. 

Assume by now that a global batch is collected in each TRS period. The case that a 

global batch is absent for a particular period is discussed later. 

Suppose that two global batches Tg and T^+i are collected in two consecutive TRS 

periods [t1,t2) and [t2,t3) respectively. A transaction in Tg writes a public data pi and a 

shared-private d a t a � i s broadcasted with Tg+i to other fixed hosts. Our scheme ensures 

that the read-only transactions executed at the mobile hosts, accessing the public data 

versions created by Tg, can be serialized immediately before T^+i. Based on this scheme, 

if a read-only transaction executed at a mobile host requires to access the data objects pi 

and s“ and it reads the latest committed value of pi in T", it should read the version of 

Si broadcasted with T^+i. 

There can be another choice of choosing the version of S{ broadcasted with Tg such 

that the serializability of transactions execution can be maintained. However, this version 

of Si may be discarded when the global batch Tg completes its execution. 
I r-, 

i In order to have such a serial order, data are broadcasted to the mobile hosts when 

i- a global batch completes its execution. A variable, known as MSS_time, is defined to 

keep track of the completion of global batches. 

Definition 4.1 A variable MSS_time is kept in each fixed host. It's value shows the 

broadcast time of the previous global batch that has completed its execution. 



Chapter 4 Transaction Replication in a Mobile Environment 32 

Suppose that a global batch broadcast at ti completes its execution (either committed 

or aborted) during the period [ t ^ , W i ) , the value of MSS_time should then be changed 

by each fixed host to ti by the time the execution of the global batch completes. 

Public data can be broadcasted to the mobile hosts once a global batch completes its 

execution. However, problem may occur if the global batch completes its execution before 

the next global batch is received. 

Consider two global batches Tg and 7^+i collected in two consecutive TRS periods 

[ti,^2) and [t2,U) respectively. If Tg completes its execution before T^+i is received, and 

data are broadcasted immediately when Tg completes its execution, then the set of data 

•j broadcasted will not contain the versions of shared-private data included in the message 
:I . 
丨 sent with T^+i. This may result in a non-serializable history. 

To solve the problem, data are required to be broadcasted to the mobile hosts at 

the end of the TRS period when the value of MSS_time is changed and the global batch 

following the latest completed global batch is received. If such a global batch is not 
j 

1 received by the end of the period, data are broadcasted when the global batch is received 

；； later. 

[ It is assumed in the above that a global batch is collected during each TRS period. 

Now we show how the assumption can be relaxed. Consider the case of three consecutive 

議 TRS periods [t1,t2), [t2,t3), [^3,̂ 4), with global batches collected at t2 and t4 only. It is 

shown below the problem and the way it is solved. 

By the definition of MSS_time, its value should not be changed after the execution 

of the global batch at t2 completes and before the execution of the global batch at t4 

completes. The versions of shared-private data created in [ t 3 , t 4 ) are therefore not broad-

casted to the mobile hosts. On the other hand, during the execution of transactions at 

the mobile hosts, some of the transactions may require the version of some shared-private 

data created in [ 力 2 , , 3 ) . However, this version may be discarded when the global batch 

at t4 starts to execute. This may result in a non-serializable history, especially when 

the shared-private data is missed in the cache (see section 4.1.3 for the way to handle 

cache miss). This is solved by adding a special public transaction p in each period, p is 
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. assumed to take infinitely short time to complete. With p is included, a global batch will 

be collected during each TRS period and the value of MSS_time will be changed accord— 
I 

ingly. The versions of shared-private data created in each TRS period will therefore be 

broadcasted to the mobile hosts eventually. 
Definition 4.2 An update notification U for TRS period [t,-,t,-+i), which contains all 
the data to be broadcasted to the mobile hosts, is defined. It contains two timestamps 

: tc and tp, with the value of t̂  equals the current value of MSS_time and the value of tp 
- equals that of tc in the previous update notification. The following data versions are also 

included: 

{[i, value]\value is the latest committed value of shared-private data i between tp+i and tc+i V 

value is the latest committed value of public data i in the period [ti,ti+i)} 

s where [tp,tp+i) and [ , c ,Wi) are TRS periods. 

An update notification is broadcasted by each MSS to the mobile hosts at the end of 

the TRS period during which the value of MSS_time is changed, i.e. there exists at least 

one global batch that has completed its execution in that period. If the global batch at 

‘ ic+i is not received by the end of the period, the broadcasting is delayed until the global 

batch is received by all the MSSs. 

； Note that the update notification contains all the data that are updated after the 

； previous update notification is broadcasted. This can be used to update the cache of the 
3 : mobile hosts. m ^ 

； 4.1.2 Cache Update 
！ 

‘ When a mobile host receives an update notification broadcasted from its local MSS, its 

‘ cache has to be updated before transactions can be executed there. This is done by 
i 

i comparing the cache contents against the update notification, and changing the values of 
a ,. 

• the cached data that exist in the update notification. 

‘ In order to keep track of the update notification received by each mobile host, a 
s 

1 variable known as Mobile_time is defined. 

I 

• 

ri 
I 
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Definition 4.3 A variable Mobile—time is kept in each mobile host. Its value is changed 

to that of the timestamp tc each time an update notification is received. The variable 

is used in the update of data objects cached in the mobile host when the next update 

notification arrives. 

When a mobile host receives an update notification, the value of Mobile_time is checked 

against the timestamps of the update notification {tc and tp). The relationship between 

the values of Mobile_time and the timestamps determines the fate of the cached data. 

If the value of tc is smaller than or equal to that of Mobile_time, the mobile host 

should have received the same update notification before. This may occur if a mobile 

host moves to a cell that is connected through a congested wireless channel. An update 

notification broadcasted through this channel may arrive at the mobile hosts later than 

the one broadcasted in other cells. Since there is no bound on the message delay through 

the wireless channels, an update notification may reach a mobile host after the mobile 

host has received an update notification with the same timestamp from other cells, i.e. 

tc < Mobile_time. 

Since the cached data of the mobile host has been updated with the same set of data 

versions, the mobile host ignores this message. 

Otherwise, i.e. t � > Mobile_time, the fate of the cached data is determined by the value 

of tp in the update notification. If the value of tp is larger than that of Mobile_time, the 

mobile host should have been disconnected from the network when the previous update 

notification was broadcasted. Some of the data in the cache may be invalid at the time 

the update notification arrives. Therefore all the data in the cache are purged. The cache 

is then replaced with data objects that appear both in the readset of any of the read-only 

public transactions collected and the update notification. 

On the o t W hand, if the value of tp equals that of Mobile_time, the mobile host 

should have received the previous update notification. In this case, each data in the cache 

is checked to see if it is updated by the transactions executed at the fixed hosts after the 

previous update notification was sent. The victims are then purged. Those data that exist 
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both in the update notification and the readset of any of the read-only public transactions 

collected are cached, possibly with the removal of data that are least recently used (LRU). 

Update of Mobile Computer's Cache 

(Let U be the update notification received) 

Case One: 
{tc < Mobile_time) 

/ / do nothing 
Case Two: 
{tc > Mobile_time) && {tp > Mobile_time) { 

drop entire cache; 
for each data object j G U { 

if [[j G readset of a transaction) && (cache not full)) 
cache j ； 

} 
} 
Case Three: 
{tc > Mobile_time) && (tp = = Mobile_time) { / / received previous notification 

for each data object j G cache { 
if U e u) 

purge j ; 
r 
for each data object j G U { 

if (j G readset of a transaction) { 
if (cache not full) 

cache j ; 
else 

purge the least recently used data and replace with j; 
} 

} 
} 

Figure 4.1: Update of Mobile Computer's Cache 

Note that given the value of tc > Mobile_time, the value of tp should not be smaller 

than that of Mobile_time. 

Figure 4.1 shows the algorithm executed by each of the mobile hosts to update its 

cache upon receipt of the update notification. 

！ After the cache is updated, the value of Mobile_time is changed to that of t � T h e 

V u . 
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mobile host can then execute the read-only transactions using the cached data. The 

scheme for the execution of read-only public transactions at the mobile hosts is discussed 

in section 4.1.4. 

4.1.3 Cache Miss 

Owing to the limited cache size of the mobile hosts, a transaction may fail to find the data 

it requires locally in the cache (cache miss). It is believed that sending the requests for 

the missed data by each mobile host and requiring the fixed hosts to make replies to each 

of the requests individually may not be suitable for the mobile computing environments 

with unreliable wireless channels. Besides, it may be a waste of the wireless bandwidth. 

After an update notification has been received by the mobile hosts and their cache 

contents are updated, each of them checks for the read-sets of the read-only public trans-

actions collected against the cached data. 

Definition 4.4 The set of data names appears in anyone of the read-sets of the public 

transactions collected but absent in the cache of a mobile host is known as the miss-set 

of the mobile host. 

A message including the miss-set and Mobile_time of the mobile host is sent to the 

local MSS after the cache update. 

A MSS, after broadcasting the update notification, waits for a pre-defined period of 

time, known as the collection period, to collect the miss-sets from the mobile hosts. 

Mobile_time of each request message is checked to see if its value agrees with that of 

MSS_time. If so, the mobile host that sent the request message should have received 

the latest update notification broadcasted by the MSS, and there does not exist any 

global batch completed after the broadcasting of the update notification. Data names 

in the message are then stored by the MSS. If there does not exist a global batch which 

has completed its execution during the collection period (MSS_time is not changed after 

the broadcasting of update notification), versions of data stored are broadcasted to the 
j 
j 

\ 
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於： 

‘； mobile hosts together with its MSS_time at the end of the collection period. The set of 

data versions broadcasted are selected according to the followings: 

‘ • If it is a shared-private data, then the version selected is the one that is accessed by 

" the public transactions being executed in the fixed network; otherwise 

• it is a public data and the version written by the latest committed global batch is 

selected. 

:, A mobile host, upon receiving the reply from the MSS about the miss-set, checks the 

； value of Mobile_time against that of MSS_time in the reply message. If two values agree, 

data versions in the message are cached. 

‘ There may exist the case that the reply of miss-set does not contain all the data 

- required by a mobile host. This happens if the miss-set sent by a mobile host is interfered 

T by some noise in the wireless channel and cannot be received by the MSS. In this case, the 

mobile host sends a request message including the data name of the data missed as well as 

Mobile_time to the local MSS when a transaction has to read it. When the MSS receives 

: the request message, it checks to see if the value of MSS_time and that of Mobile_time in 

the request message agree. If so, a data version that is chosen by the same method above 

， is sent back to the mobile host. 
s 

I 

: 4.1.4 Execution of Read-only Public Transactions 
m 

Read-only public transactions submitted at a mobile host are collected. They are then 

i executed in batch after an update notification is received by the mobile host and the 

•1 cached data are updated. 
s For each transaction, those read operations that involve accesses to data objects found 

1 in cache are executed first. Others that have to access data missed in the cache are forced 
• 

to wait until the reply from the MSS concerning the miss-set is received. 

