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Abstract 

A new parallel algorithm for route assignment in Benes-Clos network is studied 

in this thesis. In packet switching systems, switch fabrics must be able to pro-

vide internally conflict-free paths simultaneously and to accommodate packets 

requesting for connections in real-time as they arrive at the inputs. Most known 

sequential route assignment algorithms, such as the looping algorithm for Benes 

networks or Clos networks, are designed for circuit switching systems where 

switching configuration can be rearranged at relatively low speed. Most exist-

ing parallel routing algorithms are not practical for packet switching because 

they either assume the set of connection requests is a full permutation or fail 

to deal with output contentions among the set of input packets. In this thesis, 

we develop a parallel routing algorithm by solving a set of Boolean equations 

which are derived from the connection requests and the symmetric structure of 

the Benes network. Our approach can handle both the partial permutations and 

the output contention problem easily. The time complexity of our algorithm is 

0{log^N)^ where N is the network size. Furthermore, we extend the algorithm 

and show that it can be applied to the Clos network if the number of central 

modules is a power of two. 

Keywords — Benes networks, Clos networks, symmetric self-routing, internally conflict-free, 

Boolean equations, parallel routing algorithms, output contention. 

iii 



Contents 

1 Introduction 1 

2 The Basic Principles of Routing Algorithms 10 

2.1 The principles of sequential algorithms 11 

2.1.1 Edge-coloring of bipartite graph with maximum degree two 11 

2.1.2 Edge-coloring of bipartite graph with maximum degree M 14 

2.2 Looping algorithm 17 

2.2.1 PauH's Matrix 17 

2.2.2 Chain to be rearranged in Paull's Matrix 18 

2.3 The principles of parallel algorithms 19 

2.3.1 Edge-coloring of bipartite graph with maximum degree two 20 

2.3.2 Edge-coloring of bipartite graph with maximum degree 2^ 22 

3 Parallel routing algorithm in Benes-Clos networks 25 

3.1 Routing properties of Benes networks 25 

3.1.1 Three-stage structure and routing constraints 26 

3.1.2 Algebraic interpretation of connection set up problem 29 

3.1.3 Equivalent classes 31 

3.2 Parallel routing algorithm 32 

3.2.1 Basic principles 32 

3.2.2 Initialization 34 

3.2.3 Algorithm 36 

iv 



3 .2 .4 Set up the states and determine T for next stage 37 

3 . 2 . 5 Simulation results .10 

3.2.() T i m e complexity - " 

3 .3 Contention resolution ‘ . " 

3 .4 Algori thms applied to Clos network willi 2 " ' central switches 13 

3 .5 Parallel algorithms in rearrangeability ‘17 

4 Conclusions ^2 

V 



List of Figures 

1.1 Resources sharing through a switch 2 

1.2 An N X N crossbar switch 2 

1.3 Three-stage Clos network 3 

1.4 Connection set up in three-stage Clos network 4 

1.5 An 8 X 8 Benes network 5 

1.6 Symmetric routing 8 

2.1 Bipartite graph corresponding to three-stage Clos network 11 

2.2 A bipartite graph with maximum degree two 12 

2.3 Assume i and j are in the same chain 13 

2.4 i and j are disconnected 13 

2.5 Color b has not been used at i and j before the new edge is colored 14 

2.6 The new edge can be colored after rearrangement 15 

2.7 The set of colored edges incident to vertex v 15 

2.8 Sub-graph contains only edges colored by a and b 16 

2.9 Paull's Matrix for representation of connections 18 

2.10 Rearrangement in Paull's Matrix 19 

2.11 Propagation of searching from vertex i 21 

2.12 To split a vertex into M/2 sub-vertices 23 

2.13 Two independent sets of a vertex 23 

3.1 The three-stage structure of the Benes network B{n) 26 

3.2 The two constraints of the routing in a B{n) 27 

vi 



I 
I 
i" 

1 3.3 The correspondence between the routing bits and the states 28 

j 3.4 Equivalent classes determined by a ir given 32 

3.5 Parallel searching of nodes 33 

3.6 Deadlock resolution in a merging step 34 
i 

3.7 Collecting the pointers into two rows of linked lists 35 

3.8 Merging and searching processes 38 

3.9 Link positions in the middle stage 39 

3.10 The route assignment calculated by the algorithm 40 

3.11 Simulation results 41 

3.12 Contention resolution 44 

3.13 Three-stage Clos network 45 

3.14 A "destination address" representing a path 46 

3.15 “Destination address" assignments in an input module 47 

3.16 16x16 Benes and fictitious structure of a 16x16 Clos networks 48 

3.17 A rearrangement for the connection from input s to output d 50 

3.18 A rearrangement for two new connection requests 51 

vii 



Chapter 1 

Introduction 

In the past few decades, computer and communication technologies was growing 

up rapidly due to the various demands of communications services. Wide-area 

and local-area computer networks have been extensively deployed to interconnect 

computers throughout the world. In addition to transmission, switching plays an 

important role in communications network because it changes the terminals of 

connections dynamically in order to increase the utilization of shared resources. 

For example if there are N users in a communication system, instead of using 

C2 independent transmission lines to connect each two of the terminals (i.e. 

fully connected structure), a switching facility and N transmission lines would 

be sufficient for any connection request, as shown in Figure 1.1 

Classically, the communications network is designed as a circuit-switched 

network. That is, a circuit or a connection is established between two end users 

when there is a request, and this circuit will not be shared with other end users 

at the same time. A connection request is said to be "blocked" if network 

resources are not available to set up the connection to satisfy the request. The 

1 
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^ ^ f ^ ^ ^ ： . ^ " ^ X ^ : . 
:• \ : :. / •: ： f Central Y ： 
： \ .:• •../ : :• \ Switch } ] 

% /y、.+Y / 
•...•警.... \ 0 .... 
Figure 1.1: Resources sharing through a switch 

blocking may occur inside a switch node even if enough capacity is provided via 

the transmission lines. The challenge of circuit switch design is how to establish 

non-blocking connections with minimum network complexity. 

With reference to Figure 1.2, an N x N switch can be simply constructed by 

cross-bar structure to avoid internal blocking. That is at any time, at most one 

crosspoint of each column or row can be turned on. However if N is large, it is not 

practical to construct such a huge switch because of high routing complexity. In 

1 — — — — ； 

2 

3 

N 

N 3 2 1 

Figure 1.2: An N x N crossbar switch 
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1953, Clos [1] studied the construction of large switched using connected stages 

in which each stage contains a number of smaller switch modules. A three-stage 

Clos network is shown in Figure 1.3. Switch modules are arranged in three 

_ MxM AA KxK AA MxM 一 

^ i H ^ 
_ MxM \ KxK W MxM 一 

M K 
— M x M KxK MxM 
I. • I “ _ 

K modules M modules K modules 

N = M x K 

Figure 1.3: Three-stage Clos network 

stages and there is a unique interlink connecting any pair of modules in two 

adjacent stages. Assume that each of these modules is internally non-blocking. 

The routing problem is to select one of the central modules for each request 

such that any two selected connections will not share the same internal link. 

An example is shown in Figure L4. To set up a call between 5 and d, the call 

cannot be routed to central module a or central module b because there is only 

one link from i to a and from j to b. The call can then only be routed to central 

module c. 

It is obvious that increasing the number of central modules provides more 

alternative paths to established a connection for a request. If the number of the 

3 
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3 ^ . 3 g ^ 
s - 丄 \ b — . _ ^ � \ b 一 

~~ |\c~hd ~~|\ |̂ 3^d 
— c 丄 — \ ^ ^ Z $ -

A central module assigned to input s and output d 

Figure 1.4: Connection set up in three-stage Clos network 

central modules is sufficient to establish a path for a new connection request 

provided that some existing connections can be rearranged (i.e. re-routed to 

different central modules), then the network is said to be rearrangeably non-

blocking. It has been shown in [2] that if the number of central modules is equal 

to the number of inputs (outputs) in an input module (output module), then the 

network is rearrangeable non-blocking. The example shown in Figure 1.3 is a 

rearrangeably non-blocking Clos network. Each input module or output module 

is of size M x M. There are M central modules, each is K x K. 

