
FAST ALGORITHMS FOR INTEGRAL
EQUATIONS �

— . . . \ � \

• . ’ � . / :)

»•

by

?

Wing-Fai NG

Thesis

Submitted to the Faculty of the Graduate School of

The Chinese University of Hong Kong

(Division of Mathematics)

In partial fulfillment of the requirements

for the Degree of

Master of Philosophy

/ < ^ 1 ? ^

, ^ ^ 统 系 馆 書 囷 \ A

|s(1 6 Mi m i
\ ^ y UNNERSITY
N^^S,U^Y SYST^'

N ^ ^ ^ ' -

_ „ _ ^

Fast Algorithms for Integral Equations i

DECLARATION

The author declares that the thesis represents his own work based on the ideas

suggested by Dr. Raymond H,F. Chan, the author's supervisors. All the work is

done under the supervision of Dr. Raymond H.F. Chan during the period 1994-1996

for the degree of Master of Philosophy at The Chinese University of Hong Kong,

The work submitted has not been previously included in a thesis, dissertation of

report submitted to any institution of a degree, diploma or other qualifications.

鹤

Wing-Fai NG

Fast Algorithms for Integral Equations ii

ACKNOWLEDGMENTS

I wish to express my sincere and deepest gratitude to my supervisor Dr. Ray-

mond H.F. Chan for his inspired guidance and discussions during the course of my

M.Phil, studies at the Chinese University of Hong Kong, I am deeply grateful to

Prof, T.M. Shih. of the Department of Applied Mathematics, the Hong Kong Poly-

technic University for his invaluable help and encouragement. Besides, I would also

like to thank all my academic brothers 一 Dr. X.Q. Jin, Dr. K.P. Ng, Mr. C.K.

Wong, Mr. W.K. Ching, Dr. F.R. Lin, Mr. H.C, Chan, Mr. T.M. Tso, Mr, H.W,

Sun, Mr. H.M. Zhou, Mr. C.R Cheung and Mr. K.W. Mak for their very helpful

discussions and supports.

Fast Algorithms for Integral Equations iii

CONTENTS

page

Abstract P.1 - P.2

Introduction p.3 - p.6

References p.7 — p.8

Paper I p.9 - p.32

Paper II p.33 - p.60

Fa,st Algorithms for Integral Equations 1

Abstract

In this thesis, we present a fast algorithm (named the fast dense matrix method)

to solve non-convolution type integral equations by conjugate gradient type

methods. Fast dense matrix method is a fast multiplication scheme that pro-

vides a dense matrix approximation A to a given integral equation or its

discretization matrix. Our method is based on using low-order polynomial

interpolation of the kernel function and a divide-and-conquer strategy. The

construction cost and storage requirement of the approximation A are both of

0(n) complexity and that the matrix-vector multiplication Ax can be done in

0{n log n) operations, where n is the size of the matrix A. Thus our method

is suitable for conjugate gradient type methods, since the complexity of solv-

ing the discretized system can be done in 0(nlog n) operations per iteration.

Our numerical results indicate that the algorithm is very accurate, and is very

stable for high degree polynomial interpolation.

However, for some integral equations, such as the Fredholm type integral

equations of the first kind, the system will be ill-conditioned and therefore the

convergence rate of the method may be slow. In these cases, preconditioning is

required to speed up the convergence rate of the method. The preconditioner

we consider in this thesis is the optimal circulant preconditioner, which is the

minimizer of ||C — A||/r in Frobenius norm over all circulant matrices C, It

can be obtained by taking the arithmetic average of the entries of A. Thus

for general dense matrices, the cost of constructing the preconditioner is of

Fa,st Algorithms for Integral Equations 2

0(n^) operations. In this thesis, we give an 0(nlogn) method of constructing

the preconditioner for matrices A arising from the fast dense matrix method.

Applications to first kind integral equations from potential equations are also

given, in which preconditioning has been shown to make the ill-conditioned

problem well-conditioned. Besides, numerical examples are given to illustrate

the fast construction of the preconditioner and the fast convergence of the

preconditioned systems.

The thesis is based on the following two papers, which will be referred to

in the text by Paper I and Paper 11.

Paper L [6] R. Chan, F, Lin and W. Ng, Fast Dense Matrix Method for the Solution

of Integral Equations of the Second Kind, submitted to SIAM J. Sci.

Comput,.

Paper 11. [8] R. Chan, W, Ng and H. Sun, Fast Construction of Optimal Circulant

Preconditioners for Matrices from Fast Dense Matrix Method, submitted

to SIAM J. Sci. Comput.,

Fa,st Algorithms for Integral Equations 3

Introduction

Solution of integral equations is a much studied subject and various direct

and iterative methods have been proposed for their numerical solutions, see

for instance Baker [2] and Delves and Mohamed [10]. However, one overriding

drawback of these methods is the high cost of working with the associated

dense matrices. For problems discretized with n quadrature points, classical

direct methods such as Gaussian elimination method requires 0{n^) operations

to obtain the numerical solutions. For iterative methods such as the conjugate

gradient method (see Golub and Van Loan [12])，each iteration requires 0{n^)

operations. Therefore even for well-conditioned problems, the method requires

0{n^) operations, which is often prohibitive for large-scale problems.

In recent years, a number of algorithms for the fast numerical solutions of

integral equations have been developed, see for instance [13, 14, 3, 1]. These

methods try to obtain an n-hy-n approximation matrix A to the given inte-

gral equation such that the matrix-vector multiplication of A with any vector

can be done in 0{n) or 0(nlogn) operations, depending on the smoothness

of the kernel functions. For example, the fast multipole method proposed

in [13] combines the use of low-order polynomial interpolation of the kernel

function with a divide-and-conquer strategy. For kernel functions that are

Coulombic or gravitational in nature, it results in an order 0{n) algorithm for

the matrix-vector multiplications. In [3]，an 0{nlogn) algorithm is developed

by exploiting the connections between the use of wavelets and their applica-

Fa,st Algorithms for Integral Equations 4

tions on Calderon-Zygmund operators. In [1], wavelet-like bases are used to

transform the dense discretization matrices into sparse matrices, which then

is inverted by the Schulz method. The complexity of the resulting algorithm

is bounded by 0(nlog^ n).

In Paper I, a fast matrix-vector multiplication scheme, named the fast dense

matrix method, is developed. In this paper, we consider Fredholm integral

equations of the second kind that are studied in [1], i.e. the kernel functions are

either smooth, non-oscillatory and possessing only finite number of singularities

or products of such functions with highly oscillatory coefficient functions. Our

approximation scheme starts with the same approach as in [1]. More precisely,

we write the discretized dense matrix B of the integral equation as the sum of a

sequence of block matrices where the blocks are of increasing size. Then we use

polynomial interpolation as in [13, 1] for each of the block matrix. However,

we do not use wavelet-like bases as in [1] to further approximate the operator

to get a sparse representation. Our resulting approximation A will therefore

be a dense matrix in general.

However, we show in paper I that the approximation A can be obtained in

0(n) operations and only 0(n) storage is required. We also show that matrix-

vector multiplication of the form Ax can be done in 0(nlog n) operations.

Thus for second-kind integral equations, which are in general well-conditioned

problems, solving the approximated systems by conjugate gradient type meth-

ods requires only 0(nlog n) operations. We have applied our scheme to kernel

functions tested in [1] and also to kernel functions where the algorithm in [1] is

inapplicable. Our numerical results show that our method is more accurate and

Fa,st Algorithms for Integral Equations 5

is stable even when higher degree polynomials are used in the approximation.

However, for some integral equations, such as the Fredholm type integral

equations of the first kind, the convergence rate of conjugate gradient method

may be slow and preconditioning are required to accelerate the convergence

rate. Optimal circulant preconditioners have been proposed and used success-

fully in preconditioning various kinds of integral equations, see for instance

11, 4, 5, 9]. Given the discretization matrix B of the integral equation, we

know that if the optimal circulant preconditioner of B, denoted by c(B), is

used as a preconditioner in the preconditioned conjugate gradient method,

then we have to compute the product [c(B)]_ix in each iteration for some vec-

tor X. By using the circulant structure of c(B), this product can be obtained

efficiently in 0(nlogn) operations by using fast Fourier transforms, see for

instance Chan and Ng [7 ,

Also, from Tyrtyshnikov [15], we know that the construction cost of c(B) is

of 0(n^) operations for general matrices B, and this cost count can be reduced

to 0(n) when B is a band matrix or a Toeplitz matrix. Therefore, the opti-

mal circulant preconditioner has been used in solving convolution type integral

equations, see [11, 4] for instance. Since the discretization matrix arising from

these integral equations are Toeplitz matrices if rectangular quadrature rule

is used, so solving such circulant preconditioned Toeplitz system by precondi-

tioned conjugate gradient method requires 0(n logn) operations per iteration.

But for non-convolution type integral equations, where the discrete ma-

trices are no longer Toeplitz. Convergence analysis of optimal circulant pre-

conditioners on solving this kind of integral equations has also been studied,

Fast Algorithms for Integral Equations ^

| s e e [5，9] for instance. For example, for boundary integral equations arising

from potential equations, which are ill-conditioned, non-convolution type inte-
•n
I
� gral equations with condition number increasing like 0(n), the preconditioned

3 systems have been shown to be well-conditioned, see Chan, Sun and Ng [9 .
':S:

However, since B is dense, forming the optimal circulant preconditioner c(B)

{ will require 0{n^) operations.

To overcome this difficulty, we developed in Paper II a fast algorithm for

constructing the optimal circulant preconditioner c(A) for matrix A that are

obtained from the fast dense matrix method. By using the special structure

of the approximation matrix A, the circulant matrix c(A) can be obtained in

1 0(nlog n) operations. Thus, used in conjunction with the fast dense matrix

method, the circulant preconditioned conjugate gradient method for integral

equations is a method of 0(nlog n) complexity.

To demonstrate the accuracy and stability of the fast dense matrix method,

and its effectiveness in performing matrix-vector multiplications, a variety of

numerical examples on second kind Fredholm integral equations are given in

Paper L To illustrate the efficiency of our construction scheme of the optimal

circulant preconditioner and the effectiveness of using circulant precondition-

ers, numerical examples on solving first kind integral equations from potential

equations are given in Paper 11.

. - 1

I

I

I

Fast Algorithms for Integral Equations 7

References

[1] B. Alpert, G. Beylkin, R. Coifman and V. Rokhlin, Wavelets for the Fast

I Solution of Second-Kind Integral Equations, SIAM J. Sci. Comput., 14

I (1993), 159-184.

2] C, Baker, The Numerical Treatment of Integral Equations, Clarendon

Press, Oxford, 1977.

'3] G, Beylkin, R, Coifman and V. Rokhlin, Fast Wavelet Transforms and

Numerical Algorithms /，Comm, Pure Appl. Math., 46(1991)，141—183.

'4] R. Chan, X. Jin and M. Ng, Circulant Integral Operators as Precondition-

ersfor Wiener-Hopf Equations, Integr. Equat. Oper. Theory, 21 (1995),

12-23.

5] R. Chan and F, Lin, Preconditioned Conjugate Gradient Methods for In-

tegral Equations ofthe Second Kind Defined on the Half-Line, J. Comput.

Math., to appear.

6] R. Chan, F. Lin and W. Ng, Fast Dense Matrix Method for the Solution

of Integral Equations of the Second Kind, submitted.