] If a mobile host fails to receive the reply of miss-set for whatever reasons, in order 

I not to abuse the narrow wireless bandwidth, transactions that are not committed have to 
i 
• 

i 
i 
I 
4 • _ 
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abort. Otherwise, the transactions continue to execute and any further miss of data will 

cause an individual request message being sent to the MSS for the data version. Section 

4.1.3 has discussed how cache miss is handled. 

send the miss-set to the MSS; 
for each transaction tr̂ ^ G PUi { 

for every READ(j) operation G tr^ { 
if ( ( j in cache) && (no update notification received)) 

read j; 
else if (a new update notification received) { 

abort tVx] 
break; } 

} 
if (all READ(i) processed) 

commit tr̂ -, 
else if [trx not aborted) { 

wait for reply from MSS about the miss-set; 
if (reply received) 

？ for every READ(j) operation not processed { 
if ( ( j in cache) && (no update notification received)) 

read j; 
else if (a new update notification received) 

break; 
else { / / cache miss 

send request to MSS for j., 
if (reply received) 

read j ； 

else II timeout in waiting for reply 
break; 

} 
} 

if (all READ(j) processed) 
commit ir^; 

else 
abort trx\ 

} 
} 

Figure 4.2: Execution of Read-only Public Transactions at M{ 

If a new update notification is received while the transactions are executing, in order 

to maintain the serialization order, all those transactions should be aborted. 

1 Consider a mobile host Mi. Let PUi be the batch of read-only public transactions 
•1 

•I 

...1 

5 . 
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Figure 4.3: An Execution of the Proposed Scheme 

collected at Mi. Figure 4.2 shows the algorithm for the execution of read-only public 

transactions in Mi after the cache is updated. Note that although the algorithm shows a 

serial execution of the transactions, they are in fact executed concurrently. 

Figure 4.3 shows a scenario of the scheme where the mobile host M fails to get the value 

of the missed data j from the MSS owing to the commitment of a newer global batch PB[ 

In the figure, vertical direction represents the wireless channel, and horizontal direction 

represents time, with later time positioned at the right of the earlier one. Note that the 

TRS periods are not drawn to scale. 
s 
J5 

4.2 R / W Public Transactions 

‘ R / W public transactions submitted at the mobile hosts are executed in the fixed hosts. 

When a R / W public transaction is submitted at a mobile host, it is sent to the local MSS 

= s immediately and is included in the local batch of s. The local batch is then broadcasted 

to other fixed hosts at the end of the current TRS period and is executed there. Result 

of the R / W public transaction, either commit or abort, is broadcasted with the update 

； notification by each MSS at the end of the period when the global batch containing the 

m 
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R / W public transaction completes its execution. 

The above method works well with systems where all the hosts are connected with 

reliable channels, and the hosts seldom disconnect from the network. However, because 

of the frequent disconnection of mobile hosts in mobile computing environments, a MSS 

may fail to receive the R / W public transaction sent by a particular mobile host, or a 

mobile host may fail to receive the result of a transaction that it sent previously. In order 

to make the method suitable for the mobile computing environments, a set of variables, 

known as latest_committed, are defined to keep track of the results of the R / W public 

transactions received by the mobile hosts. 

Definition 4.5 A variable latest.committedi is defined for each mobile host i. It keeps 

the largest timestamp among those R / W public transactions sent by i that have their 

results received by i. Each latest_commiUedi is maintained by and replicated among all 

the MSSs. 

For each mobile host z, each MSS keeps a list of R / W public transactions sent by 

i. At the end of each TRS period, the set of R / W public transactions received by 

each MSS are broadcasted to all the other MSSs in the local batches. The value for 

anyone of latest-Committedi is broadcasted also if its value is changed. The value of 

latest-committedi is then written to the copies in other MSSs if its value is greater than 

the copy there. When a global batch completes its execution during a TRS period, data 

have to be broadcasted to the mobile hosts at the end of that period. Each MSS finds 

out all the R / W public transactions in the lists with timestamps greater than the corre-

sponding values of latest_committedi and are either committed or aborted. Results of the 

transactions, together with their timestamps, are broadcasted to the mobile hosts with 

the update notification. 

When a mobile host i receives an update notification, R / W public transactions sub-

mitted by it with results in the update notification have their commit/abort realized. 

However, there may be some transactions with timestamps smaller than some of the 

.•'! 

:'••； 
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committed/aborted transactions but do not have their results included in the update no-

tification. This occurs if the transactions cannot be received by the MSSs for whatever 

reasons. In this case the transactions are considered to be aborted. 

After the checking is completed, the mobile host i sends an acknowledgement to the 

local MSS which includes the largest timestamp of those transactions that are realized 

to be either committed or aborted. The value of the timestamp will then be written to 

the copy of the variable latestjcommittedi in the MSS if its value is greater than that of 

latest-Committedi. 

4.3 Correctness Argument 

To prove that the proposed scheme is correct, it is necessary to prove that all histories 

representing executions that could be produced by it are one-copy serializable. We try 

to simplify the proof to the case with one MSS and a mobile host. The proof can be 

extended to the case with multiple mobile hosts and MSSs easily. 

Formally, a transaction can be defined with the following notations: 

Ti： it refers to a transaction i. 

X： a data object named x. Two distinct copies, known as Xo and Xc, are defined. Xo 

is the copy residing in the MSS whereas Xc is the cached copy in the mobile host. 

n[x]: a read operation by transaction i accessing data object x. 

Wi[x]: a write operation by transaction i accessing data object x. 

a： the commit operation for transaction i. 

Two notations for global batches are defined: 

GBi： a global batch at i. 

cci： the global commit operation for the global batch GBi. 
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Definition 4.6 A special transaction, known as the cache transaction, is defined to 

represent the process of sending data from the MSS to the mobile host, such as the 

broadcasting of update notification. For each data object x sent from a MSS to a mobile 

host, the cache transaction contains a read that reads the value of the replica of x at the 

MSS immediately after the value is committed, and writes the value of x both in the MSS 

and the mobile host. It may also contains a set of purge operation p to purge the copy yc 

of some data objects y from the cache. 口 

Augmentation 4.1 The definition of read-from relation is augmented since a data object 

can be purged from the mobile host. A read-only transaction Tj executed at a mobile 

host is said to read-x-from a transaction 7] if the following conditions hold: 

1 • U)z ^ c ^^ ^j ^ c • 

2. there does not exist another transaction Tk such that Wi[x^ < Wk[x^ < Vj[xc • 

3. there does not exist a cache transaction T^ with a purge operation prn such that 

Wi Xc < Pm p^c_ < ^j ,^c.. 

Since only the cache transaction will write the copy Xc for some data x, a read-only 

transaction executed at the mobile host must read-x-from a cache transaction. A cache 

transaction T^, in turn, reads-x-from a transaction T^ if the following conditions hold: 

1 • ̂ m p̂ô  < n̂ _̂ o. • 

2. Cm < Tn[xo]', oi if T^ is a public transaction included in a global batch GBa, then 

CC^ < T^n p^o_ • 

3. there does not exist another transaction T^ such that Cm < Cp < Vn[xo]] or if Tm 

is a public transaction included in a global batch GBa, then there does not exist 

another transaction Tp included in another global batch GBh {a + b) such that 

CCg, <C CCi) <C T"n .̂ 0. • • 
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Augmentation 4.2 The following edges are added to SG{H) to form a RDSG for H: 

Given Tj be a read-only transaction submitted at a mobile host, and it reads-x-from 

a transaction Ti. Then for each transaction (excluding cache transaction) Tk that writes 

X and Ti ~^ Tk, an edge Tj — Tk is added. 口 

In the next sub-section, we show that the resulting graph is a RDSG for H. 

4,3.1 Correctness Proof 

A MC history H is a replicated history that models an execution of the transactions in 

the scheme. Every MC history H has the following properties: 

Property 1: If Ti writes x, then H contains either Wi[xo] or both Wi[xo] and Wi[xc . 

Property 2: If Ti reads x, then H contains either ri[xo] or ri[x^ exclusively. 

Property 1 says that a transaction writes at least the copy residing in the MSS. Prop-

erty 2 says that either one of the copies of a data can be read by a transaction. 

Let GBm and GBn be two consecutive global batches and Ti be a cache transaction 

that caches the values of some data written by the public transactions in GBm to the 

mobile host. Next we describe the properties of T], 

Property 3: cc^ < Vi[xo] < cCn. 

Property 4: If Tj is a public transaction in GBn that reads (writes) cc, then Wi[xo] < 

Tj[Xo] {Wi[Xo] < Wj[Xo])-

Property 5: If a local transaction J] writes a data y such that its value is read by some 

public transaction in GBn, then c/ < ri[yo]; and for every local transaction 

Tm that reads (writes) y and Ti ~^ Tm, Wi[yo] < r^[yo] {wi[yo] < Wm[Vo])-

Property 3. <̂  4 say that the cache transaction should read the values of data written 

from the public transactions just committed and should be serialized before the next 
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global batch. Property 5 shows that serialized order of the cache transaction and local 

transactions. 

To prove the correctness of the scheme, it is required to prove that every MC history 

H has an acyclic RDSG. We will first show that the resulting graph with the above edges 

added is a RDSG of H and then show that the RDSG is acyclic [8:. 

Lemma 4.1 Let H be a MC history. SG{H) with edges added induces a write order for 

H. 

Proof: From property 1, it is shown that each of the transactions containing write 

operations writes at least the copy Xo for each of the data x being written. Therefore 

for any two transactions that write a data x, there must be a path between them. The 

resulting graph hence induces a write order for H. 口 

I 

Lemma 4.2 Let H be a MC history. SG{H) with edges added induces a read order for 

H. 

Proof: Suppose T) reads-x-from T“ Tk writes x (z + k and j + k), and there is a path 

from Ti to Tk. We need to prove there is a path from Tj to Tk. 

Case 1: Tj reads Xo. 

Ti, Tj and Tk may either be public (local) transactions or the cache transactions. We will 

show that any combination of these transactions induces a read order. 

Suppose that T“ Tj are public (local) transactions, and Tk is a cache transaction. Since 

Tk writes the copy Xo, Tj and Tk conflict. Either rj[xo] < Wk[xo] or Wk[xo] < rj[xo]. In the 

former case, a path exists from Tj to Tk and we are done. For the latter case, Tj should 

read-x-from Tk or some transaction Tm such that a path exists from Ti to T^, which is a 

contradiction. 

The same argument can be applied to other combinations of 7], Tj and Tk. 

Case 2: Tj reads Xc-

Tj should be a read-only transaction at the mobile host. Ti should be a cache transaction 

�� . 
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~ and Tk can be either a public (local) transaction or a cache transaction. If Tk is a public 

• (local) transaction, then with the edge being added to SG{H) by Augmentation 4.2, we « 
“ have a path from Tj to Tk. If Tk is a cache transaction, since Tk contains Wk[xc], either 

m Tj[xc] < Wk[xc] or Wk[xc] < rj[xJ. In the former case, a path exists from Tj to Tk and we 

- are done. If Wk[xc] < rj[xJ, then Tj must read-x-from Tk or some transaction Tm such 

- that there is a path from T] to Tm, which is a contradiction. 口 

I： 

_ We have proved that every MC history has a RDSG. It remains to prove that the 

* RDSG for every MC history H is acyclic. 

