
ACTIVE HAPTIC EXPLORATION FOR 3D SHAPE
RECONSTRUCTION

- <-.'鳟〜.,̂»

. 、 、 、 、

By - � X
- : . \ - A

FUNG WAI KEUNG \ � ’

' ' • . ,
“‘ /

•

A Thesis Submitted in Partial Fulfillment of ,r^

the Requirements for the Degree of

MASTER OF PHILOSOPHY

in

the Department of Systems Engineering and Engineering Management

The Chinese University of Hong Kong

June, 1996

x ^ t ? ^
f i , / ^ ^ n t n V \

[p M 2 丽 w] i|j

>^“UNIVERSITY~~y_
NgSvNJJBRARY Z^Zimy^y/
^ ^ ¾ ^ ^

Contents

Acknowledgements viii

Abstract 1

1 Overview 3
1.1 Tactile Sensing in Human and Robot 4

1.1.1 Human Hands and Robotic Hands 4
1.1.2 Mechanoreceptors in skin and Tactile Sensor Arrays . 7

1.2 Motivation 12
1.3 Objectives 13
1.4 Related Work 14

1.4.1 Using Vision Alone 15
1.4.2 Integration of Vision and Touch 15
1.4.3 Using Touch Sensing Alone 17

1.4.3.1 Ronald S. Fearing,s Work 18
1.4.3.2 Peter K. Allen's Work 22

1.5 Outline 26

2 Geometric Models 27
2.1 Introduction 27
2.2 Superquadrics 27

2.2.1 2D Superquadrics 27
2.2.2 3D Superquadrics 29

2.3 Model Recovery of Superquadric Models 31
2.3.1 Problem Formulation 31
2.3.2 Least Squares Optimization 33

2.4 Free-Form Deformations 34
2.4.1 Bernstein Basis 36

ii

CONTENTS iii

2.4.2 B-Spline Basis 38
2.5 Other Geometric Models 41

2.5.1 Generalized Cylinders 41
2.5.2 Hyperquadrics 42
2.5.3 Polyhedral Models 44
2.5.4 Function Representation 45

3 Sensing Strategy 54
3.1 Introduction 54
3.2 Sensing Algorithm 55

3.2.1 Assumption of objects 55
3.2.2 Haptic Exploration Procedures 56

3.3 Contour Tracing 58
3.4 Tactile Sensor Data Preprocessing 59

3.4.1 Data Transformation and Sensor Calibration 60
3.4.2 Noise Filtering 61

3.5 Curvature Determination 64
3.6 Step Size Determination 73

4 3D Shape Reconstruction 80
4.1 Introduction 80
4.2 Correspondence Problem 81

4.2.1 Affine Invariance Property of B-splines 84
4.2.2 Point Inversion Problem 87

4.3 Parameter Triple Interpolation 91
4.4 3D Object Shape Reconstruction 94

4.4.1 Heuristic Approach 94
4.4.2 Closed Contour Recovery 97
4.4.3 Control Lattice Recovery 102

5 Implementation 105
5.1 Introduction 105
5.2 Implementation Tool - MATLAB 105

5.2.1 Optimization Toolbox 107
5.2.2 Splines Toolbox 108

5.3 Geometric Model Implementation 109
5.3.1 FFD Examples 111

CONTENTS iv

5.4 Shape Reconstruction Implementation 112
5.5 3D Model Reconstruction Examples 120

5.5.1 Example 1 120
5.5.2 Example 2 121

6 Conclusion 128
6.1 Future Work 129

Appendix 133

Bibliography 146

List of Figures

1.1 Ultrasonic tactile sensor array construction and operation
mechanism 11

2.1 Superquadric curves with different e 28
2.2 Superquadric model with different €i and €2 49
2.3 Non-uniform and regular parameterizations of the same cube. 50
2.4 Bernstein basis when n 二 5 50
2.5 The de Casteljau Algorithm - The cubic case with t = ^ and

t e [0,1] 51
2.6 The imaginary parallelepiped for FFD 51
2.7 B-spline basis for different knot vectors. . • • 52

2.7(a) Using clamped uniform knot vector 52
2.7(b) Using undamped uniform knot vector . 52
2.7(c) Using nonuniform knot vector 52
2.7(d) Using knot vector with multiple knots 52

2.8 Several Hyperquadric models 53
2.9 The Winged Edge model (Courtesy from "Geometric and

Solid Modeling" by Christoph M. Hoffmann, published by
Morgan Kaufmann [1]) 53

3.1 Tactile sensor data preprocessing procedures 60
3.2 Coordinate frame defined in the tactile sensor array 61
3.3 Raw tactile sensor data 64
3.4 Adaptive Wiener Filter and Median Filter results 65
3.5 Result of Wiener filter^Median filter 66
3.6 Result of Median filter—Wiener filter 67
3.7 Original and approximated si step size component 77
3.8 Original and approximated s2 step size component 77

V

LIST OF FIGURES vi

3.9 Approximated step size function s(K, A«;) 78
3.10 Original and approximated step size function 79

4.1 Contour Match Correspondence 83
4.2 Curve Point Match Correspondence 84
4.3 A typical (s, t, u) parameter space for a model 92

5.1 Original shape 112
5.2 Perspective view of the deformed control lattice 113
5.3 Side view of the deformed control lattice 114
5.4 Original shape and control lattice 115
5.5 Side view of deformed shape 116
5.6 Deformed shape 117
5.7 Deformed shape (shaded) 118
5.8 Example using Bernstein-based FFD 119
5.9 Test object 1 121
5.10 Recovered control lattice of test object 1 122
5.11 The recovered shape of test object 1 123
5.12 Top view of the recovered shape of test object 1 123
5.13 Side view of the recovered shape of test object 1 124
5.14 Shaded recovered shape of test object 1 124
5.15 Test object 2 125
5.16 Recovered control lattice of test object 2 125
5.17 The recovered shape of test object 2 126
5.18 Top view of the recovered shape of test object 2 126
5.19 Side view of the recovered shape of test object 2 127
5.20 Shaded recovered shape of test object 2 127

List of Tables

1.1 Sufficient feature combinations for the solution of cone
orientation. (Extracted from [2]) 20

1.2 Sufficient feature combinations for the solution of cone origin.
(Extracted from [2]) 20

1.3 Interpretations of FEE contact combinations (Extracted from
[2]) 21

1.4 Interpretations of FFE contact combinations (Extracted from
[2]) 21

4.1 Indexing for the control vertices 86
4.2 Four cases of relative positions of the control polygon to the

two ellipses 104

vii

Acknowledgements

The research and writing of this dissertation required the guidance

and assistance of many people whom I would like to thank. First and

foremost, I would like to thank my supervisor, Dr. Y. H. Liu, who has

given invaluable advice and guidance to me for research. Moreover, I would

like to thank my colleagues for their suggestions and comments to my work.

They are Mr. C. M. Chung, Mr. N. T. Fong, Mr. C. T. Ng and Mr. H.

S. Ng. They have spent their precious research time for discussion with

me about my work. Furthermore, I would like to thank all computing staff

of the Department of Systems Engineering and Engineering Management

and the Department of Mechanical and Automation Engineering of the

Chinese University of Hong Kong for their assistance and maintenance of

the computing tools and machines. I also thank the staff of the Department

of Systems Engineering and Engineering Management for their support. In

addition, I would also like to thank my family for their support in these two

years.

• viii

Abstract

3D model reconstruction of real world objects is a common problem

in computer vision. Several techniques have been developed to tackle this

problem, like shape from shading, etc. These methods are, in general,

passive in nature. Instead of using vision, 3D object information can also

be acquired by active touch sensing or tactile sensing. Touch is another

sensing modality of human. However, it has been ignored by researchers

and psychologists in favour of other sensing modalities, especially vision.

• In human, touch sensing can obtain not only geometric information of

the objects, but also object properties that are hardly acquired by vision,

like surface roughness and object weight. Moreover, human can recover

shape information reliably and efficiently by touch sensing alone. Therefore,

many researchers try to emulate this human information processing ability

in robots. In the future, robotic systems will be needed to handle tasks

with great precision and accuracy which require touch sensing very much,

like grasping objects or tools. In order to achieve these tasks, geometric

information of the objects are needed.

In this project, a geometric model is proposed to represent object

models. The geometric model is divided in to parts. The first part is

the superquadric model which represents a rough shape of the object and

the second part is Free Form Deformation which is used to shape fine

tuning. Moreover, an active sensing algorithm (or exploratory procedure) is

developed to acquire shape data through tactile sensing. The main idea

1

Abstract 2

is to trace contours of the object surface and record 3D coordinates of

the surface points along the contours. The separation between contours is

determined from the clues obtained from curvature and change in curvature

against adjacent contours. In addition, an algorithm is developed to recover

3D shape information of real world objects from the surface points along

contours.

Chapter 1

Overview

3D model reconstruction of real world objects is a common problem

in computer vision. Several methods have been developed to tackle this

problem, like shape from X (where X represents motion, shading, contour,

stereo and so on or combinations of the aforementioned methods), range

sensing methods using laser or ultrasonic scanning. These approaches are ,in

general, passive. On the other hand, 3D information can also be acquired by

active touch sensing. Touch is another important sensing modality of human

that is not as common as vision and audition in research topics. Touch

sensing can obtain not only shape information, but also object properties

that are hardly acquired by vision alone, like elasticity, roughness, texture,

temperature, weight and material which the objects are made of. Usually,

touch sensing and vision sensing cooperate well in acquisition of shape

information. For instance, touch sensing can acquire shape information

of the object part that is occluded by itself. The shape information of this

occluded part cannot be obtained by vision alone. Human can recover shape

information reliably and efficiently by touch sensing alone. The active nature

of touch sensing allows the subject hand, which is the sensing organ, to move

on the target object and explore it so that the occluded portion (in vision

which is a passive approach) of the object can be traced out. In the future,

3

CHAPTER 1. OVERVIEW 4

robotic system will be needed to handle tasks which are highly relied on

tactile sensing, like grasping, manipulation, inspection, object recognition

assembly and even surgery. Some of the complex tasks, that require high

precision, may be performed by using tools that are originally designed for

human.

1.1 Tactile Sensing in Human and Robot

Human hand acquires two types of information for 3D shape

reconstruction. They are the kinethetic information and the cutaneous

information. Kinethetic information includes tactual information acquired

from skin receptors that respond to mechanically encoded stimuli from the

external world when contact is made with skin [3]. When we press an object

against the skin, it deforms the skin surface and we experience the sensation

oftouch, or pressure. The cutaneous information includes joints information,

force and torque information from tendons that drive fingers [4][5]. These

kinds of information give the position, orientation, and even movement of

our limbs. Using both types of information to derive information about

objects is called haptic exploration.

1.1.1 Human Hands and Robotic Hands

As the most sensitive part of touch sensing organ (our skin)

concentrates on our fingertips, a dextrous multi-fingered robotic hand, with

tactile sensor arrays mounted on fingers, is employed in simulation of the

process object shape recovery in human. Kinethetic information is obtained

from tactile sensor arrays and cutaneous information is acquired from joint

position sensors that gives joints angular data and tendon force sensors that

measure tension and torque on each tendon which drives fingers on the

hand. Some robotic hands are also equipped with force/torque sensors on

CHAPTER 1. OVERVIEW 5

the wrist. There are several ready-made multi-fingered robotic hands in the

market, like, the Stanford-JPL Dextrous Hand, the Utah/MIT Dextrous

Handi [6][7], the Anthrobot-2 and Anthrobot-S^, Belgrade/USC Hand^[2],

etc.

In the design process of robotic hands, engineers and scientists tried

to reproduce the structure, functionality and dexterity of human hand as

much as possible. Therefore, in general, robotic hand and human has a lot

of similarities in different aspects. Some of them are listed in the followings.

1. Robotic hands and human hands have multiple fingers. Normally,

each person has five fingers in one hand. On the other hand, common

multi-fingered robotic hand can have 3 to 5 fingers. For instance, the

Stanford-JPL Dextrous Hand has 3 fingers, the Utah/MIT Dextrous

Hand has 4 fingers while the Anthrobot-3 Hand has 5 fingers.

2. Every movement of human finger is tracked and controlled by

our brain. The brain obtains each finger movement information

(the position and the movement) from the array of proprioceptive

mechanoreceptors in and around a finger joint and in the muscle

tendons [3][5]. On the other hand, general dextrous robotic hands

have internal position transducers and multi-axes force sensors in each

of their finger joints. Tendon driven robotic hands have force sensors

on each tendon to measure tension in each tendon. All these sensor

information will be transmitted to the central controller of the robotic

hand for analysis and control. Both human and robotic hands can

obtain the kinethetic and cutaneous information.

3. The sizes of robotic hand and human hand are similar. The research

of dextrous robotic hand is currently subject to lively investigation.
^It is developed at the Center for Engineering Design at the University of Utah and

the Artificial InteUigence Laboratory at the Massachusetts Institute of Technology.
^It is developed by Altas Robotics Inc.
^It is developed at the University of Belgrade

CHAPTER 1. OVERVIEW 6

Researchers tend to imitate the usage and functionality of human hand

through robotic hands, like using tools. The implementation of robotic

hand will be simplified if its size is similar to human hand.

Although there are similarities between human hand and multi-

fingered robotic hands, they also have several differences between them.

Some of them are listed in the followings.

1. The sizes of each finger in a normal human hand are not the same,

with the middle finger is the longest one while the little finger is the

shortest one and the thumb is the strongest one. On the other hand,

the sizes of each finger in common robotic hand are the same, except

for the thumb.

2. The number of knuckles (i.e. the number of joints) in a finger of a

normal human hand is three^, except that the thumb has only two

knuckles. On the other hand, some robotic hands have the same

number of knuckles in each finger, even in the thumb.

3. The distribution of fingers in human hand is that all fingers, excluding

the thumb, are located at the top level of human palm. The thumb

is located at the middle level of the palm so that it can move to a

posture opposite to other fingers. The finger arrangements of robotic

hand have several categories. Some robotic hands have arrangements

similar to that of human hand, like the Belgrade/USC Hand and the

Anthrobot-2 Hand. Some other robotic hands have their fingers evenly

distributed around a circle.

4. The tactile sensing area of human hand covers the whole surface of

the hand. The human mechanoreceptors (tactile sensing element) are

distributed in our skin which encloses our hand, from our phalange
^including the metacarpophalangeal joint [2].

CHAPTER 1. OVERVIEW 7

to our palm. The details is discussed in section 1.1.2. However, the

tactile sensing area of robotic hand is usually limited on fingertips.

1.1.2 Mechanoreceptors in skin and Tactile Sensor Arrays

The human tactile sensing organ is skin which covers the whole

human body. It is responsive to both mechanical and thermal stimuli with

varying spatial acuity depending on the location on the body. The most

responsive region of human skin is at the region of fingertips. There are

at least four different types of mechanoreceptors innervated with human

skin. They are the Pacinian corpuscle, the Meissner corpuscle, the Merkel

cellneurite complexes and the Ruffini endings [5] [8]. These mechanoreceptors

are connected, by nerve fibers, to neuronal pathways which are connected

to the somatosensory cortex and to the brain. Their differences diversify in

various aspects, like transduction methods, the types of mechanical stimuli

that response maximally, dimensions, depth and location within skin layers,

etc.

Moreover, the patterns of activity on the afferent fibers from the

hand, which are connected to the mechanoreceptors, can be classified

into four groups according to their receptive field sizes and the temporal

frequency responses of stimuli. The four groups are SAI, SAII, FAI (or RA)

and FAII (or PC) [5][9]. SAI and SAII are slowly adapting and response

well to static stimuli while FAI and FAII response to vibratory stimuli. SAI

and FAI have small receptive field size so that they response to stimuli over

an area of 3 to 4 mm while SAII and FAII have large receptive field size so

that they response to stimuli over an area of 10 mm or more. Experiments

also showed that SAI responses best to compressive stress (curvature) and

FAII responses best to vibration [9]. Moreover, FAI and SAII response

best to skin stretches and SAII specifically responses well to directional skin

stretches [9]. It is commonly accepted that Pacinian corpuscles feed the

CHAPTER 1. OVERVIEW 8

FAII afferent fibers and Meissner corpuscles feed FAI fibers. However, it is

still an open issue for whether Merkel endings and Ruffini endings feed SA

types fibers.

The technology of tactile sensor arrays has been developing over

the past 20 years. During this period, many researchers have developed

their sensor array prototypes with different working mechanisms and

implementations. They usually consist of two-dimensional array of sensing

elements. The main idea in the design of this type of sensor is to record the

deformation of the sensor surface (which usually is made of elastic material

like rubber) and convert the signal to an usable form, usually in the form of

electrical signal. Researchers have tried several ways, including,

Piezoresistive Tactile sensor array surface is made of conductive elastomer

which exhibits little change in bulk resistance when it is compressed.

The change of electrical signal in the conductive elastomer reflects the

deformation of it.

Piezoelectric This type of sensor array is similar to the piezoresistive one.

The working principle is based on the Piezoelectric effect. Crystals of

quartz produces an electrical charge when pressure is applied to the

crystal. Material that exhibits this phenomenon is a polymer called

polyvinylidene fluoride (PVF2). Thus, piezoelectric tactile sensor

arrays usually are made of this polymer.

Capacitive Capacitance can be used to measure separation between two

conductive plates (varied by normal force) and overlapping area

between two plates (varied by shear force). With these properties,

capacitance can be employed to measure both normal and shear forces

respectively. However, sophisticated mechanical design is needed to

separate the effects of normal force and shear force.

CHAPTER 1. OVERVIEW 9

Magnetoresistive Permalloy^ magnetoresistive sensors can determine the

position and orientation of magnetic dipoles buried in a sheet of

silicone elastomer. The elastomer will deform when force is applied on

it and the deformation (or normal and tangential forces and torques)

affects the magnetic dipoles in their height and orientation.

Electrochemical A polyelectrolytic gel is used to transmit deformation

information through the streaming potential to electrode. The

application of forces gives migration of different types of mobile ions

within the gel. The concentrations of these ions reflect the deformation

of the gel.

Optical This type of sensor array involves optical fibers. When force

is applied to a transparent elastomer layer, the intensity of light

reflected back from the far side of the layer is measured by a computer

vision system. The compressed elastomer layer shortens the total

distance travelled of the light ray and the reflected light intensity is

changed. Then, the pattern picked up by the sensor array reflects the

deformation of the elastomer layer.

Detailed surveys of different types of tactile sensor arrays can be found in

:5] and [8]

The most common implementation of tactile sensor array is to use

ultrasonic technique. Figure 1.1 depicts the internal construction of this type

of sensor array and its principle of operation. This sensor type usually has a

two-dimensional array (typically a 16 X 16 array) of ultrasonic transmitters

and receivers pairs with a rubber pad placed over the sensor array. The

ultrasonic transducers measure the thickness of the overlying rubber pad

by the Time of Flight (TOF) technique. When objects contact the sensor

pad, the rubber is compressed. The amount of compression depends on the
^Permalloy is an aUoy of 19% iron and 81% nickel which has strong magnetoresistive

effect.

CHAPTER 1. OVERVIEW 10

force magnitude applied to the object and the stiffness of the rubber pad.

Each sensing element transmits an ultrasonic pulse which travels through

the rubber pad, is reflected off the top surface of the rubber and returns

to the receiver. The time of flight (TOF) ti of this travel is recorded for

each sensor element. When a contacted object applies a normal force F to

the rubber pad, the rubber pad is compressed according to the shape ofthe

object surface patch touching the pad and the TOF is reduced to t2. The

difference of TOF is proportional to the amount of compression of the pad

(di - d2) (as shown in (1.1)), which is also proportional to the applied force

F (as shown in (1.2)). Then, the force pattern applied to the object can be

revealed by the sensor array data.

d 1 - d 2 二 “ 亡 1] 2) (1.1)

2 1
F = k{di - d2) = -kc{h -12) (1.2)

Zt

where c is the speed of ultrasound in rubber pad and k is the rubber stiffness.

There are several differences between human and robot tactile

sensing,

1. There are four types of mechanoreceptors in human skin for tactile

sensing. They have different responses to different types of mechanical

stimuli. On the other hand, there is usually only one type of sensing

elements in a tactile sensor array. Each sensing element has similar

response to same mechanical stimuli.

2. Practically, the sensing area of tactile sensing system of human is the

whole area of skin covering human body. This area is very large.

Different regions of the human skin response differently to similar

stimuli and the sensitivities also vary. In robots, the sensing area

is confined on a small area of the surface of the sensor array.

CHAPTER 1. OVERVIEW 11

―义
y ^ j ^ ^ f) ^

‘ ‘ m _ r i ^ _ _ T ^ -
\ f I ^ j ^ ，‘

Ultrasonic Transducer Elements
Figure 1.1: Ultrasonic tactile sensor array construction and operation
mechanism

CHAPTER 1. OVERVIEW 12

3. The sensing process may be forced to stop by involuntary action

stimulated by strong responses from other types of receptors, like

temperature receptors and pain receptors. When, for example,

someone tries to explore haptically a very hot or an electrically charged

object, the exploration may be stopped by the involuntary withdrawal

of his hand due to the heat and the electrical shock ofthe object. The

involuntary withdrawal is an instinct action to prevent our body from

any damage. On the other hand, robot tactile sensing system usually

is not equipped with other types of sensor to monitor the external

environment. The control unit of tactile sensing system is usually not

intelligible to determine when to stop exploration before the whole

system is damaged with limited source of input information.

1.2 Motivation

Human is good at identifying objects by haptic exploration. In

object recognition, shape information of the object should be first perceived.

Some psychologists had conducted experiments on this issue. Experiments

proved that human haptic system is extremely effective in object recognition.

In one of these studies, which was conducted by Klatzky, Lederman and

Metzger [10], subjects were given 100 common manipulable objects (like

cups, dishes, etc.) for identification. They found that the rate of successful

identification was 96%, and if near misses were accepted, the rate was 99%.

Moreover, the modal response latency time was 1 to 2 seconds. It can be

concluded that human haptic system can give accurate and fast responses

in object recognition. This dissertation tries to develop a robotic system

to imitate the shape recovery process of human haptic system in object

recognition.

Haptic exploration becomes more and more important in future

robotic applications. These applications usually require fine manipulation

CHAPTER 1. OVERVIEW 13

of objects and even tools designed for human. In order to achieve these

tasks, tactile sensing is an important technique to be managed. Sometimes,

object attributes that are difficult to be extracted by vision techniques can

be acquired easily by tactile sensing. These object attributes includes,

shape information in self-occluded regions, weight, elasticity, etc. One of

the branches in recent robotics research is telerobotics. Telerobotics relies

on tactile sensing technology heavily, especially in one of its application,

telepresence surgery. This application is to perform surgeries by robots

with remote supervision of experienced doctors [11].

1.3 Objectives

The objective of this project is to rebuild the 3D shape of an object

by active haptic exploration via a multi-fingered, dextrous robotic hand

which is equipped with tactile sensors arrays [12][13][14][15]. This project

can basically be divided into two parts. The first part is to construct a

geometric model to represent real world objects and the second part is to

develop exploration strategies for acquisition of tactual information and 3D

objects models reconstruction.

The geometric model that I intend to use is the superquadric model

with free-form deformations. Superquadrics [16][17] can represent both the

curved objects and objects with sharp edges (like polyhedra) successfully.

With the (global or local) refinements of the global superquadric model

through the technique of free-form deformation [18][19][20][21][22][23][24],

a large variety of real world objects (especially those with fine curvature

changes on surfaces) can be figured out. However, there is a compromise

among the flexibility of this combined geometric model, the computational

efficiency and the complexity of the model.

The main idea of the 3D models reconstruction algorithm presented

in this dissertation is to trace contours on the object surface. After sufficient

CHAPTER 1. OVERVIEW 14

number of contours are traced on the object surface, the 3D object model

is reconstructed with the aid of the superquadric model with free form

deformation. The process is similar to finding cross section of the object

at different slicing altitudes. Each contour is actually a closed plane curve

and lies on a slicing plane of the object. The algorithm to determine the

altitudes for all contour tracings is also developed. The goal of the algorithm

is to find the best fit reconstructed model of the object that minimize the

number of contour tracing needed.

1.4 Related Work

Shape reconstruction is a challenging problem in research. In

order to reconstruct a best fit model from sensing data, different shape

representation and geometric modelling techniques have been developed.

Using a good shape representation for best fit model is not enough for

the construction of a best fit object model. The sensing technique is also

very important. Researchers focus their attention on shape reconstruction

from images of object acquired by computer vision system. As there

are difficulties in shape reconstruction from vision alone, some researchers

began to integrate vision system with other sensing method, like tactile

sensing. They found that vision and touch sensing can cooperate well, as

in human. Later, some researchers began to investigate the possibility of

shape reconstruction by tactile sensing alone. They were motivated by the

experimental results, which stated that human is good at identifying objects

and acquiring shape information by touch sensing alone. In this chapter,

studies of the pioneers in these fields are discussed.

CHAPTER 1. OVERVIEW 15

1.4.1 Using Vision Alone

3D shape reconstruction of real world objects is a common problem

in computer vision. Different techniques have been developed for this

purpose. Given a set of images of an object with different views, its 3D

model can be reconstructed. The images set provides a lot of clues about

the shape of the object. Reconstruction techniques are characterized by

the employment of different clues in the algorithms. These clues include

shading of the object in images, motion information of the object extracted

from an image sequence, depth information extracted from stereo images

pair, contours of the object in images and so on. Some researchers try to

combine these clues together to reconstruct a better model. This technique

usually called Shape from X.

Although the aforementioned techniques can give rather good model

reconstruction, there are some difficulties in these methods. First of all,

a large amount of data is needed (like several different views of the same

scene for self-occlusion avoidance or a dense image sequence is needed for

motion extraction). If only a few views or sparse data are obtained, the

self-occluded region of the object cannot be reconstructed well. Secondly,

these methods are usually computationally expensive. Thirdly, some object

properties are hardly obtained by vision alone, like elasticity, temperature,

weight and so on of the object. Therefore, other sources of sensing data are

explored with integration of vision. Tactile sensing is one ofthe alternatives.

Multisensor data fusion techniques [25] are employed to integrate data from

different sensing systems.

1.4.2 Integration of Vision and Touch

In mid 80's, Peter K. Allen had tried to integrate vision and touch

sensing for 3D object structure understanding in object recognition [26]. He

used a coffee mug and a pitcher as example objects. The experimental setup

CHAPTER 1. OVERVIEW 16

consisted of a stereo pair of CCD cameras and a tactile sensor probe mounted

on a PUMA manipulator which has six degree of freedom. The object

under investigation was placed on a worktable. The general recognition

procedures are simple. Firstly, the vision system takes images of the scene

and analyzes all identifiable regions of interest. Then, the tactile system

explores each region of interest labelled by the vision system. Surface

and feature descriptions can be generated from vision and tactile data.

These descriptions are crucial components for matching against the model

database. Finally, the hypothesized model is verified by further exploratory

sensing.

The construction of model database is a crucial issue in object

recognition process. Allen used a hierarchical model database structure.

Objects are modelled as collections of surface patches, features and relations.

The relational information is especially useful in object recognition. The

hierarchical model database is organized into four levels, namely, the object

level, the component/feature level, the surface level and the patch level. The

relational information among components and features of an object is stored

at the object level. The other three lower levels store physical and geometric

information of the object components.

The vision system recovers silhouette of the target object from

images taken by the CCD cameras through processes of image segmentation,

edge detection and edge linking. Moreover, depth information of object

surface can derived from stereo image pairs. Detail description of object

surface patch can then be determined. On the other hand, the tactile

sensing system can be divided into two modules. They are the surface

exploration module and the hole/cavity exploration module. Allen had

developed different algorithms for surface patch tracing and hole/cavity

tracing.
With vision and tactile data in hand, they can be integrated

CHAPTER 1. OVERVIEW 17

together to derive 3D descriptions of surface patches and features (like holes

and cavities) of the target object for feature matching against the model

database. The surface features for matching is modelled by a G^ continuous

Coon's patch [27][28][29] from both the vision and tactile data. A Coon's

patch C{u^ u), which is parametrized by [u, v] G [0,1] X [0,1], is defined as

• ^ 「 •

户 (� r,i � C^(0,0) C(0,1) (l - t ;)
C{u,v) = (1 - u)u — _

C(1,0) C(1,1)_ _ ^

= C (0 , 0) (1 - u){l - v) + C(0,1)(1 - u)v

+(5(0, l)u{l - v) + C(1, l)uv (1.3)

where (7(0, 0),C(0,1),C(1, 0) andC(l, 1) are four corner points of the Coon's

patch. The other feature is a smoothed boundaries of holes and/or cavities

on the object. Using these features, the recognition system tries to match

the target object with the models stored in the model database to find

the most resemble one. The hypothesized model is then verified by further

exploration sensing.

1.4.3 Using Touch Sensing Alone

Few researchers or research groups have worked on touch sensing.

Most of the work was concentrated on object recognition with the aid

of a object shape database using tactile sensors. Peter K. Allen and his

colleagues in the Department of Computer Science in Columbia University

were pioneers in this field. They have built a system to implement active

touch sensing by multi-fingered dextrous robotic hand. They also have

developed three exploratory procedures to recover shape information of

unknown objects using this system. In addition to shape information ofthe

objects, we sometimes need to find out the orientation ofthe object. Ronald

S. Fearing has proposed an algorithm to recover global object properties,

CHAPTER 1. OVERVIEW 18

such as size, location and orientation of the object with a few from only

sparse local geometric information at three fingers. We will briefly describe

their work in the following.

