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Markov C h a i n Monte Carlo and the Traveling Salesman 
Problem 

/ 

Abstract ‘ 

A new Markov chain Monte Carlo method, weighted Markov chain Monte Carlo 

method, is suggested in this thesis. The new method is a generalization of the Metropolis 

algorithm and incorporates the idea of importance weighting. It is applied successfully 

to the traveling salesman problems. Computational experiments carried out on both ran-

domly generated problems and problems described in the operations research literatures 

confirm the effectiveness of the method. Weighted Markov chain Monte Carlo method is 

a general method. It can be applied widely to si^lation problems involving multimodal 

surfaces and to simulation and optimization problems with buildup structures. 
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Chapter 1 

Introduction 
� 

1.1 The TSP Problem 

Let N be the number of cities and D 二 ((½) be the distance{cost) matrix whose ele-

ments d,j{> 0) denote the distance between city i and city j. The traveUng salesman 

prohlem(TSP) is to find a permutation n of the cities that minimizes the quantity 

N-1 
J2 7̂r(t),7T(i+l) + 0̂ 7r(N),7T(l)-
i=l 

This quantity is refered to as t,lie tour length, since it is the length of the tour a salesman 

would make if he starts some city, visits the other cities in the order specified by the 

permutation, and then returns to the city from which he starts. 

If the distance matrix is symmetric, i.e. d,j 二 dji, for 1 < i,j < N, we say the problem 

is symmetric; otherwise, it is asymmetric. Also, D is said to satisfy the triangle inequality 

if, and only if d,j + dj, > d,, for 1 < ?;，j，k < N. This occurs in Euclidean problems，i.e. 

when the cities are in 尺2 and c% is the straight-line distance between city i and city j. 

There are {N - l ) ! /2 feasible solutions for iV-city TSP. It is impossible to exhaustively 

search the whole solution space in a large scale problem. TSP is a NP-complete ( non-

deterministic polynomial time complete ) problem. No method for exact solution with 

a computing effort bounded by a power of N has been found. However, a number of 

special cases of TSP are solvable in polynomial time(see, for example, Gilmore, Lawler 

and Shmoys, 1985). Examples of sucli problems include the TSPs where D 二 (^½) is an 

2 
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upper triangular matrix, i.e. (1幻 二 0 for all ？: > j and a class o f j ob sequencing problems 

defined by Gilmore and Gomory(1964). 

1.2 Application . 
t 

The traveling salesman problem has many applications (Lawler et al. 1985, Laporte 1992). 

Here we just give some examples. 

1. Computer wiring{Lenstm and Rinnooy Kan 1975) 
Some computer components can be described as modules with pins attached to them. 

It is often desired to link these pins by means of wires, so that exactly two wires are 

attached to each pin. In order to avoid signal cross-talk and to improve ease and neatness 

of wirability, the total wire length has to be minimized. 

2.Physical mappm^/(Cuticchia et al. 1992) 

In constructing physical mapping based on hybirdisation fingerprinting data, if the 

penalty function is defined to be the sum of pairwise discrepancies between adjacent 

objects(probes or clones), then the problem can be formulated as a TSP . 
3.Job sequencing 
Suppose n jobs must be performed sequentially on a single machine and that dij is the 

change-over time if job j is executed immediately after job L The optimal ordering of the 

jobs is obtained by solving a TSP. 

In chapter 2 we will give a review of exact and approximate algorithm for TSP. In 

chapter 3 we will review the construction methods of Markov chain. In chapter 4 the 

weighted Markov chain method is proposed. Iii chapter 5 the weighted Markov chain 

method is applied to the traveling salesman problem, computational experiments carried 

out on both randomly generated problems and problems described in the operations 

research literature. Chapter 6 concludes with a discussion. 
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Chapter 2 

Review of Exact and Approximate 
*： 

Algorithms for TSP 

2.1 Exact Algorithms 

A large number of exact algorithms have been proposed for TSP based on integer lin-

ear progmmming (ILP). In tliis section we give a number of ILP formulations and the 

algorithms derived from these formulations. 

2.1.1 Integer linear programming formulations 

One of the earliest formulations is due to Dantzig , Fulkerson and Johnson (DFJ)(1954). 

It associates one binary variable � t o every arc {ij), equal to l if，and only if {ij) 

is used in the optimal solution, i ^ j. For the sake of simplicity, let V be the set of all 

cities(points). The DFJ formulation is 

Minimize Y^dijXij (2.1) 
的 

subject to 
f > f l , ?; = l ’ . . . ’ iV， (2.2) 
j=i 

j^x i i = � 3 = l , ' . . , N , (2.3) I 
i=i 

4 



CHAPrER 2. REVIEW OF EXACT AND APPROXIMATE ALGORITHMS FOR TSP 5 

o ; , ,G{0 , l } , U = lr,,N, 7； ^ i, (2.4) 

E � ^ 1̂ 1 — 1, for any S C F, 2 < jS| < N-2. (2.5) 
h3^S 

Where |S| denotes the number of arcs contained in set S. In this formula, the objective 

function clearly describes the cost of the optimal tour. Constraints (2.2) and (2.3) specify 

that every vertex is entered exactly once and left exactly once，respectively. Constraint 

(2.4) imposes binary conditions on the variables. Constraints (2.5) are subtour-breaking 

constraints; they prohibit the formation of subtours, i.e. tours on subsets of less than N 

vertices. Although the subt.our-breaking constraints can be formulated in many different 

ways, the one given above is very intuitive. If there is a subtour on some subset S of 

V，this subtour will contain 丨別 arcs. Consequently, the left-hand side of the inequality 

wi'll be equal to 丨割，which is larger than |5| — 1，and the constraint is violated for 

this particular subset. Without the subset-breaking constraints, the TSP reduces to an 
assignment problem(AP). ‘ 

A number of alternative formulations have been proposed by many authors, but none 

of them seems to have a stronger linear relaxation than DSJ(Langevin, Soumis and 

Desrosiers, 1990). 

2.1.2 Branch and Bound algorithm 

Branch-and-Bound(BB) algorithm is a well-known enumerative search technique for ob-

taining optimal solution to asymmetric TSP(Lawler et al. 1985). The feasible solution 

are divided into a collection of disjoint sets. Lower bounds are obtained for each set，and 

are used in conjunction with upper bounds so that some sets are discarded from further 

consideration. The procedure is applied recursively to each of the sets. The recursion 

explodes exponentially whenever the lower bounds are weak with respect to the optimal 

solution value. The AP-relaxation is used to generate lower bounds on the optimum 

value. So the quality of a BB algorithm is directly related to the quality of the bound 

provided by the relaxation. Many authors have proposed Branch and Bound algorithms 

for the TSP based on AP relaxation. The following algorithm is proposed by Carpaneto 
j 

and Toth(1980), and is a good example of this class of algorithms. 

I 

. 1 , • • • , • • ；‘‘.‘‘ , . , . . . , ,；• ,\ ； . ... .. V . ： ‘ . •‘.‘ ， -



CHAPTER 2. REVIEW OF EXACT AND APPROXIMATE ALGORITHMS FOR TSP 6 

In their method, the problem solved at a generic node of the search tree is a modified 

assig^ent problem(i.e. ^ is fixed at 0 for all 7；) in which some ..,,• variables are fixed at 

0 or 1. If the AP solution consists of a unique tour over all vertices, it is then feasible 

for the TSP. Otherwise, it consists of a number of subtours. One of these subtours is 

selected and broken by creating subproblems in which all arcs of the subtour are in turn 

prohibited. We will use the following notations: 

z*: the cost of the best TSP solution so far identified; 

邻：the value of the objective function of the modified AP at node h of the search tree; 

Z|̂ : a lower bound for Zh; 

I�the set of included arcs(:c,,- variables fixed at 1 ) at node h of the search tree; 

Ej,: the set of excluded arcs{o;,,- variables fixed at 0) at node h of the search tree. 

step i(Initialization): Obtain a first value for Z by means of a suitable heuristic. 

Create node 1 of the search tree: set h : 五 1 二 0’ and obtain î by solving the associated 

modified AP. If ;̂ i > Z，stop: the heuristic solution is optimal. If the solution contains 

no illegal subtours, it constitutes the optimal tour: stop. Otherwise, insert node 1 in a 

queue. 

step ^Node selection): If tlie queue is empty, stop. Otherwise, select the next node 

(node ^) from the queue. Here we use a breadth first rule, i.e. branching is always done 

on the pendant node having the lowest Zh-
step ^{Subproblem partitioning): The solution obtained at node h is illegal and must 

be broken by partitioning the current subproblem into descendant subproblems K char-

acterized by sets hr and 五“”.In order to create these subproblems, consider a subtour 

having the least number s of arcs not belonging to h . Let these arcs be (n,j i ) , . . .， { isJs). 

in the order in which they appear in the subtours. Then create s subproblems with 
‘ Ih r = l 

/" 二 

r 卜川(7:』：?/二1厂.，卜1} r = V.、，S 

E/,,r = ^;h,U{(7;r,JrO),r^ = l , . u , S . : 

Execute steps 4-6 for r 二 1，• •.，s, 

•….. / .. . • ； ' • . ；. . •' ••. . . ’’ . ..‘..,. '：，• •、’‘." 



CHAPrER 2. REVIEW OF EXACT AND APPROXIMATE ALGORITHMS FOR TSP 7 

step ^(Bounding): Compute a lower bound ^ on 办” by row and column reduction of 

the cost matrix. If z,„̂  < ？，proceed to step 5. Otherwise, consider the next r and repeat 

step 4. 
step 5(Subproblem solution): Solve the subproblem associated with node K (a modified 

AP restricted by / , . and E , J . If i > ？，consider the next r and proceed to step 4. 

step ^(Feasibility check): If i < ？, check whether the current solution contains 

subtours. If it does, insert node K m the queue. Otherwise, set Z 二 i and store the 

tour, if z* 二 zh, go to step 2. 

Using their algorithm, the authors have consistently solved randomly generated 240-

vertex TSPs in less than one minute on a CDC6600. The main limitation of this algorithm 

appears to be computer memory rather than CPU time. 
Recently, Miller and Pekny (1991) have proposed a new powerful BB algorithm for 

large asymmetric TSP. Consider the dual AP(DAP): 
n n 

Maximize J2 ？,‘ + X^ 巧 
i=i j=i 

dij - Ui - Vj > 0, i,j = l r . . ,N , i ^ j 

Denote by ;,*(TSP) the optimal TSP solution value, by z*(AP) the optimal value of the 

AP linear relaxation, and by , ( D A P ) the optimal value of the dual AP linear relaxation. 

Clearly z*(AP)=z*(DAP). Moreover, note that z*{AP) + {dij - m - Vj) is a lower bound 

on the cost of an AP solution that includes arc { iJ ) . Miller and Pekny make use of this 

in an algorithm that initially removes from consideration all Xij variables whose cost dij 

exceeds a threshold value A. Consider a modified problem TSP/ with associated linear 

assig^ent relaxation AP/ and its dual DAP/, obtained by redefining the costs ^ as 

follows: ( 
dij if dij < X 

dij' 二 ， 
oo otherwise . 

