
MULTI-PROCESSOR TASK SCHEDULING

WITH MAXIMUM TARDINESS CRITERIA

By

WONG Tin-Lam

事

‘’ Department of Systems Engineering and Engineering Management

A DISSERTATION SUBMITTED TO

THE CHINESE UNIVERSITY OF HONG KONG

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
, ' �

MASTER OF PHILOSOPHY

June 1998
Z

\

�

I

/¢^^ / y M . ^ # < ' @ X A

ftjJJL_5LvW
^^^B:Ef:^^^^^^ ^ ^ ^ ^

Abstract

This thesis is concerned with the multi-processor task scheduling problem in which

some jobs may need the processing of multiple machines simultaneously. Specifically,

we investigate the following model: A number of jobs, each with its own processing

requirement and due-date, are to be processed by two uniform machines. Job preemp-

tion -is allowed. There are two types ofjobs, small and big. Each small job occupies

one machine only. Some small jobs are dedicated to a prespecified machine while the

others can be processed by any one of the two machines. Each big job is to be pro-

cessed by both machines simultaneously. The objective is to minimize the maximum

tardiness. The problem is shown to be NP-hard. A pseudo-polynomial algorithm is

derived to solve the problem. We further find that the problem becomes polynomially

solvable when all small jobs have equal processing times and when both machines

• are identical. We also investigate the model where only set jobs are involved. Each

set job can be processed by either one machine or both machines simultaneously. We

will further investigate the cases when the number of machines is increased to k and

when no preemption is allowed.

ii

Acknowledgement

I would like to express my greatest gratitude to my supervisor, Dr. X. Q. Cai, for

his concern, enthusiasm and belief in this area of work which has been an enormous

support to me throughout the research programme.

Thanks must be given to Prof. C.-Y. Lee of Texas AkM University for his invalu-

able comments and constructive suggestions which proved to be very helpful to my

research. I am also very grateful to Dr. H. M. Yan and Dr. D. Li who have shown

understanding and made the submission of this thesis possible.

I would also like to acknowledge my friends and colleagues, with whom I have

shared enjoyment and encouragement.

Finally, I must thank my parents, sisters and Wu who have been supportive and

understanding. ‘

/

iii

V

Contents

Abstract ii

Acknowledgement 出

1 Introduction 1

1.1 Scheduling Problems 1

1.2 Literature Review 4

1.2.1 Sized Multiprocessor Task Scheduling 5

1.2.2 Fixed Multiprocessor Task Scheduling 6

1.2.3 Set Multiprocessor Task Scheduling 8

1.3 Organization of Thesis 10

- 2 Overview 11

2.1 Machine Environment 11

2.2 The Jobs and Their Requirements 12

2.3 Assumptions 13

2.4 Constraints 14

iv

2.5 Objective 15

2.6 An Illustrative Example 17

2.7 NP-Hardness 20

3 Methodology 22

3.1 Dynamic Programming 22

3.1.1 Problem Analysis 24

3.2 Key Idea to solve the problem 27

3.3 Algorithm 28

3.3.1 Phase 1 28

3.3.2 Phase 2 37

4 Extensions 46

4.1 Polynomially Solvable Cases P2 | miXj,prmp,pj = p | T âx 46

4.1.1 Dynamic Programming 47

4.2 Set Problem P2/setj,prmp/Tm^ . • 55

4.2.1 Processing times for set jobs 56

4.2.2 Algorithm 58

4.3 A:-Machine Problem with only two types ofjobs 64

5 Conclusion and Future Work 67

5.1 Conclusion . . 67

5.2 Some Future Work 68

Bibliography 70

V

List of Figures

3.1 Optimal schedule for the original set of small jobs and the set of split

dedicated 5ma//j0bs 41

3.2 Adjust job i and the sequence of jobs following job a to start at the

time job b does 41

3.3 The gap 9 is filled by a subsequence of jobs following job a, with length

9, and the remaining subsequence is shifted to start right after job a.

Note that the remaining subsequence of jobs are unchanged before and

after the adjustment 42

3.4 All big jobs processed simultaneously in both machines 42

«

vi

Chapter 1

Introduction

1.1 Scheduling Problems

Machine scheduling is to study the problem of optimally allocating resources avail-

able to process tasks. In terms of resources, we may mean machines in a factory,

processors in a computing environment, or loading and unloading facilities in a goods

transportation system, and so on. Correspondingly, tasks may be the operations re-

quired by products, the executions of computer programs, or goods in transportation

systems, and so on. Scheduling is involved in nearly all kinds of practical manufac-

> turing environment as well the service industries.

In the classical scheduling theory, the simplest model is the single machine prob-

lem in which only one machine is available to process a set of jobs. Each job is

processed by the machine and there is at most one job occupying the machine at any

1

CHAPTER 1. INTRODUCTION 2

time. Scheduling of arrival and departure times of ferries at a pier is an example

of a single machine scheduling problem. Apart from the single machine model, the

problem with multiple machines processing in parallel is referred to as a parallel ma-

chine scheduling model. In a parallel machine model, jobs can be allocated to one

of the available machines. An example of a parallel machine scheduling model is the

scheduling of the data transmission in a computer network with multiple gateways.

Many scheduling models have been studied in the literature, see [1, 13, 22]. Nev-

ertheless, most scheduling literature assumes the one-job-on-one-machine structure

where at any time, a machine can process only one job and a job can only be pro-

cessed by one machine. Such a model has a restriction that all jobs involved must be

one-machine jobs.

In recent years, much attention has been paid to the multiprocessor task schedul-

ing problem, or 1 -job-on-r-machine problem, where r + 1. When r is less than 1,

a job may occupy less than one machine and the machine may process more than

one job at any time. An example is a cargo forwarding problem, suggested by Li et

al in [20], where a number of trucks carrying different kinds of cargos must be dis-

charged. On the other hand, when r is bigger than 1, a job must occupy more than

one machine at the same time, or equivalently, more than one machine is necessary to

process the same job. The problem studied in this thesis is a 1 -job-on-r-machine case,

where r > 1. This is motivated by scheduling problems in environments such as berth

CHAPTER 1. INTRODUCTION 3

allocation in which vessels are to be allocated to berths for loading and/or unload-

ing under certain criteria(objectives). In the berth allocation problem, the lengths

of the vessels are not standardized, and different vessels may have different lengths.

For a vessel of shorter size, one berth is good enough, while a longer vessel must

occupy more berths. Hence, this is a multi-processor task scheduling problem where

jobs(vessels) may occupy one or more machines(berths) for simultaneous processing.

In fact, multiprocessor task scheduling problems exist in many real life situations.

Another example is the human resources planning problem with limited staff avail-

able to process up-coming projects. The problem of how to schedule the workforce to

complete tasks which require one or more people for simultaneously processing falls

into our one-job-on-r-machine model. Other examples include the diagnosable mi-

croprocessor systems (see [16]), where a number of machines have to work in parallel

in order to find a fault, and parallel computer systems, where several processors can

work simultaneously to execute a single job submitted by a user. As we can see, these

applications are not amenable by the one-job-on-one-machine pattern, where a job

can be processed on only one machine at any time. There is a great need to study

and solve one-job-on-multiple-machine problems. This is a new direction in the area

of scheduling.

CHAPTER 1. INTRODUCTION 4

1.2 Literature Review

Three classes of multiprocessor task scheduling problems have been studied in the

literature. The first class of the problems assume that each job needs a fixed number

of processors to work simultaneously, where allocations of processors are not specified.

The second class of problems assume that each particularjob requires certain specific

machines for processing. For a example, if there are three machines available, Mi,

M2 and M3, a certain job may need to be processed by M2 and M3 simultaneously,

yet another job may be dedicated to Mi only, etc. We use dedicated or prespecified

machine(s) to refer to the specific machines throughout this thesis. Lastly, the third

class of problems deal with the situations where the allocation of a job to the ma-

chines has several alternatives. In each alternative, a job can be processed by several

machines simultaneously. We call the first, second and third classes of problems as

sized, fixed and set multiprocessor task scheduling problems, respectively.

We follow the notation used by [22] to denote a scheduling problem by a triplet

a I P I 7. The a field, a single entry, describes the machine environment. The fi

field provides details of processing characteristics and constraints, which can contain

. more than one entry. Finally, the 7 field, also a single entry, contains the objective

to be minimized. The descriptions sizej, fiXj and setj are used in the second field

of a I P I 7 to denote the first, second and third classes of problems respectively.

The descriptions sizej, fixj and setj used in the j3 field to denote the three classes

of problems.

CHAPTER 1. INTRODUCTION 5

In the following sections, we shall review the research on the three classes of prob-

lems.

1.2.1 Sized Multiprocessor Task Scheduling

Blazewicz, Drabowski and Weglarz [8] study the problem of minimizing the schedule

length of scheduling n jobs on m machines. The jobs considered may occupy one or

more arbitrary machine(s) at the same time. In the nonpreemptive case, two poly-

nomial time algorithms are given when all jobs needs equal processing times, while

the problem is shown to be NP-complete when jobs have arbitrary processing times.

For the preemptive case, a polynomial time algorithm is given when jobs require one

or k machines and have arbitrary processing times. Finally, the possibility of a linear

programming formulation for the general case is also discussed.

Lee and Cai [18] consider the problem with two criteria, the total weighted com-

pletion time and the maximum lateness. Two types of jobs, namely one-processor

jobs and two-processor jobs, are considered, • The problems are shown to be NP-

hard in the strong sense for both criteria even when there are only two machines.

