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Abstract 

In this thesis, we try to analyze the feasibility of applying neural networks, especially 

the temporal difference (TD) learning model, in the game of Go. First, a framework of 

decomposition of computer Go into smaller problems is given. Previous applications of 

neural networks and TD learning in Backgammon and Go are then given. 

We derive a new updating rule for applying TD(A) learning in multi-layer Perceptron 

and use the rule in performing several experiments. From the first experiment, we obtain 

a relationship between A and the performance of the evaluation function after training. 

When trying to use TD learning from a fixed training set, performance of TD learning is 

worse than supervised learning. 

Although we do not apply TD learning in Go successfully, using supervised learning, 

we can obtain good results with learning from a small set of training data. We propose a 

model that describes such extraordinary behavior. The model will be useful in reducing 

the complexity of space of many problems in computer Go. 
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Chapter 1 

I n t roduc t i on 

1.1 Overview 

The ability for computer to play intellectual games such as Chess, Checkers and Go, in 

a level better than human beings was thought as a breakthrough in artificial intelligence. 

It is because we commonly believe that being able to play such games well requires true 

“intelligence.，，Now, we have computer Chess programs that are able to beat our world 

Chess champion. We also have programs that can play Backgammon in a level very close 

to our world Backgammon champion. So, it is reasonable to think that the research for 

computer playing intellectual games will come to a ending stage soon. However, this 

thinking is refuted by the case in Go (Wei-Qi in Chinese). 

The game Go has certain distinct properties that make it difficult for computer to 

play well [6]. First, it has a huge game space, which is much bigger than that of Chess. 

Second, it has a large branching factor, making a deep exhaustive search for good moves 

impractical. Furthermore, it is difficult to evaluate a situation of the game. As a result, 

it is not possible to adopt the techniques in computer Chess in computer Go to produce 

similar success. Current approach in solving the game is to design programs in a heuristic 

way that requires a lot of expert knowledge of the game. The resulting programs are very 

weak 一 at a very low level that even a novice player can beat the best computer program 

easily. 
For all these difficulties, the problem of computer Go is a good problem in artificial 

1 
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intelligence that we may need to model the way human being thinks in order to solve the 

problem. This is not the case in computer Chess because Chess programs play Chess in 

a very different way from human players. The Chess programs rely heavily on searching 

instead of on the knowledge of the game [6]. On the other hand, computer Go researchers 

have to build Go programs from our knowledge and experience in the game. However, 

from our current knowledge, we find that it is difficult for us to model our Go knowledge 

precisely because our reasoning in Go is in a very abstract form. 

Aside from the current heuristic programming approach in solving computer Go, there 

are some alternate ways to tackle the problem. Machine learning, which tries to solve prob-

lem through learning from experience, will be a good direction in computer Go. Neural 

networks, which is a learning model that solves a problem by learning the implicit know-

ledge from a set of training examples, appears to fit the problem of computer Go because 

our knowledge of the game is too abstract to formalize and implement in a program. 

With this approach, we will not need to explicitly extract the knowledge that is important 

and organized it in a good structure. These will hopefully be solved implicitly by neural 

networks. 

Temporal difference (TD) learning is a reinforcement learning model It has been 

applied in Backgammon. Like Go, Backgammon is also a game that cannot be solved by 

the model used in computer Chess because of the huge space generated from the random 

process of dice rolling. Applying TD learning in Backgammon gives very good results: 

computer Backgammon programs using this approach are able to play in a level very close 

to the human world champion [28] [2-9]. The success of this application is comparable to 

the one in computer Chess as in both cases. The best programs reach the world champion 

level. 

TD learning has been applied to Go following its success in Backgammon [24]. Some 

preliminary results show that applying TD learning in Go can obtain programs that can 

beat a commercial Go program (playing at its weak level) in games with reduced board 

size. Since then, there are no further investigation for this approach. However, there are 

some distinctive difference between Go and Backgammon: determinism. This may have 
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a critical effect on the performance of TD learning. In this research, we would like to 

investigate this, as well as using the classical supervised learning model, in the problem 

of computer Go. 

1.2 Objective 

In this research, we focus on applying neural networks in solving some problems in 

computer Go to investigate its feasibility. The problems that we try to tackle are board 

evaluation function and alive-or-death analysis. TD learning, as well as a classical model 

of learning: supervised learning are used to solve the problems. 

1.3 Organization of This Thesis 

In Chapter 2, we will give a practical definition for “solving” computer Go. Then as a 

background information, we will present the state of the art of computer Go and analyze 

the large difference between computer Go and computer Chess by the difference of the two 

games. Finally, we will introduce our framework that decomposes the problem of computer 

Go into smaller sub-problems. We will state the sub-problems that we are trying to focus 

in this research. 

In Chapter 3, we focus on the previous neural network applications in games, especially 

for the TD learning model. Previous research for applying TD to Backgammon and Go 

are described. We state the insufficiencies of previous research and give the motivations 

of our research in applying neural network learning model in some of the sub-problems of 

Go. 

In Chapter 4, we will give the derivation of a new updating rule for applying TD 

learning in a popular neural network model called multi-layer Perceptron (MLP) [22]. It 

is necessary for us to derive this updating rule as well as a training algorithm for the rule 

as they are needed in performing experiments in this research. 

In Chapter 5, we will present three sets of experiments performed in this research. 
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We will give the objectives and designing issues for each experiment. The results and 

significance of each experiment are also discussed. 

In Chapter 6, we will give the conclusions of this dissertation by giving a summary of 

contributions in this research. We also presents a list of extensions to this research. 

Some supplementary information are given in the appendices. In Appendix A, we give 

a brief introduction to the game of Go. Some complicated characteristics of the game 

are demonstrated based on the author's experience in the game. Interested readers are 

recommended to refer to some Go books for extra knowledge of the game.i 

In Appendix B, we present some definitions of basic concepts in Go using mathematical 

notations. To define the knowledge of Go in a precise form, we need to have a set of formal 

definitions for the basic concepts. The definitions we have done in this appendix will be 

useful for designing a rigorous model of Go knowledge in the future. 

• 

iQo books written in Chinese are extensively available. We recommend some English ones here: [5], 
[12]，[18]. 



Chapter 2 

Background 

2.1 Definitions 

2.1.1 Theoretical Definition of Solving a Game 

There are extensively different forms of games. The class of games discussed here 

is 2-player zero-summed hoard games with perfect information. Many of the recreational 

games we play belong to this class, such as Backgammon, Checkers, Chess, Chinese Chess, 

Go, Go-Moku (connect-5), Shogi, etc. A game can also be deterministic (like Go) or non-

deterministic (like Backgammon). In a deterministic game, state transition is totally 

controlled by the will of the players. On the other hand, in a non-deterministic game, 

there are some random factors included in the state transition. 

Human beings not only play games but also want to study the theories of the games 

so as to come up with better strategies. There are many theoretical definitions of solving 

a game. Here is a set of definitions with different levels of strength for solving a game: 

1. ultra-weakly solved: for the initial position(s), game-theoretic value^ has been 

determined. 

2. weakly solved: for the initial position(s), a strategy ^ has been determined to obtain 

ipor a deterministic game, the game-theoretic value means the outcome of the game under perfect 
plays. For a non-deterministic game, it represents the probability of winning under perfect play. 

^Strategy for a game here means a set of rules for state-transition for a player in the space of the game. 

5 
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at least the game-theoretic value of the game, for both players, under reasonable 

resources.^ 

3. strongly solved: for each legal position, a strategy has been determined to obtain 

the game-theoretic value ofthe position, for both players, under reasonable resources. 

The three definitions are in increasing order of strength. This means that to strongly-solve 

a game is the most difficult among the three. 

However, most of the games we play, like the ones mentioned before, are too complic-

ated to be solved theoretically using these definitions because their game spaces are huge. 

As a result, we need to solve the game in an easier but useful way. We define one more 

notation of solving a game : 

practically solved : for the initial positions(s), a high quality strategy has been 

determined that will obtain at least the game-theoretic value of the game in a high 

probability. 

This definition is even weaker than definition (2) as it accepts a sub-optimal strategy for 

the game. 

This new definition arouses another problem : it is difficult to analytically evaluate 

whether a strategy has high quality. As a result, the strategy should be tested empirically 

by comparing it to some existing high-quality strategies, which are usually the strategies 

of the human expert player of that type of game. 

In practice, a strategy is implemented in a computer program. Comparison of two 

strategies is done by matching between the two agents, with each agent implemented 

one of the strategies, (for example, a computer program against a human expert player) 

Therefore, the problem of practically solving a game can be understood as building a 

computer program that can play the game in a level higher than the human expert of that 

game. 
^Reasonable resources may be, say, a few minutes' computation of the fastest available computer. 
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2.1.2 Definition of Computer Go 

We define the problem of computer Go as to practically solve the Go game. The goal 

of solving the problem is therefore to build a computer program that can play Go in a 

level comparable to the strongest human expert of Go. Similar definition of the problems 

of computer Chess and computer Backgammon are used in this thesis. 

Since the strategy implemented in a computer Go program is sub-optimal, it is always 

possible to build programs stronger than the existing best one until the optimal strategies 

for the initial positions have been found and implemented. We need a scale to measure the 

progress of computer Go instead of just comparing new programs with the best existing 

programs. Since currently, the strongest computer Go programs is far weaker than an 

average human player, we can monitor the performance of a computer Go program by the 

scale we use for human players. The grades in the scale can be roughly classified into 5 

levels 4 : 

1. level 1 - Beginner's Level: understanding the basic rules. 

2. level 2 - Novice Level: average human player's level. 

3. level 3 - Human Expert Level: top 10% human players' level. 

4. level 4 - World Champion Level: competing with world champion. 

5. level 5 - Over Champion Level: stronger than all human players. 

According to this scale, the progress of Computer Go is around level 2. The progress 

for another two games which are well-practically-solved : Chess and Backgammon, is 

around level 4. 

2.2 State of the Art of Computer Go 

Computer Go has a short history. Thus the research effort on this topic is little com-

paring to computer Chess. The first paper which talks about computer Go was published 
4piease refer to Appendix A for the conventional ranking system. 
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in 1968 by Albert Zobrist, who built the first computer program that can play a complete 

Go game [31]. Since the first international computer Go congress took place in 1986, many 

programs have been developed. Here are some landmark programs : 

1. Go Nemesis by Bruce Wilcox [30], 

2. Many Faces of Go by David Fotland [14], 

3. Go Intellect by Ken Chen [11] and 

4. Handtalk ̂  by Chen ZhiXing. 

After many years of research effort, the performance of computer Go programs are 

increasing steadily but slowly. The current strongest computer Go program is only at a 

beginner to intermediate amatewrplayer's level. This is a large contrast to the achievement 

in computer Chess, which has reached the world champion level. 

The large progressive difference between computer Chess and computer Go is owing 

to the different natures between the two games and the techniques applied to solve the 

games. Some important properties of the two games are compared and summarized in 

Table 2.1 . We are trying to understand how the difference in the two games contributes 

to such a difference in performance. 

In computer Chess, the approach used is basically the brute-force searching. Before 

a move is made, a large number of nodes in the game tree are searched and evaluated. 

Some well developed algorithms liked Minimax, a-f^ tree pruning and conspiracy number 

19] are used in searching. Using this approach, with an accurate evaluation function, 

accuracy of the moves made by the program will improve if more levels and nodes in the 

game tree are examined. As a result, performance of a computer Chess programs using 

this approach will simply improve with the increase of computing power. 

Learning from the difference between Chess and Go, it is found that techniques in 

computer Chess cannot be applied to computer Go because : 

^Handtalk is the strongest computer program which won the computer Go congress in 1996. Its level 
is around 5-kyu to 10-kyu. 
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Feature || Chess | Go 
1 board size 8 x 8 squares 19 x 19 grid 
2 # moves per game ^ 40 ^ 200 
3 branching factor “ small { ^ 35) large { ^ 200) 

~4 end of game check-mate (simple“ counting territory 
and scoring definition - quick (consensus by players 

to identify) hard to identify) 
~~5 long range effects pieces can move long stones do not move, 

distances (e.q., queeii patterns of stones have 
rooks, bishops) long range effects (e.g. 

ladders; life and death) 
~6 state of board changes rapidly as~" mostly changes incrementally 

pieces move (except for captures) 
~7 evaluation of good correlation with poor correlation with 

board positions number and quality of number of stones on board 
pieces on board or territory surrounded 

~8 programming amenable to tree too many branches for brute 
approaches used searches with good brute force search, pruning 

evaluation criteria is difficult due to lack of 
good evaluation measures 

~9 human lookahe^ typically up to even beginners read up to 
10 moves 60 moves (deep but narrow 

searches e.g., ladders) 
~T0 horizon effect grand-master level beginner level(e.g., ladders) 
~T[ human grouping~~ hierarchical grouping stones belong to many 

processes [9] groups simultaneously 
p y 

~T2 handicap system none | good handicap system 

Table 2.1: Comparison between Chess and Go [6 . 
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1. High branching factor of the game tree. The average number of valid moves 

� in a Go board position is larger than 200 while it is around 35 in Chess. 

2. Large depth of the game tree. The average number of moves in a Go game is 

around 200 while in Chess, it is around 40. 

3. Difficult to evaluate a board position. Unlike Chess, there is no strong cor-

relation between winning and number of stones in Go. Strategic factors must be 

considered in evaluation, making the design of evaluation function difficult. 

These properties of Go make the brute-force search model impractical to apply. Con-

sequently, a different approach is needed for computer Go. Techniques used in the current 

strongest computer Go programs are mainly heuristic programming and knowledge engin-

eering [14]. A lot of expert Go knowledge is implanted into the programs by the designer. 

Searching (lookahead) is only used selectively, usually in some local tactical analysis. 

There are several problems in this approach. 

1. It is difficult to define the knowledge in Go clearly. Human experts understand many 

concepts in Go in very abstract form. Some examples are Moyo, group strength, 

influence, Aji, etc. To define and formulate such knowledge precisely into rules is 

hard, especially when full understanding is not acquired by expert players. 

2. Engineering becomes difficult when the size of the knowledge-base increases. 

Since directly programming knowledge of Go has certain difficulties, it is reasonable 

to use the machine learning model to extract some useful knowledge from the Go game, 

especially when the knowledge is difficult to formalize and the knowledge is not well 

understood by the human experts themselves. 

In our research, learning using neural networks is applied to solve some specific prob-

lems in computer Go. Decomposition of the problem into smaller subproblems will be 

discussed in the next section. 

Before finishing the discussion, it is important to state that although computer can 

play very strong Chess, the brute-force searching model applied in computer Chess is very 
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difFerent from the way human player thinks. On the other hand, in solving computer Go, 

researchers need to understand how expert players of Go think and model their knowledge 

representation and reasoning. Since modeling the human intelligence is a difficult job, 

computer Go is considered as the grand challenge of artificial intelligence (AI) [2 . 

2.3 A Framework for Computer Go 

In this section, we propose a framework which is designed for solving the problem of 

computer Go. Theoretically, computer Go program can be developed with a search engine 

together with the following functions : 

• Evaluation function: a function which gives the game value of any legal board 

positions. 

• Legal move generator: a function which gives all legal (valid) moves for a given 

board position. 

With these two functions, the search engine can select the move leading to the best 

result after searching n levels exhaustively. However, in practice, the search space of Go 

is too large for exhaustive search even when n is very small. As a result, it is an usual 

case that the search space has to be reduced by limiting the number of moves to search 

at each level. This is done by a plausible move generator which picks up moves that can 

be potentially good and ignores moves that are certainly bad for a board position. The 

evaluation function and plausible move generator are therefore the two important units in 

designing a computer Go program. We are going to analyze the design of these two units 

and propose our approach in solving some sub-problems in the design. 

2.3.1 Evaluation Function 

An evaluation function fsv is a function : 

fEv ： B — V 
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where B is the set of all legal board positions and V is the set of legal game values. For 

deterministic game like Go and Chess, if fEv is perfect, V 二 { - 1 , 0 , 1 } with -1 means 

white wins, 0 means draw and 1 means black wins. It is usual to implement the function 

to give output values in a continuous range, with different values representing different 

extent of favorableness to both sides. In this case, V 二 卜1，1]. For example, for both 

board positions Bi and B2 with evaluations : f “ B i ) = 0.9 and fEv{B2) = 0.1, Bi will be 

more favorable to the black side than B2. For non-deterministic games like Backgammon, 

V = [0,1] which represents the winning probability of one side for a board position. The 

range [0,1] is sufficient in this case because in non-deterministic zero-summed games, 

P(white will win) = 1 — P(black will win). 