7] R. Chan and M. Ng, Conjugate Gradient Methods for Toeplitz Systems,

SIAM Review, to appear.

8] R. Chan, W. Ng and H. Sun, Fast Construction of Optimal Circulant

Preconditioner for Matrices from Fast Dense Matrix Method, submitted.

Fa,st Algorithms for Integral Equations 8

9] R. Chan, H. Sun and W. Ng, Circulant Preconditionerfor Ill-Conditioned

Boundary Integral Equations from Potential Equations, submitted.

10] L. Delves and J. Mohamed, Computational Methods for Integral Equa-

tions^ Cambridge University Press, Cambridge, 1985.

11] I. Gohberg, M. Hanke, and L Koltracht, Fast Preconditioned Conjugate

Gradient Algorithms for Wiener-Hopf Integral Equations, SIAM J. Nu-

mer. Anal., 31 (1994)，429—443.

12] G. Golub and C. Van Loan, Matrix Computations, 2nd ed., John Hopkins

University Press, Baltimore, 1989.

13] L, Greengard and V. Rokhlin, A Fast Algorithm for Particle Simulations,

J. Comput. Phys,, 73(1987), 325—348.

14] L. Reichel, Fast Solution Methods for Fredholm Integral Equations of the

Second Kind, Numer. Math., 57(1989), 719-736.

15] E. Tyrtyshnikov, Optimal and Super-optimal Circulant Preconditioners,

SIAM Matrix Anal. Appl., 13 (1992), 459-473.

Fast Dense Matrix Method for the Solution
of Integral Equations of the Second Kind

Abstract

We present a fast algorithm based on polynomial interpolation to ap-
proximate matrices arising from discretization of second-kind integral
equations where the kernel function is either smooth, non-oscillatory
and possessing only a finite number of singularities or a product of
such function with a highly oscillatory coefficient function. Contrast
to wavelet-like approximations, our approximation matrix is not sparse.
However, the approximation can be constructed in 0(n) operations and
requires 0(n) storage, where n is the number of quadrature points used
in the discretization. Moreover, the matrix-vector multiplication cost is
of order 0{n log n). Thus our scheme is well suitable for conjugate gra-
dient type methods. Our numerical results indicate that the algorithm
is very accurate and stable for high degree polynomial interpolation.

AMS(MOS) subject classifications. 45L10, 65R20.

Key Words. Fredholm integral equation, polynomial interpolation.

1 Introduction

; Solution of integral equations of the second kind is a much studied subject

and various direct and iterative methods have been proposed for their nu-

merical solutions, see [4] for instance. However, one overriding drawback of

. these methods is the high cost of working with the associated dense matrices,

9

m

i Paper II 10

For problems discretized with n quadrature points, classical direct methods

such as Gaussian elimination method requires 0{n^) operations to obtain the

numerical solutions. For iterative methods such as the conjugate gradient

method (see [5]), each iteration requires 0{rv^) operations. Therefore even for

well-conditioned problems, the method requires 0(n^) operations, which for

large-scale problems is often prohibitive.

In recent years, a number of algorithms for the fast numerical solutions of

integral equations have been developed, see for instance [6, 9, 2，1]. The fast

multipole method proposed in [6] combines the use of low-order polynomial

interpolation of the kernel function with a divide-and-conquer strategy. For

kernel functions that are Coiilombic or gravitational in nature, it results in

an order 0{n) algorithm for the matrix-vector multiplications. In [9], the

integral equation is discretized at Chebyshev points and the resulting matrix

is approximated by a low-rank modification of the identity matrix which can

be obtained in 0{nlogn) operations. However, the solution of the discretized

system still requires 0{n?) operations to obtain. In [2], an 0(nlogn) algorithm

is developed by exploiting the connections between the use of wavelets and

their applications on Calderon-Zygmund operators. In [1], wavelet-like bases

are used to transform the dense discretization matrices into sparse matrices,

which then is inverted by the Schulz method. The complexity of the resulting

algorithm is bounded by 0(nlog^ n),

In this paper, we will consider Predholm integral equations of the second

kind that are studied in [1], i.e. the kernel functions are either smooth, non-

oscillatory and possessing only finite number ofsingularities or products of such

i Paper II 11

functions with highly oscillatory coefficient functions, see (5). We will start

with the same approach as in [1]. More precisely, we write the discretized

dense matrix A as the sum of a sequence of block matrices where the blocks

are of increasing size. Then we use polynomial interpolation as in [6, 1] for

each of the block matrix. However, we do not use wavelet-like bases as in [1] to

further approximate the operator to get a sparse representation. Our resulting

approximation A will therefore be a dense matrix in general.

However, we show that the approximation A can be obtained in 0{n) op-

erations and only 0{n) storage is required. We also show that matrix-vector

multiplication of the form Ax can be done in 0{nlogn) operations. Thus for

second-kind integral equations, which are in general well-conditioned problems,

solving the approximated systems by conjugate gradient type methods requires

only 0{n logn) operations. We have applied our scheme to kernel functions

tested in [1] and also to kernel functions where the algorithm in [1] is inappli-

cable. Our numerical results show that our method is more accurate and is

stable even when higher degree polynomials are used in the approximation.

The outline of the paper is as follows. In §2, we recall the Nystrom method

for the numerical solution of integral equations. In §3 we derive our procedure

in approximating integral operators. In §4, we discuss the construction cost

of the approximation, the matrix-vector multiplication cost and the storage

requirement. A variety of numerical examples are given in §5 to demonstrate

the accuracy and stability of our proposed algorithm, its effectiveness in per-

forming matrix-vector multiplications and the convergence of the conjugate

gradient type methods for the approximate systems.

i Paper II 12

2 The Problem

Consider the linear Predholm integral equation of the second kind:

f(x)—广 a{x, t)f{t)dt = g{x), X G [0，1],
Jo

where the kernel function a{x, i) is in L^[0, lp and the unknown function f{x)

and the right-hand side function g{x) are in L^[0,1]. Define the integral oper-

ator
{Af){x) = [\{x,t)f{t)dt. (1)

«/ 0
Then the integral equation can be written as

{I-A)f = g, (2)

where X is the identity operator.

As in [1], we concern ourselves first with kernel functions a{x,t) which are

analytic except at x 二 t, where it possesses an integrable singularity. It is

well-known that integral operators with weakly singular kernels are compact

operators, see for instance [8, Theorem 2.21]. Therefore the operator I — A

is well-conditioned unless 1 is the eigenvalue of A, in which case, the operator

is singular. Thus a good method for solving these well-conditioned equations
%_ -̂.

is the conjugate gradient method or its variants, see for instance [5, 3]. They

converge to the solution in a linear rate, cf. [7] and Table 2 in §5.

To find the solution numerically, we discretize (2) by Nystrom's method

(see [4]) at equally spaced points (i - l)/(n - 1), i = 1，，. .，n, on [0,1]. This

results in a matrix equation

(I - A)f = g, (3)

Paper I 13

where I is the identity matrix, g is a given vector and f is the unknown vector.

As in [1], we define the entries of the discretization matrix A to be

A1. • = / ^ ^ (^ ' ^) ^ + j, (4)
J%J I 0 i = j,

This corresponds to a primitive, trapezoid-like quadrature discretization of the

integral operator A.

We can solve (3) by using conjugate gradient type methods. However,

for these methods to work efficiently, the matrix-vector multiplication Ay

should be done fast for any vector y. For A defined in (4), the multiplication

requires 0{n?) operations. In §3, we will find an approximation A of A, such

that Ay can be computed fast in 0(n logn) operations. The main idea is

to take advantage of the smoothness of the kernel function a{x,t), We know

that smooth functions can be approximated quite accurately by polynomials.

As an example mentioned in [1], for any c > 0, the function log|a:| can be

approximated within 4—9 accuracy on [c, 2c] by using polynomials of degree at

most 7. Since A possesses the same smoothness properties as that ofthe kernel

a{x,t), we see that if a(rr, t) is smooth, we can approximate A or submatrices

of A by low rank matrices obtained via polynomial interpolation. This is done

in the next section.

Besides smooth kernels, the authors in [1] have also studied a more general

class of integral equations which are of the form:

f{x) - d{x) £ a{x, t)f{t)dt = g{x), x G [0,1]， （5)

where a{x, t) is again analytic except with an integrable singularity at x = t

and the coefficient function d(x) can be oscillatory. These problems lie between

i Paper II 14

the problems with smooth kernels and those with arbitrary oscillatory kernels.

The corresponding operator equation is of the form

(I-VA)f = g, (6)

where A is given in (1) and V is the operator defined by

{Vf){x) = d{x)f{x),

In [1], it is assumed that d{x) is positive and a new wavelet bases is applied

to the symmetrized operator V^I^AV^I^ to obtain a sparse representation.

However, we note that as long as d{x) is bounded (no need to be positive),

then V will be a bounded operator. Therefore if a{x, t) is at most weakly

singular, then A and hence VA will be a compact operator. This is because

product of bounded operator and compact operator is still compact, see for

instance [10, Theorem 4.18]. Hence I - VA will still be well-conditioned and

we can solve (6) by conjugate gradient type methods and the convergence rate

will again be linear.

Clearly, the discretized equation of (6) is given by

(I - DA)f = g, (7)

where A is given by (4) and D is a diagonal matrix with entries given by
i — 1

[B]i^i = d{-^), i = lr-^n, ‘ n — 1

We will approximate A by low rank matrices to obtain the approximation A,

‘ where the matrix-vector product Ay can be obtained in 0(nlogn) operations

for any vector y. Since D is diagonal, we see that the product (I - DA)y can

be computed in 0{nlogn) operations.

i Paper II 15

3 The Approximation

The main idea in getting an approximation of A is to approximate A by low

rank matrices. However, if the whole matrix A is approximated by one low

rank matrix, the approximation will not be good in general, especiaIly for

kernels with diagonal singularities. Therefore a general idea is to divide A

into blocks of different sizes and approximate each of the block by a low rank,

say rank k, matrix. We will follow the partition as suggested in [1] (see also

Figure 4 therein) and assume the size of A is given by n 二 k • 2�Here k is a

small integer that depends on the smoothness of the kernel function a(., •)•

With the partition, the matrix A is cut into blocks of different sizes. The

blocks near the main diagonal are of size k-hy-k, those next remote are of

size 2k-hy-2k, and so forth up to the largest blocks of size 2^"^A:-by-2^"^. By

grouping blocks of the same size into one matrix, we can express the matrix

A as
A = A(o) + AW + . . . + A ") , (8)

where 八⑷，u = 0 , . . . , 1 - 2, consists only of blocks of size 2^k-hj-2^k. We can

easily check that the number of nonzero blocks in A(^) is given by

—f 6. 2̂ — 8 u = 0, . .
� = j 6 (2 � _ l) u = l,...,l-2. (:

We wiU denote these nonzero blocks by A(̂ ’—, v = 1, • • •, i ^ As an iUustration,

Paper I 16

for 1 = 5, A(2) is of the form

A(2'1) A(2，2)

A(2，3)

A(2'10) A(2'4) A(2'5)

A(2,11) A(2,12) A(2'6)
人 ⑵ = J_ L__ ,

A(2,13) A(2,7) A(2，8)

A(2,14) A(2，15) A(2，9)

A(2'16)

A(2，17) A(2，18)
_ J (10)

where each A(2’”）is a 4A:-by-4A: matrix and other blocks not written out ex-

plicitly are zero blocks. As in [1], our idea is to write each block A(̂，^ in A(^)

as
A —) = A —) + E—),

where 入(以’幻）is of rank k and the error matrix E(̂ ’”）has small norm.

