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Abstract 

Mobile computing is a new and challenging technology which w i l l definitely revolu-

tionize the way we use computers in the next decade. A mobile computing environment 

consists of stationary supporting servers and mobile computers connecting to the servers 

by low-bandwidth wireless networks. The main difference between a t radi t ional client-

server environment and a mobile computing environment is that the mobi l i ty of mobile 

computers is unrestricted. Therefore, a mobile computer can disconnect f rom a server 

and connect to a different server at any t ime. In addit ion, a server may not have any 

information about which mobile computers are currently connecting to i t . Hence, the 

issue of maintaining a consistent cache becomes complicated. I t is more complicated to 

maintain cache consistency in a part ial ly replicated database system as a server only man-

ages information of its local copies. Cache consistency may be destroyed when a mobile 

computer carries some part ial ly replicated data items to a cell that does not support these 

data items. 

In this thesis, a caching policy is proposed to maintain cache consistency for mo-

bile computers such that locks are not required for read-only transactions f rom mobile 

computers, and yet serializability is guaranteed. Simulations are performed to study the 

performance of the proposed protocol under various scenarios w i th different parameter 
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settings. Results are then compared w i t h other approaches such as the Amnesic Terminals 

(AT) method suggested in [6]. I t shows that the proposed protocol is superior to the 

AT method under certain scenarios. The proposed protocol for fu l ly replicated database 

system is further enhanced to tackle the problems in part ia l ly replicated database system. 

Thesis Supervisor: Prof. Man-Hon Wong 

Title: Lecturer of Computer Science and Engineering Department 
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Chapter 1 

Introduction 

Mobile computing is a new and challenging area in computer science. W i t h this new tech-

nology, users w i l l soon be able to access databases through wireless networks regardless of 

their physical locations [15, 21, 24]. Wireless networking greatly enhances the ut i l izat ion 

of network resources and permits continuous access of data as users move. 

A mobile computer user may frequently query databases by invoking a series of oper-

ations. The need to access databases implies the necessity to have a data management 

system which provides data efficiently regardless of location. Data management in mo-

bile computing environments is completely different f rom that of t radi t ional client-server 

environments. In tradi t ional client-server environments, operations at remote terminals 

depend heavily on the rest of the networks [32]. In mobile computing environments, the 

nature of wireless communications makes tradit ional approaches not applicable. 

Wireless connections are of lower quality than wired connections [21]. Moreover, the 

wireless networks usually deliver lower bandwidth than wired networks, hence mobile 

computing designs need to be more concerned about bandwidth consumption and con-

straints than that for stationary computing. Mobile computers may frequently disconnect 

f rom the fixed hosts and cross the boundaries to different cells for various reasons. The 

network addresses of mobile computers and the system configuration parameters may 

change dynamically. Hence, data that is considered static for stationary computing may 

become dynamic in mobile computing environments. Considering the constraints stated 

above, i t is necessary to redesign the distr ibuted services to support mobile computers. 

I t is important to have dynamic replicated data management protocols that allow copies 
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Chapter 1 Introduction 2 

of data to be created and migrate f rom one site to another site. 

I t is a new challenge to design strategies to d is t r ibute repl icated data among support ing 

servers and mobi le computers so as to maximize avai labi l i ty of data, ma in ta in efficient 

executions of transactions and at the same t ime guarantee the correctness of the executions 

-ser ia l izabi l i ty . Serial izabi l i ty is a widely accepted correctness cr i ter ion for the execution 

of transactions [19] and many commercial applications adopted this correctness cr i ter ion. 

In order to reduce the content ion on the narrow bandwid th of the wireless channels, 

usually part of a database is cached in mobi le computers [5, 6, 14, 11]. Caching also 

implies the need for main ta in ing consistency. I t is necessary to develop a new mechanism 

for mainta in ing cache consistency that takes into account the characteristics of mobi le 

comput ing environments. 

The issue of mainta in ing cache consistency for mobi le computers is not as simple as 

that of a t rad i t iona l client-server based database system. In a t rad i t iona l client-server 

based database system, locks are required to be held in the server before data are cached 

in a client. I t may be required for a server to invalidate outdated data in a client f rom 

t ime to t ime. By using the combinat ion of locks and inval idat ion messages, i t is easy to 

keep the data cached in a client consistent. However, in a mobi le comput ing environment, 

mobile computers may disconnect f rom servers frequently w i thout not i fy ing the servers. 

This may be due to the fai lure in receiving the transceiver's signal of the server or running 

out of battery. A server may not even know the existence of every mobi le computer [5]. 

Therefore, delivery of inval idat ion messages is not guaranteed. In addit ion, a mobi le 

computer may connect to a different server when i t crosses the boundary of a cell. Such 

a phenomenon further complicates the design of a caching strategy for mobile comput ing 

environments. 

Consider a simple cache management policy such that mobi le computers can request 

data f rom servers at any t ime and servers broadcast inval idat ion messages periodical ly to 

in form mobile computers to drop outdated data. Figure 1.1 i l lustrates a scenario that the 

data cached in a mobile computer become inconsistent, i.e. transactions reading these 
I 

data may not be serializable. The main reason for such a phenomenon is that a mobile 
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computer may load data into its cache f rom different servers. I t is well understood that 

no matter what replica control or commitment protocols are used, i t is impossible to 

update all copies of a data on different servers simultaneously. Therefore, the data in the 

cache of a mobile computer may not correspond to a part of a database snapshot. Hence, 

transactions reading these data may not be serializable. 

TO 
• ("^^5erverA""^ � ^^^^S^erB^ 
Xr=4;^y=j^^y^^ I y z f i T f ^ > ^ ^ T1 
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/̂ erver >T^ ^^erverB^ 
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uyjj, L ( ^ 」 輝 叨 ； ~ : / 7 ^ r ^ 

I 1 \—̂  
x=4; y=7 0 “ o 

At Time T Q The values of x and y at servers A and B are the same and a mobile computer is residing at cell A. 
At Time T \ The copies of x and y at server B are updated by a transaction. 
At Time T ^ Before A receives the propagation message from B, 

server A and B broadcast invalidation messages to their local mobile computers respectively. . 
The invalidation messages in these two cells are different. 

At Time T 3 The mobile computer crosses the boundary to cell B and server A receives the propagation message from 
server B for updating X and Y. 

At Time T ^ After the mobile computer has arrived at cell B, both servers send invalidation messages. 
However, the invalidation messages from server B is empty. 

At Time T ^ i f the mobile computer loads the value of y into its cache, the cache in the mobile computer is inconsistent 
in the sense that it does not correspond to a snapshot of the database. 

Figure 1.1: Problem wi th the Exist ing Strategy 

The most obvious solution to the above scenario is to drop the entire cache once a 

mobile computer crosses the boundary to another cell. However, such a strategy is very 

inefficient especially when a mobile computer is traveling to and fro through the bound-

aries of different cells [25]. In many cases, wireless communications can be supported 
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by cellular networks. However for some t ransmi t ters such as I R t ransmit ters, the area 

covered by the t ransmi t ters ' signal may be very smal l such as 10 meters [29]. I t is realistic 

that a mobi le computer crosses the boundaries of different cells f requent ly i n real life. 

Some caching strategies for mobi le computers have been introduced in [6]. The per-

formance of these strategies and the impact of cl ient's disconnection durat ions on these 

strategies are evaluated. One of the suggested protocols in [6] is called Amnesic Termi-

na/s(AT), in which each mobi le computer caches a por t ion of the database. The data are 

updated at servers only and the mobi le computers carry copies of data for their own use. 

The servers broadcast inval idat ion reports periodical ly to in fo rm the mobi le computers 

to drop inval id cached data. Each inval idat ion report contains only the identif iers of the 

data that have been changed since the broadcasting of the last report . A mobi le computer 

that has been disconnected for a whi le needs to start rebui ld ing its cache f rom scratch 

as some inval idat ion reports might have been broadcasted dur ing its disconnection. I n 

answering a transaction, a mobile computer has to l isten to the inval idat ion report f irst 

in order to conclude whether its cache is val id or not. 

In [24], various static and dynamic data al location (caching) methods were proposed 

to opt imize the communicat ion cost between a mobi le computer and a f ixed host that 

stores the online database. 

Performance is the main concern of these two papers. Their results are main ly based 

on the property that communicat ion in a mobi le comput ing environment is expensive 

and unreliable. However, the impact of the unrestr icted mob i l i t y of mobi le computers on 

data consistency is not addressed. Mob i l i t y can cause wireless connections to be lost or 

I degraded. I t is necessary to consider these problems in the design of protocols for the 

mobile comput ing environments. In addit ion, the synchronization issue for the execution 

of transactions under mobile comput ing environments is not studied in these two papers. 

In an at tempt to complement their results, we are mot ivated to introduce a new caching 

strategy such that the cached data of a mobile computer must correspond to a snapshot of 

a database. Hence, read-only transactions can read data f rom the cache wi thout issuing 

any lock to the servers and at the same t ime serializabil i ty is maintained. The basic idea 
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of this protocol is to allow a read-only transact ion to observe the state of the database 

in the past. The data i t read must correspond to a snapshot of the database. The ma in 

advantage of our strategy is that the wireless bandwid th can be saved by e l iminat ing the 

communicat ion required for locking. In addi t ion, the round t r i p delay t ime needed for 

obtaining locks is saved. Furthermore, cache consistency is ensured w i thout dropping the 

cached data after a mobi le computer crosses the boundaries of cells. 

For the sake of completeness, we have also investigated the performance character-

istics of these protocols under different database environments by simulat ion. Through 

the simulations study we also ident i fy the factors that lead to better performance. For 

example, the most appropriate amount of in format ion that should be contained in each 

inval idat ion report is studied. I t is found that piggybacking the new values of frequently 

accessed inval id data in the inval idat ion reports improves the performance of the proposed 

protocol significantly. The m a x i m u m number of mobi le computers that can be supported 

by the proposed protocol is also investigated. Af ter tha t , the performance of our protocol 

is compared w i t h another approach, the Amnesic Terminals (AT ) method suggested in 

6]. The simulations show that the proposed protocol is superior to the A T method under 

certain scenarios. The factors that lead to superior performance are also investigated. 

So far i t is assumed that databases are fu l ly replicated, however, in practice some 

location sensitive data may not be fu l ly replicated. The issue of mainta in ing cache con-

sistency of a par t ia l ly replicated database system is more complicated as a server only 

manages informat ion of its local copies. Inval idat ion reports f rom a server w i l l not contain 

informat ion of data which i t does not support. The cache consistency of mobile comput-

ers cannot solely depend on the inval idat ion reports, since i t may be destroyed when a 

mobile computer carrying some part ia l ly replicated data moves to a cell that does not 

support those data. Hence, enhancements of our protocol are proposed such that cache 

consistency can be ensured for such an environment. 

The basic contributions of this research are summarized as follows: 

• Cache consistency is guaranteed. 

i 
i i 1 



Chapter 1 Introduction 6 

• Consumpt ion of the wireless bandwid th is saved. 

• Transaction response t ime is greatly reduced. 

• Asynchronous database servers are considered. 

This thesis is organized as follows. Chapter 2 presents the def in i t ion of mobi le com-

put ing and gives a br ief descript ion of other approaches for t ransact ion management in 

mobi le comput ing environments. Chapter 3 presents the model of the mobi le comput ing 

environment adopted in this paper and the proposed cache management policy. Simu-

lat ion experiments and the corresponding results are described in Chapter 4. Chapter 5 

discusses the caching issues for a par t ia l ly replicated database system and evaluates the 

proposed solutions by simulations. Final ly, we conclude our work and suggest fu ture work 

in Chapter 6. The version control mechanism, which manages different versions of data, 

is summarized in Appendix A . 

i 
！ 
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Chapter 2 

Background 

In this chapter, we wi l l briefly describe the definition of mobile computing, its applications, 

technical challenges and some related work in this area. In the next chapter, we propose 

a new caching strategy that considers the impact of mobi l i ty and l imi ted power of mobile 

computers on data management, which are often being neglected in previous work. 

2.1 What is Mobile Computing? 

The rapid development of cellular communications and satellite services make i t possible 

for users to access information from anywhere and at anytime wi th their portable mobile 

computers. Mobile computers are able to access information through wireless networks 

regardless of their physical locations. This new mobile computing environment enables 

almost unrestricted mobi l i ty and hence provides flexible communication among people. 

The databases of the system are stored at the supporting servers which are connected 

by a static network. This static network consists of a set of static supporting servers 

which serve as access points for mobile computers to connect to the static network. These 

supporting servers are static and connected by a fixed and reliable wired network. 

Supporting servers communicate wi th mobile computers through wireless channels. 

The area covered by the signals of a server is defined as its cell. Cells may overlap 

physically but each mobile computer should logically connect to one server at a t ime only. 

The corresponding server is known as the local supporting server of that mobile computer. 

A mobile computer can connect to its local supporting server only i f i t is physically located 

7 



Chapter 2 Background 8 

wi th i n the cell of the server. The structure of a cell is shown in Figure 2.1. 

: : : ^ ^ ^ ^ ^ " " " " " ^ Z ' ^ ^ ^ ^ Fixed Host ^ \ ^ 、、、、、 

/ Ceil、、 

( / 丨 ） 
、、 ^ ^ ^ i r e l e s s Network Connection /Wireless Network Connection ； 

、 、 、 、 \ r ^ " " ^ V ~ ^ " " " ' 

^Mobile Computer Mobile Computer ^ ̂  ‘ ‘ 

L < > ^ ^ ^ ^ " " ^ ^ < ^ _ _ _ L ^ O ^ _ ^ _ _ 

Figure 2.1: Structure of a cell 

2.1.1 Applications of Mobile Computing 

Wireless communicat ion enables mobi le computers to remain connected w i t h the networks 

regardless of their physical locations. A user is not required to stay at f ixed location in the 

networks, this enables unrestr icted mob i l i t y of users. The small sizes of mobi le computers 

also improve the portabi l i ty . Wireless communicat ion, mob i l i t y and por tab i l i t y w i l l create 

an entire new class of applications and new markets combining personal comput ing and 

consumer electronics [26]. 

