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Abstract 
Let K be a field and S an arbitrary semigroup. It is known that the theory of 

semigroup algebras K[S] is closely related both to semigroup theory and ring the-
ory. J. Okninski [Oknl] has recently given a detail survey on semigroup algebras in 
1990. In this thesis, the radicals of the semigroup algebras K[S] with chain conditions 
are particularly investigated. Moreover, the Jacobson radicals and other radicals of 
graded rings are particularly studied as they are important tools in studying semi-
group algebras. 

The Jacobson radicals and other radicals of semigroup rings R[S] over commu-
tative semigroups S were firstly investigated by J. Krempa, E. Jespers, J. Okninski, 
and P. Wauters since 1980. Moreover, the Jacobson radical of R[S] when R satisfies 
J{R) = Ji{R) was described by E. Jespers. We review here these results in the 
beginning of chapter 3. 

When the algebras over some non-commutative semigroups, the band graded ring 
theory given by W.D. Munn and A.V. Kelarev provides us another approaches to 
study the non-commutative semigroup algebras K[S]. Furthermore, the semiprimi-
tivity problems of inverse semigroup algebras and PI semigroup algebras are investi-
gated in chapter 3. 

The artinian semigroup algebra K[S] was studied by E.I. Zelmanov. He showed 
that the semigroup S must be finite if K[S] is artinian in 1977. Later on, P. Wauters 
showed that if semilattice graded ring is semilocal，then the base semilattice must 
be finite. Recently, some finiteness conditions on groupoid graded rings are solved 
by A.V. Kelarev in 1995. More finiteness conditions on semigroup algebras are fully 
investigated in monograph of J. Okninski. All these results will be described and 
further investigated in chapter 4. We cite some results from J. Okninski [Oknl] and 
some recent results on artinian semigroup graded rings from M.V. Clase, E. Jespers, 
A.V. Kelarev and J. Okninski to investigate some finiteness conditions on K[S]. Some 
modifications and simplifications of the relevent results are obtained. 

In chapter 5, the relationship between the Gelfand-Kirillov dimension on semi-
group algebras K[S] and the growths of the base semigroups is studied. Attemptions 
have been made to extend the second layer conditions on noetherian semigroup alge-
bras from the well known results on group algebras. 
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Introduction 

Let R be any ring with unity and S an arbitrary semigroup. Denote the semigroup 
ring by R[S]. It is noticed that the theory of semigroup ring R[S] is closely related to 
semigroup theory and ring theory. In the case that S is a group G, a full survey on 
the algebraic structure of group ring was given by D.S. Passman in his monograph 
Pasl] in 1977. This monograph is an important text for group algebras. Moreover, 

the commutative semigroup rings are fully investigated by R. Gilmer [Gil] in 1985. In 
the case if R is a field K, then the structure of K[S] are fully studied by J. Okninski 
in his recent monograph [Oknl] in 1990. Okninski has given an intensive survey on 
cancellative semigroup algebras with finiteness conditions, and also the semigroup 
PI-algebras. As motivated by these monographs, we focus in this thesis on the topics 
of the radicals and finiteness conditions on semigroup algebras. 

The monograph of Okninski was published in 1990. In this paper, we recognize 
some of the recent results on semigroup algebras obtained in the literature after 1990 
and study these algebras by another approach. We notice that the graded rings are 
important tools for studying the structure of semigroup algebras. For example, if S 
is a Clifford semigroup, then S can be decomposed into semilattice of groups. As a 
result, the corresponding semigroup algebra becomes a semilattice graded ring, i.e. 

K[S] = E K[G^] 
aer 

where F is semilattice and K[Ga] is a group algebra. The structure of K[S] is therefore 
affected by Ga and the order structure of the base semilattice F. Throughout this 
these, we will use these techniques to study the radicals and also some finiteness 
conditions of semigroup algebras. 

In chapter 1，some basic properties and notations of semigroups such as semigroup 
algebras; group algebras; graded rings; crossed products and smash products are 
given. We will use these properties and results of the above algebraic structures to 
study the structure of semigroup algebras. 

iv 



In chapter 2, the theory of the radicals of graded rings which are frequently 
used in subsequent works will be established. Let J be any one of the Jacobson, 
Brown-McCoy, Prime, Levitzki radicals of graded ring R respectively. Then we will 
concentrate on the relationships between the graded radicals Jgr and the radical J 
on the group graded rings, where G is finite or infinite. After the radicals of group 
graded ring is described, we study the rings graded by semilattices and also bands. 
From A.V. Kelarev [Kell] in 1991, we obtain some descriptions for radicals J of band 
graded rings. 

The Jacobson radicals of special band-graded rings described by W.D. Munn 
'Mun7] are given in chapter 2. These recent results will be used in chapter 3 to 
shorten some of the proofs of some results concerning Jacobson radicals of special 
band-graded rings in the literature. 

Chapter 3 contains two parts. One part concerns the commutative semigroup 
rings, i.e. the semigroup S involved is a commutative semigroup. The another part 
is an investigation of the non-commutative semigroup algebras of an arbitrary semi-
group. 

In the first part of chapter 3, We first examine commutative cancellative semi-
group. The radicals of semigroup rings have been investigated by J. Krempa, J. 
Okninski, E. Jespers and P. Wauters [Kre2, JW1, OW]. On the other hand, semi-
group rings involved arbitrary commutative semigroups were investigated by W.D. 
Munn. In fact, W.D. Munn described the Jacobson radicals of commutative semi-
group algebras over a field in 1983 (see [Munl]) and over commutative rings with 
unity in 1984 (see [Mun2]). Further, J. Okninski and P. Wauters [OW] (1986) gen-
eralized the results of Munn to prime and Levitzki radicals with arbitrary coefficents. 
In addition, E. Jespers gave a complete description of Jacobson radical if R satisfies 
Ji{R) = Joo{R) and S is arbitrary commutative semigroup [Jesl] (1987), i.e. 

J{R[S]) = JiiR)[S] + [/(Ji,p(i^,S^O + J{R.Sp,r') 
peP 

where J�R, Sp, P') is defined in section 3.2. 

If S is a separative semigroup, then it is known that S is semilattice of commuta-
tive cancellative semigroups, say S = Uaer^V In this case, S can be embedded into 
Q, where Q = U êrG â and Ga is group of fractions of Sa. We also investigate the 
relationship between the semigroup rings K[S] and K[Q'. 

The another part of chapter 3 is to examine the structure of algebras over an 
arbitrary semigroup. To simplify our work, we only consider K[S]. At first, in 
section 3.3’ S is cancellative semigroup which may not possess a group of (right 
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or left) fractions. We extract some basic properties described by Okninski [Oknl, 
Chapter 7, Chapter 9] and cite some of the recent results of Okninski [Okn3, Okn4 . 
A necessary condition for K[S] to be prime or semiprime is given. When the Jacobson 
radical J{K[S]) + 0, there is a subsemigroup P which has a group of (right or left 
)fractions, say the reversive semigroup, also J{K[P]) + 0. The Jacobson radical of 
K[S] are described when S is a subsemigroup of a polycyclic-by-finite and nilpotent 
group. 

Furthermore, the algebras of completely 0-simple semigroups will also be studied. 
For this topics, we adopt the Munn algebras and the graded rings as our approaches. 
We find that the maximal subgroup of a 0-simple semigroup plays an vital role in 
sturcture of K[S]. The structure and semprimitivity problem of inverse semigroup 
algebras, like group algebras, are paticularly studied. Domanov (stated in the survey 
of Munn [Mun3]) showed that if S is inverse semigroup then for any maximal subgroup 
H of S, J{K[H]) = 0 implies that J{K[S]) = 0. The converse is not true unless E(S), 
the set of all idempotents of S, is pseudofinite. 

The remaining of chapter 3 provides some results on other semigroups. We shall 
make use of the results of the band-graded rings and to give descriptions of the 
radicals of completely 0-simple, inverse, cancellative semigroup algebras. Separative 
semigroups and completely regular semigroups will be particularly considered. Fi-
nally, we also make use of some known results from semigroup PI-algebras K[S] in 
our discussion. We will show that J{K[S]) = B{K[S]) if K[S] is PI semigroup algebra 
(not necessarily finitely generated). 

In chatper 4, the finiteness conditions of semigroup algebras are examined. First, 
we study the finiteness condition on graded rings and find the necessary condition 
of semilattice graded rings to be semilocal. We also show that the base semilattice 
must be finite. Recently, Kelarev [Kel7] has generalized the cases of finite semigroup 
graded rings to the groupoid graded rings in 1995. These results solve some problems 
concerning finite semigroup graded rings. In section 4.2, semiprime rings and Goldie 
rings will be studied. Following the results of Jespers and Okninski [J01] in the case 
of S being nilpotent, we obtain J{Ko[S]) = B{Ko[S]), where J{Ko[S]) is the Jacobson 
radical of Ko[S . 

After studyiing the semprimeness of semigroup algebras. We investigate the 
noetherian semigroup algebras. The objective of this section is to find the neces-
sary condition for S to be right noetherian. It has been conjectured that S is finitely 
generated if K[S] is right noetherian [Oknl, Part V, Problem 7]. It will be shown here 
that when K[S] is (right and left) noetherian, then S is finitely generated. Moreover, 
we also examine the structure of right noetherian inverse semigroup algebras and the 
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right noetherian semigroup PI-algebras. 

It is known in the literature that K[S] is semilocal, that is, K[S]/J{K[S]) is ar-
tinian. The descending chain conditions for K[S] are discussed in section 4.4. We find 
that there are some recent results concerning about d.c.c on semigroup graded rings 
given by M.V. Clase, E. Jespers, A.V. Kelarev and J. Okninski [CJKO, J02, Kel6 
in 1995. We apply these results to semilocal (right perfect, semisimple) semigroup 
algebras and then give another description for K[S]. Moreover, we show that there 
is a close relationship between K[S] and K[H] when H is maximal subgroup of S. 

In the last chapter, we study the dimensions and prime ideals of K[S] as ap-
plications. In 1993, Okninski [Okn2] wrote a paper on Gelfand-Kirillov dimension 
on semigroup algebra. We notice in that paper that Gelfand-Kirillov dimensions 
are connected to the growths and the ranks of semigroups, therefore we study the 
Krull, classical Krull, and Gelfand-Krillov dimensions on semigroup algebras and ap-
ply these to the noetherian cases. We obtain that if K[S] is right noetherian, then 
the Gelfand-Kirillov dimension GK{K[S]) < oo iff GK{K[T]) < oo for every can-
cellative subsemigroup T of S. That is equivalent to say that T has group of fractions 
of nilpotent-by-finite. 

The prime ideals and prime spectrum are important topics on noetherian algebras. 
As an application, we examine the links between prime ideals and second layer con-
dition described by [Jat, GW, MR]. By the results of Jategaonkar [Jat], we can state 
that if G is polycyclic-by-finite, then K[G] satisfies strongly second layer condition. 
In this respect, the following question arises naturally: 

Let S be a complelely 0-simple semigroup with a maximal subgroup polycyclic-
by-finite group. Let Ko[S] be a noetherian semigroup algebra: 

Is K[S] has second layer condition ？ 

If S is an inverse semigroup in which every maximal subgroup of S is polycyclic-
by-finite, does K[S] has the (strong) second layer condition ？ 
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Chapter 1 

Preliminaries 

In this chapter, some definitions and elementary results on semigroup algebras, group 
algebras and their related topics are given. These results will be useful in the subse-
quent discussion and will be frequently referred. 

To investigate the structure of semigroup algebras, we have to know some proper-
ties of semigroups and groups. Furthermore, semigroup algebras and group algebras 
can be treated as graded rings. The description of radicals in graded ring (graded by 
groups or semigroups) will lead to another approach to characterize the radicals and 
structure of semigroup algebras. Hence, we recall the properties of graded rings and 
apply them to study semigroup algebras. 

1.1 Some Semigroup Properties 

The general definitions and notations of semigroups are taken from [How, Oknl, Pet . 

Definition 1.1.1 Let S 二 A^o(( ,̂ /，A; f>) be a Rees matrix semigroup with sandwich 
matrix P. Ifi G I, then the set {{g, i, m) G 5̂ |̂ f G G°, m € A} is denoted by S(i), and 
is called the ith row ofS. Similarly , for any m G A, S^^^ is called the mth column 
ofS. Clearly, 5¾^) = 5¾ n S^^\ 

Theorem 1.1.2 Let S = M^{G, /，A; P) he a semigroup of matrix type with zero 6. 

(i). For any subsets J C I, N C A, 5'(j) is a right ideal ofS and 5^(") a left ideal of 
S. 
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(ii). For any subset J C I^N C A, S��^ is a semigroup isomorphic to a semigroup 
of matnx type M^{G, J, N; PNj), where PNj = {v'n3)� ^̂ e N x J suhmatnx of 
P defined by p ^ = Pnj for j G J, n G N. 

(iii). The set of nonzero idempotents ofS is {{g,i,m) G S\pmi + Oc^g 二 P；；}}, ^here 
Oo is the zero of G^. 

(iv). Every maximal subgroup of S is of the form 5^f) or (S{f) \ 6) for some i G 
I,m e A. 

Let S = M%G,I,k]P) be a Rees matrix semigroup over a group G and H a 
normal subgroup of G. Also let (j)H{{g, h ^ ) ) 二 (gH,i,m). Then 

^H : M'{G, I, A; P) — M\G/H, I, A, Pn) 

is a homomorphism, where Pn is the matrix {aij), where dij is the natural homomor-
phic image of a^ in the quotient group G/H. 

Let S = M^(G, / , A; P). Taking H = G, then we have the image 
T = A4�(l。，/,A;P'), where 

p , = ( p ^ ) = | K n ^ = l i fPmi^^G 
而 [p'rm = e if Prm = ^G 

Write 6 as the zero of 1° in order to distinguish it from the zero of G^, Then, T is said 
to be elementary Rees matrix semigroup. The algebras graded by elementary 
Rees semigroup will be discussed in section 3.4. 

We now consider the larger class of semigroups. A semigroup S is called a weakly 
periodic semigroup if for every s G S, there exists n > 1 such that S^s^S^ is an 
idempotent ideal. The condition is equivalent to saying that a power of every element 
of S determines a 0-simple principal factor of S. (This is because if a = s^ then 0? + 9 
in the principal factor in J{a)/I{a).) S is called 7r-regular if for every 5 G S, there 
exists n > 1 such that s^ is a regular element of S. The semigroup S is called 
strongly 7r-regular if s^ lies in a subgroup of S. (Someone also called this semigroup 
as "epigroup" or "group-bound semigroup" etc.) 

Notice that periodic; locally finite; regular; inverse; semisimple semigroups are all 
weakly periodic semigroups. 

Let K̂, 3,灭，^ be the Green relations on the semigroup S [How, Chapter 2]. Also, 
let MR, ML and Mj stand for the minimal conditions on S/^, S/L and S/d respec-
tively. Then we have the following results. 
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Proposition 1.1.3 Let J be an ideal ofS. Then S satisfies the condition MR (Mi) 
iff the semigroups J and S/J both satisfy M^ (Mi). 

Lemma 1.1.4 [Oknl, Lemma 3.1] Let S he a semigorup satisfying any one of the 
conditions M^, M^, Mj. Then S is weakly periodic. Moreover, if all 0-simple princi-
pal factors of S are completely 0-simple, then S must be strongly [regular. 

Theorem 1.1.5 [Oknl, Th. 3.3] Let S he a weakly penodic semigroup. Then S has 
finitely many 3-classes determining 0-simple principal factors iff there exists a chain 
of ideals Ji C ... C J^ = S of S such that Ji and all J^/Ji_i, i > 1 are 0-simple or 
nil. Moreover, if we let k denote the number of 3-classes determining the 0-simple 
principal factors ofS, then the ideals J] can be chosen so that n < 2k. In addition, ifS 
is a strongly n-regular semigroup of this type, then the non-nil semigorups Ji,Ji/ Ji-i 
are completely 0-simple. 

A semigroup S is called locally finite if all its finitely generated (f.g.) subsemi-
groups are finite. Clearly, all locally finite semigroup is periodic. The following 
are some properties concerning locally finiteness extracted from the text of [Oknl, 
Chapter 2 . 

Proposition 1.1.6 (i). Let S he a finitely generated semigroup. IfT is a subsemi-
group of S such that S \ T is finite , then T is finitely generated. 

(ii). Let J he an ideal of a semigroup S. Then S is locally finite iff the semigroups 
J and S/ J are locally finite. 

(iii). Let S he a completely 0-simple semigroup. Then S is locally finite iff every 
maximal subgroup of S is locally finite. 

If the semigroup S has zero Q, then S is called nil if for every s E S^ s^ = 6. S is 
called left T-nilpotent if any si, S2 . • •，G S, there exists n > 1 such that <S1<S2 . . . 5^ = 
9. S is left T-nilpotent iff S satisfies M^. We notice that every nil semigroup is 
locally finite. Later on, we will discuss the nilpotent semigroup (this is the extension 
of nilpotent group). 

Proposition 1.1.7 [Oknl, Prop. 2.13] Let S he a nil semigroup. Then the following 
statements hold: 

(i). IfS has a.c.c. on its right and left annihilator ideals, then S is power nilpotent. 
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(ii). IfS is multiplicative subsemigroup of a ring R with finite right Goldie dimension 
and S satisfies a.c.c. on right annihilator ideals, then S is power nilpotent. 

(iii). IfS C Mn{D) for a division algebra D, then S is power nilpotent. 

We now consider the natural semigroup arising from general complete matrix ring 
Mn{D), where D is a division ring. 

Let a G Mn{D). Then define the rank rk{a) of a as the dimension of the subspace 
{D^)a of D^ over D. Put Ij = {a e Mn(D)lrk(a) < j} for j = 0, • •.，n. Then every 
Ij is an ideal of the semigroup Mn{D) as semigroup under the matrix multiplication. 

Theorem 1.1.8 [Oknl, Th. 1.6] For any division algebra D and any integer n > 1, 

0 = IoChC---Cl^ = Mn{D) 

is an ideal chain of multiplicative semigroup. 

Moreover, every Rees factor Ii/Ii^i, j = 1, 2, • • • , n, is a completely 0-simple 
semigroup, the maximal subgroups of Mn{D) are isomorphic to the full skew linear 
groups of the corresponding algebras Mj{D). In particular，Mn{D) is a completely 
semisimple semigroup. 

Now, we turn to consider another class of semigroups. Call a semigroup S is left 
(right) cancellative if for any a, 6, x G S, xa = xh {ax = hx) implies that a = b. A 
weakened version of cancellative semigroup is" separative". The basic properties of 
separative semigroups are given by M. Petrich [Pet]. It is known that S is separative 
iff S is a semilattice of cancellative semigroups. A commutative separative semigroup 
is semilattice of commutative cancellative semigroups which can be embedded in a 
semilattice of groups (cf. [Pet, II.6.6]). 

A semigroup S is archimedean if for any a, b e S there exists a positive integer n 
such that a^ G SbS. Moreover, let P be a semilattice and S = U a * ^ >； with SaSp = 
SpSa g Sap for any a, f3 G F and Sa is of type T. Then S is said to be semilattice of 
semigroups with type T. 

Separative and cancellative semigroups both play important roles on the structure 
of semigroup algebras, especially on finding the radicals of commutative semigroup 
rings. Some more properties of cancellative semigroups will be discussed in chapter 
3. 
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1.2 General Properties of Semigroup Algebras 

We now investigate the structure of semigroup algebras. We first present the gen-
eral properties of semigroup algebras which will be frequently used in our following 
discussion. The proofs of theorems are omitted. 

Denote the lattices of the right, left, and the two-sided ideals of K[S] by R(i^[5]) , 
L{K[S]) and T{K[S]) respectively. 

Let p be a right congruence on S and ¢): S — S/p the natural mapping onto the 
set S/p (equivalence classes). Then let I{K, S, p) be the right ideal of K[S] generated 
by the set {s — t\s, t G S, (<s, t) G p] such that 

I{K, S, p) = { [ r(s - t) I r G K, (s, t) e p}. 
se5 

In the semigroup ring, we always replace K by an arbitrary ring R. 

Moreover, K[S|p] is a right X[*S']-module with 4>p[s) * t — 4>p[st). Sometimes, we 

just denote I{K, S, p) by I[p) for simplification. 

Lemma 1.2.1 [Oknl] For any right congruence p on S , ^p : K[S] — K[S/p] is a 
homomorphism of right K[S]-modules such that 

ker{^p) = I{p) = Y,i^s{p) 
s£S 

where 
m m 

oos{p) = { E A^^ e K[S] h > 1, E A = 0, (5, Si) e p yi = 1 . . . m} 
i=l i=l 

If p is a congruence on S and 0^ is the above homomorphism, then ker{^p) 二 I[p) 
and K[S/p] ^ K[S]/I{p). 

Definition 1.2.2 Let J he an ideal (one sided or two sided )ofK[S]. Denote the set 
{{s,t) e S X S \s-te J} by �J. 
Then “ � j ” is a congruence on S induced by the ideal J of K[S . 

Let J be a right ideal of K[S]. Then J — � j is an order-preserving 八-complete 
semilattice homomorphism o f R ( X [ 5 j ) onto K{S) which is lattice of right congruences 
on 5, and � / ( " ) = p for any p G R(5) . For the right congruences pi and p2 on S, we 
have / (pi A p2) = J'(pi) H I(p2) and I(pi V p2) = I(pi) + /(P2). 
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If we consider the universal congruence i 二 S x S on S, then the ideal 

I{K, S, L) 二 {s - t\s, t G S}K = {J2 c^s s e K[S] I Y^ a, 二 0}. 

The above ideal is denoted by u{K[S]) and is called the augmentation ideal of K[S], 
where the corresponding homomorphism K[S] — K is consequently called the aug-
mentation mapping. 

Let S be a semigroup with zero 6 and Ko[S] a factor algebra K[S]/KO. If S has 
a zero element, then put Ko[S] = K[S]. For any a = T^agS, a G K, let suppo{a) be 
the set {s e S \ {0}\a + 0}. Clearly, suppo{a) = supp{a) \ {9}. 

Therefore, Ko[S^] = K[S^]/K6 = K[S]. Let I be an ideal of the semigroup S. 
Then KQ[S/I] = K[S]|K[I]. 

For any algebras , we can adjoin an identity in these algebras. Notice that K[SY — 
K[S^] if S has no identity. 

Let L / F b e any field extension with L[S] = L^FF[S]. If S, T are semigroups, then 
K[S] (^K K[T] = K[S X T]. Further, if S, T have zero elements 63, ^r, respectively, 
then Ko[S] 0 ^ Ko[T] = Ko[{S x T)/7], where I = {{s,t) e S x T\s = 63 or t = Or}. 

We say Z C S a left group-like subset if for any z G Z and s G S, s G Z if zs G Z. 

Lemma 1.2.3 [Oknl, Lemma 4.15, Coro. 4.16] Let Z be a subsemigroup of a semi-
group S and J{R) the Jacobson radical of ring R. Then the following facts hold: 

(i). If Z is left group-like in S, then K[Z] is a direct summand of the left K[S -
module K[S . 

(ii). If the elements ofS are not zero divisors in K[S], then the converse holds. 

(iii). For every subalgebra R ofK[S], we have J{R) f] K[Z] C J(R n K[Z]). 

Proposition 1.2.4 [Oknl, Prop. 6.8] Let S he a semilattice of semigroup Sa where 
a G r. Then the following statements hold: 

(i). Ko[^] is suhdirect product of all algebras Ko[S/To], where T^ = Up^aSp. 

(ii). If every K[Sa] has a unity, then K[S] is a suhdirect product of all K[Sa], a G P. 

Later on, in chapter 2, we will make use of the semilattice decomposition of 
semigroups to study the radicals of algebras. 
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1.3 Group Algebras 

In this section, we answer the following question: let S be a cancellative semigroup 
which can be embedded into some group G. Does K[G] affect the properties of K[S]1 
Before answering this question, we give some properties of group algebras and we will 
discuss the cancellative subsemigroups of G in section 3.3. 

1.3.1 Some Basic Properties of Groups 

Thoughout this section, let Z{G) be the center of the group G\ Ccia) be centralizer 
of element a in G and G' means the commutator subgroup of G. If N is normal 
subgroup of G, then we denote it by N < G. 

In the following chapters, we always consider nilpotent and polycyclic-by-finite 
groups. We list here some properties of nilpotent groups extracted from [Kar, Pasl, 
Rob]. It fact, many properties of nilpotent groups and its related subgroups can be 
found in [Rob, Chapter 5 . 

Proposition 1.3.1 Let p be any prime number. Then the following statements hold: 

(i). If G is nilpotent group and (e) + N < G, then N H Z[G) + {e). 

(ii). If G is nilpotent group and G/G' is finitely generated, then G is noetherian. 

(iii). A fimtely generated nilpotent group has a central series whose factors are cyclic 
with prime or infinite orders. 

(iv). If G is a group with Z{G) is torsion-free, then each upper central factor is 
torsion-free. 

For the other type of groups, we only consider polycyclic-by-finite group. Let C 
be a family of groups, then a group G is poly-C if G has a finite subnomal series : 

G = GnZ)Gn-iD---DGo = {l} 

with each quotient Gi+i/Gi belonging to the family ¢. If ¢: is closed under taking 
subgroups and homomorphic images, then so is the the class of poly-^ groups. 

A group G is poly-(cyclic, finite) if it admits a subnormal series such that every 
factor Gi/Gi-i is either cyclic or finite. It is known that this type of group has 
a characteristic subgroup of finite index that is poly-(infinite cyclic) [Pasl, Lemma 
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10.2.5]. We call G polycyclic-by-finite group and the corresponding algebras of G are 
important for noetherian algebras. We list here some properties of polycyclic-by-finite 
groups. 

Proposition 1.3.2 Let G be a polycyclic-by-finite group. Then the following state-
ments hold: 

(i). [Rob, 5.4.17] G is residually finite. 

(ii). [Rob, 5.4.18] If the polycylic normal subgroup W of G is not nilpotent, then G 
must have a finite nonnilpotent image. 

(iii). [Rob, 5.4.15] An infinite polycyclic group G contains a nontrival torsion-free 
abelian normal subgroup. 

(iv). [Rob, 15.1.6] A polycyclic group has a normal subgroup of finite index whose 
derived subgroup is nilpotent. 

1.3.2 General Properties of Group Algebras 

The structure of group algebras was extensively studied by D. Passman. In this 
section, we refer to his monograph [Pasl] and some results taken from [Kar, Pas2, 
Row] as well. We denote K[G] be a group algebras. The following theorem is an 
important theorem concerning finite group algebras, was obtained by Maschke. 

Theorem 1.3.3 (Maschke) Let G he a finite group and K a field. Then the following 
facts are well known: 

(i). If char{K) = 0； then K[G] is semiprimitive. 

(ii). Ifchar{K) = p, then K[G] is semiprimitve iff G contains no elements of order 
p. We call this type of group p^-groups. 

Moreover, if \G\ + 1, then K[G] is never simple since it always contains an augmen-
tation ideals. 

Let K[G] be a group algebra. Then the following augmentation map is given by 

cj : K[G] — K 

and the augmentation ideal is uj{K[G]) since it is the kernel of the augmentation map 
u. 
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Proposition 1.3.4 Let H be a subgroup of an aribitmry group G. Suppose X is the 
generating set ofH. Then 

K[G] . u{K[H]) = Y^ R[G]{x — 1) and oj{K[H]) . R[G] = Y^ {x — l)K[G] 
xEX xex 

Moreover, ifH is infinite then the left annihilator l{co{K[H]) = 0; z/ H is finite and 
if H is the sum of the elements of H, i.e. H = J2heH ^ ^ ^[G], then [(cj(i^[iJ]))= 
K[G]H and l{H) 二 i^[GV(i^[i7]). 

Lemma 1.3.5 Let G he a nontrival group. Then uj{K[G]) is nilpotent iffchar{K) 二 

p for some prime p and G is a finite p-group. 

The following is an interesting result concerning the Jacobson radical J{A) of an 
algebra 'A over a field K. 

Proposition 1.3.6 [Kar] Let A be an algebra over a field K. Any x G J{A) is either 
transcendental over K or nilpotent. In particular, the Jacobson radical of algebraic 
algebra over K is nil. 

By summarizing the results given in [Kar, Ch. 3], we can state the following 
proposition. 

Proposition 1.3.7 For any K-algehras A and B we have 

(1 0K B) n J{A ®K B) C J ( 1 ③^ B). 

Moreover, if either one offollowing conditions holds, namely: 

(i). A is algebraic over K. 

(ii). J[B) is nilpotent. 

(iii). A and B are commutative and J{B) is nil. 

Then, we have B n J{A 0^ B) = J{B) 

Proposition 1.3.8 Let A be a field over K and A, B be K-algehras. The the follow-
ing statements hold: 

(i). A/K is separable extension and J{A 0 ^ B) = A 0 ^ {B D J{A ^K B)). IfA is 
also algebraic over K, then J{A <S>K B) = A ⑧尺 J[B). 

9 



(ii), Let A/K he a purely transcendental field extension of the field K. Then J{A^K 
B) = A^K [B^J{A^K B)). 

(iii). If A/K is finite extension of the field K, then 

'J{A ®K B)Y C A ^K J[B) C J{A 0K B). 

Applying the above results to group algebras, the following results on semiprimi-
tive group algebra is now obvious. 

Corollary 1.3.9 [Pas3； 

(i). Assume that char{K) = 0 with K not algebraic over the rationals Q. IfG is 
any group, then K[G] is semiprimitive. 

(ii). Assume that char{K) = p with K not algebraic over the Galois field GF{p). If 
G is p'-group, then K[G] is semiprimitive. 

1.3.3 A-Method for Group Algebras 

We now describe a special method, namely the A-method, to study the Jacobson 
radical of group algebras. This method was given by D.S. Passman [Pasl]. Consider 
the following subsets of G\ 

A(G) 二 {x e G| \G ： CG{x)l < 00} 

and 
A+(G) = {x e A(G)|o(x) < 00}. 

Obviously A(G) and A+(G) are characteristic subgroups of G. If x G A(G) , then 
X has finite number of conjugates. Moreover, it is clear that A+(G) is generated 
by the finite normal subgroups of G and A (G) /A+(G) is torsion-free abelian. If 
A+(G) = (e), then K[A{G)] becomes a domain when K is a field. If G = A(G), then 
G is said to be a FC-group i.e. finite conjugate group. Notice that in a f.g FC-group, 
we always have [G : Z{G)] < 00 and G' is finite. 

Let AP(C) = {g e A(C)|p has order is a power of p). Then A+ /A^ is locally 
finite by knocking out the elements of order p. For the finite normal subgroup N of 
G, we have: 

A{G/N) = A{G)/N ； A+{G/N) = A+(G)/7V and A^{G/N) = A^{G)/N. 

10 



Also, if [AP{G) : H] < oo, then [H : AP{H)] < oo. 

We say that a subset T of G is large if for all subgroups W of finite index in G, 
T 门 H^ cannot be covered by a finite union of cosets of subgroups with infinite index. 
We say that T is very large if T and all its right translates Tx are large. 

Lemma 1.3.10 Let T be a very large subset ofG. If YJl aiX0i = 0 in K[G] for all 
X G T, then the identity holds for all x G G. 

We can easily see that the primeness of group algebra K[G] is related to its base 
group G and its FC-center. The primeness of group ring was given by Connell. 

Theorem 1.3.11 [Pasl, Th. 4.2.10] (Connell) Let K he any field with char{K) = 0； 

the following conditions are equivalent: 

(i). K[G] is prime. 

(ii). Z{K[G]) is an integral domain. 

(iii). G contains no finite nontrival normal subgroup. 

(iv). A{G) is torsion-free ahelian. 

(v). K[A{G)] is an integral domain. 

Theorem 1.3.12 [Pasl, Th. 4.2.13] Let K be any field with char{K) 二 p. Then the 
following conditions are equivalent: 

(i). K[G] is semiprime. 

(ii). Z{K[G]) is semiprime. 

(iii). Z[K[G]) is semisimple. 

(iv). G contains no finite normal subgroups H with p divides \H\, that is p\ \H . 

(v). A(G) is a p'-group. 

We define the nilpotent radical of the ring R be the sum of all nilpotent ideals of 
R, denote it by N{R). Note that N{R) may not be nilpotent. The nilpotent radical 
is not a radical property as pointed out by Divinsky [Div]. Indeed, there exists a 
finitely generated K-algebra A with N{A/N{A)) • 0. However, the nilpotent radical 
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defined by Passman acts a crucial role in studying the semiprimitivity problems in 
group algebras. The details are given in [Pasl, Chapter 8 . 

We have following theorem concerning the nilpotent radicals of group algebras. 

Theorem 1.3.13 [Pas3] Let A+ = A+(GO and char{K) = p > 0. Then 

(i). N{K[G]) = J{K[A+])'K[G]. 

(ii). J{K[A^]) = LWew(G) ^ ( i ^ [ ^ ] ) ； where W(G) is the set of all finite normal 
suhroups ofG. 

(iii). N{K[G]) + 0 iff A+ contains an element of order p and iff G has a finite 
normal subgroup with order divisible by p. 

All other properties related to group ring can be found in [Pasl, Pas2] and his 
recent survey paper [Pas3 . 

1.4 Graded Algebras 

Every group ring and semigroup ring can be viewed as graded algebras. We recall 
here to some basic results from graded algebras. We refer to [Jes3, JW1, Kar, NV 
for the properties of group graded rings and semigroup graded rings. 

Let S be a semigroup. A ring is *S-graded if 

R=Y,Rs 
ses 

is a direct sum of additive subgroup Rs, indexed by the elements s E S such that 

RsRt ^ Rst-

A left i^-module is 5-graded if M = ^ses^s is a direct sum of additive groups 
such that RsMt C Mst, for all s, t G S. If S is a group, then R is strongly graded and 
1 G i?e, where e is the identity of the group S. 

The well-known examples of semigroup graded rings are the polynomial rings 
R[x1,x2, •.. ’ Xn] with commuting variables. It is graded by free commutative monoids 
with rank n and the polynomial ring R { x i , X2,... , Xn} in non-commuting variables 
is graded by free non-commutative monoids with rank n. 
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Let A be a 5-graded ring. If / is an ideal or subalgebra of A, then I is said to be 
5'-homogeneous (or say 5'-graded ) if 

i = J2{inA,), 
xes 

i.e. J2xes ^x e I implies that r^ G I. 

Let B be another 5'-graded algebra. A homomorphism f : A 一 B is called graded 
homomorphism if f{A^c) ^ B^ for all x e S. Moreover, R is called nondegenerate if 
{rR)e = (0) or [Rr)e = (0) for some r G R, implies r = 0. 

In this section, the general properties of semigroup graded algebras will be inves-
tigated. 

Proposition 1.4.1 [Kar, Prop. 22.5] Let S be a right (or left) cancellative monoid 
with identity e. Let R be a S-graded algebra. Then R^ is a subalgebra ofR. 

Moreover, ifR is a S-graded with S not necessary right (or left) cancellative, then 
the following statements hold: 

If Re is subalgebra ofR (contains 1 G R), then 

(i). For X G S, Rx is a {Re^ Re)-bimodule under the left and right multiplication by 
the elements ofRe. 

(ii). Re n U{R) = U{Re) and R^ fl J[R) C J[Re). 

Let R_grM be the category of all C-graded left i?-modules and the morphisms 
are the set of graded homomorphisms. If M, N G R_grM then HorriR_gr{M, N) is 
the graded homomorphisms from M to N, 

Theorem 1.4.2 [NV, Th. I.3.4] The following conditions are equivalent in a strongly 
G-graded ring R. 

(i). R is a strongly G-graded ring. 

(ii). Every graded R-module is strongly G-graded. 

(iii). The functors R<^R^- and ( - ) e are equivalent between the Grothendieck categories 
R_grM and n^M-mod. 
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1.5 Crossed Products and Smash Products 

It is known that the radical problems on group-graded rings and even semigroup-
graded rings (cf. [Kar, Jes3, Pasl]) can be solved by using the techniques of crossed 
products. We adopt the notations of crossed products given from [Kar] because the 
crossed product defined by Karpilovsky not only for groups but also for semigroups. 
Let k be commutative ring with unit, A be a A;-algebra and Aut^(A) be the group of 
all A:-algebra automorphisms of A. The unit group of A is denoted by U{A). Then, 
for the multiplicative monoid M, we consider the following mappings: 

¢7 : M 一 Autfc(A) 

and 
a : M X M — U{A) 

We call (M, A, a, a) a crossed system for M over A if for all x, y, z G M and a G A, 
the following equalities holds: 

^{ya)=a{x^y) r^a)a(x，W—i 

a{x,y)a{xy,z) = [^a{y,z))a{x,yz) 

a(x, e) = a(e, x) = e 

where ^a = a{x){a) for all a G A, x E M, and e is the identity of M. 

Proposition 1.5.1 [Kar, Prop. 23.3] Let (M, A, a, a) be a crossed system for M 
over A and A * M the free A-module freely generated hy the elements x, x G M, with 
multiplication defined by 

{a1x){a2y) = ai ^a2a{x,y)xy 

for all di G A and x, y G M. Then A * M is a strongly M-graded k-algehra with 
j identity element 1 . e, {A * M)g = A . e and with 

{A * M)x = Ax = xA Vx E M 

\ We say that the A:-algebra A * M as the crossed product of M over A. It is mainly 
composed by two parts: 

h 
i ； 

i I 

':•; (a) (Twisting) xy = a{x, y)^, and 
f： 
r • 

i (b) (Action) xr = ^rx. 

； 1 4 

’1 

,! 
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Note that if a{x) 二 1 and a{x, y) = e for all x, y G M, then A * M becomes a monoid 
ring. If only a(x, y) = e, then A * M is a skew monoid ring. 

