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A B S T R A C T 

Model-based computer vision is an important problem and research topic, 

which can be divided into several areas such as motion analysis, motion-based 

segmentation and three-dimensional object recognition. In model-based computer 

vision, the model containing the 3D information of the object being investigated 

is assumed to be known in advance. In the past, many algorithms were proposed. 

Apart from the model of the object, other information such as image intensity 

values and image features were used in some of the other algorithms. 

This thesis aims at providing analysis for the following three areas. 

Firstly, model-based motion analysis is discussed. The objective of this area 

is to investigate the motion of a target object between two time instants. Two 

model-based motion analysis algorithms using the model and the intensity image 

of the object are proposed. One of these two approaches provides an iterative 

solution for the four-point case. Another approach, which is called the "Six-point 

Algorithm", gives a direct method for the general case. 

Secondly, motion-based segmentation is discussed. The aim of this area is to 

find out all the motions in the scene if there is more than one rigid object under-

going several different motions. Two approaches using the incremental clustering 

technique are proposed. One of these two approaches considers the motion-based 

segmentation when the models and the reconstructed 3D information of the ob-

jects in the scene are provided. Another one considers the problem when only the 
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models and the intensity image containing the objects are provided. 

Finally, model-based 3D object recognition is discussed. The objective of 

this research is to recognize an 3D object from a model database by using the 

technique of computer vision. A two-step approach using the intensity image is 

proposed. This new approach can recognize the object in the image and correspond 

it to a template in the 3D object database. Also, the position and orientation ofthe 

object can be revealed. This approach uses the "Six-point Algorithm" discussed 

above to calculate the motion of the object and the result is satisfactory. 
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CHAPTER 1 

INTRODUCTION 

The main objective of this thesis is to discuss the three main areas in model-based 

computer vision. These three areas are: 

1. Model-based motion analysis; 

2. Motion-based segmentation; 

3. 3D object recognition. 

Both theoretical analysis and experiments using synthetic and real data are in-

cluded in this work. 

Model-based computer vision is different from image-based vision. Image-

based vision is a form of bottom-up information flow [l][2]. In this case, the 

solution is computed based on the data implicit in the intensity image. Model-

based vision is in a form of top-down information flow [l][2]. In this case, the 

prior knowledge of objects are used to improve the accuracy and the computation 

complexity. This kind of prior knowledge is called the "models" of the objects. 

The model contains features of the corresponding object, and these features are 

used to represent the object itself. Usually, the model contains features in 3D 

space. There are many different kinds of features chosen to represent the objects, 

for example, straight-lines, planes or points on the objects. In this thesis, we will 
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mainly consider the case using 3D points to represent the models of the objects in 

3D space. 

In this thesis, we mainly consider the cases with models containing 3D fea-

tures. Also, all the contributions of this thesis are about the cases with models 

containing 3D features. However, cases with models containing 2D features will 

also be discussed for the completeness of this thesis. 

In this thesis, we have proposed two algorithms, called the TL-algorithm 

and Six-point algorithm, for the problem of Model-based Motion Analysis. Also, 

a real-time visual tracking system is implemented. Moreover, two new algorithms 

are proposed for the problem of Motion-based Segmentation. In addition, a new 

algorithm for the problem of 3D Object Recognition is proposed, and a fast 3D 

object recognition system is implemented. 

In this chapter, the three areas in model-based computer vision will be intro-

duced. Section 1.1 gives a brief introduction to the model-based motion analysis. 

Section 1.2 gives the brief introduction to the motion-based segmentation. Also, 

the introduction to the 3D Object Recognition will be given in Section 1.3. The 

organization of this thesis is sketched in Section 1.4. 

1.1 Model-based Motion Analysis 

Model-based motion analysis is an important research topic in computer 

vision. In this problem, the motion of a selected object is investigated. In most 

cases, the position and orientation of the selected object can also be revealed after 

the motion is obtained. So, model-based motion analysis is sometimes considered 

to be "pose estimation" of the selected object. In this thesis, the objects used are 

assumed to be rigid bodies so that the shapes of these objects will not change (i.e. 

the objects used will not deform) during the process of motion analysis. Moreover, 
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the motion considered is also rigid so that all the feature points undergo the same 

motion. 

Apart from the model of the selected object used as the input, the information 

describing the scene of the object is also required. The information can be the 3D 

coordinations of the feature points of the selected object in that scene. In this case, 

the 3D coordinations of the feature points in that scene are reconstructed by using 

stereo vision system or range-finding device. On the other hand, the information 

can also be the 2D projection of the feature points of the selected object by using 

a camera. 

Since there are different kinds of input, different schemes are required. For 

the system using 3D coordinations of the feature points as the input, an algorithm 

of motion analysis with 3D-to-3D point correspondences [3] is required. For the 

system using 2D projection as the input, an algorithm with 2D-to-3D point corre-

spondences [3] is required. These two kinds of motion analyses are called “MoUon 

from Structure” (M.F.S) [4]. That means the motion parameters are calculated by 

using the 3D structure (i.e. the model) of the objects. 

On the other hand, for the system using 2D projection of the feature points 

of the selected object as both the model and the information describing the scene 

of the object at an instant, an algorithm with 2D-to-2D point correspondences [3 

is required. 

The motion analysis in model-based computer vision can be applicable to 

many areas such as robot navigation and single camera calibration. 

The problem of Motion analysis can be classified into 3 categories and will 

be described below: 
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Motion (R, t) _̂^̂  

r~^uO 
( j ^ ^ 

Object at time k Object at time (k+l) 
Figure 1: The i-th feature point at two instants when the object undergoes a 

motion representing by a rotation R and a translation t. 

1.1.1 W i t h 3D-to-3D Point Correspondences 

Motion analysis with 3D-to-3D correspondences is used in the case when the 

motion of the selected object is estimated by using the 3D coordinates of feature 

points at two different instants. For example, N points in 3D space are chosen 

from the selected rigid object to be the feature points. This object undergoes a 

rigid motion between time k and k + 1. The point correspondences of all the N 

feature points between these two instants are given. At time k, the coordinates 

of the i - th feature point is pJ = [Xf, Y^, Z^]^ for i 二 1，..., N. At time k + 1， 

the coordinates of the i — th feature point is pf+i 二 [Xz("+i),y/"+i),Zz(&+i)]T for 

i = 1，..., N. It is shown in Figure (1). 

Since the object undergoes a rigid motion, the shape and size of this object 

remains unchanged. As a result, all the feature points undergo the same motion 

and the following relation can be obtained: 

pf+i = Rpf + t, (1.1) 

where R is a 3 x 3 orthogonal rotation matrix (i.e. R R ^ 二 R ^ R 二 I and 
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i m ^ ^ e ^ ^ _ ^ l ^ f J ^ 

父 - - - Z q ^ i ^ ^ ^ 丫 

C ^ , , ^ a rigid object 

(optical center) '""""̂  

Figure 2: The 3D coordinates and the 2D projection of the i-th feature point at 

time (k+l) under the full perspective projection. 

c/et(R) = 1) and t is a 3 x 1 translation matrix. Therefore, R and t represent the 

rotational part and translational part of the motion respectively. 

1.1.2 W i t h 2D-to-3D Point Correspondences 

Motion analysis with 2D-to-3D point correspondences is the case when the 

motion of the selected object is estimated by using the 3D model to represent the 

selected object and the 2D projection of the feature points of the object at an 

instant. 

Supposing that there are N feature points on the selected object. At time 

k, the 3D coordinates of the i — th feature point is pf. At time k + 1, the object 

is captured by a camera and the 2D projection of the object is obtained. The 2D 

projection of the i — th feature point at time k + 1 is qf+i 二 [a;f̂ \ Vi^^V- Then 

we are going to compute the motion (i.e. R and t) between time k and k + 1 with 

a set of 3D coordinates at time k (i.e. model points) and a set of 2D projection 

(i.e. image points) at time k. 

The relation between the coordinates of the i 一 th feature point at time k 

(pf) and that at time k + 1 ( p ^ ) is given in Equation (1.1). However, the 2D 

projection of the features is depending on what the camera model [5] is used. 
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In this thesis, we mainly used the pinhole camera model [5]. The projective 

geometry is full perspective projection [5]. It is because the perspective projec-

tion is the accurate projection, and it is widely used in the real situation. Some 

assumptions should be made when other projective geometries are used, but no 

assumption is required in the full perspective projection. By using this camera 

model, the relation between the 3D coordinates of the i — th feature point and its 

2D projection at time k + 1 is shown in Figure (2) and the following equations can 

be obtained: 

- r - ^ r ^ , and 队 & + 1 二 7 严 1 ‘ . (1.2) 
X 2-

By using Equations (1.1) and (1.2), the relations between the 3D coordinates, 

2D projection and the motion are shown in the following formulas: 

.+1 — rruX^^ruY,'^r,sZnt:c 。 … 

、"^3iX,^ + r32F/ + r33^f + ̂ / (L< )̂ 

and 
”k+i 二 rr21X,' + r22V.' + r23Zt + t, 

机"r31Xf + r32F,̂  + r33^f + t . ' 网 

where rVm is the element at the m — th row and n — th column of the rotation 

matrix R , [t̂ ^ ty, t^]^ = t is the translation matrix. 

With these two equations (1.3) and (1.4), many algorithms are proposed to 

solve the motion of objects. Besides the approaches using full perspective pro-

jection, other algorithms using other projective geometries (such as orthographic 

projection, weak perspective projection and paraperspective projection [5]) will 

also be discussed in Chapter 2. 

1.1.3 W i t h 2D-to-2D Point Correspondences 

Motion analysis with 2D-to-2D point correspondences is the case when the 

motion of the selected object is estimated by using the 2D projection of the feature 
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points of the object at two different instants. That means that different views (e.g. 

an image sequence) are used to calculate the motion. 

In this case, the 3D structure of the selected object is unknown. Therefore, 

the motion and the 3D structure of the object will be calculated simultaneously. 

However, the depths of all the feature points and the translational parameters 

can only be determined up to a scale factor under the full perspective projection 

model [6]. Therefore, the motion analysis with 2D-to-2D point correspondences 

is different from the previous two cases (i.e. 3D-to-3D, 2D-to-3D). The motion is 

exactly found in the previous two cases while the translational parameters of the 

motion in the 2D-to-2D case can only be obtained up to a scale factor. 

Since the motion and the structure are determined in the process, this process 

is called "Motion and Structure from Image Sequences" [7 . 

1.2 Motion-based Segmentation 

In the previous section, the motion analysis in model-based computer vision 

is briefly introduced. In that section, an assumption is made that there is only 

one motion in the system. That means that between time k and k + 1 there are 

only one rigid object or several objects undergoing one rigid motion. However, in 

the real world, multiple motions are commonplace (i.e. there are several different 

rigid objects in the system, and each of them has own motion). 

In order to estimate all the motions in the scene with several different objects 

and motions, different objects with different motions should be separated first. The 

process of separating different objects according to their motions is called motion-

based segmentation. The problem of motion-based segmentation is different from 

that of the traditional image segmentation [8]. In image segmentation, the parti-

tions are done by considering the intensity, pattern or other image-based features 
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in an image. However, in the motion-based segmentation, the partitions are done 

by considering the motions of the rigid objects. Therefore, the techniques of the 

traditional image segmentation cannot be directly applied to the motion-based 

segmentation. 

The motions of different rigid objects should be calculated after the motion 

segmentation. However, in the process of motion-based segmentation, the motions 

of all rigid objects are required as the input. So, it is a complicated problem. 

Motion-based segmentation is applicable to solve the cases when there are 

multiple rigid motions. Also, it may be applied to the coding of video sequences. 

1.3 3D Object Recognition 

3D object recognition is another hardest problem in computer vision. In this 

problem, an object is recognized from a database containing many objects. In most 

cases, the 3D structure of the object to be recognized is considered. In the past, 

many scholars have proposed a variety of algorithms by using the reconstructed 3D 

information of the object to be recognized. In this thesis, we mainly consider the 

3D object recognition technique by using an intensity image containing the object 

to be recognized. Therefore, only the 2D projection of the object is required. 

On the other hand, Marr [9] claimed that enough 3D information about 

the objects in the model database is required during the 3D object recognition. 

Therefore, in this thesis, the models stored in the model database are mainly 

3D structures of the objects. However, recognition system using database with 

different types of models will be presented in the chapter of literature review. 

1.4 Organization of the Thesis 

In Chapter 2, a literature survey on model-based motion analysis, motion-

based segmentation and 3D object recognition will be presented. Also, a summary 
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of contributions of this thesis will also be presented. 

Chapter 3 to 5 provide the main contribution of this thesis. 

In Chapter 3，two approaches: TL-algorithm and Six-point algorithm, for 

the model-based motion analysis with 2D-to-3D correspondences are proposed. 

Besides the algorithms of these approaches, experiments using both synthetic and 

real data have been performed to verify these two approaches. Also, a comparison 

between the TL-algorithm and a famous algorithm proposed by Lowe [10][ll][9 

will be discussed. On the other hand, a comparison between the Six-point algo-

rithm and another famous linear algorithm proposed by Faugeras [12] will also be 

presented. Moreover, a visual tracking system by using the Six-point algorithm 

will also be introduced. 

In Chapter 4，two approaches for the motion-based segmentation are pro-

posed. One is for the case with 3D-to-3D point correspondences. Another is for 

the case with 2D-to-3D point correspondences. Besides, experiments using both 

synthetic and real data have been done to verify these two approaches. 

In Chapter 5，an approach for the 3D object recognition is proposed. Two 

3D object recognition systems using the proposed algorithm will also be intro-

duced. Moreover, experiments have been performed to verify the algorithm and 

the system. 

Finally, a conclusion is drawn in Chapter 6 to summarize the work in this 

thesis. 



CHAPTER 2 

LITERATURE REVIEW AND SUMMARY 
OF CONTRIBUTIONS 

In this chapter, related work by other scholars will be introduced. In Section 2.1, 

a review of model-based motion analysis will be introduced. In Section 2.2, a 

summary of the related work on motion-based segmentation will be presented. In 

Section 2.3, a survey about 3D object recognition will be given. Finally, Section 

2.4 will summarize the contributions of this thesis. 

2.1 Model-based Motion Analysis 

In this section, the reviews of three divisions of motion analysis in model-

based computer vision will be presented. 

2.1.1 W i t h 3D-to-3D Point Correspondences 

In this problem, the point correspondences of a moving rigid object in two 

different instants are assumed to be provided. The aim is to determine the rota-

tion R and translation t. There are totally six unknowns (3 rotation angles and 

3 translational parameters). It is known [13] that three noncollinear-point corre-

spondences are sufficient to calculate R and t uniquely. By expanding Equation 

(1.1) with three point correspondences, nine nonlinear equations can be obtained. 

Iterative methods (e.g. [14]) can be applied to determine the "best" fits of the six 

unknowns. However, Huang et al. [3] claimed that the answer may be possible to 

10 
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get stuck in the local minima when iterative methods are used. Linear algorithms 

are found to be more suitable. 

Arun et al. [15] proposed a linear approach which is based on the singular 

value decomposition (SVD) [16] of a 3 x 3 matrix. A similar approach is proposed 

by Horn et al. [17]. It is based on exploiting the orthonormal properties of the 

rotation matrix. It computes the eigensystem of a different derived matrix. On the 

other hand, Faugeras et al. [18] also proposed an approach based on quaternions. 

Moreover, Walker et al. [19] suggested an approach by representing the rotational 

and translational components as dual quaternions. Also, a detailed survey on these 

four approaches is done by Eggert et al. [20 . 

In this thesis, Arun's algorithm [15] has been occupied as the core part of the 

motion analysis in our proposed solution for the motion-based segmentation with 

3D-to-3D correspondences. So, a detailed description of Amn's algorithm will be 

presented in this thesis. 

In their approach, noise is assumed to exist in the set of the 3D coordinates of 

the feature points. A noise vector N^, representing the noise of the 3D coordinates 

of the i — th feature point after the motion, will be added to the Equation (1.1). 

Then the following equation can be obtained: 

pf^i = R p f + t + N” (2.5) 

Then finding the motion parameters becomes finding R and t to minimize 

the following cost function: 

E = E H + i - ( R p ? + t)||2. (2.6) 
i=l 

In Amn's publication, it is claimed that the motion of the object will be 

purely rotation if the two centroids of the two sets of 3D coordinates of the feature 

points on the selected object are the same and equal to the origin of the coordinate 
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system (i.e. [0, 0, 0]^). Therefore, the two centroids of the two sets of 3D points 

are "moved" to the origin by subtracting the corresponding centroid from each 3D 

point. So, the two centroids of the two sets of 3D coordinates of the feature points 

at time k and k + 1 should be obtained as the followings first: 

c ^ A f > ? , (2.7) 
i—1 

1 N 
c ^ = i : E p f + i , (2.8) 

i = l 

where Ck and ĉ +i are the centroids of the two sets of 3D points at time k and 

k + 1 respectively. 

Then the original least-squares problem in Equation (2.6) is reduced to the 

minimization problem as shown in the following cost function: 

^ = E||q^ '-Rq '|| ' (2.9) 
Z=1 

where 

q ^ P : - C k (2.10) 

q?+i = P?+i — c&+i (2.11) 

Then the translation is easily by obtained by the following equation: 

t 二 Ck+i-Rck. (2.12) 

Since R is an orthogonal matrix, the cost function in Equation (2.9) can be 

converted into the following form: 

^ = E|| ( q f r- ( q rTR||- (2.13) 
2 = 1 
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Actually, the minimization problem of the cost function in Equation (2.13) 

is equivalent to the orthogonal Procrustes problem [16]. As shown in [16] that the 
rjp 

rotation can be determined by calculating the SVD of H = E【 i q^ ( q f i ) is 

given as follows: 

R = VU^, (2.14) 

where 

UAV^ = H, (2.15) 

in which U and V are the 3 x 3 orthogonal matrices, and A is the SVD of the H. 

As a result the motion of the object can be obtained. 

However, the original version of the Arun's algorithm [15] fails to give a 

correct rotation matrix and returns a reflection instead (i.e. det(R) = —1) when 

the data is seriously corrupted. Umeyama [21] then made a modification to Arun's 

approach. The rotation is given as the followings: 

f 

VU^ ifdet(VU^) = +1 

1 0 0 

R = 
V 0 1 0 u ^ ifdet(VU^) = -1 

0 0 - 1 
V L _ 

Then the correct transformation parameters will always be obtained even the 

data is corrupted. 

2.1.2 W i t h 2D-to-3D Point Correspondences 

The problem is to find the motion when correspondences between 2D image 

points and 3D model points of a rigid object are given. 

Motion analysis with 2D-to-3D point correspondences has been investigated 

by many scholars for decades, and many methods have been proposed. 
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There are approaches which make use of the weak perspective projection 

model. Huttenlocher and Ullman [22] showed that the solution of the pose estima-

tion problem under weak perspective projection using three non-collinear points 

is unique. Also, Alter [23] introduced a solution for 3D Pose estimation from 3 

points under weak perspective projection. Moreover, Gee and Cipolla [24] devel-

oped a visual tracking system under weak perspective projection. However, the 

weak perspective assumption is valid only when the distance between the object 

and the camera is much larger than the relative distances between feature points 

on the object. 

For the motion analysis with 2D-to-3D point correspondences under full per-

spective projection, Fischler and Bolles [25] assigned another name for this kind of 

problem. They called it Perspective-n-Point Problem (PnP), where n is number of 

point correspondences assigned to the system. In their paper [25], they presented 

that there will be infinite number of solutions for the PnP problems when n is less 

than 3. Also, they showed that the number of solutions may be more than one 

when less than 6 point correspondences are given to the system and these points 

are in the general 3D positions [25]. It means that multiple solutions may exist 

for a PnP problem when n is less than 6. For the P3P problem, Wolfe, Mathis, 

Sklair and Magee [26] also gave a detailed explanation of the formation of multiple 

solutions under full perspective projection. 

For the techniques using full perspective projection, Fischler and Bolles [25 

proposed a method by using three non-collinear points. By using this method, three 

quadratic equations with three unknowns can be obtained. For the four-point case 

(or so called Perspective-4-Point Problems in [25]), Horaud, Coino, Leboulleux and 

Lacolle [27] proposed a formulation which is a fourth-order polynomial equation 

with one unknown. However, the number of model points are restricted (3 in [25 
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and 4 in [27]) and multiple solutions may exist in 7V-point problems for N < 6. 