Dynamic programming algorithms, with pseudo-polynomial time complexity, are pre-

sented while a polynomial algorithm is provided to solve a special case where all jobs

have equal processing times. Heuristic methods are also presented with error bounds

CHAPTER 1. INTRODUCTION 6

established. The algorithms provided for the two-machine problem are shown to be

extendable to deal with the general problem.

The problem where jobs can be executed by one or more processors at the same

time with the objective to minimize schedule length is studied in [12]. Du and Leung

12] show that pseudo-polynomial time algorithm exist for 2- and 3-machine problems,

while the problem is NP-hard in the strong sense where there are 5 machines and pre-

emption is not allowed. The question whether the 4-machine problem is NP-hard in

the strong sense remains open. For the preemptive case, the problem is shown to be

NP-hard in the strong sense for arbitrary number of processors solvable in pseudo-

polynomial time for a fixed number of processors.

Plehn [23] shows that the problem of preemptive scheduling of independent jobs

with release times and deadlines on a hypercube can be formulated as a linear pro-

gram. Each of the job considered, which has its own release time, requires a set of

processors for processing simultaneously. The case of general release times and dead-

lines is shown to be solvable by a linear programming approach.

•

1.2.2 Fixed Multiprocessor Task Scheduling

The problem of preemptive scheduling of tasks requiring a set of processors simulta-

neously to minimize maximum lateness is studied in [3]. Tasks can be processed by

CHAPTER 1. INTRODUCTION 7

one or more set(s) of prespecified processors. When there is only one feasible set of

prespecified processors for all jobs, the model is a Gxed multiprocessor task schedul-

ing. Otherwise, it is a set multiprocessor task scheduling. Bianco et al [3] formulate

the Gxed problem in terms of linear programming and show that it can be solved in

polynomial time in the number of tasks.

Bianco, Blazewicz, Dell'Olmo and Drozdowski [5] consider the problem of schedul-

ing tasks that require more than one dedicated processor at a time to minimize the

maximum lateness. Linear time algorithms are given for the case of two, three and

four processors which deliver optimal solutions in some cases but have no guarantee

on optimality in other cases.

Blazewicz et al [7] study the problem of scheduling a set of multiprocessor tasks

on three dedicated processors is studied. The tasks considered require simultaneous

availability of a specified subset of processors and minimization of the makespan of

the schedule is the objective criterion. The general problem of scheduling tasks on

three dedicated processors is proved to be NP-hard in the strong sense and an ap-

proximation algorithm is given and analyzed.

Cai, Lee and Li [10] consider the problem of scheduling multiprocessor tasks with

prespecified processor allocations, where the total completion time is the objective

CHAPTER 1. INTRODUCTION 8

criterion. The complexity of both preemptive and nonpreemptive cases of the two-

processor problem are studied. They show that the preemptive case can be solved in

polynomial time for two machines while it remains an open question of whether the

problem is solvable in polynomial time when the number of machine is more than

two. Moreover, they also show that the problem is NP-hard in the strong sense for

nonpreemptive case.

The computational complexity of preemptive and nonpreemptive scheduling of

biprocessor tasks on dedi'cated processors is studied in [17]. Kubale [17] consider two

criteria of optimality: the makespan and the total completion time. Each task con-

sidered requires the simultaneous execution of two prespecified processors, while each

processor can execute at most one task at a time. They also analyze the complexity

of these problems when precedence constraints are involved. In addiction, they show

that in general all these problems are NP-hard in the strong sense.

1.2.3 Set Multiprocessor Task Scheduling

. The set problem of scheduling preemptable tasks requiring a set of processors simulta-

neously so as to minimize maximum lateness is studied in [3]. Tasks can be processed

by one of many feasible sets of prespecified processors in this set multiprocessor task

scheduling model. Bianco et al [3] formulate the set problem in terms of linear pro-

gramming and show that it can be solved in polynomial time in the number of tasks.

CHAPTER 1. INTRODUCTION 9

A nonpreemptive scheduling problem in which a set of independent tasks must be

processed on a set of discrete and renewable resources is studied in [6]. Each resource

concerned can be used at any time by a single task at most while each task can be

carried out in several given alternative modes, that is，by using different resource

sets and with different processing times. The objective is to determine a mode and a

starting time for each task in such a way that the makespan is minimized. The au-

thors study the complexity of the problem and several cases are identified as NP-hard.

In [11], Chen and Lee consider the problem where there are several alternatives

that can be used to process each job. In each alternative, several machines need to

process simultaneously the job assigned. The objective is to select an alternative for

each job and then to schedule jobs to minimize the maximum completion time of all

jobs. A pseudo-polynomial algorithm is provided to solve optimally the two-machine

problem, and a combination of a fully polynomial scheme and a heuristic to solve the

three-machine problem is also proposed. The results are then extended to a general

m—machine problem.

A comprehensive review on problems of scheduling multiprocessor tasks is given

by [9]. A summary of the current trends of multiprocessor tasks scheduling and ma-

chine scheduling with availability constraints is given in [19 .

CHAPTER 1. INTRODUCTION 10

The problem we are going to deal with in this thesis concerns with scheduling of

two types of preemptive jobs on two uniform machines, so as to minimize the max-

imum tardiness. Based on our review of the scheduling literature, this problem is a

new scheduling model, which however represents an important category of practical

applications. In the following chapters, we will report our work in problem modeling,

solution methods development and extensions.

1.3 Organization of Thesis

The remainder of the thesis is organized as follows: Chapter 2 presents the model.

Chapter 3 is methodology development. In Chapter 4 we consider special well-solvable

cases and extensions of our model and solution method. Finally, some concluding

remarks is given in Chapter 5.

•

Chapter 2

Overview

In this chapter, we formulate our problem, which includes the machine environment,

the jobs and their requirements, the assumptions, the constraints, the objective func-

tion, and a mathematical model with terminologies and variables. Some remarks are

also given in the final section.

2.1 Machine Environment

Two parallel machines, which may have different processing speeds, are to process a

group of jobs. Since their processing speeds may be different, they are referred to as

uniform machines. The processing speed of machine i is denoted by Vi, where i 二 1，2.

Note that when vi =仍,the problem reduces to one with parallel identical machines.

11

CHAPTER 2. OVERVIEW 12

In the notation a | /3 | 7，the field a now is denoted as Qm, where m = 2. This

indicates that the problem under consideration has two uniform machines.

2.2 The Jobs and Their Requirements

Jobs are grouped into one-machine jobs and two-machine jobs and are referred to as

small jobs and big jobs throughout this thesis. There are a total of n jobs including

small and big jobs. There are two types of small jobs, dedicated and non-dedicated.

At any time, each dedicated small job has to be processed by a machine that is

prespecified to it. A non-dedicated job can be processed by either one of the two par-

allel machines. On the other hand, big jobs have to be processed by both machines

simultaneously. This means that they will start, complete and preempt, if applicable,

simultaneously among the two machines.

Each job j has a fixed amount of processing requirement and a due date, which

are denoted by pj and dj respectively. We let pij denote the processing time of small

job j if it is processed on machine i, which is equal to Pj/vi. All small jobs must be

processed by the assigned machine throughout its operation. When all machines are

identical, vi is constant for all i and hence we may scalize the speed to unity and let

the processing time be pj. In the case that big jobs are processed by both machines, it

is assumed that the time each big job j spends on both machines is denoted by pJ = Pj.

CHAPTER 2. OVERVIEW 13

As one can see, our problem does not belong to Gxed or sized. The Gxed problem

has jobs which are dedicated to a set of prespecified machine(s), but in our problem

there are jobs that can be assigned to either machines. The sized problem has jobs

which can be processed by a fixed number of arbitrary machines, but in our problem

there are jobs which must be processed by a pre-specified machine. Therefore, we de-

note our problem as a mixed multiprocessor tasks scheduling problem and use mixj in

the second field ofthe notation a \ P | 7 to represent this class of scheduling problems.

2.3 Assumptions

The following are some assumptions apply to the main problem as well as other ex-

tensions studied in this thesis.

1. All jobs are simultaneously available at the beginning, i.e. rj = 0 for all

j = l,2,...,n. This assumption is valid when all jobs arrive before t = 0 and are

ready for processing at t = 0.

2. All processing requirements, pj, of the jobs are known as we are dealing with a

deterministic problem.

3. All jobs have equal weights and are assumed to be unity. The assumption is

justified when the importance of all job in the system are about the same.

CHAPTER 2. OVERVIEW 14

4. Job preemption is allowed, which means that the processing of jobs may be

interrupted before it is complete. We further that the cost incurred from preemption

is negligible. In the p field of the a | /3 | 7 notation, we will use prmp to represent

that preemption is allowed.

5. No precedence relationships exit among jobs. Jobs considered in our problem,

are assumed to be independent in the sense that no job or jobs are required to be

completed before another job is allowed to start its processing.

6. The processing speed for each machine is known in advance.

7. The set-up time to process a job has been included in its processing time.

8. No machine breakdowns occur, which imply that machines are continuously

available.

2.4 Constraints

There are some constraints in our problem which are listed below.

1. A big job must occupy both machines when being processed. In general, in the

CHAPTER 2. OVERVIEW 15

A:-machine case where big jobs refer to A:-processor jobs, a hig job must occupy all

k machines simultaneously.

2. A small job must be processed by the assigned machine throughout the oper-

ation even though it is preempted. The validity of this assumption is well justified

in the situation where there is a large switching cost (incurred probably by the need

of transportation, set-up, etc.) if a job is switched from one machine to another ma-

chine. Consider the environment of berth allocation with two berths, where the two

berths (machine 1 and machine 2) normally adjoin each other. When the processing

by machine 1 (or 2) of a small vessel is preempted, it should move towards the oppo-

site direction of machine 2 (or 1) in order not to interrupt any on-going or up-coming

operations of both machines. Then, if it is brought back into operation on machine

2 (or 1), it has to pass through the vessels occupying machine 1 (or 2) and this is

rather interruptive to operations in all two berths and is not a desirable situation.