1 
"： Lemma 4.3 Let H be a MC history. RDSG of H is acyclic. 

^ Proof: We first show that the inclusion of the cache transaction will not affect the 

“ ordering of transactions executed under TRS. We then show that the inclusion of read-only 

， transactions create no cycle. From properties 3 k 4, it is shown that a cache transaction, 

accessing the latest committed values of a global batch GBi, can be serialized after GBi 

and immediately before the global batch following GBi. Besides, it is shown in property 

•i 5 that the cache transaction can be serialized before the local transactions after the 

one whose value is broadcasted to the mobile host. A serial order of these transactions 

- therefore looks like: 

： . . » Tii ^ Ti, ^ ... T‘ — Tc ^ Tpi... ^ Tpn — 7L+i.. • 

where Ti-, Tp., .and T � a r e local, public and cache transactions respectively. 

We then show that the inclusion of read-only transactions in the mobile hosts will not 

: create any cycle. Assume that a serial order of transactions as shown below is obtained 

� without read-only transactions (note that ‘ ~ ^ ， r e f e r s to an edge): 

•m 

_ • ‘ • Tai — Ta2 — • • • Ta“ ~^ Ta�• • • 

Suppose, by way of contradiction, a cycle exists in the RDSG with read-only transac-• \ 
- tions included. The cycle may look like: 

m 
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Ta,^T,,^T,,^---n^^"-Ta^^n,^Ta, 

where T^ may be Ta^ for some j or a read-only transaction submitted at a mobile 

host. 

The cycle should contain some read-only transactions submitted at the mobile host. 

Assume that Tt̂  is such a transaction i. Tb, should have read-x-from Ta^ for some data 

X, where Ta„ is a cache transaction. Note that there may be some other read-only trans-

actions included the cycle, but since their existence will not affect the arguments shown 

below, we focus on 7^ here. 

On the other hand, an edge 7^ ~^ Ta, appears if either one of the following cases 

holds: 

1. some physical operation in Tb̂  conflicts with some physical operation in Ta .̂ Since 

Tt, is a read-only transaction, Ta, cannot be a read-only transaction. Ta, must have 

therefore written some data y. Besides, since Tb̂  reads the copy y^ Ta, should have 

written the copy y。，that is to say, Tâ  is a cache transaction. 

2. the edge is added according to Augmentation 4.2. This means that Ta, is a local or 

public transaction. 

However, the above serial ordering of operations will prevent case 1 to occur. It 

remains to prove that case 2 will leads to contradiction. 

It is shown in Augmentation 4.2 that the edge T&, ^ Ta, is added if Ta, is either a 

local or public transaction that has written some data y, and there exists a transaction 

Tâ  such that T ,̂ reads-y-from Tâ  and Tâ  — Ta,. From the serial order of Ta, — •.. Ta„, 

we get 

Tau—Tai—Tci4Tc2—...Tan 

iSince a read-only transaction from a mobile host will not have an edge to another read-only transac-
tion from mobile host, such a transaction will be isolated from other read-only transactions. 
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However, if Tâ  is a local or public transaction that has written y, then there must be 

a cache transaction T^, (T^, may be TaJ such that a value of y is written to the copy y � 

Therefore 7^ should read-y-from some cache transaction between and including Tâ  and 

Ta^, which is a contradiction. • 

Theorem 4.1 The proposed scheme is correct. 

Proof: By Lemma4.1 and 4.2, SG{H) is a RDSG of H. By Lemma4.3, SG{H) is acyclic. 

Therefore H is lSR. 口 

4.4 Extension to Support Partition Failures 

So far we are assuming that the fixed hosts can communicate with each other in the fixed 

network, and no partition failure occurs. However, it is not the case in the real world. 

With the introduction of partition failures, some modifications to the scheme proposed in 

the previous sections have to be made. This section describes how the scheme is modified 

to cope with this problem. 

In TRS, partition failure is handled by means of the virtual partition protocol [11]. In 

this protocol, each transaction is executed under a view, which is a subset of the set of 

all the fixed hosts. Each fixed host has a view V, showing the set of fixed hosts that it is 

able to communicate with. Each view has a unique view-id. 

For the execution of read-only transactions, problem occurs when a mobile host moves 

from one partition to another. In order to solve the problem, the view-id where the 

MSS currently has is also broadcasted in the update notification. On the other hand, 

each mobile host keeps the view-id of the MSS that is received in the previous update 

notification. On receipt of a new update notification, each mobile host first checks whether 

the view-id in the update notification agrees with that kept by it. If so, the same steps 

as mentioned in cache update are carried out. Otherwise, the mobile host should have 

moved from one partition to another, and the cached data should all be purged. The steps 



1 
.1 

Chapter 4 Transaction Replication in a Mobile Environment 48 

as is mentioned in case two of the cache update are carried out. The value of view-id kept 

by mobile host is then changed to the one in the update notification. 

Besides, the request messages for missed data should also include the values of the 

view-id kept by the mobile hosts. Each time a request message is received, the MSS first 

checks for the value of view-id in the request message with that kept by it. Disagreement 

of the two vallies will result in the ignorance of the request. Otherwise, reply with the 

view-id of MSS included is sent back to the mobile host. 

Partition failure will also affect the broadcasting of R / W public transactions sent by 

a mobile host to all the other fixed hosts. In order to solve the problem, it is required for 

the MSSs to broadcast the set of R / W public transactions received as well as their results 

to other MSSs upon view update. 



Chapter 5 

Design and Implementation of the 

Simulation 

In order to experiment with the scheme proposed, a simulation is designed and con-

structed. The simulation is a program written in the CSIM [35] language. The simulation 

gathers statistics during a run, and presents a summary upon completion. These statistics 

provide much information about the performance of the scheme under different system 

settings which can be used to analyze and compare the performance of various designs, 

and also validate the correctness of the scheme. 

The simulation does not provide a fine-grained model of the transaction replication 

scheme, since we are primarily interested in the behaviour and performance of the transac-

tions submitted at the mobile hosts. A detailed performance study about the transaction 

replication scheme can be found in [28 . 

5.1 CSIM Language 

CSIM is a simulation language which is copyrighted by Microelectronics and Computer 

Technology Corporation. CSIM is a library of routines, which can be used to create 

process-oriented discrete-event simulation models with the use of C or C + + programs. 

A CSIM program models a system as a set of CSIM processes which interact with one 

another by using the CSIM structures, such as requesting service at facilities, waiting for 

events, etc. 

49 
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水 
Figure 5.1: Possible Moves for Mobile Hosts in Cell 1 k 2 

Each simulation model maintains simulated time. It can be used to produce estimates 

of time and performance. CSIM provides structures that can be used to collect simulation 

statistics during the execution of a model. 

5.2 Simulation Components 

5.2.1 Fixed Network 

The fixed network consists of a fixed number of MSSs. Each MSS is assigned an unique 

ID number before the simulation. It is assumed that each MSS has infinite resources and 

that the fixed network is highly reliable, hence no failure happens there. It is assumed 

also that the fixed network is perfectly synchronous. For the wired channels, it is assumed 

that the time delay in sending and receiving messages is negligible. 

Concerning about the global batches of public transactions, it is assumed that they 

can be broadcasted and executed to completion within 2 TRS periods. Since the fixed 

network is assumed to be highly reliable, all the global batches can be committed globally. 

5.2.2 Mobile Host 

The number of mobile hosts in the system is assigned before a particular run of the 

simulation. Each mobile host has an unique number assigned as its ID. A mobile host 

can move from one cell to another periodically. A predefined pattern of movement is used 

to govern the movement of the mobile hosts over the fixed number of cells in the system. 
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Figure 5.1 shows the possible moves for the mobile hosts in a particular cell. A mobile 

host can move to anyone of the cells allowed with equal probability. The period of time 

between successive moves of a mobile host across the cells is chosen randomly, with an 

exponential distribution, and a fixed mean time. 

A mobile host can be powered off during a particular run. The period of time for it to 

remain connected before it is to be powered off is chosen randomly with an exponential 

distribution over a fixed mean time. It is assumed that the mobile hosts that are powered 

off will reconnect to the system after a short period of time, which is randomly assigned 

over a fixed mean time with exponential distribution. Besides, a mobile host may fail to 

send or receive a message through the wireless channels owing to the background noise. 

5.2.3 Wireless Channel 

Each mobile host communicates with the local MSS through the wireless channel. In order 

to simplify the simulation, it is assumed that CSMA/CD is used as the access method for 

the broadcasting of messages from the MSSs to the mobile hosts, and that no collision 

occurs during the transmission of messages. The resulting access method to be used for 

the transmission of messages through the wireless channels is the half-duplex CSMA/CD 

method, with no collision occurs. With these assumptions, the messages sent through a 

wireless channel are simply queued up. 

It is mentioned in [15] that the time cost in sending and receiving a message should 

be calculated as: 

_ 1 Message_Size … ” 
Transmit_Delay + — ~ ~产 . , ^ + CPU 

Bandwidth 

However, with a small-sized wireless cell [20] and narrow wireless bandwidth, the factor 

• Message-Size becomes dominant. Therefore, it is assumed that the time cost for sending Bandwidth 
and receiving a message through the wireless channel is computed by: 

Message—Size 
Bandwidth 
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Unreliable property of a wireless channel is simulated by using a variable with value 

that is uniformly distributed from 0 to 1. Each time when a mobile host has to send/receive 

a message through the wireless channel, a value of this variable is generated and is checked 

against a predefined threshold with value between 0 and 1. If the value of this variable is 

greater than the threshold, the channel is said to be noisy at that time and the message 

is lost. Otherwise, the message is sent/received through the wireless channel successfully. 

5.2.4 Database and Transactions 

Data in the database are represented by distinct numbers. Updated data versions are 

broadcasted to the mobile hosts periodically. In order to examine the effect of different 

caching strategies on the performance of the scheme, a simple caching method derived from 

[13] is used in one of the experiments. The method assumes that the data objects accessed 

by the transactions submitted at the mobile hosts is based on a 80/20 access model. That 

is, 80% of the accesses is directed to 20% of the data objects. The frequently accessed 

data objects are known as the popular data objects and the rest are called unpopular data 

objects. 

Transactions are submitted at a host with an exponential distribution. Each transac-

tion consists of a number of operations in a predefined range and the set of data read by 

a transaction should be the superset of the data written by it. It is assumed that the ex-

ecution time of local transactions in a fixed host is negligible. For the public transactions 

submitted at both the fixed hosts and mobile hosts, shared-private and public data are 

accessed with equal probability. 

Since it is assumed that a mobile host that powered off will soon reconnect to the 

； system, transactions that do not start to execute when the mobile host is going to power 

off will be kept until the mobile host reconnects to the system. For those transactions 

that are executing when the mobile host is about to power off, the mobile host waits for 

them to finish before shutting down. However, no message will be sent and received by 

the mobile host in this period. 
• \ 
；! 1 
i 
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5.3 A Lock-based Scheme 

： In order to have concrete and meaningful simulation results, a simple scheme which makes 

use of locking in handling transactions executed in the mobile computing environments [9 

； is used for comparison with our scheme. The scheme is proposed with the assumption that 

the wireless channels are reliable and a message sent by one party through the wireless 

channel should be received by another party, given that both of them are connected to 

the network. 