Mobi le computers can download news or documents, access in format ion and query 

remote databases f rom their local support ing servers through the wireless channels ir-

respective of t ime and location. Users can retrieve location dependent in format ion l ike 

the closest hospital. For example, weather reports and traffic in format ion w i l l be sent 

to a user according to his/her location. Moreover mobile comput ing is applicable in 

business activit ies. Mobi le comput ing is applicable to tax i services in which tax i drivers 
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can exchange traff ic in format ion and get the in format ion of the locations about other 

drivers. Businessmen are capable of processing simple transactions such as inventory 

orders. F ie ld technicians can access on-l ine manuals whi le they are on outdoors repair 

assignments. Salesmen are able to get the most up-to-date market in format ion so as to 

make their investment decisions. A home buyer can enquire about properties f rom local 

estate agents. 

As a conclusion, mobi le comput ing systems w i l l present a user easily accessible and 

online in format ion w i thout the need for the cumbersome packages now offered. I t is 

expected that this inexpensive, portable, mobi le telecommunications w i l l become very 

popular in the near future. However, there are st i l l some technical challenges need to be 

solved. 

2.1.2 New Challenges of Mobile Computing 

The challenges of mobi le comput ing main ly come w i t h its essential properties : wireless 

communicat ion, mob i l i t y and por tab i l i ty [21]. The corresponding problems are presented 

in the fol lowing paragraphs. 

Wireless Communication 

I t is much more dif f icul t to achieve wireless communicat ion than wired communicat ion 

because a wireless channel is subject to signals blocking and noise, hence i t faces more ob-

stacles. In addit ion, wireless networks deliver lower bandwidth than wired networks [21 . 

Moreover, message transmission over the wireless channels is unreliable and is of lower 

qual i ty than that over wired channels. I t is also expected that the cost of wireless commu-

nication is expensive [18]. For these reasons, the users should access the wireless networks 

no more than necessary and the communicat ion mechanism should also be fault tolerant. 

Furthermore, wireless communicat ion also results in security risks. For example, mobi le 

computers may at tempt to access informat ion f rom a database where data accesses are 

restricted. Even worse, the unreliable wireless channel cannot ensure the security of data 
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transmission. 

Mobility 

Unrestr icted mob i l i t y of mobi le computers enables users to take their mobi le computers 

to places where users of t rad i t iona l wired network do not go [18]. However, mov ing a 

mobi le computer implies the need for reconfiguration of the system. Locat ion dependent 

in format ion l ike the local support ing servers and available printers changes as mobi le 

computers move. Today's networking is not designed for dynamical ly changing addresses. 

I t is necessary to have a mechanism to obtain these configuration in format ion appropriate 

to the present location. 

Tradi t ional data management strategies which assume static topologies are not ap-

plicable in mobi le comput ing environments. Query languages must be extended to take 

into account the mob i l i t y of users and the fact that data may be highly distr ibuted. The 

effects on data d is t r ibut ion, query processing and transaction processing due to mob i l i t y 

are some of the challenges of this new area in computer science. 

A mobile computer may travel beyond the coverage of the signals f rom its local sup-

port ing server. I t w i l l then be disconnected. Network fai lure is a greater problem in mobi le 

comput ing environments than t radi t ional client-server based systems. Frequent discon-

nection of mobile computers introduces new issues that are not presented in t rad i t iona l 

client-server based systems. Mobi le computers should be able to operate as stand-alone 

computers during disconnection. 

The logical communicat ion structure between mobi le computers and support ing servers 

changes dynamically. A mobile computer may cross the boundary between two different 

cells while executing a transaction and the mobile computer may access in format ion f rom 

two different databases. Mob i l i t y and disconnection should be completely transparent to 

users. Special strategies are required to handle the above problems which are character-

istics of mobile comput ing environments. 

Mobile computers may access different databases at different t ime and encounter more 
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heterogeneous network connections. Different qual i ty of services w i l l be provided at dif-

ferent places. This heterogeneity makes mobi le networks more complex than t rad i t iona l 

f ixed networks. Privacy also becomes a problem in mobi le comput ing environments. I t 

may be possible for a person to know the locations of other mobi le users. 

Portability 

I n order to increase the por tab i l i t y of mobi le computers, small size batteries are used. 

The bat tery weighs less but is also less powerful. This results i n power l im i ta t i on to 

mobi le computers, i t is a new resource l im i ta t i on which is intr insic to mobi le comput ing 

environments. M in im iz ing power consumption can improve por tab i l i t y by reducing the 

bat tery size and provid ing efficient operations. Power management software can t u r n 

off a mobi le computer when i t is idle. Consequently, frequent disconnection becomes 

a characteristic of mobi le computers so as to save power or due to shortage of power 

supplies. 

The size constraints on mobi le computers require small user interfaces. The size of 

screen is significantly reduced and i t becomes dif f icul t to operate w i t h these portable 

devices. 

Even though the mobile comput ing systems br ing w i t h them lots of hardware and 

software problems, i t is st i l l wor th developing. I t is the most powerful and exci t ing 

technological t rend in computers and telecommunications [15]. I t allows users to access the 

database continuously regardless of the geographical restrictions. Moreover, i t enhances 

the ut i l izat ion of portable devices which provide higher flexibility than fixed networks. 

Much researches have been done in this new area, some of the related work are presented 

in the fol lowing section. 

I 

I 
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2.2 Related Work 

Many researchers believe that i t is di f f icul t to main ta in perfect ly synchronized cached data 

on a mobi le host. Various degrees of consistency between cached data may be defined 

depending on the available bandwid th . Many researchers relax the correctness cr i ter ion 

such that a weaker not ion of cache consistency is used. In this way, the cache may not 

correspond to a snapshot of a database system. 

Before we start our investigat ion on cache management in mobi le comput ing environ-

ments, we summarize some cache management protocols suggested by other researchers 

who adopt weaker notions of consistency. 

2.2.1 Lazy Replicated File Service 

I n [16, 17, 35], the authors use a primary-secondary repl icat ion scheme to el iminate 

global communicat ion by al lowing a mobi le computer only communicates w i t h its p r imary 

servers. Updates by the mobi le computer are read out ( pickup ) of the cache by the 

pr imary server of the mobile computer, i.e. only the pr imary server contains the updates. 

Pr imary server pickups only at moment of its choosing. However, i t is possible for a client 

to request immediate pickup f rom its p r imary server due to a fu l l cache dur ing periods 

of heavy update act iv i ty. Af ter a pickup, the pr imary server retains a volat i le copy of 

the file and mult icasts them to the secondary servers. Once the number of the secondary 

servers that have acknowledged saving the updates reaches a certain threshold, say N, the 

pr imary server w i l l in form the client that the updates may be discarded f rom its cache 

by sending purge notice to the client. This purge notice guarantees that the updates 

have been replicated at the pr imary server and N secondary servers, and so the data is 

replicated widely enough to be N-faul t tolerant. I f there does not have enough secondary 

servers acknowledged the update, then the pr imary server does not send purge notice to 

the client. By this means, the service has some lat i tude to "wai t out" failures of secondary 

servers wi thout any apparent service disruption. This model is called " lazy tree" because 

of the lazy propagation of updates w i th in the tree-like structure as shown in Figure 2.2 
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and the protocol is called as a lazy，，server-based，，update operation. 

门 

Z ^ ^ s = ， 
Primary Server ^ ^ 

/ ^ ^ z 
Client ^ I \ 

(Cache) “ ^ v _ _ ^ / ^ ^ ^ \ ^ ^ ^ — ^ 
^^"\^ f \ Secondary 

y ^ ^ ^ ^ ^ ^ Server 

Figure 2.2: Lazy Tree Organization 

This protocol allows clients to determine the level of consistency desired. The authors 

propose the idea of supporting two read calls, namely strict-read and loose—read. W i t h 

loose_read, consistency is not guaranteed but i t wi l l make a "best effort" to provide the 

latest value. The entire cost of establishing one copy serializability is charged to the 

application which requires strong consistent data. A naive implementation of strict_read 

would contact all servers and all clients that had read the file and retrieve the most up-to-

date copy i t finds. Currency tokens (CTs) are used to avoid this naive approach. The idea 

of currency token enables the client holding the token has the powerful effect of allowing 

strict reads to be implemented as efficiently as loose reads and has the wri te permission 

to make a consistent update. CTs are defined in terms of potential consistent writers, or 

PCWs. A PCW is a client w i th a process that has strict ly read a file, and that has write 

permission for that file; a PCW has both desire and abil i ty to make a later update in a 

consistent fashion. A CT is given in response to a strict-read i f there are no PCWs for 

that file or i f the client is the only PCW. 

A client that performs a strict read without a CT initiates a relatively complex series 

of actions. First, recall that an update must be replicated on at least N secondary servers 

before a client is allowed to purge the update from its cache. Therefore, assuming that 

there are a total of T secondary servers, at least T — N + 1 secondary servers must be 
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contacted as wel l as any PCWs that have the file in thei r caches - to ensure that the most 

recent value is located. This condi t ion is s imply tha t of quorum consensus, where the 

read and wr i te quorums must overlap. 

This protocol is unsuitable for applications that share a file simultaneously or that 

per form read /wr i te transactions w i t h a read operat ion closely fol lowing a wr i te operat ion. 

Such applications w i l l typ ica l ly want to see each other's update as soon as possible. 

2-2.2 Dividing the Database into Clusters 

Mainta in ing consistency of data over al l d is t r ibuted sites imposes unbearable overheads 

in mobi le comput ing environments. Hence, in [30, 31, 32], the authors introduce weaker 

notions of consistency. Strong and weak operations which exhibi t different degrees of 

tolerance for inconsistency are defined. Strong operations are those operations that re-

quired strong consistency whi le weak operations are those that can be executed under 

weaker consistency requirements. Using this system model, the database is par t i t ioned 

into a set of clusters. A l l data kept inside a cluster are mutua l l y consistent and degrees 

of inconsistency are allowed among data at different clusters. The cluster configuration is 

dynamic. Clusters may be defined based on the semantics of data, such as location data. 

Location data represents the addresses of mobi le computers and are fast changing data 

replicated over many sites. These data are often imprecise, since updat ing al l their repli-

cas impose unbearable overheads. The def ini t ion of clusters may be expl ic i t ly provided by 

users based on their requirements. Moreover, the system can use the in format ion stored 

in users' profile to define clusters. A mobile computer can operate w i t h its cached data 

dur ing its disconnection i f str ict consistency is not required. Str ict consistency is restored 

when clusters are merged as mobile users enter new cells or connect to and disconnect 

f rom the rest o f t h e networks. Hence, no control messages are needed between transaction 

managers at different clusters for synchronizing weak transactions. To resolve conflicts in 

inter-clusters schedules, those weak wr i te operations conflict w i t h str ict transaction need 

to be undone. The protocol requires that only weak transactions in the same clusters 
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read the values updated by weak transactions of that cluster. Therefore, even undoing a 

transaction normally causes cascading abort of weak transactions. 

By offering to the applications the abi l i ty to specify expl ici t ly when strict consistency 

is necessary for their executions, bandwidth ut i l izat ion is reduced and data availabil i ty is 

improved. 

2.2.3 Applying Causal Consistency 

I t is commonly accepted that strong consistency is diff icult to obtain in mobile computing 

environments as suggested by the authors in [3]. Strong consistency such as serializability, 

which requires an interleaved execution to be equivalent to a serial execution, cannot be 

provided in systems where clients may temporari ly disconnect. This is because commu-

nication between nodes is required before an access can be completed in cases where data 

are cached at mobile computers. 

In [3], the authors defined Causal Consistency which is a weakly consistent shared 

data model based on causal orderings defined in [28] between accesses to shared data. 

Suppose two operations oi and 02 are executed on the same set of data, S. According 

to [3], oi precedes 02 if one of the following hold: 

1. Oi and 02 are executed by the same process and Oi is executed before 02； 

2. 02 reads a data value that was wr i t ten by Oi； 

3. There is a sequence of operation Oi,i,Oi,2,..., 0{,m s.t. Oi,i = oi, Oi^rn = 02, and for all 

i < j < m, Oi，j and o^j+i are related by either (1) or (2). 

I f oi and 02 do not causally precede each other then they are said to be concurrent 

and they cannot affect each other. Suppose the data updated by oi and 02 be /1 and 

/2 respectively. Then cached copies of /1 and /2 are mutual ly consistent i f one of the 

following holds. 

1. Oi and 02 are concurrent and hence neither causally precedes the other. 
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2. The two operations are causally ordered. Assume that oi precedes 02, then there 

do not exist and w i l l not exist another operation 03 such that oi precedes 03 and 

03 precedes 02. And 03 updates a value of data /1 that is not present in the cached 

copy of /1. 

Causal Consistency allows read and wri te operations to complete w i th cached copies 

and i t captures causal relationships among operations that access data. Causal consistency 

are provided for each data by associating a pair of vector timestamps w i th each copy of 

replicated data. These timestamps are creation time and validation time. The lifetime of 

a version of a data is the duration f rom the t ime that version is created to the t ime i t is 

invalided. They can be used to check i f the cached data are consistent w i th the incoming 

data in case of cache miss. I f one of the data has a creation t ime which is less than the 

creation t ime of the other and the lifetimes of these two data are not overlap, validation 

is required. The older copy has to be validated by more careful examinations. 

The suggested protocol also has some drawbacks. For example, validation of a data 

requires that a server communicates w i th other mobile clients. I t may not be possible to 

communicate w i th all such clients, since they may be disconnected. In this case, either 

the older data has to be removed from the cache or i t can be marked as potentially 

inconsistent. Another important problem is the size of the vector timestamps which used 

to keep the timestamps of all the clients can be very large when the algorithm is applied 

in large systems. 

2.3 Summary 

Al l the above protocols support “ disconnect operations" and coping wi th inconsistency 

problems brought by mobile computing environments by accepting different degrees of 

consistency. Weaker notion of consistency is defined such that read operations can be 

satisfied immediately w i th the cached data i f strict consistency is not required. The cost 

of wireless communication is reduced. 

