
Application of Genetic Algorithms to

Group Technology

Lee Wai Hung

submitted to the Department of Systems Engineering and Engineering

Management

in partial fulfillment of the requirements for the degree of

Master of Philosophy

at

The Chinese University of Hong Kong

June 1996

置

/ ^ ^ ^ v
yy::̂ î̂ î̂ J
p (1 1 Mi m j i]
^ C UN!VERS!TY“7 /̂

\g>sl.lBRARY SXSimy^y
^ ^ ^ ^

Abstract

Group technology (GT) is a management philosophy which capitalizes on

similarity in manufacturing design and processing. One specific application

of GT is cellular manufacturing which involves processing similar parts on

a dedicated cluster of machines. Cellular manufacturing has been proposed

to improve manufacturing efficiency and productivity. To implement cellular

manufacturing design, parts must be grouped into part families and machines

are grouped into machine cells.

GT problem requires heuristic method and there are lots of algorithms

proposed in literature. However, most methods can not be applied to real size

problems and only address one or a few aspects of the problems. In this research,

we develop heuristic approaches for solving GT problems. Our consideration is

comprehensive, we have investigated different GT problems, from simple models

to complicated ones. Further, our approaches are applicable to solve large scale

problem.

Three models of the problem that operate under different environments

are the basis of the research and three genetic algorithm (GA) approaches

are proposed to solve the problem. For standard model, a GA designed for

traveling salesman problem is used. For generalized and integrated model,

mutlichromosome GAs are utilized. Experimental results indicated that our

approaches outperform the techniques suggested in literature. Especially,

significant improvements can be identified for large size problems.

Acknowledgments

I would like to thank all the people who have helped and guided me through

my graduate work.

In particular, I would like to express my deepest gratitude to my supervisor,

Dr. C. H. Cheng, for his support, his helpful suggestions and advise. In addition,

I would like to thank Professor Yash Gupta who gave helpful suggestions to this

research and Dr. K. F. Wong who provided valuable comments to this thesis.

I would also like to thank all my colleagues who gave me an enjoyable and

a memorable graduate life.

Contents

1 Introduction 8

1.1 Introduction to Group Technology 8

1.2 Cell design 9

1.3 Objectives of the research 11

1.4 Organization of thesis 11

2 Literature review 13

2.1 Introduction 13

2.2 Standard models 14

2.2.1 Array-based methods 16

2.2.2 Cluster identification 16

2.2.3 Graph-based methods 17

2.2.4 Integer programming 17

2.2.5 Seed-based 18

2.2.6 Similarity coefficient 18

2.2.7 Artificial intelligence methods 19

2.3 Generalized models 19

2.3.1 Machine assignment models 20

2.3.2 Part family models 20

2.3.3 Cell formation models 21

3 Genetic cell formation algorithm 22

3.1 Introduction 22

1

CONTENTS 2

3.2 TSP formulation for a permutation of machines 23

3.3 Genetic algorithms 26

3.3.1 Representation and basic crossover operators 27

3.3.2 Fitness function 28

3.3.3 Initialization 29

3.3.4 Parent selection strategies 30

3.3.5 Crossover 31

3.3.6 Mutation 37

3.3.7 Replacement 38

3.3.8 Termination 38

3.4 Formation of machine cells and part families 39

3.4.1 Objective functions 39

3.4.2 Machine assignment 42

3.4.3 Part assignment 43

3.5 Implementation 43

3.6 An illustrative example 45

3.7 Comparative Study 49

3.8 Conclusions 50

4 A multi-chromosome GA for minimizing total intercell and

intracell moves 55

4.1 Introduction 55

4.2 The model 57

4.3 Solution techniques to the workload model 61

4.3.1 Logendran's original approach 62

4.3.2 Standard representation - the GA approach 63

4.3.3 Multi-chromosome representation 65

4.4 Comparative Study 70

4.4.1 Problem 1 70

4.4.2 Problem 2 71

CONTENTS 3

4.4.3 Problem 3 75

4.4.4 Problem 4 76

4.5 Bi-criteria Model 79

4.5.1 Experimental results 85

4.6 Conclusions 85

5 Integrated design of cellular manufacturing systems in the

presence of alternative process plans 88

5.1 Introduction 88

5.1.1 Literature review 90

5.1.2 Motivation 92

5.2 Mathematical models 93

5.2.1 Notation 93

5.2.2 Objective functions 95

5.3 Our solution 96

5.4 Illustrative example and analysis of results 98

5.4.1 Solution for objective function 1 101

5.4.2 Solution for objective function 2 102

5.5 Conclusions 103

6 Conclusions 104

6.1 Summary of achievements 104

6.2 Future works 106

List of Figures

1.1 A manufacturing system with three machine cells and three part

families 10

2.1 Matrix 1 14

2.2 Matrix 2 15

2.3 Matrix 3 15

3.1 An initial matrix 23

3.2 A solution matrix 24

3.3 Performance analysis of different operators (I) 33

3.4 Performance analysis of different operators (II) 33

3.5 Performance analysis of different operators (III) 34

3.6 Initial matrix 45

3.7 Distance matrix for machine grouping 45

3.8 Program output for phase 1 46

3.9 An intermediate matrix 47

3.10 The distance between every pair of machines 47

3.11 The final matrix 48

3.12 Rearranged matrix of problem 13 (20x35) 52

3.13 Rearranged matrix of problem 18 (24x40) 53

3.14 Rearranged matrix of problem 23 (30x50) 54

4.1 Linear single-row cellular layout 58

4.2 Linear double-row cellular layout 59

4

LIST OF FIGURES 5

4.3 Occurrence of empty cell after crossover 64

4.4 Interpretation of information in chromosomes • 67

4.5 Problem of association of cell number to machines 69

5.1 A possible individual of three chromosomes 98

5.2 Crossover of the process plan chromosome 99

6.1 Overview of the research 105

List of Tables

3.1 An edge table 35

3.2 An edge table for enhanced ER 37

3.3 Machine cells and part families formed 48

3.4 Performance comparison of our algorithm and ZODIAC • . • • 51

3.5 Machine cells and part families formed 52

3.6 Machine cells and part families formed 53

3.7 Machine cells and part families formed 54

4.1 The chromosomes used 66

4.2 Workstation-part load matrix for Problem 1 71

4.3 Result of Problem 1 72

4.4 Comparison of different approaches for Problem 1 72

4.5 Workstation-part load matrix for Problem 2 73

4.6 Result of Problem 2 (part 1) 74

4.7 Result of Problem 2 (part 2) 74

4.8 Comparison of different approaches for Problem 2 75

4.9 Workstation-part load matrix for Problem 3 75

4.10 Result of Problem 3 76

4.11 Comparison of different approaches for Problem 3 76

4.12 Gupta's solutions for Problems 1, 2, and 3 (part 1). Reproduced

from Gupta et al. (1996) [29] 77

4.13 Gupta's solutions for Problems 1, 2，and 3 (part 2). Reproduced

from Gupta et al. (1996) [29] 78

6

LIST OF TABLES 飞

4.14 Workstation-part load matrix for problem 4 (In order to fit

to a page, the orientation is reversed with parts in rows and

workstations in columns) 80

4.15 Result of Problem 4 (part 1) 81

4.16 Result of Problem 4 (part 2) 81

4.17 Gupta's solution for Problem 4 (part 1). Reproduced from Gupta

et al. (1996) [29] 82

4.18 Gupta's solution to Problem 4 (part 2). Reproduced from Gupta

et aL (1996) [29] 82

4.19 Comparison of different approaches for Problem 4 83

4.20 Results of bi-criteria for Problem 1-3 86

4.21 Results of bi-criteria for Problem 4 86

5.1 The three chrosmosomes of an individual 97

5.2 Data on cis(kp) indicating if operation s of part k to be performed

for the process plan p, and the demand du for part k 100

5.3 Data on ams indicating if operation s can be performed on

machine m; capacity {bm) on machine m; and the cost {Cm) of

machine m 100

5.4 The processing time tms{kp) and operating cost Cms{kp) required

for machine m to perform operation s on part k using process

plan p 100

5.5 Indicates the plan selected p and machine selected m for

operation s 101

5.6 Data on rkc indicating if part k is a member of cell c 101

5.7 Optimum number of each machine type m assigned to each cell c 102

5.8 Indicates the plan selected p and machine selected m for

operation s 102

5.9 Data on Vkc indicating if part k is a member of cell c 102

5.10 Number of each machine type m assigned to each cell c 103

Chapter 1

Introduction

1.1 Introduction to Group Technology

Group technology (GT) is a management philosophy based on the idea of

similarity. This approach was originally introduced by Mitrofanov in 1966.

Later, Burbidge [8] developed a manual procedure ——production flow analysis

(PFA) — which uses part routing information to form machine groups. In PFA,

similar parts are grouped and processed together. Actually, the idea of GT is

not only applicable to process, design, production control, and part assembly,

it can also be applied to other activities including administrative functions [2 .

In this research, however, we focus the application of GT to manufacturing

systems.

Traditionally, machine layout in a factory is process-oriented. Each

department or section of a factory is composed of machines possessing similar

capabilities and performing similar functions. This layout also referred to as

8

CHAPTER 1. INTRODUCTION 9

functional layout. If a part requires more than one process, it will travel from

one department to other to have its processing requirements completed. The

primary disadvantage of this layout is long and uncertain throughput time

which leads to high work-in-process inventory, untimely product delivery, and

increasing loss of sales [18 .

One application of GT in the manufacturing environment is cellular

manufacturing. Cellular manufacturing systems offer numerous benefits over

functional layouts [2]. The main benefits include reduced lead time, reduced

material handling costs, decreased work-in-process, reduced finished good

inventories, and reduced setup time. Other benefits also include better

production planning and control, improved job satisfaction, morale and

communication. These features are essential for a firm to remain competitive in

the current manufacturing environment. In Hyer and Wemmerlov's survey on

the use of GT in the US manufacturing companies [34], respondents confirmed

GT's usefulness and the opportunities to improve manufacturing productivity.

1.2 Cell design

Cell formation involves grouping functionally dissimilar machines together to

process a group of parts. A cluster of machines is referred to as a machine cell

and a group of parts is referred to as a part family (Figure 1.1). In an ideal

situation, a part family can be completely processed within a machine cell. This

cell formation procedure is a major step in designing a cellular manufacturing

CHAPTER 1. INTRODUCTION 10

system.

^ ^ ^Pa r t ^ |̂""̂^̂!T̂ ^ ^ P a r t ^

i^^^aniil^^^ ^^^amHy^y ^^^^fan^%^

Machine cell 1 Machine cell 2 Machine cell 3

M1,M2,M3 M4，M5 M6, M7,M8

Cellular Manufacturing System

Figure 1.1: A manufacturing system with three machine cells and three part

families

The cell formation problem is very difficult to solve [38，51]. A large

number of heuristic algorithms have been proposed in the literature. All these

algorithms use some models. Broadly speaking, these models can be classified

into two groups: standard models and generalized models. Standard models

deal with a machine-part incidence matrix. Generalized models incorporate

different design objectives and constraints to give a more realistic representation

of manufacturing systems.

CHAPTER 1. INTRODUCTION 11

1.3 Objectives of the research

This problem can be solved using heuristic methods. There are extensive
I

algorithms of such kind available in literature. However, they are limited to

tackling small scale applications. In addition, most methods only consider one

or a few aspects of the problem. For example, the rank order clustering proposed

by King [37] ignored most manufacturing factors and considered only the

operational requirements. This technique could not be applied to complicated

models.

The objectives of this research are to develop heuristic approaches to the

cell formation problem and to tackle the problem comprehensively, from simple

models to complicated models. In particular, the approaches developed can

handle large size problems.

1.4 Organization of thesis

In this thesis, we propose the application of genetic algorithms to solve the cell

formation problem based on both standard models and generalized models. A

literature review on designing cellular manufacturing systems is presented in

Chapter 2. Chapter 3 proposes a genetic algorithm-based heuristic to deal with

a standard model. We apply a genetic algorithm originally designed for the

traveling salesman problem to group machines into cells and parts into families.

The results are compared very favorably to a well-known algorithm available in

the literature.

CHAPTER 1. INTRODUCTION 12

In solving generalized models, a different representation is required. A

multi-chromosome representation for this problem is suggested in Chapter 4.

Our representation generates better results when compared to an existing

representation for the same workload model. Chapter 5 considers a more

practical aspects of the clustering problem and demonstrates the extensibility

of our GA in solving the problem. The algorithm takes into account the

presence of alternative process plans. Plan selection and cell formation are

solved simultaneously through an integrated model. Our conclusion will be

presented in the final chapter.

Chapter 2

Literature review

2.1 Introduction

Methodologies for cell design use two types of models: standard models and

generalized models [18]. A standard model ignores many manufacturing factors

and only considers machinery operations of parts. In a standard model, a

binary machine-part incidence matrix [â -̂] is used to represent a manufacturing

system. A matrix entry "1" ("0") indicates that machine i is used (not

used) to process part j. Techniques dealing with this matrix formulation

can be further categorized according to the type of algorithms employed to

cluster the data, e.g., array-based clustering, cluster identification, graph-based,

integer programming, seed-based, similarity coefficient, and artificial intelligence

techniques.

Generalized models deal with the cellular manufacturing problem more

comprehensively and incorporate different design objectives and constraints.

13

CHAPTER 2. LITERATURE REVIEW 14

There are three types of models: machine assignment models, part family

models, and cell formation models. A machine assignment model assigns

machines to machine cells to process part families. A part family model groups n

parts into p families based on similarity of part design and (or) manufacture. A

cell formation model generates the grouping of parts and clustering of machines

simultaneously.

2.2 Standard models

When a machine-part incidence matrix [â j] is constructed, it does not display

clusters of machines and parts. For example, matrix 1 (see Figure 2.1) does not

show any identifiable clusters.

Parts

P1 P2 P3 P4 P5

Ml 1 1 1

Machines M2 1 1

M3 1 1

M4 1 1

Figure 2.1: Matrix 1

A clustering algorithm transforms the initial incidence matrix to one with a

diagonal structure by rearranging rows and columns. A diagonal block structure

is desirable because the number of clusters and the components of clusters are

easily identified through visual analysis. Matrix 2 (see Figure 2.2) shows two

diagonal clusters.

In this example, machines M2 and M4 form a cell that processes parts P1

CHAPTER 2. LITERATURE REVIEW 15

Parts

P1 P3 P2 P4 P5

M2 1 1

Machines M4 1 1

Ml 1 1 1

M3 1 1

Figure 2.2: Matrix 2

and P3. Machines M l and M3, on the other hand, process the part family that

consists of parts P2, P4, and P5. This is an ideal example because mutually

separable clusters can be formed.

Parts

P1 P2 P3 P4 P5

Ml 1 1 1

Machines M2 1 1

M3 1 1 1

M4 1 1

Figure 2.3: Matrix 3

In real cases, mutually separable clusters rarely occur. For example, matrix

3 (see Figure 2.3) cannot decompose into mutually separable clusters. Part 5

requires an operation in the other machine cell. This intercell move increases

material handling cost. Clustering algorithms are needed to produce machine

cells and part families with minimum number of intercellular moves. Some

clustering algorithms are briefly reviewed in the following sections according to

the categories mentioned in Section 2.1.

CHAPTER 2. LITERATURE REVIEW 16

2.2.1 Array-based methods

Array-based methods involve manipulation of rows and columns to produce

machine cells and part families. Algorithms include the bond energy algorithm

developed by McCormick et al. [60], the rank order clustering algorithm by

King [37], the direct clustering algorithm described by Chan and Milner [10 .

The bond energy algorithm assumes that a bond exists between machines and

parts. The bond energy is the strength of the bond. The optimal solution

under this algorithm is a matrix that maximizes the bond energy. The rank

order clustering operates by treating the 0,1 of the incidence matrix as binary

number and assigning a value to each row and column according to the position

of '1'. After assigning the values, the rows are arranged in decreasing order from

top to bottom and the columns are arranged in similar manner from left to right.

The direct clustering algorithm is similar to the rank order clustering method

but it is not sensitive to the initial configuration of a machine-part incidence

matrix. Chu and Tsai [20] compared the three methods and showed that the

bond energy algorithm outperformed the other two array-based methods.

2.2.2 Cluster identification

The cluster identification (CI) algorithm first draws a horizontal line through

any row of an incidence matrix. For each single-crossed entry of “ 1”，vertical

lines are drawn through the corresponding columns. The drawing of horizontal

and vertical lines continues until there are no more single-crossed entries of “ 1"

CHAPTER 2. LITERATURE REVIEW 17

in the matrix. The double-crossed entries of ” 1" in the matrix correspond to

a machine cell and part family. This class of algorithms include the cluster

identification algorithm by Kusiak and the Chow [50], the branch-and-bound

algorithm by Kusiak and Cheng [48], and the branching algorithm by Kusiak

46；.

2.2.3 Graph-based methods

A graph consists of a set of nodes or vertices and arcs or edges. Each arc

connects two nodes. In applying the graph-based method to solve the cell

formation problem, we treat machines as nodes and material flows as arcs. Cost

dj is associated with the amount of material flows on arc i j. The cells can be

formed if the graph is partitioned into subgraphs. Each subgraph is a cluster

of machines. Askin and Chiu [1] suggested a graph partitioning procedure to

deal with the cell formation problem. Their algorithm attempts to minimize the

total costs associated with the arcs between subgraphs. Arcs between subgraphs

represent intercell moves. Therefore, this approach aims at minimizing intercell

material handling. Other graph approaches include the minimum spanning tree

(MST) method by Srinivasan [75:.

2.2.4 Integer programming

Clustering can be viewed as an optimization problem and therefore the problem

can be modeled using an integer programming technique. These methods allow

CHAPTER 2. LITERATURE REVIEW 18

the number of cells and the size of each cell be constrained. The close neighbor

algorithm by Boe and Cheng [6], the A*-based algorithm proposed by Kusiak

et al. [47], and the algorithm developed by Boctor [5] are some examples.

