
Three-dimensional Interpretation 
of an 

Imperfect Line Drawing 

Thesis by 

Leung Kin Lap 

In Partial Fulfillment of the Requirements 
for the Degree of 

Master of Philosophy ‘ 

1 

Systems Engineering and Engineering 
Management Department, 
The Chinese University 

ofHong Kong 

June 1996 



/ ^ ^ ^ /^y^3iSAS Ayviiair®\ 
ML ™ � \ ^ 

||l m m 11 y 
V v " f f i . ^ ^ * ^ ' 7 V 

xJgix 



Acknowledgments 

I would like to thank Dr. Ronald Chung, my thesis advisor, who made this 

thesis possible. He provided me with very valuable positive feedback and 

suggestions. 

I would like to thank my colleagues, Rambo Ho, Jimmy Li, Neol Ho, 

Benny Yuen and Kaiser Lee for providing a friendly environment to work in. 

Finally, I would like to thank my friend Connie Cheng. She supported me 

emotionally and psychologically when I had difficulties and made my studies 

meaningful. 

i 



Abstract 

Recovering three-dimensional (3-D) shape of an object from a single line drawing 

is a classical problem in computer vision. Studies on it are abundant. They range 

from Huffman-Clowes junction labeling, to Kanade's gradient space and skew 

symmetry analysis, to Sugihara's necessary and sufficient condition for a 

realizable polyhedral object, to Marill's MSDA shape recovery procedure, to 

Leclerc-Fischler's shape recovery procedure which assures planar faces, and to the 

recent Baird-Wang's gradient-descent algorithm which has a favorable time 

complexity. Yet all these assume perfect line drawings as the input. Li this thesis, 

a method is proposed that through the use of iterative clustering interprets an 

imperfect line drawing of a polyhedral scene. It distinguishes the true surface 

boundaries from the extraneous ones like the surface markings, restores the 

missing surface boundaries, and recovers 3-D shapes satisfying constraints of 

planarity of faces and parallel symmetry oflines，all at the same time. Experiments 

also show that the 3-D interpretation agrees with human perception. 

ii 



Table of Contents 

ACKNOWLEDGEMENTS I 

ABSTRACT ....n 

TABLE OF CONTENTS HI 

TABLE OF FIGURES TV 

Chapter 1 Introduction 1 
1.1 Contributions of the thesis 2 
1.2 Organization of the thesis 4 

Chapter 2 Previous Work 5 
2.1 An overview of 3-D interpretation 5 

2.1.1 Multiple-View Clues 5 
2.1.2 Single-View Clues 6 

2.2 Line Drawing Merpretation 7 
2.2.1 Qualitative Interpretation 7 
2.2.2 Quantitative Interpretation 10 

2.3 Previous Methods of Quantitative Literpretation by Optimization 12 
2.3.1 Extremum Principle for Shape from Contour 12 
2.3.2 MSDAAlgorithm 14 

2.4 Comments on Previous Work on Line Drawing Interpretation 17 

Chapter 3 An Iterative Clustering Procedure for Imperfect Line 
Drawings 18 

3.1 Shape Constraints 19 
3.2 Problem Formulation 20 
3.3 Solution Steps 25 
3.4 Nearest-Neighbor Clustering Algorithm 37 
3.5 Discussion 38 

Chapter 4 Experimental Results 40 
4.1 Synthetic Line Drawings 40 
4.2 Real Line Drawing 42 

4.2.1 Recovery of real images 42 

Chapter 5 Conclusion and Future Work 65 

Appendix A 67 
A. 1 Gradient Space Concept 67 
A.2 Shading ofimages 69 

Appendix B 70 

iii 



Table ofFigures 
Figure 2,1: An example of the line labeling of an L-shaped block 8 
Figure 2.2:Two examples ofline drawings in "Origami" world 9 
Figure 2.3: An example oflabellable drawing but an impossible object 9 
Figure 2.4: (a) The line drawing of a imperfect line drawing and 

(b) one view of its Leclerc and Fischer's reconstruction 15 
Figure 2.5: This shows the case of the invalidity of the objective fimction 16 
Figure 3.1: Three different objects give the same projection 19 
Figure 3.2: Vectors of the cross products of two adjacent edges 21 
Figure 3.3: An example ofline drawing with only isolated faces 24 
Figure 3.4: Flowchart of the clustering approach 29 
Figure 3.5: Propagation of surface orientations to a free vertex from the connected vertices 32 
Figure 3.6: Interpretation ambiguity 33 
Figure 3.7: The ambiguity in interpreting the line drawing of a star-shaped object 35 
Figure 3.8: Another example of interpretation with bias 36 
Figure 3.9: An energy map with multiple local minima 39 

Figure 4.1: The complete flowchart of recovering a 3-D obtains 
from a single view 2-D image 45 

Figure 4.2: Iteration 1 for the line drawing of a hexagonal object 46 
Figure 4.3: Iteration 2 for the line drawing of a hexagonal object 47 
Figure 4.4: Output results for the line drawing of a hexagonal object 48 
Figure 4.5: Iteration 1 for the line drawing of an L-shaped object 49 
Figure 4.6: Iteration 2 for the line drawing ofanL-shaped object 50 
Figure 4.7: Iteration 3 for the line drawing of an L-shaped object 51 
Figure 4.8: Output results for the line drawing of an L-shaped object 52 
Figure 4.9: Results for the line drawing of an object without any parallel symmetry 53 
Figure 4.10: Iteration 1 for the line drawing of multiple object 54 
Figure 4.11: Iteration 2 for the line drawing of multiple objects 55 
Figure 4.12: Final Iteration for the line drawing of multiple object 56 
Figure 4.13: Edge and Comer detection of the real image of a candy can 57 
Figure 4.14: First iteration of the line drawing of the candy can 58 
Figure 4.15: Iteration 2 of the line drawing of the candy can 59 
Figure 4.16: Output results of the line drawing of the candy can 60 
Figure 4.17: Edge and Comer detection of the real image of a tape dispenser 61 
Figure 4.18: Iteration 1 of the line drawing of the tape dispenser 62 
Figure 4.19: Iteration 2 of the line drawing of the tape dispenser 63 
Figure 4.20: Output results of the line drawing of the tape dispenser 64 
Figure AI: The gradient space (a) geometry including the object, the picture 

and the viewer; (b) mapping of planes to a gradient 68 
Figure A.2: Defining the angles i, e and g 69 

iv 



Chapter 1 Introduction 

Line drawing is the simplest form of picture to represent the shapes of three 

dimensional (3-D) objects. It consists ofonly straight lines, curves and vertices. 

Humans can interpret line drawings or cartoon-like pictures with ease and 

without the feeling of much loss of information about object shapes. This shows 

that even if other cues like shading and texture are absent, contours alone already 

convey much information about shapes, and it is especially true for objects which 

display significant degree of regularity. Such an ability, if emulated in a machine, 

can have applications ranging from mechanical drawings interpretation (CAD-

from-drawing) to autonomous navigation in man-made structures. 

There have been a great deal of work on such a line-drawing interpretation 

problem, mostly for polyhedral scenes. Huf&nan [12] and Clowes [10] separately 

proposed a junction labeling method to recover 3-D description of polyhedral 

objects, though the description is qualitative. Mackworth [20] and Kanade [14] 

proposed gradient space analysis and skew symmetry to help recover quantitative 

3-D description. Sugihara [26] provided an algebraic criterion as a necessary and 

sufficient condition for a line drawing to represent a physically realizable 

polyhedral object. Marill [22] went further to propose a method of reconstructing 

polyhedral objects; the method is based on a criterion called the MSDA criterion 

which minimizes the standard deviation of the object's internal angles in 3-D. 

