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Abstract 
Computer vision has been proved to be a very difficult problem after some thirty 
years of continuous research. An image or video sequence usually contains more 
information than necessary, but computer vision researchers are more interested in 
finding the relative positions and orientations of an object in the three-dimensional 
(3D) space during a specific period of time. This is known as the pose estimation 
problem, and is applicable to many areas like robot navigation or camera calibration. 
In this report, we propose an iterative algorithm for the Perspective-3-Point (P3P) 
problems, together with a novel technique for panoramic walkthrough based on the 
P3P calculations. 

Pose estimation is difficult as spatial data is encoded inside two-dimensional (2D) 
images during the nonlinear camera projection. Complex formulae are often involved 
to recover the 3D pose information, leading inevitably to numerical instability and n 
multiple solutions. Much research work on this problem has been reported in the 
literature. Among the many iterative solutions to P3P problems, most of which make 
use of weak-perspective projection to reduce the three unknown depths into image 
plane coordinates. Then various mathematical techniques are used to solve the quartic 
or cubic equations derived. On the other hand, our algorithm recovers the motion 
parameters (rotation R and translation t) of an object, given its 3D dimensions 
and subsequent image point correspondences under full perspective projection. It 
is broken down into two stages: (1) depth recovery by the Gauss-Newton method, 
in which depth estimates are iteratively refined under a least-square minimization 
paradigm; and (2) 3D-to-3D pose calculation, in which two 3D point sets at time t 
and t + 1 respectively are used to find R and t. Additional geometrical constraints are 
also incorporated to reduce multiple solutions inherent in P3P problems, and improve 
the stability of the estimation process when measurements are noisy. 

On the other hand, image-based rendering is becoming a popular way in the con-
struction of virtual environments in computer graphics application. Instead of build-
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ing a complete 3D environment model, a collection of images is used to synthesize 
the scene while supporting virtual camera motions. However, most existing methods 
navigate by jumping from one hot-spot to another instantaneously, and provide users 
with little sense of sense immersion. Our method generates realistic intermediate 
frames to simulate a smooth transition from one mosaic node to another, with mini-
mal sacrifice in image quality and execution speed. Specifically, given a pair of images 
about an object from two adjacent panoramas, and their pose estimates from the al-
gorithm above, we show that it is possible to uniquely synthesize perceptually correct 
intermediate views, along the line segment between the panoramic optical centers. 
This greatly simplifies the efforts in locating control points for view synthesis, and 
helps to create realistic walkthrough video sequences with sparse correspondences and 
uncalibrated cameras. 

Our pose estimation algorithm has a distinctive property of preserving object 
rigidity, and its performance advantage is verified empirically through detailed com-
parisons with the closed-form Fischler and Bolles' algorithm. Both real panoramic 
images and synthetic data have been used to verify our method, showing that our 
proposed algorithms can effectively reduce multiple solutions inherent in P3P solu-
tions, and synthesize perceptually correct intermediate views. The computation time 
of our P3P algorithm in ANSI C implementation for 1000 synthetic motion instants 
on a UltraSparc 1/170 workstation is 0.11 sec. Knowing that the Fischler and Bolles' n 
approach is among the most efficient algorithm for P3P problems, our algorithm is 
stable and efficient in view of its iterative nature (only about six iterations are required 
for convergency in most of the cases). Our P3P method also has higher flexibility 
in tracking complicated object like articulated ones, because it requires only tliree 
point correspondences for every motion instant, ln addition, our panoramic viewer in 
Visual C + + implementation takes about 15 seconds to synthesize a 10-frame movie 
sequence at resolution 500 x 300 pixels on a Pentium II 300 PC. Although there are 
noticeable delays in generating a sequence on-the-fly, the resulting image quality is ‘ 
much superior to the case of digital zooming (pixel enlargement). This demonstrates 
the value of our algorithms and justifies them for the cost. Our next target is to relax 
the requirements of apriori 3D feature dimensions, and investigate if other computer 
vision tools, e.g. epipolar geometry, can be used to make the walkthrough process 
faster and more robust. 
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計算機視覺發展至今’大部份的硏究均集中討論物件位置測定方法（pose 

estimation)，即如何從二維影像中得出物件於三維空間的位置及姿態。此技術可被 

廣泛應用於機器人空間瀏覽或攝影機變數測定等方面。 

當物件的三維空間資料被投射爲二維影像時’涉及非線性的攝影機投射效應。因 

此，若要從二維影像推算三維空間資料，我們便需要進行異常繁複的運算，及處理 

數態不穩（numerical instability)或多重根（multiple solutions)的問題 ° 一直以 

來，不少硏究工作皆針對這方面作改善，其中三點透視法（Perspective-3-Point 
(P3P))的硏究更普遍採用弱透視投射法（weak-perspective projection)來評估物件 

大約深度，接著再以不同方法化解那些代數算式。在這報告中，我們將集中探討 

P3P問題’並提出新的計算方法以改良現有技術。我們會進一步把這新計算法套用 

於全景圖瀏覽（panoramic waDahrough)的問題上° 

然而’在計算物件的外在運動變數（external mot ion parameters)時，除了已知的 

物件幾何特性及其對應點（point correspondences)外，我們首先使用全透視投射法 

(full perspect ive projection)及Gauss-Newmn反覆計算法，求物件大約深度。接 

著利用三維位置還原法（3D-3D pose recovery)推算物件的三維空間資料。再套用 

物件的幾何特性以舗選及摒棄在運算過程中可能遇到的不合理數據或多重根。 

另一方面，影像爲本演示法（image-based rendering)在計算機圖像處理上日趨普 

及。硏究員們大多以結集一連串的二維影像組成全景圖，再配合虛擬攝影機運動以 

製造虛擬現實效果。但大部份現有的技術往往因影像間變化太大而予人不實在的感 

覺°故此我們提出以影像變形來模擬物件移動過程’配合先前提及的P3P物件位 

置測定方法，製造出準確且自然的虛擬運動。 
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爲了驗證我們提出的方案，我們利用真實影像及人造數據，並以Fischler a n d 

Bolles的方法爲對照。結果發現我們的方案較穩定，且能準確地模擬物件移動過 

程，效果遠較數碼變焦或傳統計算機圖像方案爲佳。將來我們希望能放寬對物件幾 

何特性及其對應點的要求，及硏究引用其他計算機視覺工具到全景圖溺覽的問題 

上。 
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Chapter 1 
Introduction 
Since 1970s, scientists have been working on the possibility of bringing intelligence 
into computers so that they can visualize as well as understand the environment 
around them. Although it seems to be easy at first glance, it has been proved to 
be a very difficult problem after some thirty years of research. An image or image 
sequence usually contains more information than necessary. We would like to extract 
as much information as possible at minimal effort. The basic tokens for consideration 
are points, lines or planes. However, as both lines and planes from natural scenes 
can hardly be expressed in simple algebraic forms, and indeed they are not always 
available in real-life configurations, more research efforts have been focused on the 
analysis of points. , 

In addition, the computer vision community is also very much interested in find-
ing the pose of an object from its subsequent two-dimensional (2D) images. To be 
exact, the pose of an object refers to its relative position and orientation in the 
three-dimensional (3D) space at a particular time instant, with respect to the camera 
reference frame. Theoretically speaking, any motion of a rigid body can be repre-
sented as a concatenation of rotation followed by translation. Thus by estimating the 
poses of an object in consecutive image frames, one could recover the extrinsic mo-
tion parameters (rotation and translation) of that object during that specific period • 
of time. However, very often there are too many possible combinations in real-life sit-
uations that it is hard to locate the matches of a particular feature point throughout 
a sequence of consecutive image frames. This is known as the correspondence problem 
in computer vision literature [56], and is already an exceedingly complicated problem 
by itself. Furthermore, as spatial data is encoded inside 2D arrays of picture ele-
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Chapter 1. Introduction 2 

ments (pixels) during the nonlinear camera projection, depth information is usually 
lost, and complex formulae are often involved to recover the 3D pose information. 
On the other hand, efficiency is another crucial factor in computer vision applica-
tion. For example, many automatic assembly or traffic monitoring systems require a 
refresh rate of 30 frames per second to capture velocity or positional changes. The 
time allowed between successive updates thus places a stringent requirement on the 
estimation process. 

A number of different schemes have been proposed, but regardless of the method 
chosen, the vision problem is generally divided into three processes: acquisition, anal-
ysis and recognition. In the image acquisition stage, spatial light intensity information 
is converted by video cameras or other imaging devices into machine formats. A beam 
of laser or polarized light may be directed towards an object under investigation to 
find out its exact 3D positions, or that a camera quickly saccades to follow an object 
of interest during a certain time interval. The analysis stage extracts useful infor-
iriation from 2D or 3D images. In most application the first step is to recover depth 
information from 2D image data to form a, 2^D sketch [56]. Subsequent analysis may 
include object segmentation, motion analysis, etc. The final stage makes use of the 
information in a knowledge database (which stores the image characteristics of many 
objects) and the extracted information to find the semantics of a scene, e.g. the num-
ber of objects and their properties. This step often involves target localization and 
identification, as well as a rough initial estimation of poses, velocities and possibly ,, 
some other state-variables of interest. This phase is particularly hard in active vision 
systems, owing to the need to saccade towards the moving target. 

In this dissertation, we wish to develop motion-analysis and view synthesis method-
ologies that address a number of goals: 

1. Measurability: Sufficient information to compute the transformation must be 
automatically or semi-automatically extracted from the basis images. 

2. Correctness: Each synthesized image should be perceptually correct, i.e., it 
should correspond to what the real scene would look like as a result of the 
specified scene transformation, and is sophisticated enough to precisely model 
viewpoint changes and other 3D operations. 

3. Robustness: The techniques developed for image-based scene transformations 
should be robust and general enough to handle complex real-world scenes and 
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photographs. 

To make life easier, we focus on the 3D-to-2D pose estimation problem, with given 
point correspondences (established in advance with substantial manual efforts). A 
nonlinear procedure to recover depth values from image correspondences and camera 
parameters is derived, with several geometrical constraints to further improve the 
quality of depth estimates. A hierarchical organization of depth values is then used 
to calculate the depth map of a novel view, and by reprojecting onto original views 
gives the intensity values of each pixel in the novel view. In addition, we propose the 
use of image-based operations as a general framework for visualizing and manipulating 
3D scene transformations or viewpoint changes. They have a key advantage that they 
operate on a set of basis images and do not require precise 3D modeling of the scene. 
An alternative approach is discussed in later chapters to determine how an image 
would change in response to a particular physical movement of the object or camera 
in the 3D space. In such a case, these changes can be modeled as a mapping or a warp 
from pixels in one or more basis views to pixels in a new synthetic view of the same 
scene. By categorizing all such mappings, we can devise a mechanism for synthesizing 
novel views to simulate transformations by warping a set of basis images. 

1.1 Model-based Pose Estimation 
ii 

Model-based motion analysis refers to the recovery of pose information of a rigid 
body (which 3D description is known apriori) from subsequent image projections 
of its corresponding feature points. Typical techniques under this category exploit 
known geometrical relationships between model features to derive a set of constraints 
that can be used to reverse the camera 3D-io-2D projective transformation. This 
problem is important in computer vision, and in many areas like photogrammetry, 
robot navigation, motion tracking, object recognition and camera calibration. Solving 
this problem enables computers to understand human motion, as well as navigate ‘ 
through unknown environments. However, even though the object 3D dimensions 
and image point correspondences are assumed to be known in advance, it is difficult 
to solve as nonlinear techniques are usually involved, leading inevitably to numerical 
instability and multiple solutions. To further illustrate the concept of pose estimation, 
we begin with an example about 3D motion tracking. 
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1.1.1 Application - 3D Motion Tracking 
The task of tracking an object can be divided into two parts: acquisition and track-
ing. As discussed in previous paragraphs, acquisition involves a rough estimation 
of the pose, velocities and some other state-variables of interest. In the first stage, 
a tracker is initialized to maintain a given multi-value time series of some possibly 
noisy measurements about the object. When new measurements are available, these 
variables are extrapolated to predict their values at the next sampling instant. Us-
ing this predicted object pose and a 3D-to-2D camera projection model, the tracker 
determines the target appearance in the scene, its positions, orientations, etc. These 
help to restrict the search range of object features to a relatively small part of the 
image. The next step is to compare the true image from camera with the predicted 
image, and search the true image for expected object features by correspondence, i.e. 
identifying which image feature correspond to each model feature. The 2D image is 
then back-projected to the 3D scene space to compute the discrepancy between them, 
and determine how this discrepancy afFects the current state estimates. Finally, the 
whole process is repeated as soon as another set of measurements is available [24 
(Fig. 1.1). 

1.2 Image-based View Synthesis 
In traditional computer graphics or model-based approaches, each object in a scene is “ 
represented by a geometrical formulation like a polygon mesh [10][43][78] using prior 
knowledge about the object. These geometrical entities are then rendered onto the 
screen by specifying their 3D positions, orientations and other parameters such as 
surface reflectance, illumination, etc. Applying this approach to simulate real world 
scenes can be difficult, however, for the possibly large number of objects involved, 
and the artistic distortions or exaggerations inherent in synthesizing. There is also an 
important trade-off among rendering time, scene complexity, and the huge amount of 
storage required for pre-rendered image segments. On this aspect, image-based trans-
formation techniques offer a completely different approach [83][8]. Images produced 
by this method can appear strikingly lifelike and visually convincing without explicit 
modeling or reconstruction. By exploiting the geometric relations, e.g. pixel inten-
sities, 2D positions, etc. inside a collection of images, these techniques combine 2D 
interpolations of shape and color to produce illusions of smooth transitions or trans-
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Figure 1.1: An example of 3D motion tracking application. 

formation. Consequently, these techniques are simpler and more efficient than those 
by 3D reconstructions or modeling, because only a small amount of 3D information 
has to be recovered and the burden in representing scene information is reduced. 

One interesting 3D movement to model in particular is viewpoint transformation ” 
(as in camera panning, zooming, and translation). This is critical for interactive 
graphics application like virtual reality (VR) navigation, in which the camera per-
spective changes continuously under user control. In the early part of this century, 
Walt Disney and other pioneers developed the cel animation technique that was used 
to generate cartoons and films like the Three Little Pigs, Fantasia and Aladdin. While 
sufficient to give an impression of camera movement, this technique does not model 
depth effects like parallax and occlusion, and therefore is somewhat unrealistic. A 
more compelling effect can be achieved by designing the background image with a 
specific camera path in mind. This technique was used in Walt Disney's 1940 ani-
mated film, Pinocchio, in which a window was moved in a fixed path along a special 
background image. This approach began to receive much interests when Chen and 
Williams [10] showed that virtual navigation among a given collection of images is 
possible by view interpolation. However, substantial efforts are required to locate 
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corresponding feature pairs, perform dense sampling of the scene, and build up image 
depth maps. 

Perhaps Laveau and Faugeras [43] was the first group in attempting to generate 
novel views based on a collection of real world photographs, using fundamental ma-
trices [48] together with pixel correspondences between different views. They demon-
strated that view synthesis can be performed without depth map reconstruction. 
However, full correspondences have to be established prior to the synthesis. Later, 
McMillan [57] presented a plenoptic modeling system which made use of computer 
vision techniques to generate panoramas. Epipolar relationships between neighbor-
ing panoramas were established to indicate the possibility of linear view interpolation 
between different positions. Chen [11] also proposed another view generation sys-
tem (QuickTime VR) that could synthesize arbitrary views about a point using a 
pre-rendered panorama at that point. Virtual navigation became possible at a much 
lower cost with these mosaicing techniques. However, their work was limited to cylin-
drical panoramas which liave singularities near the top and bottom. Szeliski and 
Shum [78] reformulated cylindrical panorama representation into spherical ones to 
overcome these singularities. They also proposed an alignment process to rectify 
the accumulated errors in sampling, as well as a deghosting process to correct the 
intensity differences of a specific patch under different viewing conditions. To fur-
ther simplify the complex relationship in generating novel views, Seitz [71] proposed 
another approach to image editing based on volume-elements {voxel). With apriori ,, 
voxel correspondences, editing on one image would be automatically propagated to 
other images through voxel calculations. This approach is very interesting, but the 
accuracy of editing operations depends heavily on the voxel resolution [31]. He further 
argued that while image morphs enable the synthesis of 3D effects, they provide no 
direct control of the 3D transformation that is being synthesized. As a result, simple 
3D transformation such as viewpoint changes are often difficult to convey accurately 
with image morphing methods. Another way of simulating depth effects in animation 
is through layering, which refers to composing a series of background images and 
windows that move at different speeds. This technique can model relative motion 
and occlusion between objects by representing the scene as a set of independently 
moving 2D layers rendered in back-to-front order. Researchers in computer vision 
and computer graphics have advocated this layering paradigm as an effective way 
for representing and rendering more complicated 3D scenes. Wood et al. [87] have 
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recently developed computer algorithms for partially automating the creation and 
segmentation of these warped background, which they call multi-perspective panora-
mas. 

The techniques in previous paragraphs are examples where 2D representations and 
operations may be used to convey a strong impression of three-dimensionality. How-
ever they often involve a large number of real images, and require substantial efforts 
in locating corresponding feature pairs, which sometimes out-balance the advantages. 

1.3 Thesis Contribution 
This thesis contains a combination of theoretical results and practical algorithms. Its 
main contribution is: 

• We develop an iterative algorithm that gives unique results for the Perspective-
3-Point (P3P) problems. This is nontrivial because multiple solutions are in-
herent in such model-based pose estimation algorithms, if less than eight point 
correspondences are available. The efficiency and accuracy of our algorithm 
is demonstrated through comparisons with established approaches like Fischler 
and Bolles' [19]. In addition, as our algorithm requires as few as three point 
correspondences for every motion instant, it has higher flexibility in tracking 
complicated object such as articulated ones. 

•I 
• Another novelty is that our panoramic walkthrough algorithm demonstrates 

the feasibility of view synthesis without dense correspondence information or 
detailed camera parameters. Specifically, given a pair of uncalibrated images 
about an object, we show that it is possible to uniquely synthesize perceptually 
correct in-between views along the line segment between optical centers. This 
is important because it paves the way for panoramic walkthrough algorithms 
that represent scene appearance with a collection of basis images. 

A crucial property of our algorithms is that they are robust and produce realistic 
results even for significant violations of the assumptions. Our experimental results 
with various real image sequences clearly suggest that the algorithms are in fact more 
widely applicable than the theory predicts. 
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1.4 Thesis Outline 
This report begins with our notations, terminologies, camera projection models, as 
well as a brief introduction on model-based motion analysis and panoramic view 
analysis (Chapter 2). 

Chapter 3 investigates in greater depth the problem of model-based pose estima-
tion. After an overview of related work, the first part of the chapter is about some 
theoretical issues of the P3P problems, and describes their classic solution by Fischler 
and Bolles. The remaining sections present our proposed iterative P3P solution, to-
gether with experiment results as well as comparisons with some other established 
approaches. 

Chapter 4 considers the problem of view synthesis and panoramic construction. 
We would review existing approaches, explain the theory behind, and discuss their 
advantages and short-comings with adequate examples. 

Motivated by limitations in the state of the art, we introduce in Chapter 5 our 
approach to integrate model-based pose recovery and panoramic view analysis. Given 
a set of images of a scene under different viewing conditions, our method recovers the 
3D motion of an object in the scene from its subsequent image correspondences, and 
synthesizes 3D transformations of real scenes from these basis images. The chapter 
concludes by evaluating the performance and robustness of our proposed approach, 
when applied to real and synthetic image sequences. 