: Our approach of constructing k — � i s as follows. Let the entries of A(̂ ’”）

I.
: be given by

丨 [A—)]o. = _ i ^ a ((“ + “ l) / i，(j o + j - l) / 0 , l < i J < 2 ^ k , (11)
n — 1

»••

!•

S'

j
^
f K
I I
5

i Paper II 17

i.e. the entries of A (^ ” are obtained by evaluating the kernel function a{x, t) in

the domain [ioh, ioh+{2^k-l)h] x [joh, joh^{2^k-l)h] . Our idea is to map this

domain to [—1,1]^ and do our approximation there. On the domain [- l , l p ,

we will take k̂ samples of the function a(.，.）at equally-spaced points and

use the values to approximate the matrix A("’”）. The resulting transformation

matrix will be more stable and requires less storage to store, see §4 and §5.

Clearly, the transformation is given by

. — — 1 丨 2 工 — •

: - - 越 ’ （12)

、t 二 - i+V&-i) " ,
where {x,t) will be in [—l，lp. For simplicity, let us denote a{x,t) 二 a(z,t).

We then construct the k-hy-k sample matrix A(^’” by evaluating a(.,.) at k^

equally-spaced points in [- l , l p . That is

[A(�”)] i , = ^ a (- l + 2 ^ , - 1 + 2 f ^) , 1 < i, j < k. (13)
n — 1 k — 1 k — 1

Since by the assumptions on a(.，.)，the function a(-,-) is smooth and non-

oscillatory in [—l，lp, it can be approximated accurately by polynomials of

smaU degree. In particular, we have

^ a (x , f) ^ E E AS’”V—ip-i, (14)
几—丄 r=ls=l

where A—) are the coefficients of the Taylor series expansion of the function
T*S

on the left hand side.

Combining (13) and (14)，we then have

[A(¥)L. ^ E E A i r H - i + 2 吕 ” (- 1 + 2 (^ r \ 1 < i,j < k.
一 (15)

Paper I lS

In matrix terms, we then have

A—) « P�A—)Pfc (16)

where P^ and A(̂’”）are k-hy-k matrices with entries given respectively by

[P,],. = (-i + 2 ^ y - \ i<ij<K (17)

and

[A—)L. = A!r), l<iJ<k.

We are now ready to approximate A(̂ ’”）by a rank k matrix. By (11), (12)

and (14), we have

[A(—L- = ^a{{io + i-l)K { j o + j - m
n —丄

= 由 ' (— 1 + 2 岩 — 1 + 2 品 ）

- i : i > & i - i + 2 ^ ^ r i (- i + 2 ^ ^ ^) H , … , � ^ .
r=l 5=1

In matrix terms, we then have the approximation:

A(— « (pW)TA—)P(u) (18)

where P(^) is the k-hy-2^k matrix with entries given by

[P^%J = (—1 + 2 ^ ^ ^ r \ 1 < i < K 1 < 3 < rk, (19)

Thus the approximation 人(以，力 of A(^,^ is obtained as follows:

1. Compute approximation 私二’…of Ag’”）by requesting that the approxi-

mate equation (15) holds exactly for all P sampled points. More pre-

cisely, we compute approximate coefl&cients matrix 人(¥) of A(¥) by

i Paper II 19

(16), i.e.

入一）三（ P � � A —) P � i , (20)

where A(̂’”）and P^ are given by (13) and (17) respectively.

2. The approximation A(�— of A(〜”）is then given by (18), i,e.

入―）三（p(w))TX—)p(w)， (21)

where P〜）is given by (19).

We emphasize that we do not have to form the 2^k-hy-2^k matrix A —) in

order to get its approximation A(̂，”). If only matrix-vector multiplications are

required, as is in the case of conjugate gradient type methods (see [5]), then

there is no need to explicitly form the approximation A (� A and we only have

to store X(�W and P (<

We remark that by transforming into the domain [-1 , lp , both basis func-

tion matrices P^ and P ^ are now independent of the index v of the block we

are approximating. Numerical results show that our basis function matrices

are less ill-conditioned than those we would obtain without the transforma-

tion, For example, when k = 8 and 14, condition numbers of P^ are about 10̂

and 10̂ respectively, whereas if no transformation is used, the numbers will

exceed 10^ and 10̂ ^ respectively and vary with v. In [1], interpolation are done

by using polynomial basis functions that are shifted and scaled by methods

different from ours. The resulting basis function matrices are also stable with

condition numbers (which vary with different blocks and depends on n) about

the same order as that of our Pfc.

i Paper II 20

Another important advantage of having this v independence in our basis

function matrices is that we can use the same P(^) for all A(^’”). Recalling the

block structure of each A(— (cf. (10)) and the approximation k — � o f each

block A(̂ ’— in (21), we see that A(^) can now be approximated by

入⑷=\hi-u ③(P(^)fl . ！⑷.[l2“ 0 P (1 . (22)
L J i- J

Here l2i-u is the identity matrix of size 2 "̂̂ , (g) is the Kronecker tensor product

and 人⑷ is a matrix having the same block structure as A(—, except that the

blocks A(̂ ’”）in A(^) are of size 2̂ k whereas the blocks 人(以’幻）in 人⑷ are of

size k. As an illustration, the matrix 入⑵ for 1 = 5 is of the form (cf. (10)):

A(2,l)入(2’2)

A(2'3)

入(2,10) 入(2，4)入(2，5)

、”入(2,11)入(2，12) 入(2,6)

入⑵二 :L8 0(P(2)) L [t8g)P(2)

A(2A3) A(2,7)入(2’8)

入(2,14) X(2,15) 入(2，9)

X(2,16)

人(2’17)人(2,18)

where each 人(2’幻）is a k-hy-k matrix.

i Paper II 21

Having defined the approximation matrix A(^) for each A(^), u 二 1 , . . . , 1 —

2, we can now define our approximation matrix A to the original matrix A:

A 三 A(o) + 入⑴ + 入⑶ + . . . + A"-2)， （23)

see (8). In §5, we will compute the difference A — A for different kernel

functions a{x, t) and different k and n to illustrate the accuracy of our approx-

imation.

We remark that in [1], after the approximation with low-order polynomi-

als, the operator is further approximated (by throwing away entries less than

a given threshold) by using wavelet-like basis functions so that the final ap-

proximation matrix is sparse. In our case, we stop at the approximation by

low-order polynomials and the approximation matrices A are in general dense.

However, we emphasize that if we are going to solve the linear system relating

to A by conjugate gradient type methods, then only matrix-vector multiplica-

tions of the form Ay are required. In this case, there is no need to explicitly

form A. All we need is to store A(。)，入(以，”）and P〜)，see §4, We will also show

in §4 that the matrix-vector multiplication Ay can be obtained in 0(nlogn)

operations,

4 Complexity Analysis

In this section, we consider the complexity of obtaining and storing a represen-

tation of A so that matrix-vector multiplications of the form Ax can be done

fast. We also consider the cost of doing such matrix-vector multiplication. We

；

i Paper II 22

first recall that by (23) and (22), we have

Ax = A(o)x + 2 [l,i-u 0 (P � �] .入⑷ . [l 2 , - « 0 P (1 X. (24)

U=1

Thus we see that for the computation of Ax, it suffices to form and store A(o),

人⑷ and P (< For simplicity, in the following, we count only the number of

multiplications in the operation counts. The number of additions is of the

same order.

Storage Requirement:

Forming Storage Explanation
" A ^ (6 . 2̂ - 8)P A(o) consists of (6 • 2^ — 8) blocks of size k, see

^
~ p O 6(2[1—以—l)P 八⑷ is a block matrix with 6(2^1—" — 1)

nonzero blocks, see (9). Each nonzero block
入(以’力 is of size k, see (20).

p(^) 2^k^ P(— is a k-hy-2^k matrix, see (19).

Thus the total storage requirement is

(6 . 2 � — S) e + § {6(2^-^-" — l) P + 2^e] < 10 • 2V = lOnk.
w=i

Construction Cost:

To form 入(以’幻）using (20), we first form the basis function matrix P^ (see

(17)) and its inverse. This requires 0{k^) operations and the matrices can

be used for all u and v. For a given u and v, we form K^—�in (20) by

^ forming 人(以’衫）first. By using (13), this requires k̂ function evaluations of the

, kernel function a(-, •), Then 入(以’幻）is obtained by using (20) which requires 2k̂

multipHcations. Thus each 人(以’幻）can be obtained in k̂ function evaluations

i Paper II 23

and 2k^ multiplications. In the following table, f.e. denotes function evaluation

of a(.,.).

Forming Complexity Explanation
~ K ^ (6 • 2' - S) e f.e. A(o) consists of (6 .2' - 8) blocks of size k,

see (9).
入⑷ 6(2'—1—以-l)k^ f.e. A^̂) contains 6(2^"^"^ - 1) nonzero blocks,

and 12(2�-1-以一l)k^ see (9) and each nonzero block 入(以’幻）re-
quires k̂ f.e. and 2k^ multiplications,

p(w) 2̂ k^ P(u) is a A:-by-2̂ A: matrix, and its entries
can be formed row-wise to avoid taking
power, see (19).

Summing all these costs together, we conclude that the cost of forming A(。)，

人⑷ and ？⑷ for all u = 1, • •., 1 - 2 is

^ |l2(2^-i-^ - l)k^ + 2^e } < 6 • 2 V + 2 V = 6nA;2 + o(nA:)
U=1

multiplications and

l-2
(6 . 2i — S)k^ + Y^ 6 (2 " - u — l)k^ < 9 . 2V 二 9nk

U=1

function evaluations. In contrast, forming A requires n̂ function evaluations.

Cost ofMatrix-Vector Multiplication:

We compute matrix-vector multiplication A x as in (24).

i Paper II 24

Forming Complexity Explanation
A(o)x (6 . 2i — S)e Each of the (6 . 2' - 8) blocks in

A(o) need to multiply with the cor-
responding subvector of length k.

y^ 三 (¾ ^ (g) P (’ 2'P There are 2'"^ copies of P@) in
I2i-u (g) ？⑷ and multiply each copy
of pM to length 2^k vector requires
2̂ k̂ multiplications.

z^EX(^)yu 6(2^-1-^ - l)k^ There are 6(2^-^-^_- 1) nonzero
blocks of size k in 人⑷ and multi-
ply each of them to length k vector
requires k̂ multiplications.

Î t-u 0 (P ^ f] 2^ 2^e There are 2 '̂̂ copies of (P(W)T in
l2“^(P(^))T and multiply each copy
of (P(u))T to length k vector requires
2̂ k̂ multiplications.

Combining all these together, we conclude that the total number of multipli-

cations required in forming Ax is

1一2
(6 . 2̂ — 8)k' + ^ {6(2'-i-u — i) p + 2 • 2^k'j < (2/ + 5)2^k' 二 (21 + 5)nk,

W=1

which is of order 0(nlogn). In contrast, the cost of forming Ax is n̂ multi-

plications.