Note that A can be regarded as a subalgebra of A * M. However, there is no 
natural embedding of M into A * M in general. 

Let A * G be a crossed product of a group G over an i^-algebra A. For a subgroup 
H of G, we denote 

A^H = {Y,Xhh]heA} 
heH 

Then A * H is a subalgebra of A * G which is the crossed product of H over A. 

Corollary 1.5.2 [Kar, Coro. 23.6] Let N <\ G and A * G a crossed product ofG 
over an R-algebra A. Then 

A^G= {A^N) * {G/N). 

For group algebras, we know that if G is a group with a normal subgroup 7V, then 
K[G] = K[N] * {G/N). 

In case if G is finite, then Cohen and Montgomery [CM1] (1984) have related the 
group-graded algebras to Hopf algebras. 

Denote the dual algebra k[G]* = Homk{k[G], k). Let G be a finite group and A is 
G-graded A:-algebra, where k is any commutative ring with unity. We can check that 
k[G]* is a bialgebra. The smash product A#A:[G]* is the free left A-module on the 
generators set {pg G k[G]*l g G G}, which is a set of orthogonal idempotents whose 
sum is 1, with multiplication define by the rule 

{a#Pg){b#ph) = abgh-i#Ph 

where bg^-i is the homogeneous element of b in Ag^-i. 

Smash product is an important tool for studying group graded rings, in partic-
ular, the duality theorems of Cohen and Montgomery [CM1]. We summarize some 
important properties and duality theorems: 

Theorem 1.5.3 [CM1, Th. 3.2, 3.3] (1984) Let R = A * G, the skew group rmg 
over commutative ring A. Then 

(A*G)#A;[G]*SM"^A). 

Let R he G-graded k-algehra and G is finite group with order n, then the skew ring 
over group G 

(_R#A; [Gn*GSMn(i^ . 
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In order to extend smash product to infinite groups, we use the notations given 
in [Bea]: 

Notation 1.5.4 Let R he a G-graded ring and let R#G* be the free left R-module 
on the generators Pg, g G G. Denote rpg by r#Pg and the multiplication is given by 

{rpg){sph) 二 rSgh-側 

and multiplication of such elements is defined by linearity, while {pg} is a set of 
orthogonal idempotents. 

The product i?#G* is called the generalized smash product of R and G. Note 
that we do not assume that R is a G^-graded ring with unity. 

Proposition 1.5.5 [BS] (1991) LetR#G* he the generalized smash product defined 
above, R a G-graded ring without umty and R^, a ring extension ofR which R^ has 
unity (1). Then 

(i). R#G* is an ideal ofRi#G*. 

(ii). For g G G, we define {R#G*)g = E^ec Rgh-^Vh- Then 

R#G^ = Y.{R#G^)g 
geG 

and R is isomorphic to [Rjj^G*)e, where e is identity ofG. 

(iii). Let R be a G-graded ring with unity. Denote R^ as the set of all fixed points 
under the group action. Then g acts on left by ^{rph) = rpf^g-i and acts on 
right by (rphY = rphg- From [Qui]； ifG is finite then {R^G)^ = R. Also, 
{R#G*)^ = 0 when G is infinite. 

(iv). [BS, Prop. 2.1] The caterogies of irreducible left G-graded R-modules and irre-
ducible left {R^G*)-modules are isomorphic. 

Note that the duality theorems given by Beattie on crossed products has been 
recently unified by Y.H. Xu and K.P. Shum [XS], by introducing the concept of 
double crossed products. 

(i)_Ri is obtained from R by an adjunction of the unit element by the ring of integers, i.e. R^ = 
R ® Z, with multiplication (a, n){b, m) = (ah + m • a + n . b, nm) 
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Chapter 2 

Radicals of Graded Rings 

In this chapter, we give some notations and terminologies for studying radicals 
(mainly Jacobson radical) of semigroup algebras and group algebras through graded 
ring theory. We will make use of these results to investigate the radicals of semigroup 
algebras. 

2.1 Jacobson Radical of Crossed Products 

Before studying the Jacobson radical of group algebras or semigroup algebras, we 
first review the properties of radicals of crossed products and graded rings. 

Theorem 2.1.1 [Kar, Th. 23.4] Let k be commutative ring with unity. Let A be a 
k-algebra and S a multiplicative monoid. Assume A^S is a crossed product ofS over 
A (constructed in Chapter 1, Section 1.5). Then 

(i). A n J{A * S) c J{A) 

(ii). If S is finite of order n, then 

(a) A n J ( A * 5 ) 二 J{A). 

fb) J{A * S)^ C J{A) . {A * S) C J{A * S). 

(c) J{A * S) = J{A){A * S), provided every A * S-module is A-projective. 

(d) J{A * S) is mlpotent, if J{A) = 0. 

！ The problem describing the radicals of semigroup rings seems to be rather com-
I plicated. However, for arbitrary semigroup, if there is a least semilattice congruence 
i 
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T] on S, then S/r] is the greatest semilattice decompostion of S into certain type 
of subsemigroups, say UaerSa^ where F is semilattice. To reduce the problem, we 
consider R[S] = Eaer R[Sa] is a F-graded ring. Thus, the studying the radicals of 
graded rings is essential the same as the semigroup algebras. 

In the following, we assume all *S-graded rings are contracted, i.e. Re = 0 where 6 
is the zero of semigroups. Throughout this section, S is right cancellative semigroup 
with unity (e.g. cancellative monoid, group) and R is a 5'-graded algebra. Right 
cancellative properties ensure that xy 二 e implies yx = e, where e is identity of S. 
A left i^-module M is called graded simple if RM = M, and {0 } , M are the only 
graded submodules of M. 

Definition 2.1.2 The graded Jacobson radical ofR, denoted hy Jgr{R), is the set of 
elements of R which annihilates all S-graded simple left R-modules. Let V be graded 
R-module, then Jgr{V) is defined to he the intersection all graded-maximal submodules 
ofV. 

The graded Jacobson radical has the following properties : 

Proposition 2.1.3 [Kar] Let S be right cancellative monoid. Then the following 
statements hold for the S-graded algebra R: 

(i). Let V be graded R-module. If V is finitely generated nonzero module, then 
Jgr{V) + V. 

(ii). Jgr{R) is a homogeneous (graded) ideal ofR. 

(iii). Jgr{R) is the largest proper homogeneous (graded) ideal of I of R such that 
/ n i ^ i C J{Ri). 

(iv). Jgr{R) contains all homogeneous (graded) nil left ideals ofR. 

(v). J{R) is graded, then J{R) Q Jgr{R) with equality if R/J{R) is artinian. 

2.2 Graded Radicals and Reflected Radicals 

If S is finite group, then there are some connections between smash products and 
Hopf algebras [CM1] (see Section 1.6). In the following, we always use the concept 
of generalized smash product described in 1.5.4. 
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Theorem 2.2.1 [Bea] Let G be arbitrary group and R is G-graded nng with umty. 
Then J(_R#G*) = Jgrln)#G^ 

Proof. For x = E^=i ^iPgi ^ 八肺0*)- We have upg, G J[R#G*) because Pg is an 
orthogonal idempotent and the Jacobson radical is a two-sided ideal. Therefore, it 
suffices to show that rpg G J[R#G*) implies r G Jgr{R)-

Note that J(i^#G*) is G-stable (invariant under group action). Thus, if rpg G 
J(i^#G*), then rph G J�R#G*�for any other h G G. Let V" be an irreducible 
graded left i^-module. Then V# is also an irreducible left i^#G*-module by the 
categorial isomorphism (in Prop. 1.5.5 (iii) ). For any v G V# and all g e G, if rpg 
annihilates V such that 0 = rpgV 二 rVg, then r annihilates V and r G Jgr{R)- Thus 
J(i^#G*) C JgAR)#G\ 

Conversely, let x = E L i UPg, G Jgr[B)#G*, where n e Jgr{R)- Also, let M be 
an irreducible left i^#G*-module. Then M' is a graded irreducible left /^-module by 
the functor ( / . Thus, riM' = 0 implies that riMg. = 0 = riPg.M and x = ^g. npg.. 
Hence x G J _ G ” . Thus, J[R#G*) = Jgr�R)#b*. • 

Corollary 2.2.2 Jgr{R)门 Re = J{Re) where e is the identity ofG. 

Proof. Since Pe�R#G*)Pe = ReVe = Re, it follows that 

J[Re) = J{pAR#G>e) 

= p ^ J [ R # G 1 P e 

二 Pe{Jgr{R)#G*)pe 

={Jgr{R))ePe 

=Jgr{R) n Re 

• 
However, in general, it is not true that Jgr{Ft) is always contained in J{R). For 

instance, consider C as a commutative domain with J{C) + (0). Let R 二 C{x} be 
, the group ring of C over Z as usual. Clearly, C{x} contains no nil ideals. Then, we 

can observe that J{C{x}) = (0), but Jz[R) = J{C){x}. 

We now consider the case when G is a finite group. From Theorem 2.1.1, we 
deduce the following theorem: 

Theorem 2.2.3 [CM1, CM2] Let R be ring graded by afimte group G. Then 

] 19 
i i 
i • 
I 
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(i). Jgr{R) C J{R), in particular, Jgr{R) 二 J{fi)gr ^s the largest homogeneous part 
in J{R). 

(ii). J(i^)l^l C Jgr{R). 

(iii). \G\J{R) C Jg,{R). 

(iv). If |G| is the member of the units in R, then Jgr{R) = J{R). 

Proof, (i) Consider 蹄0\ from Theorem 2.1.1 and 2.2.1, we have Jgr{R) = ^^门 

J � R # G * ) . Thus X G Jgr{R) is quasi-invertible in R # G \ Since i^#G* is free over 
R, any element of R invertible in R#G* is already invertible in R. Thus Jgr{R) is a 
quasi-regular ideal in R, so is contained in J{R). 

For (ii), by using the crossed product propeties, we obtain from Theorem 2.1.1, 
that 

J(CH#G*) * G)IGI c J(i^#G*) * G = (JfOR)#G*) * G. 

and then for the identity e G G, we have 

PeJm#G*) * oy^W Q�P^JAR)#G1 * G)pe). 

By using duality theorem (see Theorem 1.5.3), we have for n = \G\ and Pe ^ ei, 
some idempotent n x n matrix 

e,J{Mn{R)Te^ C eiMn{Jgr{R))ei 

^ ) | G I C Jg^R) 

The results then follow. 

(iii) (iv) See [Kar, Th. 30.10 (iii)] for details. • 

Recall that the prime radical B is the intersection of prime ideals of R. Let R be 
G-graded algebra. A graded ideal I is called graded prime if JK C I, for some J, K 
graded ideals of R, then J C I or K C I. It is known that the graded prime radical 
Bgr{R) is the intersection of all graded prime ideals of R. 

Graded prime radical in R#G*, when G is finite, was studied by Cohen and 
Montgomery [CM1]. Beattie and Stewart [BS] then considered the generalized smash 
product R#G* and G may be infinite. If J is a graded ideal of graded algebra, then 
from Proposition 1.5.5, J#G* is an ideal of R#G*. 

If I is ideal of R^G*, then define /^ and 户 of R be the sets 

lR = {r : r G R\rpg G I for all g G G} 
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and P = (Jfi)gr. Clearly, 1̂  is the largest graded (homogeneous) ideal in lR. 

If A is a radical class in the category of associative algebras, then we define the 
reflected radical of 入 by 

Xref = { R : R is a G-graded algebra with R # G * G A}. 

Clearly,入对 is a radical class of G-graded algebra. 

Proposition 2.2.4 [BS, Prop. 1.2] If X is a radical in the category of associative 
rings, then for R a G-graded ring, Xref{R) = (A(i?#G*)”，and thus \eAR�#G* = 
KR#G”. 

Note that the reflected Jacobson radical coincides the graded Jacobson radical by 
Theorem 2.2.1. 

We now consider the prime radical B of the graded algebra R. 

Lemma 2.2.5 [CM1, Lemma 5.1] Let R be a graded algebra and G a finite group. If 
I is a graded ideal ofR, then I is graded prime if and only if I = Pgr, the associated 
graded ideal of some prime ideal P of R. Consequently, Bgr{R) — {B{R))gr, the 
largest graded ideal in B{R). 

Theorem 2.2.6 [BS] Let R he graded ring over group G. Then the following condi-
tions hold: 

(i). Bgr{R) C Bref{R) 

(ii). IfG is finite, Bgr{R) = Bref{R)-

(iii). IfG is infinite, then inclusion in (i) may he proper. 

Proof, (i) If P is a prime ideal of R#G*, then P^ is a graded prime of R and thus 
BgAR)#G ' C B[R#G*) so that Bgr{R) C Bref{R). 

(ii) Suppose that the G is finite, and R has an unity. Then, the prime radical of 
R#G* was studied in [CM1]. Since the prime radical is a hereditary radical and R 
contains no identity so we have 

B[R#Cr) = B(^Ri#Gr)f}R#G* 

= 0 ? V ( i ? i # G * ) ) n R#G*{^ by [CM1, Th. 5.3]) 

二 _\r#G,nR#G* 

={B{R')grnR)#G' 

={B{B')nR)gr#G' 

二 B{R)gr#G* = Bgr{R)#G* 
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(iii) When G is infinite, we have already known that Bgr{R) £ Bref{R)- Let K be 
a field and let R = K[t], the polynomial ring graded by G 二 Z in the usual way. Since 
(0) is graded prime ideal, Bgr{R) = (0). Let I be the principal left ideal ( i^#G*)(^o) 
of R#Q\ Then P = (0). Thus J = I + I[R#G*) is a nilpotent two-sided ideal of 
R # Q \ and therefore, >B(_R#G*) 二 BreAB)#G* is nonzero. • 

We quote the following results from Beattie and Stewart [BS] to describe the 
graded version of Levitzki and Brown-McCoy radical. The details of proof are referred 
to [BS:. 

Recall that the Levitzki radical C is the intersection of the prime ideals P of R such 
that R/P has no nonzero locally nilpotent ideals, Cgr{R) is hence the intersection of 
all graded prime ideals P of R such that R/P has no nonzero graded locally nilpotent 
ideals. 

Lemma 2.2.7 [BS, Prop. 3.2] For any G-graded ring R, we have Cgr{R) = {C{R))gr-

Theorem 2.2.8 [BS, Th. 3.3] Suppose that the ring R is graded by a group G. Then 

(i). For any group G, Cgr[R) C Cref[R)-

(ii). If G is locally finite, Cgr{R) = Cref{R)-

(iii). For infinite group G, the inclucsion in (i) may he proper. 

The Brown-McCoy radical is intersection of ideals M whose R/M is a simple ring 
with unity. Similarly, we define Ggr{R) be the intersection of the graded ideals M of 
R such that R/M is a graded simple ring with identity. 

Proposition 2.2.9 [BS, Prop. 3.5] For all G-graded rings R, we have Q[R)gr C 
Qgr{R) and this inclusion may be proper. 

Theorem 2.2.10 [BS, Th. 3.6] For all group G, Qgr{R) C Gref{R)- IfG is fimte, 
then Qgr{R) = Qref{R)-

Moreover, we can extend Theorem 2.2.3 to any radical described above. By using 
the duality theorems of finite group actions and coactions, we can summarize the 
results from [BS, CM1, Jes3, JP] and obtain the following theorem. 
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Theorem 2.2.11 Let the radicals H 二 B,C,G be the prime; Levitzki and Brown-
McCoy radicals respectively. Suppose that A is a G-graded rmg and G is fimte group. 
Then we have 

G\n{A) c Hgr{A) c n{A). 

Proof. If 7i = B,C, from Lemma 2.2.5，and 2.2.7 and using the terminology of 
prime and graded prime ideal in [CM1], we can see that 

\G\n{R) c Hgr{R) C n{R). 

For 7i = Q, if R is an algebra strongly graded by a finite group G, then from [JP, 
Prop. 2], g{R) n Re = Q{Re) and 

|<^|G(i^ c g{R,)R = Rg[Re) = Qgr{R)-

If R is graded by a finite group G and \G\ = n, then by duality theorem of group 
coactions, we have a homomorphism defined by 

^ ： (i^#G") * G 一 Mn{R) 

and 
小:im * " ) H E ^fg-'^f,gh 

feG 

where ef,gh is the matrix with 1 in the ( / , gh)-entiy and zero otherwise. Obviously, ¢) 
is an isomorphism. If follows that Mn{Ggr{R)) = 0 ( ( 0 『 ( 均 # ^ ^ * ) * G). On the other 
hand, by using Theorem 2.2.10, we have for G is finite, Ggj\B?)#G* = Qref�R)#G* = 
Q^G,. 

Also, we have 

Mn{Qgr{R)) ̂  [Ar(i^)#G^ * G = [&r(i^#G*)] * G 

c gm#G) * G] |> g{Mn[R)) = M “ _ 

Hence, Mn{Ggr{R)) ^ Mn{Q{R)). Consequently, 
|G|S((i^#G*) * G) C QgA[R#G*) * G) and so 

Mn{\G\G{R)) = \G\Mn{Q{R)) C M,(g, , ( i^)) C Mn{g{R)) 

‘ Hence, |G|0(i^ C QgriR) C Q{R) as required. • 
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2.3 Radicals of Group-graded Rings 

We now generalize the results of Karpilovsky (see [Kar, Th. 30.28]) to other radicals 
described above. 

Lemma 2.3.1 [JP] Let R be a ring graded by a group G which is residually p-finite 
for two distinct primes p. If the radicals 7i = i3, C, J or Q, then H{R) is homogeneous. 

Proof. First we notice that if G is residually p-finite, then for every finite subset 
T of G, there exists 7V, the normal subgroup of G with G/N is p-group, such that 
sN + tN for every 5, t G T, s + t. 

Suppose that r = J2g^r ^g ̂  ^{R) and T a finite subset of G, Then by the above 
result, there exists a normal subgroup N such that G/N is finite p-group satisfying 
the above situation. Consider R as a G/N-gia,ded ring. Then, by the properties of 7V, 
each component r^, for all g G T, must be a homogeneous component. By Theorem 
2.2.11, we have \G/N\r G Hgr{R) C H{R) and hence \G/N\rg e U{Rg) for every 
g G T. Thus, jfTg e H{Rg) for some n > 0. Since this holds for two distinct prime 
numbers we obtain that Tg G 7i{Rg). • 

Furthermore, we can extend the above result to subdirect product of groups: 

Lemma 2.3.2 [Kar, Lemma 30.20] Let {Gi\ i E /} be a collection of arbitrary groups, 
let G he a subdirect product of Gi, and let A be a G-graded algebra. Then, for the 
radicals H 二 /3, C, J, Q, we have : 

(i). Iffor each i G I, 7i(^) is a G{-graded ideal ofA, then 7i{A) is a G-graded ideal 
ofA. 

(ii). If each G{ is finite, then for any a = ^g^G ^g ^ H(A)^ where CLg G Ag, there 
exists a positive integer Ua such that n^a^ G J{A) for all g G G. Furthermore, 
ria divides |i7i||î 2| ... 1¾! for some k 二 k{a) and some Ht G {Gi\ i G / } , 1 < 
t < k. 

The following lemma only serves for the case of Jacobson radicals. 

Lemma 2.3.3 [Kar, Lemma 30.27] Let A be a G-graded algebra. For any finitely 
generated subgroup Hi of G, let An^ he the subalgebra graded by Hi in A. If J^A^i) 
is a graded ideal, then J{A) is a graded ideal of A. 

Proposition 2.3.4 (i). G is locally free if every finitely generated group is free. 
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(ii). G is residually free ifG is a suhdirect product of free groups. 

(iii). G is residually p-finite ifG is a suhdirect product of finite p-groups. 

(iv). G is free solvable ifG = F/F(^) for some free groups F. 

We note that free group, finitely generated torsion-free nilpotent group G and free 
solvable group are all residually finite p-groups for every prime p (ref. [Kar, Section 
30]). Now we slightly modify the theorem given in [Kar, Th. 30.28]: 

Theorem 2.3.5 Let R he a ring graded hy a group G where G is a group of any one 
of the following types: 

(a). G is abelian and the orders of finite subgroup ofG are units in R. 

(b). G is residually free, or free solvable or torsion-free nilpotent. 

(c). G is locally finite and the orders of finite subgroups ofG are units in R. 

(d). G is locally free. 

If G satisfies one of the following cases: 
Case I ; H = J and G is type (a),(h),(c),(d), or suhdirect prodcut of them. 
Case II; H = B, C, Q and G is type (a),(b)，or suhdirect product of them. 

Then the following properties hold: 

(i). H{R) is a graded ideal. 

(ii). U[R) C Hgr[R) ifn = J. 

(iii). n{R) = {H{R) n Re)R = R{H{R) n Re), ifR is strongly G-graded. 

Proof, (i) If the group G is of type (a) and (b), then G is residually p-finite. By 
Theorem 2.2.11, Lemma 2.3.1, Lemma 2.3.2, we can see that 7i{R) is graded. 

If the group G is type (c) and type (d), then by above and Lemma 2.3.3, we obtain 
the graded ideal J{R). 

(ii) Notice that if J{R) is graded, then J{R) H R^ C J{R^). And if Jgr{R) is the 
largest graded ideal I of R such that I fi Re C J[R^) then J{R) C Jg^[R). 

(iii) Hgr�R)nRe = H{Re) when R is strongly graded. Since H{R) is graded, then 
丨 7^[R) = [WiR)r^Re)R. • 
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There is an important corollary, for the case of semigroups. For A is 5'-graded 
algebra, S is a submonoid of group G. Then A can be regarded as an G-graded 
algbera via Ag = 0 for g^S. 

Corollary 2.3.6 [Kar, Th. 30.30] Let S be submonoid ofG, where G is one of the 
above types (a,h,c,d) in above theorem. IfA is S-graded algerha, then J{A) is a graded 
ideal of A and J{A) C Jg^(A), 

Remark: Under the construction of A to C-graded algebra, A must be not strongly 
C-graded because 1 0 A^^^-i for some g G G, 

For R * G, the crossed product of G over R, we have a similar theorem: 

Theorem 2.3.7 [Kar, Th. 33.30] IfR be an arbitrary ring and G be a group of one 
of type of above theorem. Then J{R * G) is a graded ideal of R * G and 

J{R * G) = {{J{R * G) n R) * G C J{R) * G. 

2.4 Algebras Graded by Semilattices 

In this section, we introduce some results from semilattice graded rings. 

Theorem 2.4.1 [Jesl, OW] Let R = J2aer ̂ a be a T-graded algebra, T is a semi-
lattice. 7i is one of hereditary radical (e.g. Jacobson, Prime, Levitzki and Brown-
McCoy radical). If 0 + x = J2aer ̂ a G 7i[R), and j3 is maximal in suppr(x)，then 
xp G 7i{Rp). Moreover, if J{Ra) 二 Ra for all a G T, then J{R) = R. 

Proof. Take 0 + x G 7i{R) and F is semilattice which has partial order in the usual 
sense. Let T^ = {o^ G P|a < 7 , V 7 G supp{x)}. We can see that T^ is an ideal 
of r . Denote R' = Eaer, ^a which is the ideal of R. Then U[R) n R' = H{R') 
and X G 7i{R'). Let |3 be the maximal element in suppr(^x), P is also the maximal 
in r^. And define ¢) : R' ~^ Rp be the projection map to Rp. This is surjective 
homomorphism because if (3 = a6 implies f5 < a and f5 < 6, so a = P = 6 by 
maximality of j3 G P .̂ Therefore 

(̂ (a;) = X0 G H{R|3). 

Moreover, if J{Ra) = Ra and P is finite. By induction on |F|, we have J{R)= 
： R. For r is infinite, for 0 + r G R, any y G R, supp{yr) is finite and let F, be 

subsemilattice generated by suppr{yr), it is a finite semilattice. Then yr G R'= 
Eaer' Roi 二 J{R')- This means that yr has quasi-inverse in R' and hence in R. • 
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Corollary 2.4.2 [Jes3] LetH be a hereditary radical (e.g. Jacobson, Prime, Levitzki 
radical etc.) and S a semilattice. IfR is a S-graded ring and H{Rs) = {0} for each 
s G S, then 7i{R) = {0}. Moreover, ifR is a field or R is a semiprimiUve ring, then 
J(i^[5]) 二 0 ifS is semilattice. 

Corollary 2.4.3 [Wau, Coro. 1.3] Let S be a two-elements semilattice. That is 
S = { e , / } with e^ = e, p = f = fe = ef. Let H he a supermlpotent radical 
(hereditary and contains all nilpotent ideals), and R is a S-graded ring. IfRf has an 
unity 1 f, then 

n{R) = {r = re + Tf I re € n{Re), 1/r G H{Rf)} 

and if7i{Rf) = 0，then 

n(^R) = {r-lfr I r G H{Re)}. 

2.5 Algebras Graded by Bands 

More generally, if all semilattices are bands, then we can extend the above result to 
the ring graded by bands. Recently, Kelarev and Munn have considered the ring R 
graded by bands [Kell, Mun7]. Denoted R = Y^B Rb where B is a band. Sometimes, 
we also call R a band-sums. The following results are extracted from [Kell, Mun7 . 

Recall that a band is a rectangular band if it is satisfies the identity xyx = x. Let 
B be a band and define a relation a on B by 

(X, y) e cr • xyx = x and yxy = y for all x, y G B. 

Then B is semilattice of rectangular bands. Let ir : B — B = B/a^ for <S1,S2 G B, 
we say Si < S2 if ^i < 2̂ where s = {t G B\sts = s, tst = t}. 
Also, we denote 

s = {t G B\s < t} = {力 G B\sts = s}. 

2.5.1 Hereditary Radicals of Band-graded Rings 
For r G R, write r§ 二 Y^t&gU and A^ = {a!|a G A}. The following formation and 

； characterization are given by Kelarev [Kell . 
I Let H be hereditary radical and the collection of ideals 
( 

I l{R, B, n) = {A is ideal in R\ Ag n Rb C H{Rb) for all b e B}. 
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Let n{R, B) be the sum of all ideals in I(R, B, H). Then, we say that H is deter-
mined by the component of the 5 -sums if H{R) = 7i{R, B). Note that H{R, B) 
is the largest ideal in I(i?, B, H). 

If r is a semilattice, H a radical, and R = Eser^s , then 7i(R) e I(Ji, S, H). 
Moreover, if P is a right (left) zero band, H be left (right) hereditary radical, then 
U{R) el[R,P,U). 

Moreover, a radical is called C-local (CV_local, C^local) if its radical class is 
closed under unions of ascending chains of subrings (right ideals, left ideals). 

Definition 2.5.1 A radical 7i is called countably definable if 

(i). 7i is C-local or there exists a nonradical ring A being a union of an ascending 
chain of radical subrings Ai C A2 C ... A^ C ...，for all n G N. 

(ii). H is Cr-local (Ci-local) or there exists a nonradical ring A being a union of an 
ascending chain or radical right (left) ideals Ai C A2 C .. • An [ ... ； for all 
n e N. 

The radicals of Jacobson, Levitzki, prime and Brown-McCoy are clearly countably 
definable. 

Recall that a radical is right summing iff in every ring the sum of any two 
7i-radical right ideal is 7i-radical. A radical is right hereditary iff its radical class 
is closed under right ideals. 

Lemma 2.5.2 The radical H is determined by the components of B-sums while a 
band B contains semilattice T with infinite descending chain, (or infinite left zero 
band L). If there is a chain of subrings (or right ideal) Ai C A2 C •.. with H{Ai) = 0 
and A 二 U g ^ A ； then H{A) 二 0. 

Proof. Let A[T] be semigroup ring and suppose ti > t2 > t3 > •. -. Let Rt^ be the 
subring Aiti. Clearly, Rb 二 0 if b G B\T. Let R = ^beB Rb. If ^ is determined by the 
B-sums and H{Rt,) = n{AiU) ^ H{Ai) = 0, then H{R) = 0. Let cp : A[T] — A be 
the augmentation map. It is clear that (f{Rti)=為 and hence (-p{R) = A. Therefore 
H{A) = 0. The case of left zero band L is similar and routine. • 

We now state the main theorem on band-graded rings. 

Theorem 2.5.3 [Kell] (1991) Let B be a band which is a semilattice S of rectan-
\ gular bands Qs, where Qs is the direct product of a left zero band Lg and a right zero 
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ofPs. A countably definable radical H is determined by the components of B-sums 
iff the following conditions hold: 

(i). S satisfies the descending chain condition orH is C-local; 

(ii). Every Lg (Ps) is finite orH is Cr-local (Ci_local); 

(iii). Every Lg (Ps) consists ofone element or the radical H is nght (left) hereditary, 
right (left) summing and supernilpotent. 

Proof. We only sketch the proof and the details are found in [Kell, Th. 1 . 

Necessity: Suppose H is determined by the components of B-sums. By Lemma 
2.5.2, we know that if S does not satisfy the descending chain condition and B has an 
infinite semilattice T, then K is C-locaL Hence (i) is proved. Similarly, (ii) follows 
by Lemma 2.5.2. 

(iii) It suffices to show that if L^ is not a singleton, then H is right summing, right 
hereditary or supernilpotent. Suppose L = Lg is a two-elements left zero band. We 
use L — {a, b} C B and take any ring A which is the sum of two 7^-radical right ideals 
I and J. Consider A[L] and let Ra = Ia and R^ = Ib and for t G B \ L, set Rt = 0 
and R = T^seB Rs. By Lemma 2.5.2, R is E-graded ring. Hence R is 7^-radical ring. 
Define ^{ria + r2h) = ri + r2 which maps R onto A. Then A is H-radical ring and 
hence H is right summing. 

By using similar construction, H is also right hereditary and supernilpotent. 

• Sufficiency: The sufficiency can be proved by considering S in the cases of 
semilattice, left zero band, rectanglar band and band. Then, we have to show that 
7i[R) is the largest ideal in I(i?, S, H). We omit the details. • 

Corollary 2.5.4 Let J, C, B and Q be the radicals concerned and R is a ring graded 
by band B. Then the following facts hold: 

(i). J{R) = J{R, B) and C{R) 二 C{R, B). 

(ii). B{R) = B[R,B) iff B is a semilattice T of rectanglar bands, where T satisfies 
the decending chain condition. 

(iii). Q{R) = Q{R^ B) iff B is a semilattice. 

Proof. We know that H = J, £, B are all right summing, right hereditary, and 
supernilpoent radicals, however, B is not C-local and by Theorem 2.5.3(i), P must 
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satisfy the decending chain condition. Moreover, Q is not right hereditary and left 
hereditary, then Theorem 2.5.3(iii), Lg and Pg are singleton for s G P. Thus B = P 
which is a semilattice. • 

2.5.2 Special Band-graded Rings 

Munn has studied a particular class of band-graded rings in 1992. Let B be band, a 
ring R is special if 

(i). For all a G B, R^ is non-zero and has a unity 1。， 

(ii). For all a ,P G B, 1̂ 1/3 二 la". 

Denote B/a by B where a is a semilattice congruence on the band B. 

Lemma 2.5.5 Let B be band and R a speical B-graded ring, let a, p G B with 
a > p. Define ¢^,(3 : Ra ~^ Rp by ^a,p{x) = l(3xlp for all x G Ra- Then 

(i). 4>a,f3 is homomorphism. \ 

(ii). For all 7 G B with 7 > a, 4>a,p4>^,a = 07,/3-

(iii), If a =百 then 4>a,p is an isomorphism under an inverse isomoprhism ^f3,a. ； 

Theorem 2.5.6 [Mun7] (1992) Let R be a special hand-graded ring. Then we have 

J{R) = {a e R I Va G B, laa&la ^ J{Ra)}- '' 

Proof. Let T be the set {a G R\ Va G B, lc,a&la G J{Ra)}- Corollary 2.5.4 (i) yields 
that the Jacobson radical is determined by the components of B, J(i?)&ni^；^ C J{Ra)-
For a e J(R), we have lada^a 二 (la<^la)d ^ J(R)a and 1̂ <¾ !̂̂  G Ra- Thus 
laa&la G J{R)a n Ra [ J{Ra) ^1 all tt G B and so a G T, i.e. J{R) C T. 

Let a G B and Sa = J2pea R|3- Then Sa is subring of R and J2p̂ BXa Rp is an ideal 
of R. Define n^ ： x n^ Xa- Moreover, there is an epimorphism rj^ from S^ to R^ by 
X ^ la;Xla, we have 

R ~ ^ Sa 

^c \ ”a 

Ra 
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Since this holds for all a G B. We have +J^a) = la^^la and ^a{J{R)) [ J{Ra)-
Then 

J{R)^ n r A A R a ) > T . 
aeB 

Moreover ^~^{J{Ra)) is an ideal and so is T. 

T is an ideal and by the definition of T, we have T& 门 Ra C J[FQ. By Theorem 
2.5.3, J{R) is largest ideal of l{R, B, J). This shows that J{R) = T. • 

A special B-graded ring R is called radically coherent iff 

Va, /3 e B with a > ^ ^aAJ{Ra)) C J{Rp). 
n 
I 

i' 
The following corollaries were due to W,D. Munn [Mun7J. 

ii 
i 

Corollary 2.5.7 [Mun7, Coro. 3.3] Let R be a special B-graded ring. Then i 
(i). J{R) = J2jeB J(^j) ^ffR 以 radically coherent. | 

(ii). J[R) = J2^^B J{Rj) iff B is a semilattice and R is radically coherent \ 

Corollary 2.5.8 [Mun7, Coro. 3.4] Let B be a band and R he a special B-graded \ 
ring. If J{R) = 0 then B is a semilattice. 丨. 

I 
Thus we have the following important corollary for algebras over bands. , 

i 

Corollary 2.5.9 [Mun7, Coro. 3.5] Let R be a non-trival ring with unity and B a j 
band. Then R[B] is radically coherent and j 

J{R[B]) = {J2nb e R[B] | V7 e B , Y j t e J{R)}. ' 
beB tej 

There is another description on Jacobson radical in band-graded ring. Let A be 
a finite non-empty subset of a band B and let a G {A), the subsemigroup generated 
by A. (|)a,p : Ra — Rp for a > p. Define 

M[A,a)^ n 小：认八喻 
peB 
a>p 

anA=pnA 

Theorem 2.5.10 [Mun7] (1992) Let R he a special hand-graded ring and A a finite 
non-empty subset ofB. Let a G R such that suppB{a) C A. Then 

J{R) 二 {a G R\ Va G (A), l^a^l^ G M(A, a)} 
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Let r be semilattice and a, [3 e F, write a >- f3 iff a > f3 and subject to no 7 G F 
such that a > 7 > f3. T is called pseudofinite iff it satisfies the following conditions: 

(a) For all a, f3 G P with a > [3 there exists 7 G F such that a >- 7 > p. 

(b) For all a G P, \{p G T : a — p}\ < 00. 

Definition 2.5.11 Let A be a suhsemilattice ofB. Suppose A is finite and let a G A 
we define 

1^ if a is the least element of A. 

p{A oO = n (la - l7) otherwise. 
7eA ! 

^OL^Al 

We can see that p{A, a) is central idemoptent of R, a G A which is finite set and 
la = E/3eaA P{A P) = E p ( A / ^ ) - i 

f3^A ' 
oc>f3 1 

By using the above definition, W.D. Munn obtained the following result: | 

Theorem 2.5.12 [Mun7] (1992) Let R be special V-graded ring and let A be a finite ! 
suhsemilattice of the semilattice T. Let JA[R) = {a G J{R) : suppr(a) C A}. Then j 

! 

JA{R) = J2M{A,a)p{A,a). ‘ 
aeA 

Corollary 2.5.13 [Mun7, Coro. 5.4] Let R be a special semilattice-graded ring with ‘ 
r pseudofinite. Then 

J{R) = 0 iff Vof G r , J{Ra) = 0. 

If r is pseudofinite, then p{a) == p[B, a) because the set {7 : a >- 7 } is finite. 

Corollary 2.5.14 [Mun7, Coro. 5.5] Assume that each principal ideal ofT is finite. 
If R is a special T-graded ring, then 

J{R) = Y.J{Ra)p{a). 
aer 

Finally, we consider the nilness of the band-graded ring R by using the above 
techniques. We have the following results. 
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Theorem 2.5.15 [Mun7, Th. 6.2] Let R be a special hand-graded ring. If J{Ra)仏 

nil for all a G B then J{R) is nil. If R is radically coherent and J{R) is ml then 
J{Ra) is nil for all a G B. 

Call a band B normal iff all a , |3,7, 6 G B, ap^6 = orfj35. 

Theorem 2.5.16 [Mun7, Th. 6.4] Let R he a radically coherent special hand-graded 
ring and n a positive integer. Then we have the following statements: 

(i). If J[RY = 0 then J{RaT = 0 for all a G B. 

(ii). If B is normal and J{RaT = 0 for all a G B, then 

RJ{RYR = 0. •‘ 

When R is a non-trival ring with unity and B is normal hand, we have J[R[B]) ‘ 
is mlpotent iff J{R) is nilpotent. If J{R)^ = 0 for some positive integer n then 1 
J{R[B])^+^ = 0. ！ 

We will apply the above grading technique to study the structure of semigroup 
algebras and group algebras in the following chapters. ！ 

I 
I , 

I 

[ 

i 
s 
I 
/ 
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Chapter 3 

Radicals of Semigroup Algebras 

In this chapter, we investigate the radicals of algebras of an arbitrary semigroup. We 
consider the polynomial rings and commutative semigroup algebras. After describing 
therQ, we study the algebras of non-commutative cancellative semigroups. For other | 
non-commutative cases, we make use of graded ring theory to give some generaliza- j 
tions, especially for algebras of completely 0-simple semigroups. In the last section 
of this chapter, we also describe the radicals of PI (polynomial identity) semigroup 
algebras. | 

！ 
丨！ 

1 
3.1 Radicals of Polynomial Rings ^ 

f s 
The first major result on radical of polynomial rings was obtained by S.A. Amitsur | 
in 1956, [Ami]. 令 

Lemma 3.1.1 [JW1, Lemma 4.1] IfS is any semigroup and J any hereditary radical 
property then, for any ring R, J{R[S]) is an ideal ofR^[S]. Morever, ifS has unity 
element, then 

(j(i^[5])ni^)[5] c j(i^[5']). 
If S has no unity, we also have 

J{R[S]) = J{R^[S^])nR[S]. 

