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Abstract 

There are two motivations to study the theory of pseudovarieties of finite 
semigroups. One is initiated from Universal Algebras. The famous BirkhofF's 
Theorem [19] asserts that a family of algebras is an equational variety if and 
only if the family is closed under the operations in passing it to all subalge-
bras and quotient algebras as well as under arbitrary direct products, which 
allows us to study the classes of algebras with same properties to get the 
universal results, instead of one specific algebra. A natural generalization 
of the theory is to restrict our attention on finite algebras, this is the con-
cept of pseudovariety of finite algebras. While it may lose some properties in 
generality, but on the other hand, it enriches the theory in structural terms, 
since besides the algebraic structure some specific combinatorial properties 
of finite sets play a crucial role. Within the study ofpseudovarities, the pseu-
dovarieties of finte semigroups are particularly interesting not only because 
that semigroups are the most general algebraic systems, but also they have 
abundant relationships with many combinatorial problems. Hence, the the-
ory gives us a general method in dealing with some combinatorial problems. 
And also, finite semigroups always play an important role in the study of the 
semigroup theory. 

The other motivation for studying pseudovarieties of finite semigroups is 
initiated from algebraic automata and formal languages theory. The theory 
of automata and formal languages was started from an attempt to model 
mathematically the events in nerve nets done by Kleene [30] in the years of 
fifties. In the sixties, there are Scliiitzenberger and his school, and in the 
beginning of the seventies, there are Brzozowski, McNaugliton, Simon and 
Zalcstein, their highly motivated work leaded to a bunch of remarkable and 
fruitful results. The results they obtained allow us to test tlie combinatorial 

i properties of rational languages by checking the algebraic properties of the re-
spective syntactic semigroups. Subsequently, the work of Schutzenberger and 

j Eilenberg [23,24] showed the importance of tlie notion of pseudovarieties of 
j ‘ finite semigroups and monoids in the study of certain classes of recognizable 
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languages. And the writings of other researchers, for example, Brzozowski 
and Simon [17], Pin [43], Straubing [55] , Therien [62], acknowledge this im-
portance. One particular problem, called the dot-depth problem of star-free 
languages is most interesting and important with its connections to semi-
group theory, mathematical logic and computational complexity. The first 
two hierarchies have been effectively determined by means of their corre-
sponding pseudovarieties of finite semigroups. The decidability of dot-depth 
2 hierarchy is till an open problem. 

This dissertation tries to give a lucid and systematic survey to the the-
ory of pseudovarieties of finite semigroups. The dissertation is composed of 
five chapters. In chapter 1, we introduce briefly the essences of universal 
algebras, definition of pseudovariety of finite algebras as well as some of their 
properties and methods which will be used later on are given. In chaper 2，we 
give some remarkable algebraic theorems of automata and regular languages. 
In particular, the important theorem of variety, which asserts tliat there is 
a one-one correspondence between the varieties of languages and the pseu-
dovarieties of finite monoids are discribed. At the last part of chapter 2, we 
introduce some classical varieties of languages and their corresponding pseu-
dovarieties. In chapter 3, we adopt the Green's relations and other algebraic 
structures to characterize some sort of pseudovarieties of finite semigroups 
and monoids. In chapter 4，the well known dot-depth problem is discussed. 
We will review the main results and some recent partial results related to 
this problem. In the last chapter, we study the pseudovarieties generated 
by some power semigroups which are related to the dot-depth 2 problem, 
through some of the identities satisfying by them. 
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Chapter 1 Pseudovarieties of finite algebras 
§1 Elements of universal algebra 

Semigroups, monoids, groups, rings, fields, lattices, Boolean algebras and 
the vector spaces over a given field are examples of algebraic structures, i.e., 
they are all sets endowed with some operations, gathered in classes according 
to the type of the operations under consideration. The concepts of homo-
morphisms, congrueces, sub-structures, direct products etc. are defined in 
a similar way for all those classes. There are, on the other hand, various 
results of the same kind that are valid for each of the indicated classes such 
as, for instance, the homomorpliism and tlie isomorphism theorems. These 
results suggest that one can adopt a more general perspective in the study 
of arbitrary algebraic structures, and it is tliis the objective of the mathe-
matical discipline: Universal Algebra. We considei- liere only some aspects 
of this discipline that are relevent in our study of pseudovarieties. 

We first start by defining the concept of "algrbraic types". 

Definition 1.1 An algebraic type is a pair r 二 ( 0, a )，wliere 0 is 
a set and a is a function frnm 0 to the set of non-negative integers. Each 
element f in 0 is said to be 山 operation symbol and a { f ) is said to be its 
arity. The set of all operations u.f,li arity n is denoted by On. 

Definition 1.2 An algebra A of type r is a nonempty set A, called tlie 
universe of A, with functions corresponding to each f in 0, / ] : A^ ^ A 
witli n = a ( / ) , called the interpre(,ation of f in A. If a { f ) = 0, then f r . 
{0} ~f A is a constant in A. We call an algebra trivial if its universe is just 
a singleton set, and the algebra is fmite or infinite depends on whether its 
universe is finite or infinite respectively. For the sake of simplification, we 
use the same notation to indicate an algebra and its universe. 

I 
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Some examples will make it clear of the definition. 
1. A semigroup is an algebra of type ( 0 二{ . }, a = { (.，2) } ), in which 

the associate indentity: a:. {y . z) 二 {x . y) . z is valid, i.e., a nonempty 
set S with a binary operation satisfing the associate law. We denote 
the semigroup S by the symbol < S ] . � . 

2. A monoid is an algebra of type ( 0 = {.，e}, a = {(., 2), (e, 0)}). i.e. a 
nonempty set M with a binary operation and a constant 1 G M and 
satisfies z • {y . z) = {x • y) . 2：; 1 . x = x . 1 =. a; for any x, y, z e M. 
We denote it by < M;-, 1 >. In other words, a monoid is a semigroup 
with the multiplicative identity 1. 

3. A semi-ring is an algebra of type {0 = {+，., 0}, a = {(+, 2)，（., 2), (0, 0)}) 
such that 

• < ^ ; +，0 > is a commutative monoid 
• < A; • > is a semigroup 
• for ^nyx,y,ze A, x-(y + z) 二 r . y + :r.2and (x + ̂ )-z = x-z + y-z 
• for any x G A, x . 0 = 0 . x = 0 

In other words, a semi-ring is a monoid < A; + ,0 > and a semigroup 
< A;. > which are conjoint witli the distributive laws. 

Let A be an algebra of type r , say B is a subalgebra of A if B is a subset 
of A which is closed under the restriction of each operation of A on B. we 
can see immeadiatly that B is also an algebra of type r itself. B is said to 
be the subalgebra generated by a subset X C A if B is the intersection of all 
the subalgebras containing the subset X of A. 

Let A, B be two algebras of the same type r = ( 0 , a )• Then, a homo-
morphism <^: A ^ B is a function which maps from the universe set ^ into 
the universe set B such that for any n G 7V, f G 0^ and a i , . . . , � G 成 we 
have 

^ifA{ai,...,an)] = /s(v?ai,...,o?a^). 

r , 
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Similarly, we can define the homomorphic images, isomorphisms, endomor-
phisms and automorphisms between the algebras A and B. 

A congruence on the algebra A of type r is an equivalence relation 9 on 
the universe set A such tliat for any f G On and a,-, bi G A, we have 

ai6^(i = l , . " , n ) =^ f(ai,...,an)0f(bi,...,b^). 
Let (p: A ~> A/9 be a mapping which maps every element of A into its 
equivalent classes. If 6 is also a congruence, then there is a natural reduced 
algebraic structure of type r on A/6 such that (p is a homomorphism. The 
algebra A/9 is said to be the quotient algebra of A determined by the con-
gruence 6 on A. 

The kernal of a homomorphism ip : A ~> B is the set: 
kenp = {(a1,a2) G A X A : (pai 二 (pa2} 

Clearly, kenp is also a congruence on the algebra A. Same as groups, rings 
and other classes of algebras, we have tlie following general Homomorphism 
theorem: 

Proposition 1.3 Let (p: A — B be an onto homomorphism. Then tliere 
is exactly one homomorphism ¢: A/kenp ~> B such that (p = ^ 0 ", where z/ 
is the natural homomorphism A ^ A/kercp. Moreover,少 is an isomorphism. 
In other words, the following diagram commutes: 

A - ^ B 

4 X 
I A/kevif 

We now define the term algebra of a given arbitrary type r = ( 0, a 
) . L e t X be a set, called it the set of variables, such tliat XUC>o + 0. we 
consider the set S of all words defined on the alphabet XUC> U {(,)}. The 

, set T[X) of all terms of type r on X is the intersection of all subsets T of 5 
such that 

3 
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I 1. XUC>o C T , 
2. if ix,...,in C T and / G On, then /(^i, ...,U) G T . 

I On the set T(X), we may easily define a structure T(X) of algebra of type 
T. For f e On, we define its interpretation in T{X) to be the function 

T[xy — T{X) 
( , l , . . ."n) •“> f(h,".,tn) 

In this way, we obtain an algebra of terms in X of type r . 

Definition 1.4 Let /C be a class fo algebras of type r and F an alge-
bm of the same type generated by a set X C F. Then we say F has the 
universal mapping property for /C over X if for any A 6 JC and any function 
^ : X ~^ A, there exists an unique homomorphism (p : F ~^ A such that 
^U = ^ ' 

Now，we define the congruence on T(X) associated to the class JC by: 
^x1C = n{A;er (p |v? : T{X) — A is a homomorphism with A e /C} 

Denote the qoutient algebra T{X)|OxJC by F^/C, where X stands for the 
set X/OxK： of the equivalence classes of the elements of X. Notice that the 
natural projection T{X) ^ F^JC defines a bijection J^ — X, except when K 
consists exclusively of trivial algebras. The algebra F^JC is called the /C-free 
algebra on X. 

The following theorem concerning universal mappings was due to BirkhofF. 

1 Theorem 1.5 (BirkhofF) The algebra i^/C has the universal mapping 
property for K over X. 

Proo/ . Let 7T : T{X) — T{X)|OxK: 二 F^K be the natural homomor-
phism. Let 元=Tr{x : X ~> X be the restriction of ir on X. Then for 

I any A G K and any function ip : X ~> A, we can easily see that cp o 开 
卜 ， is a map: X ~> A. This map <p o 元 can be extended to a homomorphism 
[； ^ : TW — A. In fact, we have 9xJC C ker^ since A G K. Hence, we 
：• I 
L： n 4 
> ！ ：j 
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can easily see that ^ induces a homomorphism ^ : Fj^/C — A such that 
^ � 兀 = ^ and x[)\x = <f, Now suppose that there is another homomorphism 
A : FxK> — A with X\x = (^,then we have a homomorphism 

A 0 7T : T{X) ^ FxJC ^ 成 
and its restriction on the set X is 

A 0 n\x = X\x 0 7T = (f 0 7T. 
Hence，we obtain that A o n = ^ =如 since T{X) is the free algebra on the 
set X. Therefore, they reduce tlie same homomorphism A 二 成 i.e. such a 
homomorphism exists and is unique. 

• 

An identity of type 丁 on X is a pair (p, q) G T{X) x T{X), usually indi_ 
cated by a formal equality p 二 q. We represent it by Id{X)', the set of all 
identities on X. We say an algebra A satisfies an identity p = q, writen by 
^ h P = q, if and only if for any homomorphism (p : T{X) ^ A, we have 
— = 例 . T h e set of all identities on X which is valid in all algebras of a 
class JC is indicated by Idx(Vj. For a set E of identities, we write JC — S if 
A h P 二 q for any A G JC and (p, q) G E. Let E1,E2 be two sets of identities 
of type r . Then, we write Ei h & if for any algebra of that type A and 
A h Si, it is certainly true that A ^ ^ . Tlie sets Ei and E2 are said to be 
equivalent if Ei 卜 & and & 卜 & hold simultaniously. In particularly, we 
say that two identities £1 : pi =仍 and £2 ： P2 = q2 are equivalent if both 
£1 卜 e2 and £2 卜 £i hold. (The above notions are tlie fundamental concepts 
in equational logic, the reader is refered to [19] for more details.) 

We define the following operations on some classes of algebras. For a class 
/C of algebras of type r , let SK, HJC, PIC, PjJC be the classes of all algebras 
tliat may be obtained as subalgebras, homomorphic images, direct products, 
finitary direct products from the algebras of JC respectively. Equipped with 
these operators, we can give tlie definition of "variety". 

Definition 1.6 A variety is a class of algebras of the same type closed 
, under the operators H, S and P. 

•\ 
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i For a class K, we let VK be the variety generated by K, i.e., the intersec-
I tion of all varieties containing JC. The following proposition is a fundamental 

result obtained by Tarski. 

Proposition 1.7 ( Tarski ). V 二 HSP. 

Proof. We sketch the proof as follows. For any operators O1,O2 on 
classes of algebras, write Oi < O2 if OiJC C O2JC for any class of algebras 
M This defines a partial order on the class of all unary operators. We now 
consider the subsemigroup generated by the operators S, H, P, Pji^. Firstly, 

； tlie equations S^ 二 S, H^ = H, P^ 二 P and Pf-^ 二 Pjin are obvious. Then 
I we have SH < HS, as for any A G JC and B G SH{A), i.e. there is an 
I epimorphism a : A — B' and B is a subalgebra of B\ then we know that 

a—i(5) is a subalgebra of A and tlie restriction of a on that subalgebra 
a ' : a~^{B) ~> B is an epimorphism. i.e. B G HSK. Similarly, we can also 
obtain the inequalities OS < SO and OH < HO for any 0 G {P,Pjin}. 
Thus, the equation V = HSP is a consequence of the above relations. 

Fix an algebraic type r , there exists a natural lattice structure in the set 
of all varieties of algebras of type r: Let V1,V2 be two varieties of algebras 

I of that type. Then, we can easily check that Vi 门 V? is still a variety of tlie 
I same type. Let Vi V V2 be the intersection of all varieties containing Vi and 
； ^2, i.e. V{Vi U V2). Then we know that those varieties form a lattice with 
: the operations n and V，and the 0 element is just the empty variety and the 

1 element is just the variety of all algebras of tliat type. I 
Lemma 1.8 Tlie classes /C, 5X, HK, PK：, PjJC satisfy the same iden-

tities. 

Proof. We only need to prove the case for the class HK, and the otlier 
cases can be proved similarly. Let A G /C and A — p = q with p,q G T(X). 
Now, let B e HJC, i.e. there is an epimorphism (p : A ~> B. Then for 
any homomorphism i^ : T{X) — B, there exists some homomorphism (not 

‘ mecessarily unique) " : T[X) ^ A such that (p 0 77 = ¢. 

6 



T{X) 

7 1 * 
A——^ B ‘ 

Hence, since rjp = r]q, by hypothesis, we certainly have 如=xpq. i.e. 
B \= p = q. Conversely, as K C HJC, any identity satisfied by HK is obvi-
ously satisfied by the class JC. 

Now we formulate a crucial connection between the JC-hee algebras and 
the identities valid in that class. 

Proposition 1.9 Let JC be a class of algebras of type r . Then for terms 
P, q G T{X) of type r , the following conditions are equivalent: 

1. JC _ p = g, 
2. FxK： h P 二 (h 

3. (p,q) e Ox/C. 
Proof. ‘ 

( 1 )令 ( 2 ) : As FxK is the quotient algebra of T{X) over OxK： and by 
‘ the definition of 9xK., we know immediately that F^K. can be subdirectly 
‘ embedded in a direct product of subalgebras of algebras of K. i.e. FxJC G 
[ HSPSJC^ and so by lemma 1.8，we know ( 1 )令 ( 2 ) . 

i (2)令(3): Consider the natrual homomorphism 7r : T{X) — T{X)jOx^ = 
； ^x^' Now, FxK： h P = q gives np 二 nq, i.e. (p, q) G OxK：. Thus, (2) =^ (3). 
‘ (3) =^ (1)： For any A e K and homomorphism v? : T{X) ~> A. By 
. definition and hypothesis of (3), we have {p, q) G 9xK. C kery?, i.e., (pp = (pq. 
1 This shows that /C |= p = q. 
i r r' 1 Gorollary 1.10 Let JC be a class of algebras of the same type, and 

suppose p,q G T(X). Then for any set of variables V with |F | > |X|, we 
have 

,' 

K _ p = q 分 FyJC 1= p = q 
7 
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Proof. The direction " ^ " is obvious since FyJC € HSPSK. For the 
converse part, we choose Xo D X such that \Xo\ = |),|. Then we have 

FxJC = FyK 
and by proposition 1.9, we hence infer that 

/C 1= p = q <4> FxJC — p = q 
Then, it follows that � 

JC 1= p = q 4^ FyJC [= p = q. 
Corollary 1.11 Suppose that /C is a class of algebras of the same type 

and X is an infinite set of variables. Then for any set of variables Y, we have 
6V/C = 6V(_F>(). 