Later, a few important variations of the MSDA method were proposed. Leclerc and 

Fischler [18] added a planarity term to the optimization criterion, which enforces 
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each surface to be planar. Recently, Baird and Wang [1] proposed a gradient-

descent, algorithm to implement the MSDA criterion, and improved much on the 

time complexity. 

However, all these methods assume perfect line drawings. Li real images 

detectable edges are not necessarily surface boundaries; they can come from 

surface markings, cracks, shadows, imaging noise, and others. Some ofthe surface 

boundaries may not even be directly detectable because of too weak contrast. Yet 

human perception seems not to require a perfect line drawing to function; for many 

line drawings it would tell surface boundaries and markings apart, and it would fill-

in the missing boundaries ifnecessary. 

1.1 Contributions ofthe thesis 

There already exist techniques like region segmentation [25], edge detection [7， 

24], and perceptual grouping [16] that would locate apparent edges in an image and 

even extract a number of closed regions of defined homogeneity. Such techniques 

do not infer about 3-D shapes; they simply retum a line drawing which is most 

possible based on image information like intensity profile and co-linearity of lines. 

Such a line drawing is likely to be corrupted, in the sense that some detected lines 

are not surface boundaries and some surface boundaries are not detected. Questions 

are, given such an imperfect line drawing, how surface boundaries can be 

distinguished from other contours, how missing boundaries can be filled-in, and 

how 3-D information can be inferred about the objects. 
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The traditional belief is that these can be done in a sequential manner: 

segmentation comes first which identifies the true surface boundaries, then the 

above shape recovery techniques follow which recover 3-D information. 

Here a different point ofview is taken. It is argued that segmentation has to 

retum boundaries which are discontinuities of depth or orientation, while shape 

recovery has to know where the true surface boundaries are, a typical chicken-and-

egg problem. From this perspective, the two processes should work in parallel 

cooperatively to come up with a consistent output. 

This thesis addresses the problem of interpreting an imperfect line drawing 

of a polyhedral scene. A mechanism is proposed that, given a line drawing 

extracted based on the image information alone, would distinguish surface 

boundaries from surface markings and other extraneous lines, infer about missing 

surface boundaries, and recover 3-D shapes of the objects in the line drawing. The 

mechanism consists of an iterative clustering procedure that allows the 

segmentation and shape recovery processes to come into mutual agreement, before 

which one process acts on the intermediate result of the other in tums. It should be 

mentioned that the proposed algorithm does not condier the case of missing 

vertices or extra vertices. Actually even human has difficulty in interpreting such 

line drawings. 

The following assumptions are made in this thesis. The input line drawing 

is in the form ofa set of closed polygons as extracted from [16]. It is also assumed 

that the image projection process can be approximated as an orthographic one, i.e., 
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the object size is small compared with the viewing distance so that the object point 

T T 

with camera coordinates [x, y，z] projects to the image point [x, y ] . 

Part ofthe work in this thesis has appeared in [8，9]. 

1.2 Organization of the thesis 

Li Chapter 2 some of the major previous work on polyhedral scene understanding 

is outlined. Li Chapter 3, I describe what shape constraints are important for 

solving the problem, how to formulate the problem, and how to solve it using an 

iterative clustering approach. Li Chapter 4 some experiments illustrating the 

performance of the algorithm are described. The conclusion and some possible 

future work are given in Chapter 5. 
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Chapter 2 Previous Work 
A major task of computer vision is to recover the 3-D object from the 2-D 

projection. Although many different methods have been proposed, the problem is 

far from solved. Li this section, an overview of the related literature is given. 

2.1 An overview of3-D interpretation 

It is well known that some information, in particular the depth information, lost in 

2-D projection process of a 3-D object. It results that the reversed process is an ill-

posed problem. To solve this problem, some assumptions must be made, some 

properties ofthe scenes must be known or multiple images must be taken. There is 

a variety of properties that may be exploited to derive the shape. The properties 

collectively give rise to a class of algorithms called "Shape from X", namely, 

Shape from Motion, Shape from Stereo, Shape from Shading, Shape from Texture 

and Shape from Contour. The first two Shape from X,s require multiple images. 

2.1.1 Multiple-View Clues 

Shape from Motion and Shape from Stereo require multiple images ofthe objects. 

The elementary study of motion in images can be found in the book written by 

Ullman[27]. The pioneering work on stereo machine Vision was performed by 

Marr and Poggio[22]. Basically, the two methods- Shape from Motion and Shape 

from Stereo compare the corresponding points in the images with difficult views of 
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the objects and thus the depth data is obtained. However, it may be difficult to 

obtain multiple images at occasions. Also some experiments show that a man 

with a single eye can still perceive 3-D shapes correctly. That means multiple 

images are not always necessary in human perception. 

2.1.2 Single-View Clues 

Shading, texture and contour are the clues existing in a single image. Shape from 

shading [32] uses the information about the property of surface (reflectivity 

function). Shape from Texture requires regular pattem on the images[l,ll, 32]. 

Both of these two cues, however, require strong assumptions about the scene. 

Shape from Shading requires accurate modeling of the incident illumination and 

surface photometry, which is difficult to do for many natural scenes. Determining 

surface Shape from Texture requires presence of regular textural elements. 
i 
1 

The last one, shape from contour is what this thesis is about. A surface 丨 

contour is the image of a curve across a physical surface, such as the edge of a 

shadow cast across a surface, a gloss contour, wrinkle, seam, or pigmentation 

marking. Several psychophysical demonstrations show that Shape from Contour is 

significantly more powerful than Shape from texture. Similarly, Barrow and 

Tenenbaum[3] show that when there is a conflict between the clues (shading and 

contour, texture and contour), contour properly dominates human perception. 

Biederman[5] claims that in the experiments with humans the recognition ofa fully 

colored image of an object is not faster than the recognition of the line drawing of 
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the object. The line drawing interpretation problem is classified into the category of 

Shape from Contour. 

2.2 Line Drawing Interpretation 

Different Algorithms have been proposed to give a 3-D interpretation of the line 

drawing. The previous work can be classified into two categories: qualitative and 

quantitative. 

2.2.1 Qualitative Interpretation 

The major work on qualitative interpretation is the junction labeling scheme 

proposed by Huffman [12] and Clowes [10] separately. The scheme classifies each 

line on a line drawing into one of four labels (’+', ’ - ‘ ， ’ ~ V ， V ) ; ' + ' means the line is 

convex to the viewer, ‘ - ‘ means the line is concave, '<-' means the line is an 

occluding edge with the occluding face on the right of the line, and ' ^ ' is similar to 

'<-'but with the occluding face on the left. For a trihedral scene in which every 

vertex consists of three surfaces, there are four types: V, W, Y and T junctions. 

Catalog is produced listing for each type ofjunction sets of possible interpretations 

to the emanating lines. There are totally 16 possible different junction labels for 

trihedral objects. The labeling allows topology of the 3D objects to be understood. 

An example of this labeling scheme is shown in figure 2.1. Later, Waltz [31] 

extended the labeling scheme to include shadows and cracks, and devised an 

efficient labeling procedure, called filtering. Malik [21] further extended it for 

curved objects. It is overwhelming that Waltz's catalog, enumerated nearly 3000 
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physical interpretations of the junctions. On the other side, T. Kanade[15] uses the 

labeling technique on the so-called Origami world (objects made of single sheet 

paper). His theory uses the concept of selecting surfaces as basic components of 

the world, rather than the conventional solid polyhedra. Figure 2.2 shows a 'W-

folded paper, line drawing and a ‘box，line drawing which are included by Kanade 

into the labeling catalog. 

It should be noted that the labeling scheme is based on a necessary, but not 

sufficient, condition for a line drawing to represent a physically realizable scene. • 

That means that a line drawing which can be labeled may be an impossible object. 丨 
丨丨 
! 

