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Abstract

Let K be a field and S an arbitrary semigroup. It is known that the theory of
semigroup algebras K[S] is closely related both to semigroup theory and ring the-
ory. J. Okninski [Okn1] has recently given a detail survey on semigroup algebras in
1990. In this thesis, the radicals of the semigroup algebras K[S] with chain conditions
are particularly investigated. Moreover, the Jacobson radicals and other radicals of
graded rings are particularly studied as they are important tools in studying semi-
group algebras.

The Jacobson radicals and other radicals of semigroup rings R[S] over commu-
tative semigroups S were firstly investigated by J. Krempa, E. Jespers, J. Okninski,
and P. Wauters since 1980. Moreover, the Jacobson radical of R[S] when R satisfies
J(R) = Ji(R) was described by E. Jespers. We review here these results in the
beginning of chapter 3.

When the algebras over some non-commutative semigroups, the band graded ring
theory given by W.D. Munn and A.V. Kelarev provides us another approaches to
study the non-commutative semigroup algebras K[S]|. Furthermore, the semiprimi-
tivity problems of inverse semigroup algebras and PI semigroup algebras are investi-
gated in chapter 3.

The artinian semigroup algebra K|[S] was studied by E.I. Zelmanov. He showed
that the semigroup S must be finite if K[S] is artinian in 1977. Later on, P. Wauters
showed that if semilattice graded ring is semilocal, then the base semilattice must
be finite. Recently, some finiteness conditions on groupoid graded rings are solved
by A.V. Kelarev in 1995. More finiteness conditions on semigroup algebras are fully
investigated in monograph of J. Okninski. All these results will be described and
further investigated in chapter 4. We cite some results from J. Okninski [Oknl] and
some recent results on artinian semigroup graded rings from M.V. Clase, E. Jespers,
A.V. Kelarev and J. Okninski to investigate some finiteness conditions on K[S]. Some
modifications and simplifications of the relevent results are obtained.

In chapter 5, the relationship between the Gelfand-Kirillov dimension on semi-
group algebras K[S] and the growths of the base semigroups is studied. Attemptions
have been made to extend the second layer conditions on noetherian semigroup alge-
bras from the well known results on group algebras.
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Introduction

Let R be any ring with unity and S an arbitrary semigroup. Denote the semigroup
ring by R[S]. It is noticed that the theory of semigroup ring R[S] is closely related to
semigroup theory and ring theory. In the case that S is a group G, a full survey on
the algebraic structure of group ring was given by D.S. Passman in his monograph
[Pasl] in 1977. This monograph is an important text for group algebras. Moreover,
the commutative semigroup rings are fully investigated by R. Gilmer [Gil] in 1985. In
the case if R is a field K, then the structure of K[S] are fully studied by J. Okninski
in his recent monograph [Oknl] in 1990. Okninski has given an intensive survey on
cancellative semigroup algebras with finiteness conditions, and also the semigroup
Pl-algebras. As motivated by these monographs, we focus in this thesis on the topics
of the radicals and finiteness conditions on semigroup algebras.

The monograph of Okninski was published in 1990. In this paper, we recognize
some of the recent results on semigroup algebras obtained in the literature after 1990
and study these algebras by another approach. We notice that the graded rings are
important tools for studying the structure of semigroup algebras. For example, if S
is a Clifford semigroup, then S can be decomposed into semilattice of groups. As a
result, the corresponding semigroup algebra becomes a semilattice graded ring, i.e.

K[S]=}_ K[G.]
aecl
where I' is semilattice and K[G,] is a group algebra. The structure of K[S] is therefore
affected by G, and the order structure of the base semilattice I'. Throughout this

these, we will use these techniques to study the radicals and also some finiteness
conditions of semigroup algebras.

In chapter 1, some basic properties and notations of semigroups such as semigroup
algebras; group algebras; graded rings; crossed products and smash products are
given. We will use these properties and results of the above algebraic structures to
study the structure of semigroup algebras.
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In chapter 2, the theory of the radicals of graded rings which are frequently
used in subsequent works will be established. Let J be any one of the Jacobson,
Brown-McCoy, Prime, Levitzki radicals of graded ring R respectively. Then we will
concentrate on the relationships between the graded radicals J,, and the radical J
on the group graded rings, where G is finite or infinite. After the radicals of group
graded ring is described, we study the rings graded by semilattices and also bands.
From A.V. Kelarev [Kell] in 1991, we obtain some descriptions for radicals 7 of band
graded rings.

The Jacobson radicals of special band-graded rings described by W.D. Munn
[Mun7| are given in chapter 2. These recent results will be used in chapter 3 to
shorten some of the proofs of some results concerning Jacobson radicals of special
band-graded rings in the literature.

Chapter 3 contains two parts. One part concerns the commutative semigroup
rings, i.e. the semigroup S involved is a commutative semigroup. The another part
is an investigation of the non-commutative semigroup algebras of an arbitrary semi-

group.

In the first part of chapter 3, We first examine commutative cancellative semi-
group. The radicals of semigroup rings have been investigated by J. Krempa, J.
Okninski, E. Jespers and P. Wauters [Kre2, JW1, OW]. On the other hand, semi-
group rings involved arbitrary commutative semigroups were investigated by W.D.
Munn. In fact, W.D. Munn described the Jacobson radicals of commutative semi-
group algebras over a field in 1983 (see [Munl]) and over commutative rings with
unity in 1984 (see [Mun2]). Further, J. Okninski and P. Wauters [OW] (1986) gen-
eralized the results of Munn to prime and Levitzki radicals with arbitrary coefficents.
In addition, E. Jespers gave a complete description of Jacobson radical if R satisfies
Ji(R) = Joo(R) and S is arbitrary commutative semigroup [Jesl] (1987), i.e.

J(R[S]) = LW(R)[S] + >_ I(J1p(R), S, &) + J(R, Sp, )

peP

where J(R, Sp,I") is defined in section 3.2.

If S is a separative semigroup, then it is known that S is semilattice of commuta-
tive cancellative semigroups, say S = UyerS,. In this case, S can be embedded into
Q, where Q = UaerG, and G, is group of fractions of S,. We also investigate the
relationship between the semigroup rings K[S] and K[Q].

The another part of chapter 3 is to examine the structure of algebras over an
arbitrary semigroup. To simplify our work, we only consider K[S]. At first, in
section 3.3, S is cancellative semigroup which may not possess a group of (right



or left) fractions. We extract some basic properties described by Okninski [Oknl,
Chapter 7, Chapter 9] and cite some of the recent results of Okninski [Okn3, Okn4].
A necessary condition for K[S] to be prime or semiprime is given. When the Jacobson
radical J(K[S]) # 0, there is a subsemigroup P which has a group of (right or left
) fractions, say the reversive semigroup, also J(K[P]) # 0. The Jacobson radical of
K|S] are described when S is a subsemigroup of a polycyclic-by-finite and nilpotent
group.

Furthermore, the algebras of completely 0-simple semigroups will also be studied.
For this topics, we adopt the Munn algebras and the graded rings as our approaches.
We find that the maximal subgroup of a 0-simple semigroup plays an vital role in
sturcture of K[S]. The structure and semprimitivity problem of inverse semigroup
algebras, like group algebras, are paticularly studied. Domanov (stated in the survey
of Munn [Mun3]) showed that if S is inverse semigroup then for any maximal subgroup
H of S, J(K[H]) = 0 implies that J(K[S]) = 0. The converse is not true unless E(S),
the set of all idempotents of S, is pseudofinite.

The remaining of chapter 3 provides some results on other semigroups. We shall
make use of the results of the band-graded rings and to give descriptions of the
radicals of completely O-simple, inverse, cancellative semigroup algebras. Separative
semigroups and completely regular semigroups will be particularly considered. Fi-
nally, we also make use of some known results from semigroup Pl-algebras K[S] in
our discussion. We will show that J(K[S]) = B(K[S]) if K[S] is PI semigroup algebra
(not necessarily finitely generated).

In chatper 4, the finiteness conditions of semigroup algebras are examined. First,
we study the finiteness condition on graded rings and find the necessary condition
of semilattice graded rings to be semilocal. We also show that the base semilattice
must be finite. Recently, Kelarev [Kel7] has generalized the cases of finite semigroup
graded rings to the groupoid graded rings in 1995. These results solve some problems
concerning finite semigroup graded rings. In section 4.2, semiprime rings and Goldie
rings will be studied. Following the results of Jespers and Okninski [JO1] in the case
of S being nilpotent, we obtain J(K,[S]) = B(K,[S]), where J(K,[S]) is the Jacobson
radical of K;[S].

After studyiing the semprimeness of semigroup algebras. We investigate the
noetherian semigroup algebras. The objective of this section is to find the neces-
sary condition for S to be right noetherian. It has been conjectured that S is finitely
generated if K[S] is right noetherian [Oknl, Part V, Problem 7]. It will be shown here
that when K[S] is (right and left) noetherian, then S is finitely generated. Moreover,
we also examine the structure of right noetherian inverse semigroup algebras and the
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right noetherian semigroup Pl-algebras.

It is known in the literature that K[S] is semilocal, that is, K[S]/J(K[S]) is ar-
tinian. The descending chain conditions for K[S] are discussed in section 4.4. We find
that there are some recent results concerning about d.c.c on semigroup graded rings
given by M.V. Clase, E. Jespers, A.V. Kelarev and J. Okninski [CJKO, JO2, Kel6]
in 1995. We apply these results to semilocal (right perfect, semisimple) semigroup
algebras and then give another description for K[S]. Moreover, we show that there
is a close relationship between K[S] and K[H] when H is maximal subgroup of S.

In the last chapter, we study the dimensions and prime ideals of K[S] as ap-
plications. In 1993, Okninski [Okn2] wrote a paper on Gelfand-Kirillov dimension
on semigroup algebra. We notice in that paper that Gelfand-Kirillov dimensions
are connected to the growths and the ranks of semigroups, therefore we study the
Krull, classical Krull, and Gelfand-Krillov dimensions on semigroup algebras and ap-
ply these to the noetherian cases. We obtain that if K[S] is right noetherian, then
the Gelfand-Kirillov dimension GK(K|[S]) < oo iff GK(K[T]) < oo for every can-
cellative subsemigroup T of S. That is equivalent to say that 7" has group of fractions
of nilpotent-by-finite.

The prime ideals and prime spectrum are important topics on noetherian algebras.
As an application, we examine the links between prime ideals and second layer con-
dition described by [Jat, GW, MR]. By the results of Jategaonkar [Jat], we can state
that if G is polycyclic-by-finite, then K[G] satisfies strongly second layer condition.
In this respect, the following question arises naturally:

Let S be a complelely 0-simple semigroup with a maximal subgroup polycyclic-
by-finite group. Let K;[S] be a noetherian semigroup algebra:

Is K[S] has second layer condition ?

If S is an inverse semigroup in which every maximal subgroup of S is polycyclic-
by-finite, does K[S] has the (strong) second layer condition ?

vii



Chapter 1

Preliminaries

In this chapter, some definitions and elementary results on semigroup algebras, group
algebras and their related topics are given. These results will be useful in the subse-
quent discussion and will be frequently referred.

To investigate the structure of semigroup algebras, we have to know some proper-
ties of semigroups and groups. Furthermore, semigroup algebras and group algebras
can be treated as graded rings. The description of radicals in graded ring (graded by
groups or semigroups) will lead to another approach to characterize the radicals and
structure of semigroup algebras. Hence, we recall the properties of graded rings and
apply them to study semigroup algebras.

1.1 Some Semigroup Properties

The general definitions and notations of semigroups are taken from [How, Okn1, Pet].

Definition 1.1.1 Let S = M°(G, I, A; P) be a Rees matriz semigroup with sandwich

matriz P. If i € I, then the set {(g,i,m) € S|g € G°,m € A} is denoted by Sy, and
is called the ith row of S. Similarly , for any m € A, S™) is called the mth column
of 8. Clearly, S() = Sz N S™.

Theorem 1.1.2 Let S = MG, I, A; P) be a semigroup of matriz type with zero 6.

(i). For any subsets J C I, N C A, Sy is a right ideal of S and SW) a left ideal of
S.



(ii). For any subset J C I, N C A, S((%) is a semigroup isomorphic to a semigroup
of matriz type M°(G, J, N; Py;), where Pyy = (py,;) is the N x J submatriz of
P defined by p,; = pnj for j € Jy;n € N.

(iii). The set of nonzero idempotents of S is {(g,%,m) € S|pmi # 0, 9 = o}, where
O is the zero of G°.

(iv). Every mazimal subgroup of S is of the form S((i'?) or (S((g‘) \ ) for some i €
I,meA.

Let S = M%G,I,A; P) be a Rees matrix semigroup over a group G' and H a
normal subgroup of G. Also let ¢x((g,i,m)) = (9H,i,m). Then

¢ : M%G,I,A; P) - M°(G/H, I, A, Py)

is a homomorphism, where Py is the matrix (a@;;), where a;; is the natural homomor-
phic image of a;; in the quotient group G/H.

Let S = M%(G,I,A; P). Taking H = G, then we have the image
T = M°(1°,1,A; P"), where

P'=(p’ )= p',mz:]' ifpmi#ec
" p;m-=€ if pmi = O

Write 6 as the zero of 1° in order to distinguish it from the zero of G°. Then, T is said
to be elementary Rees matrix semigroup. The algebras graded by elementary
Rees semigroup will be discussed in section 3.4.

We now consider the larger class of semigroups. A semigroup S is called a weakly
periodic semigroup if for every s € S, there exists n > 1 such that S's™S! is an
idempotent ideal. The condition is equivalent to saying that a power of every element
of S determines a 0-simple principal factor of S. (This is because if a = s™ then a? # 6
in the principal factor in J(a)/I(a).) S is called 7-regular if for every s € S, there
exists n > 1 such that s" is a regular element of S. The semigroup S is called
strongly m-regular if s™ lies in a subgroup of S. (Someone also called this semigroup
as “epigroup” or “group-bound semigroup” etc.)

Notice that periodic; locally finite; regular; inverse; semisimple semigroups are all
weakly periodic semigroups.

Let H,d,R, L be the Green relations on the semigroup S [How, Chapter 2]. Also,
let Mg, My, and M; stand for the minimal conditions on S/R,S/L and S/J respec-
tively. Then we have the following results.
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Proposition 1.1.3 Let J be an ideal of S. Then S satisfies the condition Mp (M)
iff the semigroups J and S/J both satisfy Mp (My).

Lemma 1.1.4 [Oknl, Lemma 3.1] Let S be a semigorup satisfying any one of the
conditions Mg, My, M;. Then S is weakly periodic. Moreover, if all 0-simple princi-
pal factors of S are completely 0-simple, then S must be strongly m-reqular.

Theorem 1.1.5 [Oknl, Th. 3.3] Let S be a weakly periodic semigroup. Then S has
finitely many J-classes determining 0-simple principal factors iff there exists a chain
of ideals J, C --- C J, = S of S such that J; and all J;/J;—1,i > 1 are 0-simple or
nil. Moreover, if we let k denote the number of J-classes determining the 0-simple
principal factors of S, then the ideals J; can be chosen so thatn < 2k. In addition, if S
is a strongly w-reqular semigroup of this type, then the non-nil semigorups Jy,J;/ Ji—1
are completely 0-simple.

A semigroup S is called locally finite if all its finitely generated (f.g.) subsemi-
groups are finite. Clearly, all locally finite semigroup is periodic. The following
are some properties concerning locally finiteness extracted from the text of [Oknl,
Chapter 2].

Proposition 1.1.6 (i). Let S be a finitely generated semigroup. If T is a subsemi-
group of S such that S\ T is finite , then T is finitely generated.

(ii). Let J be an ideal of a semigroup S. Then S is locally finite iff the semigroups
J and S/J are locally finite.

(iii). Let S be a completely 0-simple semigroup. Then S is locally finite iff every
mazximal subgroup of S is locally finite.

If the semigroup S has zero 6, then S is called nil if for every s € S,s" = 6. S is
called left T-nilpotent if any s;,89---,€ S, there exists n > 1 such that s;s9---s, =
6. S is left T-nilpotent iff S satisfies Mr. We notice that every nil semigroup is
locally finite. Later on, we will discuss the nilpotent semigroup (this is the extension
of nilpotent group).

Proposition 1.1.7 [Oknl, Prop. 2.13] Let S be a nil semigroup. Then the following
statements hold:

(1). If S has a.c.c. on its right and left annihilator ideals, then S is power nilpotent.

3



(ii). If S is multiplicative subsemigroup of a ring R with finite right Goldie dimension
and S satisfies a.c.c. on right annihilator ideals, then S is power nilpotent.

(iii). If S C My,(D) for a division algebra D, then S is power nilpotent.

We now consider the natural semigroup arising from general complete matrix ring
M, (D), where D is a division ring.

Let a € M,(D). Then define the rank rk(a) of a as the dimension of the subspace
(D™)a of D™ over D. Put I; = {a € M,(D)|rk(a) < j} for j =0,---,n. Then every
I; is an ideal of the semigroup M, (D) as semigroup under the matrix multiplication.

Theorem 1.1.8 [Oknl, Th. 1.6] For any division algebra D and any integer n > 1,
0= CL C---CI,=M,(D)

is an ideal chain of multiplicative semigroup.

Moreover, every Rees factor I;/I;_1, j = 1,2,---,n, is a completely 0-simple
semigroup, the mazimal subgroups of M,(D) are isomorphic to the full skew linear
groups of the corresponding algebras M;(D). In particular, M,(D) is a completely
semisimple semigroup.

Now, we turn to consider another class of semigroups. Call a semigroup S is left
(right) cancellative if for any a,b,z € S, za = zb (ax = bz) implies that a = b. A
weakened version of cancellative semigroup is“ separative”. The basic properties of
separative semigroups are given by M. Petrich [Pet]. It is known that S is separative
iff S is a semilattice of cancellative semigroups. A commutative separative semigroup
is semilattice of commutative cancellative semigroups which can be embedded in a
semilattice of groups (cf. [Pet, 11.6.6]).

A semigroup S is archimedean if for any a,b € S there exists a positive integer n
such that a™ € SbS. Moreover, let I' be a semilattice and S = U,S, with S,S5 =
SpSe C Spp for any o, B € ' and S, is of type . Then S is said to be semilattice of
semigroups with type ¥.

Separative and cancellative semigroups both play important roles on the structure
of semigroup algebras, especially on finding the radicals of commutative semigroup

rings. Some more properties of cancellative semigroups will be discussed in chapter
3.



1.2 General Properties of Semigroup Algebras

We now investigate the structure of semigroup algebras. We first present the gen-
eral properties of semigroup algebras which will be frequently used in our following
discussion. The proofs of theorems are omitted.

Denote the lattices of the right, left, and the two-sided ideals of K[S] by R(K[S]),
L(K[S]) and T(K[S]) respectively.

Let p be a right congruence on S and ¢ : S — S/p the natural mapping onto the
set S/p (equivalence classes). Then let I(K, .S, p) be the right ideal of K[S] generated
by the set {s — t|s,t € S, (s,t) € p} such that

I(K,S,p)={>_r(s—1t) | r € K, (s,t) € p}.

seS
In the semigroup ring, we always replace K by an arbitrary ring R.

Moreover, K[S/p] is a right K[S]-module with ¢,(s) * t = ¢,(st). Sometimes, we
just denote I(K, S, p) by I(p) for simplification.

Lemma 1.2.1 [Oknl] For any right congruence p on S , ¢, : K[S] — K[S/p] is a
homomorphism of right K[S]|-modules such that

ker(¢,) = I(p) = > ws(p)

seS

where

ws(p) ={§:ﬁisi € K[S] Im > 1,iﬁi=0,(s,s,~) cepVi=1---m}
i=1

i=1

If p is a congruence on S and ¢, is the above homomorphism, then ker(¢,) = I(p)
and K[S/p] = K[S]/1(p).

Definition 1.2.2 Let J be an ideal (one sided or two sided )of K[S]. Denote the set
{(s,t) e Sx S |s—te J} by ~y.
Then “~;” is a congruence on S induced by the ideal J of K[S].

Let J be a right ideal of K[S]. Then J — ~ is an order-preserving A-complete
semilattice homomorphism of R(K[S]) onto R(.S) which is lattice of right congruences
on S, and ~,= p for any p € R(S). For the right congruences p; and p, on S, we
have I(p1 A p2) = I(p1) N I(p2) and I(p1 V p2) = I(p1) + I(p2).

5



If we consider the universal congruence ¢t = S X S on S, then the ideal
I(K,S,u) = {s—t|s,t € S}K ={D_ass€ K[S]|)_a, =0}

The above ideal is denoted by w(K[S]) and is called the augmentation ideal of K[S],
where the corresponding homomorphism K[S] — K is consequently called the aug-
mentation mapping.

Let S be a semigroup with zero # and Ko[S] a factor algebra K[S]/K§. If S has
a zero element, then put Ko[S] = K|[S]. For any a = Y s, € K, let suppo(a) be
the set {s € S\ {0}|a # 0}. Clearly, suppo(a) = supp(a) \ {0}.

Therefore, K,[S°] & K[S°]/K6 = K|[S]. Let I be an ideal of the semigroup S.
Then Ko[S/I] = K[S]/K|[I].

For any algebras , we can adjoin an identity in these algebras. Notice that K[S]* &
K[S"] if S has no identity.

Let L/F be any field extension with L[S] & L&pF|[S]. If S, T are semigroups, then
K[S] ®x K[T) = K[S x T]. Further, if S,T have zero elements 0g, f7, respectively,
then Ko[S] @k Ko[T] = Ko[(S x T)/I], where I = {(s,t) € S x T'|s =05 or t = Or}.

We say Z C S a left group-like subset if for any 2 € Z and s € S, s € Z if zs € Z.

Lemma 1.2.3 [Oknl, Lemma 4.15, Coro. 4.16] Let Z be a subsemigroup of a semi-
group S and J(R) the Jacobson radical of ring R. Then the following facts hold:

(i). If Z 1is left group-like in S, then K[Z] is a direct summand of the left K[S]-
module K|[S].

(ii). If the elements of S are not zero divisors in K|[S], then the converse holds.

(iii). For every subalgebra R of K[S], we have J(R) N K[Z] C J(RN K[Z]).

Proposition 1.2.4 [Oknl, Prop. 6.8] Let S be a semilattice of semigroup S, where
a € I'. Then the following statements hold:

(1). Ko[S] is subdirect product of all algebras Ko[S/T,], where T, = UpxaSs.

(ii). If every K[Sq] has a unity, then K[S] is a subdirect product of all K[S,],a € T.

Later on, in chapter 2, we will make use of the semilattice decomposition of
semigroups to study the radicals of algebras.



1.3 Group Algebras

In this section, we answer the following question: let S be a cancellative semigroup
which can be embedded into some group G. Does K[G] affect the properties of K[S]?
Before answering this question, we give some properties of group algebras and we will
discuss the cancellative subsemigroups of G in section 3.3.

1.3.1 Some Basic Properties of Groups

Thoughout this section, let Z(G) be the center of the group G; Cg(a) be centralizer
of element a in G and G’ means the commutator subgroup of G. If N is normal
subgroup of G, then we denote it by N < G.

In the following chapters, we always consider nilpotent and polycyclic-by-finite
groups. We list here some properties of nilpotent groups extracted from [Kar, Pasl,

Rob]. It fact, many properties of nilpotent groups and its related subgroups can be
found in [Rob, Chapter 5].

Proposition 1.3.1 Let p be any prime number. Then the following statements hold:

(1). If G 1is nilpotent group and (e) # N < G, then N N Z(G) # (e).
(i1). If G 1is nilpotent group and G/G’ is finitely generated, then G is noetherian.

(iii). A finitely generated nilpotent group has a central series whose factors are cyclic
with prime or infinite orders.

(iv). If G is a group with Z(QG) is torsion-free, then each upper central factor is
torsion-free.

For the other type of groups, we only consider polycyclic-by-finite group. Let €
be a family of groups, then a group G is poly-€ if G has a finite subnomal series :

G =Gy D Gy D"'DGO:{l}
with each quotient G,;,/G; belonging to the family €. If € is closed under taking

subgroups and homomorphic images, then so is the the class of poly-€ groups.

A group G is poly-(cyclic, finite) if it admits a subnormal series such that every
factor G;/G;-; is either cyclic or finite. It is known that this type of group has
a characteristic subgroup of finite index that is poly-(infinite cyclic) [Pasl, Lemma



10.2.5]. We call G polycyclic-by-finite group and the corresponding algebras of G are
important for noetherian algebras. We list here some properties of polycyclic-by-finite

groups.

Proposition 1.3.2 Let G be a polycyclic-by-finite group. Then the following state-
ments hold:

(i). [Rob, 5.4.17] G is residually finite.

(ii). [Rob, 5.4.18] If the polycylic normal subgroup W of G is not nilpotent, then G
must have a finite nonnilpotent image.

(iii). [Rob, 5.4.15] An infinite polycyclic group G contains a nontrival torsion-free
abelian normal subgroup.

(iv). [Rob, 15.1.6] A polycyclic group has a normal subgroup of finite index whose
derived subgroup is nilpotent.

1.3.2 General Properties of Group Algebras

The structure of group algebras was extensively studied by D. Passman. In this
section, we refer to his monograph [Pasl] and some results taken from [Kar, Pas2,
Row| as well. We denote K[G] be a group algebras. The following theorem is an
important theorem concerning finite group algebras, was obtained by Maschke.

Theorem 1.3.3 (Maschke) Let G be a finite group and K a field. Then the following
facts are well known.:

(i). If char(K) = 0, then K[G] is semiprimitive.

(i1). If char(K) = p, then K[G] is semiprimitve iff G contains no elements of order
p. We call this type of group p°-groups.

Moreover, if |G| # 1, then K[G] is never simple since it always contains an augmen-
tation ideals.

Let K[G] be a group algebra. Then the following augmentation map is given by
w: K[G] - K

and the augmentation ideal is w(K[G]) since it is the kernel of the augmentation map
w.



Proposition 1.3.4 Let H be a subgroup of an aribitrary group G. Suppose X 1is the
generating set of H. Then

KIG]-w(K[H)) = ¥° RIG)(z 1) and w(K[H))- RG] = Y (z — )K[G]

zeX zeX

Moreover, if H is infinite then the left annihilator (w(K[H]) = 0; iof H s finite and
if H is the sum of the elements of H, i.e. H= Y jheph € K[G], then (w(K[H])) =
K[G]H and (H) = K[G)w(K[H)).

Lemma 1.3.5 Let G be a nontrival group. Then w(K|[G]) is nilpotent iff char(K) =
p for some prime p and G s a finite p-group.

The following is an interesting result concerning the Jacobson radical J(A) of an
algebra ‘A over a field K.

Proposition 1.3.6 [Kar| Let A be an algebra over a field K. Any z € J(A) s either

transcendental over K or nilpotent. In particular, the Jacobson radical of algebraic
algebra over K s mil.

By summarizing the results given in [Kar, Ch. 3], we can state the following
proposition.

Proposition 1.3.7 For any K-algebras A and B we have
(1®k B) N J(A Rk B) - J(l Rk B).
Moreover, if either one of following conditions holds, namely:

(i). A s algebraic over K.
(i1). J(B) is nilpotent.

(iii). A and B are commutative and J(B) is nil.

Then, we have BN J(A®gk B) = J(B)

Proposition 1.3.8 Let A be a field over K and A, B be K -algebras. The the follow-
ing statements hold:

(i). A/K is separable extension and J(A®k B) = AQkg (BNJ(A®gk B)). If A is
also algebraic over K, then J(A®k B) = AQk J(B).
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(ii). Let A/K be a purely transcendental field extension of the field K. Then J(A®k
B)=A®gk (BNJ(A®k B)).

(iii). If A/K is finite extension of the field K, then

[J(A®k B)* C A®k J(B) C J(A®xk B).

Applying the above results to group algebras, the following results on semiprimi-
tive group algebra is now obvious.

Corollary 1.3.9 [Pas3|

(i). Assume that char(K) = 0 with K not algebraic over the rationals Q. If G is
any group, then K[G] is semiprimitive.

(ii). Assume that char(K) = p with K not algebraic over the Galois field GF(p). If
G 1is p'-group, then K[G] is semiprimitive.

1.3.3 A-Method for Group Algebras

We now describe a special method, namely the A-method, to study the Jacobson

radical of group algebras. This method was given by D.S. Passman [Pasl]. Consider
the following subsets of G:

A(G) = {z € G| |G : Ca(z)| < 00}

and

AT (G) = {z € A(G)|o(z) < o0}.

Obviously A(G) and A*(G) are characteristic subgroups of G. If z € A(G), then
z has finite number of conjugates. Moreover, it is clear that A*(G) is generated
by the finite normal subgroups of G and A(G)/A*(G) is torsion-free abelian. If
A*(G) = (e), then K[A(G)] becomes a domain when K is a field. If G = A(G), then
G is said to be a FC-group i.e. finite conjugate group. Notice that in a f.g FC-group,
we always have [G : Z(G)] < oo and G’ is finite.

Let AP(G) = (9 € A(G)|g has order is a power of p). Then A*/AP is locally
finite by knocking out the elements of order p. For the finite normal subgroup N of
G, we have:

A(G/N) = A(G)/N ; A*(G/N) = A*(G)/N and AP(G/N) = AP(G)/N.

10



Also, if [AP(G) : H] < oo, then [H : AP(H)] < oo.

We say that a subset T of G is large if for all subgroups W of finite index in G,
T NW cannot be covered by a finite union of cosets of subgroups with infinite index.
We say that T is very large if T" and all its right translates 7'z are large.

Lemma 1.3.10 Let T be a very large subset of G. If " a;xfl; = 0 in K[G] for all
x € T, then the identity holds for all z € G.

We can easily see that the primeness of group algebra K[G] is related to its base
group G and its FC-center. The primeness of group ring was given by Connell.

Theorem 1.3.11 [Pasl, Th. 4.2.10] (Connell) Let K be any field with char(K) = 0,
the following conditions are equivalent:

(i). K[G] is prime.

(ii

(iii

). Z(K[G]) is an integral domain.

). G contains no finite nontriwal normal subgroup.
(iv). A(G) is torsion-free abelian.
(v). K[A(G)] is an integral domain.

Theorem 1.3.12 [Pasl, Th. 4.2.13] Let K be any field with char(K) = p. Then the
following conditions are equivalent:

(i

). K[G] is semiprime.
(ii). Z(K[G]) is semiprime.
)-

(iii). Z(KI[Q]) is semisimple.

(iv). G contains no finite normal subgroups H with p divides |H|, that is p| |H|.

)-
(v). A(G) 1is a p'-group.

We define the nilpotent radical of the ring R be the sum of all nilpotent ideals of
R, denote it by N(R). Note that N(R) may not be nilpotent. The nilpotent radical
is not a radical property as pointed out by Divinsky [Div]. Indeed, there exists a
finitely generated K-algebra A with N(A/N(A)) # 0. However, the nilpotent radical

11



defined by Passman acts a crucial role in studying the semiprimitivity problems in
group algebras. The details are given in [Pasl, Chapter 8§].

We have following theorem concerning the nilpotent radicals of group algebras.
Theorem 1.3.13 [Pas3] Let At = A*(G) and char(K) =p > 0. Then

(1). N(K[G]) = J(K[A™]) - K[G].

(ii). J(K[AY]) = Uwew(s) J(K[W]), where W(G) is the set of all finite normal
subroups of G.

(iii). N(K[G]) # 0 iff AT contains an element of order p and iff G has a finite
normal subgroup with order divisible by p.

All other properties related to group ring can be found in [Pasl, Pas2] and his
recent survey paper [Pas3].

1.4 Graded Algebras

Every group ring and semigroup ring can be viewed as graded algebras. We recall
here to some basic results from graded algebras. We refer to [Jes3, JW1, Kar, NV]
for the properties of group graded rings and semigroup graded rings.

Let S be a semigroup. A ring is S-graded if

R=Y_R,

seS

is a direct sum of additive subgroup R, indexed by the elements s € S such that

Rth g Rst-

A left R-module is S-graded if M = @,csM; is a direct sum of additive groups
such that R;M; C Mg, for all s,t € S. If S is a group, then R is strongly graded and
1 € R,, where e is the identity of the group S.

The well-known examples of semigroup graded rings are the polynomial rings
R[zy,xg, -+ , T,| with commuting variables. It is graded by free commutative monoids

with rank n and the polynomial ring R{z, %3, ,z,} in non-commuting variables
is graded by free non-commutative monoids with rank n.

12



Let A be a S-graded ring. If I is an ideal or subalgebra of A, then I is said to be
S-homogeneous (or say S-graded ) if

I= Z(IﬂAx)a

€S

i.e. Y pesTz € I implies that r, € I.

Let B be another S-graded algebra. A homomorphism f : A — B is called graded
homomorphism if f(A;) C B, for all z € S. Moreover, R is called nondegenerate if
(rR)e = (0) or (Rr). = (0) for some r € R, implies r = 0.

In this section, the general properties of semigroup graded algebras will be inves-
tigated.

Proposition 1.4.1 [Kar, Prop. 22.5] Let S be a right (or left) cancellative monoid
with identity e. Let R be a S-graded algebra. Then R, is a subalgebra of R.

Moreover, if R is a S-graded with S not necessary right (or left) cancellative, then
the following statements hold:

If R, is subalgebra of R (contains 1 € R), then

(). Forxz € S, R, is a (R, R,)-bimodule under the left and right multiplication by
the elements of R,.

(ii). R.NU(R) =U(R.) and ReN J(R) C J(R.).

Let gp—grM be the category of all G-graded left R-modules and the morphisms
are the set of graded homomorphisms. If M, N € g_4 M then Hompg_, (M, N) is
the graded homomorphisms from M to N.

Theorem 1.4.2 [NV, Th. 1.3.4] The following conditions are equivalent in a strongly
G-graded ring R.