5 Numerical Examples

In this section, we show the efficiency and accuracy of our scheme by applying

it to the following six kernel functions:

(i) log\x-tl

(ii) cos{xt^)\og\x-t\,

i Paper II 25

(iii) cos{xt^)\x-t\-^^\

(iv) COs{xt̂)\x — t|l/2,

(v) (1 + I sin(lOOrr)) log \x - t\, and

(vi) sin(lOOa;) log \x — t .

Kernel functions (i) to (v) are examples tested in [1]. We note that kernels

(v) and (vi) are kernels with a highly oscillatory coefficient function d{x) that

is equal to 1 + | sin(lOOo;) and sin(lOOrr) respectively, see (5). Obviously,

both coefficient functions are bounded and therefore our algorithm works for

both examples, see §2. We note however that since d{x) for kernel (vi) is not

positive, the algorithm in [1] is not applicable for this kernel.

The discretized equations for kernels (i) to (iv) are given by (3) and for

kernels (v) and (vi), they are given by (7). Given a kernel function a(-,.), we

compute the matrix A as defined in (4) and its approximation A by (23). We

measure the accuracy of the approximation by computing the relative error

||A - A||iî /||A||î , where || . Wp is the Frobenius norm. All our computations

are done in MATLAB on a SUN Sparc-20 workstation. Table 1 shows the

results for different k and 1. We recall that the size of the matrices is n = k • 2 �

Thus the largest matrix we tried is of size 14,336-by-14,336.

Note that kernel functions (v) and (vi) give the same dense matrix ap-

proximation A as that of (i) as the a{x, t) for all three kernels are all equal

to log|o: — t\. Therefore, in Table 1，results for kernel functions (v) and (vi)

are omitted. We see from Table 1 that our scheme provides a very accurate

approximation A to the original matrix A even for small k like 8. We recall

i Paper II 26

from §4 that the cost of forming A is of order 0 { n P) operations whereas the

cost of forming A is of 0{n^) operations.

k 二 4 k = 8 k = 11 k = 14
1 a{x, t) = log \x — t

~1：~~7.69E-05 3.06E-08 1.79E-10 1.04E-11
6 1.14E-04 4.68E-08 2.78E-10 1.86E-11
8 1.30E-04 5.40E-08 3.22E-10 2.27E-11
10 1.36E-Q4 5.67E_08 3.38E-lQ 2,41E-11
1 a{x, t) = cos{xt^) log \x - 1̂

~1：~"7.57E-05 3.10E-08 1.82E-10 1,18E-11
6 1.13E-04 4.73E-08 2.82E-10 1.93E-11
8 1.29E-04 5.44E-08 3,25E-10 2.23E-11
10 1.35E-Q4 5.71E-Q8 3.42E-lQ 2.33E-11

~T~ a{x, t) = cos{xt^)\x - t|-i/2 -
~4~~9.18E-05 5.24E-08 3.54E-10 1.12E-11

6 1.56E-04 9.09E-08 6.25E-10 1.55E-11
8 1.98E-04 1.17E-07 8.07E-10 1.87E-11
10 2.25E-04 1.34E-Q7 9.29E-lQ 2.Q1E-11
1 — g(rr, t) = cos{xf)\x - t\^^^

~4~~2.09E-05 5.53E-09 2.75E-11 2,29E-11
6 2.92E-05 7.85E-09 3.94E-11 2.26E-11
8 3.20E-05 8.59E-09 4.31E-11 2.39E-11
10 3.28E-05 8.80E-09 4.41E-11 2.53E-11

Table 1: ||A - A||î /||A||î for different kernels.

Next we illustrate the efficiency and accuracy of solving (3) and (7) using

the approximation A. For kernel functions (i) to (iv), we first choose a random

vector X to generate the right hand side vector b = (I — A)x. Then we

solve the approximate equation (I — A)x 二 b for the approximate solution

X. For kernel functions (v) and (vi), we again choose a random vector x to

generate the right hand side vector b = (I — DA)x, see (7). Then we solve

i Paper II 27

the approximate equation (I - DA)x = b for the approximate solution x. All

equations are solved by the CGLS method (see [3]) which basically solves the

normal equation of a given equation by the conjugate gradient method.

In the CGLS method, we choose the zero vector as the initial guess and

the stopping criterion is
• ^ < 10-10’
ro 2

where r^ is the residual vector at the qth. iteration. The numbers of iterations

required for convergence for the six kernels are given in Table 2. To measure

the accuracy of the approximate solution x, we have computed the relative

error ||x — x||2/||x||2. The results are shown in Table 3.

k = 4 k = 8 k = ll k = 14 |A: = 4 k = S k = ll k = 14
1 a{x, t) 二 log |a: - t\ a{x, t) 二 cos{xt') log |x - t 一

" 1 U l3 l3 l3 U l3 l3 U ~ ~
6 13 13 13 13 13 13 13 13
8 13 13 13 13 13 13 13 13
10 13 13 13 13 13 13 13 13
1 g(rr, t) = cos(xt')\x - t|-i" — a(x, t) = cos{xt^)\x — t|i" 一

"1 l9 ^ 2 ^ 26 ~8 8 8 8~~
6 26 29 31 36 8 8 8 8
8 33 32 32 33 8 8 8 8
10 32 32 33 34 8 8 8 8
1 a{x, t) = (1 + i sm(lQQg;)) log |a: — t\ aQr，t) = sin(lOOrr) log |a; — t

~ T " 13 14 14 14 ~~l2 l3 I i l4~~
6 14 13 13 13 14 14 14 14
8 13 13 13 13 14 14 14 14
10 13 13 13 13 14 14 14 14

Table 2: Numbers of iterations required for convergence.

I
i Paper II 8

k = 4 k = 8 k 二 11 k 二 14

1 a{x, t) — log \x - t
~~l““3.45E-05 l,27E-08 1.28E-10 9.89E-11

6 4.74E-05 1.87E-08 9.55E-11 7.03E-11
8 5.27E-05 2.06E-08 8.68E-11 5.06E-11
10 5.38E-05 2.11E-Q8 7.75E-11 3.24E-11

{ 1 a{x, t) = cos{xt^) log \x -力|

j ~1 ~"3.24E-05 1.22E-08 7.27E-11 7.31E-11
] 6 4.47E-05 1.80E-08 7,84E-11 2.99E-11
] 8 5.00E-05 1.98E-08 7.87E-11 3.26E_11

10 5.11E-Q5 2.Q3E-Q8 7.36E-11 2.38E-11
1 a{x, t) = cos{xt^)\x - t|-i/2 -

" 1 ~"7.44E-05 4.16E-08 2.02E-10 3.32E-11
6 l,76E-04 L54E-07 1.58E-09 1.48E-09

！ 8 1.28E-03 2.03E-07 4.52E-10 7.03E-11
10 3.07E-Q4 1.44E-Q7 5.24E-lQ 5.93E-11

~r a{x, t) = cos{xt^){x - t|i/2 一

^~"6.96E-06 l,29E-09 8.57E-12 3.61E-11
I 6 l,27E-05 2.03E-09 1.60E-11 2.61E-11

8 1.45E-05 2.27E-09 1,23E-11 2.03E-11
10 1.47E-Q5 2.33E-Q9 5.36E-12 1.94E-11

i 丁 g(rr, t) = (1 + 告 sin(lOOaQ) log |a; - t\
I ~T~ 3,81E-05 1.31E-08 5,59E-11 2,40E-11
i 6 5.11E-05 1.84E-08 L17E-10 1.27E-10
： 8 5.63E-05 2.04E-08 1.14E-10 4.75E-11
j 10 5.71E-05 2.Q6E-Q8 7.26E-11 6.Q2E-11
j 1 a{x, t) 二 sin(lQQg;) log |a: -1\
！ " 1 ~"3.02E-05 1.28E-08 4.28E-11 3.19E-11

6 6.27E-05 1.92E-08 7.72E-11 9.68E-11
8 7.46E-05 2.11E-08 9.69E-11 1.07E-10
10 7.75E-05 2.19E-08 8.85E-11 5.66E-11

I i
Table 3: ||x - x||2/||x||2 for different kernels.

Since the kernel functions we tried are at most weakly singular, we see from

Table 2 that the convergence rate is linear as expected, see [8, Theorem 2.21 .

i Paper II 29

Recall from §4 that the cost of matrix-vector multiplication Ay is ofO(nlogn)

operations, the total cost of solving the systems is thus of 0{n log n) operations

too. We emphasize again that in order to get the approximate solution x, we

only have to form A (which requires only 0{nk^) operations) and no need to

form A.

We finally compare the operations required in computing the matrix-vector

multiplications Ax and Ax. Tables 4a-4d give the numbers of floating point

operations (flops) required. We note that the counts do not depend on the

kernel functions used. In the tables, the ratios denote the ratios of the oper-

ation counts when the size n of the matrix is doubled. We clearly see from

the ratios that the cost of the matrix-vector multiplication Ax is approaching

0{nkl) = 0{nlogn), whereas that of Ax is 0(n^).

n Ax ratio Ax ratio
^ p ^ — 2,096 — ~~
64 9,682 3.1568 8,288 3,9542

128 25,705 2,6549 32,960 3.9768
256 62,896 2.4468 131,456 3.9883
512 147,127 2.3392 525,056 3.9942

1024 334,846 2.2759 2,098,688 3.9971
2048 748,357 2.2349 8,391,680 3.9985
4096 1,651,084 2.2063 33,560,576 3.9993
8192 3,607,507 2,1849 134,230,016 3.9996

16384 7,821,850 2,1682 536,895,488 3.9998

Table 4a: Flops counts in computing Ax and Ax for k = 4.

I
•

Paper I 30

n Ax ratio Ax ratio
^i 9,767 — 8,272 — ~~

128 29,322 3.0022 32,928 3.9807
256 76,221 2.5994 131,392 3.9903
512 184,224 2,4170 524,928 3,9951

1024 427,459 2.3203 2,098,432 3.9976
2048 967,206 2.2627 8,391,168 3.9988
4096 2,152,073 2.2250 33,559,552 3.9994
8192 4,731,372 2.1985 134,227,968 3,9997

16384 10,307,919 2.1786 536,891,392 3.9998
~

Table 4b: Flops counts in computing Ax and Ax for k = 8. [I
n Ax ratio Ax ratio

88 17,438 — 15,592 — ~ ~
176 51,570 2.9573 62,160 3.9867
352 132,786 2,5749 248,224 3,9933
704 319,158 2.4036 992,064 3.9966

1408 737,794 2.3117 3,966,592 3,9983
2816 1,664,862 2.2565 15,863,040 3.9992
5632 3,696,602 2.2204 63,445,504 3.9996

11264 8,113,302 2.1948 253,768,704 3.9998
22528 17,651,154 2.1756 1,015,048,192 3.9999

Table 4c: Flops counts in computing Ax and Ax for k = 11.

n Ax ratio Ax ratio
~ " n 2 2 7 ^ — 25,216 — ~

224 80,262 2,9317 100,608 3,9898
448 205,515 2.5606 401,920 3.9949
896 492,216 2,3950 1,606,656 3,9975

1792 1,134,997 2,3059 6,424,576 3.9987
3584 2,556,306 2.2523 25,694,208 3.9994
7168 5,667,407 2.2170 102,768,640 3.9997

14336 12,423,564 2.1921 411,058,176 3.9998
28672 27,000,777 2.1734 1,644,199,936 3.9999

Table 4d: Flops counts in computing Ax and Ax for k = 14.

i Paper II 31

References

1] B. Alpert, G. Beylkin, R. Coifman and V. Rokhlin, Wavelets for the

Fast Solution of Second-Kind Integral Equations, SIAM J. Sci. Comput.,

14(1993), 159-184,

2] G, Beylkin, R. Coifman and V, Rokhlin, Fast Wavelet Transforms and

Numerical Algorithms 7, Comm. Pure Appl. Math., 46(1991), 141—183,

3] A. Bjorck, Least Squares Methods, Handbook of Numerical Methods, P.