However, these protocols cannot provide efficient solutions i f serializability is necessary. 
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In this paper a cache management policy is proposed to support "disconnect operations" 

and guarantee serializability. Serializability is employed in our system such that we str ict ly 

require that the data available in each mobile computer are consistent. 

2.4 Serializability and Concurrency Control 

Users of mobile computers may frequently query information in databases through the 

servers. A database is a collection of data which may be distr ibuted or replicated among 

the servers. I t is assumed that the local supporting server is the only source of data for a 

mobile computer and that a data is the unit of a single access. In practice, a data may 

be a record, a relation, a page of memory or even an entire file. A database state is the 
i 

values of the data in a database at a particular t ime and consistent database state means 

that the data values are consistent w i th each other [8]. A static image of the database 丨 

taken at a given t ime is called snapshot [13]. I t is a port ion of a consistent database state. j 

Data are updated by transactions [8, 9]. Each transaction is composed of a series • 

of read and wri te operations. A transaction which contains write operations is known j 
I 

as an update transaction and a transaction w i th read operations only is known as a ( 

read-only transaction (query) [19]. The execution of a transaction must be atomic, i.e, • 

the transaction either commits or aborts. I f a transaction commits, the effects of the 

transaction wi l l be incorporated completely to the database and considered as permanent. 

Otherwise, i f i t aborts, none of the effects wi l l be incorporated into the database. Atomic 

transactions transfer the database from one consistent state to another. 

I f all transactions in the system are executed serially, this sequence of operations per-

formed by transactions are defined as correct by definition in [13]. However, i f several 

transactions are executed at the same t ime, the processor can be shared among them and 

also higher the total transaction throughput. Hence, i t is not desired to force transac-

tions to execute serially but to execute them as concurrently as possible. When a set of 

transactions execute concurrently, their operations may be interleaved. The operations 

of one transaction may execute between two operations of another operation. This kind 



Chapter 2 Background 18 

of schedule may lead to an inconsistent database state. I t is necessary to have a formal 

model to analyze the correctness of our system. The act iv i ty that coordinates the actions 

of processes that operate in parallel, access shared data, and therefore potential ly interfere 

w i th each other is known as concurrency control [9 . 

The standard theory for analyzing database concurrency control algorithms is the 

serializability theory [8，10, 12] which is a widely accepted correctness criterion for the ex-

ecution of transactions. I t guarantees that a concurrent execution of transactions must be 

equivalent to a serial execution of the transactions. A concurrency control mechanism re-

stricts the order of operations of transactions by delaying some operations of transactions, 

restarting and aborting transactions i f necessary. , 

One way to ensure serializability is to require that access of data be done in a mutual ly 

exclusive manner. When one transaction accesses a data, no other transaction can modify j 

that data. The most common method used to implemented this is to allow a transaction � 

to access a data only i f i t is currently holding a lock on that data [20]. Two phase locking , 

is one of the protocols which adopts this strategy. Another method for determining the , 

serializability order is to select an ordering among transactions in advance. The most j 

common method for doing so is to use a timestamp-ordering scheme [20]. 1 

A data may be replicated among several servers, these copies of a data must appear • 

as a single logical data to transactions. Similar to a one-copy database system, i t is 

necessary to have a concurrency method to ensure correctness. I t is generally required for 

a Database Management System to manage a replicated database behaves like a Database 

Management System managing a one-copy (i.e. non-replicated) database insofar as users 

can tel l [9]. There are many different ways to perform the read and write operations 

of transactions. The system that we studied is a replicated database system in which 

mult iple copies of some data are stored at mult iple sites to increase data availability and 

improve performance. 

When a replicated data is updated, i t is required to update copies of replicated data 

which are being stored at more than one server. The replicated data should be transparent 

to users, such that the executions of operations of transactions on a replicated database 
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are equivalent to a serial execution of those transactions on a one-copy database. There 

are many approaches to do that. For example, according to the Write-All Approach [9], 

i t is necessary to update all copies of an updated data. In this way, Read operations may 

run faster at the expense of slower Write operations. However, in real situation, sites 

may fail. I f the DBS adheres to the write-al l approach, i t may need to delay the wri te 

operations unt i l the site recovers. Therefore, different approaches like Write-All-Availahle 

Approach, which updates copies stored at all available servers when a replicated data is 

being modified, is introduced. 

There is another replica control protocol such as the quorum protocol [23]. In the 
1 

quorum protocol, every server is assigned w i th a non-negative weight and each server \ 

knows the weight of all the other sites in the system. A quorum is a set of sites w i th total 

weights more than half of the total weight of all the sites. A read operation reads the j 

most up-to-date copy among all the data in the read quorum of sites. Whenever a wri te J 
I 

operation is performed at a server, i t is necessary to update all the copies of that data in j 

the quorum of sites. The purpose of quorums is to ensure Read and Write that access the , 

same data must access at least one copy of that data in common [9]. 

We adopt one-copy equivalence as the correctness criteria in our system. A replica 1 

control protocol, together w i th a concurrency control protocol, can enforce one-copy seri- • 

alizability [23], a correctness criterion for replicated database. 

After a wri te operation is executed on a data, a new version of the data wi l l be 

created. I f a new version always replaces the old version, then the system is a monoversion 

database system. Otherwise, i f i t keeps more than one version of the same data, i t is a 

multiversion [9] database system. In this studies, i t is assumed that the database is a 

multiversion database. Thus, each data x in the database is represented by a total ly 

ordered sequence of versions, denoted by a;̂ , x^ • • • x " , where the superscripts are the 

monotonically increasing version numbers. The version numbers measure how up-to-date 

each copy is. I t is assumed in this studies that the version control protocol proposed in [34 

is employed in the servers. The details of the version control mechanism is discussed in 

Appendix A. 



Chapter 3 

System Model and Suggested 
I 

Protocol I i 

( 
i 

3.1 System Model 

There are two distinct sets of entities in the system model: servers and mobile computers. ‘ 

I t is assumed that each server or mobile computer can be identif ied by a unique ident i ty ^ 

number. Servers are powerful stationary computers connected by a reliable network w i th • 
. Ij 

high bandwidth. The wired network is not synchronized. On the other hand, mobile com- \ 

puters are portable computing devices that are usually low powered machines equipped '' 
0 

wi th l imi ted amount of memory [33 . 

The system allows unrestricted mobi l i ty and connectivity of the mobile computers 

among the cells. The exact location of a mobile computer is not known to the supporting 

servers. A mobile computer may be disconnected f rom its local supporting server for 

various reasons and crosses the boundaries to different cells wi thout not i fy ing the servers. 

Mobile computers can retain their network connections when they move to different cells. 

No special procedure wi l l be executed between the previous and present local supporting 

servers when a mobile computer crosses the boundaries of these cells. 

Data are ful ly replicated by storing copies of data at all the servers. The version 

control mechanism introduced in [34] is adopted to update data among the supporting 

servers. I t is assumed that mobile computers cannot communicate directly w i th one an-

other. The only source of information for a mobile computer is its local supporting server. 

20 
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Data are updated by transactions at support ing servers only. Mobi le computers can re-

quest data f rom their local support ing servers through the unrel iable wireless channels. 

Message transmission between support ing servers and mobi le computers are assumed to 

be delivered in a f i rst- in- f i rst-out manner over the wireless channels. 

Mobi le computers w i l l cache port ions of the database for their own use. Support-

ing servers broadcast inval idat ion messages to mobi le computers per iodical ly to inval i-
• 

date cached data f rom mobi le computers. A l l the messages f rom a support ing server are 丨 

broadcasted to al l mobi le computers w i t h i n its cell. 
i 
( 

i 

3.2 Cache Management 丨 

I n this section, a cache management pol icy is introduced to support read-only transactions | 

i n mobi le computers. I n a mobi le comput ing environment, we have to face addi t ional | 
I 

diff icult ies that do not exist i n a stat ionary client-server environment. F i rs t , a mobi le , 

computer may cross the boundary and connect to a different cell w i thout not i fy ing the ,| 

server. By using a quorum protocol for replica control, a wr i te operat ion may not update || 

al l copies of a data. I n addi t ion, i t is impossible to update different copies of the same ； 

data at different servers simultaneously. Therefore, the data in the new and the old • 

servers may correspond to different snapshots of the database. Hence, the consistency in 

the cache may be destroyed i f the inval idat ion messages and data f rom the current server 

are accepted b l ind ly as in the example shown in Figure 1.1 of Chapter 1. Moreover, a 

mobi le computer may be frequently disconnected f rom a server for various reasons, such 

as the fai lure in receiving the transceiver's signal. Therefore, a mobi le computer may 

fa i l to receive some inval idat ion messages f rom the server. Hence cache consistency is 

destroyed. A t r i v ia l solution to these problems is that the entire cache is dropped when 

the mobi le computer crosses the boundary, or when the missing of a message f rom the 

server is detected. However such an approach is very inefficient. 

I n this section, an efficient protocol which can mainta in the consistency of cached data 

in mobile computers is proposed. Intu i t ive ly, the data cached in a mobile computer is 
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consistent, i f the data corresponds to a snapshot of the database. In order to maintain this 

property, different versions of data, invalidation messages and data broadcast to mobile 

computers are required to be managed in a coordinated manner. 

3.2.1 Version Control Mechanism 

The version control mechanism in [34] is adopted in the servers for our protocol. The 丨 

details of this mechanism is presented in Appendix A, readers who are famil iar w i th 
. . . . > 

this protocol may skip that section. A counter, ctnc, is introduced in the version control | 

mechanism, ctnc stands for completeness transaction number counter which is maintained ( 
• . . . ) 

at each server. I t 's value is equal to a particular version number in our multi-version ‘ 

database system. There are two properties of this version control mechanism that are 

used in our cache management policy. I 
. . . . 丨 Property 1 No transaction in the system wi l l commit w i th a t imestamp less than ctnc | 

of any server, i.e., no version of a data can be created in the system wi th a version number i 

less than the ctnc of a server. | 
. ii 

f 

Property 2 A server Si contains all versions of data wi th version number less than or • 

equal to ctnc. 

3.2.2 Cache Consistency 

The most crucial property that must be maintained by the proposed caching policy is that 

the data cached in a mobile computer must be consistent in the sense that transactions . 

reading these data are serializable. Therefore, the data in the cache must be part of a 

consistent database state. I t is generally accepted that executing a transaction can bring 

a database from one consistent state to another consistent state. Hence, any database 

state resulting from a serializable execution must be consistent. The simplest method 

to obtain a consistent database state is to stop ini t iat ing new update transactions, and 

then obtain the database state after all update transactions have been completed. I f 
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serializability is enforced, the state obtained in this way must be consistent. In practice, 

however, i t is undesirable to obtain a consistent database state by blocking all update 

activities. Instead, mult ip le versions of data can be kept and a consistent database state 

can be obtained by selecting a version f rom each data properly. Obviously, for each data, 

the version that forms the most recent consistent database state must be created by the 

last update. Therefore, for any t imestamp t, the latest versions of data w i th version 
* 

numbers not greater than t form the most recent consistent database state before t, i f no j 
•I 

transaction wi l l commit w i th a t imestamp less than t. The formal definit ion for consistent j 
1 

database states is given as follows: | 

• . > 

Definition 1 (Consistent Database State) Suppose {x1^x2 ‘ • • x^) is the set of data 
] 

in a database. The set of versions {xi , X2 .. • � } is the most recent consistent database 

state at timestamp t, denoted DBS{i), iffor each data xi, there does not exist and will 
j i . • I 

not exist a version x-' such that ji < j[ < t. j 

• 1 
From the definition of consistent database states, i t is not diff icult to show the following : 

1 人: 
iemma: 1 : 

V 1 
Lemma 1 For any timestamp t, DBS{t) is unique. • 

. . . . / . / .Z 

Proof; Assume the lemma does not hold and let {x{^, x f . . • cc。} and {x^^ , a?J • •. x^^} 

be two distinct consistent database states for DBS{t). Then there must exist k such that 
ji 

1 < k < n and x^^ + x:. Since version numbers are total ly ordered, without loss of 

generality, assume that jk < j'k. Hence, by definition, {x{^, x̂ 2 . . . ^ j " } is not a consistent 

database state. I t leads to a contradiction and the lemma follows. • 

Due to the l imi tat ion of storage, usually only a subset of data is cached in a mobile 

computer. We assume that for each data in the cache, only one version of the data is kept 

in the cache. We call this set of versions a version set The consistency of a version set is 

defined as follows: 
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Definition 2 (Consistent Version Set) A version set is consistent with timestamp t, 

if the set of versions is a subset of DBS{t). 