(i). R is a strongly G-graded ring.
(ii). Ewery graded R-module is strongly G-graded.

(iii). The functors RQg,- and (—), are equivalent between the Grothendieck categories
R—grM and g, M-mod.
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B ks

1.5 Crossed Products and Smash Products

It is known that the radical problems on group-graded rings and even semigroup-
graded rings (cf. [Kar, Jes3, Pasl]) can be solved by using the techniques of crossed
products. We adopt the notations of crossed products given from [Kar] because the
crossed product defined by Karpilovsky not only for groups but also for semigroups.
Let k£ be commutative ring with unit, A be a k-algebra and Auty(A) be the group of
all k-algebra automorphisms of A. The unit group of A is denoted by U(A). Then,
for the multiplicative monoid M, we consider the following mappings:

o: M — Auti(A)

and
a:MxM— UA)

We call (M, A, 0, ) a crossed system for M over A if for all z,y,z € M and a € A,
the following equalities holds:

*(Ya) = a(z,y) (Ma)a(z,y)~
a(z,y)a(zy, z) = (“aly, z))o(z,yz)
a(z,e) =ale,z) =e
where *a = o(z)(a) for all a € A,z € M, and e is the identity of M.

Proposition 1.5.1 [Kar, Prop. 23.3] Let (M, A,o0,a) be a crossed system for M

over A and A x M the free A-module freely generated by the elements T,x € M, with
multiplication defined by

(a1Z)(a2y) = a1 “asa(z,y)TY

for all a; € A and z,y € M. Then A x M is a strongly M-graded k-algebra with
identity element 1-¢&, (Ax M), = A - € and with

(AxM),=AT=%ZA VYzeM

We say that the k-algebra A* M as the crossed product of M over A. It is mainly
composed by two parts:

(a) (Twisting) zy = a(z,y)Ty, and

(b) (Action) zr = 2rz.
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Note that if o(z) = 1 and a(z,y) = e for all z,y € M, then A% M becomes a monoid
ring. If only a(z,y) = e, then A x M is a skew monoid ring.

Note that A can be regarded as a subalgebra of A x M. However, there is no
natural embedding of M into A % M in general.

Let A*G be a crossed product of a group G over an R-algebra A. For a subgroup
H of GG, we denote
A*Hz{Za:hi_LV_zeA}

heH
Then A x H is a subalgebra of A x G which is the crossed product of H over A.

Corollary 1.5.2 [Kar, Coro. 23.6] Let N <« G and A x G a crossed product of G
over an R-algebra A. Then

AxG= (AxN)x*(G/N).

For group algebras, we know that if G is a group with a normal subgroup NV, then
K|G] = K[N] * (G/N).

In case if G is finite, then Cohen and Montgomery [CM1] (1984) have related the
group-graded algebras to Hopf algebras.

Denote the dual algebra k[G]* = Homy(k[G], k). Let G be a finite group and A is
G-graded k-algebra, where k is any commutative ring with unity. We can check that
k[G]* is a bialgebra. The smash product A#k[G]* is the free left A-module on the
generators set {p, € k[G]*| g € G}, which is a set of orthogonal idempotents whose
sum is 1, with multiplication define by the rule

(a#py) (b#pn) = abgn-1#pn

where by,-1 is the homogeneous element of b in Agj-1.

Smash product is an important tool for studying group graded rings, in partic-
ular, the duality theorems of Cohen and Montgomery [CM1]. We summarize some
important properties and duality theorems:

Theorem 1.5.3 [CM1, Th. 3.2, 3.3] (1984) Let R = A x G, the skew group ring
over commutative ring A. Then

(A * G)#k[G]* = M, (A).

Let R be G-graded k-algebra and G is finite group with order n, then the skew ring
over group G

(R#K[G]") * G = My(R).
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In order to extend smash product to infinite groups, we use the notations given
in [Bea):

Notation 1.5.4 Let R be a G-graded ring and let R#G* be the free left R-module
on the generators py,g € G. Denote rp, by r#py and the multiplication is given by

(Tpg)(sph) = T'Sgh—1Ph

and multiplication of such elements is defined by linearity, while {p,} is a set of
orthogonal idempotents.

The product R#G* is called the generalized smash product of R and G. Note
that we do not assume that R is a G-graded ring with unity.

Proposition 1.5.5 [BS] (1991) Let R#G* be the generalized smash product defined
above, R a G-graded ring without unity and R', a ring extension of R which R has
unity . Then

(i). R#G* is an ideal of R*#G*.
(ii). For g € G, we define (R#G*)y = Ypeq Rgn-1pn. Then

R#G* =) (R#G"),

geG
and R is isomorphic to (R#G*)., where e is identity of G.

(iii). Let R be a G-graded ring with unity. Denote RC as the set of all fived points
under the group action. Then g acts on left by 9(rpy) = Tprg-1 and acts on
right by (rpr)? = Tprg. From [Qui], if G is finite then (R#G)¢ = R. Also,
(R#G*)Y = 0 when G is infinite.

(iv). [BS, Prop. 2.1] The caterogies of irreducible left G-graded R-modules and irre-
ducible left (R#G*)-modules are isomorphic.

Note that the duality theorems given by Beattie on crossed products has been

recently unified by Y.H. Xu and K.P. Shum [XS], by introducing the concept of
double crossed products.

(U R! is obtained from R by an adjunction of the unit element by the ring of integers, i.e. R! =
R & Z, with multiplication (a,n)(b,m) = (ab+m-a+n - b,nm)
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Chapter 2

Radicals of Graded Rings

In this chapter, we give some notations and terminologies for studying radicals
(mainly Jacobson radical) of semigroup algebras and group algebras through graded
ring theory. We will make use of these results to investigate the radicals of semigroup
algebras.

2.1 Jacobson Radical of Crossed Products

Before studying the Jacobson radical of group algebras or semigroup algebras, we
first review the properties of radicals of crossed products and graded rings.

Theorem 2.1.1 [Kar, Th. 23.4] Let k be commutative ring with unity. Let A be a
k-algebra and S a multiplicative monoid. Assume AxS is a crossed product of S over
A (constructed in Chapter 1, Section 1.5). Then

i). ANJ(AxS)C J(A)
(i1). If S is finite of order n, then

(a) ANJ(AxS)=J(A).

(b) J(AxS)"C J(A)-(AxS)C J(AxS).

(c) J(AxS)=J(A)(AxS), provided every A x S-module is A-projective.
(d) J(A=xS) is nilpotent, if J(A) = 0.

The problem describing the radicals of semigroup rings seems to be rather com-
plicated. However, for arbitrary semigroup, if there is a least semilattice congruence
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n on S, then S/n is the greatest semilattice decompostion of S into certain type
of subsemigroups, say U,erSy, Where I' is semilattice. To reduce the problem, we
consider R[S] = Saer R[S4] is a I-graded ring. Thus, the studying the radicals of
graded rings is essential the same as the semigroup algebras.

In the following, we assume all S-graded rings are contracted, i.e. Ry = 0 where 6
is the zero of semigroups. Throughout this section, S is right cancellative semigroup
with unity (e.g. cancellative monoid, group) and R is a S-graded algebra. Right
cancellative properties ensure that zy = e implies yz = e, where e is identity of S.
A left R-module M is called graded simple if RM = M, and {0}, M are the only
graded submodules of M.

Definition 2.1.2 The graded Jacobson radical of R, denoted by Jo(R), is the set of
elements of R which annihilates all S-graded simple left R-modules. Let V' be graded

R-module, then Jg-(V') is defined to be the intersection all graded-mazimal submodules
of V.

The graded Jacobson radical has the following properties :

Proposition 2.1.3 [Kar| Let S be right cancellative monoid. Then the following
statements hold for the S-graded algebra R:

(i). Let V be graded R-module. If V is finitely generated monzero module, then
Jn(V)#V.

(ii). J4r(R) is a homogeneous (graded) ideal of R.

(iii). Jgr(R) is the largest proper homogeneous (graded) ideal of I of R such that
INR; CJ(Ry).

(iv). Jgr(R) contains all homogeneous (graded) nil left ideals of R.

(v). J(R) is graded, then J(R) C Jy(R) with equality if R/J(R) is artinian.

2.2 Graded Radicals and Reflected Radicals

If S is finite group, then there are some connections between smash products and
Hopf algebras [CM1] (see Section 1.6). In the following, we always use the concept
of generalized smash product described in 1.5.4.
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Theorem 2.2.1 [Bea] Let G be arbitrary group and R is G-graded ring with unity.
Then J(R#G*) = Jo(R)#G".

Proof. For x = Y™ 1ip,, € J(R#G*). We have rip,, € J(R#G*) because p, is an
orthogonal idempotent and the Jacobson radical is a two-sided ideal. Therefore, it
suffices to show that rp, € J(R#G*) implies r € J4(R).

Note that J(R#G*) is G-stable (invariant under group action). Thus, if rp, €
J(R#G*), then rp, € J(R#G*) for any other h € G. Let V be an irreducible
graded left R-module. Then V# is also an irreducible left R#G*-module by the
categorial isomorphism (in Prop. 1.5.5 (iii) ). For any v € V# and all g € G, if rp,
annihilates V such that 0 = rp,v = rv,, then r annihilates V' and r € Jy,(R). Thus
J(RHG") C Joe(R#G"

Conversely, let z = S | ripy, € Jgr(R)#G*, where r; € Jy(R). Also, let M be
an irreducible left R#G*-module. Then M’ is a graded irreducible left R-module by
the functor ( )'. Thus, r;M" = 0 implies that r;M;, = 0 = rip,, M and z = 3, 7:ipg,.
Hence z € J(R#G*). Thus, J(R#G*) = Jg(R)#G*. O

Corollary 2.2.2 J,(R) N R, = J(R.) where e is the identity of G.

Proof. Since p.(R#G*)p. = Repe = R, it follows that

J(R,)

J (pe(R#G")pe)

= pe(J(R#G"))pe

= Pe(Jgr(R)#G")pe
(Jgr(R))epe

= J.(R)NR,

|

However, in general, it is not true that Jy,.(R) is always contained in J(R). For
instance, consider C' as a commutative domain with J(C) # (0). Let R = C{z} be
the group ring of C over Z as usual. Clearly, C{z} contains no nil ideals. Then, we
can observe that J(C{z}) = (0), but Jz(R) = J(C){z}.

We now consider the case when G is a finite group. From Theorem 2.1.1, we
deduce the following theorem:

Theorem 2.2.3 [CM1, CM2] Let R be ring graded by a finite group G. Then
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(). Jgr(R) C J(R), in particular, Jo(R) = J(R)yr is the largest homogeneous part
in J(R).

(ii). J(R)ICl C J,.(R).
(). |GII(R) C Jor(R).
(iv). If |G| is the member of the units in R, then J,(R) = J(R).

Proof. (i) Consider R#G*, from Theorem 2.1.1 and 2.2.1, we have Jg,.(R) = RN
J(R#G*). Thus z € J,(R) is quasi-invertible in R#G™*. Since R#G™ is free over
R, any element of R invertible in R#G* is already invertible in R. Thus Jg,(R) is a
quasi-regular ideal in R, so is contained in J(R).

For (ii), by using the crossed product propeties, we obtain from Theorem 2.1.1,
that

J((R#G*) * G)I° C J(R#G™) * G = (J,-(R)#G*) * G.
and then for the identity e € G, we have

PeJ (R#G*) * G)%pe C (pe((Jor (R)#G*) x G)pe).

By using duality theorem (see Theorem 1.5.3), we have for n = |G| and p, — ey,
some idempotent n X n matrix

€1J(Mn(R))n61 Q ean(Jgr(R))el

J(R)! C Jy(R)
The results then follow.
(iii) (iv) See [Kar, Th. 30.10 (iii)] for details. O
Recall that the prime radical B is the intersection of prime ideals of R. Let R be
G-graded algebra. A graded ideal I is called graded prime if JK C I, for some J, K

graded ideals of R, then J C I or K C [. It is known that the graded prime radical
By (R) is the intersection of all graded prime ideals of R.

Graded prime radical in R#G*, when G is finite, was studied by Cohen and
Montgomery [CM1]. Beattie and Stewart [BS] then considered the generalized smash
product R#G* and G may be infinite. If J is a graded ideal of graded algebra, then
from Proposition 1.5.5, J#G* is an ideal of R#G™.

If I is ideal of R#G*, then define Ir and I° of R be the sets
Ir={r:r € R|rp, € I for all g € G}
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and I’ = (Ig),. Clearly, I” is the largest graded (homogeneous) ideal in /.

If )\ is a radical class in the category of associative algebras, then we define the
reflected radical of A by

Aref = {R: R is a G-graded algebra with R#G* € A}.
Clearly, Aes is a radical class of G-graded algebra.

Proposition 2.2.4 [BS, Prop. 1.2] If A is a radical in the category of associative
rings, then for R a G-graded ring, Mef(R) = (M(R#G*))’, and thus Aep(R)#G* =
AN R#G™).

Note that the reflected Jacobson radical coincides the graded Jacobson radical by
Theorem 2.2.1.

We now consider the prime radical B of the graded algebra R.

Lemma 2.2.5 [CM1, Lemma 5.1] Let R be a graded algebra and G a finite group. If
I is a graded ideal of R, then I is graded prime if and only if I = P,,, the associated
graded ideal of some prime ideal P of R. Consequently, By (R) = (B(R))gr, the
largest graded ideal in B(R).

Theorem 2.2.6 [BS| Let R be graded ring over group G. Then the following condi-
tions hold:

(i). Bgr(R) S Bres(R)
(ii). If G is finite, By (R) = Bres(R).
(iii). If G is infinite, then inclusion in (i) may be proper.
Proof. (i) If P is a prime ideal of R#G*, then P’ is a graded prime of R and thus
By (R)#G* C B(R#G™) so that By, (R) C Bres(R).

(ii) Suppose that the G is finite, and R has an unity. Then, the prime radical of
R#G* was studied in [CM1]. Since the prime radical is a hereditary radical and R
contains no identity so we have

B(R#G*) = B(R'‘#G*) N R#G*
(Byr(R'#G*)) N R#G*( by [CM1, Th. 5.3])
(B(RY)y+#G*) N R#G*
(B(RY),r N R)#G*
(B(R') N R), #G*
= B(R)y#G* = B, (R)#G*
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(iii) When G is infinite, we have already known that By, (R) C Byes(R). Let K be
a field and let R = K[t], the polynomial ring graded by G = Z in the usual way. Since
(0) is graded prime ideal, B, (R) = (0). Let I be the principal left ideal (R#G™)(tpo)
of R#G*. Then I? = (0). Thus J = I + I(R#G") is a nilpotent two-sided ideal of
R#G*, and therefore, B(R#G*) = B,ef(R)#G™ is nonzero. O

We quote the following results from Beattie and Stewart [BS] to describe the

graded version of Levitzki and Brown-McCoy radical. The details of proof are referred
to [BS].

Recall that the Levitzki radical £ is the intersection of the prime ideals P of R such
that R/P has no nonzero locally nilpotent ideals, £,,(R) is hence the intersection of
all graded prime ideals P of R such that R/P has no nonzero graded locally nilpotent
ideals.

Lemma 2.2.7 [BS, Prop. 3.2] For any G-graded ring R, we have Ly, (R) = (L(R))gr-

Theorem 2.2.8 [BS, Th. 3.3] Suppose that the ring R is graded by a group G. Then
(i). For any group G, Ly (R) C Lres(R).

(ii). If G is locally finite, Lyr(R) = Lyes(R).
(iii). For infinite group G, the inclucsion in (i) may be proper.
The Brown-McCoy radical is intersection of ideals M whose R/M is a simple ring

with unity. Similarly, we define G, (R) be the intersection of the graded ideals M of
R such that R/M is a graded simple ring with identity.

Proposition 2.2.9 [BS, Prop. 3.5] For all G-graded rings R, we have G(R), C
Gor(R) and this inclusion may be proper.

Theorem 2.2.10 [BS, Th. 3.6] For all group G, Gg(R) C Grep(R). If G is finite,
then QgT(R) = gref(R).

Moreover, we can extend Theorem 2.2.3 to any radical described above. By using
the duality theorems of finite group actions and coactions, we can summarize the
results from [BS, CM1, Jes3, JP] and obtain the following theorem.
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Theorem 2.2.11 Let the radicals H = B,L,G be the prime; Levitzki and Brown-

McCoy radicals respectively. Suppose that A is a G-graded ring and G 1is finite group.
Then we have

IGIH(A) € Hyr(A) C H(A).

Proof. If H = B, L, from Lemma 2.2.5, and 2.2.7 and using the terminology of
prime and graded prime ideal in [CM1], we can see that

IGIH(R) € Hor(R) C H(R).

For H = G, if R is an algebra strongly graded by a finite group G, then from [JP,
Prop. 2], G(R) N R, = G(R.) and

|G|g(R) C g(Re)R = Rg(Re) = ggr(R)

If R is graded by a finite group G and |G| = n, then by duality theorem of group
coactions, we have a homomorphism defined by

¢: (R#G*) x G — M,(R)

and

¢: (rpg*h)— Y Tr-1epgn
feG

where e/ 45 is the matrix with 1 in the (f, gh)-entry and zero otherwise. Obviously, ¢

is an isomorphism. If follows that M, (Gy-(R)) = ¢((Ggr(R)#G*) * G). On the other
hand, by using Theorem 2.2.10, we have for G is finite, G, (R)#G* = Grep(R)#G* =
G(R#G™).

Also, we have

Mp(Gyr(R)) & [Gor(R)#G*] + G = [G,r(R#G*)) + G

C GI(R#G") % G] S G(My(R)) = Mq(G(R))

Hence, M, (G, (R)) € M,(G(R)). Consequently,
|GIG((R#G*) * G) C Ggr((R#G*) * G) and so

M, (IG|G(R)) = |GIMn(G(R)) S Mn(Gyr(R)) € Mn(G(R))

Hence, |G|G(R) C G, (R) € G(R) as required. d
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2.3 Radicals of Group-graded Rings

We now generalize the results of Karpilovsky (see [Kar, Th. 30.28]) to other radicals
described above.

Lemma 2.3.1 [JP] Let R be a ring graded by a group G which is residually p-finite
for two distinct primes p. If the radicals H = B, L, J or G, then H(R) is homogeneous.

Proof. First we notice that if G is residually p-finite, then for every finite subset
T of G, there exists N, the normal subgroup of G with G/N is p-group, such that
sN # tN for every s,t € T, s # t.

Suppose that 7 = Y cr 7y € H(R) and T a finite subset of G. Then by the above
result, there exists a normal subgroup N such that G/N is finite p-group satisfying
the above situation. Consider R as a G/N-graded ring. Then, by the properties of N,
each component 7y, for all g € T', must be a homogeneous component. By Theorem
2.2.11, we have |G/N|r € Hg(R) € H(R) and hence |G/N|ry, € H(R,) for every
g € T. Thus, p"r, € H(R,) for some n > 0. Since this holds for two distinct prime
numbers we obtain that r, € H(R,). O

Furthermore, we can extend the above result to subdirect product of groups:

Lemma 2.3.2 [Kar, Lemma 30.20] Let {G;| i € I} be a collection of arbitrary groups,
let G be a subdirect product of G;, and let A be a G-graded algebra. Then, for the
radicals H =B, L, J,G, we have :

(i). If for eachi € I, H(A) is a G;-graded ideal of A, then H(A) is a G-graded ideal
of A.

(ii). If each G; is finite, then for any a = ¥ cqay € H(A), where a, € Ay, there
exists a positive integer n, such that nq,a, € J(A) for all g € G. Furthermore,
ne diwides |Hy||Hs| - - |Hy| for some k = k(a) and some Hy € {G;| i€ [},1 <
t<k.

The following lemma only serves for the case of Jacobson radicals.

Lemma 2.3.3 [Kar, Lemma 30.27] Let A be a G-graded algebra. For any finitely
generated subgroup H; of G, let Ay, be the subalgebra graded by H; in A. If J(Ap,)
is a graded ideal, then J(A) is a graded ideal of A.

Proposition 2.3.4 (i). G is locally free if every finitely generated group is free.
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(ii). G is residually free if G is a subdirect product of free groups.
(iii). G 1s residually p-finite if G is a subdirect product of finite p-groups.
(iv). G is free solvable if G = F/F®™ for some free groups F.
We note that free group, finitely generated torsion-free nilpotent group G and free

solvable group are all residually finite p-groups for every prime p (ref. [Kar, Section
30]). Now we slightly modify the theorem given in [Kar, Th. 30.28]:

Theorem 2.3.5 Let R be a ring graded by a group G where G is a group of any one
of the following types:

(a). G is abelian and the orders of finite subgroup of G are units in R.
(b). G is residually free, or free solvable or torsion-free nilpotent.

(c). G is locally finite and the orders of finite subgroups of G are units in R.
(d). G is locally free.

If G satisfies one of the following cases:
Case I : H = J and G 1s type (a),(b),(c),(d), or subdirect prodcut of them.
Case II: H=B,L,G and G 1is type (a),(b), or subdirect product of them.

Then the following properties hold:

(). H(R) is a graded ideal.
(ii). H(R) C Hyr(R) if H=J.
(iii). H(R) = (H(R)N R)R = R(H(R) N R,), if R is strongly G-graded.
Proof. (i) If the group G is of type (a) and (b), then G is residually p-finite. By

Theorem 2.2.11, Lemma 2.3.1, Lemma 2.3.2, we can see that H(R) is graded.

If the group G is type (c) and type (d), then by above and Lemma 2.3.3, we obtain
the graded ideal J(R).

(ii) Notice that if J(R) is graded, then J(R) N R, C J(R.). And if J,,.(R) is the
largest graded ideal I of R such that I N R, C J(R.) then J(R) C J,,(R).

(iii) Hyr(R) N Re = H(R,) when R is strongly graded. Since H(R) is graded, then
H(R) = (H(R) N R.)R. O
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There is an important corollary, for the case of semigroups. For A is S-graded
algebra, S is a submonoid of group G. Then A can be regarded as an G-graded
algbera via A, = 0 for g¢S.

Corollary 2.3.6 [Kar, Th. 30.30] Let S be submonoid of G, where G is one of the
above types (a,b,c,d) in above theorem. If A is S-graded algerba, then J(A) is a graded
ideal of A and J(A) C J,(A).

Remark: Under the construction of A to G-graded algebra, A must be not strongly
G-graded because 1 ¢ AjA,-1 for some g € G.

For R * G, the crossed product of G over R, we have a similar theorem:

Theorem 2.3.7 [Kar, Th. 33.30] If R be an arbitrary ring and G be a group of one
of type of above theorem. Then J(R * G) is a graded ideal of R *+ G and

J(RxG)=((J(R*G)NR)xG C J(R) xG.

2.4 Algebras Graded by Semilattices

In this section, we introduce some results from semilattice graded rings.

Theorem 2.4.1 [Jesl, OW] Let R = Y cr Ra be a I'-graded algebra, T' is a semi-
lattice. H is one of hereditary radical (e.g. Jacobson, Prime, Levitzki and Brown-
McCoy radical). If 0 # x = Y er Za € H(R), and [ is mazimal in suppr(z), then
zp € H(Rg). Moreover, if J(Ry) = Rq for alla € T, then J(R) = R.

Proof. Take 0 # x € H(R) and I' is semilattice which has partial order in the usual
sense. Let I'; = {a € I'la < v, Vy € supp(z)}. We can see that I', is an ideal
of I'. Denote R’ = Y ,er, Ro which is the ideal of R. Then H(R) N R’ = H(R/)
and z € H(R'). Let B be the maximal element in suppr(z), § is also the maximal
in ;. And define ¢ : R — Rg be the projection map to Rz. This is surjective
homomorphism because if f = ad implies § < aand f < 8§, so a = 8 = § by
maximality of 8 € I';. Therefore

¢(z) = z5 € H(Rp).
Moreover, if J(R,) = Rq and T is finite. By induction on |T'|, we have J(R) =
R. For T is infinite, for 0 # r € R, any y € R, supp(yr) is finite and let I” be

subsemilattice generated by suppr(yr), it is a finite semilattice. Then yr € R’ =
>aer Bo = J(R'). This means that yr has quasi-inverse in R’ and hence in R. O
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Corollary 2.4.2 [Jes3] Let H be a hereditary radical (e.g. Jacobson, Prime, Levitzki
radical etc.) and S a semilattice. If R is a S-graded ring and H(R,) = {0} for each
s € S, then H(R) = {0}. Moreover, if R is a field or R is a semiprimitive ring, then
J(R[S]) =0 if S is semilattice.

Corollary 2.4.3 [Wau, Coro. 1.3] Let S be a two-elements semilattice. That s
S = {e,f} with e = e,f> = f = fe = ef. Let H be a supernilpotent radical
(hereditary and contains all nilpotent ideals), and R is a S-graded ring. If Ry has an
unity 1g, then

H(R)={r=rc+71;| 1. € H(R:), 15 € H(Ry)}
and if H(Rs) = 0, then

H(R)={r—1;r | r € H(R.)}.

2.5 Algebras Graded by Bands

More generally, if all semilattices are bands, then we can extend the above result to
the ring graded by bands. Recently, Kelarev and Munn have considered the ring R
graded by bands [Kell, Mun7]. Denoted R = )" R, where B is a band. Sometimes,
we also call R a band-sums. The following results are extracted from [Kell, Mun?7].

Recall that a band is a rectangular band if it is satisfies the identity zyz = x. Let
B be a band and define a relation ¢ on B by

(z,y) € 0 & zyz =z and yzy =y for all z,y € B.

Then B is semilattice of rectangular bands. Let 7 : B — B = B/a, for s,,5, € B,
we say s; < 8 if § < § where § = {t € B|sts = s,tst = t}.
Also, we denote

§={t € B|s <t} ={t € B|sts = s}.

2.5.1 Hereditary Radicals of Band-graded Rings

For r € R, write rs = Y ,cs7 and A; = {asla € A}. The following formation and
characterization are given by Kelarev [Kell].

Let H be hereditary radical and the collection of ideals
I(R,B,H) = {Ais ideal in R| A; N R, C H(R,) for all b € B}.
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Let H(R, B) be the sum of all ideals in I(R, B, H). Then, we say that H is deter-
mined by the component of the B-sums if H(R) = H(R, B). Note that H(R, B)
is the largest ideal in I(R, B, H).

If T is a semilattice, H a radical, and R = Y ,cr Rs, then H(R) € I(R, S, H).
Moreover, if P is a right (left) zero band, H be left (right) hereditary radical, then
H(R) € I(R, P,H).

Moreover, a radical is called C-local (C,-local, Cj-local) if its radical class is
closed under unions of ascending chains of subrings (right ideals, left ideals).

Definition 2.5.1 A radical H is called countably definable if

(i). H is C-local or there exists a nonradical ring A being a union of an ascending
chain of radical subrings Ay C Ay C---A, C---, for alln € N.

(ii). H is Cy-local (Cy-local) or there exists a nonradical ring A being a union of an
ascending chain or radical right (left) ideals Ay C Ay C --- A, C ---, for all
n € N.

The radicals of Jacobson, Levitzki, prime and Brown-McCoy are clearly countably
definable.

Recall that a radical is right summing iff in every ring the sum of any two
H-radical right ideal is H-radical. A radical is right hereditary iff its radical class
is closed under right ideals.

Lemma 2.5.2 The radical H is determined by the components of B-sums while a
band B contains semilattice T with infinite descending chain. (or infinite left zero
band L). If there is a chain of subrings (or right ideal) Ay C Ay C - -+ with H(A;) =0
and A = U2, A;, then H(A) =0.

Proof. Let A[T] be semigroup ring and suppose t; > t, > t3 > ---. Let Ry, be the
subring A;t;. Clearly, R, = 0ifb € B\T. Let R = Y g Ry. If H is determined by the
B-sums and H(Ry,) = H(Aiti) = H(A;) = 0, then H(R) = 0. Let ¢ : A[T] — A be
the augmentation map. It is clear that ¢(R;,) = A; and hence ¢(R) = A. Therefore
H(A) = 0. The case of left zero band L is similar and routine. O

We now state the main theorem on band-graded rings.

Theorem 2.5.3 [Kell| (1991) Let B be a band which is a semilattice S of rectan-
gular bands Qs, where Q, 1s the direct product of a left zero band Ly and a right zero
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of P;. A countably definable radical H is determined by the components of B-sums
iff the following conditions hold:

(i). S satisfies the descending chain condition or H is C-local;
(ii). Bvery Ly (Ps) is finite or H is Cy-local (Cj-local);

(iii). Every Ls (Ps) consists of one element or the radical H is right (left) hereditary,
right (left) summing and supernilpotent.

Proof. We only sketch the proof and the details are found in [Kell, Th. 1].

Necessity: Suppose H is determined by the components of B-sums. By Lemma
2.5.2, we know that if S does not satisfy the descending chain condition and B has an
infinite semilattice T, then H is C-local. Hence (i) is proved. Similarly, (ii) follows
by Lemma 2.5.2.

(iii) It suffices to show that if Ly is not a singleton, then H is right summing, right
hereditary or supernilpotent. Suppose L = Ly is a two-elements left zero band. We
use L = {a,b} C B and take any ring A which is the sum of two H-radical right ideals
I and J. Consider A[L] and let R, = Ia and R, = Ib and for t € B\ L, set R; =0
and R = Y ,c5 Rs. By Lemma 2.5.2, R is B-graded ring. Hence R is H-radical ring.
Define ¢(ria + rob) = 71 + 72 which maps R onto A. Then A is H-radical ring and
hence H is right summing.

By using similar construction, H is also right hereditary and supernilpotent.

.Sufficiency: The sufficiency can be proved by considering S in the cases of
semilattice, left zero band, rectanglar band and band. Then, we have to show that
H(R) is the largest ideal in I(R, S, H). We omit the details. O

Corollary 2.5.4 Let J, L, B and G be the radicals concerned and R is a ring graded
by band B. Then the following facts hold:

(i). J(R) = J(R,B) and L(R) = L(R, B).

(ii). B(R) = B(R, B) iff B is a semilattice I" of rectanglar bands, where I satisfies
the decending chain condition.

(iii). G(R) = G(R, B) iff B is a semilattice.

Proof. We know that H = J, L, B are all right summing, right hereditary, and
supernilpoent radicals, however, B is not C-local and by Theorem 2.5.3(i), I' must
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satisfy the decending chain condition. Moreover, G is not right hereditary and left
hereditary, then Theorem 2.5.3(iii), L, and Ps are singleton for s € I. Thus B =T’
which is a semilattice. ]

2.5.2 Special Band-graded Rings

Munn has studied a particular class of band-graded rings in 1992. Let B be band, a
ring R is special if
(i). For all @ € B, R, is non-zero and has a unity 1,,

(ii). For all o, B € B, 1,15 = 14p.
Denote B/o by B where o is a semilattice congruence on the band B.

Lemma 2.5.5 Let B be band and R a speical B-graded ring. let o, € B with
& > fB. Define ¢ p: Ra — Rp by ¢op(z) = lgzlg for all x € Ry. Then

(i). ¢ap is homomorphism.
(i). For ally € B withy > &, ¢a,Pya = $v,5-

(iii). If @ = B then ¢qap is an isomorphism under an inverse isomoprhism ¢g .

Theorem 2.5.6 [Mun7] (1992) Let R be a special band-graded ring. Then we have

J(R)={a € R|Va € B, laaals € J(Ra)}-

Proof. Let T betheset {a € R|Va € B, laasly € J(R,)}. Corollary 2.5.4 (i) yields
that the Jacobson radical is determined. by the components of B, J(R)sNRy C J(Ra).
For a € J(R), we have 1lpasls = (latla)a € J(R)s and lpasly € Ry Thus
l405ls € J(R)aN Ry € J(R,) forall € Bandsoa€ T,ie. J(R)CT.

Let o € B and Sy = Y_pca Fig- Then S, is subring of R and Y gc p\s Bp 1s an ideal
of R. Define 7, : £ — z4. Moreover, there is an epimorphism 7, from S, to R, by
x — l,z1,, we have

RLSQ

Ya N\ lna
R,
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Since this holds for all & € B. We have ¥4(a) = 1aaala and ¥,(J(R)) € J(Ra).
Then

J(R)C N ¥a'(J(Ra) =T.

a€EB

Moreover ¥~ 1(J(R,)) is an ideal and so is T

T is an ideal and by the definition of T', we have T3 N R, C J(Ry). By Theorem
2.5.3, J(R) is largest ideal of I(R, B, J). This shows that J(R) =T O

A special B-graded ring R is called radically coherent iff
Va,f € Bwitha>f8  dap(J(Ra)) C J(Rp).
The following corollaries were due to W.D. Munn [Mun7].
Corollary 2.5.7 [Mun7, Coro. 3.3] Let R be a special B-graded ring. Then

(1). J(R) = Xsep J(R5) iff R is radically coherent.
(ii). J(R) = X ep J(Ry) iff B is a semilattice and R is radically coherent. ;

Corollary 2.5.8 [Mun7, Coro. 3.4] Let B be a band and R be a special B-graded
ring. If J(R) = 0 then B is a semilattice. |

Thus we have the following important corollary for algebras over bands. .

Corollary 2.5.9 [Mun7, Coro. 3.5] Let R be a non-trival ring with unity and B a
band. Then R[B] is radically coherent and

J(RIB]) = {"mb € RIB] | V7 € B, Y € J(R)}. ?

beB tey

There is another description on Jacobson radical in band-graded ring. Let A be
a finite non-empty subset of a band B and let o € (A), the subsemigroup generated
by A. ¢ap: Ry — Rp for & > B. Define
M(Aa)= (] ¢ap(J(Re)).
BeB
azp
&nNA=pnA

Theorem 2.5.10 [Mun7] (1992) Let R be a special band-graded ring and A a finite
non-empty subset of B. Let a € R such that suppg(a) C A. Then

J(R) = {a € R|Va € (4), loagla € M(A, )}
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Let I" be semilattice and o, 3 € T, write o = 3 iff @ > ( and subject tonoy € I’
such that a > v > . I is called pseudofinite iff it satisfies the following conditions:

(a) For all a, 8 € T with a > (3 there exists v € I such that o > v > (.