\ 

The authors prove the following proposition which they use as a basis for their algorithm: 

an optimal solution for TSP/ is optimal for TSP if 
.) 

2*(TST) - Z(Ai^) < A + 1 一 Ui, — v,r,^/ (2.6) 

I 

- • , ., .• .,. •.. .... • •, . ‘ .、 ，•. . •… ‘ . . ‘ 



CHAPTER 2. REVIEW OF EXACT AND APPROXIMATE ALGORITHMS FOR TSP 8 

and 
A + 1 - ui/ - i;n,ax/ > 0 (2.7) 

for i 二 1，•.. ,n, where u, and ” , are optimal solution to DAP/, and ^ax, is the maximum 

element of vL The quantity A + 1 — n,/ —幻臓,underestimates the smallest reduced cost 

of any discarded variable. Tlie algorithm can be summarized as follows: 

1) Choose 入. 

2) Construct {dijf) and solve TSP/. 

3) If (2.6) and (2.7) hold, then z*{TSPf) 二 z*{TSP)'. stop. Otherwise, double A and 

goto step 2. 

The authors report that if A is suitably chosen in step l(e.g., the largest arc cost in a 

heuristic solution), there is rarely any need to perform a second iteration. To solve TSP/, 

the authors have developed a BB algorithm based on the AP relaxation. They have applied 

this procedure to randomly generated asymmetric problems. Instances involving up to 

5000 vertices were solved within 40 seconds on a Sun 4/330 computer. The largest problem 

reported solved by this approach contains 500000 points and required 12623 seconds of 

computing time on a Cray 2 supercomputer. But applied to symmetric problems, the 

method was able to solve only small problems. They applied the algorithm to the 532-city 

problem of Padberg and Rinaldi (1987), and only find a solution within 8.2% of optimal 

in 18 seconds and within 6.8% of optimal in 130 seconds on a Sun 4/330 workstation. 

There are many other methods proposed for solving TSP exactly, see Laporte(1992) 

for a review in depth. 

2.2 Heuristic Algorithms 

TSP is a NP-hard problem even with additional constraints such as triangle inequality or 

Euclidean distances. It is impossible to find its exact solution for a large scale problem 

within reasonable amount of computation time. Accordingly, heuristic algorithms are 

often preferred to exact algorithm for solving the large TSPs tliat occur in practice ( e . g . , ‘ 

. , , . . .. .• ‘ ‘ • � ‘ • , ‘ • ‘ ‘、 



CHAPTER 2. REVIEW OF EXACT AND APPROXIMATE ALGORITHMS FOR TSP 9 

drilling problems). These have motivated many authors to design the heuristic algorithms 

for the TSP. A good heuristic algorithm should have the following properties(Ong and 

Huang, 1989): 

> 

1) It should yield a solution within a reasonable amount of computation time. 
2) The solution should be close to the optimum, on average. 

3) The probability of producing a solution which deviates substantially from the opti-

mum should be small. 

• » � 

Ong and Huang(1989) liad studied asymptotic expected performance of some TSP 

heuristics based on their empirical evaluation. 
Generally speaking, TSP heuristics can be classified as tour construction procedures, 

tour improvement procedures, and composite procedures, which base on both construction 
I 

and improvement techniques. 

2.2.1 Construction Procedures 

Construction procedures usually build up a tour gradually by selecting each vertex in 

turn and then inserting them one by one into the current tour. Various criteria have been 

proposed to select the next vertex to insert and to identify the best place to insert. These 

include the proximity to the current tour and tlie minimum detour. The most popular 

tour construction heuristics include savings heuristic(Clarke and Wright, 1963), cheapest 

insert heuristic and nearest neighbor heuristic. Rosenkrantz et al. (1977) has compared 

the performances of these methods. 

2.2.2 Improvement Procedures 

If one is not satisfied with a tour constructed by tlie heuristics, one may attempt to 

improve it by local searching (Aarts and Korst 1989) based on stepwise improvement on 

the value of the cost function by exploring neighbourhoods. The fundamental concept 

,neighbourhood structure, is defined as follows: . 

. . j . • , , . : 、：，， •；• • ... ., ： . •:,." 



CHAPTER 2. REVIEW OF EXACT AND APPROXIMATE ALGORITHMS FOR TSP 10 

T, is a neighbour solution of T if and only if T, can be obtained from T by a legitimate 

perturbation. 

The tour improvement algorithm based on such a structure consists of two subroutines: 

(A)Initialization which is used to construct an initial tour To, and (B)Improvement which 

is used td determine if there is neighbouring tour of better cost, and if so will return one 

sucli tour r / . If no such toiir exists, T is called "locally optimal". These subroutines 

may be either randomized or deterministic. Thus a local optimization algorithm has the 
following structure: 

> -

1) Initialization: construct an initial solution T 二 To. 

2) Improvement: do the following until T is declared locally optimal, 

2.1) generate Tf from the neighborhoods of T. 

2.2) If T/ is a better solution than T, set T 二 T/. 
t 

3) Stop, and return T. 

The local algorithms stop at a local optimum, which need not be globally optimal, and 

there is generally no guarantee as to how far this local o p t i ^ m is from a global optimum 

(Johnson, Papadimitriou and Yannakakis, 1985). The quality of the solution obtained by 

a local search algorithm usually strongly depends on the initial solution ； and for most 

combinatorial optimization problems no guideline are available for an appropriate choice 

of the initial solution(Aarts and Korst 1989). The following are some examples of the 

algorithms: 

1 r-opt algorithm 

The most famous tour improvement methods for TSP are the "2-opt", "3-opt" and 

"Lin-Kernighan". The corresponding neighbourhood structures are as follows: 

• 2-opt (Lin, 1965): Two tours are neighbours if one can be obtained from the other by 

deleting two edges, reversing one of the resulting two paths, and reconnecting. Typically, 

it can remove the cross lines among 4 cities(The move to such a neighbour is generally 

known as a Lin-move). 
.} 

3-oj)t{Uii, 1965): Two tours are neighbours if one can be obtained from the other by 

. ., . . • • . 1 . _ ’ , � ‘ ‘ . • ,. • , , • • •' ‘ ‘ ’ _ ', • • , • .‘‘ , 



CHAPTER 2. REVIEW OF EXACT AND APPROXIMATE ALGORITHMS FOR TSP 11 

deleting three edges and putting the three resulting paths together in a new way, possibly 

reversing one or more of them. 
Lin-Kernighan (Lin and Kernighan 1973) ; The neighbourhood structure is too com-

plicated to be described here in detail. In summary, for a tour Tf to be a neighbor of 

tour T, it must be shorter and there must be a way to obtain it by breaking k ( k is not 

prefixed) edges of T, rearranging them, and tlien performing a series of additional 2-opt 

moves. 
Recently Johnson(1990) has developed a randomized iterated Lin-Kernigham method 

that produces near-optimal solutions. , 

2 Simulated Annealing 

The idea of Markov chain construction for Monte Carlo simulation was introduced in 

(Metropolis et al. 1953). Kirkpatrick et al. (1983) adapted this approach for discrete 

global optimization incorporating the concept of the annealing process in thermodynam-

ics. Annealing refers to a process used to reveal tlie low temperature state of some 

material. The material is first melted and then slowly cooled with long time spent at 

successive lower temperatures near the freezing point. The time spent at each temper-

ature must be sufficiently long to allow a thermal equilibrium to be realized. Simulated 

annealing means simulating tlie annealing process by a Monte Carlo method (random 

changes in the state of the system), where the global minimum of the objective function 

represents the low energy configuration. The algorithm can be summarized as following: 

1) Initialization. Obtain an initial solution s = so and temperature t 二 力0. 

2) Improvement. Repeat the following until its time to quit: 

2.1) choose a random neighbour sf of s. 

2.2) If c(s/) < c(s) set s 二 s/. 

2.3) otherwise, 
2.3.1) choose a random number r uniformly from [0,1. 

2.3.2) if r < ea:p(-(c(5/) — c{s))/t), set s 二 s/‘ 
2.4) determine a new temperature t according to some preselected cooling schedule. 

.) 

3) Return s (or best soluUon seen so far, if dilFerent). 

, • • ； , ' “ , • ‘ ‘ , . , i ‘ . , . •, 
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An important characteristic of this algorithm is that sometimes the next state accepted 

may have higher energy than the previous one. This reduces the probability of becoming 

trapped in a local o p t i ^ m . The acceptability of uphill moves is affected by a control 

parameter t called the temperature. Typically the temperature is gradually reduced from 

a high value, at which most uphill moves are accepted, to a low one at which few if 

any such moves are accepted. One standard scheme of theoretical interest is "logarithm 

” cooling, in which the temperature on the kth trial is set to C/log{k) for some fixed 

constant C. This cooling schedule will normally guarantee convergence to an optimal 

solution(Geman and Geman 1984)(although the convergence time is likely to exceed the 

time needed to find an optimal solution by exhaustive search). In Stander and Silverman 

(1994), a dynamic programming approach is used to find the temperature schedule which 

is optimal for a simple minimization problem, and the temperature schedule is compared 

with other non-standard choices, including straight, geometric and reciprocal A more 

commonly used scheme is geometric cooling, in which the temperature is fixed for some 

prespecified constant L number of trials, and is then multiplied by some prespecified 

reduction factor, which is a constant smaller than but close to 1，such as 0.95 or 0.9. 

This provides no guarantees for convergence, but seems to work well in practice. Even 

geometric cooling, however, leads to substantially greater running times(for acceptable 

results) than needed by the corresponding local optimization scheme. 

Simulated Annealing has been applied to TSP by many authors including Bonomi and 

Lutton(1984), Rossier, TYoyon and Liebling(1986), Golden and Skiscim(1986) and Nahar, 

Sahni and Shragowitz(1989), wit,li apparently a mixed degree of success. 

8 Tabu Wc/ i (Glover 1989，1990, 1993; Glover and McMillan, 1986) 

As in the previous two methods, successive neighbours of a solution s are examined 

and, as for simulated annealing, tlie objective is allowed to deteriorate in order to avoid 

local minima. In order to prevent cycling, solutions that have already been examined are 

forbidden and inserted in a constantly updated 'tabu list，. The method can be summarized 

as the following: 
.j 

1 



CHAPTER 2. REVIEW OF EXACT AND APPROXIMATE ALGORITHMS FOR TSP 13 

1) Initialize to obtain an initial solution s. Set the tabu list T 二 0. 

2) Let N{s) be a neighbour of x. If N\s)\T 二 0，go to step 3. Otherwise, identify a 

least cost solution 5/ in N{s)\T and set s 二 sL Update T and the best known solution. 

3) If the maximum number of allowed iterations since the beginning of the process or 

since the last update has been reached, stop. Otherwise, go to step 2. 

The success of this method depends on the careful choice of a number of control 

parameters. Fiechter (1990) applied tabu search to the TSP with seemingly very positive 

results. 
» - ‘ 

4 Genetic Algorithm 

The genetic algorithm is different from the general tour improvement methods based on 

iterative local search, such as r-opt, simulated annealing and tabu search. These methods 

find a solution of which the quality depends on its initial solution. Sometimes in order to 

obtain a better quality solution, multiple independent runs are needed. No use is made 

in latter runs of the results of earlier runs. But the genetic algorithm(Holland, 1975) 

capitalizes on those earlier results. It first performs some fixed number of independent 

runs(possible in parallel), and then derives new starting solutions based on a transfer of 

information between(a mating of) the solutions found. This process can then be repeated 

for many generations until progress stops being made, with the population at each mating 

step consisting of the newly constructed tours and a selection of the best ones from 

previous generations. It can be summarized as follows: 

1) Set t = 0，initialize to obtain initial population P(t), and then evaluate structures 

in P(t). 