It should be noted, however, that the rearrangement of existing connections 

is not a trivial task if a path cannot established for a new connection request 

directly, a centralized rearrangement algorithm is required to compute the new 

routing configuration. One of the classical routing algorithms is called the loop-

ing algorithm ([6], [14]). Because it is sequential algorithm, the time complexity 

of finding a path for a new connection request is of the order of 0{N). This will 

be stated briefly in the next chapter. 

4 



Chapter 1 Introduction 

If N — 2^, a Benes network can be constructed by using three-stage Clos 

networks repeatedly, where all modules in the first and the last stages are 2 X 

2 switching elements. The two modules in the middle stage are N/2 x N/2 

subnetworks which can be further decomposed to smaller Benes networks in a 

recursive manner. Figure 1.5 shows an 8 x 8 Benes network. 

baseline network 

z ~ ^ ~ \ 

=¾ ―一 賠 H ^ ^ ^ S ^ = 
^ hM r̂——̂  —̂—Wr——~"̂̂~~——W——̂ 
t"T^ [̂ W n ^ ^ * r n ^ ^ 
一一4^ �\c一— -—̂一、,國̂ 一̂」\一-

, ~ ~ A L o w e r S - e _ r k / _ _ _ _ K _ _ A ^ X ~ ~ ^ ~ ~ | _ 
^ ^ ^ ^ ^ ^ ^ 7 

reverse baseline network 

(a)Three-stage structure (b)Complete structure 

Figure 1.5: An 8 x 8 Benes network 

The Benes network has 2log2N-l stages and each stage contains N/2 switch-

ing elements. Since a Benes network is a special kind of the Clos network, so 

the routing in the network can be computed by looping algorithm recursively in 

l0g2N iterations. 

The Benes network has received much attention as an interconnection net-

work because of its recursive structure and modularity. Actually the Benes net-

works have been used in some real parallel computer systems for interprocessor 

or processor-memory communications. 

In circuit switching, a circuit is assigned to the same input-output connection 

request in the entire length of conversation. Even though there are intermitted 

5 
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pauses during the conversation, network resources cannot be used by another 

connection request, leading to a low utilization. As a result, packet switching 

mechanism, such as Asynchronous Transfer Mode (ATM), is devised to solve 

this problem. 

In packet switching, the successive time slots of a path may contain the 

packets from different inputs to different outputs. Since the corresponding des-

tination address of the packet input from the same port may change every time 

slot, so the route assignment must be recomputed in real-time. To avoid packet 

loss without sacrificing switching speed, the route assignment corresponding to 

a set of input-output connection requests need to be resolved as quickly as pos-

sible. Consequently, the sequential looping algorithm is not applicable in packet 

switching because its time complexity is relatively high compared to the du-

ration of a time slot. In order to obtain an algorithm with time complexity 

comparable to the duration of a time slot, it is therefore necessary to consider 

parallel algorithms. 

Parallel algorithms in Benes networks and Clos networks have been inves-

tigated for many decades and a number of algorithms have been developed. 

However most existing parallel routing algorithms are not practical for packet 

switching, because they either assume the set of connection requests is a full 

permutation ([4], [9]) or fail to deal with output contentions among the set of 

input packets ([8], [12]). 

In this thesis, we proposed a new parallel algorithm for route assignment 

in Benes-Clos network. To compare with other algorithms, our algorithm can 

solve the routing problem naturally without making any unrealistic assumptions. 

Furthermore, we show that our algorithm can deal with partial permutations and 

6 
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output contentions easily. 

The development of our algorithm is based on the observation that the Benes 

network, recursively constructed from the Clos network, exhibits a symmetric 

topological structure. That is，the Benes network can be considered as the 

cascaded combination of an omega network and a reverse omega network, as 

shown in Figure 1.5, they are the baseline network and the reverse baseline 

network. The omega network and the reverse omega both belong to the class 

of Multi-stage Interconnection Network (MIN). An MIN possesses the unique 

path self-routing property. That is, each input and output are connected by a 

unique path and the path from an input to an output can be determined by 

the destination address. Thus, each input-output path in the Benes network 

actually consists of two sub-paths — one in the omega network and the other in 

the reverse omega network. These two sub-paths can be joined at any one of the 

central modules to form a complete path. Therefore, there are N!2 alternative 

paths for each input-output pair in the Benes network, where N is the network 

size. The routing problem is to select one of these alternative paths for each 

request such that any two selected paths will not share the same internal link. 

For any complete path in the Benes network, the sub-path from the input to 

the middle stage and the sub-path from the output to the middle stage must have 

the same binary "destination address" which is illustrated in Figure 1.6. This is 

because the input and the output must meet at the same central module in order 

to establish a complete path. We call this the symmetric routing constraint. 

In the case of an N x N Benes network, it takes n — 1 steps to reach a 

central module from any input or any output. Therefore the binary "destination 

address" is composed of n — 1 bits. Let the binary address of the sub-path from 
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Figure 1.6: Symmetric routing 

input to the middle stage be «1^2 . . . «n-i and the binary address of the sub-path 

from the output to the middle stage be /¾/¾ .. • f^n-i- By the symmetric routing 

constraint, we must have a,- = ft for all i where 1 < i < n — 1. Since each bit 

determines the state of a 2 x 2 switching element along the path, we show that a 

set of Boolean equations can be established for each stage recursively, with the 

Boolean variables representing the state of the switch elements involved. The 

solution of this set of Boolean equations can be calculated by distributed and 

parallel procedures. 

As far as routing is concerned, a Clos network with 2^ central modules is 

equivalent to a fictitious Benes network. Thus, our algorithm can also be applied 

to the Clos network in a straightforward manner. 

This thesis is organized as follows. Chapter 2 describes the basic principles 
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of sequential algorithms aiid parallel algorithms. In Chapter 3, A new parallel 

algorithm will be investigated after two fmi(lamental constraints of route assign-

ment in Beiies-Clos networks have been studied. CV)inparisons aiul Conclusions 

will be given in Cliaj)ter 1. 
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Chapter 2 

The Basic Principles of Routing 

Algorithms 

The route assignment problem in a Clos network can be formulated by the 

edge-coloring problem in a bipartite graph. This formulation was first studied 

by Lev, Pippenger and Valiant in [3]. With reference to Figure 2.1, given a set 

of connection requests in a three-stage Clos network, the input modules and the 

output modules can be considered as the vertices in the two disjoint sets V i and 

V2, respectively, in a bipartite graph G(V1 ,V2) . Each central module can be 

regarded as a particular edge-color. If a connection requests a path from input 

module i to output module j (an edge is connected from vertex i of V i to vertex 

j of V2) , then a central module should be assigned to this request in such a way 

that other ports in these two modules will not share the same central module 

(no adjacent edges have the same color). In other words, the edge-coloring of 

a bipartite graph corresponds to a particular set of route assignment. In this 

chapter, we will discuss some important issues of the edge-coloring problem in 

10 
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a bipartite graph, which is the foundation of the construction of our algorithm. 

Q y & Q o � � � Z 

^ @ ^ n 力 < $ \ ⑥ 

] ^ ^ ^ d 0 \ . 、 

Figure 2.1: Bipartite graph corresponding to three-stage Clos network 

2.1 T h e principles of sequential algorithms 

Many algorithms was proposed to solve the edge-coloring problem in a bipartite 

graph. The sequential algorithms, which make use of single processor, will be 

discussed in this section. We will first solve the edge-coloring problem in the 

bipartite graph with maximum degree two. 

2.1,1 Edge-coloring of bipartite graph with maximum 

degree two 

In a bipartite graph with maximum degree two, each vertex is connected by at 

most two edges. For any two adjacent vertices, one is from V i and another 

is from V2. Each component in such a bipartite graph can be a cycle chain 

or a non-cycle chain as shown in Figure 2.2. If a component is a cycle chain, 

it must contain even number of vertices and edges, because o d d cycle chain 

11 
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z ~ ~ \ z 、 

V _ / V -
^ o o^^ 

cycle chain non-cycle chain 

〇 : v e r t e x in Vi 

® : vertex in V2 

Figure 2.2: A bipartite graph with maximum degree two 

can never exist i n a b i p a r t i t e graph. It follows from Konig's Theorem [16], 

therefore, a bipartite graph with maximum degree two can be edge-colored with 

only two distinct colors. After edge-coloring such graph with two colors, the 

color of an edge must be same to the color of the edge which is 2k vertices away, 

and must be distinct to the color of the edge which is 2k — 1 vertices away. As 

a result, we have the following theorem. 