2.5 Objective

The objective is to schedule jobs on two uniform parallel machines such that the

maximum tardiness of all jobs is minimized. By saying that a job is tardy, we mean

that it completes after its due date. The tardiness of a job, T, is defined as the

^

CHAPTER 2. OVERVIEW 16

lateness of the job, L, if it fails to meet its due date or zero otherwise:

T = max{0,L}, (2.1)

where the lateness of a job, L, when its due date is d and completion time is c, is:

L = c-d. (2.2)

Note that the lateness of a job can be negative, while its tardiness is always non-

negative.

The maximum tardiness, T^ax, under a schedule involving n jobs is defined as:

Tmax 二 max{Ti,T2, ...,Tj, ...,Tn}, (2.3)

where T) is the tardiness of job j for j = 1，2,..., n.

Since T^ax is our objective function, in the 7 field of the a | P | 7 notation is Tmax.

In summary, the problem we are investigating is Q2 | miXj,prmp | Tmax-

CHAPTER 2. OVERVIEW 17

2.6 An Illustrative Example

In this section, we will give an example to illustrate the model Q2 | miXj,prmp | Tmax

we described above.

Two machines, Mi and M2, are to work in parallel to process a group of n jobs

containing small and big jobs. The processing speeds of Mi and M2, Vi and V2 are

respectively:

vi = 1,

V2 = 2.

There are three small jobs and two big jobs where job j is denoted by J j , and

Ji, J2 and J3 are small jobs while J4 and J5 are %jobs . The processing requirements,

Pj, of the jobs are as follows:

Pi = 4;

P2 = 6;

P3 = 1；

P4 = 6; .

P5 = 12.

CHAPTER 2. OVERVIEW 18

And the corresponding due dates, dj, of the jobs are:

di = 3;

d2 = 8;

d3 = 2;

c?4 = 4;

ds = 5;

Small jobs Ji and J2 are non-dedicated small jobs while J3 is dedicated to Ma-

chine 1. The objective is to minimize the maximum tardiness:

Tmax = m a x { T 1 , T 2 , T 3 , T4 , T 5 } ,

where

Tj = max{0, Cj - dj} for j 二 1，2,…，5

in which cj and dj are the completion time and due date of job j.

As mentioned before, small jobs Ji and J2 can be processed by machine 1 or ma-

chine 2. If Ji is processed by machine 1, it will need a processing time pi/vi 二 4/1 二 4

to complete. Instead, if it is processed by machine 2, it will need a processing time

P1/v2 = 4/2 = 2. Similarly, one can obtain the processing times of J2 on machines

1 and 2. Small job J3 which is dedicated to machine 1 must occupy machine 1 and

CHAPTER 2. OVERVIEW 19

need a processing time ps/vi = 1/1 = 1. Finally, big jobs J4 and J5 will occupy both

machines simultaneously and require processing times p^ = p4 二 6 and 成 = P 5 = 12,

respectively.

By the assumptions, all the jobs are available at the beginning. All small job Ji,

J2 and J3 must be finished by the assigned machine throughout operation. Moreover,

big jobs J4 and J5 must occupy both machines simultaneously. One of the feasible

schedule:

Ml : Ji{t = 0 to 4)，J3{t = 4 to 5), J4{t = 5 to 11), J5(t = 11 to 23).

M2 : J2{t = 0 to 3), (idle for t 二 3 to 5), J4(t = 5 to 11)，J5(t = 11 to 23).

In the above schedule, Ji starts at t = 0 on machine 1 and completes at t = 4.

J2 starts at t = 0 on machine 2 and completes at t = 3. J3 starts at t = 4 on the

prespecified machine, Mi, and finishes at t = 5. Big job J4 starts on both machines

at t = 5 and completes at t 二 11, big job J5 starts on both machines at t = 11 and

finishes at t = 23. Note that M2, machine 2, is idle during the period t 二 3 to 5. The

tardiness, Tj, of the jobs can be obtained as follows:

Ti = max{0, Ci - di} = max{0,4 - 3} = 1;

T2 = max{0, C2 - d2} = max{0,3 - 8} = 0;

T3 = max{0, c3 - d3} = max{0,5 - 2} = 3;

CHAPTER 2. OVERVIEW 20

T4 = max{0, c4 - d4} = max{0,11 - 4} = 7;

T5 = max{0, c5 - d5} = max{0,23 一 5} = 18.

Thus the maximum tardiness among all jobs is:

Tmax = m a x { T 1 , T 2 T 3 T 4 T 5 }

二 max{l,0,3,7,18}

= 1 8 .

This means that the schedule, which satisfies all constraints, has a maximum tardi-

ness value equal to 18.

2.7 NP-Hardness

In this section, we discuss the complexity of our problem as to NP-hardness. For a

review on NP-hardness, please see [14 .

We can show that our problem is an NP-hard problem. Note that if we consider

‘ a problem with only non-dedicated small jobs involved, then the problem is actually

a Q2 II Trnax pioblem. Since later we will show that the optimal schedule should not

have any idle time or preemption inserted for Q2 || Tmax, the problem equivalent to a

non-preemptive case. The P2 || T âx problem is equivalent to P2 || L^ax except the

slight difference in the objective measure. As we mentioned earlier, the definition of

CHAPTER 2. OVERVIEW 21

the lateness of a particular job j, Lj, is given by:

Lj = Cj_d j , (2.4)

where Ci and di are the completion time and due date of job i，respectively. The

maximum tardiness of a schedule, Lmax，is given by:

Lmax = max{L1,L2, ...,Lj, ...,Ln} for j = 1,2, ...,71, (2.5)

where n is the total number ofjobs.

The P2 II Tmax problem, and the Q2 || T^ax, are not simpler than P2 || Lmax-

Furthermore, the problem we are investigating is not simpler than Q2 || Tmax. Since

P2 II Lmax is an NP-hard problem (see [22]), the problem under study is also NP-hard.

Chapter 3

Methodology

In this chapter, we will first briefly review the technique of Dynamic Programming,

the major tool we use to develop our algorithm. We will then analyze our problem

and discuss the key idea to solve our problem. Finally, the last section is a detail

description of our algorithm.

3.1 Dynamic Programming

Dynamic Programming (DP) is a useful mathematical technique for dealing with

multi-stage decision making problems. It provides a systematic procedure for de-

termining the optimal combination of decisions. It was proposed by R. Bellman in

the 50's, (see [2]). The two fundamental principles of DP are the principle of de-

composability and the principle of optimality. The first principle requires that the

22

CHAPTER 3. METHODOLOGY 23

problem be first decomposable into stages. Then the second principle guarantees an

optimal solution by applying an optimal policy at each stage. An optimal policy has

the property that whatever the initial stage and initial decisions are, the remaining

decisions must constitute an optimal policy with regard to the state resulting from

the first decision.

The basic features that characterize Dynamic programming consist of:

1. The problem is divided into stages and states with a policy decision required

at each stage for different states.

2. A recursive relationship is constructed which identifies the optimal policy for

stage z, if that for stage i — 1 is available.

3. The optimal value ofthe objective function is obtained by applying the recursive

relationship with initial conditions.

4. The optimal solution is obtained by backtracking.

In this thesis, we use DP approach to solve the Qm || T âx problem. The problem

is first divided into an n-stage of decision problem. The decision of which machine

the ith job should be assigned to is determined at the ith stage i = l,2,...,n. At

each stage there are different possible states represented by a set of state variables.

Each state variable corresponds to the completion time associated with one of the m

machines, while the m completion times are contributed by the total processing time

of the first i jobs at the zth stage. At each stage, the optimal decision for all possible

CHAPTER 3. METHODOLOGY 24

states are evaluated by applying a recursive relationship.

Finally, the optimal solution can be obtained by a backtracking procedure. There

is an optimal value associated with each possible state at the final stage, the nth

stage. The optimal value is given by the minimum among all possible states. The op-

timal decision for the nth job and optimal state for the n - 1th stage can be obtained

by tracing the expression which represents that decision in the recursive relationship

at the nth stage. The optimal decision for the n - 1th job can be obtained similarly

given the optimal state for the n - 1th stage. The process continues until a complete

solution is identified.

3.1.1 Problem Analysis

We now analyze our problem. There are three types of jobs we are dealing with,

namely, the non-dedicated small jobs, the dedicated small jobs, and the big jobs.

The non-dedicated small jobs have to be allocated to the available machines while

the dedicated small jobs and the big jobs just occupy respectively the prespecified

machines and both two machines simultaneously. Furthermore, for each machine, the

jobs have to be sequenced in a way that the objective value is minimized.

A question is whether we can do the allocation and sequencing separately. Let us

CHAPTER 3. METHODOLOGY 25

first look at our objective function:

minTmax = max{Tiax，^maxÎ (3.1)

where T^ax is the maximum tardiness of jobs assigned to machine i. For a given

allocation of jobs, if we can minimize both T^̂ x and T ^ the maximum tardiness

of the schedule is minimized. But how can we minimize both ^^x and T^ x̂- Since

each big job must occupy the two machine simultaneously, it may be the case that

a big job obeys the EDD (earliest due-date) rule on one machine but not on the

other. An EDD sequence is optimal to minimize the maximum tardiness as long

as the allocation of jobs in the machine is given, see [22]. We cannot guarantee

that each big job occupies both machines simultaneously and at the same time, it

obeys the EDD rule on both machines. Apparently, the existence of the big jobs

makes it infeasible to separate the optimal sequencing on machines from the alloca-

tion to the machines. A key idea in our approach to deal with tis problem is to split

the big jobs into one-machine jobs, and then restore them into a feasible one after

allocation and sequencing have all been completed. This idea will be elaborated later.