Chapter 6 addresses some insight in the future directions of panoramic walk-
through, and summarizes our work in this thesis. 

Formula derivations are given in the appendices. 



Chapter 2 
General Background 
Most of the techniques developed for motion estimation assume the use of an image as 
the primary input. However, the imaging process is a nonlinear process, which leads to 
increased difficulties in finding solutions. This chapter first examines the fundamental 
issues on camera models (section 2.2). Then we will give a brief introduction to the 
problems we are going to handle in this thesis: model-based motion analysis (section 
2.3), panoramic representation (section 2.4), and image pre-processing (section 2.5). 

2.1 Notations 
Consider an object as shown in Fig. 2.1, 0 represents the optical center of a pin-hole „ 
camera, and feature points from a non-deformable object are represented by pj = 

Xi yi Zi at time t and p'- = x'- y[ z[ at time t + 1 respectively, where Xi^ 
Vi and Zi are the coordinates in 3D space. In this thesis, bolded symbols denote vectors 
or matrices, ^ denotes matrix transpose, primed symbols denote measurements at 
time t + 1, and i = 1,..., N is an index to the feature points. These points are • r 1T r TT projected onto an image plane at z - f giving q, = m V{ and q; = u'- v'- ， 
where Ui = / ^ , V{ = / ^ and f is the camera focal length known precisely through 
careful calibration procedures [81]. The optical center of the camera is assumed to 
coincide with the origin of a Cartesian coordinate system. 

As a convention, all objects are non-deformable so that their shapes will not 
change during any movement. We further assume that motions are rigid in the sense 
that all feature points on an object undergo the same motion. 

9 
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Figure 2.1: Our notation. 

2.2 Camera Models 
The fundamental problem in analytical solutions for perspective pose recovery is 
the intrinsic non-linearity of the geometrical constraints that arise when the imaging 
process is modeled as a perspective transformation. Fortunately, under certain special 
conditions, an imaging transformation that is actually perspective (or even more 
complex, for instance, if we take into account lens distortion), can be reasonably 
approximated with much simpler models in terms of linear constraints. 

•• 2.2.1 Generic Camera Model 
A generic camera model can be defined as a 3 x 4 transformation matrix M that 

. . • 1了 specifies the mapping between a point (represented as p^ = a:< y- Z{ 1 in 
homogeneous coordinates notation) in the 3D object space with its corresponding 

1 T image point (represented as q^= Ui Vi 1 ) on the 2D iniage plane. . 

Aqz = M p , 

where A is an arbitrary scalar constant. In particular, the matrix M can be decom-
posed as: 
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M = KIpG= kn k22 k23 0 1 0 0 ^‘‘ ^‘‘ ^‘‘ ^‘‘ (2.1) 
. n / A A 1 n 931 932 933 934 0 0 k33 0 0 1 0 

L L "41 942 943 "44 _ 
where K (also called the intrinsic matrix) encodes the intrinsic parameters of a cam-
era, such as the origin of its image plane, pixel aspect ratio, focal length, etc., and G 
(also called the extrinsic matrix) maps points from a 3D object-centered coordinate 
system to a 3D camera-centered coordinate system. Without any further constraints, 
this model has eleven degree offreedom (DOF) (because in homogeneous coordinates 
the overall scaling factor is irrelevant), and is denoted as the projective.camera model. 
Readers are referred to [89] for more details. 

2.2.2 Full-perspective Camera Model 
In many situations, however, it is reasonable to assume that the calibrated version of 
K can be written as: 

f x 0 0工 

Kcalib = 0 fy Oy (2.2) 
0 0 1 

L* J “ 
where fx and fy encode both the aspect ratio and the camera focal length, and 

n T , , • • Ox Oy is the origin of the image plane. These four parameters can usually be 
determined through some apriori camera calibration [81]. Finally, the perspective 
mapping of G (Gpe"p) between the model and the camera frames can be thought 
of as an Euclidean transformation, i.e. a composition of rotation and translation. 
The result of all these assumptions is known as a perspective camera model, which 
extrinsic matrix can be written as: 

p _ [R r 
^persp — 

0 1 
� "|T 

where R = r̂； r” r^ is a 3 x 3 orthonormal matrix representing the relative 
r 1T 

rotation between the model and the camera frames, and t � t^ t,, t， is a 
‘ ^ y z column vector representing the relative translation. 
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Assuming Kcaiib to be an identity matrix, the 2D image projection Upersp Vpersp 
of a 3D point p is given by: 

_ (P . r^ + t^) 
Upe"P = (p . r. + Q 

—(P • r, + ty) 
^persp — / I , � l^-^J (p . r, + t,) 

A major problem with this model is its nonlinear formulation. The denominators 
in the above equations depend not only on t=, but also on the 3D point p and the 
rotation matrix r；̂. So if the scene to be analyzed allows the use of approximate linear 
models, all the problems generated by the nonlinear nature of analytical perspective 
solutions can be avoided. 

2.2.3 Affine Camera Model 
To start with, the transformation matrix M in Eq. (2.1) may be assumed to take the 
following form to give an affine camera model: 

mii 772i2 mi3 mi4 
Ma// 二 m21 rri22 rri23 ^24 

0 0 0 1 .' 

• • . • . • "|T 
If a model of this kind is used, the coordinates of an image point u v can be 

. . . 1了 

expressed as a linear function of the corresponding model coordinates x y z . 
However, this linearization is a rather strong assumption that is in general valid 
only if the object dimensions are relatively small compared with the object-caraera 
distance, and will break down when the object is close to the camera, e.g. during a 
video conference session. In addition, the number of unknowns in the above camera 
model is still large in the sense that it may be too complicated to be used for real 
life application. Some reasonable restrictive assumptions can be used to obtain more 
tractable specializations. Assuming the four intrinsic parameters in Eq. (2.2) are 
known o/priori, and the projective transformation is Euclidean, there are two different 
linearized approximations to the perspective camera model. The difference is that one 
of them, known as the weak-perspective camera model, is an approximation of order 
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zero, while the other, known as the paraperspective camera model, is a first-order 
approximation. 

2.2.4 Weak-perspective Camera Model 
In order to understand more clearly the relationship between the perspective camera 
model and its two affine approximations, we factorize tz, that is constant for all points 
of interest in the object space, out of the denominators in Eq. (2.3). Then Upersp and 
Vpersp can be expressed as a function of p by: 

_ p • r^ + t^ 
� r ^ = q i + e) 

_ p - r , + ^, 
一 - q i + e) (� . 4 ) 

where 

P-^z e = tz 
The weak-perspective camera model basically approximates a perspective projec-

tion by assuming that all the points on a 3D object are roughly at the same distance 
from the image plane of the camera, so that the nonlinear factor j ^ can be replaced 
by the constant 1 to give a linear relation between p, tz, and v\ 

•I 
— p • r：, + tr 

^weak — ^ 
W = P . : " + ," (2.5) 

*z 
Another interpretation for this model is to view it as a two-step process as shown 

in Fig. 2.2. • 
The first stage involves an orthographic projection of an object onto a plane par-

allel to the image plane and at a distance z " the 2:-c00rdinate of the object centroid. 
Then a perspective projection, which is an uniform scaling of the resulting image by 
the factor ^ , is applied to get the image coordinates. This type of transformation 
is also known as scaled orthography. However, this zero-order approximation to the 
full perspective projection model would have substantial error when the object is far 
away from the optical axis, ^nd is valid only when the object-camera distance is much 
larger than the object dimensions. 
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Figure 2.2: Weak-perspective camera projection model. 

2.2.5 Paraperspective Camera Model 
The paraperspective camera model, on the other hand, uses the first-order term of 
the expansion of j^ around the point e = 0, in addition to the term of order zero. 
So, it assumes that j ^ « 1 — e. The expressions for u and v obtained after this 
linearization are then approximated again by neglecting the terms that involve ^ , as 
shown by Christy and Horaud [13]: 

01 

_ P • ( r . - ^ r , ) + t , 

Upara 二 “ tz 
_ p - ( r , - ^ r , ) + t , 

^para — ~ ̂z 
The geometrical semantics of this camera model is illustrated and compared wfth 

the perspective and weak-perspective models in Fig. 2.3. In particular, the paraper-
spective camera model corresponds to projecting each model point p along the line 
parallel to Op^, where Pc is the object centroid. The resulting virtual image is then 
uniformly scaled by the factor ^ onto the image plane. 

These two camera models (weak-perspective and paraperspective) are the simplest 
ones that can be used in application in which the pose of an observed objects with 
respect to the camera is unconstrained. So, in situations where the object-camera 
distance is relatively big when compared with the object dimensions, these models 
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Figure 2.3: Geometrical configurations of full-perspective, weak-perspective and para-
perspective camera model. 

can yield precise pose estimates at a low computational cost. Furthermore, solutions 
based on them are in general much simpler to analyze and much easier to implement 
than their perspective counterparts, and their linearity eliminates the necessity of 
calibration of certain intrinsic camera parameters. Due to these advantages, they 
have been widely used for object recognition, structure and motion estimation, and 
augmented reality. On the other hand, in spite of their linearity, both camera models 
are still too general for application in which the positions or orientations of objects “ 
with respect to the camera are restricted by some fundamental constraints. Wiles 
and Brady [85], for instance, proposed some even simpler camera models for the 
important problem of smart vehicle convoying on highways. In their analysis, a 
camera rigidly attached to a certain trailing vehicle was used to estimate the structure 
of a leading vehicle, in such a way that the paths traversed by these two vehicles are 
composed exclusively by a series of translation and rotation parallel to a unique 
ground plane. Many of their observations and suggestions can be generalized to the 
analogous problem of pose recovery. 

2.3 Model-based Motion Analysis 
Much research work on this problem has been reported in the literature [34]. The 
general idea of the analytical solutions is to work with a fixed number of correspon-
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dences and then to express image properties such as feature positions, lines, planes, 
orientations or apparent angles as a function of a predefined set of pose parameters. 
Since the shape and size of a rigid object remain unchanged irrespective of its motion, 
all feature points would have the same transformation. By matching the resulting 
expressions against the corresponding actual image measurements, one can derive a 
set of polynomial equations or constraints involving the pose parameters. Finally, 
if the number of correspondences is big enough, these equations can be combined 
algebraically, yielding the desired pose. Analytical solutions are traditionally classi-
fied according to the nature of the geometrical constraints used, or prior knowledge 
about objects. Three major categories have been identified in the literature: point 
correspondences, line correspondences, and angle correspondences. 

2.3.1 Point Correspondences 
Many solutions for point-based motion analysis have been proposed. According to 
the level of difficulty, they can be classified roughly into three categories [34]: 

W i t h 3D-to-3D Point Correspondences (Fitt ing of two 3D point sets) 
Given 3D coordinates p^ and p'-, our job is to find an optimal transformation (rotation 
matrix R and translation vector t) between them to account for their difference in 
position and orientation such that: 

“ 

N 
^ | p ; - ( R p , + t)|^ 
z"=l 

is minimized for all i [5][32 . 
Basically, this is a solved problem and various solutions have been proposed with 

satisfactory results. In particular, we will discuss two solutions proposed by Arun 
et al. [5] and Horn [32] in Chapter 3. A special point worth noting is that they do 
not require complicated matrix operations, which computation complexity increases 
exponentially with the number of feature points. This observation will prove to be 
very useful when we explore application on image analysis. 
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With 2D-to-3D Point Correspondences (Model-based Pose Estimation) 
Analysis with 2D-to-3D point correspondences refers to the recovery of 3D motion 
parameters (positions and orientations) from subsequent 2D image points (obtained 
through a 3D-to-2D projection transformation) provided that the original 3D descrip-
tions, e.g. depth or 3D coordinates, of an object or the scene are given. Although 
tliis problem is simpler than the structure from motion problem (to be discussed in 
the next paragraph), solving it is by no means easy for the variety of camera projec-
tion models that can be used to form the 2D projections, and the large number of 
possible positions and orientations that can be deduced from an object projection. In 
this thesis, we are particularly interested in this class of problems with the following 
simplifications. The first one being that any motion can be broken down into a se-
quence of consecutive poses, so that the movement undergone by an object between 
two consecutive poses is srnall. In tliis way, mathematical tools are available to solve 
the problem in a straightforward way. Second, we assume that the object 3D de-
scription is available to provide more cues about object orientations, by re-projecting 
the model onto image plane. However, the resulting problem is still difficult to solve 
if we choose to use the perspective projection model. In perspective projection, the 
depth information of the object are transformed by a nonlinear mapping which yields 
a foreshortening effect in the captured images. In addition, the rotation of the object 
in 3D space often leads to a nonlinear formulation which increases dramatically the 
computational requirement. Nevertheless, the solution to this problem is useful in “ 
many application like photogrammetry, passive navigation, industry inspection and 
human-computer interfaces. 

W i t h 2D-to-2D Point Correspondences (Structure from Motion) 
This third class of problems is about motion analysis with only 2D point correspon-
dences qi and q；. As the 3D structure of an object is not given, it is generally agreed 
that this extraction of 3D information is very difficult due to the large number of. 
unknown variables to be recovered from just two 2D images. We may have to deter-
mine both the motion and structure of an object before any meaningful interpretation 
about the images can be taken. Even if the depth information and translational pa-
rameters can be found, they can only be determined up to a scale factor for the 
non-linearity of this problem. Mathematically, it can be written as the minimization 
of: 
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^ | q , , - ^ ( R , p , - + t , ) | ' 
3 

for all z-th points and j-th. frames, where p is a projection function which projects 
the 3D points p^ onto the image plane. 

Under this paradigm, the estimated motion is the best solution in the least square 
sense. However, most of the mathematical tools available in the literature involve com-
plex mathematical tools that are only suitable for off-line computation. For example, 
the Levenberg-Marquardt algorithm [67] is the mostly quoted method to recover both 
the structure and motion from an image sequence [84]. Tomasi and Kanade [80] pro-
posed a factorization method to solve the above problem when the camera model is an 
orthographic one. Later, an extension of the factorization method to paraperspective 
projection model [65] was proposed to take better account of the perspectivity effect. 
Another major direction was based on an essential matrix approach [34][79'. 

2.3.2 Line Correspondences 
Line correspondences are constraints that are weaker than point correspondences. If 
N point correspondences are known, the lines obtained by grouping them in pairs can 
be used as input to any method based on line correspondences. But if an arbitrary 
set of line correspondences is available, it may be impossible to cast the problem of 

“ 

recovering the pose based on them into an equivalent problem involving only point 
correspondences, because these lines may not have pair-wise intersections in 3D space. 
On the other hand, lines are in general easier to be located in digitized images than 
points. The extraction of point features in general can only be performed reliably for 
distinctive features that can be correlated with predefined templates (but this type 
of feature is not always present in real scene). The identification of linear features,on 
the other hand, is based on the extraction of intensity gradients, which can be done 
in much more generic situations. • 

Horaud et aL [27] introduced a method to solve the pose recovery problem when 
the image correspondences for three non-coplanar lines with a common intersection 
point are given, commonly known as a restricted form of the Perspective-3-Line (P3L) 
problem in the literature. The fundamental idea of this solution, as well as of most 
solutions based on line correspondences, is to exploit a geometrical entity known as 
the interpretation plane. Simply speaking, if the imaging process is modeled as a 
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Figure 2.4: The interpretation plane of a generic image edge in line correspondence 
problems. 

perspective transformation, then a model edge can be the right correspondence for a 
given image edge if and only if it lies on the plane defined by the image edge and the 
optical center, or alternatively the plane can be considered as the geometrical locus 
of all possible model edge positions that result in a certain image edge. This plane, 
represented as a dark surface in Fig. 2.4, is called the interpretation plane. 

This solution by Horaud et al, could eventually be reduced to a single fourth-
degree polynomial equation, and analytically methods can then be used. A more 
general solution to the P3L problem, which can be used even in cases where the lines 
with known correspondences do not intersect each other, was presented by Dhome 
d al. [18]. Actually, this solution is very similar to the restricted solution presented 
above. However, due to the absence of a common intersection point between the 
edges, the analytical resolution of this system results in an eighth-degree polynomial 
equation. Dhome et al. also showed that the eighth-degree polynomial equation 
involved in the general solution can be simplified to degree four, if either the three 
edges with known correspondences are coplanar or they have a common intersection 
point. However the method proposed by Horaud et al. is often used for its greater 
simplicity, in spite of being less general Readers are referred to [18][27][61] for more 
information about line correspondences. 

2.3.3 Angle Correspondences 
Another type of geometrical constraint that can be used in model-based pose recovery 
are matches involving angles between model edges in 3D space and the corresponding 
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Figure 2.5: Definition of intermediate coordinate frame In the restricted P3A problem. 

apparent angles in the image plane. Shakunaga and Kaneko [72] presented a solution 
to a restricted form of the Perspective-3-Angle (P3A) problem. More specifically, this 
solution requires at least two of the model angles involved to be right angles, and that 
the three edges involved are part of a unique trihedral vertex (or in other words, they 
share a common intersection point). As shown in Fig. 2.5, the geometrical insight 
that leads to the solution is to notice that, in this case, one of the model edges can 
be thought of as the image of the vector normal to a plane defined by the other 
two edges. The image of the common vertex and the image of this normal edge can „ 
then be used to build an intermediate coordinate system between the camera and the 
object frame, which is neither viewer-centered nor object-centered and thus makes 
the problem of recovering relative orientation easier. 

A solution for the P3A problem with arbitrary angles in a trihedral vertex was 
later presented by Wu et al. [88]. Again, the central idea is to create a virtual image 
in which the shared vertex is foveated. However in Wu's solution, one particular 
transformation to obtain the intermediate image frame is arbitrary chosen. Readers 
are referred to [72][88] for more information about angle correspondences. 

2.4 Panoramic Representation 
There has been a growing interest in the use of panoramas as a visualization device, 
a tool for video compression [39], interactive video analysis, and enhancements to 
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the field of view [75][55] and resolution [12] of cameras. Moreover, they play an im-
portant role in image-based rendering to synthesize photo-realistic novel views from 
collections of real (or pre-rendered) images [10], for the construction and navigation 
of virtual environments [57][ll][77]. For such application, it is often desirable to have 
full-view panoramas which cover the whole viewing sphere and allow visualization in 
any direction. Unfortunately, most of the results to date have been limited to cylin-
drical ones obtained with cameras rotating on leveled tripods adjusted to minimize 
motion parallax [40]. This has limited the users of mosaic building to researchers and 
professional photographers who can afFord such specialized equipment. 

Although the idea of mosaicing is simple and clear, a number of subtle variations 
arise when considering how a complete mosaic representation may be developed for the 
different types of application. For example, regarding the geometric transformation 
models used for aligning images to each other, we describe two types of mosaics 
(static, and dynamic) that are suitable for different scenarios. They are then unified 
and generalized in a mosaic representation called temporal pyramid. These topics, 
together with some other extensions, would be described thoroughly in the following 
paragraphs. 

2.4.1 Static Mosaic 
Static mosaic is the most common panoramic representation [55][41][75]. It exploits 
large spatial correlation (over large portions of image frames), and is therefore an “ 
efficient scene representation. An example of a static mosaic image is shown in Fig. 
2.6. 