We say that a cache is consistent w i th t imestamp t , i f the set of versions kept in 

the cache is consistent w i th t imestamp t. In the implementation, a counter w i l l be used 

to store the t imestamp of a cache. Logically, a cache can be represented by a tuple 

〈t，x{^, vali^^xf^, vali^ •. • x{^^vali\^ where t is the t imestamp of the cache, x{ is the iden- , 
1 2 “ • • • 1 

t i t y of the version and vali is the value associated w i th the version. Intui t ively, cache ‘ 
. . . S 

consistency w i th t imestamp t can be maintained i f we can enforce that the version of | 
. . . . \ each data kept in the cache is the largest possible version w i th version number less than » 

t. This property can be stated formally as follows: ！ 

I 
Lemma 2 A version set is consistent w i th t imestamp t, i f the version for each data in | 

the version set is the latest version w i th version number less than t and no transaction | 

w i l l commit w i th a t imestamp less than t. ^ 

P r o o f : Since version numbers are total ly ordered, i f no transaction wi l l commit w i th a : 
I 

t imestamp less than t , then for each data, there exists a unique latest version of the data | 
. . ''l 

that is less than t. Therefore, the consistent version set w i th t imestamp t for a set of data i 
fi 

must be unique. From Lemma 1, DBS{t) is also unique. By the definition of consistent • 

database state, the version set must be a subset of the consistent database state. Hence 

the lemma follows. • 

We can observe from the definition of cache consistency that the data in a consistent 

cache wi th t imestamp t contains the effects of the transactions wi th timestamps less than 

t only. I t is not difficult to show that any read-only transaction that reads data from a 

consistent cache w i th timestamp t can be serialized immediately after all the transactions 

wi th timestamps less than t. A similar proof for a multi-version database has been given 

in [8]. Therefore, i f cache consistency can be maintained, any read-only transaction from 

a mobile computer can read the data in the cache without issuing any lock on the server 

and serializability is guaranteed. 
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As new versions of data are created continuously by update transactions, the cache in 

mobi le computers should always be kept as up-to-date as possible. Updat ing the cache 

in a mobi le computer may involve three different processes: dropping some old data, 

reading in new data and advancing the t imestamp of the cache. However, these three 

processes cannot be per formed independently. I n order to ma in ta in cache consistency, 

careful coordinat ion is required. The process of advancing t imestamps of cache and drop-
* 

ping outdated data f r om cache must be done in a single atomic step w i t h respect to the . 
ii 

t ransact ion in a mobi le computer. When a mobi le user requests data f rom servers, the j 
. \ 

version that can be loaded in to the mobi le computer depends on the t imestamp, t, of the | 

cache. The details are discussed in the fol lowing sections. | 
j 

I 
3-2.3 Request Data from Servers [ 

. . i 
The data required by the user of a mobi le computer may change f rom t ime to t ime. ’ 

‘ II 
Therefore, unused data w i l l be dropped f rom the cache and new data may be loaded in to 丨彳丨 

. . j 
the cache gradually. From Lemma 2, i t is not di f f icul t to observe the fol lowing lemmas, 丨 

. . ii 
since set difference and union do not destroy the assumption in Lemma 2: -i； 

“丨 
i, 

Lemma 3 Let V be a consistent version set w i t h t imestamp t. Any V' C V is also a • 

consistent version set w i t h t imestamp t. 

Lemma 4 Let V and V be two consistent version sets w i t h the same t imestamp t. VUV' 

is also a consistent version set. 

Lemma 3 implies that a mobile computer can drop unused data at any t ime wi thout 

destroying cache consistency. On the other hand, loading a data into a cache is more 

complicated. From Lemma 2, the largest possible version of a data w i t h t imestamp not 

greater than t is a consistent version set w i th t imestamp t. Then by Lemma 4, we can 

conclude that the cache consistency of a cache w i t h t imestamp t w i l l not be destroyed by 

loading the latest version of a data w i t h version number less than t into the cache. Using 

this idea, the a lgor i thm for requesting data f rom servers is derived. 
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When a query in a mobile computer requests data that is not cached, the mobile 

computer w i l l send a REQUEST message to its local supporting server. A REQUEST 

message is a tuple, {mobileJd^ t , dataJd) where mobileJd identifies the mobile computer, 

t is equal to the t imestamp of the cache and dataJd is the ident i ty number of the required 

data. After receiving a REQUEST message, the algori thm in Figure 3.1 is executed by 

the local supporting server. 
% 

- j 
Procedure ReceiveREQUEST . 
begin j 

Suppose a request {mobile-id,t, x) is received. j| 
If ( oldyn > t ) I 

Message f - {mobileJd, ABORT) / * Abort the transaction * / j 
.i 

Broadcast Message 
else if {ctnc > t > oldyn ) | 

val <— x^.val where {^x^ s.t. j < k < t) , 
Message <— (j;,x^,val) } ： 
Broadcast Message || 

else if ( t > ctnv ) ] 
Block until ctnv > t | 

end 
« 

^ || 
Figure 3.1: A lgor i thm for Processing Data Requests at Server ‘丨 

1 i 
• 

The situations can be classified into three cases: 

• t < oldyn (the oldest version that is kept in the server) 

Since the version requested by the mobile computer is no longer available in the 

server, the query needs to be aborted. The query should be re-executed after the 

timestamp of the cache is advanced. 

• oldyn < t < ctnc 

From Property 1 stated in Section 3.2.1 of the version control mechanism, no trans-

action wi l l commit w i th timestamp less than ctnc. In addition, from Property 2 

stated in Section 3.2.1, the server has all the versions from oldyn up to ctnc. There-

fore, x\ which is the latest version of x w i th version number less than t is the 
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required version of the mobi le computer. The server w i l l then broadcast the mes-

sage ( t , x\ val) th rough the wireless network. The semantics of the message is that 

x^ is the latest version of x w i t h version number not greater than t and val is the 

value associate w i t h this version. Therefore, al l mobi le computers w i t h t imestamp 

t can safely load the data in to i ts cache. In fact, al l mobi le computers w i t h t imes-

tamp t' such that j < t' < t can also load the data. The details w i l l be discussed in 
« 

Section 3.2.5. ! 

參 ctnc < t I 
. • J 

A mobi le computer may move to different cells at any t ime and since the servers } 

are not synchronized, the t imestamp of a mobi le computer may be larger than that ； 

of the local support ing server. I n this case, the version sequences in the server may ! 

only complete up to ctnc and i t cannot be guaranteed that the latest version of the 、 

I 

data, w i t h version number not greater than t, is already contained in the server. ‘ 

Hence, the read request w i l l be blocked un t i l the value of ctnc is advanced to a value ^ 
I greater than or equal to t. 丨 
'ii 
5： 
V 

3.2A Invalidation Report [ 
As new versions of data are continuously created by update transactions, the t imestamp 

of a cache has to be advanced so that more updated versions of data can be loaded into 

the cache. This section discusses how to advance the t imestamp of a cache and at the 

same t ime main ta in cache consistency by inval idat ing data properly. In tu i t ive ly , when the 

t imestamp of a consistent cache is advanced f rom t i to t2, a data i tem has to be dropped 

i f the version kept in the cache is not the largest possible version that is less than t2; 

otherwise the cache consistency w i l l be destroyed. This idea can be summarized in the 

fol lowing lemma: 

Lemma 5 Suppose V is a consistent version set w i t h t imestamp ^i. Then V — U is a 

consistent version set w i t h t imestamp t2 {t2 > h ) , i f 
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1. no transaction wi l l commit w i th a t imestamp smaller than 仏 and 

2. U = {xi\xi e V 八 3o:f s.t. ti < k < t2}. 

Proof: Suppose the assumptions in the lemma hold. Assume V — U is not a consistent 

version set w i th t imestamp t2. By Definit ion 2, there exists a version x\ G V — U such 

that x j is not the largest possible version that is less than t2. That means there exists 

or w i l l exist a version x\ such that j < k < t2. Since no transaction wi l l commit w i th a 

t imestamp smaller than t2, x\ is already in the system. By definition, x] G U. Therefore, 

x^-贫 V — U. I t leads to contradiction and the lemma follows. • 

From Lemma 5, we observe that when a server suggests to a mobile computer to 

advance its t imestamp to t, the server has to make sure that no transaction wi l l commit 

w i th a t imestamp smaller than t. In addition, the server should know all the updates up 

to t’ so that i t can instruct the mobile computer to drop the data properly. Therefore, a . 

server should not suggest to a mobile computer to advance its t imestamp beyond ctnc. ’ 

Periodically, a server constructs an invalidation r e p o r t � t � , UJist, ctnc), where to is a ； 
I 

t imestamp less than ctnc and UJist is the identities of the set of data which has been : 

updated between to and ctnc, i.e., UJist = {a;|3a:& s.t. to < k < ctnc}. The invalidation ‘ 

report is broadcast to every mobile computer in the cell. When a mobile computer receives 

the validation report, i t can advance the timestamp of its cache to ctnc after dropping 

all the data in UJist, i f the original t imestamp of the cache is between to and ctnc. The 

correctness of this approach is shown in the following lemma. 

Lemma 6 Suppose V is a consistent version set wi th timestamp t, where to < t < ctnc. 

Let V' be the version set obtained by removing all the data in UJist f rom V. Then V ' is 

a consistent version set wi th timestamp ctnc. 

Proof: Let U-version = {xj\x^i G V A Xi G UJist�(the data in the cache that have been 

updated in the system between Z。and ctnc) and W 二 {a;i|a;f G V"A3a^f s.t. t < k < ctnc] 

(the data in the cache that have been updated in the system between t and ctnc). Ob-

viously, W C Ujversion, let T = U-version — W. By Lemma 5, V — W is a consistent 
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version set w i t h t imestamp ctnc. By Lemma 3, V' = V — W — T, is also a consistent 

version set w i t h t imestamp ctnc. Hence the lemma follows. • 

I f the t imestamp of a cache is smaller than to, Lemma 6 cannot apply. Obviously, 

f rom Defini t ion 2, an empty version set is a consistent version set w i th any t imestamp. 

Therefore, when the t imestamp of a cache is smaller than to, the mobile computer can ‘ 

drop all the data in its cache and advance the t imestamp to ctnc. Hence, the range of t � 
k 

and ctnc must be carefully chosen so that not too many mobile computers are required j 
t 

to drop all the data in their cache. However, sometimes it is very diff icult to choose ‘ 
. . . . I 

a suitable timestamp《〇�especially when the variation of the timestamps of the mobile 

computers in a cell is great. When the range of to and ctnc is too small, most of the I 

mobile computers w i l l drop all the data from their cache. When the range is too large, ^ 

UJist w i l l contain data f rom a large port ion of the database. As a result, a significant 

• . . . ‘ 
amount of data in a cache has to be dropped. Simulations are presented in Section 4.4 

« 
to find an appropriate value for range of to and ctnc. In order to alleviate this situation, , 

丨_1 I' 
the format of an invalidation report can be modified as follows: 

4 

m 

{to,Uo,ti,Uu-'-tj,Uj,tj+i = ctnc), where 

1. to, ti.. • tk are timestamps such that to < ti < . . . tk < tj+i = ctnc, 

2. Uj = {x\3x^ s.t. tj < k < ctnc}, and 

3. for 0 < 1 < j — 1, Ui 二 {a::|3a:" s.t. ti < k < ctnc} — Ui<m<jUm^ 

The intui t ive idea of the design is that Ui U U]+i U • • • U Uj contains all the data that 

have been updated between timestamps ti and ctnc. Therefore, a mobile computer can 

advance its t imestamp to ctnc by dropping all these data, i f its original t imestamp is 

between ti and ti+i. The algorithm to invalidate data is depicted in Figure 3.2, where t is 

the timestamp of the cache. Note that the algorithm is required to be executed atomically 

wi th respect to the read-only transactions in the mobile computer. 
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Procedure ReceiveInvalidate 
t: the timestamp of the cache 
begin 

Suppose an invalidation report {to, Uo,ti, Ui,.. - tj, Uj,tj+i = ctnc) is received 
If to > t 

drop the entire cache 
t <— ctnc 

else if ctnc < t 
ignore the invalidation report 
else , 

For 1 from 0 to j 
iiti <t<ti+i ‘ 

For each data x G Ui<i<ctncUi ； 

Drop X from the cache ^ 
t i— ctnc 1 

Return : 
end ！ 

i 
Figure 3.2: A lgor i thm for Processing Invalidation Report at a Mobile Computer 

1 
3.2.5 Data Broadcasting 

After an invalidation report is broadcast, most of the mobile computers in the cell wi l l * 
. ：；丨 

drop some of their data. These mobile computers may then request new versions of these • 
. j 

data at almost the same time. Such a sudden increase in the number of requests m a y j a m ‘ 
m 

the system. In order to alleviate this situation, the server can broadcast some frequently 

requested data immediately after an invalidation report has been broadcasted. The format 

of a DATA message is as follows: 

{ctnc, xil,而/“,... xi^,valiJ), 

where x{ are the latest version of the data Xi w i th version number smaller than ctnc 

and vali is the value associated wi th the version. Note that i t is not difficult to merge 

a DATA message w i th an invalidation report so that some redundancy can be removed. 

However, for the sake of explanation, we discuss invalidation reports and DATA messages 

separately. Upon receiving a DATA message from the local server, a mobile computer 

executes the algorithm in Fig 3.3 for loading new data into its cache. 
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Procedure ReceiveDATA 
begin 

Suppose a DATA message (^ctnc, x̂ J, val{^ ’ . •. x~j:，vaU^ is received. 
If ctnc < t 

ignore the DATA message 
else 

For each data version x{ in the DATA message 
If t > j and the mobile computer needs the data 

Cache xj , 
end 

I 

？ 
I 

Figure 3.3: A lgor i thm for processing Data Broadcasted f rom a Server j 

. . . . ！ 
Note that although a DATA message is broadcast immediately after an invalidation 

j 

report, we cannot assume that the t imestamp, t, of the mobile computer is ctnc. This 

is because the mobile computer may fail to receive the invalidation report or the mobile ^ 

computer ignored the invalidation report because the t imestamp of the mobile computer 

is greater than the ctnc of the server. In the algorithm, i f ctnc < t, the DATA message 
« 

wi l l be ignored. Otherwise, the mobile computer can load a data i f t is greater than , 
• h 

the version of the data. I t is because for each data version xj in the DATA message, 、丨 

x^- must be the latest version w i th version number less than or equal to ctnc. Hence, i f . 

ctnc > t > j, x{ is also the latest version wi th version number less than or equal to t. 

Therefore, by Lemma 2, the mobile computer can load the data into its cache without 

destroying cache consistency. 



Chapter 4 

Simulation Study ； 
,j 

、 
This chapter presents a simulation study to find appropriate parameters for the protocol j 

and to evaluate the performance gained by including piggybacking messages in the inval- | 

idation reports. We have bui l t a simulating program using CSIM11 which is a discrete j 

event, process-oriented simulation package based on C + + language. A CSIM17 program i 

models a system as a set of processes which interact w i th one another by using struc- 1 

tures such as requesting service at facilities, wait ing for events, etc. Special structures are i 

provided in CSIM17 to collect simulation statistics during the execution of a model. * 

Besides, the max imum number of mobile computers that can be supported by the ;| 

system is investigated. To make the simulation more concrete, the comparison of the * 
• 

performance between our protocol and the Amnesic Terminals (AT) method suggested 

in [6] is given. 
4.1 Physical Queuing Model 
The wireless communication channel wi th in a cell is modeled as a M / G / 1 feedback queue 

wi th a FCFS scheduling discipline as shown in Figure 4.1. The server is a fixed rate server 

w i th service rate equals the bandwidth of the channel. The service t ime of a message is 

equal to (length of the message)/(wireless bandwidth). In fact, a queue is an ideal model 

of a wireless Ethernet-like channel where the probabil ity of collision is zero and messages 

are delivered in a FCFS manner. 