Proof. For any (p,q) G OyK：, as any term involves only a finite number 
of variables, we can suppose that p,q G T({^i,...,y^}). As |X| is infinite, 
|{yi,...,"n}| < 1^1, hence by corollary 1.10, we deduce that 

K. 1= p — q <^ FxKL 1= p = q 
so the corollary is proved by proposition 1.9. 

Given a set E of identities of type r , let [E] be the class of all algebras 
of type T that satisfies all identities of E. Note that, by lemma 1.8, [E] is a 
variety, which is said to be defined by E. A class of algebras of form [E] is 
said to be an equational class. 

Lemma 1.12 Let V be a variety and X an infinite set. Then we have 
V 二 [IdxV]. 

Proof. Let V' = [IdxV]. Then, it is trivial to see that V' D V since, by 
definition of IdxV, we have V — IdxV. Conversely, since V' D V, we deduce 

, the inclusion IdxV' C IdxV. However, by definition of V', we also have 
the reverse inclusion IdxV' D IdxV. Hence, we obtain the equality between 

8 
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tliese two sets. Consequently, by proposition 1.9，we have FxV' = FxV. Now 
given any set of variables K, as X is an infinite set, we have, by corollary 

: 1.11, 

OyV = OY{FxV) = Oy{FxV) = OyV. 
thereby 

FyV = FyV. i 
I Now for any A G V', we can take a sufficiently large set Y and let (p : Y ~^ A 
[ be a surjective map. Then, by Theorem 1.5, there exists an epimorphism 
j ^ : FrV ^ A, i.e. A e H(FyV'). Hence, A G E(FyV) C V, and so V' C V. 
I This leads to V' = V. 
[ î  !'• 1̂ 

By using the preceding lemma, we immediately obtain the following clas-
I' sical result due to G. Birkhoff [13 . I J 

Theo rem 1.13 (Birkhoff) A class of algebras of the same type is equa-
tional if and only if it is a variety. 

§2 Pseudovarieties of finite algebras 

j Pseudovariety is a natural generalization of the concept of variety in Uni-
I versal Algebra when we restrict our attention on finite algebras. In this 
j session, we introduce in general the theory of pseudovarieties of finite alge-
I bras and the discription of pseudovarieties by different means. More specific 
1 results when we fix the algebraic type to semigroups will be studied in chap-

ter 3. 

I Definition 2.1 A pseudovariety is a class of finite algebras of a given 
！ type which is closed under the operators // , S and Pj^. 

For a class JC of finite algebras, the pseudovariety generated by K is de-
I noted by V(/C), i.e., the intersection of all pseudovarieties containing /C. In 
i view of Proposition 1.7, we have the following proposition: ^ ^ ‘ h r； 1̂  fi 9 
.j 



Propsition 2.2 V = HSP&. 

Given a class JC of algebras, we use Kf to represent the subclass consisting 
of the finite algebras of /C. It can be easily seen that V^ is a pseudovariety 
for any variety V. Say pseudovariety V is an equational pseudovariety if 
y = V^ for some variety V. 

We remark that not all pseudovarieties are equational. For example, we 
have the following proposition. 

Proposition 2.3 All finite nilpotent semigroups forms a pseudovariety 
of finite semigroups, denoted it by Nil, and it is not equational. 

Proof. Let us check tlie three conditions for a pseudovariety: 
I 1. Let S and T be two finite nilpotent semigroups, with S^ = 0 and 

r - - O.Tlien {S x 丁广 二 0，hence S x T is also nilpotent. . 
2. any subsemigroup of a nilpotent semigroup is obviously nilpotent. 
3. if (f : S ~> T is an epimorphism and S^ = 0, then we have T^ = 

(V^(<S))" = (f(S^) = 0. Therefore, T is also nilpotent. 
Now we prove the second part of the proposition. Suppose that Nil is 

equational. Take an identity, say p = q, where p, q G T{X) = X+ satisfied 
by it. Let r = max(|p|, |g|), where |x| means the length of the word a: in X+. 
We construct an finite semigroup as follows: Let S be the free semigroup 
generated by the letters 5i,...,5,. Then, define an equivalence relation p on 
S by letting all words with length larger than r form an equivalence class, 
denoted it by 0，and all other words are not equivalent to each other. Then 
we know easily that p— is a congruence and 0 is in fact the zero element of the 
quotient semigruop S=S|p. Then, we can see immediately that (旬”+】：0 
and clearly this finite semigroup is not satisfied by the identity p = q. There-
fore, we have proved that the pseudovariety Nil is not equational. 

Fmm now on, for the sake of simplicity, we denote the quotient algebras 
‘ � K and FxJC by ÔK： and FJC respectively, where X , stands for the finite 

10 



variables set {xi,..., a:„}. We have an useful lemma. 

lemma 2.4 Let V be a pseudovariety. Then FnV G V if and only if 
FnV is finite. 

Proof. The direction “=^” is trivial. For the converse part, we suppose 
that \FnV\ 二 N, Now, by the definition of 9nV, we have 

OnV = n{kerv:)|v? : T{Xn) ~> A for some A G V} 
Consequently, we can reduce any <p : T{X) ~> A to a liomomorphism ĉ  : 
K V — A by the definition of FnV. Let us consider the kernels of all those 
homomorphisms. In fact, they are the congruences in F^V, so there are only 
a finite number of distinct kernels since FnV is finite. Take a complete set of 
its corresponding homomorphisms, namely, {c^i,..., c^J. In view of the proof 
of Theorem 1.5, each lioniomorpliism (p : FnV ^ A uniquely determines a 
homomorphism (p : T{X) ^ A. Therefore, {v^i,...,(^J is a complete set of 
representives with distinct kernels. Thus, we deduce that 

r 
OnV =门 ker(pi i=i 

Therefore, F^V can be subdirectly embedded in a finite direct product 
of some algebras in V, i.e. FnV G HSPjin{V) 二 V. The proof is complete. 

We are now ready to give a sufficient condition for a pseudovariety to be 
equational. 

Proposition 2.5 For a pseudovariety V, if FnV is finite for any n > 1, 
then V is equational, i.e. V{V)^ = V, 

Proof. The inclusion V(V)^ 3 V is obvious. Conversely, let A G V(V) 
and A is finite. Suppose that \A\ = n. Consider a surjectivemap (̂  ： Xn ~> A. 
Then there exists an epimorphism …:Fn[V{V) ) ~> A, in view of Theorem 
1.5. We also have tlie equality Fj^/C 二 FxV{K：) for any class of algebras JC 

, since /C and V{K,) satisfy the same set of identities on any variables set A', 
by proposition 1.9. Hence, we deduce that ^ : F^V ~> A is an epimorphism. 

11 
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i.e. A G H[FnV), and therefore A e V since KV is finite and by tlie lemma 
above. 

Corollary 2.6 The relation V{A) 二 V(A)F holds for any finite algebra 
克 

Proof. Since V{A) and A satisfy the same identities on any variables 
set, we have 

OnV{A) = O^A) - f]{kev<fl<f : T{Xn) ^ A} 

I for any n > 1. Now, as A is finite, and any homomorphism (f : T{Xn) ~> A 
\ is uniquely determined by its restriction on each set X^, i.e (^\x^ : Xn ~> A, 
I whence there are only a finite number of such homomorphisms. By the same 

reason in lemma 2.4, we know that there is a subdirectly embeding from 
KV(A) to a finite product of A. Therefore, FnV(A) is finite since A is finite, 
so V(A) is equational by proposition 2.5, i.e. V{A) 二 V{V{A))^ 二 V{A)^. 

Similar to the discussion in section 1, we know that the set of all pseu-
dovarieties of finite algebras of a fixed type forms a lattice under fi and V, 

I where V^ V V2 = V{Vi U V2) for any two pseudovarieties V^ and V2. 

I Proposition 2.7 Any pseudovariety is a union of a directed family of 
equational pseudovarieties. If the algebraic type is finite, tlien tlie family 

： may be chosen so as to constitute a chain. 

I Proof. Let V be a pseudovariety and let C be a complete set of repre-
sentatives of the isomorphism classes of the elements of V. If A1,A2 E C, 
then there exists B G C sucli that 义 x A2 = B, and so it can be easily 
cliecked that V{A,) V V{A,) = V{B). Hence, the set of all pseudovarieties 
of the form V{A) with A running through the set C is a directed family of 
equational pseudovarieties by corollary 2.6, and the union is clearly V. 

If the algebraic type is finite, tlien for any positive integer n, there are only 
a finite number of algebras with cardinality n under isomorphism. Hence, we 

‘ may assume that C is countable, say C = {A1,A2,…}’ and so V is the uiiion 
丨丨 li 
I： 1 2 I ； • 
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of the ascending chain of equational pseudovarieties 

I V 二 u 吼 ） 

1 n>l 

where Sn 二 Ai x ... x An for any n > 1. 

In the case if the type of the pseudovariety is finite, we have another 
form for the preceding result which is a classical result due to Eilenberg and 
Scliutzenberger [24]. 

Theorem 2.8 Let V be a pseudovariety of finite type. Then there 
exists a sequence (Sn)n>i of identities such that V = {jk>i[^n ： n > k]^. 

Proof. We adopt here the proof provided by Ash in [10]. Take {Vn)n>i 
be an ascending chain of equational pseudovarieties such that V = Un>i ^n 
by proposition 2.7 above. Consider the class V of all finite algebras of tlie 
type in question which is a complement of V. Let {历，B�,."} be a countable 
enumeration of a complete set of representatives of the isomorphism classes 
of D, which can be chosen since the algebraic type is finite. 

Now for each i,j > 1，we have Bj • V^ As K. is an equational pseudova-
riety, there exists an identity £ij that is valid in Vi but fails in Bj. Let us 
consider the set E,- = {e,-, : j < i} of identities for i > 1. Then, any set E, is 
finite and so we have a countable sequence of identities 

E - E1UE2U.. . 
We assert that this sequence is what we want. 

If A e V, suppose that A e V^, then A 6 Vi for every i > n, and 
so A — 6ij for any i > n and any j > 1, i.e. A satisfies the identities 
Hn U En+i U .... Conversely, if A 朱 V, then A = Bj for some j. This means 
that A fails to satisfy all the identities aj for every i > j in tlie above se-
quence of identities S. 

We give still another concept to characterize tlie pseudovarieties which 
, will simplify the description and will be useful later on in chapter 5. 

f 
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Definition 2.9 A generalized variety is a directed union of varieties. 

|. From proposition 2.7, we can immediately deduce the following result. 

Proposition 2.10 A class of finite algebras is a pseudovariety if and 
only if it is of the form W^ for some generalized variety W. 

§3 Implicit operations and pseudoidentities 

Implicit operations were introduced by Banascliewski [11] and Reiterman 
[47], aiming to estiblish an analogous Birkhoff theorem for pseudovarieties. 

Let V be a pseudovariety of finite algebras. An operation defined on 
1 the members of V that commutes with all liomomorpliisms is said to be 
I an implicit operation. Formally, for an integer n > 1, an n-ary implicit 
： operation n o,n V is a family n 二 (yr^) indexed by the elements A e V such 
I that 

1. for each A G V, 7r̂  : A^ ~> A is a mapping, 
2. for each homomorphism if : A ~f B between the elements of V, the 

following diagram is commutative: [. i：' 
f _ ^ ^ 

： 扩 ^ i: 4- �’ 
： B- - ^ B r 

We represent the set of all n-ary implicit operations oii V by H^V. Sup-
； pose the algebraic type of V is r 二 ( 0 , a ) . Then, for any f e Ok and 

7ri,.",7TA: G ^nV, we define /(兀“…，兀知)=n such that for any A e V’ 

^A = /(7Ti^, ..., 7TkA) ： An ~> A 
and for any homomorphism � : A ~> B between the elements of V, we have 

y' 
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the following equalities: 
WA{o,i,…,an) = V /̂(7r1 (̂a1, ..., an), ...，7TkA{ai, ..., fln)) 

=/(V^7Ti^(ai, ...，ttn), ..., (pnkA{ai,…，Ctn)) 
=/(7risV^^(ai , ...，ttn), ...，7^kB^ai,…，an)) 
=f{^lB, ..-,^fcs)v^"(ai, ..., an) 
=7rs(/?"(ai,."，an) 

for any ai, . . .’a^ G A 
Thus, the n we defined above is also in AnV, and hence we can endow 

an algebraic structure r on the set H^V". 

Now, we consider the following projections xi,…，x̂ , say, 

O^t.)A(ai,�,a„) = ai,VA G V,a^ G A,i = l,...,n. 
They are obviously implicit operations on V. We can hence use the nota-
tion D,nV to represent the subalgebra of HnV generated by those projections 
and call its elements the n-ary explicit operations on V. Compare with the 
variables set X^ 二 xi,..., Xn and the free algebra Fx^V, we easily know that 

j n „ y is isomorphic to Fx^V. ‘ 

We now introduce an important and useful implicit operation on the 
\ pseudovarieties of finite semigroups. For any finite semigroup S and 5 G S, let 

{5,5^, ...,5^, .,.,5^+^"^} be the subsemigroup generated by s with 5^+^ = s\ 
where r is the smallest integer such that 5̂  二 s” for some p > r, called it 
the index of s and k is called the periodic of s. Also, clearly {s^ ...，5̂ +̂ -i} 
is a subgroup of the semigroup S (the reader is refered to [28] for all these 
termnologies and properties). Therefore, there is exactly one idempotent of 
the form 5^ with n > 1 in that subgroup generated by s, denoted it by 5^. We 

. thus define a new unary operation a; h^ a：̂  in any finite semigroup. It is easy 
• to verify that this operation commutes with all homomorphisms, i.e., if <p ： 
— T — S is a semigroup homomorphism and 5 G S, then Lp{s^) 二 {(psY. Hence, 
• , this operation is an unary implict operation on any pseudovariety of finite 
: semigroups. This implicit operation may not explicit, for example, on S, the 

j 15 
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pseudovariety of all finite semigroups, or even on Com, the pseudovariety of 
all finite commutative semigroups. It may also be explicit, for example, on 
any pseudovariety of finite idempotent semigroups, where it is equivalent to 
any variable x G X, or on the pseudovariety Zp which is generated by the 
cyclic group of integers with order p, where it is equivalent to the explicit 
operation x^ for any x G X. 

We have just seen that the inclusion O^V C HnV may be strict. 

Now we define a topology on the set A^V by the construction of the 
following metric: given n,p G A^V, let 

r{n,p) = min{|A| : A G V,nA + pA； 

where the convention min0 二 oo is adopted. Define the distance d[iv,p) 
between n and p by 

d{ix,p) = 2-如） 

It can then be immediately checked the validity of the following properties: 
1. c/(7r, p) = 0 if and only if n = p, 
2. d{i^,p) = d(p,7r), 

^ 

1 3. d(7r,p) < mEix{d(7r,a),d(o-,p)}, 

4. d(f(7r1,...,7rk),f(p1,...,pk)) < max{c^(7Ti,p,) : i 二 l,...,A;} for any f e 
丨 Ok. 
丨 Therefore, this metric d defines a topology on OnV. Under tliis topology, 

Reiterman [47] showed that the subspace O^V is dense in 0 ^ F . i.e., every 
implicit operation is the limit of a sequence of explicit ones. For instance, it 
is easy to verify that the unary operation uj is the limit of tlie sequence of 
the explicit operations x^\ 

I ^ � — 
I The algebra Vt^V plays an analogous role in pseudovarieties as the V-free 

algebra F^V in varieties. We have the following theorem due to Reiterman 
[47]. Z 
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T h e o r e m 3.1 Let A be a finite algebra. Then A G V if and orily if 
there exist a positive integer n and a surjective continuous liomomorphism 
n^v — A, 

The second theorem we will present in this section is also due to Reiter-
man. It is an analogue of BirkhofF's theorem on the definition of varieties 
by identities. Let V be a pseudovariety. A pseudoidentity on V is a formal 
identity of implicit operations, 7r = p, where 7r,/9 G H^V for some n. We 
say that an algebra A satisfies the pseudoidentity n : p if 7r̂  二 pA- If E 
is a set of pseudoidentities 011 V, we write [[E]]v for the class of all alge-
bras in V that satisfies each pseudoidentities in E. It is easy to see that such 
a class is a pseudovariety, and the converse was also proved by Reiterman [47 . 