2) While termination condition is not satisfied，do 

2.0) set t = t + 1. 

2.1) select mating populating M{t) from P{t — 1). 

2.2) recombine structures in M {t). 

2.3) evaluate structures in Af(t). 

2.4) replace some or all of P(t — 1) with M{t) to form P{f). 

\ 

. . . . , . ‘• . ‘ • ‘ • ‘ • . , • , I . 
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3) Return best solution 

The algorithm was first applied to TSP by Brady(1985), who mated two tours by 

looking for a pair of subpaths, one in each tour, that contain precisely the same set of 

cities. The longer of the two paths is then replaced in its tour by the shorter. The local 

optimization algorithm used was 2-opt. Unfortunately the results for a 64-city geometric 

example were no better than performing multiple independent runs of 2-Opt for the same 

time. 
There are many variations in the selection of the mating population and the recombi-

nation of the structures. The choices of them determine the efficiency of the algorithm. 

In order to search from as large a solution space as possible to obtain a better quality 

solutions, a mutation process is usually executed after the recombination of the structures. 

I 

2.2.3 Composite Algorithm 

In recent years, two effective composite algorithm have been developed. The first is the 

CCAO heuristic(Goldean and Stewart, 1985) . The second is GENIUS (Gendreau，Hertz 

and Laporte, 1992). 

1. CCAO algorithm 

This heuristic is designed for symmetrical Euclidean TSPs. It exploits a well-known 

property of such problems, namely that in any optimal solution, vertices located on the 

convex hull of all vertices are visited in the order in which they appear on the convex hull 

boundary(Flood, 1956). The method can be summarized as follows: 

step l{C: convex hull). Define an initial(partial) tour by forming the convex hull of 

vertices. 

step 2{C: cheapest insertion). For each vertex k not yet contained in the tour, identify 

the two adjacent vertices ik and jk on the tour such that a,̂ k + c^j, — Ci,j, is minimized. 

step 3{A: largest angle). Select the vertex k* that maximizes the angle between edges 

(?:fc，k) and {kJk) on the tour, and insert it between ik* and j k � . 

step 4 Repeat step 2 and 3 until a Hamiltonian tour of all vertices is obtained. 

, , • > • ‘ ‘. , ！ •. 
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Step 5(0: Or-opt). Apply the r-opt procedure to the tour and stop. 

The rationale behind steps 2 and 3 is that by selecting k* so as to maximize the angle 

it makes with the tour, the solution remains as close as possible to the initial convex hull. 

2. The GENIUS algorithm 

One major drawback of tlie CCAO algorithm is that its insertions are executed se-

quentially without ^ d i concern for global optimality. They may result in bad decisions 

that the post-optimization phase will be unable to undo. GENIUS executes each inser-

tion more carefully, by performing a limited number of local transformations of the tour, 

simultaneously with the insertion itself. It contains two parts: a generalized insertion 

phase(GENI) and a post-optimization phase (US) that successively removes (unstring) 

vertices from the tour and reinserts (string) them, using the generalized insertion rule. 

The algorithm can be summarized as follows: 

step 1 Create an initial tour by selecting an arbitrary subsets of three vertices. Initialize 

the j9-neighbourhoods of all vertices. 
step 2 Arbitrarily select a vertex . not yet on the tour. Implement the least cost 

insertion of v by considering the two possible orientations of the tour and the two insertion 

types. Update the p-neighbourhoods of all vertices to account for the fact that . is now 
on the tour. If all vertices are on tour, go to step 3. Otherwise repeat this step . 

step 3 Consider the tour s with cost z obtained above. Set s* 二 s, z' 二 一 and t 二 1. 

step 4 Apply the unstringing and stringing procedures with vertex 例，and consider in 

each case the two possible types of operation and the two-tour orientations. Let s, be the 

tour obtained and zf be its cost. Set s 二 s!, and z 二 zf. 
4.1) if z < z\ set s* 二 s, z* 二 z and t 二 1; repeat step 4. 

4.2) i f ;z2;^*,set^ = ^ + l. 

4.3) if t = n + 1，stop; the best available tour is s* and its cost is z*. Otherwise go 

to step 4. 
.1 

I 
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Chapter 3 

Markov Chain Monte Carlo 
*-. 

Methods 

3.1 Markov Chain Monte Carlo 

To demonstrate the idea of Markov chain Monte Carlo instead of a rigorous mathematical 

discussion, we will mainly use the elementary language and concepts corresponding to dis-

crete state spaces. Extensive theoretical accounts can be found in Besag and Green(1993) 

and Tierney(1994). 
Suppose that we wish to generate a sample from a distribution n[x) for o; G Â  C 7T̂  

but cannot do this directly. However, if we can construct a Markov chain with state space 

Af and equilibrium distribution 7r(o;). Then we run the chain which can be simulated 

directly for a long period of time, and the simulated values of the chain can be used as a 

basis for inference. 
Clearly, successive samples of tlie chain X’' will be correlated. Therefore, more samples 

are needed than would be required if independent samples are possible. 

Under suitable regularity conditions, the realization A ^ X ? ’ •. .，X",... from an ap-

propriate chain, has the following asymptotic results: 

X^- " i X �7T(a;) as t — 00 

l j 2 f { X ' ) ^ E J { X ) a . s . as t ^ o o ^ 
t i=i 

16 
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If the first asymptotic result is to be exploited to mimic a random sample from n(x), 

suitable spacings will be required between realizations used to form the sample, or parallel 

independent runs of the chain might be considered. The second asymptotic result implies 

that ergodic averaging of a function of interest over realizations from a single run of the 

chain provides a consistent estimator of its expectation, so the samples of the chain can 

be used for Monte Carlo integration. 
To implement this strategy, we simply nced algorithms for constructing chains with 

specified equilibrium distributions. We now consider some particular forms of Markov 

chain schemes. 
i , 

3.2 Conditioning and Gibbs Sampler 

Let n(x) 二 兀(0：1’ • • -,x,X ^ ̂  尺"’ denote a joint density, and let ^(^^l^-i) denote the 

induced full conditional densities for each of components 工“ given values of the other 

components x^i 二 (o;^j + 0，？： 二 1’ •. • ， � ^ < 人：-几. 

A systematic form of the so-called Gibbs sampler algorithm(Geman and Geman, 1984) 

proceeds as follows. 

1) Pick arbitrary starting values x^ = (a:?,. • •， l̂)-

2) Successively make random drawings from tlie full conditional distributions 7r(o;i>-i), 

i == 1,...，k, as follows: 

x\ from 7T{xi\x^_i)', 

xl from 7r(a;2k1, ̂ 3' ‘ ‘ ‘ ‘ ̂ fc)' 
xl from 7r(.T3la;}, xl, 3；4,... ’ xl)] 

• 

xl from n{xk\x^-k)' 

This completes a transition from o;�二（工？，…，工‘知）to a;̂  二（0：1，-.-，4). Iteration 

of this process generates a sequence o^ a:\ , . .，< .. • which is a realization of a Markov 

chain, with equilibrium distribution 7r(a;) and transition probability from o:* to ? + i given 
,1 
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by , 
/化(冗,'乂+1) 二 n̂ (4+ii4,j > 1 , 考 1 。 < 0 

/,=i 
The key feature of this algorithm is that we only sample from the full conditional distri-

butions 7r(xijx-i). : 
Another algorithm wliicli involves successive drawing from various(not just full) con-

ditionals is the substitution sampler, which is discusscd in detail in Gelfand and Smith 

(1990)’ who examine its relation to the Gibbs sampler and to data augmentation (Tan-

ner and Wong 1987). A detail description of this method, including developments and 

applications can be found in Tanner(1991). � 

3.3 The Metropolis-Hasting Algorithm 

To construct a Markov chain ；^1"^2,...，义£’... with state space ^ and equilibrium 

distribution ^ W , the Metropolis-Hastings algorithm constructs the transition probability 
from Xt' 二 0： to the next realized state 义计！ as follows. 

Let q{x,xf)denote a transition probability function (essentially can be any distribu-

tion), such that, if Xt 二 ：c, .x/ drawn from q{x,xf) is considered as a proposed possible 

value for X^+^ 

Then we calculate the ratio 

, � f m i n { ^ f ^ , l } if-W.(-,-0>O 
如 叫 1 if.(.M.,x/) = 0. 

N 

We actually accept 义计！ 二 a:, with probability a(x, o;/); otherwise, we reject the proposed 

transition and set X '̂+i =工. 

This construction defines a Markov chain with transition kernel function given by 

[ q (x ,x / )a (x ,x / ) i f a ; / # a ; 

P ( ^ ) = j 1 一 5 一 ( ^ 如 " ） i f r ^ 
\ 

It is easy to check the transition kernel satisfies the detailed balance，i.e. 

7r(aOP(r，a') = r(rOP(i、T). ^ 

. , . • . ‘ , • • • ‘ . < • ‘ 
• : . , , 
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Which guarantees tliat 7r(rr) is tlie equilibrium distribution of the constructed chain. 

This general algorithm is due to Hasting(1970); see, also, Peskun(1973). 

Clearly, different specific choices of g(:c,o;/) will lead to different specific algorithms. 

Tierney(1994) provides a systematic taxonomy of the kinds of choice available. Here we 

just follow him to give some simple examples. 

1 )Metropolis algorithm 

If 乂工，./) 二 # c / , oO，we have a ( . , . / ) 二 min{^(o:/)^(aO, 1}’ which is the well-known 

Metropolis algorithm (Metropolis et al 1953), which forms the basis of the simulated 

annealing method (Kirkpatrick et al 1983). 
• . � 

2)Random walk Chain 

If 咖’明 二 r/(x/-aO, the chain is driven by a random walk process. Natural choices for 

the increment distribution include a uniform distribution on a disk, a normal distribution 

or perhaps a multivariate t-distribution. Split-t distribution(Geweke, 1989) may also be 
I 

useful. 

3) Independence chains 
If q{x, xf) 二 q'(x,), and the acceptance probability a{x, xf) can be written as 

/ 、 • r<T,) n # / ) = m m { ^ , l } 

where w{x) = n{x)/q{x). This function w is the importance weight function that would 

be used in importance sampling if observations were generated from the density g{x). 

The independence Metropolis chain is closely related to the corresponding importance 

sampling process. Candidate steps with low weights are rarely accepted. On the other 

hand, candidates with high weights are usually accepted, and the process will usually 

remain at these points for several steps, thus using repetition to build up weight on these 

points within the samples. If some points have very high weight values, then the process 

may get stuck at these points for a long time. Insiglit for the general importance sampling 

method, multivariate ^distribution with low degrees of freedom, split ^distributions and 

other distributions may be good choices for proposal function q{x/). 