Fischler and Bolles [25] showed that using 4 points lying in a common plane 

will always provide an unique solution. Abidi and Chandra [28] introduced a 

direct solution using quadrangular targets. It is based on volume measurement of 

tetrahedra which is composed of target points and the lens center of the camera. 

Also, Hung, Yeh and Harwood [29] presented an algorithm using quadrangular 

targets. This method uses the decomposition technique proposed by Ganapathy 

30] to compute the final pose of the object. However, the number of model points 

are still restricted to 4 in these algorithms. 

On the other hand, Horn and Weldon [31] proposed a direct method. How-

ever, their approach can only handle the cases when: 

1. the motion is pure rotation; 

2. the motion is pure translation or the rotation component of the motion is 

known. 

However, in the real situation, most motions are the combinations of the rota-

tion and translation. Also, it is not practical to find out the rotation by other 

method before applying this approach to determine the translation. Therefore, 

this approach is not general enough. 

On the other hand, Quan and Lan [32] proposed another linear algorithm for 

this problem with 4 or more point correspondences. Their algorithm is based on the 

Fischler's approach [25]. In their approach, the distance between each two feature 

points in 3D space. However, wrong solution may be get if only this constraint is 

being kept. In Figure (3), there are two objects (or models) with the same sides, 

but the shapes of these two objects are different. By using Quan's approach [32], 

the result may be the left object in Figure (3) although the original model should 
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念售 
C A ^ 

case (i) case (ii) 
Figure 3: Two models with the same sides (AB=A'B', BC=B'C' and etc...), but 

with different orientations (i.e. different shapes). In case (i), A is above the plane 

formed by BCD, while in case (ii), it is under that plane. 

be the right one in Figure (3). The same situation may also occur when 5 or more 

point correspondences are used. 

Actually, our TL-algorithm, which will be discussed in Chapter 3, has added 

another constraint to eliminate the ambiguity for the case with 4 point correspon-

dences. However, Quan's approach [32] did not handle this case. So, the result 

by using Quan's approach may be incorrect. Also, in their algorithm, the rigidity 

of the result cannot be ensured since their approach is going to minimize the er-

ror between the real distance and the estimated distance within each two feature 

points, but to get a result guided by the rigidity constraint of the object. There-

fore, the result may be deformed (i.e. the shape of the result may not be the same 

as that of the original object). Moreover, in Quan's approach, the SVD of a ma-

trix n is required to be calculated. The dimension of this matrix is (̂ ~^K^- )̂ x 5, 

where n is the number of point correspondences used. When n becomes larger, 

the dimension of the matrix n will also become larger. For example, when 100 
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point correspondences are used, the dimension of of this matrix becomes 1176 x 5. 

The computation time of the SVD of this large matrix using Matlab 5.0 in a Sun 

Ultra 1/170 machine is about 0.067 second (This computation time is only the 

time required to calculate the SVD of a huge matrix, but not the time required 

in the whole process. The computation of SVD is only a small part in the whole 

process). Therefore, the computation time of this algorithm will increase rapidly 

with the increase of number of feature points used. 

Faugeras also proposed another linear method [12]. This approach is pro-

posed for the purpose of camera calibration [33][34]. Unlike the approach of Quan 

32], the intrinsic parameters of the camera [12] can also be found. However, 

the translational component calculated from this algorithm is very sensitive to 

noise. This phenomenon is shown by the experiment done by Faugeras himself 

in his book [12]. In this thesis, an enhancement to the Faugeras's algorithm is 

proposed to improve the accuracy of the translational result. Also, another algo-

rithm called "Six-Point Algorithm" and its second version are also proposed in this 

thesis. These two algorithms are similar to the Faugeras's algorithm. Therefore, 

Faugeras's algorithm [12] will be introduced in this thesis. 

Besides, Lowe [ll][10][35] proposed a more general solution in which the 

number of model points and the motion are not restricted. However, this method 

is nonlinear and requires prior initialization for all unknown parameters. The 

computation time is depending on the initial guess. 

In this thesis, a new iterative approach for the P4P problem is proposed, and 

we have compared this new approach with Lowe's approach [10]. Therefore, we 

find it necessary to describe Lowe's approach [10] in this thesis. 
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2.1.2.1 A n Iterative Approach: Lowe's A lgor i thm 

In Lowe's algorithm, Equation (1.3) and (1.4) are converted into the following 

forms: 

r n X n r u Y . ' + r,,Z^ + t^ — 乂+i — • (2 16) 

^rs^Xnrs2r.' + rssZnt. ^' —•’ （丄工⑴ 

.r2iXf + r22F,' + r23^f + ^ — ,+i — . /o 17、 

^rs^Xnrs2y^' + rssZnt.'^' —• (左17) 

where i — 1,..., N in which N is the total number of feature points used. 

Also, the 3 X 3 rotation matrix is represented by the the three rotation angles 

about the three axes and it is given as the following: 

cos /3 cos a — cos /3 sin a sin j3 

R — cos OL sin 7 sin (3 + cos 7 sin a cos 7 cos a — sin 7 sin [3 sin a — cos P sin 7 ， 

(2.18) 

—cos 7 cos a sin j3 + sin 7 sin a cos a sin 7 + cos 7 sin j3 sin a cos 7 cos j3 

where a, (5 and 7 are the rotation angles about z-axis, y-axis and x-axis respec-

tively. 

Since this system involves some trigonometric functions, such as sin, cos and 

tan. So, it is a non-linear system and too complicated to be solved in direct ways. 

Therefore the Gauss-Netwon method [36] is used. 

Assuming that ¢^ 二 [7$, j3^, a^, t% , t^ , t^]^ is the vector of parameters after 

the s — th iteration. Then the error functions we want to minimize should become: 

c _ (rl^X^+rl,Y^ + rl,Z^+tl ,^X /r l .X.^ + r ^ y ^ + r ^ Z f + t- , ^ A ' 

‘ [ r | i X t + r|,y,' + r|sZ,' + t| ‘ J 、!iX,& + rfcy/^ + r^Zf + g 队(？』^) 

Supposing that E is the vector of all the error functions, ê  for i 二 1,..., N. 

Also, J is the Jacobian matrix where « 1 画 = ^ ^ . Then by the Gauss-Netwon 
0、n ’ 

method [36]’ the following update rule of the parameters can be obtained: 

r + i 二 C — hL , (2.20) 
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where h i is the vector of correction which can be solved by the following equation: 

hL = (jTj)-ijTE. (2.21) 

By applying the update rules (Equation (2.20) and (2.21)) iteratively with a 

suitable initial guess and threshold, the answer can be obtained. 

Also, Lowe included the concept of stabilization in his algorithm. In [11], a 

stabilizer is added in order to solve the ill-conditioning problem such as the case 

where the object is projected approximately orthographically. After adding the 

stabilizer, Equation (2.21) is replaced by the following one: 

h^ 二 (J^J + W^W)-^J^, 

where W is a diagonal matrix in which each weight is inversely proportional to 

the standard deviation aj for the parameter j: 

w — — 

** 77 — • 
JJ rr • 

。3 
2.1.2.2 A Linear Approach: Faugeras's Algor i thm 

In Faugeras's approach [12], the Equation (2.16) and (2.17) are converted 

into the following homogeneous linear equations: 

Xq 二 0, (2.22) 

where % is a 2N x 12 matrix and q is a 12 x 1 vector. The {2i — 1) — th row of % is 

[/Xf，fY^ , fZ^ , f，0 , 0 , 0 , 0 , -x^^'X^ , -cc^Y :，-x， t，-xf+^] , 

(2.23) 

and the 2i — th row is 

[0 , 0，0 , 0 , fX^ , fY^ , fZ^ , f , -y^t，-y^^X' , -y',^'Z^ , i ， ] ， 

(2.24) 
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where i = 1,…，N, for N is the number of point correspondences used. Also, q is 

given as following: 

q 二 [ri , t^ , r2，ty , r3, t , f , (2.25) 

in which r^ is the j — th row vector of the rotation matrix (Also, r3 = [r31, r32, r33]^ 

etc.). 

In his book [12], it is shown that the rank of % is usually equal to 11. There-

fore there exists a non zero vector q of the 12 unknowns that is defined up to a 

scaling factor. Also, since the norm of the 3rd row vector of the rotation matrix is 

equal to 1 (i.e. r ^ + 7¾ + r33 = 1). Then the whole problem is converted to the 

following problem: 

M în ||xq||̂  subject to ||r3||̂  = 1. (2.26) 

This constrained optimization problem can be solved by using the technique de-

scribed in Appendix B. 

However, the rotation matrix obtained only after solving this constrained 

optimization problem may not be ensured to be orthogonal. 

Then the result should be refined in order to fulfill the orthogonality of the 

rotation matrix. In this approach, five intrinsic parameters are introduced. They 

are: 

1. Uo is the horizontal shift (in x direction) of the optical center; 

2. VQ is the vertical shift (in y direction) of the optical center; 

3. au is the magnifying ratio of the coordinates along horizontal direction (x 

direction); 

4. ay is the magnifying ratio of the coordinates along vertical direction (y di-

rection); 
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5. 0 is the actual angle between the two axes of the image coordinate system 

(i.e. the actual angle between the x-axis and y-axis of the image coordinate 

system). 

Actually, the optical center may not be the same as the origin of the image coor-

dinate system and 0 may not be 90^according to the error during the production 

of the camera (e.g. mistake in placing the CCD in the camera). 

Supposing the result of the minimization in Equation (2.26) is qe=[q1,g14, q2, qu, q3, QsA 

Then the correct motion parameters can be obtained as the following: 

r3 = ^q3, 

uo = q i q ^ (2.27) 

0̂ = q2qL 

tz = 顺 -

Also, 

_ . c ^ (qi X q3) • (q2 X q3) 、 
COS U — - 6 u S v ， ( Z . Z 5 ) 

qi X q3 q2 X q3 

where 9 is restricted between 0 and 7r in order to keep the uniqueness of the result. 

Also, e, £u and ê  are either +1 or —1. Then the other parameters are determined 

as follows: 

Oiu 二 e^x||qiXq3||sin6>, 

ô v == £v ||q2 X q3|| sin6>, 

sin 9 ( 、 
r2 二 £ ( 9 2 -明 3 ) , (2.29) 

C^v 

ri 二 £(qi + (q2 — ^q3)’cos6> — ttoq3) —, 
Oiv o^u 

Uj 二 ^(^24 - ^ 0 ^ 3 4 ) ^ ^ , 

Oiv 

tx = £{qu + {q24 — ^og34)-cos6' — U0q34)一. 
C^v C^u 
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The determinant ofRis easily shown to be equal to ee^je^;Sign(det((qf, q『，q『)”). 

There are therefore four possibilities corresponding to the four choices of £, £u and 

£” such that the determinant of the rotation matrix is equal to 1. Then the motion 

of the object is obtained. 

In [12], Faugeras showed that for N coplanar points {N > 4) in general 

position, the rank of % is equal to 8. Therefore, the 3-D reference points used for 

motion estimation should not be chosen to lie in the same plane since this approach 

for this case will not work. 

2.1.3 W i t h 2D-to-2D Point Correspondences 

The problem is to determine the motion of a rigid object between two instants 

when 2D point correspondences of this rigid object are given. 

In this problem, not only the motion parameters (i.e. R and t) should 

be estimated, the 3D structure of the object is also required to be determined 

too. In the past, many methods were proposed. Some of them are based on the 

orthographic projective model and some others are based on the perspective model. 

For the problem with the orthographic projective model, Ullman [4] showed 

that an unique solution to motion and 3D structure up to a reflection is sufficient to 

be obtained by using four point correspondences over three frames. Later, Huang 

et al. [37] proposed a linear algorithm to obtain the solution in this problem. 

Also, they proved that using three point correspondences over three frames, there 

may be up to 16 solutions for the motion and four for the 3D structure plus their 

reflections. Moreover, Aizawa et al. [38] proposed a simple two-step iterative 

method to reconstruct the motion and the 3D structure. This method was used 

as a part of their MBASIC algorithm for 3D model-based compression of video. 

However, Bozdagi [39] stated that this two-step approach is sensitive to random 

errors in the initial depth estimates, and he proposed an enhancement for this 
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two-step approach. The comparison of the performance of the originial method 

and the improved algorithm is given in [39 . 

For the problem with full perspective projective model, Longuet-Higgins [40 

made a great break-through on the motion and structure reconstruction in com-

puter vision. He proposed a two-step linear algorithm for the problem under full 

perspective projective model. In his algorithm, at least eight point correspondences 

are required to determine the essential matrix [5] which contains the rotation and 

translation (up to a scale for the translation). This algorithm is sometimes called 

the "Eight-point Algorithm" [41]. Later, Toscani and Faugeras [42] proposed to use 

quaternions in estimating the rotation matrix from the essential matrix in order to 

obtain an accurate result from noisy data. In this sub-section, the modified version 

of this two-step linear approach proposed by Toscani and Faugeras is introduced. 

This algorithm contains two steps: 

1. Calculation of the essential matrix; 

2. Extracting the motion parameters (i.e. rotation and translation) from the 

essential matrix. 

Recalling Equation (1.1), p^ and p f are the 3D coordinates of the i — th feature 

point at time k and A: + 1 respectively. Also, R and t are respectively the rotational 

and translational parameters of the motion of the object between time k and k + 1. 

By observing Figure (4), the vectors pf^\ t and Rp f are coplanar. Since 

(t X R p ” is orthogonal to this plane, the following relation can be obtained: 

p ” i . (t X Rpf ) = 0’ (2.30) 

where x and • stand for the vector product and dot product of vectors. Then by 

Equation (2.30), we can get: 

p?+i . Epf = 0， （2.31) 
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Rpk ^ ~ \ ^ 
/ \ I / / 

/ \ I / / Image plane 

X Optical center 

Figure 4: The change of the coordinates of the i-th feature point between time k 

and (k+l) after a motion (R and t). 
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where E is the essential matrix and it is given as the followings: 

ei 62 63 0 -t^ ty 

E = 64 65 66 二 t, 0 -t, K (2.32) 

e7 68 69 —ty tx 0 

Then we divide both sides of Equation (2.31) by Z^ and Zf+i to obtain a 

relationship in terms of the image coordinates. By using Equation (1.2) and (1.3). 

We get: 

^k 
^i 

x t ' 2)f+i 1 ] E yk = 0, (2.33) 

1 

where 

xi = ^ and 试二夸, (2.34) 

「 qT 
for j 二 k or k + 1. and we assign q] 二 土《yj 1 . 

Therefore, there are totally N equations similar to Equation (2.33) for N 

feature points. By stacking all these N equations together, we get: 

Ge = 0， (2.35) 

where G and e are respectively N x 9 and 9 x 1 matrices and they are given as 
follows: 

^k+l-k n,k+l-k -k ^k+l-k n,k+l.-,k -,k -k+l -k+l i 

^ 1 ^ 1 Vl ^ 1 ^ 1 ^ 1 Vl Vl Vl Vl ^ 1 Vl 丄 

i^ *or = • • • , • • • 5 
(2 36) 

i-k+l-k -,k+l-k -k ^k+l-k ,-,k+l-k -k -k+l -k+l 1 ^ • ) 

^N ^N yN ^N ^N ^N VN VN VN VN ^N VN 丄 

and e contains the 9 essential parameters which is: 

- rj^ 

e 二 [ ei 62 63 64 65 66 e? eg eg . (2.37) 
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Obviously, e can only be determined up to a scale factor. We can normalize 

translation vector to 1. It is reasonable and it is mentioned in Chapter 1 that the 

translation can only be found up to a scale factor. Then we have ||E||̂  = ||e||̂  --— 2. 

Hence, we can obtain e by solving the following minimization problem: 

Mm ||Ge||2 , subject to ||e||̂  二 2. (2.38) 

The solution of E is the eigenvector of G ^ G of norm ^ 2 corresponding to the 

smallest eigenvalue. Therefore the essential matrix E can be obtained. Afterwards, 

we can determine the unit vector of the translation t^ by solving the following 

minimization problem: 

Min E^t^ , subjectto ||t5|| = 1. (2.39) 
t 

The solution of t5 is an unit eigenvector of EE^ corresponding to the smallest 

eigenvalue. If 

E ( t . X qf) . (Eqf+i) < 0, 
i = l 

then t5 < 15. 

Afterwards, we can determine the rotation matrix R5. As E —— t^5R5 by 

definition for 

0 ——tsz tgy 

tms = tsz 0 —tsx ’ 

——t,sy tgx 0 

「 lT 
where 十 十 十 —to. 

^sx ^sy ^sz 5 

Then we can find R^ by solving 

Min ||E - t̂ 5R5||^ subject to R fR^ 二 I and det(R,)=l . (2.40) 
Rs 

Then the above minimization problem can be solved by using the quaternion 

43] representation of 3D rotations [26]. Therefore, the motion parameters can be 
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determined. For more details of the quaternion representation of 3D rotations, 

readers can refer to Appendix A. 

On the other hand, Philip [44] proposed another approach to extract the mo-

tion parameters from the essential matrix by using the singular value decomposition 

(SVD) method [16:. 

However, this approach is quite sensitive to noise [7], for example, spatial 

quantization, feature detector errors, point mismatching and camera miscalibra-

tion. Weng, Huang and Ahuja [7] provided a systematic error estimation about 

this algorithm. Also, applications and properties are discussed in detailed in 

5][41][45] [7]. On the other hand, Zhang [46] proposed an interesting framework 

to reconstruct the motion and 3D structure by using four point correspondences 

from a motion of a stereo rig. 

On the other hand, the fundamental matrix [5][41] is also a famous tool for 

this problem (especially, for establishing epipolar geometry [5] with uncalibrated 

cameras). The relation between a fundamental matrix F and an essential matrix 

E is given as follows: 

F 二 C-^EB-\ 

where C and D are intrinsic matrices [5] of the cameras. 

2.2 Motion-based Segmentation 

Many algorithms for motion analysis in model-based computer vision are 

discussed in Section 2.1. All of them are based on the assumption that there 

is only one rigid motion in the scene. However, in the real situations, different 

rigid objects may undergo different motions. These algorithms can give significant 

result only if the features of the same motion are segmented first. Therefore, 

motion-based segmentation technique is required. In this section, a review for 
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motion-based segmentation is presented. 

An algorithm of 3D motion computation and object segmentation is proposed 

by Zhang and Faugeras [47]. In their algorithm, 3D line-based features are used. 

The kinematic parameters are used to represent the motion of the objects, and 

a technique based on the Mahalanobis distance is used to perform the object 

segmentation. Also, a visual tracking system for tracking multiple moving objects 

was proposed by Hung et al. [48]. The 3D coordinates of the feature points are 

obtained with a stereo vision system. Then a RANSAC^-based clustering method 

is applied to perform the motion-based segmentation, and the motion is determined 

by using the Arun method [15]. Moreover, Wang and Duncan [49] proposed an 

iterative method which is based on the information about the velocities of the 

objects. Another method to solve the problem of multiple 3D rigid motions is 

proposed by Tao et al. [50]. It converts the estimation of multiple rigid motions 

into a maximum likelihood estimation procedure. 

On the other hand, Jacobs et al. [51] proposed another RANSAC-based 

algorithm by making use of the weak perspective projection model. Xu et al. 

5][52] proposed a solution by using epipolar geometry under the affine projection 

model. Besides, some other scholars [53][54] make use of optical flow to solve the 

motion segmentation problem. 

2.3 3D Object Recognition 

3D object recognition is one of the important problems and research topics 

in computer vision. In this thesis, we are going to deal with the problem that an 

object in an image is recognized by matching against the objects in the database 

according to their shape. In the past, many approaches are proposed by other 

i R A N S A C stands for "Random Sample Consensus" is a technique to fit a model to experi-

mental data and it is proposed by Fischler and Bolles [25]. 
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scholars. 

Dorai et al. [55] presented a recognition system using images obtained from 

many different viewpoints as the models of the 3D objects in the database. How-

ever, in their approach, the object to be recognized is in the form of range image. 

So, a range-finding device is required. Schutz and Hugli [56] proposed another 

approach using range image with the cooperation of the ICP algorithm. Also, 

Gingins and Hugli [57] proposed a hybrid method by using the range image and 

intensity image. In this approach, intensity image is used to verify the hypothe-

sis due to the range image. Therefore, in these algorithms, the three-dimensional 

structure of the object must be reconstructed first. 