2.2.5 Seed-based

This type of clustering algorithms involves the generation of seed machines or

parts. After the generation of seeds, other machines and parts are assigned to

machine cells and part families based on some grouping measures. Examples of

seed-based algorithms include the ideal seed algorithm [11], the zero-one data

-ideal seed clustering (ZODIAC) by Chandrasekharan and Rajagopalan [13],

and GRAFICS proposed by Srinivasan and Narendran [76 .

2.2.6 Similarity coefficient

The algorithms of this category measure the similarity of a pair of machines

and parts. A similarity matrix is often generated. The final output of the

algorithms is a permutation of machines and parts with the maximum value

of total similarity. These clustering techniques include single linkage clustering

by McAuley [59], a method suggested by De Witte [22], similarity coefficient

heuristic developed by Waghodekar and Sahu [84], and average linkage clustering

by Seifoddini and Wolfe [71；.

CHAPTER 2. LITERATURE REVIEW 19

2.2.7 Artificial intelligence methods

Recently, several researchers employed artificial intelligence (AI) techniques in

designing cellular manufacturing systems. Neural network approach is used

by Karparthi and Suresk [36]，and Chen and Cheng [16]. The Adaptive

Resonance Theory (ART) neural network is used to form cells. One weakness

of this approach is that the quality of a solution highly depends on the initial

disposition of the incidence matrix. Chen et al. [15] proposed a simulated

annealing solution to the cell formation problem. Venugopal and Narendran

'83] proposed a genetic algorithm approach to the clustering problem. However,

they employ a simple representation that may produce illegal solutions.

2.3 Generalized models

Standard models ignore many manufacturing factors such as part demand,

the sequence of operations, machine utilizations. These models can only be

used when a rough cut design is needed or when the detailed parameters are

not available. On the other hand, generalized models consider more aspects

of the cell formation problem. These models incorporate different design

objectives, parameters, and constraints. A list of such objectives, parameters,

and constraints can be long, for example, minimization of the cost of machines,

set up cost, intercellular moves, material handling cost, work-in-process cost,

intracell load imbalances, intercell load imbalances, maximization of the cell

utilization, compatibility between machines and parts, and restriction of number

CHAPTER 2. LITERATURE REVIEW 20

of cells. Generalized models can be further categorized into three classes,

machine assignment models, part family models, and cell formation models.

2.3.1 Machine assignment models

Machine assignment models operate by forming machine cells based on

some objective function measures. Parts are then allocated to appropriate

machine cells according to the processing requirements or cell utilization rates.

Gunasingh and Lashkari [28] suggested two 0-1 integer programming models

to address the machine allocation problem. One model attempts to maximize

the compatibility between machines and parts while the other one considers

the trade-off between the cost of machine allocation and intercellular moves.

These formulations restrict the size of a machine cell and the number of copies

of machines. Harhalakis et al. [31] proposed a simulated annealing approach to

allocate machines. The objective of their study is to minimize the intercellular

moves. Cheng et al. [19] formulated machine allocation problem as a 0-1 integer

programming model and used a branch-and-bound algorithm to find a solution.

2.3.2 Part family models

Part family models focus on formation of part families. The required machines

are often duplicated in each machine cell. Kusiak [44] suggested a heuristic

based on the part similarities to group parts into families. Suresh et al. [80

proposed a hierarchical methodology to solve a multi-objective model.

CHAPTER 2. LITERATURE REVIEW 21

2.3.3 Cell formation models

In a cell formation model, the groups of machines and parts are determined

simultaneously. Askin and Subramanian [3] proposed a cost-based heuristic

for group technology configuration. The procedure considers costs of work-

in-process inventory, material handling, and machine setups. A three stage

procedure was used to solve the problem. Wei and Gaither [85] developed a

cell formation model with four objective functions. The four objectives are

minimization of bottleneck cost, maximization of the average cell utilization,

minimization of intracell load imbalances, and minimization of intercell load

imbalances. A linear integer programming enumeration scheme was used to

solve the model. Sule [79] suggested to consider the cost and machine capacity

in grouping. This approach was suggested to be more economical. Heragu

and Gupta [32] presented a heuristic for machine cell-part family identification

that addresses several design constraints; machine capacity, technological

requirements, and number of cells. While generating a solution, the heuristic

minimizes the intercellular moves of parts.

Chapter 3

Genetic cell formation algorithm

3.1 Introduction

In designing a cellular manufacturing system, parts requiring similar operations

are grouped into a part family. Machines are identified to form a machine

cell to process the part family. This design problem is made complicated by

exceptional parts and/or exceptional machines [17]. An exceptional part is a

part that requires processing in another machine cell. An exceptional machine

is a machine that processes parts from a different part family. Both exceptional

parts and exceptional machines cause intercellular movement of parts.

A 0-1 machine-part incidence matrix is used to model the manufacturing

system. It is easy for practitioners to understand and can provide a rough

cut design. A system designer may modify the rough cut design to derive a

final cellular layout. When the final cellular layout is determined, the machine

utilization cost, the utilization of machines, and the cost of intercellular moves

22

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 23

must be closely scrutinized.

In this chapter, the grouping problem is formulated as the traveling salesman

problem [52, 73]. A grouping approach based on a genetic algorithm is proposed.

The proposed algorithm is compared to a well-known algorithm using many test

problems drawn from the literature. The comparative study shows that the

proposed algorithm is very reliable and produces improved solutions.

3.2 TSP formulation for a permutation of

machines

Given a machine-part incidence matrix [â j], clustering involves rearrangement

of rows and columns to create machine cells (i.e. blocks) that contain parts

using similar machines and reduce intercellular moves among machine cells. In

a solution matrix, a block diagonal form is often desirable because the blocks can

be easily identified to facilitate subsequent cell design decisions. To illustrate

the clustering concept, we consider an input matrix given in Figure 3.1.

Parts

1 2 3 4 5

1 0 1 0 1 1

Machines 2 1 0 1 0 1

3 0 1 0 1 1

4 1 0 1 0 0

Figure 3.1: An initial matrix

An initial matrix does not display any blocks (clusters). After rearrangement

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 24

of rows and columns, we obtain two blocks along the diagonal of a solution

matrix (Figure 3.2).

Parts

1 3 2 4 5

2 1 1 0 0 1

Machines 4 1 1 0 0 0

1 0 0 1 1 1

3 0 0 1 1 1

Figure 3.2: A solution matrix

The problem of arranging rows and columns is similar to a permutation

problem. In order to determine the desirable permutation for rows and columns

in a solution matrix, we define a distance measure between a pair of rows

(machines). Many such measures for cellular manufacturing were suggested

in Shafer and Rogers [72]. In this thesis, we use the following distance measure

for machines i and j:

n

dij 二〉 : Clik — Ojjk •
k=l

This measure belongs to a family of Minkowski metrics. The Minkowski

metric for machines is given by Mij(p), the distance between machines i and j

as a function of p, and is defined as:

n

Mij{p) = (^ \xik — Xjk\^)p
k=l

where p > 0 determines the particular metric used. For p = 1, the measure

is known as rectilinear, city block, or absolute metric. When p = 2, it is

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 25

squared Euclidean metrics while chebychev (or infinity) metric is obtained when

p = oo. Note that for a 0-1 data, the rectilinear and the squared Euclidean

metric produce the same result. After several experiments, this measure is

proved to produce better results.

A small distance value between two machines implies that both machines

process a number of common parts. Should two machines with a small distance

value be placed in different machine cells, parts requiring the two machines must

be transported between the cells, which results in increased material handling.

Therefore, a cellular manufacturing clustering algorithm must place machines

processing similar parts (and parts requiring similar machines) close to one

another in a final permutation. This in turn attempts to minimize the total

distance between pairs of machines.

The cellular manufacturing clustering problem can be formulated as a

traveling salesman problem (TSP)[52, 73]. Lenstra and Rinnooy [52] showed

that the clustering problem can be solved if we solve the associated TSP. Cities

in a TSP correspond to machines.

Various approaches are proposed to solve TSPs, such as cutting planes [62],

branch and bound [68], neural networks [74], 2-opt [54], simulated annealing

39], Markov chain [58], tabu search [25] and genetic algorithm [87 .

Our motivation is to base on the TSP formulation for the cell formation

problem and apply GA in solving this problem. To implement a genetic

algorithm, several aspects are required to consider, for example initialization,

chromosome representation, crossover operator, fitness function, replacement

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 26

strategy, and termination conditions.

3.3 Genetic algorithms

Genetic algorithms (GAs) were introduced by John Holland [33]. They are

applied to a number of fields like mathematics, engineering, biology and social

sciences [26]. A precise definition of genetic algorithms can be obtained from

Goldberg [26]:

Genetic algorithms are search algorithms based on the mechanics

of natural selection and natural genetics. They combine survival of

the fittest among string structures with a structured yet randomized

information exchange to form a search algorithm with some of the

innovative flair of human search.

The concept of GAs is based on the evolution process that occurs in

natural biology. An initial population of possible solutions (individuals) is

generated. Some individuals are selected to be parents to produce offsprings via

a crossover operator. All the individuals are then evaluated and selected based

on the concept of survival of the fittest introduced by Darwin. The process of

reproduction, evaluation and selection is repeated until a termination criterion

is reached. Besides, a mutation operator with certain probability is applied

to individuals to change their genetic makeup. The purpose of mutation are

to increase the diversity of the population and to enable every point in the

searching space be reachable.

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 27

The universe of all possible strings can be considered as an imaginary

landscape; valleys mark the location of strings that encode poor solutions,

and the landscape's highest point corresponds to the best possible string.

The evolving population make genetic algorithms exploring such a landscape

simultaneously. This characteristic is called implicit parallelism which enables

GAs to be a powerful searching technique. A pseudo-code of GAs is as follows:

Algorithm 3.1 GA()

> A simple genetic algorithm

1 initialize (population)

2 while (the termination condition is not met) do

3 parentl 卜 selection (population)

4 parent2 一 selection (population)

5 offspring — crossover (parentl, parent2)

6 if mutate then

7 mutation (offspring)

8 evaluation (offspring)

9 population — replacement (population, offspring)

10 end

3.3.1 Representation and basic crossover operators

Classically, an individual is represented by a binary string called chromosome,

e.g. xi=(1011001) and x2=(OlllOll). Offsprings (another solutions) are

generated by crossover. A crossover point will be selected randomly along

the chromosome. The parent chromosomes will be split at that point and

the segments of those chromosomes will be exchanged. For example, assume

the parents are xi and x2 as described above. If the crossover point is 3,

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 28

then the offsprings will be yi=(1011011) and y2=(OlllOOl). This type of

information exchange combines strings containing partial solutions. Two fit

individuals (with higher fitness value) rnay combine their traits and make a

superfit offspring.

For TSP, three vector representations were used [61]: adjacency, ordinal,

and path. Each representation has its own genetic operators. Among the three

representations, the path representation is perhaps the most natural one of a

tour. For example, a tour

3 - 4 - 1 - 6 - 5 - 2 - 7

is represented simply as (3 4 1 6 5 2 7).

3.3.2 Fitness function

Fitness function is used to evaluate (see line 1, Algorithm 3.1) the value of the

individuals within the population. According to the fitness value scored, the

individual is selected as a parent to produce offsprings in the next generation

or is selected to disappear in the next generation. The fitness function we used

is the total distance for a TSP tour.

Let p be a permutation of machines and a be a permutation of parts. For a

permutation of machine:

3 - 1 - 2 - 8 - 7 - 4 - 6 - 9 - 5

p(l) is 3，and p(4) is 8. In the first phase, the proposed approach converts

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 29

the initial permutation of machines (specified by the initial matrix) to a new

permutation that minimize the following fitness function:

m—l n n

Total distance = ^ ^ CLp{i)a{k) — Cip{i+l)a{k) + ^ O^p(m)a(k) — CLp(i)a(k) (3.1)

i=l k—1 k=l

where

m = number of machines

n = number of parts f

1 if machine p{i) processess part a{k)
dp(i)a{k)= <

0 otherwise
\

By minimizing the total distance, machines that process similar parts are

grouped together. After rearranging machines in the initial matrix according

to the permutation of machines obtained in the first phase, we obtain an

intermediate matrix in which the positions of parts have not been changed.

3.3.3 Initialization

Initialization (see line 1, Algorithm 3.1) involves generating of possible solutions

to the problem. It can be generated randomly or with some heuristic. Suitable

heuristic can reduce the number of generation required in finding the solutions

and let GAs start the search in a more favorable region of the search space.

Certainly, this requires additional overhead. In our implementation, the initial

population is generated randomly.

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 30

3.3.4 Parent selection strategies

Parent selection (see lines 3 & 4, Algorithm 3.1) is a process that allocates

reproductive opportunities to individuals. In principle, individuals with higher

fitness values are more likely to be selected into the mating pool and individuals

with lower fitness values will receive lower or even no opportunity to act as

parents. The probability of an individual being selected with P individuals in

the population:

P. = 4 ^

E f{j)
i=i

This biased selection enables the convergence of population. There are

several schemes for determining and assigning the selection probability, e.g.

roulette wheel selection, scaling techniques, and ranking. In addition, non-

probabilistic selection strategies may be used such as tournament selection,

elitist models [26, 61], etc. As the process continues, the variation in fitness

range will be reduced. But this often leads to the problem of premature

convergence, a classical problem of GAs. This problem occurs because a few

super-fit individuals receive high reproductive trials and rapidly dominate the

population. If such individuals correspond to local optimum, GAs will be

trapped like hill climbing.

’ In our implementation, fitness ranking [86] is employed to solve this

problem. Individuals are sorted according to their fitness values, the number

of reproductive trials are then allocated according to their rank. Several

experiments have shown ranking to be superior to fitness scaling [86], in dealing

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 31

with premature convergence.

3.3.5 Crossover

Standard crossover operator cannot be used because illegal offspring may be

generated. Illegal offspring is the one the contains either a machine occurs

more than once or not all the machines appear in the tour. This violates the

constraints of TSP. Several crossover operators (see line 5, Algorithm 3.1) are

defined for this representation: partially-mapped (PMX) [27], order (OX) [21],

cycle (CX) [67], and edge recombination (ER) [87] crossovers. ER was suggested

to be most efficient for TSP [86]. In our clustering problem, we will use the path

representation. Each gene in a chromosome corresponds to a machine (in the

first phase).

Sequencing tasks involve permutation of objects of the problem domain.

Applying genetic algorithms to sequencing problem requires specialized

crossover operator, if path representation is used. The effectiveness of the

operators can affect the performance of GAs and the quality of the solutions.

Starkweather [78] conducted a study to compare six genetic sequencing

operators for a 30 city “ Blind" traveling salesman problem and a real world

warehouse/shipping scheduling application. The results indicated that the

effectiveness of different operators is dependent on the problem domain.

Operators which work well in the traveling salesman problem may not be

effective for other types of sequencing problems, while operators which perform

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 32

poorly on the blind traveling salesman problem work extremely well for the

warehouse scheduling task. Syswedra [81] discussed the relative importance of

position, order, and adjacency for different sequencing tasks. These studies

contradict to the concepts assumed by some researchers that all sequencing

tasks are similar and that one genetic operator suffices for all types of sequencing

problems. Edge recombination operators perform well on the traveling salesman

problem stressing adjacency but they perform poorly for sequencing tasks where

relative order is critical. We compared six different operators for our clustering

problem. The operators involved are enhanced edge recombination operator

78], order crossover #1 [21], order crossover #2 [81], partially mapped crossover

27], cycle crossover [67], and position based crossover [81 .

Our experiment is conducted based on GENITOR [86]. The initialization,

selection, replacement, and population size are kept constant. We intend to

provide a common test-bed for the different sequencing operators. All the

genetic algorithms are allowed to run for a predefined number of generations

and the change of fitness values are recorded. Figures 3.3, 3.4, and 3.5 are the

performance results.

Three problems adopted from the literature are used as test problems. Our

objective is to minimize the total distance of a tour; therefore, lower fitness

corresponds to a better solution. Clearly, the results reveal the enhanced

edge recombination operator outperforms other sequencing operators in our

clustering problem. This may be due to the most important information for

this cell formation problem is which machines/parts should be placed in close

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 33

1st phase for Carrie (1973)

160「

V、

_ | \ 一 跟

120 八 ^ ^ 、 PMX

I 100 "\ \ V } ^ Order2
80 - \ y ^ ^ ^ \ x X X X X i t e ^ i e ^ | ^ ^ ^ x x x x _ ^ _ cycle

\ 、 + ^ ^ A v

\ ^ r 4 ^ ~ A — Position
60 : ^+^5 f=r = |=T=7̂ t =t =t =t =t =f

4 0 I

o
CU 寸 <0 CO 0 C\I 寸 ¢0 CO o

T— T— 1— T— T— OJ

no. of generation

Figure 3.3: Performance analysis of different operators (I)

1st phase for Chandrasekharan data set 6 (1989)

200，•<_、

19。k\

|u \ 一 扭

180 卞 “ 、 : 、 PMX

1 170 - \ J ^ V - + _ O r d e M
••̂ \ A jpR^^^K^^ 、< - - . - Order 2
t^B 1 Y \^ ̂ / ^x \|x SJi*M<* <4i* \iy S||* Vj» Sii**4i* ̂ |^ ̂ jj> ̂ j^ <jj> Mi*Mi* Mi*_M/

1 \ ^j|J^P^^^X^^S^^^^^^^^^^^^^^^^^^^V^^^^^^^^^^^^^^^^^^^^^^3^V

160 - 、 ++、 、•，•-〜〜•-•>••>••-•〜—•-•-•-•-•>•• ~ ~ ^ ~ C y c l e
A + _ , — R)sition

150 - ^

1 4 0 ^~~‘~~‘~~‘~‘~~I~‘~~I~~I~~^I~I~~I~I_ I _ • I~ I_ I _ I _ I _ I _ i __1_ I_ I _ I __ I _ I __ I __1_ I_ I

o CO CD 0) CVJ LO 00 产 寸 卜 o 1- ^ 1- CM CM CM CO
no. of generation

Figure 3.4: Performance analysis of different operators (II)

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 34

1st phase for stanfel (1985)

250「

'30 fes
\Vî\ EER

210、、》&• PMX

% \ v\ 又：、、 一+-Order1
0 190 - \ 十、\ 、•—•、
1 \ ^ 5 ^ ^ ^ ^ _ U ^ Order2

170 \ +@tixxf:^^t4xxxxxxxxxx)|^)|;$x ~5K-Cycle

\ + ^ + + + ~ _ ~ ^ ^ ^ ^ ^ - - - - - - - - - - —•一Position

1 5 0 V + + + + + +十-•• -•- V V -；- -：- Y V -；- -；- Y

1 3 0 I I I I _ _ I _ _ I _ I _ _ I _ I _ I _ I _ I _ _ I _ _ I _ I _ I _ I _ I _ I _ _ I _ I _ _ I _ I _ I _ I _ I _ 1 _ I ~ I _ 1

o C0 CO 05 OJ LO 00 T- 寸 卜 o T- 1- T- CM CM <M CO
no. of generation

Figure 3.5: Performance analysis of different operators (III)

proximity. In other words, the adjacency is more important than the position.