From the experience of computer Go research, it is found that designing an evaluation 

function for Go is very difiicult [6]. Consequently, it is suitable to break down the large 

problem of evaluation function into smaller sub-problems by designing sub-functions for 

different time, space and properties in a Go game. Here are three types of possible 

decompositions that we propose: 

A. Temporal Decomposition. Special sub-functions can be designed for evaluating 

different stages in a Go game. A Go game is commonly divided into three stages : Open-

game, Middle-game and End-game. Special evaluation function can be designed for each 

stage of a Go game. We define ĥ t to be the classification function that identifies the stage 

of a board position. For a board position B, hst{B) = 1,2 or 3 if B is in the Open-

game, Middle-game or End-game respectively. The design of evaluation using temporal 

decomposition is in the form of 

/ E v - o p e n ( 5 ) ： i f M ^ ) = 1 

fE.{B) = /Ev-mid(^) ： if h,t{B) = 2 

� / E v - e n d ( ^ ) ： i f / ^ t ( B ) = 3 

In this case, the three sub-functions : /Ev-open, / E v - m i d and /Ev-end are applied independently 

of each other. Therefore, this is a simple decomposition method. 
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B. Spatial Decomposition. Different sub-functions can be designed for different local 

area of the board. A board position B is segmented into a set of sub-boards : {^i ,召2, 

.•., Bn}. The sub-boards are distinct and totally cover the whole 19 x 19 board. That is : 

J Bi 二 B and Bi H Bj + Bi, i + j 
i 

Sub-boards may be overlapping to avoid loss of information in the boundaries. Moreover, 

sub-boards in the similar region may share the same evaluation sub-function. (For ex-

amples, windows in around the central area will have similar properties and can use the 

same sub-function.) Each sub-board is evaluated separately and the results are combined 

fE.{B) = r (a i (5 i ) , a2{B2), . . . , «n(^n)) 

where ai{Bi) is an analyzer for a sub-board position Bi and r(.) is the function for combin-

ing the results from the n sub-boards. The best combination function has to be determined 

by tuning in the real games. A simple example of r(.) is a linear combination of the sub-

functions. 

C. Functional Decomposition. Special sub-functions can be designed to evaluate 

some special properties that will assist in board evaluation. Some examples are group 

strength, alive-or-dead state, influence, etc. Let the properties analyzed be P1,P2,.. •, Pm-

Evaluation of a board position B will be : 

fE.{B) = $ ( " P i ( B ) , / ^ ( B ) , . . .,PpJB)) 

where fip- (B) is the analyzer for property Pi and $(.) is the function for combining results 

of m property analysis. 

Considering the three compositions introduced, temporal decomposition is the simplest 

model because all sub-functions /Ev-open(.), /Ev-mid(.), / E v - e n d ( . ) are independent and there 

is no combination of sub-functions. In spatial and functional decomposition, results of the 

sub-functions {ai and |3p̂ ) have to be recombined. The re-combination function is difficult 

to design analytically. 
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A good design using the three decompositions is with the temporal decomposition at 

the top level. For designing sub-function for each stage of the game, specific properties are 

analyzed in function decomposition and special segmentation method is applied in regional 

decomposition. The reason for this design is because from our understanding of Go, very 

different analyzing methods are applied on different stages. This hierarchical design fits 

our model of understanding of the game. 

2.3.2 Plausible Move Generator 

Plausible move generator selects the potentially good moves from a legal board posi-

tion. For a board position B, let M{B) be the set of all legal moves for B. The results 

from the plausible move generator, g^m{B), is a subset of Ms- The effective-factor ^ ^ 

determines the ratio of pruning and thus reduction of the search space. 

In practice, the design of plausible move generator for a board position B can be more 

effective if it is goal-directed, in which the goal to be achieved is supplied to the generator 

before plausible moves are generated. Therefore, plausible move generator shall be based 

on the result of board evaluation. As a result, evaluation function plays a very important 

role in the problem of computer Go. 

2.4 Problems Tackled in this Research 

In the research, we adopt machine learning using artificial neural networks to solve 

the problems of evaluation function and a property analyser (alive-or-dead analyser). The 

motivations of using this approach will be discussed in the next chapter. We train neural 

networks to evaluate board positions of reduced board size directly since neural network is 

able to learn the internal relationship from the examples of a problem. We also train neural 

networks to do the alive-or-dead analysis, which is an important sub-problem in designing 

an evaluation function. The methodology of the applications will also be discussed in the 

next chapter. 



Chapter 3 

Appl ica t ion of T D in Game P lay ing 

3.1 Introduction 

As illustrated in [28] [29], temporal difference (TD) learning has been applied success-

fully in the game Backgammon via learning by neural networks. In this thesis, we apply 

neural network learning, especially the TD learning method, to solve problems in computer 

Go. 

In this chapter, we first give a background of the neural network learning models 

and the TD learning. Then we will talk about the relevance of TD learning in game-

playing and report the previous applications of TD learning in Backgammon and Go. 

Finally, learning from the previous applications mentioned, we will design our approaches 

in solving problems in computer Go by neural networks. 

3.2 Reinforcement Learning and TD Learning 

In this section, we will give a background of Reinforcement learning as one of the three 

fundamental categories of neural network learning. Derivation of TD learning, which is a 

reinforcement learning model invented by Sutton [25], will then be explained. 

15 
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3.2.1 Models of Learning 

Learning can be classified into three categories : unsupervised learning, supervised 

learning and reinforcement learning. 

In unsupervised learning, the neural network receives a training set consists of input 

training patterns only. The network learns to adapt based on the experiences collected 

through the training patterns. This means that the network does not need to learn a 

specific example of function. Learning is made for a task-independent measure of the 

quality of representation. This type of learning can be applied in the clustering problems, 

competitive learning, PCA, etc. 

In supervised learning, the training data set consists of input-output pairs : X 二 

{{xi,yi)l i 二 1, ...，n}. Each pair contains an input pattern Xi and the desired output yi 

for that pattern. The error between the actual response (network's prediction) and desired 

responses for each pattern is used to adjust the parameters (weights) inside the network. 

Typically, supervised learning rewards accurate responses and punishes incorrect ones. 

The weights are modified in the opposite direction of the error gradient. Therefore, most 

supervised learning algorithms reduce to stochastic minimization of error in the multi-

dimensional weight space. Supervised learning is the most widely used learning model 

with large number of successful applications. 

In reinforcement learning, the learning agent produces a response for each training 

pattern. The response will be fed into a specific environment and a reinforcement signal 

reflecting the correctness of the response, instead of the correct response itself, will be 

returned. The reinforcement signal is usually a scalar value. The learner will use this 

reinforcement signal to learn. This model is different with supervised learning as no 

desired response will be provided for each input pattern. 

3.2.2 Temporal Difference Learning 

Temporal Difference (TD) learning, which is first introduced by Sutton [25], is a 

reinforcement learning method for delay-reward (or multi-step) prediction problem. In 
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a delay-reward prediction problem, observation-outcome sequences has the form (o(l), 

o (2 ) , . . . , o (m) , X) where each o{t) is a vector of observation available at time t and x 

is the target of the predictions which is not revealed until the m-th observation. For the 

observation sequence, the learning agent produces a corresponding sequence of predictions 

： (P(1) , P (2 ) , . . . ’ P(m)). Each prediction is made to estimate the target x. 

Using a supervised learning model to solve the delay-reward prediction problem, the 

observation-outcome sequence will be treated as a set of independent pairs of input-target : 

(o ( l ) ,x ) , (o(2),x), . . .，(o(m),x). The target x is needed for computing weight increment 

for each input pattern. For an observation o(t), the network will produce a prediction 

P(t). The weight increment for P{t) using the prototypical supervised learning rule is : 

(3.1) Aw{t) = 77(x - P{t))V^P{t) 

where •^^P(” is the partial derivative (gradient) of P{t) with respect to the weight w 

and 77 is the learning rate. The value of V^P(t) is easy to compute for a linear neural 

network. For a non-linear network like multi-layer Perceptron (MLP), computation is 

more complicated. 

The total weight increment for all the predictions from P(1) to P{m) is 
m 

Aw 二 w ^^Aw{t) 
i = l 
m 

(3.2) = w + J 2 ^ { x - P { m ^ P { t ) 
t=l 

The problem for using the supervised learning model in solving the delay-reward pre-

diction problem is that weight update depends critically on the target of the predictions x 

which will not be available until all predictions have been made. No weight update can be 

computed until x is revealed. Thus, all the observations and predictions made during a 

sequence must be stored until we obtain the target x and compute all weight increments. 

To solve the problem, it is necessary to reformulate the learning rule. First, the error 

term {x — P{t)) is changed to a sum of differences of successive predictions : 
m 

(3.3) X — P(t) = XXP(& + 1) — P(k)) where P(m + 1) is defined as x 
k=t 



i 

Chapter 3 Application of TD in Game Playing lL-

Then we try to substitute this result into equation 3.2 : 
m 

Aw = ^^ + ^ X - P C O ) V ^ 
t=i 
m m 

= W + [ 7] J2(P{k + 1) — P(k)y7^P(t) (Substitution by 3.3) 
i=l k=t 
m k 

=w^J2^Y.{P{k + i)-P{k))\/Mi) 
k=l t=l 
m t 

二 w + E " O P ( ^ - _ E ^ W 
t=i k==i 

We obtain an equation of weight update for all predictions Pi, P2, . . . , Pm. The weight 

increment corresponding to a specific prediction made at time i can be computed by : 

(3.4) A — 0 二 講 + 1) - P{i)) E 口 ⑷ 
k=i 

which is an equation independent of x (unless when i 二 m where P�m + 1) is defined as 

X). Unlike equation 3.1, computation of weight update is incremental using this equation 

because the value of x is not involved. Weight increment for P[i) can be computed 

immediately when prediction at time (i + 1) is available and there is no need to wait for 

the target x for this calculation. 

Weight increment using equation 3.4 is called the linear temporal difference procedure, 

TD(1). It produces the same result as the prototypical supervised learning procedure if 

both are in batch updating mode (weights are updated as in equation 3.2). In practice, the 

weight will usually be updated immediately after each training example, which is called 

immediate updating mode. In such case, this equation will not produce exactly the same 

effect as the supervised learning rule. 

An exponential factor A can be added to the term of gradient-sum to control the effect 

of 'experience' from past predictions with recentness : 

(3.5) Aw{t) 二 rj{P{t + 1) - m)亡入“口⑷ where A G (0,1). 
k=l 

The new parameter A takes the value between 0 and 1. A family of learning procedures, 

TD(A) is obtained with different values of A. The parameter A controls the effect of past 
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learning experience. The influence of the past predictions will be weaker if A takes a 

smaller value. When A 二 1, the learning procedure takes all past gradient with the same 

importance and takes no credit of the temporal order of the past prediction sequence. 

The term of gradient-sum can be computed incrementally. If e{t) represents the 

gradient-sum at time t, i.e. 
明二亡 ^ -户⑷， 

k=l 

the gradient-sum at time t + 1 can be computed by 
t+i 

e(t + l) 二 ^ V + ^ - ^ V . P ( ^ ) 
k=l 

二 V^P(f + l) + ;^A^i-AV^P(AO 
k=l 

(3.6) 二 V^P(t + l) + Ae(t) 

We can see that e(t) forms a recurrence series. Therefore, it is a simple recursive 

calculation for computing the past gradient-sum, e(t), during training as predictions are 

made in the temporal order : P(1), P(2), . . . , P(m). 

In a special case when A is equal to zero, the past gradient-term e(t) will reduce to 

V^P[t), which contains only the current gradient. The equation for weight increment for 

TD(0) then becomes 

(3.7) ^wt 二 講 + 1) 一 P{t))V^P{t). 

The weight updating here looks very similar to the prototypical supervised learning method 

in equation 3.1. The learning mechanism is the same. The difference is only in the error 

term — TD(0) learning uses the difference between two successive predictions as the error 

term while supervised learning uses the difference between the target and the prediction. 

As a result, learning algorithm for supervised learning can be used for TD(0) learning 

with simple modifications. 
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3.3 TD Learning and Game-playing 

3.3.1 Game-Playing as a Delay-reward Prediction Problem 

There is a close relationship between game-playing and delay-reward prediction prob-

lem, which is the type of problem that TD learning is aiming to tackle. Taking Go as an 

example, the problem of predicting the outcome of the game from a Go board position, 

which is the objective of the evaluation function i can be formulated as a delay-reward pre-

diction problem. The observation-outcome sequence of the problem becomes (B(1), B{2), 

...,B(m), x) where B{i) is the board position after the z-th move in a Go game and x， 

which is the target of all predictions, is the outcome of the Go game. From each board 

position B{i) {i = 1,.. . ,m), a prediction F(i) is made for predicting the outcome of the 

game. The game outcome x is revealed to the network only after the final board position 

B(m) is reached. 

With this formulation, we can train neural networks to evaluate board positions of a 

specific game by TD learning. Sequences of board positions, in temporal order, are passed 

to the network for training. In practice, TD learning has been applied in Backgammon 

and Go. The application in Backgammon is very successful [29]. On the other hand, the 

application in Go, which is motivated by the success in Backgammon, is in a preliminary 

stage that requires more investigation. We will discuss these two applications in the 

following sections. 

3.3.2 Previous Work of TD Learning in Backgammon 

Application of TD learning in Backgammon is first demonstrated by Tesauro [27]. Be-

fore using TD learning, Tesauro has applied supervised learning to train neural networks 

to evaluate board positions in Backgammon [26]. In applying supervised learning, the 

training examples are selected using expert knowledge. The resulting program, Neuro-

gammon, became the strongest computer Backgammon program at that time. 

ipiease recall section 2.3.1, for the definition of an evaluation function 
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Program Training Games Hidden Units Results 
" r o G 1.0 300,000 80 -13 points in 51 games (-0.25 ppg) 
TDG 2.0 800,000 40 -7 points in 38 games (-0.18 ppg) 

" T 6 G 2.1 1,500,000 80 -1 points in 40 games (-0.02 ppg)— 

Table 3.1: Results of testing TD-Gammon in play against world-class human opponents, 
(ppg = point per game) 

After implementing the Neurogammon program, Tesauro applied TD(A) learning to 

train neural networks to do Backgammon board evaluation by self-playing X 二 0 is used 

throughout the experiments [27] [28]. The resulting program, TD-Gammon achieves a 

level very close to the world champion [29 . 

During training by self-playing, the neural network is used to predict and control in 

the same time. The network is used to evaluate board positions in a 1-ply search (predict). 

The move with the best evaluation is selected and played and the board position is changed 

by the network's move (control). As a result, unlike training Neurogammon, there is no 

need to supply training example to the network. The network can learn by itself. 

It should be noted that there is no a priori knowledge built in the architecture of 

network and every synaptic weight is initialized with a random number before training. 

Performance of the network after training with this design is very satisfactory. When a raw 

input representation is used, the trained network is able to play at a strong intermediate 

level comparable to the Neurogammon. When an extra set of hand-crafted features are 

added to the input representation, the trained network achieves human expert level. 

Experimental results show that with more training games, the network performs better. 

Table 3.1 summarizes the performance of different versions of TD-Gammon. It should be 

noted that the performance of the strongest version of the TD-Gammon (2.1) loses only 

0.02 point per game, which is a very small amount, when it plays against the human world 

champion of Backgammon. This result shows that the problem of computer Backgammon 

is almost practically solved. 

The research performed by Tesauro shows that performance of TD learning using self-

playing (as in TD-Gammon) surpasses the one of supervised learning model approach (as 
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in Neurogammon) for the game Backgammon. It is suggested that the stochastic nature 

of Backgammon is critical to the success of TD learning. The dice-rolling in Backgammon 

enforces a good amount of exploration of the state space, forcing the system into regions 

of the space that are new to the current evaluation function. In contrast, the state space 

explored by the network in supervised learning is limited to the training set. More training 

examples have to be supplied to increase the amount of state space exploration during 

training. Moreover, it is often difficult to design a "good" training set which provides 

more state space exploration for training neural networks. 

On the other hand, in the case for deterministic games, it is unknown that training 

by TD learning can produce similar good results as in Backgammon. A neural network 

trained by self-playing could end up exploring only some very narrow portion of the 

state space. Consequently, the resulting network might develop some poor strategy that 

nevertheless gives self-consistent results when it plays against itself. 

3.3.3 Previous Works of TD Learning in Go 

The application of TD learning in Go, for training evaluation function for 9 x 9 board 

positions, has been studied by Schraudolph, et aL[24]. This is the only significant research 

on applying TD learning in Go (and also applying neural networks in Go) to the author's 

knowledge. 

In their experiments, a small board size of 9 X 9 is used instead of the standard 19 X 19 

in order to reduce the complexity of the problem. TD(0) is used in training which is the 

same as the application in Backgammon. , 

There are two special issues in the design. First, prediction is made on the outcome 

of each position on the board instead of the outcome of the game. The outcome of each 

position, which can either be a black's territory (or a black stone) or a white's territory (or 

a white stone), is available after a game is completely finished. Such information together 

can determine the outcome of the Go game. This is a special property in Go. Second, 

architecture of the network is specially designed which reflects the spatial organization on 



Chapter 3 Application of TD in Game Playing f2— 94 

the board. 

Different opponents are used to train different networks. The opponents used are : 

1. the network itself (self-playing), 

2. random move generator, 

3. a public-domain Go program: Wcdly, 

4. a commercial Go program: The Many Faces of Go, in its weak playing level. 

Gibbs sampling [16] is used to select moves stochastically during self-playing. This is 

to avoid the risk of trapping the network in some suboptimal fixed state. The probability 

of a move being chosen is exponentially related to the evaluation of the board position 

to which the move leads. A parameter called temperature is used to control the degree 

of randomness of the stochastic selection. When the temperature is high, moves will be 

chosen more randomly. When the temperature is low, moves will be less random : move 

with a better evaluation will be chosen with a much higher probability. The temperature 

is set to be very high in the beginning of training and is gradually cooled down during 

training. 

The goal of the experiments is to compare the performance between two networks: an 

undifferentiated network and a specially structured network when they are trained with 

some available Go programs. Experimental results show that networks with specially 

designed structure performs better. Moreover, the networks are able to out-perform the 

Go programs used in training after certain number of training games. 