One characteristic of our problem Q2 | mixj,prmp | T^ax, which has been men-

tioned in section 2.7 of the last chapter, should be noted, which is the equivalence of

our problem to the Q2 || T âx problem when it contains only small jobs. First of all,

we know that when no big jobs are involved in our problem Q2 | mixj,prmp | Tmax,

it reduces to the problem Q2 | prmp | Tmax. The following Lemma then shows our

CHAPTER 3. METHODOLOGY 26

problem further reduces to Q2 || Tmax.

Lemma 1 No idle time or preemption is necessary for sequencing jobs on one ma-

chine to minimize maximum tardiness.

Proof. Consider when an idle time of duration, S, is introduced in a sequence of

jobs an one machine. All jobs following the idle time have their completion times

involving S. It is easy to see that their tardiness will be decreased by an amount [0,

S] if the time is removed. This means that inserting the idle time is unnecessary as

the objective value will not be increased without the idle time. On the other hand,

consider a schedule with a job Jj being preempted at time t and resumed processing

on the same machine after a time 6. Denote the time when Jj starts processing as

Sj and the time when it completes processing as Cj. If Jj delays its start time by S

and the jobs occupying the time duration from [t, t + J) are shifted to [sj, sj + S),

then Jj will occupy the machine in [sj + S, cj) without preemption. By doing so,

the completion time and thus the tardiness, of Jj is unchanged, while the completion

times of the jobs previously occupying the machine at [t, t + S) are decreased and

, thus their tardiness is not increased. This means job preemption is also unnecessary.

Thus the Lemma is proved.D

«

CHAPTER 3. METHODOLOGY 27

3.2 Key Idea to solve the problem

In this section, we will discuss our main idea to develop an algorithm to solve our

problem. The details of the algorithm and the proof of the theorems will be given in

the next section.

We solve our problem in two phases. In the first phase, we develop a dynamic

programming algorithm to solve the Qm || T^ax problem. Then in the second phase,

we formulate a problem, which is a Q2 || Tmax problem, by relaxing some constraints

of our problem Q2 | miooj,prmp | Tmax- The optimal value of the Q2 || Tmax problem

is proved to be a lower bound of our Q2 | miXj,prmp | Tmax problem. We then

apply the algorithm developed in Phase 1 to solve the Q2 || T^ax problem. After

that, the solution for Q2 || T âx is adjusted to make it become a feasible solution for

Q2 I miXj,prmp | Tmax-

In our approach, the key idea is a split of each big job into a pair of dedicated

jobs, each to one machine. This makes the multiprocessor task scheduling prob-

lem Q2 I mixj,prmp \ Tmax into a traditional one-processor task scheduling prob-

lem Q2 II Tmax, which is solvable by dynamic programming. After the solution to

Q2 II Tmax is obtained, we then restore each pair of the split dedicated jobs into a big

two-processor job. As we can prove that the restoring operation does not increase

the maximum tardiness, the solution after the restoring operation becomes feasible

to Q2 I miXj, prmp \ Tmax，and is optimal.

CHAPTER 3. METHODOLOGY 28

3.3 Algorithm

In this section, we present our algorithm. As discussed in the last section, we tackle

the problem Q2 | mixj,prmp | Tmax by a two-phase approach..

3.3.1 Phase 1

It is well known that (see [13]) the maximum tardiness of jobs processed by one

machine is minimized by the Earliest Due Date {EDD) Rule:

d[i] < d[2] < . • -d[n],

where d[j] is the due date of the jth job in the sequence of n jobs. In this case, the

problem is easy to solve, as an EDD sequence can be constructed in 0(nlogn) time.

However, if the problem involves more than one machine, its difficulty is totally dif-

ferent, wince we will have to deal with not only the sequencing of jobs on a machine,

but also the allocation of jobs to the different machines. The dynamic programming

algorithm we develop will deal with the allocation part. Each job will be allocated

to one of the available machines and each machine will have a set of allocated jobs.

After an allocation of jobs to the machine is obtained, all we have to do is to schedule

the jobs allocated to each machine in EDD order such that the maximum tardiness,

CHAPTER 3. METHODOLOGY 29

T^ax is minimized.

Although the main purpose of this thesis is to solve a two-machine problem, the

first phase of our approach can be applied to any m-machine problem. In the fol-

lowing we will describe an algorithm for solving the m-machine problem first.

Dynamic Programming

We first re-index the jobs in Earliest Due Date {EDD) order, namely, the jobs

are re-arranged such that:

di < d2 < ... < dn,

where dj is the due date of the jth job. Our dynamic programming algorithm can be

described as follows.

Stage : We first divide the problem into stages 1,2, ...,n. Stage j corresponds to

the decision of which machine job j should be assigned to. At stage 1, the allocation

o f job 1 is considered, and at stage 2, job 2. This continues until all the n jobs are

considered.

State : At each stage, there are a number of possible conditions which are repre-

sented by state variables. In our problem, at every stage there are m latest completion

times, each corresponding to one of the m machines. We denote the completion time

on machine i by ti.

CHAPTER 3. METHODOLOGY 30

Recursive Relationship : Define fj(h,t2,.",tm) as the minimum Tmax given that

we have assigned jobs 1,2, ...J to the machines, and the total processing time on

machine i (equal to the latest completion time on machine i) is U for i = 1,2, .",m.

Then we can see that:

fj(tut2,...,tm) = min {max{/j_i(ti,t2, •••, U-Pj/vi,..., tm), max{0, U-dj}}}. (3.2)
l<i<m

The above equation is obtained based on the following argument. At stage j, we

have a set of latest completion times on of the m machines, h,h, ...,^m. If job j is

processed by machine i, then the tardiness for job j should be:

max{0, ti — dj}.

And the processing time of job j if it is processed by machine i is given by:

% = ^ , (3.3)
Vi

and thus the latest completion time on machine i at the previous stage, i.e. after job

j — 1 is assigned, is:

U - ^ . (3.4)
Vi .

The recursive relationship should give an optimal return at stage j given the set

CHAPTER 3. METHODOLOGY 31

of values t1,t2, ...,^m- Since the tardiness o f j ob j is max{0, U - dj}, and the maxi-

mum tardiness of other jobs is f j - i { tu 力2，•", U-Pj/vi,…，^m), we obtain the recursive

relationship equation 3.2.

The above recursive relationship applies to all non-dedicated jobs. If job j is

dedicated to machine i, no comparison between allocations to different machines is

needed as job j must occupy machine i. In this case, the recursive relation becomes:

/j(t1,t2,..., tm) = max{/^_i(ti, t2, ."，ti - pj/vi,..., tm),rnax{0, U - dj]}. (3.5)

Ranges of Values for U ,s : Each U corresponds to the latest completion time of

machine i. When all machines are identical (in this case, we can assume the speed

Vi 二 1，Vz), job j will need to be processed on a machine with a processing time equal

to the processing requirement pj. At stage j where jobs 1，2, ...,j have been assigned

to the m machines, the total processing requirement, Pj, of jobs 1, 2, ..., j, is given

by：

Pj - E Pk- (3-6)
k=l

Let Uij denote the set of jobs processed on machine i at stage j. At stage j, the total

processing time for the jobs in Uij is equal to the latest completion time associated

with machine i, ti：

U = Y^ Pik
JkeUij

= E p^ (3-7)
Jk^Uij

CHAPTER 3. METHODOLOGY 32

Thus at each stage j, we have:

亡工+“ + … + 亡 爪 = Y l Pfc+ Yl Pfc + m+ Yl Pk
JkeUij JkeU2j JkeUsj

二 Pj. (3.8)

Now consider the case when the machines have different processing speeds. The total

processing requirement at stage j, Pj is again given by:

Pj=tp^- (3.9)
fc=i

Each job j processed on machine i now has a processing time pij 二 pj/vi. Again, let

Uij denote the set of jobs processed on machine i at stage j. The total processing

time of the jobs in Uij is given by:

E v ^ Pk

Pik = ^ -
JkeUij Jk^Uij�i

E Pk
= : ¾ - , (3.10)

Vi

Since the total processing time of the jobs in n̂ ^ is equal to the latest completion

time on machine i, U, we can determine the relationship between the total processing

requirement of the jobs in Uij and ti, as follows:

U = Y1 lPik
Jk^Tlij

CHAPTER 3. METHODOLOGY 33

E Pk
= ^ _ . (3.11)

Vi

Or:

U X Vi = Y1 Pk (3.12)
Jk^Uij

Thus the total processing requirement at stage j, Pj, is given by:

Pj = E Pk+ E Pk + -+ E Pk
JkeUij JkeU2j Jk^^mj

= t i X i ; i + b X ^ ; 2 + � + f m X ? ; r n (3-13)

In particular, the value of U can be written as:
Pj- E h X Vk

二 _ _ k = ^ . (3.14)
Vi

We know from equation (3.13) that there is an upper bound for the values of the

latest completion times ti,s for each stage j. First, it is clear that:

U > 0, Vi = l,2,...,m. (3.15)

For machine i, the maximum value of U is bounded above by equation (3.14) such

CHAPTER 3. METHODOLOGY 34

that: ._̂
Pj- E h X Vk

U < " " ^ . (3.16)
— Vi

Thus at each stage j, we have to consider the following possible values for Us:

i-l
u = 0,1，2，..” {Pj- Y . tk X Vk)/Vi. Vz = 1,2，...，m - 1 (3.17)

k=i

Given U, i = 1,2,..., m - 1, tm is fixed by the following:

m—l
Pj- E U X Vi

tm = ~ ~ ^ . (3.18)
Vm

Initial Conditions : Clearly we should have:

Mti,h,...,ti”",tm) = Q yti = 0, 2 - l , 2 , . . . , m . (3.19)

And

/o(ti,t2,-..,ti,-..,tm) = oo yti ^ 0, i = l,2,...,m. (3.20)

CHAPTER 3. METHODOLOGY 35

Optimal Value : The optimal value, Tmax, is given by:

Tmax = m i n { / , (t i , b , . . . , t m) } . (3.21)

Optimal Solution - Back Tracking : To obtain the optimal schedule, we have to do

a back tracking. The procedure starts from the final stage. At each stage the optimal

decision for that stage is identified as the decision that gives the optimal value at that

stage.