Therefore, it is not necessary to divide the case whether R and S contains identities 
or not. In the following, we assume that all rings will have unity unless specify 
otherwise. 

We now consider the Amitsur's result. 
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Theorem 3.1.2 [Ami, JW1, Kre2] Let S be free commutative moniod with rank n, 
(finite and infinite) and R an arbitrary ring (with or without unity). Suppose that B 
is that prime radical, C is the Levitzki radical, Q is the Brown-McCoy radical and J 
is the Jacobson radical. Then 

(i). B{R[S]) = B{R)[S]. 

(ii). C{R[S]) = C{R)[S'. 

(iii). J{R[S]) = Jn{R)[S], where Jn{R) = J{R[S]) H R. 

(iv). g{R[S]) = Gn{R)[S], where GJR) = 0(i^[5]) fl R. 
t> 

Moreover， [ 
00 

J{R) = Jo{R) 2 Ji{R) 5 J2{R) 2 .. • ^ 门 MR) = JooW 
n=l I 

Similarly, j 
00 

G{R) = Go{R) ^ Qi{R) 2 g2{R) ^ ... 2 n ^n{R) = Qoo{R) | 
n=l 1 

Furthermore, Ji{R) is a ml ideal and Jn{R/Jn{R)) = 0. In particular, C{R) C ！ 

Jn{R) C Af{R), where M{R) is the upper ml radical. | 

Proof. We just present the case for Jacobson radicals. The cases of other radicals 
can be proved similarly. In the cases of prime and Levitzki radicals, the reader is [ 
referred to [Kre2]. In the case of Brown-McCoy radicals. The reader can find the | 
proof in [JKW, Th. 2.5]. ‘ 

By Theorem 2.1.1, we know J(i^[5']) n R)[6'] C J(R[S]). Moreover, as S is a free • 
commutative monoid, S can be embedded into a commutative free group with rank n. 
We regard R[S] as G-graded ring and by Theorem 2.3.5 (i), J(i^[5]) is graded. Thus, 
J^TsS G J(i^[5']) implies that rs e J{R[S]). We only need to consider rs. It suffices 
to show that rs G J(i^[5']) implies that r G J(i^[6']). When n is finite, S is free of 
rank n then s = s^^s^^ • • • s^", where rrii G N. Moreover, as the Jacobson radical 
is invariant of automorphism of R[S], we have an automorphism ¢) : Si H Si + 1 for 
1 e { 1 , . . . ’ n}. Then ^{rs) = r(si + 1)爪1 . . . (s^ + 1)爪".As the J(i^[5]) is S'-graded, 
for all r e J{R[S]), we have, J{R[S]) = {J{R[S]) n R)[S] as required. 

Let T be a free commutative semigroup of rank A:+1, with generators { t i , . . . , ffc+i}. 
Let H be a free subsemigroup of T of rank k with generators {¢1,. . . , t^}. Then H 
is a grouplike subsemigroup of T. By Lemma 1.2.3, we have 

J{R[T]) n R C J{R[T]) n _R[F] C J{R[H]) = Jk{R)[H]. 
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Therefore Jk+i{R) C Jk{R)^ as required.. 

For the case that if S is free commutative semigroup of infinite rank, we can take 
0 ^ X G J{R[S]), supp{x) is finite set with 1 generator. Let Si be the free semigroup 
group generated by supp{x). Then x G R[Si] and 

J{R[S]) n R[Si] c J{R[Si]) 二 Ji{R)[Si] c J (̂î )[5'] c J(i^)[5] 
Moreover, if S has infinite rank, 3k > 1, such that Sk is a rank k free subsemigroup 
which is a grouplike and Si C Sk. This leads to x is in Jk{R)[Sk] C Jk{R)[S]. Hence, 

X G n Jn{R)[S]- Thus, J^{R) = J(i^[5']) n R[S' . 
n=l 

It remains to prove that Ji{R) is a nil ideal of R. If r G Ji{R) = J{R[x])门 R 
then 1 + rx is invertible in J{R[x]). However, as the inverse in power series of i?[[x]], 
d = 1 — rx + r^x H . Since d G R[x] C i^[[x]], there exists n such that r^ = 0. This 
shows that Ji{R) is a nil ideal. 

Since J{R[S]) = Jn{R)[Sl R[S]/J{R[S]) = {R/Jn{R))[S]. Hence (7?/人(均)网 

is semiprimitive and so Jn{R/Jn{R)) = 0. 

It is easy to see that Jn{R) [ J\f{R)- By [Kar, Coro. 33.13], we have 

C{R)[S] C J{R[S]) cM{R)[S], 

and consequently, C{R) C J^{R) C Af{R). • 

3.2 Radicals of Commutative Semigroup Algebras 

We first classify commutative semigroups. Let P be the set of prime numbers. Let 
p G P, then S is ^-separative if for any s, t G S, s^ = t^ implies s = t. The least 
separative (p-separative) congruence ^ (respectively ^p) is defined by 

<e = {{s,t) I 3n : se = r+i，and s^t = s^+^}, 

(<̂ p = {(5, t) I 3n : s^^ = tpn�, respectivily ) 

It can be easily seen that ^ C ^̂  and ^p/^ is the least p-separative congrunce on S/^, 
p e P. 

In chapter 1, we know that the commutative separative semigroup is embeddable 
in a semilattice of abelian groups, say S = UaerSa^ where F is semilattice and Sa is 
abelian group or cancellative semigroup without idempotent. (cf. [Munl]). 

In this section, we assume all semigroups S are commutative without zero element 
and R is an arbitrary ring with unity unless we otherwise stated. 
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3.2.1 Commutative Cancellative Semigroups 

Let S be a cancellative commutative semigroup S satisfying the Ore condition. Then 
S has group of fractions SS_^ and denote it by the group Q{S). We define the 
torsion-free rank of this semigroup is to be the torsion-free rank of the group Q{S). 
Moreover, we can define the rank of semigroup. Prom [Oknl] chapter 23, we denote 
the rank of the semigroup S by rk{S), that is, 

rk{S) = swp{n G N : S has a free commutative subsemigroup on n free generators}. 

We observe that rk{S) coincides with the torsion-free rank of S when S is a commu-
tative cancellative semigroup (see [Oknl, Prop. 23.1]). 

Moreover, in section 3.1, we denote Jn{R) = J{R[X1,X2, • • • , Xn]) H R for the 
Jacobson radical of the polynomial ring R[xi, X2, •. •，xJ. However, it is not clear to 
see that Jn{R)[S] C J(i^[5]) for any arbitrary semigroup S. 

Lemma 3.2.1 [JW1] Let R be a ring and S a commutative cancellative semigroup 
with torsion-free rank n. Then Jn{R)[S] C J"(_H[;S]) 

Proof. First, we suppose that S is group. Clearly, S has torsion-free rank n. Hence, 
there exists a free subgroup F with rank n such that S/F is a torsion abelian group. 
Let T be the free subsemigroup of F such that F = Q{T). It is easy to see that R[F 
is a normalizing extension of R[T]. Thus, J{R[F]) n R[T] = J{R[T]) = Jn{R)[T] by 
Theorem 3.1.2. Therefore, Jn{R) C J{R[F]). 

Now, take a G Jn{R)[5'], CL = J2^iSi, where r G Jn{R) and 5 G S. Take h from 
R[S], we have a subgroup generated by F, supp{a) and supp{b), say H. H is a finitely 
generated and H/F is a finite group since H/F C S/F is a torsion abelian group. 
Then, R[H] is a normalizing extension of R[F]. Therefore, 

ah e J[R[F]) = J{R[H]) n R[F] C J{R[H]). 

ah has a right quasi-inverse in R[H] and also in R[S]. As a result, we have Jn{R)[S] C 
J{R[S]). 

When S is semigroup, it suffices to show that for 0 + a G Jn{R), a belongs to 
each maximal ideal of R[S]. Let M be a maximal ideal of R[S] and let T be the 
set {x G S\x^M}. If T is nonempty set, then T is a semigroup because M is also a 
prime ideal. Moreover, if x G S \ T, then xy G S \ T for all y G S. 

Define vr : R[S] — R[T] by J2ses^sS ^ J2ser ^sS. Clearly, n is a ring epimor-
phism. 7T(M) is hence a maximal ideal of R[T] and 7r(M) D T = 0. Also, R[Q{T) 
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is localization of R[T]. As 7r{M)R[Q{T)] is a maximal ideal of R[Q{T)], n{M)= 
ix{M)R[Q{T)]nR[T] by the maximality of n{M). heirk{Q{T)) 二 m < rk{Q{S)) = n 
and a G Jn{R) C Jm{R)- Then, we have a = 7r(a) G 7r{M)R[Q{T)]. This implies 
that 7T(a) G 7T{M)R[Q{T)] fl R[T] = n{M) and hence a e M. • 

L e m m a 3.2.2 [JW1] Let A be an ideal of the ring R and p an odd prime number. 
Let Ap = {r G A\pr e A} and S be a semigroup with (s, t) G ^p. Then 

Ap[S]{s-t) 二 {^ry{sv-tv)lr^ G Ap} 
veS 

is a mlpotent ideal modulo A[S] in i^[5]. In particular, I(Ap, S, ^p) (defined in Chapter 
1) is a sum of nilpotent ideals modulo ][5]. Furthermore, I{R, S, ^) is a sum of 
nilpotent ideals. 

From the survey paper of Jespers and Wauters on Jacobson radical of semigroup 
rings in [JW1], we obtain the main result about commutative cancellative semigroups. 

Theorem 3.2.3 [JKW, JW1] Let R be a nng and S a cancellative semigroup of 
torsion-free rank n. Let radical H = J, Q (the Jacobson and Brown-McCoy radicals 
respectively). Then 

n{R[s]) = Hn{R)[s] + TAKnAR),s,Q 
peP 

where Hn,p{R) = [Un{R))p = {r G R\pr G HniR)}. In particular, H{R[S])= 
H{R{Q[S])nR[S]. 

If7i 二 B^ C (Prime radicals and Levitzki radicals), then 

n{R[s]) = n{R)[s] + Y^ i{n{R), s, <y. 
peP 

Proof. We only prove the case for Jacobson radical as the other cases such as the 
prime, Levitzki and Brown-McCoy radicals are similar. 

By Lemma 3.2.1 it yields that Jn{R)[S] C J{R[S]) and EpeP^(^n,p(i^),5',<Jp) C 
J{R[S]). It suffices to show that J{R[S]) C J^(i^)[5']+EpeP I{Jn,p{^)^ ^̂  Q- Wemay 
assume that J“R) = 0 since Jn{R)[S] C J{R[S]) d.ndR[S]/Jr,{R)[S] ^ {R/Jn{R))[S' . 

Let d e J(i^[5]) and let D = (supp{d)) be a finitely generated group in Q{S). 
Then D = Gi x F\ where Gi is finite group and F' is free subgroup with rank < n 
of Q{S). Add more free generators on F' and make D < G = Gi x F, where F is 
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free subgroup of n free generators. Then we have d E R[S n G]. Denote S D G by H 
and so Q{S)/G is torsion, we have Q{H) = G. Thus, H is a grouplike subsemigroup 
of S and so 

J{R[S]) n R[H] C J{R[H]). 

Therefore, d e J{R[H]). Denote the subsemigroup of G generated by H U Gi by 
H'. Then H' = Gi x H". Write H" = F fl H. We then have H" is torsion-free 
subsemigroup of S with rank n. Therefore, R[H'] is a normalizing extension of R\H" 
and R[H'] = {R[H"])[Gi] is finite group graded ring. If we assume that JJJR) = 0, 
then J{R[H"]) = 0. This leads to 

d e J{R[H']) = J{R{H")[Gi]) 二 {Yyi(Xi - Vi) : di e R[H"lx,,y^ G Gi, 

xf ' = yf' for some k > 0 ,pi e F,pidi = 0}. 

Let di = E j rijhj G R[H"] with ？̂  G R and hj e H" for all i,j. Then d = 
J2ijrij{hjXi — hjyi) and {hjXiYi = {hjyiY^ and PiUj = 0 for all i and j. This 
completes the proof of the first part. 

For the proof of the second part, we let p be any prime p. Since (s, t) G ‘ is over 
Q{S) iff (s, t) G ip over S, we have I � J . � B ) , S, Q = I[Jn^R), Q{S),Q H R[S] and 

J{R[S]) = Jn{R)[S]^Y.I{JnAR)^S^Q 
peP 

={JnmQ{S)] + E HJn,P(R), Q{S),Q) n R[S] 
pGP 

=J{R[Q{S)])nR[S]. 

• 

Corollary 3.2.4 Let R be a field or a domain with J{R) = 0. IfS is a commutative 
cancellative semigroup, then J{R[S]) 二 I{R, S, ^p), where char{R) = p. 

3.2.2 General Commutative Semigroups 

After solving the problem on commuative cancellative semigroup case, we now extend 
the problem to any commutative semigroups. Since I{R.S, p) is the kernel of 0 : 
R[S] — R[S/p], we have seen in [Mun2] that J{R[S])/I{R, S,^) ^ J{R[S/^]) if ^ is 
the least separative congruence. 

Now, we consider the separative case. Since S is a separative semigroup, S has 
semilattice decomposition into commtative semigroups, say, S = Uaer^a- Define 

Ia = {a: G J{R[Sa]WP e r ) R[Sp]x c J{R[Sa,f3])}-
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Clearly, 7^ is an ideal of R[Sa . 

Proposition 3.2.5 [OW, Lemma 4.3] Let S be a separative semigroup, Sa{cx G F) 
the archimedean compoments of S. Let R be ring. Suppose for each a G F, Ia = 
J{R[Sa])- Then J(i^[5']) is T-graded ring, i.e. 

J{R[S]) = Y^ J{R[Sa])-
aeT 

Lemma 3.2.6 [Jesl, Lemma 3.7] Let R be arbitrary ring and S a separative semi-
group with semilattice T of commutative cancellative archimedean components Sa, 
S = Uaer^a- U ^p ^5 p-congruence on S, then the ideal 

E I (Jn ,pm, S, ^ ) = E E 队 挑 Sa, Q . 

pGP a e r p G P 

Theorem 3.2.7 [OW, Lemma 4.5] If 

(i). S is periodic semigroup, or; 

(ii). If S is a commutative semigroup and R a ring such that J{R) = Joo{R), 

then 
J{R[S]) = J{R)[S]^I{R, ^,0 + EAAp(^).^.ep)-

pGP 

Not all rings R satisfy the condition J{R) = Joo{R) even if R is commutative. 
If J{R) is not nil, then J{R) + Ji{R)- Hence J{R) + Joo{R) in general. We now 
consider the situation that Ji{R) == Joo[R). Note that Ji{R) is a nil ideal and if R is 
noetherian or if R satisfies a polynomial identity (e.g. R is commutative), then the 
condition Ji[R) = Joo{R) is often satisfied. 

Krempa showed in [Krel] (1972) that this condition is related to the Koethe 
conjecture, that is, if a ring R contains a one-sided nil ideal A^ can A he contained 
in a two-sided nil ideal of R? Krempa has shown that the Koethe conjecture is 
equivalent to Ji{R) = M{R), the upper nil radical of R. A stronger conjecture is : if 
R is a nil ring, then the polynomial ring R[x] over R is a nil ring. If this statment 
holds, then all Joo{R) = A^(i^. 

Jespers [Jesl] (1987) has considered the case when R satisfies Ji{R) = Joo[B). 
The description of J(i^[5]) is very complicated and this complexity depends on the 
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subsemigroup of periodic elements and the order structure of the corresponding semi-
lattice. We now simplify the proof of Jespers, by using the recent results obtained by 
Kelarev and Munn [Kel2, Mun7] (1991,1992). 

Let S — UaeT^a be separative semigroup, where every Sa is a commutative can-
cellative semigroup. Let Qa be the group of fractions of cancellative semigroup Sa 
with identity Ca- Set Q = UaerQa which is semilattice of abelian groups, i.e. S ^ Q. 
The identity e^ is clearly central, i.e. e^ep = Cap = epa = ^p^a for all a, |3 G F. It is 
known that R[Q] 二 Z laer^Qa] is special semilattice-graded ring (see Section 2.5). 

Using the results given in Section 2.5, we can state the following: 

L e m m a 3.2.8 [Kel2, Lemma 1] Let R be an arbitrary ring, S 二 UaerSa and a G T, 
the semilattice decomposition. The radical J{R[S]) is the largest ideal among ideals I 
of î [S'] such that x^ G J{R[Sn]) for any x G I, fi is maximal elements in suppr{x). 

L e m m a 3.2.9 [Kel2] Let R and S and Q he rings and semigroups described above. 
Then we have 

J(i?[6']) = i?[6']nJ(i?[Q]) 

Proof. Let x G J{R[Q]) n R[S]. Since fj. is the maximal element in suppr{x). we 
have X|̂  G J{R[Q^]). Since Q^ is group of quotient of S- and S^ is cancellative. so 
by Theorem 2.4.1, x^ G J{R[S^]). By Lemma 3.2.8, x G J(i^[5']). 

I 
Conversely, if x G J(i^[S']), then z = axb for a, b G {R[Q]Y, where a G R[Qj 

and b G R[Qx], for some 7 , A G F. Clearly, jji is maximal elements in suppr[z). 
Take t e ^ . We can note that xt G J{R[S]). {xt)^ G J{R[Q^]). Therefore z- = 
{at)|^{xt)|^{ht)^t'^ G J{R[Qn]). The above lemma implies that the ideal generated by ‘ 
X is contained in J{R[Q]). • 

Let Sp be the subsemigroup of all periodic elements of S. Let V' be the set of the 
elements a G F such that S^ is not periodic. 

Notat ion 3.2.10 Let the set 

J{R, Sp, r') = ix 二 Y1 x^ G J{R[Sp]) I Xa e R[{Sa)p] and 
L aeT 

X satisfies the condition (*): \f6 G T' : ^ x^es G ^ I{Ji^p(R), {Ss)p, Cp) L 
a>6 peP J 

where e<5 is the identity element of Q{Ss). 
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Now, we prove the main theorem by using the terminologies and techniques de-
scribed in Chapter 2. 

Lemma 3.2.11 Let R be a ring such that Ji{R) = Joo[R). Then 

Ji{R)[S] + J{R. Sp, V') + ^ /(Ji,p(i?), S, Q 
pe? 

is in the Jacobson radical of R[S . 

Proof. Let S 二 Uaer^a ^ ^aevQa = 0 , where Q^ is abelian group of fractions of 
Sa- R[Q] is special semilattice-graded ring. By Theorem 2.5.6, we have 

J{R[Q]) = {a e R[Q] : aa6a e J{R[Qa])}-

Also, by Lemma 3.2.9, we have J(i^[5']) = J{R[Q]) H R[S], we have 

J(i^[5]) = {a e i^[6] : aa6a G J(i^[Q^])}. 

This means that Ji{R)[S] = E a e r M ^ ) [ ^ a ] and Ji{R) - Jn{R) for all n > 1. 
For a G F, we have the following cases: 

(a.) lfrk{Sa) > 1, then 

J{R[Sa]) = Ji{R)[Sa] + X>(E,&,S^). 
peP 

Hence, Ji{R)[Sa] ^ J(R[Sa])-

(b.) If rk{Sa) 二 0，then we have Ji{R) C J{R) and hence Ji{R) = Jn{R) for n > 1. 
This shows that Ji{R)[Sa] C J{R[Sa]). 

For all X G Ji{R)[6'], we now have x^e^ G Ji{R)[Qa] ^ ^{R[Qa])- This proves that 
Ji{R)[S] C J{R[S]). 

Lemma 3.2.6 yields T = Epep I[JiAR), S, Q = Eaer EpeP I(yJi,p[R), Sa, ^p) and 
for each a G F, Ẑ peP ^(^1,p{^)5 ^a^ ^p) [ J(i^[6'a])- For x G T, we have x^e^ = 
J2t>a ^t&oc and Xt&a lie in Y.p^pI{Ji,p{R):Qa^^p) [ J{R[Qa])- Hence, T C J{R[S]). 

Now consider x G J{R-, Sp, F'). Then x G J{R[Sp]) and x satisfies the conditions 
(*). If a¢T', for all a, then e^ is in 5« C S. As Sa is an abelian periodic group, Sa 
is subgroup of Sp. Hence we have 

X«e« = (J2 ^t)Ca e J{R[Sp]) n R[Sa] C J{R[Sa]) = J{R[Qa])门 R[Sa]-
t>a 
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Moreover, by the definition of J{R, Sp, T'), we have x G J(R, Sp, F') for 6 G 厂， 

x^e, G 5^/(Ji, ,(i^),(^)^,ep) c i{JiAR)^Qs,QnR[{Ss)U-
peP 

Since Qs is not a periodic group, its torsion-free rank > 1, we have, by Theorem 
3 . 2 . 3 ， 

J{RlQ6]) = Ji{R)[Q5]^Y.l{JiAR).Q6.^p)-
peP 

Hence x̂ e<5 G J(i^[Q^]) H R[S}]. This proves that J{R, Sp, r ) C J{R[S]). 

From the above containment, we have 

Ji{R)[S] + Y.I{JiAR)^S^Q + J{R,SpX) c j(i^[5]). 
pGP 

It remains to prove that the left hand side is an ideal of R[S]. Assume that 
Ji{R) 二 0. Let J' = J + K, where J 二 耶,5V, r ' ) and K = EpeP I(Op, S, Q. We 
want to prove that J' is an ideal of R[S]. It suffices to show that for any s e S 
and a G J, as G J'. As as G J(i^[5']) for all a G J. By Lemma 3.2.11，we have 
{as)^es e J{B.[Qs]) for all 6 e T. 

If s e S^ for 70r ' , then s is a periodic element. Hence, as G J{R[Sp]). By above, 
we have for 6 G F', {as)^^es e J{R[Ss]) and as G J C J'. , 

If 5 G S^ for 7 G r ' and a G J, then a = J2a>^ a^ + a2, where suppr[Ci2) Pi {a\a > ！ 

7 } = 0. Hence, as = (a^e^)s + a2S. This leads to a^s G Zlpep /(Op, 6'̂ , ̂ p)s C J'. By : 
induction hypothesis on \suppr{a)\, we have as G J' (cf. [Jesl, Lemma 3.9]). • 

I 'i 
We now modify the proof of Jespers [Jesl]. 丨 

i 
Theorem 3.2.12 Let R be a ring such that Ji{R) = Joo{R) and let S be a separative 
semigroup. Then 

J{R[S]) = Ji{R)[S] + E ^P(R), S, Cp) + J{R. Sp, n 
peP 

Proof. Take x G J{R[S]) but x^{Ji{R)[S] + EpepI{Ap{R).S,Q + J{R,Sp,T')). 
We may assume that Ji{R) = 0. Let J', J, K defined in Lemma 3.2.11. Select x with 
a minimun \suppr{x)\. Then , by Theorem 2.4.1, we have x^ G J{R[S^]), where /i is 
maximal element in suppr{x). We divide the proof into the following two cases. 

(i). If /i, G r ' and S^ is not periodic group, then by Theorem 3.2.3 we have 

Xp € J{R[S^]) = Jn{R)[S^] + YAJnARYS^Q 
peP 
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with torsion free rank n > 1. Since Joo{R) = Ji{R) = 0, 

�eE^(Op'^'^p) ^ K C J' C J{R[S]). 
peP 

Obviously, |suppr(x — x^)\ < \suppY{x)\ and x — x^ G J(i^[5']). By the mini-
mality of X, we have x — x^ G J'. However, since x^ G J', we have x G J'. This 
contradicts to the choice of x. 

(ii). If /x<r' and S^ is periodic abelian group. Then, since fjL is maximal, we have 

x^ G J{R[S^]) = J{R[Sp]) n i^[4], 

and x^es G R[Q^s] for all 8 G F. Now take 6 G T'. If /x > 5, then for all t G S^, 
we have tes € Ss- Thus 

(^)^e<5 二 x^es G J(/^[Q^]) n R[{Ss)p_. 

Thus, we have shown that x^ e J C J' C J(i^[5]), by the minimality of x. ； 

Hence, we obtain x — x^ G J' and so x G J', However, this contradicts the choice of , 
X. Therefore, ‘ 

i 
J{R[S]) = Ji(R)[S] + ZHJiA^),S,^,) + J(R,Sp,n ； 

peP i 

• ) 
！ 

The above theorem leads to some corollaries : ' 
I i k i;i 

Corol lary 3.2.13 [Jesl, Coro. 3.11] Let R be a ring such that Ji{R) = Joo{R) for 
all n G N and let S he a semigroup. Then 

产 

Ji{R)[S] + Y.I{Ji,,{R),S,Q c J{R[S]) 
peP 

C m, s, 0 + Ji{R)[s] + E 队 抓 乂 ̂ p) + ^(^)[^p] + E 队 具 Sp, ^p). 
peP peP 

Moreover, ifR is a Noetherian ring or satisfies a polynomial identity, then the nilness 
of J{R) implies the nilness of J(i^[5]). The converse statment is also true when S is 
periodic. 

Corollary 3.2.14 [Jesl, Coro. 3.13] Let S be torsion-free semigroup and denote 
E{S) he set of idempotents. IfR is a ring such that Ji{R) = Joo{R), then 

J{R[S]) = Ji{R)[S] + {J2 aa6a G J{R)[E{S)] | W G r' , ^ a« = 0} 
aeT a>6 
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Corol lary 3.2.15 [Jesl, Coro. 3.14] Let S he semigroup such that each archimedean 
componet of S/^ has torsion-free rank at least one. IfR a ring such that Ji{R)= 
Joo{R), then 

J{R[S]) = Ji{R)[S] + I{R. S, 0 + E 队 具 s, Q. 
peP 

3.2.3 The Nilness and Semiprimitivity of Commutative Semi-
group Algebras 

If R is a commutative ring with unity, then Ji{R) = Joo[R) is always true. Now we . 
make use of the description of Jacobson radical for algebras of commutative semigroup j 

I" 
in Theorem 3.2.3 and Theorem 3.2.12 to determine the semiprimitvity of commutative : 

\ semigroup rings. 丨 I' i i 
Lemma 3.2.16 Let S he a commutative semigroup and F a field with characteristic | 
p (zero or prime). IfB[F[S]) = 0 then S is p-separative. -

I 

1 i 
Proof. Suppose p + 0, B{F[S]) = 0 and x, y e S such that x^ = y^. Then, in F[S], \ 
[x — y)P = 0. As there is no nilpotent elements, x = y. On the other hand, let p = 0 | 
and X , y G S‘ If x^ 二 ocy = y\ then {x - y)^ = 0. This leads to x = y. Therefore S j 
must be separative. • 丨 

•j r f 
I 

Theorem 3.2.17 [Munl] Let S be a commutative semigroup and K a field. Then << 
I 

J{K[S]) = B{K[S]) = I(K, S, p) \ 

where 

the least separative congruence on S ifK has characteristic 0 
p = 

I the least p-separative congruence on S if K has prime characteristic p 

Proof. This is a direct consequence of Corollary 3.2.7. • 

Lemma 3.2.18 [Mun2] Let R be a commutative ring with unity and S a commutative 
semigroup. Let Spec{R) be the set of all prime ideals ofR. If P e Spec{R), let 

—f ^{S) zf char{R/P) = 0. 

TP 二 1 US) if char{R/P) = p. 
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and (^p : R[S] — {R/P){S/rp) be the natural morphism. Then 

B{R[S])=门 ker^p 
PeSpec{R) 

Corollary 3.2.19 Let R be an integral domain and T a cancellative commutative 
semigroup without idempotent IfT is p-separative, and if char{R) = p G P. Then 
J{R[T]) = 0. 

Corollary 3.2.20 Let R be arbitrary commutative ring and S a commutative semi-
group. Let F = R/B{R), T 二 S|i. Then the radical J{R[S]) is ml iff J(F[T]) is 

t 
nil. , 

i 

Proof. The proof follows from R[S]/I{R, S, 0 = i^[T], R[T]|B{R)[T] - F[T]. • ! 
!' 

From [Kel2], we obtain another approach to describe the Jacobson radical of 丨 

semigroup ring and we can determine the nilness of J(i^[5']) without using the fact ； 
J{R) 二 Ji{R). f 

Notation 3.2.21 Let S be a separative semigroup such that S = VJaevSa ^ ^aerQa = ' 
Q. Let fjL G r and A he fimte (or empty) subset offjT. i 

Denote the product x rUeA(6i^ 一 ^A) by (队 x, A). If A = 0； then {fi, x, A) = x. I 
I 

We call (/x, x, A) the simplest element ifxe^ G J{R[Qo^) for any a G /J,T \ AF. ' 
1 
ii 

We now provide another proof of [Kel2, Th. 1]. | 
(' — 

Theorem 3.2.22 Let S be a separative semigroup and x G R[S]. Then for any 
maximal element fi in suppr{x) and the set of maximal elements A in the finite set 

fj.{suppr{x)) \ {juj and y = (/x,x^,A), 

we have 

(i). X G J{R[S]) iff both y, X — y G J{R[Q]); 

(ii). y G J{R[Q]) iffy is the simplest element of R[Q . 

Proof, (i) Let x G J{R[S]) C J{R[Q]) and R[Q] = Zaer R[Qa] where Q^ is the 
group of fractions of Sa and S = Uaer^a is a semilattice decomposition of S. Then, 
we can regard R[Q] as a special semilattice-graded ring. Let A = suppr{x). Then, 
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by Theorem 2.5.12, we have x G JU(^[Q]) 二 Ep^M[A,0)f)[A,p). By Theorem 
2.5.10, we also know that x^e^ G M{A, /i). If fjL is maximal in siqrpr(4 ^A = ^ ' 
then x^e^ 二 工^^ e M{A, /x). It suffices to show that y = Xj^p(A, jj) = (//, x^, A). 
We can check that, by the definition of A, EUeA(eAt _ 已入）=P(AP) because all 
入 G A <^ /x —A A. Thus y = (//, x^, A) G J{R[Q]). The converse of (i) is clear. 

(ii) If y = ( / i ,x^,A) is the simplest element of R[Q], then we can observe that 
suppr{x) C ^r . Since a e /xF \ AF, y^ = x^ and so we have 

Va^a ~ ^n^a ^ J(^R_Qcx.)* 

As [3 G Ar , we have y^p = 0. Thus by Theorem 2.5.6, we have y G J{R[Q]). 

Conversely, let y G J{R[Q]), so that y = (/x,x^,A). For a e fiT \ AF, a is 
a maximal element of yea- By Theorem 2.4.1, xe^ = {yea)a ^ J{R[Qa])' Thus 
{yea)a 二 3：6« e J{R[Qa])- If « G Ar, then a < fi. This implies that 

yea = X^{ n (̂ M — ^a)ea) = ^ ( 6 « — 6a) = 0. 
aeA 

Hence, y is the simplest element of R[Q]. 口 

We now follow [Kel2] by using matrix approach, to represent the commutative 
semigroups. By applying these results, we study the structure of the Jacobson radical 
of R[Sl where J{R) + B{R) in R. 

Let T 二 S|i where ^ is the least congruence on the semigroup T. Let G be a 
finite subgroup of a semigroup T, e the identity of G. Take a finite set of idemopents 
E of T. Let I be an ideal generated by E but not containing G. Write down all the 
subgroups Hi, H2,... ’ H^ of G such that Hi = {h e G\hti = eU} for a non-periodic 
element U G GT \ I. Let G = {gi,. • • , Qm}- The matrix of the conjugacy relation of 
G by Hi is the (m x m)-matrix Di = [djk] such that 

^ — { 1 when Qj G i ^ 
jk y 0 otherwise 

Write D i { G ) = 叫 … 队 

If n = 0 such that there is not any non-periodic element in GT\I, then Dj{G) = [0:. 

Definition 3.2.23 For a ring R, we let 7v{R) be the set of all q such q is prime or 
zero and J{R)/B{R) has a nonzero element with an additwe period q. We say that 
G is q-complete in T, if q divides \G\ or q does not divide the determinant of an 
{m X m)-submatrix ofDi{G) for any ideal I. 
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Theorem 3.2.24 [Kel2, Th. 1] (1992) Let î [5'] be a commutative semigroup ring, 
(J the least separative congruence on S, and T = S/^. Then the Jacobson radical 
J(i^[5]) is nil ifffor any q e 7r{R) every finite subgroup G ofT is q-complete m T. 

The proof of this theorem is rather complicated and we need to use Theorem 
3.2.22 to check the matrix representation of subgroup of S. The reader is referred to 
Kel2] for details. The proof is omitted here. 

Corollary 3.2.25 [Mun2] IfS contains no idempotent elements, then J(/^[5']) is nil. 

3.3 Radicals of Cancellative Semigroup Algebras 

After the properties concerning radicals of algebras in commutative semigroups are 
investigated, we want to use the similar methods to describe the radicals in algebras 
of non-commutative semigroups. However, it is not easy to describe the Jacobson 
radicals in group algebras. Our aim here and section 3.4 is: 

(a) to describe the radicals (mainly Jacobson radicals and prime radicals ) of some 
particular types of semigroups; 

(b) to find the necessary and sufficent conditions for semiprimitive of algebras of 
non-commutative semigroups. 

We first examine cancellative semigroups. Since some cancellative semigroups 
may be embedded in some groups. Hence, studying the relationship between groups 
and cancellative semigroups and also their related algebras are essential. To simplify 
our works, we only give characterizations for the algebras over the field K with 
char{K) = 0 or p. 

3.3.1 Group of Fractions of Cancellative Semigroups 

A cancellative semigroup S is called a group of right fractions iff S satisfies the right 
Ore conditions: For every s, t G S, such that sS 门 tS + 0. 

Definition 3.3.1 For arbitrary semigroup S, we consider the relation pi C S^ x S^ 
on S defined by 

(s,t) G pi iffor every x G S^ sxS H txS ^ 0. 
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where s, t G S^. The relation is clearly a congruence on S and pi is called the left 
reversive congruence. Let pr he the left-right dual congruence to pi and let 丁 = pi fl pr • 
Of course, pr, pi, r are all congruences on semigroup S. 

Assume S is cancellative semigroup with no noncommutative free subsemigroups. 
Then S has a two-sided group of fractions. If S is a right Ore set, then S has a group 
of right fractions. However, if S is just a subsemigroup of group G, we cannot say 
that S has group of one-sided fractions. We can find an example in [Oknl, Example 
10.13] to show that S can be embedded into a group G but cannot have a group of 
fractions. 

First, we consider the cancellative semigroups which are embedded into some 
groups. The main reference of these cancellative semigroups can be referred to [Oknl, 
Ch. 7, 9]. We list some useful results: 

Lemma 3.3.2 [Oknl, Lemma 7.5] Let S be a subsemigroup of a group G. If H is 
subgroup of G and Vx G G, 3n G N such that x^ G H, then the followings hold: 

(i). IfG is group ofnghtfractions ofS, i.e. G = SS'^ then H = ( i7n50(i : /n50-i . 

(ii). If S n H has a group of right fractions, then S has a group of right fractions 
andSS-^ = S{SnH)-\ 

Definition 3.3.3 Let T be a subsemigroup of S. Then T has finite index in S if 
there exists a finite subset F of S such that for every s G S, there exists f G F with 
sfeT. 

Proposition 3.3.4 [Oknl, Coro. 7.10 

(i). Let H he a subgroup offinite index in a group G. IfG is generated by semigroup 
S, then S 门 H is a subsemigroup of finite index in S 

(ii). Assume that T is a subsemigroup of finite index in S, and let H he a group of 
right fractions of T. Then S has a group of right fractions G 3 H such that 
G : H] < oo . 

Proposition 3.3.5 [Oknl, Prop. 7.12] IfS is cancellative semigroup such that either 
one of the followings holds: 

(i). S has a.c.c. on right ideals, 
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(ii). K[S] has a finite right Goldie dimension for any field K, 

then S has a group of right fractions. 

Summarize the above results in [Oknl, Ch. 7 and Ch. 9], we state following 
results which are useful for our further discussion. 

Lemma 3.3.6 [Oknl] Let G be the group of right fractions ofS. Then 

(i). For every right (left) ideal T of S, G is right fractions ofT. 

(ii). \/s G S, G is group offractions ofsSs. 

(iii). IfZ is a right Ore subset of K[S], Vai , . . . ,an 6 K[S]Z~^, then there exists 
t G Z such that ait G K[S . 

(iv). For every right ideal I ofK[S]Z~^, we have (/ 门 K[S])K[S]Z'^ = I. 

(v). If Z is right Ore subset of a semigroup S, then Z is also right Ore subset of 

K[S] and K[S]Z'^ = K[SZ-^]. : 

(vi). For any right ideals Ii C /2 of K[G], we have h fl K[S] C /2 A ii^[6]. i 

(vii). IfP is prime ideal o /K[G] and K[G]/P is Goldie ring, then i^ni^^[6] is prime \ 
ideal of K[S]. \ 

f 

(viii). If all prime homomorphic images of K[G] are Goldie rings, then B{K[S]) = ！ 

B{K[G])r\K[S]. \ 
i 

(ix). IfS subsemigroup of group G, and S generates a group G, then we have S a ‘ 
very large subset ofG. (cf. Chapter 1，Lemma 1.3.10) 

We now examine the conditions for K[S] being prime or semiprime. 