Silberberg et al. [58] presented a 2-stage algorithm that recognizes one or 

more 3D objects in an image by using the oriented model points. However, the 

orientation and the distance of the ground plane are assumed to be known in their 

approach. Piggio et al. [59] proposed to use a number of images form different 

viewpoint to train a neural network. The internal representation functions trained 

are used to represent the objects models. Then these models are used in the object 

recognition. Also, Kuno et al. [60] used a tree-like feature search strategy by using 

a number of images of the 3D objects in different viewpoints. Moreover, Xu and 

Zhang [5] proposed to perform 3D object recognition by using the technique of 

Epipolar geometry [5][46][45] to match model view with an input view. In addition, 

invariant feature is also used in 3D object recognition [61][62]. Although the 3D 

structure of the object need not to be reconstructed beforehand, the detailed pose 

information of the object cannot be obtained from them. 

Also, Lowe [10][11] proposed an approach to recognize the 3D object from a 

single 2D intensity image, and the pose is also calculated as well. In his approach, 
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the iterative technique for the motion analysis with 2D-to-3D point correspon-

dences proposed by Lowe [10] himself (which is introduced in Section 2.1.2) is 

applied as the core to determine the motion of the object in the scene. 

2.4 Summary of Contributions 

The contributions of this thesis are briefly summarised below: 

1. An Enhancement of Faugeras's Algorithm: 

An enhancement to the Faugeras's algorithm [12] is proposed in order to 

improve the accuracy of the result of the translation matrix. Experiments 

have been done to compare the performance of this modified version and the 

original Faugeras's algorithm in terms of the accuracy of the translational 

parts of the result. From, the results, it is observed that the accuracy of 

this modified version is much better than that of the original Faugeras's 

algorithm. 

A publication about this work is prepared for a journal publication [63 . 

2. A new Iterative Method: TL-algorithm: 

A new iterative algorithm which is called the "TL-algorithm" is proposed for 

the P4P problems. Experiments have been done to compare the performance 

of the TL-algorithm and that of Lowe's algorithm [10] in terms of their 

computation times. From the results, it is observed that the computation 

speed of TL-algorithm is faster than that of Lowe's algorithm, especially for 

the case when the motion is pure rotation. 

Publication about this work is accepted by 3DCV,97 [64]. Also, another 

publication about this work is submitted to Pattern Recognition Letters and 

under revision [65 . 
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3. A new Linear Method: Six-point Algorithm: 

A two-step linear algorithm which is called the "Six-point Algorithm" is pro-

posed for PnP problems with n > 6. There are totally two versions of the 

"Six-point Algorithm". These two versions of "Six-point Algorithm" and 

Faugeras's algorithm [12] are quite similar. They mainly differ by using dif-

ferent constraints in the constrained optimization. Also, we propose to use 

the technique of representation of rotations by quaternion and the technique 

of SVD [16] to estimate the rotation of the object. It can be applicable to 

any PnP problems for n > 6 when not all the feature points (in 3D space) 

lie in the same plane. 

Also, the Six-point algorithm is much more general than Horn's approach 

31] since the Six-point algorithm can handle any kind of rigid motion. It 

means that the Six-point algorithm can be applicable to the case even if the 

motion is neither pure rotation nor pure translation. Also, the technique of 

SVD is applied in the estimation of rotation matrix. From the experimen-

tal result, the use of the technique of SVD can improve the computation 

speed. Moreover, experiments have done to verified our proposed approach. 

Besides, there is a comparison between Faugeras's algorithm and the two 

versions of the “Six-point Algorithm". In addition, a visual tracking system 

is implemented by using the Six-point algorithm as the core to estimate the 

motion of the moving object. Unlike the visual tracking system proposed by 

Gee [24], our system makes use of the Six-point algorithm and the camera 

model is full perspective instead of weak perspective in that of Gee. Be-

sides, Six-point algorithm is used as a part of a motion-based segmentation 

algorithm and a 3D object recognition algorithm proposed by us. These two 

algorithms will also be discussed in this thesis. 

A publication about this work is prepared for a journal publication [63 . 
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4. A new Algorithm for Motion-based Segmentation with 3D-to-3D Point Cor-

respondences: 

Moreover, a motion-based segmentation algorithm for the case using 3D-

to-3D point correspondences is proposed. This new approach makes use of 

incremental clustering to segment all the feature points into a number of 

clusters. The feature points in each cluster have the same motion (same R 

and t). Since, the incremental clustering technique is applied, the number of 

clusters can also be determined. Therefore, prior knowledge of the number 

of motions is not required. Afterwards, the motion for each cluster will be 

calculated. Amn's method [15] is occupied as the core of motion analysis. 

Publications about this work are accepted by ICPR，98 [66] and NOLTA，98 

67. 

5. A new Algorithm for Motion-based Segmentation with 2D-to-3D Point Cor-

respondences: 

On the other hand, a motion-based segmentation algorithm for the case us-

ing 2D-to-3D point correspondences is proposed too. It is a similar approach 

to our another proposed approach for the case of 3D-to-3D. The incremental 

clustering method is also used. However, the Six-point algorithm is occupied 

as the core of motion analysis, such that this algorithm is suitable to solve the 

motion-based segmentation problem for the case of 2D-to-3D. Experiments 

have been performed to verify these two new approaches. 

A publication about this work is accepted by ICIPS'98 [68 . 

6. A new Algorithm for Motion-based 3D Object Recognition from an Intensity 

Image: 

Finally, an algorithm for 3D object recognition is proposed. It is a two-

step approach to recognize 3D objects from a single intensity image with an 
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unknown viewpoint. In this approach, the object in the image is recognized 

by matching against the objects in the database according to their shape. 

This new approach is unlike others since the 3D information of the object 

to be recognized need not be reconstructed and an image is sufficient to 

recognize the object according to its 3D shape. The most similar approach is 

proposed by Lowe [10]. However, our approach uses the Six-point algorithm 

as the core of the motion analysis instead of the iterative method in Lowe's 

approach [10]. Therefore, the time for recognition is shortened. 

A publication about this work is submitted to 98 Workshop on Computer 

Vision [69 . 



CHAPTER 3 

MODEL-BASED MOTION ANALYSIS WITH 
2D-TO-3D POINT CORRESPONDENCES 

In this chapter two approaches for model-based motion analysis with 2D-to-3D 

point correspondences are proposed. The first one is an iterative method specific 

for the P4P problem. It is called the TL-algorithm. Another is a linear algorithm 

for any PnP (for n > 6) problems with general motion (i.e. the motion need not be 

pure rotation nor pure translation). This linear algorithm is called the Six-point 

algorithm. Actually, there are two versions ofthe Six-point algorithm and they will 

be described in this chapter. Also, a visual tracking system by using the Six-point 

algorithm will also be described. 

In addition, an enhancement of Faugeras's algorithm [12] is proposed to im-

prove the accuracy of the result of the translation matrix. Moreover, a comparison 

between the two versions of Six-point algorithm, the original Faugeras's algorithm 

and the modified Faugeras's algorithm will be presented. 

Also, Figure 5 describes a brief summary of different methods in Model-based 

Motion Analysis. 

3.1 A new Iterative Algorithm for the Perspective-4-point 

Problem: TL-algorithm 

In this section, the TL-algorithm is described. In Figure (6), the motion of 

this object is being investigated. On this object, 4 feature points (in 3D space) 

34 
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Figure 5: A diagram illustrates the relation between different methods in Model-

based Motion Analysis. 

are extracted (which are called model points). Since it is a model-based problem, 

the distances between each extracted point should be measured before motion 

tracking. The distances measured will form a model to represent the object. Then 

in the process of motion tracking, a camera is used to capture the images of that 

rigid object. The 4 model points will project to the image plane (i.e. screen of the 

camera) to form 4 image points (i.e. projection of the feature points) as shown in 

Figure (6). 

3.1.1 Algorithm 

Referring to Figure (6), the relations between the model points at time k and 

corresponding image points can be expressed in the following way: 

对 二 li^” (3.41) 

where 

s P d j , 、 

^ = ^ ， (3.42) 
P c h 

in which Ai and â  are respectively the i — th model point and i — th image point. 

Also, z=l,2,3 or 4, /^=distances between the model points Â  and the optical center. 

Moreover, P ^ 二 [x^ , yf ’ /]^ where [x^,y^]^ is the coordinates of projection i — th 
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Ai: i-th object point 
ai: i-th image point 

1 ^ ^ ^ H ^ ^ A l 

(focal length) aJ^_^•^"-““-^‘ ^ ^ ^ ^ ^ _ 一 ’ ' ' y ^ W 

卞唾：:::^^ ^ f / 
(Optical a 4 ^ " ^ " - - ^ ^ ^ ^ ^ ^ N A / 

_ ) Y ^ ^ ^ A: 

image plane an object 

Figure 6: a model with 4 model points and their corresponding image points 

feature point and f is the focal length. Also, applying the constraints of the 

distances between each model point can obtain the following cost function: 

e'{i.j) = m r + W)2 — 2lll]{vt. _ ) ) — 1 ¾ ¾ ! ' , (3.43) 

where z, j = 1, 2, 3 or 4 with i < j. 

Therefore, there are totally six cost functions (in the form of equation (3.43) 

with different combinations of i and j). However, it is not enough to reconstruct 

the model by these six constraints only. For example, Figure (3) shows there are 

two sets of model points that can also satisfy the same set of the six constraints. 

In order to perserve the shape of the model so that the model can be reconstructed 

uniquely, another constraint is required and it is given as the following cost func-

tion: 

gs 二 [(树-/‘春贝对-巧动].阴对-喊 

- ( ¾ ¾ < ¾ ¾ ) . ¾ ¾ (3.44) 
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Assuming that E^ is the vector of all e^{i,j) and g'^ after s — th iteration 

(i.e. E^=[e^(l, 2), e^(l, 3),e^(l, 4), e^(2, 3), e '̂(2, 4),e'̂ '(3, ̂ ),g'Y). J is the Jacobian 

matrix, 3 舰 = ^ T - Also, L® is the column vector of all /|(i.e. L| = /| for 

i - 1, •", 4). Then by the Gauss-Netwon method [36], we have the following update 

rule to minimize the cost function: 

L ^ = L^ - K, (3.45) 

where 

JK = E, (3.46) 

in which 

K = ( jTj )- i jTR (3.47) 

By applying equations (3.45) and (3.47) iteratively with a suitable initial 

guess (which should be closed to the answer), the result can be obtained until the 

stopping criteria is reached (e.g. K less than a threshold or E less than a threshold). 

The selection of initial guess not only affect the computation time, but the 

accuracy of the result may also be influenced. As mentioned in Section 2.1.2 that 

multiple solutions may exist for a P4P problem [25]. If the initial guess is not close 

enough to the correct answer, the system may converge to another local minimum. 

From the experiment, we found that a suitable initial guess of the lengths at 

time k + 1 should be the estimated lengths at time k (i.e. result at time k). It is 

reasonable since the motion of the object may not be so large between time k and 

k + 1 if the time interval is short enough. 

3.1.2 Experiment 

Both synthetic and real data are used to examine our model-based pose 

estimation algorithm. Both experiments are done on a SGI-INDY computer. Also, 
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all the programs are implemented in MATLAB 4.2c. 

3.1.2.1 Experiment using Synthetic Data 

In the experiment using synthetic data, both TL-algorithm and Lowe's algo-

rithm iterates until one of the following criteria is met:-

1. Each element in the error vector is less than 10—3 units. 

2. The number of iterations exceeds an upper bound of 300. 

In the experiment, a series of images is generated and input to the system. In 

this experiment, 600 images are created. A new model will be used and created 

randomly in every 20 images. A model consists of four 3D feature points and 

they are generated randomly from an uniform distribution within a cube of size 

20 X 20 X 20 units with the center at [0,0,120]. Also, the images between the 

20n — th image and the 20(n + 1) — th image will be generated by applying a 

transformation matrix (generated randomly) to the object in the previous image. 

Except for the first image, the system chooses the result of the previous 

image as the initial guess. It is reasonable because the translation and rotation 

between two consecutive frames in a realistic movie should be small. Also, there 

are upper bounds to govern the variations of the rotation and the translation. The 

experimental result is shown in Table (1)-(6). 

By comparing the result shown in Table (2) with that in Table (4), it is shown 

that the TL-algorithm has a better performance than Lowe's algorithm since the 

mean value of the iteration required in the TL-algorithm is much less than that 

in the Lowe's algorithm. The reason for this phenomenon is that, the distance 

between the model points and the center of perspective remains unchanged between 

two consecutive images or frames if the motion between them is pure rotation. This 



39 

algorithm min. iter. max. iter. Mean (iter.) S.D. (iter.) Time (s) 

Lowe's 3 11 3.700 0.735 32 

TL 2 10 3.252 0.928 13 

***Note:- the term "iter." indicates the number of iterations for the systems to converge 

to a stable answer, "s" stands for second. 

Table 1: Result for synthetic data:- bound of rotational angle 二 9® and bound of 

translation in each axis 二 10 units 

algorithm min. iter. max. iter. Mean (iter.) S.D. (iter.) Time (s) 

Lowe's 3 22 4.383 1.120 36 

TL 2 42 3.220 1.787 13 

Table 2: Result for synthetic data:- bound of rotational angle 二 18̂  and bound of 

translation in each axis 二 10 units 

effect can also be found by comparing the result shown in Table (1) and Table (3). 

Also, by Table (2), (4) and (6), it is shown that, the performance of the 

TL-algorithm declines as the bound of the translation (in each axis) increases. It 

is because the motion of the object becomes more "translational" as such a bound 

increases. Therefore, the translational motion becomes dominant. Relatively, the 

importance of the rotational motion becomes smaller. In the extreme case, the 

result in Table (5) shows that the performance of the TL-algorithm is much worse 

than Lowe's algorithm (in terms of the mean values of the iterations) when the 

motion is pure translational. 

As a result, we can conclude that the performance of the TL-algorithm is 

better in the cases that the transformation of the object is dominated by the 

rotational motion. Therefore, TL-algorithm is suitable for the environment where 

the motion ofthe rigid object (which position is required to find) is mainly rotation. 
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algorithm min. iter. max. iter. Mean (iter.) S.D. (iter.) Time (s) 

Lowe's 3 6 3.780 0.579 31 

TL 1 9 1.8167 0.929 11 

Table 3: Result for synthetic data:- bound of rotational angle = 9̂  and bound of 

translation in each axis —— 0 unit 

algorithm min. iter. max. iter. Mean (iter.) S.D. (iter.) Time (s) 

Lowe's 3 51 4.518 2.546 37 

TL 1 11 1.747 0.996 11 

Table 4: Result for synthetic data:- bound of rotational angle = 18° and bound of 

translation in each axis = 0 unit 
4̂  

algorithm min. iter. max. iter. Mean (iter.) S.D. (iter.) Time (s) 

Lowe's 2 7 2.075 0.326 19 

TL 3 84 4.025 4.939 15 

Table 5: Result for synthetic data:- bound of rotational angle 二 0。and bound of 

translation in each axis = 40 units 

algorithm min. iter. max. iter. Mean (iter.) S.D. (iter.) Time (s) 

Lowe's 3 13 4.310 0.8469 35 

TL 3 120 4.172 5.359 15 

Table 6: Result for synthetic data:- bound of rotational angle = 18。and bound of 

translation in each axis = 40 units 
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Figure 7: The input device. The four LEDs inside circles are used as the four 

feature points. 

On the other hand, the computation time for the TL-algorithm is much less 

than that for Lowe's algorithm. It is because the number of the parameters (or 

unknown to be found) in Lowe's algorithm is 6 which is more than that required by 

the TL-algorithm. Both these two algorithms use the Gauss-Newton method [36 . 

In the Gauss-Newton method, there are some calculations of multiplication of the 

matrices and the inverse of a matrix. Both these calculations are very expensive。 

Therefore, the smaller the size of the matrices (i.e. the error vector and especially for the Jacobian matrix), the shorter the computation time. It is equivalent to the minimization of the number of the parameters (or unknowns) used in the system. As a result, the computational time for the TL-algorithm is shorter. 
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3.1.2.2 Experiment using Real Data 

In the experiment using real data, images of an input device is taken by a 

calibrated camera [33]. This device is made of a black card and eight LEDs as 

shown in Figure (7). The four LEDs at the outermost layer (i.e. the LEDs marked 

by the circles in Figure (7)) are used as the four model points. A short movie is 

created by capturing the random motion of this device. Then the correspondences 

between the four model points (LEDs) and the image points in each frame of the 

movie are found by using the cross-correlation technique. This movie contains 

113 frames. By using the TL-algorithm, about 28 frames can be handled in each 

second. In this experiment, the limit for the stopping criterion is set to be 10_i° 

units (i.e. each element in the correction vector n should be less than 10~^°units 

when the stopping criterion is reached). Therefore, the TL-algorithm is very fast. 

e 

3.2 An Enhancement of Faugeras's Algorithm 

The aim of proposing this enhancement is to improve the accuracy of the 

translational part of the motion of the object calculated by using Faugeras's algo-

rithm [12；. 

In the original Faugeras's algorithm [12], the rotational and translational 

components are calculated as shown in Equation (2.27)-(2.29). The orthogonality 

of the rotation matrix is ensured. However, the cost function in Equation (2.26) 

cannot be sure to be minimized with the resultant translation matrix and rotation 

matrix especially when the system is seriously corrupted by noise. 

According to the argument by Faugeras, the resultant rotation matrix is the 

optimal solution. In this thesis, we suggested to use another method to find a 

suitable translation matrix to minimize the cost function in Equation (2.26). 

In order to minimize the cost function in Equation (2.26) and at the same 
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time keeping the resultant rotational components given from Equation (2.27)-(2.29) 

to be the solution, the resultant rotational components are back-substituted into 

Equation (2.26). Then the translational components are computed as follows: 

t = - ( C ^ C ) - i C ^ q K , (3.48) 

where C is a N x 3 matrix (which contains the elements in the 10 — th to 12 — th 

columns in %)，D is a N x 9 matrix (which contains the elements in the 1 — st to 

9 — th columns in %), and 

^R 二 Bq, (3.49) 

in which q contains all the motional components as given in Equation(2.25), and 

1 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 

B = 0 0 0 0 0 1 0 0 0 0 0 0 • 

0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 

Therefore, q̂ ^ is actually a 9x1 vector and containing all the rotational components 

of the system. Also, 

X q = Ct + Dq^. (3.50) 

By using the above equations, the translation matrix, which can minimize 

the cost function in Equation (2.26), can be obtained. Actually, it is a kind of 

constrained optimization problem and readers can refer to Appendix B for more 

details. 
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along or about x-axis y-axis z-axis 

Rotational Angles (in radian) 0.19783057 -1.04168364 0.39935766 

Translational components -427.4820 -26.6806 450.2650 

Table 7: The motion parameters used in Experiment One. 

3.2.1 Experimental Comparison between the Original Faugeras's Al-

gorithm and the Modified One 

In this section, experiments based on the synthetic data are performed to 

compare the performances of the original and the modified Faugeras's algorithm. 

There are two experiments. 

3.2.1.1 Experiment One: Fixed Mot ion 

‘ In this experiment, the performances of these two algorithms are measured 

by using different numbers of feature points with a fixed rotation matrix and a 

fixed translation matrix as shown in Table (7). The number of feature points 

ranges from 6 to 100. Also, in order to estimate their performances under noisy 

environment, noise is added to the image points (i.e. the pixel coordinates) of the 

projection. The noise is Gaussian and independent, and its standard deviation 

varies between 0 (for no noise) and 3 pixels. For each test, 100 sets of different 

feature points are generated randomly from an uniform distribution within a cube 

of size 2 X 2 x 2 with center at [0,0,300]. Then the root mean square (RMS) 

error of the translational components will be recorded over 100 trials for the same 

number of feature points and noise level. The focal length f is set to be 0.6 units. 

Also, the distance between two adjacent pixels in the image is 0.0025 units. 

Since only the calculations of the translation are different in these two al-

gorithms, so only the R M S error of the translational components are considered 

in this experiment. The R M S error of the translational components of these two 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0093 0.0318 3.5464 3282.7669 519.7047 

20 0.0000 0.0019 0.1889 19.0184 935.9055 

45 0.0000 0.0010 0.1086 9.3912 391.2966 

70 0.0000 0.0006 0.0748 8.5571 339.1891 

100 0.0000 0.0006 0.0621 7.5802 360.2608 

150 0.0000 0.0004 0.0459 6.7451 328.8169 

200 0.0000 0.0004 0.0409 6.1644 326.4095 

Table 8: R M S error of the translational component of the original Faugeras's 

algorithm along the x-direction with different numbers of feature points (between 

6 and 200) and noise level (between 0 and 2). 