The whole algorithm can be now described as follows:

Algorithm 1

Step 1: Re-index all jobs in Earliest Due Date (EDD) order.

Step 2: Set /o(ti,b,".,ti,".,t^) according to the initial condition given.

Step 3: For j = 1 to n,

ti = 0 to Pj/vi,

t2 = 0 to {Pj - ti X Vi)/Vi,

m - 2
tm-1 = 0 to { P j - E U X Vi)/Vm-l,

i=l m—1
Set tm = { P j - E U X Vi)/Vm,and

i=l

ifjob j non-dedicated, compute:

fj{tut2,...,tm) = min {max{/^_i(ti, ^, - , U - Pj/vi,..., tm), max{0, U - dj}}}.
l< i<m

CHAPTER 3. METHODOLOGY 36

else compute: (job j is dedicated to machine i)

fj(h,t2, ...，tm) = max{/—i(ti,t2，..., U - Pj/vu …，tm),rnax{0, U — dj}}.

Step 4： Set the optimal Tmax as the minimum of all fn over all U：

TmSiX =^ pin {fn{tl,h,---,tm)}-tl 5t2vj^m

Step 5: Obtain the state variables, t^,tJ, ...,C, for stage n, where:

T m a x 二 ， p i n {fn{tl,t2: . . . , ^ m) }

tl ,t2”"，tm

—/n(^l5 2̂ 5 •••' ^m)

Step 6: For j = n to 1, do the following: (Generate the optimal schedule by

back-tracking.)

Ifjob j is non-dedicated, assign job j to machine i if:

fj{tit{,..., tU = max{/^_i(ti, 4,..., t{ - pj|vi,…,t{J, max{0, tj — dj}}

else assign job j to the prespecified machine.

Ohtain the state variables, t{~\4~\ ...,P?，for stage j:

^ (� 4 . " , t i J = max{/—i(ti-i’4-i,...，47i)，max{CMi-dJ},

CHAPTER 3. METHODOLOGY 37

where job j is assigned to machine i.U

The Complexity of the Algorithm

There are m variables U at each stage, and each U is bounded by Pj/vi for i =

1,2,..., m - 1，which is the case when all jobs are processed by machine i. The value

of tm can be obtained from equation (??). If there is a total of n jobs, the optimal

value is the minimum obtained in the nth stage, namely,

Optimal value = min {fn{ti,t2,..-,tm). (3.22)
tl ,t2,...tm

Thus the algorithm has complexity 0(nP^"^), where P is the total processing re-

quirement of the n jobs.

3.3.2 Phase 2

Formulation of a New One-processor Problem

Consider a problem, which is identical to our problem Q2 | miXj,prmp | Tmax ex-

cept that the big jobs are not necessary be processed simultaneously on both machines.

We call this Problem 1. Although preemption is allowed in Problem 1, the constraint

that all small jobs must be processed by one machine still applies. Clearly, the opti-

mal value of Problem 1 is a lower bound of that of our problem Q2 | miXj,prmp | Tmax

since a constraint in our problem is relaxed in Problem 1.

CHAPTER 3. METHODOLOGY 38

Problem 1 is equivalent to Q2 || Tmax problem

In Problem 1, we can consider each big job as having two "parts", one is processed

by machine 1 and the other by machine 2. The two parts must spend the same time

on each machine, which should be equal to that of the original big job. Note that

in Problem 1, the two parts need not occupy both machines simultaneously. We can

treat each of the big job in Problem 1 as two separate dedicated small jobs. This is

achieved by spliting each big job into a pair of dedicated small jobs, with one being

dedicated to machine 1 and the other to machine 2. Each split job has the same pro-

cessing time and due date as the original big job. Note that for each pair dedicated

small jobs, the processing requirements have to be computed such that when they

are put on the prespecified machine, the processing time required will be equal to

that of the original big job. The following gives an example on how this is computed.

Example : Let big job j has processing requirement pj = 6 and a due date dj 二 4.

Suppose the processing speeds of the two machines, vi and V2, are 1 and 2 respectively,

and the speed of the two machines, when a big job is processed simultaneously, is

<̂3 = 3. The processing time of big job j, pJ should be:

.6 — Pl
Pj — J v3

—6
= 3 .
= 2

When big job j is split into two dedicated small jobs Jk and J/, with Jk dedicated

CHAPTER 3. METHODOLOGY 39

to machine 1 and Ji dedicated to machine 2, both small jobs should have due dates

dk = di = 4 and processing times pik 二 P2i = 2. Then the processing requirements

for jobs Jk and Ji, denoted as pk and pi, are:

Pk

PU = V,

=,2 = f

=^ Pfc = 2,

and

pl
P2l 二 — V2

4 2 - 色
^ 丄 — 3
4 Pi = 6.

Now, Problem 1 consists of a set of dedicated and non-dedicated small jobs since

all big jobs are split into dedicated small jobs. As indicated in section 3.1.1，Problem

1 is actually equivalent to the Q2 || Tmax problem. Hence, its solution can be obtained

by applying the algorithm developed in Phase 1.

Adjustments to Big Jobs

In an optimal schedule of Problem 1 obtained by algorithm 1, each pair of the

dedicated jobs corresponding a same big job may not start and finish at the same

times. We now introduce an adjustment, to move such a pair of jobs to occupy the

CHAPTER 3. METHODOLOGY 40

same time slot on both machines. Consider a hig job, split into two small jobs with

one dedicated to machine 1 and the other to machine 2 respectively. If the two split

jobs are not scheduled to start and complete at the same times, see figure 1, then

there is one, say, job a，which starts and completes earlier than the other, job b.

Adjust job a and the sequence ofjobs following job a to start at the starting time of

job b, see figure 2. There will be a gap between the old and the new starting time of

job a. Let the length of the gap be 6. The gap 0 can be filled by a subsequence of

jobs following job a, with length 6, and the remaining subsequence will shift to start

earlier right after job a, see figure 3. Note that the remaining subsequence ofjobs are

unchanged before and after the adjustment described.

Algorithm 2

The following is the algorithm for solving our problem Q2 | miXj,prmp | Tmax.

Step 1: Split each big job into a pair of dedicated small jobs, one dedicated to

machine 1 and the other to machine 2. Both have the same processing times and due

dates as the original big job.

Step 2: Call Algorithm 1，to obtain the optimal schedule to the new problem with

only one-processor jobs (Problem 1).

Step 8: Adjust each pair of dedicatedjohs corresponding to a same big jobs to start

and complete at the same time as described above such that all big jobs occupy both

machines at the same time.n

CHAPTER 3. METHODOLOGY 41

Machine 1: ^

I ^ I 1 I, L , I I II M ^ M
\ _ ^ split parts, a and b, ^ \ _ split parts, c and d, 一 split parts, e and f,

from big job X from big job Y / from big job Z

Machine 2: /

fe piiMj j I I^^B3ZZ
/

Figure 3.1: Optimal schedule for the original set of small jobs and the set of split
dedicated small jobs

Machine 1: ^

z t - I - I I h I Z 3 1 Z Z n J M ^
Idle time: 0 \ ,. ^ . . . / /

\ … 乂 spht partsof^.g / split parts of /

L ^ j o b x joby / 4jobz _ /
Machine 2:

b d j !IHHt>i_
Figure 3.2: Adjust job i and the sequence of jobs following job a to start at the time
job b does

CHAPTER 3. METHODOLOGY 42

厂 job i is

I preempted \

Machine 1: , \ ^

“ ^ ^ I Zfl̂ B̂̂
f i T ; \ _ bigjohX \ _ split parts of big \——spl i t parts of big
Idletime:e ^ | jobF jobZ

Machine 2:

I I I b 1 1 J I j I ~ r ^ ^ ^ B m ^
f

Figure 3.3: The gap 0 is filled by a subsequence ofjobs following job a, with length
沒，and the remaining subsequence is shifted to start right after job a. Note that the
remaining subsequence ofjobs are unchanged before and after the adjustment

广 job i is

/ preempted \
Machine 1: / \ ^

I I I ' V i ' v l T

Machine 2: r

~ ~ ~ ~ r r ^ ~ ~ i l ~~II — _
^_ __^^^HL_

_ _ _ _ L J 丨丨； l | ' ~ " ' \ ^ ~ ' /
j o b " s L j o b i H s 」

preempte J preempte
d . d

Figure 3.4: All big jobs processed simultaneously in both machines

CHAPTER 3. METHODOLOGY 43

Theorem 2 The schedule obtained from Algorithm 2 is optimal to our problem, Q2

miXj,prmp 丨 T^ax.