(b) Foralla e, {B €T :a> B} < oco.

Definition 2.5.11 Let A be a subsemilattice of B. Suppose A is finite and let « € A
we define

15 if a 1s the least element of A.
plA,0) =1 T (la— 1,)  otherwise.

yeA

a>A7Y

We can see that p(A, a) is central idemoptent of R, a € A which is finite set and
1y = Z,BEO(A p(AHB) = 2 p(A’ﬁ)

BeA
az>f

By using the above definition, W.D. Munn obtained the following result:

Theorem 2.5.12 [Mun7] (1992) Let R be special I'-graded ring and let A be a finite
subsemilattice of the semilattice I'. Let Jo(R) = {a € J(R) : suppr(a) € A}. Then

Ja(R)= Y M(4,0)p(4, ).

acA

Corollary 2.5.13 [Mun7, Coro. 5.4] Let R be a special semilattice-graded ring with
I' pseudofinite. Then

J(R)=0 iff VaeT, J(Ra)=0.

If ' is pseudofinite, then p(a) = p(B, a) because the set {: o > ~} is finite.

Corollary 2.5.14 [Mun7, Coro. 5.5] Assume that each principal ideal of T' is finite.
If R is a special T'-graded ring, then

J(R) = 3 J(Ra)p(a).

ael

Finally, we consider the nilness of the band-graded ring R by using the above
techniques. We have the following results.
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Theorem 2.5.15 [Mun7, Th. 6.2] Let R be a special band-graded ring. If J(Ra) is
nil for all « € B then J(R) is nil. If R is radically coherent and J(R) is nil then

J(Ry) is nil for all o« € B.
Call a band B normal iff all o, 3,7,6 € B, affy6 = aypo.

Theorem 2.5.16 [Mun7, Th. 6.4] Let R be a radically coherent special band-graded
ring and n a positive integer. Then we have the following statements:

(i). If J(R)" = 0 then J(R,)" =0 for alla € B.
(ii). If B is normal and J(R,)" = 0 for all « € B, then

RJ(R)"R = 0.

When R is a non-trival ring with unity and B is normal band, we have J(R[B])
is nilpotent iff J(R) 1is nilpotent. If J(R)™ = 0 for some positive integer n then
JERIB] %= 0.

We will apply the above grading technique to study the structure of semigroup
algebras and group algebras in the following chapters.
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Chapter 3

Radicals of Semigroup Algebras

In this chapter, we investigate the radicals of algebras of an arbitrary semigroup. We
consider the polynomial rings and commutative semigroup algebras. After describing
them, we study the algebras of non-commutative cancellative semigroups. For other
non-commutative cases, we make use of graded ring theory to give some generaliza-
tions, especially for algebras of completely 0-simple semigroups. In the last section
of this chapter, we also describe the radicals of PI (polynomial identity) semigroup
algebras.

3.1 Radicals of Polynomial Rings

The first major result on radical of polynomial rings was obtained by S.A. Amitsur
in 1956, [Ami].

Lemma 3.1.1 [JW1, Lemma 4.1] If S is any semigroup and J any hereditary radical
property then, for any ring R, J(R[S]) is an ideal of R'[S]. Morever, if S has unity
element, then

(J(R[S]) N R)[S] € T(R[S]).

If S has no unity, we also have

J(R[S]) = J(R'[S"]) N R[S].

Therefore, it is not necessary to divide the case whether R and S contains identities
or not. In the following, we assume that all rings will have unity unless specify
otherwise.

We now consider the Amitsur’s result.
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Theorem 3.1.2 [Ami, JW1, Kre2] Let S be free commutative moniod with rank n,
(finite and infinite) and R an arbitrary ring (with or without unity). Suppose that B
is that prime radical, L is the Levitzki radical, G is the Brown-McCoy radical and J
s the Jacobson radical. Then

(). B(RIS)) = B(R)[S].

(i). £(RIS]) = L(R)IS).

(ii). J(RIS]) = Ja(R)(S), where Jo(R) = J(RIS]) N R.

(iv). G(RIS]) = Ga(R)[S], where Ga(R) = G(RIS)) N R.
J(B) = Jo(R) 2 A(B) D Jo(R) D+ 2 [ Ju(R) = Jua( B |
G(R) = Go(R) 2 Gi(R) 2 Go(R ﬁ Goo(R) f

Furthermore, Ji(R) is a nil ideal and J,(R/J.(R)) = 0. In particular, L(R) C |
Jo(R) € N(R), where N(R) is the upper nil radical. i

Proof. We just present the case for Jacobson radicals. The cases of other radicals
can be proved similarly. In the cases of prime and Levitzki radicals, the reader is
referred to [Kre2]. In the case of Brown-McCoy radicals. The reader can find the
proof in [JKW, Th. 2.5].

By Theorem 2.1.1, we know J(R[S]) N R)[S] C J(R[S]). Moreover, as S is a free
commutative monoid, S can be embedded into a commutative free group with rank n.
We regard R[S] as G-graded ring and by Theorem 2.3.5 (i), J(R[S]) is graded. Thus,
S res € J(R[S]) implies that rs € J(R[S]). We only need to consider rs. It suffices
to show that rs € J(R[S]) implies that r € J(R[S]). When n is finite, S is free of
rank n then s = s]"'sy?--- s, where m; € N. Moreover, as the Jacobson radical
is invariant of automorphism of R[S], we have an automorphism ¢ : s; — s; + 1 for
i€ {1,---,n}. Then ¢(rs) =r(s1+1)™ ---(sp +1)™. As the J(R[S]) is S-graded,
for all r € J(R[S]), we have, J(R[S]) = (J(R[S]) N R)[S] as required.

Let T be a free commutative semigroup of rank k+1, with generators {t,, - , tx41}-
Let H be a free subsemigroup of T' of rank k with generators {¢;,---,¢x}. Then H
is a grouplike subsemigroup of 7. By Lemma 1.2.3, we have

J(R[T)) N R € J(R[T]) N R[H] € J(R[H]) = Ji(R)[H].
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Therefore Jy1(R) C Ji(R), as required. .

For the case that if S is free commutative semigroup of infinite rank, we can take
0 # z € J(R[S]), supp(zx) is finite set with | generator. Let S; be the free semigroup
group generated by supp(z). Then z € R[S)] and

J(R[S]) N R[S)] € J(R[S)]) = J(R)[S)] € L(R)[S] € J(R)[S]
Moreover, if S has infinite rank, 3k > [, such that Sy is a rank k free subsemigroup

which is a grouplike and S; C S. This leads to z is in Jx(R)[Sk] € Ji(R)[S]. Hence,

z€ ﬁ J(R)[S].  Thus, Jo(R) = J(R[S]) N R[S).

It remains to prove that Ji(R) is a nil ideal of R. If r € J;(R) = J(R[z]) N R
then 1+ rz is invertible in J(R[z]). However, as the inverse in power series of R[[z]],
d=1—rz+7r*c+---. Since d € R[z] C R|[[z]], there exists n such that r™ = 0. This
shows that J;(R) is a nil ideal.

Since J(R[S]) = Ju(R)[S], RIS]/J(R[S]) = (R/Jn(R))[S]. Hence (R/Jn(R))[S]
is semiprimitive and so J,,(R/J,(R)) = 0.

It is easy to see that J,(R) C N (R). By [Kar, Coro. 33.13], we have
L(R)[S] € J(R[S]) € N(R)[S],
and consequently, L(R) C J,(R) C N(R). O

3.2 Radicals of Commutative Semigroup Algebras

We first classify commutative semigroups. Let P be the set of prime numbers. Let
p € P, then S is p-separative if for any s,t € S, s = t? implies s = t. The least
separative (p-separative) congruence £ (respectively &) is defined by

¢ ={(s,t) | In: st" =", and s"t = s"+1},

(& ={(s,t) | 3n:s"" ="}, respectivily )
It can be easily seen that £ C &, and &,/¢ is the least p-separative congrunce on S/€,
p e P.

In chapter 1, we know that the commutative separative semigroup is embeddable
in a semilattice of abelian groups, say S = UuerSa, where I' is semilattice and S, is
abelian group or cancellative semigroup without idempotent. (cf. [Munl]).

In this section, we assume all semigroups S are commutative without zero element
and R is an arbitrary ring with unity unless we otherwise stated.
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3.2.1 Commutative Cancellative Semigroups

Let S be a cancellative commutative semigroup S satisfying the Ore condition. Then
S has group of fractions SS~! and denote it by the group Q(S). We define the
torsion-free rank of this semigroup is to be the torsion-free rank of the group Q(S).
Moreover, we can define the rank of semigroup. From [Oknl] chapter 23, we denote
the rank of the semigroup S by 7k(S), that is,

rk(S) = sup{n € N: S has a free commutative subsemigroup on n free generators}.

We observe that rk(S) coincides with the torsion-free rank of S when S is a commu-
tative cancellative semigroup (see [Oknl, Prop. 23.1]).

Moreover, in section 3.1, we denote J,(R) = J(R[z1,Z2,--- ,%,]) N R for the
Jacobson radical of the polynomial ring Rz, xs,- - ,Z,|. However, it is not clear to
see that J,(R)[S] C J(R[S]) for any arbitrary semigroup S.

Lemma 3.2.1 [JW1] Let R be a ring and S a commutative cancellative semigroup
with torsion-free rank n. Then J,(R)[S] C J(R][S])

Proof. First, we suppose that S is group. Clearly, S has torsion-free rank n. Hence,
there exists a free subgroup F' with rank n such that S/F is a torsion abelian group.
Let T be the free subsemigroup of F' such that F' = Q(T). It is easy to see that R[F]
is a normalizing extension of R[T]. Thus, J(R[F]) N R[T]| = J(R[T]) = Ja.(R)[T] by
Theorem 3.1.2. Therefore, J,(R) C J(R[F]).

Now, take a € J,(R)[S], a = ¥ ris;, where r € J,(R) and s € S. Take b from
R[], we have a subgroup generated by F, supp(a) and supp(b), say H. H is a finitely
generated and H/F is a finite group since H/F C S/F is a torsion abelian group.
Then, R[H] is a normalizing extension of R[F|. Therefore,

ab € J(R|F)) = J(R[H]) N R[F] C J(R[H)).
ab has a right quasi-inverse in R[H| and also in R[S]. As a result, we have J,,(R)[S] C
J(RI[S)).

When S is semigroup, it suffices to show that for 0 # a € J,(R), a belongs to
each maximal ideal of R[S]. Let M be a maximal ideal of R[S] and let T" be the
set {z € S|lz¢gM}. If T is nonempty set, then T' is a semigroup because M is also a
prime ideal. Moreover, if z € S\ T, then zy € S\ T for all y € S.

Define 7 : R[S] — R[T] by Yses7sS — Yser7ss. Clearly, 7 is a ring epimor-
phism. 7(M) is hence a maximal ideal of R[T] and 7(M)NT = 0. Also, R[Q(T)]
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is localization of R[T]. As 7w(M)R[Q(T)] is a maximal ideal of R[Q(T)], m(M) =
(M) R[Q(T)]NR[T) by the maximality of 7(M). Let rk(Q(T)) = m < rk(Q(S)) =n
and a € J,(R) C Ju(R). Then, we have a = w(a) € n(M)R[Q(T)]. This implies
that 7(a) € 7(M)R[Q(T)] N R[T] = w(M) and hence a € M. O

Lemma 3.2.2 [JW1] Let A be an ideal of the ring R and p an odd prime number.
Let A, = {r € Alpr € A} and S be a semigroup with (s,t) € §,. Then

ApS)(s —t) = {D_ ru(sv — tv)|ry € Ap}
veS
is a nilpotent ideal modulo A[S] in R[S]. In particular, I(Ap, S,&,) (defined in Chapter

1) is a sum of nilpotent ideals modulo A[S]. Furthermore, I(R,S,§) is a sum of
nilpotent ideals.

From the survey paper of Jespers and Wauters on Jacobson radical of semigroup
rings in [JW1], we obtain the main result about commutative cancellative semigroups.

Theorem 3.2.3 [JKW, JW1| Let R be a ring and S a cancellative semigroup of

torsion-free rank n. Let radical H = J,G (the Jacobson and Brown-McCoy radicals
respectively). Then

H(R[S]) = Hn(R)[S] + 3_ I(Hnp(R), 5,&)

peP

where Hpp(R) = (Hn(R)), = {r € Rlpr € Hn(R)}. In particular, H(R[S]) =
H(R(QLS]) N R[S].
If H = B, L (Prime radicals and Levitzki radicals), then
H(R[S]) = H(R)[S] + >_ I(H(R), S, &).

peP

Proof. We only prove the case for Jacobson radical as the other cases such as the
prime, Levitzki and Brown-McCoy radicals are similar.

By Lemma 3.2.1 it yields that J,(R)[S] C J(R[S]) and ¥ cp I(Jnp(R), S, &) C
J(RI[S]). It suffices to show that J(R[S]) C Jo(R)[S]+X,cp I(Jnp(R), S, &p). We may
assume that J,(R) = 0since J,(R)[S] € J(R[S]) and R[S]/J.(R)[S] = (R/J.(R))[S].

Let d € J(R[S]) and let D = (supp(d)) be a finitely generated group in Q(S).
Then D = G, x F', where G, is finite group and F" is free subgroup with rank < n
of Q(S). Add more free generators on F’ and make D < G = G; x F, where F is
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free subgroup of n free generators. Then we have d € R[S N G]. Denote SNG by H
and so Q(S)/G is torsion, we have Q(H) = G. Thus, H is a grouplike subsemigroup
of S and so
J(R[S]) N R[H] € J(R[H]).

Therefore, d € J(R[H]). Denote the subsemigroup of G generated by H U G by
H'. Then H' = Gy x H". Write H" = F N H. We then have H” is torsion-free
subsemigroup of S with rank n. Therefore, R[H'] is a normalizing extension of R[H"]
and R[H'] = (R[H"])[G}] is finite group graded ring. If we assume that J,(R) = 0,
then J(R[H"]) = 0. This leads to

d € J(R[H')) = J(R(H")[G4]) = {D_di(zi — v:) : di € R[H"], z;,y: € Gu,

ok pb
r;* =vy;* for some k >0 ,p; € P, p;d; = 0}.

Let d; = Y ;7i;h; € R[H"] with r; € R and h; € H" for all ¢,j. Then d =
> Tij(hjzi — hjy;) and (hja:i)p'l; = (hjyi)”f and p;r;; = 0 for all + and j. This
completes the proof of the first part.

For the proof of the second part, we let p be any prime p. Since (s,t) € &, is over
Q(S) iff (s,t) € &, over S, we have I(Jn,(R), S, &) = I(Jnp(R),Q(S), &) N R[S] and

J(RS) = Ju(R)S]+D_I(Jnp(R), S,&)

peP

= (S(R)QE)]+ 3 I(Jnp(R), Q(S),&)) N R[S]

peP

— J(RIQ(S)) N RIS).
O

Corollary 3.2.4 Let R be a field or a domain with J(R) = 0. If S is a commutative
cancellative semigroup, then J(R[S]) = I(R, S, &), where char(R) = p.

3.2.2 General Commutative Semigroups

After solving the problem on commuative cancellative semigroup case, we now extend
the problem to any commutative semigroups. Since I(R.S,p) is the kernel of ¢ :
R[S] — R[S/p], we have seen in [Mun2] that J(R[S])/I(R,S,&) = J(R[S/€]) if € is

the least separative congruence.

Now, we consider the separative case. Since S is a separative semigroup, S has
semilattice decomposition into commtative semigroups, say, S = UyerS,y. Define

Io = {z € J(R[S.])|(VB € T) R[Sslz C J(R[Sag])}.
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Clearly, I, is an ideal of R[S,].

Proposition 3.2.5 [OW, Lemma 4.3] Let S be a separative semigroup, So(c € T')
the archimedean compoments of S. Let R be ring. Suppose for each o € I', I,
J(R[S4]). Then J(R[S]) is I'-graded ring, i.e.

JRIS) =Y J(R

ael

Lemma 3.2.6 [Jesl, Lemma 3.7] Let R be arbitrary ring and S a separative semi-
group with semilattice T' of commutative cancellative archimedean components Sy,
S = UaerSa- If & is p-congruence on S, then the ideal

Y I(Jnp(R),8,&) = > Y I(Jnp(R), Sa, &)-

pEP a€l’ peP

Theorem 3.2.7 [OW, Lemma 4.5] If

(i). S is periodic semigroup, or;
(ii). If S is a commutative semigroup and R a ring such that J(R) = Jo(R),

then
J(R[S]) = J(R)[S] + I(R, S,€) + D I(Jop(R), S, &).

peP

Not all rings R satisfy the condition J(R) = Jw(R) even if R is commutative.
If J(R) is not nil, then J(R) # Ji(R). Hence J(R) # Jo(R) in general. We now
consider the situation that J;(R) = J(R). Note that J;(R) is a nil ideal and if R is
noetherian or if R satisfies a polynomial identity (e.g. R is commutative), then the
condition J;(R) = J(R) is often satisfied.

Krempa showed in [Krel] (1972) that this condition is related to the Koethe
conjecture, that is, if a ring R contains a one-sided nil ideal A, can A be contained
in a two-sided nil ideal of R? Krempa has shown that the Koethe conjecture is
equivalent to J;(R) = N (R), the upper nil radical of R. A stronger conjecture is : if

R is a nil ring, then the polynomial ring R[x] over R is a mil ring. If this statment
holds, then all Jo(R) = N (R).

Jespers [Jesl] (1987) has considered the case when R satisfies J;(R) = Jo(R).
The description of J(R[S]) is very complicated and this complexity depends on the
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subsemigroup of periodic elements and the order structure of the corresponding semi-
lattice. We now simplify the proof of Jespers, by using the recent results obtained by
Kelarev and Munn [Kel2, Mun7] (1991,1992).

Let S = UyerS,y be separative semigroup, where every S, is a commutative can-
cellative semigroup. Let @, be the group of fractions of cancellative semigroup Sy
with identity eq. Set Q@ = Uner@Qq which is semilattice of abelian groups, i.e. S — Q.
The identity e, is clearly central, i.e. eqep = €ap = €ga = €geq for all a, 5 € I'. It is
known that R[Q] = X aer R[Q.] is special semilattice-graded ring (see Section 2.5).

Using the results given in Section 2.5, we can state the following:

Lemma 3.2.8 [Kel2, Lemma 1] Let R be an arbitrary ring, S = UaerSq and o € T,
the semilattice decomposition. The radical J(R][S]) is the largest ideal among ideals I
of R[S] such that x, € J(R[S,]) for any z € I, p is mazimal elements in suppr(z).

Lemma 3.2.9 [Kel2| Let R and S and Q be rings and semigroups described above.
Then we have

J(R[S]) = R[S] N J(R[Q])

Proof. Let x € J(R[Q]) N R[S]. Since y is the maximal element in suppr(z). we

have z,, € J(R[Q,]). Since Q, is group of quotient of S, and S, is cancellative. so
by Theorem 2.4.1, z, € J(R[S,]). By Lemma 3.2.8, z € J(R[S]).

Conversely, if z € J(R[S]), then z = azb for a,b € (R[Q])*, where a € R[Q,]
and b € R[Q,], for some v,\ € I'. Clearly, p is maximal elements in suppr(z).
Take t € S,. We can note that zt € J(R[S]). (2t), € J(R[Q,]). Therefore z, =

(at),(zt),(bt) it~ € J(R[Q,])- The above lemma implies that the ideal generated by
z is contained in J(R[Q)]). O

Let Sp be the subsemigroup of all periodic elements of S. Let IV be the set of the
elements o € I such that S, is not periodic.

Notation 3.2.10 Let the set

J(R, Sp,T") = {x = 3" 24 € J(RISP)) | 7o € R[(Sa)p] and

a€el

z satisfies the condition (*): V6 € IV : Y zqes € Y I(J1p(R), (Sé)},,fp)},

a>6 peP

where es is the identity element of Q(Ss).
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Now, we prove the main theorem by using the terminologies and techniques de-
scribed in Chapter 2.

Lemma 3.2.11 Let R be a ring such that Ji(R) = Joo(R). Then

Ji(R)[S] + J(R, Sp,T") + 3_ I(J15(R), 5, &)

pEP

is in the Jacobson radical of R[S].

Proof. Let S = UgerSa € Uaer@Qa = @, where @, is abelian group of fractions of
Sa. R[Q] is special semilattice-graded ring. By Theorem 2.5.6, we have

J(R[Q]) = {a € R[Q] : asea € J(R[Qu])}-
Also, by Lemma 3.2.9, we have J(R[S]) = J(R[Q]) N R[S], we have

J(R[S]) = {a € R[S] : azea € J(R[Qa])}-

This means that J1(R)[S] = Saer J1(R)[Sa] and Ji(R) = J,(R) for all n > 1.
For a € T', we have the following cases:

(a.) If rk(S,) > 1, then
J(RIS.]) = H(R)[Sa) + X I(R, 50ry).
Hence, J1(R)[Sa] C J(R[S4]).

(b.) If rk(S,) = 0, then we have J;(R) C J(R) and hence J;(R) = J,(R) for n > 1.
This shows that Ji(R)[Sa] C J(R[Sa)).

For all z € J;(R)[S], we now have zszeq € J1(R)[Qo] € J(R[Q4]). This proves that
J(R)[S] € J(R[S]).

Lemma 3.2.6 yields T = ¥ cp I(J1p(R), S, &) = Xaer Xper L (J1p(R), Sa, &p) and
for each a € T, Y ep I[(J1p(R), Say&p) € J(R[Ss]). For z € T, we have zse, =
Si>a Ti€o and Tie, lie in Ypep I(J1p(R), Qa, &) € J(R[Q4]). Hence, T C J(R[S)).

Now consider z € J(R, Sp,I'"). Then z € J(R[Sp|) and z satisfies the conditions

(). If agl”, for all o, then e, is in S, € S. As S, is an abelian periodic group, S,
is subgroup of Sp. Hence we have

Taea = (D_ zi)ea € J(R[SP]) N R[Sa] € J(R[Sa]) = J(R[Qa]) N R[Sa)-

t>a
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Moreover, by the definition of J(R, Sp,I"), we have z € J(R, Sp,I") for § € I,
zzes € 3 I(J1p(R), (Ss)b: &) € I(J1p(R), Qs, &) N R[(S5)p)-

peP

Since Qs is not a periodic group, its torsion-free rank > 1, we have, by Theorem
3.2.3,

J(R[Qs]) = J1(R)[Qs] + >_I(J1p(R), Qs, &)-

peP

Hence zze5 € J(R[Qs]) N R[S}]. This proves that J(R, Sp,I") C J(R[S]).

From the above containment, we have

Ji(R)[S] + D I(J1p(R), S, &) + J(R, Sp,T") C J(R[S]).

peP

It remains to prove that the left hand side is an ideal of R[S]. Assume that
Ji(R) = 0. Let J'= J + K, where J = J(R, Sp,I") and K = ¥ ,cp 1(0,, 5,&,). We
want to prove that J' is an ideal of R[S]. It suffices to show that for any s € S
and a € J, as € J'. As as € J(R[S]) for all a € J. By Lemma 3.2.11, we have
(as)zes € J(R[Qs)) for all 6 € T

If s € S, for v¢I", then s is a periodic element. Hence, as € J(R[Sp]). By above,
we have for § € I, (as)zes € J(R[Ss]) and as € J C J".

Ifse S, forye”anda € J, then a = Y45, o + az, where suppr(az) N {aja >
v} = 0. Hence, as = (ase4)s + ass. This leads to ays € ¥ pep I(0p, 53, &,)s € J'. By
induction hypothesis on |suppr(a)|, we have as € J' (cf. [Jesl, Lemma 3.9]). O

We now modify the proof of Jespers [Jesl].

Theorem 3.2.12 Let R be a ring such that J1(R) = Jo(R) and let S be a separative
semigroup. Then

J(R[S]) = i(R)[S]+ Y I(J1p(R), 5,&) + J(R, Sp,T")

peP

Proof. Take z € J(R[S]) but 2&(J1(R)[S] + Xpep I(J1p(R), S, &) + J(R, Sp, IY)).
We may assume that J1(R) = 0. Let J', J, K defined in Lemma 3.2.11. Select z with
a minimun |suppr(z)|. Then , by Theorem 2.4.1, we have z, € J(R[S,]), where u is
maximal element in suppr(z). We divide the proof into the following two cases.

(i). If u € IV and S, is not periodic group, then by Theorem 3.2.3 we have
.’E# = J(R[Su]) = JH(R)[SM] + Z I(JH,P(R)) Sp.> ép)

pEP
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with torsion free rank n > 1. Since Jo(R) = J1(R) =0,

Ty € ) 1(05,5,,&) € K € J' C J(R[S]).
peP
Obviously, |suppr(z — z,)| < |suppr(z)| and z — z, € J(R[S]). By the mini-
mality of z, we have z —z, € J'. However, since z, € J', we have z € J'. This
contradicts to the choice of z.

(ii). If ugl” and S, is periodic abelian group. Then, since 4 is maximal, we have
z, € J(R[S,]) = J(R[Sp]) N R[S,

and z,es € R[Qus) for all § € T'. Now take § € I'. If p > 6, then for all £ € S,
we have tes € Ss. Thus

(zu)ses = Tues € J(R[Qs]) N R[(Ss)p]-

Thus, we have shown that z, € J C J' C J(R[S]), by the minimality of z.
Hence, we obtain z — z, € J' and so z € J'. However, this contradicts the choice of
x. Therefore,

J(R[S])) = Ji(R)[S] + >_I(J1(R), S, &) + J(R, Sp,I")

p€eP

The above theorem leads to some corollaries :

Corollary 3.2.13 [Jesl, Coro. 3.11] Let R be a ring such that J,(R) = Jx(R) for
allm € N and let S be a semigroup. Then

81+ S I(1ip(R), 5,6,) C J(RIS))

peP

C I(R, S, &) + Lh(R)[S]+ Y. I(J15(R), S, &) + J(R)[SP) + Y. I(Jop(R), Sp, &)

peP peP
Moreover, if R is a Noetherian ring or satisfies a polynomial identity, then the nilness

of J(R) implies the nilness of J(R[S]). The converse statment is also true when S is
periodic.

Corollary 3.2.14 [Jesl, Coro. 3.13] Let S be torsion-free semigroup and denote
E(S) be set of idempotents. If R is a ring such that J,(R) = Jo(R), then

J(R[S]) = JW(R)[S] +{D_ tata € J(R)ES)] | VS €T, > an =0}

acl’ a>é
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Corollary 3.2.15 [Jesl, Coro. 3.14] Let S be semigroup such that each archimedean
componet of S/€ has torsion-free rank at least one. If R a ring such that Ji(R) =
Joo(R), then

J(R[S]) = W(R)[S] + I(R,S,6) + >_I1(J15(R), S, &)-

peP

3.2.3 The Nilness and Semiprimitivity of Commutative Semi-
group Algebras

If R is a commutative ring with unity, then J;(R) = Jo(R) is always true. Now we
make use of the description of Jacobson radical for algebras of commutative semigroup
in Theorem 3.2.3 and Theorem 3.2.12 to determine the semiprimitvity of commutative
semigroup rings.

Lemma 3.2.16 Let S be a commutative semigroup and F' a field with characteristic
p (zero or prime). If B(F[S]) = 0 then S is p-separative.

Proof. Suppose p # 0, B(F[S]) = 0 and z,y € S such that 2”7 = y?. Then, in F[S],
(x —y)? = 0. As there is no nilpotent elements, z = y. On the other hand, let p =0
and z,y € S. If 22 = zy = 32, then (z — y)? = 0. This leads to = y. Therefore S
must be separative. O

Theorem 3.2.17 [Munl] Let S be a commutative semigroup and K a field. Then

J(K[S]) = B(K|[S]) = I(K, S, p)

{the least separative congruence on S if K has characteristic 0
p =t

the least p-separative congruence on S if K has prime characteristic p

Proof. This is a direct consequence of Corollary 3.2.7. O
Lemma 3.2.18 [Mun2| Let R be a commutative ring with unity and S a commautative
semigroup. Let Spec(R) be the set of all prime ideals of R. If P € Spec(R), let

S { €(S) if char(R/P)=0.
P71 &(S) if char(R/P) = p.
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and ¢p : R[S| — (R/P)(S/7p) be the natural morphism. Then

BRIS)= () kerér

PeSpec(R)

Corollary 3.2.19 Let R be an integral domain and T a cancellative commutative

semigroup without idempotent. If T is p-separative, and if char(R) = p € P. Then
J(R|TT) =0.

Corollary 3.2.20 Let R be arbitrary commutative ring and S a commutative semi-
group. Let F = R/B(R), T = S/¢. Then the radical J(R[S]) is nil iff J(F[T]) is
nil.

Proof. The proof follows from R[S]/I(R,S,€) = R[T], R[T)/B(R)[T] = F[T]. O

From [Kel2], we obtain another approach to describe the Jacobson radical of

semigroup ring and we can determine the nilness of J(R[S]) without using the fact
J(R) = J1(R).

Notation 3.2.21 Let S be a separative semigroup such that S = UyerSa € UperQa =
Q. Let p € T and A be finite (or empty) subset of .

Denote the product z [Txea(e, — ex) by (u,z, A). If A =0, then (u,z,A) = .
We call (1, z,\) the simplest element if ze, € J(R[Q.]) for any o € uI' \ AT

We now provide another proof of [Kel2, Th. 1].

Theorem 3.2.22 Let S be a separative semigroup and x € R[S]. Then for any
mazimal element p in suppr(z) and the set of mazimal elements A in the finite set

p(suppr(z)) \ {1} and Yy = (p,zu A),
we have
(i). z € J(RI[S]) iff both y,x —y € J(R[Q]);

(ii). y € J(R[Q)) iff y is the simplest element of R[Q)].

Proof. (i) Let z € J(R[S]) C J(R[Q]) and R[Q] = Y ,er R[Qa) where Q, is the
group of fractions of S, and S = U,erS, is a semilattice decomposition of S. Then,
we can regard R[Q] as a special semilattice-graded ring. Let A = suppr(z). Then,
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by Theorem 2.5.12, we have z € JA(R[Q]) = Ygea M(A,B)p(A,3). By Theorem
2.5.10, we also know that zze, € M(A,p). If p is maximal in suppr(z), T = 2y,
then z,e, = z, € M(A,p). It suffices to show that y = z.p(A, 1) = (1, zu, A).
We can check that, by the definition of A, [Tyea(en — ex) = p(A, p) because all
AMNeEAS p=4 A\ Thus y = (u,z,,A) € J(R[Q]). The converse of (i) is clear.

(i) If y = (u,x,, A) is the simplest element of R[Q)], then we can observe that
suppr(z) C ul'. Since a € uI'\ AT, y4 = z, and so we have

Yala = Tpla € J(R[Qa])

As 3 € AT, we have yzes = 0. Thus by Theorem 2.5.6, we have y € J(R[Q)).

Conversely, let y € J(R[Q]), so that y = (u,z,,A). For a € ul' \ AT, « is
a maximal element of ye,. By Theorem 2.4.1, ze, = (Ye€a)a € J(R[Qs]). Thus
(Yea)a = Teq € J(R[Qq)). If @ € AT, then o < . This implies that

Yey = m“(H (ey — ea)en) = zu(ea — €a) = 0.
aEA

Hence, vy is the simplest element of R[Q)]. O

We now follow [Kel2] by using matrix approach, to represent the commutative
semigroups. By applying these results, we study the structure of the Jacobson radical
of R[S], where J(R) # B(R) in R.

Let T = S/& where € is the least congruence on the semigroup 7. Let G be a
finite subgroup of a semigroup 7', e the identity of G. Take a finite set of idemopents
E of T. Let I be an ideal generated by F but not containing G. Write down all the
subgroups Hi, Hy, - -+ , H, of G such that H; = {h € G|ht; = et;} for a non-periodic
element t; € GT' \ I. Let G = {g1, - , gm}- The matrix of the conjugacy relation of
G by H; is the (m x m)-matrix D; = [d;;] such that

g — 1 when g; € Higy
k=) 0 otherwise

Write D;(G) = [Dy] -+ |Dy)
If n = 0 such that there is not any non-periodic element in GT'\ I, then D;(G) = [0].

Definition 3.2.23 For a ring R, we let w(R) be the set of all q such q is prime or
zero and J(R)/B(R) has a nonzero element with an additive period q. We say that
G is g-complete in T, if g dwides |G| or q does not divide the determinant of an
(m x m)-submatriz of Di(G) for any ideal I.
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Theorem 3.2.24 [Kel2, Th. 1] (1992) Let R[S] be a commutative semigroup ring,
£ the least separative congruence on S, and T = S/€. Then the Jacobson radical
J(R[S]) is nil iff for any q € 7(R) every finite subgroup G of T is q-complete in T'.

The proof of this theorem is rather complicated and we need to use Theorem
3.2.22 to check the matrix representation of subgroup of S. The reader is referred to
[Kel2| for details. The proof is omitted here.

Corollary 3.2.25 [Mun2] If S contains no idempotent elements, then J(R[S]) is nil.

3.3 Radicals of Cancellative Semigroup Algebras

After the properties concerning radicals of algebras in commutative semigroups are
investigated, we want to use the similar methods to describe the radicals in algebras
of non-commutative semigroups. However, it is not easy to describe the Jacobson
radicals in group algebras. Our aim here and section 3.4 is:

(a) to describe the radicals (mainly Jacobson radicals and prime radicals ) of some
particular types of semigroups;

(b) to find the necessary and sufficent conditions for semiprimitive of algebras of
non-commutative semigroups.

