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Abstract 

Group technology (GT) is a management philosophy which capitalizes on 

similarity in manufacturing design and processing. One specific application 

of GT is cellular manufacturing which involves processing similar parts on 

a dedicated cluster of machines. Cellular manufacturing has been proposed 

to improve manufacturing efficiency and productivity. To implement cellular 

manufacturing design, parts must be grouped into part families and machines 

are grouped into machine cells. 

GT problem requires heuristic method and there are lots of algorithms 

proposed in literature. However, most methods can not be applied to real size 

problems and only address one or a few aspects of the problems. In this research, 

we develop heuristic approaches for solving GT problems. Our consideration is 

comprehensive, we have investigated different GT problems, from simple models 

to complicated ones. Further, our approaches are applicable to solve large scale 

problem. 

Three models of the problem that operate under different environments 

are the basis of the research and three genetic algorithm (GA) approaches 

are proposed to solve the problem. For standard model, a GA designed for 

traveling salesman problem is used. For generalized and integrated model, 

mutlichromosome GAs are utilized. Experimental results indicated that our 

approaches outperform the techniques suggested in literature. Especially, 

significant improvements can be identified for large size problems. 
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Chapter 1 

Introduction 

1.1 Introduction to Group Technology 

Group technology (GT) is a management philosophy based on the idea of 

similarity. This approach was originally introduced by Mitrofanov in 1966. 

Later, Burbidge [8] developed a manual procedure ——production flow analysis 

(PFA) — which uses part routing information to form machine groups. In PFA, 

similar parts are grouped and processed together. Actually, the idea of GT is 

not only applicable to process, design, production control, and part assembly, 

it can also be applied to other activities including administrative functions [2 . 

In this research, however, we focus the application of GT to manufacturing 

systems. 

Traditionally, machine layout in a factory is process-oriented. Each 

department or section of a factory is composed of machines possessing similar 

capabilities and performing similar functions. This layout also referred to as 

8 



CHAPTER 1. INTRODUCTION 9 

functional layout. If a part requires more than one process, it will travel from 

one department to other to have its processing requirements completed. The 

primary disadvantage of this layout is long and uncertain throughput time 

which leads to high work-in-process inventory, untimely product delivery, and 

increasing loss of sales [18 . 

One application of GT in the manufacturing environment is cellular 

manufacturing. Cellular manufacturing systems offer numerous benefits over 

functional layouts [2]. The main benefits include reduced lead time, reduced 

material handling costs, decreased work-in-process, reduced finished good 

inventories, and reduced setup time. Other benefits also include better 

production planning and control, improved job satisfaction, morale and 

communication. These features are essential for a firm to remain competitive in 

the current manufacturing environment. In Hyer and Wemmerlov's survey on 

the use of GT in the US manufacturing companies [34], respondents confirmed 

GT's usefulness and the opportunities to improve manufacturing productivity. 

1.2 Cell design 

Cell formation involves grouping functionally dissimilar machines together to 

process a group of parts. A cluster of machines is referred to as a machine cell 

and a group of parts is referred to as a part family (Figure 1.1). In an ideal 

situation, a part family can be completely processed within a machine cell. This 

cell formation procedure is a major step in designing a cellular manufacturing 
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system. 
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Machine cell 1 Machine cell 2 Machine cell 3 

M1,M2,M3 M4，M5 M6, M7,M8 

Cellular Manufacturing System 

Figure 1.1: A manufacturing system with three machine cells and three part 

families 

The cell formation problem is very difficult to solve [38，51]. A large 

number of heuristic algorithms have been proposed in the literature. All these 

algorithms use some models. Broadly speaking, these models can be classified 

into two groups: standard models and generalized models. Standard models 

deal with a machine-part incidence matrix. Generalized models incorporate 

different design objectives and constraints to give a more realistic representation 

of manufacturing systems. 
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1.3 Objectives of the research 

This problem can be solved using heuristic methods. There are extensive 
I 

algorithms of such kind available in literature. However, they are limited to 

tackling small scale applications. In addition, most methods only consider one 

or a few aspects of the problem. For example, the rank order clustering proposed 

by King [37] ignored most manufacturing factors and considered only the 

operational requirements. This technique could not be applied to complicated 

models. 

The objectives of this research are to develop heuristic approaches to the 

cell formation problem and to tackle the problem comprehensively, from simple 

models to complicated models. In particular, the approaches developed can 

handle large size problems. 

1.4 Organization of thesis 

In this thesis, we propose the application of genetic algorithms to solve the cell 

formation problem based on both standard models and generalized models. A 

literature review on designing cellular manufacturing systems is presented in 

Chapter 2. Chapter 3 proposes a genetic algorithm-based heuristic to deal with 

a standard model. We apply a genetic algorithm originally designed for the 

traveling salesman problem to group machines into cells and parts into families. 

The results are compared very favorably to a well-known algorithm available in 

the literature. 
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In solving generalized models, a different representation is required. A 

multi-chromosome representation for this problem is suggested in Chapter 4. 

Our representation generates better results when compared to an existing 

representation for the same workload model. Chapter 5 considers a more 

practical aspects of the clustering problem and demonstrates the extensibility 

of our GA in solving the problem. The algorithm takes into account the 

presence of alternative process plans. Plan selection and cell formation are 

solved simultaneously through an integrated model. Our conclusion will be 

presented in the final chapter. 



Chapter 2 

Literature review 

2.1 Introduction 

Methodologies for cell design use two types of models: standard models and 

generalized models [18]. A standard model ignores many manufacturing factors 

and only considers machinery operations of parts. In a standard model, a 

binary machine-part incidence matrix [â -̂] is used to represent a manufacturing 

system. A matrix entry "1" ("0") indicates that machine i is used (not 

used) to process part j. Techniques dealing with this matrix formulation 

can be further categorized according to the type of algorithms employed to 

cluster the data, e.g., array-based clustering, cluster identification, graph-based, 

integer programming, seed-based, similarity coefficient, and artificial intelligence 

techniques. 

Generalized models deal with the cellular manufacturing problem more 

comprehensively and incorporate different design objectives and constraints. 

13 



CHAPTER 2. LITERATURE REVIEW 14 

There are three types of models: machine assignment models, part family 

models, and cell formation models. A machine assignment model assigns 

machines to machine cells to process part families. A part family model groups n 

parts into p families based on similarity of part design and (or) manufacture. A 

cell formation model generates the grouping of parts and clustering of machines 

simultaneously. 

2.2 Standard models 

When a machine-part incidence matrix [â j] is constructed, it does not display 

clusters of machines and parts. For example, matrix 1 (see Figure 2.1) does not 

show any identifiable clusters. 

Parts 

P1 P2 P3 P4 P5 

Ml 1 1 1 

Machines M2 1 1 

M3 1 1 

M4 1 1 

Figure 2.1: Matrix 1 

A clustering algorithm transforms the initial incidence matrix to one with a 

diagonal structure by rearranging rows and columns. A diagonal block structure 

is desirable because the number of clusters and the components of clusters are 

easily identified through visual analysis. Matrix 2 (see Figure 2.2) shows two 

diagonal clusters. 

In this example, machines M2 and M4 form a cell that processes parts P1 
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Parts 

P1 P3 P2 P4 P5 

M2 1 1 

Machines M4 1 1 

Ml 1 1 1 

M3 1 1 

Figure 2.2: Matrix 2 

and P3. Machines M l and M3, on the other hand, process the part family that 

consists of parts P2, P4, and P5. This is an ideal example because mutually 

separable clusters can be formed. 

Parts 

P1 P2 P3 P4 P5 

Ml 1 1 1 

Machines M2 1 1 

M3 1 1 1 

M4 1 1 

Figure 2.3: Matrix 3 

In real cases, mutually separable clusters rarely occur. For example, matrix 

3 (see Figure 2.3) cannot decompose into mutually separable clusters. Part 5 

requires an operation in the other machine cell. This intercell move increases 

material handling cost. Clustering algorithms are needed to produce machine 

cells and part families with minimum number of intercellular moves. Some 

clustering algorithms are briefly reviewed in the following sections according to 

the categories mentioned in Section 2.1. 
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2.2.1 Array-based methods 

Array-based methods involve manipulation of rows and columns to produce 

machine cells and part families. Algorithms include the bond energy algorithm 

developed by McCormick et al. [60], the rank order clustering algorithm by 

King [37], the direct clustering algorithm described by Chan and Milner [10 . 

The bond energy algorithm assumes that a bond exists between machines and 

parts. The bond energy is the strength of the bond. The optimal solution 

under this algorithm is a matrix that maximizes the bond energy. The rank 

order clustering operates by treating the 0,1 of the incidence matrix as binary 

number and assigning a value to each row and column according to the position 

of '1'. After assigning the values, the rows are arranged in decreasing order from 

top to bottom and the columns are arranged in similar manner from left to right. 

The direct clustering algorithm is similar to the rank order clustering method 

but it is not sensitive to the initial configuration of a machine-part incidence 

matrix. Chu and Tsai [20] compared the three methods and showed that the 

bond energy algorithm outperformed the other two array-based methods. 

2.2.2 Cluster identification 

The cluster identification (CI) algorithm first draws a horizontal line through 

any row of an incidence matrix. For each single-crossed entry of “ 1”，vertical 

lines are drawn through the corresponding columns. The drawing of horizontal 

and vertical lines continues until there are no more single-crossed entries of “ 1" 
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in the matrix. The double-crossed entries of ” 1" in the matrix correspond to 

a machine cell and part family. This class of algorithms include the cluster 

identification algorithm by Kusiak and the Chow [50], the branch-and-bound 

algorithm by Kusiak and Cheng [48], and the branching algorithm by Kusiak 

46；. 

2.2.3 Graph-based methods 

A graph consists of a set of nodes or vertices and arcs or edges. Each arc 

connects two nodes. In applying the graph-based method to solve the cell 

formation problem, we treat machines as nodes and material flows as arcs. Cost 

dj is associated with the amount of material flows on arc i j. The cells can be 

formed if the graph is partitioned into subgraphs. Each subgraph is a cluster 

of machines. Askin and Chiu [1] suggested a graph partitioning procedure to 

deal with the cell formation problem. Their algorithm attempts to minimize the 

total costs associated with the arcs between subgraphs. Arcs between subgraphs 

represent intercell moves. Therefore, this approach aims at minimizing intercell 

material handling. Other graph approaches include the minimum spanning tree 

(MST) method by Srinivasan [75:. 

2.2.4 Integer programming 

Clustering can be viewed as an optimization problem and therefore the problem 

can be modeled using an integer programming technique. These methods allow 
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the number of cells and the size of each cell be constrained. The close neighbor 

algorithm by Boe and Cheng [6], the A*-based algorithm proposed by Kusiak 

et al. [47], and the algorithm developed by Boctor [5] are some examples. 

2.2.5 Seed-based 

This type of clustering algorithms involves the generation of seed machines or 

parts. After the generation of seeds, other machines and parts are assigned to 

machine cells and part families based on some grouping measures. Examples of 

seed-based algorithms include the ideal seed algorithm [11], the zero-one data 

-ideal seed clustering (ZODIAC) by Chandrasekharan and Rajagopalan [13], 

and GRAFICS proposed by Srinivasan and Narendran [76 . 

2.2.6 Similarity coefficient 

The algorithms of this category measure the similarity of a pair of machines 

and parts. A similarity matrix is often generated. The final output of the 

algorithms is a permutation of machines and parts with the maximum value 

of total similarity. These clustering techniques include single linkage clustering 

by McAuley [59], a method suggested by De Witte [22], similarity coefficient 

heuristic developed by Waghodekar and Sahu [84], and average linkage clustering 

by Seifoddini and Wolfe [71；. 
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2.2.7 Artificial intelligence methods 

Recently, several researchers employed artificial intelligence (AI) techniques in 

designing cellular manufacturing systems. Neural network approach is used 

by Karparthi and Suresk [36]，and Chen and Cheng [16]. The Adaptive 

Resonance Theory (ART) neural network is used to form cells. One weakness 

of this approach is that the quality of a solution highly depends on the initial 

disposition of the incidence matrix. Chen et al. [15] proposed a simulated 

annealing solution to the cell formation problem. Venugopal and Narendran 

'83] proposed a genetic algorithm approach to the clustering problem. However, 

they employ a simple representation that may produce illegal solutions. 

2.3 Generalized models 

Standard models ignore many manufacturing factors such as part demand, 

the sequence of operations, machine utilizations. These models can only be 

used when a rough cut design is needed or when the detailed parameters are 

not available. On the other hand, generalized models consider more aspects 

of the cell formation problem. These models incorporate different design 

objectives, parameters, and constraints. A list of such objectives, parameters, 

and constraints can be long, for example, minimization of the cost of machines, 

set up cost, intercellular moves, material handling cost, work-in-process cost, 

intracell load imbalances, intercell load imbalances, maximization of the cell 

utilization, compatibility between machines and parts, and restriction of number 
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of cells. Generalized models can be further categorized into three classes, 

machine assignment models, part family models, and cell formation models. 

2.3.1 Machine assignment models 

Machine assignment models operate by forming machine cells based on 

some objective function measures. Parts are then allocated to appropriate 

machine cells according to the processing requirements or cell utilization rates. 

Gunasingh and Lashkari [28] suggested two 0-1 integer programming models 

to address the machine allocation problem. One model attempts to maximize 

the compatibility between machines and parts while the other one considers 

the trade-off between the cost of machine allocation and intercellular moves. 

These formulations restrict the size of a machine cell and the number of copies 

of machines. Harhalakis et al. [31] proposed a simulated annealing approach to 

allocate machines. The objective of their study is to minimize the intercellular 

moves. Cheng et al. [19] formulated machine allocation problem as a 0-1 integer 

programming model and used a branch-and-bound algorithm to find a solution. 

2.3.2 Part family models 

Part family models focus on formation of part families. The required machines 

are often duplicated in each machine cell. Kusiak [44] suggested a heuristic 

based on the part similarities to group parts into families. Suresh et al. [80 

proposed a hierarchical methodology to solve a multi-objective model. 
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2.3.3 Cell formation models 

In a cell formation model, the groups of machines and parts are determined 

simultaneously. Askin and Subramanian [3] proposed a cost-based heuristic 

for group technology configuration. The procedure considers costs of work-

in-process inventory, material handling, and machine setups. A three stage 

procedure was used to solve the problem. Wei and Gaither [85] developed a 

cell formation model with four objective functions. The four objectives are 

minimization of bottleneck cost, maximization of the average cell utilization, 

minimization of intracell load imbalances, and minimization of intercell load 

imbalances. A linear integer programming enumeration scheme was used to 

solve the model. Sule [79] suggested to consider the cost and machine capacity 

in grouping. This approach was suggested to be more economical. Heragu 

and Gupta [32] presented a heuristic for machine cell-part family identification 

that addresses several design constraints; machine capacity, technological 

requirements, and number of cells. While generating a solution, the heuristic 

minimizes the intercellular moves of parts. 



Chapter 3 

Genetic cell formation algorithm 

3.1 Introduction 

In designing a cellular manufacturing system, parts requiring similar operations 

are grouped into a part family. Machines are identified to form a machine 

cell to process the part family. This design problem is made complicated by 

exceptional parts and/or exceptional machines [17]. An exceptional part is a 

part that requires processing in another machine cell. An exceptional machine 

is a machine that processes parts from a different part family. Both exceptional 

parts and exceptional machines cause intercellular movement of parts. 