4) Rejection Sampling Chain 
Rejection sampling(Ripley 1987) is the basis for several algorithms for generating v a r i - , 
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ates from standard univariate distributions. 
Suppose we have a density h and a constant c such that, hopefully, i^{x)|h{x) < c for 

all a;. The sampling procedure is as follows: 

i 

(1) Generate Z from h. 

(2) generate u from unifonn (0,1)-

(3) If u < n(Z)/ch{Z), acccpt. Z; otherwise, repeat step (l)-(3). 

The final Z has density 
‘、、 

q{x) oc 7T(.T) A ch{x). 
If 7r(o;) < ch{x) is true, then q is proportional to 7r and the Zs are i.i.d samples 

from 7T. But usually it is very difficult to ensure that c is large enough for ch(-) to 

dominate r̂ without choosing c excessively large, leading to an inefficient algorithm with 

many rejections. And even then we still can not be certain that chO) does dominate 兀(.) 
without extensive analysis of tlie tails of h and ir. 

Using this rejection scheme to drive an independent Metropolis chain provides a simple 

remedy. If we define C 二 {o: ： 7r(o:) < ch{x)}^ then the Metropolis acceptance probability 
can be written as 

‘ 1 for X G C 

a{x,xt)=l 勞 loixiC,xteC 

. m i n { ^ ; ^ , l } & / ^ : ¢ ^ ( " ¢ 0 . 

Thus the algorithm will occasionally reject some proposed transitions when the chain is 

at a point o; g C. This repeats compensates for the deficiency in the envelope at x. In 

the sampling process the dependence between samples is introduced to make up for this 

deficiency and leaves 7r invariant for the Markov chain. 

5) Combining strategies 
The methods described above can be used separately, or they can be combined into 

hybird strategies. Mainly there are 3 strategies to combine them. 
1) Using an Markov cliain Monte Carlo method within the conditioning of the Gibbs 

sampler. 
t 
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2) Mixtures. Suppose positive probabilities a i , . . . ’ a^, are specified, and at each step 

one of tlie kernels is selected according to these probabilities. 
3) Cycles. Each kernel is used in turn, and when the last one is used the cycle is 

restarted, (for detail, see Tierney, 1994). 

3.4 Auxiliary Variable Methods 

In the method of auxiliary variables, the state variable o; is augmented by one or more 

additional variables u G U; in some contexts, u may have a physical interpretation in 

the original process, but often it is quite abstract. Thc joint distribution of o: and u will 

be defined by taking the given distribution of interest 兀⑷ as the marginal for x, and 

specifying the conditional n{v]x); this can be chosen quite arbitrarily. So we have 
n{x\u) oc 7T(a:, u) 

！ 

We now construct a Markov chain on ^ x U that alternates between two types of tran-

sition: 
1) u is drawn from n{v]x)] 

2) xf is generated given u and x. 

Note that the transition kernel function P{x — x/; u) should preserve detailed balance 

for the conditional n{x\u), i.e. 

7T{x\u)P{x ~> Xf] u) = 7r{x/\u)P(x/ ~> :r; u) ( 3 . 1 ) 

The simplest example of such a transition function is 

P(x 一 xf; u) 二 7T(a:+/,) (3.2) 

for which the resulting method amounts to the Gibbs sampler applied blockwise to x and 

u in turn, but there are many other choices that can be made. If we define 

P{x 一 xf) = J2n{v]x)P{x 一 xf; u) 
U 

This is just the double transition function from o; to xf. Since 

ir{x)J27T{v]x)P{x 一 xf- u) 二 X]7r(?/,)7r(a;|u)P0^’ — “；？丄) ‘ 

u ^ 

. . , , . , i • . • 
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and 
7r(x0J2^0'l^0^(^'—工；礼)=二|(?7')兀(工小0尸(工'—工；"'） 

u ^ 
From (8)，we have 

7r{x)P(x — X/) = 7T(x/)P(x/ — x)丨 

This leaves 兀⑷ invariant for the chain, so such an approach construct a valid Markov 

chain Monte Carlo procedure for 兀⑷’ provided that irreducibility and aperiodicity can 

be demonstrated; for the case of equation (3.2) it is clearly sufficient that there exists u* 

such that 7T{u*\x) is positive for all a:. 

The most successful auxiliary variables method has been the Swendsen and Waag(1987) 

algorithm, using equation (3.2) (the l / T , power ofTr(.))，designed specifically for the Potts 

model, the multicolor generalization of Ising model. The algorithm provides a remarkably 

simple means with which to combat the problems of critical slowing-down, encountered 

by single-component updating. ‘ 

A development with wider implications has been the introduction of simulated tem-

pering into the literature on auxiliary processes(Marinari and Parisi，1992; Geyer and 

Thompson, 1995). It speeds up the mixing rate of the whole system, by devising an 

ordered sequence of chains, wliich, at one extreme, has the target distribution(with lower 

temperature) as its lirnit, at tlie other extreme, is a rapidly mixing cliain(with higher 

temperature). The chains can be run in parallel, with intermittent proposals to swap 

states of adjacent chains and with acceptance probability that ensure each maintains its 

own limiting distribution. The occurence of swaps can substantially increase mixing. In 

Geyer and Thompson (1995) only one chain is running at any particular time. Moves 

from the current cliain to the adjacent chain{s) are proposed periodically, again such that 

the individual limit distributions are maintained. Thus, at one extreme, information can 

be collected on the target chain. In applying tlie method to ancestral inference, Geyer 

and Thompson (1995) created the sequence of densities by setting the penetrances to be 

various convex combinations of two basic sets of values. One corresponds to the genetic 

model of interest, the other corresponds to a model that is easy to simulate. But some-

times it is very difficult, to move from one chain to its adjacent ones, especially when there ,. 

' , 
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are much difference between two adjacent cliains. For a detail description of this method, 

see Besag and Green (1993). 

/ 

1� 

.) 
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Chapter 4 

Weighted Markov Chain Monte 

Carlo Method 

Suppose we want to draw samples from a density function 

i=^(r i ,a...，〜）= P P O = c / p o 

where c is the normalizing constant, and f{X) is a function that can be evaluated numer-

ically. Metropolis et al.(1953) introduced the following method: 

Given the current sample X, draw X* according to a distribution T{X — X*)，where 

T can be essentially any distribution. It is called the proposal function. Define the ratio 
*� f{X*)T{X* — X) 

丫 二 r (X 一 X ) 二 j ^ x ) T { X — X*) 

and sample a variable u from the uniform distribution ^(0,1). If u < r set X' 二 P else 

X' 二 X. This define a Markov transition a;—工,.The corresponding transition kernel 

function K{X — Xf) satisfies the detailed balance: 

f{X)K{X — X*) 二 f{X*)K{X* - X ) 

Hence such a transition will lcave the density / ( . ) invariant. 
Suppose we have obtained samples X1,X2, •.., X , using this transition. Let M $ ) be 

the distribution of X.,, the sample obtained in nth step. Then M ^ ) lmve the property 

that asymptotically , 
lim M ^ ) 二 尸⑷ 

TJ,~>00 

24 
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If the function f{x) has multiple modes, and there are deep and wide platforms between 

modes, it is impossible to s i^late the function / ( x ) correctly by this method. The reason 

can be derived directly from detailed balance which implies that the Markov chain will 

find it difficult to leave a mode for the platform region and hence it has little chance to 

jump to another mode. 
We now give an example to demonstrate this. Let f{x) be a linear combination of two 

normal distributions: 
/(aO = 7̂V(5,0.1) + zN(20,0.1) 

Note that it has two widely separated modes. We run the Metropolis algorithm 20 times 

independently, with 50,000 trial steps per run. The starting value is set to be (0,0) in 

each run. The proposal function is iV(0,0.1). The simulated function f{x) is shown in 

figure 1. 

0.14 Y- — — ~~" 

0.12 -- A 

0 . 1 - -

0 . 0 8 --

0 .06 --

0.04 --

0 . 0 2 — I 

0 L^ 1 ^ ‘ 
„ ^0 10P 15P 2QP ^ 0 

-0.02 

figure 1 

The simulation result for f(x) using Metropolis algorithm 
4 

It is clear that the Markov chain is always trapped in the first mode. Several proposal 

functions, including N(0,0.1)’ ^(0,0.1)’ t-distribution with low degree of freedom have 

been tried. But all of them can only simulate one mode, and the estimated function is 

completely wrong. ‘ 
A potential remedy that has sometimes been suggested is to use several or many 

• •‘ ？.' ‘ ‘, . . • ‘ ‘ 1 •‘‘ 
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different runs, starting from different points, scattered around the parameter space. As 

an exploratory strategy, this may be quite informative, particularly if the modes can be 

used as starting points. In practice, the main modes will often be deduced separately by 

deterministic hill climbing. However, the problem of how to combine the separate runs 

into coherent inferences then arises. Ideally, one would like each run to be s^ciently 

long so that it could sample all the modes frequently. In that case we have almost t,he 

correct long run proportions, and multiple runs liave iio intrinsic merit. 

Now we modify the algorithm by introducing the auxiliary variable w as the weight of 

the state x, so now the state space is AT x W instead of ^ , and the current state is (o;, ^) , 

instead of a;. Let T(X — .T*) be the proposal function and 0 二 没(̂：，—. TIie algorithm 

can be summarized as follows: 

1) Draw X* according to T{x 一 x*). 

2) Calculate 
D, *、 f{x*)T{x* — oO (4.1) 

厂二尺(冗,川；.1)二切7[^^5^(^"：7^ 、 

3) If r > e, accept the proposed transition, and set {xf,w/) 二 (a^*，”)， 

else generate a random variabe Ui � U ( 0 , 1 ) 
a) if Ui < r/0, accept the proposal transition and set {x/,w/) 二 (x*,/9). 

b) if Ui > r/0, set {xf,w/) = {x,w/q). 

Where q is the rejection probability of {x,w), 

q 二 办 ^̂ ) 二 [ (1 — 5 i ^ ^ ^ ) T ( x — x,)dx,. 
Jr<9 口 

4) Let {x/,wf) be the current state, go to step 1). 
An alternative choice for b) iii the above pseudocode of the algorithm is to keep 

drawing new proposal states until we find an acceptable one. Then new state is set as 

{ x f , w / ) , 

where ( 
r * p if r > 6 

wf = 
0 * p otherwise, 

\ 

二 1 一 (八0；，— 二 1 — [ (1 - ^)T{x ^ xf)dxf. 
Jr<9 “ 

I 
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For o;* with a value r larger than 0, it is assigned a weight larger than 0. This makes 

it easy to leave the current state for a new state. For ? with a value of r smaller than 0, 

if it is rejected, one choice is to return state ( . , f ) , where f > 切，this makes the chain 

easier to leave the current state for a new state. Another choice is to keeping drawing 

new proposal states until we find an acceptable one. We usually take this second choice 

when the weight is larger than a given upper control value. This algorithm substantially 

speeds up the rate of mixing of the Markov chain. The following theorem shows that after 

integrating out the variable w, we can get the correct distribution which is just what we 

want to sample from. ) 

THEOREM: If the following equality holds, 

j g{x, w)wdw 二 cf(x). 