‘algorithms is shown in tables (8)-(13). It is shown that the RMS error of the 

translational components of the modified Faugeras 's algorithm is smaller than that 

of the original one especially when the noise level is high. Also, the error in the 

modified version becomes smaller when number of feature points is increasing. 

O n the other hand, the computation time of the original version and that of 

the modified version are shown in Table (14) and (15). From these two tables, it is 

shown that the computation time is only depending on the number offeature points 

used, but not depending on the noise level. Therefore, the comparison between these 

two algorithms in terms of computation time can be easily observed from Figure 

(8). From this figure, it is shown that the computation time of the original version 

is shorter than that of the modified version. It is the result of longer computation 

time required to compute the translation matrix in the modified version. 

As a result, there is a trade-off between computation speed and accuracy in 

the result. 
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Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0006 0.0094 0.4566 161.7890 462.4204 

20 0.0000 0.0002 0.0176 1.1720 186.7725 

45 0.0000 0.0000 0.0056 0.4055 166.3094 

70 0.0000 0.0000 0.0034 0.3569 38.2557 

100 0.0000 0.0000 0.0022 0.2322 75.6689 

150 0.0000 0.0000 0.0017 0.1736 9.7463 

200 0.0000 0.0000 0.0015 0.1621 10.9373 

Table 9: R M S error of the translational component of the modified Faugeras's 

algorithm along the x-direction with different numbers of feature points (between 

6 and 200) and noise level (between 0 and 2). 
.M 

Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0036 0.0142 1.1398 404.5382 145.1875 

20 0.0000 0.0009 0.0961 8.3243 53.9644 

45 0.0000 0.0005 0.0510 4.1238 44.1712 

70 0.0000 0.0003 0.0350 3.3586 39.9494 

100 0.0000 0.0003 0.0293 3.0023 31.8459 

150 0.0000 0.0002 0.0219 2.2463 29.4750 

200 0.0000 0.0002 0.0187 2.1168 31.5101 

Table 10: R M S error of the translational component of the original Faugeras's 
algorithm along the y-direction with different numbers of feature points (between 
6 and 200) and noise level (between 0 and 2). 
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Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0008 0.0307 11.2862 29.8981 

20 0.0000 0.0000 0.0022 0.1642 11.3544 

45 0.0000 0.0000 0.0006 0.0544 10.7242 

70 0.0000 0.0000 0.0004 0.0423 2.3837 

100 0.0000 0.0000 0.0003 0.0345 4.7293 

150 0.0000 0.0000 0.0002 0.0222 0.6523 

200 0.0000 0.0000 0.0002 0.0194 0.7478 

Table 11: R M S error of the translational component of the modified Faugeras's 

algorithm along the y-direction with different numbers of feature points (between 

6 and 200) and noise level (between 0 and 2). * 

Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0062 0.0195 1.2024 219.4376 437.2376 

20 0.0000 0.0010 0.0862 10.0583 372.9977 

45 0.0000 0.0005 0.0523 6.2899 347.5923 

70 0.0000 0.0003 0.0390 5.3925 329.9595 

100 0.0000 0.0004 0.0284 5.6945 328.7777 

150 0.0000 0.0003 0.0292 4.6892 322.6897 

200 0.0000 0.0002 0.0219 4.4855 322.1139 

Table 12: R M S error of the translational component of the original Faugeras's 
algorithm along the z-direction with different numbers of feature points (between 
6 and 200) and noise level (between 0 and 2). 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0009 0.0099 0.5088 170.9325 485.3186 

20 0.0000 0.0002 0.0176 1.1680 196.4831 

45 0.0000 0.0001 0.0057 0.4329 175.0443 

70 0.0000 0.0000 0.0036 0.3770 40.7451 

100 0.0000 0.0000 0.0023 0.2443 79.7322 

150 0.0000 0.0000 0.0018 0.1846 10.4328 

200 0.0000 0.0000 0.0015 0.1648 11.6332 

Table 13: R M S error of the translational component of the modified Faugeras's 

algorithm along the z-direction with different numbers of feature points (between 

6 and 200) and noise level (between 0 and 2). 

noise level 0 0.005 0.05 0.5 2 

no. of pt=6 0.0080 0.0079 0.0079 0.0079 0.0080 

no. of pt=20 0.0093 0.0093 0.0093 0.0093 0.0093 

no. of pt.=45 0.0106 0.0106 0.0107 0.0106 0.0106 

no. ofpt.=70 0.0111 0.0112 0.0112 0.0118 0.0112 

no. of pt.-100 0.0121 0.0120 0.0120 0.0124 0.0120 

no. ofpt.=150 0.0138 0.0136 0.0137 0.0137 0.0137 

no. ofpt.=200 0.0151 0.0150 0.0152 0.0150 0.0150 

Table 14: In Experiment One: The computation time (in terms of second) of the 
original Faugeras's algorithm with different number of feature points (between 6 
and 200) and noise level (between 0 and 2). 
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noise level 0 0.005 0.05 0.5 2 

no. ofpt.=6 0.0089 0.0089 0.0088 0.0088 0.0088 

no. of pt=20 0.0103 0.0103 0.0103 0.0103 0.0103 

no. ofpt.=45 0.0121 0.0121 0.0121 0.0121 0.0121 

no. of pt-70 0.0128 0.0128 0.0128 0.0135 0.0128 

no. ofpt-100 0.0139 0.0139 0.0138 0.0142 0.0138 

no. ofpt.=150 0.0160 0.0158 0.0159 0.0158 0.0158 

no. of pt.=200 0.0175 0.0175 0.0179 0.0175 0.0175 

Table 15: In Experiment One: The computation time (in terms of second) of 
modified Faugeras's algorithm with different number of feature points (between 6 
and 200) and noise level (between 0 and 2). 

‘ original approach of Faugeras 
modified approach of Faugeras 
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Figure 8: Computation times of the original Faugeras's algorithm and the modified 
Faugeras's algorithm with fixed motion 



50 

Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.4 2.5 793.4 8933.8 

20 0.0 0.0 0.3 115.7 795.4 

45 0.0 0.0 4.3 359.1 3461.0 

70 0.0 0.0 2.1 17.6 2061.6 

100 0.0 0.0 1.0 136.8 1674.9 

150 0.0 0.0 0.2 95.5 136.1 

200 0.0 0.0 0.6 71.6 2296.6 

Table 16: R M S of percentage error of the translational component of the original 
Faugeras's algorithm along the x-direction with different numbers of feature points 
(between 6 and 200) and noise level (between 0 and 2). 

3.2.1.2 Experiment Two: Using Mot ion Generated Randomly 

This experiment is similar to the first experiment, however, the motions used 

are randomly generated each time. The rotation is generated randomly from an 

uniform distribution such that each of the three rotation angles about the three 

axes (x, y and z axes) are varying between —180^ and +180^, while the translation 

vector is generated randomly from an uniform distribution in the range [—2,..., 2 . 

The focal length f is set to be 0.6 units. Also, the distance between two adjacent 

pixels in the image is 0.0025 units. 

In this experiment, the root mean square (RMS) of the percentage error of 

the translational components will be recorded over 100 trials for the same number 

of feature points and noise level. 

The R M S percentage error of the translational components are shown in 

tables (16)-(21). Also, the speeds of these two approaches are shown in Figure (9). 

From the result, the same phenomena are obtained as mentioned in Experiment 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 0.3 95.6 101.6 

20 0.0 0.0 0.1 4.4 171.3 

45 0.0 0.0 0.3 18.2 281.7 

70 0.0 0.0 0.0 1.7 53.1 

100 0.0 0.0 0.1 2.7 77.1 

150 0.0 0.0 0.0 1.3 54.5 

200 0.0 0.0 0.0 2.8 62.3 

Table 17: R M S of percentage error of the translational component of the modified 

Faugeras's algorithm along the x-direction with different numbers of feature points 

* (between 6 and 200) and noise level (between 0 and 2). 

Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 8.1 400.4 905.7 

20 0.0 0.0 0.4 99.6 424.5 

45 0.0 0.0 0.2 61.1 1213.6 

70 0.0 0.0 0.3 30.5 75.8 

100 0.0 0.0 0.1 54.5 238.7 

150 0.0 0.0 0.1 6.4 48.2 

200 0.0 0.0 0.1 15.8 312.2 

Table 18: R M S of percentage error of the translational component of the original 
Faugeras's algorithm along the y-direction with different numbers of feature points 
(between 6 and 200) and noise level (between 0 and 2). 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 1.1 25.1 467.4 

20 0.0 0.0 0.0 4.3 38.2 

45 0.0 0.0 0.0 6.2 88.0 

70 0.0 0.0 0.0 1.7 24.0 

100 0.0 0.0 0.0 3.4 48.9 

150 0.0 0.0 0.0 0.9 5.5 

200 0.0 0.0 0.0 1.2 8.6 

Table 19: R M S of percentage error of the translational component of the modified 
Faugeras's algorithm along the y-direction with different numbers of feature points 
(between 6 and 200) and noise level (between 0 and 2). 

Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 0.1 25.5 74.4 

20 0.0 0.0 0.0 0.5 22.7 

45 0.0 0.0 0.0 0.3 18.3 

70 0.0 0.0 0.0 0.2 17.1 

100 0.0 0.0 0.0 0.2 16.2 

150 0.0 0.0 0.0 0.2 16.2 

200 0.0 0.0 0.0 0.1 16.3 

Table 20: R M S of percentage error of the translational component of the original 
Faugeras's algorithm along the z-direction with different numbers of feature points 
(between 6 and 200) and noise level (between 0 and 2). 
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Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 0.1 23.3 77.1 

20 0.0 0.0 0.0 0.1 12.7 

45 0.0 0.0 0.0 0.0 2.0 

70 0.0 0.0 0.0 0.0 1.2 

100 0.0 0.0 0.0 0.0 1.0 

150 0.0 0.0 0.0 0.0 1.0 

200 0.0 0.0 0.0 0.0 0.9 

Table 21: R M S of percentage error of the translational component of the modified 

Faugeras's algorithm along the z-direction with different numbers of feature points 

(between 6 and 200) and noise level (between 0 and 2). 
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Figure 9: Computation time of the original Faugeras's algorithm and the modified 
Faugeras's algorithm with random motion 
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One using fixed motion parameters. 

3.2.2 Discussion 

From the experiments, we can draw the following conclusions about the mod-

ified version of Faugeras's algorithm: 

1. The accuracy of the result about the translational components of the modified 

Faugeras's algorithm is improved especially when the noise level is high; 

2. The accuracy in the modified version becomes higher when number of feature 

points is increasing. 

3. The computation time is only depending on number of feature points used, 

- but not depending on noise level. However, the computation speed of the 

modified version is slower than that of the original version. 

Actually, the enhancement in the accuracy is the result of minimizing the cost func-

tion in Equation (2.26) by back-substituting the resultant rotational parameters. 

In the original version, there is no guarantee that the cost function in Equation 

(2.26) can be minimized by the estimated motion parameters. 

However, more computation time is required to back-substitute the resultant 

rotational parameters into the system to obtain the translation. Therefore, the 

computation speed of the modified version is lower than that of the original version. 

As a result, there is a trade-off between computation speed and accuracy. 
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3.3 A new Linear Algorithm for the Model-based Motion 

Analysis: Six-point Algorithm 

In this paper, a direct and linear approach is proposed to solve the model-

based pose estimation problem under full perspective projection. Unlike iterative 

methods, initial guesses are not required in this approach, so the computation speed 

of the system is better than that of other iterative algorithms (e.g. [10]). Also, the 

technique of the singular value decomposition (SVD) [16] is used to maintain the 

orthogonality of the rotational matrix. 

Actually, this algorithm is similar to Faugeras's algorithm [12] that a similar 

system of 2N homogeneous linear equations (as shown in equations (2.22)-(2.25)) 

for N feature points by using equations (1.3) and (1.4). However, different con-

straints are applied in the constrained optimization step in order to see whether 

there is any improvement. In this thesis, two versions of the Six-point Algorithm 

are proposed and discussed. These two versions also differ by using different con-

straints in the step of constrained optimization of the linear system. 

The experiments using both synthetic and real data have been done to verify 

this approach. 

3.3.1 General Information of the Six-point Algorithm 

Both versions of the Six-point algorithm also contain two parts: 1) Linear 

solution, 2) constraint satisfactory part. 

The first part is used to obtain a rough estimate of the motion of the object. 

The second part is used to refine the solution in order to maintain the orthogonal 

property of the rotation matrix so that the rigidity of the object can be preserved. 

The two versions will use the same system of homogeneous linear equation 
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in 3.51 and they are only different in the Linear solution part. The constraint 

satisfactory part is the same in both versions. 

In the Six-point algorithm, the intrinsic parameters [12] of the camera can 

also be obtained by using equations (2.27)-(2.29) just the same as Faugeras's al-

gorithm. However, intrinsic parameters [12] and camera calibration [70][71] are 

out of the scope of this thesis. So, the details of calculating the intrinsic parame-

ters will not be described in this thesis. Since, the aim of this chapter is motion 

analysis with 2D-to-3D point correspondences, the camera used to capture the im-

age is well-calibrated before doing the experiments. Actually, an experiment has 

been done to investigate the ability of the two versions of Six-point algorithm in 

finding the intrinsic parameters. From the experimental result, the performances 

of all these three approaches (two versions of the Six-point algorithm and origi-

nal Faugeras's algorithm) in estimating the intrinsic parameters are comparative. 

However, the details of this experiment will not be mentioned in this thesis. 

3.3.2 Original Version of the Six-point Algorithm 

3.3.2.1 Linear Solution Part 

In the original version of Six-point algorithm, the system of homogeneous 

linear equation is obtained by rearranging Equation (1.3) and (1.4) as the following: 

Ah = 0, (3.51) 

where h = [rn,r12, r13, r21,r22, r23, r31, r32, r33,力们 ty, t^Y, and 

「 ir 
A = ai, bi, a2, b2, .。• aiv, bjv ’ （3.52) 

in which 

az = [fX^ fYt, f Z l 0, 0, 0, -x^^'Xl -:rf+%V:r?+iZf, /, 0, -xf+^], 

also, 
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b . 二 [0, 0, 0, f X l fYt. f Z l -y。~Xt -y^Y^，-y^^'Z^ 0, ’f\ -y^^% 

and N is the number of model points on the rigid object. 

Finding the answer of the motion parameters h is equivalent to finding a h 

to minimize the following equation: 

M m | | A h | | ' . (3.53) 

Supposing that 

Ah = E 

=> ||Ah||^ = ||E||^ (3.54) 

where E is a 12 x 1 error vector, and ||o||^ stands for the Frobenius norm [16] and 

this notation will be used throughout this section. 

To minimize the error is equivalent to minimizing ||E||^ in the Equation 

(3.54). Supposing that 

h 二 sh” (3.55) 

where ||h』=1, s is scalar and s = ||h||. Then letting E = se, the equation (3.54) 

becomes: 

A(<shJ = se 

Aha = e 

令 ||Aha||^ = ||e||; (3.56) 

According to equations (3.54) and (3.56), the following conclusion can be drawn: 

2 
if h.a gives a minimum of ||e||p, then sha gives a minimum 
of ||se||̂  for all scalar s. 

Also, Faugeras showed that the rank of A is equal to 11 in general [12]. Then 

the nullspace of the system is usually dimension 1 and there is usually an unique 

solution to Equation (3.53). 
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Therefore, the minimization problem in Equation (3.53) becomes the follow-

ing problem: 

Min ||AhJl subject to ||hJ^ = 1. (3.57) 

ha 

By applying the technique of Lagrange multiplier, the whole problem can be 

further transformed into the following: 

MinF{K , A), (3.58) 
ha 

where 

F { K . A) = ||Ah』》+ A(1 — ||h,||̂ ). (3.59) 

In order to minimize the cost function in Equation (3.59), the first derivative of 

Equation (3.59) with respect to h^ is assigned to zero, then we have 

A ^ A h ^ 二 Xha. (3.60) 

Therefore, h^ is an eigenvector of A ^ A and A is the corresponding eigenvalue, 

and A should be the smallest eigenvalue in order to minimize the cost function in 

equation (3.59). 

3.3.2.2 Constraint Satisfaction 

However, the motion parameters found in the "Linear Solution" part is only 

the rough approximation of the solution of the motion parameters because the 

rotation matrix represented in h^ may not be orthogonal. Therefore one more step 

should be applied to find out a correct answer (or the best approximation in the 

noisy environment). 

Supposing that hg is the correct solution. Let h^ be the normalized vector 

of he. Then we have: 

he = ||he|| K. 
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Then for s = | | h e | | , the error function of the whole system will become | | h e | | e (i.e. 

E). However, for this error function, the minimum error of Equation (3.53) should 

be the error when h equals to | | h e | | h^. 

O n the other hand, if the noise in the system is small, then ||he|| h^ is near 

to he (for the system is free of noise, ||he|| h^ should be exactly equal to h。i.e., 

hw = ha. It is because the rank of A is usually equal to 11). Therefore it is 

confident that: 

If we have : 

1. ho is a parameter vector that can preserve the constraint 

about the orthogonality of the rotation; 

2 . | | h o | | 二 | | h e | | , a n d 

3. for all parameter vectors that obey the constraint and 

have length equal to ||he||, h^ is the nearest parame-

ter vector to ||he|| h^ (i.e. ||(h。— ||he|| ĥ )|| is minimized 

among all the other vectors that obey the constraint). 

then it is probably that h^ is equal to (or the best approximation of) the correct 

answer hg. 

However, we do not know any information about z (where z - | | h e | | ) after 

the calculation in the "Linear Solution" part. 

Actually, we need not find out the value of z explicitly, but we can still go 

ahead to find out the rotation and translation of the system. Therefore, the above 

constraint problem can be converted to the following minimization problem: 

Ro = Mn||R-zRe||^ (3.61) 

for all orthogonal matrices R and 
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Re = crRh, (3.62) 

where 
< 

cr = 1 ifdet(R/,,) > 0 
< , 

o = —1 otherwise 
V 

in which 

hal ha2 ha3 

R " = haA ha5 /̂ a6 • (3-63) 

ha7 ha8 ^a9 

Note: W e can assign ( - ¾ ) to be the estimated rotation 
matrix if det(R/J < 0, because (-h^) can also minimize 
the cost function in (3.59). 

Actually, R。is also the answer of Equation (3.61) for z = 1,2 or any real 

numbers (i.e. for all real number z, the answer of Equation (3.61) is also R。if 

there is no change for Re). As a result, R。is only depending on Re, but not the 

scalar z. W e can prove it simply by making use the technique of SVD. 

Supposing that we want to find an orthogonal matrix B to minimize the 

following cost function: 

||B-C||^. 

where C is any square matrix given. 

It is actually the Orthogonal Procrustes problem [16]. Golub and Van Loan 

gave out an answer by using the technique of S V D in their book [16]. According 

to their answer, 

B = U V ^ , 

where U A V ^ = C, in which A is the singular value matrix and U and V are the 

orthogonal matrices. 
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Then, supposing that we are going to find out the orthogonal matrix B^ to 

minimize the cost function \\Bo - D|| ,̂ in which D = kC for any real number k. 

According to Golub's statement [16], we should first apply S V D to D to get the 

two orthogonal matrices. However, the scalar k will not affect the calculation of 

S V D . The singular value matrix of D is equal to the k times of the singular value 

matrix of C. Therefore we can have the following result, 

D = u r v ^ , 

where T = kA. Then B^ 二 U V ^ = B. 

As a result, it is shown that the answer of an Orthogonal Procrustes problem 

is independent of the scalar factor of the given matrix (i.e. C or D). 

Therefore, we can conclude that if: 

R o - M n | | R - R e | | ^ , (3.64) 

then Ro is also an answer of the following 

Min||R-^Re||^, 

R 
for all scalar z. So, it is no need to find out the value of z explicitly. 

O n the other hand, there is also another important meaning about Equation 

(3.61). It actually finds the first nine elements in the parameter vector h^2 such 

that, 

1. 11(¾ — ||he|| h*)||^ is minimum, where h* only contains the first nine ele-

ments of ha and h*2 only contains the first nine elements of ho2； 

2. ho2 obeys the orthogonality of the rotation matrix. 

According to the above argument, it can be confident that the first nine elements in 

ho2 should be the best (or very very good) approximation of the first nine elements 
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of the correct answer hg (or they are exactly the correct answer if there is no noise 

in the system). 