A 0-1 machine-part incidence matrix is used to model the manufacturing 

system. It is easy for practitioners to understand and can provide a rough 

cut design. A system designer may modify the rough cut design to derive a 

final cellular layout. When the final cellular layout is determined, the machine 

utilization cost, the utilization of machines, and the cost of intercellular moves 

22 
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must be closely scrutinized. 

In this chapter, the grouping problem is formulated as the traveling salesman 

problem [52, 73]. A grouping approach based on a genetic algorithm is proposed. 

The proposed algorithm is compared to a well-known algorithm using many test 

problems drawn from the literature. The comparative study shows that the 

proposed algorithm is very reliable and produces improved solutions. 

3.2 TSP formulation for a permutation of 

machines 

Given a machine-part incidence matrix [â j], clustering involves rearrangement 

of rows and columns to create machine cells (i.e. blocks) that contain parts 

using similar machines and reduce intercellular moves among machine cells. In 

a solution matrix, a block diagonal form is often desirable because the blocks can 

be easily identified to facilitate subsequent cell design decisions. To illustrate 

the clustering concept, we consider an input matrix given in Figure 3.1. 

Parts 

1 2 3 4 5 

1 0 1 0 1 1 

Machines 2 1 0 1 0 1 

3 0 1 0 1 1 

4 1 0 1 0 0 

Figure 3.1: An initial matrix 

An initial matrix does not display any blocks (clusters). After rearrangement 
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of rows and columns, we obtain two blocks along the diagonal of a solution 

matrix (Figure 3.2). 

Parts 

1 3 2 4 5 

2 1 1 0 0 1 

Machines 4 1 1 0 0 0 

1 0 0 1 1 1 

3 0 0 1 1 1 

Figure 3.2: A solution matrix 

The problem of arranging rows and columns is similar to a permutation 

problem. In order to determine the desirable permutation for rows and columns 

in a solution matrix, we define a distance measure between a pair of rows 

(machines). Many such measures for cellular manufacturing were suggested 

in Shafer and Rogers [72]. In this thesis, we use the following distance measure 

for machines i and j: 

n 

dij 二〉 : Clik — Ojjk • 
k=l 

This measure belongs to a family of Minkowski metrics. The Minkowski 

metric for machines is given by Mij(p), the distance between machines i and j 

as a function of p, and is defined as: 

n 

Mij{p) = ( ^ \xik — Xjk\^)p 
k=l 

where p > 0 determines the particular metric used. For p = 1, the measure 

is known as rectilinear, city block, or absolute metric. When p = 2, it is 
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squared Euclidean metrics while chebychev (or infinity) metric is obtained when 

p = oo. Note that for a 0-1 data, the rectilinear and the squared Euclidean 

metric produce the same result. After several experiments, this measure is 

proved to produce better results. 

A small distance value between two machines implies that both machines 

process a number of common parts. Should two machines with a small distance 

value be placed in different machine cells, parts requiring the two machines must 

be transported between the cells, which results in increased material handling. 

Therefore, a cellular manufacturing clustering algorithm must place machines 

processing similar parts (and parts requiring similar machines) close to one 

another in a final permutation. This in turn attempts to minimize the total 

distance between pairs of machines. 

The cellular manufacturing clustering problem can be formulated as a 

traveling salesman problem (TSP)[52, 73]. Lenstra and Rinnooy [52] showed 

that the clustering problem can be solved if we solve the associated TSP. Cities 

in a TSP correspond to machines. 

Various approaches are proposed to solve TSPs, such as cutting planes [62], 

branch and bound [68], neural networks [74], 2-opt [54], simulated annealing 

39], Markov chain [58], tabu search [25] and genetic algorithm [87 . 

Our motivation is to base on the TSP formulation for the cell formation 

problem and apply GA in solving this problem. To implement a genetic 

algorithm, several aspects are required to consider, for example initialization, 

chromosome representation, crossover operator, fitness function, replacement 



CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 26 

strategy, and termination conditions. 

3.3 Genetic algorithms 

Genetic algorithms (GAs) were introduced by John Holland [33]. They are 

applied to a number of fields like mathematics, engineering, biology and social 

sciences [26]. A precise definition of genetic algorithms can be obtained from 

Goldberg [26]: 

Genetic algorithms are search algorithms based on the mechanics 

of natural selection and natural genetics. They combine survival of 

the fittest among string structures with a structured yet randomized 

information exchange to form a search algorithm with some of the 

innovative flair of human search. 

The concept of GAs is based on the evolution process that occurs in 

natural biology. An initial population of possible solutions (individuals) is 

generated. Some individuals are selected to be parents to produce offsprings via 

a crossover operator. All the individuals are then evaluated and selected based 

on the concept of survival of the fittest introduced by Darwin. The process of 

reproduction, evaluation and selection is repeated until a termination criterion 

is reached. Besides, a mutation operator with certain probability is applied 

to individuals to change their genetic makeup. The purpose of mutation are 

to increase the diversity of the population and to enable every point in the 

searching space be reachable. 
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The universe of all possible strings can be considered as an imaginary 

landscape; valleys mark the location of strings that encode poor solutions, 

and the landscape's highest point corresponds to the best possible string. 

The evolving population make genetic algorithms exploring such a landscape 

simultaneously. This characteristic is called implicit parallelism which enables 

GAs to be a powerful searching technique. A pseudo-code of GAs is as follows: 

Algorithm 3.1 GA() 

> A simple genetic algorithm 

1 initialize (population) 

2 while (the termination condition is not met) do 

3 parentl 卜 selection (population) 

4 parent2 一 selection (population) 

5 offspring — crossover (parentl, parent2) 

6 if mutate then 

7 mutation (offspring) 

8 evaluation (offspring) 

9 population — replacement (population, offspring) 

10 end 

3.3.1 Representation and basic crossover operators 

Classically, an individual is represented by a binary string called chromosome, 

e.g. xi=(1011001) and x2=(OlllOll). Offsprings (another solutions) are 

generated by crossover. A crossover point will be selected randomly along 

the chromosome. The parent chromosomes will be split at that point and 

the segments of those chromosomes will be exchanged. For example, assume 

the parents are xi and x2 as described above. If the crossover point is 3, 



CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 28 

then the offsprings will be yi=(1011011) and y2=(OlllOOl). This type of 

information exchange combines strings containing partial solutions. Two fit 

individuals (with higher fitness value) rnay combine their traits and make a 

superfit offspring. 

For TSP, three vector representations were used [61]: adjacency, ordinal, 

and path. Each representation has its own genetic operators. Among the three 

representations, the path representation is perhaps the most natural one of a 

tour. For example, a tour 

3 - 4 - 1 - 6 - 5 - 2 - 7 

is represented simply as (3 4 1 6 5 2 7). 

3.3.2 Fitness function 

Fitness function is used to evaluate (see line 1, Algorithm 3.1) the value of the 

individuals within the population. According to the fitness value scored, the 

individual is selected as a parent to produce offsprings in the next generation 

or is selected to disappear in the next generation. The fitness function we used 

is the total distance for a TSP tour. 

Let p be a permutation of machines and a be a permutation of parts. For a 

permutation of machine: 

3 - 1 - 2 - 8 - 7 - 4 - 6 - 9 - 5 

p(l) is 3，and p(4) is 8. In the first phase, the proposed approach converts 
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the initial permutation of machines (specified by the initial matrix) to a new 

permutation that minimize the following fitness function: 

m—l n n 

Total distance = ^ ^ CLp{i)a{k) — Cip{i+l)a{k) + ^ O^p(m)a(k) — CLp(i)a(k) (3.1) 

i=l k—1 k=l 

where 

m = number of machines 

n = number of parts f 

1 if machine p{i) processess part a{k) 
dp(i)a{k)= < 

0 otherwise 
\ 

By minimizing the total distance, machines that process similar parts are 

grouped together. After rearranging machines in the initial matrix according 

to the permutation of machines obtained in the first phase, we obtain an 

intermediate matrix in which the positions of parts have not been changed. 

3.3.3 Initialization 

Initialization (see line 1, Algorithm 3.1) involves generating of possible solutions 

to the problem. It can be generated randomly or with some heuristic. Suitable 

heuristic can reduce the number of generation required in finding the solutions 

and let GAs start the search in a more favorable region of the search space. 

Certainly, this requires additional overhead. In our implementation, the initial 

population is generated randomly. 
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3.3.4 Parent selection strategies 

Parent selection (see lines 3 & 4, Algorithm 3.1) is a process that allocates 

reproductive opportunities to individuals. In principle, individuals with higher 

fitness values are more likely to be selected into the mating pool and individuals 

with lower fitness values will receive lower or even no opportunity to act as 

parents. The probability of an individual being selected with P individuals in 

the population: 

P. = 4 ^ 

E f{j) 
i=i 

This biased selection enables the convergence of population. There are 

several schemes for determining and assigning the selection probability, e.g. 

roulette wheel selection, scaling techniques, and ranking. In addition, non-

probabilistic selection strategies may be used such as tournament selection, 

elitist models [26, 61], etc. As the process continues, the variation in fitness 

range will be reduced. But this often leads to the problem of premature 

convergence, a classical problem of GAs. This problem occurs because a few 

super-fit individuals receive high reproductive trials and rapidly dominate the 

population. If such individuals correspond to local optimum, GAs will be 

trapped like hill climbing. 

’ In our implementation, fitness ranking [86] is employed to solve this 

problem. Individuals are sorted according to their fitness values, the number 

of reproductive trials are then allocated according to their rank. Several 

experiments have shown ranking to be superior to fitness scaling [86], in dealing 
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with premature convergence. 

3.3.5 Crossover 

Standard crossover operator cannot be used because illegal offspring may be 

generated. Illegal offspring is the one the contains either a machine occurs 

more than once or not all the machines appear in the tour. This violates the 

constraints of TSP. Several crossover operators (see line 5, Algorithm 3.1) are 

defined for this representation: partially-mapped (PMX) [27], order (OX) [21], 

cycle (CX) [67], and edge recombination (ER) [87] crossovers. ER was suggested 

to be most efficient for TSP [86]. In our clustering problem, we will use the path 

representation. Each gene in a chromosome corresponds to a machine (in the 

first phase). 

Sequencing tasks involve permutation of objects of the problem domain. 

Applying genetic algorithms to sequencing problem requires specialized 

crossover operator, if path representation is used. The effectiveness of the 

operators can affect the performance of GAs and the quality of the solutions. 

Starkweather [78] conducted a study to compare six genetic sequencing 

operators for a 30 city “ Blind" traveling salesman problem and a real world 

warehouse/shipping scheduling application. The results indicated that the 

effectiveness of different operators is dependent on the problem domain. 

Operators which work well in the traveling salesman problem may not be 

effective for other types of sequencing problems, while operators which perform 
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poorly on the blind traveling salesman problem work extremely well for the 

warehouse scheduling task. Syswedra [81] discussed the relative importance of 

position, order, and adjacency for different sequencing tasks. These studies 

contradict to the concepts assumed by some researchers that all sequencing 

tasks are similar and that one genetic operator suffices for all types of sequencing 

problems. Edge recombination operators perform well on the traveling salesman 

problem stressing adjacency but they perform poorly for sequencing tasks where 

relative order is critical. We compared six different operators for our clustering 

problem. The operators involved are enhanced edge recombination operator 

78], order crossover #1 [21], order crossover #2 [81], partially mapped crossover 

27], cycle crossover [67], and position based crossover [81 . 

Our experiment is conducted based on GENITOR [86]. The initialization, 

selection, replacement, and population size are kept constant. We intend to 

provide a common test-bed for the different sequencing operators. All the 

genetic algorithms are allowed to run for a predefined number of generations 

and the change of fitness values are recorded. Figures 3.3, 3.4, and 3.5 are the 

performance results. 

Three problems adopted from the literature are used as test problems. Our 

objective is to minimize the total distance of a tour; therefore, lower fitness 

corresponds to a better solution. Clearly, the results reveal the enhanced 

edge recombination operator outperforms other sequencing operators in our 

clustering problem. This may be due to the most important information for 

this cell formation problem is which machines/parts should be placed in close 



CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 33 
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Figure 3.3: Performance analysis of different operators (I) 
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Figure 3.4: Performance analysis of different operators (II) 
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1st phase for stanfel (1985) 
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Figure 3.5: Performance analysis of different operators (III) 

proximity. In other words, the adjacency is more important than the position. 

For example, if three machines should be close to each other, any sequence 

that they are arranged together will generate the same result no matter which 

position they are in. The enhanced edge recombination operator successfully 

captures this kind of information and therefore the GAs with this operator can 

generate better solution in less computational time. 

As the enhanced edge recombination operator is demonstrated to be most 

efficient for the TSP-clustering problem. We will use this operator in our 

implementation. In the following section, we will discuss the operation of edge 

recombination operator. Consider the following tour: 

3 - 1 - 2 - 8 — 7 - 4 - 6 - 9 — 5. 
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The edges are (3 1), (1 2)，(2 8), (8 7), (7 4), (4 6), (6 9)，(9 5)，and (5 3). 

The first step is to build an edge table that stores the edges found in a tour. 

For each city c, all other cities connected to city c in at least one of the parents 

are listed. We can see that for each city c, there are at least two and at most 

four cities on the list. For example, given two parents: 

parent 1 : 1 — 2 - 3 - 4 — 5 - 6 — 7 - 8 - 9 

parent 2 : 4 1 — 2 — 8 - 7 — 6 - 9 - 3 - 5 

the edge table can be constructed in Table 3.1. 

City edges connected to other cities 

_2 ^ 

2 1,3,8 

3 2,4,9,5 

4 3,5,1 

5 4,6,3 

6 ^ 

7 6,8 

8 7,9,2 

9 8,1,6,3 

Table 3.1: An edge table 

An offspring is constructed by selecting an initial city from one of the parents. 

Assume we have selected city 1, this city connected to three other cities: 9，2, 

and 4. The next city selected depends on the number of edges in the edge table. 

The city with the smallest number of edges in the edge list is selected. Ties are 

broken arbitrarily. In our example, city 9 has four edges and cities 2 and 4 have 
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three. A random choice is made between cities 2 and 4 and we assume that city 

4 is selected. Next, the cities available for selection are 3 and 5. Following the 

same principle city 5 is selected. Now, the first three genes of the offspring is 

constructed: 

1 — 4 — 5 — X — X — X — X — X — X. 

If we continue the procedure, an offspring with following sequence will be 

generated: 

1 - 4 - 5 一 6 - 7 - 8 — 2 - 3 9. 

With a random selection, there is a chance that a city may not have a 

continuing edge. This situation is called edge failure. When this occurs, a 

random city that presently not in the tour is selected as the next city. 

An enhanced edge recombination operator is proposed to improve the 

performance of ER [78]. The modification is that if an edge appears in both 

parents, it will be first selected. The idea is to preserve the common subsequence 

in both parents. The element is still stored in an edge table but if an element 

is already present, a minus sign will be added to that city. This sign acts as a 

flag which indicates this edge appearing in both parents. The new edge table is 

shown in Table 3.2. 

In selecting the next node, the city with the minus sign will be selected first. 

