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Abstract 

In this thesis, we present a fast algorithm (named the fast dense matrix method) 

to solve non-convolution type integral equations by conjugate gradient type 

methods. Fast dense matrix method is a fast multiplication scheme that pro-

vides a dense matrix approximation A to a given integral equation or its 

discretization matrix. Our method is based on using low-order polynomial 

interpolation of the kernel function and a divide-and-conquer strategy. The 

construction cost and storage requirement of the approximation A are both of 

0(n) complexity and that the matrix-vector multiplication Ax can be done in 

0{n log n) operations, where n is the size of the matrix A. Thus our method 

is suitable for conjugate gradient type methods, since the complexity of solv-

ing the discretized system can be done in 0(nlog n) operations per iteration. 

Our numerical results indicate that the algorithm is very accurate, and is very 

stable for high degree polynomial interpolation. 

However, for some integral equations, such as the Fredholm type integral 

equations of the first kind, the system will be ill-conditioned and therefore the 

convergence rate of the method may be slow. In these cases, preconditioning is 

required to speed up the convergence rate of the method. The preconditioner 

we consider in this thesis is the optimal circulant preconditioner, which is the 

minimizer of ||C — A||/r in Frobenius norm over all circulant matrices C, It 

can be obtained by taking the arithmetic average of the entries of A. Thus 

for general dense matrices, the cost of constructing the preconditioner is of 
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0(n^) operations. In this thesis, we give an 0(nlogn) method of constructing 

the preconditioner for matrices A arising from the fast dense matrix method. 

Applications to first kind integral equations from potential equations are also 

given, in which preconditioning has been shown to make the ill-conditioned 

problem well-conditioned. Besides, numerical examples are given to illustrate 

the fast construction of the preconditioner and the fast convergence of the 

preconditioned systems. 

The thesis is based on the following two papers, which will be referred to 

in the text by Paper I and Paper 11. 

Paper L [6] R. Chan, F, Lin and W. Ng, Fast Dense Matrix Method for the Solution 

of Integral Equations of the Second Kind, submitted to SIAM J. Sci. 

Comput,. 

Paper 11. [8] R. Chan, W, Ng and H. Sun, Fast Construction of Optimal Circulant 

Preconditioners for Matrices from Fast Dense Matrix Method, submitted 

to SIAM J. Sci. Comput., 
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Introduction 

Solution of integral equations is a much studied subject and various direct 

and iterative methods have been proposed for their numerical solutions, see 

for instance Baker [2] and Delves and Mohamed [10]. However, one overriding 

drawback of these methods is the high cost of working with the associated 

dense matrices. For problems discretized with n quadrature points, classical 

direct methods such as Gaussian elimination method requires 0{n^) operations 

to obtain the numerical solutions. For iterative methods such as the conjugate 

gradient method (see Golub and Van Loan [12])，each iteration requires 0{n^) 

operations. Therefore even for well-conditioned problems, the method requires 

0{n^) operations, which is often prohibitive for large-scale problems. 

In recent years, a number of algorithms for the fast numerical solutions of 

integral equations have been developed, see for instance [13, 14, 3, 1]. These 

methods try to obtain an n-hy-n approximation matrix A to the given inte-

gral equation such that the matrix-vector multiplication of A with any vector 

can be done in 0{n) or 0(nlogn) operations, depending on the smoothness 

of the kernel functions. For example, the fast multipole method proposed 

in [13] combines the use of low-order polynomial interpolation of the kernel 

function with a divide-and-conquer strategy. For kernel functions that are 

Coulombic or gravitational in nature, it results in an order 0{n) algorithm for 

the matrix-vector multiplications. In [3]，an 0{nlogn) algorithm is developed 

by exploiting the connections between the use of wavelets and their applica-
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tions on Calderon-Zygmund operators. In [1], wavelet-like bases are used to 

transform the dense discretization matrices into sparse matrices, which then 

is inverted by the Schulz method. The complexity of the resulting algorithm 

is bounded by 0(nlog^ n). 

In Paper I, a fast matrix-vector multiplication scheme, named the fast dense 

matrix method, is developed. In this paper, we consider Fredholm integral 

equations of the second kind that are studied in [1], i.e. the kernel functions are 

either smooth, non-oscillatory and possessing only finite number of singularities 

or products of such functions with highly oscillatory coefficient functions. Our 

approximation scheme starts with the same approach as in [1]. More precisely, 

we write the discretized dense matrix B of the integral equation as the sum of a 

sequence of block matrices where the blocks are of increasing size. Then we use 

polynomial interpolation as in [13, 1] for each of the block matrix. However, 

we do not use wavelet-like bases as in [1] to further approximate the operator 

to get a sparse representation. Our resulting approximation A will therefore 

be a dense matrix in general. 

However, we show in paper I that the approximation A can be obtained in 

0(n) operations and only 0(n) storage is required. We also show that matrix-

vector multiplication of the form Ax can be done in 0(nlog n) operations. 

Thus for second-kind integral equations, which are in general well-conditioned 

problems, solving the approximated systems by conjugate gradient type meth-

ods requires only 0(nlog n) operations. We have applied our scheme to kernel 

functions tested in [1] and also to kernel functions where the algorithm in [1] is 

inapplicable. Our numerical results show that our method is more accurate and 
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is stable even when higher degree polynomials are used in the approximation. 

However, for some integral equations, such as the Fredholm type integral 

equations of the first kind, the convergence rate of conjugate gradient method 

may be slow and preconditioning are required to accelerate the convergence 

rate. Optimal circulant preconditioners have been proposed and used success-

fully in preconditioning various kinds of integral equations, see for instance 

11, 4, 5, 9]. Given the discretization matrix B of the integral equation, we 

know that if the optimal circulant preconditioner of B, denoted by c(B), is 

used as a preconditioner in the preconditioned conjugate gradient method, 

then we have to compute the product [c(B)]_ix in each iteration for some vec-

tor X. By using the circulant structure of c(B), this product can be obtained 

efficiently in 0(nlogn) operations by using fast Fourier transforms, see for 

instance Chan and Ng [7 , 

Also, from Tyrtyshnikov [15], we know that the construction cost of c(B) is 

of 0(n^) operations for general matrices B, and this cost count can be reduced 

to 0(n) when B is a band matrix or a Toeplitz matrix. Therefore, the opti-

mal circulant preconditioner has been used in solving convolution type integral 

equations, see [11, 4] for instance. Since the discretization matrix arising from 

these integral equations are Toeplitz matrices if rectangular quadrature rule 

is used, so solving such circulant preconditioned Toeplitz system by precondi-

tioned conjugate gradient method requires 0(n logn) operations per iteration. 

But for non-convolution type integral equations, where the discrete ma-

trices are no longer Toeplitz. Convergence analysis of optimal circulant pre-

conditioners on solving this kind of integral equations has also been studied, 
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| s e e [5，9] for instance. For example, for boundary integral equations arising 

from potential equations, which are ill-conditioned, non-convolution type inte-
•n 
I 
� gral equations with condition number increasing like 0(n), the preconditioned 

3 systems have been shown to be well-conditioned, see Chan, Sun and Ng [9 . 
':S: 

However, since B is dense, forming the optimal circulant preconditioner c(B) 

{ will require 0{n^) operations. 

To overcome this difficulty, we developed in Paper II a fast algorithm for 

constructing the optimal circulant preconditioner c(A) for matrix A that are 

obtained from the fast dense matrix method. By using the special structure 

of the approximation matrix A, the circulant matrix c(A) can be obtained in 

1 0(nlog n) operations. Thus, used in conjunction with the fast dense matrix 

method, the circulant preconditioned conjugate gradient method for integral 

equations is a method of 0(nlog n) complexity. 

To demonstrate the accuracy and stability of the fast dense matrix method, 

and its effectiveness in performing matrix-vector multiplications, a variety of 

numerical examples on second kind Fredholm integral equations are given in 

Paper L To illustrate the efficiency of our construction scheme of the optimal 

circulant preconditioner and the effectiveness of using circulant precondition-

ers, numerical examples on solving first kind integral equations from potential 

equations are given in Paper 11. 

. - 1 
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Fast Dense Matrix Method for the Solution 
of Integral Equations of the Second Kind 

Abstract 

We present a fast algorithm based on polynomial interpolation to ap-
proximate matrices arising from discretization of second-kind integral 
equations where the kernel function is either smooth, non-oscillatory 
and possessing only a finite number of singularities or a product of 
such function with a highly oscillatory coefficient function. Contrast 
to wavelet-like approximations, our approximation matrix is not sparse. 
However, the approximation can be constructed in 0(n) operations and 
requires 0(n) storage, where n is the number of quadrature points used 
in the discretization. Moreover, the matrix-vector multiplication cost is 
of order 0{n log n). Thus our scheme is well suitable for conjugate gra-
dient type methods. Our numerical results indicate that the algorithm 
is very accurate and stable for high degree polynomial interpolation. 

AMS(MOS) subject classifications. 45L10, 65R20. 

Key Words. Fredholm integral equation, polynomial interpolation. 

1 Introduction 

; Solution of integral equations of the second kind is a much studied subject 

and various direct and iterative methods have been proposed for their nu-

merical solutions, see [4] for instance. However, one overriding drawback of 

. these methods is the high cost of working with the associated dense matrices, 

9 

m 



i Paper II 10 

For problems discretized with n quadrature points, classical direct methods 

such as Gaussian elimination method requires 0{n^) operations to obtain the 

numerical solutions. For iterative methods such as the conjugate gradient 

method (see [5]), each iteration requires 0{rv^) operations. Therefore even for 

well-conditioned problems, the method requires 0(n^) operations, which for 

large-scale problems is often prohibitive. 