1.4.3.1 Ronald S. Fearing's Work

Ronald S. Fearing has investigated the problem of determining

global object properties, like size, location and orientation from sparse

local geometric information at three finger contacts. The goal of object

orientation and origin determination is to reorient this object in hand

from an acquisition grasp to task performing grasps like insertion or stable

transport grasp when the hand moves through space. The tactile sensors,

which are equipped on each finger, provide local shape information, including

surface normals, contact location on the finger and principal curvatures and

principal directions. Moreover, shape information is also derived from these

input data.

Fearing proposed to model objects by Linear Straight Homogeneous

Generalized Cylinder (LSHGC) which is a specific class of generalized

cylinders (GC). Details about generalized cylinders can be referred to section

(2.5.1). These objects are generated by translating a convex cross-section

along an orthogonal axis and scaled by a linear sweeping rule. The objects

generated actually are cones. The mathematical definition of LSHGC is

p(z, e) = (Az + B)X{e)(cos9x + sin Oy) + zi (1.4)

where A is a scale factor, A(^) is the cross-section of the object in polar

coordinates. When A = 0，the LSHGC is actually a regular cylinder whereas

it is a cone with its apex at the origin when B 二 0. Fearing concentrated

on cone in his work.
Moreover, Fearing pointed out that an LSHGC has a limited set of

CHAPTER 1. OVERVIEW 19

contact features which are categorized into 4 groups. They are point/vertex

group (V)，plane/face group (F), edge (E) and parabolic points (P)®. These

four groups of contact features can be furthered classified into four types

according to their locations, namely, Top (T), Bottom (B), Side (S) and

Meridian (m). Fearing also pointed out that a parabolic point can give

equivalent information to a meridian. For clear description, a set of notation

representing the contact features is employed with the location ofthe feature

specified in the subscript of the abbreviation. For instance, Fx represents

the top face of a cone and Em represents a meridian edge.

The orientation and origin of the object can be described by

traditional technique, ie. a rotation matrix R and a translation vector

V = [Vx,Vy,Vz]^.

Xs = Rx + V (1.5)

where x is a point in object coordinates and Xs is the sensed location in

world coordinates. The rotation can be considered as two rotations. The

first one is to rotate angle 4> about the z axis and the second one is to rotate

angle ^ about the y axis. Then, the matrix R can be written as

^ cos 0 cos ̂ — sin (f> cos 4> sin xp

R = sin 0 cos ̂ cos^ sin (̂ sin ^ (1.6)

� —sin (f) 0 cos ̂ 乂

There are totally six global unknowns for a cone, namely, A, v̂ ^ v”,

Vz, 4> and t There parameters affect each local measurement. Although

every contact feature measurement can introduce equations for solving these

unknowns (Details can be referred to [2]), additional local unknown variables

will also be introduced to the problem. These local unknowns usually carry

shape information. For instance, a parabolic point measurement bring us

®A surface point is said to be parabolic if it has zero Gaussian curvature, or one of its
principal curvature is zero [30][31][29]. (See section 3.5)

CHAPTER 1. OVERVIEW 20

Solve for cone orientation parameters <t> and 论 Constraints
Fx or Fe
ExiEx2 or EsiEB2
ExEe Not Parallel~~
VTiVT2VT3 or VBiVB2VB3
E x V x or E e V e Not Coincident

Table 1.1: Sufficient feature combinations for the solution of cone
orientation. (Extracted from [2])

Solve for cone origin v = [v ,̂ Vy, VzY Constraints
^ 7 P 2 or EmiEm2 or PEm Not Collinear
"^mFs or PFs Not Coplanar

Fs1Fs2Fs3 None of them is coplanar

Table 1.2: Sufficient feature combinations for the solution of cone origin.
(Extracted from [2])

seven independent equations, but it also introduce extra five unknowns

to the problem, together with the six global unknowns. The additional

unknowns are A, A', A", 6 and 2：.

In order to determine the orientation and origin of the cone,

combinations of contact feature measurement is employed. Fearing had

shown that a combination of 2 meridian edges Em and a surface normal

on an end face Fx or Fe will give solution of the cone orientation and

origin. Moreover, other combinations are also sufficient to give that solution.

Fearing had proposed some of them and they are listed in Table 1.1 and

Table 1.2 Fearing also had shown that end face is a necessary contact

feature measurement for solution of cone orientation and origin.

In addition, Fearing had examined the interpretations of

combinations of one face and two edges contacts (FEE), and combinations

of two faces and one edge contacts (FFE). For FEE contact combinations,

he found that there are twelve combinations valid for examination. They

are listed in Table 1.3 For FFE contact combinations, he found that there

are eight combinations valid for examination. They are listed in Table 1.4

CHAPTER 1. OVERVIEW 21

Type Combination Interpretation ^
(i) FxEeEB

FxEBEm Meridian edge cannot be
FBExEx be parallel to end face
FBExEm

(ii) FsEmiEm2 Apex cannot be on plane Fx
(iii) FsEmEx Contact on Em must be below the apex
(iv) FsExiEx2 Sensed face could be side or base

FTEmiEm2 (or bottom face if cross section contains origin)
~)~~FBEmlEm2

FsEeEm Face could be
FsEeEB side or base
FsEeP

Table 1.3: Interpretations ofFEE contact combinations (Extracted from [2])

Type Combination Interpretation
~ ~ ^ ~ ~ F x F s E B E'h^O

FeFsEx Meridian edge cannot be
FBExEx be parallel to end face

(ii) FsFsEm Apex cannot be on plane Fx
(iii) FTFeEm End and side planes are not parallel
(iv) FTFxE^ —

~~F)~~"FBFsEm
FsFsEx Face could be side or base
FsFsEe

Table 1.4: Interpretations ofFFE contact combinations (Extracted from [2])

CHAPTER 1. OVERVIEW 22

1.4.3.2 Peter K. Allen's Work

Peter K. Allen and his colleagues have proposed a solid background

theory on shape information recovery from tactile sensing. They also

built an hardware setup for experiments about tactile sensing. This

experimental setup demonstrated to other researchers what and how a

complete experimental setup for tactile sensing is composed of.

The hardware testbed system they have built composed of a PUMA

560 manipulator with a Utah/MIT dextrous robotic hand mounted on it.

The size and shape of the Utah/MIT hand are similar to those of human, but

the Utah/MIT hand only has four fingers (including a thumb). Each finger

has four degrees of freedom. Each finger joint is controlled by two tendons,

namely extensor and flexor. Moreover, the hand has joint position sensors

to measure joint angle and tendon force sensors to measure tensions on each

of the two tendons at each joint. The position and orientation of each finger

tip and contact location can be determined from these information. Each

finger is equipped with a tactile sensor array with the dimension of 16 X 16

at the finger tip. On the other hand, the PUMA 560 manipulator is one of

the most commonly used robot arm in the world. It has totally six degrees

of freedom, which three dof's^ govern translational motion and the other

three dof's govern rotational motion. Therefore, the whole system has 22

degrees of freedom.

They have implemented three exploratory procedures (EP's) for

acquisition of 3D shape information through active haptic sensing.

Researchers in human haptic system noticed that human can recognize

properties of 3D objects accurately and quickly. These properties include

temperature, roughness, weight, size, texture, functions and the most

important attribute, the shape information. Human determines these

attributes by some special exploration procedures. This ability is very

^dof is the abbreviation of degree of freedom.

/

CHAPTER 1. OVERVIEW 23

important to future intelligent robotic systems for object manipulation.

Peter K. Allen and his colleagues have derived three exploratory procedures

based on the EP's in human haptic sensing paradigm. Moreover, the three

EP,s, which they implemented, can be mapped to three special types of

shape representation schemes that have been widely adopted.

The first EP is Grasping by Containment [12][13][14][15]. The

shape representation model that matches this EP is superquadrics with

global deformations (linear tapering and bending). The goal of this EP is

to "understand the gross contour and volume by effectively molding the

hand to the object"([13], p.399). The Grasping by Containment EP is

as follows. The object under exploration was fixed on a test platform to

prevent displacement of the objects during active exploration. The intention

was to gather contact data points from the tactile sensor arrays mounted

on fingers8. Firstly, the PUMA 560 arm moves the Utah/MIT hand to a

position that it can enclose around the object under exploration, with widely

stretched fingers. Then, the fingers attempt to close towards the object until

a certain tension threshold in the tendons has been reached for each finger.

The threshold represents the reference of contact between the object and

the finger. Afterwards, the coordinates of contact points can be obtained

by converting the joint positions data from the hand and the PUMA arm

through the forward kinematic model of the system to the world coordinates

system. Next set of contact points will be found by similar procedures when

the hand is moved to different positions and orientations. Usually 30-100

contact points are enough to recover the shape of the objects. Using the

recovery algorithm developed by Solina [32], the shape of the object can be

obtained. Details of Solina's algorithm will be discussed in section 2.3.

The second EP is Planar Surface Explorer [12][13][15]. The shape
®The Cartesian coordinates of contact points were actuaUy generated from the joint

sensors readings and tendons forces data from the hand's sensing systems because the
tactile sensors had not been mounted on the finger's Unks during their initial trials
[12][13][14]

CHAPTER 1. OVERVIEW 24

representation that matches this EP is the winged-edge type of Face-Edge-

Vertex model suggested by Baumgar [33][34]. This model has been widely

used in the Boundary Representation (B-rep) for solid modelling. The goal

of this EP is "to explore a continuous, homogeneous surface such as a planar

face, and to determine its extents." ([15], p.l679). Application of this EP

on different planes, details of the planes can be obtained. The edges and

vertices of these planes can be easily computed from their intersections. The

index finger of hand plays an important role in this EP, which is described

as follows,

1. Move the index finger toward the object planar surface until the tactile

sensors on it detects a contact with the object. Record the initial

contact point coordinates.

2. Lift up the index finger until tactile contact is lost.

3. Move the arm in parallel to the surface.

4. Lower the index finger until tactile contact is detected. Record the

contact point coordinates.

5. Repeat steps 2 to 4 until the index finger fails to detect contact with

the object in step 4. This is because the finger has moved beyond the

surface or the surface is too far away to be detected.

6. Move the index finger back to the initial contact point. Repeat steps

1 to 5, except the searching direction is opposite to that of previous

search, until a second edge is detected.

7. Repeat the search (steps 1 to 6) except that the searching direction is

perpendicular to that of the previous search.

After the above steps, the edges and extent of the planar surface can

be derived from the extreme points at the edges. The plane equation can

CHAPTER 1. OVERVIEW 25

be computed by least-square fitting the set of contact points obtained from

this EP.

The third EP is Surface Contour Follower [12][13][15]. The shape

representation that matches this EP is Generalized Cylinders/Cones. There

are many different types of generalized cylinders/cones models. Peter K.

Allen and his colleagues especially selected RLSHGC (Right Linear Straight

Homogeneous Generalized Cones) to model objects. This is equivalent to

a surface of revolution and can be completely described by a rotation of a

plane curve about an arbitrary axis. The goal ofthis EP is to trace a contour

curve on the object. If two contour curves that are located on either side

of the object, the axis of symmetry can be estimated and hence, recover

the object shape. This EP uses the thumb and the index finger as primary

sensing devices.

1. Move the hand so that it is near one end of the object under

exploration. Stretch the thumb and the index finger so that the object

can be encompassed by them without any contact.

2. Move the thumb slowly until contact with the object is detected. Then, I

move the index finger with the same manner. Record the two contact

points coordinates. The control system should also check whether

the finger has moved the commanded entire distance with no tactile

contact detected. If this case happens, this data set will be discarded

because there may be something that prevents the finger from moving

the commanded distance.

3. Lift off the fingers from the object and move the hand with a small

amount along the axis of the object^.

4. Repeat steps 2 and 3 until one of the fingers fails to make contact

with the object when it moves towards the object or the hand has not
®The axis of the object is not found by the system, but with human aid

CHAPTER 1. OVERVIEW 26

moved the commanded distance along the axis of object.

Each EP gives different shape information of the target object.

However, they only give limited knowledge to the robot. They are only

suitable for simple object shapeŝ ® and/or polyhedra^^. If the object shape

is very complex and with rapid changes, like object surface with frequent

curvature changes, they can only perceive limited local shape information to

the robot. This dissertation will extend Dr. Allen's work to recover shape

information of complex objects.

1.5 Outline

This dissertation is organized as follows. Chapter 1, this chapter,

gives an introduction of tactile sensing in robotics and the objective of

the project. It also introduces some related works of shape reconstruction

by vision, tactile sensing and both of them. In chapter 2, geometric

models are the main content and some comparisons among different types of

geometric models. Chapter 3 and 4 concern about the sensing strategies and

shape reconstruction algorithms proposed in this dissertation respectively.

Chapter 5 covers issues on implementation. In addition, chapter 6 is the

conclusion of the dissertation with future works proposed.

^°cf The first EP Grasp by Containment and the third EP Surface Contour FoUower.
iicf The second EP Planar surface Explorer.

Chapter 2

Geometric Models

2.1 Introduction

There are a lot of geometric models proposed by many researchers.

Some are simple and some are very sophisticated. Some geometric models

are very specific because they have their own properties so that they are

suitable to represent object shapes of particular categories while some

models can represent a large variety of shapes. In this chapter, different

geometric models are discussed and compared. Description of the proposed

geometric model is also explained. The proposed geometric model is

basically divided into two major parts, one is the global superquadric model

and the other is the global or local refinements on the coarse superquadric

model by free-form deformations.

2.2 Superquadrics

2.2.1 2D Superquadrics

Superquadric curves [17] can be considered as a superset of

traditional quadric curves. The order of the definition of the curve need

not be integers. The exponents of each term in the polynomial expression

27

CHAPTER 2. GEOMETRIC MODELS 28

may be rational numbers. For instance, a superellipse is defined as,

(' -) ' ^ (l) ' = l
\aJ \bJ .

,with a and b are the two orthogonal radius in the superellipse. The shape

of the curve can be controlled by varying e. When e lies between 0 and 1,

the curve is squarish in shape. When e is 1，the curve is actually an ellipse

or circle (when a = b). When e lies between 1 and 2, the curve will become

bevelled diamond in shape. When e is larger than 2, the curve will become

pinched. These are illustrated in Figure-2.1.

Superquadric curves with different e

1 ； 广 丨 ， 涵 > \ 丨 、 ； I

3. fm^^^^^ …
： . / : + ： 、 、：
• / / . 丄 、. ^_^^^^^_^^^________^ . + � V

/ + \ \
2 - ：••• • • -'• ： • •./ • • • ： • • •+• • • •.:. • •.\: • • • :\\ • ••:. ——e=0.3

/ + \ ‘
• ‘ / ; + ; + ; \ : 、 、 . e=1.0

. . ‘ / ： � +: ： \ V \
1 : / /_..._.+ + :不......:,�:�•:. - - e=1.4 ：

.‘ 卞. 本 \ .
7 / + : + : \V ——e=2.0
I / + : + + 丄 .、\

>» 0 ^*.t. : y：^^ + e=3.5
� \ . + : + + + / ' , \ j. ‘ , /
\ \. 十 + / ,.. f
•• \ \ ： + ： ：. / /: I

-1 . V � . � . i + 本：十.......i..".7.:
...X s. : + +: / / /
•• \ :•、 ； + : .厂 / ••

^ ... \ ： \ ： + ： . ： / ： ‘ . . .
-2 : ;�\ .…’N ' :•…+: .+ . : . 7 . . y)

> \ : ； + : / /
\ + / /

-3 . \ - ¾ . : - . - - - ; / ^ . ' ' : - . i -
\ : � \ \) / , : : , . ; J:

_4 l i ^ ^ : • 、 ： 來 - 二 . ： - 4 ^ i
-3 -2 -1 0 1 2 3 4

X

Figure 2.1: Superquadric curves with different 6

CHAPTER 2. GEOMETRIC MODELS 29

2.2.2 3D Superquadrics

As the objective of this project is to build a 3D model of an object,

superquadric surfaces are investigated. Superquadric solids, in generally, are

spherical product of two superquadric curves. They can be represented as

3D vectors in a parametric form, as follows,

/ ei C2 \ 丨
aicos^^ncos^^u;

-2L < rj < I
x{7],(^) = a2c0s '̂r]sin^^LJ where 飞一 ~ ^ (2.1)

-7T < U； < 7T
� a3Sin^^r| y

where ai, a2 and a3 define the size of the model in x-, y- and z-directions

respectively and €1 and €2 define the "squareness" of the model in the

latitude and longitude planes respectively. The parameters, 77 and u;, define

the spherical coordinates, in which rj is the angle between and its projection

on the x-y plane and uj is the angle between x-axis and its projection in the
I；

x-y plane. ei and e2 have similar behaviour with their superquadric curve 1：

counterpart. Figure-2.2 depicts superquadric shapes with different ei and

€2 with same superquadric sizes ai, a2 and a3.

In Figure-2.2, we can see that a large variety set of objects can be

represented by this model, like, spheres, cylinders, parallelepipeds, diamond

bevelled shapes, pinched shapes and so on. As object with pinched shape is

rare in real world, the ranges of the two "squareness" parameters ei and €2

are confined the range 0 < €1, €2 < 2.

In addition, the superquadric model can also be expressed implicitly

by eliminating the spherical coordinates parameters, 77 and u). The

expression is

i (- f ^ i - f Y ^ i - f = ' (2.2) \\ai/ \«2/ J \«3/

With (2.2), an inside-outside function can be easily derived. The function

CHAPTER 2. GEOMETRIC MODELS 30

is defined as follows,

/ o (. , . , .) = f (M) " + (M) ") " + (M) " _ i (2.3)
y\aiJ \a2) y Vtt3/

The absolute values of x, y and z are needed so that 3D points in all the

eight quadrants in the Cartesian coordinates system can be considered. If,
！

for any point (x^y,z)^

f
= 0 on the surface.

IO{x, y, z) > 0 ，then the point is inside the solid.
< 0 outside the solid. w

Superquadric model forms a closed surface and is volumetric in

nature. This fits the basic geometric model requirement of this project as

real world objects are usually volumetric. One problem of the superquadric

model is its ambiguity of shape representation. Same shape can be described
]

by more than 2 sets of shape parameters. Moreover, in Figure-2.2, we can

see that the parameterization of superquadric model is non-uniform. The

larger the curvature at the portion of the model, the denser the isoparametric

curves located on that portion. This can be overcome by reparameterizing

the parameter space in a regular grid. By uniformly sampling the spherical

coordinates domain (77,u;), [—f, f] x [-7r, 7r], we can have the following [19],

X = aiA cosT]cosij

y = a2X cosT]sinLJ (2.4)

2T 二 a^X sin r)

where

r €0 1 — 4r-
/ 2_ 2_\ 7f 2_ 2

A = 1̂ COS 7/ • cos cj I 2̂ 4- I cos 7/ • sin cj | «2 j + | sin r) | î (2.5)

CHAPTER 2. GEOMETRIC MODELS 31

Having this regular parameterization, isoparametric curves will be

evenly spaced on object surface and the effect of free-form deformation

will be more accurate. Figure-2.3 shows the uniform and non-uniform

parameterizations on the same cube.

2.3 Model Recovery of Superquadric Models
!
I

2.3.1 Problem Formulation

Solina and Bajcsy developed a method for recovery of superquadric

models with global deformations from 3D data points [32]. They defined

superquadric inside-outside function as,

((f X \ii (M \^\^ (z \^\ , �
F { x , y , z) = -) + -) + - (2 .6)

y \ \ a i / \ « 2 / / \ « 3 /
. i

Representing the orientation of the object by Euler angles {¢, 6,论）and the

position vector of the object as {pxPyPz]^^ the inside-outside superquadric

function will depend on 11 parameters.

F(x,y,z; A) = F(x,y,z; ai, a2, a3, €1, ¢2, ¢, 0, ̂ , p̂；, Py, p^)

The model can be further extended to include global deformations

so that more complex objects can be represented. The global deformations

include linear tapering and bending. Consider linear tapering on a

superquadric model along the z-axis (with tapering coefficients Kx and Ky

at the X- and y-axes), we have the deformed object points (xd, yd, d̂)̂ ^

(K, 1 1 �

Xd 二 — 2 ： + 1 X
V «3 /

y, = (5 : + 1) 2 / (2.7)

Zd = z

CHAPTER 2. GEOMETRIC MODELS 32

For bending, the bending plane is defined by the z-axis and the vector f in

the x-y plane whose direction is denoted by a. The length of projection of

a point on the bending plane is r and the curvature parameter is denoted

by k,

Xd = X 4- cos a {R — r)

Vd = y + sin a {R - r) (2.8)

Zd = sinj {k~^ — r)

(, _ i (y\\ rr^2
r 二 cos a — tan — \x^ + y^

V \xJJ V

where ^ = zk_i (2.9)

R = k_i — cosj (fc_i — r)

Incorporating the two global deformations into the superquadric

model (with predefined deformation order), the inside-outside function

becomes depending on 15 parameters,

I
F{x,y,z; A) = F{x,y,z; a1,a2, a3, €1, ¢2, ¢, 0, ̂ , p ,̂ Py,Pz, K^, Ky, k, a).

Suppose there are N 3D surface points (â i, yi, Zi)^ Vi 二 1,.. •, N, we

can find the superquadric model that fits the data points the best by solving

the following least-squares minimization problem,

N
MinJ2[R{xi,yi,Zi; A)f (2.10)

i=i

where

R{x,y, z; A) = y/ai a2 a3 [F{x,y,z; A) - 1.

The reason of using R as the minimization function is that the optimal

CHAPTER 2. GEOMETRIC MODELS 33

model parameters set with minimal R will give the superquadric model with

the smallest volume that the given data points set in the least square sense.

The minimization problem (2.10) can be solved by the Levenberg-Marquardt

Method. The Levenberg-Marquardt Method can give more robust solution

for least square minimization problem than other traditional methods, like

the steepest descent method and the Gauss-Newton method.

2.3.2 Least Squares Optimization

In general, a least squares optimization problem [35] is formulated
I as follows, I

m 释

MinF(f) = Y,fi{xf = f(xff(x) I!
i=i

where x is a n-dimensional vector. Define the Jacobian matrix J(x^) of |
^ i

f(f^) at the A;-th iteration of solution finding, |

� H 'A 1
dx̂ ‘ . • dxf' I

J(^') = ； • • •丨 （2.11)
^JL 玛

-dx\ ... dx^� 丨:

Then, the gradient vector can be written as

g(f^) 二 2J^{f^)f(x^) (2.12)

Differentiating(2.12) with respect to x^ will give,

《 二 2 g (¾ % + 行 ^ f c f) (2.1¾

Introducing Hf = Hi(x^) = V^/i(x^), we have the complete Hessian matrix

ofF(f^),
m

G(x^) = 23^{x^)3(x^) + 2 [/ i O ? ” H i (f ” （2.14)
i-i

CHAPTER 2. GEOMETRIC MODELS 34

Equation (2.14) can be simplified by introduction of Q(f^) =

EI^i/i(x^)H,(x^),we have

G(x^) = 2J^(x^)J(x^) + 2Q(x^) . (2.15) |

i
By Newton's method [35], we can find the search direction J^ and

the new estimate of solution at the A;-th iteration by solving

(j T (f ” J (f ” + Q (f ”) J ^ = -J^(x^)fi{x^) (2.16)

fMi = x^ + d^

Equation (2.16) can be simplified and solved by two approaches. The

first approach is the Gauss-Newton method [35]. This method sets Q^ to

zero. The second approach is the Levenberg-Marquardt (LM) method [35].

This method sets Q^ = u;^I, where I is a identity matrix and LĴ is a scalar.

When uĵ — 0, the LM method reduces to the Gauss-Newton's method.

When Ljk — oo, the LM method tends to the Steepest Descent method [35].
i [

Actually, the Levenberg-Marquardt method is the most robust algorithms ！

among the three alternatives. During each iteration, cĵ will be updated.
I
j [i

2.4 Pree-Form Deformations
！
!.

Deformation is a powerful tool in geometric modeling and computer

animation. In 1984，A. H. Barr [36] presented a series of deformation

transformations, like bending, tapering, twisting and composite of them.

These techniques are rather global transformation and they do not let the

users to deform the object concerned with their idea. The flexibility of these

techniques are also limited.

In 1986, Sederberg and Parry [23] proposed method of free-form

deformation (FFD). FFD can provide great flexibility in deforming objects

CHAPTER 2. GEOMETRIC MODELS 35

to the users. The concept of FFD is that the object concerned is conceptually

made of a lump of clay. Users act as sculptors to build (or deform) the

"lump" in a free-form manner.
* ：!

In general, there are four steps involved in free-form deformation

20]. I
I I'

1. Construction of parametric solid — A parametric solid is first |

constructed by a set of 3D control lattice points and a corresponding

set of parametric basis functions. Therefore, for every point in the

solid, we can find a parametric coordinates triple for that point. The

control lattice is usually parallelepiped in shape, but S. Coquillart

22] proposed that the control lattice can be any arbitrary shape

by combining several tricubic Bezier volumes, each represents an

individual FFD.

2. Embedding the object into the parametric solid ——The parameter

coordinates set for each point on the object concerned are solved with

respect to the constructed solid in step 1.

3. Deforming the parametric solid——The process is to change the shape

of the parametric solid according to the users' mind by displacing the

control vertices of the solid.

4. Generation of deformed solid — By using the parametric coordinates

triple generated from step 2 and the deformed lattice vertices in step 3,

the new shape of the object can then be generated by parametric basis

functions set.

One of the advantages of free-form deformation is that the deformed

object model is still parametric if the input object is parametric. The ‘

deformed object model will match with the original model. FFD can be used

with any solid modeling scheme, surfaces or polygonal models. Moreover,

1

i

CHAPTER 2. GEOMETRIC MODELS 36

FFD maintains derivative continuity with adjacent, undeformed regions

of the model when it is applied locally. FFD can provide true free-form

model deformation. Although, FFD has many advantages, it has minor

drawbacks. It is computational intensive. Moreover, it is difficult to achieve

an exact shape that matches with idea of users because it is difficult to

achieve exact placement of object points by carrying locations of control

vertices. However, this problem can be solved by the algorithm proposed

by Hsu, Hughes and Kaufman [24]. They proposed to allow users to specify

the deformed object locations and the corresponding new control lattice is

computed. Thus, a deformed model that matches with users' idea can be

generated.

There are, in general, three types of parametric basis functions used

in Free-Form Deformations. They are the Bernstein basis, the B-spline basis

and the NURBS basis, with the Bernstein basis as the most commonly used

basis.

2.4.1 Bernstein Basis

Sederberg and Parry [23] first proposed free-form deformation using *

Bernstein basis [27][30][37]. The Bernstein basis is defined as

人 >) = (了 > (1 - ” 广 where Q = = J f ^

Figure 2.4 depicts a set of Bernstein basis functions with n 二 5 and

i 二 0，1,. . . ,5. This expression is derived from the de Casteljau Algorithm

and the Blossoming principle [30][37]. Figure 2.5 shows the algorithm

graphically. And, a Bezier curve [27][30] is defined as,

P(t)=j2BiJn,i{t) 0 < t < 1
i=0

where B{ are the control vertices and n is the number of control vertices.
•

i
\ •-

y.

CHAPTER 2. GEOMETRIC MODELS 37

An imaginary parallelepiped is first defined by choosing a vertex on

the box as its origin, po and the three edges emerging from the origin denote

the directions of the axes of box's local coordinate frame, as depicted in Fig-

2.6. Let s, i and u be the three unit coordinate axes vector of the frame of

the box. Any point, x, in this system has coordinates (s, t, u) such that,

I
X = po + s • s +1 ‘ i + u • u (2.17)

！
And, the coordinates of x are (s, t, u) which are given as,

_ {i X u) • {x - po) I
(i X n) . s

(s X u) . (x - po) 1
t = (sxu)-i (2.18)

{s X i) . (x - po)
U = :;r i

(s X t) . u

Then, the imaginary parallelepiped is divided into /, m and n portions in

the S, i and u directions respectively 1, m and n portions in the s, i and u

directions respectively. Thus, we have a grid of (/ + l) (m+l) (r i+ l) control

points, Bijk, on the parallelepiped such that,
>

B i j k = P o + ' i ' S ^ - - i + - ' U (2.19)
1 m 71

\
where 0 < i < /, 0 < j < m and 0 < k < n.

Before finding the effect of free-form deformation on the object

concerned, the control vertices on the parallelepiped lattice are moved and
—

a new set of control vertices, B,ijk, is obtained. Based on the new control [

lattice, the object concerned will become

茫刚=E E t [f !) f 7) f ;) (1 - 力 � (1 - � , a - ur-^u^B'J ！
i=Oj=Ok=Q L \ V \ J/ \^J J

(2.20)

•

CHAPTER 2. GEOMETRIC MODELS 38
i

The object concerned is modelled by a tensor product of trivariate Bernstein

polynomials [38]. Due to the global nature of Bernstein basis, the new

location of each point on the object depends on all displaced control vertices. '

Thus, FFD using Bernstein basis is a global deformation. Moreover, the

orders of polynomials defining the object are limited by the number of 丨

control vertices. This lowers the flexibility of FFD. ^

i
2.4.2 B-Spline Basis

Griessmair and Purgathofer [21] proposed to use B-spline basis

for free-form deformation, instead of using Bernstein basis. This can

increase the flexibility of the model as B-spline has a local control property.

Moreover, we can control the shape of B-spline curve by

• changing the type of knot vector (clamped or undamped and uniform

or nonuniform) used.

• changing the order of the basis function.