Ciarlet and J. Lions, ed., V 1, Elsevier, North-Holland, 1989.

4] L, Delves and J. Mohamed, Computational Methods for Integral Equa-

tions, Cambridge University Press, Cambridge, 1985.

5] G. Golub and C. Van Loan, Matrix Computations, 2nd ed,, John Hopkins

University Press, Baltimore, 1989.

6] L. Greengard and V. Rokhlin, A Fast Algorithm for Particle Simulations,

J. Comput. Phys,, 73(1987), 325-348,

Y] R, Hayes, Iterative Methods of Solving Linear Problems on Hilbert Space,

Nat. Bur. Standards Appl. Math. Ser., 39(1954), 71-103.

8] R. Kress, Linear Integral Equations, Applied Mathematical Sciences, V

82, Springer-Verlag, New York, 1989.

9] L. Reichel, Fast Solution Methods for Fredholm Integral Equations of the

Second Kind, Numer. Math., 57(1989), 719-736.

I

Paper I 32

10] W. Rudin, Functional Analysis, 2nd ed., McGraw-HiU, New York, 1991.

Fast Construction of Optimal Circulant
Preconditioners for Matrices from Fast

Dense Matrix Method

Abstract

In this paper, we consider solving non-convolution type integral
equations by the preconditioned conjugate gradient method. The fast
dense matrix method is a fast multiplication scheme that provides a
dense discretization matrix A approximating a given integral equation.
The dense matrix A can be constructed in 0(n) operations and requires
only 0(n) storage where n is the size of the matrix. Moreover, the
matrix-vector multiplication Ax can be done in 0{n log?i) operations.
Thus if the conjugate gradient method is used to solve the discretized
system, the cost per iteration is 0(n log n) operations. However, for
some integral equations, such as the Fredholm integral equations of the
first kind, the system will be ill-conditioned and therefore the conver-
gence rate of the method will be slow. In these cases, preconditioning
is required to speed up the convergence rate of the method. A good
choice of preconditioner is the optimal circulant preconditioner which
is the minimizer of ||C — A\\F in Frobenius norm over all circulant ma-
trices C. It can be obtained by taking arithmetic averages of all the
entries of A and therefore the cost of constructing the preconditioner is
of 0{n?) operations for general dense matrices. In this paper, we de-
velop an 0{n logn) method of constructing the preconditioner for dense
matrices A obtained from the fast dense matrix method. Application
of these ideas to boundary integral equations from potential theory will
be given. These equations are ill-conditioned whereas their optimal cir-
culant preconditioned equations will be well-conditioned. The accuracy
of the approximation A, the fast construction of the preconditioner and

33

i Paper II 34

the fast convergence of the preconditioned systems will be illustrated
by numerical examples.

AMS(MOS) subject classifications. 45B05, 65F10, 65R20.

Key Words. Integral equations, circulant preconditioners, conjugate gradient

method.

1 Introduction

Circulant matrices are matrices that have constant diagonals and that the first

entry of each column is the last entry of its preceding column. More precisely,

each column in the matrix is obtained by a cyclic shift of its preceding column.

For an n-hy-n matrix B, the optimal circulant preconditioner c{B) of B is

defined to be the minimizer of ||C - B^ over all n-hy-n circulant matrices

C, see T. Chan [10]. Here || • \\̂ denotes the Frobenius norm. Since c{B) is

a circulant matrix, it is determined uniquely by its first column which can be

obtained easily by taking the arithmetic average of the entries Kj3 of B. More

precisely, the entries {ce)^=i in the first column of c{B) are given by

c5+1 二 i Y1 K,|3, ^ 二 0 , . . . , n - 1， ⑴

几 a-/3=5(mod n)

see Tyrtyshnikov [15 .

Using the circulant structure of c{B), the inverse [c{B)]-^ of c{B) and the

matrix-vector multiplication [c(_B)]]x for any vector x can be obtained in

0(nlogn) operations by using fast Fourier transforms, see for instance Chan

and Ng [8]. Moreover, c{B) is positive-definite whenever B is, see Tyrtysh-

nikov [15]. This makes c{B) a very attractive choice of preconditioner in the

^

5 >
Y
'!

i Paper II 35

preconditioned conjugate gradient method for solving the system By = b. For

then, if B is positive-definite, the preconditioned matrix is positive-definite.

Moreover, the cost of multiplying [c{B)]-^ to a vector, which is required in each

iteration of the method, can be obtained in 0(nlogn) operations by using fast

Fourier transforms.

However, from (1)，we see that the cost of constructing c{B) is of 0{n^)

operations for general matrices B, This cost count can be reduced to 0{n)

when B is a band matrix or a Toeplitz matrix (i.e. matrix with constant

diagonals). Therefore, the optimal circulant preconditioner has been used in

the numerical solutions of partial differential equations and in Toeplitz least

squares problems from signal and image processing. Convergence results for

the preconditioned systems arising from these problems have been established,

see for instance Chan and Ng [8] and the references therein.

Optimal circulant preconditioners have also been proposed and used suc-

cessfuUy in solving convolution type integral equations, see [12, 4]. The discrete

matrices from these integral equations are Toeplitz matrices if the rectangular

quadrature rule is used. For non-convolution type integral equations, where

the discrete matrices are no longer Toeplitz, convergence analysis of optimal

circulant preconditioners has also been studied, see [6, 9]. For example, for

boundary integral equations arising from potential equations, which are ill-

conditioned, non-convolution type integral equations with condition number

increasing like 0(n), the preconditioned systems have been shown to be well-

conditioned, see Chan, Sun and Ng [9] and also §5,

However, there are two main difficulties in using circulant preconditioned

i Paper II 36

conjugate gradient methods for non-convolution type integral equations. The

first one is that the discretization matrix B corresponding to the integral equa-

tion is dense. Hence multiplying B to a vector, which is required in each it-

eration of the conjugate gradient method, is of 0{n?) complexity. The other

difficulty is that since B is dense, forming the optimal circulant preconditioner

c{B) using (1) will require 0{n^) operations. In this paper, we will address

the second difficulty.

To overcome the first difficulty, a number of fast multiplication schemes

have been developed in recent years, see for instance [13，14, 3, 1]. These

methods try to obtain an approximation A to the given integral equation such

that the matrix-vector multiplication of A with any vector can be done in 0(n)

or 0{nlogn) operations, depending on the smoothness of the kernel function

of the integral equation. In Chan, Lin and Ng [7], we have proposed the fast

dense matrix method for approximating integral equations. Our approximation

matrix A is a dense matrix which can be obtained in 0{n) operations and only

0(n) storage is required. Moreover, the matrix-vector multiplication Ax can

be done in 0(nlogn) operations.

To deal with the second difficulty mentioned above, we will develop in this

paper a fast algorithm for constructing the optimal circulant preconditioner

c(A) for matrices A that are obtained from our fast dense matrix method. Us-

ing the special structure of our A, the circulant matrix c{A) can be obtained

in 0(nlogn) operations. Thus, the construction ofthe discretization matrix A

and its circulant preconditioner c(A), and the cost of multiplying A or [c(A)]—i

to any vector can all be done in 0{nlogn) operations. Hence used in conjunc-

i Paper II 37

tion with our fast dense matrix method, the circulant preconditioned conjugate

gradient method for integral equations requires only 0(nlog n) operations per

iteration.

In order to illustrate the efficiency of our construction and the effect of

using circulant preconditioners, we will apply these ideas to solving first kind

integral equations from potential equations. These equations are known to

be ill-conditioned with condition number growing like 0{n). Chan, Sun and

Ng [9] have shown however that the problem becomes well-conditioned if it is

preconditioned by optimal circulant preconditioners. In particular, the precon-

ditioned system converges in a fixed finite number of iterations independent

of the size of the discretized system. Thus, if the system is solved by using

preconditioned conjugate gradient method coupled with our fast dense ma-

trix method, the total cost of solving the system is of the order 0{nlogn)

operations.

Before we go on, let us define some terminologies to be used later on. Given

an n-hy-n matrix B with entries 6« ’� , we define the diagonal sums {ds)^I^(^n-i)

of B to be the sum along each of the diagonals of B, More precisely,
• n

Y^ ba,a-6, 0 < S < n,
1 一 a^6+l (2)

de 二 n+6 � ~
E -‘-& 0 < -^ < n,

� a=l

Thus do is the sum of the main diagonal entries of B, di is the sum of the entries

on the sub-diagonal and d—i is the sum of the entries on the super-diagonal.

We note that once we have the diagonal sums of B, then c{B) can be obtained

in 0{n) operations. In fact, by comparing (1) and (2)，the following lemma

! i i I t
1

i •

Paper II 38

follows.

Lemma 1 Let {(^}二丄(几__1) be the diagonal sums ofB. Then the first column

entries {c^|^^i of c{B) are given by ci = do and

C6+1 = - {ds^ds-n) , ^ = l , . . . , n - 1.
n

I The outline of the paper is as follows. In §2, we briefly recall the main

concept of the fast dense matrix method. Preliminary lemmas that are use-

ful in computing diagonal sums of matrices are given in §3. In §4, we give

I an 0(nlogn) algorithm for constructing the optimal circulant precondition-

ers. In §5, we apply our ideas to solving boundary integral equations from

potential equations where the use of circulant preconditioners will speed up

. the convergence. Finally, concluding remarks are given in §6.

； 2 Fast Dense Matrix Method

In this section, we give a brief introduction to the fast dense matrix method.

We refer the reader to Chan, Lin and Ng [7] for details. In the following, n is the

size of the discretization matrix under consideration, i.e. 1/n is proportional

to the the mesh size with which we discretize the integral equation. We will

set n 二 k . 2^ where k is a fixed small integer that depends on the smoothness

of the kernel function of the given integral equation.