For example, if three machines should be close to each other, any sequence

that they are arranged together will generate the same result no matter which

position they are in. The enhanced edge recombination operator successfully

captures this kind of information and therefore the GAs with this operator can

generate better solution in less computational time.

As the enhanced edge recombination operator is demonstrated to be most

efficient for the TSP-clustering problem. We will use this operator in our

implementation. In the following section, we will discuss the operation of edge

recombination operator. Consider the following tour:

3 - 1 - 2 - 8 — 7 - 4 - 6 - 9 — 5.

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 35

The edges are (3 1), (1 2)，(2 8), (8 7), (7 4), (4 6), (6 9)，(9 5)，and (5 3).

The first step is to build an edge table that stores the edges found in a tour.

For each city c, all other cities connected to city c in at least one of the parents

are listed. We can see that for each city c, there are at least two and at most

four cities on the list. For example, given two parents:

parent 1 : 1 — 2 - 3 - 4 — 5 - 6 — 7 - 8 - 9

parent 2 : 4 1 — 2 — 8 - 7 — 6 - 9 - 3 - 5

the edge table can be constructed in Table 3.1.

City edges connected to other cities

_2 ^

2 1,3,8

3 2,4,9,5

4 3,5,1

5 4,6,3

6 ^

7 6,8

8 7,9,2

9 8,1,6,3

Table 3.1: An edge table

An offspring is constructed by selecting an initial city from one of the parents.

Assume we have selected city 1, this city connected to three other cities: 9，2,

and 4. The next city selected depends on the number of edges in the edge table.

The city with the smallest number of edges in the edge list is selected. Ties are

broken arbitrarily. In our example, city 9 has four edges and cities 2 and 4 have

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 36

three. A random choice is made between cities 2 and 4 and we assume that city

4 is selected. Next, the cities available for selection are 3 and 5. Following the

same principle city 5 is selected. Now, the first three genes of the offspring is

constructed:

1 — 4 — 5 — X — X — X — X — X — X.

If we continue the procedure, an offspring with following sequence will be

generated:

1 - 4 - 5 一 6 - 7 - 8 — 2 - 3 9.

With a random selection, there is a chance that a city may not have a

continuing edge. This situation is called edge failure. When this occurs, a

random city that presently not in the tour is selected as the next city.

An enhanced edge recombination operator is proposed to improve the

performance of ER [78]. The modification is that if an edge appears in both

parents, it will be first selected. The idea is to preserve the common subsequence

in both parents. The element is still stored in an edge table but if an element

is already present, a minus sign will be added to that city. This sign acts as a

flag which indicates this edge appearing in both parents. The new edge table is

shown in Table 3.2.

In selecting the next node, the city with the minus sign will be selected first.

This enhanced operator is known to produce better solutions to TSP [78]. In

our implementation, this enhanced ER is used as the crossover operator.

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 37

City edges connected to other cities

_ J ^

2 -1,3,8

3 2,4,9,5

4 3 ^

5 -4,6,3

6 5,-7,9

7 -6,-8

8 -7,9,2

9 8,1,6,3

Table 3.2: An edge table for enhanced ER

3.3.6 Mutat ion

Mutation (see line 7，Algorithm 3.1) is applied to each child individually after

crossover according to the mutation rate. It provides a small amount of random

search and helps ensure that no point in the search space has a zero probability

of being examined. Several mutation operators are suggested for sequencing

problem with path representation [61]:

• inversion 一 selects two points along the chromosome, the substring

located in between these cut points is reversed. For example, in a

chromosome:

1-2 I 3-4-5-6 I 7-8-9,

the two cut points are marked by "|". After inversion, the chromosome is

changed to:

1-2 I 6-5-4-3 I 7-8-9;

• insertion — selects a gene and inserts it in a random place;

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 38

• displacement — selects a substring and inserts it in a random place;

• reciprocal exchange — swaps two genes in the chromosome.

In our implementation, no mutation operator is used. This is because

the crossover operator incorporates random selection in completing a legal

permutation and the effect is like a mutation.

3.3.7 Replacement

In most implementation [26]，a whole population is replaced in each generation

(see line 9, Algorithm 3.1). This is referred to as a generational approach. In

GENITOR, however, a steady-state approach is adopted. In each generation

only a few (typically two) individuals are replaced. In other words, parents and

offsprings can co-exist in the population. The average fitness of the population

will improve from generation to generation.

3.3.8 Termination

The processes of crossover, selection, and replacement are repeated until a

termination criterion is met (see line 2, Algorithm 3.1). The simplest criterion

is a pre-specified maximum number of generations. Other criterion involves

calculating the variation of individuals, if the value below a certain threshold,

the GA is terminated. In our case, maximum number of generations strategy is

employed.

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 39

3.4 Formation of machine cells and part

families

Once the machine sequence in the desirable permutation is generated by the

genetic algorithm, the machine cells and part families can be determined based

on the grouping measures. A heuristic that utilizes the distance information

in the tour is used to partition machines into cells. The number of cells and

families formed depends on the total number of machines (m). We assume that

at least two cells will be formed. Therefore, the number of possible machine

cells ranges from 2 to m. In each iteration, both machine and part assignments

will be performed.

3.4.1 Objective functions

In order to compare the performance of different clustering techniques, we

need some measures that can evaluate the quality of solutions generated by

those algorithms. There are two measures frequently used in the literature.

The first one is the grouping efficiency introduced by Chandrasekharan and

Rajagopalan [11]. Grouping efficiency is a weighted average of two components,

the mathematical formula is given as follows:

V = QVi + (1 — Q) V2

where

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 40

ed
Vi =—

EMrNr
r=l

1 e。
V2 = 1 - 1

mn - E MrNr
- r=l -

m = number of machines

n 二 number of parts

Mr = number of machines in the rth cell

Nr = number of parts in the rth family

6d 二 number of l's within the machine/part groups

6o = number of l's outside the machine/part groups

k = number of cells

77 二 grouping efficiency

q = weighting factor (0 < q < 1)

Grouping efficiency ranges from 0 to 1. Higher grouping efficiency means

that the more structure the solution is. In turn it means that solution contains

fewer exceptional elements. The first element rji is the ratio of the number of '1'

in the diagonal blocks of the rearranged matrix to the total number of possible

'1，in all the diagonal blocks. This measure focuses on the within cell utilization

or the within cell density. It is argued that the higher is this value, the greater

is the similarity (in terms of processing requirements) between the components

included in each cell and the greater is the utilization of the machines in this

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 41

cell. The second element rj2 is the ratio of the number of '1' in the off-diagonal

blocks to the total number of possible T in the off-diagonal block. This measure

focuses on the intercell material handling cost. Higher value of this measure

means only a few operations are carried out in more than one cell. Therefore,

maximizing this measure equals to minimizing the materials handling cost. If

we try to maximize 771, there will be more '1' in the off-diagonal block and r|2

will be reduced. Chandrasekharan and Rajagopalan [11] suggested the value of

q = 0.5 and many researchers also use this value. We will follow this convention

in calculating our results.

Although grouping efficiency can be used as a measure of the quality of

solution, it has some limitations [40]. First, even a very bad solution with

many exceptional elements showed efficiency figures around 75%. Second, the

authors suggested q = 0.5 and intended to give equal weights to voids and

exceptional elements. However, Kumar and Chandrasekharan [40] showed for

large matrices, the denominator of the first term will be much or less of the

same order. When the matrix size increases, the effect of exceptional elements

becomes smaller, and in some cases, the effect of intercell moves is not reflected

in the grouping efficiency. In the same paper, they proposed another measure

called grouping efficacy (F). It can be expressed by the following formula:

1 - ^^
r = — — -

i + $

where

T ^o
屯 = —

e

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 42

$ = ^
e

6o = number of l's outside the machine/part groups

ey 二 number of voids (zeros) within the machine/part groups

e = total number of operations (number of ones in the matrix)

r — grouping efficacy

Grouping efficacy also ranges from 0 to 1. When F = 0 implies that 少 = 1

which means all the ones in the matrix are outside the machine/part group.

When r = 1 that means 屯 = $ = 0 which corresponds to perfect grouping.

As grouping efficiency is quite commonly used, we will report both grouping

efficiency and grouping efficacy in our algorithm.

3.4.2 Machine assignment

If we examine a given machine sequence generated by the genetic algorithms,

the machines that should be placed together will have a small distance measure.

On the other hand, machines that should be allocated in different machine cells

will have a large distance. The machine cells are formed by partitioning the

sequence. If two cells are required, the machine sequence will be broken at the

first two largest distance edges yielding two sub-sequences which correspond to

the two machine cells. Ties are broken arbitrarily. Subsequently, additional

machine cells can be formed by breaking the largest distance edges that have

remained unbroken.

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 43

3.4.3 Part assignment

Both grouping measures emphasize on maximization of the number of '1' within

the blocks. Therefore, parts are assigned to maximize operation within the

machine cells. As the number of operations for a given part is fixed, attempts to

maximize the operation in cells lead to reduced number of operation performed

outside the cell (therefore reduced material handling cost).

Once machine cells and part families are generated, grouping efficiency or

grouping efficacy can be calculated. The machine and part assignment iteration

will be continued until all edges are broken. The best solution is the one that

provide the best grouping measures.

3.5 Implement at ion

The TSP-clustering problem was solved based on a publicly available package

called GENITOR [86]. The cell formation procedure was developed using C. All

the program was run on a Sun SPARC 10 machine. In summary, our clustering

approach contains two phases:

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 44

Algori thm 3.2 Generate-machine-sequence (in: incidence matrix; out:

intermediate matrix)

> Generate the machine sequence by genetic algorithms

1 calculate the distance matrix > By equation 3.1

2 generate an initial population of N random solutions

3 for i—1 to Generat ion > Set iteration counter

4 select two parents P1 and P2 > By fitness ranking

5 combine P1 and P2 to form a new offspring using enhanced edge

recombination operator > Crossover

6 replace the worst individual in the population with new offspring

7 end

8 output the intermediate matrix > Machine sequence reordered

Algorithm 3.3 Cell-formation (in: intermediate matrix; out: final

matrix

t> Machine cells and part families formation

1 b ^ 2 0 The best number of cells

2 for c — 2 to m t> m is the number of machine

> The iteration starts from 2 to the total number of machine

3 break first c longest edges of the machine sequence (a tour)

4 form the machine cells > Formation of machine cells

5 assign each part to the cell that maximizes the operations within the

machine cell > Formation of part families

6 calculate the grouping efficiency or grouping efficacy

7 if the solution is better then t> With higher grouping measures

8 b <~ c > The best known value

9 end
10 output the results > Final matrix and the grouping measures

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 45

3.6 An illustrative example

In order to provide a comprehensive understanding of our heuristic, an example

adopted from Chandrasekharan and Rajagopalan [11] is used for illustration.

Figure 3.6 is the initial machine-part matrix.

Parts

1 1 1 1 1 1 1 1 1 1 2

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

M 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0

a 2 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1

c 3 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0

h 4 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1

i 5 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0

n 6 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1

e 7 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1

s 8 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1

Figure 3.6: Initial matrix

The first step is to calculate the distance matrix based on distance measure

(the rectilinear metric). The distance matrix is in Figure 3.7.

Machines

1 2 3 4 5 6 7 8

M 1 0 13 1 15 15 15 14 14

a 2 13 0 14 2 12 12 3 1

c 3 1 14 0 16 14 14 15 15

h 4 15 2 16 0 10 10 3 1

i 5 15 12 14 10 0 4 11 11

n 6 15 12 14 10 4 0 11 11

e 7 14 3 15 3 11 11 0 2

s 8 14 1 15 1 11 11 2 0

Figure 3.7: Distance matrix for machine grouping

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 46

After several experiments, the following parameters are shown to produce

good results: the population size is 400 and the GA terminates after 500

generations.

0 I Bst: 48.000000 Wst: 104.00000 Median: 82.000000 Avg: 79.610000

100 I Bst: 48.000000 Wst: 90.000000 Median: 76.000000 Avg: 73.835000

200 I Bst: 48.000000 Wst: 84.000000 Median: 68.000000 Avg: 68.945000

300 I Bst: 48.000000 Wst: 78.000000 Median: 66.000000 Avg: 63.995000

400 I Bst: 48.000000 Wst: 74.000000 Median: 60.000000 Avg: 59.330000

500 I Bst: 48.000000 Wst: 66.000000 Median: 56.000000 Avg: 55.955000

3 1 2 8 4 7 6 5 48.000000

Figure 3.8: Program output for phase 1

Figure 3.8 is the program output. In the figure 'Bst' stands for best value

obtained so far, 'Wst' stands for worst individual encountered, 'Median' is the

middle number of the population, and 'Avg' is the average fitness value of

the whole population. The last sequence indicates the best permutation of

machines found and the corresponding fitness value is 48.00. After phase 1，an

intermediate matrix is generated (Figure 3.9). We can see that machines that

process similar parts are already grouped together.

In phase 2, we try to find machine cells and part families based on the

machine sequence formed in phase 1. Table 3.10 is the distance between two

adjacent machine.

If two cells are formed, the first two largest distance edges will be removed

yielding two sub-sequences: {3-1} and {2-8-4-7-6-5}. Parts are then assigned to

the cells. The grouping efficiency is 80.04% and grouping efficacy is 62.92%. If

we continue to three cells, three sub-sequences will be generated: {3-1}，{2-8-

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 47

Parts

1 1 1 1 1 1 1 1 1 1 2

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

M 3 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0

a 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0

c 2 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1

h 8 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1

i 4 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1

n 7 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1

e 6 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1

s 5 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0

Figure 3.9: An intermediate matrix

Pair of machine Distance

3-1 1

1-2 13

2-8 1

8-4 1

4-7 3

7-6 11

6-5 4

5-3 14

Figure 3.10: The distance between every pair of machines

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 48

4-7}, and {6-5}. The grouping measures are 95.83% and 85.25%, respectively.

For four cells configuration, machine cells {3-l}, {2,-8-4-7}, {6}, and {5} are

formed. Both grouping efficiency and grouping efficacy are decreased (93.81%

and 77.05%). After testing the six possible configurations (from 2 cells to 7

cells)，three cells configuration is shown to be the best solution in terms of the

grouping measures.

After the two phases, a final matrix is generated. The solution has nine

exceptional elements and, no voids within the blocks, and a grouping efficiency

of 95.83%. This solution is also known as the optimal solution for this data set

11.

Parts

1 1 1 1 1 1 1 2 1 1 1

2 8 9 1 3 4 6 7 9 3 4 6 7 8 0 1 5 0 2 5

M 3 1 1 1 1 1 1 1 1 1

a 1 1 1 1 1 1 1 1 1 1 1

c 2 1 1 1 1 1 1 1

h 8 1 1 1 1 1 1

i 4 1 1 1 1 1 1 1

n 7 1 1 1 1 1 1 1 1

e 6 1 1 1 1 1 1 1

s 5 1 1 1 1 1 1 1

Figure 3.11: The final matrix

The machine cells and part families formed are shown in Table 3.3.

Cell/family Machines Parts

1 1,3 2,8,9,11,13,14,16,17,19

2 2,4,7,8 3,4,6,7,18,20

3 5,6 1,5,10,12,15

Table 3.3: Machine cells and part families formed

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 49

3.7 Comparative Study

In order to test our heuristic, 25 data sets from the literature have been

collected for evaluation. The size of matrices ranges from 5 x 7 to 40 x

100 and both well-structured and ill-structured forms are included. We will

compare our results to ZODIAC [13]. Miltenburg and Zhang [63] compared nine

clustering methods and showed ZODIAC outperformed array-based methods

and similarity coefficient methods. It is a reliable clustering algorithm and

commonly used in comparative studies.

The detailed results of the experiments are presented in Table 3.4. The table

indicates that for small size problems, both ZODIAC and our algorithm produce

similar results. This is because optimal solutions for small size problems are

easier to obtain. But in some cases, improvement can still be found, the result

of problem 1 reports higher values in both measures. For larger size problems

(e.g. up to 20 X 20)，significant improvement can be identified. Our algorithm

performs better in both grouping efficiency and grouping efficacy. It is worthy

to point out that some of the solutions generated are of better quality than

any published results. For example, the solution of problem 9 has a grouping

efficiency 88.83% and grouping efficacy 70.83%. Also, for the largest data set in

our experiment (problem 25), most clustering algorithms [75, 76] generate result

with grouping efficacy 83.92% and our heuristic successfuUy find out a solution

with higher value. This value surpasses all the known results. It is clear that

the GA-based approach has the ability to solve larger scale problems.

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 50

Only in problem 11, we find that ZODIAC performs better than our

algorithm in both measures. The computational requirement is not high. For a

40 X 100 matrix, a solution can be obtained in less than 3 minutes.

Figures 3.12, 3.13, and 3.14 are some examples of varying densities and

exceptional elements. Tables 3.5, 3.6, and 3.7 show the detailed assignment of

machines and parts.