As is in our scheme, data are divided into shared-private data and public data. Each 

data object is replicated among all the fixed hosts. However, the transaction replication 

scheme is not applied here. Instead, the read-one-write-all approach [8] is applied to 

manage the replicated data. 

Two-phase locking [26] is implemented as the concurrency control scheme. A read 

operation from a transaction of a mobile host will cause the data copy in the local MSS of 

the mobile host being locked with shared-mode. Data read by the transaction will then 

be cached in the mobile host during the execution of the transaction, and purged upon 

completion. For a write operation on data x, all the data copies of x in the fixed hosts 

have to be locked exclusively. 

Transactions in a mobile host are executed serially. If there is a transaction being 

processed, any newly arrived transactions are forced to wait until the transaction finished 

execution. The scheme makes use of an operation-oriented approach in processing trans-

actions submitted at the mobile hosts. Operations of a transaction submitted at a mobile 

host are sent to the local MSS for execution one-by-one. When an operation is sent to 

the MSS, the mobile host has to wait for the reply before processing the next operation. 

If the reply shows that the lock for the data cannot be acquired, the transaction has to 

abort. 

A status indicator will be sent to the MSS after all the operations of the transaction 

are processed or if the transaction has to abort owing to the failure in acquiring a lock. 

The MSS can then commit or abort the transaction accordingly. 

3 
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When a mobile host is about to disconnect from the network, it sends a disconnection 

indicator to the MSS. On the other hand, when the MSS receives the disconnection 

indicator, it checks and releases all the locks being held by the mobile host. 

Timeout is used by the fixed hosts in handling deadlock as well as the missing of 

messages owing to the disconnection of mobile hosts. 

5.4 Graphing 

Data collected by the simulation programs have to be represented in the form of graphs 

before they can be analyzed. C-shell utilities and Matlab ^ are used to postprocess and 

generate graphs in Encapsulated Postscript format. 

Results and graphs of the simulation are provided in Chapter 6. 

^Copyrighted by the MathWorks, Inc., 1984 - 1994 



^ 
：！ 

I 
\ 

.i 

Chapter 6 

Results and Analysis 

I This chapter presents the results of various simulation experiments carried out to examine 

the performance of the proposed scheme. The chief objective of the experiments is to 

observe the performance of the transactions submitted at the mobile hosts as well as the 

• utilization of the wireless channels under different system settings. 

Two sets of experiments are carried out. Performance of the proposed scheme is 

studied first. It is then followed by the comparison with the lock-based scheme mentioned 

in chapter 5. 

6.1 Results Dissection 

For the experiments discussed below, several statistics are shown. The meaning as well 

as the computation for these statistical data are described below: 

1. Utilization of wireless channels. This, shows the amount of time that the wireless 

channels are occupied with messages. It is calculated by: 

busy time 
total elapsed time 

2. Transaction throughput. This gives the number of transactions submitted at the 

mobile hosts that can be committed in a unit time. 

3. Response time of read-only public transactions. This gives the mean execution time 

] of read-only public transactions executed at the mobile hosts. Execution time of a 

55 
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transaction refers to the period of time between the submission of the transaction 

and its commitment. Note that only the committed transactions are considered. 

4. Commit ratio of read-only public transactions. This refers to the fraction of read-

only public transactions submitted at the mobile hosts that can be committed during 

the simulation. It is calculated by: 

number of committed transactions 
number of committed transactions + number of aborted transactions 

5. Cache hit ratio. This refers to the number of read accesses that can be gained locally 

in the cache (cache hit) of the mobile hosts after update notifications are received 

and before the corresponding replies of miss-sets are received. It is calculated by: 

number of cache hit 
number of cache hit + number of cache miss 

6. Response time of R / W public transactions. Similar to the case for read-only public 

transactions. 

7. Commit ratio of R / W public Transactions. Similar to the case for read-only public 

transactions. 

6.2 Performance of the Scheme 

In this section, the performance of the scheme under various system settings are studied. 

The set of parameters and their values are described first. It is then followed by the 

experiments and analysis. 

6.2.1 Parameters Setting 

In the simulation program, the parameters are set with reference to [13, 38]. Each of the 

transactions, both local and public, submitted at a fixed host has number of operations in 

the range between 8 and 12. Local transactions are submitted at a fixed host with mean 

time equals 10 seconds. 

^ • 5 . 
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Transactions submitted at a mobile host have number of operations ranges from 4 to 

8. Each of the mobile hosts can cache up to 30 data versions. 

There are 9 fixed hosts in the system. Each fixed host owns 20 shared-private data 

objects. The database has 150 public data. The system therefore has altogether 330 data 

objects. 

Parameter Description Value 
Parameters for Fixed Network 

"^UM_SERVER number of fixed hosts in the system 9 
LOC-ARR-TIME inter-arrival time of local transactions 10 seconds 
FJMIN_OPER minimum number of operations in a transaction 8 
F_MAX_OPER maximum number of operations in a transaction 12 

Parameters for Data Objects 
F_PDATA number of public data in the system ] ^ 
F_SDATA number of shared-private data for each fixed host 20 

Parameters for Mobile Hosts 
"CACHE^IZE cache size 30 data ~ " 
MAX_OPER maximum number of operations in a transaction 8 
MIN_OPER minimum number of operations in a transaction 4 

Parameters related to Message and Time 
lD_SIZE size of data, id 10 bytes — 
DATA_SIZE size of a data version lK bytes 
TRAN_SIZE size of a R/W transaction 100 bytes 
COMMITJvlESG commit/abort of R/W public transactions 100 bytes 
ACK_MESSAGE acknowledgement of transactions results received 100 bytes 
MESG-HEADER fix-sized header for each message 30 bytes 
BANDWIDTH size of each wireless channel 1 x 10^ bps 
DATAJO I/O time for mobile hosts~~ 0.035 seconds 
DATA_CPU CPU time for mobile hosts 0.01 seconds 
POWER_OFF mean time for a mobile host to power off — 1500.0 seconds 
DISJDURATION mean time for a mobile host to remain powered off 100.0 seconds 
W_TIMEOUT timeout waiting a message in the wireless channel 1.5 seconds 
SIMTIME simulation time 12000 seconds 

Table 6.1: Parameters Setting 

Each copy of a data object occupies lK bytes; whereas the data ID for each data object 

is of size 10 b3^tes. The size of a transaction is 100 bytes. Each message broadcasted by a 

MSS concerning the commit/abort of R / W public transactions submitted at the mobile 
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Variable Parameters Description 
TRS-PERIOD — duration of the TRS period — 
MOBILE_NO number of mobile hosts in the system 
ARR_TIME inter-arrival time of public transactions at a mobile host 
COLLECTION-PERIOD" collection period for the miss-sets 
CONNECT_PROB probability that a wireless channel is reliable ~ 
PUB_ARR_TIME inter-arrival time of public transactions at a fixed host 
L_BATCH_TIME lower bound for the execution time of global batches 
UjBATCH-TIME upper bound for the execution time of global batches 
RW_PROB percentage of R/W transactions submitted at a mobile host 
HAND_OFF mean time for a mobile host to leave the cell 

Table 6.2: Variable Parameters 

hosts is sized 100 bytes; and each of the acknowledgements sent by a mobile host for the 

commit/abort of these transactions has size equals 100 bytes also. 

It is assumed that the messages sent through the wireless channels consist of a fix-

sized header of 30 bytes. All the messages mentioned above are sent through the wireless 

channels with bandwidth sized 1 x 10® bps. A mobile host may timeout waiting for a 

message sent through the wireless channel and the timeout period is set to 1.5 seconds. 

Each I /O access for a mobile host uses 0.035 seconds and each cpu access uses 0.01 

seconds. The mean time for a mobile host to remain connected before power off is 1500 

seconds. When a mobile host disconnects from the network, it will reconnect to the system 

after a period of time that is exponentially distributed over a mean of 100 seconds. Table 

6.1 shows the list of parameters together with their values. 

Table 6.2 shows the set of parameters with their values to be varied for each run of the 

simulation. These parameters include the duration of the TRS period, number of mobile 

hosts in the system, etc. The execution time for the global batches is also varied. The 

parameters L_BATCH_TIME and U_BATCH_TIME give the lower and upper bounds for 

the execution time of a global batch. Values of L_BATCH_TIME and U_BATCH_TIME 

are fractions to the variable TRS_PERIOD. 

!. 
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6.2.2 Experiments and Results 

In this section, results of the experiments carried out are presented. For each of the 

experiments, the values of the variable parameters are shown, and a short description is 

given at the end to analyse the results. 

Experiment 1 Variation of TRS Period 

This experiment is to study the effect of the length of TRS period on the performance 

of transactions submitted at the mobile hosts. The values of the variable parameters are 

shown in Table 6.3. 

It is assumed that a global batch can be committed globally within the period of one 

TRS period. Given the value of TRS_PERIOD equals 1.5 seconds, a global batch can be 

committed globally in the period between 1.2 (L_BATCH_TIME x TRS_PERIOD) and 

1.5 seconds (U_BATCH_TIME x TRS_PERIOD). 

Parameter Value 
ARR-TIME ~l5.0 seconds “ 
COLLECTION-PERIOD 0.4 seconds 
CONNECT-PROB 0.95 

TFB_ARR_TIME _5.0 seconds — 
TlRATCH-TIME ~Q^ “ 

U_BATCH-TIME 1 
RW-PROB 0.1 
HAND-OFF 1500.0 seconds 

Table 6.3: Variable Parameters Setting (experiment 1) 

Figure 6.1 shows the results of the experiment with TRS_PERIOD having values of 

1.0, 1.2, 1.5 & 1.8 seconds respectively. The system has number of mobile hosts varies 

from 10 to 800. 

It is found in Figures 6.1 (a) k (c) that the response time of transactions submitted 

at the mobile hosts increases as the length of TRS period increases. With a longer TRS 

period, transactions submitted at a mobile host have to wait for a longer time before they 

• i 
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Figure 6.1: Variation of TRS Period 

can be executed. This contributes to the gaps among the curves. Besides, it is found in 

Figure 6.1 (a) that the response time of the read-only transactions for all the cases are 

increasing steadily. This is owing to the increased number of mobile hosts in the system, 

which increases the number and size of messages being sent through the wireless channels. 

Furthermore, it is found in Figure 6.1 (b) that the commit ratio of the read-only 

public transactions for the system with the length of TRS period equals 1.0 seconds is 

maintained at a lower level than the others. It is because with such a short TRS period, 

some requests for the missed data may arrive at the MSSs after a newer global batch is 

committed globally, which results in the increase in abort ratio. Also, it is found that 

the commit ratio for the system with the length of TRS period equals 1.8 seconds starts 

to drop when the number of mobile hosts is about 400. It is because with a longer TRS 

period, more transactions are collected by each mobile host. This results in a larger set 
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of data missed and a longer time is required to send and receive this set of data. The 

execution time of the read-only transactions hence increases. When the number of mobile 

hosts reaches 400, the execution time of the transactions becomes so long that some of 

them cannot complete their execution when the next update notification arrives. This 

results in the sharp decrease in commit ratio. Under this system settings, the best length 

for TRS period should be around 1.2 to 1.5 seconds. 