3.4 Design of this Research 

Our main focus in this research is in applying neural network learning in computer 

Go. In this section, first, some limitations of the past applications are stated. Then we 

talk about the motivations and objectives of this research. The design of solutions to the 

problems are also presented. 
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3.4.1 Limitations in the Previous Researches 

The previous (which is also the only one) research of applying of TD learning in Go 

[24] has two major limitations : 

1. Only TD(0) learning has been used. In both of the previous TD applications, 

only TD(0) learning has been used. Simplicity is the first concern. As mentioned 

in equation 3.7 in section 3.2.2, training algorithm for supervised learning can be 

used for TD(0) with simple modifications. Therefore programs for the training 

experiments can be easily implemented for TD(0). 

Moreover, efficiency is another concern for the choice of TD(0). From equation 3.5 

and 3.6 in section 3.2.2, it can be observed that for general TD(A) learning, the term 

for past gradient-sum, e[t), has to be stored for computation of weight increment in 

the time t +1. Since each weight in the neural network has its own gradient-sum, the 

demand of storage during training is at least doubled. Furthermore, the time needed 

for computation of e{t) for each synaptic weight will make the training process of 

general TD(A) slower than TD(0). 

Since only TD(0) has been applied in previous experiment, performance of TD(A) 

learning for different values of A has not been investigated. If we try to apply TD(A) 

for any values of 入 in [0,1], a new updating rule and training algorithm have to be 

designed for a specific model of neural networks. 

2. Training and testing performance with existing Go program. The previous 

experiment of applying TD in Go tries to train and test networks with some Go pro-

grams which are relatively weak among other existing computer Go programs. Con-

sequently, the trained evaluation function may not perform uniformly well against 

other new opponents. The function may be biased to the playing styles of the Go 

programs that it is trained with. Moreover, results of beating the Go programs 

during training does not imply good general performance because the evaluation 

functions trained has not been tested with some objective scales. Actually, there are 
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more general measures for performance evaluation, such as the percentage of correct 

evaluation of board positions taken from real Go games (played by human players). 

3.4.2 Motivation 

Summarizing from the past works and from our own ideas, we have found the followings: 

1. TD Learning is good for training evaluation function. As discussed before, 

in solving computer Go, designing a good evaluation is a very important problem. 

Since evaluation function can be modeled as a delay-reward prediction problem, the 

function can then be trained by TD learning in a straightforward way. As a result, 

applying TD learning in training evaluation function, which is the method applied 

in Backgammon and Go, has a good prospect. 

2. New updating rule is needed for general TD(A) in multi-layer Perceptron. 

The derivation of TD(A) learning is independent of any neural network model. The 

gradient V^P(t) has to be calculated for different models of neural networks. In 

the two previous applications of TD learning, multi-layer Perceptron (MLP) is used. 

However, weight updating rule for applying TD(A), for A greater than 0, in MLP 

has not been defined. As a result, we need to derive the updating rule in order to 

apply the general TD(A) learning in Go. 

3. Abundant Go game records provide good source of implicit Go knowledge 

for machine learning. Game records in electronic form are available in some Go 

servers on the Internet. They provide a good source of implicit Go knowledge for 

learning by neural network. Moreover, training examples can be generated from the 

existing game files automatically. 

Furthermore, the past application of neural network in Go only explores training by 

self-playing and by playing against existing Go programs. It will be a good way to 

train neural networks by using human games as examples because the games can 

provide high quality knowledge to the networks. 
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4. Neural Networks can be used in solving difficult sub-problems in Go. Not 

only for TD learning, the approach of learning by neural network has also not been 

applied in computer Go. In the current approach of computer Go, the techniques 

of heuristic programming plus knowledge engineering cannot effectively handle some 

concepts that are very abstract and even not fully understood by human experts. 

(Some of such concepts are pointed out in section A.3 of appendix A.) As a result, 

trying to learn such concepts from examples in human games by neural networks is 

a helpful direction to solve such problems. 

3.4.3 Objective and Methodology 

The main objective of this research is to apply machine learning using neural networks 

to solve some problems in computer Go. We try to analyze the feasibility of this approach 

and set a milestone by discovering good directions for further research in this area. This 

'provides an alternative for solving problems in computer Go. 

The approach in tackling the problems is summarized in the following points : 

1. New updating rule for TD(A) in MLP. First, we try to derive a new updating 

rule for applying TD(A) learning in multi-layer Perceptron so that different values 

of A can be used in TD(A). 

2. TD(A) learning of evaluation function. Some experiments are then performed 

to use the TD(A) learning algorithm in training MLP's for Go board evaluation. 

Both self-training and training with games played by human players are used. The 

experiment of training with human games is a new method in application of TD 

learning. Performance of difference values of A are analyzed. 

3. Solving a pattern analysis sub-problems using MLP. Finally, we try to apply 

MLP to do alive-or-dead analysis, which tries to predict the status (alive or dead) 

of a group of stones on the board. Patterns from human games are extracted as 

training examples. Since this is a static pattern recognition problem (patterns are 
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independent with each other and have no temporal order), supervised learning is 

used. 

h-



Chapter 4 

Der i v i ng a New Upda t ing Rule to 

A p p l y T D Learn ing in Mu l t i - l aye r 

Percept ron 

In this chapter, we will derive a new updating rule for applying temporal difference 

(TD) learning in a class of neural networks called multi-layer Perceptron (MLP) [7] [8 . 

Before the derivation, we will give a brief introduction to MLP for readers who are not 

familiar with neural networks. Then we will present our derivation. After that, we will 

describe the training algorithm which is designed according to the new learning rule [8 . 

4.1 Multi-layer Perceptron (MLP) 

General Architecture of an MLP Multi-layer Perceptron (MLP) is an important 

class of neural networks. An MLP consists of many processing elements called neurons. 

The neurons are arranged into layers and the layers are ordered. The layer that accepts 

input signal for the whole network is called the input layer. The layer that produces the 

network output signal is called the output layer. All layers in between are called hidden 

layers. An MLP should have at least one hidden layer. Figure 4.1 shows an example of 

MLP with two hidden layers. The architecture of the network is 4-4-5-3 which represents 

that there are 4 neurons in the input layer, 4 neurons in the first hidden layer, 5 neurons 

28 
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in the second hidden layer and 3 neurons in the output layer. 

Output Signals 
；i 11 11 

^ ^ ^ > j 1 ^ ^ 1 ^ ^ ) Output Layer 

^¾— 
麗-

f ) r ) f J ( J Input Layer Input Signals 
Figure 4.1: A multi-layer Perceptron with 2 hidden layers. 

Signal Propagation inside an MLP Connection in an MLP only exists between 

neurons from two adjacent layers. Each connection between two neurons is associated 

with a weight, which is a real number that is multiplied to the signal that propagates up 

the connection from the lower layer to the upper layer. When an MLP receives an input 



Chapter 4 Deriving a New Updating Rule to Apply TD Learning in Multi-layer Perceptron 30 

signal from its input layer, it propagates the signal up from its input layer, through one 

or more hidden layers, to its output layer and produces an output signal. 

Training an MLP MLP is usually trained by supervised learning. During training, 

the network has to learn a set of training examples, with each example in the form of 

(X, 0) where X is the input vector and 0 is the output vector expected from the network 

for X. After the network is properly trained for a problem by a set of examples, it 

can generalize by producing results with a good accuracy for examples that it has not 

encountered during training. There are some distinctive properties that characterize the 

problem solving capability of an MLP [17]: 

1. Each neuron includes a nonlinearity at the output end. The nonlinearity is achieved 

by a differentiable transferfunction\ as opposed to the hard-limiting used in simple 

Perceptron. 

2. The network contains one or more layers ofhidden neurons which enable the network 

to learn complex tasks by extracting more meaningful features from the input vectors 

progressively. 

3. The network exhibits a high degree of connectivity. In most cases, connectivity is 

complete between two adjacent layers of neuron. Each connection in the network 

is associated with a synaptic weight, which is the parameter to be tuned during 

training. 

MLP's have been successfully applied to solve diverse problems after being trained in 

a supervised manner with a popular algorithm called error back-propagation algorithm or 

simply backpropagation [22]. Development of the algorithm represents a "landmark" in 

neural networks as it provides a computationally efficient method for the training of MLP. 

iTuansfer function is applied to the weighted sum of a neuron's input signals to produce that neuron's 
own output signal. A very common example of differentiable transfer function used in MLP is the logistic 
function : 1 

八几)二 l + e x p ( - n ) 

which exhibits the sigmoidal nonlinearity. 
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4.2 Derivation of TD(A) Learning Rule for MLP 

4.2.1 Notations 

Before we come to the derivation, let us define the following notations which we use in 

our derivation. For an MLP with k hidden layers : 

layer 0 denotes the input layer. 

layer i denotes the corresponding z-th hidden layer, where i 二 1 , . . . , k. 

layer k + 1 denotes the output layer. 

s{l) denotes the size of layer 1 (i.e. number of neurons). 

M^ represents the transpose of the matrix M. 

wi represents the matrix of weights for connection between layer {l - 1) and 

layer 1. It has a dimension of s{l - l ) x s{l). 

wi]ij represents the specific weight of connection between the i-th node in 

layer (/ — 1) and the j-th node in layer 1. 

力（.） is the transfer function used in layer 1. 

net/ is the weighted-sum in layer 1, which is equal to wf . yi-i. 

ŷ  is the vector of output from layer /, which is equal to fi{neti). 

All vectors are column vectors unless stated otherwise. 

4.2.2 A New Generalized Delta Rule 

The generalized delta rule is a supervised learning rule for MLP [22]. We will make a 

small change to the original generalized delta rule to obtain a new generalized delta rule, 

which will be useful in the future derivation of updating rule for TD learning. 

Original Delta Rule The original generalized delta rule for increment of a specific 

weight in an MLP [22] is: 
[^m]i,j = rj [yI-i]i Mi 



Chapter 4 Deriving a New Updating Rule to Apply TD Learning in Multi-layer Perceptron 32 

where Aw；/ is the matrix of weight increment of wi. It has the same dimension as wi, 

T| is the learning rate (a scalar), 
Si is the s{l) X 1 vector of error backpropagated from layer 1 to layer 1 - 1. 

The vector of backpropagated error, 5i, is defined differently for output layer and for 

hidden layer : 
y 

(T — P) ® fi{neti) if 1 is an output layer 
Si — < 

/ / ( n e t / ) � wi^iSi+i if 1 is a hidden layer 
、 

where � denotes the element-wise vector multiplication 

([aJ �[bi] gives [aibi] if a and b are 2 vectors of the same size.), 

/ / ( . ) denotes the derivative of the transfer function //(•), 

T is the vector of desired output in supervised learning, 

P is the output vector with length \T . 

From the equation, we notice that the calculation of delta at layer /, Si, requires the delta 

of its upper layer, layer (/ + 1). As a result, the values of every delta should be computed 

in order : starting from the output layer down to the input layer. The delta computed in 

one layer should then be propagated back to its lower layer. This process continues until 

all values of delta in the network are computed. This algorithm for calculating weight 

increment in MLP is therefore called backpropagation. 

New Delta Rule Here, we try to extract the term (T — P) from the original delta, S! 

to obtain a new delta, 5*. i.e. 
Si = S： . (T — P). 

It can be observed that the new delta, Sf, is a s{l) x |T| matrix. Like the original delta, 

the new delta is also defined differently for output layer and for hidden layer. 

For the output layer k + 1，it is defined as 

� + 1 = diag [fĵ ^ {̂netk+i)' 
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where diag(?;) is a diagonal matrix with the diagonal is equal to v } 

For a hidden layer 1, the new delta is defined as : 

Si = //(net/) 0 wi+i . ^ 1 

where (g) is an operator of element-wise multiplication applying on the vector //(net/) and 

every column of {wf^^ . ^_i).3 

The equation for weight increment with this new delta will therefore be : 

[Aw;/]ij = T] [yi-i]i [^i]j 

=rj [yi-i]i [Sf]j,: • (T - P) 

(4.1) = v { T - P f ' { [ y i - i ] i [ S n j , V 

where [Sf]j^： is the j-th row vector of Sf and 

[yi-i]i is the z-th element in vector y;_i (a scalar). 

This is the new generalized delta rule which will be used in the derivation in next 

section. Unlike the original delta, the new delta, S|, for layer 1 is a 5(/) x |T| matrix 

instead of a vector. Moreover, the error between the desired and actual output, (T — P), 

is required for calculating every weight increment. 

2For example, diag(ic), where ĉ 二 [ x i , x 2 , . . . , ^nF, will be : 

「 工 1 0 … 0 _ 

0 X2 . •. 0 • • • • 
• • • • 

• . • • 
0 0 . . • Xn 

L- � 

3jn this case, 0 applies on a vector and a matrix (instead of 2 vectors). The operation it performs is : 

�Oti 1 �&11 b12 ... bim 1 aibii a1b12 .•• aibirn 
a2 621 &22 . . . b2m GL2^2l O,2b22 • . . a2b2m 
. 0 . . . . 二 . . . . 

: ： ： . .： ： : .. • 
<2n bnl bn2 . . . Km � L ^nbnl « n ^ n 2 . . . O^n^nm . 



Chapter 4 Deriving a New Updating Rule to Apply TD Learning in Multi-layer Perceptron 34 

4.2.3 Updating rule for TD(A) Learning 

If we compare two equations for weight increment 

1. prototypical supervised learning (in Eq. 3.1): 

Aw{t) 二 77(x -户⑶口⑴ 

2. new generalized delta rule for MLP (in Eq. 4.1): 

[Awi],j 二 rj {T - Pf{[yl-l]^ [SUjAf 

We obtain the gradient term, i.e. the partial derivative of the network output with respect 

to a particular weight, for MLP : 

V^/P = {[yi-iWi]j,:)^' 

If we consider the problem as a delay-reward prediction problem in which the input data 

come in a temporal sequence, the prediction P as well as y and 5 are varying with the 

time t. We can rewrite the equation as : 

(4.2) V . ' P { t ) ^ { [ y U t ) ] . ' [ S : m K f 

where w' is a short form of [wi[t)]i^j that represents a particular weight in the network at 

time t. 
Recall the equation for TD(A) Learning (in Eq. 3.5): 

^w{t) 二 ” [P[t + 1) — P{t)) J2 A'"'V^P(A;). 
k=l 

By substituting the expression of V^P(t) in equation 4.2 and after some appropriate 

variable renaming, we obtain the weight increment for TD(A) learning in MLP : 

(4.3) [ A — ^ ’ j . = rj { p { t + 1 ) — m f E ^ ' -\ [y l - lm^ . [ s m h f 
k=l 

where subscripts i and j denote the positions of elements in a matrix, 1 and 1 — 1 denote 

the layer numbers, t denotes the time for the prediction and the corresponding weight 
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increment. The summation term in equation 4.3 is called the history vector, denoted by 

'hi{t)]ij. A history vector is associated for a particular weight in the network. It is a 

vector with length |P(t)|. 

Equation 4.3 is a new updating rule of TD(A) learning in MLP where A G [0,1]. A 

training algorithm for this learning rule will be designed in next section. 

4.3 Algorithm of Training MLP using TD(A) 

4.3.1 Definitions of Variables in the Algorithm 

Each training example in TD learning is in the form {xi, X2, . . . , Xn,o) where (^i, 

0̂ 2, . . . , Xn) is a sequence of input vectors in temporal order. From each input vector xi, 

which can be regarded as an observation made at time z, the network is supposed to make 

a prediction for that observation. The value of 0 is the target of all predictions. It is 

available after the n-th prediction has been made. 

Assuming that the network to be trained is a fully-connected MLP with k hidden 

layers.4 The size of each layer is 5(O), 5(l), . . . , s(k + 1) respectively. Here are the 

representation of some variables : 

1. yo is the input vector presented to the network, 

2. yi is the vector of output of layer 1, 

3. wi is matrix of weight connecting -layer 1 — 1 and /, 

4. bi is vector of biases connecting to layer 1, 

5. T] is the learning rate, 

6. A is the parameter in TD (A) learning, 

4por a fully-connected MLP, connections between neurons in two adjacent layers are complete. This 
means that there is connection between every two neurons from two adjacent layers respectively. 
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where 1 = 1 , . . . , k, k + 1. 

In practice, each neuron in an MLP will have a bias. It is a value assigned to a fixed 

connection to the neuron : a connection that has a constant signal of 1 at all time. The 

function of a bias is like a variable threshold value because the value of a bias will change 

during training. The vector k here represents the biases for all neurons in layer 1. It is 

therefore a vector of length s{l). 

Aside from the above variables in the original backpropagation algorithm, we need 

some more storage for the following values during training : 

1. a history vector [hwi]ij, of length s{k + 1)，for each synaptic weight [wi]ij, 

2. a history vector [/i6/]j, of length s{k + 1), for each bias [k]j, 

3. a vector of prediction of previous observation, Pprev 

At each layer 1, the history matrix of weight hwi denotes a matrix of same dimension 

as the matrix wi. Similarly, the history vector of bias hbi denotes a vector of the same 

dimension as the vector k. Each element in hwi and hbi is a vector with length equal to 

the size of network output, s{k + 1). 

Moreover, during training, some temporal storage is needed to store 5* for each layer /, 

where 1 = 1 , . . . , k + 1. S| is a s{l) x s{k +1) matrix which stores the error backpropagated 

from layer 1 to layer 1 — 1. 

We will present our training algorithm in next section. The description of the algorithm 

can be found in the section afterwards. 