(See figure 2.3) Moreover, qualitative method only gives the topology of the 3-D ! 
I 

objects but not the actual shape of the objects. Also, qualitative description is not | 

sufficient for many applications; quantitative description is sometimes desirable. 

1 :~ 
f 
I 
k 

X ^ Z X + — \ ' 

^ 

Figure 2.1 : An example of the line labeling of an L-shaped block. 
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纷 

K ^ 
M Z J I 

！ 
I 

Figure 2.2. Two examples ofline drawings in "Origami" world which is considered \ 
non-labellable in Huffman and Clowes labeling method. 

冒 ： 

Figure 2.3 : An example of labellable drawing but an impossible object. It is 
impossible because the faces cannot be all planar. 
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2.2.2 Quantitative Interpretation 

Huffman [13] introduced the gradient space to represent surface orientations. The 

definition of the gradient space is given in the appendix A.1. One of the most 

useful properties of the gradient space is the properties of dual lines. It states that 

iftwo planes meet and the intersection line is projected to a picture line L, then the 

gradients of the two planes are on a gradient-space line which is perpendicular to L. > 
1 

Mackworth and Kanade [14] employed it with the use of the shared boundary [ 
I i 

constraint and skew symmetry to compute quantitative measures about the object, | 

I 

and such measures also supplement the labeling scheme on the correctness of the 

labeled line drawing. Sugihara [26] later provided an algebraic criterion as a 

necessary and sufficient condition for a line drawing to represent a physically | 

realizable polyhedral object. I 

丨 
On the shape recovery side, some have suggested that it is a minimization i 

process. Brady and Yuille [6] proposed the use of an extremum principle in | 
L' 

determining the surface orientation from its 2-D contour. It maximizes the ratio of 

the area of a closed figure to the square of its perimeter. Barrow and Tenenbaum 

[6] proposed another similar measure. However, such measures only deal with a 

single surface; they do not apply to the entire object. A 3-D object consists of a 

number of surfaces, and it would require a global method applied towards the 

surfaces as a whole to recover the object shape. The globalness of the method is 

even more essential if the line drawing is contaminated, as it is not even known 

which contours are surface boundaries. 
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Recently, Marill [22] used a simple objective function to reconstruct the 

entire 3-D object. The function is simply the standard deviation of all angles (SDA) 

in the recovered 3-D object, where an angle refers to the one between any two lines 

of a vertex. The goal is to find the shape with the minimum SDA: the so-called 

MSDA principle, the idea behind which is to recover the shape that is most three-

dimensional. Later, Baird and Wang [1] proposed a gradient-descent algorithm to 

. i 
implement the MSDA principle with much less time complexity. However, the 丨 

I 
MSDA principle sometimes fails to give a "correct" interpretation (in the sense of [ 

whether it is in agreement with human perception) even for simple line drawings, | 

as it only enforces angle symmetry but not planarity of faces. Leclerc and Fischler 

[18] added a planarity term to the objective function. The new objective function 

gives extremely good results for perfect line drawings. Ulupinar and Nevatia [28， 

29] proposed methods that even reconstruct curved objects. All such shape 丨 

！ 
recovery methods share the commonality that they treat the set of contours as a i 

i 

whole. However, neither of them work with imperfect line drawings. 

Since the work in this thesis can be classified as quantitative interpretation 

of line drawing, this previous work on this class is described in details in next 

section. 
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2.3 Previous Methods of Quantitative Interpretation by 
Optimization 

Optimization plays an important role in the line drawing interpretation because a 

lot ofwork (including the work in this thesis) use this technique. 

Two important methods on the line drawing interpretation are to be described in 
I 

this section. Basically they both use the optimization process. , 1 
1 

2.3.1 Extremum Principle for Shape from Contour i 

Brady and Hom survey the use of extremum principles in image understanding. 

The choice of performance index or measure to be extremized, and the class of | 

. . . . j functions over which the extremization takes place, are justified by appealing to a | 
ii 
f 

model of the geometry or photometry of image forming and constraints such as | 

smoothness. There are several plausible measures of a curve that might be | 

• 

extremized in order to compute Shape-from-Contour. First, c K^ds, where K is the 
• 

curvature of the contour and s is the contour, has been investigated as a curve of 

least energy for interpolating across gaps in plane curves. However, contrary to 

what appears to be a popular belief, this measure is not extremized in the plane that 

transforms the ellipse into a circle. 

Another possible measure is proposed by Barrow and Tenenbaum [3]. 

Assuming planarity (the torsion is zero), it reduces to 

偶 、 
^v dsJ 
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However, this measure involves high-order derivatives of the curve. This means 

that it is overly dependent on small scale behavior. Consider, for example, a curve 

which is circular except for a small kink. The circular part of the curve will 

contribute a tiny proportion to the integral even when the plane containing the 

curve is rotated. The kink, on the other hand, will contribute an arbitrary large 

proportion and so will dominate the integral no matter how small it is compared 
h 

with the rest of the curve. 丨-

! 
Because of these weaknesses of these two measures, Brady and Yuille[6] , 

propose another simple measure as: I 
I 
f 

, , area ‘ M = 1 
(j)erimeter) ！ 

II 
The area, as well as the perimeter, can be obtained by an integral round the | 

contour. If n is the normal to the curve then it can be shown that ( 

, � . I 
{area)n = \ c r x dr 

！ 
I 
L 

For all possible curves it is maximized by the most compact one, a circle. In 

general, given a contour, the extremum principle with this measure will choose the 

orientation in which the projected contour maximizes M. For example, an ellipse 

is interpreted as a slanted circle. The tilt angle is given by the minor axis of the 

ellipse. It can also be shown that a parallelogram is interpreted as a rotated square 

and a triangle as a slanted equilateral triangle. 

As mentioned before, these extremum principles only consider individual 

faces. It does not apply to a whole object. Clearly, in an entire object the faces link 
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and constrain each other. It also requires the line drawing to be perfect. Any 

missing or extra lines on it will greatly affect the correctness of the interpretation. 

2.3.2 MSDA Algorithm 

This algorithm is first proposed by Marill[22]. It consists of two components, an 

objective function and a simple descent optimization procedure for finding a local 

minimum of this objective function. The objective function is simply the standard 

deviation of all of the angles (SDA) in the recovered 3-D object with respect to 

their common mean. Marill calls the minimization of the SDA the MSDA 

principle. The angle 0¾ is obtained by cos"^(ui • uj ) where Ui and uj are 3-D unit 

vectors parallel to the lines connected to a vertex. There is no any absolute 

constraint in Marill's principle and therefore the recovered objects often are not 

realized objects or agreed with human perception. 

Later Leclerc and Fischler see the defect of the principle. They add a 

planarity term DP on the objective function as an absolute constraint. The term DP 

is the sum of the terms DPi where DPi is zero when the face fi is planar, and 

increases as the face deviates from planarity. They define DPi as 

- n 2 

DP, = {n-T)n-Y,a^ 
_ > _ 

where n is the number of sides in the face i and Oj is the angle at the j th vertex. 

14 
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The new objective function becomes 

E{X) = X'SDA^+{l-X)DP 

where X is decreased from one to a small value. 

If the line drawing is perfect, the 3D interpretation by this algorithm agrees 

with the human perception. Li practice, it is not so ideal because the main problem 

occurs during the process of edge detection, i.e., the process of getting the line 

drawing from the intensity image. An example of its failure for an imperfect line 

drawing is shown in figure 2.4. 