In recent years, a number of algorithms for the fast numerical solutions of 

integral equations have been developed, see for instance [6, 9, 2，1]. The fast 

multipole method proposed in [6] combines the use of low-order polynomial 

interpolation of the kernel function with a divide-and-conquer strategy. For 

kernel functions that are Coiilombic or gravitational in nature, it results in 

an order 0{n) algorithm for the matrix-vector multiplications. In [9], the 

integral equation is discretized at Chebyshev points and the resulting matrix 

is approximated by a low-rank modification of the identity matrix which can 

be obtained in 0{nlogn) operations. However, the solution of the discretized 

system still requires 0{n?) operations to obtain. In [2], an 0(nlogn) algorithm 

is developed by exploiting the connections between the use of wavelets and 

their applications on Calderon-Zygmund operators. In [1], wavelet-like bases 

are used to transform the dense discretization matrices into sparse matrices, 

which then is inverted by the Schulz method. The complexity of the resulting 

algorithm is bounded by 0(nlog^ n), 

In this paper, we will consider Predholm integral equations of the second 

kind that are studied in [1], i.e. the kernel functions are either smooth, non-

oscillatory and possessing only finite number ofsingularities or products of such 
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functions with highly oscillatory coefficient functions, see (5). We will start 

with the same approach as in [1]. More precisely, we write the discretized 

dense matrix A as the sum of a sequence of block matrices where the blocks 

are of increasing size. Then we use polynomial interpolation as in [6, 1] for 

each of the block matrix. However, we do not use wavelet-like bases as in [1] to 

further approximate the operator to get a sparse representation. Our resulting 

approximation A will therefore be a dense matrix in general. 

However, we show that the approximation A can be obtained in 0{n) op-

erations and only 0{n) storage is required. We also show that matrix-vector 

multiplication of the form Ax can be done in 0{nlogn) operations. Thus for 

second-kind integral equations, which are in general well-conditioned problems, 

solving the approximated systems by conjugate gradient type methods requires 

only 0{n logn) operations. We have applied our scheme to kernel functions 

tested in [1] and also to kernel functions where the algorithm in [1] is inappli-

cable. Our numerical results show that our method is more accurate and is 

stable even when higher degree polynomials are used in the approximation. 

The outline of the paper is as follows. In §2, we recall the Nystrom method 

for the numerical solution of integral equations. In §3 we derive our procedure 

in approximating integral operators. In §4, we discuss the construction cost 

of the approximation, the matrix-vector multiplication cost and the storage 

requirement. A variety of numerical examples are given in §5 to demonstrate 

the accuracy and stability of our proposed algorithm, its effectiveness in per-

forming matrix-vector multiplications and the convergence of the conjugate 

gradient type methods for the approximate systems. 
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2 The Problem 

Consider the linear Predholm integral equation of the second kind: 

f(x)—广 a{x, t)f{t)dt = g{x), X G [0，1], 
Jo 

where the kernel function a{x, i) is in L^[0, lp and the unknown function f{x) 

and the right-hand side function g{x) are in L^[0,1]. Define the integral oper-

ator 
{Af){x) = [\{x,t)f{t)dt. (1) 

«/ 0 
Then the integral equation can be written as 

{I-A)f = g, (2) 

where X is the identity operator. 

As in [1], we concern ourselves first with kernel functions a{x,t) which are 

analytic except at x 二 t, where it possesses an integrable singularity. It is 

well-known that integral operators with weakly singular kernels are compact 

operators, see for instance [8, Theorem 2.21]. Therefore the operator I — A 

is well-conditioned unless 1 is the eigenvalue of A, in which case, the operator 

is singular. Thus a good method for solving these well-conditioned equations 
%_ -̂. 

is the conjugate gradient method or its variants, see for instance [5, 3]. They 

converge to the solution in a linear rate, cf. [7] and Table 2 in §5. 

To find the solution numerically, we discretize (2) by Nystrom's method 

(see [4]) at equally spaced points (i - l)/(n - 1), i = 1，，. .，n, on [0,1]. This 

results in a matrix equation 

(I - A)f = g, (3) 
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where I is the identity matrix, g is a given vector and f is the unknown vector. 

As in [1], we define the entries of the discretization matrix A to be 

A1. • = / ^ ^ ( ^ ' ^ ) ^ + j, (4) 
J%J I 0 i = j, 

This corresponds to a primitive, trapezoid-like quadrature discretization of the 

integral operator A. 

We can solve (3) by using conjugate gradient type methods. However, 

for these methods to work efficiently, the matrix-vector multiplication Ay 

should be done fast for any vector y. For A defined in (4), the multiplication 

requires 0{n?) operations. In §3, we will find an approximation A of A, such 

that Ay can be computed fast in 0(n logn) operations. The main idea is 

to take advantage of the smoothness of the kernel function a{x,t), We know 

that smooth functions can be approximated quite accurately by polynomials. 

As an example mentioned in [1], for any c > 0, the function log|a:| can be 

approximated within 4—9 accuracy on [c, 2c] by using polynomials of degree at 

most 7. Since A possesses the same smoothness properties as that ofthe kernel 

a{x,t), we see that if a(rr, t) is smooth, we can approximate A or submatrices 

of A by low rank matrices obtained via polynomial interpolation. This is done 

in the next section. 

Besides smooth kernels, the authors in [1] have also studied a more general 

class of integral equations which are of the form: 

f{x) - d{x) £ a{x, t)f{t)dt = g{x), x G [0,1]， （5) 

where a{x, t) is again analytic except with an integrable singularity at x = t 

and the coefficient function d(x) can be oscillatory. These problems lie between 
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the problems with smooth kernels and those with arbitrary oscillatory kernels. 

The corresponding operator equation is of the form 

(I-VA)f = g, (6) 

where A is given in (1) and V is the operator defined by 

{Vf){x) = d{x)f{x), 

In [1], it is assumed that d{x) is positive and a new wavelet bases is applied 

to the symmetrized operator V^I^AV^I^ to obtain a sparse representation. 

However, we note that as long as d{x) is bounded (no need to be positive), 

then V will be a bounded operator. Therefore if a{x, t) is at most weakly 

singular, then A and hence VA will be a compact operator. This is because 

product of bounded operator and compact operator is still compact, see for 

instance [10, Theorem 4.18]. Hence I - VA will still be well-conditioned and 

we can solve (6) by conjugate gradient type methods and the convergence rate 

will again be linear. 

Clearly, the discretized equation of (6) is given by 

(I - DA)f = g, (7) 

where A is given by (4) and D is a diagonal matrix with entries given by 
i — 1 

[B]i^i = d{-^), i = lr-^n, ‘ n — 1 

We will approximate A by low rank matrices to obtain the approximation A, 

‘ where the matrix-vector product Ay can be obtained in 0(nlogn) operations 

for any vector y. Since D is diagonal, we see that the product (I - DA)y can 

be computed in 0{nlogn) operations. 
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3 The Approximation 

The main idea in getting an approximation of A is to approximate A by low 

rank matrices. However, if the whole matrix A is approximated by one low 

rank matrix, the approximation will not be good in general, especiaIly for 

kernels with diagonal singularities. Therefore a general idea is to divide A 

into blocks of different sizes and approximate each of the block by a low rank, 

say rank k, matrix. We will follow the partition as suggested in [1] (see also 

Figure 4 therein) and assume the size of A is given by n 二 k • 2�Here k is a 

small integer that depends on the smoothness of the kernel function a(., •)• 

With the partition, the matrix A is cut into blocks of different sizes. The 

blocks near the main diagonal are of size k-hy-k, those next remote are of 

size 2k-hy-2k, and so forth up to the largest blocks of size 2^"^A:-by-2^"^. By 

grouping blocks of the same size into one matrix, we can express the matrix 

A as 
A = A(o) + AW + . . . + A " ) , (8) 

where 八⑷，u = 0 , . . . , 1 - 2, consists only of blocks of size 2^k-hj-2^k. We can 

easily check that the number of nonzero blocks in A(^) is given by 

—f 6. 2̂  — 8 u = 0, . . 
� = j 6 ( 2 � _ l ) u = l,...,l-2. ( : 

We wiU denote these nonzero blocks by A(̂ ’—, v = 1, • • •, i ^ As an iUustration, 
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for 1 = 5, A(2) is of the form 

A(2'1) A(2，2) 

A(2，3) 

A(2'10) A(2'4) A(2'5) 

A(2,11) A(2,12) A(2'6) 
人 ⑵ = J_ L__ , 

A(2,13) A(2,7) A(2，8) 

A(2,14) A(2，15) A(2，9) 

A(2'16) 

A(2，17) A(2，18) 
_ J (10) 

where each A(2’”）is a 4A:-by-4A: matrix and other blocks not written out ex-

plicitly are zero blocks. As in [1], our idea is to write each block A(̂，^ in A(^) 

as 
A — ) = A — ) + E—), 

where 入(以’幻）is of rank k and the error matrix E(̂ ’”）has small norm. 

: Our approach of constructing k — � i s as follows. Let the entries of A(̂ ’”） 

I. 
: be given by 

丨 [A—)]o. = _ i ^ a ( ( “ + “ l ) / i，( j o + j - l ) / 0 , l < i J < 2 ^ k , (11) 
n — 1 

»•• 

!• 

S' 

j 
^ 
f K 
I I 
5 



i Paper II 17 

i.e. the entries of A ( ^ ” are obtained by evaluating the kernel function a{x, t) in 

the domain [ioh, ioh+{2^k-l)h] x [joh, joh^{2^k-l)h] . Our idea is to map this 

domain to [—1,1]^ and do our approximation there. On the domain [ - l , l p , 

we will take k̂  samples of the function a(.，.）at equally-spaced points and 

use the values to approximate the matrix A("’”）. The resulting transformation 

matrix will be more stable and requires less storage to store, see §4 and §5. 

Clearly, the transformation is given by 

. — — 1 丨 2 工 — • 

: - - 越 ’ （12) 

、t 二 - i+V&-i) " , 
where {x,t) will be in [—l，lp. For simplicity, let us denote a{x,t) 二 a(z,t). 

We then construct the k-hy-k sample matrix A(^’” by evaluating a(.,.) at k^ 

equally-spaced points in [ - l , l p . That is 

[A(�” ) ] i , = ^ a ( - l + 2 ^ , - 1 + 2 f ^ ) , 1 < i, j < k. (13) 
n — 1 k — 1 k — 1 

Since by the assumptions on a(.，.)，the function a(-,-) is smooth and non-

oscillatory in [—l，lp, it can be approximated accurately by polynomials of 

smaU degree. In particular, we have 

^ a ( x , f) ^ E E AS’”V—ip-i, (14) 
几—丄 r=ls=l 

where A—) are the coefficients of the Taylor series expansion of the function 
T*S 

on the left hand side. 