Let, 

h(x,,wf) = j J g{x,w)k{{x,w) ^ {xf,wf))dwdx, 

where k{{x,w) — {xf,wf)) is the transition kernel function. Then 

j h{xf,wf)wfdwf 二 c/(a;/) 

(proof can be found iii Appendix A ) 

Since both choices leave the function cf{x) invariant, we can alternatively choose one 

in every step of the simulation process. 
In the algorithm, 6 is a prefixed function of {x,w). Note that given 

j g{x,w)wdw oc f{x), 

we always have 

j I |g{x,w)k{{x,w) ^ {xf,wf))dxdwdwfoc f{xf). 

This does not depend on the form of the function 外，.).On the other hand, the acceptance 

probability for every proposal transition, min{r/^, 1}，depends on 0, so we can tune e to 

get appropriate moving probability for every state according to its current weight w. Let 
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Q =切(1一^)(1一击） 

Where M is a prefixed constant, and it is the upper control value for w. The plot e vs w , 

for fixed M(M = 20，000) is in figure 2. ； 

~T 1 r- ~i ~\ 

1200j ‘ ‘ ‘ ‘ 

1000 - / Nv 

• 8。。- / \ “ 、 

600 • I \̂^ 

400 - \ s ^ 

200 • "̂ “̂ -̂  

�0~~o'.2 0.4 0：6 0：8““i~1-2 " 1.6 -̂̂  ^J 

figure 2 

The plot e vs w for fixed M 二 20,000 

In figure 2, when w increases from a very small value, the corresponding 0 increases 

very quickly, so then . can be adjusted quickly to be a large value by many rejections. 

With increasing 叨，e will be increasing up to a maximum value, after that it is decreasing 

and eventually asymptotes to 1. The decreasing of 9 results in fewer rejections, which 

implies that the proposed transition with the small ratio r can be accepted and then w is 

set to a small value. This prevents the value of e from becoming too large. Such a choice 

is found to be helpful in controlling the magnitudes of the weights. 
In the simulation process of the Markov chain, ^ and p need to be estimated for setting 

the new weight during rejection steps. How to estimate them ？ 

The simplest method is that we draw n samples according to the transition density 

T(a: — T,) if the proposed transition is rejected. We know that 

P = / > / ( " + w / < j T ( M M ^ ‘ 

I 

.• - • , • / • •‘ , • • . • . , . " . 
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We can estimate p by 
1 n 

1 n j ' . 丄 <^_^ 

V 二 ^ E ( " n ^ 没）+ i i ( n < 約）二 : � i 
n f^ “ 几?:二1 

where ^ 
Pi = m m ( l , j ) 

Clearly, p is an unbiased estimate of p. 

An unbiased estimate of p^ is 

P ^ 2 = _ ^ [ ( f > ) 2 - f > ? ] . 
n{n - 1) 7:=i i=i 

* - . 

To estimate ^, first note that 

1 1 1 , , 2 , 
- 二 二 1 +P + V ^ 
q 1 -P 

When p (e.g. p < 0.1) is small, l + p + p ' is a good estimator of 念，although it is a biased 

estimator. 

When p is large (e.g. p > 0.1), the estimator of * with srnall bias based on Taylor 

expansion usually includes high order terms of p. In this case we usually use ^ to 

estimate ^ directly instead of basing on Taylor expansion. 

To savI computation time in the second choice of rejection step, we usually check the 

previous n samples used to estimate p again to try to accept oneof them, e.g. tlie sample 

工,，the Hh sample, is accepted, then :.,, k should satisfy the following equality 
T • 飞 

k 二 min{j : Tj > 0 or Uj < ~j, J 二 1, 2, 3，•.. n}. 

Where Uj is drawn from uniform distribution ^(0,1), but if 

{ j ： Tj > e o r Uj < j , J 二 1，2，3，，. • n } 二 0 

we continue to sample x/ according to function T ( . — x/) until we find an acceptable 

proposal transition. The new samples can then be used to get a better estimator of p 

together with the previous n samples. 

Using this algorithm, we simulate the function 

/ ( , ; ) = iiV(5,0.1) + ^iV(20,0.1) 

• , 
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using iV(0,0.1) as the proposal function, and the weighted Markov chain is run 20 times 

independently with 50,000 trial steps per run, the starting point is set to be (0，0) in each 

run. The simulated function / is shown in figure 3. , 

i 
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figure 3 

The shmdation result for f(x) using weighted Markov chain 

Clearly we obtain a correct simulated distribution. The algorithm correctly locates 

the two modes. The ratio of the two modes is estimated correctly, too. So then we 

can say that the Markov chain has mixed welL The algorithm works equally well for 

other proposal functions, such as C/(0,0.1), Cauchy and t-distribution with low degree of 

freedom . 
Note that the initial value of the weight is not very important，because the weights 

can be adjusted automatically in the simulation process. ‘ 
Irx our algorithm, if w is fixed to a constant(arbitrary except 0)，and let e be the same 

constant as 叫’ then the algorithm is just the Metropolis algorithm ( , and e is fixed to 1， 

Metropolis et al 1953). Clearly, the Metropolis algorithm satisfies our theorem. This can 

be verified easily. We can thus regard the Metropolis algorithm as a special case of our 

algorithm. 
.) 
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Chapter 5 

Traveling Salesman Problem 
». 

Based on the deep similarity between statistical mechanics and combinatorial optimiza-

tion, we can use the Boltzmann distribution [Toda, Kubo and Sait6, 1983] to characterize 

the tour. This distribution gives the probability of a permutation / of vertices with length 

lj at temperature T, and is given by 

P^X = I) = ^^eM-J^) (5.1) 

where X is a stochastic variable denoting the permutation of points, Z[T) is the partition 

function, which is defined as 

Z{T) = ^ e x p { - ^ ) . 

in which KB is the Boltzmann constant, E denotes a sum over all possible pemiutations. 

Note that the global maximum point of the function P{X) is just the solution of TSP. 

Instead of attacking TSP directly, we solve the related problem of how to efficiently sample 

from the Boltzmann distribution at a fixed low temperature. 
The popular algorithm of Simulated Annealing is also based on the Boltzmann distri-

bution. It often encounters difficulty in finding the optimal solution, because its search 

space is too local. It does not directly deal with the kernel of NP-problem: the exhaustive 

search space. 
Our method to handle this dUficulty is to project the high dimensional solution space 

into a lower dimensional space based on the structure of the problem to solve an easier 

31 
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problem which has captured the most important characteristics of the original problem, 

h the TSP, the lower dimensional problem is also a TSP but with a small number of 

cities. Then cities are added into the lower dimensional tours one by one to obtain the 

solution of the original problem in the high dimensional space. This process is simulated 

by constructing a weighted Markov chain. The optimal value or near optimal value can 

be found according to the samples of tlie Boltzmann distribution. 
Our approach was first outlined in Wong (1995), It has certain similarity to the method 

of simulated temper ing recently proposed by Mahnari & Parisi (1992) and Geyer & 

Thompson (1995). In simulated tempering, to sample from / ( . ) , Marinari and Parisi(1992) 

propose to create a Markov chain with an augmented state vector (/^,z)，where*> takes 

values in Z and k ranges from 1 to m. In our method, we also augment the state space by 

an auxiliary variable. So the state is augmented to be { K x , ) instead of being o:, where ^ 

is auxiliary variable. For different k, the sample spaces for x . need not be the same. The 

joint distribution for { K x , ) is required to be proportional to a M k ) ^ where p ( ' H is 

a s s ^ e d to give the same density as /(.)，but, for k less than m, g{-\k) will give densities 

on different spaces. This can be driven by various Markov chain construction scheme, 

such as the weighted Markov chain method. 
The above scheme is very general and 面 we explain when and how this generality 

can be put to good use. For example, suppose after suitable parameterization, z can be 

written as . 二 (：i，约，...,知)，and the information used to determine the density of z 

can be partitioned correspondingly as y 二 (们，V2,. • • ’ "n). It is assumed that, based on 

the partial information , 二 (yi，y2, •, • , "力，观！蘭 a way to specify an normal i zed 

density , ( . ,|n,) for . , 二（,1’,2，...，勺）.It is required that ,(如）二 / � and that, 

for all j, 9{xj\u,) has reasonable overlap with the marginal density of x, under the jomt 

density ̂ 州卜/州).We will say that such a problem has a sequenUal buUdup structure. 

Typically we have 
dirn,{xk) > dim,{xk-i) > ... > dim{xi) 

So the Markov chain construction involves two moves: extrapolation T{x^ - ^ i + i ) — 

projecUon T{x, - . . - i ) - Note there is no need for p(.i|nO to be close to the marginal of 

^, under / ( . ) , although that would be an ideal situation. The method should work under 

, ,I , « ,‘ ‘ -
• ‘ • • . • < . • , , 



46 

CHAPTER 5. TRAVELING SALESMAN PROBLEM 

the much weaker requirement stated above. ‘ 

The method involves several important considerations: 

1) how to construct the buildup structure. 

2) choice ofp{i,Xi). 

3) choice of a .̂ 
4) choice of extrapolation and projection 
With regard to (1)，we note that many problems have such a structure, for example, 

complex missing data pattern in Gaussian models，^parametric Bayesian analysis of 

binary data(see Kong, Liu and Wong 1994) and Multiloci genetic linkage analysis(Irwin, 

Cox and Kong 1994). 
In the context of TSP, z 二 (�i,约’，.•，知)can be seen as the n ordered cities (the 

method for obtaining the order is described in the next section)，and a:j 二 (么1, •. . ,Zj), 

j 二 1，.. .，n is the tour of first j cities. So / M is just the distribution we wanted for 

the tour length. This seems to be a natural buildup structure for the TSP. ‘ 

Thus, for TSP, we have 
一1 z±i 

p{i, Xi) 二 OLiCi e ^ 

where C, is the normalized constant of distribution of a:,. So we should make 

1 

叫 a Ci == normalizing factor 

The remaining thing is to choose appropriate and reasonable extrapolation and pro-

jection procedures which are just our proposal functions. We will discuss them in the 

following sections. 

5.1 Buildup Order 

Based on the idea of projecting the high dimensional solution space into a lower dimen-

sional solution space, the problem solved in the lower dimensional space should be as 

similar to the original one as possible. 
For the traveling salesman problem, the cities to be added early should be as far away 

for each other as possible, i.e. if the first point is in one corner, then the next point 

should be in its diagonal corner. One hopes that a lower dimensional problem with only ‘ 

, .• . . ., ‘ . ._ • • ''•' • ！ 
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20 percents of the cities will capture the outline of the optimal route. Based on this idea, 

many methods can be created to obtain tlie order. Let 

y： set of n cities, y 二 {0，1,2，. • •，n — 1} 

A: set of cities having been ordered 
/ 

AC: set of cities not yet been ordered, and A U A^ 二 V ‘ 

dif the distance between city i and city j 

One order is given as follows, 

{i ： m,aXj^i{" H : /,、)’?:」^ ^ } 
L 汁 Xi m,in{dij) 

» - � 

where X{ 二 | ^ EjeA^ Aj. 

Another order can be given as follows: 
the next point k to add satisfles the following condition, 

3m, e A, dkm 二 maocieAcminjGAdij, k G A^. 

If there are several points satisfying the condition above simultaneously, we only select 

one arbitrarily. 