• changing the number and position of control vertices.

• using multiple control vertices.

. I
• using multiple knot values in knot vector.

i

For the i-th. normalized B-spline basis function of order k, the basis

functions Ni,k[t) are defined by the simple Cox-deBoor recursion formulas

;27][30][37],
t i f-f, • [1 if X{ < t < Xi+i

Ni,i{t) = - +
0 otherwise w

乂 力） _ (亡 - ^ i) N j , k - i (t) I { x j + k - t)Nj+i,k-i{t)

‘‘ Xi+k-l - Xi Xi+k - Xi+1

•

I

I

CHAPTER 2. GEOMETRIC MODELS 39 |
i.

where [x1,x2, • • •, Xn^k+i] is the knot vector. There are (71 + 1) control [
i

vertices to define a B-spline curve. The whole B-spline curve, with B{ as f

control vertices, is defined as, [
- 5: i', i'

n + l |,
P{t) = Y . BiNi^k{t) tmin < t < tmax. 2 < k < 7 1 + 1

i = l i

Usually, the knot vector used is of clamped uniform type [27][30] and j

is defined as, j
‘

f

0 1 < i < k i

Xi = i - k k + 1 < i < n + 1 (2.21)

n 一 k + 2 n + 2 < i < n + k + 1
w

Fig-2.7 depicts the differences B-spline basis functions using different types |

of knot vectors.i In iig-2.7(b), we can see that the B-spline basis functions

are similar except with a constant shifts along the parameter axis. In fig-

2.7(d), we can see that there is a cusp at the multiple knots.

Given an imaginary control lattice, Bijk which is similar to its

Bernstein basis counterpart, the object is modelled by a trivariate B- |

spline polynomial with orders k$, ky and kz in the x-, y- and z-directions

respectively.

H"1 m+l n+l
x^pMs,t ,u) = J2 E J2B,jkNi,kAs)Nj,k,(t)NkM^) (2.22)

i=l j=l k=l

The parameter coordinates triple of each object point cannot be

found by (2.18) because the parameter ranges in the three directions are

governed by the knot vectors in the corresponding axes. The knot vectors
The knot vectors used in fig 2.7 are Usted as foUows,

1. For fig-2.7(a), knot vector = [0，0’ 0,0，0.25, 0.5’ 0.75’ 1，1’ 1’ 1];

2. For fig-2.7(b), knot vector = [0，0.1’ 0.2，0.3，0.4,0.5,0.6，0.7，0.8，0.9,1];

3. For fig-2.7(c), knot vector = [0，0，0，0’ 0.175, 0.35’ 0.625’ 1,1，1’ 1];

1 4. For fig-2.7(d), knot vector = [0 ,0 ,0 ,0 , 0.575,0.575, 0 .575 ,1 ,1 ,1 ,1] i
i 1 i

CHAPTER 2. GEOMETRIC MODELS 40

may not be open uniform and the order of the B-spline may not equal to the

number of control vertices in that direction.^ The parameters coordinates

triples can be found by solving the following nonlinear vector equation,

— 1 � •
B^, Qx

1+1 m + 1 n + 1 ” 校

T.T.T.Ni,,As)Nj,k,{t)N,M^) Bl, = qy (2.23)
t = l 7=1 k=l

Btjk Q^
_ “ mJ Ui J

where [q̂ Qy qzV is a object point. Equation (2.23) can be solved by

numerical method. This is called the Point Inversion Problem [37]. However,

this is a computational expensive process. An iterative solution for the point

inversion problem is proposed in section (4.2.2).

In order to further enhance the flexibility of the model, Lamousin

and Waggenspack, Jr. [20] proposed to use NURBS (Non-uniform rational

B-spline) basis [27][30][37] in free-form deformation. This is called NFFD.

In this case, the knot vector used is non-uniform and the a set of weights

is imposed on each control vertex. If a control vertex has a large weight

relatively to other vertices, the shape generated will be closer to that vertex. (

The NURBS based FFD model is defined as, ,

l + l m + l n+1 _̂

x^FFD (S, t, u) = Y, Y. Y1 BijkRijk{s, t, u) (2.24)
i=l j=l k=l

where

„ (十 . hjjkNi,kA^)Nj,ky{t)Nk,kA^)

"'̂ '' ‘ “̂ “ ES Er=v Ê ij kjMMs)N,,Am,,M (.)
In this project B-spline-based FFD (BFFD) is employed in fine manipulation

of the coarse and global object model represented by superquadrics.
^When the number of control vertices equals to the order of the B-spUne basis and an

open uniform knot vector is used, the B-spUne basis reduces to a Bemstein basis of the
corresponding order.

CHAPTER 2. GEOMETRIC MODELS 41

2.5 Other Geometric Models

In addition to the above mentioned geometric models, there are

many other models in the world. Each type of geometric model can has

advantages or drawbacks in the representation certain kinds of objects over

the other kinds. Some models represents polyhedral objects well and some

models represent objects with curved objects. In the following, a few 1
. . common geometric models will be discussed. L

f
2.5.1 Generalized Cylinders ^

I
Generalized Cylinder [39][40] is one of the most widely adopted ^

representation model for solids bounded by curved surfaces. In general, a

generalized cylinder is the solid obtained by sweeping a planar region (called

its cross section) along a space curve (called its axis). Moreover, the size of !

each cross section need not be the same and it is governed by a sweeping .

rule. Even the definition of each cross section may not be the same. Adjacent

cross sections may be different not only in their size, but also in their shapes.

In addition, the axis of a generalized cylinder is not necessarily straight or ^
*

planar. This 3D shape model is flexible.
Although generalized cylinder offers great flexibility to model

representation, some limitations are introduced to the model in order to ease

the complexity of model recovery problems. One of the common employed

generalized cylinder subclass is the straight homogeneous generalized

cylinder (SHGC). The definition of SHGC is the solid swept by a planar

cross section as it is translated and scaled along a straight axis. To further

simplify the model, each cross section is assumed to be orthogonal to the

axis. With respect to the Cartesian coordinate system, the mathematical

formulation of a SHGC is as follows.

SHGC{z, e) 二 p(6>) r{z) {cos9x + sin 0 y) + 2; i (2.26)

•

CHAPTER 2. GEOMETRIC MODELS 42

where {z, 0) G [a,，b] x [0，27r]. p{0) is the planar cross section of the SHGC.

It is parametrized in a polar coordinate system centered on the axis, r{z)

is the sweeping rule and it is parametrized along the z-direction (which

is parallel to the axis of generalized cylinder) and bounded by the planes

z = a and 2： = b. Each cross section is parallel to the x 一 y plane. Moreover,

the axis of the SHGC can be oblique to the z-axis. Let v be the axis of the �

oblique SHGC which has (a, /T) as its spherical coordinates, its mathematical |
. . i expression is, |

I
SHGC{z, e) 二 {prcos9 + zsm^cosa)x |

+ {p r sin 0 + <̂ sin |3 sin a) y (2.27) |

+ z cos j3 z I

I
2.5.2 Hyperquadrics ！

Hyperquadrics [41][42][43] is a new approach to model smoothly

deformable shapes with convex polyhedral bounds. The possible shape

classes include arbitrary convex polyhedra with or without deformations,

like tapering and bending, and complex shapes can be built by applying

regularized Boolean operations to different object shapes. This model can

be viewed as hyperplanar slices of deformed hyperspheres. This model is a

generalization of superquadrics.

A hyperquadric model [42] is defined by the points set (a?, y, z) that

satisfies,
N

H(x, y, z) = [lHi(x, y, z)|卞=1 (2 . 2 8)

i=i
where

Hi{x, y, z) = ai x + 6,- y + c, ^ + di (2.29)

where â , bi, Ci, di and ji are constants, with j i > 0. This indicates that the

^

CHAPTER 2. GEOMETRIC MODELS 43

model is constructed by a sum of an arbitrary number of linear terms raised

to powers. Each linear term defines a strip bounded by the two hyperplanes

Hi(x, y, z) = 1 and Hi(x,y,z). Thus, the hyperquadric model is inside

the intersection of these strips which is an arbitrary convex polytope and

N is the number of these strips. If all the exponents j i are greater than

1, the hyperquadric model represent a convex shape. On the other hand, 卜

when there are exponents that are smaller than 1，non-convex shapes will
• J'

be obtained. In order to increase the flexibility of the model, exponential |

of hyperquadric terms are introduced to the model. These terms give local 1

control and concavities of the shape. The modified model is, |
N M L I

H{x, y, z) = Y^ \Hi{x, y, z) � ' + ^) a,e" E . i i l� (r ’ y， fJ* = 1 (2.30) |
i=i j=i ‘

I
where H{ and Kjk are the linear form defined as (2.29), N is the number j

of strips defining the hyperquadric, M is the number of concavities used.

In addition, Lj and aj are the number of strips defining and the size of the j

jth concavity. Figure 2.8 depicts some hyperquadric models. Models in the |

lower row involve exponentials of hyperquadric terms (2.30) while models in J

the upper row involve ordinary hyperquadric terms only (2.28).

One of the disadvantages of the hyperquadric model is its global

nature. In the process of model recovery, we cannot fine tune the recovered

shape at a particular region by adjusting part of the shape parameters. The

whole process of model recovery (usually it is an optimization problem with a

lot of parameters to be determined) should be conducted again. Moreover,

this model is not quite flexible. Although complex object shapes can be

represented by combining several hyperquadric models with regularized

Boolean operations (including union, difference and intersection), the

computation of model recovery will be further complicated.

V'

^

CHAPTER 2. GEOMETRIC MODELS 44

2.5.3 Polyhedral Models

Polyhedral model is another common shape representation model.

As implied in its name, it is good at representing objects with polyhedral

shapes. However, there are few real world objects are in pure polyhedral

shapes. Real world objects usually are made of curves (as edges) and

surfaces(as faces), instead of straight line segments as edges and plane ^

as faces. Although we can approximate objects with curved surfaces by r

polyhedron with large number of faces, this will increase the storage of the P

model dramatically. This will be elaborated in the followings. 丨(

• . \
We can store up polyhedral shape data (geometric and topological �

information) by the Boundary Representation scheme (B-rep) [33][34]. B- 1

rep scheme stores the geometric and topological data of vertices, edges |

and faces and their interrelationship. The most fundamental part of B- |

rep scheme is the edge model for edge information storage. An efficient edge

model can shorten the transversal and searching time for vertices and edges

during operations on the model. The most commonly used edge model

is the winged-edge model, which was developed by Baumgart [34]. This |

model makes use of the edge-topological information for representation of ‘

the bounding surface of an arbitrary polyhedron. Each face in a polyhedron

is bounded by a chain of edges and each vertex is the intersection of two

adjacent edges. Using this edge model, each face of the polyhedron can

identify all its immediate neighbouring faces directly through its bounding

edges. Moreover, directional information of each edge are augmented in

this model via pointers to succeeding and preceding edges on each of the

two faces it connects^. The structure of the winged edge model is depicted
3That means each edge is part of boundaries of exactly two immediate adjacent faces

in a well-formed polyhedron. This is due to the M6bius' law, which states that a closed
surface is topologically consistent oriented if by transversing its triangles (restJting from
an arbitrary triangulation) in a clockwise direction, each edge is transversed exactly twice
and in opposite directions. OrientabiUty is one of the vaUdity conditions for a weU-formed
object

M

CHAPTER 2. GEOMETRIC MODELS 45

in Figure-2.9. In this figure, we can see that the following information is

stored, namely, incident vertex, left and right adjacent faces, preceding and

succeeding edges both in clockwise and counterclockwise orders.

With the wing edge model, a data structure for representation of

a polyhedron can be established. The core part of the representation is

linked list. The vertices, edges and faces are stored in corresponding linked

lists. The geometric information of these features are stored in the nodes

of the lists, while their topological information is represented by the inter-

node pointer references in one list. There are also inter-list pointer references

among the vertex, edge and face lists to indicate the topological relationship

among particular vertices, edges and faces.

Although we can approximate objects with curved surfaces boundary

by polyhedron with large number of faces, this will need a large amount of

storage space for the whole object model using B-rep scheme. As we can see

that the amount of storage space required for a polyhedral model depends on 丨

the number of faces, edges and vertices of the model, B-rep is an expensive j
. (

model in storage view. The number of nodes in the vertex, edge and face lists
will be very large, especially for the edge list, which includes the topological ,

information of the polyhedral model.

2.5.4 Function Representation

Function Representation (F-rep) [44] is another type of geometric

model which has been developed recently. Objects are defined by the

halfspace specified by a multivariate real function. An object is a closed

point set in n-dimensional Euclidean space which is defined by the halfspace

defining inequality,

f(x1,x2,x3,... ,xn) > 0 (2.31)

and the equation f{xi,X2^ •.., Xn) = 0 is the bounding hypersurface, which

has dimension of (71 — I), of the hypervolume defined by (2.31). The function

CHAPTER 2. GEOMETRIC MODELS 46

f is called the defining function of the object. Usually, researchers are

interested in the 3-dimensional case, ie. f {x i , x2̂ a:3) > 0. It is noticed that

F-rep is a generalization of hyperquadric model, which is a generalization of

superquadric model^ . F-rep is an implicit representation of object model.

A simple example of F-rep is an unit sphere with radius r, which locates at

the coordinate (a, b, c) of the Cartesian coordinate system (a:, y, z) and it is �

defined as j|

r^.{x-a)'-{y-b)'-{z-cy>0 |

. I
Complex objects can be built by extending F-rep to cooperate with

Constructive Solid Geometry (CSG) [1]. The primitives of CSG are then •

represented by F-rep. Complex objects are built on these F-rep primitives

by Boolean operations, like union, intersection, complement and difference |

"1]. Every object can be represented by a CSG tree with each node denotes |

a primitive or a Boolean operation. ！

Boolean operations include union, intersection, complement and I

difference. Define /1 and /2 as defining functions of two F-rep primitives |

and /3 as a resultant object after operation, we have
«

/3 二 � / i for complement

/3 = /1 U /2 for union

/3 = /1 门 /2 for intersection (2.32)

/3 = /1 \ /2 for difference

These Boolean operations can be implemented by special kind of functions

called 7^-functions[45] [44] [46]. There are several descriptions for these 7 -̂

functions. One of them is defined as
丨：：

� / l = - / l
^The hyperquadric and superquadric model actuaUy represent the bounding surfaces

of objects. F-rep covers the interior of the objects

‘ 1-

• : i .

M

CHAPTER 2. GEOMETRIC MODELS 47

/1U/2 = 去 (/ i + /2 + yJf? + /1 一 2^ / i/ 2) (2.33)

/ 1 n / 2 = “ ^ (/ i + /2 - J f ? + /1 - 2u;/1 / 2)
CJ + 丄 \ V /

where cj(/1,/2) is an arbitrary continuous function which lies within the

range of (-1，1] and,

^ (/ 1 , / 2) = ^ (/ 2 , / 1) = ^ (- / 1 , / 2) = ^ (/ 1 , - / 2)

The difference operation can be considered as /1 \ / 2 二 / i A (〜/2). Using

different o;'s will give different shapes. The most common implementation

of these Boolean operations is to set u = 0, ie.,

/1U/2 = / i + / 2 + ^ / ? + / ! (2.34) j

/ 2 n / 2 = h + h - y J n + n (2.35) j

This implementation, however, has C^ discontinuity in points where both

/1 and /2 equal to zero. If C^ continuity is maintained in the operations, J
I

the 7^-functionsbecome,
s

/ 1 U / 2 = (/ 1 + / 2 + V ^ f + / |) (/ f + / D ^ (2 . 3 6)

/ 2 n / 2 二 (/ i + / 2 - V / f + / |) (/ f + / D ^ (2.37)

This object representation scheme is simple and compact. Only the

definition of the defining function need to be stored. Even for complex

object, only the extra storage of the CSG tree it is needed. In case,

only a certain kind of functions is allowed for the construction of the

defining function of a F-rep object, say polynomial of degree n, only {n^l)

real coefficients of the defining function is stored for each CSG primitive.

However, this also limits the geometric coverage of this modelling scheme. F-

CHAPTER 2. GEOMETRIC MODELS 48

rep also is not enough to exclude representation of nonmanifold solids. Even

though all the CSG primitives in F-rep are guaranteed as manifold solids, it

cannot ascertain that the resultant objects are manifold solids after Boolean

operations.

Moreover, F-rep cannot facilitate the model reconstruction process

'47][48]. It is because a set of defining functions types, say an nth order .

polynomial, should be pre-defined before model recovery. Then, the shape |

controlling parameters can be recovered by minimizing the square error |

between the data points and the recovered shape. In order to have good |

reconstruction of the object model, priori information or intuition about |

the object shape should be given. For instances, the object needed to be |

reconstructed can by viewed as an union of two primitives. Usually, it is |
i

difficult to assume the defining function types for recovery. In addition, it j

is usual that no priori information is given to the reconstruction system. |

Only a large set data points are used as input information. In this case, |

some more advanced and complicated methods should be employed, like |

calculus of variations. The variational approach involves heavy computation j

and usually efficient numerical solution of sophisticated partial differential ^

equations are required.

CHAPTER 2. GEOMETRIC MODELS 49

Superquadrics with different e1 and e2

e2=0.2 e2=1.0 e2=1.5 e2=2.0 e2=2.5 |
)i ,1

1 ^ ^ ^^ _ _ 錮

— • _ i i i I

I

•。0 # § 着 霧
I

e 1 = 1 . 5 傘 參 參 參 參 I
1

e1=2.0 ^ ^ . 參 • 傘 傘

e1=2.5 ^ ^ 命 舍 參 命

Figure 2.2: Superquadric model with different 6i and €2

CHAPTER 2. GEOMETRIC MODELS 50

Uniform Parametrization Non-uniform Parametrization

„龜。:|痛 i
" ' ^ P - ‘丨̂ 1̂ !

y -1 X y -1 X 1
！

Figure 2.3: Non-uniform and regular parameterizations of the same cube. |
Bemstein basis (n=5) ^

1c 1 1—-~I 1 ! 1 1 1 1 1 n

n ^ ^ ^ ^ 丨 H ^ : n
0.9 -\ '-

\ ； : — > 。 ： ： ！
0.8-X ; "• ° ：'=1 �...,/-.-

\ ... X :i=2 ... /
°-7- \； ；.;1“3.....； ::!.....-

V； * :i=4 !
.2 0.6 -……\ r / -
1 K ; ； --:i=5 ; 1
|0 .5 ；\.....： ： :...^~~；~~^‘ ： / :… .-
2 ； \ : : ‘ •

老 0.4 - i oV^Go^ ; :̂ ^̂ ^̂ M̂̂ : -
6° \ � s x _ x x ‘ + + + + + ++*̂ ;j / �

0.3-. o； N^xx¥�o ; .+++ ’Xx ‘A+++, : :誕..-
o 丨 ：x \ : ,+*o *̂ >̂x : /+x : *

f \ 0 •. X ~\ ^ • • .丄卞.‘ f N - • • • y • - ^ w : • z 十 —

°.2 o ： x̂： X + ^ ； o.^ : %> :++ : 来
: X +十^̂ >̂ ... ^ * * : ° o _ : z ^X + :

0.1 -o…… x̂……:+++卞；.̂ ŝ̂ •̂̂ . :. Xxĵ ： +； . *"
0i><X-rM ‘t【)td“^^^Ttr-r^^^"""i^^"^^^~~~^°o?ooQ。32SS““ai, 0 b:1 0.2 03 04 05 06 0.7 0.8 0.9 1 t

Figure 2.4: Bernstein basis when n 二 5

CHAPTER 2. GEOMETRIC MODELS 51

f\.
bo ‘

Figure 2.5: The de Casteljau Algorithm - The cubic case with t = ^ and
t G [0,1]

^ Z

“ ' X " " Z

pO s

Figure 2.6: The imaginary parallelepiped for FFD.

CHAPTER 2. GEOMETRIC MODELS 52

Ctemped uniform knot vector Undamped uniform knot vector
1 p ~ J 0.7| . • r— ' 66)& +++ A ,� /�

0.9 ； I \ 0 0 ^ X + + / \ • \ / \
» 0.6 • •• o o X X + + \ ！ \ I I

08 ； _. « ^ \ ' » I 、 （ 1

"•® . I o ox x+ • \ ‘ »I \ , …j»i ^̂ Y i' « …i»l A, •• I ‘ 0.5 • 1 j I .
j m ^ ^ ‘ o i=2 0 • « ！ I » o i ^

r v \ r \ / \ 八 广 、 丨 : 二 I - 丨 … X 。 + 枚 + A 八 \ • : 二

a I X $ \ 、 : 二 i 3 : : ： : : : : : A n i . 二 ；

0 . 3 . ： \ / \ / \ / \ / \ / 1 ^ 0 . ； 。 一 [丨 ” \ -U
- : l A X 入 \ � ; � - 丨 ： : - . k k r A \ \ -
- / y v A . - ^ A ! . / / / y V V v \ � � v
V 02 0.4 0.6 0.8 1 0 0_2 0.4 0.6 0.8

t t

(a) Using clamped uniform knot (b) Using undamped uniform knot
vector vector

Oamped nonuniform knot vector Knot vector with multiple knots

1[‘ ‘ • '\, ‘ ‘ ^ ‘ ；
0.9. ；• ° ® \ > /

' + + ‘
0.8， ； 0-8- \ + + ；

‘ ..…j-1 + + I •"•. i-1 丨
" i ^ ‘‘ °i-2 °.7. .. : + / °i«2

§0.6.： .¾ / \ / \ ； X j=3 .go.6 \ ； + / ^ '=‘
I ;/\x \: \ / ^ , � � : * î 5 : ++ ； +M
r.s.o : \ V \'' V . -'"= t" + + / -i^

_ . U _ y
02 0.4 0.6 0.8 1 OZ 0.4 0.6 0.8

t t

(c) Using nonuniform knot vector (d) Using knot vector with multiple
knots

Figure 2.7: B-spline basis for different knot vectors.

[••

CHAPTER 2. GEOMETRIC MODELS 53

^^^ ; ^ W : |

^ ^ 、、W
^^¾. / ^ ^ .
f 二 1 i j ^ ^ : I i

\ y ^ � / � • , / I

I ‘ 一 ^ ^ ‘ L • ’ ；
Figure 2.8: Several Hyperquadric models j

I
I «

cw-pred cw-succ

) L e f t Face ^ /

-^=r^
Right Face ^ ^

ccw-pred ccw-succ
Figure 2.9: The Winged Edge model (Courtesy from “Geometric and Solid
Modeling" by Christoph M. Hoffmann, published by Morgan Kaufmann [1])

k
〜，

¢.

»*

I:
a：

Chapter 3

Sensing Strategy

3.1 Introduction

This chapter will describe the sensing strategies in the exploration 丨

of an object haptically. Efficient sensing strategies play important roles |

in 3D model reconstruction with all sensing means, including active vision)
.

sensing and touch sensing. In the process of 3D model reconstruction, the

more the data of object shape is collected, the more accurate and reliable j

the reconstructed object model. However, the effort in data analysis and ,

the computation time increase drastically with the amount of shape data

obtained. There should be a compromise between the amount of data

need to be collected and the computation effort involved. Efficient sensing

strategies can guide the sensing devices (the multi-fingered dextrous robotic

hand with tactile sensor arrays mounted on fingertips in this dissertation) to

find data necessary and sufficient for 3D model reconstruction intelligently.

Sensing strategies are a set of decision making algorithms, optimization

and search algorithms or even heuristic rules for data acceptance, rejection

and redundancy checking so that the amount of information required for

reconstruction is as little as possible.

54

CHAPTER 3. SENSING STRATEGY 55

3.2 Sensing Algorithm

In this dissertation, a haptic sensing algorithm for object exploration

is developed. The main idea of the algorithm is to obtain object surface

points coordinates from contours tracing on the object surface. A few

questions arise at this stage. The questions include how many contours

are needed to be traced on the object surface and where to start each

contour tracing. The density of the contours traced is non-uniform. The

separation or step size between adjacent contours depends on the curvature

and change in curvature (actually their average along a contour). The

determination of curvature and other shape information of a surface point

from tactile sensor data is described in section 3.5. Before any processing

and analysis of the tactile sensor data, noise-suppressing filters are applied
(

to the sensor data in the preprocessing stage. On the other hand, the
• I

determination of step size between contours can be referred to section 3.6. I
(

Moreover, a haptic exploration procedure is developed to find the optimal ‘

distribution of contours traced so that as less data as possible is obtained 丨

for the reconstruction of best-fit 3D object models. The EP can be referred ！
•

to section 3.2.2. In the following sections, details of each part of the sensing

algorithm is presented. In addition, there are some assumptions imposed on

the object being tested and they are listed in the next section (section 3.2.1).

3.2.1 Assumption of objects

In order to simplify the problem scenario, there are four assumptions

imposed on the objects that are under haptic exploration.

• The objects should be rigid bodies. They are undeformable and

inelastic.

• The shape of the objects should be convex or with little concavities and

topologically homeomorphic to a sphere. This means that the objects

i

i
‘ 'i

CHAPTER 3. SENSING STRATEGY 56

should not have any genus on it. For example, a rectangular box is

topologically homeomorphic to a sphere while a cup with a handle is

not. A cup has a genus at its handle. This assumption can simplify

the 3D model reconstruction process.

• They are placed on the test platform with a proper orientation and
• •)

position. That means the object is placed on the platform with its

major axis or minor axis aligned with the axes of the platform and it

locates at the center of the platform. For instance, a rectangular box is
I

placed on the center of a rectangular platform with their sides parallel

to each other. This saves the computational effort for recovering the

position and orientation of the object. The exploration strategies are 丨

only concentrated on acquisition of shape information. ‘
!

• The weight of the object is small enough so that the robotic hand can

lift it up from the test platform and manipulate it. 丨
•

3.2.2 Haptic Exploration Procedures ‘
1

The exploration procedure developed in this dissertation is described ,

below. Details of the calculation of normal vector and curvature of a surface

point can be referred to section 3.5.

1. Perform a Grasp by Containment EP (described in section 1.4.3.2) to

find the general shape of the target object described by a superquadric

model and the size of the object. This recovered superquadric model

will become the original shape model for Free Form Deformation for

fine shape tuning. This EP is simplified by restricted the possible

values of superquadric model shape controlling parameters ei and €2

to a few pairs. In this dissertation, three common shape is selected.

They are sphere (e! = 1 and ¢2 = 1), box (¢1 = 0.2 and €2 = 0.2) and

cylinder (e! = 0.2 and €2 二 1). Detailed solution of the recovery of

i,

i.

‘ • i

i

CHAPTER 3. SENSING STRATEGY 57

superquadric model parameters can be referred to section 2.3.

2. Move one of the finger (usually the first finger) to the level which is

same as half of the object height. Approach the finger to the object

surface. Record this height level as hmid.

3. Trace a contour along the the object surface at the same level. Record

the coordinates of all, say m, surface points along the contour. The |

coordinates obtained are with respect to the fingertip coordinate j

frame. These 3D point coordinates can be transformed with respect j

to the world coordinate frame. |

4. Determine the vertical search direction for next contour (upwards \

or downwards). The search direction can be determined in terms |

of the normal vectors of the surface points along the above traced I

contour. The normal vectors, hi i = l , 2 , . . . ,m , can be calculated
X~ym 、
X tn .

by (3.11). Then, the average of these normal vectors, havg = “ = ‘ |

is computed. This average normal vector is then compared with the |

2:-axis to determine the search direction. An indicator is introduced |

and it is denoted as 4> 二 ^avg • z. If cf) > 0, the search direction is ‘

set to upwards. If 4> < 0, the search direction is set to downwards. If

0 二 0, either upward or downward direction can be chosen. Records

this search direction.

5. Determine the step size for next contour. In general, the step

size depends on both the average curvature and average change in

curvature. In this step, the first thing to do is to estimate all curvature

at the traced surface points. The estimation of curvature of a surface

point from tactile sensor data can be found in section 3.5. Then,

average the curvature to have Kavg.

CHAPTER 3. SENSING STRATEGY 58

(a) If this is the first contour trace, the step size 0̂ is set as

6|i = h'Si(Kqyg) (3.1)
2 (1 + 7/)

where s is obtained from the first step size function component

which depends only on the average curvature estimated, h is total

height of the object and 7/ is a confidence parameter for step size.

It is usually a positive real number and the larger the rj, the

smaller the step size obtained.

(b) For other contours, find A^avg by taking the difference between

the average curvature estimated and the previous average

curvature obtained. The step size at the A:th contour 0̂ is given

by,

0̂ = s{Kavg, A^avg) • h (3.2)

where s[Kavg, ̂ î avg) is the step size function.

6. Repeat step 5 until the step size determined is smaller than a pre-

defined threshold step size function value for upward searching or the

robotic hand touches the testbed platform and it cannot move any

further for downward searching. Return the finger to the level at hmid

and begin a new search in opposite search direction following step 1

to step 5

3.3 Contour Tracing

There is an assumption about the contour tracing procedure is that

an efficient contour tracing is built-in in the haptic exploration system.

Using this tracing algorithm, 3D coordinates of a series of surface points

on the object along a contour can be obtained for 3D model reconstruction.