3.8 Conclusions

Machine-part clustering can be modeled by a 0-1 incidence matrix. A grouping

algorithm involves rearrangement of rows and columns of such matrix. In

this chapter, we showed that the clustering problem can be formulated as a

traveling salesman problem. We proposed a genetic algorithm to solve the TSP

grouping problem. After the generation of machine sequence, a heuristic is used

to partition the machines into cells. The algorithm is compared to a well-known

algorithm presented in the literature. The results showed our proposed heuristic

can successfully yield a final matrix with better grouping measures.

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 51

Grouping Grouping

efficiency (77) efficacy (F)

No. Source Size ZODIAC GA ZODIAC GA

1 Waghodekar and Sahu [84] 5 x 7 72.20 77.10 56.52 68.00

2 Seifoddini [70] 5 x 18 86.76 89.14 77.36 79.59

3 Kusiak and Cho [49] 6 x 7 87.50 87.50 76.92 76.92

4 Kusiak and Chow [50] 7x 11 65.01 81.40 39.13 58.92

5 Boctor [5] 7 x 11 86.08 86.08 70.37 70.37

6 Chandrasekharan and Rajagopalan [12] 8 x 20 95.83 95.83 85.25 85.25

7 Chandrasekharan and Rajagopalan [11] 8 x 20 71.88 72.79 58.33 56.73

8 Mosier and Taube [64] 10 x 10 85.29 85.29 70.59 70.59

9 Stanfel [77] 14 x 24 83.90 88.83 65.55 70.83

10 Chan and Milner [10] 15 x 10 96.00 96.00 92.00 92.00

11 King [37] 16 X 43 80.20 77.55 53.76 47.73

12 Mosier and Taube [65] 20 x 20 53.05 61.48 21.63 30.85

13 Carrie [9] 20 x 35 87.81 88.00 75.14 75.28

14 Boe and Cheng [6] 20 x 35 77.36 81.99 51.13 52.13

15 Kumar, Kusiak and Vannelli [41] 23 x 20 66.97 72.55 38.66 29.41

16 Chandrasekharan and Rajagopalan 1 [14] 24 x 40 100.00 100.00 100.00 100.00

17 Chandrasekharan and Rajagopalan 2 [14] 24 x 40 95.20 95.20 85.11 85.11

18 Chandrasekharan and Rajagopalan 3 ^ [14] 24 x 40 90.84 91.16 73.03 73.51

19 Chandrasekharan and Rajagopalan 5 [14] 24 x 40 77.31 84.84 20.42 44.37

20 Chandrasekharan and Rajagopalan 6 [14] 24 x 40 72.43 73.17 18.23 35.29

21 Chandrasekharan and Rajagopalan 7 [14] 24 x 40 69.33 75.57 17.61 34.88

22 Kumar and Vannelli [42] 30 x 41 68.14 86.43 33.46 57.69

23 Stanfel [77] 30 x 50 75.35 85.95 46.06 56.61

24 Stanfel [77] 30 x 50 62.92 79.12 21.11 42.27

25 Chandrasekharan and Rajagopalan [13] 40 x 100 95.07 95.10 83.92 84.03

"Data set 3 is as the same as data set 4.

Table 3.4: Performance comparison of our algorithm and ZODIAC

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 52

Parts

1 1 1 1 2 2 3 1 1 1 2 2 3 1 1 2 2 2 2 1 2 2 3 3 3 3

2 7 0 1 3 8 4 7 1 8 4 6 9 2 6 4 1 3 5 5 7 0 3 5 9 4 6 9 1 1 8 0 2 3 5

18 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1

13 1 1 1 1

5 1 1 1 1

M 6 1 1 1 1 1 1 1

a 10 1 1 1 1 1 1

c 9 1 1 1 1 1

h 20 1 1 1 1 1
i 1 1 1 1 1 1
n 8 1 1 1 1 1 1 1 1 1

e 7 1 1 1 1 1 1 1

s 17 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1

12 1 1 1 1 1 1

15 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 1

Figure 3.12: Rearranged matrix of problem 13 (20x35)

Cell/family Machines Parts

1 2,4,13,14,18 2,7,10,12,13,18,24,27,31

2 5,6,9,10,20 8,14,16,19,22,26,34

3 1,3,7,8,17 1,3,5,15,17,20,23,25,29

4 11,12,15,16,19 4,6,9,11,21,28,30,32,33,35

Table 3.5: Machine cells and part families formed

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 53

Parts

1 1 1 2 2 3 3 2 3 2 2 4 1 2 2 3 1 1 1 2 3 3 1 1 3 1 2 2 3 3 3

2 1 2 5 3 4 1 4 3 5 2 6 7 0 9 0 4 5 8 6 7 0 0 3 4 2 5 6 1 9 6 7 3 8 9 1 8 7 8 9

20 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1

24 1 1 1

14 1 1 1 1

23 1 1 1

7 1 1 1

17 1 1 1 1 1

9 1 1 1 1 1

M 10 1 1 1 1

a 15 1 1 1 1 1 1 1

c 12 1 1 1 1 1 1 1

h 18 1 1 1 1 1 1

i 6 1 1 1 1 1 1

n 8 1 1 1 1 1

e 5 1 1 1 1 1 1

s 19 1 1 1 1 1 1 1

11 1 1 1 1 1

2 1 1 1 1 1 I

21 1 1 1 1 1

22 1 1 1 1 1

13 1 1 1 1 1

1 1 1 1 1 1

4 1 1 1 1 1 1

16 1 1 1 1 1 1 1

Figure 3.13: Rearranged matrix of problem 18 (24x40)

Cell/family Machines Parts

1 3,20 2,11,12,15,23,24,31,34

2 7,14,23,24 3,25,32

3 9,10,17 6,7,20,29,40

4 6,8,12,15,18 4,5,18,26,27,30

5 2,5,11,19 10,13,14,22,35,36

6 1,13,21,22 1,9,16,17,33

7 4,16 8,19,21,28,37,38,39

Table 3.3: Machine cells and part families formed

CHAPTER 3. GENETIC CELL FORMATION ALGORITHM 54

Parts

2 3 3 3 2 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 3 4 4 4 4 4 4 5 4 4 4 4 1 2 2 2 2 2 2 2 2

9 1 3 8 8 0 2 4 5 6 7 4 7 8 8 1 1 2 3 6 9 7 0 5 3 4 5 6 2 9 2 4 6 8 1 5 0 0 7 9 3 9 0 1 2 3 4 5 6 7

19 1 1 1 1 1 1

23 1 1 1 1 1

21 1 1 1 1 1 1

18 1 1 1 1 1

22 1 1 1 1 1

20 1 1 1 1 1 1

4 1 1 1

11 1 1 1 1

10 1 1 1 1 1 1 1

3 1 1 1 1 1

M 1 1 1 1 1 1

a 13 1 1 1 1 1

c 9 1 1 1 1 1

h 2 1 1 1 1

i 5 1 1 1 1 1 1

n 12 1 1 1 1 1 1

e 8 1 1 1 1 1 1 1

s 6 1 1 1 1 1 1

7 1 1 1 1

24 1 1 1 1

30 1 1 1 1 1 1

29 1 1 丨 1 1 1

25 1 1 1 1 1

27 1 1 1 1 1

26 1 1 1

28 1 1 1 1

15 1 1 1 1 1

17 1 1 1 1

14 1 1 1 1 1 1

16 1 1 1 1 1 1

Figure 3.14: Rearranged matrix of problem 23 (30x50)

Ce l l / f am i l y Mach ines Par ts

- 1 19,21,23 29,31,33,38

2 ~18,20,22 一 28,30,32,34,35,36,37 —

• 3 — 4,10,11 ~ 7 , 1 8

4 3 8,11

5 T^9,13 1,2,3,6,9,17

6 5 10

7 —6,8,12 一 5,13,14,15,16 —

‘ 8 — 7 ~T2
‘ 9 — 24,30 ^ , 4 2 , 4 4 , 4 6 , 4 8

10 ~25,29 一 41,45,50 ~

11 —27 一 40,47,49 ~

12 —26,28 一 43 ~

• 13 14,15,16,17 19,20,21,22,23,24,25,26,27

Table 3.3: Machine cells and part families formed

Chapter 4

A multi-chromosome GA for

minimizing total intercell and

intracell moves

4.1 Introduction

In reality, many objectives and constraints should be considered in designing a

cellular manufacturing system; for example, material handling costs, machine

utilizations, and number of cells formed. Generalized models deal with the

cellular manufacturing problem more comprehensively.

There are many generalized models proposed in the literature. In this

research, we consider the workload model proposed by Logendran [55]. This

model aims at minimizing total intercell and intracell moves while also taking

the machine utilization into consideration. As suggested by Logendran [55]，the

55

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 56

intracell moves could be as important and unproductive as intercell moves.

Only a few research work considered the impact of intracell moves. Stanfel

77] proposed a mathematical model that included the concept of extraneous

machine transitions to reflect intracell processing. Extraneous machines are

machines in a machine cell not utilized by a part assigned to the same cell. The

movements of parts from and to this machines incurred handling costs. The

objective function of the Stanfel's approach is the total of inter-cell transitions

and extraneous machine transitions. The problem with the Stanfel's approach is

that extraneous machine transitions cannot truly represent intracell moves. Also

the workload of machine is not taken into account in his approach. Logendran

55, 56] proposed a workload-based model focusing on minimizing the total

moves that includes both intercell and intracell moves.

Furthermore, two important factors are often ignored by most literature:

the sequence of operations and the layout of cells. These two factors are crucial

in evaluating the intracell and intercell moves and can significantly affect the

results. The workload-based model by Logendran [55, 56] takes these factors

into account.

In reality, not just the movement of parts needs to be optimized. Other

designing objectives are also the concerns of management. These objectives

may include the workload of each workstation, the corresponding utilization

rate, and the cell load variation, etc. These concerns can affect the choice made

by management in selecting a cell configuration. Our algorithm will also take

these factors into consideration.

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 57

In solving the workload model, Logendran proposed an algorithm involved

four phases with two rules. In this chapter, we propose a genetic algorithm with

multiple chromosome representation. Applying genetic algorithms to solve the

workload model have been done by Gupta et al. [29, 30]. A major problem with

their approach is the generation of illegal offsprings. Additional computational

effects through mutation are required to handle illegal offsprings.

4.2 The model

In this research, the model proposed by Logendran [56] serves as the basic

model. The objective function of the model is the total intracell and intercell

moves. The underlying philosophy is clearly stated by Logendran:

If a part is required to visit n cells (n > 1) to either partially or

completely process its requirements, then it contributes to (n — 1)

intercell moves in the total intercell moves equation If a part is

required to visit m machines (m > 1) dedicated to a cell as a portion

of its processing requirements or in its entirety, then it contributes

to {m — 1) intracell moves in the total intracell moves equation.

The sequence of operations and layout of cells are important factors in

evaluating the movement but are commonly neglected by researchers. Consider

the three cells in Figure 4.1, machines 1 and 3 are assigned to cell 1 while

machine 2 in cell 2 and machine 4 in cell 3. Assume that a part requires to visit

all the four machines to complete its processing requirements. If the operation

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 58

sequence is not taken into account when the cost is being minimized, there are

one intracell move and two intercell moves. However, in reality, processing

of parts requires an operation be performed before another operation. To

truly reflect this situation, we further assume that a part requires the following

processing sequence: Ml—M2—M3—M4. As a result, this part requires three

intercell moves and no intracell move. This example clearly demonstrates the

importance of operation sequences.

Two cellular layouts are considered in this research: the linear single-row

cellular layout and the linear double-row cellular layout. For simplicity, the

linear single-row layout has been referred to as layout 1 (Figure 4.1) and the

linear double-row layout as layout 2 (Figure 4.2).

M1,M3 M2 M4

C1 C2 C3

Figure 4.1: Linear single-row cellular layout

Consider layout 1. If the distances between cells are equal, then the distance

travelled from cell 1 to 3 will be two times as from cell 1 to cell 2. For layout 2,

the distance travelled from cell 1 to 3 and cell 2 to 4 is y/2 times the distance

travelled between any adjacent two cells.

To accurately analyze cellular manufacturing problem, intracell movements,

sequence of operations, and layout of cells should be taken into consideration.

、

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 59

C1 C2

M1,M3 M2

M5,M6 M4

C4 C3

Figure 4.2: Linear double-row cellular layout

The total moves for the two layouts can be represented by the following

equations:

Layout 1:

p ki_i p

Total moves = 9i * ^ ^ \ck — Cfc+i| + O2 * Y^rrii (4.1)
i—l k=l i=l

Layout 2:

P ki-l p

Total moves = 61 * ^ ^ Q̂ fc,fc+i +6>2 * Y1 rrii (4.2)
i = l k=l 2=1

where:

Ck = the cell number in which operation k is performed on part i

c ^ i = the cell number in which operation {k + 1) is performed on part i

ki = the total number of operations to be performed on part i

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 60

f

V2 if \ck - Cfc+i| 二 2

o^k,k+i = <

1 otherwise
V

c 二 the number of cells

p 二 the number of parts

rrii = the total number of intracell moves performed by part i

61 = the fractions representing the weights attributed to the intercell moves

O2 二 the fractions representing the weights attributed to the intracell moves

As suggested by Logendran [55]，the weight assigned to intracell moves may

not be as high as that assigned to intercell moves. In this research, we will

follow the value used by Logendran. That is the weight assigned to intracell

moves is 0.3 and the weight assigned to intercell moves is 0.7.

One of the parameters required by the model is the number of cells. In

general, as the number of cells formed increases, the effect of intercell moves

increases and the effect of intracell moves decreases. In order to make the

model realistic, we assume there will be at least two cells formed. On the other

hand, the upper limit on the number of cells formed is arbitrary. The model can

be evaluated in cell number equals to three, four, five, and so on. This actually

provides different scenarios to a plant manager or designer who evaluates the

solutions based on the constraints he/she faces. As pointed out by Gupta et aL

30], most of the manufacturing firms in US used six or less cells; hence, it is

possible to evaluate all the alternatives. The decision for the number of cells is

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 61

primarily based on factors such as workforce, the space of shop floor, budgetary

limitations, etc.

Once the machine cells are formed, parts are assigned to cells based on

the accumulated processing time in all cells. The total accumulated processing

time is the sum of all processing times of a part in each of the workstations

of the cell. The part is assigned to the cell of highest value. Ties are broken

arbitrary. When the part families are also formed, the machine utilization can

be calculated. Machine utilization is determined as a ratio between the workload

and the machine capacity. If the workload assigned to a machine exceeds its

capacity, we allow multiple machines to be allocated. If we refer a machine type

as a workstation. The utilization rate can be represented as follows.

X) tij

Uj = ^ (4.3)

where

Uj 二 utilization rate of workstation j

tij = processing time of each part i in workstation j

C = available capacity of machines (hours)

Cj = cell to which workstation j is assigned

4.3 Solution techniques to the workload model

Two approaches were proposed in the literature to solve the workload model,

the Logendran's four phases algorithm [55] and Gupta et al.'s genetic algorithm

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 62

29；.

4.3.1 Logendran's original approach

The original approach involves four phases: cell representation phase, clustering

phase, improvement phase, and assignment phase. In the cell representation

phase, different key workstations are identified. The number of key workstations

equals to the number of cells formed. The key workstation is the seed for each

cell. In phase 2, the remaining workstations are assigned to the cells based on the

total moves resulted. A workstation is assigned to a cell that causes minimum

total moves. This phase ends when all the workstations are assigned to cells.

In the improvement phase, further reduction in total moves is attempted. Each

workstation will be removed from the cell to which it was assigned and added

to every other cell. The workstation will be assigned to the cell that gives the

highest reduction. Finally, in the last phase, parts are assigned based on the

accumulated processing time in all cells.

As suggested in by Del Valle et aL[23], the step in selecting the key

workstations is important. A poor selection criterion will increase the

computational overhead in the improvement phase. Two rules may be employed

in selecting the key workstations. Rule 1 selects workstation with the highest

total workload per machine. Rule 2 selects the workstation with the maximum

number of parts.

One of the weakness of the algorithm is that the complexity of assigning a

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 63

machine from cell to cell in step 3 increases as the problem size increases [23 .

For some real size problems, the cost to obtain a solution will be too high.

4.3.2 Standard representation - the GA approach

The cell formation problem is a combinatorial problem [53]. Heuristic

approaches are required to solve the problem efficiently. Genetic algorithms

seem to be a good candidate to solve combinatorial problems due to their

ability to perform a parallel search and their robustness [53] • Applying genetic

algorithms to solve the workload model was first proposed by Gupta et al.

29, 30；.

In Gupta et al.'s implementation [29], standard (or group number)

representation was employed. The value of a gene (allele) represents the cell

number with the position of the gene corresponding to the machine number.

For example, chromosome (2,3,1,1,2) represents that machine 1 is assigned to

cell 2, machine 2 assigned to cell 3, machine 3 assigned to cell 1, and so on.

The length of the chromosome is the total number of machines. The crossover

operator used is the single point crossover. The crossing point in a chromosome

is chosen randomly. The portions of the chromosomes after the crossing point

are exchanged to produce the offsprings.

One weakness of this representation is the occurrence of empty cell and

therefore illegal offsprings. Consider the crossover operation in Figure 4.3. The

number of cells is assumed to be three. However, after crossover, cell 3 is empty

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 64

in offspring 1 and cell 2 is empty in offspring 2. This violates the constraint

that each cell at least contains one machine. The empty cell is no longer a cell.

Parent 1 | 2 | 1 | 3 | 3 | 1 | 1 | Offspring 1 | 2 | 1 | 2 | 1 丨 2 | 2

X
Parent 2 | 3 | 1 | 2 丨 1 | 2 | 2 | Offspring 2 | 3 | 1 | 3 | 3 | 1 | 1

• V

Crossover point

Figure 4.3: Occurrence of empty cell after crossover

To overcome this problem, Gupta et al. [29] introduced a mutation operator.

Two random integers ri and r2 are selected such that 1 < r*i < m and 1 <

r2 < c. The algorithm then removes machine number ri from the chromosome

and assigns it to cell r2. This process is repeated until no empty cell exists.