32 
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^ ^ ^ ^ ^ ^ reply from server Bandwidth 
Query from MH ^ " " \ ^ ^ ^ ^ H ~ ~ ~ ~ H ~ ~ f ^ 

_ _ ^ ^ | 4 ^ — U 
^ ^ ^ ^ ^ ^ \ \ \ Query Job 

Periodic broadcast of invalidation report \ Reply Job 
Broadcast Job 

« 

Figure 4.1: Queuing Model of the Wireless Channel i 

. I 
4.2 Logical System Model , 

I 

The logical queuing model is i l lust rated in Figure 4.2. For s impl ic i ty, only one mobi le I 

computer and its local support ing server are shown. The model is based heavily on the ！ 

one in [2] bu t is extended for the mobi le comput ing environment. ‘ 
. i 

Each cell consists of a single support ing server and a number of mobi le computers. 彳丨 
i I 

Each mobi le computer has one active te rmina l so the number of mobi le computers equals 

the number of terminals. The communicat ion mechanism among servers is not shown 
;i 

here. I t is assumed that the message transmission among support ing servers are reliable. ‘ 
I 

A read-only transaction at a mobi le computer is proceeded as follows. For each read ‘ 
• 

operat ion of the transaction, Transaction Manager is called. Transaction Manager then 

accesses the cache of the mobi le computer and the cached copy is returned i f the data in 

question is cached. Otherwise, the mobi le computer sends a request message to the local 

support ing server for the data. The support ing server then returns the data requested 

to the mobi le computer and the cache of the mobi le computer is updated to store the 

current ly requested data. A l l the communications between the mobi le computer and the 

local support ing server are through the wireless channel. The messages are t ransmi t ted 

in a First-Come-First-Serve manner as mentioned in Section 3.1 of Chapter 3. In order 

to model an interactive application, there is a t ime delay between two operations of a 

transaction and between two consecutive transactions. 

I f a mobi le computer is disconnected while a transaction is active, the transaction w i l l 
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MOBILE COMPUTER (MH) 

i TerminalQ ^ 〇 。 ^殳 ； 

I int_think access data transaction | 
I ^ — — Q � Q v commit I 

I \ Transaction Manager ' 

i ^ > o — — J i ； 

: Z - - \ 」 ！ 
Transaction Abort ^ V ^ \ \ 

^ y disconnected? ^ j 

Send Message ( ^ " ° ( ^ ReceiveMessage j 

： t 1 Propagation Messages ' 丨 _ ' 
from Other Servers 丨 - : ^ [ 7 7 1 丨 ^^""^^® Queu^ 

_ > -， of the Wireless Channel f 
V ‘ [ : i 

'- -、 T ： ^ ' 
I ReceiveMessage Q^ < 』 "Send Message | j 
I Access Database '‘ '〖 \ » 
I Update Data ( 、 Inval idat ion Report i ：丨 

I Access Data ^~~^•^ Reply Message to Mobile Computer ！ , 
I I • 

丨 • 
I LOCAL SUPPORTING SERVER | 
i . — 一 — — 一 — — 一 — 一 — — — 一 — — 一 一 — — — — — — — — — — — — — 一 — — — — — 一 — — — 一 — — — — — 

Figure 4.2: Logical Model of the Simulat ion 

be aborted. As in [2], we adopt fake restart to implement transaction restart. Hence, a 

restarted transact ion is replaced by a new and independent one. 

4.3 Parameter Setting 

The f ixed parameters used in these experiments are l isted in Table 4.1. Some of the values 

of the parameters are similar to those in [22, 2]. I t is believed that the cost of concurrency 

control is negligible when compared w i t h the cost of message transmission. Therefore, 
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the cost of concurrency control is ignored in our simulat ion. 

Parameters Meaning Values 
num_server number of servers in the system 7 
db^ i ze number of data in database 300 
popular_obj number of popular data 60 
popular i ty percentage of access fal l into popular data 80 % 
s imt ime to ta l s imulat ion t ime in seconds 21600 
prop_period t ime interval between propagating messages in seconds 60 
cache size cache size of mobi le computers 30 
max_size size of largest read-only transaction at M H 12 
min_size size of smallest read-only transaction at M H 4 
max_up_date m a x i m u m number of update per transaction at server 12 
min_up_date m i n i m u m number of update per transaction at server 4 
invalid_range range of data version include in inval idat ion report 300 
int_th ink intra-transact ion th ink t ime 0.1 
t imeout t ime l im i ted to wait for reply f rom server 5.0 
access_size query size f rom M H to server in bytes 50 
reply_size message size f rom a server to M H in bytes 50 
bandwid th wireless communicat ion bandwid th in b i t per seconds 1,000,000 
obj_size size of data in bytes 1000 
obj」d_size size of data ident i ty number in bits 100 
obj」o I / O t ime for accessing an data in seconds 0.035 
obj_cpu C P U t ime for accessing an data in seconds 0.015 
crossJnt t ime interval a M H crosses boundaries in seconds 1800 
disconnect」nt t ime interval a M H disconnects in seconds 1500 
disconnect_period t ime durat ion of each disconnection in seconds 10 
int_read t ime interval between read-only transactions at M H in seconds 10 
int_update t ime interval between update transactions at server in seconds 60 

Table 4.1: Fixed Simulat ion Parameters 

There are tota l ly 7 local support ing servers in the system, each of them contains 300 

fu l ly replicated data. Our experiment simulates the system for 21600 seconds, i.e. 6 hours. 

The number of data accessed in each transaction in the system is un i formly d ist r ibuted 

between 4 to 12 data. As mentioned earlier update transactions are originated at servers 

only. The data to be accessed are randomly chosen f rom all the data in the database. 

The average t ime interval between two consecutive update transactions w i th in a server 

is 60 seconds. A server propagates update messages to other servers periodical ly w i t h a 
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negative exponential mean of 120 seconds. 

For a mobile computer, the cache_size, is 30. The t ime interval between two read-only 

transactions is 10 seconds. I t is assumed that, the data accessed by the mobile computers 

follows the 80/20 access model, i.e. 80% of data accesses are directed to 20% of the data. 

We refer these data to as the popular data . Mobile computers cross boundaries to different 

cells periodically w i th a mean t ime interval of 1800 seconds. The mean t ime interval for a 

mobile computer to be disconnected is 1500 seconds and the mean disconnection duration 

lasts for 10 seconds. 

Each data occupies 1000 bytes and each data identifier takes up 100 bits. Each query 

generated by a mobile computer has a size of 50 bytes and the size of a reply message is 50 

bytes plus the size of the information i t contains. After sending out a request message to 

the local supporting server, a mobile computer wi l l assume that i t is being disconnected i f 

the reply message from the local supporting server cannot be received wi th in the timeout 

period. The t ime required for I / O and CPU processing for a read operation at the server 

are 0.035 and 0.015 seconds respectively. 

The value of invalid_range is the range of versions sequence included in each invalida-

t ion report. For example, i f the value invalid_range is set to be 300, then each invalidation 

report includes all the data」d of the data in the database which are updated from version 

number [ctnc — 300) to ctnc. I f the invalidation report includes piggyback messages, then 

the values of popular data which have been updated wi th in this range are also included. 

In Section 4.4, i t is found that 300 is the most appropriate value for invalid-range un-

der the scenarios that we studied. Therefore, we employed this value in our following 

experiments. 

The parameters that are varied are not listed in Table 4.1. They wi l l be given in the 

description of the corresponding experiments. The performance of the proposed protocol 

is measured in terms of number of cache drops, cache hit ratio and bandwidth utilization. 

As explained in Section 3.2.4, a mobile computer may need to remove all data from its 

cache. In the following experiments, we refer to the step of removing all data from the 

caches of mobile computers to as cache drop. Whenever there is a data access at a mobile 
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computer, i f that data is found in the cache, then i t is referred to as a cache hit, otherwise, 

i t is a cache miss. Cache hit ratio refers to the ratio between the number of cache hi t 

and the tota l number of data accessed. Bandwidth utilization of the wireless channel is 

calculated by dividing the busy t ime by elapsed t ime. 

Whenever there is a cache miss, the mobile computer sends a query to the local 

supporting server requesting the data that is not cached. We refer to this query as an 

uplink query. The mechanism involved is mentioned in Section 3.2.3. The experimental 

results are presented in the following sections. 

4.4 The Significance of the Length of Invalidation 

Range 

The aim of this section is to show the difference in performance of our proposed protocol 

w i th different values of invalid_range. The value of invalid-range represents the range of 

versions sequence included in each invalidation report. The value of invalid_range should 

be carefully selected especially when the variation of the timestamps of mobile computers 

is great as described in Section 3.2.4. 

The timestamps of mobile computers would be varying when the value of ctnc among 

the local supporting servers have great differences or the mobile computers cannot update 

the values of their timestamps as a result of missing the invalidation reports. However, 

since it is assumed that the servers are connected by a wired network which is reliable, the 

differences among the timestamps of the servers should be small. Hence, the main cause 

for varying timestamps should be due to the fact that mobile computers always miss 

invalidation reports because of temporary disconnection or interference in the wireless 

networks. The following reasons make the selection of a suitable value for invalid_range 

difficult. 

• I f the value of invalid_range is small, most of the mobile computers wi l l have the 

values of their timestamps less than the value of {ctnc - invalid.range). These 
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mobi le computers w i l l then have to remove al l data f rom their caches. Cache drops 

increase the burden of the wireless network. As the caches become empty, the next 

data access cannot be answered by the mobi le computer. The cache h i t rat io hence 

decreases. I t also cuts down the benefits brought w i t h the caching strategy. 

• I t seems to be beneficial to have a large value of invalid_range. However, this w i l l 

require more in format ion to be included in each inval idat ion report . This raises 

the bandwid th consumpt ion and at the same t ime, more data w i l l be considered as 

inval id. Since each inval idat ion report contains more data, more inval id data need 

to be dropped after the inval idat ion report is received. Consequently, the cache h i t 

rat io decreases and more up l ink queries are required. As a result, the bandwid th 

consumption increases. 

I n the fol lowing, experiments conducted to find a suitable value for invalid_range which 

balances the number of cache drops, the cache h i t rat io and the bandwidth ut i l izat ion are 

shown. 

4.4.1 Performance with Different Invalidation Range 

As stated earlier, when the difference between the values of the t imestamps of mobi le 

computers is great, i t is di f f icult to have a suitable value for the inval idat ion range. 

I n this section, we t r y to evaluate the performance of the system w i th different values 

of inval idat ion range under a scenario that the variat ion in t imestamps of the mobi le 

computers is great. The values of parameters used in this experiment are the same as those 

l isted in Table 4.1 except that the disconnection frequency and durat ion of disconnection 

are increased as we need to create a scenario where the mobile computers always miss 

inval idat ion reports. The t imestamps among mobile computers would then have great 

differences. The mobile computers temporar i ly disconnect for every 500 seconds and each 

disconnection lasts for 100 seconds. The values given are exponential ly d is t r ibuted over 

a f ixed mean value. The results are shown in Figure 4.3. 
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Figure 4.3: Performance w i t h Different Inval id Range 

As stated above, the overall performance of our proposed protocol w i l l be worsened i f 

the value of invalidation_range is either too large or too small. 

Figure 4.3(a) shows that the bandwidth ut i l izat ion is the smallest when the value 

of invalid_range is about 300. I t is found that the discrepancy in bandwid th ut i l izat ion 

w i t h different values of invalid_range is not significant whi le there are observable variance 

in cache h i t rat io and to ta l number of cache drops. This may be due to the fact that 

when the value of invalid_range is large, the increased burden in communicat ion due to 

including more in format ion in each inval idat ion report is compensated by the reduct ion in 

the number of cache drops. Fewer number of cache drops implies fewer number of cache 

misses and hence there are fewer upl ink queries f rom mobile computers to local support ing 

I servers. The bandwidth consumption becomes lower. When the value of invalid_range is 

small, most of the mobile computers may have the values of their t imestamps out of the 

range. This results in more cache drops after inval idat ion reports are received. However, 

there are fewer data need to be included in each inval idat ion report. 

The cache h i t rat io reaches its max imum when the value of invalid_range equals 300 

as shown in Figure 4.3(b). Figure 4.3(c) shows that the to ta l number of cache drops is 

relatively low when the value of invalid_range is equal to 300. This shows that when the 

value of invalid_range equals 300 i t gives an opt imal performance both in terms of cache 

h i t rat io and tota l number of cache drops. 

L 
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4.4.2 Increasing the Update Frequency 

I n the fo l lowing exper iment, the mean t ime interval between each update at a server is 

decreased f rom 60 to 10 seconds. The values of other parameters are the same as that 

of the experiments in Section 4.4.1. W i t h update frequency increased, more data w i l l be 

updated dur ing the same t ime interval than in the previous experiment. For the same 

value of inval idjrange, more inval id data w i l l be included in each inval idat ion report . To 

include the same number of inval id data w i th in each inval idat ion period, the inval idat ion 

report should have a smaller value of invalid_range. I t is predicted that the curves w i l l 

shift to the left . The results of this experiment are shown in Figure 4.4. 
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Figure 4.4: Increasing the Update Frequency 

I t is found that the cache hi t rat io is the highest when the value of invalid_range is 

close to 200 and the bandwidth ut i l izat ion is relat ively small at this stage. The best value 

of invalid_range shifts to the left as expected. 

As more data are dropped f rom the cache, the number of cached data should decrease 

and so as the cache h i t rat io. However, as shown in Figures 4.3(b) and 4.4(b) the cache 

h i t rat io increases w i t h the update frequency. This may be due to the fact that after an 

inval idat ion report is received by a mobile computer, more data need to be removed f rom 

the cache. The space in the cache w i l l be replaced by popular data immediately as the 

new values of popular data are included in the inval idat ion reports ( the piggybacking 

messages ). The number of cached popular data increases, which increases the probabi l i ty 

1 
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of cache h i t . The cache h i t rat io hence increases. In the fol lowing experiment, we jus t i f y 

the above argument by sending inval idat ion reports w i thout inc luding the new values of 

popular data ( i.e. no piggybacking message ). 