4.3.2 Training Algorithm 

1. If this is the f irst time of training 

Initialize weights W1^W2 .̂.. ,tffc+i and 

biases b1,b2,...,h+1 by small random values. 

else 
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Adopt weights Wî  W2^..., Wk+i and 

b iases 61,62, • • . , ^ + i from last t ra in ing . 

2 . w h i l e (error of t r a i n i n g has not dropped below e x p e c t e d v a l u e ) 

for each t r a i n i n g example in the form of (a:i, X2^ • • •, Xn, 0): 

(a) I n i t i a l i z e history vectors and previous prediction: "•> 
Pprev — 0 

for 1 = 1 to k + 1 do 

for j — 1 to s{l) do 

for i 二 1 to s{l - 1) do ^ 

hwi]ij 二 0 

for 1 = 1 to k + 1 do 

for j = 1 to s{l) do 

'hbi]j 二 0 

(b) for t = 1 to n do 

i. Feed Xt into layer 0 of the network : yi = Xt 

i i . F e e d - f o r w a r d : 

for 1 二 1 to k + 1 do 
� -

yi = f{yf-i^i + ^) 

Pt = Vk+i • 

i i i . Update weight and b ias : 

for 1 二 1 to k + 1 do 

for j 二 1 to s{l) do 

for i 二 1 to s{l — 1) do . 

'wi]ij = [wi]iJ + 77 {Pt — PprevV . [hm]i,j 

for 1 = 1 to k + 1 do 
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for j — 1 to s{l) do 

'bi]j = [bi]j + rj {Pt — Pprev)^ • [hbi]j 

i v . C o m p u t e t h e values of d e l t a by b a c k p r o p a g a t i o n : 

M+i = diag(/'("fc+i)) 

for 1 二 k to 1 step —1 do 

S l , = f{\yi-^))0wrSf 

V . U p d a t e h i s t o r y v e c t o r s (for b o t h w e i g h t and b i a s ) : 

for 1 = 1 to k + 1 do 

for j — 1 to s{l) do 

for i = 1 to s{l — 1) do 

'hwi]ij = [Sf]j [yi-i]i + X[hwi]ij 

for 1 二 1 to k + 1 do 

for j = 1 to s{l) do 

[hbi]j 二 [SJ]^ + X[hbi]j 

vi. Update previous prediction : 

Pprev — Pi 

(c) U p d a t e weight and bias for target o (after n o b s e r v a t i o n s ) : 

for 1 二 1 to k + 1 do 

for j 二 1 to s(Pj do 

for i = 1 to 's{l — 1) do 

Wl]ij 二 [^l]i,j + “ (0 — Pprev)^ . [hWi]ij 

for 1 二 1 to k + 1 do 

for j 二 1 to s{l) do 

'bi]j = [bi]j + rj {o — Pprev)^ . [hbi]j 
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4.3.3 Description of the Algorithm 

The training algorithm is used to train a set of training data, each element of which 

contains a temporal sequence of input data and a target. 

In (1) , initialization of the MLP is performed. If this is the first time of training, all 

weights and biases of the network will be randomly initialized. Otherwise, weights and 

biases from the previous training will be adopted. 

Codes in (2) perform the training procedure. An epoch of training is completed when 

the whole set of data are presented to the network once. Usually, many epochs have to 

be performed before the network can produce acceptable results for a specific training 

data set. The stopping criterion for training is based on the summed square error (SSE) 

between the network's outputs and the target for each training data. 
In 2(a), previous prediction and history vectors are initialized before a new training 

sequence is presented into the network. 
In 2(b), each input vector of the sequence is passed to the network for training, as in 

( i ) . Training mainly consists of four stages : 

1. Feed-forward ( i i ) : The input vector is fed into the input layer. The signals are 

passing forward and finally to the output layer in the network. An output vector, 

which represents a prediction made by the network, is produced. 

2. Weight Update ( i i i ) : Using the difference between the current and the previous 

predictions, together with the history vectors, all weights and biases of the network 

are changed. 

3 Backprop ( iv ) : Delta's for the current prediction are computed for the output 

layer. The values of delta are back-propagated to the lower layers one after another 

until delta for every layer is available. The operator 0 performs an element-wise 

multiplication ^ between a vector and every column of a matrix, which are of the 

same length. 
5Refer to the previous section for more description. 
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4. History Update (v) : Using the the values of deltajust computed, history vectors 

for all weights and biases in the network are updated for the current prediction. 

After the above four stages, the variable storing the past prediction, Pprev is updated 

by the current prediction, which is done in ( v i ) . 

In the codes of 2 ( c ) , after all input vectors in sequence is passed into the network, 

finally the target of all predictions, which is the reinforcement value, is used to compute 

the final update of the weights and biases. 

The codes in 2 (a )，2(b) and 2 (c ) will iterate in the for-loop for every training data 

in the training set. The codes inside the while-loop in 2 will perform a whole epoch of 

training. It will iterate until the training error drops below the expected limit. 



Chapter 5 

Exper iments 

5.1 Introduction 

In this chapter, we present the designs and results of some experiments for applying 

neural networks in Go. Three sets of experiments have been performed to train multi-

layer Perceptrons (MLP) using supervised learning and TD learning to solve some specific 

problems in computer Go. 

In the first set of experiment, we try to apply TD (A) learning and MLP's to evaluate 

7 X 7 Go board positions. The networks are trained by self-playing with stochastic selection 

of moves. Different values of A are used and their performance is compared. 

In the second set of experiments, we train MLP's to evaluate 9 x 9 board positions in 

the Middle-game. Temporal sequences of board positions, which are extracted from a set 

of human games, are used as training examples. We investigate the effect of the length 

of the training sequences and the value of A to the network's generalization performance 

after training. Results of the experiments are different with our original expectation. 

In the last exper iments , we try to train MLP's to determine the life status of a group 

of stones by supervised learning. Local patterns from human games are extracted as 

training examples and supervised learning model is used. Accuracy for the alive-or-dead 

classification after training is high. This result is very encouraging which gives a good 

prospect for similar applications in this area. 

41 
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5.2 Experiment 1 : Training Evaluation Function for 

7 X 7 Go Games by TD(A) with Self-playing 

5.2.1 Introduction 

The objective of this experiment is to test the performance of different values of A in 

TD(A) learning when it is applied to solve the problem of board evaluation in Go. From 

the past application of TD learning in board evaluation of Go [24], only TD(0) has been 

employed. As a result, we want to investigate the effect of different A in training by using 

the new algorithm for TD learning using MLP which has been derived in the last chapter. 

We train multi-layer Perceptrons (MLP,s) by TD(A) learning and self-playing to eval-

uate 7 X 7 Go board positions. The 7 x 7 board size, instead of the standard 19 x 19, is 

used in order to reduce the complexity of the problem. We have trained several networks 

by different values of A using TD (A) learning and their performance are compared [8 . 

5.2.2 7 X 7 Go 

Go has a favorable property that when the board size is reduced, all basic rules of the 

game still apply. Go with a smaller board size is excellent for beginners to handle and 

for computer to conquer because the complexity of the game is much smaller than the 

standard one. 

With the complexity of the problem being reduced, we could use a smaller network 

in our experiments. Using the same raw representation scheme, only 51 input units are 

needed to represent a 9 x 9 Go board while 363 units are needed for the standard 19 x 19 

board. Reducing the number of input units can decrease the number of necessary hidden 

neurons and thus the size of the whole network. Consequently, time and storage needed 

for the computation in training can be reduced to a manageable level. 
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Node I Information Stored Representatoi 
1-49 49 points in a +1 - black stone 

7 X 7 Go board 0 - empty 
—1 - white stone 

~ ~ ^ Color of next move +1 - black 
—1 - white 

~~^1 number of prisoners [(no. of prisoners captured by black)-
(no. of prisoners captured by white)] X 而 

Table 5.1: Input representation of a 7 x 7 board in experiment 1 

5.2.3 Experimental Designs 

Network Architecture Multi-layer Perceptron with 1 hidden layer is used. The ar-

chitecture of the network is 51-30-1. 

Representation Schemes We use a raw representation for a 7 x 7 Go board. The 

information encoded in the 51 input nodes is illustrated in Table 5.1. Output ofthe network 

represents the evaluation of the board. The output value lies within the continuous range 

— 1，1], with —1 representing an absolute win for the white side and +1 representing an 

absolute win for the black side. Different values between -1 and +1 represents different 

degree of favorableness each side correspondingly. 

Self Playing Since a network is trained by self-playing (playing against itself), we do 

not need to supply any training example to the network in this experiment. During self-

p lay ing , the network evaluates board positions after each legal move and plays according 

to the evaluations obtained. This is basically a 1-ply minimax search. Gibbs sampling 

24] is used to select move stochastically from all legal moves. The probability of a move 

rrii being selected is calculated by : 

1 (E[Bi)\ 

(5.1) P ( ^ i ) = 玄 e x p 、 ~ ^ 乂 

where Bi is the board position after the move rui, 
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Z is a normalizing factor equal to Ei e x p ( ^ ) for Bi after each legal moves m “ 

E{Bi) is the evaluation of board position Bi made by the network, 

T is the temperature determining the degree of randomness. 

Totally 100,000 games have been played in self-training of each network. In the begin-

ning of training, temperature T is set to a high value (1.0). When the training proceeds, 

T is reduced by a factor of a for every 20 games. The reduction is done by : Tnew = oi Toid, 

where 0 < a < 1. The factor a is set to 0.92 in this experiment. 

5.2.4 Performance Testing for Trained Networks 

Several networks are trained by TD(A) with A = 0.00,0.25，0.50，0.75 and 1.00 respect-

ively. We try to compare performance of any two networks trained by different A by 

letting them play against each other for 2000 testing games. Inside each testing game, 

the criterion for selecting a move is similar to the case in the training games. To avoid 

two networks from playing the same sequence of moves in all the 2000 testing games, 

stochastic Gibbs sampling with a very low temperature is used for move selection. All 

networks trained with different A compete in a round-robin tournament for performance 

testing. 
To obtain more reliable results, four replications have been performed. In each rep-

lication, the whole set of experiments starts from the beginning and the networks are 

initialized with a new set of random weights. We obtain the final results from averaging 

results of the four replications. 

After testing performance with different A, overall performance of the trained networks 

is estimated by the author, who is an expert Go player. 

5.2.5 Results 

Table 5.2 shows the summary of the outcomes of the testing games. Each entry of the 

table represents the winning percentage in the 2000 testing games between two different 

networks. For example, from the entry in the fifth row and the first column, we know 
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Networks || Average Winning Percentage with Opponents : 
A = |pr^ 0.00 p ^ . 2 5 A = 0.50 A 二 0.75 A 二 1.00 relative score 

^"^0.00 II — 46.11% 43.58% 37.38% 31.68% 161.74 一 

~"^0J5 53X~ 一 48.26% 4 3 . 4 ^ _ 3 7 ^ 9 7 ^ 183.53 

~ ~ p Q ~ ~ ^ 6 . 4 3 % 5 i .74yr 一 46.19% 40.74% 195.09 

0 75 "62.63% 5 6 . 5 9 ^ 53.81% — 45.41% 228.44 
一1.00 II 68.32% 62.03% 59.26% 54.59% 一 244.20 

Table 5.2: Results showing performance of networks trained by TD(A) with different A 

that the network trained by A = 1.00 wins 68.32% of the 2000 testing games against the 

network trained by A = 0.00. 
We sum up all the winning percentages for each network to obtain its relative score 

which reflects the accuracy of the network's predictions. If a network has a high relative 

score, it wins more games against other networks and is therefore a more accurate position 

evaluator. 

From the table, we can see that relative score increases with the value ofX. This shows 

that static board evaluation of Go game will be more accurate if we put more emphasis 

on the past state information in evaluation. 

On the other hand, performance of the evaluator after training is still practically in-

accurate, an assessment m.ade by an expert player, who is the author of this thesis. As a 

result, the moves played by the networks are usually of low-grade. This indicates that we 

need special design and training strategy for self-training an accurate evaluation function 

for Go board positions. 

5.2.6 Discussions 

The results of this experiment can be summarized as 

1. Better performance obtained with larger value of\. This is an empirical relationship 

between the value of A and the performance of evaluation of Go board position. 

However, it is not obvious that which property of the Go game contributes to this 

relationship because of the limited knowledge on the problem of Go board evaluation. 



î6 Chapter 5 Experiments 

Moreover, although TD(1) learning has a close resemblance with supervised learning, 

they are not the same as immediate updating mode is used in this experiment. ̂  

2. Evaluation is not satisfactory through a simple design ofself-training with stochastic 

sampling of moves within the training that is performed in this experiment. Since 

we mainly focus on the effect for different A, the design in this experiment is simple 

and may not be sufficient for training practically good evaluation. 

Self-training in TD learning has been shown a good strategy in the non-deterministic 

game Backgammon. However, applying this strategy in deterministic game needs some 

special design because the exploration of state space in the game during self-training is 

not as efficient as in non-deterministic games. Gibbs sampling plus a temperature cooling 

scheme, which are techniques applied in simulated annealing [1], are used to overcome 

this difficulty. However, there is no theoretical proof that this stochastic sampling in move 

selection will give good state space exploration because the use of the techniques here is 

different from its original application. This is a problem that needs further analysis. 

A recent publication demonstrates a research that applies an improved TD learning 

in a deterministic game called Nine Men's Morris [20], which is a converging perfect-

information game. Its state-space complexity is 10^°, which is the smallest among the 

Olympic List of games.) (In contrast, the state-complexity of 7 x 7 Go is lO^̂  and 9 x 9 

Go is 1Q38.) The game has been solved in 1993 by Ralpg Gasser in a way that game-

theoretic value for every board position is generated and stored in a large database [15 . 

This is in an even stronger state than strongly solved which was explained in Chapter 2. 

Unlike Go, training networks to learn the evaluation function in Nine Men's Morris 

is simpler because exact values of all possible game positions are available. Therefore, 

some better training strategies can be applied. In the experiment, a re-learning method 

has been used to improve the performance of TD learning. This is a method that iterates 

~~iThe original TD(1) learning is derived from supervised learning using batch updating mode (refer to 
section 3.2.2). . -

2The Olympic list contains most of the common games we play. Every year, there is a tournament tor 
programs of each game to compete with each other. 
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the learning for a specific temporal sequence of training examples until the network can 

give accurate predictions for all the examples. 

It is difficult to apply this technique in Go possibly because the exact value of the 

board positions of Go is not available. The state space of Go board positions, even in 

7 X 7, is huge when compared to Nine Men's Morris. Therefore, it is not likely to solve 

Go in the same way as Nine Men's Morris. 

Finally, we can conclude that the study of applying TD learning and self-playing in 

deterministic games like Go is still in an early stage. In this experiment, we have found 

an empirical relation between A and training performance. However, further studies are 

needed for a better understanding of the problem. 

5.2.7 Limitations 

The objective of this experiment is to find out the effect of different values of A. As 

a result, the design is not sophisticated for training evaluation of very good performance. 

We may try to improve the performance of the overall networks by investigating and 

designing special architecture of network for extraction of some useful information from a 

board position. However, that is not in the scope of this experiment. 

5.3 Experiment 2 : Training Evaluation Function for 

9 X 9 Go Games by TD(A) Learning from Human 

Games 

5.3.1 Introduction 
In this experiment, we train MLP's by TD (A) learning using board positions extracted 

from human game records (i.e. training by given examples). This is a new way of applying 

TD learning because in the previous experiments, only self-playing has been used. 

MLP's are trained to evaluate board positions taken from the Middle-game and early 
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End-game stage of 9 x 9 games played by human players. Each training example contains 

a sequence of board positions taken from the last few moves of a 9 X 9 Go game. Sequences 

of different length are used to train different networks and the performance of the networks 

are compared. It is expected that after training, the network can capture the strategic 

complexity in the Middle-game and produce good evaluation for the board positions. 

5.3.2 9 X 9 Go game 

9 X 9 Go game, like 7 x 7, is a simplified version of the standard 19 x 19 Go game. This 

simplification does not change the rules of the game. On the other hand, the complexity 

of the game and the problem of board evaluation has been reduced by a very large degree. 

We choose 9 x 9 as the board size in this experiment because abundant training ex-

amples for 9 X 9 Go games are available. This is not the case for Go game of other similar 

sizes. As neural networks are trained by human games, the abundance of available training 

examples is an important factor for the success of the experiment. 

In usual cases, Go game with smaller board size is only for beginners and weaker players 

because of its reduced complexity. However, fortunately, large amount of high-quality 9 X 9 

game records are available because of the recent interest from the professional players in 

this game. It is believed that even with a 5.5 point Komi 3, which is a comparatively large 

amount when the board size is small, black should have an advantage. However, strategy 

leading to an easy win for black is still not obvious for the professional players. This result 

draws much interest from strong players in researching 9 x 9 Go games. In one of the Go 

servers on the Internet, there is a ladder tournament dedicated for 9 x 9 Go games. As a 

result, we are able to obtain large number of high quality 9 x 9 game records from that 

server. 
"•^3The compensation given by the black side to the white side aimed to eliminate the advantage of playing 

first. 
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5.3.3 Training Data Preparation 

Source A few thousands of 9 x 9 Go game records are down-loaded from a Go server 

called No Name Go Server (NNGS)^ The games are mainly from the 9 x 9 ladder tour-

nament 5. 

Classification and Selection Normally, a game is finished in either one of the 3 con-

ditions : 

1. resignation : when one player resigns. 

2. time forfeit : when one player exceeds his/her time limit. 