I 

^ ¾ n 
4=J 

(a) 
(b) 

Figure 2.4 : (a) The line drawing of a imperfect line drawing and (b) one view of 
its Leclerc and Fischer's reconstruction 
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There are some cases that the algorithm fails to converge, for example, a 

single trapezoid face(figure 2.5). The minimization of the function will cause the 

two parallel lines to be separated at very long distance such that the four angles are 

close to be equal. This failure is due to the fact that the feature of equi-length is 

not included in the objective function. Li other words, the diversity of lengths 

should be minimized as that of the angles. 

^ H 
(a) (b) 1 

Figure 2.5: This shows the case of the invalidity of the objective function. 
(a) The trapezoid line drawing. 
(b) The output of the MSDA's principle. 
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2.4 Comments on Previous Work on Line Drawing 
Interpretation 

The failure of the MSDA algorithm as shown in Figure 2.4 is not a special 

example. The problem is that it actually assumes the line drawing to be perfect 

from the very beginning. Not only the MSDA algorithm, but all the previous work 

described above require perfect line drawings to work with. However, imperfect 

line drawing interpretations are inevitable in real imageries. To the best of my 

knowledge, the work in this thesis is the first attempt on imperfect line drawing 

interpretation. 
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Chapter 3 An Iterative Clustering Procedure for 
Imperfect Line Drawings 

Li this chapter, a new iterative clustering algorithm to interpret an imperfect line 

drawing as 3-D polyhedral object is described in details. Since the objects being 

handled are polyhedral, there are no curved surfaces or curved edges. The input of 

the algorithm is certainly a line drawing. It consists of closed polygons. Li other 

words, it consists of only interconnected straight lines. The line drawing needs not 

be perfect; there can be surface markings on it and there can be missing surface 

boundaries. Such a line drawing is available through perceptual grouping 

techniques like that in [16] which bridge gaps among edges and retum hypotheses 

of closed contours in an image. It can also be obtained using some simple 

procedures that will be described in the later section. 

Li the following I first describe what constraints about a 3-D shape are 

important, and are sufficient as the minimum basis to constrain the shape recovery 

problem. The shape should be a realizable shape, and should also agree with 

human perception. Then the line drawing interpretation problem will be formulated 

in formal terms based upon such constraints. Finally an iterative scheme that makes 

use of clustering to solve the problem is proposed. Besides, throughout the 

procedure, it is assumed that the 2-D projection is orthographic. 

18 
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3.1 Shape Constraints 

Recovering 3-D description from a 2-D line drawing is an ill-posed problem; there 

are an infinite number of different 3-D objects that can give the same 2-D 

projection (See figure 3.1). 

....•..• 一浴-::::: 
Projected image of the - - - 一 >^<--…… y 
three different objects - - - - : - ^ ^ ^ 一 一 \ \ / \ 

r " " " H 1 ....•..••》.二秘-
...- k^ ... • •• • • • • • ŝ • , • - :::::::::::::::•— • - • - • • • • • • • - • • • • - • 

Figure 3.1: Three different objects give the same projection. 

Assumptions about the object shape are necessary to constrain the problem. The 

object that best fits the assumption is considered as the real object. Because of 

dealing with polyhedral objects, planarity of all surfaces is naturally a fundamental 

constraint. Under the general viewpoint assumption where observed features and 

their inter-relationships are stable upon slight perturbations of the viewpoint, 2-D 

parallelism under orthographic projection can only be projected by 3-D parallelism. 

Actually it is possible that a pair of 3-D non-parallel lines can project a pair of 2-D 

parallel line but in only one particular viewpoint. This assumption is also in 

coherence with the Gestalt school of psychology [17] which proposed that parallel 

symmetry plays an important role in human perception. Planarity of surfaces and 2-

D parallelism to be projected by 3-D parallelism are therefore the two constraints 
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that a sensible 3-D output should satisfy, and they largely narrow the solution space 

to a few solution points. 

However, the original image itself, as a planar object, is one that satisfies 

all the above constraints. Such a solution is unlikely in reality. It is also not in 

agreement with human perception; if a line drawing that contains high degree of 

symmetry as that of a box is given, human does not perceive a set of lines on a 

plane but a solid object in 3-D. Another term that discourages such a planar object 

interpretation is needed. To achieve this, a measure of three-dimensionahiess of an 

object is required, similar to Marill's SDA measure, to encourage a 3-D 

interpretation. If the shape is to be recovered using an optimization scheme, such a 

measure should be of zero value if the object is planar, and of large value if the 

object is a solid one with small eccentricity in the 3-D space. 

3.2 Problem Formulation 

The problem is formulated as a constraint satisfaction problem: given a graph G = 

(V, E) where V= { Vp: Vp=(Xp,yp) } are the vertices in the image and E = {(vp,v )̂ : Vp 

,Vq e V} are the edges among the vertices, the goal is to find a depth measure Zp for 

each vertex Vp, as well as a set ^ of surfaces in the scene, which is a family of 

subsets of E (in fact a covering of E), such that they satisfy the above constraints. 

To put it more formally, I want to come up with a hypergraph H = (V', E, ^, where 

V' = { v'p : v'p = {Xp, yp, Zp)) and ^ is a set ofhyperedges on E, such that it satisfies 

the following three constraints. 
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1. Planarity Constraint 

(a) Vertices in a surface se^ are coplanar. 

This can be formulated as: boundary edges of any surface should orient in 

3-D such that all connected pairs of them have the same cross-product. That 

is, the measure 

- n 2 

H { 1 - ( e * i X e A ( e , , , x e ^ ) ^ 

均 1 e , _ i e,，i C i + i 

PLN({zp}, • = ^ — — ^ ^ — 
£e� i 

where e^j is the rth edge in 3-D of surface s, should ideally be zero and 

practically be a small value. (See figure 3.2) 

H,i-i X eg’’i 
\ 

\ � e ‘ i X e�+i 

j ^ ^ ^ ^ ^ ^ 

/ e�”i+i 

• 
• 

Figure 3.2: Vectors of the cross products of two adjacent edges. 
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(b) No two hyperedges sharing edges, i.e., no two neighboring surfaces, 

are coplanar. 

2. Parallelism Constraint: Parallel lines in the line drawing are projected 

by parallel lines in 3-D. 

This can be formulated as: lines parallel in the line drawing should orient in 
I 

3-D such that they have unity normalized dot-product. That is，the measure | 
I 
I r ^� I r "|2 �‘ 

I I - ^ I 
i,j ^i [Cj 丨丨 

PRL({zp}) = L v i — — -
Zl ！ 

i，J I 
1 

Where ei and ej, are the 3-D orientations of any pair of edges that appear to 

I 
be parallel in the line drawing, should ideally be zero and practically be a 

I 
Cj .Cj I 

small value. The part -~"^——in the equation is the cosine of the angle ^ 
| e J e j I 

k 

between the two edges i ,j. If the edges are parallel, this value should be 

equal to unity. 

3. Maximum Three-dimensionalness: A solid object is preferred over a 

sheet object. 