4.4.3 Impact of Piggybacking Popular Data 

I n this section, the experiments in Section 4.4.1 and Section 4.4.2 are repeated except that 

the new values of popular data are not included in the inval idat ion reports. The results are 

shown in Figures 4.5 and 4.6 respectively. I t is expected that after the update frequency is 

raised, more data needs to be dropped out after an inval idat ion report is received. These 

dropped data w i l l not be replaced by popular data as piggybacking messages are excluded 

in the inval idat ion reports in this experiment. The number of cached data decreases after 

an inval idat ion report is received. Besides, the cache h i t rat io for the one w i t h higher 

update frequency should be less than the one w i t h lower update frequency. 
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0'2foo 200 300 400 500 600 700 。2f00 200 300 400 500 600 700 ol • """""^ “ ~，~，— - ff • ,丨 

Length o> the Versions in each Invalidation Repon Length of lh« Versions in each invalidation Report 100 200 300 400 500 600 700 
Leng1h of lhe Versions In each lnvaNdation Report 

(a) Utilization of the Wireless Bandwidth (b) Cache Hit Ratio (c) Total Number of Cache Drops 

Figure 4.5: Impact of Piggybacking Popular Data 

As shown in Figures 4.5(b) and 4.6(b), the cache hi t rat io is smaller as compared w i t h 

that in Figures 4.4(b) and 4.3(b) in Section 4.4.1 and Section 4.4.2 respectively. This is 

because wi thout piggybacking messages, invalid data are not replaced after invalidation. 

The cache h i t rat io in Figure 4.5 is higher than that of Figure 4.6 as expected. This shows 

that the reasoning in the previous paragraph is correct. 
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Figure 4.6: Impact of Piggybacking Popular Data (Higher Update Frequency) 

The m a x i m u m cache h i t rat io is found when the value of invalid_range equals 300 and 

200 respectively that is similar to the results in Section 4.4.1 and Section 4.4.2. The 

op t ima l value of invalid_range becomes smaller as the update frequency increases. 

4.4.4 Increasing the Disconnection Period 

Besides increasing the disconnection frequency, extending the disconnection period would 

also result in large var iat ion of timestamp values among mobile computers. It is because, 

the values of the t imestamps of mobi le computers are advanced after the inval idat ion 

reports are received. I f a mobile computer is always disconnected, i t w i l l miss most of the 

broadcasted inval idat ion reports. Therefore, mobile computers cannot advance the values 

of their t imestamps and the values diverse. In the previous experiments, the disconnection 

durat ion is 100 seconds. In this section, the disconnection durat ion is increased to 300 and 

500 seconds respectively. The disconnection interval is 500 seconds as is in the previous 

experiments in Section 4.4.1. The remaining parameters are the same as in Table 4.1. 

The experimental results are shown in Figure 4.7 and 4.8. 

I t is found that the bandwidth ut i l izat ion decreases as the durat ion of disconnection 

increases as shown in Figures 4.3(a), 4.7(a) and 4.8(a) ( Their disconnection periods are 

100, 300 and 500 seconds respectively ). Figures 4.3(c), 4.7(c) and 4.8(c) show that the 

to ta l number of cache drops decreases as the to ta l number of connected mobile computers 
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decreases. I t is because the number of mobi le computers that are connected w i t h the 

system decreases as the disconnection durat ion increases. Therefore, fewer number of 

up l ink queries and reply messages are t ransmi t ted through the wireless networks. The 

bandwid th u t i l i za t ion cuts down. Besides, and so as the number of cache drops. 

I t is shown in Figures 4.3(b), 4.7(b) and 4.8(b) that the var iat ion in cache h i t ra t io 

decreases and the curves become flattened. A mobi le computer would miss the invalida- , 
t i on reports which are broadcast when i t is disconnected. As the disconnection durat ion , 

increases a mobi le computer would miss most of the broadcasted inval idat ion reports. 

Missing inval idat ion reports implies that the mobi le computers in question w i l l not per-

fo rm cache inval idat ion. Increasing the value of the invalid_range w i l l not signif icantly 

affect the contents of caches of mobi le computers. Therefore, the curves for cache h i t rat io 

flatten. 
I 

Figures 4.3(c), 4.7(c) and 4.8(c) show that the to ta l number of cache drops decreases 

as the disconnection per iod increases. The reasons behind is obvious. As the disconnection 

period increases, the number of mobi le computers that are connected w i t h the system 

decreases. Fewer mobi le computers perform cache drops, hence the to ta l number of cache 

drops decreases. However, i t should be noticed that as the disconnection per iod of mobi le 

computers increases, the data that the mobi le computers read become more outdated. ‘ 

I t is found that the op t ima l value of invalid_range varies in different scenarios. Since 

i t is better to have an unique value of invalid_range in al l the experiments for the sake 

of comparison, we w i l l have the value of invalid_range set to be 300 in the fol lowing 

experiments. I t is the best value found in Section 4.4.1. 

4.5 Comparison of the Proposed Protocol with the 

Amnesic Terminal Protocol 

The objective of this section is to study the performance of the proposed caching protocol 

under different scenarios. The Amnesic Terminals (AT ) method suggested in [6] is used as 
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a control exper iment. Since the inval idat ion reports of the A T method do not include any 

piggybacking messages, piggybacking messages are excluded in the inval idat ion reports of 

the proposed protocol in this section. I n the experiments followed, the parameter values 

as shown in Table 4.1 are used. 

4.5.1 Setting a Short Timeout Period 

I n the first set of the experiments, the timeout per iod is set to be 5 seconds. I t is found 

that the performance of the A T method is poor in terms of cache h i t rat io and transact ion 

response t ime as shown in Figure 4.9. 
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Figure 4.9: Our Protocol VS A T Method (Timeout Period = 5 sec) 

In Figure 4.9(a), i t is found that the cache hi t rat io drops and the number of transaction 
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aborts due to exceeding the t imeout per iod increases l inearly when there are more than 

100 mobi le computers in the system. According to the A T method, up l ink queries are 

sent after the inval idat ion reports are received. A l l the up l ink queries ar r iv ing dur ing 

each inval idat ion per iod w i l l be sent simultaneously. Sending a large number of up l ink 

queries at the same t ime results in a keen compet i t ion for the wireless bandwidth. I t is 

believed that the round- t r ip delay for the up l ink queries and reply messages takes up the 

whole timeout per iod when there are 100 mobi le computers in the system. Hence in the 

A T method, as the number of mobi le computers increases, addi t ional queries cannot be 

processed but aborted. M a x i m u m transact ion response t ime is reached when there are 

about 100 mobi le computers and the average transaction response t ime remains to be the 

m a x i m u m value afterwards. The system is believed to be saturated when there are 100 

mobi le computers in the system i f the A T method is adopted. 

4.5.2 Extending the Timeout Period 

I t is believed that the poor performance of the A T method in Section 4.5.1 is due to 

the short t imeout period. In the A T method, upl ink queries are sent after inval idat ion 

reports are received which are broadcasted every 60 seconds. The inval idat ion period is 

much longer than the t imeout period of 5 seconds. In this experiment, the t imeout period 

is extended to 60 seconds which is the same as the inval idat ion period. Other parameters 

are the same as those in Table 4.1. The results are i l lustrated in Figure 4.10. 

Figure 4.10(a) shows that our protocol st i l l outperforms the A T method in terms of 

cache h i t rat io. I t is necessary for a mobile computer to perform cache drop in order to 

ensure cache consistency in the A T method when a mobile computer crosses boundaries 

to different cells or is disconnected. However, i t is not necessary in the proposed protocol. 

I t is obvious that the cache h i t rat io of the proposed protocol w i l l be higher than that of 

the A T method. 

Figure 4.10(b) presents the transaction response t ime. In the A T method, up l ink 

queries are sent after receiving an inval idat ion report. Since the average t ime interval for 
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a server to broadcast inval idat ion reports is 60 seconds, the average wai t ing t ime for an 

up l ink query to be sent should be 30 seconds. Hence the transact ion response t ime of the 

A T method should be at least 30 seconds as shown in Figure 4.10(b). The transact ion 

response t ime of the A T method increases as the number of mobi le computers increases 

whi le in the exper iment of Section 4.5.1, the transact ion response t ime is nearly constant. 

This is because, as the t imeout per iod is extended, those transactions that need to be 

aborted in the previous experiment can be processed. As a result, the average transact ion 

response t ime increases as the number of mobi le computer increases. 

Final ly , Figure 4.10(c) shows that the to ta l number of transactions abort due to ex-

ceeding the timeout per iod is greatly reduced as compared w i t h the previous experiment. 

I n the previous exper iment, the order of magnitude is up to 10^; in this experiment, the 

number is decreased to the order of 10^. The number of transactions aborted in the A T 

method is s t i l l higher than that of the proposed protocol. I t should be noticed that be-

sides the high contention on the wireless channel, there are other reasons that result in 

message loss. For example, when a mobile computer crosses boundaries to different cells 

or temporar i ly disconnects i t may miss the reply messages. For the A T method, the size 

of the up l ink queries is larger than that of our proposed protocol due to its poor cache 

h i t rat io. This leads to a longer transmission t ime. Af ter sending out an upl ink query, 

a mobi le computer using the A T method has a higher chance to cross the boundary to 

different cells than our protocol. Consequently, the probabi l i ty of missing the reply mes-

sage f rom the local support ing server is higher. Therefore, more transactions need to be 

aborted w i t h the A T method even after extending the t imeout period. 

4.5.3 Increasing the Frequency of Temporary Disconnection 

I n this section, the performance of the proposed protocol and the A T method under a 

scenario where mobile computers frequently disconnect and each disconnection lasts for 

a longer t ime is studied. In the previous experiments, each mobile computer disconnects 

periodical ly according to a negative exponential d is t r ibut ion w i t h a mean value of 1500 
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seconds and its disconnection durat ion is exponential ly d is t r ibuted over a mean value of 

10 seconds. I n this section, we increase the disconnection frequency such that each mobi le 

computer disconnects every 500 seconds for 100 seconds. Other parameters are l isted in 

Table 4.1. As stated in Section 3.2.4, the A T method cannot ensure cache consistency i f a 

mobi le computer loses the last inval idat ion report . As a result, a mobi le computer has to 

remove al l the cached data in order to ensure cache consistency after each disconnection. 

This w i l l increase the number of cache drops and lower the cache h i t rat io. The to ta l 

number of cache drops and cache h i t rat io of the two methods are shown in Figure 4.11. 
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Figure 4.11: Increasing the Frequent of Temporary Disconnection 

The graphs show that the number of cache drops of the A T method is much higher 

than that of our protocol and the high number of cache drops lowers the cache h i t rat io. 

4.5.4 Increasing the Frequency of Crossing Boundaries 

I t is well understood that servers are never perfectly synchronized in practise. Therefore, 

in the A T method a mobile computer has to drop its cache after crossing boundaries to 

different cells in order to ensure cache consistency. In the previous experiment, the t ime 

interval between a mobile computer crosses boundary to different cells is exponential ly 

d istr ibuted over a mean value of 1800 seconds. In this experiment the mean of the random 

variable is decreased to 500 seconds. Other parameters are the same as those l isted in 
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Table 4.1. The results are shown in Figure 4.12. As stated before, high frequency of cache 

drop w i l l worsen the overall performance of the system. The cache h i t rat io is therefore 

reduced. 
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Figure 4.12: Increasing the Frequency of Crossing Boundaries 

The proposed protocol outperforms the A T method in terms of cache h i t rat io and 

transact ion response t ime in the above scenarios. In the fol lowing experiments, we w i l l 

concentrate on the difference in performance of the proposed protocol by including and 

excluding piggybacking messages. 

4.6 Evaluate the Performance Gain with Piggyback-

ing Message 

This section evaluates the difference in performance of the proposed protocol by adding 

piggybacking messages to the inval idat ion reports. Add ing piggybacking messages re-

duces the to ta l number of upl ink queries by supplying the new values of popular data to 

the caches of mobi le computers. Consequently, bandwidth consumption is reduced. On 

the other hand, i t enlarges the size of each inval idat ion report, as more informat ion are 

included in the inval idat ion reports. Bandwid th consumption is raised. Therefore, piggy-

backing extra in format ion is not a sufficient condit ion to improve the overall performance 
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of the proposed protocol. I n the fol lowing experiments, we w i l l study different scenarios 

to ver i fy the performance gain of piggybacking messages. 

4.6.1 Adding Piggybacking Messages 

The scenario studied in this section is the same as those in the above experiments. The 

parameters values are l isted in Table 4.1. The results are presented in Figure 4.13. 
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Figure 4.13: Performance of Our Protocol W i t h h W i thou t Piggybacking 

As shown in Figure 4.13(a), piggybacking extra in format ion w i t h the inval idat ion re-

ports does not intensify the bandwidth consumption of our protocol signif icantly but 

shortens the transaction response t ime. This is because, as updated values are attached 

to the inval idat ion messages, the inval id data dropped f rom the cache of mobile computers 

w i l l be replaced by popular data. These popular data are l ikely to be accessed by the fol-

lowing queries, therefore more queries can be satisfied w i t h the cached data. Fewer upl ink 

queries implies lower wireless bandwidth consumption and shorter transaction response 

t ime as shown in Figure 4.13(b). Furthermore, since the popular data are l ikely to be 

queried soon, piggybacking these data can supply the data to the mobile computers before 

they are required. The increase in bandwidth consumption due to a larger inval idat ion 

report is compensated by the reduction in the number of upl ink queries. Therefore, there 

is not a significant difference in bandwidth consumption between the two cases. 
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4.6.2 Reducing the Number of Popular Data 

Af te r receiving an inval idat ion report , inval id data are removed f rom the cache of a mo-

bi le computer. Piggybacking the values of popular data replaces the cache w i t h update 

values of these popular data. Since Least Recent Used strategy is adopted as the cache 

replacement strategy, those cached popular data may not be accessed before they are 

swapped out for other data. I f the number of popular data is reduced, and the probabi l-

i t y of accessing popular data is unchanged, the probabi l i ty of accessing each popular data 

w i l l increase. Cached popular data have a higher probabi l i ty to be accessed before being 

swapped out. More queries can be satisfied by cached data, this reduces the bandwid th 

consumpt ion and at the same t ime shortens the transaction response t ime. In the follow-

ing exper iment, we w i l l ver i fy the above hypothesis by reducing the number of popular 

data f rom 60 to 30. The values of other parameters are given in Table 4.1. The results 

are shown in Figure 4.14. 
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Figure 4.14: Reducing the Number of Popular Data 

As shown in Figure 4.14(a), the bandwidth consumption is significantly reduced when 

compared w i t h the previous experiment. The transaction response t ime is also shortened 

as shown in Figure 4.14(b). 

