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Abstract 

In quest of equipping computer vision systems with the ability of measuring 

depth information of the 3-D world, binocular stereo vision has long been a topic 

of research. There are many possibilities of applications such as cartography, 

object recognition, automation in assembly lines and autonomous vehicles. 

A new stereo matching method using horizontal intensity line segment bounded 

by edges as matching primitive is studied. The validity and advantages of the 

use of such line segments as matching primitives in stereo vision systems is ar-

gued for. Moreover, the use of such segments as matching primitives give rise 

to a number of favourable features such as reduction of search space (speed-up 

of matching), detection and disambiguation of inclined surfaces and partial oc-

clusion. The detection of inclined surfaces and partial occlusion is performed 

simultaneously as part of the matching process, rather than a post-processing 

step. 

The new stereo matching method is studied and implemented. It is tested 

on a number of synthetic images as well as real images. 
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Chapter 1 

Introduction 

1.1 Objectives 

This thesis tackles a well-known problem in the field of computer vision - the 

stereo vision problem. The stereo vision problem is the reconstruction of 3-D 

coordinates of points in a scene from multiple images (usually two) obtained by 

cameras of known relative positions and orientations. It is a practical problem 

with many possibilities of applications such as cartography, object recognition, 

automation in assembly lines and autonomous vehicles. The idea of using mul-

tiple 2-D images to reconstruct the 3-D coordinates of points in a scene comes 

from the knowledge of the human visual system. 

The first two chapters give an introduction to the problem and some related 

previous work. The later chapters present a novel stereo algorithm in details 

and its experimental results. 
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Chapter 1 Introduction 

1.2 Factors of Depth Perception in Human Vi-

sual System 

Human, as well as many other creatures, are able to perceive the world as a 

3-D world in spite of the fact that the images on the retinae are 2-D images. 

Then how is the depth information encoded in the 2-D images? Researchers in 

the field of psychology have proposed different answers to this question. The 

depth information can be determined from different factors. Among the fac-

tors, there are oculomotor cues, pictorial cues, movement-produced cues and 

binocular disparity. 

1.2.1 Oculomotor Cues 

Oculomotor cues are the information provided by our eye muscles. Two sets 

of muscles provide the information. They are the eye muscles in our head that 

control eye movement and the circular muscles that surround our eye lens. When 

we look at close objects, our eyes converge. This convergence of the eyes cause 

the eyes to look inwards. At the same time, the muscles that surround our lens 

contract to change the shape of the lens to a more convex shape so that we can 

focus on close objects. This is called accommodation of the eye lens. On the 

other case, when we look at distant objects, our eyes diverse and the muscles 

of the lens relax, causing the lens to change into its natural (less convex) shape 

and focus on the distant objects. The convergence and accommodation are cues 

to depth as the states of the muscles are correlated with the distance between 

the objects and the eyes. 
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Chapter 1 Introduction 

1.2.2 Pictorial Cues 

Pictorial cues are cues that can be depicted in a still picture. They involve high 

level reasoning processes and understanding of the physical world. They provide 

qualitative depth information instead of accurate quantitative depth measures. 

1. Overlapping 

When object A covers part of object B, object A should be in front of 

object B. Overlapping indicates relative depth. 

2. Size in the Field of View 

A distant object takes up less of our field of view than a close object. 

When two objects of the same shape are presented, the one with larger 

size appears to be closer. 

3. Height in the Field of View 

Objects below the horizon that appear higher in the field of view are 

perceived to be further away, while objects appear lower in the field of 

view are perceived closer. On the other hand, objects above the horizon 

that appear lower in the field of view are seen as being further away. 

4. Atmospheric Perspective 

The atmosphere makes far objects look less sharp and also makes them 

look blue in color. This is due to the light refraction occurring in the dust 

particles in the air and in the air itself. 

5. Linear Perspective 

Lines that are parallel in the scenes appear to be converging to a same 

point in the distant. This has long been used by artists in their paintings 

to present scenes with depth. 
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Chapter 1 Introduction 

1.2.3 Movement-Produced Cues 

When we are moving, the images of the objects in our retinae change their 

positions, and we perceive the objects to be moving. This is because there are 

relative movement between the observer and the objects. These changes provide 

cues to depth information. 

1. Motion Parallax 

When we move, such as when we look out the side window of a moving car, 

nearby objects appear to be moving fast in a direction opposite to that 
~ ~ ^ 

of our movement, while distant objects appear to be moving relatively 

slowly. This difference in speed of movement between nearby and distant 

objects is called motion parallax. This is an important source of depth 

information (fig. 1.1). 

A 
Position 1 Position 2 

Figure 1.1: Showing how the images of two objects (A and B) change their 
positions on the retina due to movement of the eye from left to right. Note that 
the image of the near object, B, moves farther on the retina than that of the far 
object, A. 
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Chapter 1 Introduction 

2. Deletion and Accretion 

Deletion and accretion occurs when an observer moves in a direction not 

perpendicular to two surfaces that are at different depth. When the ob-

server moves, either deletion or accretion of the further object by the closer 

object occurs (see fig. 1.2). The object being deleted or accreted is per-

ceived further away. 

, F — n I I ̂ ^ " " " r 7 ^ 
� :: 

— I 一_____^ • 

Deletion Accretion 

(b) (a) (c) 

Figure 1.2: Showing deletion and accretion. The white surface is closer to the 
observer than the grey one. When an observer sees the two surfaces as in (a) and 
then moves to the left, deletion of the rear object by the near one is observed, as 
in (b). When the observer starts at (a) and move to the right, accretion occurs, 
as in (c). 

1.2.4 Binocular Disparity 

Human are equipped with two eyes. The two eyes see the world from slightly 

different positions and the images on the two retinae are slightly different. Our 

brain can compute the depth information from the difference. The fact that our 

two eyes see different views of the world was used by Charles Wheatstone (1802-

1875) to create the stereoscope, a device which projects two slightly different 

pictures into each eye to produce a convincing illusion of a scene with depth. In 

1960, Bela Julesz created the illusion of depth using a stereoscope with random 
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Chapter 1 Introduction 

dot patterns, which is known as the random dot stereogram (fig. 1.3). The 

random dot stereogram demonstrates that binocular disparity is an important 

cue to depth and that it alone can cause depth perception. The random dot 

stereoscope contains no depth information other than disparity. Fig. 1.4 shows 

that disparity is correlated with depth perception. Details of the mechanism of 

depth from binocular disparity will be discussed in section 1.4. 

• • ^ H ^ H 
left image right image 

Figure 1.3: Random dot stereogram. 

1.3 What Cues to Use in Computer Vision? 

Different sources of depth information have been briefly discussed in section 1.2. 

Among them, pictorial cues provide qualitative depth information (relative depth) 

rather than quantitative depth measures. Moreover, they involve complicated 

high-level reasoning. Therefore, it is difficult to formulate the cues and adopt 

them in computer vision system directly. Movement-produced cues have been 

used in finding depth. Examples of them are [KAPP87] [KoCH93]. However, 
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Chapter 1 Introduction 

A 

_ A . 
Au AL AR 

left eye right eye 

Figure 1.4: Disparity. Images of objects fall on different positions on our two 
retinae. The displacement (from A^ to An and from B[ to Bn) is known as 
disparity. Note that disparity is correlated with depth. Nearer objects produce 
greater disparities. 

their applications are more restricted compared with depth from binocular dis-

parity. In [GROS95], movement-produced cues (optical flow) is combined with 

binocular disparity in providing stereo vision. Oculomotor cues involves the sen-

sation of eye muscles. Recently, researches on active vision make use of cues like 

vergence and focus [AHUJ93] [DAS95], which is similar to the oculomotor cues, 

however, they are used to a lesser extent than binocular disparity and cannot 

be used alone in reconstruction of real scene surfaces [AHUJ93]. Moreover, they 

exhibit certain shortcomings, such as the phenomena of depth offocus and depth 

of field for depth from focus. Depth from vergence faces similar problems with 

depth from stereo. However, depth from vergence only finds the depth of a single 

point called the point of fixation one at a time. 

On the other hand, binocular disparity is the most important cue for depth 

in human depth perception[GOLD89]. It has also been widely made use of in 

computer stereo vision systems. A famous and classical example of them is the 
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Chapter 1 Introduction 

Marr-Poggio algorithm [MARR79]. Depth from binocular disparity will be the 

main topic to be tackled in this thesis. 

1.4 The Process of Stereo Vision 

If only one 2-D image is present, the accurate depth information of a particular 

point in the image cannot be determined, i.e., the world coordinates {xuj,yw,2:w) 

of the point cannot be found from its image point coordinates {xi,yi). This is 

because an image is in fact a 2-D projection of 3-D points onto an imaging plane. 

The mapping of the 3-D scenes to 2-D images is a many-to-one mapping. An 

image point {xi,yi) on a 2-D image may be the image of any world point lying 

on the line that passes through the points {xi^yifi) and (xo,yo,/), where Xo and 

yo are the x-coordinate and y-coordinate of the center of the imaging lens and f 

is the distance between the lens and the imaging plane, called the focal length 

of the lens if the lens is focusing on a distant object. 

The missing depth information can be obtained using stereo imaging tech-

niques. This involves getting multiple images of the same object point from 

different view-points. When two images are used, it is called binocular stereo 

vision, so as to distinguish from trinocular stereo vision, in which three images 

are used. 

1.4.1 Depth and Disparity 

There are two types of imaging geometry for stereo cameras, namely the parallel 

axis stereo geometry and the nonparallel axis stereo geometry. Fig. 1.5 shows 

the parallel axis stereo geometry. In this geometry, the two imaging planes are 

on the same plane, the coordinate system of both cameras are perfectly aligned, 

differing only in the location of the origins. The relationship between disparity 

and depth will be explained using this stereo geometry. 0 [ is the origin of 
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Chapter 1 Introduction 

the coordinate system on the left imaging plane. X [ and Y^ are the x and y 

coordinate axes of the left imaging plane. Similarity, OR, Xn and YR represent 

the same things on the right imaging plane. The origin of the world coordinate, 

Ow^ coincides with 0^. The x and y axes of the world coordinate system X w 

and Yw coincide with those of the left imaging plane. Zw is the z-axis of the 

world coordinate. 

Y v | Z w ^ P ( x , y , z ) 

^ f Y 
M i i y 

OL Ow XL X w OR XR < b ^ 
baseline 

Figure 1.5: Parallel axis stereo geometry. 

Fig. 1.6 shows a view perpendicular to the plane formed by the x and z 

axes. lL and In are the left and right imaging plane respectively. C^ and Cn 

are the center of the left and right imaging lens respectively, b is the baseline, 

i,.e. the separation between the left and right imaging planes. Suppose there 

is a scene point P[x^y^z) and that PL(xi,yi) and PR^Xr̂ Vr) are its left and right 

images. The disparity d is defined as d = xi — av. By simple geometry, the world 

coordinates of the scene point P can be obtained as 
bxi hyi bf 

z = j ’ " = j , ' = Y 
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Chapter 1 Introduction 

where b is the baseline and f is the distance between the lens and the imaging 

plane. 

P(x,y,z) 

/ 1 
d= X,- Xr X \ Z 1 c ^ b V ^ \ c R 

^ > i__iv-. 
lL V lR X, Xr 

Figure 1.6: Figure showing relationship between depth and disparity. 

1.4.2 The Stereo Correspondence Problem 

The major steps in a typical computer stereo vision system are preprocessing, 

finding stereo correspondences and depth recovery (3-D structure determina-

tion). The most difficult step is the finding of stereo correspondences. It has 

been explained in section 1.4.1 that in general a scene point will have its images 

on both the left and the right imaging planes. For any image point on the left 

image, if its corresponding point on the right image can be found, the dispar-

ity, and hence the world coordinates, of the corresponding scene point can be 

found. This is called the stereo correspondence problem. Instead of matching 

the images pixel by pixel, different matching primitives are usually used. Match-

ing primitives may be area patches, edge points, edge segments, zero-crossing 

patterns, etc. 

10 



Chapter 1 Introduction 

Depending on what matching primitives are to be used in the step of stereo 

correspondence finding, the preprocessing step processes the images so as to 

prepare the matching primitives for matching, e.g. edge detection. 

After the correspondences are found, the 3-D structure determination step 

reconstructs the 3-D coordinates of the scene points. See section 1.4.1 for details. 

1.4.3 Parallel and Nonparallel Axis Stereo Geometry 

According to [DHON89], stereo matching strategies can be differentiated in the 

broadest scene according to the primitives used for matching as well as the 

imaging geometry. Imaging geometry can be differentiated into parallel axis 

stereo geometry and nonparallel axis stereo geometry. The parallel axis stereo 

geometry has been introduced in section 1.4.1. Fig. 1.7 shows an example of 

the nonparallel axis stereo geometry. The imaging planes are not on the same 

plane and the optical axes of the cameras are not parallel. Conventionally, the 

parallel axis stereo geometry is used. However, because nonparallel axis stereo 

geometry has the advantage that it allows for a greater overlap of the left and 

right images, it has been used in some stereo systems. Examples are [AYAC87b], 

:AYAC87a] and [lT086'. 

On the other hand, the disadvantages of nonparallel axis stereo geometry 

is two-folded. First, the epipolar lines are not parallel and in general not hor-

izontal. Extra epipolar line computations become necessary before matching. 

Second, the definition of disparity becomes more complex and the 3-D recon-

struction process requires a more general approach. Trading off the advantages 

and disadvantages, parallel axis stereo geometry will be used in the discussion 

hereafter and adopted in the matching algorithm explained in the later chapters. 

11 
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K ZR 

\ 
ZL \ Y. ^ , > , J ^ ^ 

A ^ I A 

• L%^-
O L X L OR Figure 1.7: Nonparallel axis stereo geometry. 