The distance between adjacent contours depends on the curvature K and

CHAPTER 3. SENSING STRATEGY 59

change in curvature An, determined from tactile sensor data obtained during

contour tracing (see section 3.5 below). The reason of contour tracing is to

find uniformly arranged data. The data point can be gridded and well

organized. This can simplify the process of 3D data interpolation and/or

approximation. They are crucial steps in 3D model reconstruction. Gridded

data usually facilitate data interpolation and approximation. �

î 1̂
3.4 Tactile Sensor Data Preprocessing 丨

I
In real world, there are several kinds of tactile sensors. They have |

. If
different working mechanisms and usages. Details can be referred to Section

1.1.2. The tactile sensor array, that I intend to use, consists of an array of 丨
I

16 X 16 sensing elements with a rubber pad on top of them. It is a two- '

dimensional array of ultrasound transmitters and receivers to measure the j

thickness of an overlaying rubber pad. When objects contact the sensor's
t

pad, the rubber is compressed. The amount of compression depends on the i

force magnitude applied to the object and the stiffness of the rubber pad. ‘

Each sensing element transmits an ultrasonic pulse which travels through ‘
(

the rubber pad, is reflected off the top surfaces of the rubber. Then, the

time of flight of the pulse can be measured, which is proportional to the

applied force. Then, force pattern applied to the object can be revealed by

the sensor array data.

Each sensor data acquired is in form of 16 X 16 array of force values.

Before preprocessing of the raw force data, it should be transformed to

the geometric coordinates of the surface points. As the raw data is noisy,

appropriate noise-suppressing filters are applied to the data. The filters

include Adaptive Wiener filter and Median filter. Then, a B-spline surface

is fitted on the filtered data array. The resultant surface can approximate

the local shape of the object. Figure 3.1 depicts the tactile sensor data

preprocessing procedure.

CHAPTER 3. SENSING STRATEGY 60

Transform force data
to

geometric coordinates

Noise-suppressing
S

Filtering |
(Wiener filter & Median filter)

i li

^ - 老
B-spline |

surface fitting
'i

令

Figure 3.1: Tactile sensor data preprocessing procedures '
I

3.4.1 Data Transformation and Sensor Calibration j
• (

As the raw data from tactile sensor array is force values obtained
j

from the 256 sensing elements, it should be transformed to geometric i

domain. This can be achieved by careful calibration of the tactile sensor
t

array. When an object contacts with the rubber pad of the sensor array,

the rubber pad is compressed. The normal force recorded by each sensing

element is actually proportional to the amount of compression above this

sensing element. The rubber pad deforms to match with the shape of the

local object surface patch. A coordinate system is defined as in figure 3.2.

We can imagine that the local object surface patch touching the rubber

patch surface is parametrized by an uniform grid. This can be constructed

by extending a perpendicular line from each sensing element to the rubber

pad surface. The coordinates of the intersection points can be found as

follows. The array of 3D points can be labelled according to the node of the

grid. The Cartesian coordinates of these surface points can be found easily.

The X- and ^-coordinates of a particular surface point are the same of its

CHAPTER 3. SENSING STRATEGY 61

F
1 z \ l

Rubber Pad V

y ̂ \KEh I

_ (^ ^ ^ ^ ^ ， ， - ， ‘ ‘ L ；

I >
Ultrasonic Transducer Elements j

Figure 3.2: Coordinate frame defined in the tactile sensor array
corresponding sensing element. The coordinates of the sensing element are j

expressed with respect to the working frame of the fingertip. With careful
1

sensor calibration, the output of the sensing element can be scaled to be the 丨

same of the 2 -̂c00rdinates of that surface point. ‘
3.4.2 Noise Filtering

Output from all kinds of sensors is noisy, including tactile sensor

arrays. The noise should be filtered out or suppressed in the sensor data

before performing any operation on and drawing interpretation from the

data. This is because sensor data preprocessing is a necessary step for

any system involving sensors input for processing. Tactile sensors data

preprocessing stage is thus a crucial part of this project.

There are several types of noise filters that can remove or suppress

different kinds of noises. Two of them are Adaptive Wiener Filtering and

Median Filtering [49]. Adaptive Wiener filtering can reduce additive noise

well by estimating local details ils of the noise-free data. On the other hand,

CHAPTER 3. SENSING STRATEGY 62

median filtering can reduce salt-and-pepper noise by selecting the median

intensity in a sliding window on the data.

In general, Wiener filter can give the optimal linear minimum

mean square error estimate of a signal by Wiener filtering its noise

contaminated version (signal independent additive random noise) [49]. For

two dimensional discrete signal, the model of degraded signal f(n1,n2) can �

be consructed from the original signal s(n1,n2) and the noise v(ni, n2) as |
l|

follows, I
I

/(^1,^2) = 5(̂ 1,7^2) + ^ (̂̂ 1,̂ 2) (3.3) j
i

• • ？ The frequency response of Wiener filter is given as,
！

丑 — “ 明) 二 ? “ 二 ： : (。 2) (3.4) [

where Fs(^1,^2) and Pv(i^1,^2) are the power spectra of original signal |

and the noise respectively. These power spectra are usually unknown in ,

priori. Fortunately, they can be estimated locally by adaptive wiener filter)

algorithm. !

Assume the additive white noise v(ni, n2) has zero mean and a «

variance of a^. Then, we have Py(u;1,u;2) — ^v- For a small local region

of the signal, it can be assumed stationary and the signal is modelled as,

s(ni, 712) = rns{n1,n2) + (Ts(ni, n2) • Wn(n1,ri2) (3.5)

where m^ and cr̂ are the local mean and standard deviation of s(ni, n2)

and Wn{nî ri2) is a white noise with zero mean and a variance of 1. The

wiener-filtered signal r(n1,n2) is,

r(n1,n2) = ms(n1,n2) + ? (m’，— _ (y*(ni，yj2) - ms{n1,n2)) (3.6)
<7s(7ll, n2)十 0"v

or r (n i , ri2) 二 /(打1，打2) <S) / i (^ i , n2) where h {n1 ,n2) is the impulse response

CHAPTER 3. SENSING STRATEGY 63

of the adaptive wiener filter and it is expressed as,

2

^ ¢ ^ , ^ 2 = o

咖，灯2) = « , ni，打2 + 0，—N < n i , n2 < N (3.?)
" s ^ " v

0 , otherwise
S

where N is the half window size of the filter. We can locally estimate a] by |

aj(ni, n2) - ^1 if a j > aJ, otherwise, it is zero. The power spectrum of the |

degraded signal is, j

t
1 ni+N n2+N “

^f{ni,ri2) 二 . .2 Y1 Y^ {f{kuk2)-ms{n1,n2))^ (3.8)
(2iV 十 JJ k1=n1-Nk2=n2-N

I where ,
1 ni+N ri2+N

^ s { n u n 2) = . . ^ . , . , E E / (‘幼 （3.9)

l^ZJVtlj k1=n1-Nk2=n2-N I

Median filtering is actually a nonlinear operation. It reduces salt- ,

and-pepper noise by setting the intensity of a pixel as the median intensity I

in a region bounded by a sliding window centered at that pixel. Both j

the low-pass filter and median filter are good at noise suppression by ‘

smoothing. However, median filter outperforms low-pass filter in one aspect.

Median filter preserves edges or discontinuities in step function and is

capable of smoothing pixels intensities which differ significantly from their

surroundings without influences on other pixels. Low-pass filter smooths

any discontinuities on image data.

I have taken a set of typical noisy tactile sensor array data to study

the effects of these two filters. This tactile image was obtained when a

sensor array contacted at the corner of a planar object, like a box, as shown

in figure-3.3.

Figure-3.4 depicts the effects when individual filter is applied on the

sensor array data. The result of median filtering shows a flatter plateau at

CHAPTER 3. SENSING STRATEGY 64

Raw tactile sensor data Contours of tactile sensor data

B 2 p ^ ~ ^ 严

- 狐
12

^ • ! ^ • ^ ^ i ^ Z Z] J k
0 50 100 150 200 5 10 15 {

i :̂
Resampled tactile sensor data Interpolated tactile data \ \

I ,
,4 I _

! 金 輪 ：
i 15 15 J j 15 5| I

省

Figure 3.3: Raw tactile sensor data.

top of the image which matches with the real situation. Figure-3.5 depicts I

the effect of wiener filter and then median filter while figure-3.6 depicts the ‘

effect of median filter and then wiener filter. By comparing these two figures,

the effect of Wiener filter—Median filter is better as it gives a rather flat

top of the tactile image.

3.5 Curvature Determination

After fitting and filtering the tactile sensor data, geometric

information about the object that the tactile sensor touches can be derived

from the preprocessed tactile sensor data. It is because the deformed rubber

pad of the tactile sensor fully touches on the object surface. The shape of

the deformed rubber pad surface can thus reflect the actual shape of the

CHAPTER 3. SENSING STRATEGY 65

After Wiener Filtering After Median Filtering

l ^ t e ^ 丨二 ^ ^ 1，
^ ^ ^ ^ - < ^ " ^ > ^ ^ ^ ^ r ^ i 5 k|

i 15 j i 15 i ；
s

Figure 3.4: Adaptive Wiener Filter and Median Filter results. !
1̂
i

object surface in a small local region within some error bound. Therefore, ,

we can estimate geometric properties at local the object surface from our !
i

preprocessed sensor data. The geometric property that we need for our f

reconstruction algorithm is the surface curvature at the direction that is I

orthogonal to the contour tracing direction.

As a B-spline surface is fitted onto the tactile sensor data, the ‘

parametric form of the object surface at local region is obtained. Curvature I

at any surface point (at a particular direction) of a parametric surface can ！

be explicitly determined based on the theory of fundamental differential ‘

geometry [31]. The details is described as follows.

Given a surface patch which is denoted in a parametric form as,

x{Uy t;)
f (i ^ , ? ;) = y(u,v) where [u, v] ^ [0,1] X [0,1；

z{u^ v)

there are two basic vectors for the surface patch defined as the two partial

derivatives with respect to u and v of the surface, ie. |Jand |Jrespectively.

Actually, ^Jand ^Jare the tangent vectors of the surface curves v = const

and u = const respectively. For simplicity, they are denoted as Xu and Xy

respectively. They also span the tangent plane of the surface.

CHAPTER 3. SENSING STRATEGY 66

Interpolated tactile data with Wiener filtering and then Median filtering

200�

! : _ , ‘ I
^ ^ \ ^ ^ r ^ ^ :

I 15 0

J I .

Figure 3.5: Result of Wiener filter—Median filter.
A vector of the surface dX that connects two surface points from

X{u, v) and X{u + du, v + dv) can be expressed as,

— —• —
dX 二 Xudu + Xydv

By taking the square of the magnitude of the surface X , we

have the fundamental magnitudes of the first order of the surface,

CHAPTER 3. SENSING STRATEGY 67

Interpolated tactile data with Median filtering and then Wiener filtering

200�

» , , I
^ ^ \ ^ ^ r ^ ^ ^ ‘

i 15 0

J I .

Figure 3.6: Result of Median filter^Wiener filter.

2 —
dX = dX • dX

二 ^ u . X j ^ d u f + 2Xu.Xvdudv + X t . X & d v f (3.10)

二 E(du)2 + 2Fdudv + G{dvf

where E 二 又•又，F 二 父处• Xy and G = Xy • Xy. The cross product

of the two basic vectors defines the normal vector of the surface point and

its magnitude is H = yJEG - F^. Therefore, the unit normal vector of a

CHAPTER 3. SENSING STRATEGY 68

surface point is
_» ~*

/v ^u X y^v /Q 11 \
n = ~ ~ — ~ (0'll)

At any regular surface point (which has non-zero normal vector), p,

a pencil of tangent vectors (including the two basic vectors) at p spans out

a tangent plane. From (3.5), one of the unit tangent vector, i at pcan be

expressed as, .
r . ^ . x . ^ + x . ^ (3.12)

ds ds as \ '*f ̂
k
s

where ds is the arc length element of the curve on the surface X{u, v) which 'i

is determined by the intersection of the normal plane and the surface. The

normal plane is defined by both i and n. The surface curve is actually a ,

plane curve lying on the normal plane and it is called a normal section. I

The curvature, K, at p of the normal curvature at p. There are infinitely i

many normal curvature at a regular surface point because we have a pencil

of tangent vectors at a surface point which span out a tangent plane. In ,

this project, we are interested on the normal curvature at the direction

orthogonal to the contours traced. Before the introduction of the derivation •

of normal curvature of a surface point, the fundamental magnitudes of the

second order of the surface is first derived by differentiating (3.12) with

respect to the arc s, as follows.

I = - " 尝 + 叉 ” S + ‘ (芸)2+2 ‘ (£) (£)+‘ (S)2 (3.13)
From the Serret-Frenet's formulas of space curves^[31], (3.13) actually equals

/N A

^Serret-Frenet's formvdas relate the unit tangent t, normal h and binormal b vectors of
a space curve to their derivatives (with respect to arc length s) with the introduction of
curvature K and torsion r of the curve, which is expressed as,

A A dt ^ dh - . r db ^ —=K n, ~p~ = —Kr + Tb， — = —T n ds ds ds

i

• ''^-

CHAPTER 3. SENSING STRATEGY 69

to K h. The first and second terms of (3.13) can be eliminated by forming dot

product of the unit normal vector h with the both sides of(3.13) because they

lie on the tangent plane. Define L = h • Xuu^ M = h • Xuv and N 二 n • Xyy^

we have,

K = l(S)2 + 2A^(S)(S) + "(S)2 (3.14)

This is the fundamental magnitudes of the second order of the surface. With ^

the two fundamental magnitudes (3.10)2 and (3.14)，we have, •丨
1

L + 2Mh + Nh? . , dv i K 二 :::77̂ where n 二 — (3.i5J ‘
E + 2Fh + Gh^ du � ,^

f

The direction of the normal curvature (or the normal section) depends on j

the ratio h =監. i

The normal curvature, that is interested, is orthogonal to the j

contours tracing direction. The contours are usually traced along a plane ‘

that is parallel to the testbed. We can arbitrarily embed a local parameter •

range [u, u] — [0,1] x [0,1] on the tactile sensor data surface with the u- and

V- directions parallel to the contours tracing direction and its perpendicular.

Then, the direction of the normal curvature needed can be defined as du 二 0, .

or h — oo. The curvature can be simplified as,

1. L + 2Mh + Nh? N .. _.
K = lim ———:;^ 77r7r- = — [6.io) “00 E + 2Fh + G"2 G

If L : M : N 二 E : F : G, the normal curvature K is independent of h and

the surface point with this property is called umbilical point [30][29][31].

As K changes with h, we can find its two extreme values, denoted

as Ki and «2 (which are called the principal curvatures), at the directions

hi and h2 (which are called the principal directions) respectively. The two
2 j x in the equation is actually the arc length of the required normal section, ie.

dX\ = ds

CHAPTER 3. SENSING STRATEGY 70

directions satisfy the following equation which has real roots only

h? -h 1

E F G 二0 (3.17)

L M N

or \

{FN - MG)h^ + {EN 一 LG)h + [EM - LF) = 0 (3.18) {
^
'̂

• \
On the other hand, the two principal curvatures are the roots ofthe equation, �

5

nE-L ^F-M ,�1八� ‘
= 0 (3.19)

nF-M nG-N 1
^

or I
{EG - F^)n^ - {EN + LG 一 2MF> + (LN - M^) = 0 (3 . 2 0) ；

Two important curvature information of a surface point can be derived from ,

(3.20). The first one is the Gaussian Curvature K�which is defined as

product of the principal curvatures [30][29][31],

LN-M^ _
«G 二 /̂ !«̂ 2 = EG-F^ ()

The other one is the Mean Curvature nu which is defined as the mean of

the principal curvatures [30][29][31],

一 A^i + /^2 — EN + LG-2MF
^^ 二 ~~2~ 二 ~"EG-F^~ ()

If m and «；2 have the same sign or Ha > 0, the surface point is called

elliptic. If they have different sign or txQ < 0, the surface point is called

hyperbolic. If one of the principal curvatures is zero or K,Q 二 0, the surface

point is called parabolic.

As mentioned above, the tactile sensor data is approximated by

CHAPTER 3. SENSING STRATEGY 71

fitting a A:-th order B-spline surface TlS(u, v) on the it as follows,

TS^(u,v)
ni 7i2

rMu, V) = TSy(u, v) = E E Pr/^i,km,kM (3-23)
i=l j=l

_ TS,(u,v)

where P ? is the rii X n2 control net defining the tactile sensor data and the �

f
original tactile sensor data is given with respect to the working coordinate ,

J
frame of the finger at which the tactile sensor is mounted on (usually at ’

5
the finger tip). From the above normal curvature derivation^, the partial ；

— 1 derivatives of T^S{u, v) with respect to its independent variables (ie. u and ‘

v) and their mixed derivatives are needed. They are,
1

f)rp*C 1̂ 2̂ I
TX{u.v) = ^ = E E ^ s < ^) A +)

i=l j=l
f)rpQ ni 712

TX{u^v) = ¾ ^ = E E ^ f ^ ^ > W ^ M ,
i=lj=l

f)2rf*q ^1 ^2
TSuu{u,v) = ^ = E E ^ ^ W ^ ^ > W (3.24)

i=l i=l
f)2rp*C "1 2̂

T s . . M = ^ = E E ^ 〜 《 “ ” ） .
i==l j=l

fi2rp*C 1̂ 打2
T X > ， ” ） = ^ ¾ = E E ^ " “ 《 “ ” ）

i=l j=l

where (.)' is the derivative of (•) with respect to its independent variable.

The problem is transformed to the calculation of the derivatives of B-spline

basis functions. In general, the derivatives of B-spline basis functions can

be computed from two different approaches. For the /th B-spline basis

derivative, N % v) , the first approach is to calculate it by linear combination

~~3The calculation of h, E, F, G, H, L, M and N in (3.15)

CHAPTER 3. SENSING STRATEGY 72

of basis functions with order (k - /)，as follows[37],

N|!l(u) = (A (” j) ! _ c , + i， j . i V , + , _ i，L K ^) (3.25)

where

ci，i = 1 ；

_ Cp-l,l :�I
《Cp，l 一 Xi^k-v^2 - Xi^l i

C . 一 Cp-I,j - Cp-ij-1 7 = 2 , . . . , » - 1)
Cpj 一 Xi^k+j-p+2 - â t+i+1 J ，，尸 !

_ 一Cp-l,p-l ,
,Cp’p 二 Xi+k — Xi+p-i I

)
with [XI,X2, •.., Xm] is the knot vector. This actually comes out from the ！

following expression, ‘
I

•) 二 , (_ - 從 叫 (3.26)
“ y Xi+k - ^i â i+fc+l 一 ^i+l

lt should be pointed out that 1 <二 k - 1 and the quotient is defined to be

zero when its denominator involving difference of knots is zero. From (3.25),

we have, for instances, ,

N,⑷:P.Ni,k-i(u) p-Nj+i,k-i{u)
‘‘ 一 Xi+k-l 一 Xi Xi+k - Xi+1

One the other hand, the second approach defines the derivatives of B-spline

basis function in terms of the same order of derivatives of B-spline basis

with previous order[37],

.ADf,,. _ 於一1 f ^-^i y(0 . . Xj+k - u (/) \
乂 ， 知 ⑷ - i C T n U . + . - i - ^ . ^ - ^ - ^ ^ ^ + A+A -巧 + 1叫 ’ ^ 1 > *

(3.27)

At any surface point X{u^ u), we can first calculate the derivatives of

the surface including, f*Su^ T ^ , T^Suu^ TSuv and ^Sw. Then, E, F and G

in the fundamental magnitudes of first order of the surface in (3.10) can be

CHAPTER 3. SENSING STRATEGY 73

computed and so do the unit normal vector at that surface point by forming

the cross product of the two basic vectors and computed H. In addition, L,

M and N in the fundamental magnitudes of second order of the surface in

(3.14) can be formed. With all these values in hand, the normal curvature

of a particular direction at that surface point can be computed according to

(3.15). Usually, the curvature at the center point of the tactile sensor data ’

surface is needed, ie. T5(0.5,0.5). !
i ̂
} i

3.6 Step Size Determination \
I, t

We can specify a step size for between neighbouring contours in

terms of fraction of total height of the object, denoted as s • h, where s is
\

scalar in the range of 0 < s < 0.5 and h is the total height of the object. ,

The scalar s depends on the average curvature estimated H,avg and change in

curvature estimated Aniavg and it is denoted as s(Kavg, ̂ '<'avg)- This called

the step size function. For clarity, we omit the subscript notation for the

average characterization of them and notations n and AAC carry an average

character in the following description unless other meanings are stated. It is
I

limited to 0.5 because we begin exploration from the mid-height ofthe object

and then trace contours in the upward or downward directions. There are

some heuristics for the selection of template functions to model the step size

behaviours in terms of the curvature n and change in curvature measured

An.

1. s�K, An) is a strictly decreasing function with respect to both n and

A^. This means that

ds{K, AK) ds{K, A/t)
~ ~ Y n ~ ~ dt\K

CHAPTER 3. SENSING STRATEGY 74

2. For a constant K, s(K,AK) will decrease with increasing A^, or
ds(K, An)

dA^ � u.

3. For a constant A^, s{n, An) will decrease with increasing K, or
ds(K, An) ^
~ 4 ~ ~ - < 0.

OK,

4. The effect of 2 is greater than the effect of 3. �

S
5. S(K, An) depends on the number of step size determinations or number)

of contours traced on the upper of lower half of the object. The more ',
‘

the number of contours traced, the smaller the step size determined. ‘
‘ 1 »

For simplicity, the step size function is separated into two components,

one depends on curvature K alone and the other one depends on change ,

in curvature A«: alone.

s(K, AK) = A • si(K) . S2(AK) + fi (3.28)

Examples that satisfy the above heuristics are the exponential functions,

polynomial inverses and logarithmic functions as listed below,
<

Si{a) = e-"«

咖 ） 二 ln(6a + c)

•) 二 1 ^ ^ ^

where a, b, c are constant scalar, a represents K or A^ and i e [1,2].

For rapid evaluation of the step size function, it can be approximated

by piecewise linear function [50]. It can first be separated into two

components as in (3.28) with the first component depends on curvature

K only while the second component depends on change in curvature

An. They are called the first and second step size function components

respectively. The two components are approximated by piecewise linear

CHAPTER 3. SENSING STRATEGY 75

functions independently. The approximation can be divided into two stages.

The first stage is to approximate the decreasing rate or shape ofthe function.

A function template is defined for each component which is bounded in the

interval [0,1]. Different function template have different characteristics, like

decreasing rates, rate of change of decreasing rates and convergence rates.

For instance, an exponential function is used to construct one of the step size
l|̂

function component. The function template can be defined as St = e~"^, J

where a 二 K or A^. The second stage is to rescale the product of the two |

step size function components into the the range [smin ？ Smax] ‘ |

For each step size component 5^, N test pairs are generated, [a ,̂ yJ, |

Mi G {1,. . . , iV}. Assume the step size component is approximated by a j

n-segmented linear spline, a knot sequence is defined as �

k = .ko, ki, k2, • • •，kn—l, ^n.

A piecewise continuous linear function is defined as,

•) = f c i | a - f c i | (3.29)
i = 0

In order to simplify the problem, we set ko = cei and kn 二 oiN in the knot

sequence.

In this approximation problem, there are total of 2n unknowns

should be solved in the approximation problem. They include [n + 1)

unknowns in coefficient sequence [co，ci’...，c„] and {n - 1) unknowns

in knot sequence. A system of nonlinear equations can be set up,

CHAPTER 3. SENSING STRATEGY 76

Co \ai — ai| + ci |o;i - ki\ + + c^-i |cei — K-il + c^ |ô i 一 ow| = Vi

C0|cv2 - Oii\ + Ci 1̂ 2 - ki\ + + Cn-1 \a2 - kn-l\ + Ĉ |̂ 2 " «Ar| = 2/2
+ + + + = . . •

Co |o;jv-i — ^l|+Ci |ttjv-i 一 ^l| + +Cn_l |ô iV-i 一 ^n-l|+Cn |̂ JV-1 —鄉 - ^ N - i

Co \aN - ô il + ci \aN 一 ki\ + + c^-i |cvjv _ K-il + Cn |<̂ jv 一 Q̂Ar| = Vn .
ti 5
；

(3 . 3 0) 丨

(
I

or in matrix form t

0 |oi-&l| ••• |ai-fcri-l| |tti_aiv| Co yi ,

|o;2 - Oii\ |tt2-A;i| ••• \oi2 - kn-l\ |«2一0^丨 ^i 2̂

•： ： ..• •: 丨 丨 二 ：

|ajv-i - Oii\ |aiv-i - ki\ ... \aN-i - K-il |<^AT-i - Q^Ar| Cn-i VN-i

|o;iV - «l| |ô AT_A;i| . . . |ô AT_&n_l| 0 J [C„ J [VN J
(3.31)

or
Ac= y (3.32)

where A is a N X {n + 1) matrix.
Firstly, the knot sequence k is should be solved in equation (3.32). In

MATLAB, the function fsolve in the Optimization toolbox can be employed

to solve system of nonlinear equations. Nonlinear equations are solved by
f\

minimizing the squared error of e 二 Ac - ff. After optimal k, denoted by k,

is solved, the coefficient sequence can then be evaluated by

c = (A(k)^A(k))"^ A{kfy (3.33)

After both the shape of the step size function components si (n) and

s2(AK) are found, the resultant step size function can be mapped into the

CHAPTER 3. SENSING STRATEGY 77

Original and approximated s_1 component Original and approximated s_2 component

1*̂ 1 1 1 1 (1~ I I ~I 1| ' ‘ ‘ ‘ ！ ‘ ~ ！ ： 丨 ~

\ ... ! ^Approx imated： | \ —Approximated
0 . 9 - V ; ; x c ^ H r i - 0 . 9 、 r … … ； x ; O r i g i H d … ；

Q g ^^ •• • - 0.8 “. Y :• :.

. ; \ : \ ： ； . 、
0.7 - .N^: , 0.7 • \ •: ；

；：.........：......̂̂..:..........；........‘......：：.....]::: ::\〔:::1:1:::::::::1::[::::[::1:1::::
* : ^s^ \

ft A • ； \ - ^s^ . . ; - 0.4 ‘^Nc- *

： ^ ^ I X i
0 3 ."̂?fs>i;̂ _̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ . 0 3 - >Sts,,̂ ^̂ :̂ -

0.2- ^̂ -*̂ -̂ <̂:_̂ ••• - 0-2- '̂~'~~*~~-Sf̂
； ^ ^ ： ^-^^"-"-'^^^-^,,^_,___ \

0 1 : - 0.1 ： . * '1:

. ： 丨 丨 i 丨 i i 丨 ： i ： . ； i ： ： ： ！

°0 0.5 1 1.5 2 2:5 3 3.5 4 4.5 5 。0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
cura <"=urv ^

Figure 3.7: Original and Figure 3.8: Original and 丨

approximated si step size approximated s2 step size [
component component 丨

I

range [smin, Smax] by adjusting the two parameters A and fi. s is maximum

when both si and s2 equal to 1 and s is minimum when one of the si and

S2 equals to zero.

Smax 二 A + // ^ 入 二 Smax 一 m̂m (3.34)

Smin 二 Â M 二 Smin (3.35)

Figures- 3.7 and 3.8 depict the originl and approximated of the two

step size function components. They are approximated by five segmented

linear splines. In addition, Figures 3.9 and 3.10 show the original and

approximated step size function.

CHAPTER 3. SENSING STRATEGY 78

、
ti
5
I

Step-size function 1
,......:.... 1

.• • ‘
• • ‘ • ‘ .

. • • • .. »
. • • . • . ‘

. • ‘ • • • • ‘ . . •
.• • ： • . • • •• • •• ,

. • • . • • • . • ., . ..• (.• • • . • ‘ • '.: • • ‘
• • - • . : ； . . • • • ： . .: ： ••. • • ‘ . . • ‘ • • • . ‘ 1 .. • ' • . ‘ . . i

. • ' . • . • ‘ • .. • ‘ , ‘ . '. ‘ . • • •

0 . 5 > ^ - - ..-•：•• • • ： , :

0.4� .� . .

I 0 . 3 � ^ ^ ^ ^ ^ ^ ^ ^ . . . : . ； .. •.;..... "；••••...；

B S , : ' ; ' ? , ''''":,:::';^^ ：• •.• '••-
亏0.2、.、；…’•'.: ••• • • , . “ .>¾?

� . . ^ ^ ^ ^ ^] : . . . :

n K " ' ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ - i

^ 1 ^ = I
x->curv 5 0 y->dcurv

Figure 3.9: Approximated step size function s(«;, An)

CHAPTER 3. SENSING STRATEGY 79

%

)
从

Original and Approximated Step-s ize functions |
. • . '••. : .• • .• ‘ ‘ ‘ •

..••••：" ： •••.. i
.• ‘ ‘ . •*. • ‘ •

. • • . • • . . • ‘ • • • . • • • . • .
.• • • ： ：. . • • • • . . . •.

.• . • •

•••••:• ： .-•••': _.； •:••• :_••• ；

A 一 . . . • . . ‘ • ‘.. .
0 . 5 > ^ ..：•

_ .
curv 5 0 dcurv

Figure 3.10: Original and approximated step size function

Chapter 4
%

s t
i
}

3D Shape Reconstruction

4.1 Introduction

After acquisition of required 3D points coordinates from contour

tracing, a 3D model can be reconstructed from these data points. This

chapter mainly deals with the model reconstruction process. The geometric

model proposed in this dissertation is superquadric model with free form

deformation for shape fine tuning (see Chapter 2). The model reconstruction

problem is transformed to the problem of finding a deformed control lattice

that can construct an object model which the sensed data points satisfy

it with given original object model before FFD (superquadric model) and

original control lattice. This is actually an inverse process of FFD. In this

inverse process, we solve the correspondence problem between points on the

original model and the deformed model (the model that we have known

surface points coordinates). After the correspondence problem of all data

points are solved, this leads to the point inversion problem for all data points.