If the update frequency is higher than that of query, it is believed that more invalid data 

wi l l be dropped f rom cache after receiving inval idation reports. Piggybacking the values 
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of popular data w i t h the inval idat ion reports replaces the cache w i t h updated popular 

data, the performance of the protocol should be improved significantly. We evaluate the 

above predict ion in the fol lowing section. 

4.6.3 Increasing the Frequency of Updates 

This section studies the performance of the proposed protocol under a scenario where 

updates are more numerous than queries. Previously, the mean t ime interval for updates 

and queries are 60 and 10 seconds respectively. I n this section, the mean t ime interval for 

updates and queries are interchanged, that is 10 and 60 seconds respectively. The values 

of other parameters are l isted in Table 4.1. The results are shown in Figure 4.15. 
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Figure 4.15: Increasing the Frequency of Updates 

Figure 4.15(a) shows that bandwidth ut i l izat ion is greatly reduced by piggybacking 

iî 'iTi-ii.ii I 



Chapter 4 Simulation Study 54 

extra in format ion. As the update frequency increases, more data needs to be dropped f rom 

the caches of mobi le computers after each inval idat ion report is received. Piggybacking 

the values of popular data replaces the cache immediately. As a result, the cache h i t 

rat io increases as shown in Figure 4.15(c), and the number of up l ink queries decreases. 

Consequently bandwid th consumption reduces. Average transaction response t ime is 

also shortened as shown in Figure 4.15(b), because more queries can be satisfied by the 

cached data. Moreover, since the number of queries is reduced, more transactions can be 

processed w i thou t spending a long t ime in queuing in the wireless channel. 

Add ing piggybacking messages to our protocol signif icantly improves the performance 

when the frequency of updates is high and the number of popular data is small such that 

the probabi l i ty of accessing each popular data is high. 

4.7 Behaviour of the Proposed Protocol 

This section investigates the m a x i m u m number of mobi le computers that can be supported 

by the proposed protocol. 

4.7.1 Finding Maximum Number of Mobile Computers 

The parameter values in this section are the same as those l isted in Table 4.1. The results 

are shown in Figure 4.16. 

I t is found that when the number of mobile computers is close to 1400, the wireless 

channel is saturated, i.e. the bandwidth ut i l izat ion approaches 100%. The transaction 

response t ime also increases significantly when there are about 1400 mobile computers in 

the system. 
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Figure 4.16: Tolerance of Our Proposed Protocol 

4.7.2 Interchanging the Frequency of Read-Only and Update 

Transactions 

Since the bandwid th consumption is related to the number of up l ink queries and the size 

of each inval idat ion report , changing these parameters w i l l result in the change in perfor-

mance. I n the fol lowing experiment, the frequencies of update transactions and read-only 

queries are interchanged. The mean t ime interval between read-only transactions is 60 

seconds and update transaction is 10 seconds. In this section their values are 10 and 60 

seconds respectively. The remaining parameters are given in Table 4.1. The graphs are 

shown in Figure 4.17. 

Increasing the update frequency increases the size of each inval idat ion report by includ-

ing more dataJd of inval id data and the values of those updated popular data. However, 

the increase is not significant when compared w i th the reduct ion in bandwidth consump-

t ion due to the reduction in the number of read operations. I t is found that the bandwidth 

ut i l izat ion is much lower and the transaction response t ime is shortened. The system at 

this stage is not saturated. 
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Chapter 5 

Partially Replicated Database 

System 

So far we assume that the database is fu l ly replicated, i.e., every server stores a copy of 

each data. In practice some location sensitive data may not be ful ly replicated and the 

database is referred to as a part ial ly replicated database. The issue of maintaining cache 

consistency in mobile computing environment w i th a part ial ly replicated database is more 

complicated, since a server only manages information of its local copies. Therefore, the 

invalidation reports of a server wi l l never contain data that are not supported by itself. 

Problems arise when a mobile computer carries some part ial ly replicated data to a cell 

that does not support these data. Since the data wi l l not be invalidated in this cell, cache 

consistency may be destroyed when the mobile computer advances its t imestamp. Such 

a scenario is i l lustrated in Figure 5.1. 

5.1 Proposed Amendments 

For the reasons stated above, the proposed protocol in Chapter 3 for a ful ly replicated 

database system cannot be applied to a part ial ly replicated database system directly. In 

order to provide a complete solution in maintaining cache consistency, necessary amend-

ments to the proposed protocol are investigated. Three amendments using different ap-

proaches are presented in the following section. Simulation results are shown in Section 5.2 

to evaluate the performance of these approaches under different scenarios. 

57 
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At Time T。 The mobile computer loads x from server A and sets its timestamp, t, to 1. 

At Time T j The mobile computer crosses the boundary to server B, at the same time both x and y are updated by a transaction. 
These events are indicated in the invalidation reports which are sent afterwards. 
However, the mobile computer at server B is not informed about the update of data item x, 
but the timestamp of the cache advances to 2. 

At Time T 2 Cache consistency is destroyed when the mobile computer loads y from server B. 

Figure 5.1: A Scenario for a Part ia l ly Replicated Database 

5.1.1 Not Cache Partially Replicated Data ( Method 1 ) 

If partially replicated data are not cached in mobile computers, the problem stated in 

Figure 5.1 can be avoided. Moreover, i t should be noticed that the cache of a mobi le 

computer should alway be fu l l except dur ing its in i t ia l state. Whenever a new data has to 

be added into the cache memory, the Least Recently Used (LRU) method is employed to 

remove some cached data in order to free the cache memory. In some cases, fu l ly replicated 

data are more frequently accessed than part ia l ly replicated data. I f all kinds of data can 

be cached in mobi le computers, a frequently accessed popular data may be swapped out 

to free cache space for a part ia l ly replicated data. This scenario can be avoided i f a mobile 

computer do not cache part ia l ly replicated data. A t any t ime a mobile computer needs 

a part ia l ly replicated data, i t accesses the local support ing server. The main advantage 

of this method is that infrequently accessed part ia l ly replicated data w i l l not occupy the 

l im i ted space of the cache memory. However, a mobile computer needs to access the local 

server for each part ia l ly replicated data whenever i t is requested. 
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5.1.2 Drop Partially Replicated Data ( Method 2 ) 

Some of the par t ia l ly repl icated data may be frequently accessed by al l the mobi le com-

puters in the system. In this case, caching the values of these par t ia l ly repl icated popular 

data should improve the performance of the proposed protocol in terms of cache h i t ra-

t io and transact ion response t ime. Hence, i t is suggested that mobi le computers should 

cache some of the popular par t ia l ly replicated data. However, as stated in the example 

in Figure 5.1, i t is necessary to have a mechanism to inval id par t ia l ly replicated data 

f rom mobi le computers. I t is suggested that mobile computers drop par t ia l ly replicated 

data once an inval idat ion report is received. In this way, i t is able to invalidate par t ia l ly 

repl icated data w i thout including addit ional in format ion in the inval idat ion reports. How-

ever, mobi le computers need to download necessary part ia l ly replicated data through the 

wireless channels after each inval idat ion report is received. 

5.1.3 Attaching Server-List ( Method 3 ) 

Another way to solve the problem is to attach a server-list to each par t ia l ly replicated 

data. The server-list contains the ident i ty numbers of all the servers which support the 

data. Whenever a part ia l ly replicated data is loaded in the cache of a mobi le computer, 

the server-list of the data is also stored in the cache. Each server is required to attach its 

ident i ty number to every inval idat ion report. When a mobile computer receives an inval-

idat ion report , i t compares the ident i ty number of the server w i t h those in the server-list 

of each cached part ia l ly replicated data. The mobile computer drops a part ia l ly replicated 

data i f the data is not supported by the local support ing server. Af ter considering par-

t ia l ly replicated data, the normal a lgor i thm in Figure 3.2 is executed to invalidate fu l ly 

replicated data and advance the t imestamp. 

When a mobile computer requests a data that is not supported by the local support ing 

server, the local support ing server w i l l forward the request to a server which contains the 

data and possesses the latest version w i th version number less than the t imestamp of the 

mobile computer (based on V[].ctnc). Af ter receiving the response, the local support ing 
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server forwards the value of the data to the mobi le computer. By using the above in-

val idat ion mechanism, a data w i l l be dropped when a new inval idat ion report is received 

f r om the local support ing server that does not support the data. 

When the frequency for accessing a par t ia l ly repl icated data that is not supported in 

a server is high, the server can decide to support the data. Simi lar ly, when the frequency 

for accessing a par t ia l ly repl icated data that is supported in a server is low, the server can 

decide not to support the data. The servers only need to mod i fy the server-list of the data. 

The server-list is updated as i f a new version of the data is created after executing a wr i te 

operation. Simi lar to an update transaction, this "w r i t e " operation updates the server-list 

of the copies in the wr i te quorum. Therefore, simultaneous updates of the server-list is 

avoided by the replica control protocol. This new version of data together w i t h the new 

server-list w i l l then be propagated to other servers not in the wr i te quorum by the version 

control mechanism presented in Appendix A . By using this approach, the successive 

inval idat ion reports w i l l contain the modif ied server-list of this data. Therefore, a mobi le 

computer which carries the data w i t h an outdated server-list w i l l drop the data once i t 

receives an inval idat ion report f rom the server. I t can load the data (w i th the updated 

server-list) again by requesting i t f rom the server or when i t receives a DATA message 

which contains the data. The details of the DATA message is presented in Section 3.2.5 

of Chapter 3. 

5.2 Experiments and Interpretation 

I n this section, the probabi l i ty of accessing part ia l ly replicated data and the cache size 

are varied. I f the probabi l i ty of accessing par t ia l ly replicated data is high and the cache 

size is large, i t is expected that the strategies which cache part ia l ly replicated data are 

more favorable, i.e. methods 2 & 3. Otherwise, method 1 which does not cache part ia l ly 

replicated data should be more appropriate. 
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5.2.1 Partially Replicated Data with High Accessing Proba-

bility 

I n the fo l lowing exper iment, there are three types of data. There are 60 par t ia l ly repl icated 

data w i t h the accessing probabi l i ty equals 40%. There are two types of fu l ly repl icated 

data, 60 of them being popular data, w i t h accessing probabi l i ty equals 40%; the remaining 

180 data are fu l ly repl icated w i t h accessing probabi l i ty equals 20%. Each server has a 

probabi l i ty of 40% to hold each par t ia l ly repl icated data. Periodical ly ( according to a 

negative exponential d is t r ibu t ion w i t h a mean value of 300 seconds ) a server w i l l decide 

whether or not to support each par t ia l ly replicated data. The parameters sett ing is shown 

in Table 5.1. The results are shown in Figure 5.2. 

Parameters Values 
Probabi l i ty that a server support a par t ia l ly replicated data 0.4 
Number of fu l ly repl icated data 60 
T ime delay for accessing par t ia l ly replicated data f rom other servers 0.3 sec 
Number of par t ia l ly repl icated data 240 
The size of server-list 4 bytes 
Mean t ime a server drop / support part ia l ly replicated data 300 seconds 

Table 5.1: Add i t iona l Simulat ion Parameters for Part ia l ly Replicated Database System 

As shown in Figure 5.2(b), most of the cache misses of method 1 are caused by par t ia l ly 

repl icated data. I t is because 40% of the accesses are directed to the part ia l ly replicated 

data, the number of cache misses for these data w i l l absolutely increase i f they are not 

cached. Besides, as shown in Figure 5.2(a), the cache h i t rat io for method 1 is the lowest. 

This shows that the to ta l number of cache misses for method 1 is the largest, which in 

t u rn shows that excluding the part ia l ly replicated data in cache can result in the worst 

performance i f these data are frequently accessed. Besides, the transaction response t ime 

of method 1 is the longest as shown in Figure 5.2(c) since i t is necessary to access data 

through the wireless channels whenever there are cache misses. 

I t is assumed that there is a time-delay for a local support ing server to request data 
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Figure 5.2: Par t ia l ly Replicated Data w i t h High Accessing Probabi l i ty 

f rom other servers i f that data is not locally supported. Those mobi le computers in a 

system that adopt method 1 suffer cache misses more frequently that those systems that 

adopt methods 2 and 3. As a result, these mobile computers require a longer t ime delay 

in message transmission which increases the transaction response t ime. Suppose that the 

t ime required for message transmission over the wired network can be neglected. The 

t ime-delay for requesting data f rom other servers should be reduced. I f the t ime delay 

is reduced, the difference in transaction response t ime should also be reduced. In the 

fol lowing experiments, we decrease the t ime delay f rom 0.25 seconds to 0.05 seconds and 

f inal ly 0.0 second. The results are shown in Figures 5.3, 5.4 and 5.5 respectively. 

I t is found that the transaction response t ime of these methods are gett ing closer. 