T h e o r e m 1 For any two end-vertices which are from V i and V2 respectively， 

if their edges are colored distinctly，then they are disconnected. 

- P r o o f : With reference to Figure 2.3, if end-vertex i from V i and end-vertex j 

from V2 are in the same chain (i.e: if they are connected), then the chain must 

consist of even number of vertices, so the edges incident to i and j respectively 

must be colored identically. Therefore, if the edges incident to i and j respec-

tively are colored distinctly, as shown in Figure 2.4, they are disconnected. 

• 
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Even number of vertices 

A® ^ ^ 
o ® 
Figure 2.3: Assume i and j are in the same chain 

0 ‘ ® 
I 

b • a 
I 

® 0 
a 卜 

o ® 
Figure 2.4: i and j are disconnected 

We will show how to edge-color a bipartite graph with maximum degree two 

by using color a and color b as the following. 

Initially, we can color an edge arbitrarily. 

Suppose now we want to color an uncolored edge which joins vertex i to 

vertex j , there are two cases to be considered: 

Case I: With reference to Figure 2.5, if there exists a color that has not been used 

to color both edges incident to vertex i and vertex j respectively before 

coloring the uncolored edge, then the edge can be colored directly by this 

missing color. 

13 



� Chapter 2 The Basic Principles of Routing Algorithms 

〇 @ 〇 ® 
‘ T ： . 

b丨 ：b b丨 ；b 

m o ^ ® o 
a a a a 

d > ^ F = ^ G>---—® 
edge 

Figure 2.5: Color b has not been used at i and j before the new edge is colored. 

Case II: With reference to Figure 2.6, if both colors have been used, for example 

the edge incident to vertex i has been colored by a, and the edge incident 

to vertex j has been colored by b. Consider only those edges t h a t have 

been colored, according to theorem 1, vertex i and vertex j must be 

in different co lored chains, so, we can simply choose one of the colored 

chains and interchange the two colors throughout the chain, then we can 

use the method described in Case I to color the edge. 

This strategy is very basic and important because it can be extended to 

edge-color the bipartite graph with maximum degree M, where M is an integer 

which is greater than one. , 

2.1.2 Edge-coloring of bipartite graph with maximum 

degree M 

At the process of edge-coloring a bipartite graph with maximum degree M , let 

Sy be the set of the colors that have been used to color the edges incident to 

14 
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j vertex v. An example is shown in Figure 2.7. Note that |S^| < M. 

丨 d , \ 
I 欽 ^ / \ 、 

丨 杨 ^ 
I 

1 Sy 二 {a ,6 ,c , (0 
.1 
I 

j Figure 2.7: The set of colored edges incident to vertex v 
\ 

•i . . . . 
,j Suppose an uncolored edge which joins vertex i to vertex j is going to be 
•j 

1 

1 colored now. If there are only L distinct colors available, and if |5i U Sj\ < L, 

then the uncolored edge can be colored directly by one of the missing colors at 

both i and j. 
•t i 
I _ . 

T h e o r e m 2 If | ^ U Sj\ = L, an uncolored edge can he colored by rearranging 

the existing colors if and only if 1*¾ — Sj\ > 1 and \Sj — 5^| > 1. 
P r o o f : 

15 
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For the "only if” part, suppose \Si - 5j| = 0, then Si C Sj. Therefore, 

； \Si U Sj\ = L implies |S^| = L. Thus, there is no remaining color to edge-color 

the uncolored edge incident to j. 

For the “if” part, without lossing the generality, suppose color a is in Si 

! but not in Sj and color b is in Sj but not in Si. With reference to Figure 2.8, 
i 

I consider the sub-graph which contains only those edges colored by a and h, it 

is a bipartite graph with maximum degree two. Therefore, the new edge can be 

1 colored by a or b after rearranging some edge-colors by the method described in 

！ Case 11. • 
I 
I • -
I • • 

/-Q : ® 0 : ® 
c I , I \ Consider only ^ ‘ ； b • \ a t) • a 

\ I � d color a and color b • 

•〉, \ o @ 0 
/ T \ ； 丨^ 

(1丨 a \ lb a ib 

\ 普 1 - . \ 感 o ® 
Figure 2.8: Sub-graph contains only edges colored by a and b 

T h e o r e m 3 If the maximum vertex-degree of a hipartite graph is M，then the 

bipartite graph is L-edge-colorahle if and only i f L > M. 

P r o o f : 

For the “only if" part, it is obvious that a vertex with degree M need at 

least M distinct colors for edge-coloring. 
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••] 

, j _ 

j For the "if" part, we will prove that a new edge can always be colored suppose 
j 

I L > M colors are provided. 
I ';j 

I If there is an uncolored edge joining vertex i and vertex j, then \Si\ < M — 1 

and 1¾! < M-1. 

For \Si U 5j| < 丄，the edge-coloring is trivial. 

If \Si U ^ 1 = L, 

1¾ Sj\ = 1¾ U Sj\ — 1¾! > L - {M — 1) > M — M + 1 二 1 

！ Similarly, 1¾ — S^| > 1. 

According to theorem 2, there exists a rearrangement for edge-coloring. 口 

Using the theorems and the strategy described above, a sequential routing 

algorithm, called the looping algorithm, will be introduced in the next section. 

2.2 Looping algori thm 

We shall first introduce a matrix notation devised by Paull for representing paths 

in the Clos network [14 . 

2.2.1 Paull,s Matrix 

i The Paull's Matrix is a K x K matrix in which each row represents an input 

module and each column represents an output module. If input modules i and 

output module j are connected via central module c, then we enter the symbol 
•i 

j c into the entry (z, j ) of the matrix. This is illustrated in Figure 2.9. 

j There is a restriction of this matrix, the symbols in each row or column must 

be distinct. Since each input module (output module) contains M input ports 
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(output ports), so each row (column) may contain at most M symbols. 

1 2 • • • j • • • K 

S y & Q 石 三 三 三 

H ^ n - - ― - ― -
s - ^ ^ \ \ Z « c 

i ^ ¾ ¾ l : : l : l : 
I —— _ ^ ^ ~ ~ ^ _K 
•I 

i Figure 2.9: Paull,s Matrix for representation of connections 
I 

2.2.2 Chain to be rearranged in Paull,s Matrix 

Suppose now we want to establish a new connection between the input module 

i and the output module j, if there is at least a symbol excluded from both row 

i and column j, the new connection can be set up directly. However if there 

is not, rearrangement will be needed. Suppose that all symbols except b occur 

in row i and all symbols except a occur in column j, The motivation of the 

looping algorithm is to change the symbol b in column j to symbol a so that b 

I can be put into entry {i,j) (or reversely). As shown in Figure 2.10, if we change 
i ̂ 

1 the symbol b in column j to symbol a, there might be a symbol a already in 

the row occupied by the b in column j, to avoid contradiction, we must change 
j 

j this existing a to symbol b. However there could be another contradiction in 

the next column, so the procedure will be executed again and recursively until 
•J 
•3 

a row or a column not containing both b and a is reached. 
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j K K 

Searching paths in Paull's matrix Connection set up after rearrangement 

, Figure 2.10: Rearrangement in Paull's Matrix 

Note that the basic principle of this algorithm is similar to adding a colored 

edge in a colored bipartite graph with maximum degree M, it follows from the 

Theorem 3 derived in the previous section, there exists a rearrangement such 

that any new connection request will obtain a path. 

To analyze the time complexity of looping algorithm with single processor, 

suppose that time complexity of a row or a column search is of 0 (1 ) , the number 

of the steps needed for a rearrangement is equal to the total number of rows and 

columns that have been searched before the searching halts. As there are K 

columns and K rows, so the maximum number of steps needed is 2K — 1, in 

other words, it is 0{N). 

2 .3 T h e principles of parallel algorithms 

Again, we will discuss first the principle of edge-coloring bipartite graph with 

maximum degree two. 