Theorem 3.3.7 [Oknl] G is group generated by S. Then, 

(i). If K[G] is prime (semiprime), then K[S] is prime (semiprime, respectively). 

(ii). Assume that G is group of right fractions of S. Then The following conditions 
are equivalent. 

(a) K[S] is prime (semiprime). 

(¾) K[G] is pnme (semiprime). 
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(c) G has no nontrival finite normal subgroups (char(K)=0, or char(K)=p > 
0； G has no finite normal subgroups of order divided hy p). 

From now on, we consider the subsemigroup which generates a group. Now, we 
consider al l type of cancellative semigroup and make use of the congruences defined 
i n Def in i t ion 3.3.1. We then obtain fol lowing results. 

D e f i n i t i o n 3.3.8 Let x be a nonzero element in K[S] such that x = XiSi + X2S2 + 
hAnSn. Ifoc = Xi H hXn whcrc supps{xi) lies in different pi-dasses ofS, then 

we call S pi-separated iff supps{xi)S A suppsQoCj)S = 0 for i + j . 

L e m m a 3.3.9 [Okn3] Assume that axc = 0 for some 0 + a, c G K[S] and all 
X e S^. We can choose y G S^ such that ifay,cy are pi-separate. Also, we can 
also choose u G S^ when ua,uc are pr-separated. Let uay = ei + e2 + •.. + e^ and 
ucy = di + d2 H + dk, then eixdj = 0 for every i,j and all x G S^. 

Proof. First , consider a 二 AiSi + A2S2 H h Ksn- I f (s i , S2)^ph then there exists 
X12 such tha t S1X12S n S2X12S 二 0. Then let a2 = axu = Ai^ i H + Xntn where 
t i = SiX12 such that t i S D t2S = 0. Repeating the process in f in i te steps, we have 
a' = ay for some y e S such that a! = a： H h a ^ , where supp{ai), supp{aj) are in 
different p/-classes and 

supp{ai)S n supp{aj)S = 0 . 

Moreover, after separate a, we t u rn to separate cy, then there exists y' G S^ such tha t 
we have b = af and d = c / , where let f = yy' and b, d are "「separated and bxd = 0 
for al l X G S. Similarly, on the r ight reversive congruence, ua, uc are p^-separated for 
some u e S^. Let uaf = ei H h e^ and ucf = di H h dk and by r-separat ive, 
we have eiS 门 CjS 二 0 for any i , j . Then ex = 0 implies e^x = ejX = 0. By lef t-r ight 
symmetry, the condit ion for all i , j , eixdj 二 0 follows. • 

L e m m a 3.3.10 [Okn3, Lemma 3] Assume that T is a cancellative semigroup gener-
ated by a subset F such that F lies in a single pi-dass in T. Then T has a group H 
of right fractions. 

T h e o r e m 3 .3 .11 [Okn3] Let S be a cancellative semigroup. Then 

(i). K [ S / r ] is prime. In particular, we have B{K[S]) C I { K , S, r). 

(i i). K[S/pi] is prime. 
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( i i i ) . If char{K) = 0； then K[S] is semiprime. 

Proof, (i) We can assume r is t r ivaL Suppose tha t K[S] is not prime. Then there 
exist nonzero a，c G K[S] then aS^c = 0. For axc 二 0, then by Lemma 3.3.9, there 
are u, y G S such tha t uay = ei H h Cn and ucy = di H h dm where supp{ei) is 
i n single r-class and also supp{dj) does. Since r is t r ival , then e“ dj e S, hence eixdj 
leads to contradict ion. Hence K[S] is prime. 

Since I { K , S, r ) is the kernel of K[S] — K [ S / r l B{K[S]) C I { K , S, r ) . 

( i i) Since in S/p i , Ts/p^ is tr ivaL Thus the assertion follows f rom (i). 

( i i i ) Now, i f char{K) = 0 and suppose B{K[S]) + 0’ then there exists a G K[S_ 
such tha t aS^a = 0. Choose the min ima l integer n such tha t the fol lowing condi t ion 
is satisfied: 

There exists a cancellative semigroup U and an element 0 + b G K[U] such that 
hU^h = 0 and \supp{b)\ — n. 

Let T = {supp{b)) and suppose that supp{b) lies in a single XT-class of T. Then 
T has a group of r ight fractions H. We have 5 { K [ H ] ) = 0 since char{K) = 0. 
By Theorem 3.3.7, we have 8{K[T]) = 0. Since bK[T]b = 0’ b G B{K[T]). This 
contradict ion completes the proof. • 

We now establish the A-method of semigroup algebras by extending the method 
of group algebras for studying the structure of cancellative semigroups. 

For some x G S, 3t G S such that xs 二 tx, and S is cancellative, t is uniquely 
determined and denoted i t by s^. First, we define Ds{s) = {5^| x G S}. Then, let 

A(5' ) 二 {s G 5 : |As(s) | < 00} 

I t is known that if S is a group, then A ( 5 ) coincides w i t h the FC-center of S (see 
Passman [Pasl, Ch. 4]). The general properties of A ( 5 ) can be found in [Okn l , Ch. 
9]. 

We can see that A ( S ) is a r ight and a left Ore subset in S. Furthermore, we have 
A ( 5 ) - ^ 5 ' 二 5 A ( 5 ) - ^ and A ( 5 ) - ^ A ( 5 ) = A ( 5 ' ) A ( 6 ' ) - \ the latter being a group. 

Define S = A(5^ - i5^ and A = A ( 5 A ( 5 ) - ^ ) , we have the fol lowing result: 

P r o p o s i t i o n 3 .3.12 [Okn l , Prop. 9.8] Let S he a cancellative semigroup with A{S) + 
0. Then 

(i). S is a cancallative semigroup. 

52 



( i i ) . Dg{s) = Ds{s) for all s G A{S). 

( i i i ) . A{S)A{S)-^ is an FC-group, Z{S) + 0, a n c i A ( 6 ' ) A ( 5 ) - i = A ( 5 ) Z ( 5 ) - i C A . 

( iv). s ^ s z [ s y ^ . 

(v). A is an FC-group. 

We have already obta in a characterization for the primeness of group algebra, 
(see Theorem 1.3.11). For semigroup algebras case, we have a similar theorem. 

T h e o r e m 3 .3 .13 [Okn l ] Let S he a cancellative semigroup and A{S) + 0. Let K 
he any field. For the following conditions: 

(i). K[S] is prime (semiprime). 

(ii). K[S] is prime (semiprime). 

( i i i ) . Z [ K [ S ] ) is prime (semiprime). 
A 

( iv). K[A] is prime (semiprime). 

(v). K[S n A] is prime (semiprime). 

(vi). K[A{S)] is prime (semipnme). 

(vii). Z{K[S]) is prime (semiprime). 

We have (i) <^ (ii) =^ (iii) <^ (iv) <^ (v) <^ (vi) <^ (vii). In addition, if S is group, 
then all the above conditions are equivalent. 

C o r o l l a r y 3 .3 .14 [Oknl ] The following conditions are equivalent on S: 

(i). A ( 5 ) 7̂  0 and A = 5 . 

(ii). S is a subsemigroup of an FC-group. 

(iii). Z{S) + 0, and SZ{S)-^ is an FC-group. 

Moreover, Z{K[S]) = Z{K[A{S)]). 

C o r o l l a r y 3.3.15 Let S be a subsemigroup of an FC-group. Then i^[5'] is prime iff 
S is a commutative torsion-free semigroup. 
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The semigroup A{S) contributes a nice property tha t i t is left and r ight Ore 
八 A n 

subset i n S‘ The primeness of K[A],K[S D A ] and K[A] are equivalent to the fact 
that A , S n A , A are commutative torsion-free semigroup (by previous discussion). 
Similar ly, the semiprimeness of any of these algebras is equivalent to the fact tha t the 
group A has no p-torsion, where p is char(K). I n part icular , i f char{K) = 0, then 
K[A] is always semiprime. 

However, i t is rather dif f icult to describe the Jacobson radical or to determine 
whether K[S] is semipr imit ive or not, even in the case of group algebras. I n the next 
sections, we w i l l consider the semigroup S which can be embedded in to u.p. groups, 
n i lpotent groups and polycycl ic-by-f ini te groups. 

3.3.2 Jacobson Radical of Cancellative Semigroup Algebras 

Recently Okninski [Okn4] (1994) obtain some results on Jacobson radical of can-
cellative semigroup algebras. The fol lowing results are taken f rom his papers. 

We use the notations given in Def in i t ion 3.3.1. 

I 

L e m m a 3.3.16 [Okn4, Lemma 1] For every t G S the set : 
i 

St = {s e S{{fs, t^) e pi for some positive integers r , n > 1} 

is a left group-like subsemigroup ofS. Also, J{K[S]) H K[St] C J(K[St]). 1 
I i 

For the natura l homomorphism ¢) : S — S/pi, we let 丨丨 
i' 

f 
U = {s G *S|(s2:, 1) G pi for some z G S} ‘ 

Then we can see that U = ^~^{H), where H is group of units of S/pi. Clearly, S = U 
i f f S is left reversive. 

L e m m a 3.3.17 [Okn4, Lemma 2] Let V be the set of pi-separated elements ofK[S 
andVF = V^nJ(i^[5A"D. Then 

(i). V is a subsemigroup of the multiplicative semigroup of K[S], in particular 
vs, sv c y； 

(i i). If b G W, then the pi-components ofb generate a finite power nilpotent semi-
group, in particular, W is a nil semigroup; 
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L e m m a 3.3 .18 [Okn4, Lemma 3] Let t e S \ U. Assume that a + b — ah = 0 for 
some a G J{K[St]) and b is a quasi-inverse ofa. Then b G K[A] for the subsemigroup 
A generated in S by supps{a). Consequently, J { K [ P ] ) n K[T] C J{K[T]) for any 
subsemigroups T, P of Sf. 

Prom the above lemmas, we obta in the main theorem of this section. 

T h e o r e m 3.3 .19 [Okn4] Let S he a cancellative semigroup which may not contain 
1 and not left reversive. Assume that 0 + c G J{K[S]). Then there exists s G S such 
that 

(i). S^csS^ C W \ { 0 } , where W == V H J(K{S \ [ / ] ) . 

( i i). If ci is pi-component ofcs and t e supp{cis), then Ci G J{K[St]) and S^CiS^ 
consists of nilpotent elements. 

( i i i ) . There exists a left reversive subsemigroup T ofS and an elements u G S such 
that the natural K-linear projection f of csu onto K[T] is a nonzero element 
of J{K[T]) for which T^fT^ consisits of nilpotent elements. , 

1 

Proof, (i) Since S is not left reversive, S + U. By Lemma 3.3.9, there exists z e S ' 
such tha t cz G Y. Then czq G W for any q G S \ U. Choose q and s = zq and hence ) 
(i) follows. 丨 

(i i) Let cs = Ci H c^ be p^components decomposition of cs. Now t G supps{ci), ( 
and take y G supps{ci). For every x G St, yx^St (otherwise, there exists y e St and 
that yS 门 tS + 0 contradict ing cs is p^separable). f 

« 

Let 7T : K[S] — K[St] be a natura l X- l inear projection. Let a G K[St] and cs G W 
where W is n i l semigroup of K[S] by Lemma 3.3.17 (i i). Since csa G J{K[S]), there 
exists d G K[S] such that csa + d = csad. Then Tr{csa) = n(cia) = c^a G K[St 
and 7T[csad) 二 7T(Ciad). Since St is left group-like subsemigroup of S, f rom [Okn l , 
Lemma 4.14], i t follows that i i {c iad) = ciaTi{d). Thus 

Cia + n{d) = ii[csa + d) = 7r{csad) = cia7v{d). 

This shows that Cia is a quasi-invertible in K[St], so ci G J{K[St]). For every 
X, y G S^, xciy is a prComponent of xcsy. Hence (ii) follows. 

(i i i) First , we find a subsemigroup Q of St where t is selected above. The project ion 
of csu for some u E S is a nonzero element. I f f is a project ion of csu, then f G 
J{K[Q]) and so Q^fQ^ only consists of ni lpotent elements. Prom (i i), such that Q 
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exists. Select n be the min ima l integer such tha t \supp{f)\ = n. Let T C Q C St 
be the semigroup generated by supp{f). Since t G S \ U and by Lemma 3.3.18, 
J{K[Q]) n K[T] C J{K[T]). Then f G J{K[T]). Suppose T is not left reversive. 
Then supp{f) does not lie i n a single p7^-class of T. Repeat (i), fw is pT-separated, 
so fw = / i + --- + /m, m > 2 w i t h supp{fi)Tnsupp{fj)T 二 0 for i + j . Then T^fiT^ 
consists of n i lpotent elements and /1 G J{K[T]) for some supp{fi). Since the choice 
of f is min imal , \supp{fi)\ = \supp{f)\. This implies that m = 1，which contradicts 
to the assumption on T. Hence T is a left reversive semigroup. • 

C o r o l l a r y 3 .3 .20 [Okn4] If J{K[S]) + 0 for a cancellative semigroup S, then there 
exists a (left and right) reversive subsemigroup P ofS such that J { K [ P ] ) + 0. 

A semigroup S is said to be u.p. (unique product) semigroup i f for any nonempty 
f in i te subsets X,Y of S w i t h |X | + \Y\ > 2 (omit the case of which X,Y are bo th 
singletons), there exists in the set XY = {xy\ x G X,y e Y} that has an unique 
presention in the form xy, where x G X , y e Y. S is called t.u.p. (two unquie product) 
semigroup i f there exists at least two elements which have unique presentations in 
x y . 

Note tha t the unique product semigroup is an extension of the unique product 
group. The u.p. group algebras are studies in [Pasl, Ch. 13]. We now refer to 
O k n l , Ch. 10] in gett ing the general results on algebras of u.p. semigroups. I f S ‘ 

is u.p. semigroup, then B{K[S]) and C{K[S]) are always zero. However, we don' t -
know about the Jacobson radical. ； 

i 

We now give some the properties of u.p. semigroups. 

- _ _ I I 

T h e o r e m 3 .3 .21 [Okn l , Th. 10.4] Let S be a u.p. semigroup. Then K[S] is a 
domain (for any field). IfS is t.u p. semigroup and K[S] is an algebra with unity, 
then S is a monoid and K[S] has trival units. 

C o r o l l a r y 3.3.22 [Okn l , Coro. 10.5] IfS is t.u.p. semigroup, then J{K[S]) = 0. 

T h e o r e m 3.3.23 [Okn l , Th. 10.6] If semigroup S has a group of right fractions G, 
then the u.p. property and t.u.p. property coincide. 

C o r o l l a r y 3 .3 .24 [Kar, Coro. 31.3] Every submonoid of a u.p. group is a t.u.p. 
monoid. 

T h e o r e m 3.3.25 [Okn4] (1994) Let S be a u.p. semigroup. Then J{K[S]) = 0. 
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Proof. I f S is left reversive semigroup, then S has a r ight group of fract ions and 
Corol lary 3.3.22 yields S is also t .u.p. semigroup. Then J{K[S]) = 0. I f S is 
not a left reversive semigroup an J{K[S]) + 0，then by the above Corol lary 3.3.20, 
there exists a reversive subsemigroup P such tha t J { K [ P ] ) + 0. However, as P is 
a reversive semigroup which has a group of r ight fractions, by Theorem 3.3.23, P 
is t .u.p. semigroup. This implies tha t J { K [ P ] ) = 0, contradicts the assumption of 
J{K[S]) + 0. Therefore, J{K[S]) = 0. • 

Note tha t the above theorem solves the Problem 23 l isted in the monograph of 
Okninsk i [ O k n l . 

3.3.3 Subsemigroups of Polycyclic-by-Finite Groups 

The general properties of polycycl ic-by-f inite group has been stated i n chapter 1. 
Now, we consider the subsemigroups of polycycl ic-by-f inite groups. The group alge-
bras of polycycl ic-by-f ini te group is an impor tant too l for studying the noetherian ‘ 
algebras. I f S is a cancellative semigroup which can be embedded into a polycycl ic-
by-f in i te group G, then the question is : what is the relationship between K[G] and , 
K[S] ？ I 

Consider the subsemigroups of groups w i t h f inite index normal subgroups. 

L e m m a 3.3.26 Suppose G is generated by its subsemigroup S and G has a normal . 
subgroup N. Then i ^ [ 5 ] n gK[N] is a K[S f l N]-module and K[S] = EgeG/N ^[S] H j 
gK[N] for some g or say, K[S] has nondegenerate G/N-grading. Suppose G/N is ‘ 
fimte group. If J{K[S n A^) 二 0，then J{K[S])\^/^\ = 0, and J{K[S]) = 0 if \G/N\ :! 
is unit in K. ‘ 

Proof. We can easily see that K[S] H K[N] is a r ight K[S f l iV]-module. Now, 
let K[S]{g) 二 K [51 n gK[N] where g G G/N and K[S] = EK[S]{g), Since S 
generates G, then there exists 0 + Sg G S n Ng-! such that Sg、S f l Ng) C S 门 N. 
Therefore, the G/ iV-grading is non-degenerate. By Theorem 2.2.3, as G/N-giaded 
algebra, J ( X [ 5 ] ) I ^ / ^ I C Jgr{K[S]) C J{K[S n iV ] ) . K[S]. Thus, i f J{K[S n N]) = 0， 

then we have J ( K [ 5 ] ) I ^ / ^ I = 0. I f \G/N\ is mi i t in K, then J{K[S]) = 0. Thus, the 
semipr imi t iv i ty of K[S] depends on the structure of group embedded. • 

L e m m a 3.3.27 [Oknl ] Let H he a normal subgroup ofa group G and S a submonoid 
of G that generates G as a group. Then the following statements hold: 
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(i). If K[S] is right noethenan, then every g G G,K[S] H gK[H] is a noethenan 
right K[S H H]-module. 

( i i ) . K[S] is right noetherian iff K[S f l H] is right noetherian, and then K[S] is a 
noethenan right K[S 门 H]-module. 

As we know, every polycycl ic-by-f ini te group has characteristic subgroup which 
is f in i te index and poly-( inf in i te cyclic), (see Section 1.3). Then we have fol lowing 
results. 

T h e o r e m 3.3.28 Let S he a submonoid of a polycyclic-by-finite group. Assume that 
W is a poly-(inifinite cyclic) normal subgroup of finite index in the group H generated 
by S. Then, J{K[S]) is mlpotent, and J{K[S]) = 0 if \H/W] + 0 m K or ifH has 
no normal finite p-subgroup of order divisible by p ifchar{K) = p > 0. 

Proof. From [Pasl, Lemma 13.1.6, 13.1.7], W is a u.p. group and so SOW is a u.p. 
semigroup. Therefore, J{K[S n W]) = 0 by Theorem 3.3.25. Since [H : V^] < oo, 
then by Theorem 3.3.26, J{K[S]) is ni lpotent and J{K[S]) = 0 i f \H/W\ + 0 in K. 
I f char[K) = p and H has no normal p-subgroups of order divisible by p, then by ； 

Theorem 1.3.12 (cf. [Pasl, Theorem 4.2.10, 4.2.13]), K [ F ] is semiprime. Theorem \ 
3.3.7 yields tha t K[S] is semiprime. Since J{K[S]) is n i lpotent, the proper ty B , 
coincides w i t h J. Hence, J{K[S]) = 0. • 

) i 

I, 

T h e o r e m 3.3.29 [Oknl ] Let G be a group such that every finitely generated subgroup ‘ 
ofG is polycyclic-by-fimte, for example, let G be locally free or locally finite. Assume i 
that S is a subsemigroup ofG that has no free noncommutative subsemigroups. Then ‘ 

J{K[S]) = C{K[S]) = J{K[H]) n K[S], 

where H is subgroup generated by S. In particular, J{K[S]) = 0 if char{K) = 0 or 
char{K) = p > 0 and H has no p-torsion elements. 

Proof. S has no free noncommutative subsemigroups, then S has a group of r ight 
fractions. Take a G J{K[S]), let F be a group generated by supp{a) is polycyclic-by-
finite. Since S^F is group-like subsemigroup in 5, J{K[S])nK[SnF] C J{K[SnF]). 
Furthermore, F is group of fractions of S n F and F is polycyclic-by-finite, F has a 
normal poly-( inf ini te cyclic) subgroup W w i t h finite index. By Theorem 3.3.28, we 
have J{K[SnF]) = J ( K [ F ] ) n A ^ [ 5 ^ n F ] which is ni lpotent. Hence, J{K[S]) is locally 
ni lpotent, i.e. J{K[S]) = i ^ ( i ^ [5 l ) . 
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Let H be group generated by S. We have J { K [ H ] ) f l K[S] C J(K[S]) i f we 
t reat S 门 H as group-l ike subsemigroup in H. We obta in tha t J { K [ H ] ) is a n i l ideal 
of K [ H ] . Now, retake a G J{K[S]), b G K [ H ] . Then ah e K[F'] for a f in i te ly 
generated subgroup F' of H. This shows tha t ah G J { K [ H ] ) H K[F'] C J { K [ F ' ] ) , 
As ah G J { K [ F ' ] ) and then ab is a ni lpotent element for any arb i t ra ry b. Thus, a is 
quasi-inverse in J { K [ H ] ) . This proves that J{K[S]) C J { K [ H ] ) . Thus, we conclude 
tha t J{K[S]) = 0 i f char{K) 二 0 or i f char{K) = p and H has no p- tors ion elements. 
• 

3.3.4 Nilpotent Semigroups 

The ni lpotency of semigroup w i l l be defined by the followings relations : For any 
s, t, G S 

Let Xo{s,t) = S; Xn^ l {s , t ) = Xn{s, t )Wn+iyn{s, t ) 丨‘ 

L e t yo[s,t) =t., yn+l{s,t) = yn{s,t)Wn+lXn{s,t) 丨 
i 

Let Xn = Yn i f ^n{s, t) = yn{s, t) \ 

for any i^ i , W2 . . . G S^. ^ 

The semigroup is then called ni lpotent of class n i f S satisfies tha t ident i ty Xn = Yn 、 

for any x, y e S, where n is the least positive integer w i t h this property. I f Wi are taken 1 
in S only, then S is called weakly ni lpotent of class n. However, i f S is cancellative, ^ 
the two constructions coincide. Thus, f rom [Okn l , Th. 7.3], we know tha t S is , 

'J 

cancellative weakly ni lpotent of class n i f f S is subsemigroup of n i lpotent group of i 
ni lpotency class n. 3 

We give here some examples of ni lpotent semigroups: ‘ 

(i). A subsemigroup of a ni lpotent group. 

(i i). A power ni lpotent semigroup, i.e. a semigroup S w i t h zero 6 such tha t S^ = 0 
for some m > 1. 

( i i i ) . A n inverse semigroup S of mat r ix type over a ni lpotent group G. i.e. an inverse 
completely 0-simple semigroup: 

S = M%G,A,A,A) 

where A is A x A identi ty matr ix . 
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( iv). A completely 0-simple semigroup S is n i lpotent i f f the max ima l subgroup G is 
n i lpotent and S is an inverse semigroup. Tha t is the case of ( i i i ) . 

I n order to get some general properties of cancellative weakly n i lpotent semi-
groups, the reader is referred ot Okninski [Okn l , Ch. 7 . 

T h e o r e m 3 .3 .30 [Okn l , Th . 7.11] Let S be cancellative semigroup. Then S has a 
weakly nilpotent subsemigroup T of finite index iff S has a group offractions that is 
nilpotent-hy-finite. 

Sometimes, we call a cancellative semigroup S a l m o s t n i l p o t e n t i f S has a 
group of fractions that is ni lpotent-by-f ini te. We consider here the radical properties 
of n i lpotent group algebra. • 

L e m m a 3 .3 .31 [J01, Pasl] Let G be nilpotent group. If char{K) = p > 0； then 
J{K[G]) = B{K[G]) and J{K[G]) is the K-subspace spanned by the elements s — t, ‘ 
where s# = W^ for some k > 0. Ifchar{K) = 0，then J{K[G]) = 0. ： 

n 

Proof. I f G is ni lpotent group, then f rom [Pasl, Lemma 8.4.16], i t follows tha t ‘ 
i 

B(K[G]) = io{K[Gp]) • K[G] 

where Gp is the unique locally f inite normal p-subgroup of G and Gp is m in ima l “ 
respect to Op{A{G/Gp)) = (e). For G is ni lpotent, then Gp is max imal normal j 
p-subgroup of G (see [Rob, (5 .2.7) ] ) .⑴ ‘ 

J 
Assume tha t G is f ini tely generated ni lpotent group. Then G is a f in i te ly generated ^ 

solvable group and f rom [Pas3, Theorem 4.5], J[K[G]) = N{K[G]) 二 J{K[A+{G)]) • 
K[G]. Let yV(G) be the set of f inite normal subgroup of G. Then, by [Pasl], we know 
that J{K[A+{G)]) = UNew(G) A ^ l ^ l ) - Then J ( K [ G ] ) = N ( K [ G ] ) C B ( K [ G ] ) and 
so J{K[G]) = 8{K[G]) 二 uj{K[Gp]) . K[G] is spanned by s — t where 5, t G Gp w i t h 
spk = ifk — e, the ident i ty of G. Hence, i t suffices to show that i f s^ 二 tP for some 
k, then s t _ i G Gp. 

Assume s^^ 二 t^^ for some k > 1. Also, we assume that G is finitely generated 
and that \Gp\ < oo. Then, Op((G/Gp)) = (e) by the choice of Gp. We prove that 
s G Gpt by applying induct ion on \Gp\. First, we assume that \Gp\ = 1. Because 
Op{Z{G/Z{G))) = (e) and since G/Z{G) has smaller ni lpotency index c, induct ion 

(i)CDp(G) denote the maximal normal p-subgroup and Gp is maximal (Sylow) p-subgroup of G. In 
nilpotent group, these two subgroup coincide. 
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on c then yields tha t sZ{G) = tZ{G). So 5 二 tz for some z G Z{G). I t follows 
tha t zpk = e. The hypothesis on Gp implies tha t the max ima l p-subgroup of Z{G), 
Z{G)p = (e). Hence z = e, and thus s = t. 

Secondly, we assume tha t \Gp\ > 1. Thus \%{Z{G))\ > 1 and Gp f l Z(GO + (e) 
implies tha t |Op(G/Z(G)p) | < \Gp\, We denote the coset of gZ{G)p by g, g G G. By 
induct ion hypothesis, this implies that 5 G tOp{G|Z{G)p) 二 tGp/Z{G)p. Hence, i t 
follows tha t s G tGp. 

Conversely, i f s = tGp, then by ni lpotency of G, by induct ion hypothesis on \Gp\, 
we have s^^ = 伊 for some k. 

I f G is not f in i te ly generated, then i t suffices to show that J{K[G]) C B{K[G]). • 
For a e J{K[G]), the support of a is f inite and generated a normal subgroup which 
is f in i te ly generated ni lpotent group H and so 

a G J{K[G]) n K[H] = J { K [ H ] ) = B{K[H]) = B{K[G]) n K [ H ] , ； 

This shows tha t a e B{K[G]). ; 
I f char{K) 二 0 and G is f.g ni lpotent group, then we can take W G >V(G). Hence ^ 

J{K[W]) = 0 and so J{K[G]) = N{K[G]) = 0 as required. • 丨’ 

I 
R e m a r k : I f s# = t^^ for some k, then we may say that (s, t) G 。 b u t we need to 、 

notice that ‘ may not be a congruence on S. I 

T h e o r e m 3.3.32 [Oknl ] Let S be a cancellative semigroup that either it is an almost j 
nilpotent subsemigroup or is contained in a finite extension of an FC-group. Then ‘ 

j 
J{K[S]) = B{K[S]) = J{K[H]) n K[S], ‘ 

where H is the group offractions ofS. Moreover, J{K[S]) = 0 ifchar{K) = 0 or if 
char{K) = p > 0 and H has no normal subgroups of order divisible by p. 

The semigroup algebras of arbi t rary ni lpotent semigroup w i l l be investigated in 
Chapter 4 w i t h some finiteness condition. The results on 2-ni lpotent semigroups are 
given in [J01] (1994). The following problem is not yet solved. 

P r o b l e m 3.3.33 Let S he arbitrary n-nilpotent semigroup, what is structure ofK[S 
when K is any field with char{K) = 0 or char{K) = p ？ 

61 



3.4 Radicals of Algebras of Matrix type 

I n th is section, R is a iC-algebra and M{R, I , A; P) is denoted by R. I n fact, R is an 
a l g e b r a o f m a t r i x t y p e , where / , A are index sets and P is a A x I ma t r i x over R, 
where each row and column contains some non-zero elements. Let X, Y G R be the 
I X A matrices w i t h X . Y = X o P o y , where 〇 is the usual ma t r i x multiplication. 

W sometimes call the above type algebra as the Rees a l g e b r a over R. I t 
A 

is par t icu lar ly interesting to see the relationship between R and R. Th is type 
of algebra can be generalized to the completely 0-simple semigroups because by 
Rees Theorem, S = A 4 0 ( G , / , A ; P ) (see Section 1.1), hence i t is easy to see tha t 
Ko[S] = M{K[G]J,A;P) (cf. [Okn l , Lemma 5.1]). 

3.4.1 Properties of Rees Algebras 

We now refer [Okn l , Ch. 5] to get the results of algebras of ma t r i x type. We now 
list some of the useful results for studying the radicals of these algebras. : 

A ma t r i x (¾-¾) G R w i t h aj,k = r when ( j , k) = ( i , A) and a^-^ = 0 for ( j , k) + 
{ i , A). This mat r i x is denoted by (r, z, A). Let J be a r ight ideal of R, for i e I and 
J(i) = { (a , i,入）e R : a G R,入 G A } for any fixed i. Then J = E i e / ^⑷ are the r ight ; 

A 

ideals of R. { 

Let J be an ideal of R. Define . 

2t(J) = {X e R : P o X o P lies over J} : 
I 

A 八 ‘ 

Then 2t(J) a r ight ideal of R. Moreover we can view 21 : K{R) — K{R) as a 八- . 
complete semilattice homomorphism. In addit ion, i f J is a two-sided ideal of R, then 
2 l (J ) 2 J = M U I , A ; P ) and R Qi(J)R C J. 

On the other hand, if N is r ight ideal of R, f ix (z,m) G I x A, then the set 

fl^�= { r eR: ( r , z ,m) G 7V} 

is also a r ight ideal of R. Let Pmi be the (m, z)-entry in mat r ix P. I f Pmi,Pnj are units 
i n R, then i ^ ( ( f 二 7^(¾). Hence let T(_A) be the latt ice of ideals of R. The mapping 

2) : T [ k ) — T{R) defined by 

T){N) = Ar((y) when p^i is uni t in R 

is a well defined mapping. 
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I n the l i terature [Okn l ] , the Munn algebra over R is the algebra of m a t r i x type 
A 4 ( i ^ , / , A ; P ) , where row and column of P contains a un i t of R. Thus, for any 
i G /，m G A, N is a two-sided ideal of N such tha t D(7V) = N^^\ 

Theorem 3.4.1 [Oknl, Th. 5.12] Let R 二 _M(i^,/,A;_P) be an algebra of matnx 
type. Let T{R) be the lattice of ideals ofR. Then we have: 

(i). Ti is a complete lattice homomorphism ofT{R) onto T{R). 

( i i) . 21 is A-complete semilattice embedding ofT{R) into T{R). 

( i i i ) . S>2t is the identity mapping on T{R). 

( iv). 2lX) is the identity mapping on 2 l (T( i? ) ) . 
A 

(v). For any J e T{R), 2 i (J) is maximal among all ideals N ofR with the property : 
D(N) = J. 

Now, we can see tha t the mappings 21, X) established an one-to-one correspondence ‘ 
A 

between the impor tant classes of ideals in R and R. As a consequence, we can give ‘ 
A 

some descriptions for the prime radicals and Jacobson radicals of R. J 

I 
八 1 

Lemma 3.4.2 [Oknl, Lemma 5.13] Let N he a semiprime ideal ofR. Then there 
exists an ideal J ofR such that 2t(J) = N. 

] 

P r o p o s i t i o n 3.4.3 [Okn l , Prop. 5.14] Let R be an algebra of matrix type over R. ！ 

Then the mappings 级，Ti establish an one-to-one correspondence between the sets of , 
maximal, prime, and semiprime ideals of R and R. 

C o r o l l a r y 3 .4 .4 [Okn l , Coro. 5.15； 

B{R) = ^{B[R)) = {X e R : P o X o P Ues over B{R)} 

I t should be noticed that the algebra M{R, / , A; P) may not have an un i ty even 
R has unity. Therefore, even 2D, 21 make an one-to-one correspondence between the 

八 A 

maximal ideals of R and R, i t is not easy to see what J{R) looks like. 

Now, consider the Jacobson radical case, let V be a r ight i^-module. Then V^, the 
direct sum of A copies of V , may be regarded as M|A| ( i^)-module structure. Moreover, 

A 

there is an homomorphsim 4> : R — M\f^\{R) defined by 4>{X) = P 〇 X between the 
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algebras R and M\A\{R)- This module can be regarded as a ^ - m o d u l e and is denoted 
by V^{P). I f V e V"A(P), then we have ^ . X = v 〇 P 〇 X for X G R. 

Let VQ^{P) 二 { u G V^{P) : V . R = 0} . Then we can check tha t 

anrif^[V^{P)|V^{P)) 二 ^{anriR{V)) = {X 6 ^ | P 〇 X 〇 F lies over annji(V)}. 

Recall tha t i f T is a r ing w i t h nonzero idempotents e and if V is a r ight fa i th fu l 
( irreducible) T-module, then Ve is also a fa i th fu l ( irreducible) eTe-module. 

A 

T h e o r e m 3.4.5 Let N be an ideal of an algebra of matrix type R. Then N is right 
primitive i f f N 二 Qi[J) for a right primitive ideal J ofR. Moreover, in this case, the 

A 

division rings associated with the right primitive rings ofR/N and R/J are isomor-
phic. Moreover, ^{J{R)) = J{R). 

A 

Proof. By Lemma 3.4.2, we know that any r ight pr imi t ive ideal of R must be of the 
fo rm 21(J) for some ideal J of R. Define a mapping cp : R ~^ R/J which extends an 

s 

homomorphism: 
cp:R^R' = M{R/JJ^A-,^{P))^ , 

where cp(P) is mat r i x {(p{px,i))- ‘ 

Then, i t can be seen that the kernel of 0 lies in 2 l (J) . Hence, w i thou t loss of ‘ 
generality, we may assume that J = 0. Then we can see that R is r ight pr imi t ive i f f 
R/Qi{0) is r ight pr imit ive. Furthermore, for the case 2l(0), we can show tha t 21(0)3 _ 
0, then hence 2i(0)门 ERE = 0，where E is choosen idempotent for VE. This shows ) 
tha t VE is an irreducible module. Thus, R = EfW/[EflEn^(Q)) = E'{R'/^{0))E' j 
for an idempotent E' in i^/2 l (0) . Thus, , 

J{R) = f | {A^|A^ r ight pr imi t ive ideal of R} 

= p | { 2 l ( J ) | J r ight pr imi t ive ideal of R} 

Hence, we have shown that J{R) = 2 l (J( i?)) by the property of 21. • 

I n part icular, i f S is completely 0-simple and S = M^(G, / , A; P ) , then there 
exists a linkage between Ko[S] and K[G], where G is a maximal subgroup of S. 
Hence, we can give a description on the radicals of K^[5], where S is completely 
0-simple semigroup. 

C o r o l l a r y 3.4.6 Let S = M ^ ( G , / , A; P ) be a completely 0-simple semigroup and K 
any field. If J{K[G]) = 0，then J{Ko[S]) = 2l(0). Moreover, J{Ko[S]) is mlpotent 
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Proof. Obviously, Ko[S] ^ M{K[G]J,A;P) = i ^ ] , by Theorem 3.4.5, hence, 

J{Ko[S]) = 2i(0) = {X G R : P o X o P 二 0} . 

Thus, J{Ko[S]f = 0, and so J{Ko[S]) is ni lpotent. • 

C o r o l l a r y 3 .4 .7 Let K be a field with char{K) = p and S a completely 0-simple 
semigroup isomorphic to M^{G^, / , A; P). IfB{K[G]) = J ( ^ [ G ] ) (e.g G is mloptent-
by-finite or finite extension of FC group), then J{Ko[S]) = B{Ko[S]). 

Proof. I n Lemma 3.3.31 and Theorem 3.3.32, we know tha t i f G is ni loptent-by-f ini^e 
or FC-by-f in i te, then J[K[G]) = >^(i^[G]). Since Ko[S] = M { K [ G ] J , A; P) = / ^ ] , • 
we have 

J{Ko[S]) = ^{J{K[G]) 二 ^{B{K[G]) = B{Ko[S]). 

• , 

3.4.2 Algebras Graded by Elementary Rees Matrix Semi- \ 
groups ， 

I 
Let S 二 A^°(1°, / , A; P) be an elememtary Rees mat r i x semigroup. I n this section, ~ 

/S ^ I 

our a im is to show that every Rees mat r i x algebras R have a 5'-grading. This provides , 
another approach to study the structure of M u n n algebras. Also, the method of S- . 
grading can be applied to other algebras. 丨 

Let S be an 0-rectangular band. For any (l,i,m) G S, define ( 

( ( l , i , m ) ( l J , n ) = (l,i,n) if Pmj = 1 ‘ 

[ ( l , z , m ) ( l , j , n ) = Q if Vm,j = 0 
八 八 / \ A A / S A 

I f we put Rim 二 R^ and Re = 0, then R = E(i,i,m)65 Rim' This means that R is a 
contracted 5-graded algebra. 