This is done in batch mode, by aligning all frames to a fixed coordinate system 
(which can be either user-defined or chosen automatically according to some criteria). 
The aligned images are then integrated using different types of temporal filters into 
a mosaic image, and the significant residues (information that is not represented in 
the mosaic) are computed for each frame relative to the mosaic. It is ideal for video 
storage and retrieval, and for content-based indexing into large digital libraries. It also 
relieves the tedium associated with video manipulation and analysis by supporting 
efficient access to individual frames of interest. In addition, it can be used as a 
visualization tool to enhance image content. This application will be described in 
greater details in section 4.4. 
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Figure 2.6: A static mosaic image: (a), (b) two source frames, (c) part of the resulting ., 
panorama. 2.4.2 Dynamic Mosaic 
Since a static mosaic is constructed in batch mode, it cannot depict the dynamic 
aspects of a video sequence. This requires a dynamic mosaic (a sequence of evolving 
mosaic frames) where the content of each new mosaic frame is updated with the most 
recent available information from an input video sequence. In this case, the residues 
reflect only changes in the scene that occur in the time elapsed between successive 
frames, as well as additional parts of the scene that were revealed to the camera for 
the first time. They are different to those in the static case, which represent any 
movements in the video sequence since a static mosaic was built. As a result, the 
amount of residual information in a dynamic mosaic is smaller and more efficient 
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than that in a static one. This is ideal for low bit-rate transmission. However, owing 
to their incremental and sequential nature of frame reconstruction, dynamic mosaics 
lack the important capability of random and immediate access to individual frames, 
making them unsuitable for video manipulation and editing. 

In addition, the choice of coordinate systems for constructing and visualizing a 
dynamic mosaic depends on its application. For example, in remote surveillance 
over a fixed scene, it is beneficial to construct a dynamic mosaic with respect to a 
stationary background. On the other hand, in flight surveillance, it makes more sense 
to keep a dynamically updating coordinate system that matches that of the view as 
seen by the pilot (with a gradually growing field of view obtained as the mosaic is 
constructed). 

2.4.3 Temporal Pyramid 
Static and dynamic mosaics are extremes of a continuum. In order to bridge the 
gap between these two and benefit from the advantages of both representations (i.e. 
efficiency versus random-access to frames), a static mosaic can be extended to use 
a hierarchy of mosaics which levels corresponds to different amounts of temporal 
integration. In this temporal pyramid, the finest level contains the set of original 
images, one for each frame in the input sequence. The temporal sampling decreases 
successively as we go from fine to coarse resolution levels of the pyramid. The coarsest 
level will consist of a pure static mosaic (Fig. 2.7). Reconstruction can be achieved “ 
by hierarchically combining the static mosaic with residual information in logarithmic 
time. 

2.4.4 Spatial Pyramid 
On the other hand, when the initial mis-registration between frames is more than a few 
pixels, a useful heuristic is to use a hierarchical or coarse-to-fine optimization scheme 
proposed by Bergen et al. [6]. Estimates from coarser levels of the pyramid are used to 
initialize the registration at finer levels [3][6]. This is a remarkably efficient technique, 
and we typically use three or four pyramid levels in our experiments. However, it 
may sometimes fail because image details may not exist or may be strongly aliased at 
coarse resolution levels. The benefits of such approaches are discussed in more details 
in [37][38. 
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Figure 2.7: A temporal mosaic pyramid. 
2.5 Image Pre-processing 
Even with the best camera, component images in a sequence are bound to have 
variations in color hue, intensity, contrast, etc., because of the vast number of variable 
factors in the surrounding environments that can affect resulting intensity values. In 
particular, differences in color or intensity profiles among two adjacent images would 
become very obvious in image stitching, as can be seen in the bottom image of Fig. 
2.8. Thus, in order to avoid sudden changes in image details along seam regions,“ 
image pre-processing like feature touch-up or histogram equalization are necessary. 
In our experiments, image pre-processing consists of three parts: feature extraction, 
local enhancements, and dynamic range stretching. 

2.5.1 Feature Extraction 
Moravec Interest Operator 
Directional variance is measured over small square windows (Fig. 2.9). Sum square 
differences (SSD) of adjacent pixels in each of four directions (horizontal, vertical, 
and two diagonals) over each window are calculated, and the interest measure of this 
window is defined as the minimum of these four sums. This measure is evaluated on 
windows spaced half a window width apart over the entire image. Features are chosen 
at the center points of windows which interest measures are local maxima, i.e. if a 
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國 
Figure 2.8: Adjacent source images of high intensity difference, and their stitched 
result. “ 

window has the largest value among 25 windows which overlap or contact it [60 • 

Matching through Correlation 
After feature point extraction, correspondences of these feature points are found by 
calculating their matching scores. This algorithm is known as matching through cor-
relation [89] (Fig. 2.10). 

Briefly speaking, with Ni and N2 feature points in image 1 {h) and image 2 ( ¾ 
respectively. Then with respect to every single feature point in /1, the correlation 
routine is executed once for each of the N2 feature points in /2. The resulting time 
complexity is of 0 (A^ x N^). The matching score of two image patches h {uuVi) 
and h{u2,v2) of size ( 2 m / + 1) x (2m2 + 1) (in our experiments, a window size of 



Chapter 2. General Background 26 

~ I . i ~ ' 
� 1 ！ i 

- L 丨 丁 

- j: T ̂ j|j,jjjj5j mmm mmm r^^^^ ？維辨• .一 ；̂^̂̂ ^ ^HSmm •: , iijBUBBiiJjsipJJJil 

—一”""̂ "̂』|"“̂ r~ 1 I 
*""^' >̂ SftW:*iMw *^mnrn wwww. . m^ ' ；•»-〜-....:.,''« . ！ v； ‘ ‘ *:.^." 一-和 、、、.....’ , ^ ^ 

一一工丄：丄丄 t 
“ i.lj “ “ ‘ i 1| ^ t *"""T"^ ‘ I I _ j__ j _ I t _ 

‘ i 
v._ •…M<- ^ -~̂ v̂̂ -̂ « ^.^.w» MVMK « «• ^ »\v«<»~ . V «i.y*. . ^̂ A- w<r S M*-.A*<*. .' • • I- •丨 _u |,|||. 

fT^pn fTlrTlF� 
™ I ‘ 1 

: T^ H' i_<in 咖__,_,«411-睡_,丨_1�‘‘_,' I ip"^^TirrTTi”r 
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Figure 2.9: The 25 windows for Moravec interest operator. 

15 X 15 pixels is used) is given by: 

E S - m i ^7=-m2 1̂ ( ^ l + ^ ^ l + j ) - A (^l ,^l) X /2 (U2 + 2,1；2 + j ) - h(u2,V2) 
(2mi + 1) (2rri2 + 1) y V (I,) x &̂  (/2) 

where ,' 
mi rri2 j / , . , . � 

h M = y y 似 … , … ） 

^ ) . 乙 . 乙 ( 2 m i + l)(2m2 + l) t=-mi j=-m2 ‘ \ ‘ 
Correlation . 

/ w indow “1 / 1̂ 2̂ p h / I F M "^^I 
� X � X r n 

“ ^ 2̂ X d ^ 
Figure 2.10: Matching through correlation. 
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• . . 「 1了 

is the mean intensity level at point u v of 1^ {k = 1 or 2), and 

fT\ /Z)i=-mi ^j=-rri2 ^fc(^'^) 7~7 r2 
• i ( 2 � 1 + 1 ) ( 2 � 2 + 1) - I ‘ ” � 

is the standard deviation of the image 4 in the neighborhood (2mi + 1) x (2m2 + 1) r 1T 
of U V . With this definition, matching scores are in the range [—1,1]. If the 
matching score of a pair of feature points in /i and /2 is larger than a threshold (0.8 
in our current implementation), they are considered a pair of corresponding points. 
On the other hand, for a matching score about -1, the two correlation windows are 
not similar at all. 

However, it should be noted that both of these processes are computational-
intensive that the processing time required may grow exponentially with image sizes. 
This is an important trade-off in implementing a fully automated system. Moreover, 
the image content may differ by a wide margin, a feature point in one image may 
not exist at all in other images, and the one-to-one mapping that correlation is de-
signed for would hardly work in this situation. In addition, the variance measure in 
Moravec interest operator depends on adjacent pixel differences and responds to high 
frequency noise in the image. 2.5.2 Spatial Filtering 

“ 

The use of spatial masks for image processing is called spatial filtering (as opposed 
to frequency domain filtering using the Fourier transform), and the masks themselves 
are called spatial filters. In this section, we consider linear and nonlinear spatial filters 
for image enhancement. 

Lowpass filters attenuate or eliminate high-frequency components in the Fourier 
domain while leaving low frequencies untouched (i.e. the filter preserves low frequen-
cies). High-frequency components characterize edges and other sharp details in an 
image, so the net effect of lowpass filtering is image blurring. Similarly, highpass 
filters attenuate or eliminate low-frequency components. Because these components 
are responsible for the slowly varying characteristics of an image, such as overall con-
trast and average intensity, the net result of highpass filtering is a reduction of these 
features and a correspondingly apparent sharpening of edges and other sharp details. 

Regardlessly of the types of linear filters used, the basic approach is to sum up the 
products of mask coefficients time pixel intensity values under the mask at a specific 
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location in the image. Eq. (2.6) shows a general 3 x 3 mask and Eq. (2.7) shows a 
typical 3 x 3 pixel image region (only intensity values are considered): 

Wi W2 W3 
W4 ws We (2.6) 
Wj Ws WQ 

Zl Z2 Zs 
ZA Zs Ze (2.7) 
Z7 ^8 ^9 

The response of a linear mask is 

5 = J ^ WiZi (2.8) 

• 「 1 T If the center of the mask is at location u v in the image, the intensity value of 
. � "|T the pixel located at u v is replaced by <s. The mask is then moved to the next 

pixel location in the image and the process is repeated. In the following discussion, 
we would briefly introduce median filtering, highpass filtering, high-boost filtering, 
derivative filtering and local enhancement. „ 

Median Filtering 
One of the principal difficulties of the smoothing method discussed in preceding para-
graphs is that it blurs edges and other sharp details. If the objective is to achieve 
noise reduction rather than blurring, an alternative approach is to use median filters. 
That is, the intensity value of each pixel is replaced by the median of the intensity 
values in a neighborhood of that pixel. This method is particularly effective when 
the noise pattern consists of strong, spiky components and the characteristic to be 
preserved is edge sharpness. Median filters are nonlinear. 

Highpass Filtering 
The principle objective of sharpening filters is to highlight fine details in an image or 
to enhance details that have been blurred, either in error or as a natural effect of a 
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particular method of image acquisition. A classic implementation for a 3 x 3 highpass 
mask is shown in Eq. (2.9). 

- 1 - 1 - 1 1 
g X -1 8 -1 (2.9) 

- 1 - 1 - 1 

Note that this filter has a positive value in the center and negative coefficients in 
the outer periphery. As the sum of coefficients is zero, when the mask is over an area 
of constant or slowly varying gray level, the mask response according to Eq. (2.8) 
is zero or very small. This implies that the average intensity value in the image is 
reduced to zero, and the resulting image must have some negative gray levels. As 
we deal only with positive intensity levels, some forms of scaling and/or clipping 
are applied so that the intensity values of the final result span the range [0, L - 1.. 
Significantly better resdlts can be obtained by using high-boost filters to be described 
in the next paragraph. 

High-boost Filtering 
A highpass filtered image may be computed as the difference between the original 
image and a lowpass filtered version of that image, i.e. 

“ 

Highpass = Original - Lowpass 

Multiplying the original image by an amplification factor A yields the definition 
of a high-boost filter: 

Highpass = (A)(Original) - Lowpass 
= ( ^ - l)(Original) + Original - Lowpass 
={A - l)(Original) + Highpass 

An A = 1 value yields the standard highpass result. When A > 1, part of the orig-
inal is added back to the highpass result, which restores partially the low-frequency 
components lost in the highpass filtering operation. As A increases, the background 
of the high-boosted image becomes brighter. The consequence is that the final result 
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圓國 
Figure 2.11: (Left) Original image. (Right) Image after high-boost filtering. 

looks more like the original image, with a relative degree of edge enhancement that 
depends on the value of A. In terms of implementation, the preceding results can be 
combined by using a mask as: 

- 1 - 1 - 1 1 
g X - 1 w - 1 

- 1 - 1 - 1 

where w = 9A - 1 with A > 1 determines the nature of the filter. The advantage of “ 
such filtering is vividly demonstrated in Fig. 2.11. Note that noise plays a significant 
role in the visual appearance of the image that has been high-boost filtered. 

Derivative Filtering 
Averaging of pixels over a region tends to blur details in an image. As averaging" is 
analogous to integration, differentiation can be expected to have the opposite effect 
and thus sharpen an image. The most common method of differentiation in image 
processing application is the gradient. For a function f(u,v), the gradient of f at 

u V is defined as the vector: 

v f = [ ^ ^ r 
V _ du dv 

The magnitude of this vector, 
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l / d f V ^^fVV^^ V / = m a g ( v f ) = [ ( ^ ) + ( ^ _ (2.10) 
is the basis for various approaches to image differentiation. For an image region shown 
in Eq. (2.7) where Zi denotes the intensity value, Eq. (2.10) can be approximate at 
point 2�5 by 

V / ~ 1(2̂ 7 + 2̂8 + Zg) - {Zl + 2：2 + ^3)| + \(Z3 + 2̂6 + Zg) 一 (zi + 4̂ + Zj)l (2.11) 
The difference between the third and first row of the 3 x 3 region approximates the 

derivative in the a:-direction, and the difference between the third and first column 
approximates the derivative in the y-direction. The following masks in Eq. (2.12) 
(called the Prewitt operators) can be used to implement Eq. (2.11). 

— n r ^ 

- 1 - 1 - 1 - 1 0 1 

0 0 0 - 1 0 1 (2.12) 

— 1 - 1 - 1 - 1 0 1 
L J L. -

Eq. (2.13) shows another pair of masks (called the Sobel operators) for approxi-
mating the magnitude of the gradient. 

“ 

- 1 p ， 

- 1 - 2 - 1 - 1 0 1 

0 0 0 -2 0 2 (2.13) 

- 1 - 2 - 1 一 1 0 1 
� J L _ 

2.5.3 Local Enhancement . 
Most processing methods discussed in the previous sections are global in the sense that 
pixels are modified by a transformation function based on the gray-level distribution 
over an entire image. Although this approach is suitable for overall enhancement, it 
is often necessary to enhance details over small areas. The number of pixels in these 
areas may have negligible influence on the computation of a global transformation, 
so the use of this type of transformation does not necessarily guarantee the desired 
enhancement. The solution is to use transformation functions based on local gray-
level distribution in the neighborhood of every pixel in the image. The intensity mean 
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and variance (or standard deviation) are two such properties frequently used because 
of their relevance to the appearance of an image: the mean is a measure of average 
brightness and variance is a measure of contrast. 

A typical local transformation based on this concept maps the intensity of an input 
image /(w,^;) into a new image g{u,v) by performing the following transformation . . � "|T at each pixel location u v : 

9 (w, ”）= r { r {A {u, v). [/ (w, v) - m (u, ”)] + m (u, v)} + k^ • V {f (u, ”)}} (2.14) 

where 
. . . , M • A[u,v) = k2 . Y1——r 0 �U,V) 

In this formulation P {.} is a function to normalize intensity levels to the range 
0 , L - 1], m {u,v), A(u,v), and S(u,v) are the gray-level mean, gain factor, and 

standard deviation computed locally with respect to a small n x n window centered • T 
at u V . M is the global mean of / (w,u) , and ki and k2 are constants in the 
range [0,1] inclusively. In our current implementation, we used n = 15, ki = 1.0, 
^2 = 0.7 and restrict A G [1,20] to balance large excursions of intensity in isolated 
region. 

The values of variable quantities A, m, and 6 depend on a predefined neighborhood � 1T “ of U V • Application of the local gain factor to the difference between f(u,v) 
and the local mean amplifies local variations. Because A is inversely proportional to 
the standard deviation of the intensity, areas with low contrast receive larger gain. 
The mean is added back in Eq. (2.14) to restore the average intensity level of the 
image in the local region (Fig. 2.12). 

2.5.4 Dynamic Range Stretching or Compression 
Low-contrast images can result from poor illumination, lack of dynamic range in the 
imaging sensor, or even wrong setting of a lens aperture during image acquisition. 
The idea behind contrast stretching or compression is to reallocate the dynamic range 
of the gray levels in the image being processed. Fig. 2.13 is a typical transformation 
f\mction used in this application, and Fig. 2.14 shows a sample result of dynamic 
range stretching. 
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Figure 2.13: A typical transformation function for dynamic range stretching or com-
pression. 

2.5.5 YIQ Color Model 
Basically, the YIQ (luminance, inphase, quadrature) system is a recoding of the RGB 
(red, green, blue) scheme for transmission efficiency. It was designed to take advan-
tage of the greater sensitivity in human visual system to changes in luminance than 
to changes in hue or saturation. The principal advantage of this model in image 
processing is that the luminance (Y) and color information (I and Q) are decoupled. 
The Y-component provides all the video information required by a monochrome tele-
vision set, and can be processed without afFecting its color content. For example, we 
can apply histogram equalization to a color image represented in YIQ format simply 
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Figure 2.14: (Left) Original image. (Right) Image after dynamic range stretching. 

by applying histogram equalization to its Y-component. The relative colors in the 
images are not affected by this process. 

The RGB-to-YIQ conversion is defined as: 

y 0.299 0.587 0.114 1 [ R ‘ 
I = 0.596 -0.275 -0.321 G 
Q 0.212 -0.523 0.311 B 

J L -
In order to obtain the RGB values from a set of YIQ values, we simply perform the 
inverse matrix operation. 

•• 



Chapter 3 
Model-based Pose Estimation 

3.1 Previous Work 
In motion analysis, a sequence of images about an object is given as input, and one 
would try to recover the motion of the object or the camera throughout the sequence, 
depending on which quantity we are interested in. Numerous application, e.g. car-
tography, object recognition, etc. make use of the motion information extracted. In 
general, two kinds of motion can be recovered. The first one is the movement of 
individual pixels on the image, which is a planar (2D) one. The other one tells how a 
point in the scene, which corresponds to a pixel in the image, moves in the 3D space. 
Much research work on this problem has been reported in the literature [34], e spe - ” 
cially on the recovery of camera orientation and position (known as extrinsic camera 
calibration). The first effort on solving model-based motion estimation problems by 
computer vision researchers is probably due to Fischler and Bolles [19]. They also 
coined the term Perspective-n-Point (PnP) to designate the problem of determining 
the pose of a rigid object with respect to the camera, given N pairs of correspondences 
between model and image features. 

Existing approaches can be categorized into two main areas (Fig. 3.1): 1) Estima-
tion from established correspondences between model features like vertices, edges and 
angles (section 3.1.1), and 2) Direct estimation from image intensities (section 3.1.2). 
Section 3.2 describes our proposed algorithm to P3P problems, solution constraints, 
and the way to recover motion parameters. Experimental results and discussions 
based on real images and synthetic data are given in section 3.3. 

35 
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Pose Estimation Problem 

Point Correspondence Image Intensity 

Strong-from-weak Derivative-based 2D Optic Flow 3D Optic Flow 

Figure 3.1: Classification of existing pose estimation approaches. 

3.1.1 Estimation from Established Correspondences 
As discussed in the last chapter, using linearized camera models is an effective way 
of ameliorating problems that arise with closed-form perspective solutions (such as 
ambiguity and ill-conditioned error propagation). Furthermore, these models allow 
one to deal with over-constrainted problems, in which the number of restrictions 
is possibly much bigger than that of free parameters in the scene, to average out 
measurement errors and quantization noise in individual features. So when a big 
number of feature correspondences can be reliably established, solutions based on 
these models tend to be more robust. Unfortunately, these models are approximations 
which validity is sometimes questionable in practice. An ideal pose recovery algorithm 

•• 

should combine the generality of a perspective camera model with the robustness of 
affine approximations. Indeed, it is possible to satisfy this requirement in practice 
by casting the problem of pose recovery into an equivalent multivariate numerical 
optimization problem. There are at least two distinct ways in which this can be 
done. 