We first examine cancellative semigroups. Since some cancellative semigroups
may be embedded in some groups. Hence, studying the relationship between groups
and cancellative semigroups and also their related algebras are essential. To simplify
our works, we only give characterizations for the algebras over the field K with
char(K) =0 or p.

3.3.1 Group of Fractions of Cancellative Semigroups

A cancellative semigroup S is called a group of right fractions iff S satisfies the right
Ore conditions: For every s,t € S, such that sS NS # 0.

Definition 3.3.1 For arbitrary semigroup S, we consider the relation p; € S* x S*
on S defined by

(s,t) € pu if for every x € S* szSNtxS # 0.
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where s,t € S'. The relation is clearly a congruence on S and p, is called the left
reversive congruence. Let p, be the left-right dual congruence to p; and let T = p N py.
Of course, p,, p1, T are all congruences on semigroup S.

Assume S is cancellative semigroup with no noncommutative free subsemigroups.
Then S has a two-sided group of fractions. If S is a right Ore set, then S has a group
of right fractions. However, if S is just a subsemigroup of group G, we cannot say
that S has group of one-sided fractions. We can find an example in [Oknl, Example
10.13] to show that S can be embedded into a group G but cannot have a group of
fractions.

First, we consider the cancellative semigroups which are embedded into some
groups. The main reference of these cancellative semigroups can be referred to [Oknl,
Ch. 7, 9]. We list some useful results:

Lemma 3.3.2 [Oknl, Lemma 7.5] Let S be a subsemigroup of a group G. If H is
subgroup of G and Vx € G, In € N such that 2" € H, then the followings hold:

(i). If G is group of right fractions of S, i.e. G = SS~!, then H = (HNS)(HNS)™.
(ii). If SN H has a group of right fractions, then S has a group of right fractions
and SS~' = S(SNH)™L

Definition 3.3.3 Let T be a subsemigroup of S. Then T has finite index in S if
there exists a finite subset F' of S such that for every s € S, there ewists f € F with
sfeT.

Proposition 3.3.4 [Oknl, Coro. 7.10]

(i). Let H be a subgroup of finite index in a group G. If G is generated by semigroup
S, then SN H 1is a subsemigroup of finite index in S

(ii). Assume that T is a subsemigroup of finite index in S, and let H be a group of
right fractions of T. Then S has a group of right fractions G O H such that
[G: H] < .

Proposition 3.3.5 [Oknl, Prop. 7.12] If S is cancellative semigroup such that either
one of the followings holds:

(). S has a.c.c. on right ideals,
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(id).

K[S] has a finite right Goldie dimension for any field K,

then S has a group of right fractions.

Summarize the above results in [Oknl, Ch. 7 and Ch. 9], we state following
results which are useful for our further discussion.

Lemma 3.3.6 [Oknl| Let G be the group of right fractions of S. Then

(i)
(ii).

. If Z is a right Ore subset of K[S], VYay,--- ,a, € K[S|Z7', then there exists

For every right (left) ideal T of S, G is right fractions of T.

Vs € S, G is group of fractions of sS's.

t € Z such that a;t € K[S].

. For every right ideal I of K[S]Z7Y, we have (I N K[S)K[S]Z™! = 1.

. If Z is right Ore subset of a semigroup S, then Z is also right Ore subset of

KI[S] and K[S]Z~! = K[SZ7Y).

. For any right ideals I C I, of K[G], we have I, N K[S] C I, N K[S].

. If P is prime ideal of K[G] and K[G]/P is Goldie ring, then PNK|[S] is prime

ideal of K[S].

. If all prime homomorphic images of K[G| are Goldie rings, then B(K[S]) =

B(K[G]) N K[9].

. If S subsemigroup of group G, and S generates a group G, then we have S a

very large subset of G. (cf. Chapter 1, Lemma 1.3.10)

We now examine the conditions for K[S] being prime or semiprime.

Theorem 3.3.7 [Oknl] G is group generated by S. Then,

(i).

If K[G)] is prime (semiprime), then K[S] is prime (semiprime, respectively).

(ii). Assume that G is group of right fractions of S. Then The following conditions

are equivalent.

(a) K[S] is prime (semiprime).
(b) KI[G] is prime (semiprime).
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() G has no nontrival finite normal subgroups (char(K)=0, or char(K)=p >
0, G has no finite normal subgroups of order divided by p).

From now on, we consider the subsemigroup which generates a group. Now, we
consider all type of cancellative semigroup and make use of the congruences defined
in Definition 3.3.1. We then obtain following results.

Definition 3.3.8 Let = be a nonzero element in K[S] such that x = A1s1 + Ag82 +
oot MSn. If x = 31 4+ - - + T, where supps(x;) lies in different p;-classes of S, then
we call S p;-separated iff supps(x;)S N supps(z;)S =0 fori # j.

Lemma 3.3.9 [Okn3] Assume that azc = 0 for some 0 # a,c € K[S] and all
z € S'. We can choose y € S* such that if ay,cy are p;-separate. Also, we can
also choose u € S' when ua,uc are p,-separated. Let uay = ey + ez + --- + e, and
ucy = dy + dy + - - - + dy, then e;zd; = 0 for every i,j and allx € S*.

Proof. First, consider a = \;s; + AgSa + -+ - + Apsp. If (51, 52)&pi, then there exists
Z1o such that s12125 N 592125 = 0. Then let ay = az2 = Aty + - -+ + A\pt, Where
t; = s;x1 such that ;S Nt,S = (. Repeating the process in finite steps, we have
a' = ay for some y € S such that a’ = a; + -+ + a;,, where supp(a;), supp(a;) are in
different p;-classes and

supp(a;)S N supp(a;)S = 0.

Moreover, after separate a, we turn to separate cy, then there exists ¢’ € S* such that
we have b = af and d = c¢f, where let f = yy’ and b,d are p-separated and bxd = 0
for all z € S. Similarly, on the right reversive congruence, ua, uc are p,-separated for
some u € S*. Let uaf =e; +---+ ¢, and ucf = dy + - -- + di and by 7-separative,
we have €;S Ne;S = 0 for any 7,j. Then ex = 0 implies e;xz = e;z = 0. By left-right
symmetry, the condition for all 4, j, e;zd; = 0 follows. O

Lemma 3.3.10 [Okn3, Lemma 3] Assume that T is a cancellative semigroup gener-
ated by a subset F' such that F' lies in a single p-class in T'. Then T has a group H
of right fractions.

Theorem 3.3.11 [Okn3| Let S be a cancellative semigroup. Then

(i). K[S/7] is prime. In particular, we have B(K|[S]) C I(K, S, ).

(i1). K[S/pi] is prime.
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(iii). If char(K) =0, then K[S] is semiprime.

Proof. (i) We can assume 7 is trival. Suppose that K[S] is not prime. Then there
exist nonzero a,c € K[S] then aS'c = 0. For azc = 0, then by Lemma 3.3.9, there
are u,y € S such that uay = e; +- - + e, and ucy = dy + - - - + d,, where supp(e;) is
in single 7-class and also supp(d;) does. Since 7 is trival, then e;,d; € S, hence e;zd,;
leads to contradiction. Hence K[S] is prime.

Since I(K,S,7) is the kernel of K[S] — K[S/7], B(K[S]) C I(K, S, 7).
(ii) Since in S/pi, Ts/p, is trival. Thus the assertion follows from (i).

(iii) Now, if char(K) = 0 and suppose B(K[S]) # 0, then there exists a € K[S]
such that aS'a = 0. Choose the minimal integer n such that the following condition
is satisfied:

There exists a cancellative semigroup U and an element 0 # b € K[U]| such that
bUb = 0 and |supp(b)| = n.

Let T = (supp(b)) and suppose that supp(b) lies in a single 7p-class of T". Then
T has a group of right fractions H. We have B(K[H]) = 0 since char(K) = 0.

By Theorem 3.3.7, we have B(K[T]) = 0. Since bK[T)b = 0, b € B(K[T]). This
contradiction completes the proof. O

We now establish the A-method of semigroup algebras by extending the method
of group algebras for studying the structure of cancellative semigroups.

For some z € S, 3t € S such that xs = tz, and S is cancellative, ¢ is uniquely
determined and denoted it by s*. First, we define Dg(s) = {s®| z € S}. Then, let

A(S)={se€ S : |Dg(s)| < oo}

It is known that if S is a group, then A(S) coincides with the FC-center of S (see
Passman [Pasl, Ch. 4]). The general properties of A(S) can be found in [Oknl, Ch.
9.

We can see that A(S) is a right and a left Ore subset in S. Furthermore, we have
A(S)™1S = SA(S)™! and A(S)'A(S) = A(S)A(S)!, the latter being a group.

Define S = A(S)~1S and A = A(SA(S)™1), we have the following result:

Proposition 3.3.12 [Oknl, Prop. 9.8] Let S be a cancellative semigroup with A(S) #
(. Then

(i). S is a cancallative semigroup.

92



(ii). Dg(s) = Ds(s) for all s € A(S).
(ii). A(S)A(S)™! is an FC-group, Z(S) # 0, and A(S)A(S)™! = A(S)Z(S)™! C A.
(iv). §=52(S)".

(v). A

is an FC-group.

We have already obtain a characterization for the primeness of group algebra.
(see Theorem 1.3.11). For semigroup algebras case, we have a similar theorem.

Theorem 3.3.13 [Oknl] Let S be a cancellative semigroup and A(S) # 0. Let K
be any field. For the following conditions:

). K|[S] is prime (semiprime).
(ii). K[S] is prime (semiprime).
). Z(K[S]) is prime (semiprime).
). K[A] is prime (semiprime).
). K[SNA] is prime (semiprime).
(vi). K[A(S)] is prime (semiprime).
)

. Z(K|S)]) is prime (semiprime).

We have (i) < (i) = (iii) & (iv) & (v) & (vi) & (vil). In addition, if S is group,
then all the above conditions are equivalent.

Corollary 3.3.14 [Oknl] The following conditions are equivalent on S:

(i). A(S)#0 and A=S.
(ii). S is a subsemigroup of an FC-group.

(iii). Z(S) # 0, and SZ(S)™! is an FC-group.

Moreover, Z(K|[S]) = Z(K[A(S)]).

Corollary 3.3.15 Let S be a subsemigroup of an FC-group. Then K|[S] is prime iff
S is a commutative torsion-free semigroup.
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The semigroup A(S) contributes a nice property that it is left and right Ore
subset in S. The primeness of K[A], K[S N A] and K[A] are equivalent to the fact
that A, SN A, A are commutative torsion-free semigroup (by previous discussion).
Similarly, the semiprimeness of any of these algebras is equivalent to the fact that the
group A has no p-torsion, where p is char(K). In particular, if char(K) = 0, then
K|[A] is always semiprime.

However, it is rather difficult to describe the Jacobson radical or to determine
whether K[S] is semiprimitive or not, even in the case of group algebras. In the next
sections, we will consider the semigroup S which can be embedded into u.p. groups,
nilpotent groups and polycyclic-by-finite groups.

3.3.2 Jacobson Radical of Cancellative Semigroup Algebras

Recently Okninski [Okn4] (1994) obtain some results on Jacobson radical of can-
cellative semigroup algebras. The following results are taken from his papers.

We use the notations given in Definition 3.3.1.

Lemma 3.3.16 [Okn4, Lemma 1| For every t € S the set
S, = {s € S|(t"s,t") € p for some positive integers r,n > 1}
is a left group-like subsemigroup of S. Also, J(K[S]) N K[S;] C J(K[S]).
For the natural homomorphism ¢ : S — S/p;, we let
U ={s € S|(sz,1) € p, for some z € S}

Then we can see that U = ¢~!(H), where H is group of units of S/p,. Clearly, S = U
iff S is left reversive.

Lemma 3.3.17 [Okn4, Lemma 2] Let V' be the set of p;-separated elements of K[S]
and W =V NJ(K[S\U]). Then

(i). V is a subsemigroup of the multiplicative semigroup of K[S], in particular
VS, SV € V;

(ii). If b € W, then the p,-components of b generate a finite power nilpotent semi-
group, in particular, W 1is a nil semigroup,
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Lemma 3.3.18 [Okn4, Lemma 3] Let t € S\ U. Assume that a +b—ab =0 for
some a € J(K[S;]) and b is a quasi-inverse of a. Then'b € K[A] for the subsemigroup
A generated in S by supps(a). Consequently, J(K[P]) N K[T) C J(KI[T]) for any
subsemigroups T', P of S;.

From the above lemmas, we obtain the main theorem of this section.

Theorem 3.3.19 [Oknd] Let S be a cancellative semigroup which may not contain
1 and not left reversive. Assume that 0 # c € J(K[S]). Then there exists s € S such
that

(i). S'csS* C W\ {0}, where W =V N J(K[S\U]).

(ii). If ¢ is pi-component of cs and t € supp(cis), then ¢; € J(K[S)]) and S'c, S
consists of nilpotent elements.

(iii). There exists a left reversive subsemigroup T of S and an elements u € S such

that the natural K -linear projection f of csu onto K[T] is a nonzero element
of J(K|T)) for which T* fT" consisits of nilpotent elements.

Proof. (i) Since S is not left reversive, S # U. By Lemma 3.3.9, there exists z € S
such that cz € V. Then czq € W for any ¢ € S\ U. Choose ¢ and s = zq and hence
(i) follows.

(ii) Let cs = ¢y +- - - ¢, be p-components decomposition of cs. Now t € supps(c1),
and take y € supps(c;). For every z € S;, yz&S; (otherwise, there exists y € S; and
that yS NtS # 0 contradicting cs is p-separable).

Let m : K[S] — K[S;] be a natural K-linear projection. Let a € K[S;] and cs € W
where W is nil semigroup of K[S] by Lemma 3.3.17 (ii). Since csa € J(K([S]), there
exists d € K[S] such that csa +d = csad. Then 7(csa) = 7(c1a) = cia € K|Sy
and m(csad) = w(ciad). Since Sy is left group-like subsemigroup of .S, from [Oknl,
Lemma 4.14], it follows that 7(ciad) = ciam(d). Thus

cia + m(d) = m(csa + d) = w(csad) = cian(d).

This shows that cia is a quasi-invertible in K[S], so ¢; € J(K[S;]). For every
z,y € S, zcyy is a p-component of zcsy. Hence (ii) follows.

(iii) First, we find a subsemigroup @ of S; where t is selected above. The projection
of csu for some u € S is a nonzero element. If f is a projection of csu, then f &
J(K[Q]) and so Q' fQ" only consists of nilpotent elements. From (ii), such that Q
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exists. Select n be the minimal integer such that |[supp(f)] =n. Let T C Q C 5
be the semigroup generated by supp(f). Since t € S\ U and by Lemma 3.3.18,
J(K[Q]) N K[T] € J(K[T]). Then f € J(K[T]). Suppose T is not left reversive.
Then supp(f) does not lie in a single pr-class of 7. Repeat (i), fw is pr-separated,
S0 fw = fi+- -+ fn, m > 2 with supp(f;)T Nsupp(f;)T = 0 for i # j. Then T* f,T"
consists of nilpotent elements and f; € J(K[T]) for some supp(fi). Since the choice
of f is minimal, |supp(fi)| = |supp(f)|. This implies that m = 1, which contradicts
to the assumption on T'. Hence T is a left reversive semigroup. O

Corollary 3.3.20 [Okn4] If J(K[S]) # 0 for a cancellative semigroup S, then there
exists a (left and right) reversive subsemigroup P of S such that J(K[P]) # 0.

A semigroup S is said to be u.p. (unique product) semigroup if for any nonempty
finite subsets X,Y of S with |X|+ |Y| > 2 (omit the case of which X,Y are both
singletons), there exists in the set XY = {zy| z € X,y € Y} that has an unique
presention in the form zy, where z € X,y € Y. S is called t.u.p. (two unquie product)

semigroup if there exists at least two elements which have unique presentations in
XY.

Note that the unique product semigroup is an extension of the unique product
group. The u.p. group algebras are studies in [Pasl, Ch. 13]. We now refer to
[Okn1, Ch. 10] in getting the general results on algebras of u.p. semigroups. If S
is u.p. semigroup, then B(K[S]) and L(K[S]) are always zero. However, we don’t
know about the Jacobson radical.

We now give some the properties of u.p. semigroups.

Theorem 3.3.21 [Oknl, Th. 10.4] Let S be a u.p. semigroup. Then K[S] is a

domain (for any field). If S is t.u p. semigroup and K[S] is an algebra with unity,
then S is a monoid and K[S] has trival units.

Corollary 3.3.22 [Oknl, Coro. 10.5] If S is t.u.p. semigroup, then J(K|[S]) = 0.

Theorem 3.3.23 [Oknl, Th. 10.6] If semigroup S has a group of right fractions G,
then the u.p. property and t.u.p. property coincide.

Corollary 3.3.24 [Kar, Coro. 31.3] Every submonoid of a w.p. group is a t.u.p.
monotd.

Theorem 3.3.25 [Okn4] (1994) Let S be a u.p. semigroup. Then J(K[S]) = 0.
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Proof. If S is left reversive semigroup, then S has a right group of fractions and
Corollary 3.3.22 yields S is also t.u.p. semigroup. Then J(K[S]) = 0. If S is
not a left reversive semigroup an J(K[S]) # 0, then by the above Corollary 3.3.20,
there exists a reversive subsemigroup P such that J(K[P]) # 0. However, as P is
a reversive semigroup which has a group of right fractions, by Theorem 3.3.23, P
is t.u.p. semigroup. This implies that J(K[P]) = 0, contradicts the assumption of
J(K|[S]) # 0. Therefore, J(K[S]) = 0. O

Note that the above theorem solves the Problem 23 listed in the monograph of
Okninski [Oknl].

3.3.3 Subsemigroups of Polycyclic-by-Finite Groups

The general properties of polycyclic-by-finite group has been stated in chapter 1.
Now, we consider the subsemigroups of polycyclic-by-finite groups. The group alge-
bras of polycyclic-by-finite group is an important tool for studying the noetherian
algebras. If S is a cancellative semigroup which can be embedded into a polycyclic-
by-finite group G, then the question is : what is the relationship between K[G] and
K[S]?

Consider the subsemigroups of groups with finite index normal subgroups.

Lemma 3.3.26 Suppose G is generated by its subsemigroup S and G has a normal
subgroup N. Then K[S] N gK[N] is a K[S N N]-module and K[S] = Y gcc/n K[S] N
gK|[N] for some g or say, K[S] has nondegenerate G /N-grading. Suppose G/N is
finite group. If J(K[S N NJ]) =0, then J(K[S])I¢/Nl =0, and J(K[S]) = 0 if |G/N|
is unit in K.

Proof. We can easily see that K[S] N K[N] is a right K[S N N]-module. Now,
let K[S](3) = K[S] N gK[N] where g € G/N and K[S] = ¥ K[S](g). Since S
generates G, then there exists 0 # s, € SN Ng~! such that s,(S N Ng) C SNN.
Therefore, the G/N-grading is non-degenerate. By Theorem 2.2.3, as G/N-graded
algebra, J(K[S))I¢/N C J,.(K[S]) € J(K[SNN])- K[S]. Thus, if J(K[SNN]) =0,
then we have J(K[S])!/¢/N = 0. If |G/N| is unit in K, then J(K[S]) = 0. Thus, the
semiprimitivity of K[S] depends on the structure of group embedded. O

Lemma 3.3.27 [Oknl] Let H be a normal subgroup of a group G and S a submonoid
of G that generates G as a group. Then the following statements hold:
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(i). If K[S] is right noetherian, then every g € G, K[S] N gK[H] is a noetherian
right K[S N H]-module.

(ii). K[S] is right noetherian iff K[S N H] is right noetherian, and then K[S] is a
noetherian right K[S N H]-module.

As we know, every polycyclic-by-finite group has characteristic subgroup which

is finite index and poly-(infinite cyclic), (see Section 1.3). Then we have following
results.

Theorem 3.3.28 Let S be a submonoid of a polycyclic-by-finite group. Assume that
W is a poly-(inifinite cyclic) normal subgroup of finite index in the group H generated
by S. Then, J(K[S]) is nilpotent, and J(K[S]) =0 if |H/W] # 0 in K or if H has
no normal finite p-subgroup of order divisible by p if char(K) = p > 0.

Proof. From [Pasl, Lemma 13.1.6, 13.1.7], W is a u.p. group and so SNW is a u.p.
semigroup. Therefore, J(K[S N W]) = 0 by Theorem 3.3.25. Since [H : W] < oo,
then by Theorem 3.3.26, J(K|[S]) is nilpotent and J(K[S]) = 0 if |H/W| # 0 in K.
If char(K) = p and H has no normal p-subgroups of order divisible by p, then by
Theorem 1.3.12 (cf. [Pasl, Theorem 4.2.10, 4.2.13]), K[H] is semiprime. Theorem
3.3.7 yields that K[S] is semiprime. Since J(K[S]) is nilpotent, the property B
coincides with J. Hence, J(K[S]) = 0. O

Theorem 3.3.29 [Oknl] Let G be a group such that every finitely generated subgroup

of G is polycyclic-by-finite, for example, let G be locally free or locally finite. Assume
that S is a subsemigroup of G that has no free noncommutative subsemigroups. Then

J(K[S]) = L(K[S]) = J(K[H]) N K[S],

where H is subgroup generated by S. In particular, J(K[S]) = 0 if char(K) = 0 or
char(K) =p > 0 and H has no p-torsion elements.

Proof. S has no free noncommutative subsemigroups, then S has a group of right
fractions. Take a € J(K|[S]), let F' be a group generated by supp(a) is polycyclic-by-
finite. Since SNF is group-like subsemigroup in S, J(K[S])NK[SNF] C J(K[SNF)).
Furthermore, F' is group of fractions of SN F and F' is polycyclic-by-finite, F' has a
normal poly-(infinite cyclic) subgroup W with finite index. By Theorem 3.3.28, we
have J(K[SNF)]) = J(K[F])NK[SNF] which is nilpotent. Hence, J(K[S9]) is locally
nilpotent, i.e. J(K[S]) = L(K[S]).
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Let H be group generated by S. We have J(K[H]) N K[S] C J(K[S]) if we
treat S N H as group-like subsemigroup in H. We obtain that J(K[H]) is a nil ideal
of K[H]. Now, retake a € J(K|S]), b € K[H]. Then ab € K[F'] for a finitely
generated subgroup F' of H. This shows that ab € J(K[H]) N K[F'] C J(K[F"]),
As ab € J(K[F']) and then ab is a nilpotent element for any arbitrary b. Thus, a is
quasi-inverse in J(K[H]). This proves that J(K[S]) C J(K[H]). Thus, we conclude

that J(K[S]) = 0 if char(K) = 0 or if char(K) = p and H has no p-torsion elements.
O

3.3.4 Nilpotent Semigroups

The nilpotency of semigroup will be defined by the followings relations : For any
s,t,e S
Let zo(s,t) = s; Tnyi(85E) = 2n (8, ) WniiYnls: 1)
Let yO(S’ t) =t yn+1(3a t) = yn(sa t)wn+1$n(31 t)
Let X5 =Ya if 2a(s,1) = yn(s, t)
for any wy,wy -+ € St

The semigroup is then called nilpotent of class n if S satisfies that identity X, = Y,
for any z,y € S, where n is the least positive integer with this property. If w; are taken
in S only, then S is called weakly nilpotent of class n. However, if S is cancellative,
the two constructions coincide. Thus, from [Oknl, Th. 7.3], we know that S is
cancellative weakly nilpotent of class n iff S is subsemigroup of nilpotent group of
nilpotency class n.

We give here some examples of nilpotent semigroups:
(i). A subsemigroup of a nilpotent group.

(ii). A power nilpotent semigroup, i.e. a semigroup S with zero 6 such that S™ = @
for some m > 1.

(iii). An inverse semigroup S of matrix type over a nilpotent group G. i.e. an inverse
completely 0-simple semigroup:

S = M°(G, A, A, A)

where A is A X A identity matrix.
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(iv). A completely O-simple semigroup S is nilpotent iff the maximal subgroup G is
nilpotent and S is an inverse semigroup. That is the case of (iii).

In order to get some general properties of cancellative weakly nilpotent semi-
groups, the reader is referred ot Okninski [Oknl, Ch. 7].

Theorem 3.3.30 [Oknl, Th. 7.11] Let S be cancellative semigroup. Then S has a

weakly nilpotent subsemigroup T of finite index iff S has a group of fractions that is
nilpotent-by-finite.

Sometimes, we call a cancellative semigroup S almost nilpotent if S has a
group of fractions that is nilpotent-by-finite. We consider here the radical properties
of nilpotent group algebra. '

Lemma 3.3.31 [JO1, Pasl] Let G be nilpotent group. If char(K) = p > 0, then
J(K[G)) = B(K[G]) and J(K|[G]) is the K-subspace spanned by the elements s — t,
where s** = t*° for some k > 0. If char(K) = 0, then J(K[G]) = 0.

Proof. If G is nilpotent group, then from [Pasl, Lemma 8.4.16], it follows that
B(K[G]) = w(K[G,]) - K[G]

where G, is the unique locally finite normal p-subgroup of G and G, is minimal
respect to Q,(A(G/G,)) = (e). For G is nilpotent, then G, is maximal normal
p-subgroup of G (see [Rob, (5.2.7)]).

Assume that G is finitely generated nilpotent group. Then G is a finitely generated
solvable group and from [Pas3, Theorem 4.5], J(K[G]) = N(K[G]) = J(K[A1(G)]) -
K[G]. Let W(G) be the set of finite normal subgroup of G. Then, by [Pasl], we know
that J(K[AT(G)]) = Unew(s) J(K[H]). Then J(K[G]) = N(K[G]) € B(K[G]) and
so J(K[G]) = B(K[G]) = w(K[G,)]) - K[G] is spanned by s — ¢ where s,t € G, with
sP* = 7" = ¢, the identity of G. Hence, it suffices to show that if s?* = t*" for some
k, then st™! € G,.

Assume s?* = tP* for some k > 1. Also, we assume that G is finitely generated
and that |G| < oo. Then, O,((G/G,)) = (e) by the choice of G,. We prove that
s € Gpt by applying induction on |G,|. First, we assume that |G,| = 1. Because
0,(Z(G/Z(G))) = (e) and since G/Z(G) has smaller nilpotency index ¢, induction

M0,(G) denote the maximal normal p-subgroup and G, is maximal (Sylow) p-subgroup of G. In
nilpotent group, these two subgroup coincide.
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on c then yields that sZ(G) = tZ(G). So s = tz for some z € Z(G). It follows
that 2»° = e. The hypothesis on G, implies that the maximal p-subgroup of Z(G),
Z(G), = (e). Hence z = e, and thus s = ¢.

Secondly, we assume that |G,| > 1. Thus |0,(Z(G))| > 1 and G, N Z(G) # (e)
implies that |0,(G/Z(G),)| < |G,|. We denote the coset of gZ(G), by g, g € G. By
induction hypothesis, this implies that 5 € {0,(G/Z(G),) = tG,/Z(G),. Hence, it
follows that s € tG,,.

Conversely, if s = tG), then by nilpotency of G, by induction hypothesis on |Gpl,
we have s?* = t*" for some k.

If G is not finitely generated, then it suffices to show that J(K[G]) C B(K[G]).
For a € J(K|[G]), the support of a is finite and generated a normal subgroup which
is finitely generated nilpotent group H and so

a € J(K[G]) N K[H] = J(K[H]) = B(K[H]) = B(K[G]) N K[H],

This shows that a € B(K[G]).

If char(K) = 0 and G is f.g nilpotent group, then we can take W € W(G). Hence
J(K[W]) = 0 and so J(K[G]) = N(K[G]) = 0 as required. O

Remark: If s** = t*" for some k, then we may say that (s,t) € &, but we need to
notice that &, may not be a congruence on S.

Theorem 3.3.32 [Oknl] Let S be a cancellative semigroup that either it 1s an almost
nilpotent subsemigroup or is contained in a finite extension of an FC-group. Then

J(K[S]) = B(K[S]) = J(K[H]) n K[S],

where H is the group of fractions of S. Moreover, J(K[S]) = 0 if char(K) = 0 or if
char(K) =p > 0 and H has no normal subgroups of order divisible by p.

The semigroup algebras of arbitrary nilpotent semigroup will be investigated in
Chapter 4 with some finiteness condition. The results on 2-nilpotent semigroups are
given in [JO1] (1994). The following problem is not yet solved.

Problem 3.3.33 Let S be arbitrary n-nilpotent semigroup, what is structure of K|[S]
when K is any field with char(K) =0 or char(K) =p ?
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3.4 Radicals of Algebras of Matrix type

In this section, R is a K-algebra and M(R, I, A; P) is denoted by R. In fact, R is an
algebra of matrix type, where I, A are index sets and P is a A x [ matrix over R,
where each row and column contains some non-zero elements. Let X,Y € R be the
I x A matrices with X - Y = X o PoY, where o is the usual matrix multiplication.

W sometimes call the above type algebra as the Rees algebra over R. It
is particularly interesting to see the relationship between R and R. This type
of algebra can be generalized to the completely O-simple semigroups because by
Rees Theorem, S = MG, I,A; P) (see Section 1.1), hence it is easy to see that
Ko[S] & M(K|G],I,A;P) (cf. [Oknl, Lemma 5.1]).

3.4.1 Properties of Rees Algebras

We now refer [Oknl, Ch. 5] to get the results of algebras of matrix type. We now
list some of the useful results for studying the radicals of these algebras.

A matrix (a;r) € R with a;; = r when (j,k) = (i,A) and a;x = 0 for (j,k) #
(4, ). This matrix is denoted by (r,7,A). Let J be a right ideal of R, for 7 € I and
Joy = {(a,i,)) € R:a€ R A€ A} for any fixed 4. Then J = Y;c; J;) are the right
ideals of R.

Let J be an ideal of R. Define
A(J)={X € R: Po X o P lies over J}

Then 2(J) a right ideal of R. Moreover we can view 2 : R(R) — R(R) as a A-
complete semilattice homomorphism. In addition, if J is a two-sided ideal of R, then
A(J) D J = M(J,I,A; P) and RA(J)R C J.

On the other hand, if NV is right ideal of R, fix (i,m) € I x A, then the set
N((Z)") ={re R: (r,i,m) € N}

is also a right ideal of R. Let p,; be the (m, i)-entry in matrix P. If p,,;, p,; are units
in R, then N((:)" ) = N((j")). Hence let T(R) be the lattice of ideals of R. The mapping
D : T(R) — T(R) defined by

D(N) = N((:)") when p,,; is unit in R

is a well defined mapping.
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In the literature [Oknl], the Munn algebra over R is the algebra of matrix type
M(R, I,A; P), where row and column of P contains a unit of R. Thus, for any
i€ I,méeA, N is a two-sided ideal of N such that D(N) = N((;)n).

Theorem 3.4.1 [Oknl, Th. 5.12] Let R = M(R,I,A; P) be an algebra of matriz
type. Let T(R) be the lattice of ideals of R. Then we have:

(). D is a complete lattice homomorphism of T(R) onto T(R).

(ii). 2 is A-complete semilattice embedding of T(R) into T(R).
(iii). D2 is the identity mapping on T(R).
(iv). AD is the identity mapping on A(T(R)).

i)

(v). For any J € T(R), A(J) is mazimal among all ideals N of R with the property
D(N)=J.

Now, we can see that the mappings 2,® established an one-to-one correspondence
between the important classes of ideals in R and R. As a consequence, we can give
some descriptions for the prime radicals and Jacobson radicals of R.

Lemma 3.4.2 [Oknl, Lemma 5.13] Let N be a semiprime ideal of R. Then there
exists an ideal J of R such that A(J) = N.

Proposition 3.4.3 [Oknl, Prop. 5.14] Let R be an algebra of matrix type over R.
Then the mappings A, D establish an one-to-one correspondence between the sets of
mazimal, prime, and semiprime ideals of R and R.

Corollary 3.4.4 [Oknl, Coro. 5.15]

B(R) =A(B(R)) = {X € R: Po X o P lies over B(R)}

It should be noticed that the algebra M(R, I, A; P) may not have an unity even
R has unity. Therefore, even ©, %2 make an one-to-one correspondence between the
maximal ideals of R and R, it is not easy to see what J(R) looks like.

Now, consider the Jacobson radical case, let V' be a right R-module. Then V2, the
direct sum of A copies of V, may be regarded as M|, (R)-module structure. Moreover,
there is an homomorphsim ¢ : R — Mx|(R) defined by ¢(X) = P o X between the
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algebras R and My (R). This module can be regarded as a R-module and is denoted
by VA(P). If v € VA(P), then we have v- X =vo Po X for X € R.

Let VA(P) = {v € VA(P) : v- R =0}. Then we can check that

annz(VA(P)/VHM(P)) = Alanng(V)) = {X € R|P o X o P lies over anng(V)}.

Recall that if T is a ring with nonzero idempotents e and if V' is a right faithful
(irreducible) T-module, then Ve is also a faithful (irreducible) eT'e-module.

Theorem 3.4.5 Let N be an ideal of an algebra of matriz type R. Then N is right
primitive iff N = A(J) for a right primitive ideal J of R. Moreover, in this case, the
division rings associated with the right primitive rings of R/N and R/J are isomor-
phic. Moreover, A(J(R)) = J(R).