Combining (13) and (14)，we then have 

[A(¥)L. ^ E E A i r H - i + 2 吕 ” ( - 1 + 2 ( ^ r \ 1 < i,j < k. 
一 (15) 
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In matrix terms, we then have 

A—) « P�A—)Pfc (16) 

where P^ and A(̂’”）are k-hy-k matrices with entries given respectively by 

[P,],. = (-i + 2 ^ y - \ i<ij<K (17) 

and 

[A—)L. = A!r), l<iJ<k. 

We are now ready to approximate A(̂ ’”）by a rank k matrix. By (11), (12) 

and (14), we have 

[A(—L- = ^a{{io + i-l)K { j o + j - m 
n —丄 

= 由 ' ( — 1 + 2 岩 — 1 + 2 品 ） 

- i : i > & i - i + 2 ^ ^ r i ( - i + 2 ^ ^ ^ ) H , … , � ^ . 
r=l 5=1 

In matrix terms, we then have the approximation: 

A(— « (pW)TA—)P(u) (18) 

where P(^) is the k-hy-2^k matrix with entries given by 

[P^%J = (—1 + 2 ^ ^ ^ r \ 1 < i < K 1 < 3 < rk, (19) 

Thus the approximation 人(以，力 of A(^,^ is obtained as follows: 

1. Compute approximation 私二’…of Ag’”）by requesting that the approxi-

mate equation (15) holds exactly for all P sampled points. More pre-

cisely, we compute approximate coefl&cients matrix 人(¥) of A(¥) by 
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(16), i.e. 

入一）三（ P � � A — ) P � i , (20) 

where A(̂’”）and P^ are given by (13) and (17) respectively. 

2. The approximation A(�— of A(〜”）is then given by (18), i,e. 

入―）三（p(w))TX—)p(w)， (21) 

where P〜）is given by (19). 

We emphasize that we do not have to form the 2^k-hy-2^k matrix A — ) in 

order to get its approximation A(̂，”). If only matrix-vector multiplications are 

required, as is in the case of conjugate gradient type methods (see [5]), then 

there is no need to explicitly form the approximation A ( � A and we only have 

to store X(�W and P ( < 

We remark that by transforming into the domain [ -1 , lp , both basis func-

tion matrices P^ and P ^ are now independent of the index v of the block we 

are approximating. Numerical results show that our basis function matrices 

are less ill-conditioned than those we would obtain without the transforma-

tion, For example, when k = 8 and 14, condition numbers of P^ are about 10̂  

and 10̂  respectively, whereas if no transformation is used, the numbers will 

exceed 10^ and 10̂ ^ respectively and vary with v. In [1], interpolation are done 

by using polynomial basis functions that are shifted and scaled by methods 

different from ours. The resulting basis function matrices are also stable with 

condition numbers (which vary with different blocks and depends on n) about 

the same order as that of our Pfc. 
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Another important advantage of having this v independence in our basis 

function matrices is that we can use the same P(^) for all A(^’”). Recalling the 

block structure of each A(— (cf. (10)) and the approximation k — � o f each 

block A(̂ ’— in (21), we see that A(^) can now be approximated by 

入⑷=\hi-u ③(P(^)fl . ！⑷.[l2“ 0 P ( 1 . (22) 
L J i- J 

Here l2i-u is the identity matrix of size 2 "̂̂ , (g) is the Kronecker tensor product 

and 人⑷ is a matrix having the same block structure as A(—, except that the 

blocks A(̂ ’”）in A(^) are of size 2̂ k whereas the blocks 人(以’幻）in 人⑷ are of 

size k. As an illustration, the matrix 入⑵ for 1 = 5 is of the form (cf. (10)): 

A(2,l)入(2’2) 

A(2'3) 

入(2,10) 入(2，4)入(2，5) 

、”入(2,11)入(2，12) 入(2,6) 

入⑵二 :L8 0(P(2) ) L [t8g)P(2) 

A(2A3) A(2,7)入(2’8) 

入(2,14) X(2,15) 入(2，9) 

X(2,16) 

人(2’17)人(2,18) 

where each 人(2’幻）is a k-hy-k matrix. 



i Paper II 21 

Having defined the approximation matrix A(^) for each A(^), u 二 1 , . . . , 1 — 

2, we can now define our approximation matrix A to the original matrix A: 

A 三 A(o) + 入⑴ + 入⑶ + . . . + A"-2)， （23) 

see (8). In §5, we will compute the difference A — A for different kernel 

functions a{x, t) and different k and n to illustrate the accuracy of our approx-

imation. 

We remark that in [1], after the approximation with low-order polynomi-

als, the operator is further approximated (by throwing away entries less than 

a given threshold) by using wavelet-like basis functions so that the final ap-

proximation matrix is sparse. In our case, we stop at the approximation by 

low-order polynomials and the approximation matrices A are in general dense. 

However, we emphasize that if we are going to solve the linear system relating 

to A by conjugate gradient type methods, then only matrix-vector multiplica-

tions of the form Ay are required. In this case, there is no need to explicitly 

form A. All we need is to store A(。)，入(以，”）and P〜)，see §4, We will also show 

in §4 that the matrix-vector multiplication Ay can be obtained in 0(nlogn) 

operations, 

4 Complexity Analysis 

In this section, we consider the complexity of obtaining and storing a represen-

tation of A so that matrix-vector multiplications of the form Ax can be done 

fast. We also consider the cost of doing such matrix-vector multiplication. We 
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first recall that by (23) and (22), we have 

Ax = A(o)x + 2 [l,i-u 0 ( P � � ] .入⑷ . [ l 2 , - « 0 P ( 1 X. (24) 

U=1 

Thus we see that for the computation of Ax, it suffices to form and store A(o), 

人⑷ and P ( < For simplicity, in the following, we count only the number of 

multiplications in the operation counts. The number of additions is of the 

same order. 

Storage Requirement: 

Forming Storage Explanation 
" A ^ (6 . 2̂  - 8)P A(o) consists of (6 • 2^ — 8) blocks of size k, see 

^ 
~ p O 6(2[1—以—l)P 八⑷ is a block matrix with 6(2^1—" — 1) 

nonzero blocks, see (9). Each nonzero block 
入(以’力 is of size k, see (20). 

p(^) 2^k^ P(— is a k-hy-2^k matrix, see (19). 

Thus the total storage requirement is 

(6 . 2 � — S ) e + § {6(2^-^-" — l ) P + 2^e] < 10 • 2V = lOnk. 
w=i 

Construction Cost: 

To form 入(以’幻）using (20), we first form the basis function matrix P^ (see 

(17)) and its inverse. This requires 0{k^) operations and the matrices can 

be used for all u and v. For a given u and v, we form K^—�in (20) by 

^ forming 人(以’衫）first. By using (13), this requires k̂  function evaluations of the 

, kernel function a(-, •), Then 入(以’幻）is obtained by using (20) which requires 2k̂  

multipHcations. Thus each 人(以’幻）can be obtained in k̂  function evaluations 
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and 2k^ multiplications. In the following table, f.e. denotes function evaluation 

of a(.,.). 

Forming Complexity Explanation 
~ K ^ (6 • 2' - S ) e f.e. A(o) consists of (6 .2' - 8) blocks of size k, 

see (9). 
入⑷ 6(2'—1—以-l)k^ f.e. A^̂ ) contains 6(2^"^"^ - 1 ) nonzero blocks, 

and 12(2�-1-以一l)k^ see (9) and each nonzero block 入(以’幻）re-
quires k̂  f.e. and 2k^ multiplications, 

p(w) 2̂ k^ P(u) is a A:-by-2̂ A: matrix, and its entries 
can be formed row-wise to avoid taking 
power, see (19). 

Summing all these costs together, we conclude that the cost of forming A(。)， 

人⑷ and ？⑷ for all u = 1, • •., 1 - 2 is 

^ |l2(2^-i-^ - l)k^ + 2^e } < 6 • 2 V + 2 V = 6nA;2 + o(nA:) 
U=1 

multiplications and 

l-2 
(6 . 2i — S)k^ + Y^ 6 ( 2 " - u — l)k^ < 9 . 2V 二 9nk 

U=1 

function evaluations. In contrast, forming A requires n̂  function evaluations. 

Cost ofMatrix-Vector Multiplication: 

We compute matrix-vector multiplication A x as in (24). 
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Forming Complexity Explanation 
A(o)x (6 . 2i — S)e Each of the (6 . 2' - 8) blocks in 

A(o) need to multiply with the cor-
responding subvector of length k. 

y^ 三 ( ¾ ^ (g) P ( ’ 2'P There are 2'"^ copies of P@) in 
I2i-u (g) ？⑷ and multiply each copy 
of pM to length 2^k vector requires 
2̂ k̂  multiplications. 

z^EX(^)yu 6(2^-1-^ - l)k^ There are 6(2^-^-^_- 1) nonzero 
blocks of size k in 人⑷ and multi-
ply each of them to length k vector 
requires k̂  multiplications. 

Î t-u 0 ( P ^ f ] 2^ 2^e There are 2 '̂̂  copies of (P(W)T in 
l2“^(P(^))T and multiply each copy 
of (P(u))T to length k vector requires 
2̂ k̂  multiplications. 

Combining all these together, we conclude that the total number of multipli-

cations required in forming Ax is 

1一2 
(6 . 2̂  — 8)k' + ^ {6(2'-i-u — i ) p + 2 • 2^k'j < (2/ + 5)2^k' 二 (21 + 5)nk, 

W=1 

which is of order 0(nlogn). In contrast, the cost of forming Ax is n̂  multi-

plications. 

5 Numerical Examples 

In this section, we show the efficiency and accuracy of our scheme by applying 

it to the following six kernel functions: 

(i) log\x-tl 

(ii) cos{xt^)\og\x-t\, 
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(iii) cos{xt^)\x-t\-^^\ 

(iv) COs{xt̂ )\x — t|l/2, 

(v) (1 + I sin(lOOrr)) log \x - t\, and 

(vi) sin(lOOa;) log \x — t . 

Kernel functions (i) to (v) are examples tested in [1]. We note that kernels 

(v) and (vi) are kernels with a highly oscillatory coefficient function d{x) that 

is equal to 1 + | sin(lOOo;) and sin(lOOrr) respectively, see (5). Obviously, 

both coefficient functions are bounded and therefore our algorithm works for 

both examples, see §2. We note however that since d{x) for kernel (vi) is not 

positive, the algorithm in [1] is not applicable for this kernel. 