The most traditional, straightforward, and widely-used approach is to define a 
global measure for the discrepancy between actual images and predicted images from 
a perspective camera model and estimates for the unknown poses. Then, by replacing 
the chosen error measure (which may be a nonlinear function of the pose parame-
ters) with a local linear or low-degree-polynomial approximation, one can compute a 
correction that in general yields a better pose estimate. This process can be iterated 
until the error function is locally minimized or the pose estimate converges with a 
desired precision. As this method involves evaluating first and possibly higher-order 
derivatives of the error function, we call this approach derivative-based. 
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Figure 3.2: Pre-engineered target, with three right angles between edges of unit 
length. 

Another alternative consists of rewriting the perspective projection equations (Eq. 
(2.3)) as a function of a set of parameters (one for each feature) that explicitly de-
note the discrepancy between the image predicted by the perspective model and that 
predicted by some affine approximations. Then, by artificially setting all these pa-
rameters to zero, one can compute the pose based on the linearized model. The 
result is used to compute better values for the discrepancy parameters, which can 
be in turn used to compute a new pose and so on. Again, after some iterations of 
this process, the estimated pose will theoretically converge to its true value, within a 
certain tolerance margin. We refer them as strong-from-weak pose methods. 

“ 

An Example of Weak-Perspective Pose Recovery 
Before we discuss the techniques designed to work with arbitrary objects, let us 
consider a very simple and efficient trick that involves some special arrangements on 
the target object. Suppose the four vertices p^, i = 0,.. . ,3, of a trihedral in the 3D 
space can be established with three right angles and unit edges ( |p ,p j | = 1, i : f j ) 

• 「 1 T 

(Fig. 3.2), their corresponding image points q, = m Vi can be thought of as 
projections of the unit vectors that define the coordinate system associated with the 
model space. 

The key idea is that the weak-perspective camera projection is equivalent to a com-
position of rotation and translation, that preserve the orthonormality of the trihedral 
vertices; followed by an scaling operation that changes the overall orthonormality by a 
single multiplicative factor; and the elimination of z coordinates. Denoting the image 
of the edge intersection point as qo, if the object coordinate system is identified with 
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the edges of the trihedral, two of the three rows in the rotation matrix between this 
system and the camera frame can be recovered up to a scale factor with subtractions 
only, as shown in Eq. (3.1). Then according to the property of orthonormal matrices, 
the third row can be determined by normalizing r^ and r'y, together with a cross 

• 「 1了 product operation on the resulting vectors, giving R^̂ eafc = r̂； Yy r^ . 

• • rLl _ ui — Uo U2 - uo u3 - uo 
/ = (3.1) -FyJ Ui — ^0 ^2 - Vo V3 - Vo 

— • 

r； v. — _ £ _ Fr _ / • 
| r ; | 

r； r . = r^ X ~ f " r' y 
^y = r^ X r^ (3.2) 

However, this type of target pre-engineering is impractical for most application 
because it requires precise positioning of feature points on the object (three right 
angles and unit edges). Other interesting approaches were also proposed to solve the 
pose estimation problem. Gee and Cipolla [22] suggested a weak perspective solution 
for the pose estimation problem of a human face. By taking a few assumptions about 
the facial parameters, they showed that the gaze of a human can be readily resolved “ 
by only little calculations. This method, though limited in application, highlights the 
usefulness of the weak perspective projection model in pose estimation. 

Strong-from-weak Pose Methods 
The idea of applying a coarse-to-fine analysis to pose estimation problems was ftrst 
proposed by DeMenthon and Davis [17]. Its main theme is that a rough solution to 
the problem is first estimated with minimal effort, which is then refined in subsequent 
steps consisting of more computational efforts. Specifically, their scheme starts with 
an initial guess obtained from a weak perspective projection model, and in later steps, 
the estimate is iteratively refined by a full perspective projection model. 

This method has several advantages when compared with other approaches: It 
solves the problem of initial guesses in pose estimation problems, and at the same 
time reduces the computation to a minimum. Significant efficiency is gained which 
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saves the algorithm from iterating in slow steps near the solution. Another benefit 
is that the resulting algorithm is more stable against noise inherent in measurement 
processes. The iteration will not easily get stuck with local minima. 

Mathematically, as shown in Eq. (2.4), the perspective equations can be manipu-
lated so as to isolate the non-linearity of the model in terms of r ^ , where €{ = ^ ^ . 

l+ê  tz 
As we are interested in the images of the edges ê  = poPi, rather than those of 
individual points, Eq. (2.4) is rewritten as 

e , . r ; = u,{l + 6 i ) - u o (1 < i < N) 
err'y = v^(l^e,)-vo (1 < i < N) (3.3) 

where 

Ct = et . r； (3.4) 
- 1 T � 1T r^ ry r, R 

r; r； r； = • ^ — — - — — L (3.5) 
J ^z lz 

r n T t = tx ty tz 
and N is the number of model points. 

Notice that this formulation allows one to separate completely the recovery of “ 
R and t^ from that of the translation components parallel to image plane (i^ and 
ty)- But the crucial property is that, if the actual imaging process can at least be 
reasonably approximated by a weak-perspective transformation (so that the values 
of all parameters ti are assumed to be fixed), Eq. (3.3) will become a linear system 
involving only the six unknown values for the elements of r ' and r ' . Then r ' and 

^ y X 
?y can be recovered up to a scale factor from Eq. (3.3), and r^, r^ and r^ can be 
solved according to Eq. (3.2). Although this weak-perspective solution is usually 
unacceptable as a final answer, it is good enough to serve as an initial estimate for 
the full-perspective pose. 

In their algorithm, DeMenthon and Davis [17] started by assuming that Vi a = 
0 (so that Y�^ ^ 1) to convert Eq. (3.3) into the imaging equations of a weak-
perspective camera model: 
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e , . r； = Ui - uo (1 < i < N) 
e , . < = % - t ^ (1 < z < N) (3.6) 

and solve for a rough solution as described above. Then, they substitute the estimated 
r*2 and t^ into Eq. (3.4) and Eq. (3.5), in order to recover the values of parameters in 
Q- Finally, a new pose estimate is computed from Eq. (3.3) using the presumably im-
proved parameters ti. This cycle is repeated until either the pose estimate converges, 
or a predefined number of iterations has exceeded (in which case it is assumed that 
the method converges). After R and t^ have been found in this way, the computation 
of t^ and ty is trivial. However, this formulation does not enforce the 6rthonormality 
of the recovered rotation matrix. Violation of such constraint would result in slight 
deformation of the transformed point set, which would propagate to later iterations 
and cause erroneous estimation. 

On the other hand, the system of equations in Eq. (3.3) can be rewritten as: 

Er； = d . 
Er； = d , (3.7) 

where 
“ 

_ T E = [ei...ejv] 
du 二: [«1 — UQ".UN — Uo]^ 

d v = b l - Vo...VN - Vo]^ 

If the pose recovery problem is over-determined {N > 3) and at least three model 
points Pi are non-coplanar, the rank of E is three, and the system in Eq. (3.7) can. 
be solved in a least-square sense through the computation of matrix pseudo-inverse 
(denoted E+). However, as E depends only on the model for a specific target but 
not on any pose estimates or ê  parameters, E+ can actually be computed off-line for 
eadi possible target used. This results in a very fast and efficient inner loop in the 
numerical routine, although the apriori computation of pseudo-inverse is relatively 
expensive. In fact, this preprocessing step can be carried out even if the problem is 
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not over-constrainted. This seems to be the main advantage of the methods based on 
the refinement of weaker models. 

A problem with such methods is that, when p^ are coplanar, the rank of E drops 
to two and it is no longer possible to compute a unique solution for Eq. (3.7). 
Actually, even if p^ are only nearly coplanar, the proximity of this singularity can 
lead to problems of numerical instability, resulting either in divergence or a very 
slow convergence of the pose recovery algorithm. This kind of situation arises very 
frequently in cartography, in which the variance on the height of a set of landmarks 
is much smaller than the average pair-wise distance between these landmarks. 

Oberkampf et aL [62] later proposed an extension to the basic full-from-weak-
perspective pose recovery algorithm to handle the above singularity, They notice 
that, in those cases, the pseudo-inverse solution for Eq. (3.7) is such that r ; is parallel 
to the plane that contains the target, and its head is allocated on the point Prnin with 
minimal distances (in a least-square sense) from the restrictive planes defined by the 
N instances of Eq. (3.3) (again, assuming that the tail of r； is located at po). Of 
course, this solution is not unique, since any point located on the line that contains 
Pmm and is normal to the object plane will also be at a minimal distance from the 
restrictive planes, as illustrated in Fig. 3.3. 

Analogous reasoning is valid for r^. So, a generic solution to the undetermined 
system defined by Eqs. (3.7) and (3.3) can be parameterized with two unknowns A 
and fj, as follows: ,, 

r ; = 4 � + An 
r; = r'o" + /m 

where r[,^ = E+d^ and r“y = EM” as a result of Eq. (3.7), and n is the unit veotor 
normal to the object plane. Actually, in order to extend this analysis to the cases 
where the target is only nearly planar, n can be defined as the unit vector of the 
null space of the matrix E, which can be computed from an off-line singular value 
decomposition (SVD) of E. 

Then, one can use the restriction that r : and r^ must be perpendicular and must 
have the same norm, in order to derive the following system: 
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Figure 3.3: Geometry of Oberkampf's solution to the perspective pose recovery prob-
lem with planar targets. 

Ap = - r ; . Y'y ., 
A2 + V = r ; 2 - r f 

An algebraic solution of this system yields two pairs of values for A and |i (and thus to 
r ; and r ;) . Oberkampf et aL suggest that this ambiguity is actually desirable because 
it is present when a weak-perspective camera is used, and thus it should be taken 
in account whenever weak-perspective is a good approximation for full perspective. 
However, the exploration of both solutions in an iterative procedure would result in 
an exponential growth of the execution time with respect to the number of iterations. 

Another problem with the original solution proposed by DeMenthon and Davis is 
that it tends to have convergence problems if the angle between the optical axis and 
the line-of-sight of po is relatively large. The problem is that in this situation, the 
weak-perspective model is in general not a good approximation to full perspective. 
In order to ameliorate this, Horaud et aL [28] suggested an alternative technique 
that starts with a paraperspective (rather than weak-perspective) camera model that 
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is then numerically refined until it approximates full perspective with the desired 
precision. 

Recall from the previous chapter that using a paraperspective camera model is 
equivalent to replacing the factor j ^ in the full-perspective projection equations 
with its first order approximation 1 - ê , and then neglecting the resulting terms that 

2 
depend only on ^ . If we apply this transformation directly to Eq. (3.3)，we obtain 
the following equations: 

Gj • r^ - uoCi = Ui - uo (1 < i < N) 
ei ‘ r'y - voĉ  = Vi - vo (1 < i < N) (3.8) 

Comparing the expressions above with the weak-perspective model defined in Eq. 
(3.6), the only difference is that the paraperspective model introduces the extra term 
-Uo6i on the left-hand-side of the projection equations. If we add this term to both 
sides of the perspective Eq. (3.3), the result will still be a perspective camera model: 

e,. • r^ - uoCi = Ui (1 + a ) — w �- uoti (1 < i < N) 
e,.. Vy � voCi = Vi (1 + a) — vo - voti (1 < i < N) 

Now, we substitute the expression that dictates the correct value for e, (Eq. (3.4)) 
only on the left-hand-side in the above equations, and rearrange the resulting formula 
as: 

e,.. r;' = (u^ - uo) (1 + ti) (1 < i < N) 
e. • r；' = (v, - vo) (1 + e,-) (1 < i < N) (3.9) 

where 

"—r； - upr, 
广 ~ ~ t ̂

Z , , r ' — vor, r 二 — y t ̂z 
Notice that if the correct values for e‘ are used on the right-hand-side, Eq. (3.9) 

still define a full-perspective camera model. But, on the other hand, if we artificially 
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impose that Vi C{ — 0 on the right-hand-side, the system above will be equivalent to 
Eq. (3.8), which define a paraperspective model. So, we can apply the same basic 
iterative procedure suggested by DeMenthon and Davis, using Eq. (3.9) instead of 
Eq. (3.3). Horaud et aL [28] also suggested a very elegant way of ensuring the 
orthonormality of R, and their solution is easily generalizable to over and under-
constrainted instances. 

Derivative-based Methods 
It is difficult to determine where did the idea of derivative-based numerical optimiza-
tion first appear in pose recovery literature, but the most influential technique under 
this category seems to be the one proposed by Lowe [50][51][52'. • 

Lowe's Algorithm Conceptually, Lowe's method is quite simple, yet extremely 
elegant and general. Contrary to the techniques discussed in the previous section, 
this iterative algorithm assumes from the beginning that the imaging transforma-
tion is a perspective projection. The key idea to overcome the non-linearity of this 
camera model is that, given an initial guess for some unknown scene parameters 
s = <so si ... - including the six pose parameters, some intrinsic camera pa-
rameters (e.g. the focal length / ) ’ and some internal DOF in the scene - one can 
reproject the known 3D scene model onto the image plane, using the current param-
eter estimates and perspective equations in Eq. (2.3), and then compute a vector “ r 1T 
d = do di ... of errors between the transformed image points (their positions, 
orientations and apparent angles) and the corresponding actual measurements. 

Rather than solving directly for the vector of parameters s in a nonlinear system, 
Lowe applied Newton's method to iteratively compute a series of parameter correction 
vectors s' that are successively subtracted from the current estimate s, until either 
this estimate converges to a point that minimizes d locally, or the maximum number 
of iterations allowed is exceeded. Assuming d is locally linear in the elements of s, 
the effect of each parameter correction on an error measurement can be determined 
by solving the following equation from Taylor series expansion about the parameter 
vector: 

r j 1 , r-di 
W s � 0 (3-10) 
• J L • 
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where J is an N x M Jacobian matrix (N being the number of points considered and 
M is the number of parameters when solving the above equation) of the error di with 
respect to parameter Sj 

j . , _ ^ 
” —ds, 

and W is a diagonal matrix which stabilizes the solution. If s(:) is the pose estimate 
on iteration i, then s ( * ) is obtained by: 

S ( ^ = s(0 - s'(0 . 

When the system in Eq. (3.10) is over-determined, a pseudo-inverse solution that 
minimizes d in a least-square sense can be computed [52], in a similar way to the tech-
niques presented in the last section. However, in the case of gradient-based methods, 
J depends on the current value of s, and is not constant along different iterations of 
the numerical optimization procedure. So in this case, it is not possible to compute 
the pseudo-inverse matrix off-line, which is a major performance drawback compared 
with the strong-from-weak pose estimation techniques. But on the other hand, the 
strong-from-weak techniques cannot be generalized to deal with intrinsic camera pa-
rameters of internal DOF in the target. There is a trade-off between efficiency and 
generality involved in the choice between these two paradigms. 

Lowe suggested that, in order to achieve greater efficiency, one should reformulate 
the translational components of the pose, so as to express them directly in image 
plane coordinates, rather than in a 3D Euclidean space. More specifically, in his 

• • r 1T* 

simplified projective model, the image coordinates of an arbitrary feature u v 
are expressed as a function of the corresponding model-space coordinates p by the 
following equations: 

r 1T x' y' z' J = Rp 
u V 1 = [ - i ^ 4-1' h' 4- f' 

. J L ^'+i'z 十工 z'+t',十、 

where the unknown vector t in Eq. (2.3) (defined in the camera coordinate frame) 
has been replaced by the parameters ‘ ；̂ and /；. In this new parameterization, t'̂  
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3^ y z 
~J. 0 ^ ~ 7 ~ 

( j ) y Z ' 0 - X ' 

~k -y'工‘ 0 

Table 3.1: Partial derivatives of x, y and z with respect to anti-clockwise rotation 4> 
(in radians) about the coordinate axes of the camera reference system. 

and t'y specify the location of the object on image plane and f^ specifies the distance 
of the object from camera. They are equivalent when: 

t = R - i [ - ^ ^ - l i f ^ _ , ; � (3.11) 

To compute the partial derivatives of the error with respect to the rotation angles 
[^X, ^y and ¢^ are the rotation angles about the fixed x, y and 2-axes, respectively, 
in the camera frame) it is necessary to calculate the partial derivatives of x, y and z 
with respect to these angles. Table 3.1 gives these derivatives for all combinations of 
variables. 

Newton's method is carried out by calculating the optimum correction rotation 
N^x, M y and A4>̂  to be made about the camera-centered axes. Given Lowe's p a - " 
rameterization, the partial derivatives of u and v with respect to each of the seven 
parameters of the imaging model (including / ) are given in Table 3.2. 

where 

1 c = * 
'̂ + n 

Lowe then noted that each iteration of the multi-dimensional Newton's method 
solves for a vector of corrections: 

s ' = [ A ; ^ i At； At'^ A 0 , A0^ Ac|>, ]^ 

The u and v-components of the error d can be used independently to create separate 
linearized constraints. For example, we can create an equation that expresses diu 
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’ u V 
t'. 1 0 一  

T " 0 一 1 
t'. - f c ' x ' -/cY 
7 7 -fc'x'y' - f c ( z ' + cy^  
~ ^ fc{z'^cx'') f c ' x ' y ' -

^z -fcy' fcx' 
f cx' cy' 

Table 3.2: Partial derivatives of u and v with respect to each of the camera viewpoint 
parameters and the focal length, according to Lowe's original approximation. 

(the u-component of di) as the sum of products of its partial derivatives times the 
unknown error-correcting values: 

du du ^ . du A , du ^ , du , , du 
W，+ W , w + - A t ; + - A l + - A < ^ , + - A A = ‘ 

In this way, we can derive six equations from three point correspondences and produce 
a complete linear system. 

A problem with this formulation is that t'^, t'y and t； (assumed to be constants that “ 
are determined by the iterative procedure) are in fact dependent variables. One can . . � 1T easily arrive at this conclusion by substituting R = r^ r^ r : into Eq. (3.11) 
to obtain 

, ; = - / t .r , • 
P - r . + t； 

,— t r , 
� -- , F ^ r : ; T ^ • 
t'z = - t • r , (3.12) 

7 
This shows that while t'̂  only depends on the pose parameters, /； and t'y are also a 
function of p (coordinates of points in the object coordinate frame). If no restrictions 
are imposed, p can have a large variance. Even if they do not, the term p . r̂  may 
change significantly (due to the object geometry) and affect the estimation process. 
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u V 
t'l fc 0 一 

t'y 0 f c 一 

~^ -fac' • -fbc' 
¢. -fac'y' -fc{z'̂bcy'Y 

4>y fc(z'i-acx') /6cV 

ẑ -fcy' fcx' 
f ac bc 

Table 3.3: Partial derivatives of u and v with respect to each of the camera viewpoint 
parameters and the focal length according to Araujo's full projective solution. 

Therefore it is in general impossible to find a single consistent value for either t'̂  or 

t'y, and we cannot use t'̂  and t'y as defined in Eq. (3.12). Another concern is that the 

results of this algorithm depend heavily on the quality of initial guesses supplied. 

Improvements to Lowe's Algorithm Hoping to improve the accuracy of those 

approximations, Araujo et aL [9] proposed a reformulation for Lowe's original algo-

rithm by eliminating the approximations with 

•• 

t'L ty K 1 = [ t T , t T , t r, 1 (3.13) 
� J L J 

- - ” ] = [ / • / 辯 ] (3.M) «• J L “ ^ . 
The partial derivatives of u and v with respect to each of the six pose parameters 

and f are then given by Table 3.3, where a b c = x' + i" v' + t" i . 