1.4.4 Feature-based and Area-based Stereo Matching 

According to the matching primitives used, stereo matching strategies can be 

classified into two types, feature-based (edge-based) and area-based (region-

based) matching. In feature-based matching, features like edge points, edge 

segments and zero-crossing patterns are used in the matching process. Most of 

the contemporary stereo algorithms are feature-based. In area-based matching, 

area patches are matched by cross-correlation between intensity patterns in the 

two images. 

Because features can be characterized by their attributes (edge length, strength, 

orientation, etc.), feature-based matching can be performed using simple com-

parison of the attributes, and are faster than area-based matching. Moreover, 

they are more stable towards changes in contrast and ambient lighting. How-

ever, because feature-based matching only find the disparities of the features, 

they result in sparse disparity maps. Interpolation of disparities may be neces-

sary to construct a dense disparity map, but it is not a straightforward process. 

Area-based matching results in dense disparity maps. However, if occluding 

12 



Chapter 1 Introduction 

boundaries are present in the correlation window, the matches tend to be erro-

neous. This problem will be handled in the novel matching algorithm, which is 

an area-based one, presented in the later chapters. 

1.4.5 Constraints 

Due to their inverse nature, many vision problems are ill-posed. Stereo match-

ing also possesses this ill-posed nature. The correspondence problem can be 

ambiguous. This is because an image point in one image may find more than 

one possible correspondences in the other image. This is known as the false 

target problem (fig. 1.8). In 1979, Marr and Poggio proposed a computational 

theory of depth perception [MARR79]. In their theory, the matching conditions 

between two binary images are represented by three rules : 

1. Compatibility : the points that are regarded as in correspondence should 

be homologous, e.g. black dots can match only black dots. 

2. Uniqueness : every point in one image can almost always (except for trans-

parent objects) match no more than one point, 

3. Continuity : the disparity of the matches varies smoothly almost every-

where over the image, except where depth discontinuities occur at surface 

boundaries. 

The three rules have been the fundamental considerations in stereo matching. 

Other important constraints have also been proposed by researchers to facilitate 

search for correspondence and to eliminate false targets. 

1. Epipolar Constraint 

For a given point in an image, its possible matches in the other image all 

lie on a line called the epipolar line. In the case of parallel axis stereo 

geometry, the epipolar lines are parallel and horizontal. This constraint 

13 
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right eye left eye 

W 
^ w ) ^ T 8 Q 3 ^ 

0^^#%>o 
L i L 2 L3 L 4 R 1 R 2 R 3 F U 

Figure 1.8: The false target problem. In this figure, Li to L4 correspond to four 
perceived points in the left eye view, while Ri to R^ correspond to four perceived 
points in the right eye view. A correct match between the 4 pairs of points is 
represented by the filled circles in the middle, in which Li matches with Ri, L2 
matches with R2 and so on. Incorrect matches are represented by the unfilled 
circles, e.g. Li matches with R2, L2 matches with R3 and L3 matches with R4 
result in perception of the row of false matches just above the row of correct 
matches in the figure. When the points are considered separately, each point on 
the left can match any point on the right. Without global consideration, such 
ambiguities cannot be resolved. 
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is very important in that it reduces the search for correspondences in 2-D 

images to l-D. [BAKE81 

2. Ordering Constraint 

This is demonstrated in fig. 1.9. For a 3-D point M and its neighbor N, 

their projections in the two images should be in the same order (from 

left to right). Fig. 1.10 shows a case where the ordering constraint does 

not apply. Therefore, the ordering constraint is actually a constraint on 

the shape of the objects. It facilitates the assumption of simple surfaces 

instead of more complicated ones in case of ambiguity. [FAUG93 

2 1 
n, m I n ^ m ^ 

left imaging plane right imaging plane 

Figure 1.9: Ordering Constraint. Images of objects are in the same order on 
both imaging planes. 

3. Disparity Gradient Limit 

A measure of disparity gradient of two points is defined as 

DG=\^^^\ 
Wi — W2 

15 
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五 
m I n I n ̂  m ^ 

left imaging plane right imaging plane 

Figure 1.10: A case in which ordering constraint does not apply. 
where Wi is the coordinates of two points on the cyclopean plane (an 

imaginary imaging plane parallel to the two real ones and in half-way 

between them, see fig. 1.11). Experiments in psychophysics have led people 

to conjecture that there is an upper bound of it in human perception. 

POLL85 

4. Figural Continuity 

It is an extension of the continuity rules of Marr and Poggio requiring 

continuity of disparity along contours. It has been used in Grimson's 

computer implementation of Marr and Poggio,s theory [GRIM85 . 

1.5 Organization of this thesis 

This chapter gives a brief introduction to the problem of machine stereo vision. 

Chapter 2 presents some related previous work on the topic. Chapter 3 gives 

16 
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^P(x,y,z) y^ 
CL y ^ b/2 Cw/ b/2 \ CR ^ i ^ ^ ^ 

Xj X w X r 

left imaging plane cyclopean plane right imaging plane 

Figure 1.11: Cyclopean plane and disparity gradient. 

an overview of a novel stereo matching method. Chapter 4 describe the pre-

processing stage, i.e. edge detection and the extraction of matching primitives. 

Chapter 5 describe the matching stage, which is the main core of the matching 

method, and some related topics. Chapter 6 presents the Wavelet Representa-

tion of images and its use in a coarse-to-fine matching scheme. Chapter 7 gives 

some experimental results and analysis. 

17 
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Chapter 2 

Related Work 

2.1 Marr and Poggio,s Computational Theory 

In 1979, Marr and Poggio proposed a computational theory of depth perception 

MARR79]. They proposed that three steps are involved in measuring stereo 

disparity : (1) A particular location on a surface in the scene must be selected 

from one image; (2) the same location must be identified in the other image; (3) 

the disparity between the two corresponding locations must be measured. And 

they also formulated three matching constraints : compatibility, uniqueness and 
I 

continuity (see section 1.4.5) and showed that the constraints can solve the false 

target problem. Before that, in 1960, Bela Julesz devised computer-generated 

random-dot stereograms. He also proposed that stereo matching is a cooperative 

process. Then until 1977 several algorithms are proposed by various researchers 

to solve the stereo vision problem and almost all of them are cooperative al-

gorithms. According to Marr [MARR82](pp. 122), none of the algorithms was 

accompanied by an analysis of the underlying computational theory of the stereo 

matching problem (except [MARR76]) and therefore none of them are correct. 

Grimson implemented the computational theory of Marr and Poggio and 

18 
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addressed some implementation details [GRIM81] [GRIM85]. The intensity im-

ages are filtered by the Laplacian of Gaussian {V^G) operator and zero-crossing 

points are detected in the images and grouped in 12 directional bins. Filters 

of three or four different sizes are used and the matching is a coarse-to-fine ap-

proach with disparities found at coarser resolutions used to guide searches at 

finer resolutions. [GRIM81] imposes a regional continuity check on disparity in 

case of ambiguous matches. If ambiguous matches are found at certain position, 

disparities in the neighborhood are taken into account. Later, [GRIM85] uses 

the figural continuity constraint of Mayhew and Frisby [MAYH81] that require 

continuity of disparity along contours instead of simple regional continuity. 

2.2 Cooperative Methods 

The earliest stereo algorithms proposed are cooperative methods. This results 

from Julesz's proposal that stereo matching is a cooperative process. The match-

ing process is formulated as a parallel, interconnected network of processors with 

inhibitory and excitatory connections. As shown in fig. 2.1, the axes L^ and Rx 

represent the positions of descriptive elements in the left and right images. Ev-

ery point on the plane contains a node in the network, and the node represents ‘ 

a possible match between the two positions represented by the two coordinates. 

It is easy to see that the diagonal lines are lines of equal disparities. The pro-

cessor at each node performs the lowest-level matching processes between the 

two positions on the left and right image. The idea is that, with the effects 

of the excitory and inhibitory connections, the network will finally results in 

a state that all nodes representing correct matches will have a value 1, those 

representing incorrect matches contain 0. 

One example of these algorithms is [MARR76]. It directly follows the Marr 

and Poggio,s computational theory (section 2.1). Fig. 2.2 shows the connections 

9 

^ 



Chapter 2 Related Work 

/ / \N 

' i i # 
• • m m m m m m % • • nodes of processers 

_ 
Lx 

Figure 2.1: A representation of cooperative methods. 

of the network. The solid vertical and horizontal lines represent lines of sight 

from the left and right image. The dashed diagonal lines represent lines of 

equal disparity. The compatibility constraint is carried out by the individual 

processors. The solid lines represent inhibitory connections. This carrys out 

the uniqueness constraint because only one correct match should happen on the , 

same line of sight. The dashed lines represent excitory connections. This carrys ‘ 

out the continuity constraint, favoring matches that result in smooth disparity 

changes. 

Some other researchers had proposed other cooperative methods with differ-

ent excitory and inhibitory connections. 

In more recent research, artificial neural networks and connectionist approach 

are still used to solve the stereo correspondence problem, examples are [Mous94 

:LEUN94] and [OR91:. 

20 
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'1 A L ^ AW AW 
z : V Z Z / 

^ ^ ^ . 
Lx 

Figure 2.2: The Marr and Poggio's cooperative algorithm. The diagonal lines 
are excitory connections and the horizontal and vertical lines are inhibitory 
connections. 
2.3 Dynamic Programming \ 
The stereo correspondence problem can be treated as a problem of minimizing 

a cost function. The cost function minimization can then be solved by using ‘ 

dynamic programming. Two frequently referenced examples of using dynamic 

programming are [BAKE81] and [OHTA85 . 

Suppose parallel-axis geometry (or rectified images) is used so that the epipo-

lar lines are the parallel horizontal scanlines and edge points are used as the 

matching primitives. Consider two corresponding scanlines on the left and right 

image. On each scanline, a number of edge points are identified and are num-

bered from left to right from 0 to N — 1 on the left scanline and from 0 to M — 1 on 

the right scanline. Then the problem can be represented by a two-dimensional 

grid as shown in fig. 2.3. The points on the grid represents possible matches. 

Point ( i , j ) means a candidate match of edge point i on the left scanline to edge 
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point j on the right scanline. The goal is then to find a sequence of match point 

from point m � = (i, i') to point mg = (J,j,), where (i,i') is the leftmost match 

and (J,j,) is the rightmost match. By applying an ordering constraint on the 

sequences of match points (i.e. the sequences must be monotonic), the search 

space can be reduced considerably. A best sequence from mo to rUe can then be 

found using dynamic programming by finding the minimum cost C(m) from mo 

to rUe recursively : 

C{m) = min (c(p,m) + C{p)) 
P m Vm 

where Vm is the set of nearest neighbors of m before m, c(z, j) is the cost 

from point i to j. The cost c(z,j) can be based on similarity measure between 

features i and j, in which i is on the left image and j is on the right. 
i 

Baker and Binford [BAKE81] use an edge-based dynamic programming ap- I 

proach, in which each edge is treated as a doublet, with a left half-edge and 

a right half-edge. Matching is done using dynamic programming to match the i 

half-edge on each scanline pair. A Cooperative process then follows to enforce ‘ 
f 

the inter-scanline consistency using an edge continuity constraint, which is equal 

to applying a figural constraint. Finally, intensity-based matching is performed 
( 

between intensity pixels from scanline intervals lying between the paired edges 

to yield a denser depth map. 

Ohta and Kanade [OHTA85] proposed stereo by intra- and inter-scanline 

search using dynamic programming. Intra-scanline search means the matching 

between feature points on separate scanlines. The global consistency is estab-

lished between scanlines by interscanline search. This imposes a consistency 

constraint among the matches found in intrascanline search. The problem is 

solved as a dynamic programming problem in 3-D search space instead of the 

previous 2-D space. The 3-D search space is a stack of the 2-D search spaces. 

The intra- and inter-scanline search proceed simultaneously, the matching score 
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Figure 2.3: The stereo matching problem considered as a path finding problem 
on a plane. This plane represents a search between a pair of scanlines. 
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(intra-scanline) and consistency constraint (inter-scanline) cooperates in the pro-

cess. 

Li [Ll94] used dynamic programming in Hough space instead of image space. 

Line-matching problem in image space is converted into peak point-matching 

problem in Hough space, i.e., dynamic programming is performed in Hough 

space using the peak points in Hough space as matching entities. It is claimed 

that figural continuity constraint is naturally embedded in the search and there-
I 

fore complexity of the search process is significantly reduced and accuracy is 

improved. I i j 
I 

2.4 Feature-based Methods 

Image features such as edge pixels, edge segments, zero-crossing patterns, im- 1 

age contours and points selected by certain interest operators are commonly , 

used in feature-based methods. Kim and Aggarwal [KlM85] uses zero-crossing ‘ 

patterns as matching features and introduces a relaxation method to find the f 

best matches. 3 by 3 vertical zero-crossing patterns are used as the matching 

primitives. Horizontal zero-crossing patterns are not used because the search for i 

matching takes place on the same scanline. The images are first smoothed to 

smooth out the noise and a 1-D Laplacian operator is applied to the smoothed 

images. They used two different methods to do this. The first method convolves 

the images with the Laplacian of Gaussian function, i.e., 

V W ( W ) = ^ ! _ : : ^ e - ( A " 2 ) / ( 2 d 
cr^ 

where 

•2 二 d'/dx' 

GOr,y) = a V ( � ) / ( 2 " ) 
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This is not a circular operator but a oriented operator because only vertical 

zero-crossings are interested. Another method uses a 3 by 3 averaging filter and 

apply 1-D Laplacian to the smoothed image 

1 1 1 
I 1 1 1 1 - 2 1 

1 1 1 
{a)averagingfilter (6)1 — DLaplacianoperator 

These two operations can be combined as a single convolution of the image 

with the 1-D Laplacian of an averaging filter : 

i 

1 - 1 0 - 1 1 1 
1 

- 1 - 1 0 - 1 1 

1 - 1 0 —1 1 
In this way, 9 possible zero-crossing patterns are possible (fig. 2.4), each of 

them is assigned a number. The left and right images are preprocessed using i 

one of the above operators. Then for each zero-crossing point in the left image, , 
I 

initial weights are assigned to every candidate point in the right image according , 

to similarity of zero-crossing patterns and the difference in intensity gradients. � 

Then a relaxation process is applied to find the best match. The relaxation 

process is based on the figural continuity, disparity continuity and certainty of 

matches of the zero-crossing patterns. The search is limited to a maximum pos-

sible disparity value {dmax)̂  which is determined by the application environment. 