The discretized equations for kernels (i) to (iv) are given by (3) and for 

kernels (v) and (vi), they are given by (7). Given a kernel function a(-,.), we 

compute the matrix A as defined in (4) and its approximation A by (23). We 

measure the accuracy of the approximation by computing the relative error 

||A - A||iî /||A||î , where || . Wp is the Frobenius norm. All our computations 

are done in MATLAB on a SUN Sparc-20 workstation. Table 1 shows the 

results for different k and 1. We recall that the size of the matrices is n = k • 2 � 

Thus the largest matrix we tried is of size 14,336-by-14,336. 

Note that kernel functions (v) and (vi) give the same dense matrix ap-

proximation A as that of (i) as the a{x, t) for all three kernels are all equal 

to log|o: — t\. Therefore, in Table 1，results for kernel functions (v) and (vi) 

are omitted. We see from Table 1 that our scheme provides a very accurate 

approximation A to the original matrix A even for small k like 8. We recall 
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from §4 that the cost of forming A is of order 0 { n P ) operations whereas the 

cost of forming A is of 0{n^) operations. 

k 二 4 k = 8 k = 11 k = 14 
1 a{x, t) = log \x — t 

~1：~~7.69E-05 3.06E-08 1.79E-10 1.04E-11 
6 1.14E-04 4.68E-08 2.78E-10 1.86E-11 
8 1.30E-04 5.40E-08 3.22E-10 2.27E-11 
10 1.36E-Q4 5.67E_08 3.38E-lQ 2,41E-11 
1 a{x, t) = cos{xt^) log \x - 1̂ 

~1：~"7.57E-05 3.10E-08 1.82E-10 1,18E-11 
6 1.13E-04 4.73E-08 2.82E-10 1.93E-11 
8 1.29E-04 5.44E-08 3,25E-10 2.23E-11 
10 1.35E-Q4 5.71E-Q8 3.42E-lQ 2.33E-11 

~T~ a{x, t) = cos{xt^)\x - t|-i/2 -
~4~~9.18E-05 5.24E-08 3.54E-10 1.12E-11 

6 1.56E-04 9.09E-08 6.25E-10 1.55E-11 
8 1.98E-04 1.17E-07 8.07E-10 1.87E-11 
10 2.25E-04 1.34E-Q7 9.29E-lQ 2.Q1E-11 
1 — g(rr, t) = cos{xf)\x - t\^^^ 

~4~~2.09E-05 5.53E-09 2.75E-11 2,29E-11 
6 2.92E-05 7.85E-09 3.94E-11 2.26E-11 
8 3.20E-05 8.59E-09 4.31E-11 2.39E-11 
10 3.28E-05 8.80E-09 4.41E-11 2.53E-11 

Table 1: ||A - A||î /||A||î  for different kernels. 

Next we illustrate the efficiency and accuracy of solving (3) and (7) using 

the approximation A. For kernel functions (i) to (iv), we first choose a random 

vector X to generate the right hand side vector b = (I — A)x. Then we 

solve the approximate equation (I — A)x 二 b for the approximate solution 

X. For kernel functions (v) and (vi), we again choose a random vector x to 

generate the right hand side vector b = (I — DA)x, see (7). Then we solve 
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the approximate equation (I - DA)x = b for the approximate solution x. All 

equations are solved by the CGLS method (see [3]) which basically solves the 

normal equation of a given equation by the conjugate gradient method. 

In the CGLS method, we choose the zero vector as the initial guess and 

the stopping criterion is 
• ^ < 10-10’ 
ro 2 

where r^ is the residual vector at the qth. iteration. The numbers of iterations 

required for convergence for the six kernels are given in Table 2. To measure 

the accuracy of the approximate solution x, we have computed the relative 

error ||x — x||2/||x||2. The results are shown in Table 3. 

k = 4 k = 8 k = ll k = 14 |A: = 4 k = S k = ll k = 14 
1 a{x, t) 二 log |a: - t\ a{x, t) 二 cos{xt') log |x - t 一 

" 1 U l3 l3 l3 U l3 l3 U ~ ~ 
6 13 13 13 13 13 13 13 13 
8 13 13 13 13 13 13 13 13 
10 13 13 13 13 13 13 13 13 
1 g(rr, t) = cos(xt')\x - t|-i" — a(x, t) = cos{xt^)\x — t|i" 一 

"1 l9 ^ 2 ^ 26 ~8 8 8 8~~ 
6 26 29 31 36 8 8 8 8 
8 33 32 32 33 8 8 8 8 
10 32 32 33 34 8 8 8 8 
1 a{x, t) = (1 + i sm(lQQg;)) log |a: — t\ aQr，t) = sin(lOOrr) log |a; — t 

~ T " 13 14 14 14 ~~l2 l3 I i l4~~ 
6 14 13 13 13 14 14 14 14 
8 13 13 13 13 14 14 14 14 
10 13 13 13 13 14 14 14 14 

Table 2: Numbers of iterations required for convergence. 
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k = 4 k = 8 k 二 11 k 二 14 

1 a{x, t) — log \x - t 
~~l““3.45E-05 l,27E-08 1.28E-10 9.89E-11 

6 4.74E-05 1.87E-08 9.55E-11 7.03E-11 
8 5.27E-05 2.06E-08 8.68E-11 5.06E-11 
10 5.38E-05 2.11E-Q8 7.75E-11 3.24E-11 

{ 1 a{x, t) = cos{xt^) log \x -力| 

j ~1 ~"3.24E-05 1.22E-08 7.27E-11 7.31E-11 
] 6 4.47E-05 1.80E-08 7,84E-11 2.99E-11 
] 8 5.00E-05 1.98E-08 7.87E-11 3.26E_11 

10 5.11E-Q5 2.Q3E-Q8 7.36E-11 2.38E-11 
1 a{x, t) = cos{xt^)\x - t|-i/2 -

" 1 ~"7.44E-05 4.16E-08 2.02E-10 3.32E-11 
6 l,76E-04 L54E-07 1.58E-09 1.48E-09 

！ 8 1.28E-03 2.03E-07 4.52E-10 7.03E-11 
10 3.07E-Q4 1.44E-Q7 5.24E-lQ 5.93E-11 

~r a{x, t) = cos{xt^){x - t|i/2 一 

^~"6.96E-06 l,29E-09 8.57E-12 3.61E-11 
I 6 l,27E-05 2.03E-09 1.60E-11 2.61E-11 

8 1.45E-05 2.27E-09 1,23E-11 2.03E-11 
10 1.47E-Q5 2.33E-Q9 5.36E-12 1.94E-11 

i 丁 g(rr, t) = (1 + 告 sin(lOOaQ) log |a; - t\ 
I ~T~ 3,81E-05 1.31E-08 5,59E-11 2,40E-11 
i 6 5.11E-05 1.84E-08 L17E-10 1.27E-10 
： 8 5.63E-05 2.04E-08 1.14E-10 4.75E-11 
j 10 5.71E-05 2.Q6E-Q8 7.26E-11 6.Q2E-11 
j 1 a{x, t) 二 sin(lQQg;) log |a: -1\ 
！ " 1 ~"3.02E-05 1.28E-08 4.28E-11 3.19E-11 

6 6.27E-05 1.92E-08 7.72E-11 9.68E-11 
8 7.46E-05 2.11E-08 9.69E-11 1.07E-10 
10 7.75E-05 2.19E-08 8.85E-11 5.66E-11 

I i 
Table 3: ||x - x||2/||x||2 for different kernels. 

Since the kernel functions we tried are at most weakly singular, we see from 

Table 2 that the convergence rate is linear as expected, see [8, Theorem 2.21 . 
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Recall from §4 that the cost of matrix-vector multiplication Ay is ofO(nlogn) 

operations, the total cost of solving the systems is thus of 0{n log n) operations 

too. We emphasize again that in order to get the approximate solution x, we 

only have to form A (which requires only 0{nk^) operations) and no need to 

form A. 

We finally compare the operations required in computing the matrix-vector 

multiplications Ax and Ax. Tables 4a-4d give the numbers of floating point 

operations (flops) required. We note that the counts do not depend on the 

kernel functions used. In the tables, the ratios denote the ratios of the oper-

ation counts when the size n of the matrix is doubled. We clearly see from 

the ratios that the cost of the matrix-vector multiplication Ax is approaching 

0{nkl) = 0{nlogn), whereas that of Ax is 0(n^). 

n Ax ratio Ax ratio 
^ p ^ — 2,096 — ~~ 
64 9,682 3.1568 8,288 3,9542 

128 25,705 2,6549 32,960 3.9768 
256 62,896 2.4468 131,456 3.9883 
512 147,127 2.3392 525,056 3.9942 

1024 334,846 2.2759 2,098,688 3.9971 
2048 748,357 2.2349 8,391,680 3.9985 
4096 1,651,084 2.2063 33,560,576 3.9993 
8192 3,607,507 2,1849 134,230,016 3.9996 

16384 7,821,850 2,1682 536,895,488 3.9998 

Table 4a: Flops counts in computing Ax and Ax for k = 4. 
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n Ax ratio Ax ratio 
^i 9,767 — 8,272 — ~~ 

128 29,322 3.0022 32,928 3.9807 
256 76,221 2.5994 131,392 3.9903 
512 184,224 2,4170 524,928 3,9951 

1024 427,459 2.3203 2,098,432 3.9976 
2048 967,206 2.2627 8,391,168 3.9988 
4096 2,152,073 2.2250 33,559,552 3.9994 
8192 4,731,372 2.1985 134,227,968 3,9997 

16384 10,307,919 2.1786 536,891,392 3.9998 
~ 

Table 4b: Flops counts in computing Ax and Ax for k = 8. [ I 
n Ax ratio Ax ratio 

88 17,438 — 15,592 — ~ ~ 
176 51,570 2.9573 62,160 3.9867 
352 132,786 2,5749 248,224 3,9933 
704 319,158 2.4036 992,064 3.9966 

1408 737,794 2.3117 3,966,592 3,9983 
2816 1,664,862 2.2565 15,863,040 3.9992 
5632 3,696,602 2.2204 63,445,504 3.9996 