Proof. By Lemma 3.4.2, we know that any right primitive ideal of R must be of the
form 2A(J) for some ideal J of R. Define a mapping ¢ : R — R/J which extends an
homomorphism:

@: R— R = M(R/J,I,A;p(P)),

where (P) is matrix (¢(pai))-

Then, it can be seen that the kernel of ¢ lies in 2A(J). Hence, without loss of
generality, we may assume that J = 0. Then we can see that R is right primitive iff
R/2(0) is right primitive. Furthermore, for the case A(0), we can show that 2(0)* =
0, then hence A(0) N ERE = 0, where E is choosen idempotent for V E. This shows
that V E is an irreducible module. Thus, R = ERE/(EREN2(0)) = E'(R'/2(0))E’
for an idempotent E’ in R/2(0). Thus,

J(R) = ({N|N right primitive ideal of R}
= ({2(J)|J right primitive ideal of R}

Hence, we have shown that J (R) = A(J(R)) by the property of 2. d

In particular, if S is completely O-simple and S = MG, I, A; P), then there
exists a linkage between Kj[S] and K[G], where G is a maximal subgroup of S.
Hence, we can give a description on the radicals of K;[S], where S is completely
0-simple semigroup.

Corollary 3.4.6 Let S = M°(G,I,A; P) be a completely 0-simple semigroup and K
any field. If J(K[G]) =0, then J(Ko[S]) = A(0). Moreover, J(K,[S]) is nilpotent.
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Proof. Obviously, Ko[S] = M(K[G],I,A\; P) = I?[\G’], by Theorem 3.4.5, hence,
J(Ko[S]) =2A(0)={X € R: Po X o P =0}.

Thus, J(K[S])? = 0, and so J(K,[S]) is nilpotent. O

Corollary 3.4.7 Let K be a field with char(K) = p and S a completely 0-simple
semigroup isomorphic to M°(G°, I, A; P). If B(K[G]) = J(K[G]) (e.g G 1is niloptent-
by-finite or finite extension of FC group), then J(Ko[S]) = B(Ko[S]).

Proof. In Lemma 3.3.31 and Theorem 3.3.32, we know that if G is niloptent-by-finite

e ey

or FC-by-finite, then J(K[G]) = B(K|[G]). Since Ko[S] = M(K[G],1,A; P) = K[G],
we have

J(Ko[S]) = A(J(K[G]) = A(B(K[G]) = B(Ko[S]).

3.4.2 Algebras Graded by Elementary Rees Matrix Semi-
groups

Let S = M%(1°, 1, A; P) be an elememtary Rees matrix semigroup. In this section,
our aim is to show that every Rees matrix algebras R have a S-grading. This provides
another approach to study the structure of Munn algebras. Also, the method of S-
grading can be applied to other algebras.

Let S be an O-rectangular band. For any (1,7, m) € S, define

(1,3,m)(1,7,n) = (1,4,n) if pm;=1

(L,4,m)(1;7,n) =4 if ;=0
If we put Rim = Rg;l) and Ry = 0, then R= 2-(1,i,m)eS f?,,-m. This means that R is a
contracted S-graded algebra.

For elementary Rees matrix semigroups, we have

Theorem 3.4.8 [CJ] (1994) Let S = M°(1°,1,A; P) be an elementary Rees matriz
semigroup. Let R be a contracted S-graded ring. Let H be Jacobson, prime, Levitzki
radicals respectively. Let

T={zeR:RztRC S H(Ry)}.

1A

Then H(R) =T.

65



Proof. By Corollary 2.5.4, we know that the Jacobson and Levitzki radical can be
determined by the components of band-sum. Moreover, since S is a rectangular band
only, B can be also determined by this sum. Hence, H(R); N Ry C H(Rs). Since S is
an O-rectangular band, we have H(R); = H(R)s.

In case, if T is an ideal, then we can see that for any z € T N R, RzR C
Ypes H(Rs), so RyzRy C H(Ry). With H(R, S) = H(R), we have T C H(R).

Conversely, for any = € H(R), we have RzR C H(R). Hence, for each b € S,
(RzR), € H(Ry), This implies that RzR C Y H(R;) and hence H(R) C T. O

Here is another description of the Jacobson radical of algebra of complete 0-simple
semigroup similar to Corollary 3.4.7.

Corollary 3.4.9 Let S = M°(G,I,A; P) be a completely 0-simple semigroup. If
J(K[G]) = L(K[G]) (or J(K[G] = B(K[G])), then

J(Ko[S]) = L(Ko[S]) (o J(Ko[S]) = B(Ko[S]))-

Proof. From the above arguments, we have Ko[S] = M(K[G],I,A; P). Let T =
MO(1°, 1, A; P') be an elementary Rees matrix semigroup. Then, we can see that
R = Ky[9] is a T-graded algebra. Let (1,i,A) € T' and write R;) = (K[G],i,A) (set
of (a,i,\), where a € K[G]). Then we have

J(Rix) = J(K[G]) = LIK[G]) = L(Ri).
O

Corollary 3.4.10 Let T be a subsemigroup of a completely 0-simple semigroup S.
Then

J(Ko[T))® C > J(Tin)
Aeh

where Ty is the row and column of T in S = M°(G° I, A; P).

Corollary 3.4.11 Consider S = M°(G,I,A; P) and let S be its corresponding ele-
mentary Rees matriz semigroup. Let R be a S-graded ring. Denote R;y = Y oec Bigis
fori,e I,X € A. If G is a group satisfying any condition of Theorem 2.3.5, then

JRPEC > Js RN+ D, R

(1,3,A)€S] (1,4,A)€S)

where S = {(1,i,A) : p\; = 1} and S; = {(1,4,) : p,; = 0}. Hence, J(R)®
S’'-homogeneous.
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Proof. Since R can be regarded as a S’-graded ring with each component R;, a
G-graded algebra. Then in Theorem 2.3.5 J(R.,) = J,(Rj,) for (1,i,A) € . If
(1,7, 1) € Sy, then (R},)*> = 0. Thus, J(R},) = R},. By Theorem 3.4.8, we also have

JRPC > JRa)= > Ju(RA)+ D Rix
(

1,i,A) (Li,\)€S] (1,i,\)€S)

Hence, J(R)? is a S’-homogeneous ideal. O

Referring to the properties of graded rings, we have the following lemma:

Lemma 3.4.12 [CJ, Lemma 18] Let I be an ideal of a ring R such that J(I) and
J(R/I) are both locally nilpotent. Then J(R) is locally nilpotent.

We prove the main theorem of this section.

Theorem 3.4.13 [CJ] (1994) Let S be a locally finite semigroup and R a contracted
S-graded ring. If J(R,) is locally nilpotent, then J(R) is also locally nilpotent.

Proof. If S does not contain a zero element, then we may adjoin it with the zero 6
and put Ry = 0. Otherwise, 6 is an idempotent of S and obviously J(Ry) = 0, J(Rj)
is locally nilpotent. Now, R becomes a contracted S%-graded algebra. Hence, J(R) is
locally nilpotent iff J(R) = J(R/Ry) is locally nilpotent. Therefore, we may assume
that R itself is a contracted S-graded ring with S containing zero.

Let X = {ay, -+ ,a,} be a finite subset of J(R) and A a subring generated by X.
Let T = U™, supps(a;) and let B be the subsemigroup of S generated by T'. Since S
is locally finite, B is finite, so A is subring with finite support.

Now, we show that the order of the subsemigroup generated by the support of A*
for all k is strictly smaller that |B|.

Suppose that I is an the ideal generated by T'. Then, we have B C I. Since I is
finitely generated, the set of ideals is strictly contained in 7, thus it contains some
maximal elements. Let M be the maximal ideal contained in I. Then I/M is either
0-simple or null.

By our construction, we can see that A € Ry € R; and A C J(R), so A C
R; N J(R) = J(R;) since Ry is ideal. This shows that R;/R), is a contracted I /M-
graded ring. Since A C J(R;), the image of A, namely A, is a finitely generated
subring of J(R;/Rwm)-

If I/M is a null semigroup then (R;/Rps)* = 0. This implies that J(R;/Ra) is
nilpotent.
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If I/M is a O-simple semigroup, then by the locally finiteness of S, we have I/M
is completely O-simple semigroup and is isomorphic to M°(G, I, A; P) for some group
G which is locally finite (see Proposition 1.1.6).

Recall that G is locally finite, then by Theorem 2.2.8 (i), we know that if R is a
G-graded ring, then EgT(R) = f(R) Moreover, if J(R,) is locally nilpotent, then
J(R.) = L(R.) and J,(R) N R, = J(R.) = L(R.) = L(R) N R,. These facts lead
to

(['(R))gr = 'Cgr(R) = ﬁref(R) = Jref(R) = Jgr(R)'

Hence J,, (R) is locally nilpotent as well under the above conditions. Let I be a finitely
generated subring of J (R) with generator set X. Let H be a subgroup generated by
X. Since G is locally finite, H is finite group. Thus, J(Ryx)™ C J,.(Rg), where
n = |H|. Hence, I C J(Ry) is nilpotent. Therefore, J(R) is locally nilpotent.

Now, let R be a contracted algebra graded by M°(G, I, A; P) with G is locally
finite and R;; is G-graded so that J(R;;) = L(R;;) as above. This means that R can
be now graded by an elementary Rees matirix semigroup and each of its component

is locally nilpotent. Hence, J(R) is locally nilpotent due to Theorem 3.4.8. Thus,
J(R) = L(R). Hence, R = R;/Ry and J(R;/Ry) is locally nilpotent.

Moreover, if A is finitely generated subring in J(R;/Ra), then there exists an
integer k > such that Ak = (0 or A¥ C R);. Hence A* C Rynp. However, we cannot
obtain BZ M and in fact BN M contains the support of A*. Thus, the subsemigroup
generated by the support of A is strictly smaller than the support of B. By induction
hypothesis, we know that A nilpotent, and consequently J(R) is locally nilpotent. [J

We now extened the above case to locally finite semigroup algebras.

Corollary 3.4.14 Let S be any locally finite semigroup. Then J(K[S]) = L(K[S]).

3.5 Radicals of Inverse Semigroup Algebras

If S is an inverse semigroup, then the maximal subgroups are the subgroups
H.,={seSlss'=s"1s=¢},

where e € E(S) which is a semilattice of idempotents of S. The semigroup S is called
combinatorial iff each of its maximal subgroup is trival. A inverse semigroup is
called Clifford semigroup if every idempotent of S is central. An inverse semigroup
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S is completely O-simple and is isomorphic to a Brandt semigroup, ie. S =
M(G, A, A; A), where A is the identity matrix. Moreover, each principal factor of an
inverse semigroup is of course 0-simple.

3.5.1 Properties of Inverse Semigroup Algebras

In this part, we assume that all semigroups S are inverse semigroups. From the
previous sections, we immedicately have the following result.

Lemma 3.5.1 Let K be any field, and S an inverse completely 0-simple semigroup.
If S contains finitely many idemoptents, then I is finite and Ko[S] = M (K[G]).

Now we revise some results of Munn [Mun3, Mun4, Mun6| (1986,1987,1992),
concerning the right nil ideals of inverse semigroup algebras.

Let S be an inverse semigroup and e € E(S). Let H, be group of units of eSe.
Notice that H, also the H-class of e in S. Denote the right units subsemigroup of
eSe by P,, that is

P, = {z € eSe | zy = e for some y € eSe}.

Note that P, D H, and P, = R, NeSe, where R, is R-class containing e in S. For a
prime number p, z € He,, is called a p-element iff z has order p" for some r € N.

Lemma 3.5.2 [Mun4, Lemma 1] Let S be a semigroup, K a field with char(K) = p

and g = p" for somer € N. Then x € K[S], also for any elements x1,z2,--- ,z, € S
and oy, g, - an € K, we have

n q n
<Z aiaci> = Z (l’gl'g =+,

where ¢ is a linear combination of the elements of the form uv — vu, with u,v €
(21, Tn).

We need some technical lemmas for studying the inverse semigroup algebras.

Lemma 3.5.3 [Mun3, Lemma 5.1] Let S be an inverse semigroup and T' a nonempty
finite subset of S. Let e be mazimal in {xz~' :x € T}. Then for allz,y € T

:vy“lze = T =u.
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Lemma 3.5.4 [Mun4, Lemma 2| Let S be an inverse semigroup containing an idem-
potent e and K a field with char(K) = p. Let a be a nilpotent element of K[S] such
that e € supp(a) C eSe. Then either (i) supp(a) N H, contains a p-element or (ii)
supp(a) N (P \ He) # 0.

Lemma 3.5.5 [Mun6] Let S be an inverse semigroup, K a field and A a nonzero
right ideal. Then there exist e € E(S) and a € A such that

e € supp(ea) C H, U (eSe\ F.).

Proof. Choose b € A\ 0 and let zy,-- -z, be the elements of supp(b). Let e be
maximal element in T' = {z127},--- , 2,7, }. Then e = zz~' for some = € supp(b).
Without loss of generality, let
ezxjac;l for1<j<k and for £ < n.

Then let 7" = {z7 'z, 25 T, , 2} 'z }. Denote the minimal element in 7" by
f. Without loss of generality, let f = 27 z;. Take a = bx7'. Since A is a right ideal
of K[S], a € A. We now check that ea has the corresponding properties.

Consider the element ea. Let y; = ex;zy* for i = 1,---n. Then supp(ea) C
{yi}i=1,.. n. First of all y; = e and y; = ey; = ex;x7 177 = eyse, hence supp(a) C
eSe.

Suppose yr = expzy’ = e for k > 1. Since yx = (exy)(ez1)™" and e is also the
maximal element of the set eI’. By Lemma 3.5.3, we have ex;, = ex; = x;. Hence
expzy! = (exi)(exy)”! = z127" = e, that is e < zxz;'. This shows that e = zpz;’
and z, = ex, = z,. Hence if y, = e then k = 1. Therefore,

e € supp(ea) C eSe

To prove the second inclusion, it suffices to show that for y € supp(ea), and yy=' = e
iff y~ly = e. We know that szj"l =eforj=1,---k. Forj=1,.---k, if yjyj‘l =
e:z:j:tl_lazla:j"l = e. Similar to above, we have

e | A

By some rearrangement, we have iz, > :v;lccj. By the choice of z; (minimal in
o - -1 _ - — = = P
z; 1:ci.), we have z; 1:1:j = I xll- Then yjyjl = e and Y, lyj = I1Z; 133;'3311 =
r127" = e. Then y; € H..
For j > k, y; = ez;zi". If yju;' = e, then we can also show that (ez;e)(exje) ! =

e, whence e < z;z;'. This contradicts to e > z;z; '. Hence y;y; ' # e for j > k.
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Thus, e g {yi}i=1,---,n g He U ((eSe) \ Pe). O]

By the above lemma, we obtain the following modified results of Munn [Mun4].

Lemma 3.5.6 Let S be an inverse semigroup. Let K be a field and A a nonzero

ideal of K[S]. Then there exists e € E(S) and a € A\ 0 such that e € supp(a) C eSe
and supp(a) N (P. \ He) = 0.

Consider the algebra over field K with char(K) = 0. We have the following
lemma.

Lemma 3.5.7 [Mun6] Let S be an inverse semigroup and K a field of characteristic
0. Let b be a nonzero nilpotent element of K[S]. Then there is an infinite set Py of
prime numbers such that for each p € Py, there exists a field Fy, of characteristic p
and a nonzero nilpotent element c of F,[S] such that supp(c) = supp(b).

Hence, we obtain the following Munn’s theorem for K[S] which is analogous to
the group case.

Theorem 3.5.8 [Mun6] Let S be an inverse semigroup and K be a field of charac-

teristics 0 or prime that is not the order of an element in a subgroup of S. Then
KS] has no nonzero nil right ideals.

Proof. Suppose that K[S] has a nonzero nil right ideal A. Then, by Lemma 3.5.5,
there exist e = €2 and a € A such that

e € supp(ea) C H, U (eSe\ P.).

Since A is nil, there exists a positive integer k such a* = 0. Now, supp(ea) C eSe
and

supp((ea)”) C [supp(ea)]” C eSe.

Hence, by induction, (ea)” = ea” for all positive intergers r and so, in particular,
(ea)* = ea* = 0. Write b = ea, so b is nilpotent. Thus, we have

e € supp(b) C eSe, supp(b) N (P, \ He) = 0.

First, if char(K) = p. Then, since b is nilpotent, by Lemma 3.5.4 supp(b)NH, contains
p element. Thus H, contains an element of order p, contrary to our hypothesis. The
result therefore holds in the prime characteristics case.

71



On the other hand, if char(K) = 0 and P, is defined in Lemma 3.5.7. Let p € Pp.
Then there exists a field F}, such that F,[S] contains some nonzero nilpotent elements ¢
and supp(c) = supp(b). Applying relation in Lemma 3.5.5, we know that supp(c) N He
contains a p-element. Thus supp(b) N H, contains p-element for all p € P,. However,

P, is an infinte set, which contracdicts to the finiteness of supp(b). Hence, b = 0 and
a=0. ]

3.5.2 Radical of Algebras of Clifford Semigroups

It is well known that a Clifford semigroup is a semilattice of groups. Let S be such
type of semigroup, i.e. S = UaerGa, where I' is a semilattice and all G,’s are groups.
Also, we have the structure homomorphism ¢, 5 : G4 — Gg with a > 3. Consider
K[S], by additivity, K[S] = Yaer K[Ga). Then KI[S] is a I-graded algebra, with
R = K[S] and R, = K[G,]. Moreover, in each o € I and R, is nonzero and has a
unity 1, = 1 - e,, where e, is identity of G,. We can easily see that 1,15 = 145. By
Section 2.5, K[S] is known as a special I-graded algebra. We now use the results of
Section 2.2.5 to describe the radicals of Clifford semigroups.

Theorem 3.5.9 Let S = UnerGo be a Clifford semigroup and E(S) the set of all
idempotents of S is pseudofinite. Then J(K[S]) = 0 iff for every a € T, J(K[G4]) =
0.

Proof. This theorem is a direct consequence of Corollary 2.5.13. O

Theorem 3.5.10 Let K|[S] be semigroup algebra of Clifford semigroup. If each prin-
cipal ideal of T is finite, then

J(K[S]) = >_ J(K[Gal)p(a)

ael

Proof. This is a direct consequence of Corollary 2.5.14. O

Note: When E(S) is pseudofinite, p(a) = [l (es — €) is defined in Section 2.2.5.
peE(S)
ax-j

Therefore, the semiprimitivity of algebras of this type of semigroup depends on the
semiprimitivity of group algebras. Recently, Passman has given a survey on the
semiprimitivity of group algebras and make his focus on locally finite groups. Hence,
we can refer to his results on group algebras and apply them to locally finite Clifford
semigroups.
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3.5.3 Semiprimitivity Problems of Inverse Semigroup Alge-
bras

In this section, we introduce an important theorem for inverse semigroup algebras.
These materials are mainly taken from Domanov (1976) (stated in [Mun3]). We first
give the main results of this section.

Theorem 3.5.11 [Mun3] Let S be an inverse semigroup and K a field. If J(K[H]) =
0 for each mazimal subgroup H, of S, where e € E(S), then J(K[S]) = 0.

In order to prove this theorem, we need to examine the structure of the inverse
semigroup S and its subgroup H,. Let e € E(S) and D be the D-class of S containing
e. Consider a right K[H,]-module W. For each f € E(D), let V; be an isomorphic
copy of W. Since there exists an isomorphism ¢,y : H. — Hy, we can define 0y :

W — V; as a module isomorphism. In this way, V; can then be regarded as a
K[H]-module.

Let V = @cpp) Vs Then we perform the construction as followings:

Suppose V is constructed above and let z € S. Define for each f € E(D) and
v E Vf,

0 if f€xax™!

Then, it is not difficult to check that V is a well defined right K[S]-module. As this
module V depends on e and W, we just denote it by V' (e, W).

VT = {vef—l(rfxrg_l)gg if f <ze~!and g =a" =,

From [Mun3, Lemma 4.6], it is shown that if W is an irreducible K[H,]-module
then V (e, W) is irreducible K[S]-module.

Let M, be the family of K[H.]-modules. Then M, is faithful iff the intersection
of the annihilators of all the modules in the family M, is zero. Now define

M= {V(e) W)}WEMe,eGT

where T is a subset of E(S) with exactly one element from each D-class. Thus,
by a result in [Mun3, Lemma 4.7], it yields that M is a faithful family of right
K[S]-modules.

We now turn to the proof of Theorem 3.5.11.
Suppose that K[H,] is semiprimitive for all e € E(S) and T is constructed above.
Then there exists a faithful family M, of irreducible K[H,] modules. For each W &
M., form a K[S]-module V(e,W). From the above construction, it can be easily

73



seen V (e, W) is irreducible and M is faithful. Hence K[S] is semiprimitive. The
proof is completed. 0

Corollary 3.5.12 Let S be an inverse semigroup and K a field that is not algebraic

over its prime subfield. Suppose, if char(K) = p > 0 and no subgroup of S has an
element of order p, then J(K[S]) = 0.

Corollary 3.5.13 Let S be a combinatorial inverse semigroup and let K be a field.
Then J(K|[S]) = 0.

However, the converse of Theorem 3.5.11 does not hold. We can find an example
in [Mun3, Example 4.10] which shows that J([K[S]) = 0 but J(K[G]) # 0 for some
maximal subgroup of S. On the other hand, we give here some conditions for E(S)
which make the converse of Theorem 3.5.11 true. In the following, we use an example
given by Ponizovskii to verify it in a different way.

We describe the example obtained by Ponizovskii as follows:

Theorem 3.5.14 [Ponl] (1990) Let S be an inverse semigroup. The following con-
ditions are equivalent.

(i). E(S) is a pseudofinite semilattice of idempotents

(ii). If J(K[S]) =0, then for each mazimal subgroup G of S, J(K[G]) = 0.

Proof. Munn [Munb] showed that (i) implies (ii). Hence we have to prove that (ii)
implies (i). we construct an example to show that £ = E(S) is a non-pseudofinite
semilattice and J(K[S]) = 0 but there are subgroup G such that J(K[G]) # 0.

Let K be field with char(K) = p. Construct S as a semilattice of groups
(E, Gg, ¢ap). First, without loss of generality, take o € E which is maximal. Let
G, be a proper subgroup of G with J(K[G,]) # 0 but J(K[G]) = 0. For example,
G = S., an infinite locally finite symmetric group and S, has subgroup G, with
order p when char(K) = p. If B < a, let Gg = G and ¢, is an inclusion map. If
f&a, then Gg = {e}. Moreover, define

v< B <a ¢py =t identity mapping
v < Bfa  ¢p: {e} = G, is the trival inclusion .

Then in this semigroup, K[G,] is not semiprimitive, and if f€a, then K[Gj] is
semiprimitive. If 8 < a, then z € J(K[G,]) is nonzero, we have ¢, g(z)¢J(K[Gg]).
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Refer to Section 2.5, K[S] now becomes a special semilattice-graded ring when
o is maximal. If there is a nonzero element a € J(K[S]), then ase, € J(K[Ga))
by Theorem 2.5.6. Assume that b = ae, # 0. Let D = supp(b) \ {a}. Since E is
non-pseudofinite, there exists an infinite 4 such that a = 3. Moreover, suppose that
there exists ¥ < a and v € aE \ D such that yd = +, then d < + for some d € D.
Thus v = d. This contradiction leads that for any v € aE \ D,

Qo = Q4

but asey = Pan(ata)EJ(K[G,)).
However, this result contradicts the description of J(R) in Theorem 2.5.6 and the
choice of a.

Thus aq = 0 and agsupp(a). Hence, a € J(K[S])NR' = J(R'), R' = K[S]\K[G4]
which is an ideal of K[S]. We can check that J(R') = 0 since for every maximal
subgroup H, J(K[H]) = 0. Thus, a = 0 and J(K[S]) = 0. O

The above construction shows the importance of pseudofiniteness of E(S) in an
inverse semigroup S.

Finally, we describe the structure of K[S] over a completely semisimple inverse
semigroup S.
Theorem 3.5.15 If S is completely semisimple inverse semigroup with finite E(S)
and K is any fields, then K[S] has an identity and

K[S] = M‘nl(K[Gl]) @ an(K[GZ]) S D Mnk(K[Gk])

Proof. Since S is a completely semisimple inverse semigroup with E(S) is finite, S

has a prinipical series
S=8,28-12- 2 S0,

where S;/S;_; is completely 0-simple and Sy is completely simple.

As T = Sy is minimal nonzero ideal of S and T is completely O-simple in-
verse semigroup, 1’ = M(G°,I,1,A) with finite index set /. By Lemma 3.5.1, we
have Ko[T] = M;(K[Go|), where Gy is maximal subgroup contained in 7". Thus,
M1 (K[Gy]) has an identity. Then

Ko[S] = Ko[T] & Ko[S/T]

(see Prop. 1.2.4). We can complete the proof by using induction hypothesis. Note
that each G; can be selected from S;/S;_;. 0

Finally, if char(K) = 0 and if the maximal subgroup G is finite, then it is easy to
see that K[S] is semisimple.
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3.6 Other Semigroup Algebras

3.6.1 Completely Regular Semigroup Algebras

By a completely regular semigroup S, we mean S is the unions of groups. More-
over, every completely regular semigroup is also a semilattices of completely simple
semigroups, i.e. S/n is semilattice of completely simple semigroups, where the least
semilattice congruence n = D = J. Since S is a completely regular semigroups. S is a
semilattice of completely simple semigroups. Using the theory of semilattice graded

rings and the Munn algebras, the structure and radicals of this semigroup algebras
K[S] can be found.

In this section, we consider the class of the semigroups having band decomposi-
tions.

Proposition 3.6.1 [Pet, Prop IV.1.7] Let S be a completely regular semigroup. Then
the following conditions are equivalent:

(). S is a band of groups.
(ii). H is a congruence on S.

(iii). a®bS = abS, Sab® = Sab for all a,b € S.

Using the above characterization for band graded rings, we obtain the following re-
sults.

Theorem 3.6.2 If S is band of groups, then for any field K, K|[S] is special band-
graded algebra with band B and

J(K[S]) = {a € J(K[S]) | Va € B;  eqaaeq € J(K[Ga])}-

Proof. This is a direct consequence of Theorem 2.5.6. O

Theorem 3.6.3 Let S be a strong semilattice of completely simple semigroups, and
K any field with char(K) = p. Then, K[S] = Y gep K[Gp] where B is a normal
band. Moreover, J(K[Gg]) is nil (e.g J(K[Gg]) = B(K[Gg])) iff J(K[S]) is a nil
1deal.
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Proof. By [Pet, IV.4.3], S is a strong semilattice of completely simple semigroups,
i.e. S = U,erS, iff S,/H is rectangular band. This means that S, is union of groups.
Let
Bz | J.S/H.
yel

Then B becomes a normal band and the first part is therefore proved. In particular,
we know that K9] is a special band-graded ring. By Theorem 2.5.15, it suffices to
show that K[S] is radically coherent. In fact, B is the band induced by the semilattice
decomposition of S, hence B is a strong semilattice of rectangular bands. If @ > B,
then we can define ¢y 5 : G4 — Gp such that ¢os(x) = egzeg, for all z € G4, where
G, C S; and Gg C S3. Thus, ¢q g induces an homomorphism

bop : K[Go] = K[Gp)-

It is not difficult to see that ¢as(J(K[Gs]) € J(K|[Gp]). Hence, K[S] is radical
coherent, and the second part is proved. 0

3.6.2 Separative Semigroup Algebras

The radicals of commutative separative semigroup algebras have been completely
solved in section 3.3. However, for non-commutative separative case, it is so difficult
to describe the radicals because even S has a semilattice decomposition of cancellative
semigroups, not all cancellative semigroup can be embedded into groups. However, if
S is separative, then there exists a greatest semilattice decomposition of cancellative
semigroups, say S = UaerSe. Assume that each cancellative semigroup generates a
particular group, then we can still describe the radicals for certain separative semi-
groups.

Lemma 3.6.4 [JO1] (1994) Let S be a separative semigroup with a semilattice de-
composition UgerSa, where each Sy 1s a cancellative semigroup. If Sy 18 also ng-
nilpotent, then S can be embedded into a semilattice Q = UaerGeo, where each G, is a
two-sided fractions group of Sy. Moreover, S is nilpotent iff n = sup{ny|a € I'} < co.
In this case, Q) is also nilpotent semigroup.

Proof. By Theorem 3.3.30, S, has group of fractions Go. Let Gy = {S4t5"|54, ta €
Sa}. It suffices to show that the multiplication on @ = UaerGq is well defined.

For arbitrary o,3 € T', any s, € S, and sg € Sg. We can write z = 5,5,
Y = 535, it is obvious that z,y € Sap since S = UaerSq. By the nilpotency of Sy,
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for any sequences, Xi(z,y) = Yi(z,y) for k > n4p, which is the nilpotent class of
Sap- Then there exists ang, bas in Sap such that sqaas = Sgbags-

The multiplication of @) is defined by

(%bgl)(cﬁd?) = (a'aCaﬁ) (dﬂBaﬁ)_la

where b,Cos = ¢3Bag, Cap, Bap € Sap. Then this multiplication of @ is well defined.
Hence, it follows that ) is a semigroup.

If sup{n,} exists, then S is clearly nilpotent. Moreover, the multiplication of Q
induced by S also leads to nilpotency. Under this case, @ is also nilpotent. ]

We have already known that the semilattice I" is locally finite. If S is a separative
nilpotent semigrop, then we have the following theorem.

Theorem 3.6.5 Let S be a separative nilpotent semigroup in which each semilattice
component S, of S is weakly no-nilpotent that is S = UaerSa and each S, generates

a group Go. Let Q = UyerGo where Gy, is group generated by Sy. For any field K,
we have

(i). If T is finite, then J(K[S]) = B(K[S]),
(ii). IfT is infinite, then J(K[S]) = L(KS]).

Proof. The proof follows from Theorem 3.3.32, as for each a € I', we have
J(K[Sa]) = B(R[Sa]) = L(K[Sa]) = J(K[Sa]) N K[Sa].

This shows that J(K[S,]) is locally nilpotent. As a direct consequence of Theorem
3.4.13, we know that J(R[S]) is locally nilpotent and equal to L(K[S]). Moreover, if
[ is finite, then J(K|[S]) = B(K[S]) by induction hypothesis. O

Corollary 3.6.6 Let S be a separative semigroup with the greatest semilattice de-
composition of cancellative semigroups UaerSa, where each S, generates a group
Go. Let Q = UyerGo where Go is group generated by S,. Moreover, if each G,
is nilpotent-by-finite or FC-by-finite, then B(K[Sy]) = J(K[Ss4]). If T is finite, then
B(K[S]) = J(KI[S]).

For the commutative case, the relation &, = {(s,t)|s*" = t?"for some k} is p-
separative congruence (cf. Section 3.2) but £, may not be a congruence in noncom-
mutative semigroup. Hence I(K, S, &,) may not be an ideal of K[S]. Recently, [JO1]
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has shown that when S is 2-nilpotent semigroup and K is a field of characteristic
p > 0, then &, is a congruence on S, and J(K[S]) = B(K[S]) = I(K, S,&,). We now
extend this theorem to a more general situation.

Theorem 3.6.7 Let S be separative nilpotent semigroup, If (s,t) € &, then s —t €
B(K]IS]). The relation &, is a congruence on S. Moreover,

J(KIS)) = L(KIS) 2 S I(K, 5.6).

peP
Proof. Since S is a separative nilpotent semigroup and has a semilattice decompo-
sition of cancellative semigroups, from Lemma 3.6.4, S can be embedded into Q =
UaerGa. where Gy is group of fractions of S,. If a € J(K([Sa]) = J(K[Ga]) N K[Sal,
then a € J(K[G,.]), where G, is a nilpotent group. Lemma 3.3.31 then yields
a = Y, ki(si — t;) with (s;,t;) € &. Note that if (si,t;) € &, then s;,t; € Sy for
some o € I'. For e, € Q, e, is the identity of G, and so e, is central. Assume that
the semilattice I is finite and let a be the maximal element in I'. Denote [ = S\ S,.
Then we have

aK[I] < Z( t:) K [1]
- ZZ (si — t:) K[Sp]

i pBel
B#

- Z Z (si€ap — tieaﬁ)K[eaBSﬁ]

1 Ber
B#a

Since all e, are central so that s;eqp and tieqs are §y-related. Hence, sieqas — tieap €
J(K[Gap]). Consequently, for 8 # «, we have

> _(si€ap — ticap) KleaSs] S K[Sap] N J(K[Gapl) = J(K[Sas)).

By using induction hypothesis on the order of I', we obtain aX [I] € J(K[S]). More-
over, since a € J(K[S,)) = J(K[G4]) N K[Sa), aK[S] € J(K|[S,] + J(K[I]) and
a € J(K[S]). Thus, J(K[S.]) € J(K[S]) for some maximal o« € I'. By using
induction again, we have Y cp J(K[Sq]) € J(K[S]).

On the other hand, assume that s,t € S such that s—¢ nilpotent. We may assume
that s € Su,t € Sg. Hence (s —t)* = st—sth-14... 4tk =0if af = a = g iff
s,t € S,. Therefore, s —t € B(K[S]) iff s — t € B(K[S,]) for some a € T. Hence &,
is a congruence on S and hence

I(K,S,&) =) I(K,S.,&) C B(KI[S)).

a€el
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Using Theorem 3.6.5, we then obtain J(K[S]) = L(K[S]) 2 B(K[S]) 2 I(K, S,&).
0

3.7 Radicals of PI-semigroup Algebras

3.7.1 PI-Algebras

The algebras or rings that satisfy an polynomial identity are rather useful in the
aspect of geometry, in particular, the Azumaya algebras and division algebras. Now,
we study semigroup algebras satisfying a polynomial identity and obtain some results
on semigroup algebras. The reader is referred to [Pasl, Row] for more properties of
Pl-algebras.

Definition 3.7.1 Let R be a k-algebra. Then R is called a Pl-algebra if R satisfies
a polynomial identity f over k.

We state the following important result of Pl-algebras.

Theorem 3.7.2 [Oknl, Pasl, Row] Let R be a Pl-algebra satisfying a polynomial
identity of degree n.