Such a mutation operator increases the computational overhead and affects the

performance of the genetic algorithm.

In this thesis, we develop a chromosome representation which will help

reduce computational effort. The use of genetic algorithms replaces the first

three steps in Logendran's approach and the solution is independent of the

choice of the key workstations. The individual chromosome with the lowest total

moves gives the solution to the cell formation problem. After the formation of

cells, parts are assigned using the fourth step of the Logendran's method.

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 65

4.3.3 Multi-chromosome representation

Traditionally, the solution of a genetic algorithm is encoded in one chromosome.

The gene of a chromosome can be a binary, an integer, a real number, or an

alphabet. The choice of these encoding schemes depends on the domain of the

problem. For example, for a sequencing problem like TSP, it is most natural to

use an integer as a gene.

A genetic algorithm uses some decoding schemes to interpret the structure

of a chromosome. In other words, a GA tries to extract information stored in

a chromosome and provides a solution to the original problem. Ideally, the

solution is directly represented in a chromosome and requires no decoding.

However, some problems are difficult to have a direct representation. Even

if it can be represented, specific or problem-dependent crossover operators are

required.

Bruns compared the direct and indirect representations for the production

scheduling problem [7]. The direct representation involves incorporation of

problem-specific knowledge of the application domain in a genetic algorithm.

The introduction of the expanded representation requires the definition of new

domain-dependent crossover and mutation operators. He concluded in his paper

that the addition of relevant domain information made a GA operate on the

entire search space and produced very promising results.

In animal genetic, the number of chromosomes in one cell is always larger

than 1. For example, there are 23 pairs of chromosomes in a somatic human

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 66

cell. Naturally, genes that encode very different information will be located

at different chromosomes. Similar function genes will be placed together. For

instance, most of the genes on X and Y chromosomes are related to the sex of a

human. Encoding different characteristics to separate chromosomes may have

advantages. In this research, we suggest a multi-chromosome representation

that is considered to be more natural to the cell formation problem. Juliff

35] suggested a multi-chromosome GA to solve the pallet loading problem.

He stated that the multi-chromosome GA outperformed its single-chromosome

counterpart. He also concluded that his GA can sample the search space more

productively.

In our representation, each individual contains two chromosomes. Table 4.1

shows the details, where m is the number of machines.

Chromosome length crossover used

machine sequence m edge-recombination operator

cell boundary m — 1 edge-recombination operator

Table 4.1: The chromosomes used

Each gene in a machine sequence chromosome represents a machine number

and therefore, the value of a gene is an integer. The length of a chromosome

equals to the number of machines. The crossover operator used is the edge-

recombination operator. Edge-recombination operator transfers 95% of edge

(information) from parent to offspring and is considered the most efficient

operator for general sequencing problem [61 .

Another chromosome is the cell boundary chromosome for a given machine

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 67

sequence. Its task is to partition machines into different machine cells. This

chromosome groups the first x machines into a common cell, then the following

y machines to another cell, and so on. All the machines will be assigned to the

predefined number of cells. Gene 1 indicates the edge between machines 1 and

2, gene 2 indicates the edge between machines 2 and 3，and so on. Each gene

in the cell boundary chromosome is an integer number. Assume the number

of cells formed is c, then the integer value smaller than c represents the cell

boundary. For example, Figure 4.4 is a possible individual assumed three cells

to be formed:

+

machine sequence 2 3 5 6 8 1 4 9 7

cell boundary | 8 | 7 | 1 | 3 | 6 | 2 | 4 |~5~

(̂ ^̂ ^̂ ^̂ (̂ ^̂ ^̂ 3̂ (̂ ĵ̂^̂ 7̂ ^̂
ceU 1 ceU 2 cell 3

Figure 4.4: Interpretation of information in chromosomes

The third gene (1) and the sixth gene (2) of the cell boundary chromosome

indicate the cutting points of the machine sequence. As a result, machines 2, 3，

and 5 are assigned to cell 1, machines 1, 6, and 8 to cell 2, and cell 3 contains

machines 4, 7, and 9. Compared to the representation proposed by Gupta et

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 68

aL [30], this representation does not generate illegal offsprings and therefore

reduces the computational overhead required for restoration (see Section 4.3.2).

The proposed representation also facilitates a parallel search. A parallel

search can result in a better solution in less computational time. The existence

of several evolving chromosomes allows good chromosomes not to be disrupted

while trying to optimize another chromosome. In addition, the use of machine

sequence allows similar machines keep together during the search process and

a kind of linkage among objects can be developed. This actually provides more

information to GA and guides the search in a more favorable direction.

Consider the example in Figure 4.5. Assume that three machines (machines

2, 3 and 5) should be assigned to one cell. Chromosomes 1 and 3 represent the

same individual that machines 2 and 3 are grouped together and chromosomes

2 and 4 represent an individual that machines 3 and 5 are together. After

crossover, in our representation, machines 2, 3, and 5 may appear together

in one cell. However, in standard representation, one crossover cannot give

a satisfactory result. This is because the association of cell numbers to the

machine restricts the GA to combine information in each chromosome.

In addition, our representation has a potential capability to extend to

dynamic cell formation. In some generalized models, the number of cells formed

is not a pre-defined number, for example, the model proposed by Askin and

Subramanian [3]. Their algorithm determines the best cell configuration as well

as the best number of cells. Since we have not imposed any restriction to the

number of cells formed, we can use our representation to handle this extension.

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 69

On the contrary, the representation proposed by Gupta et aL strictly requires

the number of cells be pre-defined.

Finally, handling one more chromosome in each individual is not very costly

in terms of computation. In fact, such GAs allow parallel processing, which

can further reduce computational efforts involving an additional chromosome

in each individual. As a result, this multi-chromosome representation seems

particularly suitable for solving generalized cell formation model. It is more

natural and capture more information about the problem that actually aids the

searching.

Chromosome 1 Chromosome 3

I 2 I 3 | I 丨 I I I 1 I 1 I I I

Chromosome 2 Chromosome 4

I I I 3 I 5 I] I I I 2 I I 2 I “

Offspring

2 I 3 I 5 I I I

Multi-chromsome representation Standard GA representation

Figure 4.5: Problem of association of cell number to machines

Our implementation is based on a genetic package called GENITOR [86 .

The fitness function is the total moves suggested by Logendran. Both

chromosomes are randomly generated in the initial population. The parents

are selected using fitness ranking. The processes of selection, crossover, and

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 70

replacement are continued until a maximum number of generation reached.

4.4 Comparative Study

We solved the three problems used in the Logendran's paper and one large

problem in the Gupta's paper in order to establish the performance of the

algorithm. The results are shown in the tables below. The tables include the

assignment of workstations and parts, and the utilization rate of individual

workstation. In addition, the average utilization rates were calculated. For the

three problems identified by Logendran, the model was evaluated for two, three,

and four cells. For the large problem proposed by Gupta et al., four, five, and

six cells were considered. The capacity of each machine was assumed to be

eight hours. If the solution results in lower total moves or higher workstation

utilization, we consider it to be a better one. The results of the four problems

are discussed separately.

4.4.1 Problem 1

This problem was considered by Balakur and Steudel [4]. It has seven parts

and five machines. Table 4.2 shows the workstation-part load matrix. The

table indicates the workload for workstation W2 is 10.5 hours and it exceeds

the capacity of one machine. Therefore, two machines are allocated. The

other workstations have a load less than 8 hours and only one machine in such

workstations.

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 71

Parts Total workload No. of

Workstation P1 P2 P3 P4 P5 P6 P7 on workstation {h) machines

W1 0.5 5.0 1.5 7.0 1

W2 2.5 2.0 4.5 1.5 10.5 2

W3 2.5 3.5 0.5 0.5 7.0 1

W4 2.5 1.0 0.5 4.0 1

W5 ^ 1^ ^ ^ 1

Table 4.2: Workstation-part load matrix for Problem 1

Tables 4.3 and 4.4 present the results and the comparison, respectively. Our

genetic algorithm generated better results than Logendran and Gupta. The

results of Gupta's approach are listed in Tables 4.12 and 4.13. For three cells,

both the Gupta's and our solutions obtained a total number of moves equal to

5.0 which was less than the Logendran's solution. But our average utilization

was higher than the Gupta's one. For four cells, not only the average utilization

rates were better but the total moves obtained were the least among the three

algorithms.

Logendran targeted the minimum acceptable value for utilization to 50%.

However, all the algorithms failed to reach this value for all workstations. In

addition, W4 had 0% utilization rate in Logendran's and Gupta's solution when

3 and 4 cells were formed. This was a possible waste of resource and would cause

workload imbalance. However, in our case, 31% was obtained.

4.4.2 Problem 2

This problem was originally presented by Tabucannon and Ojha [82] and

modified by Logendran. It has 14 parts and 7 workstations. Workstation W7

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 72

Cells, Workstation in cell Ci Parts in cell Ci Utilization of workstation Wi

Layout, i-l,2,3,... . ,AT i = l,2,3，....,iV i = l,2，3，.:.，M

Moves C1 C2 I C3 C4 —C1 C2 C3 C4 ~W1 W2 W3 W4 W5

2,1,3.8 1,2,3 5 1,2,4 3 0.88 1.31 0.88 0.50 0.38

4 5,6,7

2.2.3.8 1,2,3 5 1,2,4 3 0.88 1.31 0.88 0.50 0.38

4 5,6,7

3,1,5.0 5 1,2,3 4 3 2,4,5 1 0.88 1.00 0.88 0.31 0.38
^

3,2,5.0 4 1,2,3 5 1 2,4,5 3 0.88 1.00 0.88 0.31 0.38
^

4.1.6.9 4 2 1,3 5 1 4,6 2,5,7 3 0.88 0.75 0.81 0.31 0.38

4,2,6.49 1,3 2 4 5 2,5,7 4,6 1 3 0.88 0.75 0.81 0.31 0.38

Table 4.3: Result of Problem 1

No. of Total moves Average utilization of workstation

cells, Logendran Logendran Gupta GA Logendran Logendran Gupta GA

Layout (rule 1) (rule 2) (rule 1) (mle 2)

2.1 4.6 3.8 3.8 3.8 0.694 0.659 0.657 0.659

2 . 2 4 . 6 3 . 8 3 . 8 3 . 8 0.694 0.659 0.657 0 . 6 5 9

3 , r 6.8 7.1 5.0 5.0 0.620 0.559 0.559 0.588

3,2" 5.98 5.87 5.0 5.0 0.620 0.559 0.585 0.588

4,1" 10.4 13.2 7.0 6.9 0.520 0.520 0.520 0.550

4,2« 7.36 7.36 6.78 6.49 0.520 0.520 0.434 0.550

^Our approach is better

Table 4.4: Comparison of different approaches for Problem 1

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 73

has 3 machines and W1 and W5 have two machines. The remainders make up

of one machine only. Table 4.5 shows the workload matrix.

Work- Parts Load # of

station P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P l l P12 P13 P14 {h) m

W1 0.69 2.42 2.44 2.48 2.72 10.75 2

W2 0.50 0.61 0.90 2.09 1.35 5.45 1

W3 2.50 3.03 0.71 1.61 7.85 1

W4 3.10 1.35 1.03 0.58 0.99 7.05 1

W5 1.22 4.45 3.84 9.51 2

W6 0.50 4.55 2.26 7.31 1

W7 0.55 4.74 3.61 1.47 3.87 4.68 18.92 3

Table 4.5: Workstation-part load matrix for Problem 2

Tables 4.6, 4.7, and 4.8 summarize the results for this data set. For

two cells configuration, the Logendran's approach employing rule 1 obtained

the best known solution. Gupta's genetic algorithm generated a solution

with the same amount of total moves but W1 failed to achieve the targeted

minimum utilization rate (50%) and the average utilization of all workstations

was lower. In our case, most of the utilization rates reached the minimum

value. For three and four cells configuration, our approach generated better

solution than Logendran's. The total moves were less and with a higher average

utilization of workstations. Also, fewer workstations failed to meet the targeted

utilization rate. For this data set, all the results produced by our algorithm

were comparable to the best known solution available in the literature.

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 74

Cells, Workstation in cell Ci Parts in cell Ci

Layout, z-l ,2,3, , iV i = l，2,3，....,iV

Moves C1 C2 C3 C4 C1 C2 C3 C4

2,1,6.3 1,2,4,5,6,7 3 1,2,3,4,5,6,7,8 11,13

9,10,12,14,15

2.2.6.3 1,2,4,5,6,7 3 1,2,3,4,5,6,7,8 11,13

9,10,12,14,15

3,1,7.5 1,5 2,4,6,7 3 2,8,14 1,3,4,5,6 11,13

7,9,10,12

3,2,7.5 1,5 2,4,6,7 3 2,8,14 1,3,4,5,6 11,13

7,9,10,12

4.1.9.4 3 2,4,6,7 1 5 11,13 1,3,4,5,6 2,8,14

7,9,10,12

4,2,8.88 2,6,7 1,5 3 4 1,4,5,6,7,9,10 2,8,14 11,13 3,12

Table 4.6: Result of Problem 2 (part 1)

No. of cells, Utilization of workstation Wi

Layout, i = 1,2,3,..., M

Total moves W1 W2 W3 W4 W5 W6 W7

2,1,6.3 1.34 0.68 0.98 0.88 1.19 0.63 2.36

2.2.6.3 1.34 0.68 0.98 0.88 1.19 0.63 2.36

3 , 1 , 7 . 5 0 . 7 3 0 . 6 8 0 . 5 8 0 . 8 1 1 . 1 9 0 . 6 3 2 . 3 6

3,2,7.5 0.73 0.68 0.58 0.81 1.19 0.63 2.36

4.1.9.4 0.00 0.68 0.58 0.81 1.19 0.63 2.36

4,2,8.88 0.73 0.68 0.58 0.51 1.19 0.63 2.36

Table 4.7: Result of Problem 2 (part 2)

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 75

No. of Total moves Average utliization of workstation

cells, Logendran Logendran Gupta GA Logendran Logendran Gupta GA

Layout (rule 1) (rule 2) (rule 1) (rule 2)

2,1" 6.3 6.7 6.3 6.3 0.720 0.699 0-702 0.720

2,2" 6.3 6.7 6.3 6.3 0.720 0.699 0.702 0.720

3.1 8.9 8.9 7.5 7.5 0.676 0.609 0-635 0.635

3.2 8.08 8.08 7.5 7.5 0.676 0.609 0.635 0.635

4.1 12.3 13.7 9.4 9.4 0.527 0.550 0.583 0.583

4.2 10.66 9.39 8.88 8.88 0.527 0.576 0.592 0.592

"Our approach is better than Gupta et al.'s solution

Table 4.8: Comparison of different approaches for Problem 2

4.4.3 Problem 3

This problem was proposed by King and Nakornchai (1982) [38] and then

considered by Waghodekar and Sahu (1984) [84]. As the original data set

did not contain processing time. Logendran randomly generated data to fulfill

the requirement of the workload model. The workstation-part load matrix is

presented in table 4.9. This problem consists of 7 parts and 5 workstations

and only W4 with a total workload larger than the capacity of one machine

and therefore two machines exist in W4 and the remainder consists of only one

machine each.

Parts Total workload No. of

Workstation P1 P2 P3 P4 P5 P6 P7 on workstation (h) machines

W1 0.55 4.74 1.35 6.64 1

W2 1.22 3.61 4.83 1

W3 0.50 1.69 2.42 1.35 4.96 1

W4 0.51 3.10 4.55 8.16 2

W5 0.61 0.90 2.09 1.47 5.07 1

Table 4.9: Workstation-part load matrix for Problem 3

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 76

Results are tabulated in Table 4.10 and 4.11. Although our solutions are

comparable to Gupta's approach, they are better than Logendran's. The total

moves were significantly reduced. For four cells with layout 1, W5 results in 0%

utilization in Logendran's solution while our approach still reached 26%.