Since a measure that encourages three-dimensionalness in the interpretation 

is needed but the measure is not supposedly satisfied exactly, it needs not 

follow Marill's MSDA principle strictly which is more expensive to 

implement due to its globalness. Listead, a simpler measure which is local 

to each vertex is used: the constituent edges of any vertex should orient in 
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3-D such that the triple product of their directions should have a large 

value. That is, the measure 

H (Cp,i-i xepi).epi+i 

� T A /f 1 � P ‘ ep,i-i ep,,llepi+i 
3-Dness({zp}) = ^ ^ 

P i 

where Cp.i is the ith edge in 3-D of the pth. vertex, should be maximized. ^̂  
|j_ 

The measure can have a value ranging from 0 to 1 ； it is of value 1 if the |, 
1 

vertex tums out to be rectangular, and of value 0 if the vertex tums out to ; 
？ 

be flat. I 
11 

Notice that the first two constraints, planarity and parallelism, are | 

absolute constraints to be satisfied exactly, while the last one, three-

d i ^ i o ^ l n e _ _ _ m i z a t i o „ _ t o — g e s ^ ^ l 
i ̂ 

I 
interpretation. It should be noted that this function does not change the j 

ii 
{Zp} ifthe line drawing consists of isolated faces like the one in figure 3.3. \ 

«« 

An isolated face is defined as a face which does not have any share 

boundary with other faces. 
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Figure 3.3: An example of line drawing with only isolated faces. : 
S 
1̂  
P 

! 
i 

Besides, there is another general viewpoint assumption that can be made. It '| 

is the co-linearity: if three points are colinear in 2-D projections, they are also 1 
I « 

colinear in 3-D. This assumption is not included here as a constraint. There are two ) 
'1 

reasons. | 
%i 

i) If this constraint is formulated as a function, it will greatly increase the 

computation time of the objective function. 

ii) The case that there are no edges connecting the three colinear vertices does 

not happen often. For the case that there are edges connecting them, the 

parallelism also captures the feature of the co-linearity. 

Three consecutive points (A, B, C) are co-linear 

<==�slope ofline AB = slope of line BC 

< = � A B / / BC 

and hence parallelism includes the co-linearity for the three points. 
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3.3 Solution Steps 

If segmentation ^ is known, the problem becomes simple. Zp's are found to 

minimize the value of the overall objective function 

E({zp}, Q = — 3-Dness«Zp}) + a PRL({zp}) +p PLN({Zp}, ^ (3.1) 

t« 
k 

which is a weighted sum of the above constraints.a and P are the weighting factors ;, IH \ 
with positive values. It should be noted that the term 3-Dness has a negative ^ 

k 
coefficient because it is to be maximum. 

• I 
For any a,P, a locally optimal solution of Zp's can be found using the hill- | 

ii 

climbing method. The method is simple, and it does not require the derivative 
• 1 

expression of the objective function that can be complicated. It can be described as , 
f 

the following. Given any initial value of the solution vector Z =(zi，...，Zp，..., Z||v|| ) ， I 

. I 
2||V'|| new solution vectors are formed by adding or subtracting a small value Az ， 

lk> 

from one of its entries. 

The new solution vectors are: 

(zi + Az, Z2,..., Zp,..., Z||V'|| ) 
(Zi - AZ,Z2, ..., Zp,..., Z||V'|| ) 
(Zi，Z2+AZ, ...,Zp，...，Z||v’||) 
(Zi , Z2 + Az, ..., Zp,..., Z||V'|| ) 

(Zi ,Z2, ..., Zp,..., Z||V'|| + Az) 
(Z! , Z2 , ..., Zp,..., Z||V'|| - Az) 
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The vector giving the minimum value of the objective function is selected as the 

new current vector. 

The procedure repeats until the current solution vector is stable. Since what 

comes out is only the locally optimal solution closest to the initial solution vector, 

the initial values of Zp's are crucial. It will be discussed in later section. 
ih 

Such a locally optimal solution of Zp's does not assure the absolute !• 
i ？ 

constraints of planarity and parallelism be satisfied exactly. To assure that, the : 
f |ĵ  

penalty method can be used: the weights a and p are increased from small values f 
?! 

gradually in small steps until they are at large values, while the locally optimal ^ 
各 ii 

solution of Zp's is computed at each (a, P)-setting and carried forward. As the 

weights increase, the absolute constraints dominate the objective function in a I 

smooth fashion. What is missing in the above scheme is that ^ the segmentation j 
\ 

solution is not known. Each innermost cycle of the edges, appeared to be a single | 
• . 

surface, can be just part of a large surface if some of the apparent edges are merely 

surface markings. On the other hand, it can be the boundary of more than one 

surface if some surface boundaries inside it are missing. Segmentation requires 

knowledge of the 3-D shape, while estimating 3-D shape requires knowledge of 

segmentation. The ultimate solution will be the state where the two come to a 

mutual agreement. Li light of these, one possible method is to have iterations over a 

number of intermediate shapes and segmentations until they get to a stable, 

consistent state. Fortunately, even without knowledge of segmentation, as seen 

from the objective function (3.1) above, the parallelism and three-dimensionalness 
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constraints can still serve as one absolute constraint and one optimization term to 

be applied to the input line drawing and a coarse shape description can be 

constructed. Such a shape description does not have the notion of planar surfaces, 

but can be close enough to the true shape for subsequent segmentation purpose 

because of the highly restrictive constraint of parallelism. Obviously, such a 

scheme would fail if there are no parallel lines in the input line drawing. However, 
L 

It is conjectured that even humans have difficulty in perceiving shape precisely ji-
f 

from a line drawing which is without much regularity or symmetry. With such an ,� 

？ 
approximate shape and the line drawing, the edges can be grouped into different \ 

K 
I? 

surfaces based on the criterion that edges on the same surface should be more or �� 

\ 1' 
less coplanar. To facilitate finding out which planes in 3-D the edges vote for, | 

each vertex can be subdivided into a number of L-subvertices, where each L- | 
I 

subvertex is merely the corresponding vertex point itself plus a pair of the vertex's ] I \ 
constituent edges. Defining such L-subvertices has the advantage that each of them | 

«M 

uniquely defines a plane in the 3-D space. 

Then the segmentation problem is treated as a clustering problem, in which 

the extracted L-subvertices are to be grouped into different surfaces according to 

how close their corresponding planes are. The resulting segmentation may not be 

entirely correct, but it introduces the concept of approximate surfaces to the 

original line drawing. As a result, it allows markings contained in the extracted 

surfaces to be deleted and missing boundaries of some open surfaces to be added. 

Li other words, a new line drawing is constructed, which is likely to be closer to the 

true line drawing than the original one. Such a line drawing can be input to the 
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approximate shape recovery process described above and all procedures are 

repeated until the shape recovered and the revised line drawing are stable, i.e., the 

segmentation and shape recovery processes agree with each other. Then the 

planarity term is added to arrive to the final shape. 

The approach therefore consists of iterations of the entire set of contours 

over three steps, as outlined in Figure 3.4, until they come into agreement with one 
h* 
i 

another: • i 
!； 't, 
I 

I* 
,“ 
'； 
；兵 
11' V 
H •fl 
ii 

I 
I 
I 
I r 
I ̂ 
t 
«to' 
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Input line drawing 

Ĵ  
Approximate Shape 
Recovery Step 

approximate 
3-D shape ^ 

L-subvertex Clustering : 
Step ^ 
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,̂ 

output new ； 
line drawing 

y v i 
� s t a b l e ? > I 

X T x i 
final line ^ f ( 
drawing \ ^ > 

Global Consistency | 
Assurance Step ‘ 

I •u 

V 

3-D shape 

Figure3.4: Flowchart of the clustering approach. 
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Step 1. Approximate Shape Recovery Step 

Given the current line drawing, initially the input line drawing, find an 

approximate shape that satisfies the parallelism constraint exactly and 

optimizes the three-dimensionakiess constraint. The penalty method plus 

the hill-climbing algorithm described above can be used. Li this step, p is 

set to be zero while a is increased gradually. � 

t «, 
Step 2. L-subvertex Clustering Step 

•i 
Given the current approximate shape and line drawing, extract the L-

丨; 

i', 
subvertices and group them into different surfaces using the simple ； — 

‘？ |jj 
clustering algorithm [17] outlined in Section 3.4. ; 

1 
Each L-subvertex with 3-D position Vp and 3-D orientations{Vpi, Vp2} � 

T I 
represents a 4-D unit vector [a, b, c, d] corresponding to the plane ax +by “ 

i 
T 

+ cz + d = 0 in space, whose values can be obtained from ^ 
V 
'11 

~al � � i X V 1 f 

b _ l-{^px^^pi)'^p_ � 

c 卜1 X〜 1 
A l L - O v x v - ) . v J 

The inter-pattem distance measure for clustering can be the magnitude of 

the cross-product of such 4-D unit vectors the two L-subvertices represent. 