For elementary Rees mat r ix semigroups, we have 

T h e o r e m 3.4.8 [CJ] (1994) Let S = A^°(1°, / , A; P) be an elementary Rees matrix 
semigroup. Let R be a contracted S-graded ring. Let 7i he Jacobson, prime, Levitzki 
radicals respectively. Let 

T = { x e R : RxR C E H ( i ^ O } . 
i，A 

Then n{R) = T. 
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Proof. By Corol lary 2.5.4, we know tha t the Jacobson and Lev i tzk i radical can be 
determined by the components of band-sum. Moreover, since S is a rectangular band 
only, B can be also determined by this sum. Hence, 7i{R)i 门 Rb ^ H{Rb)- Since S is 
an 0-rectangular band, we have 7i{R)i = 7i{R)h-

I n case, i f T is an ideal, then we can see that for any x G T 门 Rb, RxR C 
Ylbes^[Rb), so RbxRb C H{Rb). W i t h H{R, S) = H{R), we have T C n{R). 

Conversely, for any x e 7i{R), we have RxR C H{R). Hence, for each b G S, 
{RxR)b C H ( i 4 ) , This implies tha t RxR C E^i^b) and hence H{R) C T. • 

Here is another description of the Jacobson radical of algebra of complete 0-simple 
semigroup similar to Corol lary 3.4.7. 

C o r o l l a r y 3 .4.9 Let S = M^{G,I,A]P) he a completely 0-simple semigroup. If ‘ 
J{K[G]) = C{K[G]) (or J{K[G] = B{K[G])), then 丨 

J{Ko[S]) = C{Ko[S]) ( or J ( K o [ ^ ] ) 二 B{Ko[S])). 

_ I 

Proof. From the above arguments, we have Ko[S] = «M(i^[G]，/,A;P). Let T = ： 

A4°(1°, / , A; P ' ) be an elementary Rees mat r i x semigroup. Then, we can see tha t , 
R = Ko[S] is a T-graded algebra. Let (1, z, A) G T and wr i te Rix = {K[G],i, A) (set i 
of (a,z, A), where a G K[G]). Then we have i 

耶认)=J{K[G]) = C{K[G]) ^ C{R,x). 

• 丨 

i 

C o r o l l a r y 3.4.10 Let T be a subsemigroup of a completely 0-simple semigroup S. 
Then 

J{Ko[T]Y C ^ J ( T a ) , 
iei 
AeA 

where %x is the row and column ofT %n S = M^[G^, I , A; P). 

C o r o l l a r y 3 .4 .11 Consider S = A4^(G, / , A; P) and let S' he its corresponding ele-
mentary Rees matrix semigroup. Let R be a S-graded ring. Denote R[^ = E"ec ^{g,iA) 
for i, G I , A G A. If G is a group satisfying any condition of Theorem 2.3.5, then 

J{Rf ^ E JAR\x)+ E R'ix 
{i,i,x)es[ (i,i,A)e^ 

where 5； = { ( l , z , A ) : p、i = 1} and ^ = { ( l , j , M ) : P'^,,j = 0} . Hence, J{Rf is 
S'-homogeneous. 
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Proof. Since R can be regarded as a 5"-graded r ing w i t h each component R[x a 
G-graded algebra. Then in Theorem 2.3.5 7 ( ¾ ) = < V ( i 4 ) for ( l , ^ , A ) G S[. I f 
( l , j , M ) G ^ , then ( i^_J2 = 0. Thus, J ( _ ^ J = R'j^. By Theorem 3.4.8, we also have 

J{Rf c E J{Rix) 二 Z JAR\x) + E R'ix. 

(l,i,A) (l,i,A)e5; (l,i,A)65^ 

Hence, J {R)^ is a 5''-homogeneous ideal. 口 

Referr ing to the properties of graded rings, we have the fol lowing lemma: 

L e m m a 3.4 .12 [CJ, Lemma 18] Let I he an ideal of a ring R such that J{I) and 
J { R / I ) are both locally nilpotent. Then J{R) is locally nilpotent. 

丨 .' 
We prove the main theorem of this section. 

T h e o r e m 3.4.13 [CJ] (1994) Let S he a locally finite semigroup and R a contracted 
S-graded ring. If J{Re) is locally nilpotent, then J{R) is also locally nilpotent. 

= , 

Proof. I f S does not contain a zero element, then we may adjoin i t w i t h the zero 6 
and put Re 二 0. Otherwise, 9 is an idempotent of S and obviously J{Re) 二 0, J{Re) ‘ 
is locally ni lpotent. Now, R becomes a contracted 5^-graded algebra. Hence, J{R) is ‘ 
locally n i lpotent i f f J[R) = J{R/Re) is locally ni lpotent. Therefore, we may assume ‘ 
tha t R itself is a contracted 5'-graded r ing w i t h S containing zero. 

Let X = { a i , . . . ’ an} be a finite subset of J{R) and A a subring generated by X . ^ 
Let T = U^^iSupps{ai) and let B be the subsemigroup of S generated by T . Since S 
is locally f inite, B is f inite, so A is subring w i t h f inite support. ‘ 

Now, we show that the order of the subsemigroup generated by the support of A^ ‘ 
for al l k is str ic t ly smaller that \B . 

Suppose that I is an the ideal generated by T. Then, we have B C I. Since I is 
f in i tely generated, the set of ideals is str ict ly contained in I , thus i t contains some 
max imal elements. Let M be the maximal ideal contained in I. Then I/M is either 
0-simple or null. 

By our construction, we can see that A C Rjp C Rj and A C J{R), so A C 
Rj n J{R) 二 J{Ri) since Rj is ideal. This shows that Ri/RM is a contracted I/M-
graded ring. Since A C J{Rj), the image of A, namely A, is a f ini tely generated 
subring of J ^ R i / R u ) -

I f I|M is a nul l semigroup then {Rj/RM)^ = 0. This implies that J{Rj/RM) is 
ni lpotent. 
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I f I/M is a 0-simple semigroup, then by the locally finiteness of S, we have I/M 
is completely 0-simple semigroup and is isomorphic to M^{G, / , A; P) for some group 
G wh ich is local ly f ini te (see Proposi t ion 1.1.6). 

Recall tha t G is locally f inite, then by Theorem 2.2.8 ( i i) , we know tha t i f R is a 
G-graded r ing, then Cgr{R) = Cre j iR) . Moreover, i f J{Re) is local ly n i lpotent , then 
J{Re) = C{Re) and Jgr[R) n Re = J<^Re) = L{Re) - Cgr{R)门瓦.These facts lead 
to ~ 

{C{R))gr = Cgr{R) = Cref{R) = Jref{R) = Jgr{R)-

Hence Jgr{R) is locally ni lpotent as well under the above conditions. Let I be a f in i te ly 
generated subring of J{R) w i t h generator set X . Let H be a subgroup generated by 
X . Since G is locally f inite, H is f inite group. Thus, J ( ^ ) ' ^ l C JgriRn). where 

〜 ^^ 

n = \H\. Hence, I C J{Rn) is ni lpotent. Therefore, J{R) is locally n i lpotent . 

Now, let R be a contracted algebra graded by M^{GJ,K]P) w i t h G is local ly 
f in i te and Rij is G-graded so that J{Rij) = J^{Rij) as above. This means tha t R can 
be now graded by an elementary Rees mat i r i x semigroup and each of i ts component 
is local ly ni lpotent. Hence, J{R) is locally ni lpotent due to Theorem 3.4.8. Thus, 
J{R) = C{R). Hence, R = Ri/Ru and J{Ri/RM) is locally ni lpotent. 

Moreover, i f A is finitely generated subring in J^Rj/Ru), then there exists an 
integer k > such that A^ = 0 or A^ C R^. Hence A^ C RMnB- However, we cannot 
obta in B^M and in fact B 门 M contains the support of A^. Thus, the subsemigroup 
generated by the support of A^ is str ict ly smaller than the support of B. By induct ion 
hypothesis, we know that A ni lpotent, and consequently J{R) is locally n i lpotent . • ^ 

We now extened the above case to locally f inite semigroup algebras. . 

C o r o l l a r y 3 .4 .14 Let S be any locally finite semigroup. Then J{K[S]) = C{K[S]). 

3.5 Radicals of Inverse Semigroup Algebras 

I f S is an inverse semigroup, then the maximal subgroups are the subgroups 

He {s e S\ss~^ = s—is = e}, 

where e G E{S) which is a semilattice of idempotents of S. The semigroup S is called 
c o m b i n a t o r i a l i ff each of its maximal subgroup is tr ivaL A inverse semigroup is 
called C l i f f o r d s e m i g r o u p if every idempotent of S is central. A n inverse semigroup 
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S is completely 0-simple and is isomorphic to a B r a n d t s e m i g r o u p , i.e. S = 
M{G, A, A; A ) , where A is the ident i ty mat r ix . Moreover, each pr inc ipal factor of an 
inverse semigroup is of course 0-simple. 

3.5.1 Properties of Inverse Semigroup Algebras 

I n th is par t , we assume that al l semigroups S are inverse semigroups. From the 
previous sections, we immedicately have the fol lowing result. 

L e m m a 3 .5 .1 Let K be any field, and S an inverse completely 0-simple semigroup. 
If S contains finitely many idemoptents, then I is finite and Ko[S] = M\j\{K[G]). ‘ 

Now we revise some results of M u n n [Mun3, Mun4, Mun6] ( 1986 ,1987 ,1992 ) , 
concerning the r ight n i l ideals of inverse semigroup algebras. 

Let S be an inverse semigroup and e G E[S), Let He be group of uni ts of eSe. 
Notice tha t H^ also the lK-class of e in S. Denote the r ight uni ts subsemigroup of 
eSe by Pg, tha t is 

I 

Pe = {x G eSe I xy = e for some y G eSe}. 

Note tha t Pg ^ He and Pe = Re H eSe, where Re is 灭-class containing e in S. For a 
pr ime number p, x e He, is called a p-element iff x has order p^ for some r G N. 

I 

L e m m a 3.5.2 [Mun4, Lemma 1] Let S he a semigroup, K a field with char{K) = p 
and q = jf for some r G N. Then x G K[S], also for any elements X1,X2,. • • , Xn G S 
and «1, «2, •.. cxn G K, we have -' 

/ n \ q n 
Y. ^iXi = J2 «z^ i + c, 

Vi=l / i=l 

where c is a linear combination of the elements of the form uv — vu, with u, v G 
〈工1，• . . ’ ^ n ) . 

We need some technical lemmas for studying the inverse semigroup algebras. 

L e m m a 3.5.3 [Mun3, Lemma 5.1] Let S he an inverse semigroup and T a nonempty 
finite subset of S. Let e be maximal in {xx~^ : x G T}. Then for all x, y G T 

ocy_i — e =^ X = y. 
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L e m m a 3 .5 .4 [Mun4, Lemma 2] Let S he an inverse semigroup containing an idem-
potent e and K a field with char{K) = p. Let a be a mlpotent element ofK[S] such 
that e e supp{a) C eSe. Then either (i) supp{a) f l H^ contains a p-element or ( i i ) 
supp{a) n (Pe \ He) + 0. 

L e m m a 3.5.5 [Mun6] Let S be an inverse semigroup, K a field and A a nonzero 
right ideal. Then there exist e G E{S) and a G A such that 

e e supp{ea) C He U {eSe \ Pe). 

Proof. Choose b G A \ 0 and let Xi,. --Xn be the elements of supp{b). Let e be . 
max ima l element in T = {xiXi^, • . . ,XnO::i}. Then e = xx~^ for some x e supp{b). 
W i t h o u t loss of generality, let 

e = XjXj^ for 1 < j < k and for k < n. 

Then let T' = {x1^x1,x2^x2,. •. , x ^ ^ f c } . Denote the min ima l element in T' by 
/ . W i t h o u t loss of generality, iet f = x^^xi. Take a = 6工「1. Since A is a r ight ideal 
of K\S], a e A. We now check that ea has the corresponding properties. 

L 」 i 
Consider the element ea. Let yi = exixi^ for i = l , . . . n . Then supp{ea) C 

{^/i}i=ir.，n. First of al l yi = e and yi = eyi = exixi^xixi^ = e^e, hence supp{a) C 
eSe. 

Suppose yk = ex^xJ"^ = e for k > 1. Since yk = [eXk){exiY^ and e is also the 
max ima l element of the set eT. By Lemma 3.5.3, we have eXk 二 exi = Xi. Hence 
eXfcX^^ 二（eTfcXezAO_i = ^ i ^ i ^ = e, that is e < XkX^^. This shows that e = XkX^^ 
and Xk = exk = Xi. Hence if yk = e then k 二 1. Therefore, ^ 

e G supp{ea) C eSe 

To prove the second inclusion, i t suffices to show that for y G supp{ea)^ and yy~^ = e 
i f f y-iy = e. We know that XjXj^ = e for j 二 1 , . . . k. For j = 1 ’ . . . k, i f VjVj^ = 
e x j x i ^ x i x j ^ e = e. Similar to above, we have 

yJ^Vj 二 Xjx~^xiex~^ = e. 

By some rearrangement, we have x ^ ^ x i > x j ^ x j . By the choice of Xi (min imal in 
x~^xi . ) , we have x j ^ x j = X i ^X i ^ . Then yjy] '^ = e and yJ^Vj = x i x " ^ ^ x f ^ = 
X iX i ^ 二 e. Then y j G He. 

For j > k, y j = eXjXi^. I f VjVj^ = e, then we can also show that {eXje){eXje)~^ = 
e, whence e < XjXj^. This contradicts to e > XjXj^. Hence VjVj^ + e for j > k. 
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Thus, e C {yJ i= i , . " ,n C H , U ((e^e) \ Pe). 口 

By the above lemma, we obta in the fol lowing modif ied results of M u n n [Mun4 . 

L e m m a 3.5 .6 Let S he an inverse semigroup. Let K he a field and A a nonzero 
ideal ofK[S]. Then there exists e G E{S) and a e A\0 such that e G supp{a) C eSe 
and supp{a) H (Pe \ H^) = 0. 

Consider the algebra over field K w i t h char{K) = 0. We have the fol lowing 
lemma. 

L e m m a 3.5 .7 [Mun6] Let S he an inverse semigroup and K a field of characteristic 
0. Let b be a nonzero mlpotent element ofK[S]. Then there is an infimte set Vh of 
prime numbers such that for each p G Vb, there exists a field Fp of characteristic p 
and a nonzero mlpotent element c ofFp[S] such that supp{c) = supp{b). 

Hence, we obta in the fol lowing Munn's theorem for K[S] which is analogous to 
the group case. 

T h e o r e m 3.5.8 [Mun6] Let S be an inverse semigroup and K be a field of charac-
teristics 0 or prime that is not the order of an element m a subgroup of S. Then 
K[S] has no nonzero nil right ideals. 

Proof. Suppose that K[S] has a nonzero n i l r ight ideal A. Then, by Lemma 3.5.5, 
there exist e = e^ and a G A such that 

e G supp{ea) C He U {eSe \ Pe). -

Since A is ni l , there exists a positive integer k such a" 二 0. Now, supp{ea) C eSe 
and 

supp{{eaY) C [supp{ea)Y Q eSe. 

Hence, by induction, {eaY = ea^ for all positive intergers r and so, i n part icular, 
(ea)^ = ea^ 二 0. Wr i te b 二 ea, so b is ni lpotent. Thus, we have 

e G supp{b) C eSe, supp{b) n {Pe \ He) 二 0. 

First , if char{K) = p. Then, since b is ni lpotent, by Lemma 3.5.4 supp{b)nHe contains 
p element. Thus He contains an element of order p, contrary to our hypothesis. The 
result therefore holds in the prime characteristics case. 
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O n the other hand, i f char{K) = 0 and Vt is defined in Lemma 3.5.7. Let p G Vb-
Then there exists a field Fp such tha t Fp[5] contains some nonzero n i lpotent elements c 
and supp{c) = supp{h). App ly ing relat ion in Lemma 3.5.5, we know tha t supp{c)nHe 
contains a p-element. Thus supp{b)门 H^ contains p-element for al l p e Vh- However, 
Vh is an inf inte set, which contracdicts to the finiteness of supp{b). Hence, b = 0 and 
a = 0. • 

3.5.2 Radical of Algebras of Clifford Semigroups 

I t is wel l known tha t a Cl i f ford semigroup is a semilattice of groups. Let S be such , 
type of semigroup, i.e. S 二 Uagr<^a, where F is a semilattice and al l G ^ s are groups. 
Also, we have the structure homomorphism 4>a,f3 : Ga — G^ w i t h a > f3. Consider 
K[S], by addi t iv i ty , K[S] = Eaer^[Ga]- Then K[S] is a P-graded algebra, w i t h 
R 二 K[S] and R^ = K[Ga]- Moreover, in each a G F and Ra is nonzero and has a 
un i ty l a = 1 • e^, where e^ is ident i ty of Ga- We can easily see tha t 1^1^ = la/^ By 
Section 2.5, K[S] is known as a special F-graded algebra. We now use the results of 
Section 2.2.5 to describe the radicals of Cl i f ford semigroups. 

T h e o r e m 3.5.9 Let S = U^erG'a be a Clifford semigroup and E{S) the set of all 
idempotents ofS is pseudofimte. Then J{K[S]) = 0 i f f f o r every a G r , J{K[Ga])= 
0. 

Proof. This theorem is a direct consequence of Corollary 2.5.13. • 

T h e o r e m 3.5.10 Let K[S] be semigroup algehra of Clifford semigroup. If each prin- , 
cipal ideal of F is finite, then 

J{K[S]) 二 ̂  J{K[G^])p{a) 

aer 

Proof. This is a direct consequence of Corollary 2.5.14. • 

Note: When E{S) is pseudofinite, p{a) = 11 (6a — e^) is defined in Section 2.2.5. 
i^eE{s) 

ayn 
Therefore, the semipr imi t iv i ty of algebras of this type of semigroup depends on the 
semipr imi t iv i ty of group algebras. Recently, Passman has given a survey on the 
semipr imi t iv i ty of group algebras and make his focus on locally f inite groups. Hence, 
we can refer to his results on group algebras and apply them to locally f inite Cl i f ford 
semigroups. 
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3.5.3 Semiprimitivity Problems of Inverse Semigroup Alge-
bras 

I n th is section, we introduce an impor tant theorem for inverse semigroup algebras. 
These materials are main ly taken f rom Domanov (1976) (stated in [Mun3]). We f irst 
give the ma in results of this section. 

T h e o r e m 3 .5 .11 [Mun3] Let S be an inverse semigroup andK afield. I f J { K [ H e ] ) 二 

0 for each maximal subgroup He ofS, where e e E{S), then J{K[S]) = 0. 

I n order to prove this theorem, we need to examine the structure of the inverse 
semigroup S and its subgroup He. Let e G E{S) and D be the X>-class of S containing 
e. Consider a r ight i ^ [ i ^ - m o d u l e W. For each f G E(D), let Vf be an isomorphic 
copy of W . Since there exists an isomorphism ^ e j : ^ — H j , we can define 9f : 
W — Vf as a module isomorphism. I n this way, Vf can then be regarded as a 
K[fff]-module. 

Let V 二 ^f^E(D) Vf. Then we perform the construct ion as followings: 

Suppose V is constructed above and let x e S. Define for each f G E{D) and 

V G Vf, 
( v 6 j ^ { r f x r ' ^ ) 9 g i f f < xx~^ and g = x ' ^ f x , 

V . X = < J ^ 1 

[ 0 i f f ^ x x - ^ 

Then, i t is not di f f icult to check that V is a well defined r ight X[5' ] -module. As this 
module V depends on e and V1̂ , we just denote i t by V{e, W). 

From [Mun3, Lemma 4.6], i t is shown that i f W is an irreducible i^[ i^e]-niodule 
then V{e, W) is irreducible X[6']-module. 

Let M-e be the fami ly of K[He]-modviles. Then Me is fa i th fu l i f f the intersection 
of the annihi lators of al l the modules in the family M e is zero. Now define 

M = {V{e,W))weM.,eeT 

where T is a subset of E{S) w i t h exactly one element f rom each X>-class. Thus, 
by a result in [Mun3, Lemma 4.7], i t yields that M is a fa i thfu l fami ly of r ight 
K[S]-modviles. 

We now t u r n to the proof of Theorem 3.5.11. 
Suppose that K[He] is semiprimitive for all e G E{S) and T is constructed above. 
Then there exists a fa i thfu l family Me of irreducible K[He] modules. For each W G 
Me, form a K[S']-mociule V{e, W). From the above construction, i t can be easily 
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seen V{e,W) is irreducible and M is fa i thful . Hence K[S] is semipr imit ive. The 
proof is completed. ^ 

C o r o l l a r y 3 .5 .12 Let S be an inverse semigroup and K a field that is not algebraic 
over its prime subfield. Suppose, ifchar{K) = p > 0 and no subgroup ofS has an 
element of order p, then J{K[S]) = 0. 

C o r o l l a r y 3 .5 .13 Let S be a combinatorial inverse semigroup and let K be a field. 
Then J{K[S]) = 0. 

However, the converse of Theorem 3.5.11 does not hold. We can f ind an example • 
i n [Mun3, Example 4.10] which shows that J { [ K [ S ] ) = 0 but J{K[G]) • 0 for some 
max ima l subgroup of S. On the other hand, we give here some condit ions for E{S) 
which make the converse of Theorem 3.5.11 true. I n the fol lowing, we use an example 
given by Ponizovskii to veri fy i t in a different way. 

We describe the example obtained by Ponizovskii as follows: 

T h e o r e m 3.5 .14 [Ponl] (1990) Let S be an inverse semigroup. The following con-
ditions are equivalent. 

(i). E{S) is a pseudofinite semilattice of idempotents 

( i i). If J [ K [ S ] ) = 0； then for each maximal subgroup G ofS, J{K[G]) = 0. 

Proof. M u n n [Mun5] showed that (i) implies (i i). Hence we have to prove tha t (i i) 
implies (i). we construct an example to show that E = E{S) is a non-pseudofinite 
semilattice and J{K[S]) = 0 but there are subgroup G such that J{K[G]) + 0. 

Let K be field w i t h char{K) = p. Construct S as a semilattice of groups 
[E, Ga, 4>oc,(3)- First , w i thout loss of generality, take a G E which is maximal . Let 
Ga be a proper subgroup of G w i t h J{K[Ga]) + 0 but J{K[G]) = 0. For example, 
G = 5oo, an inf ini te locally f inite symmetric group and iSoo has subgroup Ga w i t h 
order p when char{K) = p. I f [3 < a, let Gp 二 G and cpa,|3 is an inclusion map. I f 
P ^ a , then Gp = {e } . Moreover, define 

{7 < P < a (/)/3,7 = i ident i ty mapping 

7 < P ^ a 4>p,i : {e } — G^ is the t r iva l inclusion . 

Then in this semigroup, K [Ga] is not semiprimitive, and if P ^ a , then K [Gp] is 
semiprimit ive. I f /3 < a, then x e J(K[Gc]) is nonzero, we have ^a,/3(x)^J(K[G/3]). 
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Refer to Section 2.5, K[S] now becomes a special semilatt ice-graded r ing when 
a is maximal . I f there is a nonzero element a G J{K[S]), then aa&a G J{K[Ga]) 
by Theorem 2.5.6. Assume that b = ae^ ^ 0. Let D = supp{b) \ {a}. Since E is 
non-pseudofinite, there exists an inf ini te |3 such that a y P. Moreover, suppose tha t 
there exists 7 ^ a and 7 G aE \ D such that jd 二 7 , then d < 7 for some d G D. 
Thus 7 = d. Th is contradict ion leads that for any 7 e aE \ D, 

QjQi — 仅今 

but a^e^ = 4>ani^oi^c^)^J{K[G^]). 

However, th is result contradicts the description of J{R) in Theorem 2.5.6 and the 

choice of a. • 

Thus a« 二 0 and a^supp{a). Hence, a G J{K[S])nR' = J[R'), R' = K[S]\K[Ga 
which is an ideal of K[S]. We can check that J{R') = 0 since for every max ima l 
subgroup H, J { K [ H ] ) = 0. Thus, a = 0 and J{K[S]) = 0. • 

The above construct ion shows the importance of pseudofiniteness of E{S) i n an 
inverse semigroup S. 

Final ly, we describe the structure of K[S] over a completely semisimple inverse 

semigroup S. 

T h e o r e m 3.5.15 IfS is completely semisimple inverse semigroup with finite E{S) 
and K is any fields, then K[S] has an identity and 

K[S] ^ Mn,{K[Gi]) e Mn,{K[G2]) e ... e Mn,{K[Gk]). 

Proof. Since S is a completely semisimple inverse semigroup w i t h E{S) is f inite, S 
has a pr in ip ical series 

S = Sn 2 Sn-l ^ . • . 2 So, 

where S i / S i - i is completely 0-simple and S^ is completely simple. 

As T = So is min imal nonzero ideal of S and T is completely 0-simple in-
verse semigroup, T = M{G^, / , / , A ) w i t h f inite index set I. By Lemma 3.5.1, we 
have Ko[T] = M\i\{K[Go]), where Go is maximal subgroup contained in T. Thus, 
M\j\{K[Go]) has an identity. Then 

Ko[S] = Ko[T]① i^o[SyT: 

(see Prop. 1.2.4). We can complete the proof by using induct ion hypothesis. Note 
that each Gi can be selected f rom S i / S i - i . • 

Finally, if char{K) = 0 and if the maximal subgroup G is f inite, then i t is easy to 
see that K[S] is semisimple. 
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3.6 Other Semigroup Algebras 

3.6.1 Completely Regular Semigroup Algebras 

B y a completely regular semigroup S, we mean S is the unions of groups. More-
over, every completely regular semigroup is also a semilattices of completely simple 
semigroups, i.e. S|r] is semilattice of completely simple semigroups, where the least 
semilatt ice congruence rj = V = 3. Since S is a completely regular semigroups. S is a 
semilatt ice of completely simple semigroups. Using the theory of semilatt ice graded 
rings and the M u n n algebras, the structure and radicals of this semigroup algebras 
K[S] can be found. . 

I n th is section, we consider the class of the semigroups having band decomposi-

t ions. 

P r o p o s i t i o n 3 .6 .1 [Pet, Prop IV.1.7] Let S he a completely regular semigroup. Then 
the following conditions are equivalent: 

(i). S is a band of groups. 

( i i). H is a congruence on S. 

( i i i ) . a%S - ahS, Sab^ = Sab for all a, b E S. 

Using the above characterization for band graded rings, we obta in the fol lowing re-

sults. 

T h e o r e m 3.6.2 IfS is band of groups, then for any field K, K[S] is special band- “ 
graded algebra with band B and 

J{K[S]) - {a e J{K[S]) I V a G B; e^a^e^ G J{K[Ga])}-

Proof. This is a direct consequence of Theorem 2.5.6. • 

T h e o r e m 3.6.3 Let S be a strong semilattice of completely simple semigroups, and 
K any field with char{K) = p. Then, K[S] = T^f3eB K[G^] where B is a normal 
hand. Moreover, J[K[Gp]) is ml (e.g J{K[Gp]) = 5 ( K [ G ^ ] ) J iff J{K[S]) is a ml 
ideal. 
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Proof. By [Pet, IV.4.3], S is a strong semilatt ice of completely simple semigroups, 
i.e. S = U7erS7 i f f S^/H is rectangular band. This means tha t S^ is un ion of groups. 
Let 

B ^ U ^ i / ^ -
7er 

Then B becomes a normal band and the first part is therefore proved. I n par t icu lar , 
we know tha t K[S] is a special band-graded ring. By Theorem 2.5.15, i t suffices to 
show tha t K[S] is radical ly coherent. I n fact, B is the band induced by the semilatt ice 
decomposit ion of S, hence B is a strong semilattice of rectangular bands. I f a > /?, 
then we can define ¢^,^ : G^ — Gp such that ^a,p{^) 二 e|30cep, for al l x G Ga, where 
Ga C Sa and Gp C Sp. Thus, ^a,p induces an homomorphism -

0a,/3 • K[Ga] — K[Gp. 

I t is not di f f icul t to see that ^p{J{K[Ga]) C J{K[Gp]). Hence, K[S] is radical 
coherent, and the second part is proved. • 

3.6.2 Separative Semigroup Algebras 

The radicals of commutat ive separative semigroup algebras have been completely 
solved in section 3.3. However, for non-commutative separative case, i t is so di f f icul t 
to describe the radicals because even S has a semilattice decomposit ion of cancellative 
semigroups, not al l cancellative semigroup can be embedded into groups. However, i f 
S is separative, then there exists a greatest semilattice decomposition of cancellative 
semigroups, say S = U^er^a- Assume that each cancellative semigroup generates a 
part icular group, then we can st i l l describe the radicals for certain separative semi- , 
groups. 

L e m m a 3.6.4 fJ01] (1994) Let S be a separative semigroup with a semilattice de-
composition UaerSa, where each Sa is a cancellative semigroup. If S^ is also n。-
nilpotent, then S can he embedded into a semilattice Q = {JotevGa, where each G^ is a 
two-sidedfractions group ofSa- Moreover, S is mlpotent i f f n = sup{na\a G F } < 00. 

In th%s case, Q is also mlpotent semigroup. 

Proof. By Theorem 3.3.30, S^ has group of fractions Ga- Let Ga 二 {sata^\sa^ta G 
Sc,}. I t suffices to show that the mult ip l icat ion on Q = UaerGa is well defined. 

For arb i t rary a,|3 G F, any 5« G Sa and Sp e Sp. We can wr i te x = s^sp, 
y 二 spson i t is obvious that x,y G S^p since S = Ua^rSa- By the ni lpotency of Sap, 
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for any sequences, Xk{x, y) 二 Yk{x, y) for k > Uap, which is the n i lpotent class of 
Sap- Then there exists aap^ bap in Sap such tha t SaCLap = Sphap-

The mul t ip l i ca t ion of Q is defined by 

{aah^^){cpd^^) = [aaCap)(dpBa0)_\ 

where bjOap = cpBap, Cap, Bap G Sap- Then this mul t ip l ica t ion of Q is wel l defined. 
Hence, i t follows tha t Q is a semigroup. 

I f sup{na} exists, then S is clearly ni lpotent. Moreover, the mul t ip l i ca t ion of Q 
induced by S also leads to nilpotency. Under this case, Q is also n i lpotent . • 

We have already known that the semilattice F is locally f inite. I f S is a separative 
n i lpotent semigrop, then we have the fol lowing theorem. 

T h e o r e m 3.6.5 Let S he a separative mlpotent semigroup in which each semilattice 
component Sa ofS is weakly ria-nilpotent that is S 二 U^er^'a and each Sa generates 
a group Ga. Let Q = UaerGa where Ga is group generated by Sa- For any field K, 
we have 

(i). IfT wfimte, then J{K[S]) = B{K[S]), 

(i i). If r is infinite, then J{K[S]) — C{K[S]). 

Proof. The proof follows f rom Theorem 3.3.32, as for each a G F, we have 

J{K[Sa]) = B{R[Sa]) = C{K[Sa]) 二 J{K[Sa]) H K[Sc^]. 

This shows that J{K[Sa]) is locally ni lpotent. As a direct consequence of Theorem " 
3.4.13, we know that J{R[S]) is locally ni lpotent and equal to C{K[S]). Moreover, i f 
r is f inite, then J{K[S]) 二 i 3 (K [6 ] ) by induct ion hypothesis. • 

C o r o l l a r y 3.6.6 Let S he a separative semigroup with the greatest semilattice de-
composition of cancellative semigroups UaerSa, where each Sa generates a group 
Ga- Let Q = UaerG'a where Ga is group generated by Sa- Moreover, if each Ga 
is nilpotent-hy-fimte or FC-hy-finite, then B{K[Sa]) = J{K[Sa]). IfT is finite, then 
B{K[S]) 二 刷51). 

For the commutative case, the relation ‘ = { (s, i)|s^^ = ^^^for some k} is p-
separative congruence (cf. Section 3.2) b u t 。 m a y not be a congruence in noncom-
mutat ive semigroup. Hence I { K , S, ^p) may not be an ideal of K[S]. Recently, [ J01 
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has shown tha t when S is 2-ni lpotent semigroup and K is a f ield of characterist ic 
p > 0, then Cp is a congruence on S, and J{K[S]) - B{K[S]) = I { K , S,Q. We now 
extend th is theorem to a more general si tuation. 

T h e o r e m 3 .6 .7 Let S he separative nilpotent semigroup, If (5, t) e “ then s — t G 

B{K[S]). The relation “ is a congruence on S. Moreover, 

J{K[S]) = C { K [ S ] ) D j 2 l { K , S , Q . 
pGP 

Proof. Since S is a separative ni lpotent semigroup and has a semilatt ice decompo-
si t ion of cancellative semigroups, f rom Lemma 3.6.4, S can be embedded in to Q 二 -j 
Uaer<^a- where Ga is group of fractions of Sa- I f a G J{K[Sa]) = J{K[Ga])门7^[5^， | 
then a G J{K[Ga]), where Ga is a ni lpotent group. Lemma 3.3.31 then yields 丨 

a = Ez h { s t — t i ) w i t h {si ,U) G ^p. Note that i f {s i ,U) G ^p, then Si,U G Sa for 
some a G F. For e^ G Q, e^ is the ident i ty of Ga and so e^ is central. Assume tha t 
the semilatt ice r is f ini te and let a be the maximal element in F. Denote I = S \ Sa-
Then we have 

aK[I] C 5 ;](5 , - U)K[I] 
i 

c Y.Y.{s,-u)K[S0] 
i per 

/3和 

g Y1 Y1 (5i^a/3 — U^a|3)K[ea|3Sp] 
i f3er 

/3#a 

Since al l e^^ are central so that SiCap and UCap are &-related. Hence, 5^6 /̂5 — tiCap € 
J{K[Gap])- Consequently, for f3 + oi, we have 

^{Si6ap — Ueap)K[eaSp] c K[Sap]门 J{K[Gap]) = J ( K [ ^ ] ) -
i 

By using induction hypothesis on the order of F , we obtain aK[I] C J{K[S]). More-
over, since a G J{K[Sa]) = J ( i ^ [ C g ) n X [ 5 J , aK[S] C J{K[S^] + J { K [ I ] ) and 
a e J ( K [ S ] ) . Thus, J (K [Sc ] ) C J ( K [ S ] ) for some maximal a G r . By using 
induct ion again, we have E a e r ^ ( ^ [ ^ ) [ J ( i ^ [ ^ ] ) -

On the other hand, assume that s, t G S such that s — t ni lpotent. We may assume 
that s G Sa,t G Sf3. Hence {5 — t)' = s' — st''' + . . . + t' = 0 i f f af3 = a = P i f f 
s , t G Sa. Therefore, s — t G B{K[S]) iff s — t G B{K[Sc]) for some a G T. Hence ‘ 
is a congruence on S and hence 

/ ( K , S, i,) = X： I ( K , 5,, ^p) C B{K[S]). 
aer 

79 



Using Theorem 3.6.5, we then obta in J{K[S]) = C{K[S]) D B{K[S]) ^ I { K , S,Q. 
• 

3.7 Radicals of PI-semigroup Algebras 

3.7.1 PI-Algebras 

The algebras or rings tha t satisfy an polynomial ident i ty are rather useful i n the 
aspect of geometry, in part icular, the Azumaya algebras and division algebras. Now, 
we study semigroup algebras satisfying a polynomial ident i ty and obta in some results 
on semigroup algebras. The reader is referred to [Pasl, Row] for more properties of 
PI-algebras. 

D e f i n i t i o n 3 .7 .1 Let R be a k-algehra. Then R is called a PI-algehra ifR satisfies 
a polynomial identity f over k. 

We state the fol lowing impor tant result of PI-algebras. 

T h e o r e m 3.7.2 [Okn l , Pasl , Row] Let R he a PI-algehra satisfying a polynomial 
identity of degree n. 

(i). For every prime ideal P, the localization ofR/P with respect to its center is 
isomorphic to the matrix algehra Mr{D) over a division K-algehra D such that 
dimz{D)^r{D) < (n/2)2. Moreover, R/P can be embedded into Miv(L) for a 
field L D K, and an integer N < n / 2 

(i i). If P is a right primitive ideal ofR, then R/P = Mr{D) with D,r as above. 

( i i i ) . For any nil ideal ofR, J{I) = B{I) and ifR is a finitely generated K-algehra, 
then J{R) is a nilpotent ideal ofR. 

3.7.2 Permutational Property and Algebras of Permutative 
Semigroups 

I n order to study the P I semigroup algebras, we first have to examine some of the 
properties of the given semigroup. A semigroup is said to have the property ^ ^ i f for 
any elements s i , . . . , Sn G 5, there exists a nontr ival permutat ion a in the symmetric 
group Sn such that Si . . . Sn = <5a(l) . . . <5a(n)-

80 



P r o p o s i t i o n 3 .7 .3 [Okn l , Prop.19.1] Assume that K[S] satisfies a polynomial iden-
tity of degree n. Then S has the property hy ^n-

Hence, the studying permuntat ional property of semigroup is a must. However, 
i f S satisfies a permutat ional identi ty, i t is st i l l not sufficient to show tha t K[S] is a 
PI-algebra. 

Summerize the results in [Okn l ] , we obta in some properties of semigroups satis-
fy ing permutat iona l property. The proofs can be found in [Okn l , Chapter 19 . 

T h e o r e m 3 .7 .4 [Okn l ] Denote the permutational property ^. 

(i). IfS is periodic with 平，then S is locally finite. 

( i i) . IfS is cancellative, then S has a two-s%ded group offractions G which is finite-
by-ahelian-by-finite iff S has 屯. 