This means that each data point is assigned a (s,i, ^) parameter triple.

Original model point and its corresponding data point shares the same

(s，t, u) parameter triple. Finally, the recovery of deformed control lattice or

the model reconstruction process begins. With only the recovered control

80

CHAPTER 4. 3D SHAPE RECONSTRUCTION 81

lattice, the geometric model ofthe object cannot be completely represented.

Up to this stage, only object points which have same {s,t,u) parameter

triples with the data points can be obtained. Object points on other

surface patches region, however, cannot be restored. Thus, an interpolation

algorithm is also developed to generate {s,t,u) parameter values for the

object surface automatically. In this chapter, the correspondence problem,

the point inversion problem and the parameter interpolation algorithm are 1
！

discussed. After then, the model recovery process is discussed.

4.2 Correspondence Problem

In the correspondence problem, we have to find a correspondence

or linkage between each data point on the required (deformed) object model

and a surface point on the original object model. A new technique is

developed to solve this problem. The basic concept of the algorithm defines

matches between sensed object points and original model points in two

stages, namely, the Contour Match Correspondence stage and the Curve

Point Match Correspondence stage. Details of the algorithm is presented as ’

follows,

Assume that there are Mi contours traced by the haptic exploration

system and each contour consists of M2 object surface points,

1. Align the contour search direction parallel to the z-axis ofthe recovered

model space 1.

2. Transform all data points into a normalized domain JV̂ =̂ [-1，1] X

[- 1 ’ 1] X [-1,1] . The reason for this step is due to the affine invariance

property of B-splines (see section 4.2.1). With this property, the

solution of the point inversion problem can be facilitated.
1 The coordinate frame of this recovered model space becomes the base coordinate frame

for other derived spaces during the model reconstruction process. These derived spaces
wiU be defined with respect to this base frame.

^

CHAPTER 4. 3D SHAPE RECONSTRUCTION 82

3. Construct an original superquadric model according to the shape

parameters €i and €2 obtained in the modified Grasp by Containment

EP described in section 3.2.2 and an original control lattice which has

a base point of [- 1 , - 1 , - 1] with size of 2 X 2 X 2. This original model

can be embedded in the normalized domain Af^.

4. Contour Match Correspondence �
i

(a) Slice the original model uniformly with Mi slicing planes parallel ‘

to the x-y plane, where Mi is the number of contours traced. This

is equivalent to partition (Mi + 1) subintervals in the interval

-1 ,1] along the z-axis. At each slice, a cross-section of the

original model can be obtained.

(b) Match the boundary curve of each cross-section of the original

model with each contour traced in the spatial order along the

contour search direction, as shown in Figure 4.1.

5. Curve Point Match Correspondence

For each matched contour traced by the haptic exploration

system,
: 1 M2

(a) Find the centroid of the close contour, Oi = — ^ Xij where Xij
2 j=i

is the j-th point in the i-th contour.

(b) Fit a closed curve on the traced contour. This actually is a crucial

step in model recovery process and it will be discussed in details

in section 4.4.2.

(c) Uniformly sample M2 points along the fitted contour curve by

intersecting M2 radial lines from the contour centroid 0{ to the

contour curve.

(d) Repeat step (5c) for the corresponding cross-section boundary

curve in the original model.

CHAPTER 4. 3D SHAPE RECONSTRUCTION 83

(e) Match the object data points and model points with same

azimuth angle 0, as shown in Figure 4.2.

Correspondence

厂 、 - \ .
� .r"-"^*^"^->^

Z X ^
jT - - ---- - - - '- ：、, -- - X

V y 7 ' . \ ；

\ y / / 人--/- :•;'::,.:.:•'、“？'•/. .-〜 ‘ 、 (,==^；7^:;:“::::: --"X , f \ j _ - 1
乂 乂 、 ： — . > ^ \ ~ ,丄〜,:〜二.:.,？：1'-

广 ^ x ':'' '� ’� , / ' ,) : ...::..,,:.,: ' , ; ' ' :�
——7^ \ ~ � • . . - ^ V" -' ':''' - ‘ ^<^ —

/ \ s - s . . i \ '丨 ' ' ' : '厂 "’'’广’/ ':'、::.:”『 \ / \ /
V , - -- --- -： -- ' • • • • /

...--3^ \ """"""'~• , - ‘ -- ... y
_ — • • ^ _ Jr

- • • • • " \ _ ^

J 一 ^ “ 2X^ : a ^

A： J z . Z - " ^ ^
\ < ^ _ ^ ^ Z “ “

z “ Object Model Original Model
I Side View

Figure 4.1: Contour Match Correspondence

After all correspondences are assigned for all original model points

and data points pairs, the point inversion problems for all data point are

then solved. However, it is difficult to find the (s, t, u) of each data point

with respect to the deformed control lattice because the deformed control

lattice is what we are required to determine. It is an unknown information.

Fortunately, as each pair of original model point and data point shares

the same (s,i, u) parameter triple, the point inversion problem for data

points can be transformed to the point inversion of their original model

counterparts. In the original model side, the control lattice is construct in

steps of finding correspondences between data points and original points

CHAPTER 4. 3D SHAPE RECONSTRUCTION 84

r ^
\ ^ Corresppndence \ ^ ^ ""^"v^

>;:ttQV 1
/ Centroid Centroid / I

0 u I
Object Contour Original Model Contour

Figure 4.2: Curve Point Match Correspondence
I

and the point inversion can be solved with an algorithm presented in

section 4.2.2. In solving the point inversion problem, an important property

of B-splines eases the problem. This is the affine invariance property. With

this property, we can solve the point inversion problem for control lattices

with different size and base point by transforming the control lattice to a

normalized domain where a set of (s, t, u) parameter triple for 3D points

embedded in it.
4.2.1 Affine Invariance Property of B-splines

One of the properties of B-spline curves or surfaces is affine

invariance. This property can be extended to trivariate B-spline solids of

FFD. This property is useful in solving the point inversion problem which

should be solved frequently in the process of FFD. The next section will

CHAPTER 4. 3D SHAPE RECONSTRUCTION 85

discuss the Point inversion problem.

Theorem 1 The (s, t, u) parameter triple are the same on the initial control

lattices iP and the deformed control lattice fP iffP = ^{iP), where $ is an

affine transformation.

Proof: �
I

T h e initial control lattice iP, which is partitioned as (/ + 1) X {m +
I

1) X (n + 1) sublattices, has a base point at po and size of siz and the

three local unit coordinate axes of the lattice frame are s,iand u, or iP ̂ =

{po,stz,s,i, u}. Similarly, we have iP ^= {po,siz,s,t,u}. In general, an

affine transformation $ includes translation, rotations, scaling and shearing.

It can be defined as $: S^ ^ S ,̂ where Ê is the three dimensional Euclidean

space and in terms of a transformation matrix R and translation vector v,

$ (f) = Rr + V (4.1)
I

For a trivariate B-spline solid,

l+l m+l n+1
Xn.Fo{s,t,u) = X： ^ E ^i3kNi,kAs)Nj,kAmk,kAy) (4.2)

z=l j=l k=l

For clarity, (4.2) can be rewritten to a form with only single index as follow,

M N
XBFFD{s,t,u) = Y,BiNi{s,t,u) = Y,PiSi (4.3)

1=1 /=1

where I = (k - l)(l + l)(m + 1) + { j - l)(l + 1) + i, /3/ = Ni{s,t,u)=

Ni,kA^)Nj,ky(t)Nk,kA^) and M = (/ + l) (m + l) (n + l) . Details of control

vertices indexing can be referred to Table 4.1. The partition of unity

property of B-spline basis [37] (trivariate extension from cases of curves

CHAPTER 4. 3D SHAPE RECONSTRUCTION 86

— k I j I i I I
_ 1 1 1 1

1 1 2 2 • • • •
. • • • • • • •

“ 1 1 / + 1 / + 1 —
_ 1 2 1 / + 2 —

. . . •

. . • • • • • •

_ j _ ^ 1 1 - (/ + l) (m + l) + l ；
. • • •

• • • :

k ~ - j ~ i {k - 1)(/ + l){m + 1) + (j - l){l + 1) + i • . • •
. . • •
. . • •
• . • •

: : ： ：

(n + l) (m + l) (/ + 1) (/ + l) (m + l M ^ + l)

Table 4.1: Indexing for the control vertices

and surfaces) is described as follows, V(s, t, u) € [0，1] X [0,1] X [0,1],
l+l m+l n+l J^
E E E Ni,kAs)Nj,k,mk,kAu) = 1 or J2^I = 1 (4.4)
i=l j=l k=l J=1

Apply an affine transformation $ to the B-spline solid,

M

^(XnFFo) = HT^^lBl)
1=1
/M \

= R E l ^ i ^ i + e
\l=l

M M
二 Y^ PiKBi + J2 贴 [from(4.4)]

i=i /=i
M

= Y 1 f^i (R5 / + v)
J=1
M

二 Y^_Si)
i==i
/+lm+ln+l

= E E I^(Sijk)Ni,kAs)Nj,k^Nk,kAu)
t=l j=l k=l

CHAPTER 4. 3D SHAPE RECONSTRUCTION 87

From the above result, it can be concluded that the parameter

space (s,i,w) is invariant under affine transformation. In FFD, the

deformed control lattice is usually obtained by translation (which is an affine

transformation) of particular control vertices of the original control lattice.

This property can speed up the solution of point inversion problem (see

sections 4.2.2 and 5.3). The initial control lattice and the object inside it

are scaled and translated into a normalized initial control lattice. For the

normalized control lattice, the (s, t, u) parameter spaces of a set of orignial

shapes (superquadric models with different €i and e2) are pre-computed for

generation of initial guesses of solution of the point inversion problem. This

initial guess is very efficient.

4.2.2 Point Inversion Problem

Point inversion [37] is a fundamental problem in computer aided

geometric design (CAGD). Many complex problems in CAGD involve this

problem as a crucial step, like surfaces intersection, finding minimum

distance between a point and a curve or surface and so on. For a B-spline

curve, the problem is usually stated as ,̂

Given a point p 二 [0；,2/’2；]了， which is assumed to lie on a B-

spline curve C{t), the corresponding parameter t is found such

that C(t) = p.

The above problem statement is not limited to B-spline curve. Any bivariate

or trivariate parametric surfaces or solids with other spline basis (rational

or irrational) can have analogous problem statement. Even parametric

hypersolids with dimension larger than 3 can be applied. In this dissertation,

the point inversion problem we have to solve is as follows,
2por point projection problem, Uke finding minimum distance between a point and a

curve, the problem statement is similar to the one given above, except that p does not Ue
on the curve.

CHAPTER 4. 3D SHAPE RECONSTRUCTION 88

Given a 3D point p = [x, y, z]^, which is assumed to lie on a

trivariate B-spline solid X(s,t, u), the corresponding parameter

triple (5, f, u) is found such that X(s, i, u) 二 p.

where
l+l m+l n+1

X{s,t,u) = Y： Y： Y： Si3kNi,kMNj,k,[t)Nk,kM (4.5)
i=l j=l k=l tk

Point inversion problem is usually solved by iterative method, like

Newton-Rasphon method. The goal is to minimize the distance between p

and X{s,t, u). Piegl and Tiller [37] proposed iterative algorithm for solving

point inversion problems in curves and surfaces. In this dissertation, their

algorithms can be extended to cover the case of trivariate parametric solids.
Define

R{s,t,u) = X{s,t,u)-p (4.6)

and we have

^ 5 l + l m + l n + l

Rs 二 学 = w , u) 二 E E E A * < ， * » 〜 〜 w ^ ， * »
�S i=i j=i k=l
^5 l+l m+ln+l

Rt 二 ^ = A(s,t,u) = : E E E ^ A “ # k W � “ W (4.7)
饥 i=i j=i k=i
^0 l+l m+l n+1

Ru 二 学=Us.t,u) = Y^Y^TA3kNi,“s�N3,k“m,kAy)

i=l j=l k=l

Define

f{s,t, u) 二 M(s,t,u)-^(s,t,u) = 0

g{s,t,u) = R(s,t,u)'Xt(s,t,u) = 0 (4.8)
h{s,t,u) = R(s,t,u) • Xu(s,t,u) = 0

CHAPTER 4. 3D SHAPE RECONSTRUCTION 89

Then, equation (4.8) is solved by an iterative method with an

intelligent guess of initial values of {sJ,u). At the ith iteration, let

/s ft fu 1 [lXsl^^R'Xss Xt . Xs + R ‘ Xst Xu ‘ Xs + R ‘ Xsu

Ji= Qs gt 9u = Xs • Xt + R • Xts Xt ^ + R • Xu Xu • Xt + R ‘ Xtu
2 — —

hs ht K Xs • Xu + R • Xus Xt'Xu^R'Xut Xu + R • Xuu
(4.9)

— n r n
As Si+i - Si

5i= At 二 ti+i-ti (4.10)

Au U{+i — Ui
• J L J

_ ^
f�S{, ti, U{^

k = - g(suU,ui) (4.11)
h(^Si，t{, tx̂)

- J I

where the Jacobian matrix Ji is symmetric and is evaluated at (si,U, Ui).
~ »

At each iteration, the following system of equations with the unknown Si

should be solved.

JA = ^i => 实 = « / 厂 1 又 . （4.12)

Then, we have from (4.12),

Si+i 二 Si + As

¢,+1 = ti + At (4.13)

Ui+i = Ui + Au

As the solution is solved by an iterative process, a set of convergence criteria

are introduced to find out when to stop the process. They are listed in the

following,

CHAPTER 4. 3D SHAPE RECONSTRUCTION 90

1. Point coincidence

X (s i , t i , U i) - p \ < € i (4.14)

2. Zero cosine

Xs(si, ti, Ui) • {X{si, ti, Ui) - p)
— < 62

Xs{Si, ti, Ui) X{Si, ti, Ui) - p *

M^i,ti,Ui)'(X{si,ti,Ui)-p)
— — < ¢2 (4.15)

Xt{si, ti, Ui) X(Si, ti, Ui) - p

Xu{Si, ti, Ui) • {X{Si, ti, Ui) - p)
- ^ < €2

Xu{Si, ti, Ui) X{Si, ti, Ui) - p

3. Parameters range
i

‘

if Si+i < 0 , Si+i 二 0

if Si+i > 1 , Si+i 二 1

if ti+i < 0 , ti^i 二 0
<

if tiĴ i > 1 , î+i 二 1
if Wi+i < 0 , Uî i = 0

‘ if Uî i > 1， Wi+i = 1

4. Insignificant changes in parameters

As • Xs{si, t“ Ui) + At • Xi{si, ti, Ui) + Au • Xu(si, U, Ui) < ei
(4.16)

where ei and €2 are zero tolerances for measures of Euclidean distance

and zero cosine respectively. The iterative process will be stopped if both

criteria (1) and (2) are satisfied. Otherwise, a new set of parameter triple

(Si+i,ii+i,^ii+i) is computed from equation (4.13). Then, criteria (3) and

(4) are tested. The iterative process is halted if any of criteria (1)，（2) and

(4) is satisfied. Condition (3) is to guarantee the parameter triple computed

CHAPTER 4. 3D SHAPE RECONSTRUCTION 91

lies inside the parameter range [0，1] X [0,1] X [0,1].

4.3 Parameter Triple Interpolation

In previous sections, we have discussed the algorithms for (s, t, u)

parameter triple for each data point acquired by the haptic exploration
%

system. With these parameter triples of all data points, we can recover the

shape information of model points, which correspond to these parameter

triples, with high confidence. For model points with other parameter triples,

it is difficult to obtain their shape information. Fortunately, the shape

information at these model points can be approximated by interpolation.

One method to improve the "likeness" of the model points with the shape
i

of the object under exploration is to develop an algorithm or a function

to automatically generate all required {s,t,u) parameter triples under

appropriate resolution as follows,

s

t 二州,")，where (r/, i/) G [0,1] X [0,1；

u

The model surface is then parametrized by variables (r],i^). With the

function T(rj, v) and the control lattice recovered for model reconstruction,

we can completely represent and reconstruction the object model under

different resolution by varying the resolution of parameter triples generated.

Figure 4.3 depicts a typical (s, t, u) parameter space for an object model.

From this figure, we can observe that the (s, t, ^),s for a typical object surface

points lie on the four side faces of a round-edged and round-cornered cube.

We can interpolate the parameter triples (s, t, u) G V^ for automatic

parameters generation stage of model reconstruction with Free Form

Deformation by a order k B-spline surface in V^ [37]. Assume the active

CHAPTER 4. 3D SHAPE RECONSTRUCTION 92

A typical (s,t,u) parameters space

. _ 1

1 0 t
s

Figure 4.3: A typical (s, t, u) parameter space for a model |

haptic exploration system had traced Mi contours on the test object surface

and it acquired M2 surface points coordinates on each contour, we can
_ T

construct a B-spline surface interpolating the T(fp,g) 二 [S p ， g , £ p , g ，？ i p ， g]

parameter triples computed from the Point Inversion problem algorithm (see

section 4.2.2) for these Mi x M2 data points set fp’g, where p 二 1 ,2 , •..，Mi

and q 二 1, 2,. " , ½ ,

S Ml M2
T(^ , ,) = t = PS{fj,, P,) = Y1Y1 fi,Ni,k{f)p)Nj,k{^,) (4.17)

i=l j=l
U

where (¾, i?q) G [0,1] X [0,1] are the parameter values for the data point —
^p,q-

The computations of fjp and f>q are analogous. Only the computation

of fjp is discussed and the computation of i?q follows. For each q-ih parametric

curve, the parameters fjf, • • •，7)1̂ by 4.18,

v! 二 0

CHAPTER 4. 3D SHAPE RECONSTRUCTION 93

,F = i + V l T ^ , g) _ i T (f _ ^ . = 2 , . , . , M . - l (4 . 1 8)

fjll, = 1

where L = E ^ y / | T (^) - T (f , _ i J | . This is called the centripetal

parametrization [37][28]. This parametrization gives better results than

other parameterization methods when the data takes sharp turns. This

matches with the distribution of the (s, t, u) parameter triples in V^ (see

figure 4.3). Then, each f)i can be obtained by taking average across all f)f,

ie. fji = ^ Ylfi\ fjl with i = l , 2 , . " , M i . The corresponding knot vector

r/i, r/2, • • •，rjMi+k] can be computed by,
I

T]l 二 0 l=l,2,...,k
1 k-i

vi+k = ^ E ^1+^ / = l , 2 , . " , M i - A ; (4.19)
i=l

T)Mi + l 二 1 1 — 1, 2, • • •，k

Similarly, P{, i = 1, . . •，M<2 and knot vector [i/i,.. •, 1^M2+k] can be computed

by the aforementioned method.

After computed the parameter values fji with i 二 1，. • •，Mi, Pj with

j = 1’. • •，M2 and knot vectors fj = [" i , . . . , r)Mi+k] and P = ["1，•..，"财2+知]，

the control points f i j is computed for interpolation. The f i j can be recovered

efficiently by a sequence of isoparametric curve interpolation. For the q-th.

isoparametric curve, equation 4.17 can be written as,

Ml /M2 \ Ml
Tp,, = T (^ J = ^ i V , , , (^) J 2 N j , k ^ i j =Y^Ni,kOli,q (4.20)

i=i \i=i / «=i

where , ,
M2

Qi,q = J2Nj,k(i^q)fij (4.21)
3=1

T h e surface interpolation algorithm is as follows,

CHAPTER 4. 3D SHAPE RECONSTRUCTION 94

1. For j := 1 to M2 do

(a) Use f| as the knot vector and ^ as parameters for interpolation;

(b) Perform curve interpolation through T i j , • •., TjvfiJ;

(c) Get Qi，j，the control points of the isoparametric curve TS(r|, i>j);

End _

2. For i := 1 to Ml do

(a) Use 0 as the knot vector and Vq as parameters for interpolation;

(b) Perform curve interpolation through Qi,i, •.., Qi,M2 ；

(c) Get Ti’j, the control points of the isoparametric curve TS{fji, i/);

End

This algorithm is symmetric and same interpolation (or same control

points T i j can be obtained by performing curve interpolation through

Tj,1,...,Tj,M2 first and then Qi’i,...’QMi，i. With T^j, we can generate

recovered shape in any resolution.

4.4 3D Object Shape Reconstruction

4.4.1 Heuristic Approach

After the correspondence problem and the point inversion problem

of all data points are solved, we can step to the process of 3D shape

reconstruction. The model is expressed as follows.

l+l m+l n+1
X^..n (s, t, u) = J2 E E BijkNi,k. (s)Nj,k, {t)Nk,k. (u) (4.22)

i=l j=l k=l

We want to find Bijk from a set of data point acquired by the haptic system

which correspond to the RHS of (4.22). Given that there are Mi contours,

CHAPTER 4. 3D SHAPE RECONSTRUCTION 95

which consists of M2 object points in one contour, had been traced out
—•

by the haptic exploration system, the required control lattice Bijk can be

found by solving a large scale system of linear equation. The system of

equations is setup as follows. Firstly, the data points are re-indexed as ^ and

their corresponding (s, t, u) parameter triples (which are recovered by the

algorithm presented in section 4.2.2) are (s^, P\ u^), where p = 1，2, •..，Mi X

M2.
/+1 m+l n+1

xi,Ms'.t^.un = E E TA3kNw[snN],kAnNk,kAvn (4.23)
i=l j= l fc==l

i

This equation can also rewritten for the reason of clarity,

4FD(sP,tP,vn = j^BiNj{s^,t^,vF) (4.24)
/=i

w h e r e i f = (/ + l) x (m + l) x (n + l) , / = (A ; - l) (/ + l) (m + l) + (j - l) (/ + l) + z - 3

and Ni(s,t,u) = Ni,kA^)Nj^ky{t)Nk,kA^). Then, a set of linear equations

can be set up and it is rearranged in matrix form,

- N ^ (s \ t \ u ') … N H { s \ t \ u ') 1 r Bf 1 x^ ‘

HsM^u')…NH{s^t'.u') 與 二 趕 (4 . 2 5)
. • • • •

• . • • •

. • • • •

. N ^ (s ^ . t ^ , u ^) … N H { s ^ , t ^ , u ^) [Bl J [^ .
or

N • B 二 X (4.26)

where M = Mi x M2. The linear equation system (4.25) is difficult to

solve because of the numerical instability of the N matrix. Moreover,

the condition number of this matrix is very large, usually in the order

of magnitude over 10̂ .̂ Together with the common floating point and

3The indexing of control vertices wiU be discussed in details in Table 4.1

CHAPTER 4. 3D SHAPE RECONSTRUCTION 96

truncation error, the solution of this system is not accurate and reliable.

In this dissertation, a heuristic approach is proposed to find the

control lattice Bijk in a geometric way. The central concept ofthe algorithm

is to construct the required control lattice in two stages. The control lattice

can be considered as consisting of two parts, namely the core and the shell.

The shell is actually the outermost shell of the control lattice while the core

consists of all the inner shells of the control lattice. They are constructed

separately in each stage. The followings describes the algorithm,

1. Construction of Shell

The shell is constructed from stacking all the control polygons

recovered from each contour traced by the haptic exploration system

in their spatial order along the search direction. The control polygon

recovery algorithm will be described in details in section 4.4.2. Links

are established between adjacent control polygons on the control

vertices along the two polygons (closed chains of control vertices) so

that each distance between control vertices pair from the adjacent

control polygons is minimized.

2. Construction of Core

For each control polygons computed from traced contour, a rectangular

grid is constructed as a inner grid for that layer of control lattice. The

inner grid is embedded wholly in its corresponding shell layer (control

polygon). After all inner grids are constructed, they are stacked up

to form the core of the control lattice. Links are established between

node points of two adjacent grids with the same location relative to

their grids.

3. Join the Shell and Core parts to form the control lattice of the object

model.

CHAPTER 4. 3D SHAPE RECONSTRUCTION 97

The following sections will describe in details about the above algorithms.

Section 4.4.2 discusses about the recovery of control polygons of closed

contours traced by the haptic exploration system for the construction of shell

stage. On the other hand, section 4.4.3 discusses about the construction of

the control lattice for the object model from the shell and core.

4.4.2 Closed Contour Recovery

This section concerns with closed curve interpolation. As discussed

before, each contour traced by the haptic exploration system consists of a ：

chain of object surface points along it. It is actually a plane closed curve.

The close curve is interpolated by a Â th closed B-spline curve. Given

that there are M2 points, Dj along the contour and it is intended to be

interpolated by a B-spline curve with shape control by n control vertices.

Thus, the required control polygon consists of n control vertices.

^ f e) - E ^ - ^ # .) (4.27)
i=i

where j = 1，2,. ..,M2. ij is computed by a chord length parameterization

;S7][27][28],

ii 二 0

ii = i i - i 4- '^^ -严 - 1 | / = 2 , . . . , M 2 - 1 (4.28)
L/

^M2 二 1

where L 二 ^] ¾ |A - A-i|. The knot vector employed is the clamped

uniform knot vector described in section 2.4.2. Then, a system of equation

CHAPTER 4. 3D SHAPE RECONSTRUCTION 98

can be set up for solving Pi,

. N i , k { i i) … N n , k ^ 1 [P [1 [X f
: ... : 丨 = 丨 (4.29)

_ N1^k{tM2)…Nn,k{tM2) _ _ Pn • _ ̂ M2 .

or
N • P 二 X (4.30)

where N is a (M2 X n) matrix.

The above formulation is complete for open curve only. On the

other hand, extra {k - 1) control vertices should be introduced at the

end of the control vertices chain in the closed curve interpolation process.

These control vertices are called pseudo-vertices and they should be equal

to the first corresponding (k - 1) control vertices in the vertices chain

individually. That means there will be {n + k- 1) control vertices recovered,

namely, A , A , • • •, P n - u P n . P n + u • • •, P n + k - i and the matrix N in (4.30)

becomes a M2 X {n + k - 1) matrix. The conditions of the pseudo-vertices

Pn+i,. •.，Pn+k-1 are listed,

Pn+i 二 Pi

Pn+2 二 P2

； (4.31)

Pn+k-2 = Pk-2

Pn+k-1 = Pk-1

Moreover, in order to maintain the continuity between the junctions

of the closed contour^, two derivatives continuities constraints are imposed

on the junction. The first and the second derivatives should be continuous

^A closed curve can be considered as an open curve with the same endpoints

CHAPTER 4. 3D SHAPE RECONSTRUCTION 99

at the junction of the curve,

X\ti) = X'[tM,)

X"{h) = f"fe/2)

or

n+k-l
E ^ 4 ^ k (t i) - ^ l k (t M ,)] = 0 (4.32)
i=i

n+k-l

E 片 [< # 1) - < * (‘)] = 0 (4.33)
i=i

By imposing the pseudo-vertices and derivatives continuities

constraints onto the linear equations system (4.30), we have,

N • P = X (4.34)

where,

CHAPTER 4. 3D SHAPE RECONSTRUCTION 100

• x ^ { h) 1 [P^ -
X^(i2) Pl

• • . • . •

X = XT(‘） (4.35) P = P ^ - 1 (4.36)

0 0
• •
• • • •

0 0
L J ^ J

Ni,k(h) Nn+k-i,k(h)
. . •
. • • ；

iVl,A:(̂ M2) Nn+k-l,k(tM2)

1 0 - 1 0 …

N = ° ••• 0 (4.37)
0 . . . 1 0 - 1

Kkih)- K+k-i,ki^i)-

Nlk{tM,) K+k-l,ki^M,)

Ni[kih)- , K+k-i,ki^i)-

_ N[[,{i^,) K+k-i(tM,)

The matrix X has dimension of (M2 + k + 1) X 3 with the last {k + 1) rows

are zeros and P is a {n + k - 1) X 3 matrix. The matrix N has dimension

of (M2 + k + 1) X {n + k - 1), with the first M2 rows express the usual

interpolation constraints. The middle {k - 1) rows and the last 2 rows of

N express the pseudo-vertices constraints and the derivatives continuities

constraints respectively. The pseudo-vertices constraints submatrix consists

CHAPTER 4. 3D SHAPE RECONSTRUCTION 101

of a diagonal of 1 from the first column to the (k - l)-th column and a

diagonal of -1 from the (n + 1) column to the last column. The solution of

the equation system can be obtained by taking pseudo inverse of the matrix

N,

P 二 I^tX (4.38)

The solution of (4.38) is not the best because there are some
i

errors between the pseudo-vertices and their corresponding control vertices ’

counterparts. This can be remedied by an iterative parameter optimization

procedure. The objective of the optimization is to minimize the sum of

squares of distance between the pseudo-vertices and their control vertices
counterparts, J ,̂

j r J ^ l p . _ p ^ ' (4.39)
i=i

The iterative process begins with the chord length parameterization as the

initial parameterization. At each iteration, the value of T is checked. If it

is greater than a predefined tolerance, the parameterization will be updated

ctS t{，

(A - X f t)) . f
u = U + — 2 时，•�= 1，2,.. •, M2 (4.40)

dx
i .=.-

This parameter optimization technique was proposed by D. F. Rogers and

N. G. Fog [28][51][52]. The predefined tolerance can be assigned as a

small percentage of the mean of the largest and smallest diameters of the
A

closed contour. After the parameterization has been updated, a new N is

generated, a new set of control vertices is computed from (4.38) and the new

j^ is tested. This process continues until T is smaller than the predefined

tolerance. The required control polygon for the closed contour is then the

first n control vertices obtained, excluding all pseudo-vertices.