This enhanced operator is known to produce better solutions to TSP [78]. In 

our implementation, this enhanced ER is used as the crossover operator. 
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City edges connected to other cities 

_ J ^ 

2 -1,3,8 

3 2,4,9,5 

4 3 ^ 

5 -4,6,3 

6 5,-7,9 

7 -6,-8 

8 -7,9,2 

9 8,1,6,3 

Table 3.2: An edge table for enhanced ER 

3.3.6 Mutat ion 

Mutation (see line 7，Algorithm 3.1) is applied to each child individually after 

crossover according to the mutation rate. It provides a small amount of random 

search and helps ensure that no point in the search space has a zero probability 

of being examined. Several mutation operators are suggested for sequencing 

problem with path representation [61]: 

• inversion 一 selects two points along the chromosome, the substring 

located in between these cut points is reversed. For example, in a 

chromosome: 

1-2 I 3-4-5-6 I 7-8-9, 

the two cut points are marked by "|". After inversion, the chromosome is 

changed to: 

1-2 I 6-5-4-3 I 7-8-9; 

• insertion — selects a gene and inserts it in a random place; 
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• displacement — selects a substring and inserts it in a random place; 

• reciprocal exchange — swaps two genes in the chromosome. 

In our implementation, no mutation operator is used. This is because 

the crossover operator incorporates random selection in completing a legal 

permutation and the effect is like a mutation. 

3.3.7 Replacement 

In most implementation [26]，a whole population is replaced in each generation 

(see line 9, Algorithm 3.1). This is referred to as a generational approach. In 

GENITOR, however, a steady-state approach is adopted. In each generation 

only a few (typically two) individuals are replaced. In other words, parents and 

offsprings can co-exist in the population. The average fitness of the population 

will improve from generation to generation. 

3.3.8 Termination 

The processes of crossover, selection, and replacement are repeated until a 

termination criterion is met (see line 2, Algorithm 3.1). The simplest criterion 

is a pre-specified maximum number of generations. Other criterion involves 

calculating the variation of individuals, if the value below a certain threshold, 

the GA is terminated. In our case, maximum number of generations strategy is 

employed. 
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3.4 Formation of machine cells and part 

families 

Once the machine sequence in the desirable permutation is generated by the 

genetic algorithm, the machine cells and part families can be determined based 

on the grouping measures. A heuristic that utilizes the distance information 

in the tour is used to partition machines into cells. The number of cells and 

families formed depends on the total number of machines (m). We assume that 

at least two cells will be formed. Therefore, the number of possible machine 

cells ranges from 2 to m. In each iteration, both machine and part assignments 

will be performed. 

3.4.1 Objective functions 

In order to compare the performance of different clustering techniques, we 

need some measures that can evaluate the quality of solutions generated by 

those algorithms. There are two measures frequently used in the literature. 

The first one is the grouping efficiency introduced by Chandrasekharan and 

Rajagopalan [11]. Grouping efficiency is a weighted average of two components, 

the mathematical formula is given as follows: 

V = QVi + (1 — Q) V2 

where 
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ed 
Vi =— 

EMrNr 
r=l 

1 e。 
V2 = 1 - 1 

mn - E MrNr 
- r=l -

m = number of machines 

n 二 number of parts 

Mr = number of machines in the rth cell 

Nr = number of parts in the rth family 

6d 二 number of l's within the machine/part groups 

6o = number of l's outside the machine/part groups 

k = number of cells 

77 二 grouping efficiency 

q = weighting factor (0 < q < 1) 

Grouping efficiency ranges from 0 to 1. Higher grouping efficiency means 

that the more structure the solution is. In turn it means that solution contains 

fewer exceptional elements. The first element rji is the ratio of the number of '1' 

in the diagonal blocks of the rearranged matrix to the total number of possible 

'1，in all the diagonal blocks. This measure focuses on the within cell utilization 

or the within cell density. It is argued that the higher is this value, the greater 

is the similarity (in terms of processing requirements) between the components 

included in each cell and the greater is the utilization of the machines in this 
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cell. The second element rj2 is the ratio of the number of '1' in the off-diagonal 

blocks to the total number of possible T in the off-diagonal block. This measure 

focuses on the intercell material handling cost. Higher value of this measure 

means only a few operations are carried out in more than one cell. Therefore, 

maximizing this measure equals to minimizing the materials handling cost. If 

we try to maximize 771, there will be more '1' in the off-diagonal block and r|2 

will be reduced. Chandrasekharan and Rajagopalan [11] suggested the value of 

q = 0.5 and many researchers also use this value. We will follow this convention 

in calculating our results. 

Although grouping efficiency can be used as a measure of the quality of 

solution, it has some limitations [40]. First, even a very bad solution with 

many exceptional elements showed efficiency figures around 75%. Second, the 

authors suggested q = 0.5 and intended to give equal weights to voids and 

exceptional elements. However, Kumar and Chandrasekharan [40] showed for 

large matrices, the denominator of the first term will be much or less of the 

same order. When the matrix size increases, the effect of exceptional elements 

becomes smaller, and in some cases, the effect of intercell moves is not reflected 

in the grouping efficiency. In the same paper, they proposed another measure 

called grouping efficacy (F). It can be expressed by the following formula: 

1 - ^^ 
r = — — -

i + $ 

where 

T ^o 
屯 = — 

e 
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$ = ^ 
e 

6o = number of l's outside the machine/part groups 

ey 二 number of voids (zeros) within the machine/part groups 

e = total number of operations (number of ones in the matrix) 

r — grouping efficacy 

Grouping efficacy also ranges from 0 to 1. When F = 0 implies that 少 = 1 

which means all the ones in the matrix are outside the machine/part group. 

When r = 1 that means 屯 = $ = 0 which corresponds to perfect grouping. 

As grouping efficiency is quite commonly used, we will report both grouping 

efficiency and grouping efficacy in our algorithm. 

3.4.2 Machine assignment 

If we examine a given machine sequence generated by the genetic algorithms, 

the machines that should be placed together will have a small distance measure. 

On the other hand, machines that should be allocated in different machine cells 

will have a large distance. The machine cells are formed by partitioning the 

sequence. If two cells are required, the machine sequence will be broken at the 

first two largest distance edges yielding two sub-sequences which correspond to 

the two machine cells. Ties are broken arbitrarily. Subsequently, additional 

machine cells can be formed by breaking the largest distance edges that have 

remained unbroken. 
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3.4.3 Part assignment 

Both grouping measures emphasize on maximization of the number of '1' within 

the blocks. Therefore, parts are assigned to maximize operation within the 

machine cells. As the number of operations for a given part is fixed, attempts to 

maximize the operation in cells lead to reduced number of operation performed 

outside the cell (therefore reduced material handling cost). 

Once machine cells and part families are generated, grouping efficiency or 

grouping efficacy can be calculated. The machine and part assignment iteration 

will be continued until all edges are broken. The best solution is the one that 

provide the best grouping measures. 

3.5 Implement at ion 

The TSP-clustering problem was solved based on a publicly available package 

called GENITOR [86]. The cell formation procedure was developed using C. All 

the program was run on a Sun SPARC 10 machine. In summary, our clustering 

approach contains two phases: 
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Algori thm 3.2 Generate-machine-sequence (in: incidence matrix; out: 

intermediate matrix) 

> Generate the machine sequence by genetic algorithms 

1 calculate the distance matrix > By equation 3.1 

2 generate an initial population of N random solutions 

3 for i—1 to Generat ion > Set iteration counter 

4 select two parents P1 and P2 > By fitness ranking 

5 combine P1 and P2 to form a new offspring using enhanced edge 

recombination operator > Crossover 

6 replace the worst individual in the population with new offspring 

7 end 

8 output the intermediate matrix > Machine sequence reordered 

Algorithm 3.3 Cell-formation (in: intermediate matrix; out: final 

matrix 

t> Machine cells and part families formation 

1 b ^ 2 0 The best number of cells 

2 for c — 2 to m t> m is the number of machine 

> The iteration starts from 2 to the total number of machine 

3 break first c longest edges of the machine sequence (a tour) 

4 form the machine cells > Formation of machine cells 

5 assign each part to the cell that maximizes the operations within the 

machine cell > Formation of part families 

6 calculate the grouping efficiency or grouping efficacy 

7 if the solution is better then t> With higher grouping measures 

8 b <~ c > The best known value 

9 end 
10 output the results > Final matrix and the grouping measures 
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3.6 An illustrative example 

In order to provide a comprehensive understanding of our heuristic, an example 

adopted from Chandrasekharan and Rajagopalan [11] is used for illustration. 

Figure 3.6 is the initial machine-part matrix. 

Parts 

1 1 1 1 1 1 1 1 1 1 2 

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 

M 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 

a 2 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 

c 3 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 

h 4 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 

i 5 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 

n 6 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 

e 7 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1 

s 8 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 

Figure 3.6: Initial matrix 

The first step is to calculate the distance matrix based on distance measure 

(the rectilinear metric). The distance matrix is in Figure 3.7. 

Machines 

1 2 3 4 5 6 7 8 

M 1 0 13 1 15 15 15 14 14 

a 2 13 0 14 2 12 12 3 1 

c 3 1 14 0 16 14 14 15 15 

h 4 15 2 16 0 10 10 3 1 

i 5 15 12 14 10 0 4 11 11 

n 6 15 12 14 10 4 0 11 11 

e 7 14 3 15 3 11 11 0 2 

s 8 14 1 15 1 11 11 2 0 

Figure 3.7: Distance matrix for machine grouping 
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After several experiments, the following parameters are shown to produce 

good results: the population size is 400 and the GA terminates after 500 

generations. 

0 I Bst: 48.000000 Wst: 104.00000 Median: 82.000000 Avg: 79.610000 

100 I Bst: 48.000000 Wst: 90.000000 Median: 76.000000 Avg: 73.835000 

200 I Bst: 48.000000 Wst: 84.000000 Median: 68.000000 Avg: 68.945000 

300 I Bst: 48.000000 Wst: 78.000000 Median: 66.000000 Avg: 63.995000 

400 I Bst: 48.000000 Wst: 74.000000 Median: 60.000000 Avg: 59.330000 

500 I Bst: 48.000000 Wst: 66.000000 Median: 56.000000 Avg: 55.955000 

3 1 2 8 4 7 6 5 48.000000 

Figure 3.8: Program output for phase 1 

Figure 3.8 is the program output. In the figure 'Bst' stands for best value 

obtained so far, 'Wst' stands for worst individual encountered, 'Median' is the 

middle number of the population, and 'Avg' is the average fitness value of 

the whole population. The last sequence indicates the best permutation of 

machines found and the corresponding fitness value is 48.00. After phase 1，an 

intermediate matrix is generated (Figure 3.9). We can see that machines that 

process similar parts are already grouped together. 

In phase 2, we try to find machine cells and part families based on the 

machine sequence formed in phase 1. Table 3.10 is the distance between two 

adjacent machine. 

If two cells are formed, the first two largest distance edges will be removed 

yielding two sub-sequences: {3-1} and {2-8-4-7-6-5}. Parts are then assigned to 

the cells. The grouping efficiency is 80.04% and grouping efficacy is 62.92%. If 

we continue to three cells, three sub-sequences will be generated: {3-1}，{2-8-
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Parts 

1 1 1 1 1 1 1 1 1 1 2 

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 

M 3 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 

a 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 

c 2 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 

h 8 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 

i 4 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 

n 7 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1 

e 6 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 

s 5 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 

Figure 3.9: An intermediate matrix 

Pair of machine Distance 

3-1 1 

1-2 13 

2-8 1 

8-4 1 

4-7 3 

7-6 11 

6-5 4 

5-3 14 

Figure 3.10: The distance between every pair of machines 
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4-7}, and {6-5}. The grouping measures are 95.83% and 85.25%, respectively. 

For four cells configuration, machine cells {3-l}, {2,-8-4-7}, {6}, and {5} are 

formed. Both grouping efficiency and grouping efficacy are decreased (93.81% 

and 77.05%). After testing the six possible configurations (from 2 cells to 7 

cells)，three cells configuration is shown to be the best solution in terms of the 

grouping measures. 

After the two phases, a final matrix is generated. The solution has nine 

exceptional elements and, no voids within the blocks, and a grouping efficiency 

of 95.83%. This solution is also known as the optimal solution for this data set 

11. 

Parts 

1 1 1 1 1 1 1 2 1 1 1 

2 8 9 1 3 4 6 7 9 3 4 6 7 8 0 1 5 0 2 5 

M 3 1 1 1 1 1 1 1 1 1 

a 1 1 1 1 1 1 1 1 1 1 1 

c 2 1 1 1 1 1 1 1 

h 8 1 1 1 1 1 1 

i 4 1 1 1 1 1 1 1 

n 7 1 1 1 1 1 1 1 1 

e 6 1 1 1 1 1 1 1 

s 5 1 1 1 1 1 1 1 

Figure 3.11: The final matrix 

The machine cells and part families formed are shown in Table 3.3. 

Cell/family Machines Parts 

1 1,3 2,8,9,11,13,14,16,17,19 

2 2,4,7,8 3,4,6,7,18,20 

3 5,6 1,5,10,12,15 

Table 3.3: Machine cells and part families formed 
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3.7 Comparative Study 

In order to test our heuristic, 25 data sets from the literature have been 

collected for evaluation. The size of matrices ranges from 5 x 7 to 40 x 

100 and both well-structured and ill-structured forms are included. We will 

compare our results to ZODIAC [13]. Miltenburg and Zhang [63] compared nine 

clustering methods and showed ZODIAC outperformed array-based methods 

and similarity coefficient methods. It is a reliable clustering algorithm and 

commonly used in comparative studies. 

The detailed results of the experiments are presented in Table 3.4. The table 

indicates that for small size problems, both ZODIAC and our algorithm produce 

similar results. This is because optimal solutions for small size problems are 

easier to obtain. But in some cases, improvement can still be found, the result 

of problem 1 reports higher values in both measures. For larger size problems 

(e.g. up to 20 X 20)，significant improvement can be identified. Our algorithm 

performs better in both grouping efficiency and grouping efficacy. It is worthy 

to point out that some of the solutions generated are of better quality than 

any published results. For example, the solution of problem 9 has a grouping 

efficiency 88.83% and grouping efficacy 70.83%. Also, for the largest data set in 

our experiment (problem 25), most clustering algorithms [75, 76] generate result 

with grouping efficacy 83.92% and our heuristic successfuUy find out a solution 

with higher value. This value surpasses all the known results. It is clear that 

the GA-based approach has the ability to solve larger scale problems. 
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Only in problem 11, we find that ZODIAC performs better than our 

algorithm in both measures. The computational requirement is not high. For a 

40 X 100 matrix, a solution can be obtained in less than 3 minutes. 

Figures 3.12, 3.13, and 3.14 are some examples of varying densities and 

exceptional elements. Tables 3.5, 3.6, and 3.7 show the detailed assignment of 

machines and parts. 