( i i i ) . IfS is a finitely generated cancellative semigroup, then S has an abelian-by-
finite group offractions iff S has 平. 

( iv). (Domanov) Assume that S is a 0-simple semigroup with ^. Then S is com-
pletely 0-simple. 

The semigroup S is called a p e r m u t a t i v e s e m i g r o u p i f there exists an integer 
n > 2 and a nontr ival permutat ion cr, taken f rom the symmetric group Sn, such that 

XiX2 . . • Xn = X^^i)X^[^2) . . . ̂ a{n) 

for every xi, ‘ ‘ • , Xn G S. Clearly this property is stronger than above proper ty 
described. The above formula is a mult i l inear identity. Assume that al l algebras are 
over f ield K (or commutative r ing R). I t is then obvious to see that K[S] is a PI-
algebra. This is a special k ind of PI-algebras. we w i l l see that the Jacobson radical 
is determined by the congruence on the semigroup S. 

P r o p o s i t i o n 3 . 7 . 5 IfS is a permutative semigroup, then K[S]^{xy-yx)K[S]^ = 0. 

for some m > 1 and any x, y G S. Consequently, the commutator ideal of K[S] is 
nilpotent. 

T h e o r e m 3.7.6 [Oknl ] Let S he a permutative semigroup. Then J{K[S]) = I { K , S, p), 
where p is the congruence on S such that 

二 f { S / f i ) / ^ if char{K) = 0 

'P — 1 (57/i)/<ep if char{K) = p > 0 

81 



where fjL is the least commutative congruence on S and ^,。are the least separative 
and p-separative congruence on S / f j . respectively. Moreover, J{K[S]) is a sum of 
nilpotent ideals of K[S] and coincides with the set of nilpotent elements ofK[S 

Proof. The congruence determined by the commutator ideal of K[S] is a commu-
tat ive congruence on S, so /x [~[ [ [«5],[列.Since S|^ is commutat ive, J [ K [ S / f i ] ) 二 

I { K , 5W，0 i f char{K) = 0 (or J{K[S|iJi]) = I { K , S / f i , Q i f char{K) - p). Hence 
J { K [ S / f j ] ) is sum of n i lpotent ideals of K [ S / f j ] . This leads to /( /x) is n i lpotent and 
consequently, J{K[S]) = I{p). 口 

3.7.3 Radicals of PI-algebras 

Polycycl ic-by-f ini te groups are related to noetherian algebras. Moreover, the proper-
ties of PI-algebras also give more generalization on algebras of cancellative semigroups 
and its groups of fractions. We now point out when the group algebras would be PI-
algebras. 

L e m m a 3.7 .7 [Pasl, Th . 5.2.14] Suppose that K[G] satisfies a polynomial identity 
of degree n. Then [G : A (G) ] < n / 2 and |A(G) ' | < oo. 

T h e o r e m 3.7.8 [Oknl ] Let G he a group. Then the following statements hold: 

(i). K[G] is a PI-algehra iff the following conditions hold 

「a) G is abelian-by-finite, that is，G has an abelian normal subgroup A of finite 
index, if char{K) = 0. 

(lD) G is p-ahelian-hy-finite, that is, G has a normal subgroup A of finite index 
such that the commutator subgroup A' is a p-group, ifchar{K) 二 p > 0. 

(i i). IfK[G] is a PI-algehra, thenJ{K[G]) - B{K[G]) andJ{K[G]) = 0 ifchar{K)= 
0 or char{K) = p > 0 and G has no normal subgroup of order divisible by p. If 
char{K) = p > 0 and the maximal normal p-subgroup Op of G is finite, then 
J{K[G]) is a nilpotent ideal. 

( i i i ) . For all elements g, h G G, we have {g, h) G〜 j (K [G] ) ^g, h are in the same coset 
of the maximal normal p-subgroup Op of G, where p = char{K) = p > 0. 

C o r o l l a r y 3.7.9 [Oknl ] Let S be a cancellative semigroup and K afield with char(K) 
=p, Assume that K[S] is a PI-algebra. Then S has a group offractions G such that 
K[G] is a PI-algehra. Moreover, 
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(i). B{K[S]) = J{K[S]) = J{K[G]) n K[S], and J(A [̂6']) 二 0 i f p 二 0，or i f p > 0 
and G has no normal subgroup whose order is divisible hy p. 

(ii), For any s,t, {s,t) G〜j(i^[s]) iff s and t are in the same coset of some normal 
p-subgroup ofG. 

T h e o r e m 3.7 .10 [Okn l ] Suppose that K[S] satisfies a polynomial identity. Then 
J{K[S])=^B{K[S]). 

Proof. As the algebra K[S]/B{K[S]) is a subdirect product of pr ime algebras 為， 

i e I. From Theorem 3.7.2 (i i), Ai is pr ime PI-algebra and can be embedded into a ) 
ma t r i x algebra M j J D i ) and a semiprime PI-algebra has no nonzero n i l ideal. Consider | 
the fol lowing homomorphism: ! 

t 

(fc ： K[S] 4 K [ S ] / B { K [ S ] ) ^ ] j A i 
iGl 

where <fe(a) = ( ¢ ^ - / , a^ G A . Let M i be the kernel of the homomorphism 4>i : 
K[S] — Ai. Then we have the fol lowing diagram: 

0 ——�Mi ——> K[S] - ^ 為 ——> 0 

^Mi /^ CTi 

K[S/ 〜Mj 
/ 

where aiXui = 4>i and ¢3(0.) = (0i(a))ie/-

Let a G J{K[S]) and if a? = 0 for al l i G / , then 0e(a)^ = 0. This implies tha t 
a^ e B{[S]). Thus, J{K[S]) is n i l ideal and hence J{K[S]) = B{K[S]). 

Since S/ �Mi can be embedded into Ai ^ Mn{D) for some division rings, we 
may denote S by S!�MiQ Mn{D). I n chaper 1, we have already stated tha t Mn{D) 
is a completely semisimple semigroup w i t h l i / h - i a completely 0-simple semigroup. 
Now, i f S ^ h / I i - i , then by Coro. 3.4.10’ J{Ko[S]f is a sum of n i l ideals J { K o [ T i j ] ) , 
where Ko[Tij] are PI-algebras of the cancellative subsemigroup T^ j of S which in-
tersects the 7i:-classes of l i / h - i . This shows that J{Ko[S]) is n i l ideal and hence 
J{Ko[S])=B{Ko[S]). 

If s c Mn{D) but not in h / I i - i , then we refine S by Sj = Ij H S, where j = 
0 , 1 , . . . ,n . Now, for the least number k, wr i te S 二 Sk and Sk/Sk-i [ h | h - i ' For 
any a G J{K[S]), we have 

c|>K[s,_,]{a) e J{Ko[Sk/Sk^,]) C Ko[h/h-i] = M'{K[G]J,A-P) 
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Hence, 4>K[Sk-i]{^^) 二 於_̂:[<̂_1](̂0” = • for some r > 1. This means that 

a' G K[Sk-i] n J{K[S]) C J{K[Sk-i]). 

I f 5fc_i = Q, then a^ = 0. Otherwise, we continue the same process repeatedly, we 
eventually get J{K[S]) a ni l ideal. This completes the proof. 口 

> ! 

！ 
I 

I > 
N, 
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Chapter 4 

Finiteness Conditions on 
Semigroup Algebras 

：!• 

i 

4.1 Introduction 1 

I n this chapter, finiteness conditions on semigroup algebras w i l l be investigated. The 
ma in object of this chapter is to find some necessary and sufficent condit ions for K[S] 
which are noetherian, art inian, semisimple and also the other related topics. We also 
consider the graded rings by groups, semigroups, groupiods, and apply these cases to 
semigroup algebras over any field. 

j 

We first recall some basic properties of r ing theory and graded r ing theory. The j 
references of graded r ing theory can be obtained in [JW2, Kar , NV , Wau]. 

< 
！ 

4.1.1 Preliminaries 

Cal l a class JC of rings closed under r ight ideals (left ideals, homomorphic images) i f 
for every r ing R G JC, the class JC contains al l r ight ideals (left ideals; homomorphic 
images) of R. Say that JC is closed under (finite) sums of one-sided ideals i f JC contains 
every r ing which is a (finite) sum of its r ight ideals or a (finite) sum of its left ideals 
belonging to JC. A class K, is called closed under ideal extensions i f JC contains every 
ring R such that R/I G JC for an ideal I of R. 

L e m m a 4 .1 .1 The classes ofsemilocal, semiprimary, rzght perfect, left perfect, nilpo-
tent^ right T-nilpotent, left T-nilpotent rings are closed under ideal extensions, right 
and left ideals, homomorphic images and finite sums of one-sided ideals. 
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I t is noted tha t the class of r ight ar t in ian or noetherian rings are not closed under 
f in i te sums of left ideals. For example, the semigroup algebra Q[B] over the two-
element r ight zero band B = {a , b} is neither r ight ar t in ian nor r ight noetherian, 
a l thought i t is the sum of two left ideals Qa and Qb which are isomorphic to Q. 

4.1.2 Semilattice Graded Rings 

Let r be a semilatt ice and R a r ing graded by r . 

L e m m a 4.1 .2 [JW2, Lemma 1.1] Let F he a semilattice. Suppose that 

I 
(i). r satisfies the d.c.c.; | 

i 
/ 

( i i) . r satisfies the a.c.c.; 

( i i i ) . r does not contain an infinite subset of incomparable elements. 

Then F is finite. 

T h e o r e m 4.1.3 [Wau, JW2] (1986) Let R be a ring graded by a semilattice T such 
that J{Ra) + Ra for all a G r . Then the following statements hold: 

(i). R is semilocal iffY is finite and each Ra is semilocal for all a e F. 

( i i). IfRa has unity e^ then R is semiperfect iffT is fimte and Ra is semiperfect for 
all a G r . 

( i i i ) . R is left perfect nng iffT is finite and R^ zs left perfect for all a e T. ‘ 

(iv). R is semvpnmary nng iffT is fimte and Ra is semiprimary for all a G F . 

Proof, (i) I f R = Eae r ^a and R is semilocal, then R/J[R) is art inian. Let 
R^ 二 Y^a>pRp be an ideal of R. From the proof of Theorem 2.4.1，71^ ： R& ~^ Ra 
is a project ion homomorphism. Suppose that T has inf inite chain a i > a2 > as > 
. . . > an > . . . and R/J{R) is art inian. Then î cTfc + ^{R) = ^a^r+i + J ( R ) for some 
k. This implies that J{Rak) 二 Rcxk, which contradicts the assumption. Therefore, r 
satisfies d.c.c. I f R/J{R) is noetherian, then T has a.c.c. Let { A , /¾,. • • , A , • . . } be 
an inf ini te subset of F of incomparable elements. Then for some m > n, we have 

n m 

E % = E&. 
i=l i=l 
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I f r G Rf3^, then there exists an element x G E?=i ^ such tha t r — x G J(R), 
As supp{x) C Tpi U r f t . . . Tf3n for all s G Rp— {r — x)s 二 rs — x5 G J{R). Let 
a G supp{xs) and a = 7/¾^, where 7 < /¾ for any i = 1,. •. , n. Then a < Pm-
I f a = Prn and f5m < 7 < ft, then ft is comparable w i t h /¾^. Th is leads to a 
contradict ion. Hence a < /¾^. Therefore, rs — xs e J{R) f i R^^ = J{Rp^) and 
rs = 7TpJrs — xs) e 7 r " J J ( i ^ ) ) C J ( i ^ J . So rRp^ C J{R^J whence r G J{RpJ. 
as the case holds for any r G Rp^, which contradicts the hypothesis J{Rf3) + Rp-
Thus, r contains no inf ini te subset of incomparable elements. By Lemma 4.1.2, F is 
f inite. 

Conversely, i f Ra is semilocal for al l a G r and | r | = n, then we can show tha t the 
theorem hold by induct ion on | r | . First , let |F| = 2, say T = { a , /3} w i t h a > f5. Then 
Rp is an ideal of R and R|J{R(5) = Ra ① { R p / J { R p ) ) - I n part icular, we may assume 
tha t J(Rf3) = 0. As Rp is semisimple ar t in ian and so there is an ident i ty e^ G Rp. 
From Theorem 2.4.2, J{R) 二 { r - epr\r G J{Ra)}- Using 7Ta{J{R)) = J{Ra) and 
tha t Ra is semilocal, i t follows that R/J{R) is art inian. 

Now, by induct ion hypothesis, we assume that |F| 二 n + 1. Select a max ima l 
element in r , say a. Then R = R^ 0 R'. By hypothesis, R!/J{R') is ar t in ian and B! 
is an ideal of R, hence J[R) n R' = J{B!). Moreover, Ra/J{Ra) is also art in ian. We 
can reduce this case to 广={a, /3}, where Rp 二 R'. By using the above arguments, 
we can prove tha t R is semilocal. 

(i i) I n case of R is semiperfect, then R is semilocal. Hence R^ is semilocal and 
r is f inite. I t suffices to show that J{Ra) l i f ts the idempotents i f f J{R) l i f ts the 
idempotents in R. Since r is finite, there exists a which is max imal and let F ' = 
r \ {a}. As Rr' is an ideal, R/Rr = Ra- I f R is semiperfect, then R^ is clearly 
semiperfect. I t remains to show that R r ' is semiperfect. 

As by (i), we know that Rr is semilocal. Let e G Rr, such that ( e - e ^ ) G J(Rr)-
Then (e — e^) G J(R) and by the semiperfectness of R, we can find an idempotent 
f G R such that f + J{R) 二 e + J{R). (since the idempotent is l i f ted by J{R) and 
( / - e) G J{R)). Wr i te f = fa + /,，f' e Rr'. Then / , = f l f — e = U + {f — e) G 
J{R) and so fa G J{Ra)- Therefore, fa 二 0 and f G Rr-

Conversely, suppose that T' is f inite and Ra is semiperfect for al l a G F. By 
using similar method in (i), we can reduce the theorem to the case |P| = 2. I n this 
cases, Ra and Rp are bo th semiperfect w i t h uni ty e ^ ep repectively and a > p. Let 
X = Xa + 0Cf3 such that {x 一 x^) G J{R). Then x« — xl G J{Ra) and so y^ — Xa G 
J{Ra,) for some y^ 二 vl ^ Ra, by the semiperfectness of Ra. On the other hand, 
{eax) - {eaxf 二 e«(T — x^) G J{R) H Rp 二 J[Rp). Since Rp is semiperfect, there 
exists an element yp — yj e Rp w i t h yp — epx G J{Rp). Put y 二 y& + yp. I t is then 
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easy to check tha t y = y^ and y — x G J{R). 

The proofs of ( i i i ) and (iv) are similar to (i) and (i i) and hence are omi t ted, (cf. 
;Wau, Prop. 1.11, Prop. 1.13]). 口 

4.1.3 Group Graded Rings 

The Jacobson radical of the group graded r ing has been discussed in Section 2.2. 
We review here some of the finiteness condit ion of group graded rings. The ma in 
references are [Kar, Kel5, NV] , etc. 

Let G be any group and R a G-graded ring. I f M is a graded left i^-module | 
such tha t M ^R_gr M, then f rom Theorem 1.4.2，we know tha t R_grA4 and R,A4 are | 
categorical equivalent. ‘ 

L e m m a 4 .1 .4 [NV, Lemma IL3.2] Let R be a ring graded by a group G (not neces- I 
sarily strongly graded). IfM GR_gr M is a left gr-noetherian (gr-artinian) then M^ i 
is left noetherian (artinian) in R^M, for all a G G. > 

C o r o l l a r y 4.1.5 [NV, Coro. II.3.3] Let R he a ring graded by a finite group G. If 
M G R - g r M is left gr-noetherian (artiman), then M is left noetherian (artiman) in , 
RM. 

T h e o r e m 4.1.6 [NV, Th. II.3.5] Let R be a Z-graded rmg and M G R_grA^. Then 
M is left gr-noetherian iff M zs a left noetherian R-module. 

We have some theorems for some classes of inf inite groups, for instance, we have 

the fol lowing theorem: 

T h e o r e m 4.1 .7 [NV, Th. II.3.7] Let R he a strongly G-graded ring, where G is a 
polycyclic-by-finite group. IfRe is left noetherian ring then R is left noetherian ring. 

We can also consider the homological properties of group graded rings. Suppose 
that G is finite and R is a G-graded r ing w i t h unity. For the smash product R#Q\ 
we have fol lowing results f rom [JJ . 

P r o p o s i t i o n 4 . 1 . 8 [ J J , Prop. 2.1] Let M be a right R#G*_module and N a right 
R-module. Then there is a natural isomorphism between 

~: HomniM, N) — HorriR.G*[M,N^rdA#G*)) 

f H / 
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^here f{m) = EgeofMPg^Pg-

T h e o r e m 4 .1 .9 Suppose that the ring R is a G-graded nng. Let V be a right R#G*-
module. Then the following statements hold: 

(i). V is projective iff V^ is projective R-module. 

( i i ) . V is injective iff Vn is injective R-module. 

( i i i ) . V is flat iff V^ is flat R-module. 

I 

4.1.4 Groupoid Graded Rings 

Groupo id graded rings have been recently generalized by Kelarev in [Kel7] (1995) . 
A graded r ing R is said to have a f inite support i f only a f ini te number of the homoge- , 
neous components of R are nonzero. I f R is graded by any set S and for al l 5, t G S, | 

then there exists u G S such that RsRt Q Ru, in fact, this multiplication makes R a 

groupoid graded ring. I n this groupoid graded rings, R is graded by finite groupoid 
if f R is graded r ing w i t h f inite support. Hence, i f we have results on f in i te groupoid 
graded r ing, then we can transfer these results to group or semigroup graded rings 
w i t h finite supports. 

T h e o r e m 4.1 .10 [Kel7] Let JC be a class of rings containing all rings with zero 
multipUcaUon (%.e. R^ = Oj. Suppose JC is closed under homomorphic images, right 
and left ideals, ring extensions and also closed under finite sums of one sided ideals. 
Then the followings are equivalent: 

(i). For each finite groupoid S and the S-graded nng, we have R 二 E s e 5 Rs ^ ^ ^ff 
Re e K for every e e E[S). 

(ii). For each finite semigroup S and the S-graded ring R, R = Eses- ^s ^ ^ ^ff 
every e G E{S). 

( i i i ) . For every finite group with identity e, the G-graded ring R = J2ses ^s ^s m JC 
iffReeJC. 

Proof. The implications of (i) to (ii) and (ii) to (i i i) are tr ival. The key step is prove 

(i i i ) implies (i). 
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Let S be any f in i te groupoid. Let R 二 Y^s“ Rs be a 5-graded r ing. Suppose 
( i i i ) holds bu t (i) does not hold, then define a class 只 by the collection of al l counter 
examples of (i). Then R must be the fol lowing collection: 

{R G JC : R is 5-graded r ing but 3e G E{S) Re^K：} or 

{R^JC : Re e JC for al l e G E{S)} 

Let I be a homogeneous two-sided ideal of R. Then, we can see tha t R G R i f f 
either I or R/I G ^ . We now proceed to find a homogeneous two-sided ideal I wh ich 
gives a contradict ion. 

S t e p 1: As S is f inite, we can assume R is S'-graded r ing and choose R G 只 w i t h min i -
ma l |5^|. Take an addit ive subgroup A of Rs for some s such tha t supp{AR) + S. 

S t e p 2: I f AR = 0，then take I = R^A. Thus, P = 0, and so I G K. and h G JC for 

every t G S, 

S t e p 3: I f AR 二 P + 0，then by the min imal i ty of \S\, we know that P satisfies (i). 
The fol lowing cases then arises: 

Case I : I f R e JC but R G 只，then P is a r ight ideal of R, and so P G /C. 
Thus, for al l e G E{S), Pe e K. 

Case I I : I f R^K but al l e G E{S), then Re G JC since Pe is r ight ideal of Re. 
This implies that Pe G /C and by (i) P 0 只，P G /C. 

I n the above two cases, P is a r ight ideals satisfying (i), hence, P G JC i f f Pe G JC 
for all e G E{S). 

However since supp{RxP) ^ S for every x G S, we know that R^A is contained 
in R:,s- This means that {RxA)R and {{R^A)R)e are in A：, for every e G E(S). 
Since JC is closed under f inite sum of ideals, so I 二 R^P = P + Ezes Rx is a 
homogeneous two side-ideal of R. Hence A C I and for al l e G E[S), Ie G JC. 
These lead to I G K and I is therefore not a counter example of (i). Hence R/I 
is the other counter example of (i). 

S tep 4: I f s G S and sS + S, then supp{RsR) C sS + S. Put A = Rs above. Then 
AR can be graded by the groupoid T 二 S \ { s } , where the s th homogeneous 
component is zero and A R is in M which contradicts to the min imal i ty of \S . 
Therefore supp{RsR) 二 S and sS = S. Similarity, we have Ss 二 S. Thus, S is 
a left and r ight simple groupoid. 
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s t e p 5: I f {st)x + s{tx) then RsRtRx Q R{st)x 门 Rs{tx)' This implies tha t RsRtRx = 
0. As a result, we have supp{RsRtR) + S, Since S is finite, we obta in 
supp{RsR) ^ S, contradict ing w t h the min ima l i t y of |6'|. Therefore, S is a 
semigroup and S is left and r ight simple so that S is group. 

S t e p 6: By assumption of ( i i i ) , R is a group graded ring. Moreover, R e JC i f f 
Re G /C. Th is contradicts tha t R is a counter example of (i). Therefore, (i) is 
proved. 口 

As al l semilocal rings have properties like /C, we have the fol lowing corollary. 

C o r o l l a r y 4 . 1 . 1 1 [Kel7] LetJC be the class of all semilocal (right perfect, left perfect, 
semiprimary, mlpotent, locally mlpotent, T-mlpotent, pnme radical, quasiregular, PI) 
rings, S is a semigroup and R = Ese<s Rs cm S-graded ring with fimte support Then 
R G JC iff Re e K for every e G E{S). 

App ly ing the above results to semigroup algebras, we get the fol lowing corollary. 

C o r o l l a r y 4 .1 .12 Let K be field with char{K) 二 p and S a Rees matrix semigroup 
M^{G^,I,A;P), where I and A are fimte. Then Ko[S] is semilocal (or, in JC) iff 
K[G] is semilocal (or, in K). 

4.1.5 Semigroup Graded PI-Algebras 

A class A of algebras is called 5-closed if A contains R 二 ®sesRs where Rs G A for 
al l 5 G S. From the above equality, we say that a class JC of semilocal rings 5-closed 
i f S is a f ini te semilattice. Recently, Kelarev described the conditions tha t make the 
class of PI-algebras 5-closed. 

T h e o r e m 4.1.13 [Kel3] The class PI-algebras is S-closed iff S has a finite ideal 

chain 

0 二 5；) C 5 i C . . • C Sn 二 S 

such that each Si+i/Si is fimte or mlpotent (IfS has zero, let So = { 0 } J 

To prove this theorem, we need some technical lemmas on PI-algebra. From [Row], 
it is known that the class of PI-algebras is closed under one-sided ideal. Moreover, 

i f R is a PI-algebra, then the mat r ix r ing Mt{R) is also PI-algebra for any integer 
t. Then by applying the smash product of group graded rings and by using dual i ty 
theorem, we obtain the following lemma. 
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L e m m a 4 .1 .14 [Kel3] The class of PI-algehras is closed under finite groups. 

Proof. By Theorem 4.1.10, Re is a P I algebra i f f R is. I f Re is P I algebras, then we 
know tha t R is embeddable in R#G* and so by [CM1], Ap^h = Pg、R#G”Ph = Igh-咖, 

also R#G* = A = E Ag,h, and each Ag^^ = ^ , e = Re. Thus, A is a PI-algeba and R 
is P I algebra. 0 

L e m m a 4 .1 .15 [Kel3, Lemma 7,8] Ifthe class of PI-algehras is S-closed, then S is 
a periodic semigroup and the number of idempotents in S is finite. 

Moreover, if S contains a subgroup G, then G is fimte. If S is ml, then S is 
nilpotent. 

We now sketch the proof of Theorem 4.1.13. 
The necessary par t follows f rom Lemma 4.1.15. Now we prove the sufficiency. Assume 
tha t S has a chain w i t h the properties above, R = Ese5 Rs. Let A^ 二 T^seSi Rs, Then, 
the quotient algebra T = A / A + i is a Q^graded, where Qi = & / & — i . For q G Qi-
Tq is PL Then T is a PI-algebra since Qi is a f inite semigroup or is n i lpotent . Thus, 
every factor T is a PI-algebra. Thus, we can show that R is a PI-algabra by induct ion 
hypothesis. 口 

4.1.6 Application to Semigroup Algebras 

We now apply the results in section 4.1.2 and 4.1.4 to semigroup algebras. 

T h e o r e m 4.1.16 If S is fimte semigroup (group) and K field with char{K) = p, 
then K[S] is member of class JC, the class is same as Coro. 4.l.ll. 

T h e o r e m 4.1 .17 IfS is a semilattice (band) ofgroups, S = UaerGa, then K[S] G JC 
iff K[Ga] e JC for any a G T, where T is finite semilattice (band). 

Proof. R 二 i ^ [5 ] is graded by finite semilattice or band. By Corol lary 4.1.12, 
Re e JC i ff R G K. Hence, K[G^] G K： for all a G T. • 

4.2 Semiprime and Goldie Rings 

I n this section, we are interested in the following question: When w i l l a semigroup 
algebra be semiprime r ight Goldie or r ight noetherian? However, for non-cancellative 
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semigroups, the problems seem to be rather complicated. I n [Jes2], a solut ion is given 
for semigroup r ing R[S] which is an inverse semigroup. Final ly, we examine the case 
when S being n i lpotent . There are some nice results for noetherian algebras. 

Now, let S be a submonoid of polycycl ic-by-f ini te group. Note tha t i f G is 
polycycl ic-by-f in i te group, then K[G] is noetherian r ing and satisfies the a.c.c condi-
t i on on r ight ( left) ideals. Using the results in section 3.3, we have fol lowing result. 

T h e o r e m 4 . 2 . 1 Let S he a submonoid of a polycycUc-by-fimte group and W a poly-
(infinite cyclic) normal subgroup of finite index in the group H generated by S. 

Moreover, the following conditions are equivalent: 

(i). S has a group of right fractions. 

( i i) . K[S] is a right Goldie ring. 

( i i i ) . K[S n VK] is a semiprime right Goldie ring. 

Furthermoer, J{K[S]) 二 J(i^[^]) n K[S], and K[S] is an Ore domain if H is a 

torsion-free group. 

Consider the inverse semigroup, by using the characterization on inverse semi-
group algebras (see section 3.5), we have R[S] = ^l=iMn,,{R[Gk]), and hence we 
obta in the fol lowing theorem in [Jes2], (1988) . 

T h e o r e m 4.2.2 Let R be a nng with umty and S an inverse semigroup. Then R[S 
is semrprime right Goldie iffE{S) is fimte and for every maximal subgroup G ofS, 
the group ring R[G] is semiprime right Goldie. IfR[S] is prime right Goldie, then S 
is a group. 

For the semigroup algebra K[S] w i t h ascending chain condit ion on r ight annihi-
lators，the fol lowing technical lemmas are useful for the investigation of the Goldie 
and noetherian semigroup algebras. 

L e m m a 4.2.3 [Okn2, Lemma 1] Assume K[S] has a.c.c. on its right anmhilator 
ideals. Then for every subsemigroup T of S, there exists u G T such that uT is a left 
cancellative semigroup. 

L e m m a 4.2 .4 [Okn2, Lemma 3] Let S he a semigroup with no free noncommutative 
subsemigroups. Assume further that K[S] has a.c.c. on its right annihilator ideals 

93 



and J is a mlpotent ideal of K[S]. Let U' C S' be a cancellative subsemigroup of 
the image S' ofS under the natural homomorphism K[S] — K [ 5 ] / J . Then there 
exists an element y in the inverse image U ofU' in S such that yUy is a cancellative 
semigroup. 

L e m m a 4.2 .5 Let S be a nilpotent cancellative semigroup with quotient group G, 
and P he prime ideal of K[S]. If P 门 S = 0； then 

(i). PK[G] 二 K [ G ] P is a two-sided ideal ofK[G 

( i i) . Q 二 P K [ G ] is a prime ideal ofK[G], Q H K[S] = P, and K[G]/Q is a local-
ization with respect to an Ore subset o f K [ S ] / P . 

( i i i ) . Ifall pnme ideals Q ofK[G] satisfying Q f l G = 0, and K[G]/Q is Goldie ring. 
Then P 二 Q n K[S] is also prime and satisfying P n S = 0. 

Proof. F i rs t of all, since S is a ni lpotent cancellative semigroup, we have shown 
tha t S has a group of fractions G which is a ni lpotent group (see section 3.3.4.). 

Now, take a G P K [ G ] H K[S]. Then there exists s G S such tha t as G P. For 
any t, Wi,.. • , Wn G S and n is a ni lpotency class of S, we obta in 

ayn{s,t) 二 aXn{s,t) G P. 

by using the notat ion in section 3.3.4. Hence a ^ / n - i ^ n ^ n - i ^ P for al l Wn G S, 

ayn-i{s,t)K[S]xn-i{s,t) C P. 

Since PnS = 0, we have x^(s, t)^P. By the primeness of P, we also have ayn{s, t) G 
p . Repeating the process in this way, we can show that ayn-i{s, t) G P and so on. 
Eventually, we obtain that ayi{s,t) 二 atwiS G P for al l t,Wi e S. This implies tha t 
a G P. 

Now we want to show that K[G]P = PK[G]. Let p G P and t G S. Since supp{p) 
is finite, there exists u G S such that 

upt-i e K [ 5 ] n PK[G] = P C K[G]P. 

Hence, pt'^ 二 vriy/pt_i G K[G]P and so PK[G] is generated by pt~^ for some arbi-
t ra ry p,t. This proves the inclusion containment. By symmetry, we have K[G]P = 
PK[G]. 

Now, let Q be a maximal ideal of K[G] w i t h respect to the condit ion QnK[S] = P. 
Then, by not ing that Q 二 (Q n K[S])K[G] = PK[G] and Q is prime due to the fact 
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t ha t P is pr ime, we know tha t K[G]/Q is a local izat ion of K[S]/P w i t h respect to 
the image of S in K[S]|P. Tha t is, {K[S]|P)S-^ = K[G]|PK[Gi where S is an 
image of S i n K [ S ] | P , 

( i i i ) Since SS'^ - G and by Lemma 3.3.6(iv), we know that Q f l K[S] is a pr ime 
ideal. Since Q n G = 0, P n S C Q n G = 0. Hence, P n S 二 0. Th is completes the 
proof. I n part icular , i f G is f in i tely generated ni lpotent , then K[G] is noether ian and 
so i t satisfies the condi t ion that K[G]/P is Goldie. • 

P r o p o s i t i o n 4 .2 .6 Let S he a nilpotent semigroup, and P a prime ideal ofK[S] such 
that S\{SnP) is a subsemigroup ofS. Then S/ 〜p is a 0-cancellaUve semigroup and 
there exists a prime ideal Q ofK[G] such that K[G]/Q is isomorphic to a localization 
o f K [ S ] / P , where G is quotient group of{S/ ~p) \ { 0 } , and 6 is zero ofS/ ~p. 

Proof. Let T = {S/ 〜p) \ {6>} be a semigroup. We first prove that T is r ight 
cancellative. Assume that a, b, x G T such that ax = bx. Then for any W1,W2,. • • Wn G 
T , Xn{a, b) = yn{a, b). where n is the nilpotency class of S. Replacing Wi by xVi G T 
for al l i , then we obtain 

X n - l ( a , b)xVnyn-l{a^ b) = yn-l{a, b)xVnXn-l{a, b), 

and Xn-i{a, h)x 二 ^n - i ( a , h)x + 6 by ax = hx. Hence, 

(xn- i (a , h)x)K[S]{yn-i{a, b) — Xn-i(a, b)) 二 0 

The primeness of K[S]/P then implies that yn-i{a, b) 二 a:n-i(o^ b). 

Processing in the same way, we obtain that a = Xo 二 yQ = b. Thus, T is r ight 
cancellative. By symmetry, S| 〜？ is an 0-cancellative semigroup. 

Consider the fol lowing natural homomorphisms: 

K[S] — K\Sl ~p] — Ko[S/ 〜p] = K[T]么 K[S]/P 

such that S/ 〜p can be embedded in K [ S ] / P . Let P' = kercf). Then we have 

K[T]/P' = K[S]/P and P' H T = 0 

Since G = T T — i，K [ G ] | Q is a localization of K[S]/P w i t h resepect to the Ore set 
induced by the prime ideal P. The proof is completed. • 

Let T be a subsemigroup of the semigroup S. Denote the image of T in K [ S ] / J 
by T' and let K{T} be the image of K[T] in K [ S ] / J . Then we can form the fol lowing 
definit ion. 
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D e f i n i t i o n 4 .2 .7 A semigroup S is called uniform i f i t can be embedded into a com-
pletely 0-simple semigroup T such that S intersects non-tnvally with all Ji-classes of 
T. 

Note tha t every subsemigroup of a group is uni form. I n fact, un i fo rm semigroups 

occur i n the fol lowing cases. 

L e m m a 4 .2 .8 [Okn2, Lemma 8] Let U be a completely semisimple semigroup with 
fimtely many 3-classes. Assume that S is a suhsem%group ofU that intersects only k 
nonzero Jl-classes ofU. Then there exists a chain of ideals ofS, S 二 Sn 5 Sn-i ^ 

•.. D So, n < 2k, such that Sn and every Rees factor Si/Si-i is a umform semigroup 
or a power mlpotent semigroup of mlpotent index less than or equal to k + 1. 

L e m m a 4.2 .9 [Okn2, Lemma 9] Assume that S is a semigroup with a uniform ideal 
T that has no free noncommutative subsemigroups. Let J be a completely 0-simple 
closure of T. Then S U J has a natural semigroup structure extending that of S. 
Moreover, if U D S is a semigroup with a completely 0-simple ideal Z containing 
T, then J can he chosen so that J 2 ^ and every 从-dass of J is contained in an 
Ji-class of Z. 

T h e o r e m 4.2 .10 [J01] (1994) Let S be a mlpotent semigroup and P a prime ideal 
ofK[S] such that K[S]/P is right Goldie with the classical ring of quotients Mn{D), 
D is a division ring. Then the semigroup S/ 〜p has a chain of ideals. 

( E q : 4 - 2 - l ) (57 〜P) 二 Ir 2 Ir-1 2 .. • 2 h = I 2 Io = {^} 

where 6 is zero element %j S has a zero element, otherwise /。二 0. Moreover, the 
ideal chain (Eq4-2-l) hasfollowmg properties, 

(i). Each Rees factor h / I i - i , for 1 < i < r, is either a power mlpotent semigroup 
or a uniform semigroup. 

(ii). / is uniform in a completely 0-simple inverse subsemigroup 1 of Mn{D) with 
fimtely many non-zero idempotents, i.e. \E{I)\ = q. Let S = {S/ 〜p) U I. We 
have S a mlpotent subsemigroup ofMn{D). 

(iii). Let K { i } he the subalgebra ofMn{D) generated by 1. Then K { I } C K[S]/P C 

K { i } . Furthermore, the matrix ring over D Mn{D) is the common classical 
ring of quotients of these three classes algebras, and K { I } is a localization of 
K { I } with respect to an Ore set. 

96 



( iv) . Denote the maximal subgroup off hy G . Then，there exists a prime ideal Q of 
K[G] such that K[G]/Q is a Goldie ring and 

M,{K[G]/Q) = K{i}. 

/N 
where q is the number of nonzero idempotents of I. 

Proof, (i) Let S 二 S| 〜户，which can be embedded into K[S]/P. By this way, we 
can ident i fy S as a subsemigroup of Mn{D). I n chapter 1, we have already known tha t 
Mn{D) is completely semisimple, so there are ideals T] = {X G M ^ ^ ) ： rk{X) < i} 
for i = 0 , . . • , n and T i / T U i is completely 0-simple semigroup. Let & 二 S n T], tha t 
is 5^ contains al l matrices of S w i t h rank i. Refining 瓦 and by Lemma 4.2.8，it yields 
an ideal chain, namely, 

S = I r 2 I r - l ^ . • . ^ � . . h = I ^ Io 

w i t h each l i / U - i is either a un i form or a power ni lpotent semigroup. 

Consider the last nontr ival ideal I C S. I f I is power ni lpotent , then P = 6 
for some posit ive integer k and K{I} is also ni lpotent in the pr ime algebra K[S]/P. 
This leads to K{I} = 6», which contradicts I is nontrival. Therefore I is the smallest 
un i fo rm ideal. Let 1 be the smallest completely 0-simple subsemigroup of M n { D ) 
containing I. Since the maximal subgroup G of / is generated by a subsemigroup^ of 
/，G is a ni lpotent group. Moreover, i f I is bo th uniform and ni lpotent in I then I is 
an inverse semigroup. Hence, / is ni lpotent semigroup. 

八 A 
Now, we define S = S U I C MJfi). Then, by Lemma 4.2.9, S is a natura l 

extension of S and / . We note here that S\i = S\I and hence S|1 = S/I is n i lpotent. 
八 八 

Choose a positive integer m which is larger than the ni lpotency of bo th S and I, Since 
S/I 二 5 / / , i t suffices to show that X m + i { x , y , w i , . . . ,iUm) = y m + i ( x , y , w i , •. • ,Wm) 
for x,y e /, Wi,... , Wm G S. 