It should be noted that the upward slopes at the beginning of the curves in Figure 6.1 

(b) are caused by the higher probability of missing the update notifications by the mobile 

hosts. With fewer mobile hosts in the system, the total number of messages being sent 

through the wireless channels decreases. However, the number of update notifications 

being broadcasted is more or less the same for different number of mobile hosts. Given a 

fixed message loss probability (CONNECT_PROB), the probability of losing an update 

notification by a mobile host increases with fewer number of mobile hosts. 

Experiment 2 Variation of Reliability of Wireless Channels 

Parameter Value 
TRS-PERIOD ~1.5 seconds 一 

ARR-TIME —15.0 seconds一 

COLLECTION-PERIOD 0.4 seconds 
PUBiRR_TIME 5.0 seconds 
L-BATCH-TIME 0.8 

U_BATCH-TIME 1 

RW-PROB 0.1 

HAND-OFF 1500.0 seconds 

Table 6.4: Variable Parameters Setting (experiment 2) 

This experiment is to investigate the performance of the scheme with wireless channels 

interfered with different levels of noise. The values of the variable parameters are shown 

in Table 6.4. 

Figure 6.2 shows the curves for the systems with values of CONNECT_PROB equal 

0.75, 0.85, and 0.95 respectively. Each curve shows the performance of the system with 
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number of mobile hosts varies from 10 to 800. 
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Figure 6.2: Variation of Reliability of the System 

It is found that as the reliability of wireless channels decreases, the response time 

of public transactions submitted at the mobile hosts increases and their commit ratio 

decreases. It is because as the wireless channels become more noisy, a message sent 

through a wireless channel is more probable of being lost. If a mobile host cannot receive 

an update notification, read-only public transactions collected there cannot be executed. 

Besides, results of R / W public transactions are lost. The mobile host will then have to 

wait for the next update notification before it can have the results of the R / W public 

i transactions realized and the read-only public transactions executed. 

Also, as the wireless channels become more unreliable, more messages sent by mobile 

hosts will be lost and more requests will timeout waiting for their replies. Therefore the 

i commit ratio of transactions is lower for the system with wireless channels that are more 
1 
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: unreliable. Note that the commit ratio of the R / W public transactions is very close to the 

value of CONNECT_PROB. This shows that the commit ratio of R / W public transactions 
mtf 

， depends largely on whether the transactions can be sent to the MSSs. 

j Experiment 3 Variation of Inter-arrival Time of Public Transactions at Fixed Hosts 

1 This experiment is to examine the effect of the number of public transactions submitted 

• at the fixed hosts on the performance of the scheme. In other words, it is to examine the 

’ effect of the amount of data updated in each global batch on the system's performance. 
.邏 

; The inter-arrival time of public transactions, PUB_ARR_TIME, is given the values 1, 2, 

~ 3, 4, 5, 6, 7 k 9 seconds. The values of other variable parameters are shown in Table 6.5. 
I: 
- Parameter Value 
2 TRS-PERIOD 1.5 seconds 
“ MQBILE_NO 800 
-溷 ARR-TIME 15.0 seconds 
I COLLECTION_PERIOD 0.4 seconds 
• CONNECTJROB 0.95 
： L-BATCH-TIME 0.8 
‘ U_BATCH_TIME 1.0 
； RW-PROB 0.1 
等 HAND_OFF 1500.0 second^ 
- — ^ 

•M:\ 

:- Table 6.5: Variable Parameters Setting (experiment 3) 
^ 

xm 

- Figure 6.3 shows the results of the experiment with number of mobile hosts equals 800 

. for all the cases. 

It is found from the results that the performance of transactions deteriorates greatly if 

^ the amount of data updated in each global batch is very large. As shown in the graphs of 

� Figure 6.3, the commit ratio of read-only public transactions for the case with the value 

^ of PUB_ARR_TIME equals 1 second falls below 0.4. Besides, the response time of R / W 

厲 public transactions for the same case is greater than the others for about 0.2 seconds. It 

: is due to the larger sets of data copies being included in the update notifications, which 

• greatly increases the message cost in sending them to the mobile hosts. Response time of 

二 R / W public transactions therefore increases. 

i 
m 
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Figure 6.3: Variation of Inter-arrival Time of Public Transactions at Fixed Hosts 

Besides, if the message delay of sending the update notifications is so large as in the 

case with the value of PUB_ARR_TIME equals 1 second, no mobile host will be able to 

send the miss-set to the MSSs by the end of the collection periods, hence no reply will 

be received. This can be verified from Figure 6.3(a) in which the utilization of wireless 

channels drops for the case with the value of PUB_ARR_TIME equals 1 second. According 

to the scheme proposed, read-only transactions requiring data missed have to abort if no 

reply of miss-set is received. 

However, a larger amount of data broadcasted can reduce the response time of read-

only transactions owing to the increased cache hit ratio. Under this system setting, the 

optimal value for PUB_ARR_TIME should be around 4 to 5 seconds. 

Experiment 4 Variation of Execution Time for Global Batches 
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This experiment is to analyse the effect of execution time of global batches on the 

performance of transactions submitted at the mobile hosts. The execution time of a 

global batch is bounded by the variables L_BATCH_TIME and U_BATCH_TIME. The 

experiment is carried out with the pair of variables assigned the values (0.4, 0.8)，(0.6, 

1) k (0.8, 1.2), which correspond to the time periods 0.6-1.2 seconds, 0.9-1.5 seconds, h 

1.2-1.8 seconds. The values of other variable parameters are shown in Table 6.6. Results 

of the experiment are shown in Figure 6.4. 

Parameter Value 
TRS-PERIOD 1.5 seconds 
ARR-TIME 15.0 seconds 
COLLECTION-PERIOD 0.4 seconds 
CONNECT_PROB 0.95 
PUB_ARR_TIME 5.0 seconds 
RW-PRQB 0.1 
HAND-OFF 1500.0 seconds 

Table 6.6: Variable Parameters Setting (experiment 4) 

As shown in Figure 6.4, performance of the scheme is comparable for the cases with 

the pair of variables having values (0.4, 0.8) and (0.6, 1). However, if the execution time 

of a global batch is allowed to exceed the duration of a TRS period, the results worsen 

sharply. It can be found in Figure 6.4 (b), (c) k (d) that with the pair of variables having 

values (0.8, 1.2), the commit ratio of the read-only transactions as well as the response 

time of the transactions submitted at the mobile hosts are worse than that of the other 

two cases to large extent. 

It is because with such a long execution time for the global batches, the update 

notifications may not be sent at the end of each TRS period. This results in the sharp 

increase of response time for the R / W public transactions. Besides, a larger number of 

read-only transactions are collected by each mobile host before they can be executed. The 

need for the wireless bandwidth increases, hence more transactions may timeout waiting 

for replies of their requests. This will both increase the abort rate as well as the response 

i 
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Figure 6.4: Variation of Execution Time for Global Batches 

time of read-only transactions. Another reason for the sharp decrease in commit ratio of 

read-only transactions is that a global batch may now commit at the very beginning of 

a TRS period, which causes more requests by the read-only transactions for the missed 

data to be rejected by the MSSs. 

Experiment 5 Variation of the Length of Collection Period 

This experiment is to study the effect of the length of collection period on the per-

formance of the read-only public transactions executed at the mobile hosts. The variable 

parameter COLLECTION_PERIOD is given the values 0.3, 0.4, & 0.5 seconds. A special 

case with the value of COLLECTION_PERIOD equals 0 second is also included. In this 

case, the mobile hosts send the requests for missed data on demand after the update 

notifications are received. The process of sending the miss-sets is ignored in this case. 

？ 
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I 
I. 

f Values of other variable parameters are shown in Table 6.7. 
i.. 
!• I 

Parameter Value 
TRS-PERIOD T.5 seconds — 
ARR-TIME T5.O seconds — 
CONNECTJPROB 0.95 
PUB_ARR-TIME 5.0 seconds 
L_BATCH-TIME 0.8 
U-BATCH-TIME 1 
RW_PROB 0.1 
HAND-OFF 1500.0 seconds “ 

Table 6.7: Variable Parameters Setting (experiment 5) 

Results of the experiment with number of mobile hosts varies from 10 to 800 are shown 

in Figure 6.5. 
^ 

i As shown in Figure 6.5, response time of read-only transactions decreases as the du-

ration of collection period decreases. However, if the length of collection period drops 
) 

:̂ beyond 0.4 seconds, the commit ratio starts to deteriorate. It can be observed from Fig-

ure 6.5(c) that, the commit ratio for the curve with the value of COLLECTION—PERIOD 

i equals 0.3 seconds starts to drop when the number of mobile hosts reaches 200. This 

： is owing to the fact that as the number of mobile hosts increases, the number of R / W 

public transactions submitted at the mobile hosts increases, which in turn increases the 

� size of the update notifications. Eventually, the collection period is not long enough for 

the MSSs to collect even one single miss-set. As a result, no reply will be sent and the 
transactions have to abort. 

Moreover, it is found that for the case with the value of COLLECTION—PERIOD 

equals 0 second, the commit ratio of read-only transactions maintains at a very low level. 

It is due to the unreliable wireless channels which cause some of the messages sent through 

them to be lost. Since no miss-set is sent by the mobile hosts in this case, more messages 

have to be sent for the missed data. Nevertheless, missing anyone of these messages or 

its reply will cause the transaction in question to abort. Therefore more transactions are 

aborted when compared with the other two cases. 

m . 
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Figure 6.5: Variation of the Length of Collection Period (CONNECT_PROB 二 0.95) 

In order to verify the above arguments, the same experiment with wireless channels 

tuned to different levels of reliability is carried out. Two runs of the experiment, one with 

more unreliable wireless channels (CONNECT_PROB = 0.85) and the other with reliable 

wireless channels (CONNECT_PROB 二 1.0), are carried out. Results of the experiments 

are shown in Figure 6.6 & 6.7. 

As shown in Figure 6.6, when the value of CONNECT_PROB equals 0.85, the commit 

ratio of read-only transactions for the case with the value of COLLECTION_PERIOD 

equals 0 second drops below 0.2; whereas for the rest of the cases, a commit ratio of 

about 0.7 can still be maintained. However, as shown in Figure 6.7, if the value of 

CONNECT_PROB equals 1.0, i.e. totally reliable wireless channels, the commit ratio of 

the read-only transactions for the case with the value of COLLECTION—PERIOD equals 

0 second makes a sharp increase to more than 90%. This shows that in a system with 
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Figure 6.6: Variation of the Length of Collection Period (CONNECT_PROB = 0.85) 

unreliable channels, grouping and sending the missed data in batches can greatly improve 

the commit ratio of read-only transactions, though the response time will be increased a 

little bit. 