3.8 Conclusions 

Machine-part clustering can be modeled by a 0-1 incidence matrix. A grouping 

algorithm involves rearrangement of rows and columns of such matrix. In 

this chapter, we showed that the clustering problem can be formulated as a 

traveling salesman problem. We proposed a genetic algorithm to solve the TSP 

grouping problem. After the generation of machine sequence, a heuristic is used 

to partition the machines into cells. The algorithm is compared to a well-known 

algorithm presented in the literature. The results showed our proposed heuristic 

can successfully yield a final matrix with better grouping measures. 
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Grouping Grouping 

efficiency (77) efficacy (F) 

No. Source Size ZODIAC GA ZODIAC GA 

1 Waghodekar and Sahu [84] 5 x 7 72.20 77.10 56.52 68.00 

2 Seifoddini [70] 5 x 18 86.76 89.14 77.36 79.59 

3 Kusiak and Cho [49] 6 x 7 87.50 87.50 76.92 76.92 

4 Kusiak and Chow [50] 7x 11 65.01 81.40 39.13 58.92 

5 Boctor [5] 7 x 11 86.08 86.08 70.37 70.37 

6 Chandrasekharan and Rajagopalan [12] 8 x 20 95.83 95.83 85.25 85.25 

7 Chandrasekharan and Rajagopalan [11] 8 x 20 71.88 72.79 58.33 56.73 

8 Mosier and Taube [64] 10 x 10 85.29 85.29 70.59 70.59 

9 Stanfel [77] 14 x 24 83.90 88.83 65.55 70.83 

10 Chan and Milner [10] 15 x 10 96.00 96.00 92.00 92.00 

11 King [37] 16 X 43 80.20 77.55 53.76 47.73 

12 Mosier and Taube [65] 20 x 20 53.05 61.48 21.63 30.85 

13 Carrie [9] 20 x 35 87.81 88.00 75.14 75.28 

14 Boe and Cheng [6] 20 x 35 77.36 81.99 51.13 52.13 

15 Kumar, Kusiak and Vannelli [41] 23 x 20 66.97 72.55 38.66 29.41 

16 Chandrasekharan and Rajagopalan 1 [14] 24 x 40 100.00 100.00 100.00 100.00 

17 Chandrasekharan and Rajagopalan 2 [14] 24 x 40 95.20 95.20 85.11 85.11 

18 Chandrasekharan and Rajagopalan 3 ^ [14] 24 x 40 90.84 91.16 73.03 73.51 

19 Chandrasekharan and Rajagopalan 5 [14] 24 x 40 77.31 84.84 20.42 44.37 

20 Chandrasekharan and Rajagopalan 6 [14] 24 x 40 72.43 73.17 18.23 35.29 

21 Chandrasekharan and Rajagopalan 7 [14] 24 x 40 69.33 75.57 17.61 34.88 

22 Kumar and Vannelli [42] 30 x 41 68.14 86.43 33.46 57.69 

23 Stanfel [77] 30 x 50 75.35 85.95 46.06 56.61 

24 Stanfel [77] 30 x 50 62.92 79.12 21.11 42.27 

25 Chandrasekharan and Rajagopalan [13] 40 x 100 95.07 95.10 83.92 84.03 

"Data set 3 is as the same as data set 4. 

Table 3.4: Performance comparison of our algorithm and ZODIAC 
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Parts 

1 1 1 1 2 2 3 1 1 1 2 2 3 1 1 2 2 2 2 1 2 2 3 3 3 3 

2 7 0 1 3 8 4 7 1 8 4 6 9 2 6 4 1 3 5 5 7 0 3 5 9 4 6 9 1 1 8 0 2 3 5 

18 1 1 1 1 1 1 1 

14 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 

13 1 1 1 1 

5 1 1 1 1 

M 6 1 1 1 1 1 1 1 

a 10 1 1 1 1 1 1 

c 9 1 1 1 1 1 

h 20 1 1 1 1 1 
i 1 1 1 1 1 1 
n 8 1 1 1 1 1 1 1 1 1 

e 7 1 1 1 1 1 1 1 

s 17 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 

12 1 1 1 1 1 1 

15 1 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 1 

19 1 1 1 1 1 1 1 1 

11 1 1 1 1 1 1 1 1 1 

Figure 3.12: Rearranged matrix of problem 13 (20x35) 

Cell/family Machines Parts 

1 2,4,13,14,18 2,7,10,12,13,18,24,27,31 

2 5,6,9,10,20 8,14,16,19,22,26,34 

3 1,3,7,8,17 1,3,5,15,17,20,23,25,29 

4 11,12,15,16,19 4,6,9,11,21,28,30,32,33,35 

Table 3.5: Machine cells and part families formed 
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Parts 

1 1 1 2 2 3 3 2 3 2 2 4 1 2 2 3 1 1 1 2 3 3 1 1 3 1 2 2 3 3 3 

2 1 2 5 3 4 1 4 3 5 2 6 7 0 9 0 4 5 8 6 7 0 0 3 4 2 5 6 1 9 6 7 3 8 9 1 8 7 8 9 

20 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 

24 1 1 1 

14 1 1 1 1 

23 1 1 1 

7 1 1 1 

17 1 1 1 1 1 

9 1 1 1 1 1 

M 10 1 1 1 1 

a 15 1 1 1 1 1 1 1 

c 12 1 1 1 1 1 1 1 

h 18 1 1 1 1 1 1 

i 6 1 1 1 1 1 1 

n 8 1 1 1 1 1 

e 5 1 1 1 1 1 1 

s 19 1 1 1 1 1 1 1 

11 1 1 1 1 1 

2 1 1 1 1 1 I 

21 1 1 1 1 1 

22 1 1 1 1 1 

13 1 1 1 1 1 

1 1 1 1 1 1 

4 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 

Figure 3.13: Rearranged matrix of problem 18 (24x40) 

Cell/family Machines Parts 

1 3,20 2,11,12,15,23,24,31,34 

2 7,14,23,24 3,25,32 

3 9,10,17 6,7,20,29,40 

4 6,8,12,15,18 4,5,18,26,27,30 

5 2,5,11,19 10,13,14,22,35,36 

6 1,13,21,22 1,9,16,17,33 

7 4,16 8,19,21,28,37,38,39 

Table 3.3: Machine cells and part families formed 
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Parts 

2 3 3 3 2 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 3 4 4 4 4 4 4 5 4 4 4 4 1 2 2 2 2 2 2 2 2 

9 1 3 8 8 0 2 4 5 6 7 4 7 8 8 1 1 2 3 6 9 7 0 5 3 4 5 6 2 9 2 4 6 8 1 5 0 0 7 9 3 9 0 1 2 3 4 5 6 7 

19 1 1 1 1 1 1 

23 1 1 1 1 1 

21 1 1 1 1 1 1 

18 1 1 1 1 1 

22 1 1 1 1 1 

20 1 1 1 1 1 1 

4 1 1 1 

11 1 1 1 1 

10 1 1 1 1 1 1 1 

3 1 1 1 1 1 

M 1 1 1 1 1 1 

a 13 1 1 1 1 1 

c 9 1 1 1 1 1 

h 2 1 1 1 1 

i 5 1 1 1 1 1 1 

n 12 1 1 1 1 1 1 

e 8 1 1 1 1 1 1 1 

s 6 1 1 1 1 1 1 

7 1 1 1 1 

24 1 1 1 1 

30 1 1 1 1 1 1 

29 1 1 丨 1 1 1 

25 1 1 1 1 1 

27 1 1 1 1 1 

26 1 1 1 

28 1 1 1 1 

15 1 1 1 1 1 

17 1 1 1 1 

14 1 1 1 1 1 1 

16 1 1 1 1 1 1 

Figure 3.14: Rearranged matrix of problem 23 (30x50) 

Ce l l / f am i l y Mach ines Par ts 

- 1 19,21,23 29,31,33,38 

2 ~18,20,22 一 28,30,32,34,35,36,37 — 

• 3 — 4,10,11 ~ 7 , 1 8 

4 3 8,11 

5 T^9,13 1,2,3,6,9,17 

6 5 10 

7 —6,8,12 一 5,13,14,15,16 — 

‘ 8 — 7 ~T2 
‘ 9 — 24,30 ^ , 4 2 , 4 4 , 4 6 , 4 8 

10 ~25,29 一 41,45,50 ~ 

11 —27 一 40,47,49 ~ 

12 —26,28 一 43 ~ 

• 13 14,15,16,17 19,20,21,22,23,24,25,26,27 

Table 3.3: Machine cells and part families formed 



Chapter 4 

A multi-chromosome GA for 

minimizing total intercell and 

intracell moves 

4.1 Introduction 

In reality, many objectives and constraints should be considered in designing a 

cellular manufacturing system; for example, material handling costs, machine 

utilizations, and number of cells formed. Generalized models deal with the 

cellular manufacturing problem more comprehensively. 

There are many generalized models proposed in the literature. In this 

research, we consider the workload model proposed by Logendran [55]. This 

model aims at minimizing total intercell and intracell moves while also taking 

the machine utilization into consideration. As suggested by Logendran [55]，the 

55 
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intracell moves could be as important and unproductive as intercell moves. 

Only a few research work considered the impact of intracell moves. Stanfel 

77] proposed a mathematical model that included the concept of extraneous 

machine transitions to reflect intracell processing. Extraneous machines are 

machines in a machine cell not utilized by a part assigned to the same cell. The 

movements of parts from and to this machines incurred handling costs. The 

objective function of the Stanfel's approach is the total of inter-cell transitions 

and extraneous machine transitions. The problem with the Stanfel's approach is 

that extraneous machine transitions cannot truly represent intracell moves. Also 

the workload of machine is not taken into account in his approach. Logendran 

55, 56] proposed a workload-based model focusing on minimizing the total 

moves that includes both intercell and intracell moves. 

Furthermore, two important factors are often ignored by most literature: 

the sequence of operations and the layout of cells. These two factors are crucial 

in evaluating the intracell and intercell moves and can significantly affect the 

results. The workload-based model by Logendran [55, 56] takes these factors 

into account. 

In reality, not just the movement of parts needs to be optimized. Other 

designing objectives are also the concerns of management. These objectives 

may include the workload of each workstation, the corresponding utilization 

rate, and the cell load variation, etc. These concerns can affect the choice made 

by management in selecting a cell configuration. Our algorithm will also take 

these factors into consideration. 
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In solving the workload model, Logendran proposed an algorithm involved 

four phases with two rules. In this chapter, we propose a genetic algorithm with 

multiple chromosome representation. Applying genetic algorithms to solve the 

workload model have been done by Gupta et al. [29, 30]. A major problem with 

their approach is the generation of illegal offsprings. Additional computational 

effects through mutation are required to handle illegal offsprings. 

4.2 The model 

In this research, the model proposed by Logendran [56] serves as the basic 

model. The objective function of the model is the total intracell and intercell 

moves. The underlying philosophy is clearly stated by Logendran: 

If a part is required to visit n cells (n > 1) to either partially or 

completely process its requirements, then it contributes to (n — 1) 

intercell moves in the total intercell moves equation If a part is 

required to visit m machines (m > 1) dedicated to a cell as a portion 

of its processing requirements or in its entirety, then it contributes 

to {m — 1) intracell moves in the total intracell moves equation. 

The sequence of operations and layout of cells are important factors in 

evaluating the movement but are commonly neglected by researchers. Consider 

the three cells in Figure 4.1, machines 1 and 3 are assigned to cell 1 while 

machine 2 in cell 2 and machine 4 in cell 3. Assume that a part requires to visit 

all the four machines to complete its processing requirements. If the operation 
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sequence is not taken into account when the cost is being minimized, there are 

one intracell move and two intercell moves. However, in reality, processing 

of parts requires an operation be performed before another operation. To 

truly reflect this situation, we further assume that a part requires the following 

processing sequence: Ml—M2—M3—M4. As a result, this part requires three 

intercell moves and no intracell move. This example clearly demonstrates the 

importance of operation sequences. 

Two cellular layouts are considered in this research: the linear single-row 

cellular layout and the linear double-row cellular layout. For simplicity, the 

linear single-row layout has been referred to as layout 1 (Figure 4.1) and the 

linear double-row layout as layout 2 (Figure 4.2). 

M1,M3 M2 M4 

C1 C2 C3 

Figure 4.1: Linear single-row cellular layout 

Consider layout 1. If the distances between cells are equal, then the distance 

travelled from cell 1 to 3 will be two times as from cell 1 to cell 2. For layout 2, 

the distance travelled from cell 1 to 3 and cell 2 to 4 is y/2 times the distance 

travelled between any adjacent two cells. 

To accurately analyze cellular manufacturing problem, intracell movements, 

sequence of operations, and layout of cells should be taken into consideration. 

、 
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C1 C2 

M1,M3 M2 

M5,M6 M4 

C4 C3 

Figure 4.2: Linear double-row cellular layout 

The total moves for the two layouts can be represented by the following 

equations: 

Layout 1: 

p ki_i p 

Total moves = 9i * ^ ^ \ck — Cfc+i| + O2 * Y^rrii (4.1) 
i—l k=l i=l 

Layout 2: 

P ki-l p 

Total moves = 61 * ^ ^ Q̂ fc,fc+i +6>2 * Y1 rrii (4.2) 
i = l k=l 2=1 

where: 

Ck = the cell number in which operation k is performed on part i 

c ^ i = the cell number in which operation {k + 1) is performed on part i 

ki = the total number of operations to be performed on part i 
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f 

V2 if \ck - Cfc+i| 二 2 

o^k,k+i = < 

1 otherwise 
V 

c 二 the number of cells 

p 二 the number of parts 

rrii = the total number of intracell moves performed by part i 

61 = the fractions representing the weights attributed to the intercell moves 

O2 二 the fractions representing the weights attributed to the intracell moves 

As suggested by Logendran [55]，the weight assigned to intracell moves may 

not be as high as that assigned to intercell moves. In this research, we will 

follow the value used by Logendran. That is the weight assigned to intracell 

moves is 0.3 and the weight assigned to intercell moves is 0.7. 

One of the parameters required by the model is the number of cells. In 

general, as the number of cells formed increases, the effect of intercell moves 

increases and the effect of intracell moves decreases. In order to make the 

model realistic, we assume there will be at least two cells formed. On the other 

hand, the upper limit on the number of cells formed is arbitrary. The model can 

be evaluated in cell number equals to three, four, five, and so on. This actually 

provides different scenarios to a plant manager or designer who evaluates the 

solutions based on the constraints he/she faces. As pointed out by Gupta et aL 

30], most of the manufacturing firms in US used six or less cells; hence, it is 

possible to evaluate all the alternatives. The decision for the number of cells is 
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primarily based on factors such as workforce, the space of shop floor, budgetary 

limitations, etc. 

Once the machine cells are formed, parts are assigned to cells based on 

the accumulated processing time in all cells. The total accumulated processing 

time is the sum of all processing times of a part in each of the workstations 

of the cell. The part is assigned to the cell of highest value. Ties are broken 

arbitrary. When the part families are also formed, the machine utilization can 

be calculated. Machine utilization is determined as a ratio between the workload 

and the machine capacity. If the workload assigned to a machine exceeds its 

capacity, we allow multiple machines to be allocated. If we refer a machine type 

as a workstation. The utilization rate can be represented as follows. 

X) tij 

Uj = ^ (4.3) 

where 

Uj 二 utilization rate of workstation j 

tij = processing time of each part i in workstation j 

C = available capacity of machines (hours) 

Cj = cell to which workstation j is assigned 

4.3 Solution techniques to the workload model 

Two approaches were proposed in the literature to solve the workload model, 

the Logendran's four phases algorithm [55] and Gupta et al.'s genetic algorithm 
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29；. 