Assume that bo th elements x^ and ym are nonzero. Then, since I is un i fo rm 
in i, for each Wi G / , we can find x',y',w[ G I such that WiJiw[, xJix' and y3iy'. 
Since 1 itself is ni lpotent, Xm{x',y') 二 ym[x',y') + 0. Then {x',y') e ^K implies 
tha t {x,y) G ^K. As 1 is an inverse semigroup, there exists idempotents g,h w i t h 
xg = X, yg = y and hx = x, hy = y. Hence, xwiy = xgwihy. So by the ni lpotency of 
/S 
/ , we have 

Xm+i{x,y) 二 ym+i{x,y). 

This proves that S is ni lpotent. 
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八 A(j) 
Now, I = M^(G, q, q\ A ) , where A is a q x q ident i ty ma t r i x and hj 二 I 门 /⑷ 

/S. 

is a nont r iva l cancellative subsemigroup of some max imal subgroup of 1. Then, we 
have the fol lowing chain: 

s 
u 
Ir 

u 

u 
|hi … V | 

I= ; •.. : C M'{G,q,q]A) 
Vql . . . W 

By not ing tha t f C Mn{D), \E{i)\ = q < 00 and the fact E{I) = { e i , . •. , e J 
is the set of non-zero idempotents of I , we have Ko[I] = Mq{K[G]) and satisfies the 
ident i ty e = e： + e2 H h e 『 W e hence know that K{I} is a homomorphic image 
Ko[I], tha t is K { I } = K o [ i ] / A = Mq{K[G]/Q) for some ideal Q of K[G] and A is 
ideal of Ko[i]. Since K{I} is prime, Q is a pr ime ideal of K[G]. Since I is ideal of S /^ 
and e G K { I } , we obtain 

K{I} C K[S]|P = K{S} C K{S} = K{I} C Mn{D). 

Since K{S} has a classical r ing of quotients Mn{D), K { I } and K { I } have the same 
classical r ing of quotients MJJD). 

As Ko[I] = Mq{K[G]), we may assume that E{I) = {e1,e2,. •. , e J , where e,'s 
are the diagonal orthogonal matrices. We now show that Ko[I] is local ization of Ko[I 
w i t h respect to the Ore set 

' / c i 0 \ 、 

C = . . . : 0 + Cj G I j j for all j > . 

Ao Cq) . 
Ident i fy ing / w i t h the subsemigroup of Mq{K[G]). Then, obviously, every non-zero 
element of / is a matrix of the form { g ) i j , that is, the matrix with g G G at the 

1 八 

{iJ)th posit ion and zero elsewhere. Hence, I j j I ' j = G. Let {h)i^ G I. Then we have 
h = xy_i for some x, y 6 hj. Since y'^ G I「/ Q G = I j j I J j i , there exists s G I j ] such 
that y_^s e I j j and so 

{h)i,j{s)jj = {hs)ij = { x ) i j { y - h ) j ^ j e I. 
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A 1 
Let c G C as defined above. Then, by {h)ijC = {h)i,j{s)jj, we have I C IC-. 
Consequently, 1 = IC-\ This yields that Ko[i] 二 J^ [ / ]C^_ i . Hence, K{I} is a 
local izat ion of K { I } . 口 

Now, we apply the above theorem to the radicals of the algebras over n i lpotent 
semigroup, we hence obta in the extended results in section 3.3.4. 

L e m m a 4 . 2 . 1 1 [J01] (1994) Let I he a uniform subsemigroup in a completely 0-
simple inverse subsemigroup / with finitely many non-zero idempotents, say q, and 
over a mlpotent group G. Let Gp he the p-subgroup ofG ifchar{K) = p. Then 

J(K in) = B(K lI]) = l^^^ ^ch_) = 0,, 
(oUJ ^ OL]J yMq^u{K[Gp])K[G])nKo[I] zfchar{K)=p>0 

T h e o r e m 4.2 .12 [J01] (1994) Let S he a mlpotent semigroup such that for every 
prime ideal P of K[S] either K[S]/P is a nght Goldie algebra or S \ {S n P) is a 
subsemigroup ofS. Then 

J{K[S]) = B{K[S]). 

Proof. I f S \ {S n P) is a semigroup, then the results follow f rom Prop. 4.2.6 and 
Theorem 3.3.32. 

Let K[S]/P be r ight Goldie. Then i t suffices to show that for any pr ime ideal P 

of S, 
J{K[S| - p ] ) = B{K[S| - p ] ) . 

B y Theorem 4.2.10’ The semigroup S is decomposed by S/ 〜p which has f in i te ly 
many ideal factors T 二 h / I i - i . This factors are uni form or power ni lpotent. By 
Lemma 4.2.11, we have J{Ko[T]) = 5{Ko[T]). Since T is un i form and is n i lpotent , 
we have J{Ko[T]) == >B(Ko[T]). Combining the above results and by induct ion on its 
chain decomposit ion of S/ ~尸，we have J{Ko[S]) = B{Ko[S]). • 

4.3 Noetherian Semigroup Algebras 

It is known that if K[G] is right noetherian for any group G iff it is left noetherian 
by the involut ion g " g-\ I f S is a commutative semigroup, then the ascending 
chain condit ion on the congruences on S implies that S is f ini tely generated (cf. 
Gil , Th . 5.10]). I n other words, all the noetherian commutative semigroup algebras 

are f ini tely generated. In this section, we study the noetherian noncommutat ive 
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semigroup algebras and find the necessary condit ions for the semigorup algebras to 
be left (or r ight ) noetherian. Recall tha t there are a.c.c. on the r ight congruences on 
S i f K[S] is r ight noetherian. 

I n the case of cancellative noncommutat ive semigroups. I f S is monoid and has 
a group of one-sided fractions G. Then by section 3.3, K[S] is pr ime (semiprime) 
i f f K[G] is pr ime (semiprime). Moreover, for the categories of modules of K[S] and 
K[G], we have the fol lowing result: 

T h e o r e m 4 . 3 . 1 [Squ, Th . 2.3, Th . 2.4] Let S be a moniod having a group of 
fractions G and R any commutative ring with 1. Let K[s]M he the category of left 
R[S]-modules and K[G]M the category of left R[G]-modules, Then the functor 

F ： (—) !"> R[G] 0R[s](—) 

is exact Conversely, ifS generates a group G but G is not group offractions ofS, 
then R[G] 0只闲(一) is not exact. 

We can see that i f S has a group of fractions G, then K[G] is a f lat r ight K[S -
module. I f K[S] is r ight noetherian, then K[G] is r ight noetherian and f lat r ight 
K[S]-module. 

Since K[S] is a subalgebra of K[G] and K[G] is a flat r ight K [5 ] -modu le , we 
can induce the left X [5 ] -modu le to K[G]-modnle. For example, i f V is semisimple 
K [5 ] -modu le , then we can induce V (denote V^^) as a semisimple K"[G]-module. 

The fol lowing characterization theorem for K[S] to be r ight noetherian was due 

to Okninski. 

P r o p o s i t i o n 4 .3 .2 [Okn l ] Let G be a polycyclic-by-finite group, K any field and S 
is a submonoid ofG. Then K[S] is right noetherian i f f S satisfies a.c.c. on right 
ideals. Moreover, in this case, S is fimtely generated. 

Notice that even i f G is a f initely generated group and K[G] is noetherian, i t is 
still n o t sufficient to imply that K[S] is right noetherian, where S is subsemigroup 
of G w i t h SS~^ 二 G. We give here an example. 

E x a m p l e 4.3.3 Let G =、x,y、, free ahelian group and S = {l,xy,xy^,xy^,---). 
Then we can see that G = SS~^ and K[G] = K{x,y} is noetherian but S does not 
has the a.c.c. on ideals, Hence, K[S] is not noetherian. 

Now, we consider the case of noetherian algebras of general semigroups. 
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L e m m a 4 .3 .4 Assume that Ko[*S] is a nght noethenan nng and S is a completely 
0-simple. IfS = M^{G,I,k]P), then K[G] is also nght noethenan nng. Moreover, 
I is finite when Ko[6 ] is right noethenan and A is finite when Ko[S] is left noetherian. 

Proof. Assume tha t Ko[S] is r ight noetherian and S = M^(G, I , A; P) is completely 
0-simple. Then 

Ko[S] = M^{K[GlI,A;P) = X [ 5 ] . 

The reader is referred to Section 3.4 for the properties of the M u n n algebras. 

Let / i C /2 C . . . C 4 C . . . be a chain of r ight ideals of K[G]. We then have 
/1 [ h [ . . . and if Ko[S] is r ight noetherian, Ii = Ii+i for some i. Hence U = Ii+i. 
This shows tha t K[G] is also r ight noetherian. 

The second par t is obvious because for any subset J C / , 5( j ) = U e j S{i) is a 
r ight ideal of S. Since S satisfies a.c.c. on its r ight ideals, whence I is f inite. • 

Combin ing Lemma 4.2.3, Lemma 4.2.4 and [Okn l , Ch. 12], we then obta in the 

fol lowing theorem. 

T h e o r e m 4.3.5 Assume that K[S] is right noethenan. Then, 

(i). S has finitely many right ideals of the form eS, where e is an idempotent in S. 

( i i). Any 0-s%mple principal factor ofS is completely 0-siraple. 

( i i i ) . S has finitely many completely 0-simple principal factor. 

( iv). IfS is weakly periodic semigroup and S has finitely many 3-classes, then S is 
strongly 7r-peri0dic. 

(V). [Okn2] (1993) IfS has no free noncommutative subsemigroup, then every can-
callatwe suhsemigroup T of S has a finitely generated group G of two-sided 
fraction. 

(vi). [Okn2] (1993) The set of isomorphism classes of groups of fractions of the 
maximal cancellative subsemigroups of S is fimte, where S is image of S in 
K [ S ] / B { K [ S ] ) . 

Proof, (i) Consider the natural order defined on the set E{S), tha t is e > f i f f 
g j 二 fe 二 f . (Recall that E{S) may not be semilattice). Then S has no inf ini te 
chains of orthogonal idempotents for if otherwise, i t w i l l contradict the finiteness of 
the r ight Goldie dimension of K[S]. Glearly, if eiS 3 e2S, then e2e1 < ei. This 
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shows tha t S satisfies the descending chain condi t ion on r ight pr inc ipa l ideals in 
€,= {eS\e G E{S)}. 

Now, fix f G E{S) and consider the set: 

€f = {eS C fS\e G E{S) and eS is maximal in f S } . 

B y the a.c.c. on r ight ideals of K[S], we know that ¢ / is f inite. By the fact tha t 
there are no inf in i te descending chains of ideals eS, we know tha t € is f inite. 

( i i) Assume tha t the pr incipal factor St of S determined by an element t G S is 
0-simple. I t suffices to show that i f St 二 StS is 0-simple, then StS has p r im i t i ve 
idempotent . As S 二 S| ^s{K[s]) can be embedded into M^(L>) for some n > 1，so 
T 二 StS/ ^B{K[s]), which is 0-simple ideal of S. This means tha t T can also be 
embedded into some completely 0-simple factor h / I i - i of MJJD). (see Section 1.1). 

Let t be the image of t in S. By the 0-simplici ty of T , we have uitvi 二 t. for 
u i , v i e S. Then ui 二 以2以1”2. Hence, UnS^ C u^+iSK By the noetherian properties 
on r ight ideals, we have Um+i 二 UmZ. Then, we can find an idempotent UmVmZ. 
Moroever, the inverse image x e S satisfies x - x^ G B{K[S]). Thus, StS has a 
nonzero idempotent and by (i), we know that S has no inf ini te chains of idempotents. 
Th is implies that S't5' has a pr imi t ive element. 

( i i i ) This part is a direct consequence of assertions (i) and (i i) , and the proof is 

hence omit ted. 

( iv) Since every 0-simple pr incipal factor is completely 0-simple factor, Lemma 
1.1.5 and 1.1.6 yield that S is strongly 7r-regular. 

(v) The group of fractions of T exists because of the non-existence of free non-
commutat ive semigroups. Since S has a.c.c. on r ight congruences, G has a.c.c. on 
its subgroups and so G is f ini tely generated. 

(vi) First , we observe that S C Mn[D) for some division algebra D. Moreover, 
as K[S] is r ight noetherian, S intersects f initely many 3-classes. Let T be a max imal 
cancellative subsemigroup of S. Then, the group of fractions of T is contained in the 
^_class H' of Mn{D). The maximal subgroups of the pr incipal factor, say l i / U - i 
for al l i , are mutual ly isomorphic to each other. Clearly, the isomorphic classes of 
max imal subgroups are f inite since S intersects f initely many 3-classes of Mn{D). • 

By using the above theorem, we obtain the following corollaries. 

C o r o l l a r y 4.3.6 Let S = M^{G^, I, A; P) be a completely 0-simple semigroup. Then 
we have 
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(i). IfT is subsemigroup ofS and K[T] is right noetherian. Then T f1 3法)+ 0,6> 

for only finitely many suhsemigroups ofS^, i G I and m G A. 

( i i) . If Ko[S] is right noetherian, then I and A are finite index sets. 

( i i i ) . Let U he umform and can be embedded into S. Then i f K [ U ] is right noether%an, 
then S has finite rows and columns. 

( iv). Assume that J{K[G]) = 0 and Ko[S]/J{Ko[S]) is a fimtely generated K-algehra. 
Then Ko[S] is a finitely generated and hence S is finitely generated. 

L e m m a 4 .3 .7 Let S he a mimmal 0-simple ideal M and also assume S has a.c.c 
on its left principal ideals. If K[S] is right noetherian, then S is fimtely generated 
semigroup. 

Proof. Suppose K[S] is r ight noetherian but S is not finitely generated. Then S 
has a.cx. on its congruences. Thus, there exists a maximal congruence p on S w i t h 
respect to the property that S/p is not f ini tely generated. Let T = S/p. Then we 
have 

(a) Any nontr ival homomorphic image of T is f ini tely generated. 

(b) For any n i l ideal I of Ko[T]，the congruence 〜/ is a t r iva l congruence on S. Tha t 
is (s, t) G � / implies s == t on S. 

Hence, by replacing S by S, S may assume not f ini tely generated and there is no 
nontr iva l congruence p on S that S|p is not f ini tely generated. 

I f M is not ni lpotent, then M = M^{G,I,K]P) is a completely 0-simple semi-
group. Also, Ko[S] is r ight noetherian and if G is f inite, then M is f inite. Thus, 
S/M is f in i tely generated and hence S is f initely generated. This contradicts our 
assumption. On the other hand, if G is inf inite then K[G] is r ight noetherian since 
Ko[M] is r ight noetherian and so G is f initely generated. Consequently, S \ M is 
f in i tely generated. I t suffices to show that M is f initely generated. For this purpose, 
take u e M such that u 二 (^g,i, A), where i G / , A G A. By some construct ion (see 
.Oknl , Th . 12.6]), we can check that M is f initely generated. 

I n [Okn l l , there is an important theorem on the condit ion for r ight noetherian 
algebra K[S] which leads to S is f initely generated. The proof of this theorem is 
rather constructive and have to make use of the above lemmas. We only give a brief 
sketch of the proof. The reader is referred to [Okn l , Th. 12.6] for more details. 
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T h e o r e m 4.3 .8 [Okn l ] Assume that K[S] is right noetherian. Then S is a fimtely 
generated semigroup if either of the following holds: 

(i). S is a weakly periodic semigroup. 

( i i ) . S has a.c.c. on principal left ideals. 

( i i i ) . Every cancellative subsemigroup of any homomorphic image ofS has afinite-
hy-ahelian-hy-finite group offractions. 

Proof. (Sketch) We first assume that S is not finitely generated and so there is no 
nont r iva l congruence such that S|p is not f ini tely generated. Then S satisfies (a) and 
(b) i n Lemma 4.3.7. 

I f S is weakly periodic, then there exists a min imal ideal M which is either n i l 
or 0-simple. (See Theorem 1.1.5). I f M is ni l , then i t contradicts (6). Therefore 
M is 0-simple ideal and Ko[S] is r ight noetherian. Consequently, M is completely 
0-simple and M = M^(G, / , A; P) . The trivalness of G is due to the m in ima l i t y of 
M. Moreover, i f Ko[M] is r ight noetherian, then / , A are f inite and therefore | M | is 
f inite. By using the hypothesis on S, we have S/M is f in i tely generated and M is 
f ini te. Then S is finitely generated (see the proof of Lemma 4.3.7), 

I f (i i) is satisfied, then S has some min imia l nonzero ideals. By the hypothesis on 
S, we know that M is 0-simple. This is exactly the case of Lemma 4.3.7. Then S is 
f in i te ly generated. 

Final ly, we can only deal w i t h the case that S has no min imal ideals. Since 〜/̂ (；̂问） 

is t r ival , We may take S C M^[D) for some n and a division algebra D. Let T be an 
ideal of S containing al l the least nonzero rank matrices. Then T ^ I r / I r - i for some 
r . Let w G T. Then, S^wS^ C T and I r / I r - i is completely 0-simple semigroup. Now, 
select S^wS^ be the min imal ideals among the ideals S^xS^ for al l x + 6, determines 
the pr incipal factors containing idempotents. Let J be the nongenerators of S^wS^. 
Then i t suffices to show that S C {S\J^). The details are given in [Okn l , Th . 12.6:. 
• 

C o r o l l a r y 4.3.9 I f K [ S ] is noetherian, then S is finitely generated. 

C o r o l l a r y 4 .3 .10 Let S be weakly periodic semigroup. If K[S] is right noetherian 
and all subgroups of S are locally finite, then S is fimte. 

C o r o l l a r y 4 .3 .11 Let S be inverse semigroup. Then the following conditions are 

equivalent. 
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(i). K[S] is right noetherian 

( i i ) . S has finitely many idempotents, and all group algebras K[G] are noetherian, 
where G is a subgroup ofS. 

( i i i ) . i^[*S] is noetherian. 

I t is conjectured that the f in i tely generated property of S depends on whether 
K[S] is r ight noetherian or not ( [Okn l , Problem 7]). We now consider some typ ica l 
semigroups and add some extra conditions to them in order to make the answer 
posit ive. 

T h e o r e m 4.3 .12 Assume that S is a semigroup such that K[S] is a right noetherian 
PI-algehra. Then S is finitely generated. 

Proof. Since K[S] is a PI-algebra, S has a permutat ion property ^ . This means 
tha t every cancellative subsemigroup of a homomorphic image of S has ¢^, hence i t 
contains a f inite-by-abelian-by-f inite group. By using Theorem 4.3.8, we know tha t 
S is f in i te ly generated. 口 

I n section 3.7, we have discussed the cri ter ia for group algebras to be PI-algebras 
and also consider its subsemigroups. We now consider the (one-sided) noetherian 
PI-algebras and obtain some results such that its corresponding semigroups are also 
f in i te ly generated. 

T h e o r e m 4.3.13 [Oknl ] Let S be a cancellative monoid. Then the following condi-
tions are equivalent: 

(i). K[S] is a right noetherian PI-algebra. 

(i i). K[S] is a right and left noetherian PI-algebra. 

( i i i ) . S is a finitely generated semigroup with a.c.c. on its right ideals and satisfies 
the permutation property. 

(iv). S is a finitely generated subsemigroup of an abelian-hy-fimte group, and S has 
a.c.c. on its right ideals. 

T h e o r e m 4.3.14 [Oknl ] Let S he an inverse semigroup. Then the following condi-
tions are equivalent: 
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(i). S is a finitely generated semigroup and satsifies the permutational properties. 

( i i ) . K[S] is a right and left noetherian PI-algehras 

I t is known tha t a submonoid S of a f ini tely generated ni lpotent group yields a 
r ight noetherian semigroup algebra K[S] i f f S has the a.c.c. on r ight ideals. We 
now describe the radicals of r ight noetherian algebras K[S], where S is n i lpotent 
semigroup ( in sense of Malcev). 

P r o p o s i t i o n 4 .3 .15 [ J 0 1 , Prop. 3.9] (1994) Let S he a nilpotent semigroup and 
K[S] ts right noetherian rmg. Then for 5, t G S, the following conditions are equiva-
lent: 

(i). s - t e B { K [ S ] ) = ^ J { K [ S ] ) . 

(ii). For every u G S, there exists n > 1 and v G T = {su, tu) such that 

(a) (su)n e T{tu)T, and {tu)^ G T{su)T, 

(b) ifchar{K) = p > 0，then {v{su)vY' = {v{tu)v)p' for some k > 0. 

(c) Ifchar[K) = 0, then v{su)v = v{tu)v. 

Proof. Since S is ni lpotent, S has no noncommutative free subsemigroups and 
J{K[S]) 二 B{K[S]) (see Theorem 4.2.12). Assume s - t e B{K[S]). So for every 
u G S, {su — tu)^ = 0 in K[S]. Hence condit ion (a) is proved. Since K[S] is a r ight 
noetherian r ing, by Lemma 4.2.4, for T 二 {su, tu), there exists v G T such that vTv 
is cancellative. Hence, 

v{su)v - v{tu)v e K[vTv] n B{K[S]) C B{K[vTv]). 

By Lemma 3.3.37 and Theorem 3.3.8, we have {v{su)v)p' = {v{tu)v)P^ for some k > 0 
i f char{K) = p, otherwise v{su)v = v{tu)v. 

Conversely, let P be a prime ideal of S such that S/ 〜p4 K [ S ] / P . Take any 
s , t and suppose that the condit ion (ii) in the statement of theorem is satisfied. By 
Theorem 4.2.10, i t yields that S = S/ 〜p has a chain of ideals (Eq :4 -2 - l ) that 
contains an uni form ideal which can be embedded into a completely 0-simple inverse 
semigroup. Let s J be the images of s , t in K[S]|P and and for any u G / , we have 
5^ tu e I. Assume su + 6 and 1 is a completely 0-simple inverse semigroup. Then 

5 A _ 

there exists r G I such that sur is in the maximal subgroup H of I. Let T = {sur, tur) 
and [surY G T{tur)T. Then iur + 0 and so sur and tur are !K-related. 
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B y hypothesis, there exists v e {sur, tur) such that i f char{K) = 0, v(sur)v 二 

v(tur)v. Moreover, (v(sur)v)P^ = (v(tur)v)P^' i f char(K) = p. Since v, sur, tur G H, 
we know tha t i f char{K) = 0’ then sur = tur. I f char{K) = p, then by Theorem 
4.2.10, i t yields tha t 

v(sur)v — v[tur)v G B{K[H]) 

and Ko[i] = Mq[K[H]) for some q > 1. I t follows that 

v{sur)v - v{iur)v G B{Ko[I]) f l Ko[S/ 〜尸]C B{Ko[S/ 〜尸]). 

Now, as K[S]/P is the epimorphic image of Ko[S/ 〜尸],so we can see tha t 
v{sur)v = v[tur)v. Due to the belonging in the same subgroup H, sur = tur for 
every u e I. This implies that {s-^I = { 0 } . Since i ^ [ 5 ] / P is prime, s = i G S/ 〜p. 
This completes the proof. • 

4.4 Descending Chain Conditions 

Af ter the discussion of the ascending chain condit ion on semigroup algebras, in this 
section we now consider the semigroup algebras w i t h descending chain condit ion. 
Properties of semilocal, local and perfect semigroup algebras w i l l be investigated. 
First of all, we recall some important theorems about group and semigroup algebra. 

T h e o r e m 4 .4 .1 [Pasl, Th. 10.1.1] (1963) (Connell) Let R be ring with umty and 
G is an arbitrary group. Then R[G] is artiman iff R is artiman and G is a finite 
group. 

E.L Zelmanov extended the above result to the class of semigroup algebras. 

T h e o r e m 4.4.2 [Zel, Th. 3] (1977) Let R be ring with umty and S any semi-
group. Then _R[*S] is artinian implies that R is artinian and S is fintie. The converse 
statement holds if S is a monoid. 

4.4.1 Artinian Semigroup Graded Rings 

Recently, there are several results on art inian semigroup graded r ing [CJKO, Kel6, 
J02] (1995) . We state these results to investigate the descending chain condit ion 
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of semigroup algebras. These characterization theorem of semigroup graded rings 
provide another method in studying the semigroup algebra which is different f rom 
Okninsk i [ O k n l . 

Throughout this section, we assume R is a 5'-graded r ing but may not have an 
uni ty. We also assume that S contains no zero unless other mentioned. 

L e m m a 4 .4 .3 [CJKO, Lemma 1] Let S he a semigroup and R a S-graded nng. 
Suppose that T is a family of right ideals of R satisfying the following conditions: 

(i). there is a natural number k such that \supp{I)\ < k for all I G T; 

( i i) . U/e j rsnpp( / ) is infinite. 

Then R is not right artinian. 

L e m m a 4 .4 .4 [CJKO, Lemma 2] Let S be semigroup and R a right artmian S-graded 
ring. Let I he mlpotent homogeneous ideal ofR such that there are only fimtely many 
s e S with Rs^I- Then supp{I) and supp{R) are both fimte. 

P r o p o s i t i o n 4.4.5 [CJKO, Lemma 4] Let S he a semigroup with no infinite sub-
groups and let R he a right artinian S-graded nng. Then there exist fimtely many 
elements Xi,. •.，Xn G S such that 

R = J{R) + Rx^ + Rx, + •.. + Rxr.-

Hence, we obtain the following theorem on semigroup graded r ing which is similar 

to Theorem 4.4.2. 

T h e o r e m 4.4.6 [CJKO] Let S be a semigroup with no infinite subgroups and let R 
be right artiman S-graded nng. Then supp{R) is finite. 

Proof. Clearly, the r ing R^ is bo th r ight art in ian and r ight noetherian. Since 
R / R ^ is a ni lpotent r ight art in ian S'-graded ring, i t follows f rom Lemma 4.4.4 that 
supp{R/R^) is finite. I t suffices to show that R^ has a f inite supports. 

Consider that R 二 R? which is r ight art in ian and right noetherian. Then by Prop. 
4.4.5, there is a f inite subset Xo C S such that R = J{R) + Rxo-
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Since R is r ight art in ian, J{R) is ni lpotent. Let m be its index of ni lpotency. F i x 
k w i t h 1 < k < m. Thus R is r ight noetherian and so the quotient J { R f / J { R f ^ ^ is 
f in i te ly generated as r ight i^-module. Then there exists b i , . . . K G J {R )^ such tha t 

J{Rf = J{R)^^' + J2{hZ + kR). 
i= l 

Note tha t biR = biJ{R) + biRxo. Since b,J{R) C J{Rf+^ and the support of each k 
is f ini te, supp{biR) C s u p p { J { R f + ^ ) U X k , u where Xk,i = supp(k)Xo. Therefore 

J(R)' C Rxk + J{Rf^' 

where X^ = U ^ = i ( ^ , i U supp{bi)) is finite. 

Since J{R)^ = 0, J{.R) C Rx, + Rx2 + • . . + Rxm-i, and therefore the support of 
R is contained in the f inite set Xo U Xi U •. • U Xm-i- 口 

Since every band has a t r iva l subgroup, we obtain the fol lowing corollary. 

C o r o l l a r y 4 .4 .7 [Kel6] Let B be a band and let R be a right artinian B-graded ring. 
Then the support of R is finite. 

Using the above theorem, we are able to give a short proof of Theorem 4.4.2 which 
is independent of Zelmanov. We only need to check if K[S] is r ight art in ian, then S 
contains no inf ini te subgroup. I f G C S, then G C eSe for e G G. Thus, K[G] is 
a homomorphic image of K[eSe], so K[G] is r ight art inian. This implies that G is 
f inite. 

4.4.2 Semilocal Semigroup Algebras 

I n this section, we discuss the structure of semilocal algebra by using the techniques 
given in [Okn l ] as every art inian, semiperfect, semiprimary rings are semilocal. Recall 
tha t in the group algebra cases, we have following results: 

T h e o r e m 4 .4.8 [Pasl, Th. 2.3.11] IfG is a locally fimte group, then the group ring 
K[G] is algebraic. Conversely, if K has characteristic 0 and if K[G] is algebraic, 
then G is locally fimte. 

T h e o r e m 4 .4.9 [Pasl, Th. 10.1.6] Let K be a field and G a locally finite group. 
Then K[G] is semilocal iff 
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(i). G is finite when char{K) = 0. 

( i i ) . G contains a normal p-subgroup N offinite index with cu{K[N]) 二 J( i^[7V]) C 
J{K[G]) when char{K) = p > 0. 

In both cases, K [ G ] / J { K [ G ] ) is finite dimensional K-algebra. 

T h e o r e m 4 .4 .10 [Pasl, Th . 10.1.3] The group nng K[G] is perfect iffG is finite. 

I n order to investigate the structure of semilocal semigroup algebras, we first cite 
some lemmas on semilocal algebras taken f rom [Kar, Okn l ] . These results are useful 
i n the sequel. 

L e m m a 4 .4 .11 Let A, B be algebras over field K. 

(i). If B is an ideal ofA, then A is semilocal iff the algebras B, AjB are semilocal. 

( i i) . IfA^K B is semilocal and A, B are algebras w%th unities, then, 

(a) A, B are semilocal algebras. 

(¾) If B is a separable field extension ofK, then J{A ^K B) 二 J[A) ^K B. 

Furthermore, f rom the graded r ing theory, we have the fol lowing proposit ion. 

P r o p o s i t i o n 4.4.12 [J02] (1995) Let S he a semigroup and R an S-graded ring. 
If R is semUocal and a G Rs is not mlpotent in R, then s is periodic in S. 

By using the results given in [Okn l , Ch. 14], we obtain the fol lowing propositions. 

P r o p o s i t i o n 4.4.13 Assume K[S] is semilocal. Then 

(i). S is a periodic semigroup. 

(i i). S is locally fimte ifchar{K) = 0. 

( i i i). K[G] is semilocal for every subgroup G ofS. 

Proof, (i) This part follows f rom Proposit ion 4.4.12 since R = K[S] can be regarded 
as a 5-graded r ing and Rs 二 Ks. We notice that all s G Rs is not ni lpotent. Thus s 
is periodic and so S is a periodic semigroup. 
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( i i) Let K be a f ield w i t h char{K) = 0. Then its pr ime field must be Q. I f K[S 
is semilocal, then Q[S] is semilocal and also Q[S^]. Let a G E ^ A^s^ G Q[S^], where 
E >H < 1. Then we natura l ly define the norm of a by || a ||二 E ? 入 ? . Considering the 
complet ion of R in the Q-algebra Q[S^]. Then by hypothesis, || a | |< 1’ (1 — a) is an 
invert ib le element in R. I f (1 — a) is von Neumann regular in Q[S^], then there exists 
b G Q[5^i] such that (1 — a)b{l — a) = 1 — a. This implies that (1 - a)h - 6(1 — a) = 1. 
Take bm = l + a + a ^ + - . - + a ^ so that h-bm 二 b{l-a){b-hm) = ba^+\ Consequently, 
we have 

\h - bm\ < |M| ||a||"̂ +i > 0 because ||a|| < 1. 
m—oo 

We can now check that t e ( s i , . •. , s^) in S. Since Â  > 0, there exists r > 1 
such tha t t G supp{a^). Moreover, t e supp{bm) for some m > r. The coefficient of 
t i n the element aT is greater than or equal to 入”’ where A 二 m in Â  i t t^supp{b). 
Thus i t follows tha t \\b — bm\\ > 入” for every m > r. Hence, bmv^b. This means tha t 
t e supp{b), which shows that ( s i , . . . , Sn> [ supp{b) is a f inite semigroup. 

Moreover, i f Q[S] is semilocal, then for al l a G Q[5] , i t can easily prove that there 
exists A G Q such that 入—a is invertible. Hence, for any f ini te subset T of S, we can 
construct a e Q[T^] C Q[S^] such that (T) is finite. Thus S is f inite. 

To prove ( i i i ) , we consider the ident i ty of G which is also the idempotent of S. I t is 
easy to see that G C eSe and eJ{K[S])e = J{eK[S]e). Thus, K[G] is a homomorphic 
image of eK[S]e. Hence, K[G] is semilocal. 口 

P r o p o s i t i o n 4 .4 .14 For K[S] is semilocal and K is separable over its prime field 
F, we have the followings about S/ 〜j(K"[s]). 

(i). ^j{K[s]) coincides with ^j(F[s])-

( i i). If K = Q, then we have 

fa) I f { s , t ) G- j (K[5] ) ; then {s,t) G - j ( F p j ^ ] ) for every ,t G S and every prime 
number p. 

(b) There exist primes pi,... ,Pn such that 
n ^—^ 

^J(K[5])= 〜J(Fpa5l) 
i=l 

Proof. By Prop. 4.4.11 (ii) (b), J{K[S]) = K 0F J{F[S]), where F is a pr ime field 
of K. Thus, (i) follows. 
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(i i) As ~j(K[s])=〜 j (Q^)，we only need to consider Q[S]. Since S is local ly f in i te 
when char{K) = 0. Then, Q[5] can be considered as a linear Q-space w i t h basis 
selected f rom Z[S], say a1,a2,. . .，a^. By the natura l homomorphism Z[S] — Fp[5 
for al l pr ime p, we have 

J(Q[5'])nZ[5'] c J{Z[S]) 

Denote ~p=~j(Fp[>s]). Then i t is not di f f icult to see that ~ j ( z ^ ) g ~ P . Hence (a) is 
proved. 

Prom (a) and the above, we can see that 

^ j {Q[s] )= n 〜>nFp[si) 
pGP 

and by the commutat ive diagram 

Q[S] ——> Q[S/ ~p] 
0p 

7T P̂ 
、， 小 

Q [ 5 ] / J ( Q [ ^ ] ) — — 、 Q [ 5 7 ~p ] / J (Q [S7 〜p]) 
Vv 

We can see that , by the semilocalness of Q[S], there are finitely many dist inct non-
t r i va l congruences of the form ~p on S. Hence (b) follows, (see [Okn l , Ch. 14] for 
details.) 

L e m m a 4.4.15 [Okn l , Lemma 14.5, Prop. 14.9, Th. 14.10] We know that K[S] %s 
semilocal and then K [ S ] / J { K [ S ] ) is artiman. Moreover, S/ ^ j ( K [ s ] ) ^ K [ S ] / J { K [ S ] ) , 
Also, we have following properties. 

(i). K [ S ] / J { K [ S ] ) is an arUnian and is an algebraic K-algehra for any field K. 
Also, ifchar[K) > 0, then S/ 〜j(K^)化 a locally fimte semigroup. 

(i i). If all subgroup G ofS such that K [ G ] / J { K [ G ] ) is fimte dimensional, then 
K [ S ] / J { K [ S ] ) is finite dimensional K-alghera and S/ ^j{K[s] isfimte. 

T h e o r e m 4.4.16 Suppose char{K) = p. Then S/ 〜j(i^[_s])访 finite if either one of 
the following conditions holds: 

(i). K is not algebraic over its pnme subfield. 

(i i). S is locally finite. 

112 



( i i i ) . S has no infinite subgroups. 

Proof. By Proposi t ion 4.4.13, for every subgroup G of S. K[G] is semilocal. 

(i) I f K is not algebraic over its pr ime subfield, then by [Pasl, Th . 10.1.6], 
K [ G ] / J { K [ G ] ) is a homomorphic image of the f ini te dimensional algebras K[G/Gp], 
where Gp is a normal p-subgroup and [G : Gp] < oo. Thus, K [ G ] / J { K [ G ] ) is f in i te 
dimensional algebra. 

(i i) i f S is locally f inite, then every subgroup is locally f inite. By Theorem 4.4.9, 
K [ G ] / J { K [ S ] ) hence is f ini te dimensional. 

( i i i ) As al l subgroups of S is f inite, by Lemma 4.4.15, S/ ~j(i^[s]) is f inite. • 

From section 1.1 (also see [Okn l , Ch. 2,3])，we now know that the structure of 
weakly periodic semigroups. I n part icular, when S is a periodic semigroup, we have 
the fol lowing equivalent conditions: 

(i). S is locally f inite and every subgroup of S has a normal p-subgroup of f in i te 

index. 

( i i). S has a chain of ideals S = Sn ^ S'n-i •. • ^ ^ i such that any one of 5\ and 
S i / S n , i > 1 are locally ni lpotent or complete 0-simple semigroup. Moreover, 
i f M ^ [ G J , K ] P ) is a Rees mat r ix presentation of some completely 0-simple 
semigroup which is ^ / ^ _ i or Si, then G is locally f inite and has a normal 
p-subgroup of f inite index. 

The relationship between locally f inite and semilocal semigroup algebras can be 
found by applying the above conditions. 

D e f i n i t i o n 4 .4 .17 Call Z C E{S) is a left p-subset %f the following condition is 
satisfied for all e, f G Z and s G S: 
The element ese G U{eSe) iffefse e U{eSe) and in this case, eseN = efseN for a 
normal p-subgroup N ofU{eSe), where U{eSe) is a group of units of monoid eSe. 

L e m m a 4 .4 .18 [Okn l , Lemma 14.12] Assume that Z C E{S) is nonempty set con-
tained in an equivalence class ofthe congruence ^j{K[s])- Then Z is a left p-subset of 
E{S) ifp=char(K). Moreover, ifS/ ^j{K[s]) ^s fimte, then E{S) is a umon offinitely 
many left (nght, respectively) p-subsets. 

L e m m a 4.4.19 IfG is locally finite and any subgroup ofG has a normal p-subgroup 
N withfinite index. Consider S = M^{G, I, A; P) and let E{S) be the umon offimtdy 
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many left (right, respectively)p-subsets. Then P has finitely many p-equivalent classes 
of rows (columns, respectively). 

Proof. Let Z be a left p-subset of E{S). Let e , / G S tha t is e 二 [g,i,m) and 
f 二 ("，j'，n) for some i,j G I and m,n G A. Then by the def in i t ion of p-subsets, we 
know tha t e and efe lie in the same coset of the max imal normal p-subgroup N of 
eSe \ { 0 } , which is isomorphic to G , where 9 is the zero of S. 