As a result, the orthogonal matrix R ^ obtained by minimising the cost func-

tion given in Equation (3.64) is the best approximation (or even the correct solution 

for the noise free environment) of the rotation parameter. 

In order to maintain the orthogonality and to minimize the cost function in 

Equation (3.64), two methods are discussed in this thesis. The first one makes use 

of the representation of rotations by quaternions [18][72][43]. Another is based on 

the technique of SVD. 

Use of Representation of Rotations by Quaternion 

Actually the detailed description of representation of rotation by quaternions 

is presented in Appendix A. 

In order to apply the technique described in Appendix A to find out the 

answer of the rotation matrix, the matrices C and D in Equation (1.101) should 

be replaced by I and Re respectively (where I is a 3 x 3 identity matrix). 

Then the quaternion q (i.e. the eigenvector of B in Equation (1.102)) is 

the required quaternion representation of the rotation parameters. By applying 

Equation (1.105), the rotation matrix can be obtained. 

Use of Singular Value Decomposition 

In this thesis, another technique is applied to determine the rotation matrix 

based on the technique of singular value decomposition (SVD). 

Actually, Equation (3.64) is a standard orthogonal Procrustes problem [16". 

Therefore the rotation matrix R^ is given as follows: 

Ro 二 U V ^ , (3.65) 
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where U and V are 3 x 3 orthogonal matrices which is given by the S V D of R^ as 

follows: 

Re = UAV^. (3.66) 

Actually, the use of the technique of S V D to determine the motion between 

two sets of 3D points (i.e. 3D-to-3D correspondence problem) was proposed by 

Arun, Huang and Blostein [15]. And their algorithm was enhanced by U m e y a m a 

21]. However, our proposed approach to determine the rotation matrix is different 

from the algorithm using S V D in 3D-to-3D correspondence problem in the way that 

our proposed algorithm will not give out a rotation matrix which is a reflection 

(i.e. det(Ro)=-l). Our approach will always give out a rotation matrix with + 1 as 

the determinant. It is because the determinant of Re is ensured to be positive in 

equation (3.62). In addition, according to the properties of S V D , all the singular 

values must be larger than or equal to zero. det(A) must be positive. Therefore, 

det(UV^) must also be positive and it is equal to +1. 

Determination of the translational matrix 

After the rotation matrix R ^ is obtained, we would like to find the translation 

matrix t. From (3.51), we can derive the following linear system: 

rt = 0 , (3.67) 

where 

「 qr 
r = OLi, /3i, ... oiN, 0N ， (3.68) 

and 

- 1T 

® = [ Ci, G?2, ... Civ, dN , (3.69) 
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in which 

^ ^ = [ - / , 0， 2 ^ + 1 ] , (3.70) 

/ 5 — 0 , -/, ？ ^叫’ (3.71) 

and 

Q =RoufXf + Ro,JYt + Ro,JZ^ - i^o3,xf+^Xf 

—_^。32工^+1%於 一 Ro^^x^^^Z^^ (3.72) 

《 = R o , J X ^ + R,,JYt + Ro,JZ^ — i^o3,yf+'^f 

一 Ro^ykJX' — i^^33"f+i^. (3.73) 

Also R o — is the element of R。in the m — th row and n — th column. 

By using the least-squares fitting technique, the estimated translation matrix 

to is given as follows: 

to = (r^r)"'r^0. (3.74) 

As a result, the rotation R。and translation t。of the rigid object between 

time k and k + 1 are obtained by the procedures described above. 

3.3.3 Second Version of the Six-point Algorithm 

In the second version of Six-point algorithm, the same homogeneous linear 

equation system shown in Equation (3.51) is used. The difference of this approach 

from the original version is to use different constraints in the constrained optimiza-

tion in the "Linear Solution Part". In the second version, the following constraint 

2 
is used instead of ||h||^ = 1 in the original version: 

l|rJ^ = 3, (3.75) 
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where r^ = [rn,r12, r13, r21,r22, r23, r31, r32, r33]^. 

Actually, the constraint in Equation (3.75) is the fact that ||R||̂  二 3 for any 

rotation matrix R (since a rotation matrix is orthogonal). As shown in Appendix 

B that A h can be rewritten into the following form: 

A h = Ct + Dr^, (3.76) 

where t is the 3 x 1 translation matrix of the motion, and the dimensions of C and 

D are respectively {N x 3) and (7V x 9). 

As a result, the minimization problem in Equation (3.53) can be transformed 

into the following problem by applying the technique of Lagrange multiplier: 

Min^(r^ , t, r), (3.77) 
^V ,t 

where 

^K，t，r) = ||Ct + Dr』2 + T(3 _ ||r,||2). (3.78) 

Minimizing the cost function in Equation (3.77) can be achieved by using 

the results described in Appendix B. Then the result of r^ is an eigenvector of the 

matrix K of norm v ^ corresponding to the smallest eigenvalue r, where 

K = D ^ ( I - C ( C ^ ) - ^ C ^ ) D . 

Then, the "Constraint Satisfactory Part" described in Section 3.3.2.2 is ap-

plied to refine the solution of the rotational parameters in order to preserve the 

orthogonality of the rotation matrix. Afterwards, the translation matrix can also 

be obtained as described in Section 3.3.2.2. 

3.3.4 Experiment 

In this research, we used both synthetic and real data to verify our theory. 

The algorithm was coded in Matlab 5.0. All the experiments were conducted on 



66 

a Sun Ultra 1/170E Creator3D machine (which uses Solaris 2.5.1 as the operating 

system, and 256MB ram as the primary memory). 

3.3.4.1 W i t h Synthetic Data 

T w o types of experiments have been done to compare the performances of 

the following algorithms: 

1. the original Faugeras's algorithm; 

2. the modified Faugeras's algorithm; 

3. the original Six-point algorithm; 

4. the second version of the Six-point algorithm. 

The first experiment will use a fixed motion while the second experiment will use 

random generated motions. 

Experiment One: With Fixed Motion 

In this experiment, the performances of these two algorithms are measured 

by using different numbers of feature points with a fixed rotation matrix and a 

fixed translation matrix as shown in Table (7). The number of feature points 

ranges from 6 to 100. Also, in order to estimate their performances under noisy 

environment, noise is added to the image points (i.e. the pixel coordinates) of the 

projection. The noise is Gaussian and independent, and its standard deviation 

varies between 0 (for no noise) and 3 pixels. For each test, 100 sets of different 

feature points are generated randomly from an uniform distribution within a cube 

of size 2 X 2 x 2 with center at [0, 0’ 300]. Then the root mean square (RMS) error 

of the translational components and rotational angles will be recorded over 100 

trials for the same number of feature points and noise level. The focal length f is 
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set to be 0.6 units. Also, the distance between two adjacent pixels in the image 

is 0.0025 units. W h e n considering the R M S error of rotation angles, the unit is in 

radian. 

Actually, the result shown in Section 3.2.1.1 is part of the result in this 

experiment. 

From the experiment, it is observed that the accuracies of using the technique 

of quaternions and S V D in "Constraint Satisfactory Part" of the Six-point algo-

rithm are almost identical. This phenomenon occurs because both the techniques 

are designed to obtain optimal solution [16][18][72][43] in standard Orthogonal Pro-

crustes problem [16] in the "Constraint Satisfactory Part". Therefore, the rotation 

matrices obtained by these two techniques are almost identical. The Frobenius 

norm of the difference of the rotation matrices obtained by these two approaches 

is about 10_i5. And the difference of the translation matrices is also so small that 

can be neglected. As a result, the comparison of these two techniques in terms of 

accuracy is omitted. However, the computation speeds of these two techniques are 

quite different. Therefore, when we are discussing about the accuracies of the two 

versions of Six-point algorithm, only the results using the technique of S V D will 

be considered. 

As mentioned in Section 3.2, the results of the rotation in the original version 

and modified version of Faugeras's approach are the same, so only the rotational 

angles of the original version of Faugeras's algorithm are discussed in this experi-

ment. 

Tables (22)-(30) indicate the R M S error of the rotational angles of the two 

versions of the Six-point algorithm and the original Faugeras's algorithm. Tables 

(22)-(24) illustrate the result of the rotational angles about the x-axis. Tables 

(25)-(27) illustrate the result of the rotational angles about the y-axis. Tables 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0000 0.0027 0.5227 1.7333 

20 0.0000 0.0000 0.0002 0.0194 0.3822 

45 0.0000 0.0000 0.0001 0.0092 0.2327 

70 0.0000 0.0000 0.0001 0.0074 0.1241 

100 0.0000 0.0000 0.0001 0.0062 0.1004 

150 0.0000 0.0000 0.0001 0.0046 0.0830 

200 0.0000 0.0000 0.0000 0.0043 0.0723 

Table 22: R M S error of rotational angle of the original Six-point algorithm about 
the x-axis 

Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0000 0.0027 0.5740 1.6879 

20 0.0000 0.0000 0.0002 0.0193 1.3678 

45 0.0000 0.0000 0.0001 0.0093 1.0048 

70 0.0000 0.0000 0.0001 0.0074 0.7162 

100 0.0000 0.0000 0.0001 0.0062 0.6665 

150 0.0000 0.0000 0.0001 0.0047 0.4463 

200 0.0000 0.0000 0.0000 0.0043 0.3753 

Table 23: R M S error of the rotational angle of the second version of the Six-point 
algorithm about the x-axis 
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Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0000 0.0023 0.6661 1.7129 

20 0.0000 0.0000 0.0001 0.0132 0.9614 

45 0.0000 0.0000 0.0001 0.0058 0.6477 

70 0.0000 0.0000 0.0000 0.0050 0.3105 

100 0.0000 0.0000 0.0000 0.0034 0.2797 

150 0.0000 0.0000 0.0000 0.0036 0.0690 

200 0.0000 0.0000 0.0000 0.0030 0.0715 

Table 24: R M S error of the rotational angle of the original Faugeras's algorithm 
about the x-axis 

Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0000 0.0016 0.2624 0.7452 

20 0.0000 0.0000 0.0001 0.0119 0.2293 

45 0.0000 0.0000 0.0001 0.0063 0.1228 

70 0.0000 0.0000 0.0000 0.0045 0.0869 

100 0.0000 0.0000 0.0000 0.0039 0.0701 

150 0.0000 0.0000 0.0000 0.0040 0.0552 

200 0.0000 0.0000 0.0000 0.0032 0.0511 _ J  

Table 25: R M S error of the rotational angle of the original Six-point algorithm 
about the y-axis 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0000 0.0016 0.2731 0.8576 

20 0.0000 0.0000 0.0001 0.0122 0.6398 

45 0.0000 0.0000 0.0001 0.0064 0.3714 

70 0.0000 0.0000 0.0000 0.0046 0.2912 

100 0.0000 0.0000 0.0000 0.0039 0.2530 

150 0.0000 0.0000 0.0000 0.0040 0.2050 

200 0.0000 0.0000 0.0000 0.0032 0.2130 

Table 26: R M S error of the rotational angle of the second version of the Six-point 
algorithm about the y-axis 

Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0000 0.0032 0.3999 1.2327 

20 0.0000 0.0000 0.0002 0.0180 0.6152 

45 0.0000 0.0000 0.0001 0.0082 0.3555 

70 0.0000 0.0000 0.0001 0.0067 0.2545 

100 0.0000 0.0000 0.0001 0.0047 0.1391 

150 0.0000 0.0000 0.0000 0.0049 0.1181 

200 0.0000 0.0000 0.0000 0.0042 0.1179 
_ J  

Table 27: R M S error of the rotational angle of the original Faugeras's algorithm 
about the y-axis 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0000 0.0034 0.3891 1.1153 

20 0.0000 0.0000 0.0003 0.0260 0.4142 

45 0.0000 0.0000 0.0001 0.0120 0.2880 

70 0.0000 0.0000 0.0001 0.0098 0.1650 

100 0.0000 0.0000 0.0001 0.0085 0.1305 

150 0.0000 0.0000 0.0001 0.0062 0.1088 

200 0.0000 0.0000 0.0001 0.0058 0.0966 

Table 28: R M S error of the rotational angle of the original Six-point algorithm 
about the z-axis 

Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0000 0.0034 0.4638 1.2891 

20 0.0000 0.0000 0.0003 0.0258 1.2652 

45 0.0000 0.0000 0.0001 0.0121 1.1059 

70 0.0000 0.0000 0.0001 0.0098 0.8209 

100 0.0000 0.0000 0.0001 0.0085 0.7597 

150 0.0000 0.0000 0.0001 0.0062 0.5026 

200 0.0000 0.0000 0.0001 0.0058 0.4228 

Table 29: R M S error of the rotational angle of the second version of the Six-point 
algorithm about the z-axis 
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Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0000 0.0039 0.5321 1.1921 

20 0.0000 0.0000 0.0002 0.0205 1.0066 

45 0.0000 0.0000 0.0001 0.0105 0.4766 

70 0.0000 0.0000 0.0001 0.0084 0.3290 

100 0.0000 0.0000 0.0001 0.0073 0.2326 

150 0.0000 0.0000 0.0001 0.0054 0.1704 

200 0.0000 0.0000 0.0000 0.0050 0.1576 

Table 30: R M S error of the rotational angle of the original Faugeras's algorithm 
about the z-axis 

(28)-(30) illustrate the result of the rotational angles about the z-axis. 

From these 9 tables, it is shown that the accuracies of the result of the 

rotation angles in these three approaches are comparative. Also, it is shown that 

the accuracy increases when the number of feature points used is increasing. 

Moreover, tables (31)-(36) illustrate the R M S error of translational compo-

nents of the original version and the second version of the Six-point algorithm. 

Also, tables (8)-(13) show the R M S error of translational components of the orig-

inal Faugeras's algorithm and the modified Faugeras's algorithm. From these 12 

tables, it is shown that the accuracies of the two versions of Six-point algorithm 

and the modified Faugeras's algorithm are comparable. However, the R M S error of 

translational components of the original Faugeras's algorithm is much larger than 

that of the other three approaches. 

O n the other hand, the computation time of the following approaches are 

recorded and compared: 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0067 0.2791 142.4146 517.8505 

20 0.0000 0.0001 0.0125 0.8372 85.6345 

45 0.0000 0.0000 0.0043 0.3314 10.7527 

70 0.0000 0.0000 0.0028 0.2929 6.2274 

100 0.0000 0.0000 0.0019 0.2206 5.6366 

150 0.0000 0.0000 0.0016 0.1524 4.5665 

200 0.0000 0.0000 0.0014 0.1359 4.4229 

Table 31: R M S error of the translational component of the original Six-point 
algorithm along the x-direction 

Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0067 0.2788 166.5805 486.7313 

20 0.0000 0.0001 0.0125 0.8471 285.8782 

45 0.0000 0.0000 0.0042 0.3420 181.1637 

70 0.0000 0.0000 0.0028 0.2986 29.0298 

100 0.0000 0.0000 0.0019 0.2181 20.2719 

150 0.0000 0.0000 0.0016 0.1516 13.1828 

200 0.0000 0.0000 0.0014 0.1348 13.0214 

Table 32: R M S error of the translational component of the second version of the 
Six-point algorithm along the x-direction 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0005 0.0283 9.2338 32.7777 

20 0.0000 0.0000 0.0014 0.1132 5.7759 

45 0.0000 0.0000 0.0005 0.0429 0.9138 

70 0.0000 0.0000 0.0003 0.0369 0.5680 

100 0.0000 0.0000 0.0003 0.0304 0.4843 

150 0.0000 0.0000 0.0002 0.0196 0.4155 

200 0.0000 0.0000 0.0001 0.0169 0.3799 

Table 33: R M S error of the translational component of the original Six-point 
algorithm along the y-direction 

Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0005 0.0282 10.9421 30.9757 

20 0.0000 0.0000 0.0014 0.1108 18.0250 

45 0.0000 0.0000 0.0005 0.0433 11.3955 

70 0.0000 0.0000 0.0003 0.0376 2.1024 

100 0.0000 0.0000 0.0003 0.0303 1.3726 

150 0.0000 0.0000 0.0002 0.0196 0.9173 

200 0.0000 0.0000 0.0001 0.0168 0.9574 

Table 34: R M S error of the translational component of the second version of the 
Six-point algorithm along the y-direction 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0073 0.2981 150.4151 544.6467 

20 0.0000 0.0001 0.0129 0.8316 90.3496 

45 0.0000 0.0000 0.0044 0.3456 11.2944 

70 0.0000 0.0000 0.0030 0.3088 6.3936 

100 0.0000 0.0000 0.0020 0.2316 5.9335 

150 0.0000 0.0000 0.0017 0.1594 4.7898 

200 0.0000 0.0000 0.0014 0.1413 4.6554 

Table 35: R M S error of the translational component of the original Six-point 
algorithm along the z-direction 

Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0000 0.0073 0.2978 176.3084 512.2487 

20 0.0000 0.0001 0.0129 0.8332 299.8390 

45 0.0000 0.0000 0.0044 0.3574 190.5932 

70 0.0000 0.0000 0.0030 0.3147 30.0544 

100 0.0000 0.0000 0.0020 0.2289 21.0561 

150 0.0000 0.0000 0.0017 0.1582 13.1952 

200 0.0000 0.0000 0.0014 0.1402 13.2802 

Table 36: R M S error of the translational component of the second version of the 
Six-point algorithm along the z-direction 
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Figure 10: The computation time of the five approaches with fixed motion 

1. the original Faugeras's algorithm; 

2. the modified Faugeras's algorithm; 

3- the original Six-point algorithm using the technique of SVD; 

4. the original Six-point algorithm using the technique of quaternions; 

5. the second version of the Six-point algorithm using the technique of SVD. 

In each approach, the intrinsic parameters are calculated in order to provide a fair 

environment to compare the computation speed of these five approaches. 

From the experiment, the computation time of these five approaches only 

depends on the number of feature points used, but not depends on the noise level. 
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So, Figure (10) is used to compare the computation speeds of these five approaches. 

In Figure (10), the computation time of these five approaches is shown. From this 

figure, it is observed that the original Six-point algorithm using the technique of 

S V D in the "Constraint Satisfactory Part" has the fastest computation speed. The 

original Faugeras's algorithm is the second fastest approach. The second version 

of the Six-point algorithm is the third fastest approach. The original Six-point 

algorithm using the technique of quaternion and the modified Faugeras's algorithm 

are the slowest approaches. On the other hand, it is quite interesting that when 

the number of feature points used is small (about < 40), the speed of the modified 

Faugeras's algorithm is faster than that of the original Six-point algorithm using 

quaternion. However, it is reversed when the number of feature points used is 

larger than 40. 

As a result, the original Six-point algorithm using the technique of S V D 

has a better performance than the other approaches in terms of accuracy and 

computation speed. 

Experiment Two: With Motion Generated Randomly 

This experiment is similar to the first experiment. However, the motions 

used are randomly generated each time. The rotation is generated randomly from 

an uniform distribution such that each of the three rotation angles about the three 

axes (x, y and z axes) are varying between —180。and +180。，while the translation 

vector is generated randomly from an uniform distribution in the range [—2，..., 2 • 

The focal length f is set to be 0.6 units. Also, the distance between two adjacent 

pixels in the image is 0.0025 units. 

In this experiment, the root mean square (RMS) of the percentage error of 

the translational components and rotational angles will be recorded over 100 trials 

for the same number of feature points and noise level. 
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Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 1.1 85.8 809.7 

20 0.0 0.0 0.1 15.0 130.9 

45 0.0 0.0 0.1 5.0 75.5 

70 0.0 0.0 0.0 3.3 78.0 

100 0.0 0.0 0.0 9.3 38.1 

150 0.0 0.0 0.0 2.3 61.4 

200 0.0 0.0 0.0 1.6 43.8 

Table 37: R M S of percentage error of the rotational angle of the original Six-point 
algorithm about the x-axis 

Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 1.1 86.5 822.2 

20 0.0 0.0 0.1 15.0 154.9 

45 0.0 0.0 0.1 5.0 63.5 

70 0.0 0.0 0.0 3.2 88.5 

100 0.0 0.0 0.0 9.3 33.3 

150 0.0 0.0 0.0 2.3 84.4 

200 0.0 0.0 0.0 1.6 47.5 

Table 38: R M S of percentage error of the rotational angle of the second version of 
the Six-point algorithm about the x-axis 

Actually, the result shown in Section 3.2.1.2 is part of the result in this 

experiment. 