4.3.1 Logendran's original approach 

The original approach involves four phases: cell representation phase, clustering 

phase, improvement phase, and assignment phase. In the cell representation 

phase, different key workstations are identified. The number of key workstations 

equals to the number of cells formed. The key workstation is the seed for each 

cell. In phase 2, the remaining workstations are assigned to the cells based on the 

total moves resulted. A workstation is assigned to a cell that causes minimum 

total moves. This phase ends when all the workstations are assigned to cells. 

In the improvement phase, further reduction in total moves is attempted. Each 

workstation will be removed from the cell to which it was assigned and added 

to every other cell. The workstation will be assigned to the cell that gives the 

highest reduction. Finally, in the last phase, parts are assigned based on the 

accumulated processing time in all cells. 

As suggested in by Del Valle et aL[23], the step in selecting the key 

workstations is important. A poor selection criterion will increase the 

computational overhead in the improvement phase. Two rules may be employed 

in selecting the key workstations. Rule 1 selects workstation with the highest 

total workload per machine. Rule 2 selects the workstation with the maximum 

number of parts. 

One of the weakness of the algorithm is that the complexity of assigning a 
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machine from cell to cell in step 3 increases as the problem size increases [23 . 

For some real size problems, the cost to obtain a solution will be too high. 

4.3.2 Standard representation - the GA approach 

The cell formation problem is a combinatorial problem [53]. Heuristic 

approaches are required to solve the problem efficiently. Genetic algorithms 

seem to be a good candidate to solve combinatorial problems due to their 

ability to perform a parallel search and their robustness [53] • Applying genetic 

algorithms to solve the workload model was first proposed by Gupta et al. 

29, 30；. 

In Gupta et al.'s implementation [29], standard (or group number) 

representation was employed. The value of a gene (allele) represents the cell 

number with the position of the gene corresponding to the machine number. 

For example, chromosome (2,3,1,1,2) represents that machine 1 is assigned to 

cell 2, machine 2 assigned to cell 3, machine 3 assigned to cell 1, and so on. 

The length of the chromosome is the total number of machines. The crossover 

operator used is the single point crossover. The crossing point in a chromosome 

is chosen randomly. The portions of the chromosomes after the crossing point 

are exchanged to produce the offsprings. 

One weakness of this representation is the occurrence of empty cell and 

therefore illegal offsprings. Consider the crossover operation in Figure 4.3. The 

number of cells is assumed to be three. However, after crossover, cell 3 is empty 
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in offspring 1 and cell 2 is empty in offspring 2. This violates the constraint 

that each cell at least contains one machine. The empty cell is no longer a cell. 

Parent 1 | 2 | 1 | 3 | 3 | 1 | 1 | Offspring 1 | 2 | 1 | 2 | 1 丨 2 | 2 

X 
Parent 2 | 3 | 1 | 2 丨 1 | 2 | 2 | Offspring 2 | 3 | 1 | 3 | 3 | 1 | 1 

• V 

Crossover point 

Figure 4.3: Occurrence of empty cell after crossover 

To overcome this problem, Gupta et al. [29] introduced a mutation operator. 

Two random integers ri and r2 are selected such that 1 < r*i < m and 1 < 

r2 < c. The algorithm then removes machine number ri from the chromosome 

and assigns it to cell r2. This process is repeated until no empty cell exists. 

Such a mutation operator increases the computational overhead and affects the 

performance of the genetic algorithm. 

In this thesis, we develop a chromosome representation which will help 

reduce computational effort. The use of genetic algorithms replaces the first 

three steps in Logendran's approach and the solution is independent of the 

choice of the key workstations. The individual chromosome with the lowest total 

moves gives the solution to the cell formation problem. After the formation of 

cells, parts are assigned using the fourth step of the Logendran's method. 



CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 65 

4.3.3 Multi-chromosome representation 

Traditionally, the solution of a genetic algorithm is encoded in one chromosome. 

The gene of a chromosome can be a binary, an integer, a real number, or an 

alphabet. The choice of these encoding schemes depends on the domain of the 

problem. For example, for a sequencing problem like TSP, it is most natural to 

use an integer as a gene. 

A genetic algorithm uses some decoding schemes to interpret the structure 

of a chromosome. In other words, a GA tries to extract information stored in 

a chromosome and provides a solution to the original problem. Ideally, the 

solution is directly represented in a chromosome and requires no decoding. 

However, some problems are difficult to have a direct representation. Even 

if it can be represented, specific or problem-dependent crossover operators are 

required. 

Bruns compared the direct and indirect representations for the production 

scheduling problem [7]. The direct representation involves incorporation of 

problem-specific knowledge of the application domain in a genetic algorithm. 

The introduction of the expanded representation requires the definition of new 

domain-dependent crossover and mutation operators. He concluded in his paper 

that the addition of relevant domain information made a GA operate on the 

entire search space and produced very promising results. 

In animal genetic, the number of chromosomes in one cell is always larger 

than 1. For example, there are 23 pairs of chromosomes in a somatic human 
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cell. Naturally, genes that encode very different information will be located 

at different chromosomes. Similar function genes will be placed together. For 

instance, most of the genes on X and Y chromosomes are related to the sex of a 

human. Encoding different characteristics to separate chromosomes may have 

advantages. In this research, we suggest a multi-chromosome representation 

that is considered to be more natural to the cell formation problem. Juliff 

35] suggested a multi-chromosome GA to solve the pallet loading problem. 

He stated that the multi-chromosome GA outperformed its single-chromosome 

counterpart. He also concluded that his GA can sample the search space more 

productively. 

In our representation, each individual contains two chromosomes. Table 4.1 

shows the details, where m is the number of machines. 

Chromosome length crossover used 

machine sequence m edge-recombination operator 

cell boundary m — 1 edge-recombination operator 

Table 4.1: The chromosomes used 

Each gene in a machine sequence chromosome represents a machine number 

and therefore, the value of a gene is an integer. The length of a chromosome 

equals to the number of machines. The crossover operator used is the edge-

recombination operator. Edge-recombination operator transfers 95% of edge 

(information) from parent to offspring and is considered the most efficient 

operator for general sequencing problem [61 . 

Another chromosome is the cell boundary chromosome for a given machine 
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sequence. Its task is to partition machines into different machine cells. This 

chromosome groups the first x machines into a common cell, then the following 

y machines to another cell, and so on. All the machines will be assigned to the 

predefined number of cells. Gene 1 indicates the edge between machines 1 and 

2, gene 2 indicates the edge between machines 2 and 3，and so on. Each gene 

in the cell boundary chromosome is an integer number. Assume the number 

of cells formed is c, then the integer value smaller than c represents the cell 

boundary. For example, Figure 4.4 is a possible individual assumed three cells 

to be formed: 

+ 

machine sequence 2 3 5 6 8 1 4 9 7 

cell boundary | 8 | 7 | 1 | 3 | 6 | 2 | 4 |~5~ 

(̂ ^̂ ^̂ ^̂  (̂ ^̂ ^̂ 3̂  (̂ ĵ̂^̂  7̂ ^̂  
ceU 1 ceU 2 cell 3 

Figure 4.4: Interpretation of information in chromosomes 

The third gene (1) and the sixth gene (2) of the cell boundary chromosome 

indicate the cutting points of the machine sequence. As a result, machines 2, 3， 

and 5 are assigned to cell 1, machines 1, 6, and 8 to cell 2, and cell 3 contains 

machines 4, 7, and 9. Compared to the representation proposed by Gupta et 
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aL [30], this representation does not generate illegal offsprings and therefore 

reduces the computational overhead required for restoration (see Section 4.3.2). 

The proposed representation also facilitates a parallel search. A parallel 

search can result in a better solution in less computational time. The existence 

of several evolving chromosomes allows good chromosomes not to be disrupted 

while trying to optimize another chromosome. In addition, the use of machine 

sequence allows similar machines keep together during the search process and 

a kind of linkage among objects can be developed. This actually provides more 

information to GA and guides the search in a more favorable direction. 

Consider the example in Figure 4.5. Assume that three machines (machines 

2, 3 and 5) should be assigned to one cell. Chromosomes 1 and 3 represent the 

same individual that machines 2 and 3 are grouped together and chromosomes 

2 and 4 represent an individual that machines 3 and 5 are together. After 

crossover, in our representation, machines 2, 3, and 5 may appear together 

in one cell. However, in standard representation, one crossover cannot give 

a satisfactory result. This is because the association of cell numbers to the 

machine restricts the GA to combine information in each chromosome. 

In addition, our representation has a potential capability to extend to 

dynamic cell formation. In some generalized models, the number of cells formed 

is not a pre-defined number, for example, the model proposed by Askin and 

Subramanian [3]. Their algorithm determines the best cell configuration as well 

as the best number of cells. Since we have not imposed any restriction to the 

number of cells formed, we can use our representation to handle this extension. 



CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 69 

On the contrary, the representation proposed by Gupta et aL strictly requires 

the number of cells be pre-defined. 

Finally, handling one more chromosome in each individual is not very costly 

in terms of computation. In fact, such GAs allow parallel processing, which 

can further reduce computational efforts involving an additional chromosome 

in each individual. As a result, this multi-chromosome representation seems 

particularly suitable for solving generalized cell formation model. It is more 

natural and capture more information about the problem that actually aids the 

searching. 

Chromosome 1 Chromosome 3 

I 2 I 3 | I 丨 I I I 1 I 1 I I I 

Chromosome 2 Chromosome 4 

I I I 3 I 5 I ] I I I 2 I I 2 I “ 

Offspring 

2 I 3 I 5 I I I 

Multi-chromsome representation Standard GA representation 

Figure 4.5: Problem of association of cell number to machines 

Our implementation is based on a genetic package called GENITOR [86 . 

The fitness function is the total moves suggested by Logendran. Both 

chromosomes are randomly generated in the initial population. The parents 

are selected using fitness ranking. The processes of selection, crossover, and 
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replacement are continued until a maximum number of generation reached. 

4.4 Comparative Study 

We solved the three problems used in the Logendran's paper and one large 

problem in the Gupta's paper in order to establish the performance of the 

algorithm. The results are shown in the tables below. The tables include the 

assignment of workstations and parts, and the utilization rate of individual 

workstation. In addition, the average utilization rates were calculated. For the 

three problems identified by Logendran, the model was evaluated for two, three, 

and four cells. For the large problem proposed by Gupta et al., four, five, and 

six cells were considered. The capacity of each machine was assumed to be 

eight hours. If the solution results in lower total moves or higher workstation 

utilization, we consider it to be a better one. The results of the four problems 

are discussed separately. 

4.4.1 Problem 1 

This problem was considered by Balakur and Steudel [4]. It has seven parts 

and five machines. Table 4.2 shows the workstation-part load matrix. The 

table indicates the workload for workstation W2 is 10.5 hours and it exceeds 

the capacity of one machine. Therefore, two machines are allocated. The 

other workstations have a load less than 8 hours and only one machine in such 

workstations. 
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Parts Total workload No. of 

Workstation P1 P2 P3 P4 P5 P6 P7 on workstation {h) machines 

W1 0.5 5.0 1.5 7.0 1 

W2 2.5 2.0 4.5 1.5 10.5 2 

W3 2.5 3.5 0.5 0.5 7.0 1 

W4 2.5 1.0 0.5 4.0 1 

W5 ^ 1^ ^ ^ 1 

Table 4.2: Workstation-part load matrix for Problem 1 

Tables 4.3 and 4.4 present the results and the comparison, respectively. Our 

genetic algorithm generated better results than Logendran and Gupta. The 

results of Gupta's approach are listed in Tables 4.12 and 4.13. For three cells, 

both the Gupta's and our solutions obtained a total number of moves equal to 

5.0 which was less than the Logendran's solution. But our average utilization 

was higher than the Gupta's one. For four cells, not only the average utilization 

rates were better but the total moves obtained were the least among the three 

algorithms. 

Logendran targeted the minimum acceptable value for utilization to 50%. 

However, all the algorithms failed to reach this value for all workstations. In 

addition, W4 had 0% utilization rate in Logendran's and Gupta's solution when 

3 and 4 cells were formed. This was a possible waste of resource and would cause 

workload imbalance. However, in our case, 31% was obtained. 

4.4.2 Problem 2 

This problem was originally presented by Tabucannon and Ojha [82] and 

modified by Logendran. It has 14 parts and 7 workstations. Workstation W7 
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Cells, Workstation in cell Ci Parts in cell Ci Utilization of workstation Wi 

Layout, i-l,2,3,... . ,AT i = l,2,3，....,iV i = l,2，3，.:.，M 

Moves C1 C2 I C3 C4 —C1 C2 C3 C4 ~W1 W2 W3 W4 W5 

2,1,3.8 1,2,3 5 1,2,4 3 0.88 1.31 0.88 0.50 0.38 

4 5,6,7 

2.2.3.8 1,2,3 5 1,2,4 3 0.88 1.31 0.88 0.50 0.38 

4 5,6,7 

3,1,5.0 5 1,2,3 4 3 2,4,5 1 0.88 1.00 0.88 0.31 0.38 
^ 

3,2,5.0 4 1,2,3 5 1 2,4,5 3 0.88 1.00 0.88 0.31 0.38 
^ 

4.1.6.9 4 2 1,3 5 1 4,6 2,5,7 3 0.88 0.75 0.81 0.31 0.38 

4,2,6.49 1,3 2 4 5 2,5,7 4,6 1 3 0.88 0.75 0.81 0.31 0.38 

Table 4.3: Result of Problem 1 

No. of Total moves Average utilization of workstation 

cells, Logendran Logendran Gupta GA Logendran Logendran Gupta GA 

Layout (rule 1) (rule 2) (rule 1) (mle 2) 

2.1 4.6 3.8 3.8 3.8 0.694 0.659 0.657 0.659 

2 . 2 4 . 6 3 . 8 3 . 8 3 . 8 0.694 0.659 0.657 0 . 6 5 9 

3 , r 6.8 7.1 5.0 5.0 0.620 0.559 0.559 0.588 

3,2" 5.98 5.87 5.0 5.0 0.620 0.559 0.585 0.588 

4,1" 10.4 13.2 7.0 6.9 0.520 0.520 0.520 0.550 

4,2« 7.36 7.36 6.78 6.49 0.520 0.520 0.434 0.550 

^Our approach is better 

Table 4.4: Comparison of different approaches for Problem 1 
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has 3 machines and W1 and W5 have two machines. The remainders make up 

of one machine only. Table 4.5 shows the workload matrix. 