Horaud and Skordas [HORA89] use linear edge segments as matching primi-

tives. Each segment is characterized by its position and orientation. Moreover, 

the relationships between nearby segments are taken into consideration. A rela-

tional graph is built for each image to encode the relationships between nearby 

segments. A correspondence graph is then built such that each node represents 
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I Figure 2.4: Zero-crossing patterns used by Kim and Aggarwal. | 
a possible correspondence. Arcs in this graph represent compatible correspon-

dences on the basis of segment relationships. The stereo matching problem then 

is cast to searching for sets of mutually compatible nodes in the correspondence 

graph. A benefit function is defined on the similarity between the segments in 

terms of contrast, length and orientation. The maximal clique which maximize ‘ 

the benefit function is chosen as the best match. 

2.5 Area-based Methods 

In area-based matching, area patches are matched by cross-correlation between 

intensity patterns in the two images. A classical example is Moravec's robot cart 

MORA80]. Moravec developed a vision system for a robot cart that made use 

of stereo vision in path planning. Points of interest are identified in each image 

by the Moravec interest operator. For each point of interest, the target image is 

searched at various resolutions starting from the coarsest. At each resolution the 

point of interest is matched with the target image using correlation of intensity 

as matching measure. The position that yields the highest correlation score 
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is enlarged to the next finer level of resolution. The process continues until 

the finest resolution is reached. The interest operator is described in [MORA80]. 

Moravec used 4 x 4 windows. Sums of squares of differences of pixels adjacent in 

each of four directions (horizontal, vertical and two diagonals) over each window 

are calculated, and the window's interest measure is the minimum of the four 

sums. The interest operator tried to locate features like angles in an image and 

at the same time reject simple edges. The interest operator is as follows : 

m, = ^ j : { P { i , j ) - P { z , j ^ l ) r I 
i=l j=l 

m2 = EE(P(i,j)-P(z^hj)r 
i=l j=l 

ms = j : j : ( P ( z , j ) - P ( i - h j - l ) r 
i=2 j=2 

3 3 4̂ = EE(̂ (̂ '̂)-n̂ - + i,j + i))' 
i=l i=l 

the mi, rri2, m3, m4 measure directional variance in horizontal, vertical, and 

the two diagonals respectively. The window's interest measure is the minimum 

of the four. 

Images taken from nine cameras are used in the matching process to provide 

redundancy of data. The same correlation process is applied to the nine images ‘ 

two at a time. Therefore for each point there are C| possible disparities. The 

disparities and correlation coefficients are used to calculate a confidence measure 

of the final result. 

Gennery [GENN80] proposed a high-resolution correlator. Sub-pixel accu-

racy is achieved with statistics of noise in the images, brightness and contrast 

adjustment and interpolation. Apart from finding the match point, the correla-

tor also return a probability value, which is an estimate of the accuracy of the 

match based on statistics of noise in the image intensity. The images are divided 
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into fixed-size and non-overlapping square areas. Matching is done column by 

column from left to right. The search is restricted to a distance range, which is 

determined by using a priori information about the scene. The stereo disparities 

are allowed to vary in an arbitrary way over the picture, subject to only mild 

local continuity constraints. 

Toh and Forrest [TOH90] proposed an edge and shading encoding scheme 

for images and demonstrated its use in stereo matching. Their method encodes 

image as piecewise surface shading separated by edges. The surface shading i 

is encoded as smooth polynomials. In stereo matching, the matching is done | 

by comparing the coefficients of the polynomials across corresponding scanlines. | 

This can be regarded as an area-based matching without doing cross-correlation i 

because the polynomial coefficients are regarded as approximate representations | 

of area patches. | 

Cohen, Sander and Gagalowicz [COHE89] gives a method that performs 

stereo matching using regions as matching primitives. The implementation ！ 

maintains a hierarchy of segmented regions in each image. Each level in the 

hierarchy corresponds to analysis at different scales. Instead of doing the seg- 丨 

mentation process before matching, the two processes are treated as related i 

processes. The two processes proceed simultaneously in a cooperative fashion in ‘ 

that partial matching results are used to enhance the segmentation process. 

Cochran and Medioni [CoCH89] gives an area-based method that use the 

entire images in the cross-correlation process. First, the cross-correlation for 

the entire images limited to a certain disparity range is generated. The cross-

correlation is performed both from left to right image and from right to left. A 

dense disparity map is then obtained by selecting the disparity values according 

to 4 criteria with priority. 

1. Cross-correlation peaks on each view that is at least 50 

2. Cross-correlation peaks which are exactly in agreement by both view and 
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which adjoin existing agreed-upon points. 

3. Cross-correlation peaks which are within a bounded agreement from both 

views and which adjoin existing agreed-upon points. 

4. Non-peak points which are within a bounded agreement from both views 

and which adjoin existing points. 

They argued that the disparity map obtained this way is a good estimate of 

the disparity, but is blurred across the depth discontinuity edges because of the ‘ 

cross-correlation. Further refinement of the disparity map is carried out after 丨 

edge detection. No independent feature-based matching process is carried out j 

with the edgels. The edgels is assigned with the disparity values obtained from 

the cross-correlation process. The disparity map is then smoothed, keeping 

the disparity at the edgels fixed, to remove the blurring effect across depth 

discontinuity. < ‘ , 
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Overview of the Method 

This and the following chapters describe an area-based stereo matching method. i 

This chapter gives an overview and the main considerations behind the methods. : 

Its components will be described and explained in the following chapters. i 

Area-patches are commonly used in area-based matching. However, in this i 

method, horizontal intensity line segments are used as the matching primitives. I 

Edges are detected in the left and right images and then horizontal line seg- 1 

ments that are enclosed by two edge points on the horizontal scan-lines of the � 

raw intensity images are extracted (fig. 3.1). This is effectively an area-based 丨 

I 
matching approach because most of the pixels in the intensity images are used. 

The horizontal intensity line segments can be considered as area-patches of 1-

pixel width and variable length. Moreover, the method results in dense disparity 

maps, which is a characteristic of area-based matching. 

Edges are not matched directly in this method, but they are important in 

extracting the horizontal intensity line segments. Therefore, the choice of edge-

detector is also important to the final result. 

The imaging geometry is a parallel axis geometry, (see section 1.4.3) Non-

parallel axis geometry has the advantage that it allows for a greater overlap of 

the left and right images. However, the extra computations necessary to find 
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line segments 

Figure 3.1: Illustration of how horizontal intensity line segments are extracted 
between edge pixels. 

the epipolar lines or rectify the images out-weights its advantage. Therefore, we 

adhere to the simpler parallel axis geometry. 

3.1 Considerations 

The choice of using these extracted horizontal line segments as units of matching 

is made mainly because of the following considerations: 

Dense Disparity Map The first consideration is a dense disparity map. 

Feature-based matchings are generally more accurate because they are less sen-

sitive to noise and that area-based matchings do not work well at occluding 

boundaries. However, features are generally sparse within images, resulting in 

sparse disparity maps. On the other hand, area-based matchings produce less 

accurate but dense disparity maps. In our method, occluding boundaries are 

taken care of because of its choice of matching primitives. Moreover, the sparse 
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disparity maps produced by feature-based matchings usually require further pro-

cessing until they are useful. Interpolation of disparity map is necessary, which 

is not straight-forward. Dense disparity maps produced by area-based match-

ings may also require further processing to fine-tune the disparity values. It is 

nevertheless less complicated. 

Segments and Windows Second, the choice of using horizontal intensity 

line segments in effect dynamically choose suitable window sizes for matching 

different parts of the images according to the image characteristics in differ-

ent parts of the images. Generally, in area-based matching, windows are used 

to divide the intensity images into units of matching instead of matching the 

pixels individually. The classical area-based matching methods used fix-sized 

windows (e.g. [MORA80] [GENN80]). On the choice of window-size, there is 

a dilemma: Large windows are more robust but they only give coarse dispar-

ity values because of the averaging property of cross-correlation. On the other 

hand, small windows result in finer disparity values but are sensitive to noise 

and break down at repetitive features, this is because small windows may not 

cover enough intensity variation for unique match. In this method, the length 

of the line segments plays the role of the size of the windows. The length of 

the line segments varies according to the position of edges that bound the area 

to which the particular line segment belongs. This effectively helps to choose a 

best window size for that particular area in the image being matched. Further 

explanation is presented in chapter 4. 

Epipolar Constraint Third, based on the epipolar constraint (section 1.4.5), 

for any point on the left image, its correspondence point on the right image lies 

on the epipolar line. When parallel-axis stereo geometry is used, epipolar lines 

are horizontal scanlines. Therefore, for any point on the left image, its corre-

spondence point on the right image lies on the same horizontal scanline in the 
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right image. This reduce the 2-D search into a 1-D search. Even if the images 

are slightly shifted vertically due to incorrect calibration, the matching should, 

to a certain extend, be fault-tolerant because there is generally coherence be-

tween adjacent rows of pixels unless at edge positions. Therefore, horizontal line 

segments of single pixel width can be used in the matching process without con-

sidering the vertical disparity continuity in the first step. The vertical disparity 

continuity can be considered and is helpful in smoothing the disparity map after 

the matching process. 

3.2 Brief Description of the Method 

The original intensity images is first passed to an edge detector. The Canny 

edge detector is used in this implementation. The edge detector gives distinct 

edge points after certain thresholding, i.e. a pixel is either an edge point or 

not, with no intermediate value. Then, for every horizontal scanline in the left 

image, edge points are located. The row of pixels bounded by two edge points, 

or bounded by the an edge point and the left or right boundary of the image 

are extracted as the horizontal intensity line segments (the matching primitives 

used in this method). Edge points are not included in the line segments. These 

will be further explained in chapter 4. 

The matching process involves an area-based matching using the horizontal 

line segments. Cases of inclined surfaces and occlusions are handled. The area-

based matching is done by computing a similarity measure between each line 

segments extracted from the source image and its candidate segments in the 

other image. The sum of normalized difference is used as the similarity measure. 

Refinement of the disparity map is then carried out to give the final disparity 

map. Further details are discussed in chapter 5. 

The matching process can be enhanced using a coarse-to-fine approach. This 
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is described in chapter 6. 

Fig. 3.2 depicts the relationship between the different stages. 

left and right images 

Wavelet 
Representation 
(chapter 6) 

I Ki I Ki [ 
Preprocessing 

^ I I I (chapter 4) 

Image pyramids 

^ Matching 
‘I 11 • I 11 (chapter 5) 

line segments ^ 1 

Disparity ^ Depth Recovery 
Map (described in 

I chapter 1) 

Figure 3.2: Relationship between stages. 
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Chapter 4 

Preprocessing of Images 

Preprocessing of images is an important component of the whole stereo match-

ing method. The preprocessing stage segmentates the images and extract the 

matching primitives to prepare for further processing. In this method, horizontal 

intensity line segments bounded by edge pixels are used as the matching primi-

tives. Preprocessing involves edge detection and the extraction of the horizontal 

intensity line segments. 

4.1 Edge Detection 

An edge is the boundary between two regions with relatively distinct gray-level 

properties. Basically, the idea underlying most edge-detection techniques is the 

computation of a local derivative operator. Fig. 4.1 gives an illustration of the 

idea. The second derivative has a zero-crossing at the midpoint of a transition 

in gray level. The midpoint of the transition locates the position of the edge 

and the magnitude of the zero crossing can be a measure of the strength of the 

edge. A similar argument applies to an edge of any orientation in an image. 

Many different edge detectors have been proposed. Most of them can be 

classified into three main categories [BALL82]: 
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Figure 4.1: Edge detection by local derivative operator, (a) image of a light 
stripe on a dark background; (b) profile of a horizontal line; (c) first derivative 
of the horizontal line; (d) second derivative of the horizontal line. 
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1. Operators that approximate certain mathematical derivative operators; 

2. Operators that involve convolution of the image with a set of templates 

tuned to different orientations; and 

3. Operators that fit local gray-level intensity values surrounding a point with 

(edge) surface models and extract edge parameters from the model. 

Although different edge detectors have been proposed to serve the edge de-

tection purposes. They have different properties and produce edge maps that 

differs in details. A choice of operator can be made based on the characteristics 

of the particular matching algorithm. For example, the Laplacian of Gaussian 

{V^G) operator has widely been used in many edge-based matching methods. 

However, the Canny edge detector [CANN86] is more suitable in this matching 

method and is used in the preprocessing phase. 

4.1.1 The Laplacian of Gaussian (V^G) operator 

The Laplacian of Gaussian {V^G) operator has been used widely for edge de-

tection. The Laplacian of a 2-D function f(x,y) is a second-order derivative 

defined as 

v v - ^ + ^ 
V J — dx'十 dy2 

the Gaussian part {G) stands for the two dimensional Gaussian distribution 

— £ i ^ G{x, y) 二 e 27r̂2 

with standard derivation a. 

The Laplacian of Gaussian operator may be expressed in terms of the radial 

distance r from the origin by the formula: 

—1 { r2 \ / _ r 2 \ 
V ^ ( r ) 二 — 1 - — exp ~^ 

� 7 7rcr4� 2ay ^2cr2j 
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The shape of the operator is a circularly symmetric inverted Mexican-hat-

shape (fig. 4.2). The best engineering approximation to V^G is the difference 

of two Gaussians (DOG), when the ratio of the standard deviations of the in-

hibitory Gaussians to that of the excitory one is about 1 : 1.6 [MARR82]. Fig. 4.3 

shows an example of an image and the effects of applying the DOG operator. 

o.i| , ！ 1 ! 