As mentioned in Section 3.2, the results of the rotation in the original version 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 1.2 130.1 901.2 

20 0.0 0.0 0.1 18.9 249.8 

45 0.0 0.0 0.1 14.4 215.5 

70 0.0 0.0 0.1 4.9 146.2 

100 0.0 0.0 0.1 9.7 150.9 

150 0.0 0.0 0.0 3.6 141.3 

200 0.0 0.0 0.0 9.1 140.4 

Table 39: R M S ofpercentage error ofthe rotational angle of the original Faugeras's 
algorithm about the x-axis 

Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 0.3 97.4 362.6 

20 0.0 0.0 0.0 1.8 29.4 

45 0.0 0.0 0.0 1.6 24.9 

70 0.0 0.0 0.0 1.0 37.1 

100 0.0 0.0 0.0 2.8 21.1 

150 0.0 0.0 0.0 1.4 15.1 

200 0.0 0.0 0.0 1.5 7.8 

Table 40: R M S of percentage error of the rotational angle of the original Six-point 
algorithm about the y-axis 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 0.3 97.1 322.9 

20 0.0 0.0 0.0 1.8 61.2 

45 0.0 0.0 0.0 1.6 27.8 

70 0.0 0.0 0.0 1.0 37.9 

100 0.0 0.0 0.0 2.8 22.1 

150 0.0 0.0 0.0 1.4 15.6 

200 0.0 0.0 0.0 1.5 9.8 

Table 41: RMS of percentage error of the rotational angle of the second version of 
the Six-point algorithm about the y-axis 

Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 0.4 191.5 723.4 

20 0.0 0.0 0.1 2.7 175.4 

45 0.0 0.0 0.0 2.3 42.9 

70 0.0 0.0 0.0 2.7 33.2 

100 0.0 0.0 0.0 1.5 34.3 

150 0.0 0.0 0.0 0.7 33.3 

200 0.0 0.0 0.0 1.0 42.5 

Table 42: R M S of percentage error of the rotational angle of the original Faugeras's 
algorithm about the y-axis 



81 

Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.2 1.0 88.7 507.4 

20 0.0 0.0 0.1 20.8 65.1 

45 0.0 0.0 0.1 9.5 69.0 

70 0.0 0.0 0.0 9.7 77.7 

100 0.0 0.0 0.0 9.4 60.8 

150 0.0 0.0 0.0 9.5 41.2 

200 0.0 0.0 0.0 3.8 28.5 

Table 43: R M S of percentage error of the rotational angle of the original Six-point 
algorithm about the z-axis 

Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.2 1.0 91.6 516.2 

20 0.0 0.0 0.1 21.0 121.0 

45 0.0 0.0 0.1 9.5 57.7 

70 0.0 0.0 0.0 9.7 72.9 

100 0.0 0.0 0.0 9.4 43.2 

150 0.0 0.0 0.0 9.5 63.3 

200 0.0 0.0 0.0 3.7 47.1 

Table 44: R M S of percentage error of the rotational angle of the second version of 
the Six-point algorithm about the z-axis 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.1 9.1 135.7 618.2 

20 0.0 0.0 0.2 34.3 306.9 

45 0.0 0.0 0.0 16.4 134.1 

70 0.0 0.0 0.1 12.1 364.0 

100 0.0 0.0 0.0 10.0 82.4 

150 0.0 0.0 0.0 19.4 118.1 

200 0.0 0.0 0.0 3.5 52.0 

Table 45: R M S of percentage error of the rotational angle of the original Faugeras's 
algorithm about the z-axis 

and modified version of Faugeras's approach are the same, so only the rotational 

angles of the original version of Faugeras's algorithm is discussed in this experi-

ment. 

Tables (37)-(45) indicate the R M S of the percentage error of the rotational 

angles of the two versions of the Six-point algorithm and the original Faugeras's 

algorithm. Tables (37)-(39) illustrate the result of the rotational angles about the 

x-axis. Tables (40)-(42) illustrate the result of the rotational angles about the 

y-axis. Tables (43)-(45) illustrate the result of the rotational angles about the 

z-axis. 

Also, the results, when noise level is equal to 0.05, is shown in Figure 11 too. 

From the tables, it is shown that the accuracy of all these three algorithms 

in calculating the rotational parameters are comparative. 

Moreover, tables (46)-(51) illustrate the R M S percentage error of transla-

tional components of the original version and the second version of the Six-point 
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Figure 11: Percentage Error of the rotational angles vs no. of points used when 
the noise level = 0.05. 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 0.4 61.6 489.2 

20 0.0 0.0 0.1 2.0 151.8 

45 0.0 0.0 0.2 18.1 232.7 

70 0.0 0.0 0.0 2.4 46.1 

100 0.0 0.0 0.1 1.6 55.8 

150 0.0 0.0 0.0 1.7 60.8 

200 0.0 0.0 0.0 2.7 51.2 

Table 46: R M S of percentage error of the translational component of the original 
Six-point algorithm long the x-direction 

Noise Level 

No. ofpt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 0.4 75.3 741.1 

20 0.0 0.0 0.1 2.0 155.6 

45 0.0 0.0 0.2 18.1 232.0 

70 0.0 0.0 0.0 2.3 44.6 

100 0.0 0.0 0.1 1.6 57.9 

150 0.0 0.0 0.0 1.7 59.3 

200 0.0 0.0 0.0 2.7 49.5 

Table 47: R M S of percentage error of the translational component of the second 
version of the Six-point algorithm long the x-direction 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 0.2 26.0 374.1 

20 0.0 0.0 0.0 1.5 29.6 

45 0.0 0.0 0.0 4.5 68.4 

70 0.0 0.0 0.0 2.0 24.8 

100 0.0 0.0 0.0 3.0 46.4 

150 0.0 0.0 0.0 0.8 12.4 

200 0.0 0.0 0.0 1.3 7.7 

Table 48: R M S of percentage error of the translational component of the original 
Six-point algorithm long the y-direction 

Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 0.2 27.6 108.3 

20 0.0 0.0 0.0 1.5 30.9 

45 0.0 0.0 0.0 4.6 56.7 

70 0.0 0.0 0.0 2.0 21.0 

100 0.0 0.0 0.0 3.0 50.8 

150 0.0 0.0 0.0 0.7 17.0 

200 0.0 0.0 0.0 1.3 6.0 

Table 49: R M S of percentage error of the translational component of the second 
version of the Six-point algorithm long the y-direction 
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Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 0.1 24.8 79.7 

20 0.0 0.0 0.0 0.1 1.6 

45 0.0 0.0 0.0 0.0 1.0 

70 0.0 0.0 0.0 0.0 0.8 

100 0.0 0.0 0.0 0.0 0.8 

150 0.0 0.0 0.0 0.0 0.7 

200 0.0 0.0 0.0 0.0 0.7 

Table 50: R M S of percentage error of the translational component of the original 
Six-point algorithm long the z-direction 

Noise Level 

No. of pt. 0 0.005 0.05 0.5 2 

6 0.0 0.0 0.1 26.4 82.2 

20 0.0 0.0 0.0 0.1 1.7 

45 0.0 0.0 0.0 0.0 1.0 

70 0.0 0.0 0.0 0.0 0.8 

100 0.0 0.0 0.0 0.0 0.8 

150 0.0 0.0 0.0 0.0 0.7 

200 0.0 0.0 0.0 0.0 0.7 

Table 51: R M S of percentage error of the translational component of the second 
version of the Six-point algorithm long the z-direction 
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algorithm. Also, tables (l6)-(21) show the R M S percentage error of translational 

components of the original Faugeras's algorithm and the modified Faugeras's al-

gorithm. From these 12 tables, it is shown that the accuracies of the two versions 

of the Six-point algorithm and the modified Faugeras's algorithm are compara-

tive. However, the percentage error of translational components of the original 

Faugeras's algorithm is much larger than that of the other three approaches. This 

phenomenon agrees with the result in the first experiment using fixed motion. 

Also, the results, when noise level is equal to 0.05，is shown in Figure 12 too. 

O n the other hand, the computation time of the following approaches are 

recorded and compared: 

1. the original Faugeras's algorithm; 

2. the modified Faugeras's algorithm; 

3. the original Six-point algorithm using the technique of SVD; 

4. the original Six-point algorithm using the technique of quaternions; 

5. the second version of Six-point algorithm using the technique of S V D . 

In each approach, the intrinsic parameters are calculated in order to provide a fair 

environment to compare the computation speed of these five approaches. 

Figure (13) illustrates the computation time of all the five approaches. From 

this figure, the result is similar to that in the first experiment when fixed motion is 

used. The original Six-point algorithm using S V D in the "Constraint Satisfactory 

Part" has the fastest computation speed. 
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Figure 12: Percentage Error of the translational components vs no. of points used 
when the noise level = 0.05. 
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Figure 13: The computation time of the five approaches with motion generated 
randomly. 
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Figure 14: Object used in real data experiment 
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Figure 15: Result of the image in Figure (14 a) 
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Figure 16: Result of the image in Figure (14 b) 
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3.3.4.2 W i t h Real Data 

In this experiment, the images ofan object are taken at time k and time k + l, 

which are shown in Fig (14 a) and (14 b) respectively. In each figure, 8 points (each 

is marked with a cross) are used as the image points. These points are used to 

calculate the motion of this object, hence the 3D coordinates of the corresponding 

model points in this object can be found. After applying the original Six-point 

algorithm to the data, the result based on the image in Fig (14 a) is shown in Fig 

(15) . 

Fig (15 a) shows the front view of the reconstructed object. Fig (15 b) 

indicates the error between the captured image (true data) and the reconstructed 

data. Moreover, Fig (15 c) indicates the top view of the object. Finally, (15 d) 

indicates the angle between the two planes, which is 90^ and it is the same as the 

real angle. So, it shows that there is no deformation in the reconstructed object. 

The result for Fig (14 b) is shown in Fig (16). 

3.3.5 Summary of the Six-Point Algorithm 

In this section, both synthetic data and real data is used to verify the two 

versions of Six-point algorithm. Also, a comparison between the two versions 

of Six-point algorithm, original Faugeras's algorithm and the modified version of 

Faugeras's algorithm is performed. It is observed that: 

1. The two versions of the Six-point algorithm and the modified Faugeras's 

algorithm have comparative performances in terms of accuracy of the results. 

Also, the accuracy in the calculations of the translational parameters of these 

three algorithms are better than that of original Faugeras's algorithm. 

2. The original Six-point algorithm has the fastest computation speed among 

the other four approaches. 
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3. The accuracy of these algorithms increases with the increase of number of 

feature points used. 

For the original Faugeras's algorithm, Faugeras [12] stated that the nullspace is of 

dimension greater than 1 and there is an infinite number of solutions to Equation 

(2.22) when the rank of x in Equation (2.22) is less than 11. Also, he showed that 

the rank of x is equal to 8 when all the feature points are coplanar in 3D space 

12]. Therefore, the 3D feature points should not be chosen to lie in the same 

plane. 

The experiments using coplanar 3D feature points have also been done in 

order to test these four approaches. However, the error of the results of these 

four approaches is very bad even if there is no noise added to the systems. Also, 

the ranks of the matrix x in Equation (2.22) and matrix A in Equation (3.51) 

are equal to 8 in these experiments. Actually, the ranks of the two matrices (x in 

Equation (2.22) and A Equation (3.51)) are equal because both these two matrices 

are depending on the 3D and 2D coordinates of the feature points and they are 

only different in the orders of some columns. 

As a result, the Six-point algorithm is not suitable to the case when all 3D 

feature points are on the same plane as that happens in Faugeras 's algorithm (both 

original and modified versions). Therefore, users should pay attention in selecting 

the feature points. 

In the following parts of this thesis, the Six-point algorithm is applied in 

several areas. Since the performance of the original Six-point algorithm in terms 

of accuracy and computation speed is better than the second version. Therefore, 

the original Six-point algorithm will be applied in those areas. In the remaining 

parts of this thesis, the term “Six-point algorithm" stands for the "original Six-

point algorithm". 
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3.3.6 A Visual Tracking System by using Six-point Algor i thm 

In this subsection, a real-time visual tracking system by using the Six-point 

algorithm is introduced. A C C D camera is used as an input device, which will 

capture images of the target object and then determine the rigid motion of the 

target. The outline of the system is shown in Figure (17). Since the Six-point 

algorithm is used, the model (3D measurements of the features) of the target is 

required. The detailed operation of this system is described in the following: 

1. Firstly, the camera captures the first image of the target object (the input 

device). Then a user is required to input the locations of the feature points 

(which are used to represent the model of the target object) in this image. 

Then the system will continuously capture the images of the target. 

2. Secondly, once an image is captured, the system will automatically search 

the projection of all the feature points by using the correlation coefficient 

technique [73]. Then the system will calculate the new 3D position and 

orientation of the target object. The motion parameters of the target will 

also be determined. A feedback of these results will be given to the user. In 

this thesis, a 3D human face is rendered and displayed on the screen. The 

motion of this 3D human face represents the true motion of the target (input 

device). 

In this thesis, this real-time visual tracking system is implemented in a P E N T I U M 

11-233. All the programs are coded in Visual C + + 5.0. The 3D human head is 

rendered by OpenGL. The model of the video grabber card is BS600 produced 

by B O S E R . By using a 3D accelerator card (this card includes the function of 

a display card), the frame rate of tracking is about 10 fps (frames per second). 

However, this frame rate is mainly determined by the computation time of the 
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w 

Figure 17: The outline of the visual tracking system. 

correlation coefficients [74] [73] and rendering of the 3D human face. 

However, there is a weakness of this system. If the motion of the target is 

too large, the projection of the feature points may not be determined correctly 

because: 

1. The rotation of the target object is so large that the patterns near the feature 

points may have a large difference; or 

2. Some feature points may move out of the search windows (a search window 

is to limit the searching inside the area specified. The larger the area, the 
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TL-algorithm Six-point algorithm 

specified for PnP problem n = 4 n > 6 

iterative/linear method iterative linear 

require initial guess Yes No 

Table 52: Properties of the two algorithms. 

slower the searching). 

This problem can be solved by using a faster computer, video grabber card and 

display card. Also, a better pattern recognition technique can be used in order to 

increase the accuracy of finding the point correspondences. 

However, this system is only used to illustrate the possibility of using the 

Six-point algorithm to implement a visual tracking system in a P C (personal com-

puter). Increasing the performance of this system by improving the searching of 

the point correspondences and updating the hardware will not be the aim of this 

thesis. 

Figure (18) - (20) illustrate the results of the visual tracking system between 

time k and k + 2. 

Although the input device used in this system is simple. A complex object 

can be used instead, for example a real human head. 

3.4 Comparison between TL-algorithm and Six-point Al-

gorithm developed 

These two algorithms are proposed by us for model-based motion analysis 

with 2D-to-3D point correspondences. Their properties are shown in Table (52): 
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Figure 19: The experimental result of the visual tracking system at time k+1 
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Figure 19: The experimental result of the visual tracking system at time k+1 
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(b) The 3D human face indicates the position and the orienta-
tion of the input device at time k + 2. 

Figure 19: The experimental result of the visual tracking system at time k+1 
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Since the TL-algorithm is an iterative method, and an initial guess is ie-

quired, the computation speed is quite slow. Both speed of the computation and 

the accuracy heavily reliess on the value of the initial guess. If the initial guess is 

very close to the answer, the computation time will be short too. However, if the 

initial guess is very far from the answer, the computation time will be very long and 

there may be a chance for the system to converge to another local minimum since 

multiple solutions may exist in the P4P problem [25]. Therefore, the initial guess 

is the key of the TL-algorithm. In this thesis, the initial guess of the TL-algorithm 

is set to be the answer in the last frame. It is based on the assumption that the 

motion of the target object between two consecutive frames is not so large, so the 

answers between these two frames are similar. 

The Six-point algorithm is a linear algorithm, so the initial guess is not 

required. Therefore the robustness is greatly improved. Also, the computation 

speed of the Six-point algorithm is quite fast and it only depends on the number 

of feature points used in the process. However, the Six-point algorithm can only 

be used in PnP problems, for n > 6. Some experiments have been done to show 

the performance of the Six-point algorithm in PnP problems, for n < 6. However, 

the rank of the matrix A in Equation (3.51) is less than 11 for n < 6. So, multiple 

solutions exist in this case [12]. Also, initial guess is not required in the Six-

point algorithm, the answer cannot be guided to a correct solution, so the answer 

obtained may not be the correct one and it may be one of the multiple solutions. 

As a result, the Six-point algorithm is not suitable for the PnP problems, where 

n < 6. 

Therefore, TL-algorithm and Six-point algorithm are used to solve different 

kinds of model-based motion estimation problem with 2D-to-3D point correspon-

dences. No one can take place of another. 
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3.5 Summary 

In this chapter, two approaches are proposed for model-based motion anal-

ysis with 2D-to-3D point correspondences. The first one is an iterative solution 

for the P4P problem. It is called TL-algorithm. The other one is a direct and 

linear method for the 2D-to-3D point correspondence problem with six or more 

feature points in general position. It is called the Six-point algorithm. Also, an 

enhancement to Faugeras's algorithm [12] is introduced. This modified Faugeras's 

algorithm improves the accuracy of the the translational components in the result 

of the original version of Faugeras's algorithm. 

• For the TL-algorithm, experiments have been performed to verify the al-

gorithm. Also, a comparison between Lowe's algorithm [10] and the TL-

algorithm has been done in terms of their computation time. From the 

result, it is observed that the computation time of the TL-algorithm is faster 

than that of Lowe's algorithm. 

• For the enhancement of the Faugeras's algorithm, a new method is proposed 

to estimate the translational part of the motion. Also, experiments have been 

done to compare the performances of original Faugeras's algorithm and this 

modified version in terms of the accuracy of the translational components in 

the results. From the result, it is observed that the accuracy of this modified 

version is better than the original one especially when the noise level in the 

system is high. 

• For the Six-point algorithm, there are two versions. The Six-point algorithm 

is similar to Faugeras's algorithm. They are different in applying different 

constraints in the step of constrained optimization. Also, they use different 

methods to preserve the orthogonality of the rotation matrix. 
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O n the other hand, there are two versions for the Six-point algorithm. Both 

versions can also be divided into two parts: 1) The linear part; 2) the con-

straint satisfactory part. These two versions are only different in applying 

different constraints in the step of constrained optimization in the linear 

part. In the linear part, a rough solution for the motion of the object can be 

obtained. In the constraint satisfactory part, the constraint of the orthogo-

nality of the rotation matrix is applied to refine the result in order to prevent 

deformation of the reconstructed object. Moreover, the technique of S V D is 

proposed to calculate the rotation matrix in order to enhance the speed of 

the computation. 

Also, in this chapter, experiments have been done by using both synthetic 

data and real data to verify our algorithm. A comparison has been done to 

compare the performances of the two versions of the Six-point algorithm, the 

original Faugeras's algorithm and the modified version of Faugeras's algo-

rithm. From the results, we find that the accuracy of the two versions of the 

Six-point algorithm and the modified Faugeras's algorithm are comparative 

and are better than that of the original Faugeras's algorithm. Also, it is 

shown that the computation speed of the original Six-point algorithm using 

the technique of S V D in the constraint satisfactory part is faster than the 

other approaches. 

Moreover, the original Six-point algorithm is used to implement a real-time 

visual tracking system. An experiment has been done to show the perfor-

mance of this system. 



C H A P T E R 4 

MOTION-BASED SEGMENTATION 

In this chapter, motion-based segmentation in model-based computer vision is 

discussed. In Section 4.1, a new approach for motion-based segmentation with 

3D-to-3D point correspondences is proposed. In Section 4.2, another approach 

for the problem with 2D-to-3D point correspondences is presented. Both of these 

algorithms can segment all the feature points into a number of clusters and the 

motion of each cluster is determined (In this chapter, a cluster contains the fea-

ture points having the same motion). Unlike other approaches proposed by other 

scholars, the number of clusters can also be automatically determined by these two 

algorithms. On the other hand, experiments have been performed to verify these 

two new approaches. 

4.1 A new Approach with 3D-to-3D Point Correspondences 

In this section, a novel algorithm is proposed to determine the number of 

motions in the system and to perform motion-based segmentation automatically. 

Based on the segmentation result, the motions of multiple moving rigid objects 

are computed. It is actually an approach for the motion-based segmentation with 

3D-to-3D point correspondences. The 3D coordinates of points on the rigid objects 

are used as the 3D features. They can be pre-computed by using a stereo vision 

system or other range-finding devices. Since the aim of this chapter is to handle 

the problem of multiple rigid motions, the details of the way of obtaining the 3D 
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points is not included. Also, for simplicity, we assume the feature selection and 

tracking have been performed prior to the execution of our algorithm. 