(i). For every prime ideal P, the localization of R/P with respect to its center is
isomorphic to the matriz algebra M,(D) over a dwision K-algebra D such that
dimzpyM,(D) < (n/2)?. Moreover, R/P can be embedded into My (L) for a
field L O K, and an integer N < n/2

(ii). If P is a right primitive ideal of R, then R/P = M, (D) with D,r as above.

(iii). For any nil ideal of R, J(I) = B(I) and if R is a finitely generated K -algebra,
then J(R) is a nilpotent ideal of R.

3.7.2 Permutational Property and Algebras of Permutative
Semigroups

In order to study the PI semigroup algebras, we first have to examine some of the
properties of the given semigroup. A semigroup is said to have the property 9, if for
any elements s;, -+ , S, € 5, there exists a nontrival permutation ¢ in the symmetric
group S, such that 81+ 8p = Se1) ** * So(n)-
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Proposition 3.7.3 [Oknl, Prop.19.1] Assume that K|S] satisfies a polynomial iden-
tity of degree n. Then S has the property by B,.

Hence, the studying permuntational property of semigroup is a must. However,
if S satisfies a permutational identity, it is still not sufficient to show that K[S] is a
Pl-algebra.

Summerize the results in [Oknl], we obtain some properties of semigroups satis-
fying permutational property. The proofs can be found in [Oknl, Chapter 19].

Theorem 3.7.4 [Oknl] Denote the permutational property B.

(i). If S is periodic with B, then S is locally finite.

(ii). If S is cancellative, then S has a two-sided group of fractions G which is finite-
by-abelian-by-finite iff S has ‘B.

(iii). If S is a finitely generated cancellative semigroup, then S has an abelian-by-
finite group of fractions iff S has ‘B.

(iv). (Domanov) Assume that S is a 0-simple semigroup with PB. Then S is com-
pletely 0-simple.

The semigroup S is called a permutative semigroup if there exists an integer
n > 2 and a nontrival permutation o, taken from the symmetric group S, such that

1T Tp = To(1)To(2) * * " Lo(n)

for every zy,---,z, € S. Clearly this property is stronger than above property
described. The above formula is a multilinear identity. Assume that all algebras are
over field K (or commutative ring R). It is then obvious to see that K[S] is a PI-
algebra. This is a special kind of PI-algebras. we will see that the Jacobson radical
is determined by the congruence on the semigroup S.

Proposition 3.7.5 IfS is a permutative semigroup, then K[S]™(zy—yz)K[S|™ = 0.
for some m > 1 and any z,y € S. Consequently, the commutator ideal of K[S] is
nilpotent.

Theorem 3.7.6 [Oknl] Let S be a permutative semigroup. Then J(K[S]) = I(K, S, p),
where p is the congruence on S such that

S/p= { (S/m)/€ if char(K) =

0
(S/w)/& if char(K)=p>0
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where p is the least commutative congruence on S and &,&, are the least separative
and p-separative congruence on S/u respectively. Moreover, J(K|[S]) is a sum of
nilpotent ideals of K[S] and coincides with the set of nilpotent elements of K[S]

Proof. The congruence determined by the commutator ideal of K[S] is a commu-
tative congruence on S, so u C~k(s)k[s]- Since S/u is commutative, J(K [S/u]) =
I(K,S/u, &) if char(K) = 0 (or J(K[S/u]) = I(K,S/u &) if char(K) = p). Hence
J(K[S/p)) is sum of nilpotent ideals of K[S/u]. This leads to I(x) is nilpotent and
consequently, J(K[S]) = I(p). O

3.7.3 Radicals of Pl-algebras

Polycyclic-by-finite groups are related to noetherian algebras. Moreover, the proper-
ties of PI-algebras also give more generalization on algebras of cancellative semigroups
and its groups of fractions. We now point out when the group algebras would be PI-
algebras.

Lemma 3.7.7 [Pasl, Th. 5.2.14] Suppose that K|G] satisfies a polynomial identity
of degree n. Then [G : A(G)] < n/2 and |A(G)'| < co.

Theorem 3.7.8 [Oknl] Let G be a group. Then the following statements hold:

(i). K[G] is a PI-algebra iff the following conditions hold

(a) G is abelian-by-finite, that is, G has an abelian normal subgroup A of finite
index, if char(K) = 0.

(b) G is p-abelian-by-finite, that is, G has a normal subgroup A of finite index
such that the commutator subgroup A’ is a p-group, if char(K) =p > 0.

(ii). If K[G) is a Pl-algebra, then J(K[G]) = B(K[G]) and J(K[G]) = 0 if char(K) =
0 or char(K) =p > 0 and G has no normal subgroup of order divisible by p. If
char(K) = p > 0 and the mazimal normal p-subgroup ©, of G is finite, then
J(K[G]) is a nilpotent ideal.

(iii). For all elements g, h € G, we have (g,h) €~ykia) iff g, h are in the same coset
of the mazimal normal p-subgroup O, of G, where p = char(K) =p > 0.

Corollary 3.7.9 [Oknl] Let S be a cancellative semigroup and K a field with char(K)
= p. Assume that K[S] is a Pl-algebra. Then S has a group of fractions G such that
K|G] is a Pl-algebra. Moreover,
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(i). B(K[S]) = J(K[S]) = J(K[G]) N K[S], and J(K[S]) =0 ifp=0, or if p >0
and G has no normal subgroup whose order is divisible by p.

(ii). For any s,t, (s,t) €~yk(s) f s and t are in the same coset of some normal
p-subgroup of G.

Theorem 3.7.10 [Oknl] Suppose that K[S] satisfies a polynomial identity. Then
J(K[S]) = B(KIS])).

Proof. As the algebra K[S]/B(K|S]) is a subdirect product of prime algebras A;,
i € I. From Theorem 3.7.2 (ii), A; is prime Pl-algebra and can be embedded into a
matrix algebra M, (D;) and a semiprime PI-algebra has no nonzero nil ideal. Consider
the following homomorphism:

¢ : K[S] — K[S]/B(K[S]) = [] Ai
icl
where ¢p(a) = (ai)icr, ai € A;. Let M; be the kernel of the homomorphism ¢; :
K|[S] — A;. Then we have the following diagram:

&i

0 — M; —— K[S] —— A; — 0

AM{ p.
K[S/ ~m]

where o;\y, = ¢; and ¢p(a) = (¢i(a))ier-

Let a € J(K[S]) and if a? = 0 for all i € I, then ¢p(a)® = 0. This implies that
a™ € B([S]). Thus, J(K[S]) is nil ideal and hence J(K[S]) = B(K[S]).

Since S/ ~p; can be embedded into A; < M,(D) for some division rings, we
may denote S by S/ ~u,C My,(D). In chaper 1, we have already stated that M, (D)
is a completely semisimple semigroup with /;/I;_; a completely 0-simple semigroup.
Now, if S < I;/I;_1, then by Coro. 3.4.10, J(K,[S])? is a sum of nil ideals J(K,[T; ;]),
where KT} ;] are Pl-algebras of the cancellative subsemigroup 7;; of S which in-
tersects the H-classes of I;/I;_y. This shows that J(Ky[S]) is nil ideal and hence
J(Ko[S]) = B(Ko[S))-

If S C M,(D) but not in I;/I;_;, then we refine S by S; = I; NS, where j =
0,1,---,n. Now, for the least number k, write S = Sy and Sy/Sy_1 C Ij/I;—;. For
any a € J(K[S]), we have

dkis,_1(a) € J(Ko[Sk/Sk-1]) € Ko[lx/Ik-1] = MP(K[G], I, A; P)
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Hence, ¢kis,_,1(a") = ¢kis,_,)(a)” = 0 for some r > 1. This means that
a" € K[Se-1] N J(K[S]) € J(K[Sk-1])-

If Sg_; = 0, then a” = 0. Otherwise, we continue the same process repeatedly, we
eventually get J(K[S]) a nil ideal. This completes the proof. O
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Chapter 4

Finiteness Conditions on
Semigroup Algebras

4.1 Introduction

In this chapter, finiteness conditions on semigroup algebras will be investigated. The
main object of this chapter is to find some necessary and sufficent conditions for K[S]
which are noetherian, artinian, semisimple and also the other related topics. We also
consider the graded rings by groups, semigroups, groupiods, and apply these cases to
semigroup algebras over any field.

We first recall some basic properties of ring theory and graded ring theory. The
references of graded ring theory can be obtained in [JW2, Kar, NV, Wau].

4.1.1 Preliminaries

Call a class K of rings closed under right ideals (left ideals, homomorphic images) if
for every ring R € K, the class K contains all right ideals (left ideals; homomorphic
images) of R. Say that K is closed under (finite) sums of one-sided ideals if K contains
every ring which is a (finite) sum of its right ideals or a (finite) sum of its left ideals

belonging to K. A class K is called closed under ideal extensions if X contains every
ring R such that R/I € K for an ideal I of R.

Lemma 4.1.1 The classes of semilocal, semiprimary, right perfect, left perfect, nilpo-
tent, right T-nilpotent, left T-nilpotent rings are closed under ideal extensions, right
and left ideals, homomorphic images and finite sums of one-sided ideals.
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It is noted that the class of right artinian or noetherian rings are not closed under
finite sums of left ideals. For example, the semigroup algebra Q[B] over the two-
element right zero band B = {a, b} is neither right artinian nor right noetherian,
althought it is the sum of two left ideals Qa and Qb which are isomorphic to Q.

4.1.2 Semilattice Graded Rings

Let I' be a semilattice and R a ring graded by I'.
Lemma 4.1.2 [JW2, Lemma 1.1] Let I" be a semilattice. Suppose that

(i). T satisfies the d.c.c.;
(i1). ' satisfies the a.c.c.;

(iii). T does not contain an infinite subset of incomparable elements.

Then T is finite.

Theorem 4.1.3 [Wau, JW2] (1986) Let R be a ring graded by a semilattice I' such
that J(Ra) # Ry for all « € T'. Then the following statements hold:

(i). R is semilocal iff T is finite and each Ry is semilocal for all o € T'.

(ii). If Ry has unity e, then R is semiperfect iff I is finite and R, is semiperfect for
alla € T'.

(iii). R is left perfect ring iff T is finite and Rq is left perfect for all « € T'.

(iv). R is semiprimary ring iff T is finite and Ry is semiprimary for all @ € T,

Proof. (i) If R = Yaer Ro and R is semilocal, then R/J(R) is artinian. Let
Ry = Ya>p Rp be an ideal of R. From the proof of Theorem 2.4.1, 1, : Ry — R,
is a projection homomorphism. Suppose that I' has infinite chain a; > ay > a3 >
o> aq, > --- and R/J(R) is artinian. Then Ry, + J(R) = Ry, + J(R) for some
k. This implies that J(Ra,) = Ra,, which contradicts the assumption. Therefore, I'
satisfies d.c.c. If R/J(R) is noetherian, then I" has a.c.c. Let {81, 82, -+, Bk, } be
an infinite subset of I of incomparable elements. Then for some m > n, we have

ZRB;’ = ZR@

i=1 1=

~
—
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If r € Rg,, then there exists an element z € >iL; Ry such that r —z € J(R).
As supp(z) C TR UTBy---TB, for all s € Ry, (r —z)s = rs —xs € J(R). Let
a € supp(zs) and o = yBm, where v < B; for any i = 1,---,n. Then a < fn.
If « = By, and B < v < f;, then B; is comparable with f5,,. This leads to a
contradiction. Hence a < f(,,. Therefore, rs — zs € J(R) N Ry = J(R4,) and
rs =mg, (rs — zs) € 7, (J(Ry)) € J(Rg,,)- So 7R, C J(Rp,) whence r € J(Rg,,),
as the case holds for any r € Rp,,, which contradicts the hypothesis J(Rg) # Rg.

Thus, I' contains no infinite subset of incomparable elements. By Lemma 4.1.2, I' is
finite.

Conversely, if R, is semilocal for all @ € I" and |T'| = n, then we can show that the
theorem hold by induction on |I'|. First, let |T'| = 2, say I' = {«a, 8} with @ > . Then
Ry is an ideal of R and R/J(Rg) = Ra ® (Rs/J(Rp)). In particular, we may assume
that J(Rg) = 0. As R is semisimple artinian and so there is an identity eg € Rg.
From Theorem 2.4.2, J(R) = {r — egr|r € J(Ry)}. Using mo(J(R)) = J(Ra) and
that R, is semilocal, it follows that R/J(R) is artinian.

Now, by induction hypothesis, we assume that || = n + 1. Select a maximal
element in T, say a. Then R = R, @ R'. By hypothesis, R'/J(R') is artinian and R’
is an ideal of R, hence J(R) N R' = J(R'). Moreover, R,/J(R,) is also artinian. We
can reduce this case to I = {a, 8}, where Rg = R'. By using the above arguments,
we can prove that R is semilocal.

(ii) In case of R is semiperfect, then R is semilocal. Hence R, is semilocal and
[ is finite. It suffices to show that J(R,) lifts the idempotents iff J(R) lifts the
idempotents in R. Since T is finite, there exists o which is maximal and let ¥ =
I'\ {a}. As Ry is an ideal, R/Rp = Ro. If R is semiperfect, then R, is clearly
semiperfect. It remains to show that Rr is semiperfect.

As by (i), we know that Ry is semilocal. Let e € Ryv, such that (e —e?) € J(Rr).
Then (e — e?) € J(R) and by the semiperfectness of R, we can find an idempotent
f € R such that f+ J(R) = e+ J(R). (since the idempotent is lifted by J(R) and
(f —e) € J(R)). Write f = fa+ f', f' € Rrv. Then fo = f3, f—e=fa+(f' —¢) €
J(R) and so f, € J(R,). Therefore, fo =0 and f € Ry

Conversely, suppose that IV is finite and R, is semiperfect for all @ € I'. By
using similar method in (i), we can reduce the theorem to the case [I'| = 2. In this
cases, R, and Rp are both semiperfect with unity e,, eg repectively and o > 3. Let
T = z, + zg such that (z — 2?) € J(R). Then zo — z2 € J(R,) and 0 Yo — T4 €
J(Ry) for some y, = Y2 € Ra, by the semiperfectness of R,. On the other hand,
(eaz) — (€az)? = eq(z — 2?) € J(R) N Rg = J(Rp). Since Ry is semiperfect, there
exists an element yg — y5 € Rg with ys — ez € J(Rp). Put y = yo + ys. It is then

87



easy to check that y = y* and y — z € J(R).

The proofs of (iii) and (iv) are similar to (i) and (ii) and hence are omitted. (cf.
[Wau, Prop. 1.11, Prop. 1.13]). O

4.1.3 Group Graded Rings

The Jacobson radical of the group graded ring has been discussed in Section 2.2.
We review here some of the finiteness condition of group graded rings. The main
references are [Kar, Kel5, NV], etc.

Let G be any group and R a G-graded ring. If M is a graded left R-module
such that M €g_g M, then from Theorem 1.4.2, we know that g_gM and g, M are
categorical equivalent.

Lemma 4.1.4 [NV, Lemma I1.3.2] Let R be a ring graded by a group G (not neces-
sarily strongly graded). If M €g_g M is a left gr-noetherian (gr-artinian) then M,
is left noetherian (artinian) in g, M, for all o € G.

Corollary 4.1.5 [NV, Coro. 11.3.3] Let R be a ring graded by a finite group G. If
M €r_g M is left gr-noetherian (artinian), then M s left noetherian (artinian) in
rM.

Theorem 4.1.6 [NV, Th. 11.3.5] Let R be a Z-graded ring and M € r_gM. Then
M is left gr-noetherian iff M is a left noetherian R-module.

We have some theorems for some classes of infinite groups, for instance, we have
the following theorem:

Theorem 4.1.7 [NV, Th. I1.3.7] Let R be a strongly G-graded ring, where G is a
polycyclic-by-finite group. If R, is left noetherian ring then R is left noetherian ring.

We can also consider the homological properties of group graded rings. Suppose
that G is finite and R is a G-graded ring with unity. For the smash product R#G™,
we have following results from [JJ].

Proposition 4.1.8 [JJ, Prop. 2.1] Let M be a right R#G*-module and N a right
R-module. Then there is a natural isomorphism between

“: Homg(M,N) — Hompgyc(M,N ®g (A#G™))
fe f
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where f(m) = >gec f(m)py ® py.

Theorem 4.1.9 Suppose that the ring R is a G-graded ring. Let V' be a right R#G™-
module. Then the following statements hold:

(1). V is projective iff Vg is projective R-module.
(ii). V is injective iff Vg is injective R-module.

(iii). V is flat iff Vg is flat R-module.

4.1.4 Groupoid Graded Rings

Groupoid graded rings have been recently generalized by Kelarev in [Kel7] (1995).
A graded ring R is said to have a finite support if only a finite number of the homoge-
neous components of R are nonzero. If R is graded by any set S and for all s,t € S,
then there exists u € S such that RyR; C R,, in fact, this multiplication makes R a
groupoid graded ring. In this groupoid graded rings, R is graded by finite groupoid
iff R is graded ring with finite support. Hence, if we have results on finite groupoid
graded ring, then we can transfer these results to group or semigroup graded rings
with finite supports.

Theorem 4.1.10 [Kel7] Let K be a class of rings containing all rings with zero
multiplication (i.e. R?> =0). Suppose K is closed under homomorphic images, right
and left ideals, Ting extensions and also closed under finite sums of one sided ideals.
Then the followings are equivalent:

(i). For each finite groupoid S and the S-graded ring, we have R =3 ;e Rs € K iff
R, € K for every e € E(S).

(ii). For each finite semigroup S and the S-graded ring R, R = Y 5 Rs € K iff
every e € E(S).

(iii). For every finite group with identity e, the G-graded ming R = Y ,cq Rs is in K
iff Re € K.

Proof. The implications of (i) to (ii) and (ii) to (iii) are trival. The key step is prove
(iii) implies (i).
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Let S be any finite groupoid. Let R = Y ,cs Rs be a S-graded ring. Suppose
(iii) holds but (i) does not hold, then define a class & by the collection of all counter
examples of (i). Then & must be the following collection:

{R € K: Ris S-graded ring but Je € E(S) R.¢K} or
{R¢K : R, € K for all e € E(S)}

Let I be a homogeneous two-sided ideal of R. Then, we can see that R € R iff
either I or R/I € & We now proceed to find a homogeneous two-sided ideal I which
gives a contradiction.

Step 1: As S is finite, we can assume R is S-graded ring and choose R € K with mini-
mal |S|. Take an additive subgroup A of R, for some s such that supp(AR) # S.

Step 2: If AR =0, then take I = R*A. Thus, I*> =0, and so [ € K and I, € K for
every t € S.

Step 3: If AR = P # 0, then by the minimality of |S|, we know that P satisfies (1)
The following cases then arises:

Case I : If R € K but R € &, then P is a right ideal of R, and so P € K.
Thus, for all e € E(S), P. € K.

Case II: If R¢K but all e € E(S), then R, € K since P, is right ideal of R,.
This implies that P, € K and by (i) P € &, P € K.

In the above two cases, P is a right ideals satisfying (i), hence, P € K iff P, € K
for all e € E(S).

However since supp(RP) # S for every € S, we know that R, A is contained
in R,.. This means that (R;A)R and ((R;A)R). are in K, for every e € E(S).
Since K is closed under finite sum of ideals, so I = R'P = P+ Y s R, is a
homogeneous two side-ideal of R. Hence A C I and for all e € E(S), I, € K.
These lead to I € K and I is therefore not a counter example of (i). Hence R/I
is the other counter example of (i).

Step 4: If s € S and sS # S, then supp(RsR) C sS # S. Put A = R, above. Then
AR can be graded by the groupoid T = S\ {s}, where the sth homogeneous
component is zero and AR is in & which contradicts to the minimality of |S].
Therefore supp(RsR) = S and sS = S. Similarity, we have Ss = S. Thus, S is
a left and right simple groupoid.
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Step 5: If (st)x # s(tz) then RyRyR; C Rstyz N Rs(tz). This implies that RsR Ry =
0. As a result, we have supp(RsR;R) # S. Since S is finite, we obtain
supp(RsR) # S, contradicting wth the minimality of |S|. Therefore, S is a
semigroup and S is left and right simple so that S is group.

Step 6: By assumption of (iii), R is a group graded ring. Moreover, R € K iff
R, € K. This contradicts that R is a counter example of (i). Therefore, (i) is
proved. Il

As all semilocal rings have properties like IC, we have the following corollary.

Corollary 4.1.11 [Kel7] Let K be the class of all semilocal (Tight perfect, left perfect,
semiprimary, nilpotent, locally nilpotent, T-nilpotent, prime radical, quasiregular, PI)
rings, S is a semigroup and R = Y g Rs an S-graded ring with finite support. Then
R e K iff R. € K for every e € E(S).

Applying the above results to semigroup algebras, we get the following corollary.

Corollary 4.1.12 Let K be field with char(K) = p and S a Rees matriz semigroup
MPO(GO, I, A; P), where I and A are finite. Then Kqo[S] is semalocal (or, in K) iff
K|[G] is semilocal (or, in KC).

4.1.5 Semigroup Graded PI-Algebras

A class A of algebras is called S-closed if A contains R = @scsRs where R € A for
all s € S. From the above equality, we say that a class K of semilocal rings S-closed
if S is a finite semilattice. Recently, Kelarev described the conditions that make the
class of PI-algebras S-closed.

Theorem 4.1.13 [Kel3] The class Pl-algebras is S-closed iff S has a finite ideal
chain
D=5 CSC---CS =35

such that each Siy1/S; is finite or nilpotent. (If S has zero, let So = {0}.)

To prove this theorem, we need some technical lemmas on Pl-algebra. From [Row],
it is known that the class of Pl-algebras is closed under one-sided ideal. Moreover,
if R is a Pl-algebra, then the matrix ring M;(R) is also Pl-algebra for any integer

t. Then by applying the smash product of group graded rings and by using duality
theorem, we obtain the following lemma.
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Lemma 4.1.14 [Kel3] The class of Pl-algebras is closed under finite groups.

Proof. By Theorem 4.1.10, R, is a PI algebra iff R is. If R, is PI algebras, then we
know that R is embeddable in R#G* and so by [CM1], A, = pg(R#G*)pr = Ign-1Dh,

also R#G* = A=Y Ay, and each Ay, = A, = R,. Thus, A is a Pl-algeba and R
is PI algebra. O

Lemma 4.1.15 [Kel3, Lemma 7,8] If the class of Pl-algebras is S-closed, then S is
a periodic semigroup and the number of idempotents in S is finite.

Moreover, if S contains a subgroup G, then G is finite. If S is nil, then S is
nilpotent.

We now sketch the proof of Theorem 4.1.13.

The necessary part follows from Lemma 4.1.15. Now we prove the sufficiency. Assume
that S has a chain with the properties above, R = 3 ,cg Rs. Let A; = > s, Rs. Then,
the quotient algebra T = A;/A;41 is a Q;-graded, where @Q; = S;/Si—1. For ¢ € Q.
T, is PL. Then T is a Pl-algebra since Q; is a finite semigroup or is nilpotent. Thus,

every factor T is a Pl-algebra. Thus, we can show that R is a Pl-algabra by induction
hypothesis. O

4.1.6 Application to Semigroup Algebras
We now apply the results in section 4.1.2 and 4.1.4 to semigroup algebras.

Theorem 4.1.16 If S is finite semigroup (group) and K field with char(K) = p,
then K[S] is member of class K, the class is same as Coro. 4.1.11.

Theorem 4.1.17 If S is a semilattice (band) of groups, S = UaerGa, then K[S] € K
iff K[Go) € K for any a € T', where I is finite semilattice (band).

Proof. R = K|9] is graded by finite semilattice or band. By Corollary 4.1.12,
R, € K iff R € K. Hence, K[G,] € K for all a € . 0

4.2 Semiprime and Goldie Rings

In this section, we are interested in the following question: When will a semigroup
algebra be semiprime right Goldie or right noetherian? However, for non-cancellative
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semigroups, the problems seem to be rather complicated. In [Jes2], a solution is given
for semigroup ring R[S] which is an inverse semigroup. Finally, we examine the case
when S being nilpotent. There are some nice results for noetherian algebras.

Now, let S be a submonoid of polycyclic-by-finite group. Note that if G is
polycyclic-by-finite group, then K[G] is noetherian ring and satisfies the a.c.c condi-
tion on right (left) ideals. Using the results in section 3.3, we have following result.

Theorem 4.2.1 Let S be a submonoid of a polycyclic-by-finite group and W a poly-
(infinite cyclic) normal subgroup of finite index in the group H generated by S.

Moreover, the following conditions are equivalent:

(i). S has a group of right fractions.
(ii). K[S] is a right Goldie ring.

(iii). K[SNW] is a semiprime right Goldie ring.

Furthermoer, J(K[S]) = J(K[H]) N K[S], and K[S] is an Ore domain if H is a
torsion-free group.

Consider the inverse semigroup, by using the characterization on inverse semi-
group algebras (see section 3.5), we have R[S| = @}, M, (R[Gk]), and hence we
obtain the following theorem in [Jes2], (1988).

Theorem 4.2.2 Let R be a ring with unity and S an inverse semigroup. Then R[S]
is semiprime right Goldie iff E(S) 1is finite and for every mazimal subgroup G of S,
the group ring R[G] is semiprime right Goldie. If R[S] is prime right Goldie, then S
1S a group.

For the semigroup algebra K[S] with ascending chain condition on right annihi-
lators, the following technical lemmas are useful for the investigation of the Goldie
and noetherian semigroup algebras.

Lemma 4.2.3 [Okn2, Lemma 1] Assume K[S] has a.c.c. on its right annihilator
ideals. Then for every subsemigroup T' of S, there exists u € T such that uT is a left
cancellative semigroup.

Lemma 4.2.4 [Okn2, Lemma 3] Let S be a semigroup with no free noncommutative
subsemigroups. Assume further that K [S] has a.c.c. on its right annihilator ideals
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and J is a nilpotent ideal of K[S). Let U' C S’ be a cancellative subsemigroup of
the image S' of S under the natural homomorphism K[S] — K|[S]/J. Then there

exists an element y in the inverse image U of U’ in S such that yUy is a cancellative
SEMIGroup.

Lemma 4.2.5 Let S be a nilpotent cancellative semigroup with quotient group G,
and P be prime ideal of K[S]. If PN S =0, then

(i). PK[G] = K[G]P is a two-sided ideal of K|[G]

(ii). Q = PKIG)] is a prime ideal of K[G], Q N K[S] = P, and K[G]/Q is a local-
ization with respect to an Ore subset of K[S]/P.

(iii). If all prime ideals Q of K[G] satisfying QNG = 0, and K[G]/Q 1s Goldie ring.
Then P = Q N K[S] is also prime and satisfying PN .S = (.

Proof. First of all, since S is a nilpotent cancellative semigroup, we have shown
that S has a group of fractions G which is a nilpotent group (see section 3.3.4.).

Now, take & € PK[G] N K[S]. Then there exists s € S such that as € P. For
any t,w,- - ,w, € S and n is a nilpotency class of S, we obtain
ayn(s,t) = azn(s,t) € P.
by using the notation in section 3.3.4. Hence ayn—1wnZn-1 € P for all w, € S,
18, ) K[S]zn-ils,t) € P.

Since PNS = (), we have z,(s,t)P. By the primeness of P, we also have ay,(s,t) €
P. Repeating the process in this way, we can show that ayn-1(s,t) € P and so on.
Eventually, we obtain that ayi(s,t) = atwys € P for all t,w; € §. This implies that
a € P.

Now we want to show that K[G]P = PK[G]. Let p € P and t € S. Since supp(p)
is finite, there exists u € S such that

upt~* € K[S]n PK[G] = P C K[G)P.

Hence, pt—! = u~'upt~' € K[G]P and so PK|[G] is generated by pt~! for some arbi-
trary p,t. This proves the inclusion containment. By symmetry, we have K [G]P =
PKIG].

Now, let @ be a maximal ideal of K'[G] with respect to the condition QNK[S] = P.
Then, by noting that @ = (Q N K[S])K[G] = PK[G] and Q is prime due to the fact
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that P is prime, we know that K[G]/Q is a localization of K[S]/P with respect to
the image of S in K[S]/P. That is, (K[S]/P)S! = K[G]/PK|G], where S is an
image of S in K|[S]/P.

(iii) Since SS~! = G and by Lemma 3.3.6(iv), we know that @ N K[S] is a prime
ideal. Since QNG =0, PNS C QNG = 0. Hence, PN .S = (. This completes the
proof. In particular, if G is finitely generated nilpotent, then K[G] is noetherian and
so it satisfies the condition that K[G]/P is Goldie. O

Proposition 4.2.6 Let S be a nilpotent semigroup, and P a prime ideal of K [S] such
that S\ (SNP) is a subsemigroup of S. Then S/ ~p is a 0-cancellative semigroup and
there exists a prime ideal Q of K|[G] such that K[G]/Q is isomorphic to a localization
of K[S]/P, where G is quotient group of (S/ ~p)\ {0}, and 0 is zero of S/ ~p.

Proof. Let T = (S/ ~p) \ {0} be a semigroup. We first prove that 7' is right
cancellative. Assume that a, b,z € T such that axz = bz. Then for any wy, wa, - - w, €
T, z,(a,b) = yn(a,b). where n is the nilpotency class of S. Replacing w; by zv; € T
for all 7, then we obtain

Zn-1(a, b)TVnYn-1(a, b) = Yn-1(a, b)zvnzr_1(a, b),
and z,_1(a,b)z = yp—1(a,b)z # 6 by ax = bz. Hence,
(Zn-1(a, b)z)K[S])(Yn-1(a,b) — To-1(a,b)) =0

The primeness of K[S]/P then implies that y,_1(a,b) = z,-1(a, b).

Processing in the same way, we obtain that a = zo = yo = b. Thus, T is right
cancellative. By symmetry, S/ ~p is an O-cancellative semigroup.

Consider the following natural homomorphisms:
K[S] — K[S/ ~p] = Ko[S/ ~p] = K[T] % K[S]/P
such that S/ ~p can be embedded in K[S]/P. Let P’ = ker¢. Then we have
K[T)/P'2 K[S]/P and PNT=0

Since G = TT"!, K[G]/Q is a localization of K[S]/P with resepect to the Ore set
induced by the prime ideal P. The proof is completed. O

Let T be a subsemigroup of the semigroup S. Denote the image of 7" in K[S]/J
by T" and let K{T'} be the image of K[T] in K[S]/J. Then we can form the following
definition.
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Definition 4.2.7 A semigroup S is called uniform if it can be embedded into a com-
pletely 0-simple semigroup T such that S intersects non-trivally with all H-classes of

T,

Note that every subsemigroup of a group is uniform. In fact, uniform semigroups
occur in the following cases.

Lemma 4.2.8 [Okn2, Lemma 8] Let U be a completely semisimple semigroup with
finitely many J-classes. Assume that S is a subsemigroup of U that intersects only k
nonzero R-classes of U. Then there exists a chain of ideals of 5.8 = 8 2 Spi 2

. D Sy, n < 2k, such that S, and every Rees factor S;/Si-1 is a uniform semagroup
or a power nilpotent semigroup of nilpotent index less than or equal to k+ 1.

Lemma 4.2.9 [Okn2, Lemma 9] Assume that S is a semigroup with a uniform ideal
T that has no free noncommutative subsemigroups. Let J be a completely 0-simple
closure of T. Then S U J has a natural semigroup structure extending that of S.
Moreover, if U D S is a semigroup with a completely 0-simple wdeal Z containing

T, then J can be chosen so that J 2 Z and every H-class of J is contained in an
H-class of Z.

Theorem 4.2.10 [JO1] (1994) Let S be a nilpotent semigroup and P a prime ideal
of K[S] such that K[S]/P is right Goldie with the classical Ting of quotients M, (D),
D is a division ring. Then the semigroup S/ ~p has a chain of ideals.

(Eq:4-2-1) S/ ~p)=L2L_1 225 =121 ={6}

where 0 is zero element if S has a zero element, otherwise Iy = (. Moreover, the
ideal chain (Eq:4—2-1) has following properties,

(i). Each Rees factor I;/Ii-y, for 1 <1 <, is either a power nilpotent semigroup
or a uniform Semigroup.

(ii). I is uniform in a completely 0- simple inverse subsengroup I of M, ( D) with
finitely many non-zero idempotents, i.e. |E(I N =gq. Let S =(S/ ~p)UI. We
have S a nilpotent subsemigroup of My(D).

(iii). Let K{f} be the subalgebra of M, (D) generated by I. Then K{I} C K[S]/P C
K{I}. Furthermore, the matriz ring over D My(D) 1s the common classical
ring of quotients of these three classes algebras, and K {I } is a localization of
K{I} with respect to an Ore set.
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(iv). Denote the mazimal subgroup of I by G . Then, there ezists a prime ideal Q of
KI[G] such that K[G]/Q is a Goldie ring and

M,(K[G)/Q) = K{I}.

where q is the number of nonzero idempotents of L.

Proof. (i) Let S = S/ ~p, which can be embedded into K[S]/P. By this way, we
can identify S as a subsemigroup of M, (D). In chapter 1, we have already known that
M, (D) is completely semisimple, so there are ideals T} = {X € Myp(D) : rk(X) < i}
for i =0,--- ,n and T;/T;_; is completely O-simple semigroup. Let S, = SNT;, that
is S; contains all matrices of S with rank 7. Refining S; and by Lemma 4.2.8, it yields
an ideal chain, namely,

(@p)
I
=~
U
~

A
U
1V}
ey
Il
~
U
S

with each I;/I;_; is either a uniform or a power nilpotent semigroup.