•1 
1 

•̂ . 
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2.3.1 Edge-coloring of bipartite graph with maximum 

degree two 

The basic idea of the parallel edge-coloring algorithm is to propagate the coloring 

I out from a selected vertex in each component at an exponential rate. Such 

I selected vertex is always said to be the representative in the component. Suppose 

all vertices are numbered before edge-coloring, we will select the vertex with 

I minimum index in each component as the representative of that component. 

1 We shall introduce the searching procedure which plays the main role in the .| 
1 

! parallel algorithm. Let A^[i] be the vertex reached by i after k steps of searching, 

the searching procedure can be defined recursively by 

^ A^{i] = A^-^[A^-^{i] 

: for 0 < z, A^\i] < N - 1 and k > 1. 
！ 

Note that A^[i] , for all z, must be given initially. 

An example is shown in Figure 2.11. On a searching branch of vertex z, 

Ay] = i, A^[j] = k, A^[k] 二 /，A^[l] = X , . . . . 

After one step of searching, 
A^z] = A^[A^[i]] = A^[j] 二 k, A"[k] 二 A^[A^[k]] = A^[l] = x, .. •• 
After two steps of searching, 

j A^[i] = A ^ [ A ^ [ z ] ] = A^[k] = x, .. •. •( 
1 And so on. 

i T h e m o t i v a t i o n of t he searching p rocedure is t o d e t e r m i n e t h e j . j 

I componen ts and the representa t ive of each componen t , because i t 
I 

p e r f o r m s a t y p e of t r ans i t i ve closure. 
I 

i If there are total N vertices in this bipartite graph, we will show that vertex 

) ‘ . - � 
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； Figure 2.11: Propagation of searching from vertex i 

； z, starts from its adjacent vertex, takes at most \log2(J^ - 1)] steps to search 
i 

I through the component to which it belongs. Let dist{iJ} be the number of 

edges from vertex i to vertex j (i.e. distance of i and j), and EN[i] be the 

i end-vertex of the searching from i. According to the searching principle, we 

have 

T h e o r e m 4 Node i will point to the node EN[i] after \l0g2 dist{i,EN[i]}] < 

l0g2{N — 1) steps of searching. 

P r o o f : First, we have to prove dist{i,A^{i]} 二 2" if A^\i] is not EN[i], note 

that EN[A^{i]] = EN[i. 

Initially, it is obvious that 

dist{i,Ay]} 二 1 二 2。. 

j Assume it is true that ‘ 

dist{i, A^ i [z ] } = 2^-1 , for k > 1 

j We have 
j 

dist{i, A^[i]} i “ 
！ 

=dist{i, A^-^{i]} + dist{A^-^[i],A^[2]} 

=dist{i,A^-^{i]} + dist{A^-'{i],A'-'[A'-^m 

r 21 i 
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二 2 而 一 1 + 2 知 _ 1 

= 2 ^ 

If A^{i] is EN\i], then dist{A^-^[i],A^{i]} < 2^, however, the searching will 
j 

be completed once i reaches EN[i], so the number of searching steps needed is 

;| \l0g2 dist{i, EN\i]}] < l0g2N — 1 口 

If a vertex is connected by two edges, it will search along two branches. 

With searching procedure, after k steps of searching vertex i can find the 

\ vertex with minimum index within distance 2^ from i. Af ter� /o^(7V — 1)] steps 
1 

. i 

: of searching, the representative of each component as well as the distance from 
i 

each vertex to the representative can be determined. When the procedure is 

j completed, the two edges incident to the representative can be colored by two 

distinct colors arbitrarily, then, other edges in the component can be colored 
I 

immediately. The further discussions will be given in the next chapter. 

2.3.2 Edge-coloring of bipartite graph with maximum 

degree 2^ 

Consider the bipartite graph with maximum degree M, if M = 2^, we can split 

I each vertex into M / 2 sub-vertices in such a way that each sub-vertex is with 
i 
1 maximum degree two, as shown in Figure 2.12. 
^ • 

j To color the edges incident to these sub-vertices, by color a and color b for 

I example, we can apply the parallel algorithm described in the previous section. 

After one iteration of edge-coloring, as shown in Figure 2.13, each original vertex 
i • 
j contains one set of edges colored by a and another set of edges colored by b, where 
' i . 

each set may consist of at most M/2 edges. 
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"===A = t ^ 
= d . 力 = ¾ ) ¾ = • =¾^ 

I ： ^ ^ 

Figure 2.12: To split a vertex into M/2 sub-vertices 
, i 

i '^^^ ^ " ^ 〜、r\ 
丨 - 上 … - 上 -

j n t T T ： i = ^ 一 丨 + - � — i 

i 5 v ^ '，y \ 
Figure 2.13: Two independent sets of a vertex 

I If we consider only those edges colored by a (or only those colored by 6), 
i 

！ 

1 a bipartite sub-graph with maximum degree M/2 can be obtained from the 

original graph. This sub-graph can be divided again into two sets such that 
I 
j each contains a distinct color by using the same strategy described above. After 

i M iteration of splitting and partial edge-coloring, the original bipartite graph 
1 :i 
1 

i will be edge-colored by M distinct colors. 
s • 

j If M is not a power of two, then the above strategy can edge-color such 
;| ^ 

j bipartite graph if L 二 2�^"2似1 colors are provided, however, it is not an optimized 

j algorithm because the minimum number of colors needed is M < L. There is 
j 
1 still no full parallel and optimized algorithm for M not a power of two. 

::3 ‘ 
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In the next chapter, a new parallel routing algorithm based on the fundamen-

: tal properties of Benes-Clos network will be given. Also some implementations 

of the algorithm will be discussed. 

: 
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Chapter 3 

Parallel routing algorithm in 

Benes-Clos networks 

The topological structure of Benes-Clos networks exhibits two fundamental pi,op-

； erties: (1) Symmetry; (2) Unique interlink connecting two modules in the ad-

jacent stages. These properties give constraints for route assignment in the 

networks. In this chapter, the parallel routing algorithm in Benes networks will 

be studied first, and then some of the applications will be introduced. 

j 
i 3 .1 R o u t i n g properties of Benes networks 
j 

I ln this section, the routing problem in a Benes network is formulated as a set 
I 

i of Boolean equations. By transitive closure, a solution can be found within time 
I 
j 0{logN) and space 0(N). The algorithm will be given in the next section. 
i j 
1 
.¾ i 華 

•4 
j 

i 
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3丄1 Three-stage structure and routing constraints 

The Benes network B{n) with N 二 2" inputs and N outputs can be considered 

as a three-stage network as shown in Figure 3.1, where all N/2 switch modules 

in the first stage and N/2 switch modules in the last stage are 2 x 2 switching el-

ements. The two switch modules in the middle stage are N/2 X N/2 subnetworks 

i and each can be constructed by a B{n — 1) in a recursive manner. Each 2 X 2 

j switching element has a unique link (link with label 0) connecting to the upper 

j subnetwork Bo{n — 1); and a unique link (link with label 1) connecting to the 
I 
I lower subnetwork B i ( n — 1). If a packet at an input (output) switching element 
•i 
1 is sent to (received from) the link labeled by a (� )，where a , /3 G {0, 1}，then 
i 

j a {|3) is called the forward routing bit F R B {reverse routing hit R R B ) of that 

packet. 

10 0| — 

� ^0 1 1 bo 
- H _ _ _ h / - A [ i _ i -

i 1 ^ : Upper ： ^ 
« 1 1 i N / 2 X N / 2 i 1 ^ 1 _ _ 

： : Subnetwork ： 

. ； � 明 - 1 > , ； ^ 

二 ： ： o 

t i Hf言居 
i “ I h t| i ‘ 
； . : Lower ： 

j ^ _ i N / 2 X N / 2 ； 1 _ _ _ ^ 
^ ： Subnetwork ： 

j Z_F=^ _)丄^^一 
1 N̂/2-1 1 ^ N̂/2-1 
;| I 1 I I I 
j •| • i 
1 Figure 3.1: The three-stage structure of the Benes network B{n) 
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With reference to Figure 3.2, the routing in a B{n) is non-blocking if and 

only if the following is satisfied. 