Moreover, for each individual group with the common-motion, the Arun 

method [15] is used to evaluate the motion. Unlike the algorithm suggested by 

Hung et al. [48], the technique of incremental clustering [75] is used instead of the 

RANSAC-based ( R A N S A C stands for Random Sample Consensus) [25] clustering 

technique. 

4.1.1 Algor i thm 

Supposing that we are given two sets of 3D points, {pJ and {p-} for i = 

1,.. •，N. Pi 二 [xi，yi，ZiY is the 3D coordinates of the i — th feature point at 

time k while p; = [x-，?/•，z-]̂  is the 3D coordinates of the i — th feature point at 

time k + 1. Each feature point has its own motion. W h e n several feature points 

are belonging to the same rigid body, they will have the same motion. If the i — th 

feature point is belonging to the j 一 th rigid body, the following equation can be 

obtained: 

p； - R,p, + t,, (4.79) 

where R^ and tj are the rotation matrix and the translation matrix respectively, 

which represent the motion of the i — th feature point between time k and k + 1. 

In order to determine the motion of the feature points, the feature points 

of the same motion should be grouped together first. So, we should group points 

with the same motion into a cluster. However, the number of clusters is not given. 

Therefore, the following problems need to be solved: 

1. To find the number of clusters, each contains feature points of the same 

motion; 

2. To segment all the feature points into a number of clusters; 
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3. To compute the motion of each cluster. 

As mentioned above, we do not know a prior which feature points belong to which 

motion cluster and the number of clusters is also an unknown, so advanced clus-

tering techniques are required. W e chose the technique of incremental cluster-

ing because it can handle this situation easily. Also, the algorithm proposed by 

U m e y a m a [21], which is an enhancement of the algorithm proposed by Arun et aL 

15]，is used to evaluate the motion in each cluster. Our proposed algorithm is as 

follows: 

Firstly, for the i — th feature point at time k + 1, where i = 1,... , 7V, we 

select s {s > 2) nearest feature points at that instant. For each combination of 

3 out of the s + 1 feature points (including the i — th feature point and its s 

nearest neighbours selected), the motion is computed by using the Umeyama [21. 

method. Since the motion of the i-th feature point is considered, the i — th feature 

point must be chosen in each motion calculation. Therefore, there are totally 5C2 

different motions as the candidates for the i — th feature point. Since, the i — th 

feature point can only have one motion at an instant, only one motion is selected 

from the sC2 different motions. The chosen motion should minimize the following 

cost function: 

F(R , t ) = ||p;-(Rp, + t)|^ (4.80) 

Then the optimal rotation matrix and translation matrix of the i — th feature 

point are respectively R^ and t\ 

After all the feature points have their own optimal motions, the incremental 

clustering technique is used with these motion parameters to segment the feature 

points. However, the rotation matrices cannot be used directly in the cluster-

ing process because rotation matrices should be 3 x 3 orthogonal matrices (i.e. 
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(R”r (R” = (R”（R”T = I and det(R?) = i, for z = 1,... , N). So the 9 ele-

ments in a rotation matrix are mutually dependent. Therefore, for each feature 

point, the three rotation angles about the three rotation axes (x, y and z axes) are 

extracted from the rotation matrix. 

For the i — th feature point, the three rotation angles about the x, y and z 

axes are respectively j\ P' and a\ They are given by the following formulae: 

/f = sin-i(ri3), (4.81) 

f 

, cos-i(r33/cos(^O) if — r23/cos(/^0 > 0 

7 = 一 ， (4.82) 

-cos-1(r33/cos(/?')) otherwise 

V 

‘ 

, cos-i(rn/cos(/^0) if 一 ̂ /cos(/^0 > 0 
« == — , (4.83) 

—cos-i(rii/cos(y5”）otherwise 

where Tab is the element of R ' in the a — th row and b — th column. 

However, many combinations of the three rotation angles can be formed by 

the same rotation matrix. In order to eliminate ambiguity, the rotation angles are 

restricted by the following rules: 

P" is between — ^ and —; 

Zj Zj 

OL〜is between — 7r and 7r; (4.84) 

7' is between — 7r and vr. 

As a result, the clustering process can be performed for a sample in the 

six-dimensional motion parameter space (3 for the rotation angles and 3 for the 

translational parameters). 
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The motion of the i — th feature point is described by the following vector: 

环 = [ 7 \ 伊，«\ ^ , tl, tl ]^, (4.85) 

「 1^ 
where /̂  十丄 fi — T^ 

X̂5 6y, ^z • 

However, the three rotation angles cannot be used directly in clustering. It is 

because there may be a very large difference between the magnitudes ofthe rotation 

angles and that of the translational parameters, the translational parameters may 

be dominant and the result of the clustering may be mostly determined by the 

translational parameters. Therefore, the 6D motion vectors should be normalized. 

In this paper, we normalize the motion vectors as the following way: 

- nT 
Vz 二 [ wj\ wl5\ wa\ ^ , Vy, tl , (4.86) 

where 

Jj,El^ ( ^ ) V ( 4 ) % ( 4 ) ^ ) 

W = \ = • (4.87) 

V ^ ^ E £ i ( M 2 + (/^f + (V)2) 

From the experiment, we find that the normalization of the motion vectors 

gives a more reliable and accurate result. Then the normalized 6D motion vectors 

are used in the incremental clustering procedure as in the following: 

1. Let m i 二 vi, where m^ is the mean motion vector of the 1 — th cluster. 

2. For i - 2，number of cluster r] 二 1, number of members in the first cluster 

0"l = 1. 

3. Calculate the distances between the i — th feature point and the means of all 

clusters (i.e. d^j = ||v, 一 m_̂ -||̂ ,for j = 1, •. • ,"). And determine the smallest 

dij for all j. 
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4. If the smallest distance dix < £ then this i — th feature point is belonging to 

the A — th cluster. The new mean motion vector of the A - th cluster is: 

(old) (old), 

m r ) 二 ̂ - 口 ： ’ (4.88) 
Ĉ A + 1 

then the number of the members in this cluster is updated (i.e. a ( ^、 = 

4。^ + 1). 

5. However, ifthe smallest distance dix > e then a new cluster is generated and 

its mean is assigned to be the normalized motion vector of the i — th feature 

point (i.e. 7 ] — ) = ”…⑷ + 1，m" = v, and a" = 1). 

6. Consider another feature point and repeat the steps 3-5 until all feature 

points are examined. 

From the experiments, the result is good when the threshold E is set to be: 

6 二 v^, (4.89) 

where p is the largest eigen value of the covariance matrix of the motion vectors. 

Then the motions of all the clusters can be obtained. Therefore, the number 

of motions is found, and the motion based segmentation is complete. Afterwards, 

the motion of each cluster can be calculated by using all the point correspondences 

in this cluster with the Umeyama's method [21]. If a cluster has less than three 

members, this cluster will be neglected and the members in this cluster will not 

be considered. 

4.1.2 Experiment 

In the experiments, we generate a number of synthetic data with noise to 

verify our algorithm. All the experiments are conducted on a S U N U L T R A 1/170 

machine and all the programs are coded in Matlab 5.0. 
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(c) Result of segmentation. Points indicated by the 
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Figure 21: The experimental results of the algorithm for the motion-based seg-
mentation with 3D-to-3D point correspondences. 
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% error of the noise added to the system 2.21% 

% error of the rotation angles 1.17% 

% error of the translational parameters 2.38% 

% error of difference between the estimated 3D points and the true 3D points 1.26% 

Table 53: The statistical result. 

In this example, 16 feature points (in 3D space) are generated randomly from 

an uniform distribution within a cube of size 120 x 120 x 120 with the center at 

(0,0,0). Then we randomly partition all the feature points into 4 segments and each 

segment has 4 feature points as its members. Afterwards, the motion is generated 

randomly for each segment. The rotation is generated randomly from an uniform 

distribution, such that each of the three rotation angles about the three axes (x, y 

and z axes) are varying between - n and 7r, while the translation vector is generated 

randomly from an uniform distribution in the range [-50,...,+50]. Then the new 

coordinates of the feature points after the transformations are computed. In order 

to simulate a noisy environment, Gaussian distributed noise with zero mean and 

0.5 standard deviation is added to corrupt the coordinates of the 3D feature points 

after the transformations. Also, for each feature points, 6 nearest neighbours will 

be used to evaluate its optimal motion (i.e. s 6). 

Figure (21 a) shows the distributions of the feature points after the transfor-

mations (free of noise) and that of the feature points corrupted by noise. Figure 

(21 b) shows the segmentation of the feature points. Figure (21 c) shows the result 

of the motion-based segmentation. This figure shows that four clusters are found 

and there are four members in each cluster. Also, it is shown that the result of the 

segmentation in this example is correct. 

Also, Table (53) shows the statistical results in this example. It indicates 
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the percentage error of the noise added to the system (i.e. the noise added to 

corrupt the new coordinates of the feature points after the transformations), and 

the percentage error of the difference between the true 3D points after the trans-

formations (free of noise) and the estimated 3D points after the whole process. 

The percentage error of the motion is also be shown. 

4.2 A new Approach with 2D-to-3D Point Correspondences 

In this section, a novel algorithm is developed to solve the multiple rigid 

motions from a monocular perspective image sequence. First, an image sequence 

is taken by using a pin-hole camera. This image sequence is containing the image of 

some 3D objects with known 3D structures. Then this new algorithm will estimate 

the number of motions in the system and perform motion-based segmentation 

automatically. Afterwards, the 3D motions of all the moving rigid objects are 

computed based on the segmentation result. In this section, points are selected 

to be the 3D features on the 3D objects (models), and the 2D images of these 

3D objects are also used to calculate the positions and orientations. Therefore, 

this proposed algorithm is used to solve the motion-based segmentation problem 

with 2D-to-3D point correspondences. Also, for simplicity, it is assumed that the 

feature selection and tracking have been performed prior to the execution of our 

algorithm. Actually, this approach is similar to the approach presented in Section 

4.1. They are just designed for two different kinds of problems. The approach 

described in Section 4.1 is used to handle motion-based segmentation with 3D-to-

3D point correspondences. While the approach described here is used to deal with 

the problem with 2D-to-3D point correspondences. 

4.2.1 Algorithm 

Supposing that we are given a set pf-i of 3D coordinates of the 3D model 

feature points on the objects at time k — 1, and the set of the corresponding 2D 
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projection (image points) qf of those feature points at time k is. In which pf = 

'xf , Y-^ , Z^Y is the 3D coordinates of the i — th feature point and qf = [x̂  , y^f 

is the 2D image coordinates of the i — th feature at time k, for i = 1, 2, ...,N 

where N is the total number of feature points used. W h e n several feature points 

are belonging to the same rigid body, they will undergo the same motion. If the 

、—th feature point is belonging to the j — th rigid body, the following equation 

can be obtained: 

pf = R，p” + t，， （4.90) 

where R ) and tJ are the rotation matrix and the translation matrix respectively, 

which represent the motion of the i - th feature point between time k — 1 and 

k. By the definition of full perspective projection, the following equations can be 

obtained: 

X^ yA 

工，=/詩 and y^ = / ^ , (4.91) 

where f is the focal length of the camera. 

In order to determine the motion of the feature points, the feature points of 

the same motion should be grouped together first. So, we should group points with 

the same motion into a cluster. However, the number of clusters is an unknown. 

Therefore, the following problems (The same problems mentioned in Section 4.1.1) 

are required to be solved: 

1. Find the number of motion clusters, each cluster should contain feature 

points with same motion; 

2. Segment all the feature points into a number of clusters; 

3. Compute the motion of each cluster. 
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As mentioned above, the number of clusters and the prior knowledge of which 

feature points belong to which motion cluster are not given, so advanced clustering 

technique is required. As the same result, incremental clustering is also chosen in 

this approach. 

After the process of motion segmentation, the motion of individual motion 

cluster will be calculated by any algorithms solving the 2D-to-3D point correspon-

dences problem as described in[3][ll][76]. In this thesis, the Six-point algorithm is 

used. Our proposed algorithm is as follows: 

Firstly, for the i — th feature point at time k, where i 二 1，...,N, we select 

s {s > 5) image points which are the nearest to the image point of the i — th 

feature point at that instant. For each combination of 6 out of the s + 1 feature 

points (including the i — th feature itself and its s nearest neighbours selected), 

the motion is computed by using the Six-point algorithm. Since the motion of 

the i — th feature point is considered, the i — th feature point must be chosen in 

each motion estimation. Therefore, there are totally 5C5 different motions as the 

candidates for the i — th feature point. Since, the i — th feature point can only 

have one motion at an instant, so only one motion is selected from the 5C5 different 

motions. The chosen motion should minimize the following cost function: 

F(R,t) = ||qf-hf, (4.92) 

where R and t represent one of the 5C5 estimated motions for the i — th feature 

point, and h 二 [/½ , hyY in which, 

h. = f ^ and hy = / ¢ , (4.93) 
^h ^h 

where 

[ A , n , & r = R p ” + t， (4.94) 
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Then the optimal rotation and translation of the i-th feature point are respectively 

R^ and t\ 

After all the feature points have their own optimal motions, the incremental 

clustering technique is used with these motion parameters to segment the feature 

points. However, the rotation matrices cannot be used directly. The reason is 

discussed in Section 4.1.1. The 3 rotation angles about the three axes (x, y and 

z axes) are extracted from the rotation matrix. The rotation angles of the i — th 

feature point about the x, y and z axes are respectively j\ f]' and a\ Their 

calculations are given in Equations (4.81)-(4.84). 

As a result, the clustering process can be performed for a sample in the 

six-dimensional motion parameter space (3 for the rotation angles and 3 for the 

translational parameters). 

The motion of the i — th feature point is described by the following vector: 

^ z - [7^, P', c.̂ , tl, tl，tlf, (4.95) 

where [t̂，ty , t\Y = t\ 

However, there may be a very large difference between the magnitudes of the 

rotation angles and that of translation parameters. Therefore, the three rotation 

angles cannot be used directly in clustering, and the 6D motion vectors should be 

normalized. The motion vectors are normalized in the following way: 

vz = [o;7^，up', cjai, t l , t； , t l f , (4.96) 

where 

如仏(记)2+阅2 + 如 2 ) 

⑴ = I , = • (4.97) 

^ ^ E £ , ( M V ( / 5 0 V ( 7 f ) 

From the experiment, we found that the normalization of the motion vectors 
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gives a more reliable and accurate result. Then the normalized 6D motion vectors 

are used in the incremental clustering procedure as described in Section 4.1.1. 

As a result, the number of motions is found, and the motion based segmen-

tation is completed. Afterwards, the motion of each cluster can be calculated by 

using all the point correspondences in this cluster with the Six-point algorithm. If 

a cluster has less than six members, this cluster will be neglected and the members 

in this cluster will not be considered since the 3D rigid motion with less than 6 

feature points cannot be determined uniquely [25 . 

4.2.2 Experiment 

In this section, both synthetic data and real data are used to verify our 

algorithm. All the experiments are conducted on a S U N U L T R A 1/170 machine 

and all the programs are coded in Matlab 5.0. 

4.2.2.1 Experiment using synthetic data 

In the experiment using synthetic data, 24 feature points (in 3D space) are 

generated randomly. Then we randomly partition all the feature points into 3 

segments and each segment has 8 feature points as its members. Afterwards, the 

motion is generated randomly for each segment. Then the new coordinates of the 

feature points after the motion are computed. An example is shown in Figure (22). 

In Figure (22 a), it is observed that some of the image points of the second rigid 

object (marked by “2，，）appear between some of the image points of the third rigid 

object (marked by “3”）. It is similar to the case that some of the objects in the 

scene are transparent. However, Figure (22 b) shows that all the 3 sets of image 

points can be segmented correctly by using our algorithm. 
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(b) The estimated result after motion segmentation and motion estimation of 

each individual rigid object. Image points with same symbol belong to the same 

rigid object. 

Figure 22: The experimental results using synthetic data 



118 

l o o S m a n 
- f f l K f S H 
300 E W ^ ^ ^ ^ ^ 8 ^ — ‘ i ^ ^ 

: : : _ ® l l p — ^ ' < ! 1 1 1 » ^ ^ ^ 一 * - ， 

200 400 600 

(a) Image at time k. Image points with same symbol 

belong to the same rigid object. 

• m n ^ ^ i P ^ ^ ^ P ^ ^ ^ ^ ^ ^ ^ 

g ^ ^ 

- i B M I ; ^ B 
200 400 600 

(b) The result of segmentation and motion estimation 

of image at time k + 1. Points with same symbol belong 

to same object. 

100 2 j j y m ^ i p m i i m i i i ^ m i i i ^ ^ 
2 o o S ^ ^ ^ i l i f ! ^ ^ * * ^ H I ^ ^ ^ a ^ o m | ^ | y - r ^ ^ . . 二 

: : f c ^ ^ i 
5 o o H p B | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | | M 

MM......"^™"""^ 

200 400 600 

(c) The result of segmentation and motion estimation 
of image at time A; + 2. Points with same symbol belong 
to same object. 

Figure 23: The experimental result using a real image sequence 
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4.2.2.2 Experiment using real image sequence 

In this experiment, a real image sequence is captured. Figure (23) shows 3 

images from the sequence at time k, k + 1 and k + 2 respectively. It is shown that 

there are three individual rigid objects undergo their own motions inside these 3 

images. By using our proposed algorithm, the 3D coordinates of the feature points 

at time k are used to perform the segmentation and motion estimation at time 

k + 1. Then the estimated 3D coordinates of the feature points at time k + 1 are 

used in the calculation at time k + 2. From Figure (23), it is observed that all the 

three individual objects can be segmented. 

4.3 Summary 

In this chapter, we have proposed two new approaches to solve the problem 

of motion-based segmentation in model-based computer vision. The first one de-

scribed in Section 4.1 is for the case with 3D-to-3D point correspondences. Another 

one described in Section 4.2 is for the case with 2D-to-3D point correspondences. 

These two new approaches are similar. They both use incremental clustering tech-

nique to segment the feature points according to their motions. 

The main difference between these two approaches is that two different mo-

tion estimation algorithms are used to calculate the motions of the objects. Since 

the first new approach is used to handle the case with 3D-to-3D point correspon-

dences, it is based on the famous motion estimation technique proposed by Arun 

15]. O n the other hand, the second new approach is based on the Six-point algo-

rithm in order to deal with the motion estimation in the case with 2D-to-3D point 

correspondences. 

Also, experiments using synthetic data have been done to verify our algo-

rithms. For the second approach, an experiment using a real image sequence has 
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also been performed. From the results, we find that the performance of this new 

approach in terms of accuracy is satisfactory. 



C H A P T E R 5 

3D O B J E C T RECOGNITION 

In this chapter, a new model-based object recognition approach is proposed. In 

this approach, the geometric information of 3D objects is stored in a database. 

This kind of geometric information represents the shapes (relative 3D positions of 

the selected feature points) of the objects in the database. Also, all the objects 

must be rigid bodies. By using this approach, an object in a 2D intensity image is 

recognized from these 3D objects in the database directly. Therefore, the process of 

3D reconstruction is not required. Besides, the position and the orientation of that 

recognized object can also be obtained. The most similar approach is proposed by 

Lowe [10][11]. In his approach, the 3D objects are also recognized from a single 2D 

intensity image, and the pose is also calculated. The main difference between his 

approach and ours is that we are using a direct method as the core of the motion 

estimation instead of iterative method in that of Lowe. In our approach, the linear 

algorithm, the Six-point algorithm, is applied. 

The details of our proposed approach will be described in Section 5.1. This 

new algorithm is used to implement two recognition systems. The description of 

these two recognition systems is presented in Section 5.2. Also, experiments have 

been performed to verify our algorithm and it will be presented in Section 5.3. 

Finally, a summary is given in Section 5.4. 
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5.1 Proposed Algorithm for the 3D Object Recognition 

A new algorithm is proposed to recognize an object from a database contain-

ing a number of 3D objects using only one single intensity image. In this section, 

only rigid objects are allowed. Therefore, the shape of the object must be kept 

unchanged (i.e. no deformation is allowed). The model database only contains 

the relative positions of the vertices of the 3D objects. Then the vertices of each 

model can represent the shape of that object. 