- 工 “ y ？+ty • 
As in Lowe's formulation, the translation vector is computed in the object coordinate 

frame using Eq. (3.11), with 仏 t；' and t；' as defined in Eq. (3.13). The minimization 

process yields estimates of t'̂ , t'; and t'“ which are the result of the product of the 

rotation matrix by the translation vector. 

On the other hand, they also proposed a numerically equivalent but conceptually 

more elegant way of looking at this solution. Through a redefinition of the image 

formation process, 
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- 1 T 

X y z = Rp + t 

Eqs. (3.13) and (3.14) are substituted by: 

);'t'； t'^]^ = t 

「 lT 「 ， T =fs:±hi fL+h. 
. J [ J z'+t, J z' + t, 

In this case, R and t are explicitly decoupled, and the least-square minimiza-
tion procedure gives the estimates of t directly. They claimed that the use of a 
full-perspective imaging model and the relaxation of mathematical approximations 

in Lowe's algorithm yield a much more accurate numerical technique, with super-

exponential convergence for a wide range of initial conditions, but with no significant 

increase in the computational cost. 

3.1.2 Direct Estimation from Image Intensities 
Estimation of motion information directly from image intensity values has also been 

a well researched topic in photogrammetry for years, lt relies oii the assumption that “ 

the intensity value at a feature point should be relatively constant, so that after some 

object movements, we can still find the point (with nearly the same intensity level) 

but probably at another location. Broadly speaking, it can be divided into two classes 

of problems: 2D and 3D. 

Finding 2D Motion by Optic Flow 
The first class of problem estimates the motion of a particular pixel as viewed on arr 

image plane (this 2D pixel motion on image plane is the result of camera projection 

of the 3D object movement), and is also known as image matching or image registra-

tion. Numerous literature is available, and most of them are based on the intensity 

comparison between a small patch (e.g. 7 x 7 pixels) in one image with another patch 

at the corresponding position in another image. Mathematically, this can be written 

as: 



Chapter 3. Model-based Pose Estimation 50 

s 
V 

A 

\ 

\ ^ ( : ， 々 ） 

, 八 ： 

― 二 N ^ \ 
I s + I s + I =0 
U U V V t 

Figure 3.4: The aperture problem in optical flow estimation. 

I(u, V, t) = I{u + Su, V + Sv, t + 6t) 
=I{u + SuSt, V + SySt, t + St) 

� 1 T 
where s = Su Sy is the horizontal and vertical image velocity at an image point 

• 1T 
q = u V at time t , and 5t is infinitesimal increment in tiine. By taking Taylor 
series expansion of the right hand side and simplifying, one would get the standard “ 

optical flow constraint proposed by Horn [32]: 

IuSu + IySv + h = 0 

However, when the above equation is plotted on the optical flow 5^ — Sy plane (Fig. 

3.4), the optical flow restored are restricted to lie along the line ofoptic flow constraint 

and the components perpendicular to this line cannot be recovered without additional 

constraint. This phenomenon is called the aperture problem in computer vision. 

To handle this problem, Horn [31] used a Lagrange multiplier approach to regu-

larize the ambiguity in the solution. In addition, Lucas and Kanade [54] discussed 

the SSD measure for estimating image points movements. In this approach, a small 

region about the interested point is sampled and a 2D translation of the region is 

found to minimize the intensity difference: 
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E(Su, Sy) = Y^ [I{u, V, t) - I{u + sJt, V + sJt, t + (^Z)]2 
i 

However, different types of erroneous solutions may occur when the movement of 

individual pixel is large, the scene has significant depth variation, or too large a cor-

relation window is used. Shi and Tomasi [73] later proposed a solution to this problem 

which can switch between solving the affine transform and simple translational dis-

placement of features under different window sizes. On the other hand, in order to 

accommodate larger motions in the image plane, a coarse-to-fine strategy is often used 

7]. In that representation, a spatial pyramid of three to four levels is constructed 

with the coarsest resolution at top level, and highest one at the bottom. Separate 

processing is carried out at each of these levels and the results are propagated to the 

lower ones by projective interpolation. However, such a simple approach lacks the 

ability to revert from wrong estimates at higher levels. Any erroneous estimate at 

the coarse level just propagates down to the finest scales with no way for correction. 

Finding 3D Motion by Optic Flow 
Inferring 3D motion from intensity values is much more difficult as 3D information 

is projected nonlinearly on an image plane, and depth is not available in general. In 

their classic paper [49], Longuet-Higgins and Prazdny introduced an equation for the ,, 

2D image motion of a point from its 3D rotational and translational components. 

This equation was used by a number of researchers. Horn and Weldon [33] proposed 

another technique which can directly recover the 3D motion of a camera as well as the 

surface from intensity images by the brightness constancy constraint. To overcome 

the restriction that little information is available in only a pair of images, Hanna [25 

suggested a method which can estimate the surface description from the motion and 

stereo data from one or more cameras. It is a consensus now that more frames are 

needed to reliably recover the motion as well as the structure from past experiences 

[63]. 

3.1.3 Perspective-3-Point Problem 
Pose estimation is important in many fields like robot navigation, motion tracking, 

object recognition and camera calibration. Some researchers have considered the P3P 
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Figure 3.5: A typical configuration of P3P problem. _ 

problem [19] because three point correspondences is the minimal information leading 

to a finite number of solutions. A P3P problem refers to the task of finding the 

position and orientation of a rigid body given the perspective projections of three 

corresponding points on the object. As discussed in Chapter 2, the vertices of an 

r 1T 

object in Fig. 3.5 are given by p, = Xi yi Zi , where i = 1, ...,3 is an index to 
the three feature points. The non-zero Euclidean norms of pip2, P1P3 and p2p3 are 

known in advance, and to further simplify our notations, they are denoted by “2, “3 

and /23 respectively so that 
II 

/?2 = (^1 -�2 ) 2 + (yi - 2/2)2 + ( � 1 一 之2)2 

/?3 = (a:i - a;3)2 + ( y i 一 "3)2 + ( Z i - Z 3 f 

/•3 = (^2 - X3f + (y2 - ysf + (Z2 - Z3f (3.15) 

Using the full perspective projection model, these points are projected onto an image 

plane at z = f giving q, = m t;, , so that each image point constraints thq 

position of the corresponding model point to lie in a line-of-sight with respect to 

the camera, e.g. Opi. Furthermore, the unit vectors along these lines-of-sight, with 

respect to the camera frame, can be determined directly from the image coordinates 

of each point, and the angles between each pair of these unit vectors can thus be 

obtained with a single extra dot-product operation. 

With all these definitions, the problem can be stated formally as: 
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Given camera focal length /, Euclidean norms among three arbitrary ob-

ject points in the scene |piPj| (i + j , |pipj| + 0), and corresponding image 
points qi at time t and q- at time t + 1 under the full perspective pro-
jection model, estimate the depths for p‘ and p ; ; and based on these 

approximates, infer the positions and orientations of the object in the 3D 

space, and hence the extrinsic motion parameters, i.e. rotation matrix R 
and translation vector t , of this object with respect to the imaging system 
during the time interval t and t + 1. 

Actually, the P3P problem was the subject of several studies published mostly 

in Germany between 1841 and 1949. According to a survey paper by Haralick et 

al. [26] on the empirical comparison of all major solutions known for this problem, 

the solution with the best error propagation properties in general is the one due 

to Finsterwalder (1903). They further commented that as Finsterwalder's solution 

amounts to solving a cubic and two quadratic equations rather than a quartic one (to 

be described in greater details below), it seems to be more stable than the solutions 

found in the computer vision literature of the 1980s. 

Finsterwalder used cosine rule to get a system of equations, and reduced the 3 x 3 

system to an equivalent 2 x 2 nonlinear system by means of a change of variables. 

He multiplied one of the resulting equations by an additional parameter A and then 

expressed one of the transformed variables as a function of the other transformed 
$t 

variable and A. Then, he tried to determine a value for A that made the resulting 

relation between the two transformed variables linear. This amounted to solving a 

cubic equation, and substitution of the resulting linear relation in the 2 x 2 system 

returned a quadratic equation involving only one of the transformed variables. This 

formulation has a total of four possible solutions, because for a particular value of 

A one would get two quadratic equations, each of which yields two possibly difFefent 

and valid solutions. 

Being unaware of the previous work by Finsterwalder et aL, Fischler and Bolles [19 

proposed their own solutions in 1981. Geometrically, the idea is similar to the previous 

approach: to use cosine rule to get a system of equations. The difference lies on the 

algebraic manipulation that follows. Rather than making a cubic and two quadratic 

equations out of the 3 x 3 system, they tried to derive a single polynomial equation 

for one of the unknowns. To combat noise, they extended the above approach by 

using statistical methods to reach a consensus of sampling within the estimated point 
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set. Their approach, called random sample consensus (RANSAC), is robust enough 

to reject outliers so that the final solution is much more reliable, at the expense 

of intensive computation that prevents it from being used in real time application. 

Linnainmaa et aL [44] later showed that two of the three unknowns in the system 

above can be eliminated yielding an eighth-degree polynomial equation with terms of 

even order only. By solving this new system of equations and substituting back for 

the other two unknowns, one can recover the positions of the three vertices in the 3D 

camera frame. 

Among the many iterative solutions to this problem, most of which make use of 

the weak-perspective projection to reduce the three unknown depths Zi into image 

plane coordinates Ui and Vi. Then one of these two variables is further eliminated by 

expressing it in terms of the other to give a quartic equation. Various mathematical 

techniques are then used to solve these equations [26]. Huttenlocher and Ullman [36 

showed that with three point correspondences in a general position, it is possible to 

recover a unique weak-perspective transformation corresponding to the pose, up to a 

reflection. Alter [2] also achieved similar results but in a simpler and more elegant 

way. However, it is clear that the weak perspective assumption is valid only when 

the distance between the object and the camera is much larger than the relative 

distances between feature points on the object. DeMenthon and Davis [16] further 

showed that orthographic or paraperspective projection models produce smaller ap-

proximation errors than weak perspective, especially for off-centered triangles, and .‘ 

that 2D lookup tables can be precomputed to reduce the number of runtime floating 

point operations. In addition, Haralick et aL [26] pointed out that the precision of 

P3P methods can vary up to three orders of magnitude depending on the order in 

which the correspondences are used. So, they suggested some heuristics to determine 

the best order, that seem to work very well in most cases. However, their comparison 

of P3P algorithms took into account only the loss of accuracy caused by rounding 

errors in floating point arithmetic. They did not examine the effect of quantization 

noise in the images, nor did they consider cases where the matching between model 

and image edges was not properly done. 

Huttenlocher and Ul lman/Alter 's Weak-perspective Pose Recovery 
Indeed, Huttenlocher and Ullman [36] suggested what seems to be the most standard 

solution to this problem with the weak-perspective camera model. They noticed that 
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with this projection model, the resulting image is the same regardless of the order 

in which the two components (an Euclidean transformation and a scaling operation) 

are applied to the object. They also proved that this model yields very efficient 

algorithms, and a unique transformation (up to a reflection) corresponding to the 

pose even in the general case of arbitrary spatial positions with three point corre-

spondences. So, they assume that the scaling, parameterized by an unknown 5, is 

performed first. After that, the partially transformed model can be aligned with the 

image through the composition of a translation and a series of rotation about known 

axes. The z transformation between the object and the camera frames is immate-

rial, because the projection is parallel to the optical axis of the camera. O n the other 

hand, the two-DOF translation parallel to the image plane that properly aligns one of 

the three model points can be computed directly from the coordinates of the point's 

image- The same thing is true for the first rotation, performed about the optical 

axis, that aligns one of three edges with its image. The two final rotation needed to 

complete the overall alignment can then be parameterized by unknown angles ̂  and 

0. Fortunately, after the first rotation, one is left with exactly three geometrical con-

straints that can be used to derive a 3 x 3 system involving 5, cf> and 6. One of the two 

non-aligned points already lies on an aligned edge, and thus its complete alignment 

constrains one D O F only. The other point is totally unaligned, and so the condition 

that it must match its image constrains two additional D O F . After some algebraic 

manipulation, the system generated by these constraints can be solved for 5, yielding " 

a fourth-degree polynomial equation with terms of even order only. Obviously, scaling 

by a negative factor has no feasible geometrical interpretation. So, one is left with at 

most two solutions, which is already better than the bound of four possible solutions 

for P3P problems. 

On the other hand, Alter [2] also derived the same biquadratic equation proposed 

by Huttenlocher and Ullman from a completely different analysis of the problem, but 

he managed to achieve a stronger result in a simpler and more elegant way. He in-

terpreted the two possible solutions for the scaling factor s, in order to demonstrate 

that only one of them is algebraically and geometrically feasible. So, contrary to the 

P3P problem, there is actually no ambiguity in pose recovery from three correspon-

dences, if a weak-perspective camera is assumed. The geometry of Alter's solution is 

illustrated in Fig. 3.6. 

Alter initially noticed that the pose recovery problem as a whole can be reduced 
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Figure 3.6: Geometry of Alter's solution to the problem of weak-perspective pose 

recovery with three point correspondences. 

to determining the scale factor <s, and the distances between any two of the three 

model points and the plane parallel to the image plane that contains the third point 

(/ii and h2). This can be done very easily if one observes that the scaled tetrahedron 

at the bottom of Fig. 3.6 contains two right-angle triangles (qoqipi and qoq2P2). A .' 

third right-angle triangle can be obtained by considering the difference in the heights 

hi and /12, with respect to the image plane. These three triangles yield the following 

set of polynomial equations: 、 

h? + 4 = (̂  /13)2 . 

"? + 4 , = (s /23)2 
(K - Kf + d\, = {s /12)2 • 

After some algebraic manipulation one arrives at a biquadratic equation for 5. 

So, the possible solutions for s^ have the general form ^±^. After some careful 

analysis, Alter showed that only the solution with the positive \fK is geometrically 

feasible. The other solution corresponds to inverting the problem, or in other words, 

scaling the image and then projecting it orthogonally to the plane defined by the 
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Figure 3.7: Geometrically infeasible solution to the problem of weak-persepective 

pose recovery with three point correspondences. 

three model points, as illustrated in Fig. 3.7. After the correct values of 5, hi and h2 

have been recovered, the computation of the transformation matrix can be performed 

by expressing the axes of the object frame as a parametric function of the two model 

edges and their dot product, as usual. 

Fischler and Bolles' Closed-form P3P Formulation 
The first solution to the problem of model-based pose recovery with full perspective 

camera model in modern computer vision literature is probably due to Fischler and 

Bolles [19]. In their classic work, given the three vectors p1p2, p1p3 and p2p3 (so 

that their lengths lr2, h3 and /23, and in-between facing angles with the center of 

projection 0 can be found) at the base of a tetrahedron Op1p2p3, cosines rule is 

applied for each pair of lines-of-sight to get a set of quadratic equations involving the 

unknowns |Op-|, i = l,...,3: 

|OPi|2 + |Op2|' - 2 |Opi| |Op2|cos (Zp1Op2) = /?2 . 
|OPi|2 + |Op3|' - 2 | O p i | |Op3| cos (Zp1Op3) = /?3 

|Op2|2 + | O p 3 | 2 - 2 |Op2| |Op3| cos ( Z p 2 O p 3 ) = & 

Knowing the fact that n polynomial equations in n unknowns can have no more 

solutions than the product of their respective degrees, the system above can have 

at most eight solutions. Furthermore, as all non-constant terms of the system are 

of second-degree, for every real positive solution, there is a geometrically isomorphic 

negative solution. Obviously, the negative solutions are of no relevance for the prob-

lem at hand and can be discarded. So, the upper bound on the number of possible 
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solutions for any instance of the P3P problem with the points in general position and 

distinct projections in the image plane is four. 

Indeed, after some algebraic manipulation, the lengths of the three remaining sides 

of the tetrahedron ! O p J , | O p 2 | and |Op3| can be found by 

|Op1|=/23 (Cc;?-〜12 + l)-"2 

|Op2| = CJ1 |Opi 

Op3| = Ĉ2 |Opi 
where ui and CJ2 are variables related to the solution to the following quartic equation: 

G4i0t + G3ujl + G2ujl + Giioi + Go = 0 

and p12 is the cosine of tetrahedron face angle P1Op2 for some constants Go to G4. 

With this formulation of | O p J , Z{ are given by: 

2,= [ | O p / / V ( W + t̂2 + /2)]l/2 

(cf. Appendix for detailed formulation of the Fischler and Bolles' method) 

•• 

3.2 Our Iterative P3P Algorithm 
On the other hand, we [21] proposed another iterative algorithm for the P3P problem 

under full perspective projection. W e showed that, given the 3D dimensions of a rigid 

ob>ject and its subsequent corresponding image points, its depth information ,̂- ran 

be found with a least-squares minimization process. Instead of iterating over the full 

range of Zi, depth estimates in our method are continuously refined by the Gauss-

Newton method until the global error measurement is less than some thresholds. 

Our algorithm is broken down into two separate stages: (1) depth estimation by 

the Gauss-Newton method, in which depth information is iteratively refined under a 

least-square minimization paradigm; and (2) pose calculation with a 3D-to-3D pose-

recovery algorithm [32], in which 3D point sets p, at time t and p； at time t + 1 are 

used to find R and t such that 
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p; = Rp, + t (3.17) 
Additional geometrical constraints are also incorporated to improve the stability and 

reliability of the estimation process when the observations are noisy [58]. Under the 

full perspective projection model, 

� X{ = U{-f 
m = viJ (3.18) 

and defining 

Ai = ul + vl + f 

A2 = ul + vl + f 
A3 二 ul + vl + f 
A4 = U1U2 + V1V2 + f 
A5 = U1U3 + V1V3 + /2 
^6 = u2u3 + v2v3 + f (3.19) 

II 

:i and 3̂ can be expressed in terms of z2 as (cf. Appendix for derivation) 

1 「 1 

1̂ = Y^ |±\/^+A42;2j (3.20a) 

3̂ = ^ ± V ^ + A 6 : 2 (3.m) 

where 

^1 = ll2f^1-{^1X2-Xl)zl>O (3.21a) 

八3 = l l j ' X s - (A2A3 - A^) z\ > 0 (3.21b) 

so that our goal is to find a ̂  which minimizes the following error functions e： and 

e2 to below a predefined error threshold f (cf. Appendix for derivation). 



Chapter 3. Model-based Pose Estimation 60 

ei = (Ai^2 - 2A5^i^3 + A3%2 - i y y (3.22a) 

( f ^ Z t "1、2 fZvPt "2、2、 ,, _ , 
62 = max — — , ~ ^ ^ (3.22b) 

V V Ps 3 / V fh 3 / 

where 

Pi = ui + U2 + w3 (3.23a) 

P2 = ”i + ^2 + ”3 (3.23b) 

A3 = 1̂ + 2̂ + 3̂ (3.23c) 

Because of the smoothness and well-behaved properties of the full perspective 

projection model, the Gauss-Newton method may be used for the minimization of 

the above error functions. 

3.2.1 Gauss-Newton Method 
Suppose the true value of Z2 falls within the interval [(^1,¾ where (̂i and S2 are 

positive real numbers evaluated from certain constraints to be explained in the next 

paragraph, we have the following pseudo-code for finding p^ having ei < ( or e2 < (: 

generate a random initial guess Z2 among [(̂ 1,¾] “ 

do 

find the values of Zi and Z3 from Eq. (3.20a) and Eq. (3.20b), 

pick a Zi and a Z3 leading to minimal ei and e2 

if 6i < ^ or 62 < { 

solution found, 

else 

calculate de1|dz2 and de2|dz2 

update estimate of Z2 by de1|dz2 and de2|dz2 

while loop-terminating conditions are not satisfied. 