With the surface segmentation, the surface boundaries are extracted in the 

following way. For each surface s, the smallest polygon that encloses all the 

edges in it is determined, and the set of edges which overlap with the 
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polygon's boundary is defined as the boundary of the surface. Such surface 

boundaries may not be all closed. New line segments are then added to 

close the boundaries of open surfaces, and line segments are removed if 

they are contained inside surfaces. A new line drawing is formed. 

If the new line drawing is different from the previous one, go to step 1, else 

go to step 3. � 

(is ^ 
'r 

I 
Step 3. Global Consistency Enforcing Step 

c 
I 

Given a perfect line drawing, find the 3-D shape that is globally consistent p 
^ 

and that is optimal: it satisfies constraints of parallelism and planarity J 

exactly and maximizes the three-dimensionalness measure. Again, the j 
\ 

penalty method plus the hill-climbing algorithm can be used. This can be I 
i f 

regarded as a finishing step ofthe shape description. ‘ 
i) ':i 

I ««• 
Ln the above steps, two points are worth noting: 

1. Free Vertices: 

A vertex with only two constituent edges is not counted towards three 

dimensionalness, as it does not involve multiple surfaces. If none of its 

constituent edges is parallel to other edges in the line drawing, such a 

vertex is also not involved in the parallelism constraint. As a result, this 

vertex does not "move" in Step 1. Such a vertex is called as a fi:ee vertex. 

With the concept of planarity of a face, the free vertex can be moved to a 

reasonable position by assigning it with a surface normal which is the mean 
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of the surface normals of two L-subvertices connected to it through its two 

constituent edges. This is illustrated in Figure 3.5. There may be a number 

of such L-subvertices. The two with the most similar surface normals are 

chosen. A free vertex may be connected to another free vertex. Li that case 

the surface normals are propagated from the non-free vertices to the free 

vertices sequentially. � 

*•'!� 
V. 

h 
I 
I 
•" 

i 

I 
I 
I 

^ j ^ e e vertex � 

^ ^ y ^ ^ \ ^ 

. 人 ^ 丨 

參 參 
參 

Figure 3.5: Propagation of surface orientations to a free vertex from the 

connected vertices. 

32 



2. Merpretation Ambiguity and Liitial Depth Values for Optimization: 

A phenomenon that is related to the famous Necker's cube problem (see 

figure 3.6) is，for some line drawings there are 3-D interpretations which 

both satisfy the constraints of planarity, parallelism, and three-

dimensionalness, and yet are entirely different. Lnagine the line drawing of 

a rectangular box: the vertex in the middle can be interpreted as convex or � 

jt 
concave. However, there is a slight preference of a convex vertex in human 丨 

H 
. . f 

perception. A reason may be that the inside of objects is often not visible. ,’ 
？ 
l'A 
P 
I 

^ = ^ i 
I 
I t 

ii 
I K 查 

<N>i 
Figure 3.6: Merpretation ambiguity: the line drawing can be interpreted as 
a box that is being viewed from outside, or as one whose walls are peeled 
off and whose inside comer is being viewed. 

To remove such an ambiguity in our solution and to prefer a shape 

of bulging outward to the viewer which is more in agreement with human 

perception, a bias is given to the initial depth values in the optimization 

procedure of Steps 1 and 3. Zero depth is assigned to all vertices on the 

outermost boundary ofthe line drawing (i.e., the smallest polygon enclosing 
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all the line segments), and small depth values to the inside vertices so that 

they are initially slightly convex to the viewer. If there are no inside 

vertices, zero initial depth is assigned to all bihedral vertices and small 

initial depth values to the rest, employing the heuristic that A-vertices 

(vertices appearing as arrow-shape junctions) and Y-vertices (vertices 

appearing as star-shape junctions) are more likely to be convex to the � 

(N 
viewer than L-vertices (vertices appearing as L-shape junctions). However, ;• 

I 
it must be emphasized that such initial depth values are merely initial bias ；. 

i 
to the optimization processes but not the final shape. They may not even be p 

5 
consistent with one another, and in that case the absolute constraints of ^ 

1 ？ 
parallelism and planarity would remove the conflicts. 彳 

I 
Two examples are shown in Figures 3.7 and 3.8 to illustrate the ^ 

^ 

effect of the bias. The algorithm in Step 1 is applied to the perfect line j 
J 

drawings. Li the middle of each figure two different views of one 

interpretation are shown, which satisfies all the constraints of parallelism 

and three-dimensionalness. With an initial bias describe above, the 

interpretation shown in the bottom is obtained, which agrees more with 

human perception. 
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Two views of one interpretation with zero initial z vector 
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广 々 、 丨 

Two views of the interpretation with bias 

Figure 3.7: The ambiguity in interpreting the line drawing of a star-shaped 
object. 
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Two views of another interpretation with zero initial z vectors ^ 

^ ^ 
Two views of the 

interpretation with bias 

Figure 3.8: Another example of interpretation with bias 
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3.4 Nearest-Neighbor Clustering Algorithm 

To group a set ofpattems {x;t} into different clusters Q ' s according to a particular 

inter-pattem distance measure, we can do the following: 

• Step 1 � 
k I . � 

Set i<-l and k <- 1. Assign pattem X/ to cluster Ck. ,； 
:¾ 

• Step2 J 
•^ 

^ 
Set i<- /+1. Find the nearest neighbor of Xi, among the patterns already !' 

n !l ^ 
assigned to clusters. Let dm denote the distance from X/ to its nearest i 

II 

neighbor which is in cluster Cm t 
i 

• Step 3 ‘ 
I r 

If d < t，then assign x; to C. Otherwise, set k <— k + 1 and assign xi to a new J 
i 

cluster Ck. ^ 
Ml 

• Step4 

If every pattem has been assigned to a cluster, stop. Else, go to step 2. 
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3.5 Discussion 

The input line drawing of the presented algorithm is not necessary to be perfect. 

There can be missing edges due to low intensity gradient between surfaces or extra 

edges due to surface markings. New line drawings are formed by deleting or 

adding lines. The algorithm does not consider the case of missing vertices or extra 
H« 

vertices. Actually even human has difficulty in interpreting such line drawings. :小 
r 
i 

One question about the algorithm is: should the iterations pursue an t 
n y» *i 

exhaustive and random search, bi other words, should it search for all solutions ; 
fc" '^ 
I 

randomly and select the best one? Since there are only finite number of vertices | 
'I 

and lines, it is possible to perform an exhaustive search and find out all possible ？ 

( 
solution. However, for a complicated line drawing, it is very time consuming. The | 

presented algorithm actually performs a reasonable ‘‘guess，’ for forming the new \ 

line drawing. I . e solution is a "good" loca, m i n — . The initial va,ue ！ 
ff 

determines which minimum to be obtained. ^ 

It is illustrated in figure 3.9. The initial value (initial shape ) here is the 

one satisfying the hard constraint ~ parallelism and the optimal term — 3-Dness. 