Proof. We prove the theorem by considering the jobs which have been moved

during an adjustment. First let us compare the tardiness of the big job before and

after the adjustment. Let the small jobs split from big job j complete at c] on

machine 1 and cj on machine 2. The tardiness of big job j, Tj, before the adjustment,

is given by:

Tj = max{0, c] — dj, c^ — dj}

= m a x { 0 , max{c],c^} - dj}. (3.23)

After the adjustment, both small jobs completes at Cj, where:

c , -max{c] , c|} . (3.24)

So the tardiness of big job j after adjustment is:

T j=m^x{0 ,C j -d j } . (3.25)

Clearly, Tj 二 Tj and thus the tardiness of all the big jobs are not increased after the

adjustments. Secondly, let us consider the jobs followingjob a. They are shifted to be

finished earlier and thus their tardiness are not increased, see figure 3. Furthermore,

none of the completion times all other jobs have been changed, thus their tardiness

CHAPTER 3. METHODOLOGY 44

before and after adjustment remain the same. From the above, we can see that we ob-

tain a feasible solution with an objective value that achieves a lower bound. Clearly,

this is an optimal solution.D

Remarks

Since each pair of dedicated jobs split from the big jobs share the same due date

after the first step of algorithm 2, they will be ordered consecutively after the EDD

re-indexing. In applying Algorithm 2, we can modify, to save computing time, the

recursive relationship for big job j as a combination of both split small jobs:

fj{tut2) = max{/,_i(ti - p5,t2-p-),max{0,ti — dj,h _ dj}}. (3.26)

The back-tracking process may also been modified accordingly.

The Complexity of the Algorithm

There are 2 state values, ti and t2, at each stage, The value of ti is bounded by

Pj/vi (see equation 3.17), while the value of t2 can be obtained from equation (??).

If there are a total of n jobs, the optimal objective value is the minimum obtained at

the nth stage:

Optimal value =min {fniti^h)}- (3.27)
t1,t2

It is not hard to see that the time complexity of the algorithm is 0{nP), where P is

the total processing requirement of the n jobs.

CHAPTER 3. METHODOLOGY 45

Note that the complexity involved in each adjustment of the big jobs is of the

order 0{n) and thus the time complexity of Algorithm 2 remains 0{nP).

•

•*

Chapter 4

Extensions

In this Chapter we will discuss some related problems including some solvable cases,

set problems, and the A:-machine problem. We will tackle each case by applying the

ideas we have used to solve our main problem.

4.1 Polynomially Solvable Cases P2 | miXj,prmp,pj 二

P Tmax

We now consider the problem in which the processing requirements for all small jobs

are the same, namely, pi = p, and the two machines are identical, that is, Vi = V2.

Without lost of generality, assume Vi = v2 二 1. Then, each job will have a processing

time equals to its processing requirement. In this case, the optimal solution can be

obtained efficiently by using a dynamic programming approach.

46

CHAPTER 4. EXTENSIONS 47

In solving this problem, we will use a similar idea to split each big job into a pair

of dedicated small jobs with the same processing time and due date as the original

big job. The problem again becomes a P2 \ prmp,pj = p \ Tmax problem. However,

this time in the dynamic programming, we only need to consider the number of small

jobs allocated to machine 1 at each stage. The algorithm is explained in details below.

4.1.1 Dynamic Programming

Again, we first re-index all small and big jobs in EDD order.

Stage : The problem is divided into stages 1,2, ...,n. Stage j corresponds to the

decision of which machine job j should be assigned to.

State : At each stage, there are a number of various possible conditions which is

represented by a state variable rii, which is the number of small jobs allocated to

machine 1.

Recursive Relationship : Let Nj be the number of small jobs in the set {1,2，...，j}.

Define fj{rii) as the minimum Tmax given that we have assigned jobs {1,2,..., j}. Now

we have the following recursive relationship:

Case 1: i f job j is dedicated to machine 1，then

fj{ni) = max{/^_i(ni - 1), max{ti - dj, 0} } (4.1)

CHAPTER 4. EXTENSIONS 48

Case 2: if job j is dedicated to machine 2，then

fj(ni) = max{/,_i(ni),max{t2 - ¢^,,0}} (4.2)

Case 3: if job j is a big job, then

fj{ni) = min{max{ti - dj, t2 一 dj, 0}，fj-i{ni)} (4.3)

Case 4: ifjob j is a small job and can be processed by either machine 1 or 2，then

fj{ni) = min{max{/^_i(ni - l),max{ti - ti^,0}}, (4.4)

max{/j_i(ni), max{̂ 2 - dj,0}}}

At each stage j, we have rii small jobs allocated to machine 1，and ti and t2 are

the latest completion times on machine 1 and 2, respectively. Note that the number

of small jobs assigned in machine 2 at the jih stage is equal to Nj — rii. Then the

latest completion times on machines 1 and 2 are equal to the total processing times

on both machines, namely,

tl = riip + Pj , for machine 1, and (4.5)

t2 = { N j - n i) p + P^ for machine 2; (4.6)

where P- is the sum of the processing times of the big jobs in {1,2, ...，j}.

CHAPTER 4. EXTENSIONS 49

If job j is processed by machine i, then the tardiness for job j should be:

Tj = max{0,ti-c?)}. (4.7)

If job j is processed by machine 1, then there will be rii - 1 small jobs processed by

machine 1 at stage j 一 1, thus the tardiness for jobs {1, 2, ...,j - 1} is given by:

/ , - i (n i - l) . (4.8)

Conversely, if job j is processed by machine 2, then there will be n： small jobs

processed by machine 1 at stage j - 1，thus the tardiness for jobs {1, 2, ".,j - 1} is

given by:

fj-i{ni). (4.9)

Ranges of n： ; The range of rii is to cover all the possible states for each stage j.

Clearly:

m = 0 , l , . . . , M , , (4.10)

where Mj is equal to the sum of the small jobs dedicated to machine 1 and the non-

dedicated small jobs in {1, 2, ... ,j}.

Initial Condition .

CHAPTER 4. EXTENSIONS 50

The initial condition is given by:

/o(ni) = 0, forni = 0; (4.11)

/o(ni) 二 00, Vm ^ 0; (4.12)

and

M - 1) = oo. (4.13)

Optimal Value : The optimal value, T^ax, is given by:

Tmax =min {/n(ni)}. (4.14)

Optimal Solution : Similar to our main problem we can obtain the optimal solution

by back tracking. The optimal decision of the allocation of job j is given by the

decision that gives the minimum objective value. At stage j, the optimal decision is

that job Jj is allocated to machine 1 if:

/ , K) =min {fj{m)} (4.15) '̂ 1

and ‘

/ , K) = max{/,_i(ni - l),max{0,^i - ¢/,}}; (4.16)

CHAPTER 4. EXTENSIONS 51

or it should be allocated to machine 2 if:

/ , K) -min { / , (m) } (4.17)
711

and

f j K) 二 max{/,_i(ni),max{0,t2 — dj}}., (4.18)

where n�is the value of ni such that fj{ni) is minimized for all possible ni.

The dynamic programming formulated above will solve P2 | pj = p | T âx op-

timally. By introducing the adjustment as described in Chapter 3, the following

algorithm solves the problem, P2 \ miXj,prmp,pj = p | Tmax :

Algorithm 3

Step 1: Split each big job into a pair of dedicated small jobs, one dedicated to

machine 1 and the other to machine 2. Both have the same processing times and due

dates as the original hig job.

Step 2: Re-index all jobs in Earliest Due Date (EDD) order.

Step 3: Set /o(ni) = 0 for all ni.

Step 4' For j = 1 to n,

ni = 0 to Mj,

Compute the values of ti and t2 ：

ti = nip + P/;

CHAPTER 4. EXTENSIONS 52

t2 = {Nj-ni)p + P^.

Ifjob j a non-dedicated small job, then:

fj{ni) = min{max{/j_i(ni - l),max{ti 一 dj，0}},

max{/j_i(ni), max{t2 — dj, 0 } } }

else ifjob j is a small job dedicated to machine 1, then:

fj{ni) = max{/j_i(ni - l),max{ti 一 dj,0}}

else ifjob j is a small job dedicated to machine 2, then:

fj[ni) = max{/j_1(n1),max{t2 一 dj,0}}

else ifjob j is a big job, then:

fj{rii) == min{max{ti - dj,t2 - dj,Q],fj-i{rii)}

Step 5: Set the optimal value, Tmax, as the minimum of all fn over different ni：

Tmax =min {fn{rii)}.
72l

•

CHAPTER 4. EXTENSIONS 53

Step 6: Compute the state variable n^ for stage n such that:

T m a x 二 min {fn{ni)} ni

= f n K) -

Step 7: Compute the values of t? and 坊 :

n = < P + n̂；

t^ = {Nn-n,)p^P^.

Step 8: For j 二 n to l,(Generate the optimal schedule by back-tracking.)

Ifjob j is a small job,

Ifjob j is non-dedicated,

assign job j to machine 1 when:

fj{n{) 二 max{/j-i(n{ - l),max{0,t^ - dj}}

else assign job j to machine 2 if:

fj{n{) = max{/j_i(ni),max{0, t{ - dj}}

else assign job j to the prespecified machine.

Set the state variable n{~^, t{'^and t{'^for stage j - 1:

CHAPTER 4. EXTENSIONS 54

If the job j is assigned to machine 1, then

n{_i 二 n{ - 1;

t{- ' = t { - p ;
• 1 •

+3-1 _ fJ &2 — 2̂-

else

7 - 1 j
rii 二 n\ ；

+j-i — f j . 1̂ — l̂5

4~1 = 4-p.

else if job j is a big job, assign job Jj as a pair of dedicated small jobs

to machine 1 and 2 respectively.

Set the state variable n{~^, t{'^and t{'^for stage j - 1;

n{~^ 二 n{]

t{-' 二 t i - p $;

t{-' = i - p] .

where pJ is the processing time ofjob j.