Experiment 6 Performance of the Scheme with Different Transaction Access Patterns 

It is shown in the previous experiments that the set of data broadcasted in the update 

notifications may affect the performance of the scheme. In this experiment, the 80/20 

access model is applied to the transactions submitted at the mobile hosts in order to 

observe the difference in the performance of the scheme. Different caching schemes are 

employed to cope with the change in transaction access model. 

In this experiment, the first 30 numbered public data (20%) are selected as the popular 

public data; while the first 4 numbered shared-private data in each fixed host are chosen to 
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Figure 6.7: Variation of the Length of Collection Period (CONNECT_PROB = 1.0) 

be the popular shared-private data. There are altogether 66 popular data in the database. 

Three different variations of the scheme are compared: 

• has-popular. In this method, transactions submitted at the mobile hosts follow the 

80/20 access model. For those data that are updated and have to be included in 

the update notifications, only the popular data objects will have their data values 

included. The unpopular data objects will only have their data IDs included for 

invalidation. 

參 in_between. In this method, transactions submitted at the mobile hosts follow the 

80/20 access model, and all the data objects in the update notifications will have 

their data values included. 
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• no-popular. This is the method used in the previous experiments, with transactions 

from mobile hosts accessing all the data objects with equal probability, and update 

notifications including all the data values of the updated data. 

Table 6.8 shows the values of the variable parameters. Figure 6.8 shows the results of 

卜丨 the experiment. 

: Parameter Value 
= TRS-PERIOD 1.5 seconds 
• ARR-TIME 15.0 secondi~~ 

COLLECTION-PERIOD 0.4 seconds 
"CONNECT-PROB ^ 9 5 “ 

PUB-ARR-TIME 5.0 seconds 
：! L-BATCH-TIME 0.8 
•. U_BATCH-TIME 1 一 

RW-PROB 0.1 
- HAND-OFF 1500.0 seconds 

Table 6.8: Variable Parameters Setting (experiment 6) 
1̂ .:. 

；I 

: In Figure 6.8，it can be observed that the method has_popular outperforms the other 

two methods in the utilization of the wireless channels and the response time of the R / W 

public transactions. This can be explained by the smaller update notifications being 

: broadcasted. With only the values of updated popular data objects being included, the 

size of update notifications for the method has_popular should be smaller than that of the 

others. This in turn reduces the time in broadcasting the update notifications. 

However, as shown in Figure 6.8 (b), the smaller size of update notifications for the 

method has.popular results in the worst response time of read-only transactions among 

— the three methods. It is because at each mobile host, there will be some transactions 

submitted during the broadcasting of update notifications. These transactions can start 

execution once the update notifications arrive, hence they can have very short response 

time. However, with small-sized update notifications as is in the method has^popular, only 

few transactions can enjoy such benefit. For the other two methods, with similar-sized 

“ update notifications, they can have more read-only transactions with short response time 



念 w 

跳 ‘ 

：；-••• Chapter 6 Results and Analysis 72 

owing to the reason stated above. With more mobile hosts included in the system, more 

data are updated during each period. This further increases the difference in the size of 

update notifications between the methods in_between and has^popular. Hence the overall 

response time of read-only transactions for the two methods diverge. 
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- Figure 6.8: Performance of the Scheme with Different Access Patterns (RW_PROB = 0.1) 
！ 

|l ^ 
； On the other hand, it is found that the response time of read-only transactions for 
1 ,•• 

； the method nojpopular converges with that of the method has_popular as the number of 
r 
«-»-
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mobile hosts increases. It is because of the low cache hit ratio of the method nojpopular. 

As shown in Figure 6.8 (e), the cache hit ratio for the method no-popular increases slower 

as compared with the other two methods, and maintains at a low level. As a result, more 

data are missed and more messages have to be sent. This is reflected from Figure 6.8 (a). 

The response time of the read-only public transactions for this method hence increases 

more than that of the others with the increase in the number of mobile hosts. 
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Figure 6.9: Performance of the Scheme with Different Access Patterns (RW_PROB 二 0.2) 
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In order to observe how the methods perform with a larger set of updated data, the 

value of RW_PROB is changed from 0.1 to 0.2 and the same experiment as above is 

performed. Results of the experiment are shown in Figure 6.9. 

It can be found in Figure 6.9 that the commit ratio of read-only transactions for the 

methods in_between and nojpopular start to drop when the system has more than 300 

mobile hosts. This shows that in a system with high update rate, the method hasjpopular 

can achieve higher commit ratio of read-only public transactions, but with the tradeoff of 

higher transaction response time. 

Experiment 7 Cache Update Vs Cache Invalidation 

This experiment is to determine whether the data values of updated data should be 

included in the update notifications. Transactions submitted at the mobile hosts follow the 

f 80/20 access model here. Three models are examined in order to observe their difference 
L ‘ 

in behaviour. 
！ 

Parameter Value 
TRS-PERIOD 1.5 seconds 
ARR-TIME 15.0 seconds 
COLLECTION-PERIOD 0.4 seconds 
CONNECT_PROB 0.95 
PUB-ARR-TIME 5.0 seconds 
L-BATCH-TIME 0.8 
U-BATCH-TIME 1 
RW-PROB 0.1 
HAND_OFF 1500.0 seconds 

Table 6.9: Variable Parameters Setting (experiment 7) 

• Invalidation. The update notifications contain no data values of the updated data 

objects. Only their data IDs are included. The update notifications now serve for 

invalidation instead of update. 

參 In-between. The update notifications contain data values of the updated popular 

data objects. Updated unpopular data objects will only have their data IDs included 

i" 
i 
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in the update notifications. This is in fact the method has_popular used in the 

previous experiment. 

• Update. The update notifications contain data values of all updated data objects. 

Data cached can then be updated. This is the method in.between used in the 

previous experiment. 

Table 6.9 shows the values of the variable parameters used in this experiment. Results 

of the experiment are shown in Figure 6.10. 
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Figure 6.10: Cache Update Vs Cache Invalidation 

It can be observed from the results that the response time of read-only public trans-

actions is the best for the case with the largest set of data values included in the update 

notifications. From Figure 6.10 (b), it is found that the response time of read-only trans-

actions for the method Update is smaller than that of the method In_between, which in 
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turn is smaller than that of the method Invalidation. It is owing to the gain in response 

time by the transactions submitted during the broadcasting of update notifications as 

mentioned in the previous experiment. On the other hand, it can be observed that the 

response time of read-only transactions for the method Invalidation diverges from the 

other two. This can be explained by the low cache hit ratio of the method which results 

in more cache misses, hence more data have to be requested from the MSSs. 

Besides, it can be seen from Figure 6.10 (d) that the response time of the R / W public 

transactions for the two methods Invalidation and In.between are quite close. This can be 

： explained by the small difference in the size of update notifications broadcasted for the 

two methods as shown in Figure 6.10 (a). 

5 Experiment 8 Variation of HAND_OFF ^ 
I, . 

This experiment is to study the performance of the scheme with different frequencies 
»1 
1 of mobile hosts moving from one cell to another. The values of the variable parameters 

are shown in Table 6.10. 

Parameter Value 
TRS-PERIOD 1.5 second7" 
ARR-TIME 15.0 seconds 

-• COLLECTION-PERIOD 0.4 seconds 
^ CONNECT_PROB 0.95 一 

: PUB_ARR-TIME 5.0 seconds 
- L-BATCH_TIME 0.8 — 

U-BATCH-TIME 1 一 

RWJROB 0.1 — 
ki • • 

- Table 6.10: Variable Parameters Setting (experiment 8) 

Results of the experiment with values of HAND_OFF being 500, 1000 k 2000 seconds 

® are shown in Figure 6.11. It is found that the curves are very close for all the cases. This 

shows that given the movement of mobile hosts is not vigorous, it has little influence on 

the performance of the scheme. 
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r Figure 6.11: Variation of HAND_OFF 

丨 Experiment 9 Variation of Clock Synchronization among Fixed Hosts 

S' This experiment is to study the effect of clock synchronization among the fixed hosts 

( on the performance of the scheme. It is cited in [14] that the clocks of fixed hosts can 

I be synchronized to within a few milliseconds of one another. The scheme is tested with 

the maximum difference between any two clocks of fixed hosts to be within 0, 3, 5, 7 k 9 
' i 

seconds. 
Table 6.11 shows the values of the variable parameters used in the experiment. Figure 

6.12 shows the results of the experiment. 
It is found that the difference in performance of the scheme between a perfectly syn-

I 

1̂  chronized system and a system with the difference between any two fixed hosts' clocks to 

be about a few milliseconds is very small. 

mr 

I 
m 
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Parameter Value 
TRS-PERIOD T.5 seconds 
ARR-TIME — 15.0 seconds 

: COLLECTION_PERIOD 0.4 seconds 
CONNECT_PROB “ 0.95 

T^B_ARR_TIME 5.0 seconds 
L_BATCH_TIME ~ ^ 
U_BATCH_TIME “ 1 
RW-PROB "0.1 — 
HAND-OFF 1500.0 seconds 

::萝 

Table 6.11: Variable Parameters Setting (experiment 9) 

6.3 Comparison with the Lock-based Scheme 

In this section, performance of the proposed scheme is compared with that of the lock-

f ‘ based scheme as mentioned in chapter 5. The objective of the experiments is to investigate 

ii whether read-only transactions should be executed at the mobile hosts and whether lock-
|l 

ing is a suitable method to be used in the mobile computing environments. 

In order to have the two schemes comparable, the following assumptions are made to 

the system: 

• all data objects in the database are public data objects; 

. • the wireless channel is reliable, hence all the messages sent through it should be 

received by the recipients; 

• the mobile hosts are not allowed to move from one cell to another; 

It is shown in the previous section that the movement of mobile hosts from one cell to 

another has little effect on the performance of our scheme. For the lock-based scheme, it 

is believed that the movement of mobile hosts will increase the message cost in releasing 

locks. Since the cost of sending messages through the wired channels is assumed to be 

negligible, mobility of mobile hosts will not affect the performance of the scheme. In order 

: to simplify the simulation, it is not implemented here. 

...!'-

动-

imKfamgs. 



_ '-

：；-••• Chapter 6 Results and Analysis 79 

醒,. 

醒，‘. 0.35i 1 1 1 1 1 1 n 1.55j . 1 1 1 ‘ 1 1 ； I 

： ： : / ^ r ^ / " “ ^ 
广 ^x � / ^ 

p t x ^ ^ . t ^ “ ^ -
, ‘ j 0 . 1 5 - y ^ 一Difference = 0ms | 1 . ^ . d ^ ——Dtfference = 0ms 
_ A 5 y ^ . . " . Difference = 3ms ® ^ ^ . . " Difference = 3ms 
3 . ^ / ^ ——Difference = 5ms S_ y ^ _.•DWerence=5ms 
一 0.1- > * . Difference = 7ms | ^ ' ^ ' ^ * • DHference = 7ms 
• I ， y ^ - - Difference = 9ms j T — " Difference = 9ms 
r 0.05o 100 200 300 400 500 600 700 BOO ^'^^0 100 200 300 400 500 600 700 800 
• ‘ ‘ Number ol Mobite Hosts Number of Moblte Hosts m '� ^ 
i � (a) Utilization of the Wireless Channels (b) Response Time of Read-only Public Transactions 

h 1 ‘ ‘ ‘ ^ 
! - .� 45. Z -

„ j r ' , J ; i ^ E 4 0 - Difference = 0ms y ^ 

• I ^ ^ — : 、 ! - ‘ “ ^ . … D i f f e r e n c e = 3ms ^ X ^ 

^ " I 2.5- c / ^ ^ ' ^ ^ .言35_ - -Difference = 5ms y ^ . 