The reason for including the parallelism is that a line parallel to other lines is 

unlikely to be an extra line. We cannot treat planarity as the initial constrain. It is 

because we cannot tell whether a closed polygon in an imperfect line drawing is a 

planar face. 
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Figure 3.9: An energy map with multiple local minima illustrates the | 
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Chapter 4 Experimental Results 

The proposed procedure is applied to a number of different synthetic line drawings 

with extraneous lines and with some missing boundaries as well as two real line 

drawings which are obtained from real objects. The method works well with all the 

examples, while methods like those in [18, 22] would fail as they require perfect 
*m 

line drawings. The procedure is implemented in C language. :: 

：{ 
？, 

M 
«!| 
'I 
.*> 

'f. 4'’ 
hl 

4.1 Synthetic Line Drawings ； 
fii 
！ 

Results on an example used in [18] but with surface markings added and some ? 

. . . i 
boundaries removed, are presented in Figures 4.2 to 4.4. The object went through | 

the L-subvertex clustering step twice, and the intermediate line drawings and ， 

|) 

recovered approximate shapes are shown in Figures 4.2 and 4.3. As the line '' 
1 
I 

drawing returned from iteration 2 was the same as that fi:om iteration 1， ^ 

equilibrium was considered reached and the planarity constraint came in to recover 

the globally consistent shape. The final interpretation ofthe line drawing，which is 

a perfect hexagonal object, is shown in Figure 4.4. 

The shaded view of the shape according to the final orientations of the 

planar faces is also generated and shown. Each surface is treated as lambertian. 

That means that the intensity is proportional to the cosine of the incident angle.(See 

Appendix A.2) 
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Results on another line drawing of an L-shaped block are shown in Figure 

4.5 to 4.8. Humans seem to have no difficulty telling the true boundaries and the 

false boundaries apart, and filling-in the missing boundaries. This time the object 

went through the L-subvertex clustering step three times to become stable. The 

fmal shape recovered, as an L-shaped block, is in agreement with human 

perception. 一 

'N 
One may ask that what if there is no parallelism of lines to exploit in a 

Kl » 
‘: 
'1 f> 

given line drawing? Would the proposed scheme fail? A few objects with no ,， 
,1丨 ,M 

apparent regularity are tested. Result on one of them is shown in Figure 4.9. 1 
H ^ 

Without any parallel symmetry to exploit, the three-dimensionalness and surface '̂  
•s 
,1 

planarity constraints would still enforce an output shape of a physically realizable | 

object, which also seems to be in agreement with human perception. However, we | 
« 

restate our position that for an object without any symmetry like a crumpled piece ^ 
1 

of paper, even humans have difficulty recovering its shape firom a single line ！ 

«> 

drawing. Results on a more complicated line drawing with multiple occlusions is 

shown in Figures 4.10 to and 12. It consists of four objects, some individuals of 

which are used in [18, 22, 1]. Along the occlusion boundaries there are T-junctions 

(T-shape junctions), which are where one end of an edge (the stem) meets the 

middle of another edge (the cap). The stem is an edge of the occluded object, while 

the cap is an edge of the occluding object. Two depth values are allocated to each 

T-junction, one for the occluding object and one for the occluded object. Then the 

iteration steps described above were applied to the line drawing as a whole as if 

there were a single object in the scene. The line drawing required three passes 
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through the L-subvertex clustering step. All objects are interpreted in agreement 

with human perception, as shown in Figure 4.12. It should be noted that the hidden 

lines are not removed in displaying the final shape. 

4.2 Real Line Drawing 
HMfe 

To test the algorithm on real line drawing, two real images are captured. The first . 
. . V 

real image is a candy can and the second one is a tape dispenser. Their ;； 
I 

M 
Vl 

intermediate results and the fmal shapes are shown in figures 4.13 to 4.16 and •‘ 
) 

figures 4.17 to 4.20 respectively. ； 
i 
I s 
I 
( 

4.2.1 Recovery of real images 
I 

To get the line drawings with closed polygons, the real images are first 1 
i 

processed by an edge detection and line-fitting software called LINEAR[24]. 了 

UNEAR retums a set of line segments according to an adjustable threshold value 

of the edge strength of the line segments. The edge strength is the intensity 

gradient across the two adjacent surfaces. A number of comers (vertices) are then 

extracted at the intersections of the line segments if their endpoints are in close 

proximity. This process is implemented using the mathematical software 

MATLAB. Because of weak contrast and image noise, some edges are often 

missed. The line drawings so obtained therefore is usually imperfect. Nevertheless, 

such line drawings are input of the iterative algorithm. By the algorithm, missing 

edges are put back in and extraneous edges are ignored. It should be noted that 
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some edges actually have non-zero curvature, for example, in tape dispenser. 

However, after the pre-process, the curves are approximated by straight lines. The 

complete procedure is shown in figure 4.1. Furthermore, one may argue that we 

can set a low threshold to detect all edges such that there will be no missing 

boundaries. It is not applicable because a low threshold means many non-boundary 

lines to be appeared. ^ 
^ 

Li the candy can object (figure 4.13), the processes of edge detection, line 'J 
s,. < 

^ 
fitting and comer detection returned many line segments and comers. However , 

•( 

many of the segments were isolated. Using the detected comers, some long �\ 
碑 
3 

segments were connected and at the end closed polygons were extracted. An ^ 
I 

isolated polygon (a polygon that has no shared edge with any other polygons, i.e., a | 
\ 

contour without trihedral vertices) was found and was neglected in the algorithm 
I 

as discussed in last section. However, some edges were still missing because of 
I 

the non-ideal process, which could not be avoided. However, the iterative , 
‘ 

** 

clustering algorithm finally recovered the missing edges and interpreted the 

imperfect line drawing as a 3-D object which was similar to the original object in 

the real image. From the recovered 3-D object, it should be notified that the two 

added edges are not as parallel as in the real images, which is due to the shifting of 

the comers during comer detection. This effect causes distortion on the recovered 

object. 

Another test image was a tape dispenser (figure 4.17). The interpreting 

process was similar. However, the nature of the dispenser was different to that of 

the candy tin. There are two curved edges in the image. Its curvature raises more 
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difficulty. Fortunately, the curvature was not very large and therefore the UNEAR 

approximated each curve by a straight line. If the curvature was greater, the 

LMEAR probably approximated the curve by several straight lines. We can also 

notice that after the pre-processing, the tape cutting part which was very narrow 

got absorbed because of the too low resolution. Moreover, the inside detail was 

lost in the closed contour because the image was not a sharp one. At last an outline ^ 

•'! 

of the dispenser was extracted but with a major missing edge. This missing edge | 
i. 
\ 

was also finally restored and a solid object was formed (figure 4.20). 
'i 

h 
',' i ？ 
3 
1 
I 

I 
I 1 

I 
t 

) 
f 

: 
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Figure 4.1: The complete flowchart of recovering a 3-D obtains from a single view 
2-D image. 
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Figure 4.2: Iteration 1 for the line drawing of a hexagonal object. 
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Figure 4.2: Iteration 1 for the line drawing of a hexagonal object. 

47 



E X 

% 
output line drawing _ 

s 

/ \ 

1 

| ^ x \ X ‘ 

, ' ^ : 

two views of the output shape 

、 “ ' : , , ， 
V 广 V ‘ ‘ 
“'/；, '"-'r ； ‘v / .. 