The algorithm iterates until e! < ^ or e2 < ^, or the number of iterations exceeds 

ten. 

Although this method requires initial guesses and there is a risk of converging to 

local minima, ample experimental results suggest that the Gauss-Newton method will 
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usually converge in a stable manner from a wide range of starting positions, as long as 

there are more constraints than unknowns, and by incorporating solution stabilizing 

procedures. 

3.2.2 Dealing with Ambiguity 
In fact, the above problem and their solutions are more for academic interest than 

for practical use. The primary reason is that in real world application it is almost 

unavoidable that noise is introduced in various stages, e.g. inaccurate measurements 

as well as quantization noise in imaging. In problems involving too little point samples 

such as the P3P problem above, it is often the case that noisy quantities can lead to 

ill-conditioned solutions even when the equations are over-constrainted. Hence one 

prefers to work with more point correspondences together with model fitting methods 

like R A N S A C to drop out data containing a significant percentage of gross errors. In 

this case, R and t can be obtained as a solution to the following least-squares problem: 

minimize w.r.t. R , t | ^ | p - — ( R p - + t ) | ^ | 

Such a constrainted problem can be solved by linear procedures like quaternions, S V D 

or other iterative methods [34 . 

Another infelicity is that model points in general positions may admit more than 
•• 

one solution and lead to ambiguity. Some alternatives to deal with it have been 

proposed, but the traditional consistency checks based on the reprojection of the 

model features, for instance, are in many cases not restrictive enough to yield a 

unique solution. O n the other hand, the techniques based on Hough transforms (see 

below) are in general so computation intensive that their application under real-time 

constraints is at least questionable. * 

Furthermore, the analytical methods discussed so far have very poor error propa-

gation properties. For instance, in the comparison between P3P algorithms performed 

by Haralick et aL [26], all the techniques tested were found to produce relative errors 

of at least 0.1% in feature positions, just as a result of the propagation of round-

ing errors with single precision arithmetic. Of course, this problem becomes much 

more serious if we take into account the effect of quantization noise in the imaging 

process, for instance. Furthermore, these methods are based only on a very small 

number of correspondences and thus they can produce completely wrong results if 
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some incorrectly matched features are eventually used. 

Constraints in Orientation Representation Schemes 
Rotation in 3D space has been represented by 3 x 3 matrices with nine parameters. 

However, as pure rotation has only three D O F , redundant information exists within 

these nine parameters. Alternatively, the relative orientation between the camera 

and the target may be denoted by three angles measured about fixed coordinate axes 

with respect to the camera. This non-redundant notation is known as roll, pitch and 
yaw (RPY) angles. It is very desirable if one is using a numerical technique that 

searches the space of possible poses for an acceptable solution. The fewer number 

of parameters used in encoding, the smaller tends to be the computational cost of 

exploring it. 

Unfortunately, this representation has some serious shortcomings. To start with, 

it contains a singularity: when the pitch angle is equal to | radians, roll and yaw 

rotation combined span only a lD space and cannot be separated from each other 

14]. R P Y angles are also ambiguous: there is more than one way to represent 

certain orientations. Finally, they complicate the composition of two rotation, and 

the physical meaning of the orientations represented with them is not intuitive. The 

same observations are valid for Euler angles, another non-redundant scheme that 

represents rotation as the sequential composition of three rotation about the axes of 

a frame that moves in space with each rotation. •‘ 

Another possibility for representing orientations of 3D objects with just three 

parameters is through a "3-vector" u;, which orientation specifies the rotation axis 

(with respect to a reference frame), and which norm specifies the angle about this axis. 

A problem with this representation is that, if the angle is a multiple of 2n radians, 

then the direction of uj is undefined. The only way to avoid this is to restrict the angle 

to the interval [-7r, —7r], but in this case a discontinuity is introduced. Furthermore, 

in the general case u is not a physical vector, and the analytical computation of 

derivatives with respect to its components is quite complex. 

Gennery [24] noticed these shortcomings and suggested that an ideal system for 

representing orientations should have the following properties: 

1. Non-redundancy: the number of free parameters should be exactly equal to 
the number of D O F in the space of possible orientations; 
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2. Continuity: a continuous motion of the object which orientation is represented 
should always result in continuous changes in all parameters; 

3. Absence of singularities: the partial derivatives of all parameters with re-
spect to any differential rotation, at any orientation, should be always finite. 

Multiple Solutions in P3P 
A problem that is common to all the perspective pose recovery techniques discussed 

so far is that the nonlinear nature of the constraints employed usually results in nu-

merical instability and multiple solutions [34]. Indeed, Fischler and Bolles [19] showed 

that P3P problems can have as many as four real solutions in front of the camera and 

another four physically-infeasible ones behind. They also described specific geometric 

configurations in which four triangles of the same shape project to a single image. 

One such instance happens when the three image points are the vertices of an equi-

lateral triangle centered at the optical axis, and the 3D model is also an equilateral 

triangle. In this case, there are four possible poses for the object. It may be on a 

plane orthogonal to the optical axis, so that the distances between the optical center 

and the three vertices are all equal, or any one of the vertices may be at a distance 

four times smaller than the other two (with respect to the optical center). Wolfe et aL 

86] later showed that while there are cases that yield four solutions, there would only 

be two for most of the time (Fig. 3.8). Of course, only one such solution corresponds 
01 

to the actual pose of object in the scene, choosing the right solution when more than 

one is found is still a problem faced by the computer vision community nowadays. 

Solution Verification 
The most straightforward type of verification in identifying a unique solution consists 

of reprojecting object features back onto the image plane to build a synthetic image 

of the scene using each candidate pose. Then, the discrepancy between reprojected 

image and the actual one can be used to determine whether the candidate pose 

is a desired solution or not. For instance, Dhome et aL [18] proposed this type 

of verification in their solution to the Perspective-3-Line problem. The constraints 

that they use to recover the relative orientation between an object and the camera 

frame theoretically guarantee that the reprojected edge images will be parallel to the 

corresponding actual edg6 images, but they do not guarantee that these images will 



Chapter 3. Model-based Pose Estimation 64 

; ^ 
/ ^ i Z 

Figure 3.8: An example of multiple solutions for P3P problem. 

be coincident. So, the perpendicular distance between matched pairs of reprojected 

and actual edge images can be used to determine the feasibility of any recovered pose 

estimate. 

This type of verification can be strengthened with the use of visibility constraints 

to eliminate obviously infeasible candidates. A trivial example is the elimination of 

poses that result in negative 2:-c0mp0nent or Zi < f (because in such cases, the object 

goes behind the camera). Furthermore, poses that would result in the occlusion of 

features that were actually detected in the real image can be discarded. For example, 

if the position of a model point in the camera frame is given by a vector p and,, 

the outward normal to the object surface at that point is n (still in the camera 

coordinates), then, assuming that the object is convex and it is not occluded by 

anything else in the scene, the point is visible if and only if: 

p • n <0 . 
In some cases, however, simple consistency checks may not be enough to elimi-

nates all the ambiguity created by nonlinear constraints. Fortunately, more elaborate 

schemes for disambiguation can be found in the literature. For instance, ifone is using 

a method that requires N correspondences but the actual number offeatures matched 

in the image is N > M , then a Hough transform can be employed to determine the 

most likely solution. The idea is to group all the available matches between model 

and edge features into (possibly non-disjoint) subsets that contain just the minimal 

number of constraints required by the pose recovery scheme selected (three points in 
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the case of a P3P technique, for example). Then the analytical pose recovery algo-

rithm of choice can be applied independently for each individual subset, yielding a 

finite number of possible pose estimates. Each such pose estimate can be thought 

of as a point in a multi-dimensional space composed by the pose parameters. So, 

the pose estimates generated by different subsets can be grouped into clusters (for 

instance through a quantization of the pose space), and the cluster with the biggest 

number of elements can be used to determine the most likely solution. Linnainmaa 

et al. [44] made use of this approach to disambiguate their solution to the generic 

P3P problem. But they noticed that the quantization of a 6D space, such as the one 

formed by all the free parameters in a generic pose recovery problem, can be a quite 

expensive step both in terms of time and memory space. So, they initially worked 

only with the 3D space composed by the translational parameters. Then the best in-

termediate solution was used in another Hough transform to get the desired rotation 

parameters. Actually, Linnainmaa's disambiguation scheme worked very well for a 

few test cases, but a more systematic evaluation is necessary. 

On the other hand, several additional geometrical constraints on the possible 

values of Z2 under different circumstances could be derived for our algorithm. They 

impose an upper bound and a lower bound on every depth estimate to greatly reduce 

unnecessary root-probing. For example, rearranging Eqs. (3.21a) and (3.21b) gives 

^«^((1,(2) > ^2 > f “ 
where 

" 2 / ^ / 5 ^ (3.24a) 

“ : , 2 3 ^ 5 ^ (3.24b) 
Furthermore, Eq. (3.22a) indicates the SSD of the calculated values of h2 from their 

true values, while Eq. (3.22b) measures the difference among centroid coordinates 
‘ 1T _̂  T 

ĉentroid "centroid calculatcd by the given 2D image coordinates m V{ and 

「 1T 
the calculated 3D object coordinates Xi yi Zi after the full-perspective projec-

tion. Both of them also play a crucial role in eliminating multiple solutions inherent 

in P3P problems. 
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3.2.3 3D-to-3D Motion Estimation 
Various non-iterative methods, e.g. S V D [34] and quaternions [5], have been suggested 

for solving the least-square fitting problem of two 3D point sets p^ and pJ, i = 

1,2, . . . N , which tries to find R , t and a scalar value c such that the value of 

N 
^ | p ; - ( c R p , + t)r 
i=i 

is minimized. However, they are often computational expensive for the large amount 

of matrix operations. Alternatively, Horn [32] discussed a direct method for recovering 

R and t in the three-point case. A very favorable property of this method is that 

it involves only simple vector multiplications, and the resulting rotation matrix is 

orthonormal by itself so that there is no need for further orthonormality enforcement 

or approximation. Later, Umeyama [82] further refined the solution proposed by Arun 

et aL [5] to correct the reflection phenomenon. Basically, all these algorithms break 

down the estimation process into two stages: (i) estimate R first, and (ii) recover t 

by calculating the 3D positional difference between the centroid of transformed point 

set at time t + 1 (i.e. centroid of p-) and that of the rotated point set at time t (i.e. 

centroid of R p J . This results from the fact that each correspondence available yields 

a linear relation that constraints one D O F in t. Using three correspondences, one gets 

a 3 X 3 system that can be readily solved for all the three translational components." 

These methods are briefly described below, readers are referred to [82] and [32] for 

details. 

Arun/Umeyama's Method 
In this method, motion estimation is reduced to the decomposition of a 3x3 covariance 

matrix H , which embeds all the information from point coordinates. The computation 
is efficient when many points are available, as can be achieved with the following steps: 

1. Compute the following 
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1 N 

~ = i E p z 
i=l 

1 N 
"尸 ' =斤 ?； 

i—1 
1 N 

2 丄 V ^ 2 
〜 = 77 2 J p 「 ~ l 

x—\ 

1 N 
2 丄 V ^ / 2 

^p' = j^ 2^ P. — f^p' 
i = l 

1 N 
H = j j Y^ (Pi - M (p̂- - ^pY • 

i—l 
1. Find the S V D ofH: 

H = U W V ^ 

where U and V are 3 x 3 orthonormal matrices, and W is a 3 x 3 diagonal matrix 

which diagonal elements contain the eigenvalues of H . 

1. If the rank of H > 2, 

S _ I if det(H) > 0 “ 

-diag(l,l,-l) ifdet(H) < 0 

else if the rank of H = 2, 

g _ I if det(U)det(V) = 1 

_ diag(l,l,-l) if det(U)det(V) - -1 ‘ 

1. Then the optimal transformation is given by 

R = U S V ^ 

c = 4-tr(WS) ^p 
t = |j,p, — cRfip (3.25) 

where det(X) is the determinant of a matrix X and tr(X) is the trace X . 
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Horn's Method 
Constructing column unit vectors Xi,yi and Zi from p1,p2 and p3, 

x, = ^ ^ 
P2-P1 

5>l = (P3_Pl) - [(P3-Pi)*Xi]Xi 

1 l(P3-Pi) - [(P3-Pi)*Xi]xi| 
A A A 

Z i 二 X i X yi 

Similarly unit vectors X2, y2 and Z2 are constructed from p;, p'2 and p3. 

The rotation matrix is given by 

R = M2Mf 
where 

M l = xi yi zi 

M 2 = X2 y2 Z2 

Once rotation has been found, t is given by Eq. (3.25) as before (where N = 3 and 
c = 1 for this case). 

“ 

3.3 Experimental Results 
W e have tested our algorithm on both synthetic data and real images. 

3.3.1 Synthetic Data 
In the first part, in order to evaluate the effectiveness of our proposed constraints on 

the reduction of multiple solutions in P3P problems, and to verify the robustness of 

our algorithm, a thousand sets of 3D points p” i = l,...,3 (each of them contains 

three points) were generated by a uniform random number generator. These points 

1 T 

lay within a rectangular block of depth 50 centered at 0 0 100/ , so that their 

projections fall within a window of size 128 x 128 pixels on the image plane. Then the 

motion is generated randomly such that each Euler angle may take any value between 
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Figure 3.9: a:-coordinates of the P3P solutions (solid line: true solutions, dashed line: 

our iterative algo, dotted line: Fischler and Bolles algo). 
•‘ 

±45°, while translation vectors may produce a -50 to +50 pixels lateral shift on the 

image plane. Then pJ are computed from Eq. (3.17). Image noise was simulated by 
adding Gaussian random values to the exact image coordinates with a zero mean and 

a variance of 1, 2 and 3 pixels. W e assumed that there is at least one real solution 

for every motion instant. 

Figs. 3.9 to 3.11 show the results of the Fischler and Bolles's method (in dotted 

lines) and those of our iterative method (in dashed lines), together with the true 

values in solid lines. In our experiments with the Fischler and Bolles, algorithm, only 

tlie single solution (out of a total of four possible roots) leading to minimal motion 

is used, as the motion within a sampling period (e.g. one-thirtith of a second) is 

assumed to be very small. However, it is still clear that there are many incorrect solutions made by the Fischler and Bolles' method. To confirm their validity, we 
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Figure 3.10: y-coordinates of the P3P solutions (solid line: true solutions, dashed 

line: our iterative algo, dotted line: Fischler and Bolles algo). 
II 

evaluated the Euclidean distances among them and back-projected them onto the 

image plane, finding that they matched closely with the true image data. W e can 

thus conclude that this discrepancy was due to the problem of multiple solutions, 

and we found that 483 of our samples exhibited this phenomenon. These graphs also 

show that our proposed solution constraints [21] are robust to noise, and can lead to 

more accurate and stable results. 

In addition, Table 3.4 shows the number of floating point operations (flops) re-

quired for finding the depths of feature points with different P3P algorithms on Matlab 

5.1 platform. It clearly suggests that applying our solution constraints only induces a 

marginal increase in the computational cost of the P3P formulations. Knowing that 

the closed-form Fischler and Bolles' approach is among the most efficient algorithm 

for P3P problems, we could claim that our improved iterative algorithm is efficient 
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Figure 3.11: ^-coordinates of the P3P solutions (solid line: true solutions, dashed 

line: our iterative algo, dotted line: Fischler and Bolles algo). 
•• 

(only about six iterations are required for convergency for most of the cases) in view 

of its iterative nature. On the other hand, we have also implemented our iterative 

algorithm in ANSI C using double-precision floating-point operations and 10"^ as the 

error threshold. The computation time on a UltraSparc 1/170 workstation running 

Solaris 2.5.1 with 512MB R A M is 0.11 sec. 

To further test the numerical stability of our method, we permute the order of the 

three object points PiPjPk, where i + j + k , to give a total of six combinations. This 

effectively means a systematic permutation of variable substitution. Charts similar 

to Fig. 3.11 are obtained for the other five permutations, showing that our algorithm 

is robust to the order of substitution and numerical calculations. 
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Figure 3.12: Euclidean error (in pixel) of the P3P solutions (dashed line: our iterative 

algo, dotted line: Fischler and Bolles algo). 
II 

3.3.2 Real Images 
The algorithm was also tested on real images. A 15-frame sequence of a black card-

board on a table was taken by a digital camera at a resolution of 640 x 512 pixels 

and focal length of 28 m m . The object center was approximately 1000 m m from 

the camera projection center. The total motion between the sequence of image is a 

rotation of 33° about the y-axis. Fig. 3.15 shows two of the frames marked with 

three manually selected feature points. Note that the white strips are added solely 

for camera auto-focusing. 
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Figure 3.13: :-coordinates of the P3P solutions with no rotation (solid line: true 

solutions, dashed line: our iterative algo, dotted line: Fischler and Bolles algo). 
“ 3.4 Discussions 

An iterative algorithm based on the Gauss-Newton method for the Perspective-3-

Point (P3P) problem is derived. W e are currently investigating the following possible 

enhancements: ‘ 

1. Our current implementation relies on noisy point correspondences and 3D fea-

ture dimensions. While these measurements may not be readily accessible under 

all circumstances, excessive noise may lead to wrong calculations and unrealistic 

view synthesis. Our next target is to relax the dependency on point correspon-

dences and feature dimensions, or devise an update rule so that this information 

can be updated adaptively on the fly. 

2. As numerical errors accumulate with increasing amounts of calculations and 
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Figure 3.14: ^:-coordinates of the P3P solutions with no translation (solid line: true 

solutions, dashed line: our iterative algo, dotted line: Fischler and Bolles algo). 
“ 

significantly magnify in some mathematical operations, the error would be very 

serious when a large number of images have to be processed. Intermediate error 

rectification mechanism has to be incorporated to limit the error to below an 

acceptable limit. 
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Fischler and Bolles's Method Our Iterative Method 

Before 1733 2068 

After 1908 2245 

Table 3.4: Number of floating point operations required for different P3P algorithms 

(before and after solution constraints are applied). 

mm 
Figure 3.15: Two consecutive frames out of a 15-frame real testing image sequence. 

“ 

Fischler and Bolles Our iterative 

Translation ( t ) only 36.0823 1.5056 

Rotation ( R ) only 6.0131 0.7457 ‘ 

Both R and t 22.9718 2.6913 

Table 3.5: Mean percentage error between true and calculated feature points for 

different P3P algorithms. 



Chapter 4 
Panoramic View Analysis 
A complete mosaic representation of visual scenes often includes a full-view panoramic 

image, depth or parallax information, and the incremental alignment parameters 

or residual differences that represent any scene changes not captured in mosaics 

41][69][76]. Even though the idea is easy to understand, the process of building 

a panorama (image registration, stitching, and residual analysis) involves much the-

ories and is still under active research in computer vision, image processing, and 

computer graphics. In addition, while mosaics have been recognized as an efficient 

way of providing snapshot views of scenes, the issue of how to develop a complete 

representation of scenes based on mosaics has not been adequately studied in the 

literature. 
“ 

This chapter explores various advanced issues in mosaic representation (section 

4.1), techniques for automatic mosaic construction (section 4.2), and describes a series 

of increasingly complex image alignment transformations (section 4.3). Different ap-

plication of such representations would also be illustrated with real examples (section 

4.4). Some of our experimental results are presented in section 4.5. 