_ _ 

-0 4' ‘ i 1 ‘ 

-6 -4 -2 0 2 4 6 

Figure 4.2: The Laplacian of Gaussian shown as a one-dimensional function {a 
二 1 ) 

Marr and Hildreth [MARR80] argued that an edge detector should be capable 

of being tuned to act at any desired scale, so that large filters can be used to 

detect blurry shadow edges, and small ones can be used to detect sharply focused 

fine details in the image. They also argued that the most satisfactory operator 

fulfilling this is the filter V^G. The argument is that the Laplacian part is a 

differential operator, taking the second derivative of images. The Gaussian part 

is used to blur the images, effectively wiping out all structure at scales much 

smaller than the space constant a of the Gaussian. The Gaussian distribution 

has the desirable characteristic of being smooth and localized in both the spatial 

and frequency domains. It is, therefore, least likely to introduce any changes 

that were not present in the original images. This is the reason why it is used to 
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Figure 4.3: The Lena image, (a) original image, 512x512x256G; (b) zero-
crossings after applying the DOG operator; (c) only the highest 30% of pixels 
(in terms of magnitude of zero-crossings) is shown. 
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blur the images instead of using, say, a cylindrical pill-box function. The Marr-

Hildreth edge detector [MARR80] is an approximation of the V^G operator. It 

convolves a mask approximating the V^G function over the entire image and 

labels the zero-crossings of the convolution output as edge points. The V^G 

operator or the Marr-Hildreth edge detector or their simplified forms has been 

widely used by many edge-based matching algorithms (e.g. [GRIM81], [GRIM85], 

:KiM85], [OR91]). 

4.1.2 The Canny edge detector 

As can be depicted from fig. 4.1，instead of detecting edges from zero-crossings 

of the second derivative, we can also use the extrema of the first derivative. 

This give rise to a family of edge detectors based on the detection of extrema 

in the output of the convolution of the image with an impulse response h{x). 

The simplest of them is the difference of boxes operator [RoSE71] (fig. 4.4). A 

better one is the first derivative of Gaussian (FDG) operator : 

3̂  工2 
h{x) = -e~^ 

A 

1 • — > 

Figure 4.4: The Difference of boxes operator 
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The idea is similar to that of the Laplacian of Gaussian (V^G), in which 

the Gaussian part is used to smooth the original image without introducing 

high-frequency changes, the first derivative is used to detect the edge. 

Canny [CANN86] proposed an optimal detector with weil-stated goals of 

maximizing detection and localization, at the same time eliminating multiple 

responses. Canny formulated these criteria in mathematical forms and find the 

optimal operator by numerical optimization. The filter is presented in the math-

ematic form : 

h{x) = aie"^ sinojx + a2e^^ cos LOx + a3e""^ sin Lox + «46"^^ cos ux + c 

for X in [ - W , 0 ] , and circularly symmetric in [0，W], where W is the spatial 

extent of the impulse response. 

Canny's optimal operator is close to the FDG operator (fig. 4.5). Canny 

claimed that the performance of FDG is about 20 percent worse than Canny's 

operator in terms of detection and localization and about 10 percent in terms 

of multiple responses [CANN86]. A scheme of thresholding based on estimation 

of noise in the image intensity is also proposed. Two thresholds are computed, 

namely the low and high thresholds. All pixels with values above high are con-

sidered edges. All pixels with values below low are eliminated and all pixels with 

values between low and high are considered edges if they can be connected to a 

pixel above high through a chain of pixels above low . This thresholding scheme 

further improve the performance of the operator. 

In experiments, when compared with the Difference of Gaussian (DOG), the 

Canny edge detector produce better edge map, the edge pixels are more con-

nected and conform to the figural continuity of the image (fig. 4.6). Therefore, 

it is more suitable in this application, in which edge pixels are used to extract 

horizontal intensity line segments for matching. If the edge pixels are more con-

nected and conform to the figural continuity of the image, the line segments 

extracted are thus more coherent among segments and conform to the figural 
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Figure 4.5: (a) The Canny operator; (b) The first derivative of Gaussian (FDG); 
the figures are scaled to approximate size for comparison. 

continuity of the image. This also facilitates the refinement of the final disparity 

map when figural continuity is taken into account. The Canny edge detector 

is used in the implementation of the stereo matching method presented in this 
\ 

thesis. j 

I 

4.2 Extraction of Horizontal Line Segments j 
， 

for Matching : 

Both the left and right images are passed to the Canny edge detector. The 

Canny edge detector gives distinct edge pixels after its scheme of thresholding, 

i.e. a pixel is either an edge point or not. Strength of the edge pixels is not 

interested. For each horizontal row of pixels (scanline), edge points are located. 

Horizontal line segments are then extracted from the row of pixels such that 

the extracted line segments contain no edge points and are either bounded by 

two edge points or by an edge point and the left or right boundary of the 

image. Effectively, the edge pixels guide the extraction of the line segments. 

The extracted horizontal line segments are the matching primitives used in this 
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Figure 4.6: Comparison of output of edge detectors; (a) original Lena image 
512x512x256G; (b) output of the Canny edge detector; (c) output of the Differ-
ence of Gaussian (DOG); in (b) and (c), the edge pixels count about 4.7% of 
the entire image. 
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matching method. Therefore, the edge pixels effectively guide the matching 

process. The methodology behind is based on the assumptions that: 

1. Edges are likely to be points of disparity changes. So, they should not 

be included in the middle of a line segment to be matched. On the other 

hand, two area separated by an edge are better matched separately as it is 

more likely to have disparity changes between them. These factors favour 

the use of these line segments without edges as matching primitives. ‘ 

2. The horizontal line segments extracted are then without abrupt change in | 

intensity. It is likely that the disparities of all the points on the same line . 

segment are the same or they vary only smoothly. Therefore, it is easier : 

to decide the disparity values within a single line segment. This will be [ 

described in chapter 5. i 
I 

3. When using cross-correlation techniques (or similar measures), abrupt j 

change in intensity are likely to produce error. By excluding edges from ‘ 
» 

the matching primitive, matching should be more accurate. I 

As explained in section 3.1, The choice of using these horizontal intensity » 
• • _ 

line segments in effect dynamically choose suitable window sizes for matching 

different parts of the images according to the image characteristics in different 

parts of the image. This also speaks in favour of using these segments in cross-

correlation processes. 
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I 

The Matching Process 
( 

\ 

t .1 
The matching stage involves the area-based matching using the horizontal in- : 

tensity line segments extracted in the way described in section 4.2. A novel [ 

matching scheme is designed for using these horizontal intensity line segments ^ 

as matching primitives. Occlusion detection and refinement of disparity map [ 
I 

are also presented. 
• 
) 

5.1 Reducing the Search Space 
» 

In parallel-axis stereo geometry, epipolar lines are the horizontal scanlines. As-

suming epipolar constraint, each scanline is matched only with its corresponding 

epipolar line, i.e. the same row of scanline on the other image. After the prepro-

cessing stage (chapter 4), horizontal intensity segments are extracted according 

to edges detected. Suppose there are M segments on the left image, and N 

segments on the right image. There are altogether M x N possible matches. 

However, only a little part of them are correct and effort can be saved by elimi-

nating the unlikely matches. 

Maximum possible disparity value First, a maximum possible disparity 

value dmax can be assumed for every pair of stereo images. Then, for every 
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segment in the source image (left or right), its candidate segments are limited 

to those within displacement of 2 X dmax + 1 pixels. [KlM85] suggests that the 

dmax value can be determined for each application environment. We can first 

estimate the minimum distance Dmin of the objects from the cameras. Once 

the minimum distance is known for one particular application environment, the 

dmax value can be found from the parameters of the imaging geometry: 

, - 1 , ^max — n 
J^min I 

i 
,where B is the length of the baseline and f is the focal length of the cameras. ' 

\ 

t 
I 

Segments against sliding windows With the use of horizontal intensity line , 

segments as units of matching, the search space is small because there are usually 

only a few segments within the disparity range. When we use, for example, a , 

fixed size sliding window as the unit of matching, there are 2 x dmax + 1 windows ( 
I 

within the allowed disparity to be matched against if we slide the window at ‘ 

1-pixel intervals. However, when we use the horizontal intensity line segments as , 

units of matching, we do not need to slide the segments over one another. This is I 

because we have made use of the information of edge positions when extracting 

the segments. The start and end of the segments correspond to positions of “ 

edges. When we compare two segments, we do not need to slide them over one 

another because there should be no sharp edge within the segments themselves, 

the start and end of segments should not be matched to the middle of another. 

Therefore, the use of segments as matching primitives help reduce the search 

space, in comparison with using sliding windows. There are exception cases 

when there are partial occlusions. In such cases, we cannot align both end of 

two segments. Partial occlusions will be elaborated in section 5.4. 

Limit on difference of length of segments Furthermore, among the can-

didate segments lying within the allowable disparity region, those with a very 
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different length from that of the source segment can be rejected. It is further 

explained in section 5.3. 

5.2 Similarity Measure 

In this stereo matching method, horizontal intensity line segments are the match-

ing primitives. For two segments (one from the left image and the other from 
• 

the right one) to be matched, a similarity measure between the segments is com- � 
i 

puted to decide whether the segments are similar to each other. Each segment in ！ 

the source image has a corresponding set of candidate segments in the destina-
I 

tion image. Similarity measure should be performed between a source segment : 

with every one of its candidate segments. The one among the candidate seg- ‘ 

ments with greatest score in the similarity measure is made the correspondence , 

(match) of the source segment. The established correspondences are used to ‘ 
I construct the preliminary disparity map. ‘ 

Cross-correlation A traditional similarity measure is the cross-correlation. , 

Suppose a 2-D matching window(u;(a:, y) of size J x K) and a 2-D image (f(x, y) 

of size M X N) are to be compared, the cross-correlation between w{x,y) and • 

f { x , y ) is ： 

c{s, t) = X^ Y1 f{x, y)w{x - 5, y - t) 
X y 

where s 二 0 , 1 , 2 , . . . , M — 1; t — 0 , 1 ,2 , . . . , N - 1, and the summation is taken 

over the image region where w and f overlap, and it is assumed that the origin of 

f(^x^ y) is at its top left and the origin of w{x^ y) is at its center. The maximum 

value of c{s,t) indicates the position where w{x,y) best matches f{x,y). 
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Correlation coefficient The cross-correlation above-mentioned has the dis-

advantage of being sensitive to changes in the image intensity. Correlation co-

efficient can be used to overcome this problem. It is defined as 

(,.— E. Ey[/(^, y) — Rx, y)][w{x - \ y - t) - w 
r " , t j = - ： “ >11/2 

{E. E,[/(^, y) — f{x^ y)Y + E. E,h(^ - ^, y - , ) - 刊 

where s — 0，1，2,..., M - 1; t = 0 , 1 , 2 , . . . , N — 1, w is the average value of 

pixels in w{x^ y), / ( x , y) is the average value of f[x, y) in the region overlapping • 
I 

with w, and the summations are taken over the image region where w and f 

overlap. This is in fact the cross-correlation function normalized for intensity 

changes. Again, the maximum value indicates the position where w{x, y) best 

matches / ( x , y). \ 
I ] 

Sum of normalized differences Sum of normalized differences can also be ‘ 

used : 
,/ +� Y-v- f{x^y) w{x-s,y-t) 

d[s,t) 二 2^2^ ^7 7 T 
x T / ( z , " ) ^ 

, i t is also normalized for intensity changes. It is easier to implement and con-

sumes less computation than the correlation coefficient. This time, the minimum 

value indicates the position of best match. Smaller values of the sum of normal- • 

ized differences represent higher similarity score. 

In our algorithm, since the matching primitives are 1-D horizontal intensity 

line segments, the similarity measure is carried out in one dimension only. The 

source and target segments are on the corresponding scanlines (epipolar lines), 

the sum of normalized differences function becomes: 

u、 sr , ( 工 ） + - ^ 
d(s) = X^ TTT =^ 

^ / � 比 

Moreover, the purpose of normalizing for intensity changes is to allow for changes 

in contrast or illumination when taking the left and right images separately. 

However, for general purpose, the illumination and contrast change between the 
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two images should not be large. Therefore, a threshold check can be performed 

to the value of \f{x) — w\^ so as to disambiguate and reject candidate matches 

that are close to the source in shape of waveform but with very different intensity 

or contrast. This does not require much additional computations because w and 

/{x) are already calculated in the original sum of normalized differences function. 

This similarity measure is used in the implementation of the algorithm. 

When comparing a source segment with one of the candidate segments, we 
• 

do not need to slide the two segments over each other as in the above examples � 

(refer section 5.1). The similarity measure is performed only once between the 

source segment and each of its candidate segments. We can assume that the two . j 

input segments are of the same length and the similarity measure is implemented ‘ 

to perform on two segments of the same length. In the matching scheme to be 

presented in the rest of this chapter, segments of different length are transformed , 

to the same length before performing the similarity measure. The following 

sections explain the reasons and describe the detail operations. Finally, every 

candidate segment finally get a single similarity score with the source segment. 

The candidate segment with the best score is made the match (correspondence) 
of the source segment. 

M 

5.3 Treating Inclined Surfaces 

A horizontal intensity line segment corresponds to part of a surface in the real 

3-D environment. For planar surfaces parallel to the two imaging planes , the 

surfaces should project into the two imaging planes as similar surfaces of the 

same size, with certain displacements. This is also true for surfaces inclined 

only in the vertical direction. This is depicted in fig. 5.1. If a 3-D surface is 

not inclined in the horizontal direction, its left and right sides should produce 

the same disparity in the left and right images. The horizontal intensity line 
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segments extracted from such surfaces thus have equal length in the left and 

right images. 