11264 8,113,302 2.1948 253,768,704 3.9998 
22528 17,651,154 2.1756 1,015,048,192 3.9999 

Table 4c: Flops counts in computing Ax and Ax for k = 11. 

n Ax ratio Ax ratio 
~ " n 2 2 7 ^ — 25,216 — ~ 

224 80,262 2,9317 100,608 3,9898 
448 205,515 2.5606 401,920 3.9949 
896 492,216 2,3950 1,606,656 3,9975 

1792 1,134,997 2,3059 6,424,576 3.9987 
3584 2,556,306 2.2523 25,694,208 3.9994 
7168 5,667,407 2.2170 102,768,640 3.9997 

14336 12,423,564 2.1921 411,058,176 3.9998 
28672 27,000,777 2.1734 1,644,199,936 3.9999 

Table 4d: Flops counts in computing Ax and Ax for k = 14. 
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Fast Construction of Optimal Circulant 
Preconditioners for Matrices from Fast 

Dense Matrix Method 

Abstract 

In this paper, we consider solving non-convolution type integral 
equations by the preconditioned conjugate gradient method. The fast 
dense matrix method is a fast multiplication scheme that provides a 
dense discretization matrix A approximating a given integral equation. 
The dense matrix A can be constructed in 0(n) operations and requires 
only 0(n) storage where n is the size of the matrix. Moreover, the 
matrix-vector multiplication Ax can be done in 0{n log?i) operations. 
Thus if the conjugate gradient method is used to solve the discretized 
system, the cost per iteration is 0(n log n) operations. However, for 
some integral equations, such as the Fredholm integral equations of the 
first kind, the system will be ill-conditioned and therefore the conver-
gence rate of the method will be slow. In these cases, preconditioning 
is required to speed up the convergence rate of the method. A good 
choice of preconditioner is the optimal circulant preconditioner which 
is the minimizer of ||C — A\\F in Frobenius norm over all circulant ma-
trices C. It can be obtained by taking arithmetic averages of all the 
entries of A and therefore the cost of constructing the preconditioner is 
of 0{n?) operations for general dense matrices. In this paper, we de-
velop an 0{n logn) method of constructing the preconditioner for dense 
matrices A obtained from the fast dense matrix method. Application 
of these ideas to boundary integral equations from potential theory will 
be given. These equations are ill-conditioned whereas their optimal cir-
culant preconditioned equations will be well-conditioned. The accuracy 
of the approximation A, the fast construction of the preconditioner and 

33 
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the fast convergence of the preconditioned systems will be illustrated 
by numerical examples. 

AMS(MOS) subject classifications. 45B05, 65F10, 65R20. 

Key Words. Integral equations, circulant preconditioners, conjugate gradient 

method. 

1 Introduction 

Circulant matrices are matrices that have constant diagonals and that the first 

entry of each column is the last entry of its preceding column. More precisely, 

each column in the matrix is obtained by a cyclic shift of its preceding column. 

For an n-hy-n matrix B, the optimal circulant preconditioner c{B) of B is 

defined to be the minimizer of ||C - B^ over all n-hy-n circulant matrices 

C, see T. Chan [10]. Here || • \\̂  denotes the Frobenius norm. Since c{B) is 

a circulant matrix, it is determined uniquely by its first column which can be 

obtained easily by taking the arithmetic average of the entries Kj3 of B. More 

precisely, the entries {ce)^=i in the first column of c{B) are given by 

c5+1 二 i Y1 K,|3, ^ 二 0 , . . . , n - 1， ⑴ 

几 a-/3=5(mod n) 

see Tyrtyshnikov [15 . 

Using the circulant structure of c{B), the inverse [c{B)]-^ of c{B) and the 

matrix-vector multiplication [c(_B)]]x for any vector x can be obtained in 

0(nlogn) operations by using fast Fourier transforms, see for instance Chan 

and Ng [8]. Moreover, c{B) is positive-definite whenever B is, see Tyrtysh-

nikov [15]. This makes c{B) a very attractive choice of preconditioner in the 

^ 

5 > 
Y 
'! 
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preconditioned conjugate gradient method for solving the system By = b. For 

then, if B is positive-definite, the preconditioned matrix is positive-definite. 

Moreover, the cost of multiplying [c{B)]-^ to a vector, which is required in each 

iteration of the method, can be obtained in 0(nlogn) operations by using fast 

Fourier transforms. 

However, from (1)，we see that the cost of constructing c{B) is of 0{n^) 

operations for general matrices B, This cost count can be reduced to 0{n) 

when B is a band matrix or a Toeplitz matrix (i.e. matrix with constant 

diagonals). Therefore, the optimal circulant preconditioner has been used in 

the numerical solutions of partial differential equations and in Toeplitz least 

squares problems from signal and image processing. Convergence results for 

the preconditioned systems arising from these problems have been established, 

see for instance Chan and Ng [8] and the references therein. 

Optimal circulant preconditioners have also been proposed and used suc-

cessfuUy in solving convolution type integral equations, see [12, 4]. The discrete 

matrices from these integral equations are Toeplitz matrices if the rectangular 

quadrature rule is used. For non-convolution type integral equations, where 

the discrete matrices are no longer Toeplitz, convergence analysis of optimal 

circulant preconditioners has also been studied, see [6, 9]. For example, for 

boundary integral equations arising from potential equations, which are ill-

conditioned, non-convolution type integral equations with condition number 

increasing like 0(n), the preconditioned systems have been shown to be well-

conditioned, see Chan, Sun and Ng [9] and also §5, 

However, there are two main difficulties in using circulant preconditioned 
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conjugate gradient methods for non-convolution type integral equations. The 

first one is that the discretization matrix B corresponding to the integral equa-

tion is dense. Hence multiplying B to a vector, which is required in each it-

eration of the conjugate gradient method, is of 0{n?) complexity. The other 

difficulty is that since B is dense, forming the optimal circulant preconditioner 

c{B) using (1) will require 0{n^) operations. In this paper, we will address 

the second difficulty. 

To overcome the first difficulty, a number of fast multiplication schemes 

have been developed in recent years, see for instance [13，14, 3, 1]. These 

methods try to obtain an approximation A to the given integral equation such 

that the matrix-vector multiplication of A with any vector can be done in 0(n) 

or 0{nlogn) operations, depending on the smoothness of the kernel function 

of the integral equation. In Chan, Lin and Ng [7], we have proposed the fast 

dense matrix method for approximating integral equations. Our approximation 

matrix A is a dense matrix which can be obtained in 0{n) operations and only 

0(n) storage is required. Moreover, the matrix-vector multiplication Ax can 

be done in 0(nlogn) operations. 

To deal with the second difficulty mentioned above, we will develop in this 

paper a fast algorithm for constructing the optimal circulant preconditioner 

c(A) for matrices A that are obtained from our fast dense matrix method. Us-

ing the special structure of our A, the circulant matrix c{A) can be obtained 

in 0(nlogn) operations. Thus, the construction ofthe discretization matrix A 

and its circulant preconditioner c(A), and the cost of multiplying A or [c(A)]—i 

to any vector can all be done in 0{nlogn) operations. Hence used in conjunc-
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tion with our fast dense matrix method, the circulant preconditioned conjugate 

gradient method for integral equations requires only 0(nlog n) operations per 

iteration. 

In order to illustrate the efficiency of our construction and the effect of 

using circulant preconditioners, we will apply these ideas to solving first kind 

integral equations from potential equations. These equations are known to 

be ill-conditioned with condition number growing like 0{n). Chan, Sun and 

Ng [9] have shown however that the problem becomes well-conditioned if it is 

preconditioned by optimal circulant preconditioners. In particular, the precon-

ditioned system converges in a fixed finite number of iterations independent 

of the size of the discretized system. Thus, if the system is solved by using 

preconditioned conjugate gradient method coupled with our fast dense ma-

trix method, the total cost of solving the system is of the order 0{nlogn) 

operations. 

Before we go on, let us define some terminologies to be used later on. Given 

an n-hy-n matrix B with entries 6« ’� , we define the diagonal sums {ds)^I^(^n-i) 

of B to be the sum along each of the diagonals of B, More precisely, 
• n 

Y^ ba,a-6, 0 < S < n, 
1 一 a^6+l (2) 

de 二 n+6 � ~ 
E -‘-& 0 < -^ < n, 

� a=l 

Thus do is the sum of the main diagonal entries of B, di is the sum of the entries 

on the sub-diagonal and d—i is the sum of the entries on the super-diagonal. 

We note that once we have the diagonal sums of B, then c{B) can be obtained 

in 0{n) operations. In fact, by comparing (1) and (2)，the following lemma 
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follows. 

Lemma 1 Let {(^}二丄(几__1) be the diagonal sums ofB. Then the first column 

entries {c^|^^i of c{B) are given by ci = do and 

C6+1 = - {ds^ds-n) , ^ = l , . . . , n - 1. 
n 

I The outline of the paper is as follows. In §2, we briefly recall the main 

concept of the fast dense matrix method. Preliminary lemmas that are use-

ful in computing diagonal sums of matrices are given in §3. In §4, we give 

I an 0(nlogn) algorithm for constructing the optimal circulant precondition-

ers. In §5, we apply our ideas to solving boundary integral equations from 

potential equations where the use of circulant preconditioners will speed up 

. the convergence. Finally, concluding remarks are given in §6. 

； 2 Fast Dense Matrix Method 

In this section, we give a brief introduction to the fast dense matrix method. 

We refer the reader to Chan, Lin and Ng [7] for details. In the following, n is the 

size of the discretization matrix under consideration, i.e. 1/n is proportional 

to the the mesh size with which we discretize the integral equation. We will 

set n 二 k . 2^ where k is a fixed small integer that depends on the smoothness 

of the kernel function of the given integral equation. 