For s = { l J , t ) where pu + 6 and consider the elements ese = {gPmiPti9, h ^) 
and efse = {gpmjhpnipug^^^rn). I f PmhPni + 0, then p—N - PmjhpniN. Since 1 G I 
is arbi t rary, we can show that the m t h row of P is a mul t ip le of the n t h row of 
the P-modu le N. However, i f G/N is f inite, then i t follows tha t there are finiely 
many p-equivalent classes of rows of P corresponding to the respective columns of 
7 W O ( G , / , A ; P ) containing idempotents f rom Z. Because any column of S contains 
an idempotent, by the fact that E{S) is covered by f in i tely many left p-subsets, we 
know tha t there are finitely many p-equivalent classes of rows of P. • 

Since al l r ight (left) perfect and semisimple r ing are semilocal, we obta in the 
fol lowing characterization for these semigroup algebras. 

T h e o r e m 4.4 .20 Let S be periodic semigroup and K a field with char{K) = p > 0. 

(i). K[S] is semilocal iff S has a chain of ideals 

S = Sn 2 Sn-i... 5 '5'l 

such that any one ofSi and Si/Si-i,i > 1 is either locally nilpotent or a com-
plete 0-szmple semigroup. Moreover, ifM^{GJ,K]P) is a Rees matrix pre-
sentation of completely 0-simple semigroup ofSi/Si-i or Si, then G is locally 
fimte and has a normal p-subgroup of finite index. Furthermore, there are 
fimtely many p-equivalent classes of rows (columns, respectively) ofP. 

(i i). K[S] is right perfect iffS has chain of ideals in (i) and each nil principal factor 
is right T-nilpotent and each completely 0-simple factor has a maximal subgroup 
which is finite. 

( i i i ) . K[S] is semisimple aritinian iff S has a chain of ideals in (i) such that every 
Si/Si-i and Si is a completely 0-simple with Rees presentation M^{G, m, m; P), 
fQf some m > 1 and there is an invertiable matrix P in the matrix ring 
Mm{K[G]), where G is a finite group with order not divisible by char{K)= 
p > 0 iff S is a finite strongly p-semigroup semigroup such that there is no 
subgroup ofS with order divisible by p > 0. 
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Proof, (i) Since S is locally f inite, S/ ^j{K[s]) is f inite. Hence, E{S) is a un ion 
of f in i te ly many left p-subsets and S has f in i tely many 3-classes containing some 
idempotents. The existence condi t ion of (i) and the locally ni lpotency of the pr inc ipa l 
factors are due to the locally finiteness of S. We hence know tha t the 0-simple 
pr inc ipa l factor is completely 0-simple. 

By Lemma 4.4.18 and Lemma 4.4.19, we have that G is locally f in i te and has a 
normal p-subgroup w i t h f inite index. Also there are f in i tely many p-equivalent classes 
of rows. 

(i i) Assume K[S] is r ight perfect. Then S is periodic and K[G] is semilocal. As 
J{K[S]) is a homomorphic image of J{K[eSe]) 二 J{K[S]) f l K[eSe], K[G] is r ight 
perfect. Thus G is f inite. Moreover, since S has d.c.c. on pr incipal left ideals, S is 
local ly f in i te as well. 

Hence, we obta in a desired chain in S such that al l its factors Si/Si^i is either 
n i l or completely 0-simple. Hence, S is locally f inite by the finiteness condi t ion on S 
and the fact tha t any n i l ideal is r ight T-n i lpotent . 

I f the converse statement holds, then K[S] is clearly semilocal. Let P be a r ight 
T-n i lpo ten t pr incipal factor. Then, Ko[P] is also r ight T-n i lpotent . I n fact, i f P 
is a completely 0-simple factor, then the contracted semigroup algebra J{Ko[P]) is 
n i lpotent since G is f ini te (see the proof in Lemma 4.4.18 or treat as graded r ing 
as Section 3.4). This means that Ko[P] is r ight perfect. Therefore, Ko[S] is r ight 
perfect. 

( i i i ) I f K[S] is art inian, then S is finite. Hence, T = Si/Si-i or 5 i is n i lpotent 
or completely 0-simple because S is periodic and finite. Now, every Ko[T] and K[Si 
are semisimple and so all Ko[T] and K[Si] all have an identity. Thus T or Si is 
isomorphic to some X ° ( G , m , m ; P ) , where P is an invertible mat r i x in Mm{K[G]). 
Thus, each S is a strongly finite p-semisimple semigroup. 

Now suppose that S is a strongly f inite p-semisimple semigroup. Then every 
pr incipal factor of S is a completely 0-simple and has an ident i ty element. This 
implies that P is invertible and the completely 0-simple factor is isomorphic to 
M{G,m,m;P). Hence 

K[S] = Mn,{K[Gi])①...④ Mn,{K[Gk]) 

This shows that K[S] is art inian. The proof is completed. • 

By a local algebra, we mean an algebra that its Jacobson radical is a maximal 
ideal. I n part icular, if K [ S ] / J { K [ S ] ) = K, then uj{K[S]) = J{K[S]). 
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T h e o r e m 4 .4 .21 [Okn l , Th . 14.18] Assume that char{K) = p or S is a locally 
finite semigroup. Then 

(i). K[S] is a local algebra. 

( i i ) . S is locally finite and eSe is a p-group, where char{K) = p and e is an idem-
potent of S. 

( i i i ) . S has a completely simple ideal T = X ( G , / , A ; P ) , where G is a locally finite 
p-group and S/T is a locally nilpotent semigroup. 

C o r o l l a r y 4 .4 .22 [Okn l , Th. 14.17] Let S be commutative semigroup andK he field 
with characteristics p. Then the following conditions are equivalent: 

(i). K[S] is semilocal. 

( i i). S is periodic and E{S) is fimte and every subgroup ofS has a p-group offinite 
index. 

( i i i ) . S|i is a finite semigroup, where ^ is the least p-separative congruence on S. 

From Theorem 4.4.20 and the characterization for semilocal semigroups, we de-
duce the fol lowing corollary. 

C o r o l l a r y 4 .4 .23 [Okn l , Coro. 14.22: 

(i). I f K [ S ] is nght perfect, then S is locally fimte. 

( i i). If S is a completely 0-simple semigroup with no infinite subgroup, and K[S] is 
semilocal, then it is semiprimary. 

( i i i ) . IfS has no infinite subgroups and has d.c.c. on principal left ideals, and i f K [ S 
is semilocal, then K[S] is nght perfect. 

I f S is an inverse semigroup, then clearly each principal factor of S is a completely 
0-simple inverse semigroup. As K[S] = ^Mm{K[Gi]), K[S] is semisimple ar t in ian 
iff S is a f inite inverse semigroup and each maximal subgroup is not divisible by 
p, On the other hand, we can use graded r ing theory to examine the descending 
chain condit ion on K[S]. The following theorem is recently obtained by Jespers and 
Okninski [J02 . 
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T h e o r e m 4 .4 .24 [J02] (1995) Let S he a semigroup and R an S-graded nng with 
J{R) nil. IfR is semilocal, then there exists finitely many subgroup Gi^. • • , Gn ofS, 
with identity e i , . . . , e^ respectively, and there exist homogeneous elements fi G Ra 
such that 

n n{i) 

R = J{R) + E E d i J i R c J A j , 
i==l j=l 

forsomefinitelymanyhomogeneouselementsai,j,bi,j G R. Furthermore, each fiRoifi 
is a semilocal G-graded rmg. I f , moreover, R is left perfect (respectively semvprimary, 
left ArUnian), then each fi can be chosen to he an idempotent and fiRoifi ^s left per-
fect (respectively semiprimary, left artinian) with an identity. 

By apply ing this theorem to semigroup algebras, we further obta in the fol lowing 

theorem. 

T h e o r e m 4.4 .25 Let K[S] be a semilocal semigroup algebra. If J{K[S]) is ml and 
there exists finitely many subgroups Gi,... , Gn ofS, then 

n n{i) 

K[S] = J{K[S]) + 5] Y^ ai,JK[Gi]b^J 
i=lj—1 

where a^j, bij G S and K[Gi] is a semilocal group algebra. 

Proof. I f K[S] is semilocal, then clearly S is periodic. Moreover, we may assume 
that J{K[S]) is ni l . Let R 二 K[S] and suppose that R is graded by S. Then, we have 
R^. = K[Gi], Rei = Kci. As by above theorem, a^j, bij are homogeneous elements. 
Th is leads to di,j = hjSij, where Si,j G S for all i,j. Similar to bij and note that kij 
is un i t in the field K, then by the above theorem, we can prove the desired result. • 

For example, i f S is locally finite, J{K[S]) = C{K[S]) (see Corol lary 3.4.14), then 
J{K[S]) is nil. This theorem leads to a deeper description to K[S] when K[S] is 
semilocal or left perfect. 

C o r o l l a r y 4 .4 .26 Let S he semigroup and K is any field. I f K [ S ] is right perfect, 
then there exist finitely many Si,... , Sn G S such that 

K[S] 二 J ( i ^ [ 5 l ) + Ksi + KS2 + ... Ksn. 

Proof. Since J{K[S]) is r ight T-ni lpotent, J{K[S]) is n i l ideal. By using the above 
theorem, we have f ini tely many j and J { K [ G j ] ) is r ight perfect. Thus, we obtain that 
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Gj is a finite group. Thus, there are finitely many Si such that, 

K[S] = J{K[S]) + YlKsi. 
i 

• 
Notice that we can also obtained the above corollary by using Theorem 4.4.16 

since S contains no proper infinite subgroups. Thus S! ^j{K[s]) is finite and so 
K [ S ] / J { K [ S ] ) is finite dimensional as well. 
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Chapter 5 

Dimensions and Second Layer 
Condition on Semigroup Algebras 

I n th is chapter, the dimensions of semigroup algebras (e.g. Gel fand-Kir i l lov dimen-
sion, classical K r u l l dimension, K r u l l dimension) are studied and the relat ionship 
between semigroups and these dimensions are established. Moreover, we also relate 
the pr ime ideals of Goldie algebras and the noetherian semigroup algebras w i t h some 
of these diemensions. 

5.1 Dimensions 

5.1.1 Gelfand-Kirillov Dimension 

The def ini t ion of Gelfand-Kir i l lov dimension is given in [KL]. The Gel fand-Kir i l lov 
dimension is a too l to measure the growth of algebras. Let V be a f inite dimensional 
subspace of a K-algebras A. The Gelfand-Kir i l lov dimension (GK-dimension) of A 
is defined by 

dv(n) = dim{K + y + F' + ... + V^) 

GK{A) 二 sup( l imsup log^ dy{n)). 
V n—oo 

Similarly, for any A-module M, we can define the GK-dimension of module of M by 

GK{M) 二 sup(l imsup log^ dy^F{n)). 
Y^F n—oo 

where dyrin) 二 dirriK{FV^), V is a finite dimensional subspace of A containing 1 
and F is a f inite dimensional subspace which generates M as an A-module. 

119 



The Gel fand-Ki r i l lov dimension is said to be exact i f for each short exact sequence 

0 — L — M — N — 0， 

we have GK{M) = m^yi{GK{L),GK{N)}. 

The general properties of GK-dimension can be found in [KL, M R . 

P r o p o s i t i o n 5 .1 .1 Let A, B be K-algebras. Then 

(i). G K ( A @ B ) = m a x { G i ^ ^ ( ] ) , ^ B ) } . 
( i i ) . IfB is a subalgebra or homomorphic image ofA, then GK{B) < GK{A). 

( i i i ) . m a x { G K ( A ) , GK{B)} < GK{A 0^ B) < GK{A) + GK{B). 

An algebra A is affine algebra if A is generated by finite subset, i.e A = 
K{ai,.. • an}- Define GK-dimension ofA hy 

GK{A) = s u p { G K ( R ) | B an affine K-suhalgehra ofA }. 

Then we have: 

( iv). GK{Mn{A)) = GK{A). 

(v). GK{A[x]) = GK{A)^l. 

(vi). Let A * G he the crossed product ofA over a fimte group G. Then GK{A^G)= 
GK{A). 

(vi i ) . Let P be pnme ideal ofA such that A/P is right Goldie. I f h t [ P ) is the height 
of the prime ideal P, then 

GK{A) > GK{A/P)^-ht{P). 

(vi i i ) . Let N he a nilpotent ideal ofA with mlpotent index k，i.e. N^ = 0. Then 

GK{A) <k-GK{A/N). 

(ix). Let Q be a multiplicative closed subset of regular central elements, then 

GK{A) = GK{An-^). 

For the r ight noetherian noncommutative algebras, we have the fol lowing theorem. 
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T h e o r e m 5.1.2 [MR, Coro. 8.3.6] Let R be a right noetherian K-algehra with 
GK[R) < oo. Then the following statements hold: 

(i). IfR is prime and E is an essential right ideal then GK{R/E) < GK{R) — 1. 

( i i ) . MR is finitely generated and MP = 0 for some prime ideal ofR. Also, MR/p 
is torsion and GK{M) < GK、RlP、- 1. 

( i i i ) . Let Po D Pi D •.. D P^ be a chain of distinct prime ideals ofR. Then 

GK{R) > GK{R/Po) > GK{R/Pm) + m, 

For group algebras K[G], there are some impor tant theorems. The fol lowing is 
an interesting one. 

T h e o r e m 5.1.3 [KL, Th . 11.1] IfG is a finitley generated group and GK{K[G]) < 
oo iff there is nilpotent normal subgroup of finite index in G. 

The case tha t G is f in i tely generated solvable group was also discussed in [KL, Th . 
11.2. 

5.1.2 Classical Krull and Krull Dimensions 

I n this section, we review some properties of the classical K r u l l (c l .Kdim) and K r u l l 
QC) dimensions. The reader is referred to [GW, MR] for the definit ions and general 
properties of the classical K r u l l and K r u l l dimensions. We list here some impor tant 
properties of these dimensions. 

T h e o r e m 5.1.4 Let R he rmg with / 0 ( ¾ ) < oo. Then 

(i). A semiprime ring R with right Krull dimension is a right Goldie ring. 

( i i). The prime radical B ofR is nilpotent. 

( i i i ) . B{R) is a finite intersection of minimal prime ideals, P i , . •. ’ Pm-

(iv). ]C{RR) 二 snp{JC{R/P){P e Spec{R)} 二 K[R|B{R)). 

The dimension of a r ing R can be defined in terms of posets and the prime 
spectrum Spec{R), which is the collection of all prime ideals of R. The classical 
K r u l l dimension cl.Kdim{R) is the supremum of the length of chains of pr ime ideals 

121 



of R. A pr ime r ing is called r i g h t b o u n d e d i f every essential r ight ideal contains 
a nonzero (two-sided) ideal. A r ing R is called r ight f u l l y b o u n d e d i f R/P is a 
r ight bounded r ing for each pr ime ideal P‘ I f R is r ight noetherian and r ight fu l ly 
bounded, then we call R r ight F B N r ing. 

T h e o r e m 5.1.5 Let R he right noetherian ring with JC{RR) < oo. Then 

(i). cl.Kdim{R) < / C ( i ^ ) . 

( i i ) . IfR is a right FBN ring, then cLKdim{R) = JC{RR). 

( i i i ) . Let R be right noetherian ring and G is polycyclic-by-finite and R^G a crossed 
prodcut of R by G. Then 

K:{RR) < K,{R * G) < K{R) + h{G) 

where h{G) is Hirsch number of group G. 

I n the case of PI-algebras, we can establish some connections between their di-
mensions. 

T h e o r e m 5.1.6 Let A be PI K-algehra. Then 

(i). [KL, Th . 10.5] I f A is prime, then GK{A) = tr.degK{A).⑴ 

( i i). [KL, Th . 10.10] I f A is fimtely generated pmme, then GK{A) is a nonnegative 
integer and 

GK{A) 二 cl.Kdim{A) = tr.degK{A). 

( i i i ) . [KL, Th . 10.15] I f A is noetherian PI-algebra with mlpotent radical N, then 

GK{A) = GK{A/N) 二 m^x{GK{A/P)} 

where P runs through the set of minimal prime ideals ofA. 

( iv). [KL, Coro. 10.16] If R is noetherian PI-algebra with finite GK-dim, then GK-
dim is exactforfimtely generated R-modules and GK{R) is nonnegative integer. 
IfR is fimtely generated, then GK{R) 二 cl.Kdim[R). 

(i)Since A is a prime PI-algebra, so it must be a Goldie algebra. Let Q be the ring of quotients of 
A and let Z be its center of Q containing K. Then the transcendence degree of A over K is defined 
by tr.degK{A) = tr.degK(Z). 
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5.2 The Growth and the Rank of Semigroups 

Let S be a f in i te ly generated semigroup w i t h a system of generators { a i , . • • , OLm}-
Let 7 (n ) be the number of elements of S that can be presented as a product of at 
most n generators Si. Then the semigroup S is said to have po lynomia l g rowth i f 
there exist posit ive numbers C and d such that 

7 (n) < Cn^ for al l n > 1. 

Also, GK{S) = l im s u p ^ ^ ^ log^ 7(n) is called the exponent, or the degree of growth 
of the semigroup S. 

I n [KL, Ch. 11], we know that the group G has a polynomia l growth i f f G is 
n i lpotent-by-f in i te. Note that the degree of the growth of group G and the growth of 
i ts subgroup N w i t h f ini te index in G coincide. We also see that GK{S) = 0 i f f S is 
f ini te. We now connect the GK-dimension of group algebras w i t h the growths of i ts 
corresponding groups. 

T h e o r e m 5 .2 .1 [KL] Let N be a finitely generated nilpotent group with a lower cen-
tral series 

N = Ni D N<2 2 •. • ^ Nn = (e) 

and let d{i) be the torsion-free rank of the i-quotient Ni/Ni+[ Then we have 

GK{K[N]) = d = f > 则= G K { N ) . 
i=l 

Proof. By referring to the results in [KL, Lemma 11.11，Lemma 11.12, Th . 11.14], 
we obta in this result. 口 

Prom the remark of [Okn l , Ch. 8], we know that GK{K[S]) = GK{S). I f 
GK{S) < t and ds{m) < Cm} for some C for almost all m, then S has a polynomial 
growth. Let V be an m-dimensional algebra, e.g. V = K[si,... ’ <5饥]for some arbi-
t ra ry s i , . . . <Srn. Then dy[m) < Cm^ is determined by the presentation of (s i , . . .，Sm) 
and so the GK-dimension of the corresponding semigroup algebras is less than t. This 
shows that the GK-dimension of K[S] is independent on the coefficient field and so 
i t coincides w i t h the growth of S. On the other hand, i f GK{K[S]) is obtained by 
other means, then we can find the growth of S. 

For the properties of polynomial growth of cancellative semigroups, the reader is 
always referred to [Okn l , Ch. 8 . 
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T h e o r e m 5.2.2 [Okn l , Th . 8.3] LetS be a finitely generated cancellative semigroup. 
Then the following conditions are equivalent. 

(i). S has a polynomial growth. 

( i i) . S has a group offractions that is nilpotent-hy-finite. 

( i i i ) . S has a weakly nilpotent subsemigroup of finite index. 

Moreover, in this case, the degree of growth GK{S) = GK{G). 

I n section 3.2.2, we have introduced the rank of semigroup S which is the supre-
m u m of n, where S containing the n-generated free commutat ive subsemigroup, de-
note by rk{S). Note that i f S is a cancellative semigroup w i t h group of fractions G, 
then rk{S) =rk{G). 

I n [Okn l , Ch. 23], Rk{S) is defined by sup^{rA:(S'/p)}, where p runs over the set 
of al l congruences of S. The fol lowing result on Rk{S) is obtained by Okninski . 

P r o p o s i t i o n 5.2.3 [Okn l , Lemma 23.6] For every semigroup S, 

rk{S) < Rk{S) = sup{rk{S/ 〜p)}, 
p 

where P runs over the set of prime ideals ofK[S] for any coefficient field K. 

5.3 Dimensions on Semigroup Algebras 

Consider the noetherian group algebras K[G]. I f G is a polycycl ic-by-f inite group, 
then i t is know that K[G] is noetherian. I f G has no free noncommuatat ive subsemi-
groups, then by [Okn l , Th. 11.7], G must be ni lpotent-by-f inite. Thus, we have the 
fol lowing results concerning the dimensions of semigroup algebras. 

T h e o r e m 5 .3 .1 Let G be a polycyclic-by-finite group and has no free noncommu-
tative subsemigroup. Then GK{K[G]) < oo，where GK{K[G]) is an integer and 
GK{K[G]) > JC{K[G]). 

Proof. Since G is ni lpotent-by-f inite and is finitely generated. GK(K[G]) is non-
negative integer d by Theorem 5.2.1. Moreover K,{K[G]) 二 h{G), which is the Hirsch 
number of G. By the formula of d, i t is obviously to see that d > Y.d[i) = h{G). 
then GK{K[G])>K:{K[G]). • 
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L e m m a 5 .3.2 [Okn l , Lemma 23.3] Let G he a group with an abelian normal subgroup 
H of finite index. Then, we have cLKdim{K[G]) > cl.Kdim{K[H]). 

By using the properties of G K dimensions and the necessary condit ions for K[S 
being PI-algebras (see Section 3.7 or [Okn l , Ch. 20])，we obta in the fol lowing result. 

T h e o r e m 5.3.3 [Okn l ] Let S be a cancellative monoid such that K[S] is PI-algehra. 
Then 

cl.Kdim{K[S]) = GK{K[S]) 二 rk、S、. 

Proof. By Prop. 3.7.3, we know that S satisfies the permutat ional properties ^1, 
so S is a cancallative semigroup w i t h 识.Moreover, S has group of r ight fractions 
G such tha t K[G] is PI-algebra. Thus, G has a normal subgroup H of finite index 
and H' is a f ini te p-group of G, where char{K) 二 p. Let T be a f in i te ly generated 
subsemigroup of S. Then TT_i 二 F has an abelian normal subgroup Z of f in i te 
index. By Theorems 5.2.2 and 5.2.1, the results follow f rom 

GK{K[T]) = GK{K[F]) = GK{K[Z]) = rk{Z) = rk{F) = rk{T). 

Moreover, f rom Theorem 5.1.1(iv), we have 

GK{K[S]) = snp{GK{K[T])} = sup{rA:(T)} - rk{S). 
T T 

Since pr ime PI-algebras are al l Goldie rings, by Theorem 5.1.1(vii i), we have 
GK{K[S]) > cLKdim{K[S]). Moreover, i t is known that S has a group of fractions 
G which is abelian-by-finite. Thus, if we let H be this abelian normal subgroup, then 
f rom Lemma 5.3.2 and Section 3.3, we have 

clKd%m{K[S]) > cl.Kdim{K[G]) > clKdim{K[H]) = rk[H) = rk{S). 

This shows that cl.Kdim{K[S]) = rk{S) = GK(K[S]) and GK(K[S]) is a nonnega-
t ive integer. 口 

Finally, we f ind the following generalization in the monograph of Okninski [Okn l . 

T h e o r e m 5.3.4 [Oknl, Prop. 2 3 . 1 1 ’ Th. 23. 12] Let S he a monoid such that K[S' 
is a PI-algehra. IfP is a prime ideal ofK[S], then 

cLKdim{K[S]/P) < GK{K[S]/P) < rk{S/ 〜尸）< cLKdim{K[S/ ~户])< GK(K[S/ 〜尸]) 

Moreover, rk{S) < clKdim{K[S]) = supp{GK(A^[5']/P)} = Rk{S) where the 
supremum is taken over all the prime ideals ofK[S]. Consequently, cl.Kdim{K[S])= 
0 iffRk{S) = 0 iffS is periodic semigroup. 
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T h e o r e m 5.3.5 Let T be a finitely generated cancallative subsemigroup of S such 
that GK{T) < oo. Let T' he the image ofT m K [ S ] / B { K [ S ] ) . Then 

GK{T) = G K { K { r } ) 二 GK{T') 

Proof. Let H = T T " ^ Then by above theorem, H is ni lpotent-by-f in i te. Moreover, 
GK{T) = GK{H) 二 GK{N) = GK{T/ 〜N、where N is a max ima l f in i te normal 
subgroup of H such that H/N has no nontr ival finite normal subgroups. Thus, 
K[H/N] is pr ime for any field K and H/N is a group of fractions of T / 〜 " . H e n c e , 
K o [ T / 〜7v] is also pr ime and is the homomorphic image of K [ r ] / B { K \ T ] ) . Since 
GK{T) = GK{H) = GK{H/N) 二 GK[T| ~ A 0，G K { T ) = G K { K [ T ] / B { K [ T ] ) ) . 
Let T',K{T'} be the images of T and K[T] in K [ S ] | B [ K [ S ] ) respectively. Then 
K[T] n B{K[S]) C B{K[T]) and so 

GK{T) = G K { r ) = GK{K{T'}). 

• 

On the other hand, i f K[S] satisfies the a.c.c. on its r ight annihi lators, then we 
have a further generalizations, f rom section 4.2. 

T h e o r e m 5.3.6 [Okn2] (1993) Assume that K[S] is right noetherian and S has no 
free noncommutative subsemigroups. Then 

s u p { C K ( T ) | T is a cancellative subsemigroup ofS} 

= s u p { G X ( T ) | T is a cancellative subsemigroup ofS} 

where S is image ofS in K [ S ] / B { K [ S ] ) . 

Concerning the extension to r ight Goldie rings, we obtain the fol lowing charac-

terizat ion. 

T h e o r e m 5.3.7 [Okn2] (1993) Assume that K[S] has finite right Goldie dimension 
and K [ S ] / B { K [ S ] ) is a right Goldie ring. Assume GK{T) < oo for every cancella-
tive suhsemigroup T of S. Then GK{K[S]/B{K[S])) = GK{T} for a cancellative 
semigroup T of S. 

The fol lowing theorem provides the conditions to ensure that GK{S) < oo. 

T h e o r e m 5.3.8 [Okn2](1993) Let K[S] be right noetherian. Then the following 
conditions are equivalent. 
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(i). GK{K[S]) = GK{S) < 00， 

(ii). GK(K[T]) 二 GK(T) < 00 for every cancellative subsemigroup T ofS. 

( i i i ) . every cancellative subsemigroup ofS has a finitely generated nilpotent- by-finite 
group offractions. 

Moreover, in this case GK{S) < rq where r denotes the nilpotency index ofB{K[S]) 
and q is the maximum of the GK-dimensions of the cancellative suhsemigroups ofS. 

Proof. Obviously (i) implies (i i) since K[T] is a subalgebra of K[S . 

Since K [ S ] / B { K [ S ] ) is semiprime r ight Goldie r ing and GK{T) < 00, for every 
cancellative subsemigroup of S, by the above Lemma 5.3.7, we have 

GK{T) = GK{K{T}) = GK{K[S]/B{K[S]) 

for a cancellative subsemigroup T of S. Since B{K[S]) is n i lpotent, by Theorem 
5.1.1(vi i i ) , we have 

GK{K[S]) < r . GK{K[S]/B{K[S])) - r . GK{T) 

for some T C S. Therefore, GK{S) < rq where q is the max imum of the G K 
dimensions of the cancellative subsemigroups. 

Therefore, i f w e assume (i i), then GK{T) < 00 for every cancellative subsemigroup 
T of S. Thus Theorem 5.3.6 yields that 

s u p { G K ( T ) } = s u p { G X ( T ) } . 
T<ZS TCS 

Since K[S] is r ight noetherian, by Theoerem 4.3.5(vi) there are f ini tely many isomor-
phism classes of group of fractions of their maximal subgroup. Thus, the supremum 
exists and GK{S) < rq < 00. This shows that (i i) implies (i). Thus, in part icular, we 
have every cancellative subsemigroup T of S satisfies GK{T) < 00 i f f T has a f in i tely 
generated ni lpotent group of fractions G and GK{T) = GK{G) (see Theorem 5.2.1). 
• 

C o r o l l a r y 5.3.9 If S is nilpotent semigroup and K[S] is right noetherian. Then 
GK{S) < 00. 
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5.4 Second Layer Condition 

The localizations of noncommutat ive noetherian rings have been fu l ly studied by 
Jateganokar [Jat]. This topic, in fact, l inks the pr ime ideals of the r ing R and a well-
known condit ion, namely the second layer condit ion in (r ight) noetherian algebras. 
I n th is section, we w i l l not go through the details on such l inks between pr ime ideals 
and the second layer condit ion, the details can be found in [Jat, G W , MR] . Examples 
of noether ian r ing satisfying second layer condit ion are enveloping algebras of finite 
dimensional solvable Lie algebras; noetherian P I algebras and the group algebras of 
polycycl ic-by-f in i te group, etc. 

I n th is section, we study the strong second layer condit ion. A pr ime ideal P in a 
r ight noetherian r ing R is said to satisfy the r i g h t s t r o n g second l aye r c o n d i t i o n 
i f, for every pr ime ideal Q < P , every f ini tely generated ( P / 0 ) - p r i m a r y r ight {R/Q)-
module is unfa i th fu l over R/Q. 

P r o p o s i t i o n 5 .4 .1 [Jat, Prop. 8.1.5] The (right) (strong) second layer condition is 
a Morita invariant. 

If G is polycyclic-by-finite group, then K[G] has strong second layer condition. 

There is a natura l question for the subsemigroup of G, or completely 0-simple w i t h 
max ima l subgroup G\ Do the corresponding algebras satisfy the strong second layer 
condi t ion ？ 

First , we recall the fol lowing diagram given in the monograph of Jateganokar 
Jat . 

G : polycyclic-by-finite 仁 orbitally sound polycyclic <̂= f.g. nilpotent 
J| 4 从 

K[G] : strong second layer condition 4= AR-separated 4= polycentral 

I n the above diagram, the group G is called o r b i t a l l y s o u n d p o l y c y c l i c i f for 
al l subgroup H of G, the normal closure H。and the corec{H)⑵ satisfies [H^ : 
corea{H)] < oo whenever [G : Nc{H)] < oo. 

P r o p o s i t i o n 5.4.2 [Jat, Th. A.4.2] Every polycychc-by-fimte group contains a char-
acteristic orbitally sound polycyclic subgroup offinite index. 

D e f i n i t i o n 5.4.3 An ideal I in a ring R has the nght AR-property iffor every right 
ideal J of R, there is a positive integer n such that J n P C JI. 

(2)The core of subgroup, corec{H) 二 n g_iHg 
5€G 
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A ring R is called right AR-separated i f f o r every pair of prime ideals P and Q 
in R such that Q C P, there is an ideal I such that Q C I C P and I/Q satisfies the 
right AR property in R/Q. Left AR separated is analogously defined. 

P r o p o s i t i o n 5 .4 .4 [Jat, Prop. 8.1.7] Any (right) AR separated ring satisfies the 
(right) strong second layer condition. 

Now, Let S be a submonoid of G, where G is a polycycl ic-by-f ini te group. Then, 
K[G] is r ight noetherian and K[S] is r ight noetherian if f S has a.c.c, on its r ight 
ideals (see Prop. 4.3.2). Moreover, S is finitely generated. We are now going to make 
use of Theorem 4.3.1, Lemma 4.3.2 and Lemma 3.3.6 (vi i ) in our theory. W i t h o u t 
loss of generality, we may assume that S has a group of fractions G. I t can be seen 
tha t i f Q is pr ime ideal of K[G], then Q H K[S] is pr ime ideal of K[S]. I f P is pr ime 
ideal of K[S], then Q = K[G] ^K[s] P = i^[<^]P is also pr ime ideal i f P n S = 0. 
Moreover, Q 门 K[S] = P (cf. the case of ni lpotent cancellative semigroup in Lemma 
4.2.5), so for every pr ime ideal P of K[S] w i t h P n S = 0, we have Q lies over P. 

Moreover, by Theorem 4.3.2, we know that S is f in i tely generated. Hence, K[G 
can be viewed as a f ini tely generated K[5']-module. Thus K[S] ^ K[G] is a r ing 
extension. We stated here two extension theorems f rom [Let] (1990) . 

T h e o r e m 5.4.5 [Let, Th . 4.2] Let R ^ T be an extension of noetherian ring such 
that T is fimtely generated as a left and right R-module. IfR satisfies the second layer 
condition then so does T. Moreover, if R satisfies the strong second layer condition 
then so does T. 

T h e o r e m 5.4.6 [Let, Th. 5.3] Let R ^ T and T be noetherian rings satisfying 
the second layer condition such that T is a fimtely generated right R-module. Let 
Q^ — Qp. Then the following statements hold: 

(i). There exists pnme ideals P^ and Pp lying over Qa and Qp respecitvity. Then 
either 

(a) Pa = Pf3 or ; 

(t>) there exists a sequence of prime ideals Pa = P i , . . . ’ Pt 二 Pp with t > 2, 
such that 

_Pi ….•. — p^ …Pi+i —...…Pt-

(i i). If P n R is semiprime for every prime ideal P of S, then we may choose Pa 
and Pp in (i) such that (b) occurs. 
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B y the above theorem, we have the fol lowing theorem for polycycl ic-by-f in i te groups. 

T h e o r e m 5 .4 .7 Let G be polycyclic-by-finite group and S a suhmonoid ofG. Then 
K[S] satisfies the right second order condition if S has a.c.c. on right ideals. 

For other semigroups 5 , for example, n i lpotent semigroups, we consider the case 
when K[S] is a pr ime noetherian ring. 

L e m m a 5.4.8 [JW3] (1995) Let S be a nilpotent semigroup. If Ko[S] is a prime 
A 

noetherian algebra, then, by the notation of Theorem 4-2.10, K{I} = Kol^, G is 
poly-(infinite cyclic) and q = n. 

A 

Proof, I n the proof of Theorem 4.2.10, we have seen that Ko[I] is a local izat ion of 
A 

Ko[I] w i t h respect to the Ore set C. Let (p be the natura l homomorphism of Ko[I 
A A 

to K{I} and a G Ko[I] such that (p{a) 二 0. Let c G C such that ca G Ko[I]' Since 
Ko[I] = / i ^ { / } , we have (/?(ca) = ca. Thus ca = 0 and so c is invert ib le. Hence, we 
conclude that a = 0. This leads to ker^? 二 0 and hence Q = 0. 

As Ko[S] C Mg{K[G]) and and K[G] has a.c.c. on r ight ideals, we know that G 
is n i lpotent and also K[G] is a pr ime ring. Thus we know Z{G) is torsion-free and 
by [Pasl , Lemma 11.1.3], the upper central series of G, namely Zi[G)|Zi-i{G) is also 
torsion-free. Hence, G is a poly-( inf in i te cyclic) group. • 

From Theorem 4.2.10, we know S is arbi t rary ni lpotent semigroup (not necessarily 
cancellative), and K[S] is r ight noetherian, for any pr ime ideal P of K[S]. Thus, 
K[S]/P can be embedded into Mg{K[G]/Q) for some group G and is a pr ime ideal 
of K[G]. Note that the group G is a finitely generated ni lpotent group. This forces 
K[G]|Q must be a pr ime Goldie r ing and Mq{K[G]|Q) is pr ime noetherian r ing, 
hence i t is a f ini te extension of K[G]|P. Moreover, i t is clear that Mq{K[G]|Q) 
satisfies the strong second layer condit ion, by Proposit ion 5.4.1. 

For the class of completely 0-simple ni lpotent semigroups, we have the fol lowing 
theorem. 

T h e o r e m 5.4.9 Let K[S] be an algebra of finitely generated completely 0-simple 
nilpotent semigroup with |E(5')| < oo. Then / ( 0问 is noetherian and satisfies the 
strong second layer condition. 

Proof, From section 3.3.4，we know that the completely 0-simple ni lpotent semi-
group is inverse and its maximal subgroup G is ni lpotent. Hence, G is finitely gener-
ated ni lpotent group so that K[G] is noetherian and E{S) is finite set. By Theorem 
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4.3.11, we know that Ko[S] is noetherian and Ko[S] = Mn{K[G]). This shows that 
Ko[S] satisfies the strong second layer condition by Theorem 5.4.5 or Proposit ion 
5.4.1. • 

In closing the thesis, we wish to point out that the dimensions and prime ideals 
of noetherian rings are important topic for investigation and the above results can 
be applied in studying this area. We also post out here an open problem concerning 
the relation 〜p, where P is a prime ideal of K[S]^ for solution. 

I f P … Q , what is the relationship between ~尸 and 〜Q ？ 
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Notations 

char{K) Characteristics of field K 
E{S) The set of al l idempotents of the semigroup S 
!K,^ ,£ ,X)，3 Green relations 
Mji, Ml, Mj M in ima l condit ion on equivalence classes on 

S/% S/L and S/3 respectively. 
J ( a ) / / ( a ) Pr incipal factor in semigroup containing a 
K{R),L{R),T{R) Lat t ice of r ight ideals, left ideals and two-sided ideals respectively 
M O ( G , / , A; F ) Rees mat r i x semigroup w i t h maximal subgroup G 
K[X] Polynomial r ing over set X 
K{X] X-a lgebra generated by set X 
J{R) Jacobson radical 
C[R) Lev i tzk i radical 
B{R) Pr ime (Baer) radical 
Q{R) Brown McCoy radical 
J\ f {R) Upper n i l radcial 
N{K[G]) Ni lpotent radical of group algebra 
U{S) Uni ts group of monoid S 
[)(i^) Set of homogeneous elements of graded r ing R 

Abbreviations 

cf. {Latin: confer) compare 
i.e. that is 
i f f i f and only i f 
f.g. f ini tely generated 
a.cx. ascending chain condit ion 
d.c.c. descending chain condit ion 
e.g. for example 
Ch. Chapter 
Th . Theorem 
Prop. Proposit ion 
Coro. Corollary 
• end of proof 
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