Work- Parts Load # of 

station P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P l l P12 P13 P14 {h) m 

W1 0.69 2.42 2.44 2.48 2.72 10.75 2 

W2 0.50 0.61 0.90 2.09 1.35 5.45 1 

W3 2.50 3.03 0.71 1.61 7.85 1 

W4 3.10 1.35 1.03 0.58 0.99 7.05 1 

W5 1.22 4.45 3.84 9.51 2 

W6 0.50 4.55 2.26 7.31 1 

W7 0.55 4.74 3.61 1.47 3.87 4.68 18.92 3 

Table 4.5: Workstation-part load matrix for Problem 2 

Tables 4.6, 4.7, and 4.8 summarize the results for this data set. For 

two cells configuration, the Logendran's approach employing rule 1 obtained 

the best known solution. Gupta's genetic algorithm generated a solution 

with the same amount of total moves but W1 failed to achieve the targeted 

minimum utilization rate (50%) and the average utilization of all workstations 

was lower. In our case, most of the utilization rates reached the minimum 

value. For three and four cells configuration, our approach generated better 

solution than Logendran's. The total moves were less and with a higher average 

utilization of workstations. Also, fewer workstations failed to meet the targeted 

utilization rate. For this data set, all the results produced by our algorithm 

were comparable to the best known solution available in the literature. 
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Cells, Workstation in cell Ci Parts in cell Ci 

Layout, z-l ,2,3, . . . . , iV i = l，2,3，....,iV 

Moves C1 C2 C3 C4 C1 C2 C3 C4 

2,1,6.3 1,2,4,5,6,7 3 1,2,3,4,5,6,7,8 11,13 

9,10,12,14,15 

2.2.6.3 1,2,4,5,6,7 3 1,2,3,4,5,6,7,8 11,13 

9,10,12,14,15 

3,1,7.5 1,5 2,4,6,7 3 2,8,14 1,3,4,5,6 11,13 

7,9,10,12 

3,2,7.5 1,5 2,4,6,7 3 2,8,14 1,3,4,5,6 11,13 

7,9,10,12 

4.1.9.4 3 2,4,6,7 1 5 11,13 1,3,4,5,6 2,8,14 

7,9,10,12 

4,2,8.88 2,6,7 1,5 3 4 1,4,5,6,7,9,10 2,8,14 11,13 3,12 

Table 4.6: Result of Problem 2 (part 1) 

No. of cells, Utilization of workstation Wi 

Layout, i = 1,2,3,..., M 

Total moves W1 W2 W3 W4 W5 W6 W7 

2,1,6.3 1.34 0.68 0.98 0.88 1.19 0.63 2.36 

2.2.6.3 1.34 0.68 0.98 0.88 1.19 0.63 2.36 

3 , 1 , 7 . 5 0 . 7 3 0 . 6 8 0 . 5 8 0 . 8 1 1 . 1 9 0 . 6 3 2 . 3 6 

3,2,7.5 0.73 0.68 0.58 0.81 1.19 0.63 2.36 

4.1.9.4 0.00 0.68 0.58 0.81 1.19 0.63 2.36 

4,2,8.88 0.73 0.68 0.58 0.51 1.19 0.63 2.36 

Table 4.7: Result of Problem 2 (part 2) 



CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 75 

No. of Total moves Average utliization of workstation 

cells, Logendran Logendran Gupta GA Logendran Logendran Gupta GA 

Layout (rule 1) (rule 2) (rule 1) (rule 2) 

2,1" 6.3 6.7 6.3 6.3 0.720 0.699 0-702 0.720 

2,2" 6.3 6.7 6.3 6.3 0.720 0.699 0.702 0.720 

3.1 8.9 8.9 7.5 7.5 0.676 0.609 0-635 0.635 

3.2 8.08 8.08 7.5 7.5 0.676 0.609 0.635 0.635 

4.1 12.3 13.7 9.4 9.4 0.527 0.550 0.583 0.583 

4.2 10.66 9.39 8.88 8.88 0.527 0.576 0.592 0.592 

"Our approach is better than Gupta et al.'s solution 

Table 4.8: Comparison of different approaches for Problem 2 

4.4.3 Problem 3 

This problem was proposed by King and Nakornchai (1982) [38] and then 

considered by Waghodekar and Sahu (1984) [84]. As the original data set 

did not contain processing time. Logendran randomly generated data to fulfill 

the requirement of the workload model. The workstation-part load matrix is 

presented in table 4.9. This problem consists of 7 parts and 5 workstations 

and only W4 with a total workload larger than the capacity of one machine 

and therefore two machines exist in W4 and the remainder consists of only one 

machine each. 

Parts Total workload No. of 

Workstation P1 P2 P3 P4 P5 P6 P7 on workstation (h) machines 

W1 0.55 4.74 1.35 6.64 1 

W2 1.22 3.61 4.83 1 

W3 0.50 1.69 2.42 1.35 4.96 1 

W4 0.51 3.10 4.55 8.16 2 

W5 0.61 0.90 2.09 1.47 5.07 1 

Table 4.9: Workstation-part load matrix for Problem 3 
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Results are tabulated in Table 4.10 and 4.11. Although our solutions are 

comparable to Gupta's approach, they are better than Logendran's. The total 

moves were significantly reduced. For four cells with layout 1, W5 results in 0% 

utilization in Logendran's solution while our approach still reached 26%. 

Cells, Workstation in cell Ci Parts in cell Ci Utilization of workstation Wi 

Layout, i = l ,2,3,. . . . , iV i = l,2,3,....,N i = l ,2 ,3 , . M 

Moves C1 C2 C3 C4 C l C2 C3 C4 W1 W2 W3 W4 W 「 

2,1,3.5 2 ^ i " 1,3 2,4,7 1,3,5,6 0.83 0.60 0.56 1.02 0.52 

2,2,3.5 2,4,5 1,3 2,4,7 1,3,5,6 0.83 0.60 0.56 1.02 0.52 

3,1,4.3 1,3 4,5 2 2,4,7 1,3,6 5 0.83 0.45 0.56 1.02 0.26 

3,2,4.3 2 4,5 1,3 5 1,3,6 2,4,7 0.83 0.45 0.56 1.02 0.26 

4,1,5.5 2 4,5 3 1 5 1,3,6 2 4,7 0.76 0.45 0.09 1.02 0.26 

4,2,5.5 2 1 3 4,5 5 4,7 2 1,3,6 0-76 0.45 0.09 1.02 0.26 

Table 4.10: Result of Problem 3 

No. of Total moves Average utliization of workstation 

cells, Logendran Logendran Gupta GA Logendran Logendran Gupta GA 

Layout (rule 1) (rule 2) (mle 1) (rule 2) 

2.1 3.5 3.5 3.5 3.5 0.604 0.604 0.604 0.604 

2.2 3.5 3.5 3.5 3.5 0.604 0.604 0.604 0.604 

3.1 6.8 6.8 4.3 4.3 0.496 0.494 0.522 0.522 

3.2 5.57 5.57 4.3 4.3 0.496 0.494 0.522 0.522 

4.1 9.8 11.2 5.5 5.5 0.362 0.360 0.414 0.414 

4.2 7.64 7.64 5.5 5.5 0.414 0.412 0.414 0.414 

Table 4.11: Comparison of different approaches for Problem 3 

4.4.4 Problem 4 

This problem was proposed by Gupta et al.[29]. The purpose of this data set 

is to demonstrate the generalized nature of genetic algorithms. As the sizes of 

the three problems considered by Logendran are relatively small, it is difficult 
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Problem Cells, Workstation in cell Ci Parts in cell Ci 

Layout, i = l,2,3,....,N i = l ,2 ,3 , . ..,AT 

Moves ~ ^ ~ ~ C2 C3 C4 C1 C2 C3 C4 

2,1,3.8 5 1,2,3,4 3,7 1,2,4,5,6 

2,2,3.8 5 1,2,3,4 3,7 1,2,4,5,6 

1 3,1,5.0 5 2,3,4 1 3,7 1,2,4,6 5 

3,2,5.0 5 2,3,4 1 3,7 1,2,4,6 5 

4.1.7.2 5 1,3 2 4 3,7 2,5 1,4,6 

4,2,6.78 1 3,5 2 4 5 2,3,7 1,4,6 

2.1.6.3 2,3,4, 1,5 1,3,4,5,6,7, 2,8,14 

6,7 9,10,11,12,13 

2.2.6.3 2,3,4, 1,5 1,3,4,5,6,7, 2,8,14 

6,7 9,10,11,12,13 

3,1,7.5 3 2,4,6,7 1,5 11,13 1,3,4,5,6, 2,8,14 

2 7,9,10,12 

3,2,7.5 3 2,4,6,7 1,5 11,13 1,3,4,5,6, 2,8,14 

7,9,10,12 

4.1.9.4 5 1 2,4,6,7 3 2,8,14 1,3,4,5,6, 11,13 

7,9,10,12 

4,2,8.88 2,6,7 1,5 4 3 1,4,5,6, 2,8,14 3,12 11,13 

7,9,10 

2.1.3.5 1,3 2,4,5 2,4,7 1,3,5,6 

2,2,3.5 1,3 2,4,5 2,4,7 1,3,5,6 

3 3,1,4.3 1,3, 4,5, 2 2,4,7 1,3,6 5 

3,2,4.3 2 4,5 1,3 5 1,3,6 2,4,7 

4,1,5.5 2 4,5 3 1 5 1,3,6 2 4,7 

4,2,5.5 2 1 3 4,5 5 4,7 2 1,3,6 

Table 4.12: Gupta's solutions for Problems 1, 2, and 3 (part 1). Reproduced 

from Gupta et al. (1996) [29； 



CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 78 

Problem No. of cells, Utilization of workstation Wi 

Layout, i = 1,2,3,..., M 

Total moves W1 W2 W3 W4 W5 W6 W7 

2,1,3,8 0.69 1.31 0.81 0.50 0.63 

2,2,3,8 0.69 1.31 0.81 0.50 0.63 

1 3,1,5,0 0.63 1.31 0.38 0.50 0.63 

3,2,5,0 0.63 1.31 0.38 0.63 0.63 

4.1.7.2 0.69 1.06 0.75 0.00 0.63 

4,2,6.78 0.63 1.06 0.38 0.00 0.63 

2.1.6.3 0.73 0.68 0.98 0.88 1.19 0.63 2.36 

2.2.6.3 0.73 0.68 0.98 0.88 1.19 0.63 2.36 

2 3,1,7.5 0.73 0.68 0.58 0.81 1.19 0.63 2.36 

3,2,7.5 0.73 0.68 0.58 0.81 1.19 0.63 2.36 

4.1.9.4 0.00 0.68 0.58 0.81 1.19 0.63 2.36 

4,2,8.88 0.73 0.68 0.58 0.51 1.19 0.63 2.36 

2.1.3.5 0.83 0.60 0.56 1.02 0.52 

2,2,3.5 0.83 0.60 0.56 1.02 0.52 

3 3,1,4.3 0.83 0.45 0.56 1.02 0.26 

3,2,4.3 0.83 0.45 0.56 1.02 0.26 

4,1,5.5 0.76 0.45 0.09 1.02 0.26 

4 , 2 , 5 . 5 0 . 7 6 0 . 4 5 0 . 0 9 1 . 0 2 0 . 2 6 

Table 4.13: Gupta's solutions for Problems 1, 2, and 3 (part 2). Reproduced 

from Gupta et aL (1996) [29； 
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to make any valid conclusions about the performance of the algorithms. This 

problem is relatively large, Table 4.14 shows the load matrix. It has 30 parts and 

15 workstations. As the number of workstations are increased, it is reasonable 

to increase the number of cells for evaluation as well. We followed Gupta's 

approach and considered four, five, and six cells. Tables 4.15, 4.16, and 4.19 

present the result of our approach and the comparison with Gupta's solution, 

while Tables 4.17 and 4.18 are the results of Gupta's. We can see for all the 

cells and layouts, our approach generated better results. Most of the solutions 

were of lower total moves and higher average utilization rates and most of the 

workstations reached the minimum targeted utilization rate. Better results 

were produced was probably due to the fact that our representation successfully 

captured the important features of the cell formation problem and enabled the 

GA to explore the search space more effectively. 

4.5 Bi-criteria Model 

In an actual manufacturing environment, many factors may affect the efficiency 

and productivity of a cellular manufacturing system. The nature of these factors 

are always conflicting. In other words, optimizing one factor may result in 

destruction of the other. To recognize that the cell formation problem involves 

trade-off among conflicting objectives, multi-objective models were developed. 

Wei and Gaither [85] proposed a model with four objective functions 

for optimization. The four objectives are minimization of bottleneck cost, 
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Workstations 

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W l l W12 W13 W14 W15 

P1 0.1 0.9 1.2 0.1 0.6 0.3 

P2 0.8 0.8 1.1 1.2 0.4 1.6 

P3 0.4 1.7 

P4 0.9 1.3 1.4 

P5 1.2 1.8 0.2 0.3 

P6 0.7 0.9 

P7 0.5 1.5 1.0 1.4 0.4 1.5 0.3 

P8 1.7 0.6 0.9 0.1 

P9 1.7 0.1 1.3 1.4 1.5 1.3 0.4 

P10 1.8 1.3 

P l l 0.5 0.8 2.0 1.7 1.3 

P12 2.0 0.8 1.5 1.6 

P13 0.6 1.2 1.8 0.2 1.5 0.3 

P P14 1.7 0.6 0.5 

a P15 1.9 1.0 

r P16 0.2 0.4 1.9 1.3 

t P17 0.5 1.2 

s P18 0.7 0.4 

P19 0.8 1.4 1.8 0.4 

P20 0.3 1.1 0.6 2.0 0.2 

P21 0.3 1.7 1.0 1.1 0.7 

P22 0.5 1.4 1.7 0.1 1.9 

P23 1.7 1.2 1.7 

P24 1.3 1.4 1.5 

P25 1.1 1.8 0.2 

P26 0.9 1.5 

P27 1.9 0.3 1.5 0.3 0.3 

P28 0.7 1.8 1.4 1.3 

P29 1.7 

P30 1.3 1.9 0.7 1.8 1.6 

Workload 8.5 8.6 8.6 8.0 7.0 9.5 5.3 9.7 10.1 9.5 7.0 7.6 10.6 5.8 6.7 

No. ofm 2 2 2 1 1 2 1 2 2 2 1 1 2 1 1 

Table 4.14: Workstation-part load matrix for problem 4 (In order to fit to a page, 

the orientation is reversed with parts in rows and workstations in columns) 
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Cells, Works t a t i on in cell Ci Par ts in cell Ci 

Layou t , i = 1, 2, 3, . . . . ’ N i = l , 2 , 3 , . . . . , iV 

Moves C1 C2 C3 C4 C5 | C6 C1 C2 C3 C4 C5 C6 

4.1, M 11 2,3,4,5, 1 15 25 1-9,11-14， 10 

37.30 6,7,8,9, 16-24’ 

10,12,13 26-30 

4.2, 11 14 15 1,2,3,4, 25 15 24 1-14， 

34.67 5,6,7,8 16-23， 

9,10, 26-30 

12,13 

5.1, Tl n 3 , 4 , 5 , 6 , 1 2 15 25 1-7,9, 10 8,14, 

44.20 7,8,9,10, 11-13, 27 

12,13,15 16-24, 

26， 

28-30 

5.2, 1,3,4,5, n ~ 14 15 2 1-7， 25 15 24 8,14, 

37.07 6,7,8,9, 9-13’ 27 

10,12, 16-23, 

13 28-30 

6.1, 1 2~~ 3,4,5,6 9,10,12 15 14 10 8,14, 1-5,7,11, 6,9,12, 24 15 

54.90 7,8,11 13 27 16,19-21’ 13,17, 

23,25,26, 18,22, 

28,29 30 

6.2, 2 r ~ 15 14 11 3,4,5, 8,14,27 10 24 15 25 1-7,9, 

39.47 6,7,8,9 11-13， 

10,12 16-23, 

13 26, 

28-30 

Table 4.15: Residt of Problem 4 (part 1) 