3. scoring : when there are no more valuable moves and both player agree on endgame. 

In this experiment, only games finished by resignation are used for extraction of train-

ing examples. The reasons for not selecting the others are : 

1. A game finished by time forfeit is not used because the game outcome may not 

correctly reflect the state of the final board position. It is very often that the final 

board position is favorable to the side who lost the game by time forfeit. 

2. A game finished by scoring is not used because of the nature of the final board 

position. Counting the size of territories, instead of pattern shape analysis, should 

be applied in determining the outcome of the final board position. That is not the 

expected goal for the network to solve in this experiment. 

Only games with certain number of moves (20 to 50 moves) are selected. It is because 

if a game has too few moves, the final board position will remain in the opening stage. If 

a game has too many moves, the final board position will already be in the late endgame 

stage. Both of them will not give the type of training examples we need for this experiment. 
~"4NNGS is a newer and free Go server. It is located at York College, City University of New York. 
Connection to NNGS can be made to ra.york.cuny.edu through port number 9696. The archive of 
ffame records can be obtained through FTP at the same address. 

5g X 9 ladder is a ranking tournament of 9 x 9 Go game. Each participant will be given a position in 
the ladder. Winning will make ones position higher and vice verse. 
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Extraction of Board Position Sequences After a game record has passed the above 

selection processes, we extract its last k-th. board positions as a training example (or a 

testing example). Assuming there are n moves in that record : m1,m2, •. .,rUn and the 

sequence of board positions after each move is : Bo, ^ i ,执, . .• ,队 (where B, represents 

the board position after move m,), the sequence of board positions to be extracted will be 

Bn-k+i ’ Bn-k+2,..., Bn. The values of k used in this experiment are 1,2,. •., 6. 

After this procedure, we obtain a set of board position sequences which may be used 

as training and testing examples for the TD learning experiment. 

Generating More Examples by Reflections and Rotations A Go board is 90� -

rotational invariant and reflection invariant In other words, the content of a Go board 

is unchanged when it is rotated by W or reflected over diagonals, horizontal edges and 

vertical edges. For a board position B, let R{B) be the board after clockwise rotation 

by 90° of B and and F{B) be the reflection over the lower horizontal edge of the board. 

We can totally produced 8 different variations of the board B with the same contents by 

repeatedly apply the rotation and reflection to the board : 
1. B 2. F{B) 

3. R{B) 4. F{R{B)) 

5. R{R{B)) 6. F{R{R{B))) 

7. R{R{R{B))) 8. F{R{R{R{B)))) 
With such application, we can increase the size of the data set. Figure 5.1 shows the 8 

variations of an example board position. 

5.3.4 Experimental Designs 
Network Architecture The model of multi-layer Perceptron with 2 hidden layers is 

used. The network architecture is 83-50-20-1. 
Theoretically, MLP with one hidden layer is sufficient for universal function approx-

imation [13]. However, there is no limit for the number of hidden neurons and the time of 

convergence given by the theory. Practically, networks with more than one hidden layer 



51 Chapter 5 Experiments 

• • • • 
翻•臓國 
R B i ^M S i S i ^ 
_ • _ _ 

Figure 5.1: 8 ways of invariant transformation of a 9 x 9 Go board. 

is often used for solving complicated problems. As a result, we try to use networks with 

two hidden layers instead of one. 

Representation Schemes A Go board position is represented by 83 input units. 81 

units are used to represents each position in the 9 x 9 Go board (-1 = white stone; 0 二 

empty; +1 二 black stone). 1 unit is used to represent the color that plays next (-1 二 

white; +1 二 black) and 1 imit is used to represent the number of prisoners by the value : 

no. of stones captured by black - no. of stones captured by white] x ^ . 

Training and Testing Data Set The training set contains 600 different sequences of 

positions and the testing set contains 180 different sequences of positions. By using the 

8-way transformation to produce more semantically equivalent board positions, we obtain 

600 X 8 二 4800 training sequences and 180 x 8 二 1440 testing sequences. 

Different Parameters Three sets of experiments have been trained by TD(A) where 

\ 二 0.0,0.5 and 1.0 in each set respectively. 
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Measurement of Generalization Error Each testing example has the form (^i , 

B2,..., Bk, 0) where BiS are the last k-th board positions of a game and 0 is the out-

come of the game. The outcome 0 only correctly reflects the evaluation of the final board 

position Bk, but not other board positions in the sequence. It is because some moves rrij 

contributing to the last A;-th board transitions may be bad and largely change the value 

of the board positions. This phenomenon is called volatility of moves. In such cases, 

0 will be a poor reflection of the board positions before the bad move rrij. To avoid 

such problems, we only use the final board position from each sequence for testing the 

generalization performance of the trained networks. 
There are two measures of the generalization error. The first one is the conventional 

Summed Square Error (SSE) which is measured by Zi{^i — Vif where [而]is the vector 

of the expected output {Z in this experiment) and [yi] is the vector of the actual output 

from the network. This error measurement is useful in comparing performance of different 

training methods. 
In the second measure, the output of the network is treated as a discrete decision. 

In our experiment, the network has two output values representing the decision of ‘black 

wins" and 'white wins' respectively. The output of the network can be practically treated 

as a discrete decision by comparing the two output values. With such definition, a network 

can either predict correctly or wrongly for each testing example. We measure the total 

number and the percentage of incorrect predictions. This measurement is more significant 

in estimating the practical performance of the network. 

5.3.5 Results 
Table 5.3 shows the generalization error for different networks trained with different 

values of A and different length of game sequence. Figure 5.2 and 5.3 are the graphical 

presentations of data in Table 5.3. 
The column of SSE stores the summed square errors of the trained network on the 

testing data set. The column of incorrect ratio is the ratio of number of wrong prediction 
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game 11 A=Q.Q 11 A=0.5 11 A=1.0 
length SSE incorrect SSE incorrect"""SSE incorrect 

ratio ratio ratio 
1 0.2417 0.1333 0.2408 0.1333 11 0.2419 0.1333 ‘ 

~ ~ 2 “ 0.4340 0.304^" 0.3833 ~0^632 0.3545 _ 0.2444 
~ 3 ~ ~ 0.3533 ~ M M ~ 0.3752 0.2556 0.3748 0.2278 

4 ~ ^ 3 0.3208 0.3942 0.2785 0.3891 0.2778 
~ ~ 5 “ 0.4338 ~0：2944~ 0.3964 0.2667 0.3955 0.2674 
~6~~|"0.4648丨 0.3444 ||0.4020| 0.2868 ||o.3999| 0.2985~ 

Table 5.3: Generalization error after training in experiment 2 

to total number of predictions. The network makes a wrong prediction for a training data 

when the discrete decision it makes (either black wins, draw or white wins) does not match 

the desired output. For both measures (SSE and incorrect ratio), the smaller the value is, 

the better the performance is. 
From both graphs, we can observe trends showing that performance of the network 

degrades when length of the training games increases. The best performance is obtained 

when game length 二 1, in which TD learning is reduced to supervised learning because 

each training example contains only one board position and each pattern is treated in-

dependently. This is a surprising result because we expect that prediction made by the 

network will become more accurate when the length of sequences of training board posi-

tions increases. 

The performance for different values of A agrees with the trend in experiment 1. Better 

performance is obtained with greater value of A. However, since TD learning does not 

seem to be a good model for this application, this relationship between A and performance 

is not important. 
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Generalization SSE for different lambda and game length 
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Figure 5.2: Generalization summed square error (SSE) in experiment 2 

5.3.6 Discussion 

Relationship with Length of Game Sequences 

The result of this experiment is different from expected. We expect TD learning from 

temporal sequences of board position,.extracted from human game records will produce 

better result than learning from a set of independent board positions. However, the 

empirical results support the opposite : TD learning from sequences of board positions of 

a game performs worse than learning from independent board positions. The longer the 

sequences, the poorer the result 

We shall understand this phenomenon from the characteristics of TD learning. TD 

learning is superior over conventional supervised learning by giving more accurate es-

timation of certain important statistical parameters and a more detailed modeling of the 
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Generalization error (discrete) for different lambda and game length 
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Figure 5.3: Generalization error measured by percentage of incorrect prediction 

underlying probabilistic model. The superiority holds when the system to be estimated is 

a first order Markov model [3]. The difference of performance of TD learning in Back-

gammon and in Go suggests that determinism of the game is an important factor to the 

effectiveness of TD learning. Since transition of state of board positions is probabilistic in 

Backgammon, state transition probability from the current state to the terminal state is 

a good estimator of the game-theoretic value of current state. As a result, the problem of 

Backgammon can be modeled by the Markov model and solved effectively by TD learning. 

In contrast, state transition in Go is deterministic. TD learning may not train a good 

estimator because the value of a state cannot be estimated by the transition probability 

to the terminal states. 
The reason for worse performance with longer sequences of board position is because of 
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the inability of modeling the probabilistic models from the limited training data. With self-

playing and a good scheme for state space exploration, TD learning is able to understand 

the probabilistic model of the state space transitions. However, if the training examples are 

supplied and fixed during training, TD learning could only model the probabilistic model 

with the existing data set. This will result in poor estimation as the existing sequences do 

not provide thorough and even exploration of the state space. 

In our experiment, when we increase the length of the board position sequences, the 

complexity of the problem increases. This is because the network is required to make 

predictions on board positions from the earlier stage of a Go game. The modeling of a 

more complex space with the fixed set of training data is worse, explaining the results 

obtained from the experiment. 

Best Performance of network after Training 

Performance is obtained when the length of each training sequence is equal to 1. The 

accuracy of prediction obtained from this training is over 85% (13.3% incorrect predic-

tions), which is a practically acceptable figure. When we consider the number of training 

examples available in this experiment, this accuracy is not bad because the problem has 

a very high complexity. (Complexity of the state space is of the order 10̂ ^ but the size 

of training set is of the order of 10̂  to 10 )̂ This is an encouraging result that shows a 

good feasibility of using supervised learning model for solving the problem, even though 

TD learning does not give a satisfactory result. 

5.3.7 Limitations 
The number of training examples is limited and the performance of TD learning with 

more fixed training examples cannot be tested. With more training examples available, 

the performance can be expected to improve. 
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5.4 Experiment 3 : Life Status Determination in the 

Go Endgame 

5.4.1 Introduction 

Beside using TD learning, we may also apply the supervised learning model in solving 

some specific sub-problems in Go. Usually, problem that requires analysis of shape of static 

patterns is suitable to be solved by supervised learning in which training examples are 

learned separately and independently. However, research for solving problems in computer 

Go using this approach has not been done before. 

We try to tackle the problem of alive-or-dead analysis in this experiment. It is not only 

an important sub-problem for designing a evaluation function of Go (recall section 2.3.1 

for a detailed explanation) but also a representative problem that requires static shape 

analysis. 

Training by supervised learning usually requires plenty of training examples. There-

fore, the availability and ease of preparation of sufficient examples are two important as-

pects in designing experiments using neural network. In our experiment, we obtain large 

amount of records of human games from a Go server in the Internet. Moreover, training 

examples are produced by extracting corner patterns from End-game positions of a Go 

game automatically. (Some human selection process is needed for refining the training set 

but the process can be eliminated after some further change of design discussed in this 

section) As a result, there is no practical problem in setting up the training experiments. 

We have trained MLP's with multiple hidden layers to learn the problem of life-status 

identification. The network have to judge whether a group of stones residing at the corner 

region is alive or dead. After training with a data set of reasonable size, the networks 

can perform accurate identification. This encouraging result gives a very good prospect 

for applying neural network to solve sub-problems in Go with the similar nature as this 

problem. 
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5.4.2 Training Data Preparation 

Data Source We down-load thousands of game records from the Internet Go Server 

(IGS) 6. Each game record stores a 19 x 19 game played by amateur Go players in the 

server. 

Classification and Selection The large number of games are first classified by the 

rank of their players. Only games played by certified high-ranked? players (above 3-kyu) 

are used in this experiment. This is for maintaining the quality of information supplied 

by the games because weak players make mistakes in judging the life status of a group of 

stones more easily. 

The qualified games will be further classified by the finishing method. As mentioned 

in experiment 2, a game can be finished by resignation, by time forfeit or by scoring. 

For the games ended by scoring, alive-or-dead information of every stone on the End-

game position is available from the game record. Such information is absent in the games 

ended by resignation and by timeforfeit. Therefore, only game finished by scoring will be 

used for extracting training examples. 

Pattern Extraction The process of pattern extraction from game records can be di-

vided into the following four steps : 

1. The game is replayed from the game record by a computer until the final board 

position is reached. 

2. From the information in the game record, life status of every stone on the final board 

position is assigned. 
^^6iGS is a Go server in the Internet. It is a site for Go players from all around the world to connect 
and find opponent to play Go. Connection to IGS should be made to igs.nuri.net through port number 
6969. The game records used in this experiment are obtained through FTP from the same address. 

7The ranks of amateur Go players are divided into 2 classes : kyu (k) and dan (d). The order is like 
this : 

(beginner) 2bk — 2Ak ———)^ 2k ^ lk — ld ~> 2d ^ ——)-6d (expert) 
6-dan is the highest amateur rank. Professional players are ranked by a different system. Currently, the 
strongest computer Go programs have ranks around the level of 10-kyu to 5-kyu. 
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3. Stones of the same color connecting together are arranged as group. 

4. If a group of stone is residing with any one of the 7 x 7 corner of the board, pattern 

of the corresponding 8 x 8 corner region is extracted. This extraction process is 

illustrated in Figure 5.4. 
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Figure 5.4: Extraction of a 8 x 8 corner pattern : if a group of stones reside in either one 
of the 7 X 7 corner (marked by gray), the corresponding 8 X 8 corner pattern (marked by 
dotted lines) will be extracted as a training example 

After passing the above four steps, a set of corner patterns are obtained from the game 

records. Information stored in each extracted corner pattern is : 

1. stone at each point of the 7 x 7 pattern (black, white or empty). 

2. locations of the group whose life status needs to be identified. 

3. life status of the group marked in (2). 

The representation of each training data is then standardized. First, the corner point 

of the pattern should be at the upper left (i.e. uniform orientation). Patterns not at 
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this orientation are rotated. Second, color of stones in the group to be examined by the 

network is black in color (i.e. uniform stone-color). Color reversal^ is applied on patterns 

that do not satisfy this condition. These two processes (rotation and color reversal) will 

not change the actual content of the pattern. However, complexity of the problem can be 

reduced with this standardization of pattern representation. 

Expert Selection Inside a 8 x 8 pattern, there may not be sufficient information for 

determining whether a group residing there is alive or dead. Some necessary information 

located outside the 8 X 8 corner region may be lost during the extraction process. Therefore, 

to provide a good set of training data, such patterns should not be included in the training 

set. In this experiment, we need inspection of human expert® to find out and discard the 

8 X 8 corner patterns that do not contain sufficient information. 

5.4.3 Experimental Designs 

Network Architecture Multi-layer Perceptrons with 4 hidden layers are used. The 

architecture is 128-150-70-40-30-2. The first two hidden layers are aimed for extraction 

of eye patterns, which is assisted by the specially designed connectivity in the first hidden 

layer. The last two hidden layers aimed for high level analysis using the information 

extracted. 

Representation Schemes 128 input units are used to represent two 8 x 8 maps for 

each training example. The first 8 x 8 map (Board Map) represents the state of each point 

in the pattern. For each point, —1 represents a white stone, 0 represents a empty point 

and +1 represents a black stone. The second 8 x 8 map (Location Map) locates the group 

of stones for the alive-or-dead test. Since there may be more than one group of stones of 

the same color inside the 8 x 8 corner, this extra map is needed to indicate to the network 

~"8Color reversal is performed by changing color : black ~> white and white — black for every stone one 
the specified region ofthe board. . 

9The author of this paper is an expert in Go. He is an amateur 6-dan and has been the champion ot 
Hong Kong Grand Go Tournament from 1991 to 1995. 
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the locations of the group to be test. Figure 5.5 shows an example of the representation. 

籠 
从 

0 1 1 - 1 1 0 0 0 0 1 1 0 0 0 0 0 
1 0 1 - 1 1 0 0 0 1 0 1 0 0 0 0 0 

—1 1 1 —1 1 0 0 0 0 1 1 0 0 0 0 0 
—1 _ 1 —1 —1 1 0 1 0 0 0 0 0 0 0 0 0 

0 0 - 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 - 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 - 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 - 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

Board Map Location Map 

Figure 5.5: Representation for a training example : we want to identify the alive-or-dead 
status of the group marked by ® . The Board Map represents the 8 x 8 corner pattern and 
the Location Map indicates the group for identification. 

The network has two output units, one corresponding to the alive decision and the 

other to the dead decision for the input pattern. The first one fires if the group is alive 

and the second one fires when the group is dead. The difference between the two output 

values is the alive-or-dead decision made by the network. 