‘ ！ " • ^ , l s o - . Difference = 7ms y ^ 

r 1 ^S:J^ I -- D— = 9ms Z 
I , ' ^ r ^ $ ^ f " 7 -
I \̂ .,^/^ |20- ^ / -

“ r' '^K5^ - D r n e r e n c e = Oms | , 5 . / ^ . 

0 ‘ Difference = 3ms y ^ 
Uj I / • ---Dmerence = 5ms 1。- ^ ‘ 
• B j ^ / • Difference = 7ms y ^ 
弓 = ^ — - Difference = 9ms 5 . ^ ^ -t ' 2 、 100 .00 =ber:_a: e» 7«, BOO Y 100 2；>。300 4̂^ Ŝ  â  7̂0 sL 
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: ; For all the experiments in this section, the database is assumed to be partitioned into 
|î . 

P popular and unpopular data, and 80% of the data accesses by the transactions submitted 

“ at the mobile hosts will be on the popular data. 
^甚 
= ™ 

一 一 ^ 

-: 6.3.1 Parameters Setting 

“ There are 8 fixed hosts in the system. It is assumed that the mobile hosts are evenly 

：.. distributed among the cells. Transactions submitted at a fixed host have number of 

； operations ranges from 8 to 12, and they access the data in the database with equal 

: probability. 
：： Each message sent to and from a mobile host has a fix-sized header of 30 bytes. This 

: includes the identity of the mobile host, and other information. For the lock-based scheme, 

—, this includes also the operation being sent to the fixed host. 

，； 

‘ ^ ^s0tmn 
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The mean time for a mobile host to power off is about 1500 seconds. The duration for 

the mobile host to remain powered off is exponentially distributed over 100 seconds. 

For the lock-based scheme, a read operation executed at the fixed host takes 0.01 

seconds, while a write operation takes 0.02 seconds. 

Table 6.12 shows the list of parameters together with their values that are common to 

, both of the schemes. Table 6.13 shows the list of parameters used in our scheme, which 

are equivalent to the ones stated in the previous section. Table 6.14 shows the list of 

^ parameters used in the lock-based scheme only. The set of parameters with their values 
f。： • 

: to be varied in the experiments followed are shown in Table 6.15. 

r . • • ^ 

Parameter Description Value 
, Parameters for Fixed Network 

NUM_SERVER number of fixed hosts in the system 8 
_ F_MIN_OPER minimum number of operations in a transaction 8 

- FJV[AX_OPER maximum number of operations in a transaction 12 
"I Parameters related to Message and Time 
1 ID_SIZE size of data id 10 bytes 

DATA_SIZE size of a data version lK bytes 
• MESG_HEADER fix-sized header for each message 30 bytes 
I BANDWIDTH size of each wireless channel 1 xlO^ bps 

SER_TM CPU time for mobile hosts 0.01 seconds 
I POWER_OFF mean time for a mobile host to power off 1500.0 seconds 
- DIS_DURATION~~mean time for a mobile host to remain powered off 100.0 seconds 
- • • 

- Table 6.12: Values for Parameters Used in Both Schemes 

p 6.3.2 Experiments and Results 
；'•' 

: . In this section, results of a number of experiments carried out are shown. For each of 

- the experiments, utilization of the wireless channels is shown. Besides, the response time， 

” commit ratio and throughput of transactions submitted at the mobile hosts are given. 

: Note that for our scheme, only the commit ratio of read-only public transactions are 

• given, as the R / W public transactions will have commit ratio equals 1 under a system 

- with reliable wireless channels. 



e 

： Chapter 6 Results and Analysis 81 

¥ 

Parameter Description Value 
. CACHE_SIZE 一 cache size 100 data 
: TRS-PERIOD 一 length of the TRS period 1.5 seconds 
： CQLLECTION-PERIOP" collection period for the miss-sets — 0.4 seconds 
: DATA_IO 一 I/O time for mobile hosts 0.035 seconds 
: W-TIMEOUT timeout waiting messages in wireless channels 1.5 seconds 
|| L-BATCH_TIME 一 lower-bound for the execution of global batches 0.8 
I U_BATCH_TIME upper-bound for the execution of global b a t c h ^ 1.0 
^ COMMITJvlESG 一 commit/abort of R/W public transactions 100 bytes 
« ACK_MESSAGE acknowledgement of transactions results received 100 bytes 
‘ TRAN-SIZE 一 size of a R/W transaction 100 bytes 

ii 
‘ Table 6.13: Values for Parameters Used in Our Scheme 

| - ' 

fi Parameter ~ Description Value 
”,， FH_READ_TIME~~ time for reading a data object in fixed hosT" 0.01 seconds 
1¾ FH-WRITE-TIME time for writing a data object in fixed host 0.02 seconds 
:: OPER-TIMEOUT “ timeout in acquiring a lock 50.0 second^ 
i|-" “ — — 
t •.. 

Table 6.14: Values for Parameters Used in the Lock-based Scheme 
！ ! 

Experiment 10 Variation of Database Size 

This experiment is to study the effect of database size on the performance of the two 

schemes. The database is varied with size equals 1500, 3000, 4500, 5000 and 6000 data 

objects. Table 6.16 shows the values of the variable parameters. Results of the experiment 

are shown in Figure 6.13. 
It is found that the performance of the lock-based scheme is inferior to ours and 

their difference is very large. Besides, it is found that the performance of our scheme 

is indifferent to the variation of database size, whereas the lock-based scheme performs 

better with a larger database. It is because with a larger database size, the number of 

data conflicts reduces, which improves both the response time and the commit ratio of 
•ti>：--

_“ transactions. 
,̂ On the other hand, it is found that the lock-based scheme has a better utilization of 

； the wireless channels than ours, and its value is kept low. This can be explained by the 
_" 

^-•' 
-__ 

— - . 

漂 
• 

m m m 
(--T-.. , 



m 

：；-••• Chapter 6 Results and Analysis 82 

念 ’ 

Parameter Description 
— PUB_ARR_TIME inter-arrival time of public transactions in fixed host 
»• NUMJDATA number of data objects in the database 
U NUMJVIOBILE number of mobile hosts in the system 
: POPULARITY percentage of popular data in the database 
|-: RW_PROB percentage of R/W transactions submitted at mobile hosts 
y ARR_TM inter-arrival time of public transactions at mobile hosts 
L： MIN_OPER minimum number of operations per transaction at mobile hosts 

MAX_OPER maximum number of operations per transaction at mobile hosts 

• : 

- Table 6.15: Variable Parameters 
1 
!' Parameter Value 

PUB-ARR-TIME 5.0 seconds 
• NUM_MOBILE 800 
！ POPULARITY 0.2 
_ RW-PROB 0.1 
i ARR_TM 15.0 seconds 
： MIN-OPER 4 

MAX-OPER 8 
K “ ‘ . I Table 6.16: Variable Parameters Setting (experiment 10) 
B 

I 
. large sets of data being broadcasted in the update notifications in our scheme and the 

^ low commit ratio of the lock-based scheme, both of which increase the difference in the 

‘ number and size of messages being sent through the wireless channels. 

Figure 6.14 gives the results of the experiment with the size of database equals 6000, 

and the number of mobile hosts varies from 100 to 800. It is found that the performance 

of the lock-based scheme is better than ours when the system has fewer than 200 mobile 

hosts. It is owing to the small number of public transactions submitted at the mobile 

hosts, which reduces the number of data conflicts. In order to further verify the effect 

of conflict ratio on the performance of the lock-based scheme, the same experiment with 

value of RW_PROB set to 0 is carried out. Results of the experiment are shown iii Figure 

6.15. 
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Figure 6.13: Variation of Database Size 

In Figure 6.15, it is found that the performance of the lock-based scheme becomes 

better than ours, especially when the database size reaches 3000. Besides, as the size of 

database increases, the commit ratio of transactions for the lock-based scheme converges 

to 1. This shows that the conflict ratio affects the performance of the lock-based scheme 

i greatly. 
1 -

Experiment 11 Variation of Popularity Ratio 

This experiment is to study the performance of the two schemes with different number 

of popular data in the database. The percentage of popular data in the database is 

varied from 0.2 to 1. The size of database is fixed to 3000 data objects. The values of 

other variable parameters are shown in Table 6.17. Figure 6.16 shows the results of the 

experiment. 
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Figure 6.14: Variation of Database Size (6000 data objects) 

It is found that the increase in popularity ratio has a positive effect on the lock-based 

: scheme, but a negative effect on ours. As shown in Figure 6.16 (c), the commit ratio 

of the read-only public transactions for our scheme starts to drop when the value of 

， POPULARITY is about 0.9; whereas the commit ratio for the lock-based scheme keeps 

on rising until the value of POPULARITY reaches 0.8, where it starts to flatten. This 

can be explained by the increased size of update notifications being broadcasted in our 

"-, scheme, which increases the message delay. As a result, the MSSs may fail to receive the 

- miss-sets from the mobile hosts, and the read-only transactions requiring data missed have 
I 

to abort. However, increasing popularity ratio of the database reduces the data conflicts 

- for the lock-based scheme, which causes the improvement of its performance. This also 

- reflects that under this system setting, having 80% of the data in the database as popular 
一 data is the optimal value of the lock-based scheme. 
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Experiment 12 Variation of Inter-arrival Time of Transactions at Mobile Hosts 

j| This experiment is to study the performance of the schemes with different work loads 

- from the mobile hosts. The mean time for the submission of transactions at the mobile 

hosts is given the values 10, 15, 20, 30, 70 k 100 seconds. The values of other variable 

parameters are shown in Table 6.18. Results of the experiment are shown in Figure 6.17. 

It is found in Figure 6.17 that the performance of the lock-based scheme improves as 

^ the inter-arrival time of transactions at the mobile hosts increases. This can be explained 

： by the decreased number of data conflicts which improves both the commit ratio and the 

'̂  response time of transactions. On the other hand, it is found that as the inter-arrival 

— time of transactions increases, the commit ratio of our scheme decreases. This is owing to 

the decreased number of R / W transactions submitted at the mobile hosts, which results 

： in fewer data being updated, especially the popular data. More data are therefore missed 
mm> 
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Parameter Value 
PUB-ARR_TIME 5.0 seconds 
NUMJ)ATA 3000 
NUM_MOBILE 800 

f RW-PROB 0.1 
ARR-TM 15.0 seconds 
MIN_OPER 4 
MAX_OPER 8 

!. 