T h e o r e m 3.2 Let V be a pseudovariety of finite algebras and let W be 
a subclass of V. Then W is itself a pseudovariety if and only if W = [[E]]v 
for some set E of pseudoidentities on V. 

In section 2, we have seen that Nil, the pseudovariety of finite nilpotent 
j semigroups, is not equational. Now, by the notion of pseudoidentities, we 

liave the following characterization. 

Proposition 3.3 Nil = [[x^y = yx^ 二 a;^]]5. 

Proof. For any finite nilpotent semigroup S and x G S, as the zero 
element is the only idempotent in the nilpotent semigroup, we have x^ 二 0, 
therefore, for any y G S, we deduce that x^y = yx^ = x^ = 0. 

Conversely, suppose a finite semigroup S satisfies the pseudoidentity 
r 工、=y^^ = ^^ for any y G S, we then deduce that a;̂  二 0 for any 
L ^ G S, and this implies that E{S), the set of all idempotents of 5', consists 

only the zero element. Let n = |5'|, the cardinality of S. Then, we have 
S" = SE{S)S (see chapter 1，[43]) - S . 0 . S - 0, i.e., 5' is nilpotent. 

Let us consider another example. 
‘ Let G be the class of all finite groups, we regard it as a subclass of 

• ,.J 
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M , the pseudovariety of all finite monoids. Then we can see that G is a 
pseudovariety, and G = [[x^y = yx^ = y]]M- For simplification, we call a 
sub-pseudovariety of M an M-variety. Similarly, we call a sub-pseudovariety 
of S an S-variety. 

In closing this chapter, a natural question on implicit operations arises. 
Are there examples of implicit operations on the pseudovariety of finite semi-
groups other than those obtained by just combining words and a;-powers? 
Some examples were given in [67]. Indeed, H^V is at most countable by def-
inition for any pseudovariety V，but Almeida and Azevedo recently proved 
that ^ n S has the power of the continuum [8]. 

y 
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Chapter 2 Algebraic automata and formal languages theory 
§1 Semigroup automata theory 

Let A be a finite set {a1,a2, ...,an}, called it an alphabet set. We use A* 
to represent the free monoid generated by A, i.e., all words of letters in A 
including the empty word, which is the identity element in A*, denoted by 
A. The multiplication in A* of u,v is just their concatenation. A language 
over the alphbet A is a subset L C A*. We denote it by A+, that is, the free 
semigroup A*\{A}. 

Definition 1.1 An Automaton is a triple A 二< A, Q, 0〉，where A is 
an alphabet set {a1,a2,...,an}, Q is a finite set called a set of states, 0 is a 
binary map: Q x A ~^ Q. 

A language L over the alphbet A is said to be recognized by the automaton 
^ if there exists qo G Q called the initial state, a subset T C Q called the 
set of terminal states and we have that u G L 分 q^ 0 u e T, where qi 0 u is 
inductively defined by the equations: 

qi 0 A = qi, 
Qi 0 {ajw) = [qi 0 aj) 0 w. 

Tlie map 0 : Q x A ^ Q can thus be extended to a map from Q x A* to Q 
without indication furthermore. 

We now introduce some operations on languages over the same alphabet. 
Let L, K be two languages over the alphabet A. Define the following 

operations on L and K\ 
1. Boolean operations: L fl /(, L U K, L \ K are just the usuall Boolean 

operations on sets. 

‘ 2. Product: LK 二 {腳 G A* : u G L, v G K}. 
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3. Star: L* is submonoid of A* generated by L. i.e., L* = LUL^UL^ U.... 
4. Left( right) quotient of L by K\ 

K~'L = {v e A* : Kv n L + 0} = {v G A* : 3u G K,s.t. uv e L} 
LK-' = {v e A* : vK n L + 0} 二 {v e A* : 3u G K, s.t. uv G L} 

Definition 1.2 If rj : A* — M is a monoid homomorphism and M is a 
finite monoid, then rj is said to recognize L G A* if there exists a subset H in 
M such that L = rj~^(H). By extension, we also say that M recognizes L. 

Theorem 1.3 A language L is recognized by an automaton if and only 
if it is recognized by a finite monoid. 

Proof. "=^". Suppose that A 二< A,Q,o > recognizes L with an initial 
state qo and a set of terminal states T. Then, for any u G A, we can define 
a mapping 

u : Q ~> Q 
q H^ q 0 u 

Clearly, u is an element of T{Q), tlie transition monoid of Q, with tlie fol-
A lowing property: U1U2 = {u1U2). So 

T : # ^ T{Q) 
U H^ u 

is an monoid embedding, and the image (f{A*), denoted by M{A), called the 
transition monoid of the automaton A, is a submonoid of T{Q). As Q is a 
finite set, we know T(Q), hence M{A) is also finite. Then, we assert that 
^ : ^* ~> M{A) with if{L) C M{A) recognizes L. To prove this statement, 
we only need to show that (f-\ip{L)) = L. For any u G (f~\(p{L)), there 
is, by definition, an element v G L such that (pu 二 ipv. In other words, 
this means that u,v are the same functions in T(Q). In particular, we have 
qo�u = w(go) = v{qo) = qo 0 v and, since v G L implies g � 0 v e T, hence 

‘ Qo 0 u e T and we therefore deduce from this fact that u G L. The opposite 
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inclusion is obvious and therefore the statement is proved. 

“々，，.Suppose rj : A* — M recognizes L. i.e., there exists H C M 
such that 7厂1(丑)=L. We construct an automaton A =< A, M, o〉，where 

0 ： M X A* ~^ M 
(m,cj) h^ moLo = m.T)[oj) 

and take the initial state 1 G M, the set of terminal states H C M. Then 
we liave 

cj G L = rfi(H) <^ r|{io) G H <^ 1 o cj 二 1 . ij{uj) e H 
Thus the automaton A recognizes L. The proof is complete. 

The following statements are expressed in terms of monoids. They consist 
of some classical results of tlie theory of automata. 

Proposition 1.4 Tlie languages A* and 0 are recognized by tlie trivial 
monoid {1}. 

P — . Let if : A* ^ {1} be a trivial morpliism. Then it is clear that 
V^-i{l} 二 4* and v^-i0 二 0. 

Proposition 1.5 Let L be a language of A*. If M recognizes L, then 
M recognizes A* \ L. 

Proof. Let r/ : A* — M and P C M be sucli that L = 7/-i(P). Then 
ir\M\P) = A^\L. 

\ Proposition 1.6 Let Li, L2 be two languages of A* recognized respec-
I tively by the monoids Mi, M2. Then L^ fl L2 and h U L2 are recognized by 
i Ml X M2. 

\ . P—. Let m_ : A* — M1,7y2 : A* ~> M2,P1 C Ml, and P^ C M^ be 
丨 sudi that Li = r/r '(^i) and L^ = " f ( f t ) . Let “ : A* — M, x M^ be the 
：； 2 1 i ‘ 



morphism defined by r/u = {r|1U,r]2u). We then have the formula 

V~\Pi X P2) = Li X L2 
and 

V''{{Pi X M2) U (Ml X P2)) 二 Li X L2. 
Proposition 1.7 Let (p : A* — B* be a morphism of free monoids and 

L C B* a language recognized by a monoid M. Then M recognizes ^~^{L) 
also. 

Proof. Let 77 : B* ^ M and P g M be such that L = rj-i(P). Then 
p- i (L) = f i < j r i ( p y > = ( w ) " H ^ ) , which proves that ( f ' ^ L ) is recognized 
by the morphism rjip : A* ~^ M. 

Proposition 1.8 Let L be a language of A* which is recognized by M. 
Let K be an arbitrary language of A*. Then M recognizes K'^L and LK~^. 

Proof. Let “ : A* — M and P C M such that L = rj-^(F). Put 

； Q 二 {m € M : 3u e K, {r]u)m G P} 
I It then follows that 

； r}~\Q) = {v e A* ： r]v e Q} 
={v e A* ： 3u e K, (7]u){7jv) G P} 
={v e A* ： 3u e K, T]{uv) e P} 
={v G A* : 3u e K, uv G L} 
=I<-^L, 

Tbis, K]L is recognized by M, The proof for LK_i is similar and hence 
it is omitted. 

Definition 1.9 Let L be a language over an alphabet A. Define 
; , a congruence � L in A* by: u � L v if and only if for any x,y G A\ 
M 
(： M !•：( 
>,• 1 
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• y ^ L <^ xvy G L. The quotient monoid A*| 〜乙 is called the syntac-
tic monoid of L, denote it by M{L). 

Theorem 1.10 M(L) is the smallest monoid that recognizes L. That 
is to say a finite monoid M recognizes L if and only if M{L) •< M, where 
M(L) < M means that M{L) is a homomorphic image of some submonoids 
of M. 

Proof, 
1) M(L) recognizes L. 

. L e t r| : A* — A*| 〜£̂二 Af(Z )̂ be the canonical morphism. Take H 二 
"(L) C M{L), We shall show that L = r]-\H). The inclusion from left to 
right is obvious. Conversely, for any u G "—�(F) = "—!("(L))，there exists 
^ ^ L such that r]u 二 r|v, i.e. u � L v. Since v G L, we also have u G L by 
taking x = y = 1 in the definition of � [ . T h e r e f o r e , M{L) recognizes L. 

2) M{L)�M =^ M recognizes L, 
By definition, there exists a submonoid N of M and a surjective homo-

morphism/? : N — M{L). Let us associate with each letter a e A an element 
咖）of " - i " ( a ) . Thus, we can define a function <p : A ~> N, which can be 
extended to a morphism (p : A* ~^ N by letting r/ = j3(p. 

I Put P = ajd-^rj(L) C M. It then follows that 

I (—-iP 二 V^- ia - ia^ i " (L) 二 (^- i / r i"(L) = " - i " (L) = L. 
This shows that a<p : A* ~^ M indeed recognizes L. 

3) M recognizes L =^ M[L) •< M. 
By our definition, there exists a homomorphism ^ : A* — M and a subset 

P of M such that L = ^-\P). Put N = <^{A*)- N is a submonoid of M. 
Suppose that cpu = (pv and xuy G L. Then, ^{xuy) = v?(̂；!；̂/) G <p{L) = P 
and therefore xvy 6 L since f(^P) 二 L. It follows from this fact that 
—二 — implies that u � L v. Thus, ip induces a surjective morphism 
7T : N ^ A*/ r^L= M(L), i.e. M{L) ^ M. 

y 
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The following proposition discribes the link between the syntactic monoids 
and the language operations. In fact, it is an immediate consequence of 
propositions 1.5-1.8. 

Proposition 1.11 Let L, L1,L2 be recognizable languages over the set 
of alphabets A. Let K be an arbitrary language over A. Tlien we have the 
following statements: 
1. M{A*\L) 二 M{L). 
2. M(Li n L2) •< M(Li) X M(L2), M(Li U L2) •< M{h) x M{L2). 

I 3. M{LK-^)�M{L),M{K-^L) < M(L). 
i | 

4. if (f : B* ~> A* is a morphism of free monoids, tlien M{(p~^L)�M{L). 

§2 Variety theorem 

It is well known that the syntactic monoid is an effective tool in study-
ing the recognizable languages, and because their syntactic monoid is finite, 
many questions on it can be acturally solved algoritlimically. The syntactic 

I monoid is decided when the recognizable language is given (algorithms to 
determine the syntactic monoid wlien the language is given by an automaton 

! or a rational form were given in [43]). But, on the other liand, there are 
usually non-unique languages over an alphabet set which can be recognized 
by a given finite monoid. So, we need the concept of variety of languages, 
and we find that there is a one-one corresponding relationship between the 
varieties of languages and the pseudovarieties of finite monoids. 

Definition 2.1 A variety of languages V is a function which associates 
with any alphabet set A to a class of languages A*V over that alphabet, such 
tliat 

1. for any A, A*V is a Boolean algebra. 
y' 
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2. if (p : A* ~> B* is a free monoid morphism, L e B*V implies (f~^{L) e 
A*V. 

3. if L e A*V and if a G A, then a'^L and La'^ G A*V. 
For a pseudovariety of finite monoids V, we introduce a function V ~> V 

by: for any alphabet A, let A*V be the set of languages of A* whose syntactic 
monoid is within V. 

The following proposition can be regarded as an equivalent definition of 
definition 2.1. 

Propos i t ion 2.2 A*V is tlie set of languages of A* recognized by a 
monoid in V, 

Proof. For L G A*V, we have M{L) e V which recognizes L by defi-
nition 2.1. Conversely, if L is a language of A* and recognized by M G V, 
we have M{L) ~< Mhy theorem 1.10. Therefore, we have M{L) G V by the 
definition of pseudovariety. Thus, L G A*V. 

We find that the function V under the function defined above is acturally 
a variety of languages. 

Proposi t ion 2.3 Let V be a pseudovariety of finite monoids. If V ~> V, 
I then V is a variety of languages. 

\ Proof. Let L,L1,L2 G A*V and a G A. Then by definitions, we know 
； that M(L),M(Li) and M{L2) are in V. From the results of section 1 and 

that V is a pseudovariety, we know that M{A*\L),M{Li 门 L2),M{L1 U 
L2),M(a-^L) and M(La—i) G V. Hence the corresponding languages are 
clearly in A*V. For condition (2), let (f : A* ~> B* be a free monoid mor-
phism, L e B*V. Also by proposition 1.11，we have M{^'^L)�M{L) e V, 
Hence, M{(p-^L) G V and (f'^L) G A*V. 

The next proposition tells us that the function V ~> V is injective. 
• 
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Proposition 2.4 Let V, W be two pseudovarieties of finite monoids. 
Suppose that V — V and W — >V. Then V C W if and only if for ev-
ery set of alphabets >1, A*V C A*yV. In particular, V 二 W if and only if 
V = W. 

Proof. If V C W, it follows immediately from the definitions that 
A*V C A*yV for any alphabet A. The converse is based on the following 
proposition. 

Propos i t ion 2.5 Let V be a pseudovariety of finite monoids and 
M e V. Then there exists a finite alphabet A and languages Li,..., Lk G A*V 
such that M < M{Li) x ... x M{Lk). 

Proof. Since M is finite, there exists a finite alphabet set A and a 
surjective map a : A ~> M. We extend it to an epimorphism <p : A* ~> M. 
Now, for any m G M, the language Lm = (p~\m) is recognized by M and 
therefore Lm G A*V, Let 〜匕饥 be the syntactic congruence in A* for each 
language L^. We first assert that 

kerv?= f | �Lm 
meM • 

To prove it, for any (w,u) G ker^^ we have, for any {x,y) G A*, 
^uy ^ Lm 分 ^{xuy) 二 m <^ (f{x)(p{u)(p{y) = m ^ ^{x)ip{v)<^{y) = m 

44> ^[xvy) 二 m ^ xvy G Lm 
Hence u �Lm ” for any m G M; conversely, if u ~Lm ” for any m G M, then 
we suppose that (^{u) = m G M since cp is surjective. Thus u �L^ v implies 
that 

1 • u . 1 二 u G Lm ^ 1 . V . 1 = V G L^ 
I so (f(u) 二 m and hence u G L^. As this is equivalent to say tliat v G L^, 

hence (p{v) = m as well, i.e. (w,v) G ker(/?. 
By above, we conclude tliat there exists a subdirect embedding 

丨 ， M 4 n ^7 � = n M[Lm) 
^ meM meM 
'•] 
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and the proposition is proved since M is finite. 

Now we complete the proof of proposition 2.4. 
Suppose that A*V C A*W for any finite alphabet A and let M e V. 

Then by propositon 2.5 above, we have M •< M{Li) x ... x M{Lk), where 
Li,...,Lk G A*V for some finite alphabet A. We deduce from this that 
Li””Lk e v4*W, i.e. M(Li),".,M(Lk) G W. Therefore, M e W. 

Now we are ready to prove that the function V ~> V is surjective. The 
proof follows from J. E. Pin [43]. 

Proposition 2.6 For every variety of languages V, there exists a pseu-
dovariety of finite monoids V such that V ~> V. 

Proof. We construct V from V as following: 
y = y{{M{L) : L e A*V for some alphabet A}) 

Suppose that V — W; we shall in fact show that V 二 W. First of all, we 
let L G A*V, then we have M(L) G V by definition and so L G A*W. i.e. 
for every alphabet A, we have A*V C A*W. . 