Step 9: Adjust each pair of dedicated jobs corresponding to a same big job to start

CHAPTER 4. EXTENSIONS 55

and complete at the same time as described in Chapter 3 such that all big jobs occupy

both machines at the same time.O

Time Complexity of the Algorithm

Note that rii has a maximum range of Mj which is bounded by n, the total number

of small and big jobs. Also, similar to the case with different processing times, the

adjustment for the big jobs needs a time 0{n). Thus, it is not hard to see that the

algorithm has a time complexity 0{n^).

4.2 Set Problem P2/setj, prmp/T^ax

In this section, we consider the P2|setj,prmp|T^ problem, which involves set jobs,

as an extension for the Q2/mixj,prmp|T^ problem. This problem is interesting it-

selfbecause it includes two special cases, P2|fioCj,prmp/T^ and P2|sizej,prmp|T^.

In Q2|setj,prrrvp|T^ problem, jobs can be classified into 7 categories:

1. Small jobs dedicated to machine 1 only.

2. Small jobs dedicated to machine 2 only.

3. Big jobs dedicated to both machines.

4. Small jobs that can be processed by either machine 1 or machine 2 only.

5. Set jobs that can be processed by either machine 1 only or by both machines.

6. Set jobs that can be processed by either machine 2 only or by both machines.

CHAPTER 4. EXTENSIONS 56

7. Set jobs that can be processed by either machine 1 only, or machine 2 only or

by both machines.

For the set problem, we only consider the case where the processing speed, if a job

is processed by two machines, is equal to {vi^-v2), with vi and V2 being the processing

speeds of machines 1 and 2，respectively.

4.2.1 Processing times for set jobs

In our main problem, the jobs in categories 1, 2, 3 and 4 are considered. We now con-

sider the processing times for jobs in categories 5, 6 and 7 when they are processed by

different sets of machines. The formulation is analogous to that ofjobs of categories

1 to 4 in our main problem.

First let us consider job j which belongs to category 5. If Jj has processing

requirement Pj then when it is processed by machine 1, its processing time is given

by：

Pij =枉. (4.19)
Vl

Its processing time when processed by both machines is similar to that of a big job:

Puj = - ^ . (4.20)
Vl + V2

CHAPTER 4. EXTENSIONS 57

Similarly, if Jj belongs to category 6 and is processed by machine 2, its processing

time is given by:

P2j =也. (4.21)
V2

And when it is processed by both machines, its processing time is:

Puj = ~ ^ . (4-22)
J Vi + V2

Furthermore, if Jj belongs to category 7，its processing time when processed by

machine 1, pij, machine 2, j>2j, or by both machines, puj, are respectively given by:

Pj
Pij =—； Vl

P2j = ^; (4-23)
V2

Pj
Pl2j = ： •

Vl + V2

As we can see, if we put some processing times equal to infinite, category 7 covers

all possible cases. For example, job j which belongs to category 1 has the following

processing times:

Pj
Pij = ^ '

P2j = oo; (4.24)

Puj = oo.

CHAPTER 4. EXTENSIONS 58

If j belongs to category 3，the processing times are:

Pij = 00；

P2j = 00; (4.25)

Pj

pi2j = ;̂rT̂ -

Similarly for jobs from other categories, each job j will have a set of processing times,

pij , p2j and pi2j. Hence in the dynamic programming below, we just need to consider

category 7.

4.2.2 Algorithm

The algorithm for solving our main problem, Q2/miXj, prmp/Tmax is applicable to

give the optimal solution for the set problem. Note that the processing times for

set jobs vary when they are processed by different set of machines, for job j, its

processing time is pij and p2j when processed by machine 1 and 2 respectively, and

Pii2 when processed by both machines simultaneously.

Consider a problem which is the same as the original set problem except that

when jobs are assigned to be processed by both machines, they need not be processed

simultaneously on both machines. We call this Problem 2. The EDD property also

CHAPTER 4. EXTENSIONS 59

applies to the optimal solution of Problem 2. Note that the optimal solution to Prob-

lem 2 is a lower bound to that of Q2|seij,pTmp|T^. We will first solve Problem

2, and then similar to the problem Q2/miXj,prnvp/Tm^, we can adjust each pair of

dedicated small jobs split from the same big job such that all big jobs are processing

simultaneously on both machines. The following Dynamic Programming will solve

Problem 2 optimally.

Dynamic Programming

Re-index all small, big and set jobs in EDD order.

Determination of Processing Times and Processing Requirements

Compute the processing times ofjobs in different categories.

Case 1, if job j is from category 1, then

Pj
Pij = 一；

Vl

P2j = OO； (4.26)

Pi2j 二 oo-

Case 2, if job j is from category 2, then

Pij = oo;

P2j = ^ ; (4-27)
V2

Pl2j = OO.

CHAPTER 4. EXTENSIONS 60

Case 3, i f job j is from category 3, then

Pij 二 oo;

P2j = CO； (4.28)

Pj
Pi2j = ^;7T^.

Case 4, i f job j is from category 4, then

Pj
仍 ） = ^ '

P2j = ^ ; (4-29)
V2

PUj = oo.

Case 5, i f job j is from category 5，then
Pj

Pij = — ； Vl

P2j = oo; (4.30)

Pj
Pi2j = ^7T^-

Case 6, i f job j is from category 6, then

Pij = oo； ‘

P2, 二 ^； (4.31)
V2

Pj
P U j 二 ~ ~ ： ~ ~ •

Vl + V2

CHAPTER 4. EXTENSIONS 61

Case 7，if job i is from category 7，then

Pj
Pij = ？

P2j = ^ ; (4.32)
V2

Pj
Pi2j 二 ^ T ^ -

Recursive Relationship

The recursive relationship is as follows:

fj(t1,t2) = min{max{/j_1(t1-pij,t2),max{O,t1 - dj}},

max{/j_i(ti,t2 - p2j),max{O, t2 - dj}}, (4.33)

max{fj-i{ti — pi2j, h - Pi2j), max{0, h — dj, t2 _ dj}}}

In addition, let:

fj{ti, t2) = 00 if ti = - 0 0 or t2 = -00. (4.34)

The algorithm for solving Problem 2 is given below.

Algorithm 4

Step 1: Re-index all jobs in Earliest Due Date (EDD) order.

Step 2: Define the processing times, pij, p2j and puj for all jobs as above"

Step 8: Set f0(h,t2) to be zero when both ti and t2 are equal to zero, and infinity

CHAPTER 4. EXTENSIONS 62

otherwise.

Step 4'' For j = 1 to n,

ti = 0 to Pj/vi,

Set t2 = {Pj - h X v1)/v2.

Compute:

fj{t1,t2) = min{max{/^_i(ti - pij, t2), max{0, h - dj} } ,

max{/j_i(ti,t2-P2j),max{0,t2 一 dj}},

max{/j_i(ti -Pi2j,^2-Pi2j),max{0,ti — dj,t2 - dj}}}

Step 5: Let:

Tm̂ ^ =min {/«(^1,^2)}-
t1,t2

Step 6: Compute the state variables，t^,t^, for stage n such that:

T m a x = m i n { / n (^ ! , ^) }
tl,fc2

— f n {ti，,2)

Step 1: For j = n to 1，(Generate the optimal schedule by back-tracking.)

Assign job j to machine 1 if:

fj{t{,t{) = max{/j_i(ti - pij, ti), max{0, t{ - dj}}.

CHAPTER 4. EXTENSIONS 63

Compute the state variables，t{~^, t{ ；̂

t{-' = t{-Pif

2̂ ~ 2̂.

Else assign job j to machine 2 if:

fj{tlti) = max{/,_i(ti,t^2 - P2j), max{0,4 - dj}}.

Compute the state variables, t{'^,t{"^,

t{-' = i-.

t^-l 二 4 - P2j-

Else assign job j to both machines where:

fM^i) 二 max{ /—i (t i -p i2h4-Pi2 jO , m a x { 0 , ^ - djA - dj}}}. (4.35)

Compute the state variables, t{~^,4~^；

ti—i = t{ -pi2j]

C~1 二 2̂ -Pl2j'

Step 8: Adjust each pair of dedicated jobs corresponding to a same big jobs to

CHAPTER 4. EXTENSIONS 64

start and complete at the same time such that all big jobs occupy both machines at

the same time.O

Time Complexity of the Algorithm

There are two state variables, ti and ^, at each stage. Each ti has a maximum

range of Pj/vi, see equation (3.17), and t2 can be obtained from equation (??). Thus,

it can be seen that the algorithm has complexity 0{nP), where P is the total pro-

cessing requirement of the n jobs.

4.3 A;-Machine Problem with only two types of

jobs

In this section, we will study A:-machine problem with only two types ofjobs, small

and big jobs. Small jobs refer to regular jobs and can be dedicated or non-dedicated,

while a big job must be processed by the k machines simultaneously. A pseudo-

polynomial algorithm is given below to solve the problem.

When each big job is split into k small jobs dedicated to each of the k machines,

the problem becomes a Qk || T âx problem. We can obtain the optimal solution by

CHAPTER 4. EXTENSIONS 65

applying Algorithm 1 in chapter 3 with the recursive relationship modified as follows:

fj{tut2,:.,tk) =min {maix{fj-1{t1,t2,..;ti-pj/vi,.. . ,tk),max{O,ti-dj}}} (4.36)
1 ̂CîCAi

However, in this case we have to ensure that each big job is processing simultane-

ously on k machines. The adjustment described in chapter 3 should be applied such

that all split small jobs from the same big job have to start and complete at the same

time. For each big job, there are at most k - 1 adjustments, thus the time complexity

needed by the adjustment for all the big jobs is 0{bk). In general, the algorithm for

solving this A;-machine problem has a time complexity 0{nP^~^).