Corresponding pair of segments with different length results from 3-D sur-

faces inclined in the horizontal direction (fig. 5.1). If the 3-D surface is inclined 

in the horizontal direction, the left and right side of the surface produce different 

disparities in the two images. However, the difference in disparities should not be 

large, i.e., the difference in length in the corresponding line segments extracted 
• 

from such surfaces in the left and right images should not be large. Therefore, ‘ 

before comparing two segments using the similarity measure function, we can ‘ 

first check the lengths of the segments. If the difference is large, we can reject 

the match and reduce the search space. Note that this is actually a constraint 
I 

on the shape of the objects in view similar to the ordering constraint mentioned 

in section 1.4.5. It facilitates the assumption of simple surfaces instead of more 

complicated ones in case of ambiguity. 

A B B i ^ / ^ 
B\ A，L B’K A R B L A L Bft A R 

left imaging plane right imaging plane left imaging plane right imaging plane 

(a) (b) 

Figure 5.1: Projection of 3-D world planar surfaces to imaging planes; (a) surface 
not inclined in horizontal direction; (b) surface inclined in horizontal direction. 
Note that in (b), the projection of the surface on the two imaging planes are of 
different length. 

When a source segment is matched with one of its candidate segments and a 

difference in length is detected (in this case the candidate segment should have 
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passed the threshold test), the assignment of disparity values to the pixel points 

along the segment should reveal the fact that the surface is an inclined one. The 

assignment of disparity value will be described in section 5.6. However, we also 

need to take into account the situation described in section 5.4. 

5.4 Ambiguity Caused By Occlusion 
• 

Occlusion is one of the main problems in stereo vision systems. Occlusion occurs , 

when part of the 3-D scene is visible in one of the imaging plane but not in the 

other. For those points being occluded, we cannot find their correspondences 

and hence their disparities. Moreover, occlusions are not readily detected and 

their presence confuses the matching of other points. 

Using horizontal intensity line segments as matching primitives, occlusions 

may result in the following cases: 

1. A line segment being visible in one image, but not in the other. 

2. A line segment being visible in one image, but only part of it is visible in 

the other. 
ft 

In the first case, there is no way of finding the disparity of the line segment, 

and hence there is no way of finding the disparities of the points along the 

segment. These segments should be detected and their disparities are not used 

in building the disparity map. Section 5.9 addresses more on this. 

The possibility of the second case results in ambiguity. Figure 5.2 gives an 

illustration of two situations. Fig. 5.2 (a) shows two linked surfaces, there is no 

occlusion between them. Fig. 5.2 (b) shows two surfaces, one being occluded by 

another. In both cases, one surface produces projections of different length in 

the left and right images. Since both cases result in projections (segments) of 

different length in the two imaging planes, we need a procedure to disambiguate 

51 



Chapter 5 The Matching Process 

them. Consequently, a scheme of comparing segments of different length is 

investigated and presented in section 5.5. The assignment of disparity values to 

the pixel points along the line segments can then be performed appropriately 

according to the result of the disambiguating process (the matching scheme). 

C D . B ' i B'L . C 

^ ^ ^ - . ^ ^ ^ 
C ' L B ' L A l C ' R B ’R A'R C l B l A l C ' R B's A ’ -

left imaging plane right imaging plane left imaging plane right imaging plane 

(a) (b) 

Figure 5.2: Ambiguity caused by partial occlusion: (a) two linked surfaces (one 
inclined); (b) two surfaces, one being occluded by another. In both cases, one 
surface produces projections of different length in the left and right images 
(B'C'). 

« 

It should be noted that the situation may be more complex than that il-

lustrated in fig. 5.2. However, in order to simplify the problem and to allow 

efficient disambiguation of the ambiguity caused by partial occlusion, it is as-

sumed that either one of the cases as illustrated in fig.5.2 occurs. The matching 

result represents an approximation to the real case. Fig.5.3 shows a more general 

case. 
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Bl 

A , 
C’L B'L Al C'R B'R A'K 

left imaging plane right imaging plane 

Figure 5.3: A more general case of partial occlusion. 

5.5 Matching Segments of Different Length 

For the candidate segments that pass the threshold test, they are compared 

with the source segment one by one using the similarity measure described in 

section 5.2. The simpler case in which there is no partial occlusion is presented 

first: * 

5.5.1 Cases Without Partial Occlusion 

We do not need to slide the shorter segment over the longer one to find the 

point of best match. This is because we have made use of the information of 

edge positions when extracting the segments. The start and end of the segments 

correspond to positions of edges. When we compare two segments, we do not 

need to slide them over each other because there should be no sharp edge within 

the segments themselves, the start and end of segments should not be matched 

to the middle of each other. Instead, the source segment is matched against 
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each of the candidate segments once to produce a single similarity score for each 

candidate segments. The candidate segment with the best similarity score is 

made the match (correspondence) of the source segment. 

To handle the difference in length of the source and target segments, the 

shorter segment is resampled to the length of the longer one (fig. 5.4). Then the 

similarity measure can be performed between two segments of the same length. 

The resampling is done as linear interpolation between adjacent pixels. The 
I 

matching is done this way because : 

Segment A 

I I I I I I I I I I I I I I I T T T 1 

\ 门 
Matching ZU I 11 I I I I II I II I II I I I I 

.... -. . ： :•‘ .: 
, \ . .. :- . • : • ； / .. ,'•• .-. \ • . : . . . . 

•• •- • . , , - • • - . . . 
.....•• •• •• ： ： : : ： ： •'• 

Resampling 
. . . . . . . . " . , .",..• / 
r i I I I I I I I iTTi Segment B ' 

I 

Figure 5.4: Shorter segments are resampled before comparing with longer seg-
ments 

1, If two segments match each other, their end-points should match those 

of each other. Matching them this way is more reasonable than sliding 

them over each other or truncating the longer segment to the length of the 

shorter one. 

2. The shorter segment is resampled instead of the longer one to avoid alias-

ing. 
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3. Matching the segments this way produce different disparities at the two 

end-points of a segment. This provides a mean to generate different dis-

parities for the pixels along the segment, as in the case of a surface inclined 

in the horizontal direction. 

Resampling is done as linear interpolation between adjacent pixels. This is 

just an approximation. In the real 3-D world, an inclined planar surface projects 

to the 2-D imaging planes in perspective instead of linearly lengthened or short-

ened. Considering a line segment resulted from an inclined 3-D planar surface, 

the portion of the segment that is further away from the imaging plane produce 

a shorter projection than the portion closer to the imaging plane. However, in 

the stereo vision problem, the depth of the 3-D points is the objective and we 

do not have a prior knowledge of the difference in depth of different parts of a 

line segment. The situation is even more complicated when the line segment 

corresponds to curved surfaces in the 3-D world. Therefore, although linear 

resampling is not very accurate, it is adopted as an approximation in the im-

plementation of this matching method. The assignment of different disparity 

values along the line segments is described in section 5.6. 

5.5.2 Cases With Partial Occlusion 

However, there are cases in which truncating the longer segment to the length of 

the shorter one is more reasonable. These happen in cases of partial occlusion 

described in section 5.4. In such cases, one end (either left or right) of the 

two segments match each other, but not the other end (see fig. 5.2). In these 

cases, only part of the longer segments can be matched to the shorter ones, the 

other part are being occluded in the other image, thus causing the difference 

in length. To deal with these segments, the two segments to be compared are 

aligned on the left or right end, and the longer one is truncated to the length of 
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the shorter one. The shorter segment is not resampled as in the cases with no 

partial occlusion. 

Since we do not have a prior knowledge of whether the segments match on 

the left or right, we need to compute the similarity measure twice. First, the 

segments are aligned on the left and the longer segment truncated to the length 

of the shorter one. Then, the process is repeated with the segments aligned on 

the right. Each of the two runs of the similarity measure simulates the case 

of partial occlusion on the right end and on the left end of the longer segment 

respectively. The similarity measure among the two that give a higher similarity 

score indicate a better point of match of the two segments, and hence a more 

likely-to-be-correct hypothesis of alignment and partial occlusion. Therefore, 

the two case (left and right alignment) is disambiguated using the similarity 

score. 

5.5.3 Matching Scheme To Handle All the Cases 

A matching scheme is used to disambiguate the above-mentioned cases, and at 

the same time find the matches (correspondences) of the points in the images. 

When we compare between two segments of different length (a source segment 
i 

and a target segment, one among a number of candidate segments of the source 

segment), we compute the similarity measure three times. 

First, we have the shorter segment resampled to the same length as that of 

the longer segment, the longer segment and the resampled segment are passed 

to the similarity measure and we have a similarity score Si. Then, the two 

segments are aligned on the left and the longer segment is truncated on the 

right to the length of the shorter segment, the resulting segments are passed to 

the similarity measure and we have another similarity score S2. Finally, we have 

the segments aligned on the right and have the longer segment truncated on the 

left. The resulting segments are passed to the similarity measure and we have 
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similarity score S2,. The similarity scores should be normalized for the length of 

the segments, because otherwise the result will be biased because the matching 

length for S\ is that of the longer segment and those for S2 and S^ are that of 

the shorter one. 

Si corresponds to the case where there is no partial occlusion. For conve-

nience, we call it inclined type matching. S2 corresponds to the case where 

there is partial occlusion on the right, we call it left type matching because the 
• 

segments are aligned on the left. Similarly, S3 is called right type matching, it 

corresponds to the case of partial occlusion on the left. 

The best of the three similarity scores will be the final similarity score of 
I 

the particular candidate segment. The candidate segments then compete to be 

the match of the source segment. If a particular candidate segment is finally 

the match of the source segment (i.e. having the best similarity score among 

all the candidate segments), assignment of disparity values to the pixel points 

along the segment will be carried out according to the fact that whether the 

final similarity score is of the type inclined , left or right . 

5.5.4 Matching Scheme for Segments of same length 
I 

If the source segment is of the same length as that of the target segment, the 

similarity measure need only be computed once. The segments are aligned on 

both end and no sliding of segments is necessary. This is already handled in 

the above-mentioned matching scheme because segments of the same length will 

result in equal similarity scores no matter the type of matching is inclined , left 

or right . Of course, the similarity measure need not be computed three times � 

in implementation. 

With the matching scheme capable of handling all kind of segments men-

tioned above, all the source segments are matched one by one with their candi-

date segments and then the disparity map can be built. 
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5.6 Assigning Disparity Values 

When correspondence is established between two points on the left and right 

images, disparity of the corresponding world point can be found by simply mea-

suring the displacement between the corresponding points in the two images. 

With the parallel-axis imaging geometry described in section 1.4.3 and assum-

ing epipolar constraint, the displacement occurs in the x-coordinates. Therefore, 

the disparity value of a world point can be found by measuring the difference in • 

x-coordinates between its projections in the left and right images. 

In the matching algorithm presented in this thesis, horizontal intensity line 

segments are used as the matching primitives instead of pixel points. Correspon-

dences are found between the line segments instead of individual pixel points. 

After the correspondences between the segments are established, disparity values 

are assigned to the pixel points that compose the segments. 

The scheme of assigning disparity values to the pixel points along the seg-

ments is that : 

1. Disparity values of the two end-points of a segment is found. They are 

found by measuring the displacements in x-coordinates between corre-

sponding segments. The left end-points and the right end-points are mea-

sured separately. 

2. If the type of matching is inclined , disparity values of the pixel points 

composing the segment is found by linear interpolation between disparity 

values of the end-points so that disparities change gradually along the line 

segment. 

3. If the type of matching is left , disparity values of all the pixel points along 

the segment follows the disparity of the left end-point, the unmatched 

portion of the longer segment is not assigned with any disparity value, i.e. 

they are considered to be occluded. 
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4. If the type of matching is right, disparity values of all the pixel points along 

the segment follows the disparity of the right end-point, the unmatched 

portion of the longer segment is not assigned with any disparity value. 

Suppose a segment is matched with another segment in the other image and 

the segments have the same length, the whole line segment will have the same 

disparity value, no matter it is considered to be any of the three matching type. 

This is because the end-points of the segment will have the same displacement 

in the two images and every point within the line segment will get the same 

disparity value as that of the end-points. 

In the case of a segment matched with another in the other image and they 

have different length, the end-points will have different displacements, and thus 

different disparities. In case of inclined type of matching, linear interpolation 

causes the disparity values of the pixel points to change from that of one end-

point to that of the other end-point gradually and linearly. This corresponds 

to the real case of an inclined surface in the real world. In case of left or 

right type of matching, interpolation is not needed and all pixels points along 

the segments follows the disparity of the left and right end-point respectively. 

This corresponds to the real case of partially occluded surfaces on the right and 

left respectively. The unmatched portion of the longer segment is not assigned 

with any disparity value because they are the part occluded and correspondence 

cannot be found. 

Again, this scheme has its limitations in the cases of general curved surfaces 

in the real world (fig. 5.3). In such cases, the surfaces are approximated by 

planar surfaces. 
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5.7 Another Case of Partial Occlusion Not Han-

dled 

Fig. 5.5 shows another case of partial occlusion not yet handled in the above-

mentioned matching scheme. Partial occlusion of the same line segment occurs 

at both ends. The end-points of the world 3-D surface may or may not project 

in any of the two imaging planes. In this case of partial occlusion, it is no 

longer reasonable to assume any alignment of the end-points of segments. To 

find out the best positions of correspondence, the segments need to be slided 

over each other until there is a best match between the overlapping portions 

of the segments. In this way, the advantages of using horizontal intensity line ； 

segments as matching primitives are no longer valid. Moreover, the search space 

is large and the search is prone to error and it is difficult to get good results. 

Therefore, this kind of partial occlusion is not handled in this matching scheme. 

C B； B； E" D 

2 t 
D' B，L E' B'R 

left imaging plane right imaging plane 

Figure 5.5: Another case of partial occlusion : partial occlusions occur at both 
ends. 