CHAPTER 4. 3D SHAPE RECONSTRUCTION 102

4.4.3 Control Lattice Recovery

This section mainly concerns with the construction of control lattice

for the object model. The construction algorithm is described in details in

the following,

1. Set the size of the control lattice for the object model. Define the

dimension of each grid layer of the control lattice as mi X m�.The

dimension of the lattice in the z-axis should be equal to the number

of contours traced, Mi. Then, the dimension of the control lattice is

mi X rri2 X Mi. Typical dimensions of each grid layer are 5 X 5 and

7x7.

2. For each contour traced,

(a) Recover the control polygon for that contour using the algorithm

described in section 4.4.2. The number of control vertices in the

control polygon should be 2(mi + m2 - 2). This recovered control

polygon form a boundary of its corresponding control layer grid.

(b) Form an inner grid for each control layer by an iterative approach.

i. Form the bounding box of the control polygon by finding

the maximum and minimum x- and y- coordinates of all

control vertices. The bounding box can be represented by

four number showing the coordinates of the its four corners.

The center and the size of the bounding box can also be

obtained.

ii. Generate an ellipse that is wholly inscribed in the bounding

box with its major and minor diameters equals to the length

and width of the bounding box.

iii. Use Fibonacci Search to find the maximum scaling factor of

the diameters of the ellipse so that it is wholly inscribed in

CHAPTER 4. 3D SHAPE RECONSTRUCTION 103

the control polygon. This step will be described in details in

Note (1).

iv. Construct a bounding box for the ellipse with its major and

minor diameters as the size of the bounding box and they

share the same center. This will be the boundary of the

control lattice core at that layer. j

V. Construct the inner node points to complete the inner grid

at that layer for the lattice core.

(c) Reorder the control vertices chain for the closed contour so that

the first control vertices has the minimum phase angle difference

with the northwest corner of its bounding box generated in step

(2(b)i).

(d) Join the boundary (the control polygon found in step (2a)) and

the inner grid (generated from step (2(b)v) and a control lattice

is formed.

3. Join all control layers formed in step (2) together according to their

spatial order in the contours searching direction.

Note (1)

Use the Fibonacci Search to find the maximum scaling factor A of the major

and minor radii of the ellipse so that it is wholly inscribed in the control

polygon. The scaling factor lies in the range of [Xmin, 1] where Xmin is a

positive number smaller than 1. This is an initial range of the scaling factor.

At each iteration of the search, a new range is updated with two bounds

candidates, Ai and 入2,入1 < 入2, generated from the Fibonacci sequence

and the bounds generated in the previous iteration. Two ellipses, Ci and

C2, are generated with their radii scaled by 入1 and A2 respectively. The

size of Ci is smaller than C2. The two ellipses are then tested whether

they are inside the control polygon or not. This can be tested by checking

CHAPTER 4. 3D SHAPE RECONSTRUCTION 104

intersections among all edge lines of the control polygon and the ellipse.

If there is/are intersections among edge lines and the ellipse, the control

polygon is either wholly inside or crossing the ellipse. Otherwise, the ellipse

is wholly inscribed in the control polygon. There are several cases for

selecting the new scaling factor range according to the relative position of

the control polygon to the two ellipses and they are listed in Table 4.2, The ^

Edge lines cross with Relation with
Case Ci C2 Ci C2 New Range Remark

1 V v̂ C / 0 C / 0 [A_n,AiT"
— 1 ~~ X 7 I c / 0 [A1,A2]

3 X X I I [A2,1]
4 y X C / 0 I NIL Contradiction since

size(Ci) < size(Cy

C=Cross, 0=0utside and I=Inside

Table 4.2: Four cases of relative positions of the control polygon to the two
ellipses

iterative process stops when the difference between Ai and A2 is smaller than

a predefined tolerance.

Chapter 5

Implementation

5.1 Introduction

All the computation tasks in this project are implemented in

a software called MATLAB v4.2c [53]. MATLAB is good at numeric

computation and data visualization. As the operations in 3D shape

reconstruction are computational expensive, MATLAB is chosen as

implementation tools in this project. Moreover, MATLAB has a series of

auxiliary toolboxes for users to solve problems in a large variety of fields of

study, for example, the Splines Toolbox.

5.2 Implementation Tool - MATLAB

MATLAB [53] is a technical computing environment for high

performance numeric computation and data visualization. It integrates

general numerical analysis, matrix computation and graphics in an

environment that is easy to use and user friendly. MATLAB has become the

standard computing tools for study and research in both the academic and

industrial uses. That is why MATLAB has various versions that can run on

different computing platforms, including PC's with Windows NT/95, Sun

105

CHAPTER 5, IMPLEMENTATION 106

SPARCstations, HP 9000, DEC RISC and so on.

The name MATLAB is the abbreviation for Matrix L^oratory. As

indicated from its name, MATLAB is strong in matrix numeric computation

and all data elements defined in it is in a form of matrix. Moreover,

MATLAB is a powerful data visualization tool. It supports 2D plots,

3D mesh and/or surface plots, contours plots and so on. MATLAB also

supports rendering on surfaces. One of the advantages of MATLAB is its

extensibility. MATLAB has a script language so that users can create their

own application routines that suit their needs. All the computation tasks

in this project is implemented in MATLAB script language. Moreover,

MATLAB has external interfaces linking to various applications and

computer languages in order to further extend its ability, including MAPLE,

Mathematica, Microsoft Word, C / C + + , Fortran, etc. For instance, the

data and program control can be exchanged between C /C++ , Fortran and

MATLAB by the uses of MAT and MEX files respectively [54 •

Another advantage of MATLAB is that it has various auxiliary

toolboxes concerning different applications. Areas in which toolboxes are

available include control systems, signal processing, statistics, fuzzy logic,

neural networks, finance, image processing and so on. These toolboxes

are developed mainly based on MATLAB script language and some are

written in MEX files (for decreases in execution time for computational

expensive routines). The functions in various MATLAB auxiliary toolboxes

can extend the MATLAB environment so as to solve particular categories

of problems. There is also an auxiliary package in use with MATLAB called

Simulink. Simulink allows users to run simulations on various kinds of

systems. Simulink also allows users to design different systems by connecting

pre-defined or user-defined different building blocks and to observe the

behaviour of the system through "artificial CRO". It even can generate

animation about the behaviour of the systems. This is very useful for system

CHAPTER 5, IMPLEMENTATION 107

designers.

5.2.1 Optimization Toolbox

The Optimization toolbox [55] for MATLAB is a powerful toolbox

for minimization or maximization on general nonlinear functions. It can

tackle a large variety of optimization problems. The functions can be

scalar functions or vector functions. It can also handle unconstrained

and constrained optimization problems. For constrained problems, it

can handle both the equality and inequality constraints. Moreover, the

toolbox has efficient algorithm implementations for solution in some typical

optimization problem classes, like the minimax problem, the nonlinear least

squares problems, quadratic programming and multi-objective optimization

problems.

For each optimization problem, different parameters set governing

the optimization procedure can be assigned in order to find better

approximation to the optimal solution numerically. Users can change the

termination criteria (error tolerance) for the independent variables and

the objective function of the problem, the maximum number of iteration

passed, the minimum and maximum perturbation in variables for finite

difference gradient calculations and so on. Users are even allowed to

change the algorithms used in the optimization process, like, the main

optimization algorithm and the search direction algorithm. On the other

hand, information about the optimization process is returned to users for

analysis. The information includes, number of iteration passed, number of

function and gradient evaluations and so on.

In this project, solution of system of nonlinear equations is needed.

This is a computationally expensive process. The Optimization Toolbox

can handle it with no effort by the function called fsolve. This function

solves system of nonlinear equations in a least squares sense. It is built in

CHAPTER 5, IMPLEMENTATION 108

with two common algorithms, namely, the Gauss-Newton method and the

Levenberg-Marquardt method. This function is very robust and efficient.

5.2.2 Splines Toolbox

The Splines Toolbox [56] for MATLAB is written by Carl de

Boor. The core of this toolbox is a MATLAB implementation of algorithms

presented in the book, A Practical Guide to Splines by the same author

57]. The main usage of this toolbox is for construction and manipulation of

piecewise polynomial functions. Splines usually are a chain of curve segments

or surface patches joining together with certain level of continuity condition

maintained at the junctions. This toolbox provides functions for spline

interpolation, least squares approximation to functions, splines smoothing,

evaluation of derivatives and integral of splines functions and so on.

The Splines Toolbox supports two representations of spline functions,

namely the pp-form and the B-form. The pp-form of a spline describes

a spline by its breakpoints or knots G，...，0+i and the local polynomial

coefficients a{j of its segments

(� _ y ̂ (工 - G) “
ffji^) - ^ ¾ (A^-i)!

The pp-form is convenient for evaluation of splines, their derivatives and

their integrals. On the other hand, the B-form describes a spline as a linear

combination of B-spline basis functions as explained in section (2.4.2). One

requirement for the knot vector of B-spline basis is that the knot vector is a

non-negative monotonic increasing sequence. The B-form is convenient for

construction of splines. Most functions in the Splines Toolbox support both

representations and functions for conversion between the two forms are also

provided.
In spline construction, interpolation and approximation, users

CHAPTER 5, IMPLEMENTATION 109

always need to evaluate spline basis function values and derivatives and

integrals with a lot of input parameters. The Splines Toolbox provides a

function called spcol which can satisfy the needs for these purposes. This

function can generate a collocation matrix, in which each row contains the r-
d^Nik(t) ^, , ._c j

th derivative at t ofthe j-th B-spline basis, ~ ~ J p ^ ' The r can be specified

by repeating the input parameter t by (r + 1) times in the input parameter

vector [56]. This function is widely used in this project for calculation of

B-spline basis function values and its derivatives.

5.3 Geometric Model Implementation

In implementing B-spline based FFD or NFFD, the B-spline basis

function for different parameters should be computed frequently. In the

Spline toolbox [56] of MATLAB, the function, spcol, generates the B-spline

collocation matrix. The spline collocation matrix contains B-spline basis

function and its derivatives at particular parameter values. This function

can save computation time because it can generate a B-spline basis function

and derivative values corresponding to a lot of parameter values by one

function call.

The implementation process basically follows the four main step of

FFD. A regularly parametrized superquadrics is first generated. Then, a

control lattice is generated with all control vertices coordinates computed.

The control lattice is parallelepiped in shape. After that, the corresponding

parametric coordinates with respect to the control lattice frame of each

object point are computed. For FFD using Bernstein basis, the parameters

can be calculated easily by (2.18)i. For BFFD or NFFD, the point inversion

problem (see section 4.2.2) should be solved for each data point of the

original shape. It is cumbersome to calculate the (s, t, u) parameter triples
iThis is actuaUy a point inversion problem. For trivariate Bemstein soUd with a regular

control lattice, the point inversion problem can be simpUfied to (2.18). A regular control
lattice is one that has scale same as the EucUdean space on which it is defined.

CHAPTER 5, IMPLEMENTATION 119

for all data points every time FFD is performed. As we have proved that

B-spline basis is invariant under affine transformation (see 4.2), the point

inversion problem can be speeded up greatly. We first map the original

object points p = [x, y, z]^ into p = [x, y, z]^ in a normalized domain,

which is defined as Af^ =̂ [-1 ,1] x [-1 ,1] x [-1,1], by the mapping,

$ ： S^ ^ " 3 ，

" ^ 1 ^ (^ - i ^ g) - l
P = y = m = ^ y { y - P l) - ^ (5.1)

_ ^ J [i (^ - P g) - l .

and its inverse is

- ^ 1 [f (x + l)+^^g

P= y =^-\p)= f{y + l)+Pl (5.2)
z [f (i + l) + p g _

where po = b§, A PgF ^ ^^ is the base point of the original control

lattice and stz 二 [sx, sy, szY' are the sizes of the original shape at the x-,

y- and the 么-axes respectively. The initial control lattice of original shape

is mapped to Af^. As the original shape is in the superquadric model (see

section 2.2.2), the shape of the original object can be controlled by two

parameters, namely, ei and €2 and its size.In the normalized domain Af^, we

can pre-computed a set of parameter triples (s, t, u) with typical original

shapes, like sphere (ei 二 1 and €2 = 1), cylinder {ei 二 0.2 and €2 = 1) and

cube (ei = 0.2 and €2 二 0.2). These pre-computed parameter triples can be

applied to the point inverse problem of each original data point, generated

from superquadric model with different ei and e2, nearest to the 3D point

of typical superquadric model as initial guess of the iterative point inversion

process. With this initial guess, the number of iteration can be lowered to

2 to 3 for each object point which is greatly smaller than the number of

CHAPTER 5, IMPLEMENTATION 111

iterations for convergence with other initial guesses, say [0.5,0.5,0.5] which

the center of the parametric space.

After finding all parameters coordinates triple corresponding to each

object point, the deformation can then be performed according to the newly

deformed control lattice, according to (2.20) (for Bernstein-based FFD) or

(2.22) (for B-spline based FFD) or (2.24) (for NURBS-based FFD). From

the algorithm ofFFD, we can see that the computational complexity mainly

depends on how small the step of the grid of the spherical coordinates (7/,o;)

are discretized. It is independent of the complexity of the deformed shape

of the model.

5.3.1 FFD Examples

Figures-5.1 to 5.7 show, as an example, the NURBS-based free-

form deformation process. Figure-5.1 depicts that the original shape is

an ellipsoid. Figures-5.2 and 5.3 show the different views of the deformed

lattice. The lattice looks like a zig-zag shape with a linear tapered extension

in the bottom. Figure-5.4 depicts that the original shape is embedded to the

control lattice. Figures-5.6 and 5.5 shows the different view of the deformed

object model. The deformed model generally follows the shape ofthe control

lattice. Figure-5.7 shows the shaded version of the deformed object model.

The deformed shapes using Bernstein-based FFD and NURBS-based

FFD are different. The shape from Bernstein-based FFD does not follow the

control lattice very much, compared to the case of using NFFD. Figure-5.8

shows a the deformed object using Bernstein-based FFD, under the same

parameters settings of the above-mentioned case. This figure illustrates that

Bernstein-based FFD usually cannot follow the portions with high curvature

(e.g. zig-zag shape) of control lattice. However, the computation time

of Bernstein-based FFD is much lower than that of NFFD. It is because

the process of finding the parameter coordinates triple (s, t, u) for each

CHAPTER 5, IMPLEMENTATION 112

Original Shape
...••••：•••..

.• • • •.
.••••• : ••-.

. . . • • • • • . . : . : • • • .
• • • . • • • • •. .• • • . • • • • • • •.

• • • • • . • • • • . ••. . . . • . • • . .. • •.: :..•••• : ： 、.. ： •••.
4�...-. ...:.-

2 .. . C � # " � ：]
� � . : . . : _ • . . . _ ...j

- � : � _ J
- 4 � . . . 1 ^ ^ (� .

C • • * * * • • —b�• • .�• �-^•• •. • • • • . • • .. • .. •*� . • ',..• - -,, • •.：

—8��.. .•*�-, o'̂ ŝ .:::.••• �-, •
^ ^ s ^ . >: 、. •

v̂̂ ^̂ .̂

^ ^ . , >r^^
^ ^ ^ e > r ^
y -2 -2 X

Figure 5.1: Original shape

object point of NFFD needs to solve the point inversion problem while

that of Bernstein-based FFD needs only to compute the values from (2.18),

which is an efficient computation compared to solving nonlinear multivariate

equations by numerical search.
5.4 Shape Reconstruction Implementation

In chapter 4, an algorithm of model recovery is developed. The

implementation steps are listed below,

1. From the modified Grasp by Containment EP, we get a rough shape

in superquadric model and the dimension siz of the object. This will

be input information of the original control lattice.

2. Compute the centroid of the data points ^ acquired by the tactile

sensor array. We can construct an original control lattice of the size

measured of the target object and a base point at {po - siz).

CHAPTER 5, IMPLEMENTATION 122

Control Lattice

_ ̂ < ; ^ ^
y -2 -2 X

Figure 5.2: Perspective view of the deformed control lattice

3. Transform the data points into the normalized domain JV̂ and find the

spherical coordinates of the data points with respect to the normalized

space.

4. Establish correspondence between data points and model points on

the original shape according to the criteria described in section 4.2.

5. Solve the point inversion problem for each data point. The

corresponding (s,i, u) parameter triple for each data point is then

obtained.

6. Perform parameter triple interpolation (see section 4.3) for model

reconstruction.

7. Compute the control polygon for each contour traced by the haptic

exploration system by the algorithm developed in section 4.4.

8. Generate the inner grid that can be wholly inscribed in the control

polygon obtained in step (7) for each contour. This inner grid becomes

CHAPTER 5, IMPLEMENTATION 114

(

Control Lattice

J:_
n ^ ^ " A ^ ^

瞧
-2 -1.5 -1 "0.5 0 0.5 1 1.5 2 y

Figure 5.3: Side view of the deformed control lattice

one layer of the resultant control lattice for model reconstruction.

Then, the control polygon obtained in step (7) and its corresponding

inner grid for each contour are linked together by the algorithm

described in section 4.4.2. Then, one control layer of the control lattice

for each contour is constructed.

9. Stack up all control layers constructed in step (8) according to their

spatial order along the contour search direction. A set of linkage is

developed between adjacent control layers. The control lattice for

model reconstruction is constructed.

10. Rebuild the object model from the control lattice obtained in step

(9) and the parameter triple implementation developed in step (6)

for automatic parameter triple generation by Free Form Deformation

(FFD).

A set offunctions is developed for MATLAB to implement the above

algorithm. Some of them are essential to the whole implementation. They

CHAPTER 5, IMPLEMENTATION 115

< Original shape and the deformed lattice

< j i l f l ^ f c r ^
: ^ JW////m f • •• ̂ m^i^ :

1 _ I : :
N-2………：圓丨隱….：….…

• -̂̂ B̂ AmK: WJ//rTMr^ ‘ y^_._^^m ^ M F - ^

隱

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y

Figure 5.4: Original shape and control lattice

can be found attached in the Appendix on p. 133. They are listed and

described in a hierarchical structure as follows,

1. formlattice.m This is the main control program for the model

reconstruction implementation. It governs the flow of the programs

according to the description above, from finding correspondence

between data points and original model points, building control layers

from all contours, forming control lattice by control layers stacking,

parameter triple interpolation to object model reconstruction.

1.1 newfparam.m This function solves the Point Inversion Problem

(see section 4.2.2) for all data points

1.1.1 findp.m It implements the iterative algorithm for solving

the Point Inversion Problem for one data point.

1.2 buildgrid.m It constructs control layer for each contour. This
includes building of the boundary and the core of a control layer.

CHAPTER 5, IMPLEMENTATION 116

(
Deformed shape

4 � ； . … > ^ ^ ~ ~ : ^ ^ r " ® ^ . . . :
^y^ |̂m̂ ĝft̂ B̂W|̂ N̂ŝ .

n^ -,^m^W^h^ ^ ^
M c ^m77mTfT7TTT TTl V T* v ^ W y ST ~ ^ ^ • .

； ^ ^ ^ ^ ¾ ^ :

j>>jrêwyy,.f.jyŷ - :•̂冬̂ [̂-济7户冬"̂^̂；̂ |̂、 • •

2..........丨........̂ m̂........丨........

0........丨........'̂m.......丨.......：
: : - ^ ^ ^ ；；

N-2..........i........̂ »̂.........:.........；

: 'C^^fW^ ：:
； (- r y r t j ^ y i ^ ： :‘

-........：........j\ P J \........：......‘.：
； ;\ \《：：： \ :

_8 i i 4 ~ L " ^ i ~ ~ " l ‘ ‘ ‘
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y
Figure 5.5: Side view of deformed shape

1.2.1 getpol.m This function recovers the control polygon

of a closed contour. The control polygon will become the

boundary of a control layer.

1.2.2 isint.m This function checks whether there are

intersections between ellipses and the control polygon in the

stage of determining the size of the inner grid, which will

become the core of a control layer. Details can be referred to

section 4.4.3.

CHAPTER 5, IMPLEMENTATION 117

Deformed shape
• . ‘ * . ' • •

書.• • . • •争
• . • ‘ • • • •

-！息
^ ^ ^ K ^ ^ - ^ ^

N/ 一2 - 2
y X

Figure 5.6: Deformed shape
1.2.3 phasediff.m It determines the phase angles of control

vertices in one layer relative to the northwest corner of

the corresponding bounding box. This information is

important in rearrangement the control vertices for control

layer boundary.

1.3 surfRt.m This function tackles the automatic (s, t, u) parameter

triple generation by parameter triple interpolation, discussed in

section 4.3.

CHAPTER 5, IMPLEMENTATION 118

NFFD example
. • ‘ .

• . • . • • . ‘ ‘ . '•
骨.• • . ‘ ‘ • .* * • •, . • ' ' • • * ‘ . . • ‘ • . • ' •

...-•.• ： . . _ : . . ； ••. . . ‘ • • . • ‘ . * . . , ‘ •
. • ‘ ‘ • • • ‘ • ‘ . . “ . .• ‘ • . • ‘ • ‘ • • ‘ * .

• • ‘ ‘ • . . ‘ • • ‘ •• ‘ • . . . ' ‘ • . • ‘ • . • ‘ . • • .
4 v : , : • ,:: ••：••..

。、.......:1..........丨..会一.4........丨.:1.......:丨
N - 2、 ： - r - i 一 , : 、 ： ： ：

-4� : : ^ T S�� :：

- 6、〔丨 : : :％ . . . 〉 \ 丄 丨 : . 丨

i k r : : . : . . : < . . . : : � . . . } , . . : : : < : � . . : : : : . � ^
^ v < ^ ^
1 ^ \ _ x - ^ ^ 2

^ ^ ^ K ^ > ? ^
V - 2 - 2
y X

Figure 5.7: Deformed shape (shaded)

1.3.1 surfparam.m This function computes all parameters

pair {fj, v) corresponding to all (s, t, u) parameter triples for

B-spline surface interpolation.

1.3.1.1 curparam.m This function computes parameter

values fj and P of each iso-parametric curves.

1.4 fnffdl.m This function performs the Free Form Deformation

(FFD) process for object model reconstruction. This function is

also employed for testing data generation.

CHAPTER 5, IMPLEMENTATION 119

(FFD example - using Trivariate Bernstein polynomial
4 「 ；. • ^ ^ — " ^ ^ ^ — ^ ? ^ .： :

^^^ jg^^^JTnXZ"} l\\yw?y3TM- ^̂^̂ • • .
• Qe；̂. -i^^ro '1^^¾!' ^̂ ^̂ ^ : :
:. : ^ ^ ^ m ^ m ^ : ； ；
： ：^^^mrnl !^ .^v^^m^ • .

2.......…丨........̂K.........丨.........；

: ^^^^"^^二二；冗頸 • :

； < ^ ^ ^ ^ ^ S > ；；
N-2-……:_...•...._̂ P̂ >̂；.........：

丨 J ^ � � ' ^ £ i ^ i f f \ : :
: < ^ ^ ^ ^ $ f 7 ^ ： ；

-4•........•；.........V ^̂？？存 \.......；…...…；

.i....丨..—;\W/；:；
8 i i\ 1^ /~i i i
- 2 - 1 . 5 - 1 - 0 . 5 0 0 . 5 1 1 . 5 2 y

Figure 5.8: Example using Bernstein-based FFD

CHAPTER 5, IMPLEMENTATION 120

2. Auxiliary functions These are several auxiliary functions that are

also very crucial in the implementation. For instance, spcol computes

the B-spline basis and its derivatives values for a list of parameters for

a given order and knot vector and pinv calculates the pseudo-inverse of

a matrix and it has been widely employed in control polygons recovery

steps and surface interpolation.

5.5 3D Model Reconstruction Examples

In this section, two examples for 3D models reconstruction will

be illustrated. The first example illustrates the 3D model reconstruction

from a set of uniformly sampled contours along the search direction. On

the other hand, the second example illustrates model reconstruction from a

set of contours points traced according to the exploratory procedure (EP)

proposed in section 3.2.2.

5.5.1 Example 1

The example illustrates the 3D model reconstruction of a complex

object with frequent curvature changes along the search direction on the

object surface, as shown in Figure- 5.9. In order to rebuild the object model,

27 contours had been traced uniformly along the search direction on the

object surface. Each contour consisted of 81 object surface points along it.

Using the algorithm proposed in section 4, the object model is reconstructed

in MATLAB running on a Sun Ultra 1 machine and the time elapsed for

the model recovery is 1042.2s or about 17.37 minutes. The control lattice

for that object model is depicted in Figure- 5.10. Figure- 5.11 shows the

recovered shape of test object 1. The crosses located in the figure locate all

data points used in 3D model reconstruction. Figure- 5.12 and Figure- 5.13

depict the top and side views of the recovered object model. From these

CHAPTER 5, IMPLEMENTATION 121

Original Shape

_

y X

Figure 5.9: Test object 1

two figures, the recovered shape generally follows the shape changing of test

object 1. However, there is little shape discrepancy between the sensed data

points and the recovered shape. In addition, the shaded object model is also

shown in Figure- 5.14.

5.5.2 Example 2

The example illustrates the 3D model reconstruction of the test

object shown in Figure- 5.15. The separation between neighbouring contours

is non-uniform. The contour separations are set according to the criteria for

step size determination discussed in section In order to rebuild the object

model, 24 contours had been traced uniformly along the search direction

on the object surface. Each contour consisted of 41 object surface points

along it. Using the algorithm proposed in section 4，the object model is

reconstructed in MATLAB running on a Sun Ultra 1 machine and the time

CHAPTER 5, IMPLEMENTATION 122

Initial recovered deformed control lattice
.• •.

. . • • • " • • - .

..••••••• .:.....

......_.. ； ..•••••••••. : . - _ . .

...:......... ^ f e s ^

P:::__::
' l ^

y X

Figure 5.10: Recovered control lattice of test object 1.

elapsed for the model recovery is 594.4s or about 9.9 minutes. The control

lattice for that object model is depicted in Figure- 5.16. Figure- 5.17 shows

the recovered shape of test object 2. The crosses located in the figure locate

all data points used in 3D model reconstruction. Figure- 5.18 and Figure-

5.19 depict the top and side views of the recovered object model. From

these two figures, the recovered shape matches with the shape of test object

2 quite well. However, there is little shape discrepancy between the sensed

data points and the recovered shape. In addition, the shaded object model

is also shown in Figure- 5.20.

CHAPTER 5. IMPLEMENTATION 123

Recovered Shape
.• •.

.

..• ‘ '. •‘..
.• • ‘ ； *. _

. • • • ； 二 ； ‘ • . • ‘

^fe^lliii^;
4� TBffBihtiMi

I : ^B^̂ M f̂ff%,, ^

。..•.」.....：̂^̂̂ ^̂
• : ^ ^ ^ ^ ¾ ^ . . ‘

. : | _

2 \ ^ ^ ^ ^ ^^^^

^ ^ ^ ^ 5 < r ^
y X

Figure 5.11: The recovered shape of test object 1.

Recovered Shape

1.5 -. . .: : :• ！ ： ：

; | ^^
- ^ ^ ^ ^ ^

- 1 -••： : \

-1.5 “：
i i i i i i i

2.5 2 1.5 1 0.5 0 -0.5
y

Figure 5 .12: T o p v iew o f the recovered shape o f test o b j e c t 1.

CHAPTER 5. IMPLEMENTATION 124

<
Recovered Shape

4「 ： : : ：••••

1_ . . . - ^ ^^^^K�
: . ^ ^ ^] :

• H-H-4-1 I l'H I't I 14++4 —" ̂ 4. ++̂+-H-t+f+t4̂
-2 • m*^^^ ̂ ^ ,̂̂ r̂ 4-h -̂̂ -̂ ''̂ ^ ^^^^^
_3 -. • .W>WB((WIBiHHSPIWÎ *̂ '. . • •

_4l 1 i i ‘ ‘ ‘ ‘~~
- 0 . 5 0 0 . 5 1 1 . 5 2 2 . 5 y

Figure 5.13: Side view of the recovered shape of test object 1.

Shaded recovered shape
. • • • .• • . . ‘ , • •

. . ： ..:.....

...... : ； • • • -

.• • ‘. ‘ • •.
. • • _ ‘ ‘ 作 、 - ’ . . ’ . • .

...•••• ‘ ： ••••
4 丫 、’

2、........:： 警鶴一” . .:.....:•....

。....4... %^崎,：,..T........J ..

N ； - 、 ^ ^ ¥ ' : 1 為 . . ；

- 2 � . � . . . ‘ , • : * < ^ | : ..1........

...:.:.. 、、。/_力%^驚
- 4 ^ ^ :>.::... .'、 二 ^ ^ ^ ^ ^ ..:..:...

^ ^ / 2MW-- "'--. ^

^ < k ^
y X

Figure 5 .12: Top view of the recovered shape o f test o b j e c t 1.

CHAPTER 5. IMPLEMENTATION 125

Original Shape
..••••'"•.. ,_:::::

t:;::̂ !::̂
.-•••.. • • • . • • • • • , . .• • . • • • . • . ‘ • .

-4、〈... •••.
\ . : : : , . . , . : �

0 5 ^ \ ..:....<.. > ^ ^
^ " ^ : > : : : ^ ^ > ^ r ^ . 5

-o.^\^^^^^^^"^
y X

Figure 5.15: Test object 2

Initial recovered deformed control lattice

! _ :
-4>L ..::..