Now we set A 二 A + {A.}, A � 二 A � 一 {A.}. Note that the first element of A can 

be selected arbitrarily. In our algorithm, the scale of the lowest dimensional problem， 

i.e., the points in the initial group is usually larger, e.g. 15 points. These points would 

have almost covered all corners of the whole tour, so our algorithm is not sensitive to the 

selection of the starting point. For convenience, we usually choose the point nearest to 
the original point or the first random point. 

5.2 Path Construction Through a Group of Points 

Suppose point k' will be added into the current tour. The first thing to do is to find 

the nearest neighbour group of k in the current tour. This is just like drawing a large 

enough circle around point k such that the circle contains a prefixed number of points. 

We call these points the neighbours of point k, and call the prefixed number the size of 

the neighbour group. ‘ 

I 

. ‘ • • • • ‘ ’ • 
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According to the number of the paths through the neighbour group of point k, the 

neighbours can be classified into three types (see figure 4): 

份翁 _ 
Type I Type II Type III 

figure 4 

The neighbour group of point k 

For type III, there may be three or more paths through the neighbour group, for the 

sake of simplicity, we only demonstrate the type in the case of three paths. The pomts 

not on the paths, h to h or h to ^ , are deleted from the neighbour group. So after this 

reduction, type III cab be regarded as type II, and the number of points in the neighbour 

group may be less than the prefixed neighbour group size. Note that the two paths, h 

to h and h to 62, are just the paths which have the two smallest values of d, among all 

paths which pass through tlie neighbour group. 

Where 

di 二 minj.epathl< ĵ 1 二 1, 2，3,. •.. 

How is point k added into the current tour? 

For type I case, the current path from entry point f to exit point 6 is forgotten. A 

new path from entry point f to exit point 6, through all interior points of the neighbour 

^ group and point k, will be reconstructed. The path can be constructed as follows, 

Let G - { all points in the neighbour group } 

S=={i: point i has been sampled into new path, i e G} 
I 

Sc = G-S 

I 

, , . • • . • • 
, - • ‘ • ‘ ‘ • [ 
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5^|=number of points in set S .̂ 
1) set initial value, S = {/，?)}，S�二 G — { / , 6 } , and m ’ a prefixed number, usually 

m == 4 or 5. 
2)if 們 < m go to step 4, else sample one point h from , according to probability 

exp{-df^kJT) ' 

J2jes- exp{-dfj/T) 

where d denotes the distance between two points. T is a temperature, higher than 

the true'temperature at which we wish to simulate. We call T trial temperature. Then 

5 ^ 5 + {M, Se = G-S. 
3)If |5c| < 爪，go to step 4, else sample another point h from S�according to probability 

exp{-dk.._^,kj/T) 
T,jes- exp{-dk,_^j/T) 

until |5̂ | < m, • 
4) Sample one path through the remaining points in set S � f r o m all ?n! permutations 

of m points according to the probability 
exp{-lj/T) 

T:j'iiexp{-lj/T) 

where lj denotes the total length from point k, to h for pemutation j. 

Now a new path through point k and all points in the neighbour group of point k has 

been constructed. Its trial density is denoted by 
exp{-l{x)/T) 

咖 二 " l ^ ^ Y T " 

where K- ) is the total length of the path from f to b, through all the points in the 

neighbour group, and 
m! 

n u T) = y exp{-dfj/T) E e x p { - d , , j / T ) - ' - Y . e x p { - l j / T ) 

上丄， , ^ c jGS^-{k,} j=l 

For type II neighbour group, points 61 and / 2 can be considered as one point, i.e., let 

the distance between point /)1 and / 2 equal to zero, and then it can be regarded as type 

I case to reconstruct a path from point h to point h�through point k and all interior 

points of the neighbour group. 

, • , . ' • ‘ . . , , • 
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Suppose 丽 n paths ( . 1 , . 2 , . . . ’ -n ) through one group of points have been sampled 

using the method described above. Based on the idea of importance sampling, one path 

can be resampled from the n paths at the true temperature. So then a shorter path can be 

expected to result from this resampling. The framework of res^pling step is as follows, 

iA.d / \ 
X1,X2, . . .,Xn �Q K ^ ) 

1) calculate a weight for each of them 
, 、 f { x i ) — exp{-l{xj)/t) 

+ ) : " ^ = ~ " ^ ~ " ' � 

where t is true temperature. We repeat that usually t is smaller than the trial temperature 

T. 

2) resample path y accord to probability 

-J!!M^ ye{x^,x2r--,^n} ‘ 
E ] = M ^ j ) 

3) the probability of path y being chosen is 
n 

p*[y) = Ep(a;iischosen|a:i = :y)P(̂ ẑ i = :?/) 
i=i 

二 np{xi is chosen|a:i 二 y)p{xi = y) 
(.r, 4 y ) 

二 ”'q(y)ET“^^ + Tr^_i 
1 

= n e x p ( - K y ) / ^ — 、 ^ + T n — i ' 

Where „ 
Tn-1 二 Xl—J). 

j=2 -

This gives rise to the problem of how to estimate ^ _ i ^ , ( , ) k _ i . ^^ course the 

simplest method is to sample m Tn-i {T^-v ^n-v ...，了二1)，t'hen use 

八 l f - 1 

^" = : Q ^ T ^ 

to estimate it. This method is wasteful as it requires extra samples for T. - i - We can 

assume that the neighbour group of point k has the same entry point f and exit point b 

, ..• ‘ ‘ • • _ • , . • • 
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at different states ( L „ k, —(i.e. “ and . may be different). So the distribution of path 

through the group is same. With the running of the Markov chain, we will have more 

and more samples of ( . ( .1) , - (0^2) , . . • ’ - M ) , which can be used in the estimation of 

ET _ i ~ Note that w (y) may not appear in the samples, so Tn-i can be calculated 
^in-l Wl(lj)+Tn-1 > 

approximately by „, 
/v n 一 丄 v"̂  ( \ 

Tn-l = L^(^ j ) 

们 ' j = l 
Suppose now we have obtained m/ samples of (切⑷乂巧），...’-(;))，s�we have m/ 

f . _ r . f U n-v …，T^v Then 
Erp ,� i—~~ can be estimated by -̂̂  
^ln-l Wi{y)+ln-l 

J _ ^ 1 

mfj=iun(jj) + ¾ - ! 

So now the probability p*{y) can be completely calculated； and this gives just the proposal 

function for the extrapolation step. ‘ 
Similarly，the proposal function for projection can be obtained by reconstructing a 

path through all points of neighbours of point k except k. 

5.3 Solving TSP Using the Weighted Markov Chain Method 

In the beginning of this chapter, we have commented that the state space of the Markov 

chain can be augmented to be {k^L,)，where k represents the number of cities of the 

state and L . denotes the length of the tour at this state. In weighted Markov chain 

method，the state space is further augmented by a weighting factor ^ . , so the state space 

is {k^L,^w,) instead of { ^ L , ) . The chain is driven by weights. The distribution of 

(fc, L.) can be obtained after integrating out the weights ... In this way we can get the 

target distribution. Suppose there are N cities in the traveling salesman problem. So the 

problem can be divided into M levels, where M depends on the number of cities in the 

initial group, i.e. the dimensions of the lowest level. Let the number of cities in the initial 

group be I, so M = N - I. The simulation process can be summarized as follows. 

j 

• ‘ . • . , • • . ‘ •, .、. ‘ . ‘ . • , , •‘ • 
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0) Given the adding order of N cities, sample a tour Lj through the first ordered I 

cities. Choose initial weight ‘⑴了, ( Essentially 切,can be chosen arbitrarily.) The current 

state is ( I ,L / ,wi ) . Set i 二 / . 
1) Set j 二 i 士 1 according to probability qi’j, where qij+i = _ - i 二 1 and gi,i+i 二 

q � — \ , i i I < “ N . 丨 

2) If j 二 [ + 1，we try to add the (7： + l)th ordered city into the current tour. 

If j 二 i - 1，we try to delete the ith city from the current tour. 

3)Calculate the ratio 
— / ( L , ) T ( ( j , L , ) ^ ( 7 : , L , ) ) ^ (5.2) 

^ 二 W'f(jQT[(i,Li) — U,Lj) Qij 、 
A 

g,-exy{ — L,-/1j)nexp(-k/k)E“ qjj 
y^ . — — “ "“̂ “ 

— 'aiexp{-Li/ti)nexp{-lj/tj)Ei. Qij 
/v 

a , - ( “ n f l 」 、 、 ： ^ 赵 ( 5 . 3 ) 
二 Wi2ejyp(^-{j:^j-lj)kT 7.))f^ a-' ai ''j T'i> ^ij (切 

According to the weighted Markov chain rule, the proposed transition is accepted or 

rejected. 
4) Go to step 1 until enough configurations have been obtained. 

In step 3) a, and a, are the normalized constant of distributions /(L7:) and f {L j ) , 

respectively. 
f{Li) 二 aie:cp�—Li/tj\ 

f{Lj) = ajexp{-Lj/tj). 

1. and /,• are the lengths of the sampled path through the neighbour group of point i and 

point j，respectively. 4 , E,, are the estimators of ^ _ x ^ , ( , ) k . - i ^̂ ' "tate {i,Li,Wi) 

and state (j ,Lj,Wj), respectively, k, f, are the true temperatures of the two states, 

respectively. 
In deriving the equalities above, the following relationship is used 

Lj — lj 二 Li - k. 

Considering the following figure 5，it is trivial because Lj 一 lj and L, — k are equal to the 

length of the part outside of the circle of the tour. 

. .• ‘ 
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衝 
VAvÂ  , 

figure 5 
The demonstrated figure of the tour not through point j 

5.4 Temperature Scheme 

In the simulation process, there are two kinds of temperatures: trial temperatures and 

true temperatures. The initial stages (in the buildup order) usually employ higher tnal 

temperatures. The temperature is decreasing along the buildup order and stops at the 

lowest one (corresponding to the end stage of the buildup order). We have mentioned 

that a trial temperature is usually higher than the corresponding true temperature. 

How to choose these temperatures? 色 

In equation (5.3), the trial temperature is absorbed into the term 式 . F o r the true 

temperature, besides the part absorbed into | , it enters into the ratio r in the form: 

1 1 . . . 
7 = 1 土 丄 /. f. J t'j ^1 

^ If t. = t „ the term e . p ( - ( L , — ̂ ( ^ 一 糾 will be canceled out. If • 一 ^ == c，c is a 

constant, such a. 0.02, 0.01，etc. These temperature scheme will partially cancel out the 

influence of temperature jumping, and make the transition easier from one state to its 

adjacent state(j 二 i 士 1). 
•t 

. . [ • , ‘ . • • . 」‘ ‘ ‘ j 、 •, , • ^ • 
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5.5 How to Adjust the Constant Prior-ratio 

It is a difficult problem to adjust the ratio 老 correctly. The simplest method to determine 

the ratio is trial and error. The simulation starts at the higher temperature end and 

p.oceeds to the other one. Suppose the ratios - , ^ , . •.，^T； 1 蘭 been determined so 

that the sampler for the corresponding distributions mix well and have a roughly even 

occupation numbers. We now want to determine a good ratio ^ so that a sampler 

mbces well when (k + l)th state is added to the Markov chain. Because of the order given 

above of adding the cities into tour, the changes of length L is smaller and smaller with 

the adding, and the ratio ^ is close to 1 at the later states. -• 
Because of the self-adjusting ability of weight 识，the choice of ratios is not very critical 

for the transition from one state to its adjacent state in the running of the weighted 

Markov chain. 