Partial Connectivity In our design, the first hidden layer is used for the primary 

extraction of eyes, which is an essential factor in deciding whether a group of stones is 

alive or dead. Connectivity between the input and first hidden layer is specially designed 

to facilitate the eye extraction process. 
Xhe neurons in the first hidden layer is divided into 2 groups. The first group has 90 

neurons and the second group has 60 neurons. In the first group, each hidden neuron is 
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Window Size No. of different Hidden nodes for No. of connections for each 
windows all windows node to the input layer 

— 3 X 3 36 1-36 18 
r ^ 25 37-61 ^ 
5 X 5 16 62-77 50 ~ " 
6 X 6 — 9 78-86 ^ 

- 7 X 7 4 87-90 98 

Table 5.4: Connectivity of 1st group of neurons in the 1st hidden layer 

connected only to a local window of the 8 x 8 corner pattern. The size of the local windows 

ranges from 3 x 3 to 7 x 7, together covering the whole 8 x 8 region. For example, a hidden 

neuron connecting to a 3 x 3 local window will be connected to 18 different neurons in 

the input layers : 9 neurons in the 3 x 3 window of the board map. and 9 neurons to the 

corresponding 3 x 3 window in the location map. The detail of connectivity of the first 

group of hidden neurons is summarized in Table 5.4. 

In the second group, each neuron connects fully to all neurons in the input layer, i.e. 

to the whole 8 X 8 corner pattern. This group is used to capture some irregular shapes of 

stones which contribute to some special cases in alive-or-death problem. Figure 5.6 shows 

a brief structure of partial connectivity between the input layer and the first hidden layer. 

The details of the region of partial connectivity in the figure has been described in the 

previous table (5.4). 

In practice, training of networks with this partial connectivity in the first hidden layer 

is 1.5 times faster than the totally fully connected ones. 

Training method The training data set consists of corner patterns extracted from 

different human games. The patterns do not have any relation with one another. During 

training, they can be presented to the network in any arbitrary order. As a result, the 

model of supervised learning is applied in this experiment. Backpropagation is used to 

train MLP's, instead of TD learning, to solve this problem • 
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90 neurons 60 neurons 
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128 neurons for Board Map and Location Map for the 8X8 corner pattern 

Figure 5.6: Connectivity between the input and first hidden layer in experiment 3 

Strategies for Faster Convergence Some strategies are used to set the parameters 

of the neural network in order to make convergence faster [23 . 

1. learning rate : each neuron has its own learning rate. Neuron in last layers,which 

tend to have larger local gradients, should have smaller learning rates than the front-

end layers. Moreover, a neuron with higher fan-in factor should also have a smaller 

rate. 

2. initial weight : weights and biases are initialized with random numbers that are 

uniformly distributed inside a small range. The range, which is determined by the 

fan-in number (F^) of the neuron, is ( - ^ r , + | f ) . 

Training Data Sets Three training data sets are used to train neural networks. The 

first data set contains 1391 patterns directly extracted from human games without passing 

and expert selection process. The second data set contains 969 patterns which are selected 

by human expert. The third data set is a super set of the second set. It contains 1495 

patterns which are also selected by human expert. Training data selected by human expert 
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Training No. of training Human Total Average Wrongly ~~Correct~~ 
Data Set examples Selection SSE SSE Classified Percentage 
一 (1) 1391 No 24.1032 0.06228 16 95.87% “ 
~ ~ t 2 ) ^ 969 一 Yes 20.0245 0.05l7F 12 一 96.90% 
一 (3) 1495 Yes 11.5450 0.02983 6 98.45% “ 

Table 5.5: Generalization results of different training data sets in the corner alive-or-dead 
problem 

is noiseless because the process ensures that in each pattern, there should be sufficient 

information for judgment of the live-or-death status. 

Testing Data Set The testing data set is used for testing the performance of generaliz-

ation of the trained networks. It contains 387 patterns that are completely different from 

the training patterns. All the data in the testing set have passed the selection process by 

the expert and therefore can be used to test generalization accurately. 

5.4.4 Results 

Table 5.5 records the best performance of generalization of three networks that are 

trained with different training sets. The error of a network for each testing data is meas-

ured by the summed square error (SSE). It is calculated from summing up the square of 

difference between every desired output and actual output values. If the SSE for testing 

example is too large (> 0.3), the network is considered as making a wrong decision for 

that example. For each network, the total number of wrong decisions is counted and the 

correct percentage is calculated. 
If we compare results between networks trained by data set (1) and the one trained 

by data set (2), it can be observed expert selection has a positive effect on the accuracy 

of generalization. It is because the selection process removes noisy data from the training 

set. 
Comparing results of (2) and (3) in Table 5.5, the increase in the number of training 
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data results in a significant improvement in the accuracy of generalization. We foresee 

that better result can be obtained with more training data, which is a usual case in neural 

network learning. However, elimination of noisy examples through human inspection 

requires a lot of effort. The corresponding time for training an epoch and for convergence 

will also increase. 

5.4.5 Discussion 

The result of experiment 3 is very encouraging : accuracy in predicting the alive-or-

dead state of a corner group is over 95%. This shows that with an appropriate problem 

decomposition, and specially designed experiments, neural network can be successfully 

applied in solving some problems in computer Go. 

The techniques for the success of this application are : 

1. Reduction ofthe problem complexity to a manageable size. Instead of using a whole 

board, only patterns in corner are used. This decreases the number of input units 

to about one sixth of the whole board. 

2. Nature of the problem fits the properties of the neural networks. Alive-or-dead ana-

lysis of a group of stones is mainly a problem of pattern matching and analysis. This 

type of problems are suitable to be solved by neural networks. Another problem hav-

ing high potential to be solved by neural networks is strength analysis of stones in 

Go. 

Moreover, it should be noted that the size of the training data set is compact. The result 

of obtaining network with good performance from relatively small training set suggests 

some special properties in the game of Go. Similar results also occurs in experiment 2. In 

the next section, we will try to explain these phenomena with a postulated model of the 

Go game that has properties leading to these results. 
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5.4.6 Limitations 

Since this is the first application in the area of solving game-specific problem of Go 

using neural network, our emphasis is mainly put on the design of the experiment. Instead 

of training a neural network, in the first time, that can be directly used in building a 

computer Go program, we aim at testing the feasibility of our approach. As a result, a 

reduced problem that handles 8 x 8 corner pattern is solved. In a real Go game, being able 

to analyze alive-or-dead state of stones at a corner is not sufficient because many groups 

of stones will be lying across that boundary. 

With the extraction of 8 x 8 corner pattern, human examination, which is a slow and 

expensive process, is needed for selecting training patterns containing sufficient informa-

tion. As a result, the number of training examples is limited. We suggest the use of group 

of stones in 9 x 9 or 13 x 13 Go board as an extension of this experiment such that no 

extraction of local region is needed. As a result, preparation of training examples can be 

done automatically. 

5.5 A Postulated Model 

In this section, we try to describe a postulated model based on the our experimental 

results and our knowledge in the game of Go. The implication of this model is giving 

a significant complexity reduction for solving some problems in Go, This gives a good 

direction for future research in computer Go. 
Good generalizations obtained from experiment 2 and 3 has shown that even with 

relatively small training set, generalization can still be reached to a practically good level. 

In the two experiments, data in the training sets and the testing sets are obtained from 

games played by experienced (above-novice) human players. From this, we come to a 

hypothesis that the state space of Go board positions can be functionally classified into 2 

sets : ordinary set and bizarre set. Most of the board positions occurring in human 

games are in the ordinary set. On the other hand, the bizarre set contains board 

positions that seldom occur in human games. 
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If we describe the concept from the human knowledge of Go, an ordinary set means 

the set of board positions reachable from sensible moves (i.e. moves with certain quality). 

Bizarre set is the set of board positions results from random and non-sensible moves. 

Size of the ordinary set should be much smaller than the bizarre set, as explained by the 

concept of entropy. It is because board positions in the ordinary set shall have some 

forms of order which implicitly represents the Go knowledge of the human players. On the 

other hand, bizarre set contains board positions without such order and are therefore more 

random. From the theory of entropy, the probability of occurrence of chaotic states without 

any order is much higher than the probability of the highly-ordered ones. Therefore the 

ordinary set shall occupy only a small portion in the state space of Go. 

Since most of the board positions occuring in the human games belong to the ordinary 

set If we train and test neural networks with examples restricted to the ordinary set, we 

might expect the network can generalize well. It is because the actual space complexity 

of the problem is much smaller. 

For human players, the ability of classifying board positions from the two sets gives a 

complexity reduction of the problem. Supporting evidences for this complexity reduction 

techniques among human players in Go are 

1. Most beginners find it hard to play Go because they find the number of moves they 

needed to consider is too large to handle. This is the observation from the author 

who has taught many introductory courses of Go. The difficulty can be explained 

as the lack of techniques of complexity reduction, assisted by knowledge in Go. 

2. Experienced player can make instant differentiation of board positions played by 

human players and by random generation. This is because randomly generated 

board positions will produce some irregular shapes, which can be easily identified. 

3. Strength of strong Go players can be retained in lightning game, in which a move 

is played within a very short period of time. Difference of strength between two 

players will often be magnified but never diminished in lightning games. This can 

be explained by the pattern recognition ability of the strong players. Such ability is 
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helpful in complexity reduction of space by recognizing unlikely-to-be-good patterns 

and ignore them in searching. 

This above phenomenon positively verify the fact that strong human players acquire 

a good complexity reduction technique, which can be explained as the ability to classify 

board positions in the ordinary set and the bizarre set. In our experiments, since training 

data extracted from human games belong to the ordinary set, the space explored in training 

and testing is relatively small compared to the theoretical state space. This explains the 

extraordinary training performance obtained.from a relative small training set. 

If such hypothesis is true, it will be a good direction of research in solving the problem 

of ordinary set and bizarre set classification. This problem is suitable to be solved by 

neural networks because : 

1. The classification is a problem of pattern analysis and neural network is strong in 

solving such problem. 

2. Training examples for both set can be easily and automatically generated. Moreover, 

the supply is unlimited because board positions of any games played by strong human 

players will be suitable. 

3. It is difl&cult to solve the problem analytically because that requires understanding 

of all properties characterizes patterns occuring in human games. 

We propose this as an extension to our research. 



Chapter 6 

Conclusions 

In this research, we have done some analysis and performed several experiments to 

investigate the application of neural networks in some problems of computer Go. We 

conclude our work in the following paragraphs : 

Framework in Computer Go We use a practical definition of solving a game in the 

problem of computer Go. A framework is designed for decomposition of a large problem 

into smaller sub-problems in computer Go. In this research, we try to focus on some 

specific sub-problems using neural network learning. 

A New Updating Rule We have derived a new updating rule for TD(A) learning using 

multi-layer Perceptron which is a common model of neural networks. An algorithm for 

the new updating rule has been designed which is used in the experiments of TD learning 

in this research. 

TD (A) Learning for Nonzero A in Go The first set of experiments are for applying 

TD(A) learning, with nonzero A (using the newly derived updating rule) to train evaluation 

function in 7 X 7 Go game. Self-playing is used in generating example board positions to 

train the networks. From the experiments, we find that the larger the value of A within 

0,1], the better the performance. 
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TD (A) Learning by Human Games in Go The second set of experiments are for 

applying TD(A) learning to train evaluation function for 9 x 9 Go game. The approach is 

different that examples from human games are used to train the network, instead of using 

self-playing. Results show that TD learning does not perform well in this case. Better 

results are obtained from using a set of independent examples. In such case, it is reduced 

to the supervised learning model. From these results, we suggest that TD learning with 

a provided set of training examples is not a good strategy in solving deterministic game 

like Go. 

Alive-or-dead analysis In the last set of experiments, we try to solve an important 

sub-problem in board evaluation : alive-or-dead analysis of a group of stones on the board. 

The complexity of the problem is reduced by imposing some restrictions to the training 

examples. Successful results show that neural network using supervised learning model is 

very suitable for solving this problem. We propose some extended experiments for some 

further investigation in this area. 

A Postulated Model for Complexity Reduction Base on the results of the second 

and the third set of experiments, we find that performance of trained neural networks can 

be surprisingly good with a training set of moderate size. Consequently, we postulate a 

model of classification of board positions into an ordinary set and a bizarre set Solving 

problems which focusing on the ordinary set that contains board position frequently oc-

curing in human games would be an effective way for space reduction for Go, which has 

a huge state space. 

Overall Conclusions Concluding the whole research, we have started an alternative 

area for computer Go and explored some learning methods for solving sub-problems in 

computer Go. Although application of TD learning in Go is practically difficult because 

of the determinism in the game, some encouraging results are obtained from training 

using the supervised learning model. As a result, we find that there is a good prospect in 

applying supervised learning model in some specific problems of analysis in computer Go. 
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i 6.1 Future Direction of Research 
I I 
！ . 
j Extended Alive-or-dead analysis and Strength analysis First, we can extend ex-
i . 
I periments of alive-or-dead analysis to groups on a board position of 9 x 9 Go games with 

j no spatial restriction. The use of 9 x 9 Go board can maintain the complexity of the 

problem in similar level. Moreover, there will be no need for human inspection for select-
I 

i ing noise-less training data. On the other hand, solving the problem of strength analysis 

for stones in open and early-middle game, which is a problem that has some common 

properties as the alive-or-dead analysis, is also of good prospects. 

Classification of the ordinary and bizarre set Training neural networks to classify 

board positions into the ordinary set and bizarre set will be an experiment of great signi-

ficance. Being able to do the classification can result in reduction of complexity of many 

problems in computer Go by focusing on board positions mainly from the ordinary set. 

In a practical sense, the classification problem is suitable to be solved using neural 

network. It is because finding an analytical solution requires a complete understanding of 

properties that appear in human game. This is too difficult from our current knowledge 

in Go. Moreover, it is easy to generate training data and the amount is almost unlimited 

because board positions from any human games can be used to train the neural networks 
i ̂ 
j for solving this problem. 
i s 
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Appendix A 

A n In t roduc t i on to Go 

In this chapter, we will give a brief introduction to the game of Go. Then we will 

describe some of the complex strategies in Go. 

^ A.1 A Brief Introduction 

A.1.1 What is Go? 

Go is board game played by two persons. In technical term, it is a deterministic two-

player zero-summed game with perfect information. It is known as Wei-Qi in China and 

Baduk in Korea. The name Go is a Japanese translation. 

The goal of the game Go is to seize more territories than the opponent. It is a difficult 

game with sophisticated tactics and strategies. 
The game is originated in the Orient. Because of its interesting properties, it is now 

gaining popularity in the Western world. 

A.1.2 History of Go 
According to myths, Go was invented by Emperor Yao who was the ruler of the Han 

race in China around 4000 years ago. Originally, it was just a tool for fortune telling and 

gambling. Later it became an interesting and challenging recreational game. 
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The game was learned by the Korean and then Japanese around the 5th century. 

In the 16th Century, Go was first institutionalized and became professionally studied in 

Japan. Japanese Emperor started to subsidize 4 professional Go institutes for teaching 

and studying Go. The skills in Go was then largely improved as a result of the systematic 

study and the keen competition between the institutes. Consequently the professional Go 

players in Japan achieved a very high playing level since then. 

In the past of China, Go was like a traditional arts. Some nobles, officials and rich 

people liked to employ some strong Go players for fame and for using them to play betting-

match with other players. The skills of Go in ancient China therefore relied heavily on 

the prosperity of the society. The situation continued until Go was treated as a sports 

activity in the past few decades. Since then, Go has become more popular in China and the 

skills of the top professional players are increasing quickly. Nowadays, the best Chinese 

professional Go players are at a competing level with the top professionals in Japan. 

Korea (South) started to develop Go as one of their National cultural activity after 

the World War 11. Korea is now having the greatest density of Go population in the 

world. Recently, a few top Korean Go professionals started winning a lot of international 

tournaments and becoming competitive with the professionals from China and Japan. 

Besides the 3 largest "Go countries," Go is also very popular in Oriental regions like 

Taiwan, Singapore and Hong Kong. It is estimated that the population of Go around the 

whole world is more than 25 millions now! This interesting and challenging game is also 

becoming more popular outside the Oriental countries. The interesting properties of the 

game are the reasons for its large popularity. 

A.1.3 Equipment used in a Go game 
A complete set of Go equipment contains a board and 2 sets of stones with color black 

and white respectively and a pair of bowls for containing the stones. 

A standard Go board is square in shape. It is usually made of wood. It has 19 horizontal 

lines and 19 vertical lines, forming totally 361 intersections called points. (There are also 
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small 13 X 13 and 9 x 9 boards for beginners.) Inside a 19 x 19 Go board, there are 

9 specially marked points called stars. They are for easy visualization and for puttmg 

handicap stones in a handicap game. 

There are 2 types of Go stones: black and white. A complete set of stone has 181 black 

stones and 180 white stones and stones of the same color are put inside a bowl-shaped 

container. The stones are circular in shape. Some are swelling on both side (Japanese 

style) and some are swelling on one side and flat on the other side (Chinese style). Stones 

are usually made from plastic, glass or genuine stones. Some expensive stones are made 

from shell and even jade! 

A.2 Basic Rules in Go 

Go is a board game with simple basic rules but complicated strategies. It takes only a 

few minutes for one to learn the rules but years for a player to master! Since our knowledge 

of the game is still very limited, new variations and strategies are discovered by human 

experts every year. It seems that even some of our basic concepts in Go are still in the 

current of change. 

A.2.1 A Go game 
A Go game requires 2 players to play. One player takes black stone and another takes 

white stone in a game. In an even game, Black player always plays first. In a handicap 

game, the weaker side will take black and put a certain a number of stones on the board 

first. Then white will start to play. Each player plays alternately. A move is played by 

putting a stone at an empty point on the board and removing dead stones from the board, 

if any. 
The goal of the game is to surround and control as many unoccupied points as pos-

sible. The empty points once surrounded by one side become the territories of that side. 

The player who surrounds more territory than his/her opponent wins the game. In the 

competition for territory, there will often be battles between stones. Some stones may 
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be captured and removed from the board. We will explain these ideas in the following 

sections. 