1. Symmetric routing constraint : 

j The F R B of an input 5 and the R R B of an output d must be the same if s 
\ 

\ and d are in a connection request. It is because they must connect to the 

same central module to establish a path. 
•••i 
;i 
•1 
•1 

^ 2. Internally conflict-free constraint : 
I Because of the unique internal link property, the FRBs (RRBs) of the two 

•| inputs (outputs) in the same input (output) module must be distinct, 
i 

1 
•] 

5 Symmetrical routing | 

^ ? ^ \ I S "T ： 1̂  " \ ^ ^ ^ Symmetrical routing 

丨 \ V； . 

internally conflict-free \ • _ 

V ^ K 
� / > d 

〜 、 / 
� � y / ^ t _ 4 z _ -

乂 ‘‘ 
^ ： 

1 z 
I Z ^ internally conflict-free 

:i • I I — 

j , j Figure 3.2: The two constraints of the routing in a B(n) ] 
•i j 

i The routing bits (forward and reverse) of a packet will determine the state of 
's 

j the switching elements involved. It follows from internally conflict-free constraint 

I that, a switching element in a B(n) can only be in bar state (state 0) in which 

the positions of the two packets remain, or, in cross state (state 1) in which 
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the positions of the two packets exchange. Because of this two-state property, 

we can use the Boolean variable â  (¾) to indicate the state of the ith input 

(output) switching element. Figure 3.3 illustrates the correspondence between 

the routing bits and the states of an switching element, where the F R B (RRB) 

j of input (output) 2i can be represented by a,- (¾) and of input (output) 2i + 1 

j can be represented by ^ (¾). 
！ 

j Input SE Output SE 
j 

j , ^ ^ ^ "~®^^i 
j 2i ^ ^ ^ -2i I i 
丨 2i+J ~ k � ^1 •!~ 2i+J 
I ^ ^ / ^ 
i a. = 0 bi = 0 
i :i 

2 , ^ ^ ^ ^ " ^ - 2 ' 

2 ^ > i J ^ _ i ^ ^ ^ ^ ^ K N - 2 / ^ i 
a. = 1 b. = 1 

I I 

I: _ _ _ ^ • 

\ state variable a,- 0 1 state variable bj 0__]_ 
: FRB of input 2i ~Q~~T RRB of output 2z 0__]_ 
: FRB of input 2i + 1 1 | T ] RRB of output 2z + l i 7 T 

Figure 3.3: The correspondence between the routing bits and the states 
1 ,! 、 
1 
i “ 

j It is known that B(n) is a rearrangeahly non-blocking network [2]. That is, 

i given any set of connection requests in a B(n) without output conflict, there 
1 
j exists a solution of non-blocking route assignment. Such solution motivates our •̂ 
•] • j 

j algorithm. 
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.i 
..丨 
\ 
j 

3.1.2 Algebraic interpretation of connection set up prob-

j lem 
i 

Let I and 0 be the set of inputs and outputs respectively, I 二 0 = {0 ,1 , • • •, N — 
( 

I 1}. Let 7T : I ~~> 0 be an input-output permutation indicating connection 
I 

requests. If an input is idle, the corresponding output will be represented by 

j X , where x denotes an arbitrary output. An example is given below, the 

1 upper row is the ordered inputs from 0 to N-1, and the lower row is the outputs 

requested by the corresponding inputs. In this example, input 3 is idle, and 

j 7r(0) = 4’7r(l) = 5,7r(2) = l’...，etc. 

( 0 1 2 3 4 5 6 7 � 
! 7T = 

\ 4 5 1 X 0 2 7 3 

Let a : I ~ � { 0 , 1 } and /? : 0 ^ ^ {0,1}，where a{k) is the routing bit of 

： the forward path from A;th input, and, (5{k) is the routing bit of the reverse path 
I 

丨 from kth output. 

The symmetric routing constraint requires that 

a{k) = / ？ 刚 ) ， 

for all k � 

The internal conflict-free constraint requires that 

a{k) = a(A: + 1) , and, |3{k) = ^{k + 1), 

fork = Q,2,...,N-2 (2) 

The combination of (1) and (2) gives 
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'•\ 

f^{7T{k)) 二 a(k) = a(k + 1) = ^(7r(A; + 1)), 

for k = 0 , 2 , . . . , A ^ - 2 (3) 

From the definition of a,- and bi, which represent the states of zth input 

switching element and zth output switching element, respectively, the routing 

bits can be given by 

‘ 

\ ak , k is even 
a{k) = 2 

丨 ak-i , k is odd 
j ~T~ 

• 

bk , k is even 
m = _ L . 

j bk-i , k is odd 
~T~ 

for k = 0 , 1 , - - - , A ^ - 1 

According to this algebraic interpretation, we can set up the Boolean equa-

tions for the route assignment in a Benes network. For example, the route 

assignment of the 7r given above can be formulated as the following 

/ \ / — — — _ \ 
a ( z ) tto 而 «1 «1 «2 «2 Ĉ3 «3 

� ^ ( 7 r ( z ) ) ) \ 62 + h ^0 + X bo + 61 ^ + h ) 

where the equalities are from symmetric routing constraint and the inequalities 

are from internally conflict-free constraint. X denotes the don't care term. Each 

don't care term, representing an idle input, allows more freedom of routing. To 

simplify the problem, we can eliminate all the a,s, and obtain a set of equations 

62 二 h , bo = X , bo = bi , 63 二 6i 

which are called initializing equations, because they are the initial conditions 
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] 

i 

:'; of our algorithms. We can either choose a set of equations which contain only 

j variables a's, because these two types of variables are dual. 

3.1.3 Equivalent classes 

The purpose of our routing algorithm is to solve the initializing equations. Given 

a connection request 7r, at most N/2 initializing equations can be derived. Let 

丨 C = {6o, ^i, ^ 2 , . . . , ^N/2-i} be the set of Boolean variables representing the state 

of the output switching elements. From the relationships given by the initializing 

I equations, C can be partitioned into several equivalent classes such that any 

; bi, bj e C, hi and bj are in the same class if and only if either one of bi = bj 

\ or bi + bj can be tme for the non-blocking routing, in other words, they are 

correlated with ir. The set of equivalent classes can be denoted by the partition 

C/7T = {Ck I Vhi, bj G Ck iff ^ and bj are correlated} and C = LU ^ , CuOCy =小 

for u + V. 

The solution of the initializing equations is not unique. However in each 

class, if one of the Boolean variables is assigned a value, the value of the re-

maining variables will be determined, and this independent variable is called 

the representative of the class. We will choose the Boolean variable with the 

minimum index in a class as the representative of that class. For example in 

j Figure 3.4, bo is the representative of the class {6o, 61,¾} and h2 the representa-

！ tive of the class {62}. The motivation of the algorithm can be further interpreted 

as to determine the independent classes by searching for the representative of 

, each class. ) 
\ 
4. 
•j 

i •» 
.， , 
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i 
1 

I _ f 0 1 2 3 4 5 6 7 、 

^ = 1̂  4 5 1 工 0 2 7 3 J 
I 

° Q v ^ ? 

j 0 X S 3 | 
- 4 H ^ " / ^ N " " " h 4 -
' 5 O y ^ - t i ^ 5 

6 H Y r 7 n - 6 
7 H r ^ h 7 

{6o, bi,bs} and {62} are two independent classes 

Figure 3.4: Equivalent classes determined by a 7r given 
J 

3 .2 Parallel routing algorithm 

3.2.1 Basic principles 

To search for the representatives, each initializing equation can be established 

by a pointer, in which we let the Boolean variable with larger index point to the 

one with smaller index. To distinguish the relationship shown in the equation, 

two types of pointers are needed. They are, pointer of type 0 which denotes the 

two variables are equal, and, pointer of type 1 which denotes the two variables 

i are counter. We will apply the searching procedure introduced in Subsect ion 

2.4.1 to determine the independent classes and each representative of the class. 
Figure 3.5 gives an example to illustrate the initialization and a step of searching. 

:丨 ^> 

I Note that if a node does not point to other node initially, it can be regarded as 

to point to itself with pointer of type 0. 

； 32 
I 1 
i 

I 

I 

l 
I 



. 