However, even when the time-delay for accessing part ia l ly replicated data through the 

wireless channel is neglected, the transaction response t ime of methods 2 and 3 st i l l 

outperforms method 1. There is not a significant difference in the bandwidth ut i l izat ion 

of al l these methods. I t is because, the amount of messages travel ing over the wireless 

channels is not affected by the time-delay. 
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Figure 5.3: T ime Delay = 0.25 seconds 
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Figure 5.4: T ime Delay = 0.05 seconds 
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Figure 5.5: T ime Delay = 0.0 seconds 

5.2.2 Reducing the Cache Size 

I f the size of cache is reduced, the cache h i t rat io should decrease. Since the par t ia l ly 

repl icated data are popular data which are frequently accessed, reducing the cache size 

should lead to a more significant difference in cache h i t rat io among the three methods. 

I n the fol lowing experiments the cache size is now reduced f rom 60 to 30, the values of 

other parameters are the same as those in Figure 5.3. The results are shown in Figure 5.6. 
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Figure 5.6: T ime Delay = 0.25 seconds; Cache Size 二 30 

I t is found that the difference in cache h i t rat io among the three methods is more 

significant as expected. The lower cache hi t rat io results in a longer transaction response 
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t ime as shown in Figure 5.6(b). Regardless of the cache size, the cache h i t rat io of 

methods 2 and 3 is higher than that of method 1 in general. I t is concluded that when 

the accessing probabi l i ty of par t ia l ly repl icated data is high, i t is advised to cache these 

data in to the cache. I t should be noticed that among the methods which cache par t ia l ly 

repl icated data, method 3 ( which attaches server-list to each par t ia l ly replicated data 

) o u t p e r f o r m s method 2 ( which drops par t ia l ly repl icated data whenever inval idat ion 

reports are received ) in terms of cache h i t rat io and transaction response t ime in al l the 

above experiments. 

5.2.3 Partially Replicated Data with Low Accessing Probabil-

ity 

Caching data enables mobi le computers to answer queries immediate ly w i t h their local 

copies. However, caching should be used to store those data that are expected to be 

frequently accessed. I f the accessing probabi l i ty of par t ia l ly replicated data is lower than 

that of fu l ly replicated data, i t is better not to cache par t ia l ly replicated data. In the 

fol lowing experiments, there are only two types of data: popular data, which are fu l ly 

repl icated among servers and are frequently accessed, and non-popular data which are 

only par t ia l ly replicated and are infrequently accessed. 

I t is assumed that there are 60 popular data out of 300 data in the database. These 

popular data are frequently accessed and are fu l ly replicated among the servers. The 

remaining 240 data are infrequently accessed and are not fu l ly replicated. The cache size 

of a mobi le computer is 60 and we vary the accessing probabi l i ty of popular data to be 

30%, 60% and 80%. The results are shown in Figures 5.7, 5.8 and 5.9 respectively. 

I t is found that i f mobile computers do not cache part ia l ly replicated data as in method 

1, i t would result in a higher cache h i t ratio. The cache h i t rat io increases as the accessing 

probabi l i ty of popular data increases. I t is because, the size of the cache memory at mobile 

computers is l imi ted. Caching part ia l ly replicated data may cause the frequently accessed 

popular data ( fu l ly replicated data ) to be swapped out in order to free the cache for the 
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data in case of the cache is fu l l . Later when the popular data are requested, the mobi le 

computer needs to download i t through the wireless channel again, thus lowers the cache 

h i t ra t io and increases the bandwid th ut i l izat ion. This effect is intensified as the accessing 

probabi l i ty of fu l l y repl icated popular data increases as shown in Figures 5.7, 5.8 and 5.9. 

Figure 5.10 shows the rat io of par t ia l ly repl icated data to fu l ly repl icated data among 

those data that cause cache miss when the probabi l i ty of accessing popular data is 80%. 

I t shows that most of the data that cause cache miss in method 1 are due to par t ia l ly 

repl icated data. This can be used to explain the longer transaction response t ime of 

method 1 as shown in Figures 5.7, 5.8 and 5.9. There is a longer delay t ime whenever 

a mobi le computer requests par t ia l ly repl icated data f rom other servers. Hence, the 

transact ion response t ime of method 1 is the longest even though its cache h i t rat io is 

also the highest. 
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Figure 5.10: Rat io of Part ia l ly Replicated to Ful ly Replicated Data 

Compar ing the two methods which cache part ia l ly replicated data, the cache hi t rat io 

is lower i f each par t ia l ly replicated data is attached w i t h a server-list. Consequently, the 

transaction response t ime is also longer. I t may be due to the fact that part ia l ly replicated 

data may remain in the cache after an inval idat ion report is received. These data w i l l 

consume the space in cache memory for a longer t ime, hence, fewer popular data ( fu l ly 

replicated data ) can be cached in the mobile computers. This effect is more significant 

when the probabi l i ty of accessing fu l ly replicated data increases. 
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A caching strategy is more efficient i f each cached data has a higher chance of being 

accessed. I f the cache size decreases, the set of data to be cached should be selected more 

carefully. I n the fo l lowing two sets of experiments, the parameters sett ing is the same as 

those in Figure 5.9 except that the cache size decreases f rom 60 to 30 and f inal ly 10. We 

can then evaluate the efficiency of the caching strategies in different methods. The results 

are shown in Figures 5.11 and 5.12. 

The cache h i t rat io decreases as the cache size decreases. However, i t is found that 

the difference in performance is becoming more significant as shown in Figures 5.11(a) 

and 5.12(a). I t shows that method 1 is more efficient in caching data when compared 

w i t h method 2 and 3. 

Compar ing the results of Figure 5.9 w i t h that in Figures 5.11 and 5.12 ( the cache 

sizes are 60, 30 and 10 respectively ) i t is found that the difference in transaction response 

t ime and bandwid th u t i l i za t ion decreases. I t may be due to the fact that as the cache size 

decreases, more queries cannot be answered by the locally cached data. Therefore, mobi le 

computers need to access data through the wireless channels regardless of their caching 

strategies. More up l ink queries are generated which in t u rn increases the transaction 

response t ime and the bandwid th ut i l izat ion. 
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Figure 5.11: Cache Size = 30 

In short, i t is advised that i f part ia l ly replicated data are frequently accessed by mobile 

computers, mobile computers in the system should store these data in their cache in order 
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Figure 5.12: Cache Size = 10 

to lower bandwid th consumption and reduce transaction response t ime. The simulat ion 

results show that method 3 in par t ia l ly replicated database system provides a solution 

which ensures cache consistency and provides efficient access to data under a scenario 

where popular data are not fu l ly replicated among all the servers. 
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Conclusions and Future Work 

Different protocols are proposed to maintain cache consistency in the mobile computing 

system [1, 4, 5, 7, 17, 25, 27, 30, 31, 32, 35]. However, the impact of the unrestricted 

mobi l i ty of mobile computers on cache consistency and transaction management is seldom 

addressed. In order to complement the previous results, the notion of cache consistency 

for mobile computers is defined and the issues for maintaining cache consistency are 

investigated. In addit ion, a new caching policy for mobile computers in mobile computing 

environments is proposed. 

The new caching strategy guarantees that cached data of a mobile computer must 

correspond to a snapshot of a database. Hence, read-only transactions can read data 

f rom the cache wi thout issuing any lock to the servers and at the same t ime serializabil-

i ty is maintained. Wireless bandwidth consumption is reduced by el iminat ing message 

transmission over the networks to acquire lock. Simulations are conducted for the cases 

w i th a fu l ly replicated database system to investigate the performance of the proposed 

protocol under different scenarios. 

Suppose the accessing probabilities of data in the database are different and are known 

in advance. I t is found that adding piggybacking messages which include the new values 

of some frequently accessed data to the invalidation reports can improve the performance 

of the proposed protocol. The improvements include shorten transaction response t ime 

and lower wireless bandwidth uti l ization. The improvement is more significant when the 

accessing frequency of these frequently accessed data increases. 

70 
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The simulat ions show that the proposed protocol outperforms the AT method sug-

gested in [6] in a mobi le comput ing environment. Our protocol considers the problems 

that may arise in an asynchronized system and provide a method to main ta in cache con-

sistency where cached data can st i l l be kept in cache when a mobi le computer crosses 

the boundaries of cells. I n the contrast, i t is necessary for a mobi le computer to drop al l 

cached data to ensure cache consistency whenever i t crosses boundaries to different cells 

i f the A T method is employed. Using our proposed protocol, message communications 

for bu i ld ing the cache f rom scratch is saved. As more queries can be answered by the 

contents of cache, the round t r i p delay t ime for accessing data is reduced. Furthermore, 

w i t h the assumption that message transmission over the wireless network is expensive and 

unreliable, the proposed protocol provides an efficient mechanism to answer queries f rom 

mobi le computers. Consequently, the transaction response t ime is reduced. 

I n summary, the experiments show that this new caching policy not only reduces the 

contention on the wireless network and shortens the transaction response t ime, but also 

maintains cache consistency. 

However, i f data are not fu l ly replicated at al l the servers, inval idat ion reports f rom 

a server w i l l not include informat ion of those par t ia l ly replicated data that the server 

does not contain. I t may result in inconsistency of the caches at mobile computers when 

they advance their t imestamps solely depend on the inval idat ion reports received. Several 

amendments of the original protocol are presented to solve the problems and simulations 

are performed to evaluate their differences in performance. One of the proposed amend-

ments which attaches a server-list to each part ia l ly replicated data is proved to be better 

than others when the part ia l ly replicated data is frequently accessed. The server-list 

contains the ident i ty numbers of those servers that support the corresponding par t ia l ly 

replicated data. Suppose an inval idation report is received at a mobile computer, the mo-

bile computer compares the ident i ty number of its local support ing server w i t h those in 

the server-list of each part ia l ly replicated data. I f the mobile computer finds that its local 

support ing server is not included in the serverJist of any part ia l ly replicated data, the 
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mobi le computer removes that data f rom its cache. This amendment is par t icu lar ly ap-

propr iate in a scenario where the accessing probabi l i ty of par t ia l ly replicated data is high. 

However, i f the accessing probabi l i ty of par t ia l ly repl icated data is lower than other fu l ly 

repl icated data, i t is suggested not to cache par t ia l ly replicated data at mobi le computers. 

6.1 Future Work 

The pol icy introduced in this paper is by no means perfect. The present work requires 

some continuations. Some applications may not require to adopt serial izabil i ty as the 

correctness cr i ter ion. I f the correctness cr i ter ion can be relaxed, a weaker not ion of cache 

consistency can be used. As a result, the synchronization constraints for cache manage-

ment may be relaxed. Another issue that may be wor th investigating is to reduce the 

length of the inval idat ion reports. I n the current approach, an access uni t is also an in-

val idat ion un i t . I f the database is large and updates are frequent, an inval idat ion report 

may consume a large amount of the wireless bandwidth. The length of an inval idat ion 

report may be reduced i f we can group several data as one inval idat ion uni t . However, 

the way to group the data and the impact on the performance need further investigation. 

We hope that the results w i l l benefit the design of the cache management policy for the 

future mobile computer environments. 
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Appendix A 

Version Control Mechanism for 

Servers 

The version control mechanism in [34] is adopted in the servers. Readers who are famil iar 

w i th this protocol may skip this appendix. By using this version control mechanism, each 

update transaction, T, is assigned a timestamp tn{T), which is unique and corresponds 

to the serialization order of the transaction. Therefore, i f a locking concurrency control 

protocol is used, a timestamp is assigned at the end of a transaction when the serialization 

order is known. In addition, all data updated by transaction T are stamped wi th the 

version number tn(T), i.e., the timestamp of the transaction. A counter called the visible 

transaction counter, irtnc, is kept at each server. The visible transaction counter for a 

server is in fact the lower bound of the timestamp for the next transaction committed in 

the server. The counter is implemented in this way. When a transaction T executed in 

a server commits, vtnc of the server wi l l be incremented to tn{T), i f no transaction T', 

at the local server, wi l l commit wi th a timestamp tn{T') such that tn{T') < tn{T). A l l 

transactions that start on the server after T has committed wi l l be serialized after T and 

obtain a timestamp greater than tn{T), i.e., greater than vtnc. Therefore, no new version 

can be created wi th version number less than or equal to vtnc at the server. Note that 

the vtnc on different servers may be different; hence, a transaction executed on a remote 

server may commit wi th a timestamp less than the vtnc of a local server. 

By using a quorum protocol, a write operation may not update all the copies of a data. 

Therefore, a server may only contain a partial version sequence of each data. In order to 
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obtain a complete version sequence of each data, a background propagation mechanism is 

employed to propagate the updates to every server. A server's local sequences are said to 

be complete, up to the value of a given transaction counter, i f i t contains all versions of the 

data w i th version number less than the counter globally. The extent of completeness of a 

server's version sequences is represented by a completeness transaction number counter, 

ctnc maintained at each server. 

Each server, Si also maintains two vectors, Vi[j].vtnc and Vi[j].ctnc. Vi[j].vtnc in-

dicates SVs knowledge of the value of vtnc at server Sy, i.e., Si knows that versions 

w i th version numbers less than or equal to Vi[j].vtnc cannot be created at Sj. Similarly, 

Vi[j].ctnc represents 5Vs knowledge of the value of ctnc at server Sj. In addition, each 

server Si, maintains a log, L‘，which contains the update history of the data maintained in 

the system. The log is composed of a sequence of records {id, im, val), where id identifies 

the data, vn identifies the version number of the data and val is the value associated wi th 

the version of the data. Periodically, each server sends propagation messages to all other 

servers. A propagation message includes a copy of the server's local vectors ViW.vtnc^ 

ViW.ctnc and a portion of its log which contains updates that may not be known by the 

receiver (records wi th vn greater than Vi[j].ctnc). Upon receiving the propagation mes-

sage from server Si, server Sj merges the incoming log wi th its local log. Then vectors 

Vj[i].vtnc and Vj[i].ctnc wi l l be updated by taking the pairwise maximum of the local 

and the received vectors. I t has been shown, in [34], that no version of a data can be 

created wi th a version number less than MINi{Vj[i].vtnc) globally. In addition, the local 

version sequences at server Sj are completed up to MINi{Vj[i].vtnc). Hence, server Sj 

can roll forward its ctnc to MINi{Vj[i].vtnc). Readers are encouraged to refer to [34] for 

the detailed description of the version control mechanism. 
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