Conversely, let L G A*W, then M{L) G V and so there exist an integer 
n > 0, alphabets Ai,i = l , . . . ,n and languages Li G A]V,i 二 l , " . , n such 
tliat M{L) < M(Li) X …x M(L,) = M. Let m : M ^ M{Li) be the 
z.tii projection defined by 7ri(mi，..,m„) = m,-. Since M{L) divides M, M 
recognizes L and there exists a morphism (f : A* ~> M and a subset P of M 
such that L = v^_i(_P). Finally, we put (fi = i^ip. We let 77,- : A* ~> M{Li) be 
the syntatic morphism of Li, i = 1’ ...,n. Since r/i : A* ~> M(L,) is surjective, 
A* is a free monoid, so there exists a morphism 也:A* ~> A* such tliat 

I (fi 二 ^irn. We summarize these morphisms by the following commutative 
diagram: 

j ij 
i •‘ • 1 

::j 
'1 
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A* ~ ^ 义 , 

\^v?« 
1 X h 
M ——^ M{Li) 7Tt 

We still need to prove that L G A*V. This can be proved via the following 
three steps: 

1. As L = (f_i[P) = U m e P ^ i ( m ) , and V is a variety of languages i.e. 
closed under union, it suffices to show that (^~^(m) G A*V for any 
m e M. 

1 2. For any m G M, suppose that m = (mi,. . . ,m„), where m,- G M{Li). 
丨 We have n 

V^—i(m) = (^-i((mi, . . . ’m„))=门 ^T\^i) 
1： - 1 F The reason for this is f 
[ _ 
I u G (p~ (m)分(f{u) = m = (mi,...,m„)分 7Ti(p(u) = rm,Vi = l,...,n 

n 

^ M^) = ^t',Vi 二 1,."，71分 u G (f7i(mi),Vi = l,...,n^ u e P| ^ ^了 1 (叫 ) . 

i=i 
Since A*V is closed under intersection, it suffices to show that v^_i(mi) G 
A*V for i = 1,..., n. 

3. (fi = T]î i implies A—i(m,_) = VT^(^i"^"^0- Since 0,- : A* ~> A* is a free 
monoid morphism and a variety of language is closed under the inverse 
of free monoid morphisms, we need only to prove that r]f^mi G A*V 
for any i = 1, ...，n, which follows from the following lemma. 

Lemma 2.7 For a variety of languages V and an alphabet set A, let 
L G A*V and ip : A* ^ M{L) be its syntactic morphism. Then for any 
m G M{L),(f-\m) e A*V. 

Proof. For w G A\ let C{w) be the set of all contexts of w in L, that is, 
• . 

< ^ H = { ( � ” ) e ^* X ^* : uwv e L} = {(u,v) e A* X A* : w; e u-^Lv'^}. 
\ 2 8 

( 
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We now see immediately that w � L w' if and only if C{w) = C{w'). There-
fore, the syntactic equivalent class of w is the following set: 

^-\^{w)) 二 {w' : C{w') = C{w)} 
= f | u-'Lv-' \ U u~'Lv-' 

{u,v)eC{w) {u,v)^C{w) 
Consider the languages of the form u~^Lv~^ for w, v G A*. Firstly, by 

the definition of the variety of languages, they are also in A*V. Secondly, as 
(p ： A* ~> M{L) recognizes L, in view of the proof given in proposition 1.8, 
we know that u~^Lv~^ is also recognized by (f. Hence, there are only finite 

I number of languages of the form u~^Lv~^ since M{L) is finite. Therefore, 
ip~^{(f{w)) e A*V for any w G A* as A*V is closed under finite Boolean 
operations and by the above formula. Now, we have ip~^{m) G A*V for any 

j： m e M{L) by taking w G A* such that ^{w) = m. This concludes the proof 
1 of the lemma. 

In conclusion, we can state the following theorem of variety due to Eilen-
berg [23；. 

Theorem 2.8 (Eilenberg) The function V ~> V defines a bijection be-
tween the pseudovarieties of finite monoids and the varieties 6f languages. 

• _ 

j In the last of this section, we give a "semigroup" version of language the-
““ ory and of this theorem. We define languages as subsets of the free semigroup 
i A+ over the alphabet set A. The syntactic semigroup of the language L is the 
！ quotient of A+ by the syntactic congruence � L (defined as same as which in 

monoid case). The other definitions and propositions can be adopted for this 
:̂  case word by word by replacing the symbol * by + and the word monoid by 
S semigroup. To distinguish the two types of varieties of languages, we speak 
_j 

j of *-variety or +-variety for variety of languages on monoids or variety of lan-
1 guages on semigroups respectively. The most important difference between 
, *-varieties and +-varieties is the following: a *-variety is closed under inverse 
- morphism between free monoids, whereas a +-variety is closed under inverse 

, morphism between free semigroups. In particular, we can use morphisms 
which erase, i.e., morphisms sending certain letters to the empty word. This 
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is impossible in the second case. 

§3 Varieties of languages and corresponding pseudovarieties 

We now introduce some varieties of languages and their corresponding 
pseudovarieties, some of them are quite classical and remarkable in the liter-
ature. 

Definition 3.1 Let A be a finite alphabet. Then the set of rational 
languages of A*, denoted it by A*7Zat, is the smallest set of languages of A* 

[ such that 
； 

|. 1. for any word u e A*, {u} G A*7iat, 
y 
: 2. A*Tlat is closed under the finite union, product and star operations. 
i 

丨 The fundamental theorem regarding rational and recognizable languages 
over A is due to Kleene [30 . 

Theorem 3.2 (Kleene). A language L over the alphabet A is a rational 
language of A* if and only if L is recognized by a finite monoid. 

From the preceding theorem and tlie fact tliat the class of all finite 
monoids forms a pseudovariety, we know immediately that the function Kat 
defined above is a *-variety of languages, and the corresponding pseudovari-
ety is M , which is the pseudovariety of all finite monoids. 

Definition 3.3 We define I be the trivial M-variety, i.e. the pseudova-
riety of all trivial monoids. 

In view of proposition 1.4, the corresponding *-variety of languages is X: 
for any finite alphabet A, A*I = {0, A*}. 

In chapter 1, we have seen that Nil, the class of all finite nilpotent semi-
, groups, is an S-variety. We now find the corresponding +-variety of languages 
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Nil. 

Theorem 3.4 For any alphabet A, A+Afil is the set of all finite or 
cofinite languages of A+，where a language L G A^ is called cofinite if and 
only if A+ \ L is finite. 

Proof. Let L be a finite language and rj : A+ — S = S(L) be its syntactic 
morphism. Let n be the maximum length of the words in L. Then, all words 
u of length greater than n are obviously syntactically equivalent (since for 
any x,y G A*, \xuy\ > n implies xuy • L). We use 0 to denote the common 
syntactic image of all these words. 0 is then the zero element of S since for 
any x G S, we can take any u G A+ such that r][u) = x and take any v G A+ 
with |i;| > n, then we have 0 . x = rj(v)r/(u) = rj(vu) = 0，since \vu\ > n. 
Similarly, we also have x . 0 = 0. Moreover, for any ui, ...,Wn+i G A+, we 
have | u i . . . w^+i| > n and therefore "(Mi. •. Un+i) = rj{ui)... r/(Un+i) 二 0. 
Since r/ is surjective, <S"+i = 0 and S is nilpotent. 

! If L is cofinite, then A+ \ L is finite and consequently S{L) = <S(>1+ \ L) 
j is nilpotent. 
^ Conversely, let L be a language recognized by a finite nilpotent semi-
( group S, Then there exists a morphism rj : A+ ~^ S and a subset P of 
: S such that L == rfi(P). Suppose S^ = 0 for an integer n as S is nilpo-
L tent. Now, if 0 ¢. P, we conclude that for any u G A+ with |u| > n and 
f u is not in L. Since we can write u = ui... Un for Ui G A^ and there-
L ！ _^ ..‘• - -

I fore rj{u) 二 ry(wi). •. rj{un) 6 S^ 二 0. This statement then enforces that L 
N is finite. If 0 G P, we have 0 资 S \ P and therefore A^ \ L = "—1(5̂  \ P) 
1 is finite by the same argument. Therefore L is finite or cofinite if L G A^NiL 
‘ If a M-variety (resp. S-variety) V is generated by a single finite monoid 

(resp. semigroup), then we can give a direct description for the correspond-
ing variety of languages. 

Proposition 3.5 Let V = V{M) be the M-variety (resp, S-variety) 
generated by the finite monoid (resp. semigroup) M and let V be its corre-

；] ‘ sponding *-variety (resp. +-variety) of languages. Then for every alphabet 
H i 
9； 
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set A, A*V (resp. A^V) is the Boolean algebra generated by the languages 
of the form (p~^{m) where (p is an arbitrary morphism from A* (resp. A+) 
to M and m G M. 

Proof. One side inclusion is clear since (f~^{m) G A*V. For the converse 
inclusion, we let L G A*V. Then, we have M{L) G HSPjin{M) and so 
M[L) < Af(— for some integer n, (where M(") stands for the direct product 
of n copies of M). Hence,似⑷ recognizes L and so there exists a morphism 
77 : A* ~> M(n) and a subset P G 似 ⑷ such that L = ”-奶.Since 

L = ij-'{P)= U V-'M 
meP 

It suffices to consider the languages ri~^{m) for all m e Af("). Suppose 
m 二 (mi, ".,mn), where m,. G M. Let 7r,- : Af(") — M be its z-th projection. 
Then, we liave 

n 
m = A 7 r � i ( m i ) t=i 

Therefore n 
i 77-1(771) = f]{7Tiij)-\mi) 
丨丨 i=l 
f' Now since 7^” : A* — M is a morphism and iiii G M, thus, tlie converse 

inclusion holds. Therefore, A*V is the Boolean algebra generated by the lan-
I guages of the form (p~^{m). 

By the preceeding proposition, we are now able to describe the varieties 
of languages corresponding to some M-varieties or S-varieties. For example, 
if we let J1 be the class of all finite commutative monoids of idempotents 
(or equivalently, all finite semilattice monoids). Then, by tlie definition, 
J \ 二 [[zy = yx,x^ = o;]]M and therefore it is an M-variety. Let Sl2 be the 
semilattice consists of two elements {0,1} (i.e., 0 . 0 = 0 . 1 = 1 . 0 = 0 and 
1 . 1 二 1). Then we know that J i is generated by Sk. 

Proposition 3.6 Ji = V{Sl2). 
, 

— r 
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Proof. V{Sl2) C Ji is obvious since Sl2 € J i - On the other hand, 
suppose that the equation does not hold. Since the pseudovariety V[Sl2) 
is equational (by corollary 2.6, chapter 1)，there must exists an identity 
(explicit) which is satisfied by Sl2 but can not be deduced from the identities: 

xy = yx, x^ = X 

Take such an identity u 二 ” with |w| + 卜| minimum. Firstly, it can be 
easily seen that no variable can occur more than one time in each side 
of the identity. If not, for example, let u = V1XV2XV3, say, then, we have 
u 二 1；10：0；1；2”3 — VixV2Vs. Clearly, this new identity is equivalent to u 二 ” but 
it is obviously shorter. Secondly, if a variable x occurs in u, tlien, by taking 
any y + x be 1 in the equation u = D, we get the identity x 二 a; or x = 1. 
However, the later identity is obviously not satisfied by Sl2- Hence, we de-
duce that u and v contain exactly the same variables. It then follows that 
the identity u — v can be reduced from xy — yx, whicli clearly contradicts 
to our hypothesis. Therefore, J i = V{Sl2)' 

iLet J i be the corresponding *-variety of J i . Then we liave 
. . 

Proposition 3.7 For any alphabet A, A*Ji is the Boolean algebra 
1 generated by the languages of the form A*aA*, where a is a letter in A. 
* Equivalently, A*Ji is the Boolean algebra generated by the languages of the 

form B*, where B is a subset of A. 
1 Proof. Since J1 = V(Sl2)^ we can use proposition 3.5 to describe A*Ji. 

For any subset B of A, let rj : A — Sl2 is a map such that 
’ , � / 1 if a e B nia) = < _ 二 . \ „ ( i\ ) \ 0 if a G A\B 

Then, this map rj can be extended to a morphism f j : A* ~> Sl2 and it can be 
easily seen that B* = 77"^(!). Conversely, for any morphism 77 : A* ~> Sl2, 

!

" - i ( l ) must have the form B* and 77" (̂O) has the form A* \ B* for some 
subset B of A. Therefore A*Ji is the Boolean algebra generated by B*, 

I ‘ where B is a subset of A. The remaining part of the proposition follows from 
I 1 
, 33 
I 



the equations: 
B* = A* \ U A*“* 

aeA\B 
A*aA* = A* \ {A \ ay. 

Finally, we introduce an important variety of languages in the formal lan-
guage theory, namely, the star-free languages. 

Definition 3.8 For any finite alphabet set A, the set of star-free lan-
guages of A* is the smallest set, denoted it by A*<S, of languages of A* such 
that 

1. for any u G A*, {u} G A*S, 
I 2. A*S is closed under finite Boolean operators and product. 
I A characterization of the corresponding syntactic monoids of star-free 

languages was given by the late M. P. Sch(itzenberger in [49 

Theorem 3.9 (Schutzenberger). A language L over a finite alphabet 
is a star-free language if and only if its syntactic monoid M(L) is aperiodic 
(i.e. for any s G M(L), there exists an integer n such that «3州=5^). 

It can be easily checked that all finite aperiodic monoids forms a pseu-
dovariety, we represent it by A. We now know immediately from Schutzen-
berger's theorem that the function S is a *-variety of languages, and the 
corresponding M-variety is A. 

We can define similarly the variety of star-free languages on semigroups 
as we have done at the end in the last section. The corresponding S-variety 
is the pseudovariety of finite aperiodic semigroups As, where we denote it 
by Vs, the S-variety generated by V for an M-variety V. 

There are other characterizations of rational languages and star-free lan-
‘ guages, which apeared in logic. In particular, Biichi [18] has shown that a 
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language is rational if and only if it is a set of words satisfying some sentence 
in the weak monadic second order theory of succesors, and McNaughton [37 
further showed that a language is star-free if and only if it is a set of words 
satisfying some first-order sentences. 
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Chapter 3 M-varieties and S-varieties 
In the last chapter, we have provided some examples of pseudovarieties of 

finite semigroups and monoids. In this chapter, we will study the algebraic 
structures that characterize them. 

We first give some fundamental definitions and properties of Green's re-
lations on a semigroup S. 

Definition 1 On a semigroup S, the Green's relations 7 l , C , J , V , 7 i 
are defined by: 

1. a'Rb ^ aS^ 二 bS^ <^ 3x, y G S, ax 二 b, by — a. 
2. aCb 分 S^a = S^b 4^ 3x^ y G S, xa = b, yb = a. 
3. a J b ^ S ' a S ' = S ' b S \ 
4. V = 1lWi:,^i = Tlf]C. 

for any a, b G S, where S^ represents S if there is an identity element in S, 
otherwise, just add “1” in S as its extra identity element. 

Proposition 2 In a finite semigroup S, V 二 J . 

Proof, V C J is obvious since C C J and Ti C J . For the con-
verse inclusion, suppose that aJh for a, b G S. Then there exist elements 
oc,y,u,D G S^ such that xay = b and ubv = a. Hence we can deduce that 
a = ubv = {ux)a{yv), and therefor {ux)^a{yv)^ = a for any positive integer 
k. Since S is a finite semigroup, we can take the positive integers, say, m and 
n such that {ux)^ = e and {yv)^ = f are both idempotents. Now, we have 
{ux)^^a{yv)^^ = a = eaf, whence {ux)^a = ea = e{eaf) = eaf = a. This 
implies that xaCa. Similarly, we can deduce that ayKa, and this relation 
can imply further that xayTlxa. Hence we have xay7lxaCa, and therefore 

I xayVa, i.e. bVa. Thus we proved the inclusion J C TK 
fe 

Definition 3 An element a in a semigroup S is called regular if there 
exists X e S such that axa = a. The semigroup S is called regular if all the 
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elements of S are regular. 

The following proposition can be found in Howie [28]. In fact, this is a 
well known result in the theory of semigroups. 

Proposition 4 A X>-class D of a semigroup S contains a regular element 
if and only if all its elements are regular. If D is regular, then every 7^-class 
and every £-class of S contained in D contains at least one idempotent. 