；'；! 
I 

.:j 
i 

j Chapter 3 Parallel routing algorithm in Benes-Clos networks 
i 

) 

, h2 = b2 , bo = X , bo = bi , b3 二 6i 
'i 
i . f r n — o 

/ bo — 1 门 

i i Cbo — - - - � 台 2 一-力3 
\ l p ^ ^ 、 一 

：！ V ’ bi —2 
丨 , 、 — 3 . searching step 
! / ^ ^ ^ ^ 

i d ^ Q o - ^ ^ Z : ^ ^ _ ^ _ ^ b 3 

, 、 ^ 
\ 

！ \ \ r̂ -6 
、 、 b 3 — 7 ^ ^ 

‘ / equal to not equal to 
j 
I Figure 3.5: Parallel searching of nodes i j 
I 
1 

j Since the searching procedure performs a type of transitive closure. As a 

result, if bi and bj are in different classes, then k and bj will never reach each 

other by the above procedure. 
I 

！ 

It is possible that a node may initially point to two other nodes, such as the b3 
！ 

:丨 of the example shown in Figure 3.6. In such case, the node will search along both 

丨 branches, and after several steps of searching it will meet two different ending 
I 

nodes, i.e. bo and 62 in the example. lt is clear that ^ must be dependent on bo, 

since b2 does not point to any other node, however, this dependency cannot be 

: determined by the above searching procedure. The searching algorithm will be 
•7 

j modified by incorporating a merging step to resolve the deadlock. In each step of 
i j merging, we compare the deadlock nodes on the two searching ends respectively j 

j and let the node with larger index point to the other one with smaller index (¾ 

j points to bo in th9 example). To avoid confusion, the deadlock resolution will 

j occur in a step of merging only if both ending nodes have been reached. 

Notice that also two independent nodes will not reach each other by merging 33 
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\ .i 

) j r ( o^(i) ) 一 ( a �而 ai a^ a2 ^ ^ ^ � 

I ^ 1̂  /5(7r(O) J 二 ( bo Vi h bs h h h X j 

-̂r̂ n̂  Qo^—bi^—b3—^^^ 
/ — 1 searching step 

i 1 r 1_2 , 一 - - - -、 

xq̂^ p3 Qo-~~bi、、3>_̂ b̂̂  / /> 
I r r ~"4 merging step 
‘ U2 厂 

> A ^ Z } ^ 广 , ， - 〜 、 、 、 

丨 、、、、、V̂6 G 。 々 、 。 力 
\ u 0 � 
、 ^ 3 ^ 

i 
i equal to not equal to 

Figure 3.6: Deadlock resolution in a merging step 

steps because the merging branches starts from the same node. As a result, 

searching and merging procedures can determine the independent classes and 

the representative of each class naturally. 

\ After the representative of each Boolean variable has been determined, a 

value will be assigned to the representative of each class, and then the states of 

all output switching elements will be determined. Furthermore, the states of all 
/ ( *\ \ 

input switching elements can be determined by the relations given in (例二(;)）乂 . 

丨 These will be shown by an example later. 
1 , 

I 

3.2.2 Initialization 
1 
I 
I . . 

I Each pointer described in the previous subsection can be established by a linked 

list. If there is nooutput conflict, each node will point to at most two different 

I nodes initially, so only two pointers will be needed for each node. An example of 

collecting the pointers from the initializing equations and combining them into 

I 34 
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two rows of linked lists is shown in Figure 3.7. 

i 

(oto 而 ai 可 «2 石 ^ 豆 \ 

b2 h bo 63 X 61 63 h J 

i — 一 

b2=b^ ^ o = X ^o = ^i ^ 3 = ^ 1 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 
I I I I I I I I I I I r ^ I I I I — 

bo b i b2 t>3 bo b 1 b2 b3 bo b 0 b2 b3 b o \ b r| fc>2|t>， 

Collecting 
processor i__^ 

row 0 b 0 b 0 b 2 b 3 

f 

row 1 b 0 b 1 b 2 b 1 

Figure 3.7: Collecting the pointers into two rows of linked lists 

Let A[p, i] be the index of the variable in row p at position z, for p = 0 ,1 , 

0 < i < 丛— 1 and 0 < A[p, i] < i. Since the value of each variable is not yet ^ 

determined, S[p, z], another Boolean variable, will be used to indicate the type 

of pointer from bi to &A[p,i], where 
r 

0 ’ bi = 6 * i ] 
S [p, i\ — < 

1 ， b i / bA[p,i] 

S[p^ i] is called the re la t i ve state b i t and can be determined by the follow-

ing equation 

y 
S\p, i] 二 bi © bA[p,i] 

where "©“ is the "exclusive or" operator. 

丨 35 
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3.2,3 Algorithm 

M a i n a l g o r i t h m 

For k <——1 to m (m is 0( l0g2N)) 

For 0 < i < f - 1 (Parallel steps) 

call Searching 

call Merging 

(1) Searching p rocedure 

In this procedure, the representative of each node as well as the relative state bit will 

be searched and determined. 

For 0 < p < 1 

S[p, i] <~~ S[p, i ] � S{p, A[p, z]]; 

A[p, i] <——A[p, A[p, i]]; 

(2) M e r g i n g p rocedure 

In this procedure, the relation of two different ending nodes will be determined once 

they have been reached by the same node. Let Yi be the number of nodes pointed by 

node i, that is Yi G { 0 , 1 , 2 } . The merging procedure will he further modified if node i 

points to only one node, i.e. ifYi 二 1，we let the two linked lists in column i be the 

same. 

If Yi=2 and �0’‘尸0 and � i ’ f p O � 

then ifA[0,z] > A[l,i] then 

A[0,A[0,z]] ^~" A[l,z]; 

'A[l,A[0,z]] < ^ A[l,z]; 

5[0,A[0,z]] <"^ S[0,i] © S[l,i]] 

5[l,A[0,z]] < ^ S[0,i] © S[l,i]; 
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K — l ; 

^A[0,i] < ~ " 1； 

else if A[0, i] < A[l,z] then 

A[0,A[l,z]] < ^ A[0,z]; 

A[l,A[l,z]] < ^ A[0,z]; 

5'[0,A[l,z]] <~" S[0,i] © 5'[l,z]; 

S[l,A[l,i]] 一 5[0,z] ® 5^[l,^h 

K 一 1； 

^[1,^1 < ~ ~ 1； 

I f K = 1 

then if A[0,z] > A[l,i] then A[0,z] ^~~ A[l,z]; 

S[Q,i] 一 S[l,i]; 

else if A[0, i] < A[1, i] then A[1, i] <"^ A[0, z]; 

S'[l,z] <“^ S[0,i]. 

Figure 3.8 shows the final result of the example given in Figure 3.7 after an 

iteration of the algorithm. 

3.2.4 Set up the states and determine ir for next stage 

When an iteration is completed, A[p, i] will be the index of the representative 

of node z, and then each representative of the class will be assigned the value 0. 

As a result, the value of each variable h will be determined by the relative state 

bit, 5[p, i], in a sttaightforward manner. 

For the example given above, we can now set the states to be: 

Output switching elements: 
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position 0 1 2 3 

bo bo b2 ^ 

bo fcM b2 bi 

merging 

bo bo b2 th 

bo bo b2 bi 

searching 

bo bo b2 bo 

bo bo b2 bo 

Figure 3.8: Merging and searching processes 

6o = 0, h = ¾ = ! , b2 = 0, b3 = bo = 0 

and to satisfy the symmetric routing constraint, we can set those 

Input switching elements: 

ao = b2 = 0 , ai 二 bo = 1， a2 二 bo = 0, a3 = b3 = 1 

Note that one iteration of our algorithm will determine one routing bit (for-

ward or reverse) for each input-output pair. To determine the next routing bit, 

we need to consider the input links and the output links of the middle stage of 

B{n). As shown in Figure 3.9, the position of each link incident to the central 

subnetworks is the right circular shifting in address of the previous outcome. 