Cells, Workstation in cell Ci Parts in cell Ci Utilization of workstation Wi

Layout, i = l ,2,3,. . . . , iV i = l,2,3,....,N i = l ,2 ,3 , . M

Moves C1 C2 C3 C4 C l C2 C3 C4 W1 W2 W3 W4 W 「

2,1,3.5 2 ^ i " 1,3 2,4,7 1,3,5,6 0.83 0.60 0.56 1.02 0.52

2,2,3.5 2,4,5 1,3 2,4,7 1,3,5,6 0.83 0.60 0.56 1.02 0.52

3,1,4.3 1,3 4,5 2 2,4,7 1,3,6 5 0.83 0.45 0.56 1.02 0.26

3,2,4.3 2 4,5 1,3 5 1,3,6 2,4,7 0.83 0.45 0.56 1.02 0.26

4,1,5.5 2 4,5 3 1 5 1,3,6 2 4,7 0.76 0.45 0.09 1.02 0.26

4,2,5.5 2 1 3 4,5 5 4,7 2 1,3,6 0-76 0.45 0.09 1.02 0.26

Table 4.10: Result of Problem 3

No. of Total moves Average utliization of workstation

cells, Logendran Logendran Gupta GA Logendran Logendran Gupta GA

Layout (rule 1) (rule 2) (mle 1) (rule 2)

2.1 3.5 3.5 3.5 3.5 0.604 0.604 0.604 0.604

2.2 3.5 3.5 3.5 3.5 0.604 0.604 0.604 0.604

3.1 6.8 6.8 4.3 4.3 0.496 0.494 0.522 0.522

3.2 5.57 5.57 4.3 4.3 0.496 0.494 0.522 0.522

4.1 9.8 11.2 5.5 5.5 0.362 0.360 0.414 0.414

4.2 7.64 7.64 5.5 5.5 0.414 0.412 0.414 0.414

Table 4.11: Comparison of different approaches for Problem 3

4.4.4 Problem 4

This problem was proposed by Gupta et al.[29]. The purpose of this data set

is to demonstrate the generalized nature of genetic algorithms. As the sizes of

the three problems considered by Logendran are relatively small, it is difficult

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 77

Problem Cells, Workstation in cell Ci Parts in cell Ci

Layout, i = l,2,3,....,N i = l ,2 ,3 , . ..,AT

Moves ~ ^ ~ ~ C2 C3 C4 C1 C2 C3 C4

2,1,3.8 5 1,2,3,4 3,7 1,2,4,5,6

2,2,3.8 5 1,2,3,4 3,7 1,2,4,5,6

1 3,1,5.0 5 2,3,4 1 3,7 1,2,4,6 5

3,2,5.0 5 2,3,4 1 3,7 1,2,4,6 5

4.1.7.2 5 1,3 2 4 3,7 2,5 1,4,6

4,2,6.78 1 3,5 2 4 5 2,3,7 1,4,6

2.1.6.3 2,3,4, 1,5 1,3,4,5,6,7, 2,8,14

6,7 9,10,11,12,13

2.2.6.3 2,3,4, 1,5 1,3,4,5,6,7, 2,8,14

6,7 9,10,11,12,13

3,1,7.5 3 2,4,6,7 1,5 11,13 1,3,4,5,6, 2,8,14

2 7,9,10,12

3,2,7.5 3 2,4,6,7 1,5 11,13 1,3,4,5,6, 2,8,14

7,9,10,12

4.1.9.4 5 1 2,4,6,7 3 2,8,14 1,3,4,5,6, 11,13

7,9,10,12

4,2,8.88 2,6,7 1,5 4 3 1,4,5,6, 2,8,14 3,12 11,13

7,9,10

2.1.3.5 1,3 2,4,5 2,4,7 1,3,5,6

2,2,3.5 1,3 2,4,5 2,4,7 1,3,5,6

3 3,1,4.3 1,3, 4,5, 2 2,4,7 1,3,6 5

3,2,4.3 2 4,5 1,3 5 1,3,6 2,4,7

4,1,5.5 2 4,5 3 1 5 1,3,6 2 4,7

4,2,5.5 2 1 3 4,5 5 4,7 2 1,3,6

Table 4.12: Gupta's solutions for Problems 1, 2, and 3 (part 1). Reproduced

from Gupta et al. (1996) [29；

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 78

Problem No. of cells, Utilization of workstation Wi

Layout, i = 1,2,3,..., M

Total moves W1 W2 W3 W4 W5 W6 W7

2,1,3,8 0.69 1.31 0.81 0.50 0.63

2,2,3,8 0.69 1.31 0.81 0.50 0.63

1 3,1,5,0 0.63 1.31 0.38 0.50 0.63

3,2,5,0 0.63 1.31 0.38 0.63 0.63

4.1.7.2 0.69 1.06 0.75 0.00 0.63

4,2,6.78 0.63 1.06 0.38 0.00 0.63

2.1.6.3 0.73 0.68 0.98 0.88 1.19 0.63 2.36

2.2.6.3 0.73 0.68 0.98 0.88 1.19 0.63 2.36

2 3,1,7.5 0.73 0.68 0.58 0.81 1.19 0.63 2.36

3,2,7.5 0.73 0.68 0.58 0.81 1.19 0.63 2.36

4.1.9.4 0.00 0.68 0.58 0.81 1.19 0.63 2.36

4,2,8.88 0.73 0.68 0.58 0.51 1.19 0.63 2.36

2.1.3.5 0.83 0.60 0.56 1.02 0.52

2,2,3.5 0.83 0.60 0.56 1.02 0.52

3 3,1,4.3 0.83 0.45 0.56 1.02 0.26

3,2,4.3 0.83 0.45 0.56 1.02 0.26

4,1,5.5 0.76 0.45 0.09 1.02 0.26

4 , 2 , 5 . 5 0 . 7 6 0 . 4 5 0 . 0 9 1 . 0 2 0 . 2 6

Table 4.13: Gupta's solutions for Problems 1, 2, and 3 (part 2). Reproduced

from Gupta et aL (1996) [29；

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 79

to make any valid conclusions about the performance of the algorithms. This

problem is relatively large, Table 4.14 shows the load matrix. It has 30 parts and

15 workstations. As the number of workstations are increased, it is reasonable

to increase the number of cells for evaluation as well. We followed Gupta's

approach and considered four, five, and six cells. Tables 4.15, 4.16, and 4.19

present the result of our approach and the comparison with Gupta's solution,

while Tables 4.17 and 4.18 are the results of Gupta's. We can see for all the

cells and layouts, our approach generated better results. Most of the solutions

were of lower total moves and higher average utilization rates and most of the

workstations reached the minimum targeted utilization rate. Better results

were produced was probably due to the fact that our representation successfully

captured the important features of the cell formation problem and enabled the

GA to explore the search space more effectively.

4.5 Bi-criteria Model

In an actual manufacturing environment, many factors may affect the efficiency

and productivity of a cellular manufacturing system. The nature of these factors

are always conflicting. In other words, optimizing one factor may result in

destruction of the other. To recognize that the cell formation problem involves

trade-off among conflicting objectives, multi-objective models were developed.

Wei and Gaither [85] proposed a model with four objective functions

for optimization. The four objectives are minimization of bottleneck cost,

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 80

Workstations

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W l l W12 W13 W14 W15

P1 0.1 0.9 1.2 0.1 0.6 0.3

P2 0.8 0.8 1.1 1.2 0.4 1.6

P3 0.4 1.7

P4 0.9 1.3 1.4

P5 1.2 1.8 0.2 0.3

P6 0.7 0.9

P7 0.5 1.5 1.0 1.4 0.4 1.5 0.3

P8 1.7 0.6 0.9 0.1

P9 1.7 0.1 1.3 1.4 1.5 1.3 0.4

P10 1.8 1.3

P l l 0.5 0.8 2.0 1.7 1.3

P12 2.0 0.8 1.5 1.6

P13 0.6 1.2 1.8 0.2 1.5 0.3

P P14 1.7 0.6 0.5

a P15 1.9 1.0

r P16 0.2 0.4 1.9 1.3

t P17 0.5 1.2

s P18 0.7 0.4

P19 0.8 1.4 1.8 0.4

P20 0.3 1.1 0.6 2.0 0.2

P21 0.3 1.7 1.0 1.1 0.7

P22 0.5 1.4 1.7 0.1 1.9

P23 1.7 1.2 1.7

P24 1.3 1.4 1.5

P25 1.1 1.8 0.2

P26 0.9 1.5

P27 1.9 0.3 1.5 0.3 0.3

P28 0.7 1.8 1.4 1.3

P29 1.7

P30 1.3 1.9 0.7 1.8 1.6

Workload 8.5 8.6 8.6 8.0 7.0 9.5 5.3 9.7 10.1 9.5 7.0 7.6 10.6 5.8 6.7

No. ofm 2 2 2 1 1 2 1 2 2 2 1 1 2 1 1

Table 4.14: Workstation-part load matrix for problem 4 (In order to fit to a page,

the orientation is reversed with parts in rows and workstations in columns)

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 81

Cells, Works t a t i on in cell Ci Par ts in cell Ci

Layou t , i = 1, 2, 3, ’ N i = l , 2 , 3 , , iV

Moves C1 C2 C3 C4 C5 | C6 C1 C2 C3 C4 C5 C6

4.1, M 11 2,3,4,5, 1 15 25 1-9,11-14， 10

37.30 6,7,8,9, 16-24’

10,12,13 26-30

4.2, 11 14 15 1,2,3,4, 25 15 24 1-14，

34.67 5,6,7,8 16-23，

9,10, 26-30

12,13

5.1, Tl n 3 , 4 , 5 , 6 , 1 2 15 25 1-7,9, 10 8,14,

44.20 7,8,9,10, 11-13, 27

12,13,15 16-24,

26，

28-30

5.2, 1,3,4,5, n ~ 14 15 2 1-7， 25 15 24 8,14,

37.07 6,7,8,9, 9-13’ 27

10,12, 16-23,

13 28-30

6.1, 1 2~~ 3,4,5,6 9,10,12 15 14 10 8,14, 1-5,7,11, 6,9,12, 24 15

54.90 7,8,11 13 27 16,19-21’ 13,17,

23,25,26, 18,22,

28,29 30

6.2, 2 r ~ 15 14 11 3,4,5, 8,14,27 10 24 15 25 1-7,9,

39.47 6,7,8,9 11-13，

10,12 16-23,

13 26,

28-30

Table 4.15: Residt of Problem 4 (part 1)

Cells, Ut i l i za t ion of workstat ion W i

Layout , i 二 1，2，3,…，M

Moves W 1 W 2 W 3 W 4 W 5 W 6 W 7 W 8 W 9 W 1 0 W l l W 1 2 W 1 3 W 1 4 W 1 5

4,1,37.30 0.23 0.78 1.08 1.00 0.88 0.95 0.66 1.21 1.26 1.19 0.23 0.95 1.33 0.13 0.84

4,2,34.67 1.06 0.94 1.08 1.00 0.88 0.95 0.66 1.21 1.10 1.19 0.23 0.78 1.33 0.13 0.19

5,1,44-20 0.23 0.66 1.08 0.89 0.69 0.95 0.66 1.21 1.26 1.19 0.23 0.94 1.33 0.13 0.74

5,2,37.07 1.06 0.66 1.08 0.89 0.69 0.95 0.66 1.21 1.10 1.19 0.23 0.76 1.33 0.13 0.55

6,1,54.90 0.23 0.66 0.99 0.71 0.61 0.71 0.66 1.21 0.76 0.79 0.69 0.63 0.60 0.13 0.19

6,2,39.47 0.23 0.66 1.08 0.89 0.69 0.95 0.66 1.22 1.10 1.19 0.23 0.76 1.33 0.13 0.19

Table 4.16: Result of Problem 4 (part 2)

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 82

Cel ls , W o r k s t a t i o n in cell C i Pa r t s in cell Ci

L a y o u t , i = 1, 2 ’ 3 ,，N i ^ 1 , 2 , 3 , N

Moves C 1 C 2 C 3 C 4 C 5 C 6 ~ C 1 | C2 C 3 C 4 C 5 C 6

4.1, 1 2 3-14 " " " I 5 ~ ~ 9,10,12 8,14,27 1-7,11’ 22,24

38.80 13,15-21，

23,25,26,

28,29,30

4.2, 2 1 3 ^ I 5 8,14,27 9,10,12 1-7,11 22,24

36.34 13,15-21，

23,25,26,

28,29,30

5.1, 2 Ts T H 3 ~ ~ 1 8,14,27 22,24 1-4,6, 5,29 9,10,12

48.70 7,11,13,

15-21,23,

25,26

28,30

5.2, 5,6,7, I s I T " " 4,11 1,2,3 1,3,4, 22,24 2 21,23,25 5,8,9,

43.77 8,9,10, 6,7,11, 10,12’

12,13 13,15-20, 14,27,

26,28,30 ^

6.1, 2 3 T ^ 4,5,7, 15 14 8,14,27 5,29 1,9,10, 3,4,6, 22,24 2

59.70 8-13 12,15,20 7,11,13,

16-19,21,

23,25,26,

28,30

6.2, 1 13 15 14 3-12 2 9.10.12 4 .17 22.24 2 1.3.5. 8.14.

42.16 6.7.11. 27

13.15.16.

18-21.23

25.26.

26.30

Table 4.17: Gupta's solution for Problem 4 (part 1). Reproduced from Gupta

et aL (1996) [29；

Cel ls , U t i l i z a t i o n of works ta t i on W i

Layou t , i = l , 2 , 3 , . M

Moves W 1 W 2 W 3 W 4 W 5 W 6 W 7 W 8 W 9 W 1 0 W l l W 1 2 W 1 3 W 1 4 W 1 5

4,1,38.80 0.69 0.66 1.07 0.71 0.67 1.19 0.66 1.21 0.84 0.80 0.69 0.39 1.11 0.52 0.42

4,2,36.34 0.69 0.66 1.07 0.71 0.67 1.19 0.66 1.21 0.84 0.80 0.69 0.39 1.11 0.52 0.42

5,1,48.70 0.69 0.66 1.07 0.71 0.67 1.19 0.66 1.21 0.84 0.80 0.69 0.39 1.11 0.52 0.42

5,2,43.77 0.84 0.82 0.44 0.42 0.52 1.05 0.64 0.94 0.84 0.80 0.44 0.25 1.02 0.20 0.42

6,1,59.70 0.69 0.66 0.44 0.57 0.60 0.64 0.62 0.99 0.84 0.77 0.60 0.39 1.11 0.20 0.42

6,2,42.16 0.69 0.66 0.97 0.71 0.50 1.05 0.50 1.06 0.84 0.80 0.64 0.39 0.32 0.20 0.42

Table 4.18: Gupta's solution to Problem 4 (part 2). Reproduced from Gupta

et al. (1996) [29；

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 83

No. of Total moves Average utliization

cells, Layout Gupta GA Gupta GA

A,r 38.80 37.30 0.523 0.581

4,2" 36.34 36.47 0.523 0.553

5,P 48.70 44.20 0.501 0.549

5,2" 43.77 37.07 0.418 0.547

6 , 1 " 5 9 . 7 0 5 4 . 9 0 0 . 4 3 1 0.440

6,2" 42.16 39.47 0.437 0.495

"Our approach is better

Table 4.19: Comparison of different approaches for Problem 4

maximization of the average cell utilization, minimization of intracell load

imbalances, and minimization of intercell load imbalances. The overall objective

function for maximization is a weighted additive utility function comprised

of the four optimization objectives. With different constraints, the decision

maker can set different weights to each objective. A linear integer programming
/

enumeration scheme was used to solve the model. One problem with this

approach is that the cost to find a solution to a large problem is very high.

In our case, we consider another objective which is to minimize the within

cell load variation. This aids smooth flow of materials inside each cell and

reduces the Work-In-Process (WIP) within it [83]. Equation 4.4 represents the

mathematical formulation of this objective.

m c p

Cell Load Variation = y^y^x^z ^ i ^ i j _ ^ij)^ (4.4)
i—l 1—1 j=l

where

m = the total number of machines

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 84

c = the total number of cells

p = the total number of parts

W = [wij] is an m x p machine-part incidence matrix, where Wij is workload

on machine i induced by part j and is equal to (¾ * Nj)/Ti

tij 二 the processing time (hour/piece) of part j on machine i

Ti = the available time on machine i in a given period of time

Nj = the production requirement of part j in a given period of time

X = [xii] is an m x c cell membership matrix, where ,

1 if ith machine is in cell 1
Xii = <

0 otherwise
m

J^ Xil *wij

M = [mzj] is a c x p matrix of average cell load, where mij = ^ ^
Y,^ii
i=i

A common problem to cellular manufacturing systems is the workload

imbalance. Minimization of cell load variation helps to solve this problem.

Therefore the objectives of our model is similar to Wei and Gaither's.

Fonseca and Fleming [24] pointed out that genetic algorithms searching from

a population of points seemed particularly suited to multiobjective optimization.

We apply the GA we developed to solve this bi-criteria model. The advantage

of using these two objectives (minimize the total moves and minimize the cell

load variations) is that comparable data are available in the literature [29]. This

can demonstrate the performance of our algorithm and the versatility in adding

different objective functions.

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 85

4.5.1 Experimental results

As suggested by Gupta et al. [29], the objectives could not be simply

added up together to form the final objective functions. Instead, the two

objective functions were evaluated separately. Common strings (same cellular

configuration) were selected as a solution to the bi-objective model. The

common chromosome structure meant that this individual was an acceptable

solution to both objectives. Finally, a list of pair (value of objective 1, value of

objective 2) was obtained and the ultimate solution selected was subjected to

the decision maker.

In this experiment, we again consider the three problems identified by

Logendran and the large problem proposed by Gupta. Tables 4.20 and 4.21

present the results for problems 1-4. We can see each solution is a pair

of values. It is difficult to have a direct comparison with Gupta's solution

as no single solution was obtained. However, in some cases, our approach

generated solutions with smaller number of total moves provided that the cell

load variations were the same. For example, for problem 4, if there were 4 cells

arranged in layout 2，the total moves was 37.30 which was smaller than 42.64

given by Gupta's approach (the cell load variation was 1.60).

4.6 Conclusions

In this chapter, we proposed a multichromosome representation for cell

formation problem. This representation has the advantages that no illegal

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 86

Problem 1 Problem 2 Problem 3

Layout 1 Layout 2 Layout 1 Layout 2 Layout 1 Layout 2

of Total Cell Total Cell Total Cell Total Cell Total Cell Total Cell

cells moves load moves load moves load moves load moves load moves load

2 3.8 0.72 3.8 0.72 6.3 1.92 6.7 1.84 3.5 0.38 3.5 0.38

4.2 0.69 4.2 0.69 7.5 1.37 7.5 1.37 3.9 0.54 4.3 0.52

3 5.0 0.43 5.0 0.43 7.5 1.59 8.7 1.12 4.3 0.21 4.3 0.21

5.4 0.19 5.4 0.19 7.9 1.47 10.5 0.89 4.7 0.33 4.7 0.33

4 6.9 0.06 6.9 0.06 9.4 1.26 9.4 1.25 5.5 0.17 5.5 0.17

7.3 0.46 7.6 0.13 10.60 0.84 12.7 0.64 6.5 0.04 6.5 0.04

Table 4.20: Results of bi-criteria for Problem 1-3

Problem 4

Number Layout 1 Layout 2

of Total Cell Total Cell

cells moves load moves load

4 37.30 1.60 37.30 1.60

38.50 1.62 40.00 1.50

39.20 1.52 40.80 1.64

40.20 1.50 41.90 1.58

5 44.30 1.45 45.59 1.49

46.20 1.42 48.60 1.36

47.00 1.40 49.50 1.38

47.30 1.32 50.20 1.32

6 59.80 1.25 59.80 1.25

61.60 1.23 60.60 1.31

62.50 1.22 61.70 1.18

64.80 1.20 64.80 1.19

Table 4.21: Results of bi-criteria for Problem 4

CHAPTER 4. MULTICHROMOSOME GENETIC ALGORITHM 87

offsprings are generated which in turn reduces computational overhead, and

a kind of linkage may be developed among objects which aids the searching of a

genetic algorithm. This representation is considered to be more natural to the

GT problem. We tested our representation on a workload model. Experimental

results showed our approach generates better solutions.