,;沙， 
‘ “绝；、 

shaded view of the output shape 

Figure 4.4: Output results for the line drawing of a hexagonal object. 
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Figure 4.2: Iteration 1 for the line drawing of a hexagonal object. 
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Figure 4.6: Iteration 2 for the line drawing of an L-shaped object. 
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Z X 

r � 

input line drawing 

^ \ _ 
X / X 

广 』 ^ < ^ 

Two views of the approximate shape 

Z X r m ^ 
new line drawing 

Figure 4.7: Iteration 3 for the line drawing of an L-shaped object. 
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^̂ ¾ ::::̂ ^P î̂ ^ î̂ ^ "̂ 
_ 1 ^ ^ 瞻 
^ ^ B ^ ^ ^ ^ ^ ^ ^ ^ f f 

shaded view of the output shape 

Figure 4.8: Output results for the line drawing of an L-shaped object. 
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Z X 

r ^ 

input line drawing 

r f t ' ^ 4 I 
Two views of the approximate shape ^ 

• — — 腦 

Shaded view of output shape 

Figure 4.9: Results for the line drawing of an object without any parallel symmetry. 
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li f' 

input line drawing 
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^ 

c a 

Two views ofthe approximate shape 

� _ 

new line drawing 

Figure 4 . 2 : Iteration 1 for the line drawing of a hexagonal object. 
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「 麵 

input line drawing «̂  

^ ^ f I 
^ 勉 

^ 
Two views of the approximate shape 

r f i 
new line drawing 

Figure 4 . 2 : Iteration 1 for the line drawing of a hexagonal object. 
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}——^ j 6 ^ r ® 

input line drawing 

^ ^ i I 
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# 
Two views of the approximate shape 

,。'、''， 

‘ } V^<'' 々对、‘ 

: 讓 1 : , : 丨 : _ | _ _ _ _ | _ 康 隱 

: _ _ _ _ _ _ _ _ 
'>'̂ feo, “‘ -/4"' 

i__:ii_:'::..... j _ _ 
. ‘� f 

,_:|_圓__1 

new line drawing 

Figure 4.12: Final Iteration for the line drawing ofmultiple object. 
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^ w 
^*B^PPBWBi^ 

1 
Real image of 256 gray levels of a candy can f 

1^^^^^ 
1¾^¾^: 

•̂ Ŝns"~~̂ 一 ‘ 

� J 
Detected line segments and comers of the can 

r ^ ^ " ^ ^ ^ ^ . 

p ^ ^ 3 ^ 
i 1 ^ ^ _ ^ 

Closed contour of the can 

Figure 4.13: Edge and Comer detection of the real image of a candy can. A closed 
contour is finally obtained. 
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input line drawing ] 

j' 

、 ” ； y y 

^ > ^ 

two views of the approximate shape 

I 
1 X 

y 

/̂"̂̂ ^ ^ 
new line drawing 

Figure 4.14: First iteration ofthe line drawing ofthe candy can. 
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卜 A ~ ^ : 
y i 

a • 

Q 0 i 

two views ofthe approximate shape 

E X 

d 

/"^^"^ ^ 
new line drawing 

Figure 4.15: Iteration 2 ofthe line drawing ofthe candy can. 

59 



E X 
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(̂“̂̂  b3 
input line drawing | 
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卜 A ~ ^ 
y 丨 

bi 

Q 0 i 
i 
I 

two views of the approximate shape 

i r | •• • 、 ： i ^ 

shaded view of the output shape 

Figure 4.16: Output results of the line drawing of the candy can. 
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！丨 
(' 

Real image of 256 gray levels of a tape dispenser, and i 
edge segments and comers detected are marked on the image i 

k � ： 

b / , z 

Closed contour ofthe box 

Figure 4.17: Edge and Comer detection of the real image of a tape dispenser. A 
closed contour is finally obtained. 
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input line drawing � 
j.|' 

^ r ^ x ; 
r < ^ 广 s^ ！ 

i 

I I I 

two views of the approximate shape 

厂 Q ^ 

new line drawing 

Figure 4.18 : Iteration 1 of the line drawing ofthe tape dispenser. 
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input line drawing | 

('' * 

r 力 � ^ j 
,1 

1 
.| I 

i 

two views of the approximate shape 

E X 

丨 0 ? 

shaded view ofthe output shape 

Figure 4.19: Iteration 2 of the line drawing ofthe tape dispenser. » 
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shaded view of the output shape 

Figure 4.20: Output results ofthe line drawing of the tape dispenser. 
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Chapter 5 Conclusion and Future Work 

Owing to the fact that there is no ideal edge detector existing, line drawings 

obtained from real images usually do not contain all and only surface boundaries. 

Some edges may be from the markings or noise, and some important boundary 

edges may be missing. The previous methods on interpreting a line drawing as the 
I 

projection of a 3-D object is valid only for perfect line drawings. Li this thesis, it is jJ 

shown how the problem of interpreting an imperfect line drawing can be ； 

i 
formulated as a constraint satisfaction problem, and how iterative clustering can : 

！ » 

help solve it under the representation. The procedure distinguishes the true surface 

boundaries from surface markings and other extraneous lines, fills-in the missing 

surface boundaries, and recovers 3-D shapes satisfying constraints of planarity of 

faces and parallel symmetry of lines, all at the same time. Experiments also show 

that the 3-D interpretation agrees with human perception for both synthetic and real 

line drawings. However, it is unrealistic to expect that the algorithm can recover 

any imperfect line drawing. If a line drawing is too bad because of too bad early 

visual processing, even humans may have trouble interpreting it. The mechanism 

proposed in this thesis does require a significant amount of true surface boundaries 

and a high degree of regularity in the line drawing to work with. 

The line drawing tackled here consists of only straight line and the surfaces 

are planar. An image consisting of curves with non-zero but small curvature can 

be approximated by several sections of straight lines, as done in the real image 

experiments. However, for largely curved objects the proposed mechanism will 
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not be adequate. It is because the linear approximation of the curves may not be 

consistent among the boundaries of the same surface patch, destroying the 

parallelism clue. The approximation of a surface patch into a number of small 

planar patches is also less than ideal in terms of shape description. To deal with 

largely curved objects, further work is needed. The framework of the proposed 

interpretation mechanism may still be used, but the parallelism clue should be 
I 
丨丨| 

replaced by parallel symmetry, and the planarity constraint by the smoothness 丨： 

constraint. 
I 
I 
I 
I 
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Appendix A 

A.1 Gradient Space Concept 

Let Fig. A1 be the geometry involving the viewer, the picture plane, and the object 

in the scene. The z-axis is taken as parallel with the view line, and the x-y plane is 

on the picture plane, with the x-axis pointing to the horizontal right. Orthographic 1 

projection is assumed here. A plane in the scene whose surface is visible from the | 
I 

viewer can be expressed as 

The 2D space made of the ordered pairs ¢), q) is called the gradient space G. The 

3-D vector (p,q,l) is the vector of the surface normal. When, in general, a surface 

is represented as 

-z=f(x,y), 

then 

67 



. ^ picture plane object 
viewer ^ * ^ ^ 

^ 1¾.—因 
^ i ^ ^ 

I 
planes: -z =px+qy +c ~> point: (p，q) 丨 

I 

q 
个 

(p，q) 

一乙 
(b) 

Figure A1: The gradient space (a) geometry including the object, the picture, and 
the viewer; (b) mapping of planes to a gradient. 
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A.2 Shading of images 

Waltz[31] points out that knowledge of the lighting model can be a valuable aid in 

determining shape. A simple function represents a common model of surface 

reflectance. Figure A.2 defines the angles i, e and g used in the fimction. 

(1) 1： 

source V ' ^ 

从 
N^ Normal of the 

Nv surface. 

X3 
viewer g / ^ N ^ ^ 

< ^ ^ / : ^ ^ 
Figure A.2: Defining the angles i, e and g. The incident angle i is the angle 
between the incident ray and the surface normal. The emergent angle e is the angle 
between the emergent ray and the surface normal. The phase angle g is the angle 
between the incident and emergent rays. 

The function (1) corresponds to the phenomenological model of a perfectly 

diffuse (lambertian) surface which appears equally bright from all viewing 

direction. Here, p is a reflectance factor and the cosine of the incident angle 

accounts for the foreshortening of the surface as seen from the source. This 

fUnction is used in the recovered shape of the experimental results in the Chapter 4. 
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