The fast dense matrix method proposed in [7] approximates a given inte-

gral equation or its discretization matrix by sum of low rank matrices using the 

partition suggested in Alpert et. al. [1], With such partition, the approxima-

tion matrix A is divided into blocks of different sizes, with the blocks near the 

$ : : 
% ^ 

9‘ 

I 
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main diagonal are of size k-hy-k, those next remote are of size 2k-hy-2k, and so 

forth up to the largest blocks of size 2 '̂̂ k-hy-2 '̂̂ k. Then, each of the blocks 

is approximated by a rank k matrix by using polynomial approximation. By 

grouping blocks of the same size into one matrix, the approximation matrix A 

is given by 

A = A(o)+AW + . . . + A('-2), (3) 

with each A("), ja = 0 , . . . , 1 — 2, consists only of blocks of size 2"fc-by-2"L The 

number of nonzero blocks in A(") is given by 

_ / 6. 2̂  - 8 M = 0, � 
" " = l 6 ( 2 " - P _ l ) " = l , . . . , Z - 2 . “ 

； We will denote those nonzero blocks in 义⑷ by A("，"）, where v 二 1,. •., z/广 As 
j 

•j 

V : . . . . 
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an illustration, for 1 = 5, A(�）is of the form 

ŷ (2,10) (̂2,16) 

(̂2,11) 

(̂2,4) (̂2,12) (̂2,17) 

^(2,1) ^(2,5) 供 1 3 ) 

义 ⑵ = ^ _ L 
(̂2,6) A(2,14) (̂2,18) 

^(2,2) ^(2,7) 义2’15) 

丨 A(2'8) 

j(2,3) (̂2,9) 
L J (5) 

Here each of the block A("’"）is of size 2^k-hy-2f"k and is a rank k matrix 

of the form 
j()U’"）= (p(Ai))TA("’")J>("), (6) 

where A("’"）is a k-hy-k matrix and P(") is a k-hy-2& matrix which is the same 

for all V = 1，..., zv For n 二 0, P(o) is just the k-by-k identity matrix. Using 

(6) and the block structure of A(") as depicted in (5), we see that A(") can be 

written as 
A(") 二 [hi-. 0 ( P ^ r ] A(") [/2^-. 0 P(")] . (7) 

Here I21-M is the identity matrix of size 2'—"，� is the Kronecker tensor product 

fe.. 
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and A(") is a matrix having the same block structure as A(")，except that the 

blocks A("'W in A(") are of size k. As an illustration, the matrix 义⑶ for 1 二 5 

can be written as (cf. (5)): 

A(2,10) A(2,16) 

A(2,ii) 

A(2,4) A(2,12)八(2’17) 

A(2,1) A(2,5) A(2，13) 
义⑶=/8®(P(2)) L [h®P% 

A(2,6) A(2'14) A(2'18) 

A(2,2) A(2，7) A(2,15) 

A(2’8) 

八(2,3)八(2,9) 

� 

where each A(2’”）is a k-hy-k matrix. 

Combining (3) and (7), we then have 

A = 2 A(") = 2 [/2^-. 0 (P(")r] A(") [/2^-. ^ P(")] . (9) 
p=0 iU=0 

Thus for the computation of the matrix-vector product Ax using (9), it suffices 

to form and store A(") and P(") for ^ 二 0, . . . , / - 2 only. As shown in Chan, Lin 
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and Ng [7], these matrices can be constructed in 0(n) operations and requires 

0(n) storage, and the cost of the matrix-vector multiplication Ax using (9) is 

of order 0(n log n) operations. 

In §4, we will discuss an 0(nlogn) algorithm for forming the optimal cir-

culant preconditioner c(A) of A using the decomposition in (9). Recall that 

by Lemma 1，c{A) is determined once we have the diagonal sums of A. Hence 

we need to know how to form the diagonal sums of A("’"）in (6), for they are 

the fundamental building blocks of A(") and hence of A. This will be studied 

in the next section. 

3 Preliminary Lemmas 

In this section, we consider the cost and storage requirement for forming the 

diagonal sums of matrices of the form given in (6). This result is required in §4 

when we construct the optimal circulant preconditioner c{A) for A, We begin 

with the complexity counts of forming diagonal sums for rank 1 matrices. 

Lemma 2 Let p = (pi,... ,Pm) and q = (gi,..., qm)- Then the diagonal sums 

of the m-by-m matrix p*q can be obtained in 0(mlogm) operations and the 

storage required is 0{m). 

Proof: Recall from (2) that the diagonal sums of p^q are given by 
f m 

X) PaQa-6, 0 < 6 < m, 
7 _ «二糾 

^6 = m+6 
Y^ M a - 6 , 0 < -S < m. 

� o;=l 
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In matrix terms, this amounts to 

(Pm 0 \ 4 1 � 
Pm—1 Pm j 

. <̂ m-2 
• « • 

• •. .. ( 1̂ \ ; 
V2 ！ ..• ... ^2 di 
Pl P2 '' . .. Pm •: = ^0 , (10) 

. . . d_i Pl .. : Pm-1 : . 

.. ... ： V Qm / : 
, d-{m-2) 

.. 2̂ V d-{m-l) 
\ 0 Pl / 

where the matrix is a column circulant matrix. 
It is easy to augment the column circulant matrix to make it a square 

circulant matrix (which in fact is determined uniquely by its first column). 

The diagonal sums {cij>^"_Vi, i.e. the right hand side vector in (10), can be 

obtained by multiplying the augmented square circulant matrix to the aug-

mented vector (gi, g2,..,, ^m, 0,..,，0广 This matrix-vector product can be 

obtained efficiently by using three fast Fourier transforms of length 2m - 1, 

see for instance Chan and Ng [8]. Thus the cost of obtaining the diagonal sums 

is 0(mlogm) operations and the storage required is 0(m). 口 

Corollary 1 Let P and Q be two given k-by-m matrices. Then the diagonal 

sums of the product P*Q can be obtained in 0{kmlogm) operations and the 

storage required is 0{m). 

Proof: We have ^ 
P'Q = E p U c ( n ) 

a=l 
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where Po； and q^ are the ath row of P and Q respectively. Notice that the 

sum of the diagonal sums is equal to the diagonal sums of the sum. Therefore 

we can form the diagonal sums of each term p^q^ and sum them up to get 

the diagonal sums of P*Q. By Lemma 2, the diagonal sums for each p^q^, 

a 二 l,...,A:, can be obtained in 0(mlogm) operations with 0(m) storage. 

Once the diagonal sums of p^q^ are formed, they can be accumulated to the 

final result and there is no need to store the intermediate diagonal sums for 

each Q； = 1 , . , . , L Thus the cost of obtaining the diagonal sums of P*Q is 

0{kmlogm) operations and storage requirement is 0(m). 口 

Corollary 2 Let P be a given k-by-m matrix and A be a k-by-k matrix. Then 

the diagonal sums of the product P*AP can be obtained in 0{kmlogm) + 

0{k^m) operations and the storage required is 0{m). 

Proof: We just need to compute the product KP first and then apply Corollary 

1 to the product P\AP). In computing AF, we need one row of the product 

at any one time (see (11)) and therefore the total cost of forming AP is k^m 

operations and the total storage required is 0(m). • 

The fast dense matrix method introduced in §2 provides a good approxi-

mation A to a given integral equation or its discretization matrix B, see Chan, 

Lin and Ng [7] or §5. In the next section, we will construct the optimal cir-

culant preconditioner c{A) for A. We note that since the operator norm of 

the operator c(.) in matrix 2-norm is equal to 1 (see Chan, Jin and Yeung [5’ 

Theorem 3]), we have, 

Wc{A)-c{B)W2<WA-BW2^ (12) 
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: Thus if A is a good approximation to B, we expect c{A) to be a better ap-

proximation to c{B), 
I I 

! 4 Construction of Optimal Circulant Precon-
ditioner 

In this section, we develop an 0(nlog n) method of constructing the optimal 

circulant preconditioner c{A) for the approximation A given in (9). By (1), it 

is clear that c(.) is a linear operator. Therefore by (3), we see that 

c(A) = c(^A(")) = gc(A(")), 
户0 fi=0 

where we recall that n = k • 2̂  with k fixed independent of n. By Lemma 1, 

c(A(")) can be obtained easily if we have the diagonal sums of A("). In view of 

； the block structure of A(") (cf. (5)), we can have the diagonal sums of A(") if 

we have the diagonal sums of its sub-blocks A("’"). Thus in the following, we 

first consider the complexity of computing the diagonal sums ofthe sub-blocks 

A("’")，Then the results will be pieced together to get the complexity counts 

for computing the diagonals sums of A 
We begin by noting that for /i = 1 , . . . , 1 — 2, A(") is a block matrix made 

up of sub-blocks A("’"）that concentrate only on four block-diagonals (cf (5)). 

Since the sum of diagonal sums is equal to the diagonal sums of the sum, one 

can obtain the diagonal sums of A(") by summing the sub-blocks A("，"）along 

the four block-diagonals first and computing the diagonal sums afterward. To 

be more specific, let us consider the example in (5) first. Here /x = 2. The 

diagonal sums of 义⑶ can be obtained from the diagonal sums of the following 

j' ̂ 

i 
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four matrices: 
3 9 15 18 

tA(2’")，；^A(2，")，fA(2'") and ^ A '̂̂ '\ 
u=l iy=4 i/=10 I/=16 

By (6), these four matrices can be rewritten as 

• 4(2，"）二（尸(2)”{；^八(2，")}尸例三（户(2))乂产尸(2), 

v=^l v=l 

$4(2，"） 二 (p(2))t{̂ Â 2,r/)|p(2) = (p(2))̂ A(2)p(2)̂  
"二4 iy=4 

^A(2 ’�= (p(2))t{̂ A(2,-)|p(2) ̂  (p(2))̂ Af)p(2), 
I / = 1 0 iy=10 

18 18 

g](2,") = (p�”{gA(2,")}P⑵三(P�”Ai2)P�. (13) 
i/=16 1̂ =16 

From the diagonal sums of these four matrices, one can compute the diagonal 

sums of A(2), cf. (5). With this example in mind, it is easy to verify the 
following lemma. 

Lemma 3 For jJL = 1,2,...，1 — 2，the diagonal sums of A(") can be obtained 

in 0{k^jji2^) + 0(P2^-M) + 0{k^2^) operations and 0(A:2") storage. 