A.2.2 Liberty and Capture 

A liberty of a stone is an empty adjacent point of that stone. In Figure A.1, the black 

stone at the corner has two liberties, labeled "1" and “2”. Similarly, the black stone at 

the edge has three liberties and the one in the center has four liberties. 

• l ^ ^ T i . 2 
2^ h 3 + + H 

二 - 2 ‘ 3 - 二 二 二 - 二 —— 
4 

Figure A.1: Liberties of a single stone 

Two stones of the same color are connected if they are adjacent to each other. This 

connectivity relation is transitive. Stones of the same color form a string if they are 

connected to one another. The liberties of a string is the empty adjacent points of every 

stone in that string. Liberties, shared by many stones of a string, at the same point count 

only once. In Figure A.2, the string at the corner has three liberties counted by number 

1, 2 and 3. The string of three stones at the edge has five liberties. The 3-stone string in 

the center has eight liberties. 
If all the liberties of a string are filled up by opponent stones, the string will be captured 

and removed from the board. Stone removed from the board is called prisoner which is 

returned to the player of that color, (according to the Chinese Rule i). Note that a string 

can only be captured as a whole if all its liberties are filled by opponent stones. Stones of 

a string cannot be captured separately. In Figure A.3, at the corner, after the move � is 

played, two black stones are captured and removed. At the edge, after � is played, three 

~ ~ i l n Japanese rule, prisoners are kept by the player who captures them in 
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Figure A.2: Liberties for a string of stones 

black stones are captured. The case is similar in the center where four black stones are 

captured after � . 

M f f i M 

^ H 
Figure A.3: Examples of capturing stones 

In many situations, stones of both players are cutting each other into separated strings. 

Usually, battle will start when this cutting situation occurs. In Figure A.4, at all the corner 
area, there are battles between black strings and white strings. 

A player cannot make a move at a location that makes any of his/her own string out 

of liberty without capturing any opponent's stone. Such move is prohibited by the rule. In 

Figure A.5, all points labeled from a to e are prohibited moves for black. 

A move is allowed if it makes both one's string and some opponent's strings out of 

liberty simultaneously. In such case, the opponent string(s) will be captured and removed 

but not one's own string. In Figure A.6, all the moves marked a are allowed for white 

though the white stone at a seems to be out of liberty at a moment. The outcome will be 

corresponding black stones marked ® being captured after white plays a move at either 
position a. 
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Figure A.4: Examples of cutting into separate strings 
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Figure A.5: Examples of prohibited moves 

If a string has only one liberty left, it is in the state of Atari. In Figure A.7, all black 

stones ® are in Atari since they only have one liberty, marked by a). 

A.2.3 Ko 
Ko is a shape of that cyclic capture-and-recapture of a stone is possible. Figure A.8 

shows three examples of Ko. If both player insist on capturing the opponent stone in the 

Ko, the same situation will go on forever and the game cannot be finished. As a result, 

there is a rule forbidding the immediate re-capture of the stone in Ko. Once the Ko starts 

and player A captures the stone in the Ko, the stone he/she just played becomes a hot 
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Figure A.6: Examples of two strings running out of liberty at the same time 
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Figure A.7: Examples of Atari 

stone. The other player {B) cannot re-capture the hot stone immediately. He/She must 

play somewhere else. If the player A also plays somewhere else, player B can capture 

the "hot stone" as it has been "cooled down". For the same reason, B's stone in the Ko 

becomes a new hot stone and player A must play somewhere else before capturing the 

hot stone. According to this rule of Ko, situations of immediate recapture in Figure A.8 

cannot occur in a real game. Figure A.9 demonstrates an example of Ko fight in a real 

situation. When white plays � and captures the black stone in Ko, black cannot capture 

back immediately. Black plays at 珍，threatening to cut the white group in the left side 

into two pieces. White responds with � and forms a string. Now the hot stone � has 
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Figure A.9: Example of Ko and Ko threat 

cooled down and Black can play 0 Similarly white has to play � and black plays @ 

before white can capture the Ko in � . M o v e s like Q and � are called Ko threat Ko 

threat is a move that opponent will likely respond when it is played. Otherwise, there will 
» 

； be some adverse effects for the opponent. Therefore, Ko threats are necessary in a Ko 

: fight. The side with more Ko threats will have a higher chance to win the Ko. 

I With the Ko rule just described, cyclic situation in Ko can be solved because the Ko 

, can finally be terminated when one player ignores the opponent's Ko threat. 

Figure A.10 demonstrated this situation. When white capture the Ko stone by ①， 

black make an Atari by 0, which is a Ko threat. In usual cases, white will save the three 

stones by connecting them to the other white group. However, in this game, white judges 

that he/she can get more profit in winning the Ko than in saving the three stones. As a 

result, white ignore that Ko threat and terminate the Ko by playing � and capture the 
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Figure A.10: An example of termination of Ko 

black stone ® . In return, black can now capture the three white stones (marked by • ) by 

: 0 . This case has similar meaning as material exchange in Chess but is less trivial here, 
i( 
I 

A.2.4 Eyes, Live and Death 

Basically, an eye is one empty points (or many-connected points) connected point that 
- 暑 

is surrounded by stones of one side. If a group of stones possesses of 2 eyes, it can be alive 

even if surrounded by the opponent stones. In Figure A.11, all the three black groups have 

� 2 eyes, labeled by a and b for each group. White cannot play at either point of black's 1̂ • 
j eye because the move will violate the rule (prohibited move). As a result, all three groups 

of black stones are alive even though they are completely surrounded by white. 

When surrounded by opponent stones, group of stones having only one eye will be 

dead. It is often that some surrounded space containing more than one point can form 

only one eye. Figure A.12 shows some examples of this case. After playing � in each 

pattern, each black groups can essentially form one eye in the space surrounded by black 

stones. Therefore, they are dead. 
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Figure A.11: Examples of alive by having 2 eyes 
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Figure A.12: Examples of big eyes 



Appendix A An Introduction to Go ^^ 

^^^¾ 
三 三 三 ^ ^ 三 三 三 三 三 

^ ^ ^ ^ ^ I I I I I I I 

^ ^ 三 三 ^ ^ ^ ^ 
Figure A.13: Examples of Seki 

A.2.5 Seki 

In some special cases called Seki, strings without two eyes can still be alive. Existence 

of mutual liberties (i.e. liberties shared by some stones of different color) is a necessary 

condition. In Figure A.13, all black strings % and white strings • are alive, though they 

do not have 2 complete eyes. 

Whether a situation is a Seki depends on the shape of the involved stones. Some similar-

looking patterns may result in completely different outcomes. For example, in Figure A.14, 

the three patterns in the upper diagram looks very similar to the corresponding ones m 

the lower diagram. However, all white strings © in the upper diagram are alive but all 

white strings © in the lower diagram are dead. This is because of the slight difference in 

shape of black and white stones. Please refer to some Go books for a detail description 

12], [5], [18；. 

A.2.6 Endgame and Scoring 

Normally, a Go game is finished under one of two situations : 

1. When either player resigns the game. 
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Figure A.14: More examples of Seki 

2. When all empty points except territories are filled. 

In a game with time limit for both players, there may be a third situation : when either 

player used up all his/her time. 

In the second situation, scoring is needed to determine which player has won the game. 

Players have to agree on which stones on the board are dead under consensus. The dead 

stones are then removed from the board and returned to the original player. After that, 

they can count the total number {n) of (stones + points of territory) of either side, say 

black. If the sum is greater than 180| (which is the half of total number of points on a 

19 X 19 Go board), the player of that side (black in this case) wins the game. The difference 

between the number n and 180|, in terms of stone, is the amount of winning. This is the 

• Chinese scoring method. 

Since Go is a game of competition for territory on the board, the black player who 

plays first always has certain advantages over the white player. In a tournament match, 

the black side has to give some compensation, called Komi, to the white side in order 

to make the winning chance for both sides equal. The size of Komi is usually 2| stones 
s _ 

[ (which is equivalent to 5.5 points of territory), 

t 
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A.2.7 Rank and Handicap Games 

The playing strength of a player can be estimated by his/her rank. The Japanese 

ranking system consists of kyu and dan is a universally accepted ranking system. In the 

systems, professional players and amateur players are ranked by different scales. For 

amateur players, when a person has learned the basic rules of Go, he/she will be a 15-kyu, 

which is the entry level. The smaller the number in the kyu level, the stronger the player. 

The highest kyu level is l-kyu, which is the strongest novice level. 

After the kyu levels, it comes to the dan levels. A dan level represents an expertise in 

Go, which is a respectable symbol in the amateur Go community. 1-dan (called Shodan in 

Japanese) is the weakest dan level. Unlike the kyu levels, the larger the number in dan, 

the stronger the player. The strongest dan level for an amateur player is 6-dan. (In some 

rare situations, amateur 7-dan will be granted for ultra strong amateur players) The scale 

is summarized as (where k = kyu and d 二 dan): 

(beginner) 25k ^ 24k ^ ——^ 2k ^ lk ^ ld ^ 2d ^ ^ 6d (expert) 

The scale for professional players are different. A player can enter the professional 

community only after he/she can be qualified in some special selection tournaments. The 

are different selection tournaments organized by different professional Go institutes in 

China, Japan, Korea and Taiwan. Usually, a person has to be intensively trained in Go 

when he/she is very young (around 10 years old) if he/she wants to become a professional 

Go player. The entry level is 1-dan and the highest rank is 9-dan. The professional 

dan levels is much stronger than the amateur ones. Usually, a professional 1-dan is even 

stronger than an amateur 6-dan! 

There is a complete and effective handicap system in Go. When two players with 

different ranks play a Go game, the weaker player can put certain number stones on 

the predefined locations on the board before they start playing. Such stones are called 

handicap stones. Since the weaker player should take black stones by convention, the 

handicap stones are always black stones. 

The number of handicap stones is proportional to the difference in strength between 
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3 a,c,i 
4 a,c，g,i 
5 a,c,e，g’i 
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7 a,c,d,e,f,g,i 
8 a,b,c,d，f,g，h,i 
9 a,b,c,d,e,f,g,ti,i 

Figure A.15: Positions for putting handicap stones 

the two players" The larger the difference, the more the handicap stones. The number 

of handicap stones usually ranges from 2 to 9. The ways of putting handicap stones are 

illustrated in the Figure A.15 

For amateur players, when the rank difference between two players is one, the weaker 

player can take black without giving Komi (compensation). This is equivalent to taking 

one handicap stone. When the difference in rank is two, two handicap stones are needed. 

The number of handicap stones is equal to the difference in their ranks. 

The strategies and tactics in a handicap game is very similar to an even game. The 

major difference is that the black (weaker) player is always advised to play concretely and 

safely while the white (stronger) player should use some unusual and tricky strategies to 
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stir up the mud in a handicap game. 

With this effective handicap system, players of different ranks can play Go games with 

a fair and enjoyable environment. 

A.3 Strategies and Tactics in Go 

We are trying to give brief explanations to some advanced concepts in Go in order to 

demonstrate the complexity of the game and the ways human experts trying to understand 

the game. 

A.3.1 Strategy vs Tactics 

Human skills in Go can be roughly classified into two classes : strategy ^ and tactics. 

Strategy refers to the abilities to analyze the board and plan the corresponding actions 

according to the analysis. Human players perform this in a highly abstract manner. 

Analysis can be can be spatial (deciding which region on the board is the most important) 

or functional (deciding what action should be performed like offense, defense, building 

influence, occupying more territories, etc.) As the state space of Go is too large for 

detail evaluation of each strategy's outcome, heuristic is used by human players to find 

a satisfactory strategy in a situation. Prior knowledge on semantically similar situations 

and abstract rules will often give good hints for designing strategies. 

On the other hand, tactics are the skills applied in some local regions of the board where 

stones from both sides come into spatially close interaction. The depth of searching (looka-

head) is an important factor in tactics. Usually, a specific goal has to be a c compl i shed 

for a local battle, (e.g. Killing an opponent group, attacking a weak group, escaping from 

opponent's web, etc.) Therefore, tactical searching is goal-directed. Good experience of 

effects of local patterns will help to prune many moves that are unlikely to be good. As 

a result, player with richer knowledge of common patterns can search deeper in the same 

amount of time. This is the major difference in tactical skills between a beginner and an 

2The meaning of strategy in here is different with the one in game theory. 
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- Strategy Tactics 
Analogy — War _ Battle 
Spatial Effect Global Local 
Important in Opening and Middle Game Middle and Endgame 
Searching Property _ Wide and shallow Deep and narrow 
Important Skills knowledge of similar Familiarity of 

global situation group patterns 
Training method Studying more professional Do more exercises 

games and understand which requires deep lookahead 
the strategies used such as alive-or-dead 
inside the games | problems (Tsume-Go) 

Table A.1: A summary of Strategy vs Tactics 

experienced player though they may put similar effort in the tactical analysis in playing 

a game. 

A.3.2 Open-game 

In the stage of open-game, there are systematically organized knowledge like Joseki and 

Fuseki. There are also some abstract concepts for board analysis, like Concrete-territory 

and Influence. 

Joseki The term Joseki means "standard variation". A Joseki is a sequence of excellent 

moves that will give acceptable results for both players in the local region of the 

board. Almost all Josekis are designed for the corner regions of the board. This is 

because the corner regions are very important for it is more easy to occupy territory 

there than in the edge and center regions. They are usually invented by strong 

professional players from their sparkling insights in their games or through studying. 

As every move in a Joseki is good, a Joseki will lead to locally agreeable results for 

both players. However, the global effect of a Joseki in a game will not be that 

simple. Combination of different Josekis from different corners will give various 

effects. Therefore, the choice of Joseki is very important. Choosing an appropriate 
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Figure A.17: Example of a complicated Joseki with 33 moves 

one can lead to good global result and choosing an inappropriate one will give bad 

global result. 

The reason for using Joseki is just like playing according to some standard opening 

styles in Chess. Since the complexity of moves restricted to a corner is not as high 

as the whole board, deep study on different variations is possible for strong and 

dedicated professional players. A large collection of Josekis has been developed and 

many new ones are discovered every year. 

Fuseki Fuseki means "opening style". The area for a Fuseki to apply is larger than the 

area for a Joseki (Usually, at least halfofthe whole board is involved). Knowledge in 

a particular Fuseki consists of a combination of patterns in corner and edge regions, 

different solutions against opponent's invasion and methods for further expansion, 

if the opponent does not intrude. In Figure A.18, 0 , @ and 0 is a famous Fuseki 
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Figure A.18: An example of Fuseki 

called Chinese Style. 

The degree of freedom in Fuseki is much larger than in Joseki. Usually players have 

to handle many new situations that have not been encountered in previous games. 

Concrete Territory vs Influence When some empty points on the board is almost 

surrounded by one side which can never intruded by opponent, the surrounded region 

becomes that side's concrete territory. The size of the concrete territories is fixed 

which has to be counted during board evaluation. 

On the other hand, there are assets having value which are not as certain as concrete 

territories. Influence is an example. We can imagine that each stone on the board 

radiates some influence to the surrounding empty points. Radiation of a stone decays 

with distance and will be blocked by other stones [10]. In some region, if radiation 

accumulated from stones of ,say, black side is larger than the radiation from another 

side, the region will be under the influence of the black side. For example, in Figure 

A.19, all the radiation of black stones to the upper area are blocked by white stones. 

Therefore, there is unbalanced influence of white side in the upper area. 



Appendix A An Introduction to Go ^^ 

- ^ o $ f 

漏___ 
Figure A.19: In this Joseki, black gains some concrete territory while white gains large 
influence to the upper area of the board 

Having influence on a region is advantageous. For example, battle inside a region 

under black's influence will be favorable to the black side. Moreover, region with a 

very high unbalanced influence of one side will more likely be that side's territory. 

Although influence is a advantageous factor, Go is a game of struggle for territory. 

Unable of transforming influence back to territory at later stage of a game will result 

in a loss of the game. As a result, how to make use of influence becomes a very 

important skill in Go, which is not easy to acquire. 

Difference of concrete territory and influence is analogous to the difference between 

cash and investment. Cash is real but fixed while investment can grow but can also 

shrink depends on the investor's techniques. However, in a Go game, it is always 

emphasized that maintaining a balance between the two is necessary. The difficult 

usually lies in evaluating the value of influence in different situations. The value 

often depends the skills of the player, which become very uncertain when compared 

to the value of concrete territory. 

A.3.3 Middle-game 

Middle game is the stage that is richest in strategies. To study them needs a lot of 

effort. Here, we only give the explanations of a few common and basic concepts involved : 

Offense an action that tries to threaten the life of an opponent group of stone. 
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Defense an action that tries to increase the safeness of a peer group (the player's group 

of stone). 

Aji Flaw in a group of stone that does not cause any damage at the current moment. 

However skillful opponent may design some plots to made use of the flaw to get 

benefit. 

Thickness Flawlessness of some groups of stones. One side with "thick" groups can play 

strongly by offending without the need of defense. 

To devise a good strategy for a board position in the middle-game, certain skills have 

to be acquired : 

1. Understand the meaning of each basic strategy. For example, knowing what is an 

offense (attack) and its purpose. 

2. Knowing how to implement an action. For example, when the player knows it is a 

right time to attack, he/she should know how to play to accomplish the task. 

3. Analyzing the board position. For example, identify whether a group is weak or 

whether a group has some serious flaw. 