See Geyer and Thompson (1995) for a detail and similar discussion about how to 

determine their pseudo-priors, which is very critical for the simulated tempering process. 

5.6 Validation of Our Algorithm by a Simple Example 

100 random points were generated from [0,100]2 according to a continuous uniform dis-

tribution, and the first 10 ordered cities were chosen to test our algorithm. The numbers 

of points in the initial group and the neighbour group are both 5. The number of times 

the end state(lOth ordered point) is visited is 5000. The results is listed in Table 1. 

.j 

. . • • ‘ 
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Table I 

J ^ tiid factoriaP average 

temperature temperature _ m e ^ (resample n=2Q) 
^ """^J^ 387.195 387.278(2.3875,61)^ 

10.0 � 5 . Q c 387.528(2.8174, 53) 

^ ^ 392.97 392.087(8.0237,56) 

10.0 � 5 . 0 392.688(7.9234,81) 

^ ^ 0 402.15 399.92(14.221,101) 

3 0 400.123(14.235, 99) � 

a： factorial mean is the weighted mean of all possible tour and m oc ea:p(-U/t) i 二 1’ • . . ’ 91/2 

b: average(standard-deviatioii, independent sample size) 

c: smoothly descend, ^ 一 ̂  二 斋 

I 

We can see that there are no significant difference between the sample averages and 

the factorial means at every true temperature with different trial temperatures. But with 

increasing true temperature, the bias is increasing. With the increase of true temperature, 

the procedure assigns larger and larger weights to the longer tour which is difficult to 

s ^ p l e using our method, because the sampled tour is obtained by adding one by one 

according to the given order instead of directly sampling from the highest dimensional 

space. In other words, certain unfavorable states are forbidden and then the sample 

averaging values is expected to be smaller than factorial weighted mean value. But this 

is favorable for the optimization problem. 

5.7 Adding/Deleting by Blocks 

Consider a random walk on the integers 1，2，•..，m having transitions to adjacent states 

with probability \ and staying at the same state with probability 1 _ P for the interior 

points and 1 - f for the endpoints. In the terminology of Feller(1968) this is a random 

walk with reflecting barriers at . 二 ！ and o; 二 m + 全.Using the methods of Feller(1968) 

! 

• 1 . I ... ； 
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we find that the expected time to go from . 二 1 to . = m is m(m — l) /p. We can 

conclude that using too many stages is inefficient. To reduce the number of stages, we 

can add/delete several cities(a block) at every stages. 
, ../• r ,„.) — (i/ T. .̂\ if 二 i 土 block, and the proposal Now the proposal moving is {t,Li,Wi) —、？“，！̂“’川“）， ， 

function is 
‘1^?0""'—1 ̂ i(' + i ' Li+j) — (' + )• + 1，1任计1)) adding 

T{{h Li, Wi) 一 ( “ ， L i f , _ ) ) = { biock-i T((i — 7 L,_.) ~> {i 一 J 一 1，L i - j - i ) ) deleting 
1 丄1"̂二0 k � ’ “ ― ” ( 5 . 4 ) 

Note the function T(.，.) is independent of tlie weight w of states. ^ 
The corresponding ratio can be calculated by replacing proposal function of equation 

(5.2) by equation (5.4). 

5.8 The Sequential Optimal Method and Post Optimization 

For demonstrating the advantage of the stochastic optimal method, we first introduce 

another method for solvmg T S P - sequential optimal method. It is a deterministic 

method. At every step one city is added into the current tour using the Branch-and-

Bound method to find a optimal path through the neighbour group of the city to be 

added, instead of sampling and resampling. Because the city is added deterministically, 

the added city need not be deleted froxn the current tour. The numbers of initial group 

points and the neighbour group size often affect the quality of solution. In our expenence, 

for 100 to 500 points problem, usually a satisfactory solution can be found from pairs 

(m m)，11 < m < 16. Of course, better solution can be found if m is enlarged, but this 

wm take much more CPU time, because the time needed to find an optimal path through 

a neighbour group increases exponentially with the size of neighbour group even using 

the Branch and Bound method. 
A 100-point problem, generated from Euclidean space [0’ lOOp according to a continu-

ous uniform distribution. Applying the sequenUal opUmal method to this problem, a tour 

with length 777.9 is obtained(initial group size and neighbour group size are 12. Search 

from 10 < m < 16)). ‘ 

) 

. • ‘ • • . • • ‘ ‘ 
, I . 
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Now applying stochastic optimal method to this problem again, the value of block is 

5，within the first 200 reaching-end tours(Markov chain state is (iV,Lj,,w) )，a tour with 

length 772.95 is found. 
Because the city is added using sampling method one by one, the tour may not be 

optimal in some local path, although the framework of the whole tour is very good. Post-

optvrmzation procedure can be used to locally optimize the tour. The tour length is 768.8 

after post optimization (the corresponding data and optimal tour fingure can be found m 

Appendix B ). 

The procedure post optimization is as following, [ 

1) Obtain the initial tour using stochastic method. 

2) repeat for all cities in the order given by initial tour 
2.1) delete the city from the current tour by just connecting its two adjacent cities , 

get a new tour with only N 一 1 city. 
2.2) add the city into the new tour by finding an optimal path through its neighbour 

group using Branch-and-Bound method . 

Usually a better tour will be obtained after post optimizing the initial tour obtained 

using stochastic method. 

5.9 Composite Algorithm 

Using the algorithm described above, we can get the optimal or near optimal tour. Because 

of the order given in section (5.1), the change of the length is smaller and smaller with 

the adding of cities. At the same time the trial and true temperatures are becoming 

lower, so the cities are added into the current tour almost deterministicly. Considering 

the fact that the time for the Markov chain moving 1 steps away along the sequence of 

stages is proportional to Z2，it is inefficient to simulate such a long Markov chain if we are 

only interested in the optimal solution of the problem. In our experience, you can obtain 

satisfactory solutions using the composite algorithm: 
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Now applying stochasUc optimal method to this problem again, the value of block is 

5，within the first 200 reaching-end tours(Markov chain state is {N^L^.w) )，a tour with 

length 772.95 is found. 
Because the city is added using sampling method one by one, the tour may not be 

optimal in some local path, although the framework of the whole tour is very good. Post-

optvrmzaUon procedure can be used to locally optimize the tour. The tour length is 768.8 

after post optimization (the corresponding data and optimal tour fingure can be found m 

Appendix C ). 
Tlie procedure post optimization is as following, 

^ � 

1) Obtain the initial tour using stochastic method. 

2) repeat for all cities in the order given by initial tour 
2.1) delete the city from the current tour by just； connecting its two adjacent cities , 

I 

get a new tour with only N — 1 city. 
2.2) add the city into the new tour by finding an optimal path through its neighbour 

group using Branch-and-Bouiid method . 

Usually a better tour will be obtained after post optimizing the initial tour obtained 

using stochastic method. 

5.9 Composite Algorithm 

Using the algorithm described above, we can get the optimal or near optimal tour. Because 

of the order given in section (5.1), the change of the length is smaller and smaller with 

the adding of cities. At the same time the trial and true temperatures are becormng 

lower so the cities are added into the current tour almost deterministicly. Considering 

the fact that the time for the Markov chain moving 1 steps away along the sequence of 

stages is proportional to l\ it is inefficient to simulate such a long Markov chain if we are 

only interested in the optimal solution of the problem. In our experience, you can obtain 

satisfactory solutions using the composite algorithm: ‘ 

,.• ‘ ,,,. ；• ’ . , . ‘ ‘ • , .. ‘ •‘ 
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1) About the first 20 - 40 percents ordered cities are added using stochastic method . 

2) The remainder are added using sequential optimal method. 

3) Use post-optimization method to optimize the last tour., 

Usually in step 3 the improvement of the tour is not very large because more than about 

60 percents of cities are added using sequential optimal method. One can sometimes omit 

it. 
[ � 

5.10 Numerical Comparisons and Tests 

To assess the efficiency of the sequential optimal and the stochastic method, and to make 

comparisons with existing methods , we have carried out several series of computational 

tests both on randomly generated problems and on TSPs described in the operation re-

search literature. The first set of problems were derived by generating n points in [0’ lOO]2， 

according to a continuous uniform distribution, and by using the symmetric Euclidean 

distances between these points. The various procedures used in the computational tests 

on the same data set are: 
1) Sequential optimal: initial group size and neighbour group size are equal and vary 

in the range 10 < p < 15. 
2) Composite method: the first 40 ordered cities are added using stochastic method, the 

other 60 cities are added using sequential optimal method. For every starting configuration 

of 10 cities we sample, the program ends when it has obtained 5 final tours. Run the 

procedure 10 times independently, and then select the best one from the total 50 tours. 

The parameters setting of the procedure is as follows: initial group size is 10, neighbour 

group size is 10，block is 5，resample from 100 independent samples, temperature scheme: 

begins from 5.0 then decrease by the equation 击 - ^ 二 • . The average total time is 

100 seconds on an Indy IP22 workstation. 
3) Simulated Annealing: run SA( progr^me can be found in Press et al 1987 ) 9 times 

independently, and select the best one from the 9 final tours. Temperature begins from 0.5 , 

t 
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and then decreases 150 steps by factor 0.95. maximum number of successful path changes 

before continuing is 1500, and the max i^n i number of paths tried at every temperature 

is 15000. The average total time is about 100 seconds On an Indy IP22 workstation. 

Table II ； 

Average solution costs for random Euclidean problem over 100 trials 

procedure p n=lOQ n=50Q 

GENIUS — 5 791.2 1704.3 � 

6 788.3 1701.0 

7 788.6 1698.6 

SA — 一 787.4 

Sequential 10 < p < 15 778.7 
11 < p < 16 1691.5 

Stochastic 777.0 
I *—•̂— ‘ 

In additional to these tests on randomly generated problems, we have compared our 

methods with other algorithms on the following problems, where alternative heuristics 

had already been tested and for which optimal values were available: 

K24: a 100-vex problem(number 24) described in Krolak, Felts and Marble(1971). 

GridlOO: a 100-vertex grid p r o b l e m generated as in Cerny(1985). 

Grid400: a 400-vertex grid problem generated in the same fashion. 

Gridl600: a 1600-vertex grid problem generated in the same fashion. 

G442: the Grotschel et al(1989) 442-vertex problem. 

P532: the Padberg and Rinaldi(1987) 532-vertex problem. 

All problem are solved with composite method (about 40 percents of points are added 

stochastically, and the other are added using sequential optimal method, and then op-

timize the tour using post-optimization method). These results are reported in Table 

• \ 

. • • 
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III. 