The following properties are also well known in semigroups: 

Proposition 5 Let H be an 7{-class of a semigroup S. Then the 
following conditions are equivalent: 

1. H contains an idempotent. 
2. There exists elements a, b G H such that ab G H. 
3. H is a maximal subgroup of the semigroup S. 
As we are concerned mostly on the finite cases of semigroups (monoids), 

in the remaining part of this chapter and throughout chapter 4, we regard a 
I semigroup (monoid) is always finite except the free objects. 

We say that a semigroup S is /C-trivial if for any two elements x, y G S, 
� xK/y implies x = y, 
j We have the following lemma. 
； 

1 I 

Lemma 6 Let /C be one of the Green's relations 7^, £, V or 7^ and let 
S be a semigroup. If the restriction of JC on the regular AC-classes of S is 
trivial, then S must be AC-trivial. 

Proof. We divided the proof into four cases: 
1. JC 二 7L Suppose a7U). Then there exists elements c, d G S^ such that 

ac 二 b, bd 二 a and whence acd = a. Let n be an integer such that [cdY ,' 
is an idempotent. We then have (cc/)^7^(c(/)"c, whence (cc/)" = {cd)^c 

37 



since the restriction of 7Z on the regular 7^-classes is trivial. Hence, we 
can deduce a = a[cdY 二 a(cc/)"c = ac 二 b and therefore S is 7^-trivial. 

2. JC 二 C. By the same argument as 1. 
3. JC — V. Suppose aVb. Then there exists element c G S such that a7lc 

and cCb, Since the restriction of V on the regular X^-classes is trivial, 
restrivtion of 71 or C to the regular 7^-classes or £-classes respectively 
is consequently trivial. From (a) and (b), it follows that a = c and 
c = b, whence finally we have a = b. Therefore S is 2^-trivial. 

4. JC 二 %. Suppose x%y. Then there exists elements a,b,c,d G S^ such 
that ax = y,by = x, xc = y, yd = x^ whence x = axd and therefore 
a^xd^ = a: for every n. Choose a non-negative integer n such that 
a^ = a"+i (which is possible since the restriction of % on the regular 
？ -̂classes is trivial). It then follows from this tliat a{a^xdP-) 二 ax — 

！ a^^^xdP' — a^xd^ = x, whence ax 二 y — x. Therefore S is 7^-trivial. 
Proposition 7 All 7^-trivial (respectively £-trivial, J'-trivial) monoids 

form an M-variety, we represent it by R (respectively L, J) and we have the 
following characterizations. 

: 1. R = Un>i[[(^y)"^ = {xyY]]M 二 [[[xyYx 二 {xyY]]M 

2. L = Un>i[[y(a:y)" = {xyT]]M = [[y{xyT = i^y)^]]M 

3 . J = [Jn>i[[{xyTx = {xy)- = y{xyr]]M 二 UnW[(r")" = {yx)\x-= 
x^^']]M = [[{xyY = {yxY, x^ = x^+']]M 

Proof. 
1. Let M be an 7^-trivial (and therefore aperiodic) monoid and let n be 

an non-negative integer such that u^ 二 w"+i for every x,y G M. Then, 
we have {xy)^x7Z{xy)^ since ({xy)^x)y = {xy)^^^ 二 {xy)^. Since M 
is 7^-trivial, it follows that [xyYx = {xyY. Conversely, if M satisfies 
{xy)^x = {xy)^ for some n, then, by lemma 6, it suffices to show that 
all regular 7^-classes of M are trivial. For this purpose, let e G E{M) 

； ‘ and X G M be such that e7Zx‘ Then ex 二 x and there exists y such 
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that xy 二 e. Therefore, x 二 eo; 二 (a;y)"^ = {xy)^ = e. This shows that 
M is 7^-trivial. Note that {xy)^ = {xy)^ in the discussion above, we 
can deduce immediately that M is 7^-trivial if and only if M satisfies 
the identity {xy)^x =(巧广. 

2. The proof of tliis part is similar to part 1. 
3. Since J — i^A L, it follows from (1) and (2) tliat any M G J satisfies 

the equation {xy)^x = {xy)^ — y{xy)^ for some non-negative integer 
71. Taking y = 1 in the above equation, we obtain x^ — x^^^ and also 
{xy)^ 二 y{xy)^ = {yx)^y = {yx)^- Similarly, we can sliow that M 
satisfies {xy)^x 二（^:^广=y{xy)^,{xyf 二 (̂3；广,0；̂  = x^+K 

I Conversely, suppose that a monoid M satisfies tlie equations x^ — x^^^ 
and {xy)^ = {yx)^ for some non-negative integer n. Then, we have 
{xy)^ = (a;y)""+i 二 (J/r)"^+i = y[ocy)� , whence {xy)^ — y^{xy)^x^ = 
y^^^{xy)^x^ = y{xy)^ and likewise, {xy)^ = {xyy^x. Similarly, if M 
satisfies {xy)^ 二 {yx)^ and x^ = x^+^, then, they imply that the 

I identity {xy)^x = {xy)^ = y{xy)^ holds. The proof is complete. 
I： 
f-" 
( 

[ We recall that a semigroup S is aperiodic if, for every x G S, there exists 
I a non-negative integer n such that x^ = x^^^. i.e., the period of every ele-

ment in S is 1. The following proposition gives various characterizations of 
aperiodic semigroups. 

I 

Proposition 8 [43] Let S be a semigroup. Then the following conditions 
are equivalent. 

1. S is aperiodic. 
2. There exists an integer m such that, for every x G S, x^ 二 x^^^. 
3. S is 7^-trivial. 
4. There is no non-trivial subgroups in S, 
5. x^ = x^+^ for any x G S. 

y' 
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Proof. 
(1) =^ (2): For each x G S, let us take the smallest integer n^ such that 

x^^ = x"^+^ and let m 二 maXâ ĝ na；. Then x^ = a;"̂ +i for every x G S. 
(2) =^ (4): Let G be a subgroup in S. Let x G G and x^ 二 a ;_i for 

some n. As x G G, we also have x^ G G and x^ 二 0；”0； = ... = x^^, so x^ 
is an idempotent in G and hence is an identity e in G. We can deduce that 
X 二 a;e = xx^ 二 a;n+i 二 a;" 二 e, i.e. G is trivial. 

(4) =4> (3): By lemma 6, it suffices to verify that all regular 7i^-classes are 
trivial. As we know that any regular 7^-class is in bijection with a subgroup 
in S, S is of course 7^-trivial. 

(3) => (1): Let X G S and r be the index of x. If p is the period of x 
with â r+p — x^, then we know that {x^,..., a;^+^"^} is a subgroup in S. As 
any subgroup of S is contained in some 7^-classes, it is therefore trivial by 
hypothesis, i.e. x^ 二 a;*̂ +i. 

(1) =^ (5): For any x G 5', there exists an integer n such that x^ = x^^^ 
by hypothesis. Then, we liave x^ — a;"+i = ... = x^^. Thus, x^ is an 

丨| idempotent, and so x^ = x^. Hence, we deduce that x^ = x^^^. 
：! (5) =^ (1): This part is obvious since x^ = x^ for some non-negative 

integer n. 

Similarly, the equivalent conditions in proposition 8 hold for aperiodic 
monoids if we replace the semigroups by monoids. Recall that A is the M-
variety of aperiodic monoids, we therefore obtain the following result. 

Proposition 9 A = Un>J[3-'" == x^+^]]M = [[x^ == z^+ijjM. 

Recall that A s is the S-varicty of aperiodic semigroups, by proposition 
8, we also have 

Proposition 10 A s = IJn>i[[â " = x^+^]]s = [[a;̂  = x^+^]]s. 

We call a semigroup S locally trivial if for every s G S and e G E{S), 
ese : e holds. As for an idempotent e in a semigroup S, the subsemigroup 

‘ eSe is the largest submonoid with e as its identity contained in S, We call 
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it the local semigroup associated with the element e. The condition above 
indicates that all the local semigroups of S are trivial. 

Proposition 11 [43] Let S be a semigroup. Then, the following condi-
tions are equivalent: 

1. S is locally trivial. 
2. E[S) is the minimal ideal of S. 
3. esf = ef holds for every s G S and e, f G E[S). 

Proof. 
(1) ^ (2): Let I be a minimal ideal of S and let x G I. Then for every 

e e E[S), we have e = exe G I since I is an ideal. Therefore E{S) C I. 
On the other hand, for any e G E{S) and s G S, we have (e^)^ = eses = es 
and (>se)2 = sese = se. This shows that E{S) is an ideal (non-empty as S is 
finite) of S contained in I and hence E{S) 二 I. 

(2) => (3): For any e, f G E{S) and 5 G S, we have e f , es f G E{S) since 
E{S) is an ideal of S. Now, E{S) is a simple idempotent semigroup, so it is a 
rectangular band (see chapter 3.3, [43]). Thus, we have esf = e{esf)f = e f . 

(3) =^ (1): Just take e 二 f in condition (3), and the proof follows. 
i 

L e m m a 12 Let S be a semigroup with n elements. Then, for any 
5i, ...,5n G S, there exist t1,t2 G S and e G E[S) such that 5i^2 . •. 5„ = t1et2. 

Proof. Let pk = <s1<s2 . . . Sk {k 二 1, ...,n).We then have the n products 
jh,...,Pn in S. If they are all distinct, then at least one of them, say pk^ is 
an idempotent, and so s i . . . 5„ = pk . Pk . Sk+i . • . Sn has the desired form. If 
Pi = pj with i < j, then 

Pi = Pj = Pi^i+l . . . 5j = Pi{Si+i . . . SjY =…=Pi(<Si+i . . . Sj)^ 
This forces si • . • Sn = Pi . e . <Sj+i . . . 5^, where e = (<Si+i . . . 5j)^. 

Let LI be the class of all locally trivial semigroups. Then we obtain the 
following characterizations of LI. 

• ‘ 
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Proposition 13 LI is an S-variety and LI 二 [[x^yx^ 二 x^]]s = 

Un>l[[x^y^^ 二 ^̂ ]]s = Un>l[[̂ l • . . XnyZl • . • n̂ 二 3；1 • . . XnZi . • . Zn]]s 
— _ i 

Proof. Let S be a locally trivial semigroup, i.e. for any e G E[S),s G S 
we have ese = e. Then, for any x^ G E(S),y G 5, we also have x^yx^ = x^. 

Suppose a semigroup S satisfies the identity x^yx^ 二 a;� . For any x G 5, 
let Ux be the least integer such that x^^ 二 a;". Let N be the product of all 

I integers n^ for x G S (note that S is finite). Then, we have x^ = x^ for any 
X. Therefore, the equation x^yx^ 二 o^N is satisfied by the semigroup S, 

Conversely, if a semigroup S satisfies the equation x^yx^ = x^ for some 
I integer n, then for any e G B(S),s G S, we have ese 二 e^se^ = e^ = e, 

whence S is locally finite. 
We now prove the remaining part of proposition 13. Suppose again that 

: S is a locally trivial semigroup with n elements. For any xi,..., Xn G 5, by 
lemma 12, there exist t1,t2 G S, e G E(S) such that xi-"Xn 二 t1et2, Similarly, 
for any zi,..., Zn G S, there exist S1,S2 G 5, / G E{S) and Zi . • . Zn = s1fs2. 
So we can deduce that for any y G S, xi . . . Xnyzi . . . z„ = het2ys1fs2 二 
tiefs2 = t1et2S1fs2 = xi . • • XnZi . . • Zn by proposition 11 and this proves 
that S is loclly trivial. 

Conversely, suppose a semigroup S satisfies the equation Xi-'-XnyzyZn 二 
Xi . . . XnZi . . . Zn. Then, for any e G E(S),s G 5, ese = e^se^ = e"e" = e, 
i.e. S is locally trivial. 

Let K {K^) be the class of all semigroups S such that e = es (e =： 5e) 
for all s G S and e G E[S). Then we have the following results: 

Proposi t ion 14 K {K^) is an S-variety and we have 
1. K = [[x^y = a;^]]5, 
2. iT" = [[yx^ = x^]]s. 
Proof. 

1. Let S be a semigroup in the class K. For any x,y e S, as x^ is an 
‘ identity in S by definition, hence x^y = x^. Conversely, suppose a 
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semigroup S satisfies the pseudoidentity x^y 二 x^ then obviously, for 
any e G E[S) and 5 G S, we have es 二 e^s = e" = e. 

2. The proof is similar to part 1. 
By the definition of the S-variety Nil, we can immediately obtain that 

Nil 二 K n K^. We also have the following proposition given in [43]. 

Proposition 15 LI = K V K\ 

Let V be an M-variety. Let LV be the class of all semigroups which are 
locally in V, i.e., the class of semigroups S with eSe G V for every e G E[S). 
Then we have the following proposition. 

Proposition 16 LV is an S-variety and L{LV) 二 LV for any M-
variety V. 

Proof. Suppose Si and S2 are semigroups in LV. Consider the semigroup 
Si X S2, note that any idempotent e of Si xS2 should has the form (ei, e2) with 
6i G E{Si). Hence, eSi x S2e = {e1,e2)S1 x <S2(e1,e2) = eiSiCi x e2S2e2 G V 
since CiSiCi G V. Therefore Si x S2 G LV. . 

For a subsemigroup R of S and any idempotent e of R, we have eRe is a 
submonoid of eS'e, and therefore eRe G V. Thus R e LV 

Finally, let if : S — T be an epimorphism of semigroups. Then for any 
idempotent e G T, there is an idempotent f of S such that (pf = e, so 
eTe = ( p { f S f ) and hence eTe G V. This leads to T G LV. Thus, LV is an 
S-variety. 

For the remaining part of the proposition, we first notice that V C LV. 
Hence we immediately have LV C L{LV). For the inverse inclusion, sup-
pose S e L{LV). Then, by definition, we have eSe 6 LV for any e e E(S). 
By using the definition again, for the idempotent e of the semigroup eSe, we 
have e{eSe)e G V, i.e. eSe G V. Therefore S G LV and so we obtain the 
inclusion L{LV) C LV. 

I ' Observe that, in the preceding proposition, we have proved again that all 
i 
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locally trivial semigroups form an S-variety LI, where I is just the trivial 
M-variety / . 

Recall that G is the M-variety of all groups. We have the following propo-
sition. 

Proposition 17 LI = LG n As. 

Proof. LI C LG and LI C As are clear. Conversely, for a semi-
group which is locally groups and aperiodic, then it is locally trivial. Thus 
LI = LGnAs. 

The concept of relational morphism will be useful in the following dis-
cussions. Roughly speaking, relational morphisms allow us to "inverse” the 
arbitrary surjective (not necessarily injective) morphisms. 

Definition 18 A relational morphism r : S — T between two semi-
groups S and T is a mapping from S into the set of all subsets of T, such 
that 

1. T(5) + 0 for any s G S, 
2. r(5i)r(52) C T(<s1<s2). 
A relational morphism r is called injective if the condition T(<s1)n7"(<s2) + 

0 implies S\ — S2. r is called surjective if, for every t G T, there exists s G S 
such that t G T(5), or equivalently, U5g5r(5) 二 T. If a relational morphism 
T : S ~> T is surjective, then we can define r~^ : T ~> S by letting T~^{t)= 
{s G S\t G T(<s)} for any t G T. Thus, r—i is also a relational morphism. 
Furthermore, the composition of two relational morphisms r : S ~^ T and 
CF : T ~> R defined by crr(5) = cr(r(5)) is again a relational morphism. 

Let T : S ~^ T be a relational morphism and let R be its map graph, that 
is, 

R={{s,t)^SxT{ter{s)}. 
Then, it is clear that R is a subsemigroup of S x T. Let a : R ~> S and 

’ P ： R — T be the morphisms induced by the projections of S x T to S and T 
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respectively. Then a is surjective and we have r 二 fia-i. This factorization 
of T is called the canonical factorization of the relational morphism r . 

The following lemmas can be easily seen. We omit the proofs. 

Lemma 19 Let r : S — T be a relational morphism and r = pa~^ its 
canonical factorization. Then r is injective if and only if f3 is injective. 

L e m m a 20 Let r : S — T be a relational morphism. Then for any sub-
semigroup S' of S, r[S') is a subsemigroup of T. And for any subsemigroup 
T' of r , 7"-i(r,) is a subsemigroup of S, 

Let V be an S-variety. A relational morphism r : S ~^ T is called a 
(relational) V-morphism if, for any subsemigroup T' of T which is also an 
element of V, we have r](T') G V. 