After shifting an address, the most significant bit, which is the previous routing 

bit, denotes which B{n — 1) (upper or lower) the link connects to, so it can be 

ignored in the rou^e assignment of B{n — 1). Because Bo(n — 1) and Bi(n - 1) 

are independent. 
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•i 

000 000 000 000 | ~ ~ 
1 ^ 0 0 1 _ ^ _ 0 0 1 _| ^ + ^ 0 0 1 _ _ ^ ^ / — 0 0 1 [ ^ 
——|010ZV^^010 Upper subnetwork 0 1 0 _ ^ ^ ; ^ 0 1 0 —— 
L ! ^ 0 1 1 _ V ^ 0 1 1 L _ _ ^ 011 = X ^ 0 1 1 [ ^ 
——100 _JKX_100 100 -^XyX^ioo 
SE 101 _7V_101 • ^ + ^ 101 -.y\^^o^ L!LJ 

——|11oZ7^^110 Lower subnetwork n o _ _ ^ - ^ ^ i i o 
SE | i i i 111 111 111 L ! L 

Forward Reverse 

Figure 3.9: Link positions in the middle stage 

Rewrite the 7r of the example given in Subsect ion 3.1.3 into binary 
/ \ 

000 001 010 011 100 101 110 111 ， 
7T 二 

、100 101 001 XXX 000 010 111 011 

So the 7Tnext will be 
(aoOO ^ 0 0 ai01 ^ 0 1 a2lO ^ 1 0 a3ll ^ 1 1 、 

^7ZG-Xt — 

乂 62lO M O M 0 XXX 6oOO 6i01 fell M l y 

As the result of the algorithm 
^ 000 100 101 001 010 110 111 011 ^ 

^7ZGXt — 

、010 110 100 XXX 000 101 111 001 

01 equivalently, 

( 0 0 01 10 1 1 � 

7To — 

\ 10 XX 00 01 y 

< 00 01 10 1 1 � 

7Ti 二 

i 乂 10 00 01 11 

where 7r0 is the permutation of ^o(2) and 7r1 is the permutation of ^ i ( 2 ) . The 

routing bits in the inner stages can be computed by our algorithm in a recursive 

manner. Refer to Figure 3.10 for the complete routing. 
39 
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] •j 

i 0 --> 4 ^ T ] 0 
I 1 --> 5 _ [ _ ^ X a ^ j 1 

: ？二 ^ ¾ ¾ ' 

： ： 3 ¾ : 
X ^ , B,{2), 

7 - > 3 — - ^ ^ 13 .3 7 

0 --> 2 p ^ ~ " 0 

: : : ^ ¾ ¾ : 
3 - > l - 4 = J 1 ^ i ~ 3 

o - - > 2 —p：^ F=| ？ 

' — > 。 ^ ^ S 
• 二 ^ ^ ^ ^ 3 

Figure 3.10: The route assignment calculated by the algorithm 
3.2.5 Simulation results 

Consider only one iteration of our algorithm, Figure 3.11 shows the simulation 

I results. The y-axis represents the average number of executions needed to com-

pute a routing bit for each input-output pair, where an execution consists of a 

step of searching and a step of merging. N is the network size, p is the probabil-

. ity that an input ^ort is busy. When p = 1, representing the full permutation, 
I 

j the average number of executions is linear to logN. However, if there are some 

ports are idle, the curve seems to be presenting a function of loglogN. 
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14| 1 1 1 1 1 1 1 1 

p = v ^ 

- ^ ^ -^ ^ / p=1023/1024.... 
CD ^X^ . . . . • •‘‘ 
| i o - ^ ^ . -
！ ^ ^ p=255/2_56_._. c ^ ^ .一一 

1 8 - ^ / ^ — . 一 - - - ‘ 一 一 -

i / ^ 一 一 丄 = 郷 一 -

o y ^ 一 一 - ‘ ‘ ‘ - “ 一 ‘ 

l e - ^ / ^ , - - - - - - - _ ^ ^ ^ H ^ 

’ ^ ^ ^ ^ ^ 
^ ^ ^ - ^ p=3/4 

4 j . . -

pl I I I 1 1 1 ~J 1 
7 8 9 10 11 12 13 14 15 16 

log 2 N 

Figure 3.11: Simulation results 

3.2.6 Time complexity 

As the time complexity of the algorithm depends on the steps needed for propa-

gation of searching, it follows from T h e o r e m 4, the time needed for an iteration 

is 0(JogN). Since there are 2n — 1 stages, we need to run the iteration n 二 logN 

time. Consequently, the time complexity of the algorithm for total route assign-

ment in Benes-Clos network is {log^N). 

3 .3 Contention resolution 

For any k G 0 , if 3u, ” G I and u + v such that 7r(w) 二 冗⑷=k, then there is 

an o u t p u t con ten t ion at output k. An switching element will encounter con-

t r a d i c t i o n if neither state 0 nor state 1 can satisfy the two routing constraints. 

Output contentions wi l l lead to such contradictions. Since our algorithm works 
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even if some inputs and outputs are idle, so we can resolve the output contentions 

by detecting contradictions. For example, let 

( 0 1 2 3 4 5 6 7 � 
7T 二 

\ 1 3 0 3 4 1 3 3 

The corresponding inequalities are obtained as following 

b^ + h, bo + 6 i , 62 + kh 61 + bi 

First, each inequality will be examined. For example the forth inequality 

(¾ + 6^) leads contradiction to routing constrains, so we must drop one of the 

connection requests, for example, we drop 7r(7) = 3 and let Tr(7) 二 x. The 

inequalities become 

^7^¾, bo#bi, b2#bo, W ^ X 

Notice that once a variable in an inequality is taken place by a don't care term 

X , this inequality will never cause contradiction and can be ignored in the fol-

lowing steps. 

After that, we examine the inequalities two by two. The example above 

shows that ~bx appears twice in the first (¾ + ^i) and the second {bo + 61) 

inequalities, again one of the connection requests must be dropped, for example 

let 7T(3) = X yields the inequalities, 

乂 ^ 7 ^ ¾ , bo#X, h ^ K h^X 

At last, we check all of the four inequalities and let 7r(5) = â  
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Notice that for any N = 2^, the contradiction detection can be done within 
•| 
•i n = l0g2N steps. 
::I 
:•i 

After the contradictions being detected and contentions being cleared in this 
•1 

stage, the ir becomes 

(0 1 2 3 4 5 6 7、 
7T = 

乂 1 3 0 工 4 cc 3 X 

And the initializing equations are 

^=bi, bo = X, b2=X, h = X 

The result of the algorithm will be 

6o = 0, b i = ^ = l , b2 = 0, 63 = 0 

The corresponding values of the variables a will be 

ao = ‘ = l , a i = 5 ^ = 0, a2 = b2 = 0, a3 = � = 0 

After an iteration, contentions may still exist and they can be cleared in the 

following stages in the same manner. This point is illustrated in Figure 3.12. 

3 . 4 Algorithms applied to Clos network with 

2^ central switches 
： “ 

1 An N X N rearrangeably non-blocking Clos network is shown in Figure 3.13. 

There are 2K switch modules distributed in the first and the last stages and 
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; : : s = S ; ; " ^ f 5 ^ ^ ^ " ^ ? 

:=>^^^!¾^, -=>̂ ^¾¾&-
•i 6 - > 3 _ ^ = / ^ X ^ / V = n 6 
： 7 --> 3 xH PX 3| 7 

! o - - > i - ^ ^ j = | = — 0 

i 二 I ^ X ^ X ^ : 
j 3 --> 1 X ~ ~ ——3 

Figure 3.12: Contention resolution 
j 

I each has M x M size, for N 二 K • M. The other M switch modules of K x K 

size are in the middle stage. 

If M = T\ we can label these M central modules by m binary bits such that 

in each M x M input (output) module, the forward “destination address，，FDA 

i {reverse “destination address” RDA) of a packet denotes a central module, or 

j equivalently, a path to establish a connection. This is illustrated in Figure 3.14. 
] 

I The two routing constraints in Benes network can be generalized to the 

j three-stage Clos network as the following. 
1 
I � • . 

1. Symmetric routing constraint : 

If an input s and an output d are in a connection request, the FDA of 5 

in the input module and the RDA of d in the output module must be the 
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'i _̂_ ^̂_>>̂ ^̂ _̂ «_» 
: — M x M A � K x K A � M x M — 

I i = ^ 0 2 = ^ 
- M x M \ / KxK \ MxM 一 

臓 
丨 — M x M KxK MxM 
j — 
i K modules M modules K modules 

N = M x K 
j 

Figure 3.13: Three-stage Clos network 

same. 

j 2. Internally conflict-free constraint : 
Any two inputs (outputs) in the same input (output) module must be 
assigned to the different FDAs (RDAs). 