4.1 Advanced Mosaic Representation 
As source images in a panorama spatially overlap with each other but are taken at 

different time instances and viewing directions (Fig. 2.6), there is a choice of frame 
alignment policy about how the different gray values available for the same pixel are 

combined. Similarly, the variations in pixel resolution between source images leads 

to the consideration of a multi-resolution mosaic. These issues, together with some 

76 



Chapter 4. Panoramic View Analysis 77 

other extensions, would be described thoroughly in the following paragraphs. 

4.1.1 Frame Alignment Policy 
Various parametric motion models [77] have been suggested to cancel out or minimize 

the effects of camera motion, and approximate the motion of a dominant surface 

(usually the background) in the scene. In particular, the registration of individual 

images can be performed in one of the following three ways: 

1. Frame-to-frame: The alignment parameters between successive frames for an 
entire image sequence are first computed. They can then be composed to obtain 

the alignment parameters between any two frames in the sequence. If a virtual 

coordinate system is adopted, an additional transformation between the virtual 

coordinate system and the reference frame (to which all images are aligned) 

needs to be given. 

2. Frame-to-mosaic: One problem with the above alignment approach is that 

errors may accumulate during the repeated composition of alignment param-

eters. A simple solution is to directly use the transformations between each 

frame and the mosaic image as alignment parameters. Most of the examples in 

this report rely on this method. 

3. Mosaic-to-frame: The frame-to-mosaic alignment is appropriate when a panorama 
is constructed with respect to a static coordinate system. However, in some 

dynamic application such as real-time video transmission, it is important to 

maintain the images in their input coordinate systems. In this case, it is more 

useful to align the mosaic to the current frame, so that the transformation be-

tween the mosaic and the current frame is identical to that between the previous 

frame and the current one. 

4.1.2 Multi-resolution Representation 
In dynamic mosaics, there may be unpredictable variations in image resolution within 

the sequence as a result of camera zooming. This can be handled by a multi-resolution 

mosaic data structure, which captures new information at its closest corresponding 

resolution level in a mosaic pyramid. W h e n a frame is constructed from the mosaic 

pyramid, the highest existing resolution data in the mosaic which corresponds to the 
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Figure 4.1: Synthesized frames: (left) without depth information, (right) with depth 

information for parallax handling. • 

frame is projected onto that frame. This data structure can be applied to static, 

dynamic, and temporal pyramid mosaic representations. It is different from temporal 

pyramid in that, the unit elements in the former representation are pixels, while those 

in the later pyramid are mosaic images. 4.1.3 Parallax-based Representation 
For scenes with no independent object motion, their 3D compositions are usually 

invariant over short periods of time, and can be used to predict any parallax-induced 

motion over these intervals. Instead of using a range map (depths relative to the 

camera) to represent this information, it may be more efficiently described as a height 
map (depths with respect to a dominant surface in the scene) in a mosaic represen-

tation. This increased efficiency is due to the fact that values in a typical height map 

are significantly smaller than those of a depth map, and can therefore be much more 

compactly encoded. 

An example of such a representation is shown in Fig. 4.1. Note particularly 

that objects at different depths exhibit parallax, and are not correctly registered by 

the 2D alignment transformations, leading to the many ghosts in the left image. 

Improvements are obvious after incorporating parallax motion information. More 

details about parallax can be found in [41][74][42'. 
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4.1.4 Multiple Moving Objects 
For scenes with multiple moving objects, an improvement is to first compute the 

dominant parametric motion, where all other image regions are detected as outliers 

37][38]. A mask is then used to segment the image into a dominant layer (which 

image motion can be explained by the computed parametric transformation) and a 

residual layer which corresponds to the remaining part of the image (which motion 

cannot be explained by the transformation). The same technique can be applied 

recursively to the residual layer to find the next dominant transformation and its 

region within the image, etc. This pyramid-based approach locks on to the dominant 

image motion in the scene, and minimize sensitivity to noise. 

4.1.5 Layers and Tiles 
In principle, the 2D alignment model augmented with 3D parallax information is 

adequate for all scenes in which there is no independent object motion in the scene. 

However, when the scene begins to be cluttered with objects at widely varying depths, 

or when "fence-like" transparency is present, the parallax-based representation is 

highly inefficient. A natural extension to the 2D mosaic is to use multiple layers 

of 2D mosaics as suggested by Adelson [1], in which each layer can either embed a 

single moving object or a surface at a particular depth. In this way, the representation 

becomes somewhat more complex, but image distortions are reduced to minimal while 
•I 

making it more of a complete and efficient scene representation. This would be 

discussed in greater depths in later paragraphs. 

4.2 Panorama Construction 
In recent years, a number of techniques and software systems, e.g. QuickTime V R ™ , 

PhotoVista™, etc., have been developed for creating realistic mosaic images with 

little hardware support. With only regular photographic frames over a horizontal 

viewing space, these methods align component images and composite them into a 

complete panorama [57]. The resulting image can then be displayed with special 

purpose viewers, or alternatively be warped onto cylinders or spheres using texture-

mapping. A n example of such panorama is shown previously in Fig. 2.6. 

At least four steps can be identified in this process: acquisition of source images, 
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Acquisition of Source Images 

i 
Feature Registration 

i 
Mosaic Integration 

i 
Residual Analysis 

Figure 4.2: Steps in creating a panorama. 

feature registration (alignment), integration into a mosaic image, and computation 

of significant residues between mosaic and individual frames (Fig. 4.2). 

4.2.1 Image Acquisition 
The first step in building a cylindrical panorama is to take a sequence of images 

with a camera mounted on a leveled tripod. In order to get good stitching results, 

each image should overlap its adjacent ones by around 25% to 50%, which amounts 

to about 16 photos for a full-view (360°) panorama. In our experiments, a leveled 

electronic tripod is used to rotate the camera at equal-angle increments of 22.5® so 

that a total of 16 images (with over 30% overlap between neighboring images) are 

taken to represent the complete field of view. An important assumption here is that 

there should be no significant movement perpendicular to the camera principal axis 

during image acquisition. 

After some raw image enhancement processes (Chapter 2), each perspective image 

. • 「 lT 
is warped onto a cylinder by mapping 3D world coordinates p = x y z onto 

. 「 1了 

2D cylindrical screen coordinates q = 0 v (provided that the camera focal 

length or field of view is known): 

^ = tan-i 0 y 

V : . 
V ^ ^ T ? 
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Figure 4.3: Camera setup for taking source images at a hot-spot. 

where 6 is the panning angle and v is the scan-line [77]. Similarly, we can map world 
. . . . 「 1^ 

coordinates into 2D spherical coordinates q = 6 小 using 
_ J “ 

e = tan-i ( - ) 

1 1 ( y \ 
小 = t a n _ i . ^ Wx^^z^J 

Indeed, creating panoramas in cylindrical or spherical coordinates has several 

limitations. First of all, it can only handle the simple case of pure panning motion. 

Second, even though it is possible to convert an image to 2D spherical or cylindrical 

coordinates for a known tilting angle, ill-sampling at north pole and south pole causes 

big registration errors, and leads to singularities in looking straight up or down the 

scene. Third, it requires knowing the camera focal length (or equivalently, field of 

view). While focal lengths can be carefully calibrated in lab [81], estimating them 

by registering two or more images is not very accurate. However, given the limited 

availability of sophisticated 3D imaging equipment, cylindrical maps are often easier 
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Figure 4.4: A sample panorama segment - notice how horizontal lines become curved. 

to capture and more efficient in image warping than spherical or hyperbolic ones [11.. 

This explains the fact that cylindrical mosaics and their formulations are the usual 

choice most computer vision researchers prefer. 

Fig 4.4 shows a sample panorama segment - notice how horizontal lines become 

curved. Once we have warped all input images, constructing mosaic images becomes 

a pure alignment problem, with compensations for minor vertical jitter and optical 

twist. 

4.2.2 Image Alignment 
Even with the best acquisition and pre-processing procedure, features on one image 

would not align with the corresponding features on another image without a good 

stitching algorithm. These algorithms vary greatly from one to another: some require 

carefully controlled camera motion (e.g. pure horizontal camera rotation) and cali-

brated intrinsic camera parameters (e.g. focal length), while others impose fewer re-

strictions or have higher error tolerance [57]. Despite their differences, there are three 

main approaches in use nowadays. The most straightforward one handles only pure 

panning motion, and uses feature point extraction methods (e.g. Moravec interest op-

erator in Chapter 2) together with correlation to locate corresponding points among 

images. The second method (6-parameter affine transformations or 8-parameter pla-

nar perspective motion model) handles the case of general camera rotation. It makes 

use of camera projection models to warp source images onto cylindrical surfaces and 
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recover the translational motion between corresponding pixels through error mini-

mization [77][78]. This mathematical approach is robust as long as the underlying 

physical interpretations are not violated. However, iterative algorithms or complex 

matrix transformations have to be used to minimize intensity errors and find the eight 

unknown coefficients in the camera projection model. As result, such algorithms re-

quire good initial guesses and may suffer from slow convergence. The third approach 

(3-parameter rotational motion model) is similar to the previous one, but with only 

three parameters to be estimated, it is faster and more robust [78]. In addition, we 

would describe a few extensions to alignment policies, e.g. frame alignment, patch-

based alignment, as proposed by some researchers. 

Simple 2D Image Alignment 
To register two images /。and /i, we need to estimate an incremental translation 

「 1T 
(̂t = 6tu Sty by minimizing the intensity error E ( S t ) between these images, 

_ = [[/i(q; + ^ - / o ( q , ) f 
i 

1T r T 「 1 T 
where q^ = m vi and q; = u'- v'- = U{ + 1 ^ V{ + ty are correspond-

. . . 「 1了 

ing points in the two images, and t = t^ ty is the global motion field (a hori-

zontal translation t^ and a vertical translation ty) for all pixels [6]. “ 

After a first order Taylor series expansion, the above equation becomes 

E(St)^Y.[gj8t + e]' 
i 

where ei = h ( q ; ) — /• (q^) is the intensity or color error, and gf = y A (qO is the 

image gradient of /i at q;. This minimization problem has a simple least-square 

solution, 

/ \ / \ 
、Z]g^Tj & = \ ^ ^^g^J 

Fig. 4.5 shows a portion of a cylindrical panoramic mosaic built using this simple 

translational alignment technique. 
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n ^ B M 
Figure 4.5: A segment of panorama built by simple 2D alignment. 

Eight-parameter Planar Projective Transformations (Perspective Homog-
raphy) 
An important element of this framework is to associate each input image with an 

initial transformation estimate, by finding the best alignment between an image and 

a warped (resampled) mosaic image constructed from all previous images. Defining 

a warped image /i (q) of /i (q') using some parametric motion model q' = / (q; t ) : 

/i (q) = h ( / (q; t ) ) 
the trick is then to find incremental deformations of /i ( q ) which bring it into closer 
registration with /。（q). This reduces the problem to that of a parametric motion 
estimation, and greatly simplifies the computation of the gradients and Hessians 

required in gradient descent algorithms. 

Mathematically, the relationship between two overlapping images (taken from th^' 

same viewpoint (optical center) but potentially at different directions and/or with dif-

ferent intrinsic parameters) can be described by a planar perspective transformation 

55][39][77], which warps an image into another using 

mo mi rri2 u ‘ 
q ' �M q = m3 rri4 m5 V 

me m j rus 1 • 
華 」 Lm • 

r T T � lT 

where q = u v 1 and q ' = u' v' 1 are homogeneous or projective coor-

dinates, and 〜indicates equality up to a scale factor. This equation can be rewritten 

as 



Chapter 4. Panoramic View Analysis 85 

, mou + miv + rri2 
u = rriQU + ni7v + mg , ni3u + rri4v + m5 V = rriQU + mjv + m^ 

To recover the parameters, we iteratively update the transformation matrix using 

M 4- (I + D ) M (4.1) 
or 

M ^ T ( I + D ) T " ' M 
where 

d,Q di d,2 
D = d3 d4 4 

de d7 ds 
and T translates the origin from the top left corner of image plane to the center to 

improve conditioning of linear systems and speed up convergence. 

Resampling image /1 (q) with the new transformation q '〜 ( I + D ) M q is the 

same as warping the resampled image h ( q ) by q � �( I + D ) q (ignoring errors in-
troduced by the double bilinear pixel resampling operation), i.e. 

" (1 + do) u + div + d2 u = 
deu + d7v + (1 + dg) 

” “ = d 3 U + {l+d4)v^d^ 
deu + d7v + (1 + 4 ) * 

W e wish to minimize the SSD error metric: 

E{d) = J2\hK)-Io(q^)Y L t 
_ 厂 力 〃 n 2 

~ E ^^i(qO + V / i ( q O ^ d - / o ( q , ) 
i L -

= ^ E f e r j r d + ei]2 (4.2) 

i 
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where ê  =八 ( ¾ ) — /。(qi) is the intensity error, gf = y A (^0 is the image gradient 

~ 「 1了 . 

of /i at qi, d = do ... ds is the incremental motion parameter vector, and 

Jj = Jd (qO where 

� 0 1 T ( � —5 q f — u V 1 0 0 0 -vr -uv -u ^d (qi) = ":TT — „ 
od 0 0 0 u V 1 -uv -”2 -y • • 

is the Jacobian of the resampled point coordinate q^ with respect to d . 
This least-square problem in Eq. (4.2) can be solved using normal equations with 

symmetric positive definite solvers like Cholesky decomposition [67]. In practice, we 

set ds = 0, and only solve an 8 x 8 system: 

Ad = - b 
where 

A = ^j.g.gfjf (4.3) 
i 

is the Hessian, and 

•• 

b = [e,J,gf (4.4) 
i 

is the accumulated gradient or residues. 

As a matter of fact, most examples in this report are based on this 2D alignment 

transformation. Such mosaics provide a complete representation of the scene segment 

in scenarios where there is little scene activity nor camera motion, or when the entire 

scene can be approximated by a single parametric surface (typically a plane). In prac-

tice, this algorithm is also a good approximation even when there are small violations 

to the above conditions. For instances, if a camera translates slowly and/or the rel-

ative distances between surface elements (A2:) are small compared with their ranges 

⑷’ the effects of parallax (as a result of camera motion) can be neglected. Similarly, 

if independent scene activity is confined to a small number of pixels, this effect can 

be neglected during mosaic construction. However, since the motion model contains 
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more free parameters than necessary, both of these 2D transformation recovery algo-

rithms suffer from slow convergence and sometimes get stuck with local minima, if the 

initial transformation estimates are not close enough to their true values. In addition, 

scene changes and parallax are not represented in these 2D alignment frameworks, 

and have to be considered as residues. For these reasons, Shum [74] proposed the 

following 3-parameter rotational model. 

Three-parameter Rotational Alignment 
For a camera centered at the origin, the relationship between a 3D point p = � 1 T � T 

X y z and its image coordinates q = u v 1 can be described by 

q �T V R p 
where 

1 0 c$ f 0 0 roo roi r02 

T = 0 1 Cy , V = 0 / 0 and R = no rn r12 

0 0 1 0 0 1 r20 r21 r22 

are the image plane translation, focal length scaling, and 3D rotation matrices respec-

tively. For simplicity of notation, we assume that the origin is at the image center so 
•I 

that Cx = Cy = 0 and thus T can be ignored. The 3D direction corresponding to a 

screen pixel q is given by p �R _ i V _ i q . 
For a camera rotating around its optical center, the mapping between two images 

Ik and Ii is therefore given by 

M �V A : R f c R � i V � i - V , R , , V r ^ 

where each image is represented by V)tRfc, i.e. a focal length and a 3D rotation. • 

Assume for now that the focal length is known and is the same for all images, i.e. 

V f c = V / . To recover the rotation, we perform an incremental update to Kk based on 
. 1T 

the angular velocity ft = u^ tOy uĵ  , 

Rki = R(n)Rki or M 4 - V R ( n ) R , ^ V - ^ (4.5) 
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where the incremental rotation matrix R (Q) is given by 

R (n, 6>) = I + sin OX (n) + (1 - cos 9) X (n)' 

e = \\a\\,h = n/e, and 

0 -LJz, ^y 
X ( n ) = u;, 0 -1^, 

-CJy UJ)x 0 

is the cross product operator. Keeping only terms linear in Q, we get 

M' ^ V [I + X (n)] RfcR� iV- i = (I + D � M 
where 

0 —Uz f^y 

Dj^ = V X p ) V - i = o;, 0 - M r 

- - u j y j f u J f 0 

is the deformation matrix which plays the same role as D in Eq. (4.1). 

Computing the Jacobian of the entries in Dj^ with respect to H and applying chain 

rule, we obtain the new Jacobian, ‘ 

_ ̂  _ ^ M _ r -uv/f / + u " / -I� Y 
" " W " ^ M " [ - f - v ' / f uv/f u 

This Jacobian is then plugged into the previous minimization pipeline to estimate the 
. . 1T • 
incremental rotation vector Ux Uy u^ , after which R ^ can be updated using 

Eq. (4.5). Readers are referred to [41][74][70] for details about more complex 3D 

models and layered representations. 

4.2.3 Image Integration 
Once registration is finished, the desired image regions in /。and /i are aligned (or 

in the dynamic sense, the current mosaic and new frame are aligned), and can be 

integrated using any of following criteria: 
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1. A temporal average or median filter to produce panoramic images of the 
dominant background scene, while moving objects in the foreground either com-

pletely disappear or significantly fade out and leave image ghosts. Temporal 

averages usually result in blurrier mosaic images than those obtained by tem-

poral medians. 

2. A weighted temporal average or median filter to reduce discontinuity 
in intensity and alignment inaccuracies near image boundaries, as a result of 

the low order 2D parametric transformations (especially when the field of view 

is wide). W e apply a simple featuring algorithm to weigh the pixels in each 

warped image inversely proportional to their Euclidean distances c^(q) to the 

nearest stitching edge (or more precisely, their distance to the nearest invisible 

or transparent pixel) [77]. W e then blend all of the warped images using 

^ . . _ E . ^ ( ^ ( q ) ) 4 ( q ) 

q q ) - E , _ ) 
where w is a monotonic function. In our current implementation, we use w (a:)= 

X, and a seam is further divided into a number of segments (each of which 

intensity difference is resampled) in order to have even better stitching results. 

3. A most recent filter to reflect the most update changes in the scene. This is 
especially useful in dynamic mosaic construction. Of course, the update can be 

more gradual by incorporating a decay parameter to give more weight to recent 

information, and forget those more distant in time. 

Finally we can clip the ends (and optionally the top and bottom) of the integrated 

image, and write out a single panorama. 

4.2.4 Significant Residual Estimation 
Residues are information in the scene not represented in the mosaic since it was 

built. These differences between frames and mosaic occur for several reasons: object 

or illumination changes, camera motion parallax, interpolation errors during warping, 

and feature mis-alignments as a result of quantization of discrete pixel coordinates 

or intensity values. For instance, as most mathematical calculations are carried out 

in sub-pixel domain, rounding-errors are inevitably introduced when mapping back 
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to pixel coordinates. In addition, there may be uncertainty in manual processes like 

feature points selection. 

On the other hand, the locations and magnitudes of residues differ between static 

and dynamic mosaics, even for the same set of component frames. For example, as 

moving objects (with respect to scene background) in static mosaics tend to blur 

out or even disappear, these changes will not appear in the resulting mosaic, and 

hence the residues between component frames will be significant. O n the other hand, 

dynamic mosaics are constantly being updated with the most recent information, and 

therefore the changes in image regions as a result of independently moving objects 

will be smaller. However, owing to their dynamic nature, additional parts of the scene 

that are revealed to the camera for the first time would induce significant residues. 

This does not occur in the static case, as the support of a static mosaic is the union 

of all available frames. 