\ ^ ..•"••••： •••...••••
^ s ^)

>N̂
0 . 5 ^ \ .,.:.<. ^ X ^

^ ^ : > : ; ^ ^ ^ > ^ r ^ . 5

-0.̂ ^̂ <̂ ^̂ <"̂ "̂ ^̂ "̂̂
y X

Figure 5 .16: Recovered contro l latt ice o f test o b j e c t 2.

CHAPTER 5. IMPLEMENTATION 126

Recovered Shape
.• •.

. • • .
..•••"•

.• • • •.
.• •. ； ； ..

_:p^pi::
� � : I : : ^ ^ y . . . k >

-3�..... ， . : • • • : ^ ^ ^ . J
. ^ ^ ^ . .

. • . . •‘ . • . . • • ,.
-4>. ••••.

^v^ •„••• ^ \ •••••• .,.._._.. -> < ^ ^ ^
0 5 ^ \'::: ^ X ^

^ < ^ ^ ^ 0.5

o \ c : ^ ^ ^ ^
-0-5^^^-^^^-0.5

y X

Figure 5.17: The recovered shape of test object 2.

Recovered Shape

_

-0.5 0 0.5
X

Figure 5 .12 : T o p v iew o f the recovered shape o f test o b j e c t 1.

CHAPTER 5. IMPLEMENTATION 127

‘ Recovered Shape

陶
N -1.5 - Ĥ̂ +̂ 中 ̂ ¥̂ 沪1十=fe ++4ry

1士 +对令 .令务 +‘ +和4«4^

、 1 “ , : 離 ; ‘ 讀

4rĤ "*4*. —+ + .+A+̂ ^
一 3 “ nrt+4"M 4 f 孤+4 »-«+»w

^*'i'.fii： ̂ ¾̂¾¾¾>¾!¾'¾- -Ar,%'>i.f:^

—35- ^^^¾¾^ ……
丄。 ^Wl^>tfif£^

_ 4 ； ： ̂ m
- 0 . 5 0 0 . 5 y

Figure 5.19: Side view of the recovered shape of test object 2.
Shaded recovered shape

• • •.
• . ‘ • • . , .,• . •‘ ‘‘..

. • ‘ • '•.
. • • • . • . . • • . . •

....•: ： . . •••. ： . • •

. . . . r ^ ^ ^ ^ ^ ^ ^ ^ . . . :

� � : 1 . ^ ^ ^ ^ ^ ^ ^ : 1
_1� . • •. ； ‘ , -¥-f.^^^f/<4^. '̂"-' ‘ ‘ ‘ . •：•... • . • • . ‘.:. . ‘ • •. N /
‘ 1 ^ f - l l I W ^ ^ ^ ^ ^ --;-......

- 3 - - - 1 - . .L , ,\ /.i :J.i.k
• . • • • . ‘ / ' • . : , • • .
• • • • • • • • • ..;¾:::...:.:..::.::::,::::::.-" . • • • • • • , • • .• • ‘ ‘ • • • ‘ ‘ • . • ‘ ‘ . •

..... •..• • • • • •‘ ‘
A • . . . • • . . •".' ；

- 4 、 〈 " ^ \ .、•..• ^ ^ ^ >

� . ^ \ < ' : : : : : : > < , : ^ > ; r

^ ^ < s ^ ^
-0.5^v^^^^^_0.5

y X
Figure 5 .12: Top view of the recovered shape o f test o b j e c t 1.

Chapter 6

Conclusion

In this dissertation, the problem of 3D model reconstruction by

active haptic exploration alone is investigated.

A geometric model for model representation is proposed in this

dissertation. The geometric model includes two components. The first

component is a superquadric model for general shape description. The

second component enhances the superquadric model by fine tuning its shape

by a technique called Free Form Deformation or FFD. This is a very flexible

model. Using B-spline basis in description of trivariate parametric solids in

FFD can even improve the control of the shape.

An active sensing strategy of contour tracing is proposed for 3D

coordinates ofobject surface points acquisition. This includes a Exploratory

Procedure, proposed in this thesis, which guide the robotic hand with tactile

sensor array mounted on its fingertip where to begin a new tracing on

the object surface. The separation between adjacent contours depends

on curvature K and change in curvature A^ along the search direction.

Moreover, an algorithm is also proposed for 3D model reconstruction from

data acquired by tactile sensor data.

128

CHAPTER 6. CONCLUSION 129

6.1 Future Work

This dissertation can be further extended in the following aspects,

• Develop and implement an efficient contour following algorithm for

a multi-fingered dextrous robotic hand with tactile sensor arrays

mounted on fingertips. In this dissertation, I assume that a contour

following algorithm is developed and implemented in the haptic

exploration system. With the aid of an efficient contour tracing

strategy, the shape reconstruction process will be facilitated.

• Speed up the computation of B-spline basis and its derivatives

evaluation by developing parallel algorithm for the evaluation. The

B-spline basis and its derivatives need to be computed frequently

in B-spline based free form deformation (BFFD), surface fitting in

tactile sensor data, shape recovery by least square error method,

etc. If this frequent evaluation is speeded up, the whole shape

reconstruction process can be much efficient. One possible remedy is to

construct pipelined architecture for B-spline basis and its derivatives

computation implementation [58].

• Setup an active haptic exploration testbed for testing algorithms

and experiments. Due to the incomplete of experimental setup,

experimental results are not presented in this dissertation. The

planned setup includes a dextrous hand with five fingers. Each finger

will be equipped with a 16 X 16 ultrasonic tactile sensor array on

fingertip. The hand system is mounted on a redundant robotic arm

with 7 degree of freedom. There are two techniques for acquisition

of object model data standards for comparison. The first one is to

generate each test object by a Rapid Prototyping System (RPS) which

generate 3D model prototypes rapidly and accurately according to the

model data fed into the system. We can compare the original shape

CHAPTER 6. CONCLUSION 130

data fed into the RPS with the reconstructed shape recovered from

the proposed algorithm with active haptic exploration. The other

technique is to gather object surface information from the Coordinates

Measuring Machine (CMM) first. Then, we can reconstruct the object

shape by active haptic exploration and compare the recovered shape

with the object shape measured by the CMM.

• Improve the level of robustness of derivatives estimation of tactile

sensor data for normal vector and curvature evaluation. As the higher

order information, like surface curvature is highly susceptible to noise,

robust estimation of derivatives should be achieved. One possible

improvement is to apply Extended Kalman filter [59] to optimally

estimate noise-suppressed sensor data points (by Adaptive Wiener

Filter and Median Filter discussed in section 3.4.2 on the tactile sensor

data surface. Then, the derivatives of the sensor data surface can be

derived by some numerical differentiation techniques.

• In this dissertation, the test object is assumed to be fixed in a

proper orientation and position on a platform. This unrealistic

assumption can be given up by incorporating the position and

orientation determination function into the original superquadric

model determination stage of the haptic exploration procedure (see

section 3.2.2) using the Solina's algorithm described in section 2.3.

After the Euler angles and the object position vector are found,

the transformation matrix T describing the test object position and

orientation with respect to the base frame can be obtained. With the

affine invariance property of B-spline, FFD and inverse FFD can be

performed in any space under affine transformation, like T. The data

points are first transformed into the base coordinate frame with T

before operations. After operations, they are then transformed back

CHAPTER 6. CONCLUSION 131

into their original frame.

• Improve the step size determination module so that it can handle a

large variety of shape. This can be implemented by a multi-layered

neural network with curvature K and change in curvature An as

inputs and contour step size s as output. Moreover, it can also be

implemented by fuzzy logic techniques. A set of membership functions

that describe the different ranges of fuzzy inputs, curvature and change

in curvature, with a set of linguistic variables, like SMALL, MEDIUM,

LARGE and so. In order to have reasonable results, a large set of

training data and testing data should be generated beforehand in the

two approaches.

• In this dissertation a separable step size function model was

considered. This means that the dependence of K and An, in the step

size function are independently. For instances,

s{K, An) 二 eWA«

s (� A 4 = in{aK + f3AK)

咖么《0 二 — +於…"

where 入，//, a and |3 are constants. In order to extend the model, non-

separable step size function model will be investigated. The effects of

non-separable step size function are also investigated.

• Analysis of the effect of the function templates of the curvature and

change in curvature employed in step size determination for contour

tracing in model reconstruction may be conducted. This analysis

includes finding the function template(s) that best fit the model

reconstruction of different kinds of objects, like objects with sharp

changes on their surfaces or objects with gradual changes or even on

CHAPTER 6. CONCLUSION 132

changes.

• A shape refinement algorithm would be developed to further improve

the likeness between the recovered shape from the heuristic model

reconstruction algorithm proposed in section 4.4 and the object shape

sensed by the haptic exploration system. This can be achieved

by advanced techniques of shape control of splines on the control

lattice recovered, including control points repositioning and weight

modification for NURBS based FFD in model construction [37][60][61'.

• The recovered shape may not be the same if different contour search

directions, including directions parallel to or different with the same

search axis, are employed in the haptic exploration procedures for

sensor data acquisition. This can be remedied by the recovery

of the major axis of the test object in the modified Grasp by

Containment stage (see section 3.2.2) using Principal Component

Analysis techniques [62] in the sparse data points acquired. The

contour search direction is then set to be parallel to the recovered

major axis. The recovered shapes should be consistent when it is

haptically explored by the system.

Appendix

All source codes written for this project are attached in this section.

formlattice.m
function [P,ngrids1,px,py,pz,ax1,ayl,az1]=form_lattice(dx,dy,dz,k,m,n,sm,tol)
•/• P=form_latt ice (dx,dy，dz,k ,m,n, sm ,tol) •/•

y* Function to form the deformed control lattice from data pts [dx,dy,dz]
•/• [dx,dy,dz] are matrices with each row represents a contour of data pts.
•/• [m,n]=dimension of the control layer.
•/• sm indicates the Search Method.
•/• sm=l for Fibonacci search, sm=0 for Golden Section Search
•/• tol is the error tolerance for the search
•/• k is the order of B-spline in closed curving fitting

•/• call buildgrid.m

i f ^ (S z e (d x r S i z e (dy)) I (size(dy)~=size(dz)) | (size(dz)^=size(dx)),
error('Dimensions of data points array NOT match!，）；

end:
p_ri .
disp^'Finding control polygon for each contour ...，）；
for i=l:mm,

dzz=mean(dz(i,:)).*ones(size(dz(i,:)))；
[cpgx, cpgy, cpgz, cpx, cpy, cpz, knot s, t, coimt J = .. •
buildgrid(dx(i,:),dy(i,:),dzz,k,m,n,sm,tol,l,0)；

P=[P; [cpgx(:) cpgy(:) cpgz(:)]]；
disp(sprintf(‘Contowc #%d has been processed. ‘,i))；

end;
ngridsl=[m-l,n-l,mm-lJ ；

disp('Reconstruction begins ...，)；
kk= f4 4 43 ；
knotx=openknot(kk(l),ngridsl(l))；
knoty=openknot(kk(2),ngridsl(2))；
knotz=openknot(kk(3),ngridsl(3))；

[px,py,pz]=newfparam(dx，dy，dz，[0.15 0•15]，kk,ngrids1’mm,nn)；

disp('Fitting the (s,t,u) parameter space …，）；
[pf itx,pf ity,pf itz,ku,kv,tu,tv]=surff it(px,py,pz,4)；
save pfitl pfitx pfity pfitz ku kv tu tv;

num=50； , 、
vv=linspace(0，1 ,num) ； uu=vv；
Nv=spcol(kv,4,vv); Nu=spcol(ku,4,uu)；
ppx=Nv*pfitx*Nu'；
ppy=Nv*pf ity*Nu‘；
ppz=Nv*pfitz*Nu'；
•/• To make sure the parameter computed in inside the range of [0,1]

133

Appendix 134

•/• il=find(ppx>l) ； i2=find(ppx<0);
•/• ppx=ppx(:); ppx(il)=ones(length(il),l) ； ppx(i2)=zeros(length(i2),l)；
7. ppx=reshape (ppx,nvaa.,num) ； il=find(ppy>l) ； i2=find(ppy<0)；
y. ppy=ppy(:); ppy(il)=ones(length(il),l)； ppy(i2)=zeros(length(i2),l)；
% ppy=reshape(ppy,num,num); i l= f ind(ppz>l)； i2=find(ppz<0)；
% ppz=ppz(:)； ppz(il)=ones(length(il),l)； ppz(i2)=zeros(length(i2),1)；
•/, ppz=reshape (ppz, num,num)；

ppx=min(ppx,1)； ppx=max(ppx,0)；
ppy=min(ppy，1)； ppy=max(ppy,0)；
ppz=min(ppz，1)； ppz=max(ppz,0)；

disp(‘Rebuilding the object model . • •，）；
for i=l:size(ppx,l),

[axt,ayt,azt]=fnffdl(ppx(i,:),ppy(i,:),ppz(i,:),
ngrids1，P，knotx，knoty，knotz，kk)；

axl(i,:)=axt; ayl(i,:)=ayt; azl(i,:)=azt;
end;

top=mean([axl(l,:)‘ ayl(l,:)'])；
bot=mean([axl(size(axl,1)，：）’ ayl(size(ayl,l)，：），]);
minss=0.02; % Min. step size
axl=[top(l).*ones(l,size(axl,2)); axl; bot(l).*ones(l,size(axl,2))]；
ayl=[top(2).*ones(l,size(ayl,2)); ayl; bot(2).*ones(l,size(ayl,2))]；
azl=[mean(azl(1,:)).*ones(1,size(azl,2))-l/2*minss； a z l ; . . .

mean(az1(size(azl，1)，:)).*ones(1,size(azl,2))+l/2*minss]；

figure;
plot_lattice(P,ngridsl)；
axis square equal；
xlabel('x'); ylabel('y'); zlabel('z')；
title('Initial recovered deformed control lattice，）；

f igure；
mesh(axl,ayl,azl)；
axis square equal；
xlabel(，X，)； ylabel(，y，)； zlabel(，z，)；
title(，Recovered Shape，)；

getpol.m

function [cpx，cpy’ cpz,NN1，knots,t,err，count]=getpo1(cx,cy’ cz,n’k’ tol,g) %

•/: Get the closed control polygon from the data pts
•/• obtained from a closed contour (not self-intersecting).

•/: Usage: [cpx’cpy，cpz,NN,knots,t，err，count] =getpo 1 (cx’cy，cz，n,k,tol)
•/• where [cpx,cpy,cpz] are the coordinates of the control polygon.
•/• [cx,cy,cz] are the coordinates of sample pts. Each is a row vector
•/• n is the number of control vertices needed.
•/• (Only define non-repeated vertices sequence, like B1,， B n .

% k is the order of the B-spline basis function used (3 or 4)
% NN is the basis function matrix.
•/• knots is the knot vector used
•/• err is the err. % repeating vertices & their corr. pseudo-vertices
•/• t is the parameter values for [cx cy cz]
% count is the no. of iteration used.
% if g==l, graphic output, else no graphics.

% Use open uniform knot vector

% n < N for reasonable speed and shape of control polygon.

•/: Reference: D. F. Rogers and J. A. Adams, Mathematical Elements for Computer
•/: Graphics, 2nd edition, McGraw Hill, pp.332-336，346-351

•/:

Appendix 135

•/• In addition, 1st and 2nd derivatives continuity constraints at the junction
7, between the first segment and the last segment of the closed curve are also
•/• added to the system. The minimum order is 3.
y, Parameters optimization by "Constrained B-spline curve and surface fitting"
•/• by Rogers, D.F. and Fog, N.G., Computer Aided Design 21，pp. 641-648.

N=length(cx)；
nl=n+K-l;
max it erat i ons=300 ；
if (nargin<6), tol=0.05; end;
knots=augknt(linspace(0,1,nl-k+2),k)；

•/• chord length parametrization
dx=diff(cx)； dy=diff(cy)； dz=diff(cz)；
dl=sqrt(dx•*dx+dy.*dy+dz•*dz)；
sumdl=sum(dl)；
t=zeros(1,length(dl)+l)；
for j=2:length(dl)+l

t(j)=dl(j-l)+t(j-l);
end
t=t./sumdl；

•/••/••/• knot vector •一 interior knot by averaging parameter values
•/••/••/• Bad result for closed curve
•/• knots=zeros(l,nl+k)；
7. knots(nl+l:nl+k)=ones(l,k); .
•/••/••/• Sample the data pt parameter value for averaging for interior knots
•/• ind=floor(linspace(l,N,nl))；
•/• ik=t(ind)；
y. for i=l:nl-k,
•/• knots(k+i)=mean(ik(i:i+k-l))； •/ pnd •
iuviJi:/m^^^
ratio=t;
err=100;
dt=zeros(size(t))；
count=0；

while'((err > tol) & (count < maxiterations))
tl=t+dt;
index=find(tl<0)；
t1(index)=t(index)；
index=find(tl>l)；
tl(index)=t(index)；
index=find(diff(tl)<0) ； •/• avoid decreasing parameter
•/• 11 (index) =t (index)；
if (any(index)-=0),

if (index(length(index))<length(t)-1),
t1(index+1)=mean([t1(index)； tl(index+2)]);

else
ind= index (1: length (index) -1)；
tl(ind+l)=mean([tl(ind)‘ tl(ind+2)']);
tl(index(length(index)))=mean([tl(index(length(index))+l)； 1]);

end;
end;
t=tl;
tt=repeat(t,3)；
NN=spcol(knots,k,tt)；
appendNN=zeros(k-1+2，size(NN，2))；
for i=l:k-l 、

appendNN(i，i)=1； appendNN(i，n+i)=-1；

lpp4ndNN(k:k+l,:) = [NN(2，:)-NN(3*N-1,:)； NN(3’:)-NN(3*N’:)]；

index=[l :3 :3*N] ;
NNl=NN(index,:);
index=[2:3:3*N]；
NNt=NN(index,:);
index=[3:3 :3*N];
NNtt=NN(index,:);
tempNN=NNl;

Appendix 136

NNl=[NNl;appendNN];
appenddata=zeros(k-1+2,3)；
datapt=[cx' cy' cz，； appenddata]；

7x//////m////x///////;/////;//////m
cpolygon=pinv(NN1,le-10)*datapt；

ttixt'aixixixvavLtvai:atva
cpx=cpolygon(:,1)，；
cpy=cpolygon(:，2)，；
cpz=cpolygon(:，3)，；

cpolygon=[[cpx(l:n)‘； c p x (l : k - l) ']…

[cpy(l:n)'; cpy(l:k-l)'] [cpz(l:n)'; cpz(l:k-l)']];

P=tempNN*cpolygon ；
p x = P (: , D ' ; py=P(:,2)'; pz=P(:,3)';

•/• Calculating delta t
Data=[cx;cy;cz;]；
Pt=NNt*cpolyeon;
Ptt=NNtt*cpoiygon；
ERR=Data-P^；

•/• Parameter Optimization by Josef Hoschek
nPt=sqrt(dot(Pt，,Pt，))；
nPt=nPt([1 1 1],:)；

•/• tempcpl=cpolygon'；
•/• tempcpl=tempcpl (:，l:n)；
•/• tempcp2=[tempcpl(:,2:n) tempcpl(: ,1)]；
7, dtempcp=tempcp2-tempcpl ；
•/• const=l/sum(dot (dtempcp,dtempcp))；
•/• dt=dot (ERR, Pt，. /nPt) • *const ； 、、
y, dt=dot (ERR,Pt')./sqrt(sum(Pt'.*Pt')).*const;

•/• Parameter Optimization by Roger and Fog.
dt=dot(ERR，Pt，)./sum(Pt，.*Pt，)./2；

•/• Another Parameter Optimization algorithm by Josef Hoschek
•/• May be wrong
•/• dt=dot (ERR, Pt，) • / (dot (ERR，Ptt，) +dot (Pt，，Pt，))；

ex=cpx(1:k-1)-cpx(n+l:n+k-l)；
ey=cpy(1:k-1)-cpy(n+l:n+k-l)；
ez=cpz(l:k-l)-cpz(n+l:n+k-l)；
err=sqrt(sum(ex•*ex)+sum(ey.*ey)+sum(ez.*ez))；
coimt=coimt+l;

end

if (g==l)
figure；
plot3([cpx(l:n) cpx(l)],[cpy(l:n) cpy(l)],[cpz(l:n) cpz(l)]); hold on;
plot3([cpx(l:n) cpx(l)],[cpy(l:n) cpy(l)],[cpz(l:n) cpz(l)],'rx')；
plot3(cpx(l:3),cpy(l:3),cpz(l:3)’'ro');
plot3(cpx(n),cpy(n),cpz(n)’'g*');
plot3(cx,cy,cz,'b')；
axis square equal
view(0,90)；
hold off; • 、、
title(sprintf('n=7.d, k=%d', n , k));
end;

cpolygon=[[cpx(l:n)'; cpx(l:k-l) '] [cpy(l:n)‘； cpy(l:k-l)'] [cpz(l:n)'; cpz(l:k-l)']];
P=tempNN*cpolygon;
px=P(:,l)，； py=P(:,2)，； pz=P(:,3)，；

if (g==l),
figure; hold on;

Appendix 137

plot3([px px(l)],[py py(l)],Cpz pz(l)],'g');
•/• plot3([cx cx(l)],[cy cy(l)],[cz cz(l)],'r');
•/• plot3(cx(l:10) ,cy(l:10),cz(l:10),'b');
plot3(cx(l),cy(l),cz(l),'yo')；
axis equal square；
view(0,90)；
hold off; 、、
title (sprintf ('Recovered curve, n=*/,d, k=/.d' ,n,k))；
end;

ex=cpx(1:k-l)-cpx(n+1:n+k-1)；
ey=cpy(l:k-l)-cpy(n+l:n+k-l)；
ez=cpz(l:k-l)-cpz(n+l:n+k-l)；
err=sqrt (sim(ex. *ex)+sim (ey. *ey)+siuo(ez. *ez))；

disp(sprintf('The error=7.f，,err))；
disp(sprintf('no. of iterations=*/,d',coTmt))；

ex=ex./cpx(l:k-l)*100;
ey=ey./cpy(l:k-l)*100;
ez=ez./cpz(l:k-l)*100;
err=[err ex ey ez]；

disp(['The percentage error of x-coordinates of pseudo-vertices are ‘,mat2str(ex,5)]);
disp(['The percentage error of y-coordinates of pseudo-vertices are ‘,mat2str(ey,5)])；
disp(['The percentage error of z-coordinates of pseudo-vertices are ‘,mat2str(ez,5)])；

cpx=cpx(1:n) ； cpy=cpy(1:n)； cpz=cpz(1:n)；

if (g==l),
figure(gcf-l)；
hold on;
scpx=sort(cpx)； scpy=sort(cpy)；
xleft=scpx(l)； xright=scpx(n)；
ytop=scpy(n)； ybottom=scpy(l)；
xx=[xleft xright xright xleft xleft]；
yy=[ytop ytop ybottom ybottom ytop]；
zz=cpz(l:5)；
plot3(xx,yy,zz,'y')；
end;

buildgrid,m

function [cpgx，cpgy，cpgz,cpx,cpy’cpz,knots，t,coimt]=buildgrid(cx,cy,cz,k，m,n,sm,tol，layer,g)

•/• [cpgx, cpgy，cpgz] =buildgr id (cx, cy，cz, k，m, n，sm, tol) %

•/: Function to compute 1 control layer from data pts [cx cy cz]
•/• This includes the boundary of the grid (the control polygon recovered
% from [cx cy cz]) and the inner grid (calculated by meshgrid the vertices
•/• of the largest rectangle that wholly inscribed inside the control polygon.
*I�
•/: [cpgx,cpgy,cpgz] is the coordinates of 1 control layer grid.
% layer is a complex parameter. It has size of 1 or 3.
% if size(layer)=[l 1], first layer and layer=l, the layer index
% if size(layer)=[l 3], layer=[layer_index pivot],where pivot=[px,py] is
•/• the coordinates of the pivot vertex
•/• [m,n] is the dimension of the control layer grid.
% sm indicates the Search Method.
•/. sm=l Fibonacci Search, sm=0 Golden Section Search
•/• tol is the tolerance for the search
•/• if g==l, graphics output, else no graphics.
*I�
•/: call getpol.m, isint.m, phasediff.m

if (nargin<9) , layer=l； end; 7, Default is for the first layer
if (nargin<8), tol=le-6; end;

Appendix 138

if (nargin<7), sm=l; end;
if (nargin<6)， n=m; end;
if (nargin<5), error('Too few input parameters ! ! ! ， ） ； end;

toll=mean([abs(max(cx)-min(cx)),abs(max(cy)-min(cy))])*0.02；
nn=2*(m+n-2) ； ， , , ‘ ^,…
[cpx，cpy,cpz,NN，knots，t，err，count]=getpo1(cx，cy，cz，nn,k，toll，0)；

scpx=sort(cpx)； scpy=sort(cpy)；
xleft=scpx(l)； xright=scpx(nn)；
ytop=scpy(nn)； ybottom=scpy(l)；

•/• Coordinates of the bounding box
xx=[xleft xright xright xleft xleft]；
yy=[ytop ytop ybottom ybottom ytop]；

•/• Center of the bounding box
center=l/2*[(xleft+xright) (ytop+ybottom)]；

\ size of the bounding box
l=xright-xleft； w=ytop-ybottom；

maxit=50; •/• Max iterations
if (sm==l),

y, Generate the Fibnacci sequence
fib=[l 1]；
for i=3:maxit, 、_̂

fib=[fib fib(i-l)+fib(i-2)]；
end;

end;

•/• Test whether the conic is inside the control polygon

% if the conic is wholly inside the control polygon, all line segemnts formed
•/• by consecutive control vertices lie outside the conic.