Cells, Ut i l i za t ion of workstat ion W i 

Layout , i 二 1，2，3,…，M 

Moves W 1 W 2 W 3 W 4 W 5 W 6 W 7 W 8 W 9 W 1 0 W l l W 1 2 W 1 3 W 1 4 W 1 5 

4,1,37.30 0.23 0.78 1.08 1.00 0.88 0.95 0.66 1.21 1.26 1.19 0.23 0.95 1.33 0.13 0.84 

4,2,34.67 1.06 0.94 1.08 1.00 0.88 0.95 0.66 1.21 1.10 1.19 0.23 0.78 1.33 0.13 0.19 

5,1,44-20 0.23 0.66 1.08 0.89 0.69 0.95 0.66 1.21 1.26 1.19 0.23 0.94 1.33 0.13 0.74 

5,2,37.07 1.06 0.66 1.08 0.89 0.69 0.95 0.66 1.21 1.10 1.19 0.23 0.76 1.33 0.13 0.55 

6,1,54.90 0.23 0.66 0.99 0.71 0.61 0.71 0.66 1.21 0.76 0.79 0.69 0.63 0.60 0.13 0.19 

6,2,39.47 0.23 0.66 1.08 0.89 0.69 0.95 0.66 1.22 1.10 1.19 0.23 0.76 1.33 0.13 0.19 

Table 4.16: Result of Problem 4 (part 2) 
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Cel ls , W o r k s t a t i o n in cell C i Pa r t s in cell Ci 

L a y o u t , i = 1, 2 ’ 3 , ....，N i ^ 1 , 2 , 3 . . . . , N 

Moves C 1 C 2 C 3 C 4 C 5 C 6 ~ C 1 | C2 C 3 C 4 C 5 C 6 

4.1, 1 2 3-14 " " " I 5 ~ ~ 9,10,12 8,14,27 1-7,11’ 22,24 

38.80 13,15-21， 

23,25,26, 

28,29,30 

4.2, 2 1 3 ^ I 5 8,14,27 9,10,12 1-7,11 22,24 

36.34 13,15-21， 

23,25,26, 

28,29,30 

5.1, 2 Ts T H 3 ~ ~ 1 8,14,27 22,24 1-4,6, 5,29 9,10,12 

48.70 7,11,13, 

15-21,23, 

25,26 

28,30 

5.2, 5,6,7, I s I T " " 4,11 1,2,3 1,3,4, 22,24 2 21,23,25 5,8,9, 

43.77 8,9,10, 6,7,11, 10,12’ 

12,13 13,15-20, 14,27, 

26,28,30 ^ 

6.1, 2 3 T ^ 4,5,7, 15 14 8,14,27 5,29 1,9,10, 3,4,6, 22,24 2 

59.70 8-13 12,15,20 7,11,13, 

16-19,21, 

23,25,26, 

28,30 

6.2, 1 13 15 14 3-12 2 9.10.12 4 .17 22.24 2 1.3.5. 8.14. 

42.16 6.7.11. 27 

13.15.16. 

18-21.23 

25.26. 

26.30 

Table 4.17: Gupta's solution for Problem 4 (part 1). Reproduced from Gupta 

et aL (1996) [29； 

Cel ls , U t i l i z a t i o n of works ta t i on W i 

Layou t , i = l , 2 , 3 , . M 

Moves W 1 W 2 W 3 W 4 W 5 W 6 W 7 W 8 W 9 W 1 0 W l l W 1 2 W 1 3 W 1 4 W 1 5 

4,1,38.80 0.69 0.66 1.07 0.71 0.67 1.19 0.66 1.21 0.84 0.80 0.69 0.39 1.11 0.52 0.42 

4,2,36.34 0.69 0.66 1.07 0.71 0.67 1.19 0.66 1.21 0.84 0.80 0.69 0.39 1.11 0.52 0.42 

5,1,48.70 0.69 0.66 1.07 0.71 0.67 1.19 0.66 1.21 0.84 0.80 0.69 0.39 1.11 0.52 0.42 

5,2,43.77 0.84 0.82 0.44 0.42 0.52 1.05 0.64 0.94 0.84 0.80 0.44 0.25 1.02 0.20 0.42 

6,1,59.70 0.69 0.66 0.44 0.57 0.60 0.64 0.62 0.99 0.84 0.77 0.60 0.39 1.11 0.20 0.42 

6,2,42.16 0.69 0.66 0.97 0.71 0.50 1.05 0.50 1.06 0.84 0.80 0.64 0.39 0.32 0.20 0.42 

Table 4.18: Gupta's solution to Problem 4 (part 2). Reproduced from Gupta 

et al. (1996) [29； 
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No. of Total moves Average utliization 

cells, Layout Gupta GA Gupta GA 

A,r 38.80 37.30 0.523 0.581 

4,2" 36.34 36.47 0.523 0.553 

5,P 48.70 44.20 0.501 0.549 

5,2" 43.77 37.07 0.418 0.547 

6 , 1 " 5 9 . 7 0 5 4 . 9 0 0 . 4 3 1 0.440 

6,2" 42.16 39.47 0.437 0.495 

"Our approach is better 

Table 4.19: Comparison of different approaches for Problem 4 

maximization of the average cell utilization, minimization of intracell load 

imbalances, and minimization of intercell load imbalances. The overall objective 

function for maximization is a weighted additive utility function comprised 

of the four optimization objectives. With different constraints, the decision 

maker can set different weights to each objective. A linear integer programming 
/ 

enumeration scheme was used to solve the model. One problem with this 

approach is that the cost to find a solution to a large problem is very high. 

In our case, we consider another objective which is to minimize the within 

cell load variation. This aids smooth flow of materials inside each cell and 

reduces the Work-In-Process (WIP) within it [83]. Equation 4.4 represents the 

mathematical formulation of this objective. 

m c p 

Cell Load Variation = y^y^x^z ^ i ^ i j _ ^ij)^ (4.4) 
i—l 1—1 j=l 

where 

m = the total number of machines 
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c = the total number of cells 

p = the total number of parts 

W = [wij] is an m x p machine-part incidence matrix, where Wij is workload 

on machine i induced by part j and is equal to ( ¾ * Nj)/Ti 

tij 二 the processing time (hour/piece) of part j on machine i 

Ti = the available time on machine i in a given period of time 

Nj = the production requirement of part j in a given period of time 

X = [xii] is an m x c cell membership matrix, where , 

1 if ith machine is in cell 1 
Xii = < 

0 otherwise 
m 

J^ Xil *wij 

M = [mzj] is a c x p matrix of average cell load, where mij = ^ ^ 
Y,^ii 
i=i 

A common problem to cellular manufacturing systems is the workload 

imbalance. Minimization of cell load variation helps to solve this problem. 

Therefore the objectives of our model is similar to Wei and Gaither's. 

Fonseca and Fleming [24] pointed out that genetic algorithms searching from 

a population of points seemed particularly suited to multiobjective optimization. 

We apply the GA we developed to solve this bi-criteria model. The advantage 

of using these two objectives (minimize the total moves and minimize the cell 

load variations) is that comparable data are available in the literature [29]. This 

can demonstrate the performance of our algorithm and the versatility in adding 

different objective functions. 
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4.5.1 Experimental results 

As suggested by Gupta et al. [29], the objectives could not be simply 

added up together to form the final objective functions. Instead, the two 

objective functions were evaluated separately. Common strings (same cellular 

configuration) were selected as a solution to the bi-objective model. The 

common chromosome structure meant that this individual was an acceptable 

solution to both objectives. Finally, a list of pair (value of objective 1, value of 

objective 2) was obtained and the ultimate solution selected was subjected to 

the decision maker. 

In this experiment, we again consider the three problems identified by 

Logendran and the large problem proposed by Gupta. Tables 4.20 and 4.21 

present the results for problems 1-4. We can see each solution is a pair 

of values. It is difficult to have a direct comparison with Gupta's solution 

as no single solution was obtained. However, in some cases, our approach 

generated solutions with smaller number of total moves provided that the cell 

load variations were the same. For example, for problem 4, if there were 4 cells 

arranged in layout 2，the total moves was 37.30 which was smaller than 42.64 

given by Gupta's approach (the cell load variation was 1.60). 

4.6 Conclusions 

In this chapter, we proposed a multichromosome representation for cell 

formation problem. This representation has the advantages that no illegal 



CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 86 

Problem 1 Problem 2 Problem 3 

# Layout 1 Layout 2 Layout 1 Layout 2 Layout 1 Layout 2 

of Total Cell Total Cell Total Cell Total Cell Total Cell Total Cell 

cells moves load moves load moves load moves load moves load moves load 

2 3.8 0.72 3.8 0.72 6.3 1.92 6.7 1.84 3.5 0.38 3.5 0.38 

4.2 0.69 4.2 0.69 7.5 1.37 7.5 1.37 3.9 0.54 4.3 0.52 

3 5.0 0.43 5.0 0.43 7.5 1.59 8.7 1.12 4.3 0.21 4.3 0.21 

5.4 0.19 5.4 0.19 7.9 1.47 10.5 0.89 4.7 0.33 4.7 0.33 

4 6.9 0.06 6.9 0.06 9.4 1.26 9.4 1.25 5.5 0.17 5.5 0.17 

7.3 0.46 7.6 0.13 10.60 0.84 12.7 0.64 6.5 0.04 6.5 0.04 

Table 4.20: Results of bi-criteria for Problem 1-3 

Problem 4 

Number Layout 1 Layout 2 

of Total Cell Total Cell 

cells moves load moves load 

4 37.30 1.60 37.30 1.60 

38.50 1.62 40.00 1.50 

39.20 1.52 40.80 1.64 

40.20 1.50 41.90 1.58 

5 44.30 1.45 45.59 1.49 

46.20 1.42 48.60 1.36 

47.00 1.40 49.50 1.38 

47.30 1.32 50.20 1.32 

6 59.80 1.25 59.80 1.25 

61.60 1.23 60.60 1.31 

62.50 1.22 61.70 1.18 

64.80 1.20 64.80 1.19 

Table 4.21: Results of bi-criteria for Problem 4 
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offsprings are generated which in turn reduces computational overhead, and 

a kind of linkage may be developed among objects which aids the searching of a 

genetic algorithm. This representation is considered to be more natural to the 

GT problem. We tested our representation on a workload model. Experimental 

results showed our approach generates better solutions. 



Chapter 5 

Integrated design of cellular 

manufacturing systems in the 

presence of alternative process 

plans 

5.1 Introduction 

In most of the literature, cell formation is performed on the basis of a given set 

of part routings that are assumed to be fixed. Each operation of part must be 

performed on a specific machine. An incidence matrix is often used to represent 

such relationship between machines and parts. A，1，in the incidence matrix 

Gij] indicates the part j utilizes machine i. However, in practical environment, 

88 
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each part can have more than one process plan and each operation on a part 

can be performed on alternative machines. 

Rajamani and Aneja [69] indicated that fixing a machine for an operation 

did not select the machine optimally which resulted in increased manufacturing 

costs. Another reason for the alternative process plans is the existence of 

functionally similar workcentres [66]. In a functional layout, this is not a 

consideration because in such layout, all the functionally similar workcentres are 

grouped together and the parts can be routed to any such available workcentre. 

However, in a cellular manufacturing environment, a manufacturing cell usually 

consists of functionally dissimilar workcentres. Similar workcentres are likely 

placed in different cells. We would prefer a part route to the workcentre in the 

cell it is assigned. Therefore, the functionally similar workcentres must have a 

unique identification. This identification leads to the existence of alternative 

process plans. Kusiak [45] has shown that the incorporation of multiple process 

plans resulted in improved quality of part families and machine cells. 

Rajamani and Aneja [69] presented an example to further illustrate the 

situation. Consider the manufacturing of a gear. The initial raw material is in 

the form of a bar stock, eight processing steps are required to transform the raw 

material into a finished gear. A different set of processing steps is identified if 

the raw material is in a different form, say blanks either cast or forged. Once 

the processing steps are identified, the process planner determines the possible 

sequences of processing before grouping the processing steps into operations. 

The eight processing steps can be grouped into different sets as follows: 
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Processing steps (PS) 

PS 1: Facing 

PS 2: Turning 

PS 3: Parting-off 

PS 4: Facing 

PS 5: Centring 

PS 6: Drilling 

PS 7: Slotting 

PS 8: Gear teeth cutting 

Plan 1 Plan 2 

Operation 1 PS 1,2,3 PS 1,2,3 

Operation 2 PS 4,5,6 PS 4,5,6 

Operation 3 PS 7 PS 7,8 

Operation 4 PS 8 

Each operation in the plans can be performed on a number of compatible 

machines. For example, P8, the gear-teeth-cutting operation can be performed 

on either a milling or a gear hobbing machine if plan 1 is used. If plan 2 in 

which the gear-teeth-cutting and slotting operations are combined is used, it 

can only be performed on a milling machine. 

5.1.1 Literature review 

Very few studies take the alternative process plans into consideration. Kusiak 

43] showed that for a single part, it was possible to generate a set of process 

plans. The costs of these process plans may vary largely in some cases. 

In another paper [45], Kusiak formulated an integer programming model to 



CHAPTER 5. INTEGRATED DESIGN 91 

address the presence of a set of process plans. The model developed focused on 

generating a better diagonal structure and ignored other factors. An illustrative 

example allowing the consideration of different process plans led to improved 

chance of getting a better diagonal structure. 

Nagi et aL [66] proposed an algorithm to solve the cell formation problem 

in the presence of multiple part routings. The objective is to select the part 

routings while minimizing the inter-cell traffic. The problem is decoupled to 

two problems: the selection of routings and formation of cells. Nagi et al. 

66] formulated the problem as a linear programming problem. The solution 

procedure was iterative until the part routings and manufacturing cells are 

obtained with minimal inter-cell traffic. However, the solution was dependent 

on the partition chosen initially. 

Rajamani and Aneja [69] developed three integer programming models to 

study the effect of alternative process plans and simultaneous formation of 

part families and machine groups. The objective function of this study was 

a cost function aimed at minimizing the total investment. All the models 

were solved using LINDO. The weakness of this study was that some nonlinear 

constraints were linearized. This results in increased number of variables and 

constraints. The results indicated the consideration of alternative process plans 

and simultaneous formation of part families and machine groups led to efficient 

resource utilization. 

Logendran et aL[57] followed the model developed by Rajamani and Aneja 

69]. The objective function, however, focused on the minimization of total 
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annual cost evaluated as the sum of the amortized cost of machines and the 

operating cost of producing all parts. A major difference of the Logendran's 

approach was to view the cell formation problem as being divided into two 

phases. The first phase focused on selection of a process plan for each part 

and the second phase on formation of part families and machine cells. The 

first problem was solved with a tabu-search-based heuristic. Once the process 

plans were fixed, the second problem was solved by one of the known clustering 

algorithms. 

5.1.2 Motivation 

We argue that the selection of process plans and the formation of cells are inter-

related. For example, the number of a specific workcentre required depends 

on the configuration of cells because we allow machine duplication. It is more 

realistic to integrate the two problems together. In this chapter, we solve the 

model developed by Rajamani and Aneja [69] and incorporate the objective 

function used by Logendran [57]. The consideration of annual operating 

costs provides additional information to the cell designer. The complexity 

of the problem is shown to be NP-hard because the three-partition problem 

is polynomially reducible to a special case of this problem [57]. It is not 

possible to use any enumerative methods even for middle size problems. Also, 

Rajamani and Aneja [69] indicated that the formulation of his model required 

heuristic techniques to solve. We propose a genetic algorithm based on the 
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multichromosome representation developed. The use of GAs makes the model 

applicable to large scale problems. 