Table III 

Computational Results for Problems Described in the Operations Research 
Literature 

—;;;;;;̂ ^̂ ^̂ ^̂ ]̂ ]̂ ^̂ ;̂i555̂ ^̂ ]̂̂ î̂ ^̂ ^̂ 5̂ 5̂ ^̂ ^̂ ^̂ ^̂ Î5̂  
in^ q 54.67 

2-Opt" 10丄3 
52.54 Lin-Kernighan^ 

CCAO^ 21320 102.5 419.1 52.79 28726 

GENIUS^ 21282 100^ 400� 51.27 28175 
SA 100^ 51.426 28418 

, 51.10 27839 
Tabu Search^ 

51.21^ 

Genetic . 
Composite 21282^ 100^ • " 1 _ 50.82< 27699^ 

, 1 1 9i9Qo 100 400 1600 50.67 27686 Exact optimal value 21282 iUU 叨̂  

a: Reinelt(1992); 

b: Geiidrau et al (1992); 

c: the neighbour group size is 3, and restrict the path to be vertical or horizontal hne; 

d: Rossier, Troyon and Liebling(1986); 

e: Troyon(1988); 

f: Fiechter(1990); 

g: Liu et al (1995); 

h： the best solution of 100 trials; 

i. the best solution of 500 trials. 

It is evident that the composite method compares well with all existing methods. The 

corresponding optimal tours we found are plotted in Appendix C. 

.; 

I 
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Chapter 6 

Conclusion 
[ . 

We have described a new Markov chain construction method, weighted Markov chain 

Monte Carlo, for simulation based on auxiliary variable. We have successfully applied it to 

the TSP. Computational experiments carried out both on randomly generated problems 

and on problems described in the operations research literature confirm the relative effi-

ciency of the method. Weighted Markov chain Monte Carlo method is a general method. 

It can be applied widely to simulation problems involving multimodal surface and to 

simulation and optimization problems with buildup structures. 

.) 
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Appendix A 

� 

THEOREM: If the following equality holds 

I ya^—tWtu = c/(aO. . (A.1) 

Let ‘ 
h{xf, wf) 二 / / 9[工,w)k{{x, w) 一 {o:/, wO)dwdx, ( A ; 

then we have 
I h{xf,wf)wfdwf = cf{xf). (A.3) 

proof. Suppose the current state of the weighted Markov chain is ( . , - ) , and the 

proposed transition state is ( 工 > ' ) . H 观 accept the proposed transition, the next state 

is {x',w'). In this case the transition kernel function is 

’ 一 ) 看 , ) ) 一 ¥ ’ 1 ) — � ’ （A.4) 

else if the proposed transition is rejected, the next state should be ( . , - * ) • For con-

venience, in this case we replace . by o/ and replace . by < so the t _ t i o n kernel 

function is 

. (( . ' , . ' )一 i^W)) = /[1 - n M ^ ^ ’ l ) T ( z ' - 力 , （ A . 5 ) 

Substitute (A.4) and (A.5) into the left side of (A.3), we get 
.1 

jh[xWWd^ = ,(T - - ) / / / " ( A — 啡 ， — - ( " ) ) 脑 - ' “ 
\ 
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+7(o;' — x')J J g{x',w')k{{x^w') — {x',w*))dw'w*dw* 

二 I + I I 

where /(• ~> .) is an indicate function. , 
* 

f(x')T(x^ ~^ ic) 

J 二 " ” 々 [ / / { 一 ) > _ 一 - ) 『 ( " + 7 ^ ^ " 切 " 

f r . ^yr(,—工,)!^^^^^^没彻《^'工1 

+ / 人 ( — ) < " } 咖 — ” ' 〜 爛 作 〜 ' ） 

二 / ( 冗 — 力 / 的 / / ^ ^ 作 ' — 咖 油 ^ 

= /Or — a O / ( A / ^ J ^ d i / " ( A — ^ -

二 c /«) / (r — <> . 

I I = I { x ' ^ x ' ) J jT{x'^x")g{x',w')w*dx"dw' 

_ f [ T{x' 一 x")g{x',w')w*dx"dw' 

J J{r{x',w'-,x")>0} 
一 r r r{x',w'-x')^^^, 一 x")g{x',w')w*dx"dw' 

J J{r{x',w'-,x")<0} 0 

—T(x' 一 o;')[ f f T{x' 一 x")9{x',w')w*dx"dw' 

—��工 N J{r{x',w'-,x")<0} 
—f f r(o:W;a;")T(? — x")g{x',w')w*dx"dw'] 

一 J J{r{x',w'-,x")<0} 0 , 
“ , , � f r (1 — i : i ^ > i ^ ) T ( a ; ' - o;")"(a:',w')w*dx"dw' 

二 J(T 一 引 ] 靜 綱 、 1 ^ , , , � 

, , 、 f ( , 'u , f (1 — '-^^^^^^^^)T{x' — x'^)w*dx" 
二 1 ( 0 ： ' - 冲 ( 、 — 叫 释 作 巧 、 1 Q ) 

二 j v ^ , ) y " ( r > v " 

二 cf{x')I{x' — x') 

Where in (//)，we let 

二 f (1 _ ^.^^j2!^)T{x' — x")dx" (A .6) ‘ 
q — J{r{x',w'-,x")<0} ^ 

I 
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, 切 ' (A.7) 
w 二 — \ ‘ 

<1 

FYom ( / ) and ( /J), we have (A.3). So we have proved the theorem for the choice 1 in 

rejection step, i.e. return to state {x,w/q). : 

For choice 2 in rejection step, we can prove the theorem as follows: 

Suppose the first (?: - l)th proposal transitions are all rejected, until the ?;th proposal 

transition is accepted. So then the distribution of ？: is a geometric distribution with 

parameter p. Let . . be a random number generated from uniform distribution C/(0,1), 

so we have [ � 

P 二 P(?; = 1) ( ,、 

- . r(x,w]x ) � / 
二 (T(o: 4 x')P{r{x,w-x') > eoY Ki < ~-~~~)dx 

J / f\ ‘ 

r , r{x,w]x ) \ � , 
二 jT(:c — x')(l-P(uit�~~))(虹 

r , r(x, W] a；')、、, / 
二 1 _ 厂 T ( x ^ x ' ) ( l - - ' l)dx 

J{r{x,w,x')<9} 口 

二 1 一 q 

p(^i = k) = qk-b 

Suppose at last we accept the proposed state (o:>')，so that the corresponding transi-

tional kernel is 
00 . � 

K ( . , . ) — ( a ; � - ' ) ) 二 E ^ i [ T ( $ — o O / ( + , - ; M ^ … 
k==i 

,�r(x, W： x') “ , / � . n\] 
+T{x — x') � ,0 ^l{r{x, w, X ) < e)\. 

Then 

J k i . ^ . ' ) M = / / / | 广 1 『 ( 0 ： ^ ' ) 骑 ， - ; 4 2沒） 

+7^(T — a;')!^(T，;T')-/(r(rr，;3；') < 9)]g{x,w)w'dxdwdw' 
V 9 

夢 A 
= I j j g{x,w)^dxdwdw^ 
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If we let ( 
r{x, w\x')p if r{x, w\x') > 0 (A.8) 

yj == 

1 6p ifr{x,w]x') < 9, 

Similarly from � except the term I{x — o;')，we know (A.3) holds. 
i 

h.. 

I 

t 

.i 



APPENDIX B 

The following data is generated according to a continuous umform distribution -

[0,100]by[0,100] 
fr 

71 Q71801 75 182348 13.599048 68.028809 80.495621 H-560411 

: f 4 4 i ™ 6 4.287851 60.405286 ~ ； ^ -
. r oonocr n^ 522172 2.948088 47.230445 74.327830 二‘^二^二 

S : S s S 二 = ? 』 ； 二 二 二 

63.081759 57 3 = 7 6 ^ . 。 二 二 芸 二 ?.923917 27.201147 . 

68.013550 52.342296 7.550279 26.g0125 ^77 27.246925 

65.077670 52.30567 2.790307 25.296793 33.436079 

58.143864 46.333201 ^ f O f g 03^9 37.006745 , 

45.295572 46.513260 5 . 5 f f 5 g . ; 5 6 $ 8 ^285440 [ ‘ 
44.587542 5 . 64074 6-977447 7 二 0 _ - : . 赚 ？ 

40.232551 5J.3333^ ^ f 3 S / 7 9 28086 82.604450 54.176458 

^Zl\^^^^^^ o S SJs8 _072 5 = 
37.287515 48.uy4iiy . . ^ . 2 584918 83.034761 55.278176 
3 1 . 5 1 3 4 1 3 ^ 5 ^ 3 / / , f ^ 4 5 ^3^87 5 78.820154 58.769494 丨 
23.129978 42. 73528 0 . = ] J 5 2.39 7 5 ^3244423 
f 6 f S . : = 4 7 3 9 / 0 : = 3 2 8 � . 9 _ 6 5 7 二 ; 9 3 
16.885891 二 . = = = 7 690664 83.947264 72.463149 
26.178777 68.611713 27.582629 7.690664 72.759178 

29.139073 78.4997 0 33- 427 0. 5375 9 79.274880 

36ll370 f 7 二 二 二 二 91.293069 88.027589 

= - ¾ 二 = = 二 二 

5 2 二 二 = 二 二 】 7 1 . _ 7 9 . _ 

2 1 ^ 4 7 1 95 629749 42.976165 19.483016 
9 : f S 40.720847 16.834010 

^ 5 5 4 8 3 97.662282 ： 二 二 丨 二 

.^ 019^47 95 196387 42.597736 13.2541»^ 

： 9 1 ： ^ 5 9 2 9 1 44.325083 10 220649 

44 138920 89.910581 50.373852 7.513657 

44 627216 82.332835 51.707511 12.210456 

•. ^7 9802 5 89.452803 59.492782 10.0039 7 

^ 592761 94 787439 77.477340 1.016266 

6 8 553423 80.001221 4.010132 

13 498337 97.918638 86.700034 1.391644 

二 0 _ 5 0 6 8 = = 0 
2.700888 91.576891 二 丨 . 0 

14.374218 69.841609 92.892239 ^ . ^U^U 
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figure B.1 

The near optimal tour ofa 100-random-point-problem generated from 
uniform distribution [0,100] by [0,100] found by Stochastic 
algorithm, its tour length is 772.95 
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figure B.2 
The near optimal tour o fa lOO-random-point-problem generJedfrom 
Uniform distribution [0,100] by [0,100]，its tour length is 768.8. 
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i ^ 7 " ^ ^ ^ ^ " ^ ^ 

! n z : i f V | A H -

" V ^ ^ ^ 4 _ J = ^ L i J 
' r ^ ^ 0 ~ ~ ^ ~ " ^ ^ ~ ~ ； " ~ ^ 0 0 3 0 0 0 ~ " ； " “ “ ^ � � 

figure C.1 
The exact optimal tour ofk24 problem found by Composite algorithm 

Its total length is 21282 
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The exact optimal tour ofGrid400 problem found by Composite algorithm 
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figure C.3 

The near optimal tour of Grotschel-442 problem found 
by Composite algorithm, its length is 50.82. 
Exact optimal tour length is 50.76. 
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figure C.4 

The nearoptimal tour ofP-532 problem found byCompofealgorithm. 
Its total length is 27699，and the exact optimal value is 27686. 
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figure C.5 

The exact optimal tour o fGr id l600 problem found by Composite algorithm 
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