Consider the last nontrival ideal I € S. If I is power nilpotent, then I* = 6
for some positive integer k and K{I} is also nilpotent in the prime algebra K [S]/P.
This leads to K{I} = 6, which contradicts I is nontrival. Therefore I is the smallest
uniform ideal. Let I be the smallest completely 0-simple subsemigroup of M, (D)
containing I. Since the maximal subgroup G of I is generated by a subsemlgroup of

I, G is a nilpotent group. Moreover, if I is both uniform and nilpotent in I then I is
an inverse semigroup. Hence, I is nilpotent semigroup.

Now, we define § = S'U I C M, (D) Then, by Lemma 4.2.9, S is a natural
extension of S and I. We note here that S\I = S\I and hence S/I=38 / I is nilpotent.
Choose a posmve integer m which is larger than the nilpotency of both S and I. Since
ST = S/I it suffices to show that Tmi1(Z,y, W1, s Wim) = Ym+1(T, Y, W1, -+ , W)
for =, yEI Wy, - meS

Assume that both elements z,, and ¥,, are nonzero. Then, since I is uniform
in I, for each w; € I, we can find 2,3/, w; € I such that w;Hwj, 2}z’ and yHy'.
Since I itself is nilpotent, T, (z',y) = ym(z',y') # 0. Then (2',y’) € H implies
that (z,y) € H. As I is an inverse semigroup, there exists idempotents g, h with
zg = z,yg = y and hz = z, hy = y. Hence, zw;y = zgw;hy. So by the nilpotency of
I , we have

Tm+1(2,Y) = Ym+1(2, ).

This proves that S is nilpotent.
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Now, I = M°G,q,q;A), where A is a g x ¢ identity matrix and I; = I N I(z)

is a nontrival cancellative subsemigroup of some maximal subgroup of I. Then, we
have the following chain:

S

U

I,

U

U
Ty wes B

I=|: .. | € MG,q,q4)
Iql Iqq

By noting that I € M,(D), |E(I )| = ¢ < oo and the fact E(I) = {e1, - ,eq}
is the set of non-zero idempotents of I, we have Ko[I] = M,(K[G]) and satisfies the
identity e = e1 + ez + - + €g. We hence know that K{I} is a homomorphic image
KolI], that is K{I} = KO[I]/A M,(K[G]/Q) for some ideal @ of K[G] and A is
ideal of KO[I ]. Since K{I} is prime, @ is a prime ideal of K[G]. Since I is ideal of S
and e € K{I}, we obtain

K{I} C K[S]/P = K{5} C K{S} = K{I} C My(D).

Since K{S} has a classical ring of quotients M, (D), K{I} and K {I} have the same
classical ring of quotients M, (D).

As Ko[I] =2 M,(K[G]), we may assume that E(l) = {e1, €2, ,€q}, where e;’s
are the diagonal orthogonal matrices. We now show that Ky [1] is localization of Ky[I]
with respect to the Ore set

C= : O#CjGIjijI‘allj

0 Cq

Identifying I with the subsemigroup of M,(K[G]). Then, obviously, every non-zero
element of I is a matrix of the form (g);;, that is, the matrix with g € G at the
(4,)th position and zero elsewhere. Hence IJJI”1 G. Let (h);; € I. Then we have
h = zy~! for some z,y € I;;. Since y ™' € I;;' C G = I;I5', there exists s € I;; such
that y~'s € I;; and so

(R)ij(8)5 = (hs)i; = (2)i;(y~ S)JJ el
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Let ¢ € C as defined above. Then, by (h);jc = (h)i;(s);;, we have IciIc
Consequently, ] = IC~1. This yields that Ko[I] = Ko[[]C~. Hence, K{I} is a
localization of K{I}. O

Now, we apply the above theorem to the radicals of the algebras over nilpotent
semigroup, we hence obtain the extended results in section 3.3.4.

Lemma 4.2.11 [JO1] (1994) Let I be a uniform subsemigroup in a completely 0-
simple inverse subsemigroup I with finitely many non-zero idempotents, say q, and
over a nilpotent group G. Let G, be the p-subgroup of G if char(K) = p. Then

0 iof char(K) = 0;
J(Kol]) = Bl = { Jehar(E)
M, (w(K[G,))K[G])) N Ko[I]  if char(K)=p>0
Theorem 4.2.12 [JO1] (1994) Let S be a nilpotent semigroup such that for every
prime ideal P of K|[S] either K[S]/P is a right Goldie algebra or S\ (SN P) s a

subsemigroup of S. Then
J(K[S]) = B(K[S])-

Proof. If S\ (SN P) is a semigroup, then the results follow from Prop. 4.2.6 and
Theorem 3.3.32.

Let K[S]/P be right Goldie. Then it suffices to show that for any prime ideal P
of S,
J(K[S/ ~p]) = B(K[S/ ~P))-

By Theorem 4.2.10, The semigroup S is decomposed by S / ~p which has finitely
many ideal factors 7' = I;/I;_;. This factors are uniform or power nilpotent. By
Lemma 4.2.11, we have J(K,[T]) = B(Ky[T]). Since T is uniform and is nilpotent,
we have J(K[T]) = B(Ko[T]). Combining the above results and by induction on its
chain decomposition of S/ ~p, we have J(Ko[S]) = B(Ko[S]). O

4.3 Noetherian Semigroup Algebras

It is known that if K[G] is right noetherian for any group G iff it is left noetherian
by the involution g — g~!. If S is a commutative semigroup, then the ascending
chain condition on the congruences on S implies that S is finitely generated (cf.
[Gil, Th. 5.10]). In other words, all the noetherian commutative semigroup algebras
are finitely generated. In this section, we study the noetherian noncommutative
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semigroup algebras and find the necessary conditions for the semigorup algebras to

be left (or right) noetherian. Recall that there are a.c.c. on the right congruences on
S if K[S] is right noetherian.

In the case of cancellative noncommutative semigroups. If S is monoid and has
a group of one-sided fractions G. Then by section 3.3, K[S] is prime (semiprime)

iff K[G] is prime (semiprime). Moreover, for the categories of modules of K[S] and
K|[G], we have the following result:

Theorem 4.3.1 [Squ, Th. 2.3, Th. 2.4] Let S be a moniod having a group of
fractions G and R any commutative ring with 1. Let g(sM be the category of left
R[S]-modules and kg M the category of left R[G]-modules, Then the functor

F:(—)~ R[G] ®rs) (—)

is exact. Conversely, if S generates a group G but G is not group of fractions of S,
then R[G] ®g(s) (—) is not ezact.

We can see that if S has a group of fractions G, then K[G] is a flat right K[S]-
module. If K[S] is right noetherian, then K[G] is right noetherian and flat right
K|[S]-module.

Since K[S] is a subalgebra of K[G] and K[G] is a flat right K[S]-module, we
can induce the left K[S]-module to K[G]-module. For example, if V' is semisimple
K[S]-module, then we can induce V' (denote V¢) as a semisimple K[G]-module.

The following characterization theorem for K[S] to be right noetherian was due
to Okninski.

Proposition 4.3.2 [Oknl] Let G be a polycyclic-by-finite group, K any field and S
is a submonoid of G. Then K[S] is right noetherian iff S satisfies a.c.c. on right
ideals. Moreover, in this case, S is finitely generated.

Notice that even if G is a finitely generated group and K[G] is noetherian, it is
still not sufficient to imply that K[S] is right noetherian, where S is subsemigroup
of G with SS—! = G. We give here an example.

Example 4.3.3 Let G = (z,y), free abelian group and S = (1,zy, zy?, zyl, - - ).
Then we can see that G = SS™ and K[G] = K{z,y} is noetherian but S does not

has the a.c.c. on ideals, Hence, K[S] is not noetherian.

Now, we consider the case of noetherian algebras of general semigroups.
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Lemma 4.3.4 Assume that Ko[S)] is a right noetherian ring and S is a completely
0-simple. If S = M°(G, I, A; P), then K[G)] is also right noetherian ring. Moreover,
I is finite when Ko[S] is right noetherian and A is finite when Ko[S] is left noetherian.

Proof. Assume that K[S] is right noetherian and S = M°(G, I, A; P) is completely
0-simple. Then

Ko[S) = M(KIG], 1, A; P) = K[G].
The reader is referred to Section 3.4 for the properties of the Munn algebras.

Let I; C I, C--- C I, C--- be a chain of right ideals of K[G]. We then have
I, C I, C--- and if Kg[S] is right noetherian, I, = fi+1 for some i. Hence I; = I; 4.
This shows that K[G] is also right noetherian.

The second part is obvious because for any subset J C I, Siy) = Uiey Sqy is a
right ideal of S. Since S satisfies a.c.c. on its right ideals, whence I is finite. O

Combining Lemma 4.2.3, Lemma 4.2.4 and [Oknl, Ch. 12], we then obtain the
following theorem.

Theorem 4.3.5 Assume that K[S] is right noetherian. Then,

(i). S has finitely many right ideals of the form eS, where e is an idempotent in S.
(ii). Any 0-simple principal factor of S 1s completely 0-simple.
(iii). S has finitely many completely 0-simple principal factor.

(iv). If S is weakly periodic semigroup and S has finitely many J-classes, then S is
strongly m-periodic.

(v). [Okn2] (1993) If S has no free noncommutative subsemigroup, then every can-
callative subsemigroup T' of S has a finitely generated group G of two-sided
fraction.

(vi). [Okn2] (1993) The set of isomorphism classes of groups of fractions of the
mazimal cancellative subsemigroups of S is finite, where S is image of S in

K[S]/B(K1S])-

Proof. (i) Consider the natural order defined on the set E(S), that is e > f iff
ef = fe = f. (Recall that E(S) may not be semilattice). Then S has no infinite
chains of orthogonal idempotents for if otherwise, it will contradict the finiteness of
the right Goldie dimension of K[S]. Clearly, if e;S D €3S, then ese; < e;. This
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shows that S satisfies the descending chain condition on right principal ideals in
€ = {eS|e € E(S)}.

Now, fix f € E(S) and consider the set:
¢; = {eS C fSle € E(S) and eS is maximal in fS}.

By the a.c.c. on right ideals of K[S], we know that €; is finite. By the fact that
there are no infinite descending chains of ideals eS, we know that € is finite.

(ii) Assume that the principal factor S; of S determined by an element ¢ € S is
0-simple. It suffices to show that if S; = StS is 0-simple, then StS has primitive
idempotent. As S = S/ ~p(k[s)) can be embedded into M, (D) for some n > 1, so

= StS/ ~p(k(s)), Which is O-simple ideal of S. This means that 7" can also be
embedded into some completely 0-simple factor I;/I;—y of My(D). (see Section 1.1).

Let  be the image of ¢ in §. By the O-simplicity of T, we have utv; = ¢. for
uy,v; € 5. Then u; = uguyvy. Hence, u,S* C Un+15'. By the noetherian properties
on right ideals, we have umi1 = umz2. Then, we can find an idempotent U, vnz2.
Moroever, the inverse image © € S satisfies  — 2® € B(K[S]). Thus, StS has a
nonzero idempotent and by (i), we know that S has no infinite chains of idempotents.
This implies that StS has a primitive element.

(iii) This part is a direct consequence of assertions (i) and (ii), and the proof is
hence omitted.

(iv) Since every 0-simple principal factor is completely 0-simple factor, Lemma
1.1.5 and 1.1.6 yield that S is strongly m-regular.

(v) The group of fractions of T exists because of the non-existence of free non-
commutative semigroups. Since S has a.c.c. on right congruences, G has a.c.c. on
its subgroups and so G is finitely generated.

(vi) First, we observe that S C M,(D) for some division algebra D. Moreover,
as K[S)] is right noetherian, S intersects finitely many J-classes. Let T be a maximal
cancellative subsemigroup of S. Then, the group of fractions of 7" is contained in the
H-class H' of M,(D). The maximal subgroups of the principal factor, say I; /14
for all 4, are mutually isomorphic to each other. Clearly, the isomorphic classes of
maximal subgroups are finite since S intersects finitely many g-classes of M, (D). O

By using the above theorem, we obtain the following corollaries.

Corollary 4.3.6 Let S = M°(G°, I, A; P) be a completely 0-simple semigroup. Then
we have
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(). If T is subsemigroup of S and K|[T)] is right noetherian. Then T'N S((:)" ) #0,0

for only finitely many subsemigroups of S((:;l ) iel andm € A.
(ii). If Ko[S] is right noetherian, then I and A are finite index sets.

(iii). Let U be uniform and can be embedded into S. Then if K[U] is right noetherian,
then S has finite rows and columns.

(iv). Assume that J(K[G]) = 0 and Ko[S]/J(Ko[S]) is a finitely generated K -algebra.
Then K9] is a finitely generated and hence S is finitely generated.

Lemma 4.3.7 Let S be a minimal 0-simple ideal M and also assume S has a.c.c
on its left principal ideals. If K[S] is right noetherian, then S is finitely generated
Semigroup.

Proof. Suppose K|[S] is right noetherian but S is not finitely generated. Then S
has a.c.c. on its congruences. Thus, there exists a maximal congruence p on S with
respect to the property that S/p is not finitely generated. Let "= S /p. Then we
have

(a) Any nontrival homomorphic image of T is finitely generated.

(b) For any nil ideal I of Ko [T'], the congruence ~ is a trival congruence on S. That
is (s,t) €~y implies s =t on S.

Hence, by replacing S by S, S may assume not finitely generated and there is no
nontrival congruence p on S that S/p is not finitely generated.

If M is not nilpotent, then M = M°(G, I, A; P) is a completely 0-simple semi-
group. Also, Ko[9] is right noetherian and if G is finite, then M is finite. Thus,
S/M is finitely generated and hence S is finitely generated. This contradicts our
assumption. On the other hand, if G is infinite then K[G] is right noetherian since
Ko[M] is right noetherian and so G is finitely generated. Consequently, S \ M is
finitely generated. It suffices to show that M is finitely generated. For this purpose,
take u € M such that u = (g,4,\), where ¢ € I, A\ € A. By some construction (see
[Okn1, Th. 12.6]), we can check that M is finitely generated.

In [Oknl], there is an important theorem on the condition for right noetherian
algebra K|[S] which leads to S is finitely generated. The proof of this theorem is
rather constructive and have to make use of the above lemmas. We only give a brief
sketch of the proof. The reader is referred to [Oknl, Th. 12.6] for more details.
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Theorem 4.3.8 [Oknl] Assume that K[S] is right noetherian. Then S is a finitely
generated semigroup if either of the following holds:

(). S is a weakly periodic semigroup.
(ii). S has a.c.c. on principal left ideals.

(iii). Ewvery cancellative subsemigroup of any homomorphic image of S has a finite-
by-abelian-by-finite group of fractions.

Proof. (Sketch) We first assume that S is not finitely generated and so there is no

nontrival congruence such that S/p is not finitely generated. Then S satisfies (a) and
(b) in Lemma 4.3.7.

If S is weakly periodic, then there exists a minimal ideal M which is either nil
or O-simple. (See Theorem 1.1.5). If M is nil, then it contradicts (b). Therefore
M is O-simple ideal and Ko[S] is right noetherian. Consequently, M is completely
0-simple and M = M°(G,I,A; P). The trivalness of G is due to the minimality of
M. Moreover, if Ko[M] is right noetherian, then I, A are finite and therefore [M] is
finite. By using the hypothesis on S, we have S/M is finitely generated and M is
finite. Then S is finitely generated (see the proof of Lemma 4.3.7),

If (ii) is satisfied, then S has some minimial nonzero ideals. By the hypothesis on
S, we know that M is O-simple. This is exactly the case of Lemma 4.3.7. Then S is
finitely generated.

Finally, we can only deal with the case that S has no minimal ideals. Since ~p(x(s))
is trival, We may take S C M,(D) for some n and a division algebra D. Let T" be an
ideal of S containing all the least nonzero rank matrices. Then T — I, /I._; for some
r. Let w € T. Then, S*wS* C T and I,,/I,_; is completely 0-simple semigroup. Now,
select S'wS! be the minimal ideals among the ideals S*zS* for all z # 0, determines
the principal factors containing idempotents. Let J be the nongenerators of StwS?.
Then it suffices to show that S C (S'\ J?). The details are given in [Oknl, Th. 12.6].
d

Corollary 4.3.9 If K[S] is noetherian, then S is finitely generated.

Corollary 4.3.10 Let S be weakly periodic semigroup. If K[S] is right noetherian
and all subgroups of S are locally finite, then S is finite.

Corollary 4.3.11 Let S be inverse semigroup. Then the following conditions are
equivalent.
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(i). K[S] is right noetherian

(ii). S has finitely many idempotents, and all group algebras K[G] are noetherian,
where G is a subgroup of S.

(iii). K[S] is noetherian.

It is conjectured that the finitely generated property of S depends on whether
K[S] is right noetherian or not ([Oknl, Problem 7]). We now consider some typical
semigroups and add some extra conditions to them in order to make the answer
positive.

Theorem 4.3.12 Assume that S is a semigroup such that K[S] is a right noetherian
PlI-algebra. Then S is finitely generated.

Proof. Since K[S] is a Pl-algebra, S has a permutation property 3. This means
that every cancellative subsemigroup of a homomorphic image of S has 3, hence it
contains a finite-by-abelian-by-finite group. By using Theorem 4.3.8, we know that
S is finitely generated. O

In section 3.7, we have discussed the criteria for group algebras to be Pl-algebras
and also consider its subsemigroups. We now consider the (one-sided) noetherian
Pl-algebras and obtain some results such that its corresponding semigroups are also
finitely generated.

Theorem 4.3.13 [Oknl] Let S be a cancellative monoid. Then the following condi-
tions are equivalent:

(i). K[S] is a right noetherian Pl-algebra.
(ii). K[S)] is a right and left noetherian PI-algebra.

(iii). S s a finitely generated semigroup with a.c.c. on its right ideals and satisfies
the permutation property.

(iv). S is a finitely generated subsemigroup of an abelian-by-finite group, and S has
a.c.c. on its right ideals.

Theorem 4.3.14 [Oknl] Let S be an inverse semigroup. Then the following condi-
tions are equivalent:
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(i). S is a finitely generated semigroup and satsifies the permutational properties.

(i1). K[S] is a right and left noetherian PI-algebras

It is known that a submonoid S of a finitely generated nilpotent group yields a
right noetherian semigroup algebra K[S] iff S has the a.c.c. on right ideals. We
now describe the radicals of right noetherian algebras K[S], where S is nilpotent
semigroup (in sense of Malcev).

Proposition 4.3.15 [JO1, Prop. 3.9] (1994) Let S be a nilpotent semigroup and
K|[S] is right noetherian ring. Then for s,t € S, the following conditions are equiva-
lent:

(i). s —t € B(K[S]) = J(K[S]).
(ii). For everyu € S, there ezistsn > 1 and v € T = (su, tu) such that

(@) (su)" € T(tw)T, and (tu)* € T'(su)T,
(b) if char(K) =p > 0, then (v(su)v)? = (v(tu)v)?" for some k > 0.
(c) If char(K) = 0, then v(su)v = v(tu)v.

Proof. Since S is nilpotent, S has no noncommutative free subsemigroups and
J(K[S]) = B(K[S]) (see Theorem 4.2.12). Assume s —t € B(K[S]). So for every
u € S, (su—tu)* = 0 in K[S]. Hence condition (a) is proved. Since K[S] is a right
noetherian ring, by Lemma 4.2.4, for T' = (su, tu), there exists v € T such that vTv
is cancellative. Hence,

v(su)v — v(tu)v € KvTv] N B(K[S]) € B(K[Tv)).

By Lemma 3.3.37 and Theorem 3.3.8, we have (v(su)v)P" = (v(tw)v)?" for some k > 0
if char(K) = p, otherwise v(su)v = v(tu)v.

Conversely, let P be a prime ideal of S such that S/ ~p— K[S]/P. Take any
s,t and suppose that the condition (ii) in the statement of theorem is satisfied. By
Theorem 4.2.10, it yields that S = S/ ~p has a chain of ideals (Eq:4-2-1) that
contains an uniform ideal which can be embedded into a completely 0-simple inverse
semigroup. Let 5,7 be the images of s, in K[S]/P and and for any u € I, we have
su,tu € I. Assume Su # 6 and I is a completely 0-simple inverse semigroup. Then
there exists 7 € I such that 3ur is in the maximal subgroup H of I. LetT = (3ur, tur)
and (Sur)” € T(fur)T. Then tur # 6 and so sur and tur are H-related.
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By hypothesis, there exists v € (3ur,tur) such that if char(K) = 0, v(5ur)v =
v(fur)v. Moreover, (v(5ur)v)?" = (v(fur)v)?* if char(K) = p. Since v, Sur, tur € H,
we know that if char(K) = 0, then dur = tur. If char(K) = p, then by Theorem
4.2.10, it yields that

v(3ur)v — v(tur)v € B(K[H])
and Ko[I] = M,(K[H]) for some g > 1. It follows that

’U(EUT)’U — ’U(E’U/I")’U € B(Ko[l—]) N K()[S/ Np] C B(K()[S/ NP])

Now, as K[S]/P is the epimorphic image of Ko[S/ ~p], so we can see that
v(5ur)v = v(tur)v. Due to the belonging in the same subgroup H, sur = tur for
every u € I. This implies that (5—)I = {0}. Since K[S]/P is prime, 5 =t € S/ ~p.
This completes the proof. U

4.4 Descending Chain Conditions

After the discussion of the ascending chain condition on semigroup algebras, in this
section we now consider the semigroup algebras with descending chain condition.
Properties of semilocal, local and perfect semigroup algebras will be investigated.
First of all, we recall some important theorems about group and semigroup algebra.

Theorem 4.4.1 [Pasl, Th. 10.1.1] (1963) (Connell) Let R be ring with unity and
G is an arbitrary group. Then R[G] is artinian iff R is artinian and G s a finite
group.

E.I. Zelmanov extended the above result to the class of semigroup algebras.
Theorem 4.4.2 [Zel, Th. 3] (1977) Let R be ring with unity and S any semi-

group. Then R[S] is artinian implies that R is artinian and S is fintie. The converse
statement holds if S is a monoid.

4.4.1 Artinian Semigroup Graded Rings

Recently, there are several results on artinian semigroup graded ring [CJKO, Kel6,
JO2] (1995). We state these results to investigate the descending chain condition
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of semigroup algebras. These characterization theorem of semigroup graded rings

provide another method in studying the semigroup algebra which is different from
Okninski [Okn1].

Throughout this section, we assume R is a S-graded ring but may not have an
unity. We also assume that S contains no zero unless other mentioned.

Lemma 4.4.3 [CJKO, Lemma 1] Let S be a semigroup and R a S-graded Ting.
Suppose that F is a family of right ideals of R satisfying the following conditions:

(i). there is a natural number k such that |supp(I)| < k for all I € F;

(ii). Usersupp(l) is infinite.

Then R is not right artinian.

Lemma 4.4.4 [CJKO, Lemma 2] Let S be semigroup and R a right artinian S-graded
ring. Let I be nilpotent homogeneous ideal of R such that there are only finitely many
s € S with RsZI. Then supp(I) and supp(R) are both finite.

Proposition 4.4.5 [CJKO, Lemma 4] Let S be a semigroup with no infinite sub-
groups and let R be a right artinian S-graded ring. Then there exist finitely many
elements Ty, -+ , Ty € S such that

R=J(R)+ Ry; + Ry, + - + Ra,.

Hence, we obtain the following theorem on semigroup graded ring which is similar
to Theorem 4.4.2.

Theorem 4.4.6 [CJKO] Let S be a semigroup with no infinite subgroups and let R
be right artinian S-graded ring. Then supp(R) s finite.

Proof. Clearly, the ring R? is both right artinian and right noetherian. Since
R/R? is a nilpotent right artinian S-graded ring, it follows from Lemma 4.4.4 that
supp(R/R?) is finite. It suffices to show that R? has a finite supports.

Consider that R = R? which is right artinian and right noetherian. Then by Prop.
4.4.5, there is a finite subset Xo C S such that R = J(R) + Rx,.
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Since R is right artinian, J(R) is nilpotent. Let m be its index of nilpotency. Fix
k with 1 < k < m. Thus R is right noetherian and so the quotient J(R)*/J(R)*** is
finitely generated as right R-module. Then there exists by, - - - b, € J(R)* such that

J(R)* = J(R)* + > (biZ + biR).
i=1
Note that b;R = b;J(R) + biRx,. Since b;J(R) C J(R)**! and the support of each b;
is finite, supp(b;R) C supp(J(R)**') U X}, where X ; = supp(b;)Xo. Therefore

J(R)* C Rx, + J(R)**!

where X, = U™, (X, U supp(b;)) is finite.

Since J(R)™ =0, J(R) C Rx, + Rx, + - -+ Rx,,_,, and therefore the support of
R is contained in the finite set XoU X3 U+ U X1, O

Since every band has a trival subgroup, we obtain the following corollary.

Corollary 4.4.7 [Kel6] Let B be a band and let R be a right artinian B-graded ring.
Then the support of R is finite.

Using the above theorem, we are able to give a short proof of Theorem 4.4.2 which
is independent of Zelmanov. We only need to check if K [S] is right artinian, then S
contains no infinite subgroup. If G C S, then G C eSe for e € G. Thus, K[G] is
a homomorphic image of K[eSe], so K[G] is right artinian. This implies that G is
finite.

4.4.2 Semilocal Semigroup Algebras

In this section, we discuss the structure of semilocal algebra by using the techniques
given in [Oknl] as every artinian, semiperfect, semiprimary rings are semilocal. Recall
that in the group algebra cases, we have following results:

Theorem 4.4.8 [Pasl, Th. 2.3.11] If G is a locally finite group, then the group ring

K|[G] is algebraic. Conversely, if K has characteristic 0 and if K[G| s algebraic,
then G 1s locally finite.

Theorem 4.4.9 [Pasl, Th. 10.1.6] Let K be a field and G a locally finite group.
Then K[G] is semilocal iff

109



(i). G is finite when char(K) = 0.

(ii). G contains a normal p-subgroup N of finite indez with w(K[N]) = J(K[N]) C
J(K[G]) when char(K) =p > 0.

In both cases, K[G]/J(K|[G]) is finite dimensional K -algebra.
Theorem 4.4.10 [Pasl, Th. 10.1.3] The group ring K[G] is perfect iff G is finite.

In order to investigate the structure of semilocal semigroup algebras, we first cite
some lemmas on semilocal algebras taken from [Kar, Oknl]. These results are useful

in the sequel.
Lemma 4.4.11 Let A, B be algebras over field K.

(i). If B is an ideal of A, then A is semilocal iff the algebras B, A/B are semilocal.
(ii). If A®k B is semilocal and A, B are algebras with unities, then,

(a) A, B are semilocal algebras.

(b) If B is a separable field extension of K, then J(A®k B) = J(A) ®k B.
Furthermore, from the graded ring theory, we have the following proposition.

Proposition 4.4.12 [JO2] (1995) Let S be a semigroup and R an S-graded ring.
If R is semilocal and a € R is not nilpotent in R, then s is periodic in S.

By using the results given in [Oknl, Ch. 14], we obtain the following propositions.
Proposition 4.4.13 Assume K[S] is semilocal. Then

(i). S is a periodic semigroup.
(ii). S is locally finite if char(K) = 0.

(iii). K[G] is semilocal for every subgroup G of S.

Proof. (i) This part follows from Proposition 4.4.12 since R = K [S] can be regarded
as a S-graded ring and Ry = Ks. We notice that all s € R, is not nilpotent. Thus s

is periodic and so S is a periodic semigroup.
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(ii) Let K be a field with char(K) = 0. Then its prime field must be Q. If K [S]
is semilocal, then Q[S] is semilocal and also Q[S*]. Let a € 37 Aisi € QS 1], where
S\ < 1. Then we naturally define the norm of a by || a ||= 27 A2, Considering the
completion of R in the Q-algebra Q[S']. Then by hypothesis, || a |[< 1, (1 —a) is an
invertible element in R. If (1 —a) is von Neumann regular in Q[S"], then there exists
b € Q[S"] such that (1—a)b(1—a) = 1—a. This implies that (1—a)b=b(1—a)=1.
Take by, = 1+a+a?+- - -+a™ so that b—by, = b(1—a)(b—b,,) = ba™*'. Consequently,
we have

I~ bl < 11l 1™ —— 0 because [ll] < 1.

We can now check that ¢ € (s1,-+-,s,) in S. Since A; > 0, there exists 7 > 1
such that ¢t € supp(a”). Moreover, t € supp(bm) for some m > r. The coeflicient of
t in the element a” is greater than or equal to A", where A = min J; it tsupp(b).
Thus it follows that ||b — by|| > A" for every m > r. Hence, by, 7+b. This means that
t € supp(b), which shows that (s, - ,s,) C supp(b) is a finite semigroup.

Moreover, if Q[S] is semilocal, then for all a € Q[S], it can easily prove that there
exists A € Q such that A\ — a is invertible. Hence, for any finite subset 7" of .5, we can
construct a € Q[T] C Q[S?] such that (T') is finite. Thus S is finite.

To prove (iii), we consider the identity of G which is also the idempotent of S. It is
easy to see that G C eSe and eJ(K[S])e = J(eK[S]e). Thus, K[G] is a homomorphic
image of eK|[S]e. Hence, K[G] is semilocal. O

Proposition 4.4.14 For K[S] is semilocal and K 1is separable over its prime field
F, we have the followings about S/ ~ykis)-

(1). ~skis) coincides with ~ j(ris)-
(ii). If K = Q, then we have
(a) If (s,t) €~y(kis), then (5,t) €~ (E,, (8D for every ,t € S and every prime
number p.

(b) There exist primes p1,- "+, Pn such that

n

~akish= [ ) ~I(El8)

i=1

Proof. By Prop. 4.4.11 (ii) (b), J(K[S]) = K ®F J(F'[S]), where F' is a prime field
of K. Thus, (i) follows.
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(ii) As ~y(kisp=s(qs)), we only need to consider Q[S]. Since S is locally finite
when char(K) = 0. Then, Q[S] can be considered as a linear Q-space with basis

selected from Z[S], say ay,as, - ,a,. By the natural homomorphism Z[S] — F,[5]
for all prime p, we have

J(QLS]) NZ[S] € J(Z[S])

Denote ~p,=~ g, [s). Then it is not difficult to see that ~ (s S~y Hence (a) is
proved.

From (a) and the above, we can see that

~s@sh= [ ~iEls)
peP

and by the commutative diagram

Qs)  —  QlS/~

P

QS)/I(@S]) —— QLS/ ~pl/J(Q[S/ ~4l)

We can see that, by the semilocalness of Q[S], there are finitely many distinct non-

trival congruences of the form ~, on S. Hence (b) follows. (see [Oknl, Ch. 14] for
details.)

Lemma 4.4.15 [Oknl, Lemma 14.5, Prop. 14.9, Th. 14.10] We know that K[S] is
semilocal and then K[S]/J(K[S)]) is artinian. Moreover, S/ ~ jxs)— K[S]/J(K[S]).
Also, we have following properties.

(i). K[S]/J(K[S]) is an artinian and is an algebraic K-algebra for any field K.
Also, if char(K) > 0, then S/ ~x|s)) is a locally finite semigroup.

(ii). If all subgroup G of S such that K[G]/J(K [G]) is finite dimensional, then
K[S]/J(K[S]) is finite dimensional K -algbera and S/ ~ k() s finite.

Theorem 4.4.16 Suppose char(K) = p. Then S/ ~j«k(s) s finite if either one of
the following conditions holds:

(i). K is not algebraic over its prime subfield.

(ii). S is locally finite.
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(ili). S has no infinite subgroups.

Proof. By Proposition 4.4.13, for every subgroup G of S. K[G] is semilocal.

(i) If K is not algebraic over its prime subfield, then by [Pasl, Th. 10.1.6],
K[G]/J(K[G]) is a homomorphic image of the finite dimensional algebras K [G/G,),
where G, is a normal p-subgroup and [G : G,] < oo. Thus, K[G]/J(K[G]) is finite
dimensional algebra.

(i) if S is locally finite, then every subgroup is locally finite. By Theorem 4.4.9,
K|[G]/J(K|S]) hence is finite dimensional.

(iii) As all subgroups of S is finite, by Lemma 4.4.15, S/ ~(k(s)) is finite. O

From section 1.1 (also see [Oknl, Ch. 2,3]), we now know that the structure of
weakly periodic semigroups. In particular, when S is a periodic semigroup, we have
the following equivalent conditions:

(i). S is locally finite and every subgroup of S has a normal p-subgroup of finite
index.

(ii). S has a chain of ideals S = S, 2 S,_1--- 2 S; such that any one of S; and
S;/Si_1,i > 1 are locally nilpotent or complete 0-simple semigroup. Moreover,
if M°(G,I,A;P) is a Rees matrix presentation of some completely 0-simple
semigroup which is S;/S;—; or Si, then G is locally finite and has a normal
p-subgroup of finite index.

The relationship between locally finite and semilocal semigroup algebras can be
found by applying the above conditions.

Definition 4.4.17 Call Z C E(S) is a left p-subset if the following condition is
satisfied for alle,f € Z and s € S

The element ese € U(eSe) iff efse € U(eSe) and in this case, eseN = efseN for a
normal p-subgroup N of U(eSe), where U(eSe) is a group of units of monoid eSe.

Lemma 4.4.18 [Oknl, Lemma 14.12] Assume that Z C E(S) is nonempty set con-
tained in an equivalence class of the congruence ~ j(k(s))- Then Z is a left p-subset of
E(S) if p=char(K). Moreover, if S/ ~yk(s)) 1 finite, then E(S) is a union of finitely
many left (right, respectively) p-subsets.

Lemma 4.4.19 If G is locally finite and any subgroup of G has a normal p-subgroup
N with finite index. Consider S = MO (G, I,A; P) and let E(S) be the union of finitely
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many left (right, respectively) p-subsets. Then P has finitely many p-equivalent classes
of rows (columns, respectively).