In case of the presence of such kind of partial occlusion and there are texture 
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on the surface being occluded, hopefully edges can be found within the surface 

in some positions that can be projected onto both of the two imaging planes. 

Then the situation reduces to the simpler cases of partial occlusion described 

in section 5.4. This is because the presence of edge points provide positions 

for segments to align while matching. In such cases, the matching scheme still 

works. 

5.8 Matching in Two passes 

5.8.1 Problems encountered in the First pass 

So far, the matching scheme described above works on the assumption that when 

there is a segment on the source image, we can find its matching segment on the 

target image unless there is occlusion. In case of occlusion, the source segment 

is being occluded by other objects in the target image and the corresponding 

segment cannot be found. However, apart from the problem of occlusion, there 

is another problem that can make the search for target segments fail. 

The problem comes from the preprocessing stage. Remember that the pre-
I 

processing stage consists of edge detection and the extraction of horizontal in- I 

tensity line segments. The images are first passed to an edge detector, then 

segment extraction is done according to the edge map. However, the two edge 

maps does not always match each other, i.e. there are some edges that are 

present in one image and not in the other. Since the extraction of segments is 

done according to the positions of edges, discrepancy in the edge maps results 

in discrepancy in the segments extracted. When there are edge points that are 

present only in one image, the segment extracted according to these dangling 

edge points will not have a corresponding segment in the other image. 

Figure 5.6 depicts the situation. C is a weak disparity discontinuity, it can 

only be detected as edge C' on the left image, and is not present in the right 
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image. This results in the extraction of segment A'C' and B'C' in the left 

image, but just A'B' in the right image. The discrepancy in edge detection 

may be caused by difference in illumination, contrast and weak edges that are 

boundary cases themselves in edge detection. 

A C B 

i " i 
B'LCY A'L B\ A\ 

left imaging plane right imaging plane ‘ 

Figure 5.6: Problem arisen from edge detection, (see text) 

In our matching algorithm, a source segment is supposed to match with 

another segment, but not two or more. Therefore, the presence of C' cause 

confusion in matching the segments involved. One possibility is that the seg-

ments can still be matched with other segments but the matching is a mismatch. 

However, a more likely possibility is that a segment find no matching segment 

because all of its candidate segments are out of the allowable disparity range 

(section 5.1). This is because this situation of dangling edges is more likely 

to happen within long segment. When a long segment is broken into two or 

more shorter segments on the other image, there is a good chance that their 

end-points are out of the allowable disparity range of one another's. Therefore, 

the situation will result in segment without being matched. 
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5.8.2 Second pass of matching 

To handle the problem, we introduce a second pass of matching after the first 

pass of matching. The first pass of matching is carried out as described in the 

above sections in this chapter. Then a second pass is carried out to fill out the 

gaps resulted from the dangling edges. 

In the second pass of matching, the source segments are matched one by one 

as in the first pass. However, the source segments are not compared with target 

segments or candidate segments. The source segment is compared in the target 

image as a sliding window. The source segment is slided within the allowable 

disparity range on the same epipolar line (scanline), compared with the pixels I 

in the target image that is overlapping with the sliding source segment using 

the same disparity measure as in the first pass. The position where the sliding 

source segment gets the best similarity score is made the match of the source 

segment. 

The second pass of matching do not take the advantage of using horizontal 

intensity line segments as matching primitives. More computation is required | 

because the source segment is slided along the scanline. The similarity measure 

is computed once for every pixel within the allowable disparity range. There is 

no consideration for inclined segments and partial occlusions. The assignment of 

disparity values is the same to all the pixel points along the segment. Although 

the second pass consumes more computation per source segment than the first 

pass, computation is mainly spent in the first pass because the ratio of dangling 

edges is small compared with all the edges in the images. Therefore, the second 

pass of matching only act as a remedy of the problems met in the first pass. 

The first pass is still the more important part of the own matching algorithm. 
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5.9 Refinement of Disparity Map 

Using the matching scheme described above, a coarse disparity map that roughly 

contains the disparity values of the individual pixel points can be obtained. 

However, further refinement of the disparity map can improve the result. 

Occlusion One of the problem that give rise to the necessity of refining the 

disparity map is occlusion. Occlusions comes from the fact that some world 

points are visible in one image but not in the other. It has been discussed in 

section 5.4 that with our choice of using horizontal intensity line segments as 
I 

the matching primitives, occlusion may results in : 

1. A line segment being visible in one image, but not in the other. 

2. A line segment being visible in one image, but only part of it is visible in 

the other. 

The latter case has already been discussed in section 5.4 and has been handled 

by the matching scheme described in the above sections. In the former case that 

a line segment visible in one image is wholly invisible in the other image, there is 

no way of finding the disparity of the line segment, and hence there is no way of 

finding the disparities of the points along the segment. These segments should 

be detected and their disparities are not used in building the disparity map. 

A way to detect such wholly occluded segments is to do a reverse matching. 

When a correspondence for a particular line segment on the left image is found 

(forward match), the matching process is performed once again using the line 

segment found in the right image (the best matching segment of the left source 

segment) as source segment and the left image as target (reverse match). If 

the correspondence found in the reverse match process does not agree with the 

result of the forward match process, it is likely that there is an occlusion and 

a reasonable match cannot be found. The process is depicted in fig. 5.7. This 
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is because segments that are wholly occluded in the other image are dangling 

segments with no match. When a dangling segment is matched among its set of 

candidate segments, there is still one candidate segment that has the greatest 

similarity score and that candidate segment is made the correspondence of the 

dangling segment in the forward match. However, actually the candidate seg-

ment should match another segment in the source image, thus a reverse match 

is helpful to reject those dangling segments. 

reverse match T̂Txn 
l' j 

1 Left I Right 
\ Image / Image vî ^̂  

forward match • I Figure 5.7: Occlusion detection process. 
Disparity values at edge points Throughout the matching algorithm de-

scribed so far, the edges are only used in the extraction of the line segments for 

matching. The edges are not matched directly and the disparity values at the 

edge points are not assigned. The necessity of finding out the disparity values 

at the edge positions is low because : 
1. Only a very small proportion of all the pixels in an image are edge pixels. 

2. It can be expected that the disparity range of the edge points would not 

exceed that of the non-edge pixels. 

3. Some of the edge points are in fact results of disparity discontinuity, it is 

not very meaningful to fix a certain disparity value for those edges. The 
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disparity values of the points around those disparity discontinuity points 

are more important. 

If it is desired to fill in the disparity values at the edge points. A separate 

edge-based (feature-based) stereo matching scheme can be employed to find the 

disparity values at the edge points. Alternatively, the disparity values at the 

edge points can be approximated by an average of those of its adjacent pixel 

points. 

Smoothing the disparity map A smoothing process can be applied to 

the disparity map to maintain the disparity continuity constraint within area 

bounded by edges. This conforms our assumption that abrupt changes in dis- I 
I 

parity are unlikely in these area; otherwise edges would have been found. The , i I 
vertical disparity continuity constraint can also be considered here, e.g. an area 

bounded by an upper and a lower edge should have similar disparity. The . 
smoothing can be done as an averaging of the disparity values within area ‘ 

bounded by edges, with the discarding of extreme values. 
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Coarse-to-fine Matching 
1 
I 
I 
I 

I 

Hierarchical structures have long been used in many stereo matching algorithms i 

to impose global consistency in the disparity map. [DHON89] contains a review 

on a few of them. A hierarchical structure called the Wavelet Representation is 

studied and used in our matching algorithm. ‘ 

6.1 The Wavelet Representation 

A pyramid is a data structure that contains successively condensed information 

of an image. Many image representations can be viewed as pyramids. They 

generally contain the original images and successively lower resolution versions 

of the original images. Conventionally, the original image is at the lowest level, 

the image at one higher level is obtained by lowpass filtering and subsampling 

of the image at the lower level, and the process repeats for certain times. With 

subsampling, the image size is smaller at higher level images, hence the name 

pyramid. Image pyramids are useful in image processing applications including 

image coding and analysis. In stereo matching, they can be used to impose 

global consistency and speed up of the matching process. 

There can be many different image pyramids depending on what lowpass 
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filter is used and how the lowpass filtered image is subsampled. One traditional 

image pyramid is the Gaussian pyramid [BURT83]. The lowpass filter used is a 

5 X 5 filter /1(n1,n2) given by 

h{ri1,n2) = h(n1)h(n2) 

where £ 

a, n 二 0 

h{n) = i, n = ±1 I 

1 — £ 77 ——h2 
4 2 ' n-土丄 I 

. . I Burt proposed to use 0.4 for a, then h{n) has approximately Gaussian shape, | 
I therefore it is called Gaussian Pyramid. The subsampling is done by a factor i i I 

of 2 in each dimension, i.e. by a factor of 4 in two-dimensions. The Gaussian 

pyramid was first used as an intermediate structure to generate the Laplacian 

pyramid, which is mainly used in image coding. Every level of the Laplacian 

pyramid is the difference of two consecutive levels of the Gaussian pyramid, 

except at the highest level. The highest level of the Laplacian pyramid equals 

the highest level of the Gaussian pyramid. 

In our algorithm, a pyramidal structure called the Wavelet Representation is 

studied and used. The lowpass filter used come from Wavelet Transform Theory. 

In particular the D4 filter by Daubechies [RlOU91] is used. A brief introduction 

of the Wavelet Transform is included in Appendix A. 

The decomposition of signal using the Discrete Time Wavelet Transform is 

a scheme of subband coding. Fig. 6.1 depicts a one-dimensional example of a 

subband coding scheme. With a discrete lowpass filter /i(n), we can construct 

a corresponding highpass filter g{n) where g{n) = {-l)^h{L — 1 — n), where 

0 < n < L — 1 and L is the length of the filters, which must be even. Using 

these two filters, we can construct 4 doubly indexed filters for a 2-dimensional 

function [RlOU91]: 

68 



Chapter 6 Coarse-to-fine Matching 

h{i,3) = h{i)h{j) 

g(%,j) = h(iMj) 

g^%.j) = g{i)h{j) 

9^^KiJ)=g{i)9{j) 

If we choose h{n) such that g{n) and h{n) are orthonormal (e.g. the DA 

filter), the 4 filters are orthogonal to each other. This follows from the orthog-

onality of the one-dimensional filters. The input image is convoluted with the : 

4 filters and 4 images are produced. g^^\i,j) corresponds to taking lowpass for 

row and highpass for column. This effectively gives the high frequency compo-

nents of the input image at the vertical component. Similarly, g(2)(i,j) gives 

the horizontal high frequency components and 分⑶(、).）gives the diagonal high 

frequency component, h{i^j) gives a blurred image of the input image since it 

is lowpass at both the horizontal and vertical component. The filtered images 

can be subsampled at all 2 directions by a factor of 2, i.e. we pick one sample 

from every two. There is thus an overall subsampling by a factor of 4 in the 

two-dimensions. In this way, the filtered image will be of one-fourth the original 

size, the resolution is reduced to half and the scale is doubled. 

This process can be repeated by feeding the lowpassed image into the 4 

filters again. Another set of 4 filtered images are then obtained and each filtered 

image (now seven) is a subband image of the original image and they are of 

no correlation with each other. This process can go on and on and subband 

images are produced. All the subband images together form the wavelet multi-

resolution representation. The representation is called multi-resolution because 

resolution is reduced to half on each pass of the filtering. 

Another way of doing two-dimensional filtering is implemented by doing the 

filtering using one-dimensional filters [LAW92]. The process is shown in fig. 6.2. 
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g(n) ^ subband 1 

u(n) I g(n) ^ subband 2 

^ h(n) 一 |2 一 I g(n) I ^ subband 3 

^ h ( n ) — — h —— 

^ h(n) l 2 • • • 

g(n) highpass filter 

h(n) lowpass filter 

|2 subsample by 2 

Figure 6.1: Block diagram of a subband coding scheme 

g(n) ^ HH subband 

" " " ^ g(n) I 

I h(n) ^ HL subband • 

image 
I g(n) ^ LH subband 

^ h(n) l2 

h(n) |2 一 LL subband 

Row Column 

g(n) highpass filter 

h(n) lowpass filter 

|2 subsample by 2 

Figure 6.2: Two-dimensional filtering as 6 one-dimensional filtering processes. 
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Fig. 6.3 shows an original image and the images after 1, 2, and 3 passes of the 

process. The LL subband image refer to the result of the original image filtered 

by the lowpass filter in both row and column. The LH subband image refer to 

images filtered by the lowpass filter in row and the highpass filter in column. 

Similarly, the HL and the HH subband images refer to the images filtered by 

highpass in row and lowpass in column; and highpass on both row and column 

respectively. After every level of filtering, the LL image can be subsampled by 

a factor of 2 and then feeded to the process again to produce more subband 

images. 

6.2 Coarse-to-fine Matching 

One of the application of the Wavelet Representation is in coding. In the case of 

image coding, the LH, HL, HH subbands are needed to reconstruct the original 

image. However, in our application of using the wavelet representation in coarse 

to fine matching, only the LL subband images are needed. The LL images 

together form a pyramidal structure that the image at a higher level has the size 

of one-fourth that of its next lower level image. The images at the higher levels 

are said to be of lower resolution, on the other hand, the images at the lower 

levels are said to be of higher resolution. Images of lower resolution contains 

less details of the original images than the images of higher resolution. 

With such a pyramid created using wavelet filters, a coarse-to-fine matching 

can thus be carried out. Starting from the top level (the smallest image), the 

matching is done as described in chapter 5. Then the matching result is passed 

to the next level (the image with size four times that of the previous level) to 

constraint the matching. The process goes on until the bottom level (the original 

image) is matched. It is called coarse-to-fine because the top level image is a 

coarse version of the original image, containing less details, the matching starts 
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圓圓 
(a) (c) mm 

•，、,纖_ mKmmm —te— _ 
BWiimi 動 

(b) (d) 
Figure 6.3: Subband images of the Lena image; (a) Original Lena image (512x512x256G); (b) Lena image after 1st pass of D4 filters (256x256x256G); (c) after 2nd pass (128xl28x256G); (d) after 3rd pass (64x64x256G); (b),(c),(d) upper left - LL subband, upper right - LH, lower left - HL, lower right - HH subbands. 
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here and the matching result is used to constraint matching in the levels below 

which are of finer resolution. 