In each input (output) module, the FDA (RDA) will be assigned to each 

； packet bit by bit in order to satisfy the two routing constraints. This can be 

I demonstrated by the following strategy. With reference to Figure 3.15, in each 

I input (output) module, we partition all input ports (output ports) into M / 2 

groups, and each group consists of at most two ports. One of the input ports 

(output port) of each group will be assigned the value 0 as the most significant 

“destination address" bit and another will be assigned the value 1, in such a,way 

that the input and the output in a connection request (<s and d in the example) 
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— "M""5HVl 」 Switch J 1 / 1 
： M ^ 飢��^path ...1() j-g- /̂ I 

L ： ： ： ^ ^ 
1 \ Switch / 

\ \ Y � i」 

i I 

’ Figure 3.14: A "destination address" representing a path 

must get the same binary value. The ports received 0 and the ports received 1 

are independent, thus they can be separated before the second bits are assigned. 

After k < m bits have been assigned, the packets will be partitioned into 2^ 

independent sets such that each set contains at most 2爪一"packets which have 

the same first k bits. 

\ Compare to the operation of the first k and the last k stages in the Benes 

network, the basic principles are the same with the difference that, instead of 

i setting the states of the 2 x 2 switching elements, we translate those binary bits 
•| 

i into the "destination addresses". 

Figure 3.16 demonstrates an explicit comparison between a 16 X 16 Benes 

network and a 16^x 16 Clos network with 2^ = 4 central modules. Each input 

(output) module in the Clos network can be regarded as a fictitious baseline 
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Figure 3.15: "Destination address" assignments in an input module 

(reverse baseline) network. As far as the outer stages concerned, the Clos net-

work with fictitious structure is isormophic with the Benes network. Thus, the 

connection requests in the Clos network with 2^ central modules can be mapped 

topologically to the Benes network, in such a way that the routing algorithm in 

Benes network can be applied. After m iterations, the route assignment will be 

returned to the Clos network. The time complexity is 0{logN x logM). 

3 .5 Parallel algorithms in rearrangeability 
•！ 

In circuit switching configuration, new connection may request a path with the 
.1 
i existence of old c<iinections. If a path can always be established between any idle 
j 

I input and output, provided that the rearrangement of the old connections may be 

needed, then the network is said to be rearrangeahly non-blocking. A sequential 
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16x16 Clos network with 4 , ^ , ^ 。 ^ , ^ , . I 16x16 Benes network central modules 

Figure 3.16: 16x16 Benes and fictitious structure of a 16x16 Clos networks 

algorithm, called looping algorithm, was proposed to make the rearrangement 

； in the three-stage non-blocking Clos network if it is necessary. In this section 
•j 

we are going to propose a parallel rearrangement set up algorithm based on the 

routing algorithm in Benes network. 

With reference to the existing connections in a rearrangeably non-blocking 

Clos network shown in Figure 3.17 (a). Suppose now a new connection requests 

a path from input module i to output modulej . Let C/ be the set of the central 

modules which has been used by input module i and Cf the set of central 

modules which has been used by output module j. In the example, C/ = {a , c} 

and C � = {b,c}. If \Cf\jCf\ < M, where M is the total number of central 
3 

modules, there currently exists at least one central module available to establish 

the new connection. If |C/U Cf | = M, we can select two central modules, one is 

from Ci - C�and another from Cf — C/’ to make the rearrangement for the new 
>: ^ 3 ^ 
\ connection. For example, if central module a and central module b are selected, 
i 一 

j The looping algorithm will make the rearrangement by searching an independent 

chain (i.e. a chain in Paull's matrix) composed by the connections related to a 
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and b, respectively, and interchanging their paths in these two central modules. 

In parallel rearrangement set up algorithm, instead of finding an indepen-

！ dent chain, we re-compute a route assignment for all the related connections. 

For example, because of the unique internal link property each input (output) 

！ module will have at most two connections related to central module a and cen-

tral module b. All existing connections connected to these two central modules 

can be regarded as the Benes connections as shown in Figure 3.17 (b). To make 

the rearrangement, a set of connection requests in the fictitious Benes network 

can be found. In the example, we have 

[ 0 1 2 3 4 5 \ 
I 丨 7T = 

J 乂 4 3 6 1 0 X y 

Thus, the parallel routing algorithm in Benes network can be applied. After the 

route assignment has been solved, it can be returned to the original Clos network. 

The result is shown in Figure 3.17 (c) and (d). Note that the connections related 

to other central modules (module c in the example) are not involved in the 

rearrangement. 

Furthermore, our algorithm can also handle the rearrangement for more than 

one paths are requested at the same time, which is not allowed in looping al-

i gorithm. As shown in Figure 3.18, consider only those central modules with 
j 

i available paths for new connections and also all the existing connections related 

to these central modules, then the problem in rearrangeability can be reduced to 

! the problem in route assignment among these central modules and the related 

丨 connections. If we need to consider only M' of M central modules, then all 

i related connections can be regarded as the connections in the Clos network with 

M' central modules . Note that if M' is not the power of two, we can choose 
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憑薩 
(c) (d) 

Figure 3.17: A rearrangement for the connection from input 5 to output d 

some other central modules so that the total number of central modules involved 

in the calculation is the power of two. 
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I Figure 3.18: A rearrangement for two new connection requests 
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Chapter 4 

Conclusions 

In this thesis we have investigated a new parallel routing algorithm based on 

the fundamental properties of Benes-Clos networks. In circuit switching sys-

tem, a new connection may request a path in the network with the existence 

of old connections, however, the switching configuration can be rearranged at 

relatively low speed. In packet switching systems, switch fabrics must be able to 

provide internally conflict-free paths simultaneously and to accommodate pack-

ets requesting for connections in real-time as they arrive at the inputs. Thus, 

there is a necessity of parallel routing algorithm. 

We formulate in Chapter 2 the routing problem in Benes-Clos networks to the 

problem of edge-coloring bipartite graphs, where the input modules and the out-

put modules can be regarded as the vertices in the two disjoint sets respectively 

in a bipartite graph, and each central module can be regarded as an edge-color. 
？ 

丨 In looping algorithm, if rearrangement is needed, an independent chain will be 
} 

•：! •‘ 

j figured out and the two edge-colors on the chain will be interchanged so that 
^ 

the new colored edge can be set up. In parallel algorithm, the edge-coloring 
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Chapter 4 Conclusions 

will propagate from the representative of each class throughout that class at 
j ! 

an exponential rate. To compare with the time complexity of sequential algo-

rithm which is 0[N), parallel algorithm will finish an iteration within the time 
..¾ 

complexity of 0{logN). 
1 

\ In Chapter 3, two fundamental constrains in route assignment are derived 

i from the structure of Benes-Clos networks: (1) Symmetric routing constrain; (2) 

Internally conflict-free constrain, where constrain (1) leads equalities and con-

strain (2) leads inequalities for a set of connection requests. In Benes network, 

these relationships can be represented by Boolean variables which denote the 
i states of the 2 x 2 switching elements in the network. The searching procedure 
j: 

and the merging procedure, which perform a type of transitive closure, are pro-
j 

posed in this chapter to solve these equations. As far as routing is concerned, a 

Clos network with 2^ central modules is equivalent to a fictitious Benes network. 

Thus, our algorithm can also be applied to the Clos network in a straightforward 

； manner. Furthermore, our algorithm can be applied to the rearrangeability of 

the Clos network. In this way, we not only can take the advantage of speeding up 

the computation, but also more than one connection requests can be processed 

at the same time. 

Most existing parallel routing algorithms are not practical for packet switch-

ing because they either assume the set of connection requests is a full permuta-

tion or fail to deal with output contentions among the set of input packets. Also 

these algorithms always depend on tedious but unnecessary definitions or nota-

tions, this is because they were not derived directly from the basic observations 

on the structure of the three-stage Clos networks. Our parallel routing algo-

rithm, which is presented in Chapter 3, can solve the routing problem naturally, 
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and also deal with partial permutation and output contention easily. 

Finally, some related directions for further research are outlined in the fol-

lowing. An unsolved problem in this thesis is that if the number of the central 

modules is not the power of two, there is still no full parallel and optimized rout-

ing algorithm. Another important issue in packet switching is the capability of 

multicasting. It would be worthwhile to investigate the basic principle of the 

multicasting capability in Benes-Clos networks. Results and insights obtained 

in this thesis can possibly be extended to these topics. 
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îf
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