Proof. Let Z be a left p-subset of E(S). Let e, f € S that is e = (g,4,m) and
f = (h,7,n) for some 1,5 € I and m,n € A. Then by the definition of p-subsets, we
know that e and efe lie in the same coset of the maximal normal p-subgroup N of
eSe \ {0}, which is isomorphic to G, where 6 is the zero of S.

For s = (1,[,t) where py # 0 and consider the elements ese = (gPmiPug, t,m)
and efse = (gPmihpupig, i, m). If Pty P # 6, then ppyN = pmjhpuN. Since | € 1
is arbitrary, we can show that the mth row of P is a multiple of the nth row of
the P-module N. However, if G/N is finite, then it follows that there are finiely
many p-equivalent classes of rows of P corresponding to the respective columns of
MO(G,I,A; P) containing idempotents from Z. Because any column of S contains
an idempotent, by the fact that E(S) is covered by finitely many left p-subsets, we
know that there are finitely many p-equivalent classes of rows of P. O

Since all right (left) perfect and semisimple ring are semilocal, we obtain the
following characterization for these semigroup algebras.

Theorem 4.4.20 Let S be periodic semigroup and K a field with char(K) = p > 0.

(i). K[S] is semilocal iff S has a chain of ideals
S=58,28-1 25

such that any one of S1 and S;/Si-1,% > 1 is either locally nilpotent or a com-
plete 0-simple semigroup. Moreover, if MG, I,A; P) is a Rees matriz pre-
sentation of completely 0-simple semigroup of S;/Si—y or Sy, then G 1is locally
finite and has a nmormal p-subgroup of finite index. Furthermore, there are
finitely many p-equivalent classes of rows (columns, respectively) of P.

(ii). K[S] is right perfect iff S has chain of ideals in (1) and each nil principal factor
is right T-nilpotent and each completely 0-simple factor has a mazimal subgroup
which is finite.

(iii). K[S] is semisimple aritinian iff S has a chain of ideals in (i) such that every
S;/Si_1 and S is a completely 0-simple with Rees presentation M°(G, m, m; P),
for some m > 1 and there is an invertiable matrix P in the matriz ring
M, (K[G)), where G is a finite group with order not divisible by char(K) =
p > 0 iff S is a finite strongly p-semigroup semigroup such that there is no
subgroup of S with order divisible by p > 0.
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Proof. (i) Since S is locally finite, S/ ~ k() is finite. Hence, E(S) is a union
of finitely many left p-subsets and S has finitely many J-classes containing some
idempotents. The existence condition of (i) and the locally nilpotency of the principal
factors are due to the locally finiteness of S. We hence know that the 0-simple
principal factor is completely 0-simple.

By Lemma 4.4.18 and Lemma 4.4.19, we have that G is locally finite and has a
normal p-subgroup with finite index. Also there are finitely many p-equivalent classes
of rows.

(ii) Assume K[S] is right perfect. Then S is periodic and K[G] is semilocal. As
J(K[S]) is a homomorphic image of J(K[eSe]) = J(K[S]) N K[eSe], K[G] is right
perfect. Thus G is finite. Moreover, since S has d.c.c. on principal left ideals, S is
locally finite as well.

Hence, we obtain a desired chain in S such that all its factors Si/Si—1 is either
nil or completely O-simple. Hence, S is locally finite by the finiteness condition on .S
and the fact that any nil ideal is right T-nilpotent.

If the converse statement holds, then K[S] is clearly semilocal. Let P be a right
T-nilpotent principal factor. Then, Ko[P] is also right T-nilpotent. In fact, if P
is a completely 0-simple factor, then the contracted semigroup algebra J (Ko[P]) is
nilpotent since G is finite (see the proof in Lemma 4.4.18 or treat as graded ring
as Section 3.4). This means that Ko[P)] is right perfect. Therefore, Ko[S] is right
perfect.

(i) If K[S] is artinian, then S is finite. Hence, T = S;/S;—1 or Sy is nilpotent
or completely O-simple because S is periodic and finite. Now, every Ko[T] and K|[S]
are semisimple and so all Ko[T] and K[S;] all have an identity. Thus T' or 57 is
isomorphic to some M°(G, m, m; P), where P is an invertible matrix in M, (K[G]).
Thus, each S is a strongly finite p-semisimple semigroup.

Now suppose that S is a strongly finite p-semisimple semigroup. Then every
principal factor of S is a completely O-simple and has an identity element. This
implies that P is invertible and the completely O-simple factor is isomorphic to

M(G, m,m; P). Hence
KI[S] = Mo (KIGH]) @ -+ ® My, (KIGH))
This shows that K[S] is artinian. The proof is completed. O
By a local algebra, we mean an algebra that its Jacobson radical is a maximal

ideal. In particular, if K[S]/J(K[S]) = K, then w(K[S]) = J(K[S]).
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Theorem 4.4.21 [Oknl, Th. 14.18] Assume that char(K) = p or S is a locally
finite semigroup. Then

(1). K[S] is a local algebra.

(ii). S is locally finite and eSe is a p-group, where char(K) = p and e is an idem-
potent of S.

(iii). S has a completely simple ideal T = M(G, I, A; P), where G is a locally finite
p-group and S/T is a locally nilpotent semigroup.

Corollary 4.4.22 [Oknl, Th. 14.17] Let S be commutative semigroup and K be field
with characteristics p. Then the following conditions are equivalent:
(1). K[S] is semilocal.

(ii). S is periodic and E(S) is finite and every subgroup of S has a p-group of finite
indez.

(iii). S/€ is a finite semigroup, where & is the least p-separative congruence on 5%

From Theorem 4.4.20 and the characterization for semilocal semigroups, we de-
duce the following corollary.

Corollary 4.4.23 [Oknl, Coro. 14.22]

(i). If K[S] is right perfect, then S is locally finite.

(ii). If S is a completely 0-simple semigroup with no infinite subgroup, and K [S] s
semilocal, then it is semiprimary.

(iii). If S has no infinite subgroups and has d.c.c. on principal left ideals, and if K [S]
is semilocal, then K|[S] is right perfect.

If S is an inverse semigroup, then clearly each principal factor of S is a completely
0-simple inverse semigroup. As K[S] = @ M,,(K[Gi]), K[S] is semisimple artinian
iff S is a finite inverse semigroup and each maximal subgroup is not divisible by
p. On the other hand, we can use graded ring theory to examine the descending
chain condition on K[S]. The following theorem is recently obtained by Jespers and

Okninski [JO2].
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Theorem 4.4.24 [JO2] (1995) Let S be a semigroup and R an S-graded ring with
J(R) nil. If R is semilocal, then there exists finitely many subgroup Gy, - ,Gyn of S,

with identity ey, - - , e, respectively, and there exist homogeneous elements f; € R,
such that

n n(i)

R=J(R)+Y_> aijfiRac, fibij,

i=1j=1

for some finitely many homogeneous elements a; ;, b j € R. Furthermore, each f;Rg, f;
is a semilocal G;-graded ring. If, moreover, R is left perfect (respectively semiprimary,
left Artinian), then each f; can be chosen to be an idempotent and fiRg, fi is left per-
fect (respectively semiprimary, left artinian) with an identity.

By applying this theorem to semigroup algebras, we further obtain the following
theorem.

Theorem 4.4.25 Let K[S] be a semilocal semigroup algebra. If J(K[S]) is nil and
there exists finitely many subgroups Gi,--- ,Gn of S, then

n n(i)

K[S] = J(K[S]) + >_ > ai; K[Gilbi;

i=1j=1

where a; j,b;; € S and K[G}] is a semilocal group algebra.

Proof. If K[S] is semilocal, then clearly S is periodic. Moreover, we may assume
that J(K[S]) is nil. Let R = K[S] and suppose that R is graded by S. Then, we have
Re, = K[Gi], Re, = Ke;. As by above theorem, a;;, b;; are homogeneous elements.
This leads to a;; = ki ;i ;, where s;; € S for all 4, j. Similar to b;; and note that k;;
is unit in the field K, then by the above theorem, we can prove the desired result. [

For example, if S is locally finite, J(K[S]) = L(K[S]) (see Corollary 3.4.14), then
J(K[S]) is nil. This theorem leads to a deeper description to K[S] when K[S] is
semilocal or left perfect.

Corollary 4.4.26 Let S be semigroup and K is any field. If K [S] is right perfect,
then there exist finitely many sy, , 5, € S such that

K[S] = J(K[S]) + Ks1 + Ksa + -+ Ksp.

Proof. Since J(K|S]) is right T-nilpotent, J(K[S]) is nil ideal. By using the above
theorem, we have finitely many j and J (K[Gj]) is right perfect. Thus, we obtain that
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G is a finite group. Thus, there are finitely many s; such that,
K[S] = J(K[S]) + ) _ Ks.
O

Notice that we can also obtained the above corollary by using Theorem 4.4.16
since S contains no proper infinite subgroups. Thus S/ ~jk|s)) is finite and so

K|[S]/J(K[S]) is finite dimensional as well.
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Chapter 5

Dimensions and Second Layer
Condition on Semigroup Algebras

In this chapter, the dimensions of semigroup algebras (e.g. Gelfand-Kirillov dimen-
sion, classical Krull dimension, Krull dimension) are studied and the relationship
between semigroups and these dimensions are established. Moreover, we also relate
the prime ideals of Goldie algebras and the noetherian semigroup algebras with some
of these diemensions.

5.1 Dimensions

5.1.1 Gelfand-Kirillov Dimension

The definition of Gelfand-Kirillov dimension is given in [KL]. The Gelfand-Kirillov
dimension is a tool to measure the growth of algebras. Let V be a finite dimensional
subspace of a K-algebras A. The Gelfand-Kirillov dimension (GK-dimension) of A
is defined by
dy(n) =dim(K+V +V?+---4V")
GK(A) = sup(limsup log, dv(n)).
V n—oo
Similarly, for any A-module M, we can define the GK-dimension of module of M by
GK(M) = sup(limsup log, dv,r(n)).
V,F n—00
where dy p(n) = dimg(FV™), V is a finite dimensional subspace of A containing 1
and F is a finite dimensional subspace which generates M as an A-module.
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The Gelfand-Kirillov dimension is said to be exact if for each short exact sequence
0—-L—M-—N —0,
we have GK (M) = max{GK(L),GK(N)}.

The general properties of GK-dimension can be found in [KL, MR].

Proposition 5.1.1 Let A, B be K-algebras. Then

(i). GK(A® B) = max{GK(A), GK(B)}.
(ii). If B is a subalgebra or homomorphic image of A, then GK(B) < GK(A).
(iii). max{GK(A),GK(B)} < GK(A®xk B) < GK(A) + GK(B).
An algebra A is affine algebra if A is generated by finite subset, 1.e A =
K{ay,---an}. Define GK-dimension of A by
GK(A) = sup{GK(R)|R an affine K-subalgebra of A }.
Then we have:
(iv). GK(M,(A)) = GK(A).
(v). GK(A[z]) = GK(A) + 1.

(vi). Let AxG be the crossed product of A over a finite group G. Then GK(AxG) =
GK(A).

(vii). Let P be prime ideal of A such that A/P is right Goldie. If ht(P) is the height
of the prime ideal P, then

GK(A) > GK(A/P) + ht(P).
(viii). Let N be a nilpotent ideal of A with nilpotent index k, i.e. N¥ =0. Then
GK(A) < k-GK(A/N).
(ix). Let Q be a multiplicative closed subset of reqular central elements, then
GK(A) = GK(AQ™).
For the right noetherian noncommutative algebras, we have the following theorem.
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Theorem 5.1.2 [MR, Coro. 8.3.6] Let R be a right noetherian K-algebra with
GK(R) < oo. Then the following statements hold:

(i). If R is prime and E is an essential right ideal then GK(R/E) < GK(R) — 1.

(ii). Mg s finitely generated and MP = 0 for some prime ideal of R. Also, Mg/p
is torsion and GK(M) < GK(R/P) — 1.

(iii). Let Py 2 Py 2 -+ 2 P, be a chain of distinct prime ideals of R. Then

GK(R) > GK(R/PR) > GK(R/Py) + m.

For group algebras K[G], there are some important theorems. The following is
an interesting one.

Theorem 5.1.3 [KL, Th. 11.1] If G is a finitley generated group and GK(K[G]) <
oo iff there is nilpotent normal subgroup of finite index in G.

The case that G is finitely generated solvable group was also discussed in [KL, Th.
11.2).

5.1.2 Classical Krull and Krull Dimensions

In this section, we review some properties of the classical Krull (cl.Kdim) and Krull
(K) dimensions. The reader is referred to [GW, MR] for the definitions and general
properties of the classical Krull and Krull dimensions. We list here some important
properties of these dimensions.

Theorem 5.1.4 Let R be ring with K(Rgr) < co. Then

(i). A semiprime ring R with right Krull dimension is a right Goldie ring.
(ii). The prime radical B of R s nilpotent.
(iii). B(R) is a finite intersection of minimal prime ideals, Py, - -+, Pp.

(iv). K(Rr) = sup{K(R/P)|P € Spec(R)} = K(R/B(R)).

The dimension of a ring R can be defined in terms of posets and the prime
spectrum Spec(R), which is the collection of all prime ideals of R. The classical
Krull dimension cl. K dim(R) is the supremum of the length of chains of prime ideals
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of R. A prime ring is called right bounded if every essential right ideal contains
a nonzero (two-sided) ideal. A ring R is called right fully bounded if R/P is a
right bounded ring for each prime ideal P. If R is right noetherian and right fully
bounded, then we call R right FBN ring.

Theorem 5.1.5 Let R be right noetherian ring with K(Rg) < oo. Then

(i). cl.Kdim(R) < K(Rg).
(ii). If R is a right FBN ring, then cl.Kdim(R) = K(Rg).

(iii). Let R be right noetherian ring and G is polycyclic-by-finite and R* G a crossed
prodcut of R by G. Then

K(Rr) < K(R*G) < K(R) + h(G)

where h(G) is Hirsch number of group G.

In the case of Pl-algebras, we can establish some connections between their di-
mensions.

Theorem 5.1.6 Let A be PI K-algebra. Then

(i). [KL, Th. 10.5] If A is prime, then GK(A) = tr.degi (A). )

(ii). [KL, Th. 10.10] If A is finitely generated prime, then GK(A) is a nonnegative
integer and
GK(A) = cl. Kdim(A) = tr.degk (A).

(iii). [KL, Th. 10.15] If A is noetherian PI-algebra with nilpotent radical N, then
GK(A)=GK(A/N) = m}gx{GK(A/P)}
where P runs through the set of minimal prime ideals of A.

(iv). [KL, Coro. 10.16] If R is noetherian PI-algebra with finite GK-dim, then GK-
dim is ezact for finitely generated R-modules and G K (R) is nonnegative integer.
If R is finitely generated, then GK(R) = cl.Kdim(R).

(DSince A is a prime Pl-algebra, so it must be a Goldie algebra. Let Q be the ring of quotients of
A and let Z be its center of Q containing K. Then the transcendence degree of A over K is defined
by tr.degy (A) = tr.degr (Z).
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5.2 The Growth and the Rank of Semigroups

Let S be a finitely generated semigroup with a system of generators {1, -, }.
Let v(n) be the number of elements of S that can be presented as a product of at
most n generators s;. Then the semigroup S is said to have polynomial growth if
there exist positive numbers C' and d such that

v(n) < Cn? for all n > 1.

Also, GK(S) = limsup,,_,., log, 7(n) is called the exponent, or the degree of growth
of the semigroup S.

In [KL, Ch. 11], we know that the group G has a polynomial growth iff G is
nilpotent-by-finite. Note that the degree of the growth of group G and the growth of
its subgroup N with finite index in G coincide. We also see that GK(S) = 0 iff S is
finite. We now connect the GK-dimension of group algebras with the growths of its
corresponding groups.

Theorem 5.2.1 [KL] Let N be a finitely generated nilpotent group with a lower cen-
tral series
N=N; 2Ny D:-- 2 N,=(e)

and let d(i) be the torsion-free rank of the i-quotient N;/Niy1. Then we have

GK(K[N]) =d = iz .d(i) = GK(N).

i=1

Proof. By referring to the results in [KL, Lemma 11.11, Lemma 11.12, Th. 11.14],
we obtain this result. O

From the remark of [Oknl, Ch. 8], we know that GK(K[S]) = GK(S). If
GK(S) < t and dg(m) < Cm'* for some C for almost all m, then S has a polynomial
growth. Let V be an m-dimensional algebra, e.g. V = K [$1,°* , Sm] for some arbi-
trary sy, - - - Sm. Then dy(m) < C'm! is determined by the presentation of (s1,- -+ , ;)
and so the GK-dimension of the corresponding semigroup algebras is less than ¢. This
shows that the GK-dimension of K[S] is independent on the coefficient field and so
it coincides with the growth of S. On the other hand, if GK(K[S]) is obtained by
other means, then we can find the growth of S.

For the properties of polynomial growth of cancellative semigroups, the reader is
always referred to [Oknl, Ch. 8].
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Theorem 5.2.2 [Oknl, Th. 8.3] Let S be a finitely generated cancellative semigroup.
Then the following conditions are equivalent.

(i). S has a polynomial growth.
(ii). S has a group of fractions that is nilpotent-by-finite.

(iii). S has a weakly nilpotent subsemigroup of finite indez.
Moreover, in this case, the degree of growth GK(S) = GK(G).

In section 3.2.2, we have introduced the rank of semigroup S which is the supre-
mum of n, where S containing the n-generated free commutative subsemigroup, de-

note by 7k(S). Note that if S is a cancellative semigroup with group of fractions G,
then rk(S) = rk(G).

In [Oknl, Ch. 23], Rk(S) is defined by sup,{rk(S/p)}, where p runs over the set
of all congruences of S. The following result on Rk(S) is obtained by Okninski.

Proposition 5.2.3 [Oknl, Lemma 23.6] For every semigroup S,

rk(S) < Rk(S) = sgp{?"k(S/ ~p)},

where P runs over the set of prime ideals of K[S] for any coefficient field K.

5.3 Dimensions on Semigroup Algebras

Consider the noetherian group algebras K[G]. If G is a polycyclic-by-finite group,
then it is know that K[G] is noetherian. If G has no free noncommuatative subsemi-
groups, then by [Oknl, Th. 11.7], G must be nilpotent-by-finite. Thus, we have the
following results concerning the dimensions of semigroup algebras.

Theorem 5.3.1 Let G be a polycyclic-by-finite group and has no free noncommu-
tative subsemigroup. Then GK(K|[G]) < oo, where GK(K[G]) is an integer and
GK(K[G]) > K(K[G)).

Proof. Since G is nilpotent-by-finite and is finitely generated. GK (K[G]) is non-
negative integer d by Theorem 5.2.1. Moreover K(K [G]) = h(G), which is the Hirsch
number of G. By the formula of d, it is obviously to see that d > 3 d(i) = h(G).
then GK(K|[G]) > K(K[G]). 0
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Lemma 5.3.2 [Oknl, Lemma 23.3] Let G be a group with an abelian normal subgroup
H of finite indez. Then, we have cl. Kdim(K|G]) > cl. Kdim(K[H]).

By using the properties of GK dimensions and the necessary conditions for K[S]
being Pl-algebras (see Section 3.7 or [Oknl, Ch. 20]), we obtain the following result.

Theorem 5.3.3 [Oknl] Let S be a cancellative monoid such that K[S] is Pl-algebra.
Then
cl.Kdim(K[S]) = GK(K[S]) = rk(S).

Proof. By Prop. 3.7.3, we know that S satisfies the permutational properties ‘B,
so S is a cancallative semigroup with 3. Moreover, S has group of right fractions
G such that K[G] is Pl-algebra. Thus, G has a normal subgroup H of finite index
and H' is a finite p-group of G, where char(K) = p. Let T be a finitely generated
subsemigroup of S. Then TT~! = F has an abelian normal subgroup Z of finite
index. By Theorems 5.2.2 and 5.2.1, the results follow from

GK(K[T)) = GK(K[F]) = GK(K|Z]) = rk(Z) = rk(F) = 7k(T).
Moreover, from Theorem 5.1.1(iv), we have

GK(K[S]) = sup{GK (K[T])} = sup{rk(1)} = rk(S).

Since prime Pl-algebras are all Goldie rings, by Theorem 5.1.1(viii), we have
GK(K[S]) > cl. Kdim(K|[S]). Moreover, it is known that S has a group of fractions
G which is abelian-by-finite. Thus, if we let H be this abelian normal subgroup, then
from Lemma 5.3.2 and Section 3.3, we have

cl. Kdim(K[S]) > cl.Kdim(K[G]) > cl.Kdim(K[H]) = rk(H) = rk(S).

This shows that cl. Kdim(K[S]) = rk(S) = GK(K|[S]) and GK(K([S]) is a nonnega-
tive integer. OJ

Finally, we find the following generalization in the monograph of Okninski [Okn1].

Theorem 5.3.4 [Oknl, Prop. 23.11, Th. 23.12] Let S be a monoid such that K[S]
is a Pl-algebra. If P is a prime ideal of K[S], then
el Kdim(K[S]/P) < GK(K[S]/P) < rk(S/ ~p) < cl.Kdim(K[S/ ~p]) < GK(K[S/ ~p])

Moreover, rk(S) < cl.Kdim(K[S]) = supp{GK(KI[S]/P)} = Rk(S) where the
supremum is taken over all the prime ideals of K[S]. Consequently, cl. Kdim(K|[S]) =
0 iff Rk(S) = 0 iff S is periodic semigroup.
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Theorem 5.3.5 Let T be a finitely generated cancallative subsemigroup of S such
that GK(T) < co. Let T" be the image of T in K|[S]/B(K|[S]). Then

GK(T) = GK(K{T'}) = GK(T")

Proof. Let H=TT~!. Then by above theorem, H is nilpotent-by-finite. Moreover,
GK(T) = GK(H) = GK(N) = GK(T/ ~y) where N is a maximal finite normal
subgroup of H such that H/N has no nontrival finite normal subgroups. Thus,
K[H/N] is prime for any field K and H/N is a group of fractions of 7'/ ~y. Hence,
Ko[T/ ~n] is also prime and is the homomorphic image of K[T]/B(K[T]). Since
GK(T) = GK(H) = GK(H/N) = GK(T/ ~n), GK(T) = GK(K[T)/B(K[T])).
Let T', K{T'} be the images of T and K[T] in K[S]/B(K[S]) respectively. Then
K[T]NB(K[S]) € B(K[T]) and so

GK(T) = GK(T") = GK(K{T"}).
O

On the other hand, if K[S] satisfies the a.c.c. on its right annihilators, then we
have a further generalizations, from section 4.2.

Theorem 5.3.6 [Okn2] (1993) Assume that K[S] is right noetherian and S has no
free noncommutative subsemigroups. Then

sup{GK (T)|T is a cancellative subsemigroup of S}
= sup{GK (T)|T is a cancellative subsemigroup of S}

where S is image of S in K[S]/B(K[S]).

Concerning the extension to right Goldie rings, we obtain the following charac-
terization.

Theorem 5.3.7 [Okn2] (1993) Assume that K[S] has finite right Goldie dimension
and K[S]/B(K[S]) is a right Goldie ring. Assume GK(T) < oo for every cancella-
tive subsemigroup T of S. Then GK(K[S]/B(K[S])) = GK{T} for a cancellative
semigroup T of S.

The following theorem provides the conditions to ensure that GK(S) < oo.

Theorem 5.3.8 [Okn2](1993) Let K[S] be right noetherian. Then the following
conditions are equivalent.
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(i) GK(K[S]) = GK(S) < oo,
(ii). GK(K[T]) = GK(T) < oo for every cancellative subsemigroup T' of S.

(iii). every cancellative subsemigroup of S has a finitely generated nilpotent-by-finite
group of fractions.

Moreover, in this case GK(S) < rq where r denotes the nilpotency index of B(K[S])
and q is the mazimum of the GK-dimensions of the cancellative subsemigroups of S.

Proof. Obviously (i) implies (ii) since K[T] is a subalgebra of K[S].

Since K[S]/B(K|[S]) is semiprime right Goldie ring and GK(T') < oo, for every
cancellative subsemigroup of S, by the above Lemma 5.3.7, we have

GK(T) = GK(K{T}) = GK(K[S]/B(K[S])

for a cancellative subsemigroup T of S. Since B(K[S]) is nilpotent, by Theorem
5.1.1(viii), we have

GK (K[S)) < r- GK(K[S/B(K[S) = - GK(T)

for some T C 5. Therefore, GK(S) < rq where ¢ is the maximum of the GK
dimensions of the cancellative subsemigroups.

Therefore, if we assume (ii), then GK (T") < oo for every cancellative subsemigroup
T of S. Thus Theorem 5.3.6 yields that

sup{GK(T)} = sup{GK(T)}.

TCS TCS
Since K|[S] is right noetherian, by Theoerem 4.3.5(vi) there are finitely many isomor-
phism classes of group of fractions of their maximal subgroup. Thus, the supremum
exists and GK(S) < rq < oco. This shows that (ii) implies (i). Thus, in particular, we
have every cancellative subsemigroup T of S satisfies GK(T') < oo iff T has a finitely
generated nilpotent group of fractions G and GK(T') = GK(G) (see Theorem 5.2.1).
O

Corollary 5.3.9 If S is nilpotent semigroup and K[S] is right noetherian. Then
GK(S) < o0.
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5.4 Second Layer Condition

The localizations of noncommutative noetherian rings have been fully studied by
Jateganokar [Jat]. This topic, in fact, links the prime ideals of the ring R and a well-
known condition, namely the second layer condition in (right) noetherian algebras.
In this section, we will not go through the details on such links between prime ideals
and the second layer condition, the details can be found in [Jat, GW, MR]. Examples
of noetherian ring satisfying second layer condition are enveloping algebras of finite
dimensional solvable Lie algebras; noetherian PI algebras and the group algebras of
polycyclic-by-finite group, etc.

In this section, we study the strong second layer condition. A prime ideal P in a
right noetherian ring R is said to satisfy the right strong second layer condition
if, for every prime ideal Q < P, every finitely generated (P/Q)-primary right (R/Q)-
module is unfaithful over R/Q.

Proposition 5.4.1 [Jat, Prop. 8.1.5] The (right) (strong) second layer condition is
a Morita invariant.

If G is polycyclic-by-finite group, then K[G] has strong second layer condition.
There is a natural question for the subsemigroup of G, or completely 0-simple with
maximal subgroup G: Do the corresponding algebras satisfy the strong second layer
condition 7

First, we recall the following diagram given in the monograph of Jateganokar
[Jat).

G: polycyclic-by-finite & orbitally sound polycyclic < f.g. nilpotent
U 4 Y
K[G] : | strong second layer condition <= AR-separated < polycentral

In the above diagram, the group G is called orbitally sound polycyclic if for
all subgroup H of G, the normal closure HS and the coreg(H) 2) satisfies [HC :
coreg(H)] < oo whenever [G : Ng(H)] < oo.

Proposition 5.4.2 [Jat, Th. A.4.2] Every polycyclic-by-finite group contains a char-
acteristic orbitally sound polycyclic subgroup of finite indez.

Definition 5.4.3 An ideal I in a ring R has the right AR-property if for every right
ideal J of R, there is a positive integer n such that JNI™" C JI.

(2)The core of subgroup, coreg(H) = gQGg'ng
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A ring R is called right AR-separated if for every pair of prime ideals P and @
in R such that Q C P, there is an ideal I such that Q C I C P and I/Q satisfies the
right AR property in R/Q. Left AR separated is analogously defined.

Proposition 5.4.4 [Jat, Prop. 8.1.7) Any (right) AR separated ring satisfies the
(right) strong second layer condition.

Now, Let S be a submonoid of G, where G is a polycyclic-by-finite group. Then,
K|[G] is right noetherian and K[S] is right noetherian iff S has a.c.c. on its right
ideals (see Prop. 4.3.2). Moreover, S is finitely generated. We are now going to make
use of Theorem 4.3.1, Lemma 4.3.2 and Lemma 3.3.6 (vii) in our theory. Without
loss of generality, we may assume that S has a group of fractions G. It can be seen
that if Q is prime ideal of K[G], then @ N K9] is prime ideal of K[S]. If P is prime
ideal of K[S], then Q = K[G] ®x(s) P = K[G]P is also prime ideal if P NS = .
Moreover, @ N K[S] = P (cf. the case of nilpotent cancellative semigroup in Lemma
4.2.5), so for every prime ideal P of K[S] with P NS = (), we have @ lies over P.

Moreover, by Theorem 4.3.2, we know that S is finitely generated. Hence, K [G]
can be viewed as a finitely generated K[S]-module. Thus K[S] — KI[G] is a ring
extension. We stated here two extension theorems from [Let] (1990).

Theorem 5.4.5 [Let, Th. 4.2] Let R — T be an extension of noetherian ring such
that T is finitely generated as a left and right R-module. If R satisfies the second layer
condition then so does T'. Moreover, if R satisfies the strong second layer condition
then so does T'.

Theorem 5.4.6 [Let, Th. 5.3] Let R — T and T be noetherian rings satisfying
the second layer condition such that T is a finitely generated right R-module. Let
Qa ~ Qp. Then the following statements hold:

(i). There exists prime ideals Py and Py lying over Qo and Qp respecitvity. Then
either
(a) Py= Ps or;
(b) there ezists a sequence of prime ideals P, = Py,-++ , P, = P witht > 2,

such that
P~ oooam Pyow Py~ o0 B

(ii). If P N R is semiprime for every prime ideal P of S, then we may choose P,
and Py in (i) such that (b) occurs.
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By the above theorem, we have the following theorem for polycyclic-by-finite groups.

Theorem 5.4.7 Let G be polycyclic-by-finite group and S a submonoid of G. Then
K(S] satisfies the right second order condition if S has a.c.c. on right ideals.

For other semigroups S, for example, nilpotent semigroups, we consider the case
when K[S] is a prime noetherian ring,.

Lemma 5.4.8 [JW3] (1995) Let S be a nilpotent semigroup. If Ko[S] is a prime
noetherian algebra, then, by the notation of Theorem 4.2.10, K{I} = Ky[I], G is
poly-(infinite cyclic) and ¢ = n.

Proof. In the proof of Theorem 4.2.10, we have seen that Ko[j ] is a localization of
Ko[I] with respect to the Ore set C. Let ¢ be the natural homomorphism of Ko[I]
to K{I} and o € Ko[] such that p(a) = 0. Let ¢ € C such that ca € Ko[I]. Since
Ko[I] = K{I}, we have ¢(ca) = ca. Thus ca = 0 and so c is invertible. Hence, we
conclude that a = 0. This leads to kerp = 0 and hence @) = 0.

As Ko[S] € M,(K[G]) and and K|[G] has a.c.c. on right ideals, we know that G
is nilpotent and also K[G] is a prime ring. Thus we know Z(G) is torsion-free and
by [Pasl, Lemma 11.1.3], the upper central series of G, namely Z;(G)/Z;_1(G) is also
torsion-free. Hence, G is a poly-(infinite cyclic) group. O

From Theorem 4.2.10, we know S is arbitrary nilpotent semigroup (not necessarily
cancellative), and K[S] is right noetherian, for any prime ideal P of K[S]. Thus,
K[S]/P can be embedded into M,(K[G]/Q) for some group G and is a prime ideal
of K[G]. Note that the group G is a finitely generated nilpotent group. This forces
K[G]/Q@ must be a prime Goldie ring and M,(K[G]/Q) is prime noetherian ring,
hence it is a finite extension of K[G]/P. Moreover, it is clear that M,(K[G]/Q)
satisfies the strong second layer condition, by Proposition 5.4.1.

For the class of completely 0-simple nilpotent semigroups, we have the following
theorem.

Theorem 5.4.9 Let K[S] be an algebra of finitely generated completely 0-simple
nilpotent semigroup with |E(S)| < oo. Then Ko[S] is noetherian and satisfies the
strong second layer condition.

Proof. From section 3.3.4, we know that the completely O-simple nilpotent semi-
group is inverse and its maximal subgroup G is nilpotent. Hence, G is finitely gener-
ated nilpotent group so that K[G] is noetherian and E(S) is finite set. By Theorem
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4.3.11, we know that K[S] is noetherian and Ko[S] = M,(K[G]). This shows that
K,[S] satisfies the strong second layer condition by Theorem 5.4.5 or Proposition
0.4.1. O

In closing the thesis, we wish to point out that the dimensions and prime ideals
of noetherian rings are important topic for investigation and the above results can
be applied in studying this area. We also post out here an open problem concerning
the relation ~p, where P is a prime ideal of K[S], for solution.

If P ~» @, what is the relationship between ~p and ~¢g 7
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Notations

char(K)
E(S)

H, R.L,;, D, 4
Mg, My, M;

J(a)/1(a)
R(R),L(R), T(R)

Characteristics of field K

The set of all idempotents of the semigroup S

Green relations

Minimal condition on equivalence classes on

S/R, S/L and S/J respectively.

Principal factor in semigroup containing a

Lattice of right ideals, left ideals and two-sided ideals respectively

MO(G, I, A; P) Rees matrix semigroup with maximal subgroup G
K[X] Polynomial ring over set X
K{X} K-algebra generated by set X
J(R) Jacobson radical

L(R) Levitzki radical

B(R) Prime (Baer) radical

G(R) Brown McCoy radical

N (R) Upper nil radcial

N(K[G]) Nilpotent radical of group algebra
U(S) Units group of monoid S

h(R) Set of homogeneous elements of graded ring R
Abbreviations

ef. (Latin: confer) compare

ie. that is

iff if and only if

f.g. finitely generated

a.c.cC. ascending chain condition

d.c.¢. descending chain condition

e.g. for example

Ch. Chapter

Th. Theorem

Prop. Proposition

Coro. Corollary

O end of proof
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