By routine checking, we can prove the following lemmas: 

L e m m a 21 Let V be an S-variety. Let r : S — T be a relational mor-
phism and T = j3a~~i its canonical factorization. Then r is a V-morphism if 
and only if |3 is a V-morphism. 

Lemma 22 If r : S ~> T and a : T ~> R are V-morphisms, then 
ar : S ~^ R is also a V-morphism. 

Let V be an S-variety and W an S- (resp. M-) variety. We define V~^W 
to be the class of all semigroups (resp. monoids) S such that there exists a 
y-morphism r : S ~> T with T G W. 

Proposition 23 If V is an S-variety and W is an S- (resp. M-) variety, 
then V~^W is an S- (resp. M-) variety. 

Proof. Suppose S1,S2 G V~^W and n : Si ~^ 7\,丁2 : ^ — T^ are 
V-morphisms with T1,T<2 € W. It can be easily cliecked that ri x r2 : 
Si X S2 ^ Ti X T2 is a relational morphism and therefore Si x S2 G V~^W 

. since Ti x T2 G W, 
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Suppose R is a subsemigroup of S G V~^W and r : S ] T is a V-
morphism with T G W. Let rj : R ~> S be the inclusion morphism. Then, 
by definition, rj is clearly a V"-morphism. Hence ri] : R — T is a V-morphism 
by lemma 22, and therefore R G V~^W. 

Finally, suppose ip : S ~> R is an epimorphism and S G V~^W with 
a V-morphism r : S ~> T and T G W. Since (f is an epimorphism, (p-i 
is an injective relational morphism. Let (p-i = fla-i be its canonical fac-
torization. Then f3 is an injective semigroup morphism by Lemma 19, and 
by our definition, it is clear that f3 is a V-morphism for any S-variety V. 

I Hence (p~^ is also a V-morphism by lemma 21. Therefore, T(p~^ : R ~> T is 
a V-morphism by lemma 22, and so R G V~^W. Tlie proof is complete. 

!； (V • 
‘ When V 二 As^ the A5-m0rphisms are called tlie aperiodic relational 
1 morphisms. We will use the concept of aperiodic relational morphisms in the 
j next chapter. 

Define DA be the class of all monoids of which each regular P-class is 
i an idempotent subsemigroup. { … . • 
I Proposi t ion 24 DA is an M-variety, I 
?j 

I Proof. Suppose M G DA. Let N be a submonoid of M and let D be a 
\ regular 7>class of N. Then for any a G D, there exists an idempotent e G N k: 
： such that aTl^e and therefore aT^/e. However, the X>-class of e in M only 

contains idempotents and therefore a G E{N). Hence, N G DA. 
� Suppose that ip : M ~^ N is an epimorphism. Let D be a regular V-cia,ss 

of N. Then there exists a regular X>-class D' of M such that D : ip[D'). 
Since D' contains only idempotents, D is also an idempotent subsemigroup 

: and therefore N € DA. "i Finally, let Mi, M2 G DA. We can see easily that tlie X>-classes of t 
I Ml X M2 are of the form Di x D2, where Di is a P-class of Mi for i — 
1 1,2. Therefore, if Di C E{Mi), we have Di x D2 C E[Mj_ x M2) and so 
I Ml X M2 G DA. Hence, the proposition is proved. ! ‘ 
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Another direction in the study of pseudovarieties is the structures of the 
lattice of all pseudovarieties and its sublattices. For example, the existence of 
maximal or minimal elements, finite or infinite chains and the isomorphisms 
between two sublattices. Margolis proved that there is no maximal M-variety 
(resp. S-variety) in the lattice fo all M-varieties (resp. S-varieties) and Pin 
in [43] summarized all minimal M-varieties and S-varieties. The reader is 
refered to the papers [36], [43] and [46] if necessary. 

\ 
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Chapter 4 The dot-depth hierarchy 
In chapter 2, we have already seen that the variety of star-free languages 

(on monoids) is corresponding to the M-variety A and its relation with for-
mal logic theory. In this chapter, we introduce hierarchies of varieties of 
languages which is a decomposition theory for the variety of star-free lan-
guages. This theory has been studied by numerous authors in the literature 
since its first introduction by Brzozowski and Cohen [15] in 1971. Further 

‘ investigations showed its connection with formal logic [40] [63] and the com-
plexity of Boolean circuits [12] [26]. We will review the main results about 

I these hierarchies and discuss some recent partial results. [ §1 The dot-depth problem 
As we can see, the variety of rational languages is the variety of letters 

of the given alphabet and is closed under the Boolean operations, star and 
product; Restricting ourselves to the Boolean operations and product only, 
we then get the variety of star-free languages. Thus, a natrual question 
arises: For a given a star-free language L, what is the minimal number of 
times that one should use the product operation only to describe L1 This 
problem motivates the definitions of hierarchies of star-free languages. 

The following is a precise definition of the dot-depth hierarchy. Due to 
some technical reasons, the hierarchy is usually defined for languages on semi-
groups only. 

Definition 1.1 The dot-depth hierarchy is a hierarchy of +-varieties of 
languages Bi： For any finite alphabet set A, we let A^Bi as follows: 

1. A^Bo = Boolean algebra generated by {{u} : u G A+}, 
2. A^Bk+i = Boolean algebra generated by {L1L2 . . . Lj : Li G A^Bk,j > 

1}. — 
The dot-depth of a star-free language L C A+ is the least integer k such 

that L G A^Bk' Similarly, if S is an aperiodic semigroup, we define the 
• 

dot-depth of S to be the non-negative integer k such that S G Bk \ B^-i. 
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An outstanding open problem is whether there is an effective means to de-
termine the dot-depth for a given star-free language? We see immediately 
that this problem is equivalent to whether there is an effective algorithm to 
determine the dot-depth for a given aperiodic semigroup? 

By the definition, we can see that the dot-depth one languages are just 
the finite and co-finite languages on every alphabet, i.e., Bo = Afil and so 
the corresponding S-variety is Bo = Nil. As the union of all dot-depth hi-
erarchies is generated by letters of the given alphabet and closed under the 
Boolean operations and products, therefore it is just the +-variety of star-
free languages, i.e. Ufc>o ^k = 乂 and Ufc>o ^ k 二 A^^ 

As the description of the syntactic monoid of the product of some given 
languages is essential in the study of hierarchies of star-free languages, we 
shall give the definition of Schiitzenberger product which was first introduced 
by Schiitzenberger [49] and generalized by Straubing [57 . 

For a monoid M, we consider the power set V[M) of M, i.e., the set of 
all subsets of M. Firstly, we know that it is a monoid with the product 

i iS = {r<s | r6^,<5e57 ‘ 
for any two subsets R and S of M and the identity element 1 二 {1}. Next, 
it is also a commutative monoid for union of subsets R and S, we denote it 
by R + S, with the empty subset as its identity, we denote it by 0. Then for 
any R, Ri, R�Q M, we can easily verify the following formulae: 

1. R(Ri + R2) 二 RRi + RR2 
2. {R1^R2)R = R1R + R2R 
3. o • i?二 i ^ o = o 

Hence, V{M) becomes a semiring (with identity) under the union and prod-
uct operations. We therefore can, for any positive integer n, define the 
monoid V{M)^^^ of matrices of size n x n with entries in V{M), with the 
usual matrix product. 
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Let Ml,..., Mn be monoids and let M 二 Mi x … x M„. Then the 
Schiitzenberger product of Mi,..., M„, denoted it by On{Mi,..., M^), is the 
submonoid of V{M)^^^ composed of all the upper triangular matrices T 
satisfying the following conditions 

1. Tij = 0 if i > j 
2. Tii = {(1,... , l , m i , 1,..., 1)} for a certain irii G M{ which appears in the 

z-th component. 
3. Tij C 1 X . . . X 1 X Mi X Mi+i X •.. X Mj x 1 x .. • x 1 for i < j 
Similarly, we have a parallel definition for semigroups. Let Si^..., Sn be 

semigroups. We define the Schutzenberger product ()n{Si,..., Sn) of semi-
groups Si,...,Sn be all matrices in V{S\ x … 纪 广 几 satisfying almost the 
same conditions in the monoid case with the only difference that the diagonal 
entries are elements of Si but not from S}. It can be easily checked that the 
product On(5'i5 •••, Sn) is a semigroup. 

The recognizing power of the Schiitzenberger product is established by 
the following theorems. The first one is due to Schutzenberger [49] in the 
case of n = 2 and to Straubing [57] in general case. The second one is due 
to Reutenauer [48] for n = 2 and to Pin [42] in general. 

Theo rem 1.2 [49] [57] Let Li,..., L„ G A* be languages recognized by 
the monoids Mi, ...，M̂  and ai,..., a„_i be letters of A. Then the languages 
Li •. . Ln and L i a i . . . a„_iL„ are recognized by the monoid On{Mi,..., M„). 

Theorem 1.3 [48] [42] Let Mi,...,Mn be monoids. If L G A* is recog-
nized by On(^^i,..., M„). Then L is in the Boolean algebra generated by the 
languages of the form Li^aiL{^ ...«卜山；w h e r e 1 < “ < ... < z; < n, Lî  
is a language recognized by M{^ for k = 1,..., r and ai, ...,«^_1 are letters of A. 

Using the preceding theorems, we can establish an one to one correspon-
dence between the pseudovarieties generated by the Schutzenberger products 

‘ and the varieties of languages generated by the concatenation products (for 
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two languages L1,L2 G A* (A+) and a G A, the concatenation product of 
them is the language L1aL2). 

Let Vi, . . . , Vn be M- (resp. S-) varieties. We denote by On(^i , •••, ^ n ) 
the M- (resp. S-) variety generated by all monoids of the form <)n(^i, . . . ,礼） 
where Mi G Vi for i = l , . " , n . If V is an M- (resp. S-) variety, we define 
()V be the union of 0„ (y , . . . . , V) for all n > 1. Then <)V̂  is also an M-
(resp. S-) variety. 

The following characterization for the variety of languages corresponding 
to OV is an immediate consequence of theorems 1.2 and 1.3 above. 

Corollary 1.4 Let V be an M- (resp. S-) variety and let V be the 
corresponding *- (resp. +-) variety. Then a language L G A* (resp. A^) is 
recognized by a monoid (resp. semigroup) in ()V if and only if it is in the 
Boolean algebra generated by the languages of the form L1a1L2 • • • an-i^n 
with n > 1, Li G A*V (resp. A+V) for i — 1,..., n and ai,..., a„_i G A. 

There is another characterization of tlie varieties of languages which 
is closed under concatenation products by using aperiodic relational mor-
phisms. In fact, Straubing [55] proved the following important theorem. 

Theorem 1.5 [55] Let V be a *-variety (resp. +-variety) and V the 
corresponding M-variety (resp. S-variety). Then 

1. The least *-variety (resp. +-variety) containing V and closed under 
the concatenation product is the *-variety (resp. +-variety) which is 
associated to the M-variety (resp. S-variety) Ag^V. 

2. V is closed under the concatenation product if and only if V = Ag^V. 
From the preceding theorem, we know immediately that <)V = Ag^V 

for any M-variety (resp. S-variety) V. 

Now, we introduce another hierarchy of varieties of languages related to 
the concatenation product, this one in A*, closely related to the dot-depth 

y hierarchy, which is introduced by H. Straubing [57]. 
I 
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For any finite alphabet A, we set 
1. A*Vo = {0,v4*}. 
2. A*Vk = Boolean algebra generated by {LoaiLi"-ajLj : Li G A*Vk^ cii G 

A，i = 0,1, ...,j.}. 
We know from chapter 2 that Vo is just the *-variety X and hence the 

corresponding M-variety Vo = / . By theorem 1.4 above, we see immediately 
that every V^ {k > 0) is an *-variety and we have an algebraic description of 
their corresponding M-varieties: Vk+i — ()^k for each k > 0. 

Level 1 of the two hierarchies were also characterized algebraically, by 
Simon [51] [52] for Straubing's hierarchy and by Knast [31] for the dot-depth 
hierarchy. There are still very rare results concerning the higher levels of 
these hierarchies in the literature and are worthwhile for exploration. 

We now introduce the power pseudovariety of a given pseudovariety, which 
is related to tlie dot-depth 2. For a semigroup (resp. monoid) S, if V{S) is 
the set of all subsets of S, tlien V{S) is a semigroup (resp. monoid) under 
the product given by 

AB = { a 6 | a e A , 6 e B } 
for any two subsets A, B C S. V{S) is called the power semigroup (resp. 
monoid) of S. Let V be an S- (resp. M-) variety. We define PV be tlie S-
(resp. M-) variety generated by the semigroups (resp. monoids) of the form 
V(S) with S G V. 

The operation V ^^ PV on pseudovarieties corresponds to two important 
operations on the varieties of languages. Let A^ B be alphabets. We call a 
morphism 9 : A* — B* of free monoids literal if 0[A) C B, i.e. 6 maps the 
letters to letters. A morphism a : A* ~> V{B*) is called a substitution, i.e. 
cr maps the letters of A to the languages over B. Let a : A* ~> V{B*) be 
a substitution. For any L € V(B*), we let a'^L) = {u G A*\au n L ^ 0}. 
Thus we can treat a as a relation in A* x B* and take inverse images with 
respect to this relation. 

Let V be a *-variety of languages. For any alphabet A, we define A*AV 
y' be the Boolean algebra generated by the languages of the form 6{L)̂  where 
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L e B*V for some alphabet B and 9 : B* ~> A* is a literal morphism. For any 
alphabet A, we let A*EV be the Boolean algebra generated by the languages 
of the form cr"^(L), where L G B*V and a : A* ~> V{B*) is a substitution. 

The following theorem then characterizes the recognizability power of the 
pseudovariety P V , which summarizes tlie works of Pin [41], Reutenauer [48 
and Straubing [55]. 

Proposition 1.6 Let V be an M-variety and let V be the correspond-
ing *-variety. Then AV = T>V are *-varieties and which correspond to the 
M-variety PV. 

Pin and Straubing [45] characterized the M-variety V2 which is related 
to dot-depth 2. 

Theorem 1.7 [45] V2 二 OJ = <)Sl = ()R = OL 二 OZ^A = PJ. 

In conclusion, we summerize the important facts and the main results on 
the two hierarchies mentioned in the literature. 

Within the dot-depth hierarchy, we have the following results: 
1. Each Bi is a variety of languages for i > 0. (see [23], chapter IX) 
2. u r = 0 A ^ ^ k = A + S . 

3. The hierarchy is strict, i.e. for any k > 0 and if \A\ > 1, A^Bk is 
contained strictly in A^Bk+i- [16 

4. For the corresponding pseudovarieties Bk, k > 0. Bk is strictly con-
tained in Bk^i^ and U^o Bk = As. This is an immediate consequence 
of the items above. 

5. Bo 二 Nil. 
6. Bi consists of all semigroups S that satisfy the following condition: 

There exists n > 0 such that for all 5, t, u, v G S, e, f G E[S), 

‘ {esft)^esfve{ufve)^ = {esft)^e{ufve)^ 

53 



It follows from the above statements, one can effectively determine 
whether a given semigroup belongs to B i or not, and consequently, we 
know whether a given recognizable language in v4+ belongs to A^Bi or 
not. [31 

Within the Straubing's hierarchy, we also have the following facts: [58 
6 2 ； 

1. Vk is a variety of languages for each k > 0. 
2. U£o 4 * ¼ 二 A*<̂  for any alphabet A. 
3. A*Vk is strictly contained in A*Vk^-i for any k > 0 and any \A\ > 1. 
4. Let Vk, k > 1 be the corresponding pseudovarieties, then 

(a) Vk is strictly contained in Vk+i-
(b) ur=o ^ ^ 二 A 

5. Vo 二 I , Vi 二 J (Simon), V2 二 PJ (Straubing and Pin). 
6. Bk 二 Vk * LI for k > 1 and V^ = Bk 门 M for k > 0. It follows 

from this that Vk consists of all monoids in Bk, and that if there is an 
algorithm for determining membership in Vk^ with k > 1, then there 
is such an algorithm for Bk. (Margolis and Straubing) 

( 

§2 Lower bounds, upper bounds and partial results 

As the exact dot-depth of an aperiodic semigroup is very difficult to be 
effectively determined, we transfer our attention on its lower bounds and 
upper bounds, and in some special cases, these bounds may yield the exact 
dot-depth. Following the discussion on a lower bound for the dot-depth, P. 
Weil [68] obtained some results. 