The fast dense matrix method proposed in [7] approximates a given inte-

gral equation or its discretization matrix by sum of low rank matrices using the

partition suggested in Alpert et. al. [1], With such partition, the approxima-

tion matrix A is divided into blocks of different sizes, with the blocks near the

$: :
% ^

9‘

I

1

Paper II 39

main diagonal are of size k-hy-k, those next remote are of size 2k-hy-2k, and so

forth up to the largest blocks of size 2 '̂̂ k-hy-2 '̂̂ k. Then, each of the blocks

is approximated by a rank k matrix by using polynomial approximation. By

grouping blocks of the same size into one matrix, the approximation matrix A

is given by

A = A(o)+AW + . . . + A('-2), (3)

with each A("), ja = 0 , . . . , 1 — 2, consists only of blocks of size 2"fc-by-2"L The

number of nonzero blocks in A(") is given by

_ / 6. 2̂ - 8 M = 0, �
" " = l 6 (2 " - P _ l) " = l , . . . , Z - 2 . “

； We will denote those nonzero blocks in 义⑷ by A("，"）, where v 二 1,. •., z/广 As
j

•j

V :

i Paper II 40

an illustration, for 1 = 5, A(�）is of the form

ŷ (2,10) (̂2,16)

(̂2,11)

(̂2,4) (̂2,12) (̂2,17)

^(2,1) ^(2,5) 供 1 3)

义 ⑵ = ^ _ L
(̂2,6) A(2,14) (̂2,18)

^(2,2) ^(2,7) 义2’15)

丨 A(2'8)

j(2,3) (̂2,9)
L J (5)

Here each of the block A("’"）is of size 2^k-hy-2f"k and is a rank k matrix

of the form
j()U’"）= (p(Ai))TA("’")J>("), (6)

where A("’"）is a k-hy-k matrix and P(") is a k-hy-2& matrix which is the same

for all V = 1，..., zv For n 二 0, P(o) is just the k-by-k identity matrix. Using

(6) and the block structure of A(") as depicted in (5), we see that A(") can be

written as
A(") 二 [hi-. 0 (P ^ r] A(") [/2^-. 0 P(")] . (7)

Here I21-M is the identity matrix of size 2'—"，� is the Kronecker tensor product

fe..

i Paper II 41

and A(") is a matrix having the same block structure as A(")，except that the

blocks A("'W in A(") are of size k. As an illustration, the matrix 义⑶ for 1 二 5

can be written as (cf. (5)):

A(2,10) A(2,16)

A(2,ii)

A(2,4) A(2,12)八(2’17)

A(2,1) A(2,5) A(2，13)
义⑶=/8®(P(2)) L [h®P%

A(2,6) A(2'14) A(2'18)

A(2,2) A(2，7) A(2,15)

A(2’8)

八(2,3)八(2,9)

�

where each A(2’”）is a k-hy-k matrix.

Combining (3) and (7), we then have

A = 2 A(") = 2 [/2^-. 0 (P(")r] A(") [/2^-. ^ P(")] . (9)
p=0 iU=0

Thus for the computation of the matrix-vector product Ax using (9), it suffices

to form and store A(") and P(") for ^ 二 0, . . . , / - 2 only. As shown in Chan, Lin

i Paper II 42

and Ng [7], these matrices can be constructed in 0(n) operations and requires

0(n) storage, and the cost of the matrix-vector multiplication Ax using (9) is

of order 0(n log n) operations.

In §4, we will discuss an 0(nlogn) algorithm for forming the optimal cir-

culant preconditioner c(A) of A using the decomposition in (9). Recall that

by Lemma 1，c{A) is determined once we have the diagonal sums of A. Hence

we need to know how to form the diagonal sums of A("’"）in (6), for they are

the fundamental building blocks of A(") and hence of A. This will be studied

in the next section.

3 Preliminary Lemmas

In this section, we consider the cost and storage requirement for forming the

diagonal sums of matrices of the form given in (6). This result is required in §4

when we construct the optimal circulant preconditioner c{A) for A, We begin

with the complexity counts of forming diagonal sums for rank 1 matrices.

Lemma 2 Let p = (pi,... ,Pm) and q = (gi,..., qm)- Then the diagonal sums

of the m-by-m matrix p*q can be obtained in 0(mlogm) operations and the

storage required is 0{m).

Proof: Recall from (2) that the diagonal sums of p^q are given by
f m

X) PaQa-6, 0 < 6 < m,
7 _ «二糾

^6 = m+6
Y^ M a - 6 , 0 < -S < m.

� o;=l

i Paper II 43

In matrix terms, this amounts to

(Pm 0 \ 4 1 �
Pm—1 Pm j

. <̂ m-2
• « •

• •. .. (1̂ \ ;
V2 ！ ..• ... ^2 di
Pl P2 '' . .. Pm •: = ^0 , (10)

. . . d_i Pl .. : Pm-1 : .

.. ... ： V Qm / :
, d-{m-2)

.. 2̂ V d-{m-l)
\ 0 Pl /

where the matrix is a column circulant matrix.
It is easy to augment the column circulant matrix to make it a square

circulant matrix (which in fact is determined uniquely by its first column).

The diagonal sums {cij>^"_Vi, i.e. the right hand side vector in (10), can be

obtained by multiplying the augmented square circulant matrix to the aug-

mented vector (gi, g2,..,, ^m, 0,..,，0广 This matrix-vector product can be

obtained efficiently by using three fast Fourier transforms of length 2m - 1,

see for instance Chan and Ng [8]. Thus the cost of obtaining the diagonal sums

is 0(mlogm) operations and the storage required is 0(m). 口

Corollary 1 Let P and Q be two given k-by-m matrices. Then the diagonal

sums of the product P*Q can be obtained in 0{kmlogm) operations and the

storage required is 0{m).

Proof: We have ^
P'Q = E p U c (n)

a=l

i Paper II 44

where Po； and q^ are the ath row of P and Q respectively. Notice that the

sum of the diagonal sums is equal to the diagonal sums of the sum. Therefore

we can form the diagonal sums of each term p^q^ and sum them up to get

the diagonal sums of P*Q. By Lemma 2, the diagonal sums for each p^q^,

a 二 l,...,A:, can be obtained in 0(mlogm) operations with 0(m) storage.

Once the diagonal sums of p^q^ are formed, they can be accumulated to the

final result and there is no need to store the intermediate diagonal sums for

each Q； = 1 , . , . , L Thus the cost of obtaining the diagonal sums of P*Q is

0{kmlogm) operations and storage requirement is 0(m). 口

Corollary 2 Let P be a given k-by-m matrix and A be a k-by-k matrix. Then

the diagonal sums of the product P*AP can be obtained in 0{kmlogm) +

0{k^m) operations and the storage required is 0{m).

Proof: We just need to compute the product KP first and then apply Corollary

1 to the product P\AP). In computing AF, we need one row of the product

at any one time (see (11)) and therefore the total cost of forming AP is k^m

operations and the total storage required is 0(m). •

The fast dense matrix method introduced in §2 provides a good approxi-

mation A to a given integral equation or its discretization matrix B, see Chan,

Lin and Ng [7] or §5. In the next section, we will construct the optimal cir-

culant preconditioner c{A) for A. We note that since the operator norm of

the operator c(.) in matrix 2-norm is equal to 1 (see Chan, Jin and Yeung [5’

Theorem 3]), we have,

Wc{A)-c{B)W2<WA-BW2^ (12)

I
！‘‘ r f •••

Paper II 45

: Thus if A is a good approximation to B, we expect c{A) to be a better ap-

proximation to c{B),
I I

! 4 Construction of Optimal Circulant Precon-
ditioner

In this section, we develop an 0(nlog n) method of constructing the optimal

circulant preconditioner c{A) for the approximation A given in (9). By (1), it

is clear that c(.) is a linear operator. Therefore by (3), we see that

c(A) = c(^A(")) = gc(A(")),
户0 fi=0

where we recall that n = k • 2̂ with k fixed independent of n. By Lemma 1,

c(A(")) can be obtained easily if we have the diagonal sums of A("). In view of

； the block structure of A(") (cf. (5)), we can have the diagonal sums of A(") if

we have the diagonal sums of its sub-blocks A("’"). Thus in the following, we

first consider the complexity of computing the diagonal sums ofthe sub-blocks

A("’")，Then the results will be pieced together to get the complexity counts

for computing the diagonals sums of A
We begin by noting that for /i = 1 , . . . , 1 — 2, A(") is a block matrix made

up of sub-blocks A("’"）that concentrate only on four block-diagonals (cf (5)).

Since the sum of diagonal sums is equal to the diagonal sums of the sum, one

can obtain the diagonal sums of A(") by summing the sub-blocks A("，"）along

the four block-diagonals first and computing the diagonal sums afterward. To

be more specific, let us consider the example in (5) first. Here /x = 2. The

diagonal sums of 义⑶ can be obtained from the diagonal sums of the following

j' ̂

i

i Paper II 46

four matrices:
3 9 15 18

tA(2’")，；^A(2，")，fA(2'") and ^ A '̂̂ '\
u=l iy=4 i/=10 I/=16

By (6), these four matrices can be rewritten as

• 4(2，"）二（尸(2)”{；^八(2，")}尸例三（户(2))乂产尸(2),

v=^l v=l

$4(2，"） 二 (p(2))t{̂ Â 2,r/)|p(2) = (p(2))̂ A(2)p(2)̂
"二4 iy=4

^A(2 ’�= (p(2))t{̂ A(2,-)|p(2) ̂ (p(2))̂ Af)p(2),
I / = 1 0 iy=10

18 18

g](2,") = (p�”{gA(2,")}P⑵三(P�”Ai2)P�. (13)
i/=16 1̂ =16

From the diagonal sums of these four matrices, one can compute the diagonal

sums of A(2), cf. (5). With this example in mind, it is easy to verify the
following lemma.

Lemma 3 For jJL = 1,2,...，1 — 2，the diagonal sums of A(") can be obtained

in 0{k^jji2^) + 0(P2^-M) + 0{k^2^) operations and 0(A:2") storage.

Proof: As in the example above, we first have to sum the A("’"）along the

four block-diagonals to obtain A!")，A^ A "̂) and k � : � (c f (13) and (8)). By

(4), there are 6(2�—1—" 一 1) sub-blocks of A("’")，which are all k-hy-k matri-

ces. Therefore to form A ^ a = 1,2,3,4, it requires at most 6 (2 � i - " — 1)^

operations and Ak̂ memory.
Once A ? for a 二 1,2,3,4 are formed, we compute the diagonal sums of

the matrices
(P("))tAL")pM, a = l,2,3,4,

f
1 • h?� >
I

i Paper II 47

(cf, (13)). We recall by (6) that P(") are k-hy-2 "̂k matrices. Therefore,

by Corollary 2, the diagonal sums of these four matrices can be obtained in

0(P2^(Ai + logA:) + P2") operations and 0{k2^) storage.

Once these diagonal sums are formed, we can accumulate them together

to get the diagonal sums of A("). This step requires no more than 2̂ ^̂ k

operations since there are only four diagonal sums to accumulate and each

of the diagonal sums has no more than 2̂ +̂ A: numbers. Combining all the

complexity counts above, the lemma follows. 口

Next we consider the case for |JL 二 0.

Lemma 4 The diagonal sums of A(o) can be obtained in 0{P2^) operations

and 0{k) storage.

Proof: For |JL = 0, the sub-blocks A(。’"）are of size k-hy-k and are concentrated

on 7 (instead of 4) block-diagonals next to and including the main block-

diagonal, see for instance [1, Figure 4], In other words, A(o) is a band matrix

of band-width less than or equal to Sk. Thus forming the diagonal sums of

yl(o) requires at most 0{kn) = 0 (P2^ operations and 8k memory. 口

Combining Lemmas 2, 3 and 4, we have our main theorem.

Theorem 1 ForA given in (9), the cost offorming c{A) forA is ofO{knlogn)+

0{k^n) operations and the storage required is 0{n).