5.2 Mathematical models 

The model is based on the one proposed by Rajamani and Aneja [69]. The 

model is subjected to the following assumptions: 

1. Annual demand for each part type is known and stable over the planning 

horizon. 

2. Available capacity of each unit of a machine types is known. 

3. For each process plan, the time and cost required to perform a specific 

operation of a part on a machine is known. 

4. The number of cells formed is known. 

The planning horizon is assumed to be 1 year. The model considers two 

objective functions: the total investment and the annual operating costs. 

5.2.1 Notation 

Indexing sets 

k = l,2,...K part 

m = l,2,".M machine 

p = l,2,...Pfc process plans for part k 
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s = l,2,...S(k,p) operations for {k,p) combination 

c = l,2,...C cell 

Decision variables 

Nmc = number of machines of type m in cell c f 

1 if part k is manufactured using plan p 

Ykp = < 

0 otherwise 
V 

z 

1 if machine m is used to perform operation s for {k,p) 

Xms{kp) =* combination 

0 otherwise 
V 

‘ 

1 if part k is a member of cell c 
rkc = 

0 otherwise 
、 

Coefficients 

Cms{kp) = operating cost for machine m performing operations for {k,p) 

combination 

tms{kp) = time for machine m to perform operation s for {k,p) combination 
f 

1 if operation s has to be performed for the {k,p) combination 
as{kp)= 

0 otherwise 
X 

f 

1 if machine m can perfrom operation s 

O^ms — < 

0 otherwise 
\ 

Cm = cost per machine of type m 

bm = time available on each machine of type m 

dk = demand for part k 
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5.2.2 Objective functions 

The first objective function of the model is to minimize capital investment: 

fl{x)=^CmNmc (5.1) 
mc 

The second objective function of the model is to minimize total annual 

cost which consists of two parts: 

The total amortized cost of machine equals 

〉:Cm^mc 
mc 

The total annual operating cost for processing all parts equals 

Y1 dkXms{kp)Cms{kp) 

kpras 

Thus, the model can be represented as follows: 

Minimize: 

f2{x) = Y^CmNmc + E dkXms[kp)Cms{kp) (5.2) 
mc kpms 

both objective functions are subjected to 

Y^Ykp = l V/c (5.3) 
p 

^amsXms{kp) = as{kp)Ykp Vs, k,p (5.4) 
m 

Y1 {rkcdk)Xms(kp)tms(kp) < bmNmc V m , c (5.5) 

kps 

Y.rkc = l yk (5.6) 
C 
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Nmc > 0 and integer Vm, c (5.7) 

〜二 ( 0 , 1 ) VA;,p (5.8) 

Xms{kp) = {OA) Mm,s,k,p (5.9) 

The constraints of the model are given by (5.3) - (5.9). Constraint (5.3) 

guarantees that only one process plan is selected for a given part. Constraint 

(5.4) ensures that an operation in the selected process plan is performed on 

one of the available machines. Constraint (5.5) ensures that the capacity of 

each machine type is not violated. Constraint (5.6) guarantees that a part 

only belongs to one cell. Constraints (5.7) - (5.9) indicate the 0, 1 and integer 

variables. 

5.3 Our solution 

To solve this problem, the algorithm determines the part families while 

minimizing the objective functions. The number of specific machines are 

determined according to the workload and the capacity of the machines. In 

this model, we duplicate machines to completely eliminate intercell moves. 

In the previous chapter, we introduced a multichromosome genetic algorithm 

that is able to capture more information than the traditional approach. In 

addition to the part sequence chromosome and the cell boundary chromosome, 

we add one more to represent the process plan selected for each part. That 

means an individual in our genetic algorithm consists of three chromosomes. 

The characteristics of the chromosomes are presented in Table 5.1, where n is 
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the number of parts. 

Chromosome length crossover used 

part sequence n edge-recombination operator 

cell boundary n — 1 edge-recombination operator 

process plan n simple crossover operator 

Table 5.1: The three chrosmosomes of an individual 

The genes in the part sequence and cell boundary chromosomes are integer 

numbers. The interpretation is the same as in the previous chapter. In 

the part sequence chromosome, the integer number of a gene represents the 

corresponding part. In the cell boundary chromosome, if the number of cells 

formed is c, then the integer values smaller than c represents the cell boundaries. 

For the process plan chromosome, the range of each gene indicates the possible 

process plans of a part. For instance, if part 1 has 8 process plans to be selected 

then the range of the first gene is 1-8. The operator used for this chromosome 

is the simple crossover operator. For the part sequence and cell boundary 

chromosomes, edge recombination operator is employed. This operator can 

successfully transfer the information stored in the parent chromosomes to the 

offsprings. Figure 5.1 is a possible individual assuming three cells to be formed. 

In this example, process plan 6 will be selected for part 1 and process plan 

5 for part 2, and so on. Representing different characteristics of the solution 

enables the GA to sample the search space more productively. The GA can 

explore the partitions that explicitly represent different features of the problem 

35]. Therefore, it is a more natural and direct representation of this problem. 

Although the details of the operation of genetic algorithms are discussed 
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1 r • 

part sequence | 2 | 3 | 5 | 6 | 8 | 1 丨 4 | 9 丨 1一 

cell boundary | 8 | 7 | 1 | 3 | 6 | 2 | 4 | ~ ^ 

process plan 6 5 1 8 10 9 3 1 3 

( ^ ^ ^ 3 r ^ ^ ( ^ j ^ l 6 r ^ ^ ( ^ i ^ ^ v T ^ ) 

ceU 1 ceU 2 cell 3 

Figure 5.1: A possible individual of three chromosomes 

in the previous chapter, we include a brief discussion here to complete our 

algorithm. The initial individuals are generated randomly. Parents are selected 

using fitness ranking. Crossover is then performed on the two parents, each 

chromosome will crossover with the corresponding chromosome in the other 

individual. The crossover operators used are listed in Table 5.1. These processes 

are repeated until a predefined number of generation is reached. The individual 

with the lowest fitness value (we are solving a minimization problem) becomes 

the solution. 

5.4 Illustrative example and analysis of results 

We consider an example previously presented by Rajamani and Aneja [69] to 

illustrate the capability of our algorithm. The problem has four parts and 
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three machines, and the corresponding data are presented in Tables 5.2-5.4. 

Consider the part 4 in Table 5.2 which has two plans. Operations 1, 2, and 

3 are required for plan 1 and only operations 1 and 2 for plan 2. Table 5.3 

indicates that operation 1 can be performed on either machine 1 (Ml) or M3, 

operation 2 can be performed on M2 or M3. There are totally eight different 

ways that P4 can be processed using plan 1. They are Ml , M2, Ml or Ml , 

M3, Ml , or Ml , M2, M2, or Ml, M3, M2, or M3, M2, Ml , or M3, M2, M2, or 

M3, M3, Ml , or M3, M3, M2. Similarly, there are four different ways that P4 

can be processed by the second plan. So the value of 4th gene of the process 

plan chromosome ranging from 1 to 12. There is a one-to-one mapping for the 

process plan and the gene value. For the rest of parts, there are 8 process plans 

for part 1，12 process plans for part 2 and part 3 has 16 process plans. The 

initialization of process plan chromosome depends on these values. The simple 

crossover operator exchanges the information stored in both parents and will 

not generate any illegal offsprings (see Figure 5.2). 

Parent 1 | 6 | 10 | 1 | 8 | Offspring 1 | 6 | 10 | 15 | 1 

X ^ _ _ _ 
Parent 2 | 5 | 4 | 15 | 1 | Offspring 2 | 5 | 4 | 1 | 8 

i k 

Crossover point 

Figure 5.2: Crossover of the process plan chromosome 
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k = 1 k = 2 k = 3 k = 4 

Operation p = 1 p = 2 p = 1 p = 2 p = 1 p = 2 p = 3 p = 1 p = 2 

5 = 1 1 1 1 1 1 1 

s=2 1 1 1 1 1 1 1 1 1 

5 = 3 1 1 1 1 1 1 

Demand 10 10 10 10 

Table 5.2: Data on as[kp) indicating if operation s of part k to be performed 

for the process plan p, and the demand d^ for part k 

Machine 

m = 1 m 二 2 m = 3 

s = l 1 1 

s = 2 1 1 

5 = 3 1 1 

Capacity 100 100 100 

Cost 100 250 300 

Table 5.3: Data on a^s indicating if operation s can be performed on machine 

m; capacity {hm) on machine m; and the cost {Cm) of machine m 

tms {f^P)，Cms {kp) 

k = 1 k = 2 k = 3 k==4 

p = 1 p = 2 p = 1 p = 2 p = 1 p = 2 p = 3 p = l p = 2 

s = l,m = l 5,3 3,4 ^ 8,1 1,2 9,7 

5 二 1 , 爪 二 3 7,2 4 ^ ^ 9,2 2,1 8,9 

s = 2,m = 2 3,5 9,8 7,8 3,3 3,3 1,2 5,9 2,3 9,8 

s = 2,m = 3 4,3 7,9 7,7 2,3 4,4 2,4 3,10 2,4 10,9 

s = 3 , m = l 8 , 8 1 0 , 9 6 , 5 1 1 , 7 7 , 4 3 , 5 

s = 3,m = 2 7,7 8,9 6,6 8,8 9,5 2,6 

Table 5.4: The processing time tms{kp) and operating cost Cms{kp) required for 

machine m to perform operation s on part k using process plan p 
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5.4.1 Solution for objective function 1 

The objective function 1 includes only the machine costs. The result is tabulated 

in Table 5.5-5.7. Table 5.5 indicates the process plan selected for each part. For 

example, part 1 uses plan 1, in which operation 1 is performed on machine 1 

and operation 2 is performed on machine 2. Table 5.6 indicates the part families 

formed, parts 1, 3, and 4 are in cell 2 and part 2 is in cell 1. Table 5.7 presents 

the number of machines required for each cell. A machine 2 is required for cell 

1. One machine 1 and one machine 2 are allocated to cell 2. The total cost 

is 600. This solution is known to be optimal for this data set as indicated in 

Rajamani and Aneja [69 . 

k=1 k=2 k=3 k=4 

p = 1 p = 2 p = 1 p = 1 

s = 1 m = 1 m = 1 m = 1 

s = 2 m — 2 m = 2 m = 2 m = 2 

s = 3 m = 2 m = 2 

Table 5.5: Indicates the plan selected p and machine selected m for operation s 

Part 

Cell k = l k = 2 k = S k = 4 

c = l 1 

c=2 1 1 1 

Table 5.6: Data on rkc indicating if part k is a member of cell c 
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Cell 

c=l c=2 

m = l 0 1 

m = 2 1 1 

m = 3 0 0 

Table 5.7: Optimum number of each machine type m assigned to each cell c 

5.4.2 Solution for objective function 2 

The objective function 2 includes the amortized cost and the operating cost. 

The amortized cost is 600, the operating cost is 330, and the total annual cost 

is 930. Table 5.8-5.10 present the results. The cell configuration generated is the 

same as that using objective function 1. We cannot have a direct comparison 

because Logendran did not take the formation of cells into account. 

k=1 k=2 k=3 k=4 

p = 1 p = 2 p = 1 p = 1 

s = 1 m = 1 m = 1 m = 1 

s = 2 m = 2 m = 2 m = 2 m = 2 

s = 3 m = 2 m = 2 

Table 5.8: Indicates the plan selected p and machine selected m for operation s 

Part 

Cell k = 1 k = 2 k = 3 k = 4 

c = l 1 

c = 2 1 1 1 

Table 5.9: Data on r^c indicating if part k is a member of cell c 
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Cell 

c = l c=2 

m = l 0 1 

m = 2 1 1 

m = 3 0 0 

Table 5.10: Number of each machine type m assigned to each cell c 

5.5 Conclusions 

Including alternative process plans makes the cell formation problem more 

complicated An exhaustive search technique is not possible even for moderate 

number of parts and process plans. The use of genetic algorithm seems to have 

a potential to tackle large scale problems and is a good heuristic method to 

solve the integrated model. 



Chapter 6 

Conclusions 

6.1 Summary of achievements 

In this research, we developed heuristic approaches to address various aspects 

of the group technology problem. From standard models that utilize a binary 

machine-part matrix to generalized models that incorporate different objectives 

and constraints. The cell formation problem is difficult to solve and therefore, 

requires heuristic methods. There are extensive algorithms available in the 

literature. However, the practical application of many methods is limited by 

the problem scale. Also most of the methods only address one or a few aspects 

of the problem. 

Genetic algorithm (GA) is an optimization technique with great versatility 

and extensibility. These features of GA lie in its ability to substitute different 

representations and evaluation functions. In designing a cellular manufacturing 

system, the cell designer needs to consider many factors, for example, the inter-

104 
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and intra-cell moves, the workload and the capacity of workcentres, the workload 

variation of cells, and the possible processing plans of parts. In different 

situations, the constraints faced by the cell designer are different. Also, a firm 

has its own parameter settings in designing a cellular manufacturing system. 

These can partially explain why so many models have been proposed in the 

literature. GA seems particularly suitable for the cell formation problem as the 

objective functions can be easily changed. 

/ ^ " "^^ leMu la i ^^^ 

Manfuacturing 
\ Systems / 

0 - 1 = = c e / , nco rpL iono f \ l n c o r p o r a t i o n o f 
m a t r i x , sequenceofoperation, \ p r o c e s s plan 

Z cell layout, and machine \ ^ 
/ utilization \ 

( S t a n d a r d 、 「Generalized \ ( Integrated \ 
model J 1 model ) y model J 

Y> Y> 介 
Genetic Algorithm Multi-chromosome Multi-^'romSome 

f°r TSP Genetic Algorithm Genetic Algorithm 

Figure 6.1: Overview of the research 

Figure 6.1 is a overview of the research. In solving the standard model, the 

problem is formulated as a traveling salesman problem and a genetic algorithm-

based approach is employed. The solutions obtained are of better quality in 
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terms of grouping efficiency and grouping efficacy. The improvements are more 

significant for larger scale problems. 

In solving generalized models, a different representation scheme is required. 

We introduce a multiple chromosomes representation. In this representation, 

the structure of the problem is captured. Our approach generates better solution 

in a workload-based model. 

To further illustrate the extensibility of the developed genetic algorithm, 

we consider a more practical aspect of group technology and incorporate 

alternative process plans. Experimental results indicate that our GA approach 

is satisfactory and that this solution technique has a potential to tackle large 

size problems. 

6.2 Future works 

There are some possible future works on thi$ project. In the whole research, we 

employ existing crossover operators. We can develop new crossover operators 

that tailor for the GT problem. These operators can increase the peformance. 

Also, we can incorporate existing clustering heuristic into the GAs to produce 

hybrid approaches. Existing heuristic can provide additional information and 

such hybrid techniques may further improve the results. One possible way 

is to seed the initial population of GAs with solutions from other clustering 

techniques. Furthermore, we can try to apply the techniques to other models. 

In this research, a workload model is selected. Actually, there are other models 
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exist, e.g. cost model. We can have more experiments to further demonstrate 

the applicability of GAs to GT problem. 
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