Chapter 5

Integrated design of cellular

manufacturing systems in the

presence of alternative process

plans

5.1 Introduction

In most of the literature, cell formation is performed on the basis of a given set

of part routings that are assumed to be fixed. Each operation of part must be

performed on a specific machine. An incidence matrix is often used to represent

such relationship between machines and parts. A，1，in the incidence matrix

Gij] indicates the part j utilizes machine i. However, in practical environment,

88

CHAPTER 5. INTEGRATED DESIGN 89

each part can have more than one process plan and each operation on a part

can be performed on alternative machines.

Rajamani and Aneja [69] indicated that fixing a machine for an operation

did not select the machine optimally which resulted in increased manufacturing

costs. Another reason for the alternative process plans is the existence of

functionally similar workcentres [66]. In a functional layout, this is not a

consideration because in such layout, all the functionally similar workcentres are

grouped together and the parts can be routed to any such available workcentre.

However, in a cellular manufacturing environment, a manufacturing cell usually

consists of functionally dissimilar workcentres. Similar workcentres are likely

placed in different cells. We would prefer a part route to the workcentre in the

cell it is assigned. Therefore, the functionally similar workcentres must have a

unique identification. This identification leads to the existence of alternative

process plans. Kusiak [45] has shown that the incorporation of multiple process

plans resulted in improved quality of part families and machine cells.

Rajamani and Aneja [69] presented an example to further illustrate the

situation. Consider the manufacturing of a gear. The initial raw material is in

the form of a bar stock, eight processing steps are required to transform the raw

material into a finished gear. A different set of processing steps is identified if

the raw material is in a different form, say blanks either cast or forged. Once

the processing steps are identified, the process planner determines the possible

sequences of processing before grouping the processing steps into operations.

The eight processing steps can be grouped into different sets as follows:

CHAPTER 5. INTEGRATED DESIGN 90

Processing steps (PS)

PS 1: Facing

PS 2: Turning

PS 3: Parting-off

PS 4: Facing

PS 5: Centring

PS 6: Drilling

PS 7: Slotting

PS 8: Gear teeth cutting

Plan 1 Plan 2

Operation 1 PS 1,2,3 PS 1,2,3

Operation 2 PS 4,5,6 PS 4,5,6

Operation 3 PS 7 PS 7,8

Operation 4 PS 8

Each operation in the plans can be performed on a number of compatible

machines. For example, P8, the gear-teeth-cutting operation can be performed

on either a milling or a gear hobbing machine if plan 1 is used. If plan 2 in

which the gear-teeth-cutting and slotting operations are combined is used, it

can only be performed on a milling machine.

5.1.1 Literature review

Very few studies take the alternative process plans into consideration. Kusiak

43] showed that for a single part, it was possible to generate a set of process

plans. The costs of these process plans may vary largely in some cases.

In another paper [45], Kusiak formulated an integer programming model to

CHAPTER 5. INTEGRATED DESIGN 91

address the presence of a set of process plans. The model developed focused on

generating a better diagonal structure and ignored other factors. An illustrative

example allowing the consideration of different process plans led to improved

chance of getting a better diagonal structure.

Nagi et aL [66] proposed an algorithm to solve the cell formation problem

in the presence of multiple part routings. The objective is to select the part

routings while minimizing the inter-cell traffic. The problem is decoupled to

two problems: the selection of routings and formation of cells. Nagi et al.

66] formulated the problem as a linear programming problem. The solution

procedure was iterative until the part routings and manufacturing cells are

obtained with minimal inter-cell traffic. However, the solution was dependent

on the partition chosen initially.

Rajamani and Aneja [69] developed three integer programming models to

study the effect of alternative process plans and simultaneous formation of

part families and machine groups. The objective function of this study was

a cost function aimed at minimizing the total investment. All the models

were solved using LINDO. The weakness of this study was that some nonlinear

constraints were linearized. This results in increased number of variables and

constraints. The results indicated the consideration of alternative process plans

and simultaneous formation of part families and machine groups led to efficient

resource utilization.

Logendran et aL[57] followed the model developed by Rajamani and Aneja

69]. The objective function, however, focused on the minimization of total

CHAPTER 5. INTEGRATED DESIGN 92

annual cost evaluated as the sum of the amortized cost of machines and the

operating cost of producing all parts. A major difference of the Logendran's

approach was to view the cell formation problem as being divided into two

phases. The first phase focused on selection of a process plan for each part

and the second phase on formation of part families and machine cells. The

first problem was solved with a tabu-search-based heuristic. Once the process

plans were fixed, the second problem was solved by one of the known clustering

algorithms.

5.1.2 Motivation

We argue that the selection of process plans and the formation of cells are inter-

related. For example, the number of a specific workcentre required depends

on the configuration of cells because we allow machine duplication. It is more

realistic to integrate the two problems together. In this chapter, we solve the

model developed by Rajamani and Aneja [69] and incorporate the objective

function used by Logendran [57]. The consideration of annual operating

costs provides additional information to the cell designer. The complexity

of the problem is shown to be NP-hard because the three-partition problem

is polynomially reducible to a special case of this problem [57]. It is not

possible to use any enumerative methods even for middle size problems. Also,

Rajamani and Aneja [69] indicated that the formulation of his model required

heuristic techniques to solve. We propose a genetic algorithm based on the

CHAPTER 5. INTEGRATED DESIGN 93

multichromosome representation developed. The use of GAs makes the model

applicable to large scale problems.

5.2 Mathematical models

The model is based on the one proposed by Rajamani and Aneja [69]. The

model is subjected to the following assumptions:

1. Annual demand for each part type is known and stable over the planning

horizon.

2. Available capacity of each unit of a machine types is known.

3. For each process plan, the time and cost required to perform a specific

operation of a part on a machine is known.

4. The number of cells formed is known.

The planning horizon is assumed to be 1 year. The model considers two

objective functions: the total investment and the annual operating costs.

5.2.1 Notation

Indexing sets

k = l,2,...K part

m = l,2,".M machine

p = l,2,...Pfc process plans for part k

CHAPTER 5. INTEGRATED DESIGN 94

s = l,2,...S(k,p) operations for {k,p) combination

c = l,2,...C cell

Decision variables

Nmc = number of machines of type m in cell c f

1 if part k is manufactured using plan p

Ykp = <

0 otherwise
V

z

1 if machine m is used to perform operation s for {k,p)

Xms{kp) =* combination

0 otherwise
V

‘

1 if part k is a member of cell c
rkc =

0 otherwise
、

Coefficients

Cms{kp) = operating cost for machine m performing operations for {k,p)

combination

tms{kp) = time for machine m to perform operation s for {k,p) combination
f

1 if operation s has to be performed for the {k,p) combination
as{kp)=

0 otherwise
X

f

1 if machine m can perfrom operation s

O^ms — <

0 otherwise
\

Cm = cost per machine of type m

bm = time available on each machine of type m

dk = demand for part k

CHAPTER 5. INTEGRATED DESIGN 95

5.2.2 Objective functions

The first objective function of the model is to minimize capital investment:

fl{x)=^CmNmc (5.1)
mc

The second objective function of the model is to minimize total annual

cost which consists of two parts:

The total amortized cost of machine equals

〉:Cm^mc
mc

The total annual operating cost for processing all parts equals

Y1 dkXms{kp)Cms{kp)

kpras

Thus, the model can be represented as follows:

Minimize:

f2{x) = Y^CmNmc + E dkXms[kp)Cms{kp) (5.2)
mc kpms

both objective functions are subjected to

Y^Ykp = l V/c (5.3)
p

^amsXms{kp) = as{kp)Ykp Vs, k,p (5.4)
m

Y1 {rkcdk)Xms(kp)tms(kp) < bmNmc V m , c (5.5)

kps

Y.rkc = l yk (5.6)
C

CHAPTER 5. INTEGRATED DESIGN 96

Nmc > 0 and integer Vm, c (5.7)

〜二 (0 , 1) VA;,p (5.8)

Xms{kp) = {OA) Mm,s,k,p (5.9)

The constraints of the model are given by (5.3) - (5.9). Constraint (5.3)

guarantees that only one process plan is selected for a given part. Constraint

(5.4) ensures that an operation in the selected process plan is performed on

one of the available machines. Constraint (5.5) ensures that the capacity of

each machine type is not violated. Constraint (5.6) guarantees that a part

only belongs to one cell. Constraints (5.7) - (5.9) indicate the 0, 1 and integer

variables.

5.3 Our solution

To solve this problem, the algorithm determines the part families while

minimizing the objective functions. The number of specific machines are

determined according to the workload and the capacity of the machines. In

this model, we duplicate machines to completely eliminate intercell moves.

In the previous chapter, we introduced a multichromosome genetic algorithm

that is able to capture more information than the traditional approach. In

addition to the part sequence chromosome and the cell boundary chromosome,

we add one more to represent the process plan selected for each part. That

means an individual in our genetic algorithm consists of three chromosomes.

The characteristics of the chromosomes are presented in Table 5.1, where n is

CHAPTER 5. INTEGRATED DESIGN 97

the number of parts.

Chromosome length crossover used

part sequence n edge-recombination operator

cell boundary n — 1 edge-recombination operator

process plan n simple crossover operator

Table 5.1: The three chrosmosomes of an individual

The genes in the part sequence and cell boundary chromosomes are integer

numbers. The interpretation is the same as in the previous chapter. In

the part sequence chromosome, the integer number of a gene represents the

corresponding part. In the cell boundary chromosome, if the number of cells

formed is c, then the integer values smaller than c represents the cell boundaries.

For the process plan chromosome, the range of each gene indicates the possible

process plans of a part. For instance, if part 1 has 8 process plans to be selected

then the range of the first gene is 1-8. The operator used for this chromosome

is the simple crossover operator. For the part sequence and cell boundary

chromosomes, edge recombination operator is employed. This operator can

successfully transfer the information stored in the parent chromosomes to the

offsprings. Figure 5.1 is a possible individual assuming three cells to be formed.

In this example, process plan 6 will be selected for part 1 and process plan

5 for part 2, and so on. Representing different characteristics of the solution

enables the GA to sample the search space more productively. The GA can

explore the partitions that explicitly represent different features of the problem

35]. Therefore, it is a more natural and direct representation of this problem.

Although the details of the operation of genetic algorithms are discussed

CHAPTER 5. INTEGRATED DESIGN 98

1 r •

part sequence | 2 | 3 | 5 | 6 | 8 | 1 丨 4 | 9 丨 1一

cell boundary | 8 | 7 | 1 | 3 | 6 | 2 | 4 | ~ ^

process plan 6 5 1 8 10 9 3 1 3

(^ ^ ^ 3 r ^ ^ (^ j ^ l 6 r ^ ^ (^ i ^ ^ v T ^)

ceU 1 ceU 2 cell 3

Figure 5.1: A possible individual of three chromosomes

in the previous chapter, we include a brief discussion here to complete our

algorithm. The initial individuals are generated randomly. Parents are selected

using fitness ranking. Crossover is then performed on the two parents, each

chromosome will crossover with the corresponding chromosome in the other

individual. The crossover operators used are listed in Table 5.1. These processes

are repeated until a predefined number of generation is reached. The individual

with the lowest fitness value (we are solving a minimization problem) becomes

the solution.

5.4 Illustrative example and analysis of results

We consider an example previously presented by Rajamani and Aneja [69] to

illustrate the capability of our algorithm. The problem has four parts and

CHAPTER 5. INTEGRATED DESIGN 99

three machines, and the corresponding data are presented in Tables 5.2-5.4.

Consider the part 4 in Table 5.2 which has two plans. Operations 1, 2, and

3 are required for plan 1 and only operations 1 and 2 for plan 2. Table 5.3

indicates that operation 1 can be performed on either machine 1 (Ml) or M3,

operation 2 can be performed on M2 or M3. There are totally eight different

ways that P4 can be processed using plan 1. They are Ml , M2, Ml or Ml ,

M3, Ml , or Ml , M2, M2, or Ml, M3, M2, or M3, M2, Ml , or M3, M2, M2, or

M3, M3, Ml , or M3, M3, M2. Similarly, there are four different ways that P4

can be processed by the second plan. So the value of 4th gene of the process

plan chromosome ranging from 1 to 12. There is a one-to-one mapping for the

process plan and the gene value. For the rest of parts, there are 8 process plans

for part 1，12 process plans for part 2 and part 3 has 16 process plans. The

initialization of process plan chromosome depends on these values. The simple

crossover operator exchanges the information stored in both parents and will

not generate any illegal offsprings (see Figure 5.2).

Parent 1 | 6 | 10 | 1 | 8 | Offspring 1 | 6 | 10 | 15 | 1

X ^ _ _ _
Parent 2 | 5 | 4 | 15 | 1 | Offspring 2 | 5 | 4 | 1 | 8

i k

Crossover point

Figure 5.2: Crossover of the process plan chromosome

CHAPTER 5. INTEGRATED DESIGN 100

k = 1 k = 2 k = 3 k = 4

Operation p = 1 p = 2 p = 1 p = 2 p = 1 p = 2 p = 3 p = 1 p = 2

5 = 1 1 1 1 1 1 1

s=2 1 1 1 1 1 1 1 1 1

5 = 3 1 1 1 1 1 1

Demand 10 10 10 10

Table 5.2: Data on as[kp) indicating if operation s of part k to be performed

for the process plan p, and the demand d^ for part k

Machine

m = 1 m 二 2 m = 3

s = l 1 1

s = 2 1 1

5 = 3 1 1

Capacity 100 100 100

Cost 100 250 300

Table 5.3: Data on a^s indicating if operation s can be performed on machine

m; capacity {hm) on machine m; and the cost {Cm) of machine m

tms {f^P)，Cms {kp)

k = 1 k = 2 k = 3 k==4

p = 1 p = 2 p = 1 p = 2 p = 1 p = 2 p = 3 p = l p = 2

s = l,m = l 5,3 3,4 ^ 8,1 1,2 9,7

5 二 1 , 爪 二 3 7,2 4 ^ ^ 9,2 2,1 8,9

s = 2,m = 2 3,5 9,8 7,8 3,3 3,3 1,2 5,9 2,3 9,8

s = 2,m = 3 4,3 7,9 7,7 2,3 4,4 2,4 3,10 2,4 10,9

s = 3 , m = l 8 , 8 1 0 , 9 6 , 5 1 1 , 7 7 , 4 3 , 5

s = 3,m = 2 7,7 8,9 6,6 8,8 9,5 2,6

Table 5.4: The processing time tms{kp) and operating cost Cms{kp) required for

machine m to perform operation s on part k using process plan p

CHAPTER 5. INTEGRATED DESIGN 101

5.4.1 Solution for objective function 1

The objective function 1 includes only the machine costs. The result is tabulated

in Table 5.5-5.7. Table 5.5 indicates the process plan selected for each part. For

example, part 1 uses plan 1, in which operation 1 is performed on machine 1

and operation 2 is performed on machine 2. Table 5.6 indicates the part families

formed, parts 1, 3, and 4 are in cell 2 and part 2 is in cell 1. Table 5.7 presents

the number of machines required for each cell. A machine 2 is required for cell

1. One machine 1 and one machine 2 are allocated to cell 2. The total cost

is 600. This solution is known to be optimal for this data set as indicated in

Rajamani and Aneja [69 .

k=1 k=2 k=3 k=4

p = 1 p = 2 p = 1 p = 1

s = 1 m = 1 m = 1 m = 1

s = 2 m — 2 m = 2 m = 2 m = 2

s = 3 m = 2 m = 2

Table 5.5: Indicates the plan selected p and machine selected m for operation s

Part

Cell k = l k = 2 k = S k = 4

c = l 1

c=2 1 1 1

Table 5.6: Data on rkc indicating if part k is a member of cell c

CHAPTER 5. INTEGRATED DESIGN 102

Cell

c=l c=2

m = l 0 1

m = 2 1 1

m = 3 0 0

Table 5.7: Optimum number of each machine type m assigned to each cell c

5.4.2 Solution for objective function 2

The objective function 2 includes the amortized cost and the operating cost.

The amortized cost is 600, the operating cost is 330, and the total annual cost

is 930. Table 5.8-5.10 present the results. The cell configuration generated is the

same as that using objective function 1. We cannot have a direct comparison

because Logendran did not take the formation of cells into account.

k=1 k=2 k=3 k=4

p = 1 p = 2 p = 1 p = 1

s = 1 m = 1 m = 1 m = 1

s = 2 m = 2 m = 2 m = 2 m = 2

s = 3 m = 2 m = 2

Table 5.8: Indicates the plan selected p and machine selected m for operation s

Part

Cell k = 1 k = 2 k = 3 k = 4

c = l 1

c = 2 1 1 1

Table 5.9: Data on r^c indicating if part k is a member of cell c

CHAPTER 5. INTEGRATED DESIGN 103

Cell

c = l c=2

m = l 0 1

m = 2 1 1

m = 3 0 0

Table 5.10: Number of each machine type m assigned to each cell c

5.5 Conclusions

Including alternative process plans makes the cell formation problem more

complicated An exhaustive search technique is not possible even for moderate

number of parts and process plans. The use of genetic algorithm seems to have

a potential to tackle large scale problems and is a good heuristic method to

solve the integrated model.

Chapter 6

Conclusions

6.1 Summary of achievements

In this research, we developed heuristic approaches to address various aspects

of the group technology problem. From standard models that utilize a binary

machine-part matrix to generalized models that incorporate different objectives

and constraints. The cell formation problem is difficult to solve and therefore,

requires heuristic methods. There are extensive algorithms available in the

literature. However, the practical application of many methods is limited by

the problem scale. Also most of the methods only address one or a few aspects

of the problem.