The coarse-to-fine matching is done for both efficiency and accuracy consid-

erations. First, with the constraint on lower levels from the higher levels, the 

matching space is lowered and the matching becomes more efficient. Second, 

with constraint in search space, the chance of mismatch due to similar targets 

within the search space is reduced. Third, with the coarse-to-fine scheme, the 

need for choosing a maximum allowable disparity value (section 5.1) is reduced. 

This is because the matching can starts at a coarse level in which the disparities 

are small (the image size is small), then matching at lower level are constrained 

by the matching at higher level, thus reducing the reliance on the setting of a 

maximum allowable disparity value. 

On the other hand, there are possible drawbacks. First, the computation of 

the pyramidal structures require extra computational power, however, since the 

computation of the pyramidal structure is independent of the matching algo-

rithm, speed-up such as distributed processing or pipelining is possible. Second, 

if a mismatch is made at a high level, the search of the correct match at lower 

level is hindered because of the constraint from the higher levels. 
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Experimental Results and 

Analysis 

This chapter presents some experimental results of applying the matching al-

gorithm described in the previous chapters to some testing image pairs. Some 

analysis of the results is also included. 

7.1 Experimental Results 

7.1.1 Image Pair 1 - The Pentagon Images 

The Pentagon image pair is an aerial image pair consisting mainly of fronto-

parallel surfaces. The images and data structures involved in different stages 

of the matching method is presented in fig. 7.1 through fig. 7.6. It shows the 

application of the matching method on aerial image pairs. 
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^ ^ ^ 9 _ _ 
_ 

(b) 

Figure 7.3: Pyramidal structures of the Pentagon images (4 levels); (a) left ； (b) 
right. 
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^ w ^ K ^m^m 
f B ^ y ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 ¾ ¾ ^ ^ ^ ^ ^ ^ ^ ¾ 

(a) (b) 
Figure 7.4: Disparity map plotted as image, dark pixels - closer to imaging 
planes, light pixels - more distant to imaging planes; (a) before smoothing; (b) 
after smoothing. 
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Figure 7.5: Unmatched points due to occlusion, short segments, etc. (left) 
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H 
Disparity values given by : 

hand experimental 
position measurement result 

A +6 +6 to 4 T ~ 
B — -4 -4 to -3 
C — +4 +3 to +4 
D -7 -7 to -6 
E ~ +4 +3 to +4 
F +3 to +4 +3 to +4 

Figure 7.6: Hand-measured disparity values and experimental results. 
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7.1,2 Image Pair 2 - Random dot stereograms 

Fig. 7.7 to fig. 7.10 shows the images and data structures involved in different 

stages of applying the matching method on a pair of synthetic random dot stere-

ogram. The segments are generally short in length, but the matching method 

still works. 

m m 
(a) (b) 

Figure 7.7: Random dot stereograms (320x320x256G); (a) left; (b) right 
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i K ^ i ^ n K 
— 
^ ^ ^ ^ i g g i ^ ^ ^ ^ ^ ^ 

^ ^ H ^ ^ ^ H 
^ M M ^ a 

^ M 
Figure 7.10: Unmatched points due to occlusion, short segments, etc. (left) 

7.1.3 Image Pair 3 - The Rubik Block Images 

The Rubik Block Images consist of simple block structure with inclined surfaces. 

This image pair is used to test the ability of the matching method in detecting 

inclined surfaces (fig. 7.11 to fig. 7.15). In fig. 7.13, it can be seen that the 

disparity values change gradually along the inclined surface. 
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fPf^^i ^ ^ " h c ^ 5 d i 

• _ 

(a) (b) 

Figure 7.11: Original Rubik Block Images (132xl32x256G); (a) left; (b) right 

• • 

(a) (b) 

Figure 7.12: Edge image of Rubik Block Images; (a) left; (b) right 
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Figure 7.13: Disparity map plotted as image, dark pixels - closer to imaging 
planes, light pixels - more distant to imaging planes. 

I H 
• 

Figure 7.14: Unmatched points due to occlusion, short segments, etc. (left) 
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mm 
國 

Disparity values given by : 
hand experimental 

position measurement result 
A -12 -12 to - f I~~ 
B ^ -6 to -5 — 
C ^ bad — 
5 -11 -11 

Figure 7.15: Hand-measured disparity values and experimental results. 
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7.1.4 Image Pair 4 - The Stack of Books Images 

The Stack of Books Images contain inclined surfaces and textures that are more 

complicated than those in the Rubik Block Images (fig. 7.16 to fig. 7.19). 

^ ^ ^ ^ ^ ^ ^ ^ ^ H (b) 

Figure 7.16: Original Stack of Books Images (512x512x256G); (a) left; (b) right 
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Figure 7.17: Edge image of Stack of Books Images; (a) left; (b) right 
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Figure 7.18: Disparity map plotted as image, dark pixels - closer to imaging 
planes, light pixels - more distant to imaging planes. 
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i m i 
H ^ ^ H 
| ^ ^ ^ ^ ^ B 

H a 
Figure 7.19: Unmatched points due to occlusion, short segments, etc. (left) 

7.1.5 Image Pair 5 - The Staple Box Images 

The Staple Box Images contain a fronto-parallel block structure in front of a 

background (fig. 7.20 to fig. 7.24). The matching method is supposed to be able 

to distinguish the stapler box from the background (The area left of the box 

should all be left aligned and those right of the box should be right aligned). 

As can be seen in fig. 7.23 a, it is successful in some rows. Unfortunately it 

fails in some other rows, resulting in error in the smoothed disparity map (the 

background is detected as two inclined surfaces). The large ratio of error is due 

to lack of texture in the background. 
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(a) (b) 

Figure 7.20: Original Staple Box Images (300x300x256G); (a) left; (b) right 

• • 

(a) (b) 

Figure 7.21: Edge image of Staple Box Images; (a) left; (b) right 

88 



Chapter 7 Experimental Results and Analysis 

^ ^ ^ ^ _ ^ ^ ^ ^ ^ ^ ^ _ , = ^ H ^ i ^ ^ i ^ * * ^ ^ ^ ¾ ^ ^ ^ ^ ^ % " = : : : ^ ^ ^ ^ | ^ 
• ^ ^ j j ^ ^ ^ ? ^ ^ ^ ^ ^ 於 = = ^ : n ^ ^ ^ ^ ^ j m j j j p p y : ’ 

^ B ^ » ' w B ^ m 
a g ^ ^ M ^ i i 
^ ^ g ffgj 

: 、 : 、 , ： " " ^ ” ‘ , ， ， , : : : , 

(a) (b) 

Figure 7.22: Disparity map plotted as image, dark pixels - closer to imaging 
planes, light pixels - more distant to imaging planes; (a) before smoothing; (b) 
after smoothing. 

Figure 7.23: Unmatched points due to occlusion, short segments, etc. (left) 
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Disparity values given by : 
hand experimental 

position measurement result 
good bad 

A 0 0 -8 to -7 
B ^ -9 to -7 -
C — 0 0 — -8 to -7 
D 0 0 -2 to -1 

Figure 7.24: Hand-measured disparity values and experimental results. 
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• | g ^ ^ W ^ ^ ^ ^ ^ ^ ^ » f ^ | M | 

: : ^ ^ i b 

^ H 

^ ^ B 
(a) (b) 

Figure 7.27: Disparity map plotted as image, dark pixels - closer to imaging 
planes, light pixels - more distant to imaging planes; (a) before smoothing; (b) 
after smoothing. 

^ B 

Figure 7.28: Unmatched points due to occlusion, short segments, etc. (left) 
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_ 

Disparity values given by : 
hand experimental 

position measurement result 
— A 0 bad 

B +11 ~+lQ to +11 
5 -3 -5 to -3 
5 -5 -6 to -5 
E -3 -3 to -2 
F 0 0 

Figure 7.29: Hand-measured disparity values and experimental results. 
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Chapter 8 

Conclusion 

A new stereo correspondence algorithm has been studied, implemented and pre-

sented in this thesis. With consideration of the difficulties generally met by area-

based stereo matching algorithms - the difficulty of finding a suitable matching 

window, the use of horizontal intensity line segments bounded by edge points as 

the matching primitives is studied. The validity of the use of such line segments 

as matching primitives is argued for. 

Moreover, the use of such line segments contributes to a number of favor-

able features such as reduction of search space (hence speed-up of matching), 

detection and disambiguation of inclined surfaces and partial occlusions. The 

detection of inclined surfaces and partial occlusion is done simultaneously with 

the matching process rather than as a post-processing step. In particular, with 

analysis of the relationships between the three dimensional scene geometry and 

depth reconstruction, attempts have been made to give approximate results for 

matching stereo images of slant surfaces and partial-occluded surfaces. 

The method makes use of the intensity values rather than parameterized 

features in the matching phase and this results in dense disparity maps. Post-

processing of the disparity maps is still necessary to fine-tune the disparity 

values but the process is less complicated than that in feature-based methods, 
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in which sparse disparity maps are produced. The use of horizontal intensity 

line segments bounded by edges as matching primitive also get around some 

problems commonly encountered in correlation-based matching methods. 

The method is tested on a number of synthetic images and real images. 

Some experimental results are presented to demonstrate the features. However, 

as shown in chapter 7, robustness and accuracy still need to be improved. Fur-

ther study on the relationships between vertically neighboring segments and the 

coarse-to-fine scheme in the context of using such line segments as matching 

primitive may bring improvement to the results. 
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Appendix A 

The Wavelet Transform 

Transform theory has played a very important role in computer vision. Trans-

forms are used in wide range of applications in the fields including image en-

hancement, restoration, encoding, compression, etc.. Among the various trans-

forms used, the famous Fourier Transform has been a classical one. However, 

the Wavelet Transform has advantages over Fourier Transform in some aspects. 

A.1 Fourier Transform and Wavelet Transform 

For a one-dimensional signal x{t), the Fourier transform : 

/

+oo . 

x{t)e-^'^^'dt 
-oo 

defines the notion of global frequency f in the signal. The Fourier Transform is 

computed as inner products of the signal with sine wave basis functions of infinite 

duration. Since the Fourier Transform use the sine function, which is periodic 

in nature, as basis function, it has difficulty with functions having transient 

components. If the signal has sharp transitions, the sharp transitions are spread 

out over the whole frequency axis in X{f). 
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To get around the problem, the Short-Time Fourier transform : 

STFT{rJ) = Jx{t)g{t-r)e-'^^^'dt 

is used. It maps the signal into a two-dimensional function in a time-frequency 

plane. The function g{t) is a window function of limited extent, centered at 

time location t. With the two-dimensional time-frequency representation, the 

Short-Time Fourier Transform is more accurate in time when compared with the 

Fourier Transform. However, the accuracy depends critically on the choice ofthe 

window g{t). A short window gives better time resolution but poor frequency 

resolution, while a long window gives poor time resolution but better frequency 

resolution. 

Contrary to using periodic basis functions in Fourier Transform, Wavelet 

Transform uses basis functions that are finite in time. The basis functions are 

called wavelets (meaning small waves). The wavelets are obtained from a single 

prototype wavelet (or mother wavelet, basic wavelet) by dilation and contrac-

tions (scaling) and shifts. As a result, instead of saying that a signal is de-

composed into different frequencies, the signal is said to be decomposed onto 

the wavelets, and since the wavelets are obtained from scaling and shifting the 

prototype wavelet, the signal is said to be decomposed into different scales and 

different locations, leading to the time-scale representation. 

A.2 Continuous wavelet Transform 

When a prototype wavelet h{t) is used, the scaled versions of the wavelet are 

ha{t) = -~=h{^). The basis functions (wavelets) are then represented by the 
vl®l 

term har{t) = - ^ h { - ) , where a denotes the scale and r denotes the shift. 
vl®l “ 

The term ~ ^ is used for energy normalization. This results in the definition of 
Vla| 
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the Continuous Wavelet Transform { C W T ) : 

C W T , { r , a ) = + [ x { t ) h { ^ ^ ) d t 
J\a\ J a 

or 

CWT,{r,a) = J x{t)har{t)dt 

Resolution Another difference between the Fourier Transform and the Wavelet 

Transform is resolution. As mentioned above, a fix-sized window is used in the 

Fourier Transform. When the window is shorter, the time resolution is better 

but the frequency resolution is worse. On the other hand, when the window is 

longer, the time resolution is worse but the frequency resolution is better. This 

is known as the Uncertainty Principle. In the Wavelet Transform, this uncer-

tainty principle still holds, however, the window size is variable with respect to 

frequency. This effectively give a better frequency resolution (in the expense of 

time resolution) at low frequency and a better time resolution (in the expense 

of frequency resolution) at high frequency. This is a favorable property as good 

frequency resolution is more significant in low frequency. 

Wavelet Series Expansion In Continuous Wavelet Transform, the inverse 

transform is : 
x{t) = c J J C W T { r , a ) h a , r { t ) ^ ^ 

where c is a constant that depends only on h{t). Here, both a and r are con-

tinuous. The inverse transform is exact (i.e. the equality holds) when h{t) is of 

finite energy and band pass. In Wavelet Series Expansion { W S E ) , a and r are 

discrete, where a 二 a � a n d r 二 ka{T for some a�and T. The inverse transform 

in this case becomes : 
x{t) ^ cT,jT>kCj,khj,k{t) 

where c is a constant depending only on hj,k(t) and Cj,k = f x(t)hj^k(i)dt is called 

the Wavelet coefficients. Here, the inverse transform only give approximation 
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of the original signal, and the accuracy depends on the quantization step of a 

and T (i.e. the approximation is good when a�and r are small). However, it is 

interesting that if hj,k[t) are orthonormal, the reconstruction is perfect, but this 

cause a very limited choice of the prototype wavelets, examples are ^ ^ and the 

DA filter by Daubechies [RlOU91. 