•/• ie. All the straight lines of the line segments do not have any intersection

•/• with the conic.
dcpx=diff([cpx cpx(l)]); dcpy=diff([cpy cpy(l)]);
a=tol; b=l;

whiler'((count>maxit-l) I (abs (b-a)<=toD))
temp=[a b]；
y l = D i y2=[];

°yli[yi^isint([dcpy(i) dcpx(i) dot([cpy(i) -cpx(i)]‘,

[dcpx(i) dcpy(i)]')],l/2*a*[l w],center)]；
y2=[y2 isint([dcpy(i) dcpx(i) dot([cpy(i) -cpx(i)]‘,

[dcpx(i) dcpy(i)]，）],l/2*b*[l w],center)]；
end; ,
yl=sum(yl); y2=sum(y2);
if (sm==l),y. Fibonacci Search

al=a+f ib (maxit-count-1) /f ib (maxit-coimt+1)* (b-a)；
bl=a+f ib (maxit-coimt) /f ib (maxit-coimt+1) * (b_a)；

else •/• Golden Section Search
al=b-0.618*(b-a)；
bl=a+0.618*(b-a)；

end;

•/• Case(i) : if both ellipse cross the control polygon
% C1 and C2 are outside or crossof the control polygon
if ((yl>0) & (y2>0)), a=temp(l)； b=al; end;

•/• Case(ii) : if C2 cross the control polygon while C1 does not
•/• C1 is inside the control polygon while C2 crosses or is outside it
if ((yl==0) & (y2>0)), a=al; b=bl; end;

•/• Case(iii) : if both C1 & C2 do not cross the control polygon
•/• C1 and C2 are inside the control polygon
if ((yi==0) & (y2==0)), a=bl; b=temp(2)； end;

•/• Case(iv) : if C1 crosses the control polygon, while C2 does not

Appendix 139

•/• C1 crosses or outside while C2 is inside the control polygon
\ Contradiction since size(Cl)<size(C2)
y.if ((yl>0) & (y2==0)), a=al; b=bl; end;

coimt=coimt+l;
end;
lam=0.5*(a+b)；

y, The new dimension of the bounding box becomes
l=lam*l*0.95; w=lam*w*0.95;

y, The 4 corners of the inner grid
xleftl=center(1)-1/2； xrightl=center(1)+1/2；
yt op1=cent er(2)+w/2； ybottoml=center(2)-w/2；

7, Build inner grid
xx=linspace(xleftl,xrightl,n-2)；
yy=linspace(ybottom1,ytop1，m-2)；
[xx,yy]=meshgrid(xx,yy)；
zz=cpz(1)*ones(size(xx))；

% Reorder the control vertices of the control polygon
if (size(layer==l)==[l 1])

pivot=[xleft ytop]；
else

pivot=layer(2:3) ； •/• other layer
end
cen=center(ones(l,length(cpx)),:)，；
[mdphase, index] =min (abs (phasediff ([cpx ； cpy]-cen，...
pivot(ones(1,length(cpx))，:)，-cen)))；
t cpx=cpx(1)； tcpy=cpy(1)；
if (index>l),% if index==l, no need for reordering

cpx=cpx([index:nn,1:index-1])；
cpy=cpy([index:nn,1:index-1])；
cpz=cpz([index:nn,1:index-1])；

end

•/• Reorder the boundary vertices and inner grid vertices
•/• into a control layer grid
•/• boundary vertices index
indexb=[l:m: (n-l)*m+l,(n-l)*m+2:m*n, (n-l)*m:-m:m, (m-l) :-1:2]；
cpgx(indexb)=cpx; cpgy(indexb)=cpy; cpgz(indexb)=cpz;

•/• inner grid index
indexg=[l:m*n]；
indexg=reshape(indexg,m,n)，；
if (abs(atan2(tcpy,tcpx))>pi/2),

indexg=rot90(indexg(2:n-1,2:m-1)，，1) ； % <
else 、 、

indexg=rot90(indexg(2:n-1，2:m-1)，1)；
end;
indexg=indexg(:)；
cpgx(indexg)=xx(:)； cpgy(indexg)=yy(:) ； cpgz(indexg)=zz(:)；
cpgx=reshape(cpgx,m,n)；
cpgy=reshape(cpgy,m,n)；
cpgz=reshape(cpgz,m,n)；

i f (g== l) ,
•/• Plot the resultant control layer
figure;
mesh(cpgx,cpgy,cpgz)； axis square equal； grid on;

^ a b e U ' x ') ; ylabel('y'); zlabel('z')；
title('One recovered control layer，）；
hidden off; 、
plot3(cpx,cpy,cpz,，ro，）；
plot3(cpx(l:3),cpy(l:3),cpz(l:3),'g*');
plot3(cpx(nn),cpy(nn),cpz(nn)’，bo，,cpx(nn),cpy(nn),cpz(nn)’，yx，）；
\ set(gca’，ZLim，,[500 800]’，YTick，，[-20:10:20],，XTick，’[480:10:520])；
•/• view(0 ,90) ;

Appendix 140

end;

isint.m
function y=isint(l,d,center)

% y=isint(l,d,center)

•/• Test whether a straight line defined by 1 intersects with
•/• the conic defined by c with centre at centre y.
•/• l=[a b c] , d=[p q], center= [xc yc]；
•/• Straight line equation : ax+by+c=0,
7. Conic equation : p"2(x-xc)~2+q"2(y-yc)~2-(pq)~2=0;
y, y=l if they have intersection else y=0

a=l(l); b=l(2); c=l(3);
p=d(l); q=d(2);
xc=center(l)； yc=center(2)；

if (a==0),
k=-c/b;

if (g < abs(k-yc))

else

y=l;
end

elseif (b==0)，
k=-c/a;
if (p < abs(k-xc))

y=0;
else

y=i;
end

else
c=(a*xc+b*yc+c”2;
if ((q-2*b-2+p"2*a"2) < c)

y=0;
else

y=i;
end

end

phasediff.m

function dtheta=phasediff (vl,v2)

•/• Calculate the phase angle difference between 2D vectors vl and v2.
7, Use rotation to model phase difference

% The mathematical model is as follows,

•/: [v2_x v2_y] = [vl_x vl_y]*[cos(a) sin(a) ;-sin(a) cos(a)]；

•/: =>[v2_x v2_y]"T= [vl_x -vl_y;vl_y vl_x]*[cos(a) sin(a)]"T
•/• =>v2 = vl_n * A
•/• =>A=inv (vl_n) *v2

% If vl and v2 contains several sets of vectors and are arranged as

•/• vl=[vl l I vl2 I vl3 丨] ,
•/• First concatenate each vectors in v2 as a column vector.
% Arrage each vli_n at the diagonal of the resultant matrix vl_n
•/• then, A= [cos(al) sin(al) cos(a2) sin(a2)]~T

N=size(vl,2): ,
if (size(vl,2)^=size(v2,2))

N=min(size(vl,2),size(v2,2));
vl=vl(:,l:N)； v2=v2(:,l:N)；

end;

Appendix 141

*/• Make v2 as column vector
v2=v2(:)；
vln=zeros(2*N，2»N)；
for i=l:N,

temp=[vl(l,i) -vl(2,i);vl(2,i) vl(l,i)];
vln(2*(i-l)+l:2*i,2*(i-l)+l:2*i)=temp;

end;
A=inv(vln)*v2;
B=A(2:2:2*N)，；
A=A(1:2:2*N-1)‘；
dtheta=atan2(B,A)；

fnffdl.m
function [x，y,z] =fnffdl(px，py，pz，ngrids，pnew,knotx，knoty,knotz，k)
[m,n]=size(px)；
x=zeros(m,n)；
y=x； z=x；
nx=ngrids(l)； ny=ngrids(2)； nz=ngrids(3)；
y, tO=cputime;

for iy=l:n
bx=spcoll(knotx,k(1),px(:,iy)，）；
by=spcoll(knoty,k(2),py(:,iy)，）；
bz=spcol1 (knotz，k(3)，pz(:，iy)，)；

•/•for iy=l:n
for ix=l:m

7, index= ix* (n-1) +iy ；
tx=repeatp(bx(ix，:)，(ny+l)•(nz+l))；
ty=repeatp(repeat(by(ix,:),nx+l),nz+l)；
tz=repeat(bz(ix,:)’(nx+l)*(ny+l))；
•/• scale=h，• *tx. *ty. *tz ；
y. den=sum(scale).;
X(ix,iy)=sum(tx.*ty.*tz.*pnew(:,1)，）；
y(ix,iy)=sum(tx.*ty.*tz.*pnew(:’2)，）；
z“x,iy)=sum(tx.*ty.*tz.*pnew(: ,3)，）；

end

y. disp(sprintf('CPU Time for fnffd.m=%f ',cputime-tO))；

findp,m

function [px，py，pz,r，count]=findp(p,knotx’knoty,knotz’k，ngrids,CL,seed,tol)
•/• Point Inversion Problem
•/• Solve (s,t,u) for the point p .
•/•

% [px,py，pz]=findp(p，knotx，knoty’knotz，k，ngrids，CL，seed)
•/• CL = control lattice
•/• seed = initial guess
% parameter range [0,1] => seed=[0.5 0.5 0.5]

maxit=50;
coimt=0;
flag=0;
pp=seed;
nx=ngrids(l)； ny=ngrids(2)； nz=ngrids(3)；
if (nargin<9)’

el=le-6; e2=le-6;

el:f=tol(l); e2=tol(2);

whiie ((count < maxit) & (flag==0))
tx=spcol(knotx,k(1),pp(l)*ones(l,3))；
ty=spcol(knoty,k(2),pp(2)#ones(l,3))；
tz=spcol(knotz,k(3),pp(3)*ones(l,3));

Appendix 142

s=repeatp(tx(1,:) ,prod([ny nz]+l))；
t=repeatp(repeat(ty(1,:),nx+l),nz+l)；
u=repeat (tz (1，:) ,prod([nx ny]+l))；

ds=repeatp(tx(2,:),prod([ny nz]+l))；
dt=repeatp(repeat(ty(2,:),nx+l),nz+l)；
du=repeat (tz(2,:),prod([nx ny]+l))； ‘

dss=repeatp(tx(3,:),prod([ny nz]+l))；
dtt=repeatp(repeat(ty(3,:),nx+l),nz+l)；
duu=repeat(tz(3,:),prod([nx ny]+l))；

•/• X
tm=s.*t.*u;

x=sum(tm.*CL(:,l)') ； y=sum(tm.*CL(:,2) ‘)； z=sum(tm.*CL(:,3)‘)；

7. Xs
tm=ds.*t.*u; , 、、
dsx=sum(tm.*CL(:，1),)； dsy=sum(tm.*CL(:,2)，）； dsz=sum(tm.*CL(:,3)，）；
7. Xt
tm=s.*dt.*u; , , 、、
dtx=sim(tm.*CL(: ,1) ,) ； dty=sim(tm.*CL(: ,2)，）； dtz=sum(tm.*CL(:,3)，）；

•/• Xu
tm=s.*t.*du; , , 、、
dux=sum(tm.*CL(: ,1) ') ； duy=siun(tm.*CL(: ,2) ') ； duz=sum(tm.*CL(:,3)')；

•/• Xss
tm=dss.*t.#u；

dssx=sum(tm.*CL(:,1)')； dssy=sum(tm.*CL(:,2)')； dssz=sum(tm.*CL(:,3)');

7. Xtt
tm=s.*dtt.*u; , 、、 ， … ， „ 、 ， 、

dttx=sum(tm.*CL(:,1),)； dtty=sim(tm.*CL(:,2)，）； dttz=sim(tm.*CL(:,3),);
7. Xuu
tm=s•*t•*duu；

duux=sim(tm.*CL(: ,1)，）； duuy=sum(tm.*CL(: ,2)，）； duuz=sum(tm.*CL(:,3)，）；

•/• Xst
tm=ds.*dt.*u; , 、、 ， … ， 。 、 ， 、

dstx=sim(tm.*CL(:,D'); dsty=sum(tm.*CL(: ,2)，）； dstz=siua(tm.*CL(:,3)，）；
•/• Xsu
tm=ds.*t.*du； , 、、 , „T, 0、，、
dsux=sim (tm.*CL(:,1)，）； dsuy=sum(tm.*CL(:，2),)； dsuz=sum(tm.*CL(:,3)');

•/. Xtu
tm=s.*dt.*du； 、 . m , „、，、
dtux=sum(tm.*CL(:,l),); dtuy=sim(tm.*CL(:,2)，）； dtuz=sum(tm.*CL(:,3)');

•/. R 1

r=[x y z]-p;

J=zeros(3,3) ； •/• J is the Jacobian matrix which is symmetric
J(1，1)=dot([dsx dsy dsz]，，[dsx dsy dsz]，)+dot(r，，[dssx dssy dssz]，)；
J(2,2)=dot([dtx dty dtz]‘,[dtx dty dtz]')+dot(r',[dttx dtty dttz]‘)；
J(3,3)=dot([dux duy duz],’[dux duy duz]，)+dot(r，’[duux duuy duuz]，)；
J(1,2)=dot([dtx dty dtz]，，[dsx dsy dsz]，)+dot(r，，[dstx dsty dstz]，)；
J(l,3)=dot([dux duy duz],’[dsx dsy dsz]，)+dot(r，’[dsux dsuy dsuz]，)；
J(2,3)=dot([dux duy duz]，，[dtx dty dtz]，)+dot(r，,[dtux dtuy dtuz]，)；
J(2,l)=J(l,2); J(3,l)=J(l,3)； J(3,2)=J(2,3)；

kk=-[dot(r，，[dsx dsy dsz]，) dot(r，，[dtx dty dtz],) dot(r，，[dux duy duz]，)]，;

dp=inv(J)#kk;
pp=pp+dp，；

•/•if (pp(l)<0), pp(l)=0; end;
7.if (pp(l)>l), pp(l)=l; end;
•/•if (pp(2)<0), pp(2)=0; end;

Appendix 143

7.if (pp(2)>l), pp(2)=l; end;
7.if (pp(3)<0), pp(3)=0; end;
7.if (pp(3)>l), pp(3)=l; end;

pp=max(pp,0)； pp=min(pp,l)；

7. Tests
•/• Point coincidence test
lr=norm(r)；

•/• Zero cosine tests
fs=abs(dot([dsx dsy dsz]‘,r'))/norm([dsx dsy dsz])/lr;
ft=abs(dot([dtx dty dtz]‘,r'))/norm([dtx dty dtz])/lr;
fu=abs(dot([dux duy duz]，，r，))/norm([dux duy duz])/lr；

•/• Parameter not change significantly
f=norm(dp(l)*[dsx dsy dsz]+dp(2)*[dtx dty dtz]+dp(3)*[dux duy duz])；

flag=(lr<=el) I ((fs<=e2) & (ft<=e2) & (fu<=e2)) | (f<=el);
coimt=count+l;

end;

•/• For closed solid, make sure the parameters lie in the range [0,1]

px=pp(l)； py=pp(2)； pz=pp(3)；

newfparam • m

fimct ion [px, py ’ pz] =newfparam (x ’ y，z ’ orgparam, k ’ ngrids, m，n)
•/• [px，py，pz] =newfparam (x，y，z，orgparam, k，ngrids，pO, s iz) %

% Find correspondence between data point and model point on the original shape

pO=[-l -1 -1]; siz:[2 2 2];
nth=n-l;
•/• [m,n]=size(x)；
•/• x=x (:) ； y=y (:) ； z=z (:)；
el=orgparam(l)； e2=orgparam(2)；

knotx=openknot(k(l),ngrids(l))；
knoty=openknot(k(2),ngrids(2))；
knotz=openknot(k(3),ngrids(3))；

•/••/••/••/••/••/••/••/••/••///••/••/••/••/• Correspondence Problem %•/••/••/••/••/••/••/••///••/••/••/••/••/••/•
maxx=max(x(:))； minx=min(x(:))；
maxy=max(y(:))； miny=min(y(:))；
maxz=max(z(:))； minz=min(z (:))；

nsiz=l.0*abs([maxx-minx,maxy-miny,maxz-minz])；
cen=mean([[maxx minx]‘ [maxy miny]， [maxz minz]，])；
npO=cen-nsiz/2;

•/• Normalize the data point into the domain [-l,l]x[-l,l]x[-l,l]
7.nx= (x-npO (1)-l/2*nsiz(1)) *2/nsiz (1)；
%ny=(y-npO(2)-l/2*nsiz(2))*2/nsiz(2)；
nz=(z-npO(3)-1/2*nsiz(3))*2/nsiz(3)；

phi=atan2(linspace(-l,l,size(nz,l))，,ones(size(nz,l),1)),；
•/• phi=atan2(nz(: ,1) ,ones(size(nz,l) ,1))，；
nphi=length(phi)；
theta=[_nth:2:nth]/nth*pi；

ta=siz/2; al=ta(l)； a2=ta(2)； a3=ta(3)；
cosphi=cos(phi)； sinphi=sin(phi)；
costh=cos(theta)； s inth=s in(theta)；
for i=l:nphi,

rho= ((abs (costh. *cosphi(i)) . ~ (2/e2)+abs (sinth.*cosphi (i)). ~ (2/e2)) ." (e2/eD+ . •.
abs(sinphi(i)).~(2/el))•"(-el/2)；
xx(i,:)=al.*rho.*costh.*cosphi(i)；

Appendix 144

yy(i,:)=a2.*rho.*sinth.*cosphi(i)；
zz(i,:)=a3.*rho.*sinphi(i).*ones(l,nth+l)；

end;
xx=xx(:)； yy=yy(:) ； zz=zz (:)；
vi:i:/x/xi:m^^^
Porg=lattice(pO,siz,ngrids)；

options=foptions；
options(l)=-l；
options(2)=le-6;
options(3)=le-6;
options(5)=0;

load standard_stu;
total=length(xx)；
inc=roimd(total/10)；

for i=l:total,
ox=[xx(i) yy(i) zz(i)];
ix=f ind(xx(i)>=xs)； ix=ix(length(ix))；
iy=f ind(yy(i)>=ys)； iy=iy(length(iy))；
iz=find(zz(i)>=zs)； iz=iz(length(iz))；
seed=[ss(ix) tt(iy) uu(iz)]；
[pxt,pyt,pzt]=findp(ox,knotx，knoty,knotz，k,ngrids,Porg，seed)；
px(i)=pxt; py(i)=pyt; pz(i)=pzt;
if (rem(i,inc)==0), ，、

disp([num2str (roimd(i/total* 100)) ,，•/• completed.，])；
end;

end;
px=reshape(px，nphi，nth+1)；
py=reshape(py,nphi,nth+l)；
pz=reshape(pz,nphi,nth+l)；

v/:/:/:/:/:/:/m^^^ , , 、

•/, Begin to find an interpolation of [s,t,u] =f(a,b)
7, where f(a,b) is a bivariate B-spline function
•/••/••/••/••/••/•而^̂ ^

•/• [pf itx，pf ity，pf itz, ku，kv ’ tu，tv] =surff it (px，py ’pz，4)；

•/• save pfit pfitx pfity pfitz ku kv tu tv;

surffit.m
function [pf itx,pf ity,pf itz,ku,kv,tu,tv]=surffit(px,py,pz,kO)

•/• Interpolation of (s,t,u) parameter triple
% u is in the row direction
•/• V is in the column direction
[mm,nn]=size(px)；
[tu，tv]=surfparam(px，py，pz)；

•/• compute the 2 knot vectors, ku and kv resp.
ku=meanknot(kO,tu)；
kv=meanknot(kO,tv)；

•/• Begin interpolation
•/• In the row direction
NN=spcol(ku,kO,tu,l) ； •/• NN is in the almost block diagonal form
for i=l:mm,

CP=slvblk(NN,[px(i,:)‘ py(i,:)' pz(i,:)']);
Rx(i,:)=CP(:,D'; Ry(i’：）=CP(:’2)，； Rz(i,:)=CP(:,3)';

end; 、
NN=spcol(kv,kO,tv,1)；
for i=l:nn,

CP=slvblk(NN,[Rx(:,i) Ry(:,i) Rz(:,i)]);
pfitx(:,i)=CP(:,l); pfity(:,i)=CP(:,2); pfitz(:,i)=CP(:,3);

end;

Appendix 145

surfparam.m

funct ion [tu，tv]=surfparam(px，py ,pz)
•/• Compute the parameter for data point for surface interpolation
% tu is in the row direction
•/• tv is in column direction

[m,n]=size(px)；

•/• For each row
tu=[]；
for i=l:m,

tmp=curparam([px(i,:)‘ py(i,:)， pz(i,:)'])；
tu= [tu ； tmp]；

end;
tu=mean(tu)；

•/• For each column
tv=[]；
for i=l:n,

tmp=curparam([px(:,i) py(:,i) pz(:,i)]);
tv=[tv； tmp]；

end;
tv=mean(tv)；

curparam.m

function t=curparam(data)

•/• Find the parameter for each data point for curve interpolation
•/• Use Centripetal Parametrization

•/• This parameterization gives good result for data points with sharp turns.

N=length(data)；

% Assign paramterization of data points
dx=diff(data(:,D'); dy=diff(data(: ,2) ')； dz=diff(data(:,3)');
dl=sqrt(dx•*dx+dy.*dy+dz.*dz)；
sumdl=sum(sqrt(dl))；
t=zeros(1,length(data))；
for i=2:length(data), % Centripetal Parametrization

t(i)=t(i-l)+sqrt(dl(i-l))/sumdl;
end;

Bibliography

1] Christoph M. Hoffmann. Geometric and Solid Modeling: An
Introduction. Morgan Kaufmann, 1989.

•2] S. T. Venkataraman and T. Iberall, editors. Dextrous Robot Hands.
Spring-Verlag, 1990.

3] Stanley Corden, Lawrence M. Ward, and James T. Enns. Sensation
and Perception. Harcourt Brace and Company, fourth edition, 1994.

4] William SchifF and Emerson Foulke, editors. Tactual Perception: A
Sourcebook. Cambridge University Press, 1982.

5] Howard R. Nicholls, editor. Advanced Tactile Sensing for Robotics,
volume 5 of World Scientific Series in Robotics and Automation
Systems. World Scientific, 1992.

:6] S. C. Jacobsen, J. E. Wood, D. F. Knutti, and K. B. Biggers. The
Utah/MIT Dextrous Hand: Work in Progress. In M. Brady and R. P.
Paul, editors, The 1st International Conference on Robotics Research,
pages 601-53. The MIT Press, 1984.

:7] S. C. Jacobsen, E. K. Iversen, D. F. Knutti, R. T. Johnson, and K. B.
Biggers. Design ofthe Utah/MIT Dextrous Hand. In Proceedings 1986
IEEE International Conference on Robotics and Automation, pages
1520-33, 1986.

8] R. Andrew Russell. Robot Tactile Sensing. Prentice Hall, 1990.

9] Robert D. Howe. Tactile Sensing and Control of Robotic Manipulation.
Advanced Robotics, 8(3):245-61, 1994.

146

BIBLIOGRAPHY 147

10] R. L. Klatzky, S. J. Lederman, and V. A. Metzer. Identifying Objects by
Touch: An Expert System. Perception and Psychophysics, 37(4):299-
302, 1985.

11] Richard M. Satava. The Modern Medical Battlefield: Sequitur
on Advanced Medical Technology. TEEE Robotics and Automation
Magazine, 1(3):21-25, September 1994.

.12] Peter K. Allen. Active Sensing with a Dextrous Robotic Hand.
In T. C. Henderson, editor, Traditional and non-Traditional Robotic
Sensors, volume F63 of NATO ASI, pages 223-239. Spring-VerlagBerlin
Heidelberg, 1990.

13] Peter K. Allen. Acquisition and Interpretation of 3-D Sensor Data from
Touch. IEEE Transactions on Robotics and Automation, 6(4):397-404,
August 1990.

14] Peter K. Allen and Kenneth S. Roberts. Haptic Object Recognition
using a Multi-Fingered Dextrous Hand. In Proceedings of IEEE
International Conference on Robotics and Automation [15], pages 342—
7.

15] Peter K. Allen. Mapping Haptic Exploratory Procedures to Multiple
Shape Representations. In Proceedings of IEEE International
Conference on Robotics and Automation, volume 3, pages 1679-84,
1990.

16] A. H. Barr. Superquadrics and Angle-Preserving Transformations.
IEEE Computer Graphics and Applications, l (l) : l l -23, January 1981.

17] Wm. Randolph Franklin and Alan H. Barr. Faster Calculation of
Superquadric Shapes. IEEE Computer Graphics and Applications,
pages 41-47, July 1981.

18] Alan H. Watt. Advanced Animation and Rendering Techniques: Theory
and Practice. ACM Press: New York/Addison-Wesley Pub., 1992.

19] E. Bardinet, N. Ayache, and L. D. Cohen. Fitting of iso-surfaces using
superquadrics and free-form deformations. In Proc. of IEEE Workshop
on Biomedical Image Analysis, pages 184—193，June 1994.

BIBLIOGRAPHY 148

20] Henry J. Lamousin and Warren N. Waggenspack Jr. NURBS-based
Free-Form Deformations. IEEE Computer Graphics and Applications,
pages 59-65, November 1994.

21] J. Greiessmair and W. Purgathofer. Deformation of solids with
trivariate b-splines. In Proc. Eurographics 89, pages 137-148. Elsevier
Science PublishersNorth-Holland, 1989.

22] Sabine Coquillart. Extended Free-Form Deformation: A Sculpturing
Tool for 3D Geometric Modelling. Computer Graphics, 24(4):187-193,
August 1990.

23] T. W. Sederberg and S. R. Parry. Free-Form Deformation of Solid
Geometric Models. Computer Graphics, 20(4):151-160, August 1986.

.24] W. M. Hsu, J. F. Hughes, and H. Kaufman. Direct Manipulation of
Free-Form Deformation. Computer Graphics, 26(2):177-184,July 1992.

25] Mongi A. Abidi and Rafael C. Gonzalez, editors. Data Fusion in
Robotics and Machine Intelligence. Academic Press, 1992.

26] Peter K. Allen. Robotic Object Recognition Using Vision and Touch.
Kluwer Academic Publishers, 1987.

27] David F. Rogers and J. Alan Adams. Mathematical Elements for
Computer Graphics. McGraw Hill Publishing Company, second edition,
1990.

•28] Josef Hoschek and Dieter Lasser. Fundamentals of Computer Aided
Geometric Design. A K Peters, Ltd., 1993. Translated byLarry L.
Schumaker.

29] Mamoru Hosaka. Modeling of Curves and Surfaces in CAD/CAM.
Spring-VerlagBerlin Heidelberg, 1992.

30] Gerald Farin. Curves and Surfaces for Computer Aided Geometric
Design, A Practical Guide. Academic Press Inc., third edition, 1993.

[31] Alfred Gary. Modern Differential Geometry of Curves and Surfaces.
CRC Press, Inc., 1993.

BIBLIOGRAPHY 149

32] Franc Solina and Ruzena Bajcsy. Recovery of Parametric Models from
Range Images: The Case for Superquadrics with Global Deformations.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(2):131-47, February 1990.

33] Martti Mantyla. An Introduction to Solid Modeling. Computer Science,
1988.

34] Yehuda E. Kalay. Modeling Objects and Enivronments. John Wiley and
Sons, 1989.

35] L. E. Scales. Introduction to Non-linear Optimization. Macmillan
Publishers LTD., 1985.

'36] A. H. Barr. Global and Local Deformations of Solid Primitives.
Computer Graphics, 18(3):21-30, July 1984.

37] Les Piegl and Wayne Tiller. The NURBS Book. Spring-Verlag, 1995.

38] Dieter Lasser. Visualization of Free Form Volume. In Proceedings of
the First IEEE Conference on Visualization, Visualization,90, pages
379-86, 1990.

39] Jean Ponce and David Chelberg. Invariant Properties of Straight
Homogeneous Generalized Cylinders and their Contours. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(9):951-
66, September 1989.

40] F. Ulupinar and R. Nevatia. Shape from Contour: Straight
Homogeneous Generalized Cylinders and Constant Cross Section
Generalized Cylinders. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(2):120-35, February 1995.

41] Andrew J. Hanson. Hyperquadrics: Smoothly Deformable Shapes with
Convex Polyhedral Bounds. In Computer Vision, Graphics, and Image
Processing, volume 44, pages 191-210. Academic Press, Inc., 1988.

42] Isaac Cohen and Laurent D. Cohen. A Hybrid Hyperquadric Model
for 2-D and 3-D Data Fitting. Computer Vision, Graphics and Image
Processing: Image Understanding, 1996.

BIBLIOGRAPHY 150

43] Senthil Kumar and Dmitry Goldgof. Model based Part Segmentation
of Range Data - Hyperquadrics and Dividing Planes. In Proceedings of
the Workshop on Physics-Based Modeling in Computer Vision, pages
17-23. IEEE Computer Society Press, June 1995.

.44] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. Function
Representation in Geometric Modeling: Concepts, Implementation and
Applications. The Visual Computer, 11(8):429-46, 1995.

45] V. Shapiro. Real Functions for Representation of Rigid Solids.
Computer Aided Geometric Design, 11(2):153-175, 1994.

46] K. T. Miura, A. A. Pasko, and V. V. Savchenko. Parametric Patches
and Volumes in Function Representation of Geometric Solids. CSG
96, Set-theoretic Solid Modelling Techniques and Applications, pages
217-31, 1996.

.47] V. Savchenko and A. Pasko. Recomstruction from Contour Data and
Sculpting 3D Objects. Journal of Computer Aided Surgery, 1:56-7,
October 1995.

48] Vladimir V. Savchenko, Alexander A. Pasko, Oleg G. Okunev, and
Tosiyasu L. Kunii. Function Representation of Solids Reconstructed
from Scattered Surface Points and Contours. Computer Graphics
Forum, 14(4):181-8, 1995.

49] Jae S. Lim. Two-Dimensional Signal and Image Processing. Prentice
Hall, 1990.

50] Peter Lancaster and K§stutis Salkauskas. Curve and Surface Fitting,
An Introduction. Academic Press Inc., third edition, 1990.

51] J. Hoschek. Intrinsic Parametrization for Approximation. Computer
Aided Geometric Design, 5:27-31, 1988.

[52] Biplab Sarkar and Chia-Hsiang Menq. Parameter Optimization in
Approximating Curves and Surfaces to Measurement Data. Computer
Aided Geometric Design, 8:267-290, 1991.

'53] The MathWorks Inc. MATLAB Reference Guide, August 1992.

BIBLIOGRAPHY 151

•54] The MathWorks Inc. MATLAB External Interface Guide, January
1993.

•55] Andrew Grace. Optimization Toolbox - For Use with MATLAB. The
MathWorks Inc., November 1992. ‘

56] Carl de Boor. Spline Toolbox — For Use with MATLAB. The
MathWorks Inc., November 1992.

•57] Carl de Boor. A Practical Guide to Splines, volume 27 of Applied
Mathematical Sciences. Spring-Verlag, 1978.

58] John Pearson Refling. Piplined Implementation of B-splines and Beta-
splines for Computer Graphics and other Discrete Applications. PhD
thesis, University of California, Irvine, 1993.

59] Donald E. Catlin. Estimation, Control, and the Discrete Kalman Filter.
Spring-Verlag, 1989.

60] Les Piegl. Modifying the Shape of Rational B-splines. Part 1: Curves.
Computer Aided Design, 21(8):509-18, 1989.

61] Les Piegl. Modifying the Shape of Rational B-splines. Part 2: Surfaces.
Computer Aided Design, 21(9):538-46, 1989.

'62] I. T. JollifFe. Principal Component Analysis. Spring-Verlag, 1986.

i ^ F ： ^ - - : : 、 . . . : 、 . , . , . — 』
'-v-^. ^ «'^ ^ n 、-、'"》/,/ ' 0 v • •*- ‘ , -I 、 . ，※产“、::'.W^4-^^^^^ --•> ri ^ - •-.
:=¾ -：‘〜、：---、- : . •
V .̂,i. Lf. ^ . ‘、•. .>•.' •• .0 II，, • •• • •： .
--:..,：••'. “：;:‘： -'f̂，Y,‘ 、.: . ，. - -

::.,_.."̂ .:--:i;:/:..-:;r. .?•
1 ' -• .：•• — 、 ： . • • , ‘ . . • , . • • ‘
1 . l-i 1 •• . .• -

^ , 丨‘ • w • ,
•«, • .
： .b< .-1 . . . ‘ . . 乂
•丨 . • . . . \ •
1 • ‘ ,

‘1 •
. 丨 丨 . .

. -电

t ‘ . ‘“ ‘“ “

‘ • • ,..-

•‘ - ;o

• tl

•• 广 ,

•‘ ,

•!• .

“ -̂ . ,

’’ ..•

.•.-. ‘

..•• 'V .

• '•-：
.•： ‘ •- . :. i

• 推 • ^

•-. ‘ - ‘

=-.••••： • • ” ‘ , •

1 •'• 、•. , ‘ . ,
. / • - M 、 . . . , ,. ‘ ••

•丨',.•• : ; J : . ,
'•",. “ _••• •

,.•• ：•、.，. • ‘ ‘
^： -”：丨, ., ；， :r •

• ‘ V̂ 1、 V . •• “ ^ : .: - - • ‘
.if. \l[t^ �� : ^ ’ ‘‘ . :kI;3 逸^、乂'::彻二:二 < _ 、’.,〜.. 、. •' • •

CUHK Libraries

___lllllllil
D0351DfilB