Let V be an S-variety and W an M- (resp. S-) variety. Then define 
‘ the Mal'cev product V 0 W as the class of all the quotients of the monoids 
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(resp. semigroups) M such that there exists a morphism (f : M — N with 
N e W and (p~^{e) G V for each idempotent e of N. Using the notion of 
the canonical factorization of a relational morphism, it is easy to verify that 
V 0 W defines equivalently as the class of all monoids (resp. semigroups) 
M such that there exists a relational morphism r : M ~> N with N G W 
and r"^(e) G V for each idempotent e of N. It can be verified easily that 
V 0 W is an M- (resp. S-) variety. 

Proposition 2.1 [68] Let V be an S-variety and W a locally finite 
M-variety. Let M be a finite monoid and hence there exists an finite vari-
ables set X and an epimorphism fj, : X* — M. Let a : X* ~> FxW be the 
canonical morphism of the W-hee monoid on X. Then M 6 V 0 W if and 
only if jucr"^(e) G V for each idempotent e of FxW. 

Proof. Let r = cr"_i. Then r : M ~> FxW is a surjective relational 
morphism and r"^ 二 fjLa—\ Thus, if /ucr"^(e) = r"^(e) G W for each idem-
potent e G E{FxW), then M G V 0 W. 

Conversely, suppose that M G V 0 W. Then there exist epimorphisms 
p ： N ^ M and (p : N — T such that N 6 V 0 W , T G W and ^'^e) G V 
for any idempotent e in T. By the universal property of the free monoid X* 
there exists a morphism u : X* — N such that “ = pu. Replacing N by 
v{N) and T by (pu{N). As iy{N) and ifu{N) are submonoids of N and T 
respectively, they are still in the varieties V 0 W and W respectively. We 
may assume all morphisms are epimorphisms. Now, as T G W and ipu : 
X* ~^ T is an epimorphism, it then induces an epimorphism xp : FxW ~^ T 
such that xpa 二 (piy. We can summerize all morphisms by the following 
commutative diagram: 

T <^- N ^ ^ ^ M 
个 个 ^ x ^ i> ^ / / ^ 

FxW <——X* a 

Let e be an idempotent of F x W . Note that cr"^(e) C a~^^~^^[e) and 
y' 
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since xpa = ipu and pu = /i, we have 
/x<j-i(e) C /io""V"V(e) 二 p " " _ V _ V ( e ) = pv^"V(e). 

Now, e e E{FxW) implies that xp{e) G E{T), Then, we can deduce that 
V?-i0(e) is in the S-variety V. Finally, as p is an epimorphism, tliis implies 
tha t pv^"V(e) is also in V. Hence, ^a"^(e) G V. The proof is complete. 

We have the following useful lemma. I Lemma 2.2 Let Vi , V2 be S-varieties and V3 a pseudovariety. Then | 
i!, 

I 

V i 0 ( V 2 0 V 3 ) c ( V i 0 V2) 0 V 3 . I 
Proof. For any M in Vi 0 {V2 0 V3), by the definition, there exists a 

relational morphism r : M ~> N with N G V2 0 V3 and r-^(e) € Vi for 
each idempotent e of N. By the definition again, there exists a relational 
morphism p : N ~> P with P G V3 and p~\f) G V2 for each idempo-
tent f of P. Now, let a : M ~^ P be the composition a 二 pT. Then for | 
each idempotent f G E{P), we have a~^iJ) 二 r—i(/9—i(/)). Observe that ； 
p - \ f ) e V2, we can deduce that a"^( /) G Vi 0 V2. By the definition, we [ 
have M e (Vi 0 V2) 0 V3. : 

As for a relation between the Schutzenberger product and the Mal'cev | 
product, Pin [44] proved that OV C Bi © V for any pseudovariety V. This 
implies immediately that Vn+i C B i © Vn for n > 0 in the Straubing's 
hierarchy. 

Let M be a monoid and let e G E{M). We define Me be the subsemigroup 
of M generated by all elements of M which is greater than e under the partial 
order < j , that is, generated by the set 

Pe 二 {m G M|MeM C MmM}. 
Let us consider the submonoids of M of the form eM^e for any e G E{M). 
Note that if e is the identity of M, then eMeC is the group of invertible ele-

‘ ments of M. Also it is easy to verify that eMgC is strictly contained in M if 
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and only if M is not a group. 

Let V be an M-variety. We define V be the class of all monoids M such 
that eMgC G V for all e G E{M). Firstly, we prove that V is also an M-
variety. 

Lemma 2.3 [68] Let (p : M — N be a monoid morphism. Then we 
have: 

1. If e G E{M) and f 二 ipe, then v?(Me) = Nj. 
2. If (p is an epimorphism and f G E(N), then there exists e G E{M) 

such that (pe = f and (f{Me) 二 N[ 
Proof. 

1. By definition, (f{Me) is generated by the set (f{Pe) 二 {v̂ «5|e < j 5}. 
Since e <j s implies f <j <ps^ we have (f{Pe) C Pj and hence (p{Me) C 
Nf. 

2. Let e be an idempotent in the minimal ideal of the subsemigroup ( f _ \ f ) 
of M. In particular, (pe = /，so (p(Me) C N/ by (1). Let now n G N 
such that f <j n. Then f 二 anb for some a, b G N. Let x, m and y 
be elements of (/?~^(a),(/?~^(n) and <f](b) respectively. Then we have 
(f(xmy) = f and so e <j xmy <j m. Therefore m G Mg and hence 
n = (pm G (f{Me). Thus Pj C Lp{Me) and so Nj C (p{Me). 

Proposition 2.4 [68] Let V be an M-variety. Then V is an M-variety. 

Proof. Let M and N be monoids and let (e , / ) G E(M x N) = E{M) x 
E{N). It is easy to verify that P(e,/) = PeXPf, so that (e,/)Mx7V(e,/)(e,/) 二 
eMge X f N j f . Thus V is closed under direct product. 

Next, suppose that N is a submonoid of M and e is an idempotent of N. 
Then e is also an idempotent of M and eNeC C eMge. So N G V. 

Finally, suppose that (p : M ~> N is an epimorphism and e is an idempo-
tent of N. Then eN^ = ^ { f M j f ) for some f G E{M) according to Lemma 

,• � ~ 2.3. Hence N is also in the class V. Thus, we have proved that V is indeed 
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an M-variety. 

We now give another description for the operation V y^ V. 

Theorem 2.5 [68] Let V be an M-variety. Then we have V 二 
LVQJi = LVQDA. 

Proof. For any M E V, we take a finite variables set X such that there 
is an epimorphism |j, : X* — M, Let a : X* ~^ 2^ be a monoid morphism 
from X* to the monoid of subsets of M with union. Then, we know that 
2^ 二 FxJi and a is its natural morphism. Now for any idempotent X” C X 
of 2^, let e G E{|j,a'^{Xr)). Then e = fj,{xi ‘ ‘ ‘ Xr) for {xi, ...,Xr} = Xr. 
In particular, for each X{ G X " e < j fJ,{xi) and so jj,{xi) G Me. There-
fore, "o"-i(Xr) < Me. So, we have efjia'^{Xr)e < eMee € V and hence 
fUT_i[Xr) G V, It is clear that any semilattice is locally finite, i.e., J i is 
locally finite. Then we have proved that M G LVQJi, by using proposition 
2.1. 

Conversely, let us assume that fia~^{Xr) G LV for each idempotent X^ C 
X. For each e G E{M) and x G X such that e <j fj,x, there exist w � v ^ E X* 
such that e = fj,{uxXVx). In particular, if Xr = /-i"^(Pe)门 ^ — {a;i, ...Xr}, 
then e = /^(wxi3^i^xi . . . Uxr^r^xr) and a(uj;^Xiv^^ . . . Uxr^r^xr) = ^ r , so e G 
|j,a'^{Xr) and hence eMeC G LV. But since eMgC is a monoid, eMeC G V ~ � 
and M G V. Thus we have proved that V 二 LV" 0 J i . 

Now we prove the left part of the proposition. Since J i C jDA, we liave 
V C LV © DA. Conversely, Lemma 2.2 implies that 

LV 0 DA = LV 0 {LI 0 Ji) C {LV 0 LI) 0 Ji 二 LV^ © Ji 
since it is clear that LV © LI 二 LV. The proof is complete. 

We now define an increasing sequence {Wn)n>o of M-varieties by letting 
1. T^o = / 
2. Wn+1 = ^ n for any n > 0. , 
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Clearly, we have Wi = / 二 LI © DA 二 £)A. It is also clear that Wn 
is strictly contained in Wn^i for any n > 0 and that Un>o^n = A. 

Proposition 2.6 [68] For all n > 0，we have Wn = LI 0 Wn and 
L D A 0 W , C W,+i. 

Proof. We have V^o = LI 0 Wo and W^ 二 DA = LDA © Wo since 
that LI © I and LDA © I are classes of monoids. Let us assume that tlie 
formulae LI 0 Wk = Wk and LDA 0 Wk C Wk^i stands for all k < n. 
Let if : M — N be an epimorphism with N G Wn+i and (/?~^(e) G LI (resp. 
LDA) for each e G E(N). Now for any f G E[M), we have i p { f M j f ) C 
(v^/)iV(c,/)((^/) by lemma2.3. But N G W^+u so (v^/)%/)(v^/) G W^, and 
hence we have f M j f G LI 0 Wn (resp. LBA Q Wn). Thus f M j f G W^ 
(resp. Wn^i ) for any f G E{M) and therefore, M G W^+i (resp. VFn+2). 

Corollary 2.7 Vn C Wn for any n > 0. 

Proof. For n 二 0, we have by definition Vo = Wo 二 I. 
Let us assume that Vn ^ Wn for some n > 0. Then Vn+i ^ B i • Vn C 

Bi 0 Wn- But also we have Bi C LJ C LDA and so Vn+i C LDA 0 
Wn C Wn+i' Thus the corollary follows. 

As a consequence, we also obtain the following corollary: 
Corollary 2.8 Let M be an aperiodic monoid. If M • W^ then 

M 雀 Vn- In particular, the dot-depth of M is greater than or equal to n + 1. 

Now, observe that the M-varieties Wn are decidable, so that the above 
criterion gives us an effective lower bound for the dot-depth of a given aperi-
odic monoid. In addition, we also have the following theorem due to Weil [64 . 

Theorem 2.9 [64] Let M be an aperiodic monoid and n the maximal 
number such that there exists a chain M = Mn D . • . � M i � M o = {1} 
with Mi-i 二 e(Mi)e6 for some idempotent e of Mi for i 二 1,..., n. Then M 

, lias dot-depth at least n. 
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J. E. Pin et al [46] investigated the relationships between locally trivial 
categories and the unambiguous concatenation products of languages. They 
have also obtained an effective upper bound of the dot-depth of aperiodic 
monoids. The following theorem is obtained by them: 

Theorem 2.10 [46 
1. Let M be an aperiodic monoid of dot-depth k. Then there exist sur-

jective morphisms 
M = Mk — Mk-i —.…~> Ml ~> Mo -： {1} 

such that the dot-depth of Mi is i for 0 < i < k. 
2. Let M be an aperiodic monoid. Consider a factorization n =冗1冗2 . . . ^k 

of the morphism n : M ~> {1}, where each factor a : N ~> R satisfies 
one of the following conditions: 
(a) There is a J'-class J of N such that a is injective on N \ J，and 

an = an' implies that n and n' are ^{-equivalent. 
(b) There is a J'-class J of N such that cr is injective on N \ J, 

an = an' implies that n and n/ are J'-equivalent, and cr is an 
injective mapping on the groups contained in S, 

(c) There are two v7-class Ji < J2 such that ¢7 is injective on S \ J2, 
an 二 an' implies n 二 n/ or n,n' G Ji U J2,and a is injective on 
the groups contained in N. 

(d) There are two incomparable j7'-classes Ji and J2 such that cr is 
injective on S \ J\ and on S \ J2, crn = an' implies n — n' or 
n ,n ' G J\ U J2, and cr is injective on the groups contained in S. 

Let k be the number of these factors that satisfy condition (c) with J2 
regular. Then the dot-depth of M is less than or equal to k. 

Straubing [59] gave an apparently different effective necessary condition 
‘ for an aperiodic monoid with dot-depth at most two, and went on to prove 
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that this condition is also sufficient for 2-generated monoids, thus proving 
the decidability of dot-depth two for these monoids. He also conjectured that 
the condition he gave is sufficient for general case. 

A new approach to the dot-depth problem is restricting the general prob-
lem to inverse monoids [64] [66], A class of finite inverse monoids (resp. 
semigroups) is called an /M-variety (resp. /5-variety) if it is closed under 
finite direct product, homomorphism image and taking of inverse submonoids 
(resp. subsemigroups). Thus, the /M-varieties (resp. /5-varieties) can be 
dealt with like M-varieties (resp. S-varieties), and we can hence study the 
counterparts for IM- (resp. IS-) varieties of the general dot-depth hierar-
chies [60] [21]. We omit the details. 

y' 
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Chapter 5 Operators P and P' 
The discussion in chapter 4 showed the importance of the characterization 

of the pseudovariety PJ. We now study the operator P over any pseudova-
riety V. Recall that for a semigroup S, V{S) is the semigroup of the subsets 
of S under the product induced by the product in S. We denote it by V'{S) 
which is the set of all non-empty subsets of S. Then it is clear that it is 
a subsemigroup of V[S). We have the following definitions for the varieties 
PV, V'V and pseudovarieties P V , P'V of semigroups. Similar definitions 
hold if we replace semigroups by monoids. 

Definit ion 1 Let V be a variety of semigroups. Define W (respectively 
V'V) be the variety generated by the semigroups of the form V{S) (respec-
tively V'{S)) with S e V. Similarly, for a pseudovariety of finite semigroups 
V , define PV (respectively P'V) be the pseudovariety generated by the 
semigroups of the form V{S) (respectively V'{S)) with S G V. 

Note that the function 
V\S) X P\T) ^ V\S X T) 

[A,B) H> A X B 
is an embedding. Thus, we conclude that 

V'V = HSP{V'[S) ： S G V} = HS{V'{S) ： 5' e V}, 

and similarly 
P'V = HSPfin{V'{S) : S e V} == HS{V'{S) ： S G V}. 

Recall that Sl2 is the semilattice with two elements {0,1}. Let Sl 二 
V{Sl2) and Sl 二 V(572). Th'iii clearly Sl is thus the pseudovariety of finite 
semilattices and Sl is thus the，ariety of semilattices (recall the proof in 
proposition 3.6, chapter 2 and ct !vipare with J i , which is the M-variety of 
finite semilattice monoirM and we have Sl^ = SL 

y' 
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The following proposition tells us the relationships between P'V, P'V 
and VV, PV. 

Proposit ion 2 [6] Let V be a variety of semigroups and V a pseudovari-
ety offinite semigroups. Then, we have VV = V'WSl and PV = P'VVSL 

Proof. First, we have an onto homomorphism 
V'{S) X Sl2 — V{^S) 

(A,1) H^ A 
(A,0) ĥ  0 

whence V{S) G H{V'{S) x Sl2) for any S G V. This implies the inclusion 
VV C V'V V Sl. Conversely, the semigroup Sl2 is embeddable in every 
semigroup of the form V{S) (just take the subsemigroup {0, 5'}), therefore 
Sl C VV and we then deduce the reverse inclusion V'V V Sl C VV since 
V'V C VV is obvious. 

Similarly, we have PV = P'V V SL 

In chapter 3, we have already found many pseudovarieties of finite semi-
groups which can be represented by a set of pseudoidentities combined by 
words and u;-powers, hence, the membership problem of them can be ef-
fectively solved by checking whether a finite semigroup satisfies those pseu-
doidentities or not. In tliis chapter, we are going to describe the pseudovariety 
PV through the identities satisfied by it. The following discussion on the 
identities of power semigroups was due to J. Almeida [6]. 

To determine the identities satisfied by power semigroups, it is convenient 
to generalize the notion of identity. Let X = {x1,x2,...} be a countable set 
of variables. For t G X + , T C X+ and a semigroup S, we write S 一 t G T 
if, for any homomorphism v? : X^ — S, ^pt G ^T. 

Let a : Np — N and |3 : Ng — N be arbitrary functions corresponding 
to the arbitrary words Xai • • . ô ap, ^01 • . • ĵdg € X^. For the natural number 
p' 二 p + \Imf3 \ Ima | , we fix an ordering jp+1,jp+2, ".,jp' of Imf3 \ Ima. 
Extend a to a function a' : Np> ~> N by letting a'i = ai for i 二 1, ...,p and 
a'i 二 ji for i 二 p + 1, ...p'. For this choice of a\ we obtain a finite nonempty 
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set of functions 
Pja 二 {7 : Nq ^ Np> : a'^i 二 pi,\H G N,} 

and a corresponding set of words 
F{a,f3) = {x^i • • • x^q : 7 G "/a}. 