Proof: As in the example above, we first have to sum the A("’"）along the 

four block-diagonals to obtain A!")，A^ A "̂) and k � : � ( c f (13) and (8)). By 

(4), there are 6(2�—1—" 一 1) sub-blocks of A("’")，which are all k-hy-k matri-

ces. Therefore to form A ^ a = 1,2,3,4, it requires at most 6 ( 2 � i - " — 1 )^ 

operations and Ak̂  memory. 
Once A ? for a 二 1,2,3,4 are formed, we compute the diagonal sums of 

the matrices 
(P("))tAL")pM, a = l,2,3,4, 

f 
1 • h?� > 
I 
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(cf, (13)). We recall by (6) that P(") are k-hy-2 "̂k matrices. Therefore, 

by Corollary 2, the diagonal sums of these four matrices can be obtained in 

0(P2^(Ai + logA:) + P2") operations and 0{k2^) storage. 

Once these diagonal sums are formed, we can accumulate them together 

to get the diagonal sums of A("). This step requires no more than 2̂ ^̂ k 

operations since there are only four diagonal sums to accumulate and each 

of the diagonal sums has no more than 2̂ +̂ A: numbers. Combining all the 

complexity counts above, the lemma follows. 口 

Next we consider the case for |JL 二 0. 

Lemma 4 The diagonal sums of A(o) can be obtained in 0{P2^) operations 

and 0{k) storage. 

Proof: For |JL = 0, the sub-blocks A(。’"）are of size k-hy-k and are concentrated 

on 7 (instead of 4) block-diagonals next to and including the main block-

diagonal, see for instance [1, Figure 4], In other words, A(o) is a band matrix 

of band-width less than or equal to Sk. Thus forming the diagonal sums of 

yl(o) requires at most 0{kn) = 0 (P2^ operations and 8k memory. 口 

Combining Lemmas 2, 3 and 4, we have our main theorem. 

Theorem 1 ForA given in (9), the cost offorming c{A) forA is ofO{knlogn)+ 

0{k^n) operations and the storage required is 0{n). 

Proof: In view of Lemma 3 and 4, the cost of obtaining the diagonal sums of 

y^i:2 Ĵ {̂ l) is of the order of 
* ^ |Ji U 

1—2 
khi + k^ ^(/x2^ + 2'一“ + k2^) < k^l2^ + A:^2^ = knlogn + k^n. 

fX=l 
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The memory requirement is of the order of 
I 
； Z—2 

Sk + k Y^ T = k2" + 6k = - + 6L 
Ai=l 2 

i: 
Once the diagonal sums of A are formed, by using Lemma 1, the first column 

of the circulant matrix c(A) can be obtained in just another 0(n) operations. 
• 

In the next section, we will apply our c{A) to solving systems Ax = b 

arising from non-convolution type integral equations. 

5 Boundary Integral Equations From Poten-
tial Equations 

^,f 

‘ In this section, we consider solutions of potential equations 

f A—aO = 0, X e n, 
\ w{x) = g{x), X G dQ, 

where dfl is a smooth close curve in R^ and 0 is either the bounded interior 

region with boundary dQ, or the unbounded exterior region with boundary 

J dn. In the boundary integral equation approach, the solution w{x) is found 

by solving the density function u{y) in the following Fredholm equation of the 

i first kind: 
E- — — f log |x - y\u{y)dSy = g{x), x e d^, (14) 
r 27T Jdn 
^ see Chen and Zhou [11, §6.12] or Chan, Sun and Ng [9]. 

. If we define the boundary integral operator B as 

1 f 
(Bu)(x) = -— / log |o; — y\u{y)dSy, 

- � ，^ ‘ 27T Jdn 

m 
tf't. 

i 
— 
I 
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then (14) can be written as 

(Bu)(x) = g{x), (15) 

For simplicity, we parameterize the boundary dQ> by {x1{O),X2{O)), 0 < 6 < 27r, 

and thus (15) can be expressed as 
/-27T , \ (J5um= b[0,̂ )u[̂ )ck̂  = g(A, 0 < e < 27T, (16) 

Jo 

where the kernel function b{6, ¢) is given by 

b{o, ¢)=—去iog{(x,{e) - xMY + {x2{e) — a:“0))2}. (17) 

In order to guarantee that the operator B is invertible, we assume without loss 

of generality that 
diam(^0) 二 max x - y\ < 1. (18) 

^ , x,yedfL 

One can scale down the size of the given boundary if necessary, see Chan and 

Zhou [11, p.287；. 

The well-known advantage of the boundary integral equation approach is 

that the dimension of the problem is reduced by one. However, (14) is a 

first kind boundary integral equation having a weakly singular kernel. It is 

weU-known that its discrete matrix B of B will be ill-conditioned and have 

condition number increases like 0(n), where n is the size of the matrix, see 

for instance Chan, Sun and Ng [9]. Therefore if the system is solved by the 

conjugate gradient method, the number of iterations required for convergence 
will be increasing like 0(>/n). 

To overcome the ill-conditioned nature of the operator B, optimal circulant 

integral operators are proposed in Chan, Sun and Ng [9] to precondition (16). 

:>j 
eV 
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^ Circulant integral operators are convolution operators with 27r-periodic kernels. 

The optimal circulant integral operator of a given operator B is defined to be 

? the minimizer of 11 |C — B\11 over all circulant integral operators C, where 111 • 111 is 

I the Hilbert-Schmidt norm, see Gohberg, Hanke and Koltracht [12], For B given 

in (16), the kernel function of its optimal circulant integral preconditioner M 

is given by 
1 /*27T 

— / b{e,e-^)d6, 0 < 0 < 27T, 
ZTT Jo 

see Chan, Sun and Ng [9]. Instead of solving (15), we solve the preconditioned 

i equation 
： M-^Bu = M - � . (19) 

It is proven in [9] that this preconditioned equation is well-conditioned. 

Theorem 2 (Chan, Sun and Ng [9, Theorems 3,4]) Let B be the integral 

. operator as defined in (16) and (17) and M be the optimal circulant integral 

operator for B. Then there exist positive constants 72 > 71 > 0 such that the 

！ spectrum of M'^B lies in [ 7 1 , 7 2 ] . Moreover, if the Galerkin method is used 

to discretize the operator M~^B, then the condition number of the discretized 

system is ofO{l) independent of the size of the discretized system. 

Thus if the conjugate gradient method is used to solve the preconditioned 

system (19), the convergence rate of the method is expected to be linear, see 

Axelsson and Barker [2, p.26 . 
~ In the following, we denote B the discretization matrix of B using the 

Galerkin method with the trapezoidal mle and A the approximation matrix 
區 to B using our fast dense matrix method. We note that the optimal circulant 
HKt 
•̂  

P-

I 
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preconditioner c(B) of B is equal to the discretization matrix of M using the 

rectangular quadrature mle, see Chan, Sun and Ng [9, Theorem 5]. Since A 

approximates B, we expect from (12) that c(A) is a good approximation to 

c(B) and hence to M, 

We now illustrate the effectiveness of the optimal circulant preconditioners 

and our approximation scheme by using a problem tested in Chan, Sun and 

Ng [9]. We refer the readers to [9] for more details. We consider the solution of 

(16) on regions Q with boundaries dQ as depicted in Figure 1. The boundaries 

are defined in polar coordinates by 

r = cos26> + /A(6>), 0 < 0 < 27r, (20) 

where fx(0) = (A^ — sin^ 26>)̂ /̂  with A > 1. Since S = diam(dQ) > 1, we 

scale the boundary so that the diameter of the new boundary satisfies p 二 

diam(50) 二 3/4 < 1, see (18), For such scaled domains, the kernel function 

(17) becomes 

1 p 9 - 0 
b{0, ¢) = - ^ l o g ^ | 2 s m - | 

1 f 0, � o,6>-0, A cos26> + cos2^y 
- - l og|4s in^ (^ + 0)cos ( — ) ^1+ m ^ f M j 

+ (cos 29 + /A("))(cos 2(j) + /A(0))J 

=6i( ,̂0) + ̂ (̂ ,0). (21) 

The right hand side g{0) in (16) is chosen to be g{0) 二 | cos (^ i , 0 < 6 < 27r. 

All our computations were done in Matlab on an IBM 43P-133 workstation. 

丨 [• 
r 
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' • . . • ‘ 

• 

Figure 1. Solid line: A — 1.1, dashed line: A 二 1.3, dotted line: A = 1.5 

As in Chan, Sun and Ng [9], we discretize [0,27r] by uniform mesh and use 

the Galerkin method with piecewise constant polynomials as basis functions to 

discretize the equation. The integral over each element is computed by using 

trapezoidal rule with 3 points. Since bi in (21) is a 27r-periodic convolution 

, kernel, we see that the discretization matrix B of B can be written as B = 
^ 

C + B2 where C is a circulant matrix corresponding to the integration of h 

over the elements. Thus C is determined only by its first column. Prom (21), 

we also see that 

b2(0, ¢) = 62(0,0) 二 62(27r - 6,27T — 0), 0 < e, 4> < 27T. (22) 

Therefore, B2 is a symmetric centro-symmetric matrix. In particular, if B2 is 

an n-hy-n matrix, it is determined by its upper half entries (¾]^,/, 1 < j < 

. -^/2]，1 < 1 < n. The bottom half can be obtained by reflecting the upper 

half entries with respect to the center of the matrix. 
It is clear that forming the matrix B2 (or just its upper half) directly by 

- integration of b2 over the elements requires 0{n^) operations. Table 1 gives 

J the numbers of floating point operations in thousand (Kflops) required to form 

I the upper half of 块.We recall that n 二 k . 2�Thus the largest matrix size 

F 
fc： 

1 

S: 
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k=4 k=8 A;=11 fe=14 
1 B2 ratio B2 ratio B2 ratio B2 ratio 

~5 3,780 — l 5 ^ 2 8 ^ — 46,200 — ~~ 
6 15,095 3.9938 60,336 3,9971 114,051 3.9979 184,723 3.9984 
7 60,336 3.9971 241,258 3.9986 456,084 3.9990 738,740 3.9992 
8 241,258 3.9986 964,861 3.9993 1,824,101 3.9995 2,954,661 3.9996 

Table 1: Kflops counts in constructing B2, where n = k • 2� 

‘ we tried is n 二 14 • 2® 二 3，584, We remark that the counts do not depend 

on the values of A and diam(^0). In the table, the ratios denote the ratios of 

the operation counts when the size n of the matrix is doubled. We clearly see 

from the ratios that the cost of constructing B2 is increasing like 0(n^). 