Our proposed algorithm can be divided into two steps: 1) Assume the object 

in the intensity image is identical to one of the models in the database. With this 

assumption, the 3D position and orientation of the object in the image can be 

obtained. Then the estimated projection of that object in the estimated position 

and orientation is computed. The estimated projection of the feature points is 

compared to the real projection in the intensity image. 2) Verify this hypothe-

sis. After applying the hypothesis step to all models in the database, the closest 

model to that in the image can be recognized by comparing the differences of the 

projection of each model in the database. 

5.1.1 Hypothesis step 

Firstly, an intensity image containing an object to be recognized is captured 

from an unknown viewpoint. Then the vertices of the projection of this object are 

extracted. 

Secondly, we select a model from the database, and it is assumed to be identi-

cal to the object in the intensity image (Actually, the object is selected sequentially 

from the database). Then we can calculate the 3D position and orientation of the 

object in the image. 

Assuming that the m — th model is selected from the database. There are k 
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vertices in the projection of the object in the image are extracted while the selected 

model from the database has N vertices. Also, p^^ = [X^,K^,ZJ^ represents the 

3D position of the i — th vertex of the selected model from the database, for 

i = 1,..., N. qj = [xj, yj]^ represents the 2D image point (projection) of the j — th 

vertex of the object in the intensity image, for j = 1,…，k. 

Then, the new 3D pose of the object in the image is calculated by using 

the vertices of the object from the image and that of the selected model from 

the database. However, we have no prior knowledge about the correspondences 

between the vertices in the selected model from the database and those in the 

object from the image. So, all the combinations (i.e. the total no. of combination 

is ((̂ f̂c)j)) should be tested. Without loss of generality, it can be assumed that 

the following combination is being considered: 

Pmi and q^ is assumed to be a pair ofpoint correspondence, for i = 1,..., k. 

By assuming that p? = [Xf, Y^, Z f Y be the estimated 3D position of the i - th 

vertex of the object in the image. Then the following relation can be obtained: 

P? 二 RmPrm + ‘ ， (5.98) 

where R ^ is the rotation matrix, which is a 3 x 3 orthogonal matrix. And t^ is 

the translation matrix, which is a 3 x 1 matrix. 

If the hypothesis that the m - th model is the identical object as that in the 

image, and the assumption that the correspondences are correct, there must be a 

unique rigid motion that can describe the motions of vertices of the selected model 

to the 3D positions of the corresponding vertices. Therefore, the Equation (5.98) 

is held. 

In order to find out the motion parameters of the object, the Six-point al-

gorithm is used. This algorithm is used because it can provide the answer of the 
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motion parameters in a very short execution time. It benefits the system contain-

ing a huge number of models in the database. Another advantage is that no initial 

guesses are required, so the system will be much more robust. 

After calculating the motion between the selected model and the object in 

the image, the estimated projection of all the vertices can also be obtained. It is 

given in the following: 

^r = X - ^ and y- = Y ^ ^ , (5.99) 

where [x^, y^Y is the estimated projection of the i-th vertex of the selected model 

after the motion, and / is the focal length of the camera. 

Then the error between the real projection of the vertices of the object in the 

image and the estimated projection from Equation (5.99) is calculated as follows: 

1 ^ 

^ m =石 E y ^ ^ ^ ^ ^ i ^ T I ^ 7 ^ ^ (5.100) 
i=l 

After calculating all the errors of all the combinations for the selected m — th 

model, the combination with the least error is chosen. The corresponding error 

is chosen to represent the error between the object in the image and the m - th 

model, and it is assigned to be E^. And the corresponding motion parameters 

(Rm and t^) are chosen to represent the motion between the object in the image 

and the m — th model, and they are assigned to be R ^ and t^. 

5.1.2 Verification step 

The hypothesis step in subsection 5.1.1 is repeated for all the models in the 

database. W e can obtain the errors between all the models in the database and 

the object in the image. 

Afterwards, the hypotheses made in the hypothesis step will be verified. 

Actually, all the errors will be compared and the model with the least error will 
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be chosen to be the correct model. Then this model will be recognized as identical 

as the object in the image. 

Also, the motion parameters of the model with the smallest error are chosen 

to be the result of the motion between the object in the image and the correct 

model in the database. 

5.2 3D Object Recognition System 

In this thesis, the proposed approach for 3D object recognition is imple-

mented into two systems. The first one has been coded in Matlab 5.0 on an 

U L T R A - S P A R C machine. This system is used as the prototype. Another is coded 

in Visual C + + 5.0 on a P E N T I U M II 233 machine, which is implemented with 

the help of two final year students who have been mentioned in the Acknowledg-

ment. This two systems are specialised to deal with the recognition of boxes (with 

6 faces). The use of boxes is to simplify both the implementation of the program 

and the database. However, the proposed recognition algorithm can be used to 

handle other complex objects. 

There is difference between these two systems in terms of their functionalities. 

The system in Matlab can automatically remove the background and retain the 

projection of the box in the image. Then this system can automatically detect the 

outer-boundary and the vertices of the box. Finally, this box can be recognised 

according to its dimension. 

The system in Visual C + + cannot automatically remove the background and 

detect the vertices of the box. The vertices of the box should be entered to the 

system manually. However, this system can recognise the box not only by using 

the information of the dimension, but also by using the texture of the box. It is 

because the database stores not only the dimensions of different boxes, but also 
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^ 

Result 
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Figure 24: The outline of the 3D object recognition system in Matlab. 

their 2D intensity images. 

The detailed implementation of these two systems will be described in the 

following: 

5.2.1 System in Matlab: 

In this system, a number of boxes are stored in the database. Each box has 

its own dimension and no two boxes with the same dimension. The outline of this 

system is shown in Figure (24). 

Firstly, the image of the object to be recognized is captured by a pin-hole 

camera. Then the background in that image is removed (It can be done by sub-

tracting the image in the same viewpoint without the object). In Figure (25), an 

object is captured. After removing the background, the image is shown in Figure 
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Figure 25: The captured image with the object (with background). 
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Figure 26: The image after removing background from Figure (25). 
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Figure 27: Outer-boundary of the projection of the object shown in Figure (26). 
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Figure 28: The vertices (indicated by the circles) of the objects in Figure (26). 
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(26). Then the outer-boundary of the projection of the object is extracted. After-

wards, six equations of straight lines are obtained to represent the outer-boundary 

of this box by using the line-case k-mean algorithm [75]. The result is shown in 

Figure (27). The vertices of the projection in the image are extracted by finding 

the intersecting points between each two adjacent lines. The result is shown in 

Figure (28). Finally, the recognition algorithm in Section 2 is applied to recognize 

the object from the database. 

5.2.2 System in Visual C + + 

In this system, a number of boxes are stored in the database. In this case, 

several boxes may have the same dimension. In order to eliminate ambiguity, 

the intensity images of the boxes are also stored in the database. Therefore, the 

texture of the boxes will also be considered in the Verification Step. As a result, 

the database will contain both the geometric and texture information of the boxes. 

The outline of this system is shown in Figure (29). 

Firstly, the image of the box to be recognised is captured by a pin-hole 

camera. Then the user should find out the projection of the vertices of this box and 

enter to the system. Afterwards, the system will start the process of recognition. 

Figure (30) illustrates the process of the recognition in this system. It is 

unlike the process in the previous system. It contains two levels. The system in 

Level 1 will find out the candidates with the correct dimension. It is just the same 

as the system in Matlab. Moreover, the system in Level 2 will compare the texture 

of the box in the capture image and the selected candidates if there are more than 

one box with correct dimension. As a result, the ambiguity due to more than one 

box with the same dimension can be eliminated. 

In Level 1, the system recognises the box according to its dimension. Also 

the positions (in 3D space) of the vertices of the box can be determined as well. 
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Figure 29: The outline of the recognition system in Visual C+H-. 
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Start of Recognition 

/ 4 \ 
Level 1: dimension A dimension B dimension N 

/ f x 
Level 2: box a box b box n 

Figure 30: The process of the recognition with both information about the 3D 
structure and the texture of the objects. The system in Level 1 will recognise the 
box according to its 3D structure (dimension) and a number of candidates will be 
selected. Then the system in Level 2 will find out the best object from the selected 
candidates in Level 1 to be the answer by considering the texture information. 

Then the system select one of the candidates to performs texture mapping [77 . 

Afterwards, the projection of this synthetic “3D box" is calculated. The corre-

lation coefficient between this projection of the synthetic “3D box" and the true 

projection of the box to be recognized is calculated. This process is repeated for 

all the candidates to see which box in the database is best matched to the box 

captured by the camera. 

There is a little difference between the Verification Step in this system and the 

original Verification Step described in Section 5.1.2. The information of textures 

of the objects should also be used in the Verification Step in this system. 

5.3 Experiment 

In this section, experiments were performed to verify our theory. Also, ex-

periments were done by using the two recognition systems. 
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Boxes Height/cm Width/cm Length/cm 

250ml (in Figure (26)) 10.5 6.5 4.0 

375ml (in Figure (32)) 13.5 6.5 4.5 

Table 54: The table containing the dimensions of some of the boxes in the experi-
ments. 

• ^ R ^ ^ l 
4 0 0 ^ H W ^ p ^ , ^ ^ ^ ^ ^ g 

6 0 0 ^ H i ^ ^ ^ ^ ^ H 

_^H^^^^| 
i o o o ^ ^ ^ H ^ H H ^ ^ ^ I ^ ^ ^ I 

200 400 600 800 1000 1200 
Figure 31: The recognition result using the image in Figure (25). The 'o' marks 
indicate the vertices of the true projection (captured) of the object while the '+' 
marks indicate the estimated projection of the recognised object after applying 
the estimated motion (estimated result). The white lines are the estimated outer-
boundary of the object. 
5.3.1 System in Mat lab 

In this experiment, 100 objects (boxes with different sizes) are in the model 

database. 

The box shown in Figure (25) is a box of a common fruit-juice in Hong Kong. 

The volume of this box is 250ml and the dimension of this box is shown in Table 



133 

1。。^^^T^^l 
2。。^^靈_^| 
3 0 0 ^ ^ P _ ^ ^ g 

4oo^^mm'^^M 
5 0 0 ^ ^ ^ g ^ ^ g 

200 400 600 

Figure 32: The image (after removing the background) of another box with volume 
375ml. 

(54). The recognition result of the object in Figure (25) is show in Figure (31). 

The object in the image is recognised to be the box with volume 250ml (i.e. the 

first box in Table (54)). From this example, it is not only shown that the result of 

the recognition of the this system is satisfactory, but it is also shown the result of 

the motion estimation of the object is satisfactory. 

Also, in order to demonstrate the recognition system, experiment for recog-

nising one more object is done in this paper. Figure (32) shows another box used 

in the experiment. The volume of this box is 375ml and the dimensions of this 

box is shown in Table (54) (the second box in the table). The outer-boundary 

of this box is shown in Figure (33) while Figure (34) shows the vertices of the 

outer-boundary of the object in Figure (32). Finally, the result of the recognition 

is shown in Figure (35). The object captured in Figure (32) was recognised to be 

the box with volume 375ml, so the recognition result was correct. 
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Figure 33: Outer-boundary of the projection of the object shown in Figure (32). 
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Figure 34: The vertices (indicated by the circles) of the objects in Figure (32). 
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Figure 35: The recognition result using the image in Figure (32). 
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Figure 36: The recognition result of another box with volume 375ml with inclined 
orientation. 
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Figure 37: This figure illustrates the control panel of the 3D object recognition 

system in Visual C + + . The box in the capture-window is a container of a common 

fruit-juice in Hong Kong called, "lemon-tea". 

One more experiment using an inclined box (with volume 375ml) is shown 

in Figure (36). In this test, the inclined box was recognised to be the box with 

volume 375mL Therefore, the recognition system and the proposed algorithm is 

verified to be workable to any orientation of the object. 

The computation time for the part of recognition from the database using 

our proposed algorithm (i.e. the last step in the data-flow diagram in Figure (24)) 

was about 4 seconds, for the case that 100 objects are in the database and this 

system is only implemented in Matlab 5.0. Therefore, the execution speed of this 

algorithm by using the Six-Point Algorithm is satisfactory. 

5.3.2 System in Visual C + + 

In this experiment, 6 boxes are used. Their geometric information and the 

2D intensity images containing their textures are stored in the model database. 
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Figure 38: The recognition result of the box shown in Figure (37). 

The box shown in Figure (37) is a box of a common fruit-juice in Hong Kong, 

which is called "lemon-tea". The volume of this box is 250ml and the dimensions 

of this box is shown in Table (54). The recognition result is shown in Figure (38). 

In this figure, the recognition system displayed the volume, the brand ("vita") and 

the type of product ("lemon-tea") on the window. Also, the system used the 2D 

intensity image of the box in the database to render the “3D box" displayed in 

this figure (Figure (38)). 

Figure (39) shows there is another box captured. Its volume is 375ml. It 

is used to contain the "malted milk" produced by "Vitasoy". However, there 

is a hand in front of the box this time, so some area of the box is canceled by 

the hand. The recognition result is shown in Figure (40). From that figure, it 

is observed that the box can still be recognised as a container of "malted-milk" 

produced by "Vitasoy" and its volume is found to be 375mL From this test, we 

find that the recognition result in this system can still be correct although some 

f 

r 
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Figure 39: This figure shows another box (container of another fruit-juice). Its 
volume is 375ml and the name of the fruit-juice is "malted milk" which is produced 
by "Vitasoy" also. Moreover, a hand appeared in front of some parts of the box, 
so some area of the box is canceled. 
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^ l ^ | ; 
^ ^ ^ ^ ^ H 
| A 375ml VitascD^ M aided M ilk box “ : 

Figure 40: The recognition result of the object shown in Figure (39). 
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region (not including the feature points) of the target object is hidden (Of course, 

the recognition result may be incorrect if some of the feature points are hidden). 

5.4 Summary 

In this chapter, a new approach to the problem of model-based 3D object 

recognition is proposed. This new approach is based on the Six-Point algorithm, 

which is used to handle the problem of model-based motion estimation with 2D-

to-3D point correspondences. By using this new approach, not only the object can 

be recognised, but the motion of that object can also be revealed. 

Moreover, experiments have been done to verify our algorithm. From the 

results, we find that the performance of this new approach in term of accuracy of 

the recognition and motion estimation is satisfactory. On the other hand, two 3D 

object recognition systems are implemented by using the proposed algorithm. 



C H A P T E R 6 

CONCLUSIONS 

In this thesis, three main areas in model-based computer vision are discussed. 

They are: 

1. Model-based motion analysis; 

2. Motion-based segmentation; 

3. 3D object recognition. 

In this thesis, all these problems are relating to point-based correspondences, hence, 

other types of features (e.g. straight-lines, surface) have not been discussed. 

Two approaches have been proposed for model-based motion analysis with 

2D-to-3D point correspondences. The first one is an iterative algorithm for the 

P4P problem which is called the TL-algorithm. Also, a comparison between the 

TL-algorithm and Lowe's algorithm [10] (another famous iterative method) has 

been performed. From the result, it is observed that the TL-algorithm is better 

than Lowe's algorithm in terms of speed. The advantage of the TL-algorithm is 

more obvious when the motion of the object is pure rotation. 

Another approach is a two-step linear algorithm called the Six-point algo-

rithm. It can be applicable to any PnP problems for n > 6 and for the case that 

not all the feature points are on the same plane. There are two versions for the 

140 
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Six-point algorithm. Both versions can be divided into two parts: 1.) The linear 

part; 2.) The constraint satisfactory part. The two versions of the Six-point algo-

rithm are only different in applying different constraints in the step of constrained 

optimization in the linear part. In the linear part, a rough solution for the motion 

of the object can be obtained. In the constraint satisfactory part, the constraint 

of the orthogonality of the rotation matrix is applied to refine the result of the 

motion parameters. Also, the technique of S V D is proposed to enhance the speed 

of the computation. Besides, this Six-point algorithm is applied to implement a 

real-time visual tracking system. 

Also, an enhancement to Faugeras's algorithm [12] is introduced. This mod-

ified Faugeras's algorithm improves the accuracy of the translational components 

as compared to the original version of Faugeras's algorithm. In this modified ver-

sion a new method is proposed to estimate the translational part of the motion. 

Also, experiments have been done to verify the new approach and compare the 

performances of original Faugeras's algorithm and this modified version in terms 

of accuracy of the translational components. From the result, it is observed that 

the accuracy of this modified version is better than the original one especially when 

the noise level in the system is high. 

Moreover, two new approaches have been proposed for the motion-based 

segmentation. The first approach is for the case with 3D-to-3D point correspon-

dences. Another is for the case with 2D-to-3D point correspondences. These two 

approaches are similar. The incremental clustering technique is applied in both 

approaches to segment the feature points according to their motions. The major 

difference between them is that two different motion estimation algorithms are 

applied to compute the motions of the objects. 
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Finally, a new approach for the model-based 3D object recognition is pre-

sented. In this new algorithm, our Six-point algorithm is used as the core to 

compute the motions of the object to be recognised. Also, two 3D object recogni-

tion systems are implemented using this proposed algorithm. The first system is 

coded in Matlab and which can recognize the object automatically. On the other 

hand, another system is coded in Visual C + + . In this system, the texture of the 

object is also used to enhance the accuracy of the recognition. 
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A P P E N D I X A 

REPRESENTATION OF ROTATIONS BY QUATEF 
NION 

Supposing that we are going to obtain a 3 x 3 orthogonal rotation matrix R from 

a minimization problem with the following form: 

Min ||RC — D|| subject to R is a 3 x 3 orthogonal matrix, 

R (1.101) 

where C = Ci C2 C 3 and D 二 Di D2 D3 are some 3 x 3 matrices. 

The solution of Equation (1.101) is as follows: 

Defining a 4 x 4 matrix B by 

B = J2BJB,, (1.102) 
i=l 

where 

0 (C, 一 D,)^ 
B, = , (1.103) 

D?: — Ci [D^ + C^]x 

r 1T 

in which [0]̂  is an operator. For u 二 ui U2 u^ ， 

0 —Uz U2 

u]x = ^3 0 -ui • (1.104) 

—U2 ui 0 

Then the unit eigenvector of B corresponding to the smallest eigenvalue is assigned 
rji 

to be q 二 [go，Qi , Q2 , Qs] . The unit vector q is actually an unit quaternion. 
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Therefore the rotation matrix R can be computed as follows: 

^0 + ^1 - Q2 一 Ql 2(^1^2 — qoQs) 从她 + _2) 

R = 2{q2q1 + q0q3) ql - ql + ql - qj 2{q2q3 - qoqi) • 

(1.105) 
2(g3g1 - q0q2) ^{q3q2 + qoqi) ql 一 ql 一 ql + ql 



A P P E N D I X B 

CONSTRAINED OPTIMIZATION 

Supposing we are going to minimize a linear system ||Ax|| subject to the constraint 

2 

that Bx = 1, where A is a N x M matrix, x is a N x 1 vector and B is a P x M 

matrix with p < M. The function of the matrix B is to select some coordinates of 

X. Denoting by z the vector B x and by y the {M — P) x 1 vector made up of the 

other coordinates of vector x, we have: 

A x = C y + Dz, (2.106) 

where C and D are respectively N x {M — P) and N x P matrices. Then the 

original optimization problem is now becoming: 

Min ||Cy + Dz||^ subject to ||z||̂  二 1. (2.107) 

Applying the technique of Lagrange multipliers, this problem is equivalent 

to the following: 

MinF = C y + D z 2 + A(l-||z||2). (2.108) 
yz 

Computing the partial derivatives of criterion F with respect to y and z, we 

have 

^ ^ = 2 ( C ^ y + C ^ z ) , 
dy 

and 
f)p 
^ = 2 ( D ^ z + D ^ C y - A z ) . 
oz 
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Then setting those partial derivatives to zero, we obtain: 

y = - ( C ^ C ) - ^ C ^ z , (2.109) 

( D ^ D - D ^ C ( C ^ C ) - ^ C ^ ) z = Az. (2.110) 

According to Equation (2.110), z is an eigenvector ofthe matrix E = ( D ^ D — 

D^C(C^C)-^C^D). Also, by substituting y in Equation (2.107) by Equation 

(2.109), we have: 

|(I-C(C^)-^C^)Dz||' = z ^ ^ ( I - C ( C ^ ) - ^ C ^ ) D z 

、 2 
二 A z 

= A . 

In order to minimize the cost function in Equation (2.107), so z is actually 

the eigenvector of the matrix E corresponding to the smallest eigenvalue. 

Afterwards, y can be obtained by substituting z into Equation (2.109). Then 

this constrained optimization problem can be solved. 
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