A.3 Discrete Time Wavelet Transform 

To make Wavelet Transform useful in image processing, we need the Discrete 

Time Wavelet Transform {DTWT), where both the signal and the wavelets are 

discrete. The DTWT is a subband coding scheme. The DTWT has advantages 

in computation, instead of having many different wavelets as scaled versions of 

the prototype wavelets, we can use the same discrete valued basis function h{n) 

with subsampling of the input signal. Here, Sub-sampling is done by taking one 

sample out of every two. The size of the input signal will then be reduced to half 

and the resolution is also reduced to half. The scale is changed by sub-sampling 

of the input signal instead of changing a in the continuous case. 

We can easily compute another function g[n) where g{n) 二 (一 l ) n " ( L - l - n ) , 

with L representing the filter length which must be even and 0 < n < L — 1. 

The two functions work like a pair of filters (lowpass and highpass). The filters 

k(n) and g(n) is used as in the subband coding scheme described in chapter6. 

To reconstruct the input signal back from the filtered signals, the filtered signals 

are passed through inverse filters and added together. The inverse filters are 

identical to the filters themselves with time reversal, this again simplify the 

computation in DTWT. The DTWT is used to create wavelet representation 

described in chapter 6. 
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Acknowledgements to Testing 

Images 

Some testing image pairs used in this thesis are obtained from the VASC Image 

Database available on the Internet provided by Carnegie Mellon University's 

Vision and Autonomous Systems Center. 

B.1 The Circuit Board Image 

Descriptions 

The images defined by and accompanying this header file may not be copied or 

redistributed without inclusion of this corresponding header file. This header 

file must include this message, and the acknowledgement of the source (see 

:SOURCE below) of the images. 

(:TITLE "Apple Motherboard" 

:FORMAT :RASTER 

:FILENAME (:BEGIN "apple" 

:END ".img" 

:STEREO (:STEREO T "r") 
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:ORDER (:BEGIN - :STEREO :END)) 

:FILESIZE (:IMAGE-LINES 512 

:PIXELS/LINE 512 

:BITS/PIXEL 8) 

:KEYS ( " B / W " 

"Circuit Board" 

"Indoor" 

"Stereo") 

:SOURCE "University of Illinois, Bill HofF' 

:DESCRIPTION "Apple IIe motherboard, taken with TV camera." 

:REFERENCES (:ARTICLE ( 

:AUTHOR ,,Hoff, W. and Ahuja, N.，， 

:TITLE "Surfaces from Stereo: Integrating Feature Matching, Disparity Esti-

mation, and Contour Detection" 
:JOURNAL "IEEE Transactions on Pattern Analysis and Machine Intelligence" 

:YEAR 1989 

:MONTH "February" 

:PAGES "121-136" 

:VOLUME 11 

:NUMBER 2))) 

Images : (see fig. B.1) 

B.2 The Stack of Books Image 

Descriptions 

The images defined by and accompanying this header file may not be copied or 
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_ _ 

(a) (b) 

Figure B.1: The Circuit Board Images (512x512x256G); (a) left (b) right. 

redistributed without inclusion of this corresponding header file. This header 

file must include this message, and the acknowledgement of the source (see 

:SOURCE below) of the images. 

(:TITLE "Stack of Books" 

:FORMAT :RASTER 

:FILENAME (:BEGIN "books" 

:END ".img" 

:STEREO (:STEREO T "r") 

:ORDER (:BEGIN - :STEREO :END)) 

:FILESIZE (:IMAGE-LINES 512 

:PIXELS/LINE 512 

:BITS/PIXEL 8) 

:KEYS ( "B /W" 

"Book" 

"Indoor" 

"Stereo") 
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:SOURCE "University of Illinois, Bill HofF' 

:DESCRIPTION "Stack of books on table, taken with TV camera." 

:REFERENCES (:ARTICLE ( 

:AUTHOR ,,Hoff, W. and Ahuja, N." 

:TITLE "Surfaces from Stereo: Integrating Feature Matching, Disparity Esti-

mation, and Contour Detection" 
:JOURNAL "IEEE Transactions on Pattern Analysis and Machine Intelligence" 

:YEAR 1989 

:MONTH "February" 

:PAGES "121-136" 

:VOLUME 11 

:NUMBER 2))) 

Images : (see fig. B.2) 

• • 

(a) (b) 

Figure B.2: The Stack of Books Images (512x512x256G); (a) left (b) right. 
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B.3 The Rubik Block Images 

Descriptions 

The images defined by and accompanying this header file may not be copied or 

redistributed without inclusion of this corresponding header file. This header 

file must include this message, and the acknowledgement of the source (see 

:SOURCE below) of the images. 

(:TITLE "Toys Image, No. 3-2" 

:FORMAT :RASTER 

:FILENAME (:BEGIN "t3-2" 

:END ".img" 

:STEREO (:STEREO ’ T "r") 

:ORDER (:BEGIN - :STEREO :END)) 

:FILESIZE (:IMAGE-LINES 134 

:PIXELS/LINE 212 

:BITS/PIXEL 8) 

:KEYS ("Blocks Scene" 

" B / W " 

"Stereo") 

:SOURCE "USC Institute for Robotics and Intelligent Systems, Steven Cochran" 

:DESCRIPTION "Partial view of a Rubik's cube occluding a wooden block.”） 

Images : (see fig. B.3) 
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(a) (b) 

Figure B.3: The Original Rubik Block Images (212xl34x256G); (a) left (b) right. 

105 



Bibliography 

Anuj93] AHUJA, N. AND ABBOTT, A. L. Active stereo: Integrating dispar-

ity, vergence, focus, aperture, and calibration for surface estimation. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 

15(10):1007-1029, 1993. 

AYAC87a] AYACHE, N. AND LuSTMAN, F. Fast and reliable passive trinocular 

stereo vision. In Proc. 1st Int. Conf. Comput. Vision, pp. 422-427, 

June 1987. London. 

AYAC87b] AYACHE, N. AND FAVERJON, B. Efficient registration of stereo im-

ages by matching graph descriptions of edge segments. International 

Journal of Computer Vision, 1(2):107-131, Spring 1987. 

BAKE81] BAKER, H. H. AND BlNFORD, T . Deph from edge and intensity 

based stereo. In Proc. Int. Conf. Artificial Intdl., volume II, pp. 

631-636, Aug. 1981. 

BALL82l BALLARD, D. H. AND BROWN, C. M. Computer Vision. Prentice-

Hall, Englewood ClifFs, New Jersey, 1982. 

BURT83l BURT, P. J. AND ADELSON, E. H. the laplacian pyramid as a com-

pact image code. IEEE Transactions on Commun,, COM-31:532-

540, April 1983. 

106 



'CANN86] CANNY, J. F. A computational approach to edge detection. IEEE 

Transactions on Pattern Anal. Machine Intdl,, PAMI-8(6):679-698, 

Nov. 1986. 

CoCH89] CocHRAN, S. D . AND MEDIONI, G . Accurate surface description 

from binocular stereo. In Proc. Workshop on Interpretation of 3D 

Scenes, pp. 16-23, 1989. 

COHE89] COHEN, L. , VlNET, L. , SANDER, P. T.，AND GAGALOWICZ, A . 

Hierarchical region based stereo matching. In Proc. IEEE Conference 

on Computer Vision and Pattern Recognition, pp. 416-421, 1989. 

DAS95] DAS, S. AND AHUJA, N. Performance analysis of stereo, vergence, 

and focus as depth cues for active vision. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 17(12):1213-1219, 1995. 

DHON89] DHOND, U. R. AND AGGARWAL, J. K. Structure from stereo -

A review. IEEE Transactions on Systems, Man, and Cybernetics, 

19(6):1489-1510, Nov.-Dec. 1989. 

FAUG93l FAUGERAS, 0 . Three-Dimensional Computer Vision - A Geometric 

Viewpoint The MIT Press, Cambridge, Massachusetts, 1993. 

'GENN80l GENNERY, D. Modelling the Environment of an Exploring Vehicle 

by Means of Stereo Vision. PhD thesis, Computer Science Dept., 

Stanford University, Stanford, CA, 1980. 

GOLD89] GoLDSTEIN, E. B. Sensation and Perception. Wadsworth Publish-

ing Company, Belmount, California, 1989. 

GRIM81] GaiMSON, W . E. L. A computer implementation of a theory of 

human stereo vision. Phil. Trans. Royal Soc., 298:395-427, 1981. 

107 



GRIM85] GRIMSON, W . E. L. Computational experiments with a feature 

based stereo algorithm. IEEE Trans. Pattern Anal. Machine Intell., 

7:17-34, 1985. 

GROS95] Gaosso, E. AND TlSTARELLl, M. Active/dynamic stereo vision. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 

17(9):868-879, Sept. 1995. 

HORA89] HORAUD, R. AND SKORDAS, T . Stereo correspondence through fea-

ture grouping and maximal cliques. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, PAMI-11(11):1168-1180, Nov. 

1989. 

lT086] l T O , M. AND ISHII, A . Three-view stereo analysis. IEEE Trans. 

Pattern Anal Machine Intell., 8:524-532, 1986. 

KAPP87] KAPPIE, F. AND LlEDTKE, C. E. Modeling of a natural 3-d scene 

consisting of moving objects from a sequence of monocular tv images. 

In Proc, SPIE, volume 860, pp. 126fF, 1987. 

KlM85] KlM, Y . C. AND AGGARWAL, J. K. Finding range from stereo 

images. In Proc. IEEE Conference on Computer Vision and Pattern 

Recognition, pp. 289-294, 1985. 

KoCH93] KoCH, R . Dynamic 3-d scene analysis through synthesis feedback 

control. IEEE Trans. Pattern Anal. Machine Intell., 15:556-568, 

1993. 

LAW92] LAW, K . H. Progressive image transmission using wavelet multires-

olution representation. Master's thesis, Dept. of Electronic Engi-

neering, City Polytechnic of Hong Kong, 1992. 

108 



LEUN94] LEUNG, C. W . AND WONG, K. H. Computer stereo vision using 

adaptive resonance theory. In Proc. 3rd Int. Conf. on Automation, 

Robotics and Computer Vision, pp. 192-196, Nov. 1994. 

Ll94] Ll, Z.-N. Stereo correspondence based on line matching in hough 

space using dynamic programming. IEEE Transactions on Systems, 

Man, and Cybernetics, 24(1):144-152, Jan. 1994. 

MARR76] MARR, D. AND P0GGI0, T . Cooperative computation of stereo 

disparity. Science, 194:283-287, 1976. 

MARR79] MARR, D . AND POGGlO, T . A computational theory of human 

stereo vision. Proc. R. Soc. Lond., B204:301-328, 1979. 

MARR80] MARR, D . AND HlLDRETH, E. Theory of edge detection. Proc. R. 

Soc. Lond., B207:187-217, 1980. 

MARR82l MARR, D. Vision - A Computational Investigation into the Hu-

man Representation and Processing of Visual Information. W. H. 

Freeman and Company, San Francisco, 1982. 

MAYH81] MAYHEW, J. E. W . AND FRISBY, J. P. Psychophysical and com-

putational studies towards a theory of human stereopsis. Artificial 

IntelL, 17:349-385, 1981. 

MORA80l MoRAVEC, H. p . Robot Rover Visual Navigation. UMI Research 

Press, 1980. 

Mous94l MoUSAVI, M. S. AND SCHALKOFF, R. J. Ann implementation of 

stereo vision using a multi-layer feedback architecture. IEEE Trans-

actions on System, Man, and Cybernetics, 24:1220-1238, Aug. 1994. 

109 



OHTA85] O H T A , Y . AND KANADE, T . Stereo by intra- and interscanline 

search using dynamic programing. IEEE Transactions on Pattern 

Anal Machine Intell., PAMI-7(2):139-154, Mar. 1985. 

OR91] OR, S. H. A cooperative algorithm for stereo disparity computation. 

Master's thesis, Dept. of Computer Science, The Chinese University 

of Hong Kong, Hong Kong, 1991. 

POLL85] POLLARD, S., MAYHEW, J., AND FRISBY, J. P M F : A stereo cor-

respondence algorithm using a disparity gradient limit. Perception, 

14, 1985. 

RlOU91] RlOUL, 0 . AND VETTERLI, M. Wavelets and signal processing. 

IEEE Signal Processing Magazine, 8(4):14-38, 1991. 

RoSE71] RoSENFELD, A. AND THURSTON, M. Edge and curve detection for 

visual scene analysis. IEEE Transactions on Computer, C-20(5):562-

569, 1971. 

TOH90] TOH, P. S. AND FORREST, A. K. An edge and shading encoding 

and compression technique. In Proc. International Conference on 

Automation, Robotics and Computer Vision, pp. 983-987, 1990. 

110 



• t ^ •-- - •巧, . • •"• ••• . • , ^ f - ^ r . • . 
• ' • ‘ � r o-; . • —-- ... • • •.• . , 

..̂  :�“ I. . .•• .. 
...-• ‘ ， ‘ .,. 

. . i ••"• 
,，. • . •'• ,. • J. 

^ ‘ .丨 \ 

• - r.. 

. .�Y “ . ..‘ , 

, 考 

.••‘... >, � 

iV 

‘ . . . . / ^ -̂ . �. ‘ 
\ : “ • 

• ‘ • • , • ‘丨 . 
.'•， ’ . 

:::�.V ,�. ^ •‘ , ‘ 
. . - - . . . . . • - _ , • - ' ,,.;>^- ?• t ...-< 1 • - .>, r . .] (.,• . ： 'I '}, _ • \ •s':i£fê ,:-Jfj« -tr^'i.,.. -.):.' ‘ ‘ • 
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