？ Table 6.17: Variable Parameters Setting (experiment 11) 
} 
I 

Parameter Value 
PUBiRR_TIME 5.0 seconds 
NUMJ3ATA 3000 
NUM_MQBILE 800 
POPULARITY 0.2 

彳 RW-PROB 0.1 
i MIN-OPER 4 

MAX_OPER 8 
i 

Table 6.18: Variable Parameters Setting (experiment 12) 

in the cache of the mobile hosts and more request messages have to be sent to the MSSs 

for the missed data, the commit ratio hence decreases. 
It is shown in the previous experiments that data conflicts contributes greatly to the 

difference in performance between the two schemes. The same experiment is therefore 

carried out with the value of RWJPROB set to 0 in order to observe the difference in 

performance with fewer data conflicts for the lock-based scheme. Results of the experiment 

are shown in Figure 6.18. 

It is found that as long as the inter-arrival time of transactions at the mobile hosts is 

smaller than 30 seconds, the lock-based scheme outperforms ours in handling the read-

only transactions. This shows that given a system with large database size and all the 

transactions from the mobile hosts contain read operations only, the lock-based scheme 

can provide a good performance. 
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However, as the inter-arrival time of transactions reaches 30 seconds, the response 

[ time of transactions for the lock-based scheme starts to rise. It is because with fewer 

‘ transactions submitted at the mobile hosts, the probability that a particular data is being 

locked exclusively by some transaction from the fixed hosts increases, hence much time is 

； required in waiting for the lock to be released by the transaction. 

‘ Exper iment 13 Variation of Inter-arrival Time of Transactions at Fixed Hosts 

� This experiment is to study the effect of the number of transactions executed at the 
g-.. 

： fixed hosts on the performance of transactions submitted at the mobile hosts. The mean 

， inter-arrival time of transactions from the fixed hosts is given the values 5’ 10, 15, 20, 30, 

1： 50, k 70 seconds. Table 6.19 gives the values of other variable parameters used. Results 
= of the experiment are shown in Figure 6.19. 
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Figure 6.17: Variation of Inter-arrival Time of Transactions at ,Mobile Hosts 

It is shown in Figure 6.19 that changing the inter-arrival time of transactions at the 

fixed hosts does not seem to have any effect on the performance of the two schemes. This 

is owing to the large number of transactions submitted at the mobile hosts which buried 

their efFects. 

Experiment 14 Variation of Number of Operations per Transaction at Mobile Hosts 

This experiment is to study whether the size of transactions submitted at the mobile 

hosts will have any effect on the performance of the two schemes. The experiment is 

carried out with number of operations for transactions submitted at the mobile hosts 

having the ranges of 2-6, 4-8, 6-8 & 8-12. Values of other variable parameters are shown 

in Table 6.20. Results of the experiment are shown in Figure 6.20. 
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Figure 6.18: Variation of Inter-arrival Time of Transactions at Mobile Hosts (read-only) 

It is shown in Figure 6.20 that increasing the number of operations in the transactions 

submitted at the mobile hosts has an adverse effect on the performance of the lock-based 

scheme, while our scheme shows little change in performance. This can be explained by 

the increased number of data conflicts which worsens the performance of the transactions 

executed under the lock-based scheme. Besides, it is shown in Figure 6.20 (a) that the 

utilization of wireless channels for our scheme increases with the number of operations per 

transaction, while that of the lock-based scheme remains more or less constant with the 

the change in the number of operations. This can be explained by the increased number of 

data missed in the cache of the mobile hosts, which results in more request messages to be 

sent through the wireless channels for our scheme. Nevertheless, it is shown in Figure 6.20 

(c) that the commit ratio of transactions for the lock-based scheme is decreasing. This 

results in fewer messages to be sent through the wireless channels, hence the utilization 
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Parameter Value 
NUMJDATA 3000 
NUM_MOBILE 800 

"POPULARITY 0.2 
~RW-PROB 0.1 

ARR-TIME 15.0 seconds 
MIN-OPER 4 

"MAX,QPER 8 

Table 6.19: Variable Parameters Setting (experiment 13) 

Parameter Value 
—PUB-ARR-TIME 5.0 seconds 
“NUMJ3ATA 3000 
NUMJvlOBILE 800 
POPULARITY 0.2 
RW_PROB 0.1 
ARR-TIME “ 15.0 second^ 

Table 6.20: Variable Parameters Setting (experiment 14) 

of wireless channels shows no increase. 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

We have developed a scheme for transaction management in the mobile computing en-

vironments. We assume the underlying network protocol does not handle message loss 

and the scheme developed has to get along with it. The scheme classifies the transactions 

submitted at the mobile hosts into two types, with those consisting of read operations 

only being the read-only transactions and those containing reads and writes the R / W 

transactions. Read-only transactions will not update the database and can therefore be 

serviced by the data cached in the mobile hosts. R / W transactions, owing to the presence 

of writes, may conflict with other transactions. It is shown in [28] that TRS behaves well 

in conflict cases. R / W transactions are therefore sent to the fixed hosts for execution 

under TRS. 

Data cached in the mobile hosts have to be updated periodically in order to have the 

transactions executed there serializable with others. An update notification containing the 

data updated by the latest committed global batch in the past TRS period is broadcasted 

to the mobile hosts at the end of the period. The cache of each mobile host is updated with 

the set of data received in the update notification and is then used by the transactions 

collected by the mobile host in execution. A request message is sent to the MSS if some 

transaction has required data absent in the cache. In order to save the wireless bandwidth, 

missed data are collected in batch and sent to the MSS by each mobile host. 
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A simulation is conducted to study the behaviour and verify the correctness of the 

scheme. The study shown that the length of TRS period and the execution time of global 

batches affect the performance of the scheme greatly. While a long TRS period increases 

the response time of transactions, a TRS period which is shorter than the execution 

time of a global batch reduces the commit ratio of transactions. Besides, it is shown 

that collecting the missed data and sending them in batches can greatly improve the 

performance of the scheme. 

When compared with the lock-based scheme, it is found that locking is feasible in 

mobile computing environments only when the transactions from mobile hosts contain 

read operations only and the size of database is large, in which case the number of data 

conflicts is the lowest. Otherwise, our scheme out-performs it in many dimensions. 

7.2 Future Work 

It is found that our scheme suffers from the problem of low cache hit ratio, which in-

creases the response time of transactions executed at the mobile hosts. Consider a simple 

method which does not require cache update or invalidation, and instead, each mobile 

host sends the readset of all the collected read-only transactions to its local MSS. Besides, 

a message similar to the update notification but without any information of updated data 

is broadcasted by each MSS at the end of the TRS period when a global batch completes 

its execution. All the cached data are purged when a mobile host receives this message. 

Figure 7.1 shows the performance of the method with the period of time that a MSS 

collects the readsets of read-only transactions equals 0.02 seconds. It is compared with 

the method hasjpopular as mentioned in Experiment 6 of Chapter 6, with the length of 

collection period equals 0.2 seconds. 

It is found that when the number of mobile hosts are small, sending a large number 

of data objects to the mobile hosts will result in a longer transaction response time 

than the case where cached data are simply purged. This is owing to some useless data 

versions being included in the update notifications in the method has_popular, which 
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Figure 7.1: Comparison with the Method without Cache Update and Invalidation 

incurs some delays in the execution of transactions. However, as the number of mobile 

hosts increases, their difference reduced. This is because for the method has.popular, 

increasing the number of mobile hosts increases the chance that a particular data in the 

update notification will be used by the transaction of some mobile host. Besides, cached 

data will also serve to reduce the execution time of transactions. This results in a lower 

increase rate in transaction response time of the method has-popular. 

It is believed that if the cache hit ratio is increased, performance of our scheme can 

be improved. This can be achieved if we have a prior knowledge of the access patterns of 

mobile hosts. If their access patterns are known, the data to be included in the update 

notifications can be adjusted to suit the requirements of the mobile hosts. The cache hit 

ratio hence increases, which in turn both increases the response time and commit ratio of 

transactions submitted at the mobile hosts. This problem deserves further study. 
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Appendix A 

Implementation Details 

In this chapter, some implementation details of the simulation program written are de-

scribed. The logical model for the system and mobile hosts are illustrated in Figure A.1 

k A.2. 
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Figure A.1: Simulation Model 

Two transaction generators are used to generate the local and public transactions for 

each fixed host. The transactions are then executed by the fixed hosts and their updated 

data are broadcasted to the mobile hosts periodically. The following CSIM processes 

simulate different activities performed by the fixed hosts: 

• fh_createJoc_tranx generates the local transactions for each fixed host throughout 

the simulation time. The transactions generated are then appended at the end of 
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Figure A.2: Simulation Model of a Mobile Host 

a queue for holding the local transactions of that particular fixed host. The data 

written by the transactions will then be collected and broadcasted to the mobile 

hosts afterwards. 

• fh_create_pub_tranx generates the public transactions for each fixed host. The 

public transactions generated by the fixed hosts are then appended at the end of a 

single queue which acts as the global batches collected. 

• fh_exec_batch executes the global batches generated by generating a random time 

period between the lower and upper bounds of the execution time allowed and 

advances the variable MSS_time after the given amount of time passed. 

• fh_collect_data collects all the data to be included in the update notification at 

the end of the TRS period when MSS_time is advanced by searching through all the 

transaction queues. 

• fh_broadcast_data broadcasts the set of data collected in fh_collect_data by each 

fixed host to the mobile hosts residing in its cell. 

• fh_broadcast_missset collects the miss-sets from the mobile hosts in the MSS's 

cell and broadcasts the set of data missed at the end of the collection period. 

For the mobile hosts, a transaction generator generates the public transactions for 
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each mobile host. The following CSIM processes simulate different activities performed 

by the mobile hosts. 

• mh_hand_ofF governs the movement of a mobile host from one cell to another 

throughout the simulation time. 

• mh_create_pub_tranx generates the public transactions for each mobile host. The 

read-only transactions are then appended at the end of a queue for holding the 

transactions at that particular mobile host, while R / W transactions are sent to the 

local MSS by the process mh_send_pub_tranx. 

• mh_send_pub_tranx sends the R / W public transactions generated by each mobile 

host to the local MSS. They are then appended at the end of the queue for holding 

the global batches. 

• mh_caching receives the update notifications broadcasted from the MSSs and up-

dates the data cached at the mobile host. 

• mh_send_missed collects the miss-set and sends it to the local MSS. 

• mh_receive_missed receives the replies of miss-sets from the MSS and caches the 

data in the mobile host. 

• mh_get_pub_tran k mh_exec_pub_tran execute the read-only transactions col-

lected at the mobile host. If data is found to be missed in the cache after the reply 

of miss-sets is received, the process mh_cachejiiiss is called to request for the missed 

data in the local MSS. 

• mh_cache_miss triggers another process mh_cache_upload to send the missed data 

ID to the MSS and waits for the reply. The process mh_exec_pub_tran is notified if 

the reply can be received within the timeout period. 

• mh_cache_upload performs the sending of the missed data ID to the MSS and 

checks whether the variable MSS_time is advanced. If so, the process terminates; 

otherwise, the reply is received and it is cached in the mobile host. 
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