4. Deriving a set of actions for attaining a certain goal. For example, when decided to 

kill a group of opponent stones, a set of actions have to be done before the act, like 

thickening some peer groups, repairing some flaws of the groups that surround the 

opponent. 

A.3.4 End-game 

In the stage of end game, the goal is mainly to finish the boundaries of territories in 

a favorable way. Usually, the size and shape of the territories are roughly formed. Moves 

are played to grow some of existing territory or to reduce the opponent's territory. As a 

result, boundaries will become more clear as more moves are played in the end-game. 



1: 
b ‘ 

i Appendix A An Introduction to Go 2^ 

To play a strong end game, exact value of every plausible move has to be known. The 

move that worths most should be played first. The value of moves in some simple patterns 

can be computed mechanically [4]. However, estimating value of moves in real situations 

is often so difficult and expert knowledge is needed to solve the problem. 
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Appendix B 

Mathemat ica l Mode l of Connect iv i ty 

B.1 Introduction 

In this appendix, we are trying to mathematically define the concept of connectivity 

from the basics. Some simple concepts like capture and Ko are defined with the definition of 

connectivity. Definitions in this form will be useful for designing a rigorous mathematical 

model of Go knowledge. 

B.2 Basic Definitions 

1. The set of valid coordinate of a n X n Go board is : 

B = { l , 2 , . . . , n } 

where n 二 19 for a standard board. Other common values of n are 9 and 13. 

2. The set of stone color is : 
C 三{blttck, white} 

3. The set of points, V, on a n x n board is defined as 

V = B xB 

94 
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Figure B.1: Horizontal and vertical distance of some points 

4. The set of stones is : 
S = V xC 

For example, a stone 5 of color c at point {x,y) is denoted by s=((x,y),c) where 

{x,y) GPandcCC. 

5. A stones Si = ((xi,yi) ,ci) is the peer stone of another stone 52 = ((a^2,y2),c2) if 

ci = C2. Otherwise <Si is called the opponent stone of 办 

6. status(p) denotes the status of a point p : 

status(p) € {hlack,white,empty} 

7. A move in a Go game , m, can be represented by : 

m 二（p, c, n) G V X C x { 1 , 2 , . • . } 

where p is the point of the move, c is the color of the stone and n is an positive 

integer denoting the move number. 

8. Horizontal and vertical distance (A , and A^) between 2 points pi 二 (zi,2/i) and 

P2 = (2；2’"2)’ are defined as 

A4pi,p2)三 k i - ^ 2 

Ay(p1,p2) = \yi - y2 

In figure B.1, A^(a, b) = 1 A"(a, b) = 3 

A ^ ( a , c ) - 4 A^a,c ) = l 

A.(6,c) = 3 A , ( 6 , c ) ^ 2 
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Figure B.2: Major-adjacency and minor-adjacency of some points 

B.3 Adjacency and Connectivity 

Adjacency is a relation for points while connectivity is a relation for stones. Both 

relations are commutative. Here are the definitions of some forms of adjacency and con-

nectivity : 

1. The relation of major-adjacent (major-adj) between two points jh,p2 is defined as 

maj-adj(p1,p2)三{A^{PUP2) = 1 A Ay{pup2) = 0) V 

(A^(P1,P2) = 0 A Ay{pup2) = 1) 

2. The relation of minor-adjacency (minor-adj) is defined as : 

min-adj(p1,p2)三 Aa:(Pi,P2) < 1 A Ay{pup2) < 1 

In figure B.2,point a is major-adjacent to 6, c and 

is minor-adjacent to b, c and d. 

point e is major-adjacent to f , g and h and 

is major-adjacent to / , g^ h^ i and j. 

point k is major-adjacent to 1, m, n and 0 and 

is minor-adjacent to /, m, n, 0, p, q, r and s. 
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Figure B.3: Major-connectivity and minor-connectivity of some stones 

3. The relation of major-connect (major-con) between two stones 5i 二 (pi,ci) and 

52 = (P2,C2) is defined as : 

m a j - c o n ( 5 1 , 5 2 ) 三 m a j - a d j ( p i , p 2 ) 八 c i 二 C2 

4. The relation of minor-connect (minor-con) between two stones Si 二 (Pi,ci) and 

52 = 0¾,<¾) is defined as : 

min-con(51,s2)三 min-adj(pi，p2)八 ci = c2 

where si = (pi,Ci) and <S2 = CP2，<̂ )， î,52 G S 

In figure B.3, 0 is major-connected to @ and minor-connected to @ . 

� is major-connected to � and minor-connected to � . 

� is major-connected to � . 
Q is major connected to @ and minor-connected to Q. 

5. Major adjacency and connectivity are more strict than the minor ones : 

maj-adj(p1,p2) =^ min-adj(p1,p2) ,P1,P2 € V 

and 

maj-COn(<S1,<S2) =^ min-COn(51,52) , 51,52 € S 
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Figure B.4: Examples of string 

B.4 String and Link 

B.4.1 String 

A string is a set of peer stones which are major-connected together. Classification of 

stones into string is very important because individual stone of a string cannot be captured 

separately. Once a string is out of liberty (defined later), the whole strong will be captured 

altogether. Here is a recursive definition of string : 

1. {5} is a string where s G S 

2. Sh U St2 is a string if and only if 

(a) Both Sti and Sh are strings 

( b ) 351 e Sh 八 S2 G S ^ , m a j - c o n (51,52) 

where S1,S2 G S 

Let color (St) be the color of a string St. A String Sh is a peer string of St2 if color 

[Sti) 二 color {St2). Otherwise, Sh is a opponent string of Sh. 

In figure B.4, 0,G,@, 0 , © and Q) form a black s t r i n g . � and � form a white string. 

� , ® , ® , ® form another white string. However � and ® do not form a string. 

B.4.2 Link 

A link is a set of stone of the same color which are minor-connected together. Identi-

fication of links from stones is important because to capture opponent stones, a link has 
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Figure B.5: Examples of link 

to be formed. Here is a recursive definition of link : 

1. {s} is a link where s G S 

2. Lki U Lk2 is a link if and only if 

(a) Both Lki and Lk2 are links 

(b) 3^1 G Lki A 52 G Lfc2,min-con(s1,52) 

where <S1,<S2 G S 

If a set of stones form a string, they also forms a link but the converse is not true. 

In figure B.5,②，④，⑥，⑧，⑩ and � form a link in the upper left corner. Similarly, black 

stones 0,G，@, 0 , © , ® and ® also from a link. ® and � form another link in the upper 

right corner and so are © and ® . 

B.5 Liberty and Atari 

B.5.1 Liberty 

A liberty of a string is an empty point that is major-adjacent to that string. The 

definition of a liberty-set (lib-set) for a given string St is defined as : 

lib-set(5t)三{p\p e V A status(p) = empty A 3^ G 5't,maj-adj(5,p) 
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Figure B.6: Examples of liberty 
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Figure B.7: Examples of capture 

A point p is a liberty of a string St if and only if p E lib-set(S't). The number of 

liberties for a string St 二 | lib-set {St)l where | . | is the set cardinality. 

In figure B.6, stone � has 2 liberties: a and h. Stone � has 3 liberties: c,d and e. 

Stone � has 4 liberties: f,g,h and i. 

When all the liberties of a string of color ci are filled by opponent stones (color 二 ¢^) 

after a move made by the opponent, the string is captured. The string should then be 

removed from the board by the opponent (color = C2) immediately after the move. 

In figure B.7, at the left corner, the two white stones are captured after 0 In the 

middle, the 7-stone black string is captured after � . A t the right corner, the 3 white 

stones are captured after 0 . 
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Figure B.8: Examples of Atari 

B.5.2 Atari 

A string is in a state of Atari if its number of liberty is only 1. The function Atari 

(St) states whether a string is in Atari : 

Atari {St) = (|lib-set(5t)| 二 1) 

In figure B.8, the three black stones marked by ® in the left side are in Atari. The 

remaining liberty of the stones is at point a. In the middle, Both of the white string 

marked with © and the black string are in Atari. Both of them have only one liberty at 

point b. At the right corner, two black stones marked with 0 are in Atari with remaining 

liberty at point c. 

B.6 Ko 

Ko is a capture-and-recapture situation in a Go game such that if both players try to 

capture an opponent stone involved, the same situation will repeat forever. 

In figure B.9, the basic shapes of Ko at different locations of the board are shown. 

Formally, Ko exists at a point pi of the board if the following conditions hold after a move 

mi 二 (pi,ci,z) is played (move mi is the i-th move played by color c i ) : 

Condition A {Cai) The move mi can capture exactly one opponent stone (p2,C2). 

Condition B (Cbi) The stone (pi,ci) does not major-connect to any peer stones. 
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Figure B.9: Examples of simple Ko 

Condition C {Cd) Number of liberty for the stone (pi,ci) is one (after captured 

stone is removed) 

We will try to prove that after move mi leading to condition (Cai), {Cbi) and (Cd), 

move rri2 = {p2,c2,i + 1) will lead to to condition (Ca2), (^62) and {Cc2) which are the 

same as the previous conditions after replacing 1 by 2 and 2 by 1 : 

Condition A, {Ca2) The move rri2 can capture exactly one opponent stone (pi,ci). 

Condition B, {Cb2) The stone (p2,c2) does not major-connect to any peer stones. 

Condition C, (Cc2) Number of liberty for the stone (p2,c2) is one (after captured 

stone is removed) 

That is : 

( C a l ) ( C a C c i , 2 ^ 1 ) ( C a 2 ) ( ^ ) ( C c 2 ) 

Without loss of generosity, we also get : 

(Ca2)(C,2)(Cc2) ('1驶2) (C.O(ai)(ai) 

since the move number i + 1 and i + 2 does not have any relation to the conditions. 

Repeatedly applying the two conditions, we can get 

..• ( a , ) ( ^ . i ) ( a i ) ( ' 2过1) ( c . , ) ( a , ) ( a 2 ) (列过2 ) (o^i ) ( c , i ) (Cd) . . . 

which causes an infinite loop when play ci insists on playing at position pi and C2 insists 

on playing at position p2 and so on. 
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Now, we show under conditions (Cai), {Cbi) and {Cd) that move m2 will lead to con-

dition {Ca2), {Cb2) and { C c 2 ) : 

1. By condition {Cai), we know that move mi = (Pi,Ci,i) captures stone (p2,c2). 

Therefore, pi and p2 must be major-adjacent. By condition Cbi, we know that stone 

(pi,ci) is a 1-stone string. By condition Cci, we know that stone (pi,Ci) has only 

one liberty which must be at p2 because pi and p2 are major-adjacent. Therefore 

the move (p2,C2,i + 1) will fill the last liberty of stone (pi,ci) and capture it. As a 

result condition Ca2 holds. 

2. Since mi capture (p2,c2) by condition (0^ ) , Pi must be the last liberty of stone 

(p2,c2) before move mi. By condition Cai, we know that move m! only captures 

stone (p2, 02). Since we just show that move rri2 only captures one stone (pi,Ci), the 

new stone (p2,C2) after move rri2 still has only one liberty (at position pi) because 

no other stones of color Ci have been removed. Therefore condition Cc2 holds. 

3. Position p2 is all surrounded by stones of color ci after move mi because by condition 

Cai, move mi captures exactly one stone at p2. After move rri2 captures one stone 

(pi,ci), all its major-adjacent points are all occupied by stones of color ci except at 

pi which is now an empty point after stone (pi,ci) is captured. As a result, stone 

(p2,c2) is not connecting to any peer stones of color C2 and is therefore a 1-stone 

string. Consequently, condition Ch2 holds. 

In figure B.10, the examples shown are not Ko. At the upper left corner, white can play 

cat point a can capture 2 stones, violating condition (Cai)- In the middle, white can play 

at b and capture one black stone but the string containing stone at b will have 3 stones, 

violating condition (Cbi). At the right corner, after playing at c, the new white string will 

have 2 stones and violating condition {Cbi). At the lower left corner, after playing at d, 

the new white stone will have 2 liberties, violating condition (Cci)-

Since the shape satisfying all the above 3 conditions will loop forever ifboth player insist 

on capturing stones at pi and p2 respectively, to avoid this situation goes on endlessly, 
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Figure B.10: Examples that are NOT Ko 

the rule of Go prohibits this capture-and-recapture moves. The mle states that if it is a 

shape of Ko and player ci plays at pi and capture stone at p2, player C2 cannot play at 

P2 immediately. Player C2 should play at some other position. If player ci do not play 

a move to stop the Ko situation (for example, play at p2 and fill the hole), player C2 can 

then at p2. The similar prohibition for immediate re-capture will then apply on player Ci 
after player C2 plays at p2. 

B.7 Prohibited Move 

A move is prohibited if it is in one of the following conditions : 

1. Committing suicide : A move m 二 (p, c，i) is committing suicide if after the move 

m is played and stones captured by m (if any) are removed, there is a string St 

on the board such that lib-set {St) = { } . Figure B.11 shows four examples of 

committing suicide. All moves marked by Q are prohibited because they make some 

of the black stones out of liberty after playing the move. 

2. Immediate Ko take-back : recapture of a stone in Ko immediate, as mentioned 

in last section. 
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Figure B.11: Examples of prohibited moves 
B.8 Path and Distance 

The path and distance between two points are useful in computing radiation ofinfluence 

from a stone to the outside area of the board [10 • 

1. A major-path between 2 points is a list of empty points that are major-connected 

together one after another. We define the set of all possible major-paths here: 
maj-path-set(pa,P6) = {(P1,P2, •.. ,Pn)| (Vz, 1 < i < n,status(p,-) 二 empty)八 

(Vi, 1 < j < n, m a j - a d j f e , p j + i ) )八 

m a j - a d j ( p a , P i ) A m a j - a d j ( p n , P & ) 八 

(jh,P2, •. .,_Pn) is a simple path} 

where (p1,p2, •.. ,Pn) is a simple path ifF V i , V j , l < iJ < n,i + j ^ Pi + Pj 

The maj-path-set is a finite set since all paths are cycle-free and the board size is 

finite. 

2. The major-distance between 2 point is the cardinality of the shortest ordered list 

in the set of all major-paths. 

maj-distance(pa, Pb) = \l 

where 1 G maj-path-set(pa, Pb)八 
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Figure B.12: Examples of major-path and major-distance 

wr e maj-path-set(pa,_P6), Kl < I" 

The corresponding list, 1 forms the shortest major-path. Both major-path and 

major-distance are used to define the influence radiation of a stone to other empty 

space on a Go board. 

In figure B.12, {w,x,y,z) forms a major-path between points a and b. The path is 

the shortest possible one. So the major-distance between a and b is 4. 

(m, n) and (o,p, q, r) are 2 major-paths between points c and d. (m, n) is the shortest 

possible path. Therefore, the major-distance is 2. 

(5, t, u) is one of the shortest major-path between points e and f. The major distance 

between e and f is 3. 

3. The efFective-major-path is a list points between 2 peer stones. Each point is 

either empty or occupied by a peer stone. The points pi and 巧+i are major-

connected. We define the set of all possible effective-major-paths here : is the 

set of all ordered lists of points which is defined as : 

eff-maj-path-set(5a,s^) = {(P1,_P2,...,Pn)|ca 二 c& 八 

Vz, 1 < i < n, status {pi) 二 {ca,empty} A 

Vj, 1 < j < n, maj-adj (pj,pj+i)八 

maj-adj(pa,Pi)A maj -adj (pn,P6)八 

(pi,p2,.. .,Pn) is a simple path } 
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Figure B.13: Examples of effective major-path and major-distance 

where 5̂  = (pa,Ca) and Sb 二 (Pb,Cb) 

Along one of the effective-major-path, each point is either empty or occupied by 

a peer stone. 

4. The effective-major-distance between 2 stones is defined as : 

e f F - m a j o r - d i s t a n c e ( 5 a , <s&) = � / � 

where 1 G efF-maj-path-set(pa, Pb)八 

{ l ) = \{pi e /|status(p i ) = e m p t y } | 八 

W e eff-maj-path-set(pa,Pf,), (01 < 〈 0 

The corresponding list, 1 forms the shortest effective-major-path. 

In figure B.13, the path (a,6,©, c, d) forms an effective major-path between stones 

0 and 0. (e,®, f) is an effective major-path between � and � . 

5. A string-path between 2 peer "strings is the effective-major-path from a stone in 

one string to a stone from another string. We define the set of all possible string-

paths : 

str-path-set(5'ti,5t2) = Uvs,eSii,v#^ efF-maj-path(51,52) 

6. The string-distance between 2 strings is defined as : 

str-d(S't1,5't2) = (/) 
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Figure B.14: Examples of string major-path and major-distance 

where 1 G str-path-set(5t1,p2) A 

y i ' e s t r - p a t h - s e t ( 5 t i , % ) , ( 0 <〈0 

The corresponding list, 1 forms the shortest str ing-path. 

In figure B.14, (a,b,c) forms a shortest string path between two black strings, one 

containing 0 and another containing 0 and @. The string distance is 3. 

(d, e, /，g) forms another shortest string path between two black strings, one contain-

ing e , 0 and another containing ©,©. The shortest effective major-path is formed 

between Q and Q because between @ and 0 there is some white stones blocking 

them. The string distance of these 2 strings is 4. 

To prove that the above situation will lead to a infinite loop of move sequence : 

(...,(Pi,ci,0，(P2,C2,Z + 1), (pi,ci,i + 2), (p i , c i ,0 , . . . ) it is sufficient to show that a 

new move rri2 = (P2,Q2, i + 1) will cause the following new conditions : 
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