Proof: In view of Lemma 3 and 4, the cost of obtaining the diagonal sums of

y^i:2 Ĵ {̂ l) is of the order of
* ^ |Ji U

1—2
khi + k^ ^(/x2^ + 2'一“ + k2^) < k^l2^ + A:^2^ = knlogn + k^n.

fX=l

L
jl hiH

I
I.
_ Paper II 48
I

The memory requirement is of the order of
I
； Z—2

Sk + k Y^ T = k2" + 6k = - + 6L
Ai=l 2

i:
Once the diagonal sums of A are formed, by using Lemma 1, the first column

of the circulant matrix c(A) can be obtained in just another 0(n) operations.
•

In the next section, we will apply our c{A) to solving systems Ax = b

arising from non-convolution type integral equations.

5 Boundary Integral Equations From Poten-
tial Equations

^,f

‘ In this section, we consider solutions of potential equations

f A—aO = 0, X e n,
\ w{x) = g{x), X G dQ,

where dfl is a smooth close curve in R^ and 0 is either the bounded interior

region with boundary dQ, or the unbounded exterior region with boundary

J dn. In the boundary integral equation approach, the solution w{x) is found

by solving the density function u{y) in the following Fredholm equation of the

i first kind:
E- — — f log |x - y\u{y)dSy = g{x), x e d^, (14)
r 27T Jdn
^ see Chen and Zhou [11, §6.12] or Chan, Sun and Ng [9].

. If we define the boundary integral operator B as

1 f
(Bu)(x) = -— / log |o; — y\u{y)dSy,

- � ，^ ‘ 27T Jdn

m
tf't.

i
—
I

i Paper II 49

then (14) can be written as

(Bu)(x) = g{x), (15)

For simplicity, we parameterize the boundary dQ> by {x1{O),X2{O)), 0 < 6 < 27r,

and thus (15) can be expressed as
/-27T , \ (J5um= b[0,̂)u[̂)ck̂ = g(A, 0 < e < 27T, (16)

Jo

where the kernel function b{6, ¢) is given by

b{o, ¢)=—去iog{(x,{e) - xMY + {x2{e) — a:“0))2}. (17)

In order to guarantee that the operator B is invertible, we assume without loss

of generality that
diam(^0) 二 max x - y\ < 1. (18)

^ , x,yedfL

One can scale down the size of the given boundary if necessary, see Chan and

Zhou [11, p.287；.

The well-known advantage of the boundary integral equation approach is

that the dimension of the problem is reduced by one. However, (14) is a

first kind boundary integral equation having a weakly singular kernel. It is

weU-known that its discrete matrix B of B will be ill-conditioned and have

condition number increases like 0(n), where n is the size of the matrix, see

for instance Chan, Sun and Ng [9]. Therefore if the system is solved by the

conjugate gradient method, the number of iterations required for convergence
will be increasing like 0(>/n).

To overcome the ill-conditioned nature of the operator B, optimal circulant

integral operators are proposed in Chan, Sun and Ng [9] to precondition (16).

:>j
eV

!•
I
•
•

l Paper II 50

^ Circulant integral operators are convolution operators with 27r-periodic kernels.

The optimal circulant integral operator of a given operator B is defined to be

? the minimizer of 11 |C — B\11 over all circulant integral operators C, where 111 • 111 is

I the Hilbert-Schmidt norm, see Gohberg, Hanke and Koltracht [12], For B given

in (16), the kernel function of its optimal circulant integral preconditioner M

is given by
1 /*27T

— / b{e,e-^)d6, 0 < 0 < 27T,
ZTT Jo

see Chan, Sun and Ng [9]. Instead of solving (15), we solve the preconditioned

i equation
： M-^Bu = M - � . (19)

It is proven in [9] that this preconditioned equation is well-conditioned.

Theorem 2 (Chan, Sun and Ng [9, Theorems 3,4]) Let B be the integral

. operator as defined in (16) and (17) and M be the optimal circulant integral

operator for B. Then there exist positive constants 72 > 71 > 0 such that the

！ spectrum of M'^B lies in [7 1 , 7 2] . Moreover, if the Galerkin method is used

to discretize the operator M~^B, then the condition number of the discretized

system is ofO{l) independent of the size of the discretized system.

Thus if the conjugate gradient method is used to solve the preconditioned

system (19), the convergence rate of the method is expected to be linear, see

Axelsson and Barker [2, p.26 .
~ In the following, we denote B the discretization matrix of B using the

Galerkin method with the trapezoidal mle and A the approximation matrix
區 to B using our fast dense matrix method. We note that the optimal circulant
HKt
•̂

P-

I

i Paper II 51

preconditioner c(B) of B is equal to the discretization matrix of M using the

rectangular quadrature mle, see Chan, Sun and Ng [9, Theorem 5]. Since A

approximates B, we expect from (12) that c(A) is a good approximation to

c(B) and hence to M,

We now illustrate the effectiveness of the optimal circulant preconditioners

and our approximation scheme by using a problem tested in Chan, Sun and

Ng [9]. We refer the readers to [9] for more details. We consider the solution of

(16) on regions Q with boundaries dQ as depicted in Figure 1. The boundaries

are defined in polar coordinates by

r = cos26> + /A(6>), 0 < 0 < 27r, (20)

where fx(0) = (A^ — sin^ 26>)̂ /̂ with A > 1. Since S = diam(dQ) > 1, we

scale the boundary so that the diameter of the new boundary satisfies p 二

diam(50) 二 3/4 < 1, see (18), For such scaled domains, the kernel function

(17) becomes

1 p 9 - 0
b{0, ¢) = - ^ l o g ^ | 2 s m - |

1 f 0, � o,6>-0, A cos26> + cos2^y
- - l og|4s in^ (^ + 0)cos (—) ^1+ m ^ f M j

+ (cos 29 + /A("))(cos 2(j) + /A(0))J

=6i(,̂0) + ̂ (̂ ,0). (21)

The right hand side g{0) in (16) is chosen to be g{0) 二 | cos (^ i , 0 < 6 < 27r.

All our computations were done in Matlab on an IBM 43P-133 workstation.

丨 [•
r

[.

丨

i Paper II 52

• ••••••••••••• _
• •

•..广一 ���� z ' ' ' ��� �••
I • ‘ � ^ — 一 \ .

" r ^ ^ ^ 、 、 . 、

. V V _ ^ ^ _ ^ / .
• � z 一 ’ � , •

. 、 、 一 -广 〜\、 z ' •

. ~~ 一 — ̂ .
' • . . • ‘

•

Figure 1. Solid line: A — 1.1, dashed line: A 二 1.3, dotted line: A = 1.5

As in Chan, Sun and Ng [9], we discretize [0,27r] by uniform mesh and use

the Galerkin method with piecewise constant polynomials as basis functions to

discretize the equation. The integral over each element is computed by using

trapezoidal rule with 3 points. Since bi in (21) is a 27r-periodic convolution

, kernel, we see that the discretization matrix B of B can be written as B =
^

C + B2 where C is a circulant matrix corresponding to the integration of h

over the elements. Thus C is determined only by its first column. Prom (21),

we also see that

b2(0, ¢) = 62(0,0) 二 62(27r - 6,27T — 0), 0 < e, 4> < 27T. (22)

Therefore, B2 is a symmetric centro-symmetric matrix. In particular, if B2 is

an n-hy-n matrix, it is determined by its upper half entries (¾]^,/, 1 < j <

. -^/2]，1 < 1 < n. The bottom half can be obtained by reflecting the upper

half entries with respect to the center of the matrix.
It is clear that forming the matrix B2 (or just its upper half) directly by

- integration of b2 over the elements requires 0{n^) operations. Table 1 gives

J the numbers of floating point operations in thousand (Kflops) required to form

I the upper half of 块.We recall that n 二 k . 2�Thus the largest matrix size

F
fc：

1

S:

i«

i

i Paper II 53

k=4 k=8 A;=11 fe=14
1 B2 ratio B2 ratio B2 ratio B2 ratio

~5 3,780 — l 5 ^ 2 8 ^ — 46,200 — ~~
6 15,095 3.9938 60,336 3,9971 114,051 3.9979 184,723 3.9984
7 60,336 3.9971 241,258 3.9986 456,084 3.9990 738,740 3.9992
8 241,258 3.9986 964,861 3.9993 1,824,101 3.9995 2,954,661 3.9996

Table 1: Kflops counts in constructing B2, where n = k • 2�

‘ we tried is n 二 14 • 2® 二 3，584, We remark that the counts do not depend

on the values of A and diam(^0). In the table, the ratios denote the ratios of

the operation counts when the size n of the matrix is doubled. We clearly see

from the ratios that the cost of constructing B2 is increasing like 0(n^).

Besides B2, we also use our fast dense matrix method to approximate the

integration of 62 over the elements. This results in a matrix A2 which can

be obtained in 0{n) operations and requires only 0{n) storage, and that the

matrix-vector product A2x for any vector x can be done in 0(nlogn) opera-

tions, see Chan, Lin and Ng [7]. By the centro-symmetric property of 62 (see

(22)), we only need to generate the upper half of A2. More precisely, we only

^ need to apply our method to get the upper left and upper right n/2-by-n/2

submatrices of A2 only. The bottom half of A2 can be obtained by reflecting

these two matrices.
Table 2 gives the numbers of Kflops required to form the upper half of A2.

Since n 二 k . 2\ the largest matrix size we tried is n 二 14 . 2̂ ^ 二 57,344,

We remark that the counts do not depend on the values of A and diam(aa).

In the table, the ratios again denote the ratios of the operation counts when

j
I f 丨

Pa,per II 54

k=4: k=8 k=ll k=U
1 A2 ratio A2 ratio A2 ratio A2 ratio

~~5 1,701 == 67f^ — 12,827 = 20,857 ==~~
6 3,806 2.2373 15,160 2.2400 28,763 2.2424 46,823 2.2449
7 8,109 2.1306 32,326 2,1323 61,372 2.1337 99,972 2.1351
8 16,808 2.0728 67,039 2,0738 127,326 2.0747 207,490 2.0755
9 34,300 2,0407 136,845 2.0413 259,969 2.0418 423,745 2.0422

10 69,376 2.0227 276,839 2.0230 525,993 2.0233 857,473 2.0236
11 139,623 2.0126 557,207 2.0128 1,058,775 2.0129 1,726,149 2.0131
12 280,210 2.0069 1,118,325 2.0070 2,125,075 2.0071 3,464,720 2.0072

Table 2: Kflops counts in constructing A2, where n 二 k • 2�

the size n of the matrix is doubled. We see from the ratios that the cost of

constructing A2 is increasing like 0{n). In contrast, the cost for constructing

B2 is 0(n2), see Table 1. We emphasize that there is no need to form B2 in

order to form A2. We get A2 by directly approximating b2 in (21) using our

fast dense matrix method.

To illustrate the accuracy of our approximation, the relative errors ||A2 -

B2WF/WB2WF for different A are given in Table 3. Because generating B2 is very

expensive, we tried only matrices of size up to 14-2^ = 3,584. We see from the

table that our approximation scheme provides a very accurate approximation

A2 to the matrix B2 even for small k like 8.
To accelerate the convergence of the conjugate gradient method, we use the

optimal circulant preconditioner c(C+A2) to precondition the system {C+A2).