Besides B2, we also use our fast dense matrix method to approximate the 

integration of 62 over the elements. This results in a matrix A2 which can 

be obtained in 0{n) operations and requires only 0{n) storage, and that the 

matrix-vector product A2x for any vector x can be done in 0(nlogn) opera-

tions, see Chan, Lin and Ng [7]. By the centro-symmetric property of 62 (see 

(22)), we only need to generate the upper half of A2. More precisely, we only 

^ need to apply our method to get the upper left and upper right n/2-by-n/2 

submatrices of A2 only. The bottom half of A2 can be obtained by reflecting 

these two matrices. 
Table 2 gives the numbers of Kflops required to form the upper half of A2. 

Since n 二 k . 2\ the largest matrix size we tried is n 二 14 . 2̂ ^ 二 57,344, 

We remark that the counts do not depend on the values of A and diam(aa). 

In the table, the ratios again denote the ratios of the operation counts when 

j 
I f 丨 
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k=4: k=8 k=ll k=U 
1 A2 ratio A2 ratio A2 ratio A2 ratio 

~~5 1,701 == 67f^ — 12,827 = 20,857 ==~~ 
6 3,806 2.2373 15,160 2.2400 28,763 2.2424 46,823 2.2449 
7 8,109 2.1306 32,326 2,1323 61,372 2.1337 99,972 2.1351 
8 16,808 2.0728 67,039 2,0738 127,326 2.0747 207,490 2.0755 
9 34,300 2,0407 136,845 2.0413 259,969 2.0418 423,745 2.0422 

10 69,376 2.0227 276,839 2.0230 525,993 2.0233 857,473 2.0236 
11 139,623 2.0126 557,207 2.0128 1,058,775 2.0129 1,726,149 2.0131 
12 280,210 2.0069 1,118,325 2.0070 2,125,075 2.0071 3,464,720 2.0072 

Table 2: Kflops counts in constructing A2, where n 二 k • 2� 

the size n of the matrix is doubled. We see from the ratios that the cost of 

constructing A2 is increasing like 0{n). In contrast, the cost for constructing 

B2 is 0(n2), see Table 1. We emphasize that there is no need to form B2 in 

order to form A2. We get A2 by directly approximating b2 in (21) using our 

fast dense matrix method. 

To illustrate the accuracy of our approximation, the relative errors ||A2 -

B2WF/WB2WF for different A are given in Table 3. Because generating B2 is very 

expensive, we tried only matrices of size up to 14-2^ = 3,584. We see from the 

table that our approximation scheme provides a very accurate approximation 

A2 to the matrix B2 even for small k like 8. 
To accelerate the convergence of the conjugate gradient method, we use the 

optimal circulant preconditioner c(C+A2) to precondition the system {C+A2). 

1 By the linear property of c(.), we see that 

c{C + A2) 二 c(C) + c{A2) = C + c(A2). 

i 

r 



ij 
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k 1 A = 1,1 A = 1.3 A:=1.5 k 1 A = 1,1 A = 1.3 A = 1.5 
丨 4 5 3.89E-03 l,20E-03 4.37E-04 11 5 3.40E-06 9.44E-08 6.61E-09 
r 4 6 4.58E-03 1.39E-03 5,03E-04 11 6 3,98E-06 1.09E-07 7,61E-09 
I 4 7 4.94E-03 1.48E-03 5,38E-04 11 7 4.27E-06 l,16E-07 8.12E-09 
丨 4 8 5.13E-Q3 1.53E-03 5.57E-Q4 11 8 4.42E-Q6 1.19E-Q7 8.38E-09 

8 5 5,16E-05 3.21E-06 4.39E-07 14 5 2.91E-07 3.23E-09 1.29E-10 
8 6 6,00E-05 3.66E-06 5.03E-07 14 6 3.37E-07 3,70E-09 1.49E-10 
8 7 6.43E-05 3.90E-06 5.36E-07 14 7 3.60E-07 3.94E-09 1.59E-10 
8 8 I 6.65E-05 4.03E-06 5,54E-07 14 8 3.72E-07 4.06E-09 1.64E-10 

Table 3: ||^ — A2||ir/||"S2||î  for different kernels, where n = k . 2� 

In constructing c(A2), we have also made use of the centro-symmetric property 

of the matrix A2, i.e. we only need to compute the diagonal sums of the upper 

！ half of A2. Table 4 gives the numbers of Kflops required to form c(A2). We 

remark again that the counts do not depends on the values of A and diam(^^). 

In the table, the ratios again denote the ratios of the operation counts when 

the size n of the matrix is doubled. The largest matrix size we tried here is also 

n = 14.2i2 = 57,344. We see from the ratios that the cost of constructing c(A2) 

is increasing like 0{nkl) = 0(nlogn), In contrast, the cost for constructing 

c{B2) using (1) is 0(n2) operations. 
Next we test the efficiency and accuracy of solving (19) using the approxi-

mation A2 for B2 and the optimal circulant preconditioner C+c(A2). Using the 

conjugate gradient method, we solve for the vector x in the non-preconditioned 

system (cf (16)) 
(C + B2)x = g, (23) 

f 
r 
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k=4 k=8 k= l l k=14 
" “ “ r c(A2) ratio c{A2) ratio c{A2) ratio c{A2) ratio 
~~5 l 2 6 ~ = ^ = 5 ^ ~ ~ = = 2 ; i ^ ~ ~ ~ = ~ ~ 

6 309 2.4546 1,357 2.4620 3,934 2,4676 5,262 2.4599 
7 704 2,2808 3,092 2.2792 8,964 2,2789 11,957 2.2721 
8 1,556 2.2110 6,818 2.2051 19,741 2.2021 26,256 2.1959 
9 3,388 2,1773 14,790 2.1692 42,738 2.1650 56,694 2.1593 

10 7,312 2.1581 31,784 2.1490 91,640 2.1442 121,270 2,1390 
11 15,685 2.1450 67,885 2.1358 195,276 2.1309 257,845 2.1262 
12 33,488 2.1350 144,329 2.1261 414,234 2.1213 545,870 2.1170 

Table 4; Kflops counts in constructing c(A2), where n = k . 2 � 

and for the vector y in the preconditioned system (cf (19)) 

c(C + A2)-'{C + A2)y = c{C + A2)-ig. (24) 

We note that c(C+A2) = C+c{A2) is a circulant matrix. Hence its inverse can 

be found efficiently in 0(nlog n) operations by using fast Fourier transforms, 

see Chan and Ng [8]. Thus the cost per iteration of solving (23) and (24) by 

conjugate gradient method is 0{n^) and 0(nlogn) operations respectively. 

For both systems (23) and (24), we choose the zero vector as the initial 

guess and the stopping criterion is ||rg||2/||ro||2 < lO—i。，where r^ is the residual 

vector at the ^th iteration. The numbers of iterations required for convergence 

for different A are given in Table 5, where the symbols C and I indicate if 

circulant preconditioning is used or not. Prom the table, we see that the 

numbers of iterations of the preconditioned systems are smaller than that of 

the non-preconditioned ones considerably. Notice that the iteration numbers 

of the preconditioned systems are uniformly bounded whereas those of the 
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p = 3/4| A = 1,1 A = 1.3 A = 1.5 
1 ““厂 I C 6n I C tn ‘ I C en 
~1 “ “ 5 “ “ 2 9 ~ " 9 5.90E-03““^““8 1.60E-03 31 7 1.52E-03 

： 4 6 40 9 6.41E-03 41 7 1.75E-03 41 7 1.62E_03 
4 7 54 9 6.83E-03 54 7 1.81E-03 53 7 1.65E-03 
4 8 70 9 7.52E-Q3 71 7 1.86E-Q3 74 7 1.67E-Q3 

~8~~5~~40~~9 1.91E-04 41~~7 2.41E-05 41~~7 4.33E-06 
8 6 54 9 2.03E-04 54 7 2.59E-05 53 7 4.63E-06 
8 7 70 9 2.06E-04 71 7 2.61E-05 74 7 4.70E-06 
8 8 94 9 2.14E-Q4 94 7 2.61E-Q5 95 7 4.77E-Q6 

^ 1 ~ 5 ~ ~ ^ ~ ~ 9 3.76E-05““49““7 1.03E_06““4^~~7 9.09E-08 
11 6 63 9 4.07E-05 63 7 1.14E-06 64 7 9.90E-08 
11 7 86 9 4.14E-05 85 7 1.16E-06 85 7 1.01E-07 
11 8 117 9 426E-05 118 7 1.18E-06 118 7 l.Q2E-Q7 

~ U ~ 5 “ “ 5 3 ~ ~ 9 5.83E-06"~^~~7 4.81E-08"~M~~7 5.57E-09 
14 6 73 9 6.47E-06 74 7 5.36E-08 74 7 9.01E-09 

i 14 7 93 9 6.51E-06 95 7 5.51E-08 91 7 2.19E-08 
14 8 121 9 6.44E-06 123 7 6.11E-08 122 7 3.03E-08 

I Table 5: Numbers of Iterations and Relative Errors, where n = k . 2� 
\ 

original systems are increasing with n as expected. 

Finally, we compare the accuracy of the solution y of the approximate 

system (24) with the solution x of (23). We give the relative errors ||x — 

y||2/||x||2 for different A in Table 5 under the column Cn- We see that the 

solution y provides a very accurate approximation to the solution x even for 

small k. 
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6 Concluding Remarks 

In this paper, we have developed a fast algorithm for computing optimal circu-

lant preconditioners c{A) for dense matrices A constructed from the fast dense 

matrix method proposed in Chan, Lin and Ng [7], We remark that besides the 

fast dense matrix method, there are many other fast multiplication schemes 

that can provide good approximations to a given integral equation or its dense 

discretization matrix B, see for instance [1, 3, 14], For example, using wavelet 

transforms W, the matrix WBW* can be approximated by a sparse matrix 

S accurately. We note that though c{S) can be computed fast using (1) (be-

cause of its sparsity) and gives a good approximation to c{WBW*) (because 

of (12)), it is however not close to W • c{B) • WK Hence in general, c{S) will 

not be a good preconditioner for S, In contrast, c{A) constructed by our fast 

dense matrix method will provide a good approximation to c{B) and a good 

preconditioner for A and B, 
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