The big jobs must be A;-machine jobs in order that the algorithm above can be

applied. This is because the adjustment cannot be applied to multi-processor jobs

which occupy less than k machines. Two, or more, split jobs may compete for the

same time slot on the same machine. For example, consider a problem where there are

three machines and jobs involved may occupy one, two or three machines. Suppose

that the multi-processor jobs are split into dedicated small jobs and Algorithm 1 is

applied. Assume big jobs p and q are two-machine jobs. The pair of split jobs, p^ and

p2, from job p are assigned to machine 1 and machine 2 while that from job q, job q^

and job q\ are assigned to machine 1 and machine 3. If both jobs q̂ and p̂ complete

later than the other job from the same pair and they occupy the two overlapping time

CHAPTER 4. EXTENSIONS 66

slots, [sp,Cp) on machine 2 and [sq,Cg) on machine 3, where

Sp < Sq < Cp < C g ,

then job p̂ and job q̂ will complete for the time slot [sg,Cp) on machine 1, and

therefore the adjustment cannot be applied.

«

Chapter 5

Conclusion and Future Work

5.1 Conclusion

A new scheduling problem, Q2 | mixj,prmp | T âx has been formulated and studied

in this thesis. Its modelling has been motivated by the berth allocation problem in

container terminals. We have shown that this is an NP-hard problem, but its solu-

tion can be obtained by an effective (pseudo-polynomial) algorithm we have proposed.

Our algorithm is based on dynamic programming. The key idea is to make use of the

possibility of preemption. Because of the possibility of preemption, we can first split

a two-processor job into a pair of dedicated one-processor jobs, and then restore them

into the original multi-processor job without changing the optimality of the solution

obtained by a dynamic programming algorithm for the one-processor problem.

We have also extended the proposed approach to more general problems, including

67

CHAPTER 5. CONCLUSION AND FUTURE WORK 68

the set problem and the A:-machine problem. Nevertheless, for the set problem, we

have been only able to solve the case where the processing speed when two machines

are working together is equal to the sum of the speeds of the two machines. Note

that in the mixed problem Q2 | mixj,prmp | T^ax, we do not have to have this

assumption, namely, we can deal with any processing speed when the two machines

are combined to process a big job. This is also a reason why we have separated our

treatment of the Q2 | miXj,prmp | 7̂ nax problem from the set problem.

The ib-machine problem has also been shown solvable in pseudo-polynomial time

if all big jobs are A:-machine jobs.

We have further proven that a special case, where all small jobs have equal pro-

cessing requirements, is polynomially solvable.

5.2 Some Future Work

In our problem, there is a constraint that all one-machine jobs, or small jobs, must be

completed by the same machine as long as they are assigned. Although preemption

is allowed, no small jobs can be processed on another machine after preempted. The

problem with this constraint relaxed is worth to be further studied.

Furthermore, it is interesting to solve the problem with 'other objective functions.

Actually, we have attempted some other objectives, such as mean flow time or total

tardiness. Unfortunately, in such cases, we cannot adjust the split jobs from the

CHAPTER 5. CONCLUSION AND FUTURE WORK 69

big jobs without affecting the objective value and the results of this thesis may not

hold. It would be interesting future research to develop other ideas to tackle objective

functions.

鳴

Bibliography

1] K.R. Baker, Introduction to Sequencing and Scheduling, Wiley, New York, 1974.

2] R. Bellman, Dynamic Programming, Princeton University Press, 1962.

•3] L. Bianco, J. Blazewicz, P. Dell'Olmo and M. Drozdowski, Preemptive Scheduling

of Multiprocessor Tasks on the Dedicated Processor System Subject to Minimal

Lateness, Information Processing Letters 46 (1993) 109-113.

4] L. Bianco, J. Blazewicz, P. Dell'Olmo and M. Drozdowski, Scheduling Multi-

processor Tasks on a Dynamic Configuration of Dedicated Processors, Annals of

Operations Research in Scheduling 58 (1995) 493-517.

5] L. Bianco, J. Blazewicz, P. Dell'Olmo and M. Drozdowski, Linear Algorithms

For Preemptive Scheduling of Multiprocessor Tasks Subject to Minimal Lateness,

Discrete Applied Mathematics 72 (1997) 25-46.

6] L. Bianco, P. Dell'Olmo and M.G. Speranza, Scheduling Independent Tasks with

Multiple Modes, Discrete Applied Mathematics 62 (1995) 35-50.

70

*

BIBLIOGRAPHY ^1

7] J. Blazewicz, P. DeH'Olmo, M. Drozdowski and M.G. Speranza, Scheduling Mul-

tiprocessor Tasks on Three Dedicated Processors, Information Processing Letters

41 (1992) 275-280.

'8] J. Blazewicz, M. Drabowski and J. Weglarz, Scheduling Multiprocessor Tasks to

Minimize Schedule Length, IEEE Transaction on Computers, c-35 (1986) 389-

393.

9] M. Drozdowski, Scheduling Multiprocessor Tasks - An overview, European Jour-

nal of Operational Research 94 (1996) 215-230.

10] X. Cai, C.-Y. Lee and C.L. Li, Minimizing Total Completion Time in Two-

Processor task Systems with Prespecified Processor Allocations, (1996), Naval

Research Logistics 45 (1998) 231-242.

11] Jianer Chen and C. -Y. Lee, General Multiprocessor Scheduling Problems, Chen,

Department of Computer Science; Lee, Department of Industrial Engineering,

Texas AkM University, (1997).

12] Jianzhong Du and Joseph Y-T. Leung, Complexity of Scheduling Parallel Task

Systems, Society for Industrial and Applied Mathematics Journal of Discrete

Mathematics 2 No. 4 (1989) 473-487.

13] S. French, Sequencing and Scheduling: An Introduction to the Mathematics of

the Job-Shop, Ellis Horwood Limited, 1982.

BIBLIOGRAPHY ^1

14] M. R. Garey and D. S. Johnson, Computers and Intractability - A Guide to the

Theory of NP-Completeness, W. H. Freeman and Company, San Francisco, 1979.

15] J.A. Hoogeveen, S.L. van de Velde and B. Veltman, Complexity of Scheduling

Multiprocessor Tasks with Prespecified Processor Allocations, Discrete Applied

Mathematics 55 (1994) 259-272.

16] H. Krawczyk and M. Kubale, An Approximation Algorithm for Diagnostic Test

Scheduling in Multiprocessor Systems, IEEE Transaction on Computers, c-34

(1985) 869-872.

17] M. Kubale, Preemptive Versus Nonpreemptive Scheduling of Biprocessor Tasks

on Dedicated Processors, European Journal of Operational Research 94 (1996)

242-251.

18] C.-Y. Lee and X. Cai, Scheduling Two-processor Tasks without Prespecified Pro-

cessor Allocations, 1996 submitted.

19] C.-Y. Lee, Lei Lei, and Michael Pinedo, Current Trends in Deterministic Schedul-

ing, Annals of Operations Research 70 (1997) 1-41.

20] C. -L. Li, X. Cai and C. -Y. Lee, Scheduling with Multiple-Job-on-One-Processor

Pattern, IIE Transactions on Scheduling and Logistics 30 (1998) 433-446.

21] Zhen Liu and Eric Sanlaville, Preemptive Scheduling with Variable Profile, Prece-

dence Constraints and Due-dates, Discrete Applied Mathematics 58 (1995) 253-

280.

BIBLIOGRAPHY ^1

22] M. Pinedo, Scheduling : Theory, Algorithms, and Systems, Prentice Hall, 1995.

'23] Jurgen Plehn, Preemptive Scheduling of Independent Jobs with Release Times

and Deadlines on a Hypercube, Information Processing Letters 34 (1990) 161-

166.

*

一、.-
 .
t
t

sr...
 r
^
.
 ,.v..

 -
 J
.

-
 V

 r
w

 ,-
.

》

？
 .
 .

 .

 、

 .

 .
-

 ̂̂
l
^
r
a

.
 .
:
"
I

 “

 .:
.

 ,

 •!

广

,

,

•

、

 ：.
 <
》
”
"
"
&

、
>

.

,

.

,

.

„

、

.

•

-

.

.

.

、

^

 ,
\
;
龜

、：,
 •

 .

 .

 .

 、.

 -

 3
;
s
j

r

.

.

�

.

”

•

.

.

.

 ：
急

爆
/
 藏
-
:

.

；

/

.

:

:
:
:
:
「
)
.
「
。
•
^
；
邏

〜
,
.
.

「
7
 .

 :

 .

 /

 .

 .

 1

 ‘‘

 1
1

 i
^
&
^
^

霞
：
：

.

 .
.
.
：
.
〉
、
.
.
^
^
.
-

 ̂
^
,
¾

0
.
r

：
：
:
:
:
.
塵

置_,
 ̂.

、

 ..
.
.

、
.
.
，
：

 (
.
.

 V.,.

 “

 \

..

 ~

 „

 .
 f%:̂

ŝ_

^
¾
:
;
?

 c

:

"

.

:

 ，
：
(
二
^
®

^
^
^
^
^
^
^
r
h
 r
 :
h
M
V

 :u
r
^
v
:
h
:
-
-
N

 r:
i
L
:
p
:
,

 <

 ”，.
 I

 .

 -
 ̂¾
^
^
^
^
^
^
^
^
^
¾
^

']
%•

•)

J
1

‘ ！

-- •»

CUHK Libraries

11酬̂̂̂^
Q 0 3 7 D 3 6 S b

I -.