Note that, although the set of words F{a^p) depends on the choice of a ' , 
the condition S |= a;i".a;p G F[a^P) is independent of that choice. Similarly, 
we define a set F(/?, a). 

L e m m a 3 [6] Let S be a semigroup. Then the inclusion relation 

Aai . . . Aap C Api . • . Af3q holds for any Ai, ...^Ar G V'{S) if and only if 

S 1= xi • .. Xp G F[a^p). 

Proof. "=^" Let (p : X ~^ S and let a{ 二 cpa:i,i = 1 ,2 , . . . . Consider the 
sets Di = {aj : a'j = z}, As aj G A^'j, for each i G Ima U Imf5, Di is clearly 

a nonempty set. By hypothesis, we have 
ai . • • ttp e Dal . •. Dap C Dpi .. . Dpg. 

Hence, there exist Zj G Dpj{j G Ng) such that ai . • . ap = z^ • . • Zq. Let 
S G P/a. Then , for each j G Nq, we have Zj G Dpj — Da'Sj- For j such that 
Sj < p, we choose 7j G Np such that Zj = a)j and a'7j = a^Sj. We can 
use this information to define a function 7 : Ng ~> Np/ by taking 7j = Sj if 

5 j > p. Thus , 7 G P|oi and 

^{xi . • . x^) = ai • . . ttp = zi • . . Zq 
=«71 . . . «79 = ^(Xyl . . . X^g). 

This shows that S |= xi • . . Xp G F[a,j3). 
"<="Let Ai, ；.., Ar e P'(S) with Ima U Imfi C Nr and let Zi e A«/,-, i e 

Np>. For any function ¢^ : X ~^ S such that (px{ 二 Zi,i G Np�we have , by 
hypothesis, ^[xi . . . x^) G (pF[a,f5), and so there exists 7 G (3/a such that 
^{xi . . . Xp) = ^[xn|i • . . Xr^q). Hence 

Zl . . . Zp = . <p{xi . . . Xp) = (f{x^l . . . X^q) 
=^7l . . • 7̂g ^ ^a'7l • • . Aa>^q = Api • • . Apq^ 
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whence Aai . . • Aap C Api • . • Af3g. 

In terms of the identities satisfied by V'{S), the preceding lemma has the 
following formulation. 

Theorem 4 [6] Let S be a semigroup and let u = Xai . . . Xap and 
V = xpi • • . X(3q be words of X+. Then V'{S) |= u 二 t; if and only if 
S 1= xi . . . Xp e F (a , /?) and S |= xi • . . Xg G F[|3, a). 

Lemma 5 If the sides of an identity u 二 t> are both products of distinct 
variables and S \= u = v, then V\S) _ u = v. 

Proof. Let the identity be Xai. • • x^p 二 xpi •.. xpq. For any Ai,..., Ar G 
V'{S), we need to show that A^i . . . Aap = Api . . . Apq. By hypothesis, we 
know that Xai^i = 1，...,；？ are distinct variables and X|Sj,j = 1,..., q are also 
distinct variables. Now if all the variables in these two sets of variables are 
distinct, then the equation Aai . . . Aap 二 A ^ • . • A^g is obviously satisfied. 
Let us consider the case that there is one same variable in these two variable 
sets, say x^h 二 xpk. Then, for any a G Aah = /̂3fc, we have the following 
equation 

Aal . . . Aa{h-iaAa{h+l) . . . ^ap 二 ^P1 . . . ^P{k-l)aAp(^k+l) . . . Apq 
Therefore, 

Aai . . . Aap. = U Aal • . • Aa(h-l^^a(h+l) . . . ^ap 
aeAah 

= J ^01 . . . Ajg(k-i)aA/s(k+i). . . AjSg 
a&A|3k 

=Api . • • Af3q 
Similarly, if there are more than one (finite number) same variables in 

those two variable sets, we can take the union, one by one, similar to the dis-
cussion above and actually concludes the proof of the equation Aai • • • Aap 二 
A/Jl • . • Apq. 

y' 
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The lemma above shows the importance of those identities whose both 
sides are products of distinct variables in the study of the identities satisfied 
by power semigroups. We give a name for these kind of identities: linear 
identities. For an arbitrary set of identities S, we use £ m E to represent the 
subset of all linear identities of E. For a variety of semigroups V，we define 
CinV = [Cin{IdxV)] for an infinity set of variables X, in view of lemma 
1.12, chapter 1, this variety is well defined not depending on the choice of X. 

Given a function a : N^ — N, we represent the identity xyxr 二 a:cti...a^ar 
by £a. Most of what follows depends on the detailed analysis of the conse-
quences of such an identity, in which the following lemma is quite useful. 

Lemma 6 [6] Let p : Nr — N be a function. Then the identity Sp is 
equivalent to the linear identity e^, where 

.—r pi, i e L = ngiW 
饥 - \ r + z, i e Nr \ L 

Proof. Since the domain of p is a finite set, there exist some positive 
integers n and k such that p^^^ = p^. Hence, p defines a permutation of the 
set L = Imp^ and, therefore, e^ is a linear identity. 

The substitution of Xr+i by ccpi,i G Nr then yields Sp as a consequence 
of e„. For the converse，note that, given a function a : Nr — N, we have 
6a 卜 Ss, where 

{ai, i G Ima fl Nr 
r + i, i G Nr \ Ima 

Let us consider the functions 广⑴ defined by 
(i+i)-_ / Ph i ^ Nr n Impi 

P — \ r + i, i e Nr \ Impi 
where p^ denotes the inclusion Nr 4 N. As 

/ m ( / + i ) ) n i V r 二 {j6Nr:j = pi,3ieNrf)Impi} 
=p{Nr n Imp^) n Nr 

,. 二 / 7 7 2 ( 广 1 ) 吼 
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from the preceding observation, we deduce that e"(o 卜 Sp(t+i). Since 口⑴二 p 
and /9('+i) 二 cr, we conclude that Sp 卜 So' 

The identities of the form Xi... Xp 二 cc)i... x^g are naturally associated 
with formal inclusions of the form x：... Xp G F(a,/3), and so the following 
result will be of importance to continue the analysis of the identities which 
are valid in power semigroups. 

Proposition 7 [6] Let 7 : Nq ~^ N and 6 : Np — N be arbitrary 
functions. Then the set of identities 

S = { /_ii:a;i...a;p = a^^i...a^Yg, 
[Ji2 : Xi . . . Xg 二 如...X5p} 

is equivalent to a set of two linear identities with the same left sides as ^i 
and ĵ 2 respectively. 

Proof. We start by extending 7 and S to the functions 7,^ ： N ~> N 
respectively, say by letting them act as the identity function outside the sets 
Nq and Np. We then have 

S h Xi . . . Xp 二 x^i... x^q 二 X^5i .. • X^5p. 

Let p 二 ^5 and r = p. Then by Lemma 6, taking k such that / is the identity 
function on the set L = n£ i /m(5J) t and iterating k times the identity £ � 
given by the lemma, we obtain the identity ê k and therefore, 

E 卜 0；1 . . . Xp 二 CCj^l . • . Xrjp, 
where , 

._/ i, 1 e L 
" 口 ！ P + Z, z G N, \ L 

Combining this last identity with fJi2, we obtain the following equation: 
E 卜入2 : 3̂ 1 • . . ̂ q 二 ^5'l . . . Z5'p, 

where S'j 二 5j for j e L and 8'j 二 s + j for j G Np \ L with s = max{p, q}. 
As p = j5 permutes the elements of L,S is injective on L; hence so is the 
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function 8' and A2 is a linear identity. The substitution of X{^s + j) by xsj 
shows that 62 卜 fi2. Similarly, E allows us to deduce the linear identity 

Al ： Xl • • • Xp = 3^yi • • • Xyfg, 
where f z = ^i for i G M 二 ng1 /m(J7)* and ^'i 二 s + i for i G Nq \ M, "1 
being obtained from Ai by substitution. Hence, the set {A1,A2} satisfies the 
required conditions. 

The following result in a certain way solves the characterization problem 
of V'V and VV through the identities satisfied by them. This result was 
obtained by J. Almeida [6]. 

Theorem 8 Let V be a variety of semigroups. Then the following 
properties hold: 
1. V'V = CinV 
2. VV 二 £inV V Sl 
3. i f 5 7 2 e V , t h e n P V = r V . 
Proof. 

1. By Lemma5, we have V'V C CinV. Conversely, if V'V |= e : Xai. •. x^p = 
Xf3i • . . Xpq, then by Theorem 4, V satisfies the formal inclusions xi • • • Xp 6 
F{a,|3) and Xi... Xg G F{|3, a). Then, xi... Xp = x^i... x^q for some 
7 G p|a, and so 

V 1= £1 ： Xl . . . Xp = X î . . . X^q. 
Similarly, there exists 6 G a||3 such that 

V [= £2 : Xl •. . Xg = x51... xsp. 
Let E 二 {ei,S2} and note that each Si allows us to deduce the identity £, 
for example, substituting Xi by Xcc>i in £1, we obtain e. From Proposition 
7, we know that E is equivalent to a set E' of linear identities. Hence 
V 1= E' and therefore, CinV |= E', and so CinV [= E. Hence, the 
variety CinV satisfies the identity e. Consequently, CinV is contained 

‘ in V'V. 
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2. This part follows from 1) and proposition 2. 
3. As Sk G V by hypothesis, we have Sl C V C CinV (the last inclusion is 

true since IdxV 2 Lin{IdxV)). Hence VV 二 CAnVySl 二 jCinV 二 V'V 
by 1) and 2). 

Corollary 9 The semigroup of operators on varieties of semigroups 
which is generated by {V,V'} has three elements, namely V,T' and V\ and 
it is defined by the relations V' 二 V'\V'V 二 V^ and VV' = V. 

Having solved the problem of discribing VV and V'V by the identities 
satisfied by the power varieties, it is natural to study the pseudovarieties 
PV and P'V following the same idea. From chapter 1，we know that any 
pseudovariety V is of the form >V^ for some generalized variety W. Gen-
erally, we can extend the operator Cin to a generalized variety W 二 Uie/V î 
such as 

CinW = £in(UieiVi) = Uiei^inVi 

and consequently we can define LinV 二 (£in>V)F. We may also expect 
that P'V = LinV, but unforturnately, this is generally not true. At the 
following context, we give a result that if V is a subpseudovariety of the 
pseudovariety of locally trivial semigroups, then the equation P'V = LinV 

holds, which was given by J. Almeida [6]. Here we give a detailed proof. 

Lemma 10 [6] If V is a pseudovariety of finite semigroups, then 
V{P'V) = V'V{V). 

Proof. First, we have 
V{P'V) 二 HSP�HS{V'�S�: S £ V}) 

二 _fiT5T{P'(<S):5^eV} 
C HS{V'{S) : 5 G V{V)} 
= = 仰 ⑷ . 

Conversely, suppose that 
, P'V (= 6 ： Xal . . . Xap = X^i . . . X^g. 
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Then, from theorem 4, we have for any S € V, 
S 1= xi... Xp G F{a,P) 

and 
S h Xi-"Xq e F{f3,a). 

Let F{a,f3) = {wu,..,wr}. If for any Wi G F{a,j3), there exist Si € V such 
that Si ^ Xi" 'Xj , = t^i, then Si x . . . x Sr ^ Xi-"X^ G F{a,P) . Hence 
there exist 7 G F{a,f3) and S G F(/?,a) such that V satisfies the identities 

Sl ： Xi . . . Xp — X^I . . . X^q^ 
62 ： Xi . . . Xq 二 XS1 • • . X5p. 

Hence, the identities £1,62 are all valid in the variety V{V), and therefore 
W{V) =̂ e by theorem 8. Hence, V'V{V) C V{P'V). 

An algebra A is called locally finite if all its finitely generated subalgebras 
are finite. A class JC of algebras is said to be locally finite if all its elements 
are locally finite. 

Lemma 11 Let V be a pseudovariety. Then the variety V(V) is locally 
finite if and only if FnV is finite for any n > 1. 

Proof. 
"=^" For any n > 1, FnV G V{V) is clear, also KY is finitely generated 

by the set {xi,..., x„}. Hence FnV is finite by hypothesis. 
"4=" For any algebra A G V{V) and any finitely generated subalgebra B 

of A, B is also in the variety V(V). Suppose B is generated by n elements, 
then we can take a surjective map 

^ : ^ n ^ B, 
and then we can extend cp to an epimorphism 

(p : FnV ~> B. 
x ' 
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As FnV is finite by hypothesis and <f> is surjective, B is forced to be finite. 
Hence the proof is concluded. 

From the above lemma and proposition 2.5, chapter 1, we immediately 
deduce the following corollary. 

Corollary 12 Let V be a pseudovariety of finite algebras. If the variety 
V{V) is locally finite, then V{Vf 二 K 

Theorem 13 [6] If a pseudovariety of finite semigroups V is contained 
in L I , then P'V = LinV. 

Proof. Suppose that V 二 W? = fiig/Vf. Then, we have 
P ' V - HS{V'{S) : 5 G UieiVf)} 

二 U i e / i /外广 ( ^ : S G V f } 

二 ^ieiP'V[ 
On the other hand, we have 

LinV = {CinyVf = {UieiCinVif • 
=Uiei{CinVif = U^ei{V'Vif. 

Hence it suffices to show that P 'V^ 二 {V'V)^ for any variety V which is 
generated by a finite semigroup (recall the proof of proposition 2.7, chapter 
1) and such that V^ C LI by hypothesis. Suppose now V = V{A) with a 
finite semigroup A. As 

A G V(A)^ C LI = Uk>i[[xi... Xkyzi.. • Zk 二 工1 •.. XkZi •.. Zk]], 

so A t 0；!... Xkyzi... Zk 二 x\ •. . XkZi. •. Zk for some k and therefore this 
identity is satisfied by V{A). From lemma 5, this identity is also satisfied 
by V'V since it is linear. Now, for any finitely generated semigroup S in 
the variety V'V, consider all the words on its finite generators {si, ...,5^}, 
any words with length 1 > 2k + 1 can be equivalent to a word with length 

‘ 1 - 1 by a substitution of identity a;i.. • Xkyzi... Zk 二 xi . •. XkZi • . . Zk. This 
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shows that there are at most finite words with length less than or equal to 
2k which are not equal to each other in S, i.e. S is finite. Hence, we proved 
that V'V = V{P'V^) (by lemma 10) is locally finite, and so it is equational 
by corollary 12. i.e. P 'V^ = (P'V)^, which concludes the proof. 

From the proof of the preceding theorem, we notice that the restriction 
of V{A)^ C LI is essential to enforce that V'V is locally finite, and hence 
equational. 

Another problem on the operator P was asked by Straubing in [55]. For a 
pseudovariety V, let P"+i 二 P(P"V^)，then we obtain an ascending chain of 
pseudovarieties V C PV C P^V C . .…Straubing [55] asked whether this 
chain is infinite for some pseudovariety VI He conjectured that P^V 二 p 3 ^ 
for any M-variety V and proved the result for commutative M-variety, ob-
tained independently by Perrot in [39] as well. 

Proposition 14 [55] [39] Let V be a commutative M-variety. Then 
p 2 y 二 p 3 y . Furthermore, if V + / , then FY 二 p 2 \ / is the M-variety of 
commutative monoids all of whose subgroups are in V. 

Margolis and Pin [36] proved the following result: 

Proposition 15 For any noncommutative M-variety V, P ^ V = M . 

Corollary 16 P^V = P^V for any M-variety V. 

Remark: Pin [41] also gave an example of M-variety, which illustrates 
that the result gaven in Corollary 16 is the best possible. 

Example 17 [41] Let Ri be the M-variety of all 7^-trivial idempotent 
monoids. Then the M-varieties Ri , PRi^ P^Ri and P ^ R i are all distinct. 

In closing, we remark that a complete description for the operators gen-
, erated by P and P' on S-varieties was given by Almeida in [6]. 
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Theorem 18 [6] The semigroup of operators on S-varieties generated 
by {P,P'} has eight elements, namely, P ' , P ' \ P ' \ P , P \ P \ P P ' . and 
P P ' \ and it is defined by the relations 

p ^ p = p2 p 2 p / = p 3 p/4 二 p/3 p , 3 p 二 p / 2 p p p , 3 二 p p / 2 

« 

• 
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