1 By the linear property of c(.), we see that

c{C + A2) 二 c(C) + c{A2) = C + c(A2).

i

r

ij

i Paper II 55

k 1 A = 1,1 A = 1.3 A:=1.5 k 1 A = 1,1 A = 1.3 A = 1.5
丨 4 5 3.89E-03 l,20E-03 4.37E-04 11 5 3.40E-06 9.44E-08 6.61E-09
r 4 6 4.58E-03 1.39E-03 5,03E-04 11 6 3,98E-06 1.09E-07 7,61E-09
I 4 7 4.94E-03 1.48E-03 5,38E-04 11 7 4.27E-06 l,16E-07 8.12E-09
丨 4 8 5.13E-Q3 1.53E-03 5.57E-Q4 11 8 4.42E-Q6 1.19E-Q7 8.38E-09

8 5 5,16E-05 3.21E-06 4.39E-07 14 5 2.91E-07 3.23E-09 1.29E-10
8 6 6,00E-05 3.66E-06 5.03E-07 14 6 3.37E-07 3,70E-09 1.49E-10
8 7 6.43E-05 3.90E-06 5.36E-07 14 7 3.60E-07 3.94E-09 1.59E-10
8 8 I 6.65E-05 4.03E-06 5,54E-07 14 8 3.72E-07 4.06E-09 1.64E-10

Table 3: ||^ — A2||ir/||"S2||î for different kernels, where n = k . 2�

In constructing c(A2), we have also made use of the centro-symmetric property

of the matrix A2, i.e. we only need to compute the diagonal sums of the upper

！ half of A2. Table 4 gives the numbers of Kflops required to form c(A2). We

remark again that the counts do not depends on the values of A and diam(^^).

In the table, the ratios again denote the ratios of the operation counts when

the size n of the matrix is doubled. The largest matrix size we tried here is also

n = 14.2i2 = 57,344. We see from the ratios that the cost of constructing c(A2)

is increasing like 0{nkl) = 0(nlogn), In contrast, the cost for constructing

c{B2) using (1) is 0(n2) operations.
Next we test the efficiency and accuracy of solving (19) using the approxi-

mation A2 for B2 and the optimal circulant preconditioner C+c(A2). Using the

conjugate gradient method, we solve for the vector x in the non-preconditioned

system (cf (16))
(C + B2)x = g, (23)

f
r

i Paper II 56

k=4 k=8 k= l l k=14
" “ “ r c(A2) ratio c{A2) ratio c{A2) ratio c{A2) ratio
~~5 l 2 6 ~ = ^ = 5 ^ ~ ~ = = 2 ; i ^ ~ ~ ~ = ~ ~

6 309 2.4546 1,357 2.4620 3,934 2,4676 5,262 2.4599
7 704 2,2808 3,092 2.2792 8,964 2,2789 11,957 2.2721
8 1,556 2.2110 6,818 2.2051 19,741 2.2021 26,256 2.1959
9 3,388 2,1773 14,790 2.1692 42,738 2.1650 56,694 2.1593

10 7,312 2.1581 31,784 2.1490 91,640 2.1442 121,270 2,1390
11 15,685 2.1450 67,885 2.1358 195,276 2.1309 257,845 2.1262
12 33,488 2.1350 144,329 2.1261 414,234 2.1213 545,870 2.1170

Table 4; Kflops counts in constructing c(A2), where n = k . 2 �

and for the vector y in the preconditioned system (cf (19))

c(C + A2)-'{C + A2)y = c{C + A2)-ig. (24)

We note that c(C+A2) = C+c{A2) is a circulant matrix. Hence its inverse can

be found efficiently in 0(nlog n) operations by using fast Fourier transforms,

see Chan and Ng [8]. Thus the cost per iteration of solving (23) and (24) by

conjugate gradient method is 0{n^) and 0(nlogn) operations respectively.

For both systems (23) and (24), we choose the zero vector as the initial

guess and the stopping criterion is ||rg||2/||ro||2 < lO—i。，where r^ is the residual

vector at the ^th iteration. The numbers of iterations required for convergence

for different A are given in Table 5, where the symbols C and I indicate if

circulant preconditioning is used or not. Prom the table, we see that the

numbers of iterations of the preconditioned systems are smaller than that of

the non-preconditioned ones considerably. Notice that the iteration numbers

of the preconditioned systems are uniformly bounded whereas those of the

i Paper II 57

p = 3/4| A = 1,1 A = 1.3 A = 1.5
1 ““厂 I C 6n I C tn ‘ I C en
~1 “ “ 5 “ “ 2 9 ~ " 9 5.90E-03““^““8 1.60E-03 31 7 1.52E-03

： 4 6 40 9 6.41E-03 41 7 1.75E-03 41 7 1.62E_03
4 7 54 9 6.83E-03 54 7 1.81E-03 53 7 1.65E-03
4 8 70 9 7.52E-Q3 71 7 1.86E-Q3 74 7 1.67E-Q3

~8~~5~~40~~9 1.91E-04 41~~7 2.41E-05 41~~7 4.33E-06
8 6 54 9 2.03E-04 54 7 2.59E-05 53 7 4.63E-06
8 7 70 9 2.06E-04 71 7 2.61E-05 74 7 4.70E-06
8 8 94 9 2.14E-Q4 94 7 2.61E-Q5 95 7 4.77E-Q6

^ 1 ~ 5 ~ ~ ^ ~ ~ 9 3.76E-05““49““7 1.03E_06““4^~~7 9.09E-08
11 6 63 9 4.07E-05 63 7 1.14E-06 64 7 9.90E-08
11 7 86 9 4.14E-05 85 7 1.16E-06 85 7 1.01E-07
11 8 117 9 426E-05 118 7 1.18E-06 118 7 l.Q2E-Q7

~ U ~ 5 “ “ 5 3 ~ ~ 9 5.83E-06"~^~~7 4.81E-08"~M~~7 5.57E-09
14 6 73 9 6.47E-06 74 7 5.36E-08 74 7 9.01E-09

i 14 7 93 9 6.51E-06 95 7 5.51E-08 91 7 2.19E-08
14 8 121 9 6.44E-06 123 7 6.11E-08 122 7 3.03E-08

I Table 5: Numbers of Iterations and Relative Errors, where n = k . 2�
\

original systems are increasing with n as expected.

Finally, we compare the accuracy of the solution y of the approximate

system (24) with the solution x of (23). We give the relative errors ||x —

y||2/||x||2 for different A in Table 5 under the column Cn- We see that the

solution y provides a very accurate approximation to the solution x even for

small k.

i Paper II 58

6 Concluding Remarks

In this paper, we have developed a fast algorithm for computing optimal circu-

lant preconditioners c{A) for dense matrices A constructed from the fast dense

matrix method proposed in Chan, Lin and Ng [7], We remark that besides the

fast dense matrix method, there are many other fast multiplication schemes

that can provide good approximations to a given integral equation or its dense

discretization matrix B, see for instance [1, 3, 14], For example, using wavelet

transforms W, the matrix WBW* can be approximated by a sparse matrix

S accurately. We note that though c{S) can be computed fast using (1) (be-

cause of its sparsity) and gives a good approximation to c{WBW*) (because

of (12)), it is however not close to W • c{B) • WK Hence in general, c{S) will

not be a good preconditioner for S, In contrast, c{A) constructed by our fast

dense matrix method will provide a good approximation to c{B) and a good

preconditioner for A and B,

i Paper II 59

References

1] B. Alpert, G. Beylkin, R. Coifman and V, Rokhlin, Wavelets for the Fast

Solution of Second-Kind Integral Equations, SIAM J. Sci. Comput., 14

(1993), 159-184.

2] 0 . Axelsson and V. Barker, Finite Element Solution of Boundary Value

Problems, Academic Press, Orlando, 1984.

3] G. Beylkin, R. Coifman and V. Rokhlin, Fast Wavelet Transforms and

Numerical Algorithms 7, Comm. Pure Appl. Math., 46 (1991), 141—183.

4] R, Chan, X, Jin and M. Ng, Circulant Integral Operators as Precondition-

ers for Wiener-Hopf Equations, Integr. Equat. Oper. Theory, 21 (1995),

12-23.

5] R. Chan, X. Jin and M. Yeung, The Circulant Operator in the Banach

Algebra of Matrices, Lin. Algebra Appls., 149 (1991), 41—53,

6] R. Chan and F. Lin, Preconditioned Conjugate Gradient Methods for In-

tegral Equations of the Second Kind Defined on the Half-Lme, J. Comput.

Math., to appear.

7] R, Chan, F. Lin and W. ^g.^Fast Dense Matrix Method for the Solution of

Integral Equations of the Second Kind, Res. Rept. #96-05, Math. Dept.,

Chinese University of Hong Kong, submitted.

8] R. Chan and M. Ng, Conjugate Gradient Methods for Toeplitz Systems,

SIAM Review, Sept. 1996.

i Paper II 60

9] R. Chan, H. Sun and W. Ng, Circulant Preconditioners for Ill-Conditioned

Boundary Integral Equations from Potential Equations, Res. Rept. #96-

20, Math. Dept., Chinese University of Hong Kong, submitted.

10] T. Chan, An Optimal Circulant Preconditioner for Toeplitz Systems,

SIAM J. Sci, Statist. Comput,, 9 (1988), 766-771.

11] G. Chen and J, Zhou, Boundary Element Methods, Academic Press, Lon-

don, 1992.

12] 1. Gohberg, M. Hanke and 1. Koltracht, Fast Preconditioned Conjugate

Gradient Algorithms for Wiener-Hopf Integral Equations, SIAM J. Nu-

mer. Anal., 31 (1994), 429-443,

13] L. Greengard and V. Rokhlin, A Fast Algorithm for Particle Simulations,

J. Comput, Phys., 73 (1987), 325-348.

14] L. Reichel, Fast Solution Methods for Fredholm Integral Equations of the

Second Kind, Numer. Math,, 57 (1989), 719-736,

15] E. Tyrtyshnikov, Optimal and Super-Optimal Circulant Preconditioners,

SIAM Matrix Anal. Appl., 13 (1992)，459-473.

¥
“

 >
 .

 -
 -

 ,
.
.

 .

 .

 ,
,
 “

 G

 "
I

-
J

 -

 、r

r
 .

 、2
"
(
：
：
二
、
一

I

 r

 .

 ..̂
f̂
,A

:
.

f
:
.

‘

 •-

 .

 .

 .

 .
.

 ,/...-.i#i§l«̂
s

.

 -

 .
-
.
.
V
,

 :

 ,̂.̂

.

 ,

 ̂

 /

 r

 i
l
4
J
^

."‘".

.

.
.

 ：._-£̂
-

^
0
M
W
M
S
m̂
^
^
^
M

T
.
.
.

 .

 .
 .

 1
.
"
¾
¾
¾
^
¾
¾
¾
^
!
^
^
¾

.

 /
¾
:
.

•

.

-

 4
1
"
,
?
¾
^
!

,
?

:

:

.

 :
¾

•

：：

 .

 .

 >
v
;

 ̂,
v
^

—
.

 .
 /
-

r

 vc

.
,
.
.

、
.

 、

 .

 .
?
L

,
:
.

•

 〃

 .

 -

 1
,

、
>
t

 1

,

.

 ..

.

,

 .
.
兮

^

(

:

 .̂
^̂

¾̂

_、：.
 ：v.,_

^̂
^̂
^̂
^̂

.̂...̂
.:̂
^̂
^̂
^̂
.:!:̂

:̂::!:.IrrxzÎ
^̂
^̂
l

»

CUHK Libraries

mUlMM
D035im07

-¾

••'4
-i