Genetic algorithm (GA) is an optimization technique with great versatility

and extensibility. These features of GA lie in its ability to substitute different

representations and evaluation functions. In designing a cellular manufacturing

system, the cell designer needs to consider many factors, for example, the inter-

104

CHAPTER 6. CONCLUSIONS 105

and intra-cell moves, the workload and the capacity of workcentres, the workload

variation of cells, and the possible processing plans of parts. In different

situations, the constraints faced by the cell designer are different. Also, a firm

has its own parameter settings in designing a cellular manufacturing system.

These can partially explain why so many models have been proposed in the

literature. GA seems particularly suitable for the cell formation problem as the

objective functions can be easily changed.

/ ^ " "^^ leMu la i ^^^

Manfuacturing
\ Systems /

0 - 1 = = c e / , nco rpL iono f \ l n c o r p o r a t i o n o f
m a t r i x , sequenceofoperation, \ p r o c e s s plan

Z cell layout, and machine \ ^
/ utilization \

(S t a n d a r d 、 「Generalized \ (Integrated \
model J 1 model) y model J

Y> Y> 介
Genetic Algorithm Multi-chromosome Multi-^'romSome

f°r TSP Genetic Algorithm Genetic Algorithm

Figure 6.1: Overview of the research

Figure 6.1 is a overview of the research. In solving the standard model, the

problem is formulated as a traveling salesman problem and a genetic algorithm-

based approach is employed. The solutions obtained are of better quality in

CHAPTER 6. CONCLUSIONS 110

terms of grouping efficiency and grouping efficacy. The improvements are more

significant for larger scale problems.

In solving generalized models, a different representation scheme is required.

We introduce a multiple chromosomes representation. In this representation,

the structure of the problem is captured. Our approach generates better solution

in a workload-based model.

To further illustrate the extensibility of the developed genetic algorithm,

we consider a more practical aspect of group technology and incorporate

alternative process plans. Experimental results indicate that our GA approach

is satisfactory and that this solution technique has a potential to tackle large

size problems.

6.2 Future works

There are some possible future works on thi$ project. In the whole research, we

employ existing crossover operators. We can develop new crossover operators

that tailor for the GT problem. These operators can increase the peformance.

Also, we can incorporate existing clustering heuristic into the GAs to produce

hybrid approaches. Existing heuristic can provide additional information and

such hybrid techniques may further improve the results. One possible way

is to seed the initial population of GAs with solutions from other clustering

techniques. Furthermore, we can try to apply the techniques to other models.

In this research, a workload model is selected. Actually, there are other models

CHAPTER 6. CONCLUSIONS 107

exist, e.g. cost model. We can have more experiments to further demonstrate

the applicability of GAs to GT problem.

Bibliography

1] Askin, R. G., and Chiu, K. A graph partitioning procedure for machine

assignment and cell formation. International Journal of Production

Research 28 (1990), 1555—1572.

2] Askin, R. G., and Standridge, C. R. Modeling and analysis of

manufacturing systems. John Wiley and Sons, New York, 1993.

3] Askin, R. G., and Subramanian, S. P. A cost-based heuristic for group

technology configuration. International Journal of Production Research 25

(1987), 101-113.

4] Ballakur, A., and Steudel, H. J. A within-cell utilization based heuristic

for designing cellular manufacturing systems. International Journal of

Production Research 25 (1987), 639—665.

5] Boctor, F. F. A linear formulation of the machine-part cell formation

problem. International Journal of Production Research 29 (1991), 343—

356.

'6] Boe, W. J., and Cheng, C. H. A close neighbour algorithm for a designing

cellular manufacturing system. International Journal of Production

Research 29 (1991), 2097—2116.

7] Bruns, R. Direct chromosome representation and advanced genetic

operators for production scheduling. In Proceedings of the Fifth

International Conference on Genetic Algorithms (San Mateo, California,

1993), Morgan Kaufmann Publishers, pp. 352—359.

8] Burbidge, J. L. A manual method of production flow analysis. The

Production Engineer 56 (1977), 34—38.

9] Carrie, A. S. Numerical taxonomy applied to group technology and plant

layout. International Journal of Production Research 11 (1973), 399-416.

10] Chan, H. M., and Milner, D. A. Direct clustering algorithm for group

formation in cellular manufacturing. Journal of Manufacturing Systems 1

(1982), 65-74.

108

BIBLIOGRAPHY 113

11] Chandrasekharan, M. P., and Rajagopalan, R. An ideal seed

nonhierarchical clustering algorithm for cellular manufacturing.

International Journal of Production Research 24 (1986), 451—464.

12] Chandrasekharan, M. R , and Rajagopalan, R. Modroc-an extension ofrank

order clustering for group technology. International Journal of Production

Research 24 (1986), 1221—1233.

13] Chandrasekharan, M. P., and Rajagopalan, R. Zodiac - an algorithm

for concurrent formation of part-families and machine-cells. International

Journal of Production Research 25 (1987), 835-850.

14] Chandrasekharan, M. R , and Rajagopalan, R. Groupability: an analysis of

the properties of binary data matrices for group technology. International

Journal of Production Research 27 (1989), 1035—1052.

15] Chen, C. L., Cotmvo, N. A .，and Baek, W. A simulated annealing solution

to cell formation problem. International Journal of Production Research

33 (1995), 2601-2614.

16] Chen, S. J., and Cheng, C. S. A neural network-based cell formation

algorithm in cellular manufacturing. International Journal of Production

Research 33 (1995), 293-318.

17] Cheng, C. H. Algorithms for grouping machine groups in group technology.

Omega 20 (1992), 493-501.

18] Cheng, C. H., Kumar, A., and Motwani, J. A comparative examination

of selected cellular manufacturing clustering algorithms. International

Journal of Operations and Production Management 15, 12 (1995), 86-97.

19] Cheng, C. H., Kusiak, A., and Boe, J. W. A branch-and-bound algorithm

for solving the machine allocation problem. In Advances in Manufacturing

and Automation Systems, C. T. Leondes, Ed. Academic Press, New York,

1991.

20] Chu, C. H., and Tsai, M. A comparison of three array-based clustering

techniques for manufacturing cell formation. International Journal of

Production Research 28 (1990), 1417—1433.

21] Davis, L. Job shop scheduling with genetic algorithms. In Proceedings

of the First International Conference on Genetic Algrorithms (San Mateo,

California, 1985), Morgan Kaufmann Publishers, pp. 136—140.

22] De Witte, J. The use of similarity coefficients in production flow analysis.

International Journal of Production Research 18 (1980), 503-514.

BIBLIOGRAPHY 110

23] Del Valle, A. G.，Balarezo, S., and Tejero, J. A heuristic workload-based

model to form cells by minimizing intercellular movements. International

Journal of Production Research 32 (1994), 2275-2285.

24] Fonseca, C. M., and Fleming, P. J. Genetic algorithms for multiobjective

optimization: formulation, discussion and generalization. In Proceedings

of the Fifth International Conference on Genetic Algorithms (San Mateo,

California, 1993), Morgan Kaufmann Publishers, pp. 416-423.

'25] Glover, F. Artificial intelligence, heuristic frameworks and tabu search.

Managerial and decision economics 11 (1990).

'26] Goldberg, D. E. Genetic algorithms in search, optimization and machine

learning. Addison-Wesley, Reading, MA, 1989.

27] Goldberg, D. E., and Lingle, R. Alleles loci and the tsp. In Proceeding

of the First International Conference on Genetic Algorithms (San Mateo,

California, 1985), Morgan Kaufmann Publishers, pp. 154—159.

28] Gunasingh, R. K., and Lashkari, R. S. Machine grouping problem in cellular

manufacturing systems - an integer programming approach. International

Journal of Production Research 21 (1989), 1465-1473.

'29] Gupta, Y. P., Gupta, M. C., Kumar, A., and Sundaram, C. A genetic

algorithm-based approach to cell composition and layout design problems.

International Journal of Production Research 34 (1996), 447-482.

30] Gupta, Y. P., Gupta, M. C., Kumar, A., and Sundram, C. Minimizing total

intercell and intracell moves, in cellular manufacturing: a genetic algorithm

approach. International Journal of Computer Intergrated Manufacturing 8

(1995), 92-101.

•31] Harhalakis, G., Proth, J. M., and Xie, X. L. Manufacturing cell design

using simulated annealing: an industrial application. Journal of Intelligent

Manufacturing 1 (1990), 185-191.

32] Heragu, S. S., and Gupta, Y. P. A heuristic for designing cellular

manufacturing facilities. International Journal of Production Research 32

(1994), 125-140.

33] Holland, J. H. Adaptation in natural and artificial systems. Ann Arbor:

The University of Michigan Press, 1975.

34] Hyer, N. L., and Wenunerlov, U. Group technology in the us manfacturing

industry: a survey of current practices. International Journal of Production

Research 27 (1989), 1287-1304.

BIBLIOGRAPHY 111

35] Juliff, K. A multi-chromosome genetic algorithm for pallet loading. In

Proceedings of the Fifth International Conference on Genetic Algorithms

(San Mateo, California, 1993), Morgan Kaufmann Publishers, pp. 467-473.

36] Karparthi, S., and Suresh, N. C. Machine-component cell formation in

group technology: a neural network approach. International Journal of

Production Research 25 (1992), 1353-1367.

37] King, J. R. Machine-component group formation in production

flow analysis: An approach using a rank order clustering algorithm.

International Journal of Production Research 18 (1980), 213-232.

'38] King, J. R., and Nakornchai, V. Machine-component group formation

in group technology: review and extension. International Journal of

Production Research 20 (1982), 117-133.

39] Kirkpatrick, S., Jr Gelatt, C. D., and Vecchi, M. P. Configuration space

analysis of traveling salesman problems. J. Physique J^6 (1985), 1277-1292.

40] Kumar, C. S., and Chandrasekharan, M. P. Grouping efficacy: a

quantitative criterion for goodness of block diagonal forms of binary

matrices in group technology. International Journal of Production Research

28 (1990), 233-243.

41] Kumar, K. R.，Kusiak, A., and Vannelli, A. Grouping of parts and

components in flexible manufacturing systems. European Journal of

Operational Research 24 (1986), 387-397.

42] Kumar, K. R., and Vannelli, A. Strategic subcontracting for efficient

disaggregated manufacturing. International Journal of Production

Research 25 (1987), 1715-1728.

43] Kusiak, A. Integer programming approach to process planning.

International Journal of Advanced Manufacturing Technology 1 (1985), 73.

44] Kusiak, A. The part-families problem in flexible manufacturing systems.

Annals of Operational Research 3 (1985), 279-300.

45] Kusiak, A. The generalized group technology concept. International

Journal of Production Research 25 (1987), 561-569.

46] Kusiak, A. Branching algorithms for solving the group technology problem.

Journal of Manufacturing Systems 10 (1991), 332-343.

47] Kusiak, A., Boe, W. J., and Cheng, C. H. Designing cellular manufacturing

systems: branch-and-bound and a* approaches. IIE Transactions 25

(1993), 46-56.

BIBLIOGRAPHY 112

48] Kusiak, A., and Cheng, C. H. A branch-and-bound algorithm for solving

the group technology problem. Annual of Operations Research 26 (1990),

415-431.

'49] Kusiak, A., and Cho, M. Similarity coefficient algorithm for solving the

group technology problem. International Journal of Production Research

30 (1992), 2633-2646.

50] Kusiak, A., and Chow, W. S. Efficient solving of the group technology

problem. Journal of manufacturing systems 6 (1987), 117-124.

51] Lawler, E. L., Lenstra, J. K., Rinnooy, A. H. G. K., and Shmoys,

D. B. The Traveling Salesman problem: A guided Tour of Combinatorial

Optimization. Wiley, New York, 1985.

52] Lenstra, J. K., and Rinnooy, A. H. G. K. Some simple applications of the

travelling salesman problem. Operations Research Quarterly 26 (1975),

717-733.

'53] Levine, D. M. A genetic algorithm for the set partitioning problem. In

Proceedings of the Fifth International Conference on Genetic Algorithms

(San Mateo, California, 1993), Morgan Kaufmann Publishers, pp. 481-487.

54] Lin, S., and Kernighan, B. W. An effective heuristic algorithms for traveling

salesman problem. Operation Research (1973), 498-516.

55] Logendran, R. A workload based model for minimizing total intercell

and intracell moves in cellular manufacturing. International Journal of

Production Reserach 28 (1990), 913-925.

'56] Logendran, R. Impact of sequence of operations and layout of cells in

cellular manufacturing. International Journal of Production Reserach 29

(1991), 375-390.

57] Logendran, R., Ramakrishna, P., and Sriskandarajah, C. Tabu search-

based heuristics for cellular manufacturing systems in the presence of

alternative process plans. International Journal of Production Research

32 (1994), 273-297.

58] Martin, 0., Otto, S. W., and Felten, E. W. Large-step markov chains for

the traveling salesman problem, complex Systems 2 (1991), 299-326.

59] McAuley, A. Machine grouping for efficient production. Production

Engineering 51 (1972), 53-57.

60] McCormick, W. T., Jr. Schweitzer, P. J., and White, T. W. Problem

decomposition and data reorganization by a clustering technique.

Operations Research 20 (1972), 993-1009.

BIBLIOGRAPHY 113

61] Michalewicz, Z. Genetic Algorithms + Data Structures 二 Evolution

Programs. Springer-Verlag, Hong Kong, 1992.

62] Miliotis, P. Using cutting planes to solve the symmertic travelling salesman

problem. Mathmatical Programming 15 (1978), 177-188.

63] Miltenburg, J., and Zhang, W. A comparative evalution of nine well-known

algorithms for solving the cell formation in group technology. Journal of

Operations Management 10 (1991), 44—72.

64] Mosier, C., and Taube, L. The facets of group technology and their impacts

on implementation. Omega 13 (1985), 381-391.

'65] Mosier, C., and Taube, L. Weighted similarity measure heuristics for the

group technology clustering problem. Omega 13 (1985), 577-579.

66] Nagi, R., Harhalakis, G., and Proth, J. M. Multiple routings and capacity

considerations in group technology applications. International Journal of

Production Research 28 (1990), 2243-2257.

'67] Oliver, I. M., Smith, D. J., and Holland, J. R. C. A study of permutation

crossover operators on the traveling salesman problem. In Proceedings of

the Second International Conference on Genetic Algorithms (San Mateo,

California, 1987), Morgan Kaufmann Publishers, pp. 224—230.

68] Padberg, M., and Giovanni, R. A branch-and-cut algorithm for the

resolution of large-scale symmetric travelling salesman problem. SIAM

Review 33 (1991), 60-100.

69] Rajamani, S. N., and Aneja, Y. P. Integrated design of cellular

manufacturing systems in the presence of alternative process plans.

International Journal of Production Research 28 (1990), 1541-1554.

'70] Seifoddini, H. A note on the similarity coefficient method and the

problem of improper machine assignment in group technology applications.

International Journal of Production Research 21 (1989), 1161—1165.

71] Seifoddini, H., and Wolfe, P. M. Application of the similarity coefficient

method in group technology. IIE Transactions 18 (1986), 271-277.

72] Shafer, S. M., and Rogers, D. F. Similarity and distance measures for

cellular manufacturing part i: a survey. International Journal ofProduction

Research 31 (1993), 1133-1142.

73] Shargal, M., Shekhar, S., and Irani, S. A. Evaluation of search algorithms

and clustering efficiency measures for machine-part matrix clustering. IIE

Transactions 27 (1995), 43-59.

BIBLIOGRAPHY 114

74] Shirrish, B., Nigel, J., and Kabuka, M. R. A boolean neural network

approach for the travelling salesman problem. IEEE Transaction on

Computers 42 (1993), 1271—1278.

75] Srinivasan, G. A clustering algorithm for machine cell formation in

group technology using minimum spanning trees. International Journal

of Production Research 32 (1994), 2149-2158.

76] Srinivasan, G., and Narendran, T. T. Grafics - a nonhierarchical clustering

algorithm for group technology. International Journal of Production

Research 29 (1991), 463-478.

77] Stanfel, L. E. Machine clustering for economic production. Engineering

Costs and Production Economics 9 (1985), 73-81.

78] Starkweather, T.，McDaniel, S., Mathias, K., Whitley, D., and Whitley, C.

A comparison of genetic sequencing operators. In Proceedings of the Fifth

International Conference on Genetic Algorithms (San Mateo, California,

1991), Morgan Kaufmann Publishers, pp. 69-76.

79] Sule, D. R. Machine capacity planning in group technology. International

Journal of Production Research 29 (1991), 1909-1922.

80] Suresh, N. C., Slomp, J., and Kaparthi, S. The capacitated cell formation

problem: a new hierarchical methodology. International Journal of

Production Research 33 (1995), 1761-1784.

81] Syswerda, G. Schedule optimization using genetic algorithms. In Handbook

of Genetic Algorithms. 1 (1990).

82] Tabucanon, M. T., and Ojha, R. Icrma - a heuristic approach for intercell

flow reduction in cellular manufacturing systems. Material Flow 4 (1987),

189.

83] Venugopal, V., and Narendran, T. T. A genetic algorithm approach to the

machine-component grouping problem with multiple objectives. Computers

Industrial Engineering 22 (1992), 469-480.

84] Waghodekar, P. H., and Sahu, S. Machine-component cell formation in

group technology mace. International Journal of Production Research 22

(1984), 937-948.

85] Wei, J. C., and Gaither, N. A capacity constrained multiobjective cell

formation method. Journal of manufacturing systems 9 (1990), 222-232.

86] Whitley, D. The genitor algorithm and selection pressure: why rank-

based allocation of reproductive trials is best. In Proceedings of the Third
International Conference on Genetic Algorithms (San Mateo, California,

1989), Morgan Kaufmann Publishers, pp. 116-121. ‘

BIBLIOGRAPHY 115

87] Whitley, D., Starkweather, T . ， a n d Fuquay, D. A. Scheduling problems

and travelling salesman: the genetic edge recombination operator. In

Proceedings of the Third International Conference on Genetic Algorithms

(San Mateo, California, 1989), Morgan Kaufmann Publishers, pp. 133—140.

CUHK L i b r a r i e s

l _ l _ l l l
D 0 3 5 1 0 f l l 7