As we have mentioned above, a complete mosaic representation also includes the 

residual differences between a panorama to individual frames, in addition to the 

alignment transformations described above. To reconstruct any given frame in its 

own coordinate system, a mosaic image is warped using the geometrical transforma-

tions and residues associated with that frame. This reconstruction is straightforward 

for static mosaics, as residues are directly estimated between the mosaic and every 

component frames. In dynamic mosaics, however, the residues are incremental with 

respect to the previous mosaic frame. In this case the reconstruction proceeds sequen; 

tially from frame to frame. The efficiency of this representation can be maximized by 

assigning heavier weights to semantically significant residues, by considering not only 

the residual intensity but also the magnitude of local mis-alignments. More details 

about this significance analysis are described in [38] [39 . 

4.3 Advanced Alignment Algorithms 
The normal equations given in previous sections, together with appropriately chosen 

Jacobian matrix and Hessian matrix, can be used directly to solve for motion esti-

mates. Unfortunately, these gradient descent methods suffer from several drawbacks: 

they are susceptible to local minima and outliers, and are also unnecessarily ineffi-

cient. In addition, mis-registration errors accumulate for long image sequences, and 

result in visible gaps (or overlaps) between the two ends of a panoramic mosaic. In 
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this section, we present some improvements proposed by Shum [74] to make them 

more robust and efficient. 

4.3.1 Patch-based Alignment 
The computational effort required to take a single gradient descent step in parameter 

space can be divided into three major parts: (i) the warping (resampling) of /i ( x ' ) 
into /i ( x ) , (ii) the computation of the local intensity errors ê  and gradients gi, and 

(iii) the accumulation of the entries in A and b (Eqs. (4.3) and (4.4)). This last 

step can be quite expensive, since it involves the computations of the monomials in 

Ji and the formation of the products in A and b . If we divide the image up into little 
patches P j , and make the approximation that J (x^) = J j is constant within each 
patch (say by evaluating it at the patch center), we can write the normal equation as 

A ^ ^ J , A , J J with A , = Y ^ g.gf 

j iePj 
and 

b ~ X^Jjbj with hj = [ ê gi 

j iePj 
“ 

where Aj and hj describe a local error surface. This new formulation therefore aug-

ments step (ii) above with the accumulation of A^ and b^ (only 10 additional mul-

tiply/add operations, which could potentially be done using fixed-point arithmetic), 

and performs the computations required to evaluate Jj and accumulate A and b only 
once per patch. 

Once the displacements have been estimated for each patch, they must somehow 

be integrated into the global parameter estimation algorithm. The easiest way to do 

this is to compute a new set of patch Hessians Aj and patch residues b^ to encode 

the search results: 

E {sj) = sjA,s, + 2sJb, + c = (s, 一 s;)T A , (s, - s;) + c' 

where 
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s; = -A-^b, 

is the optimal flow estimate. More details about this formulation and its solution 

method can be found in [74]. 

4.3.2 Global Alignment (Block Adjustment) 
In this section, we present a global alignment method that reduces accumulated error 

by simultaneously minimizing the mis-registration between all overlapping pairs of 

images. For a patch j in image 4 , let 1 € Njk be the set of overlapping images in 
which patch j is totally contained. Let qjk be the center of this patch. To compute the 
patch alignment, we use image 4 as /。and image /, as /i and invoke the local search 

algorithm, which returns an estimated displacement Sj/ = s^. The corresponding point 

in the warped image /i is thus q̂ / = q^^ + Sji. In image //, this point's coordinate is 

Qj/ 〜 M / M p 4 / or qji 〜V/R/RfiVfi&/ if the rotational panoramic representation 

is used. 

Given these point correspondences, one way to formulate the global alignment 

is to minimize the difference between screen coordinates of all overlapping pairs of 

images 

•I 

E ( { M , } ) = ^ |q̂ ., — P(MW「iq^.,)|2 

j,k,leNjk 
where P {MkM^^Xji) is the projected screen coordinate of q̂ / under the inter-frame 

transformation M ^ M f ^ (M^； could be a general homography, or could be based on 

the rotational panoramic representation). This has the advantage of being able to 

incorporate local certainties in the point matches (by making the above norm be a 

matrix norm based on the local Hessian Ajk). The disadvantage, however, is that the 

gradients with respect to the motion parameters are complicated. 

On the other hand, let the ray direction in the final composite image mosaic 

be a unit vector p^, and its corresponding ray direction in the A:th frame as Pjk 〜 

RfiVfiqjA;. W e can formulate block adjustment to minimize over pose {{R^Jk}) 

for all frames h . More specifically, we estimate the pose by minimizing the difference 

in ray directions between all pairs {h and /；) of overlapping images, 
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E({RkJ,})= Y ^ | p # - p j 2 = ^ |R-i^,-R-iq^,p (4.6) 

J,k,leN]k j,k,leNjk 

4.3.3 Local Alignment (Deghosting) 
After the global alignment has been run, there may still be localized mis-registration 

present in the image mosaic, due to deviations from the idealized parallax-free camera 

model. Such deviations might include camera translation (especially for hand-held 

camera), radial distortion, the mis-location of the optical center (which can be signif-

icant for scanned photographs), and moving objects. 

To compensate for these effects, we would like to quantify the amount of mis-

registration and to then locally warp each image so that the overall mosaic does not 

contain visible ghosting (double images) or blurred details. Ifour mosaic contains just 

a few images, we could choose one image as the base, and then compute the optical 

flow between it and all other images, which could then be deformed to match the 

base. One possibility would be to explicitly estimate the camera motion and residual 

parallax [41][69][76], but this would not compensate for other distortions. Another 

approach might be to warp each image so that it best matches the current mosaic. For 

small amounts of mis-registration, where most of the visual effects are simple blurring 

(loss of detail), this should work fairly well. However, for large mis-registration when 

ghosting is present, the local motion estimation would likely fail. “ 

An alternative approach, which is the one we have adopted, is to compute the 

flow between all pairs of images, and to then infer the desired local warps from these 

computations. While in principle, any motion estimation or optical flow technique 

could be used, we use the patch-based alignment algorithm, since it provides us with 

the required information and allows us to reason about geometric consistency.. 

Recall that the block adjustment algorithm (Eq. (4.6)) provides an estimate p^ 

of the true direction in space corresponding to the jth patch center in the kth. image, 

qjfc. The projection of this direction onto the A:th image is 

如 〜 v * R * ^ ！ f，iv「ic^., = — L + E ^ ] 
J /eA/jfcUfc 3^ y _ � k / 

or 
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� r M * & E "̂̂ ' = ;^f^-^+E^' 
^̂  ieN,kUk 3^ ^ \ ieN,, / 

if an 8-parameter perspective is used. This can be converted into a motion estimate 

^jk = qjk - qjk = ^^:^ ^ ( '̂ + ^̂ ) = ; ^ ^ E Sjl 
〜 " 十 丄 i e N , , ^3k + 丄 … 乂 长 

where rijk = \Njk\ is the number of overlapping images where patch j is completely 
visible. 

The local motion required to bring patch center j in image m into global regis-

tration is simply the average of the pair-wise motion estimates with all overlapping 

images, down-weighted by the fraction Ujk/ (jijk + 1). This factor prevents local mo-

tion estimates from overshooting in their corrections (consider, for example,just two 

images, where each image warps itself to match its neighbor). Thus, we can compute 

the location motion estimate for each image by simply examining its mis-registration 

with its neighbors, without having to worry about what warps these other neighbors 

might be undergoing themselves. 

4.4 Mosaic Application 
4.4.1 Visualization Tool 
The most obvious application of mosaic representations is as an enhance visualization 

tool that can provide a wide and stabilized field of view, and the necessary context for 

a viewer to better appreciate the events that take place in the scene. In addition-, the 

2D alignment methodologies mentioned in previous sections may be combined with 

the various mosaic representations and integration techniques to fit in with other 

application. For example, given contiguous scene subsequences (segmented from an 

input video clip), a keyframe mosaic can be constructed for each scene subsequence as 

a snapshot view of the subsequence. This provides an even better representation of the 

most salient features in the scene than any single frame in the sequence. While such a 

mosaic is useful for capturing the background, in some cases it may be desirable to get 

a synopsis of the event that takes place within a video sequence. This can be achieved 
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through a mosaic that captures foreground events. A synopsis mosaic is constructed 

using the outlier maps obtained during the background alignment process. By using 

the inverse of outlier maps as weights during the integration process, foreground 

objects can be retained within the mosaic. It provides a snapshot view of the entire 

synopsis in the sequence, and is very useful for rapid browsing. On the other hand, a 

new video sequence (called mosaic video) consisting of a sequence of dynamic mosaic 

images may be generated. This type of visualization simulates the output of a virtual 

camera with any desired features, e.g. expanded field of view, or along any specific 

trajectories by applying the appropriate coordinate transformations to each of the 

mosaic video frames. The simplest example of this is stabilized mosaic video, in 

which case the camera motion is completely removed. Such a display is useful in 

various application like remote navigation and remote surveillance. The benefit of 

mosaic visualizations for various other application has also been recognized. Readers 

are referred to [74] for more application examples. 

4.4.2 Video Manipulation 
Video is a very rich source of information. Its two basic advantages over still images 

are the ability to obtain a continuously varying set of views of a scene, and the ability 

to capture the temporal evolution of phenomena. Since successive images within 

a video sequence usually overlap by a large amount, the use of panoramic images 

provides significant reductions in the total amount of data needed to represent the 

scene, and is thus becoming a popular and efficient way to describe or compress a 

collection of frames [55][75]. 

An entire video sequence can be represented by a mosaic image of the background 

scene, with the appropriate transformations that relate each frame. However, changes 

in the scene (e.g. moving objects) with respect to the background are not cap.tured 

by the mosaic image, and additional representations are needed to take them into 

account [55][41][75]. Indeed, these residues can either be represented independently 

for each frame, or can be represented more efficiently as another mosaic layer [1]. The 

mosaic image, along with the frame alignment transformations, and with the residues 

together constitute a complete and efficient representation, from which the video 

sequence can be fully reconstructed. These issues have been addressed to a limited 

extent with respect to video compression in [1], although that work does not consider 

how to assign a significance measure to the residues or how to handle non-rigid layers. 
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A number of application has recently emerged that involve processing the entire 

information within video sequences, and require efficient representations of large video 

streams, and efficient methods of accessing and analyzing the information contained 

in video data. Typical application include video compression, scene change detection, 

digital libraries, low-bit-rate video transmission, and interactive video manipulation. 

In video editing environments, it is sometimes necessary to take a video segment and 

alter its content in post-production stages. For example, pulling an existing actor 

or object out of the sequence (while filling in the occluded regions convincingly), or 

inserting a non-existing object into the video sequence. These processes are currently 

very tedious, as they are done frame-by-frame manually. They can be significantly 

sped up, as well as done more accurately, using motion analysis and mosaic construc-

tions. During sequence reconstruction from the mosaic, the changes made to the 

static mosaic image can be automatically applied to each of the individual frames of 

the sequence, since the coordinate relationships between the frames and the mosaic 

are known. On the other hand, panoramic views can also be used to index video data. 

For instance, it may suffice to retrieve the key frame mosaic alone (or alternatively 

the synopsis mosaic) when browsing or identifying video clips. Once a scene (mosaic) 

of interest has been detected, the part of the video tape which corresponds to it can 

be retrieved on demand. 

4.5 Experimental Results 
Three algorithms were implemented for building real-scene panoramas: 

1. Eight-parameter planar projective transformation, 

2. Three-parameter rotational alignment with patch-based compensation, local 

compensation and global compensation, and 

3. Our modified version of the 8-parameter planar projective transformation with 

heavier use of spatial pyramid, correlations and local compensation. 

In all of the experiments, we have used a fixed d u m m y focal length, patch size of 

16 pixels, search range of four pixels, alignment accuracy of 0.04 pixel, and source 

image frames of size 384 x 300 pixels with initial mis-registration of about 30 pixels. 

Table 4.1 shows the computation time required by the algorithms in Visual C + + 
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(a) (b) 

8-parameter 38 117 

3-parameter 53 513 

Our algorithm 21 63 

Table 4.1: Computation time in seconds for aligning (a) two image frames of size 

384 X 300 pixels and initial mis-registration of about 30 pixels, and (b) 16 frames of 

the same size by the three stitching algorithms, 

^ ^ f f l 

Figure 4.6: Sample panorama #1 by our stitching algorithm. 

implementations on a Pentium 200MHz PC. The output panoramas of size 2700 x 300 

pixels from these algorithms look very much alike, some samples are shown in Figs,' 

4.6 to 4.8, readers are referred to Appendix for more experimental results. 

m ^ u n ^ ^ ^ ^ 
Figure 4.7: Sample panorama # 2 by our stitching algorithm. 
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^ H @ 
Figure 4.8: Sample panorama # 3 by our stitching algorithm. 

•• 
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Chapter 5 
Panoramic Walkthrough 
In recent years, image-based rendering is becoming a popular way in the construc-

tion of virtual environments in computer graphics application. Instead of building a 

complete 3D model of the environment, a collection of images is used to synthesize 

the scene while supporting virtual camera motions. There are commercial software 

such as QuickTime V R ™ and PhotoVista™ that provide tools for users to create 

and navigate inside image-based virtual environments. As suggested by Chen [11], 

the major procedures in building a virtual environment involves three basic elements 

(Fig. 5.1). 

In the first step, a number of hot-spots of special interests are selected in the real 

environment. At each of these spots, a series of images is taken at every possible 
•• 

viewing direction with respect to an observer standing at that spot. Then by using 

the algorithms discussed in previous chapter, these individual images are stitched 

together to form panoramas, and pairs of corresponding features are located among 

these hot-spot panoramas to link them up. Finally, in a panoramic viewer, a user can 

click on these links (either as visual prompts like icons or messages showing that it is 

possible to jump from the current hot-spot to somewhere else) to replace the current 

panorama with that of its adjacent hot-spot. Navigation is therefore made possible 

by traveling from one node to another. • 

Instead of describing the whole process in details, this chapter would concentrate 

on the last element, and present our approach in creating a smooth transition be-

tween multiple views in a panoramic environment. The next section is the problem 

statement and notations. Section 5.2 gives a brief overview of the previous work 

related to panoramic walkthrough. Section 5.3 describes our walkthrough approach, 

99 
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Select hot spots, and take 

pictures 

I 
Stitch panoramas 

I  

Texture-map panoramas on 

viewer, and link them up 

Figure 5.1: Procedure for building a virtual environment. 
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Figure 5.2: Notations for Pi, q^, r and 6. 

and experimental results on real images are presented in the last section. 

5.1 Problem Statement and Notations 
Given two neighboring panoramic nodes Po and Pi with centers Oo and Oi, r is 

the radius of the panorama, 6 is the horizontal field of view angle, and OoOi is the 

directional vector from Po to Pi that intersects the two panoramas at image points 

qo and qi respectively (Fig. 5.2). 

Every time a user looks through a panoramic viewer, only a portion of the whole 

panoramic image is visible on the image plane. Suppose we have two such image 
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Figure 5.3: Sample /。(left) and /i (right). 

segments /o and /i (both of size mo x no pixels, where mo is the number of rows and 

no is the number of columns) from two adjacent panoramas Po and Pi. Without 

loss of generality, we consider that /o covers a large field of view, and J\ is a close-up 

photo at nearly the same viewing angle as that in /。(Fig. 5.3). 

If occlusion can be ignored, the image content in /i is assumed to be completely 

enclosed in a rectangular region inside /o of size mi x ni. Based on some feature 

correspondence qoj = qij, the approximate position of /i inside /。can be found, 

which upper-left and lower-right corners are denoted by Wi and W2 respectively (so 

that a scaled-down version of /1 would properly fit into the region enclosed by Wi 

and W2 in /��probably with some mis-alignments, Fig. 5.4). 

With these definitions, the problem can now be stated formally as: 

Given panoramas Po and Pi, their field of view 0, camera focal length 

/, Euclidean norms among three arbitrary object points p‘ in the scene 

P i P j \ (i — j, |pipj| + 0), and the three corresponding image points q^ and. 
qj on the mosaic images, estimate the depths for p , , and based on these 
approximate Zi, synthesize a sequence of image frames which shows a 

smooth transition from Po to Pi. 

5.2 Previous Work 
A key component in most V R systems is the ability to navigate in a virtual environ-

ment from different viewing positions and orientations. However, being able to move 
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Figure 5.4: Merging /i into /〇. 

freely in a photographic scene requires the change of both viewpoint and viewing 

direction, which is exceedingly difficult to solve. Although view interpolation may 

be a solution for computer rendered scenes, this method requires depth and cam-

era information for automatic image registration, which is not easily obtainable from 

photographic scenes [75][43]. Previous navigation approaches require the synthesis 

of the virtual environment and the simulation of camera movements, which are usu-

ally accomplished with one of the following methods: 3D modeling/rendering, and 

branching movies. 

5.2.1 3D Modeling and Rendering 
A traditional approach to navigate in a virtual environment is to synthesized the scene 

as a collection of 3D geometrical entities, that are rendered in real-time and with the 

massive support from expensive graphic hardware. Despite the rapid advance of 

computer graphics software and hardware in the past, this approach still suffers from 

several major problems. First, building up geometrical models is a laborious manual 

process. Second, although special purpose 3D rendering engines are used to provide 

an interactive walkthrough experience, the real-time requirement often places a limit 

on the scene complexity and rendering quality. 
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5.2.2 Branching Movies 
Another method that has been used extensively in the video game industry is branch-

ing movies. Multiple movie or panoramic segments depicting a virtual environment 

and its spatial navigation paths are connected together via some branching points, 

or nodes, that are linked up manually in the authoring stage. In this way, walking 

in a space is accomplished by "hopping" to different points. Indeed, when a user 

moves from one node to another, the panorama corresponding to the scene of the 

next node will replace the current panorama. This node-based approach solves most 

of the problems mentioned in the 3D approach, and does not require 3D modeling and 

rendering. An obvious problem with this approach, however, is its limited navigabil-

ity and interaction. In addition, it requires every displayable view to be created and 

stored in the authoring stage that may sum up to a large amount of storage space. 

Furthermore, whenever a userjump from one node to another, a new panoramic scene 

usually replaces the old one instantaneously with little or no smooth view transition 

during the movement from one node to another. This could hardly provide users with 

any sense of scene immersion and is thus definitely unfavorable for a V R navigation 

system. 

An early example of the movie-based approach is the Movie-map [45], in which 

the streets of the city of Aspen were filmed at 10-foot intervals. At playback time, two 

computer-driven laser-disc (LD) players were used to retrieve the corresponding views 

of photographic movies, or pre-rendered animation sequences interactively to simulate 

the effects of walking on the streets. With Digital Video Interactive technology [68], 

users are allowed to wander around a scene using digital video playback from optical 

disks. This decoupling of scene rendering from interactive playback allowed rendering 

to be performed at the highest quality with the greatest complexity without affecting 

the playback performance. Four cameras were used to shoot the views at every 

point in the authoring stage of Movie-map, thereby giving users the ability to pan 

to the left and right at every point. O n the other hand, a Virtual Museum from 

CD-ROM-based computer rendered images was described in [59]. In this example, a 

360° panning movie (45 views were stored for each full-view pan movie) was rendered 

at selected points to let users look around. Walking from one point to another was 

simulated with a bi-directional transition movie, which contained a frame for each 

step in both directions along the path connecting the two points. This resulted in 

smooth panning motion but at the cost of more storage space and frame creation 
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time. 

The Navigable Movie [4] is another example of the movie-based approach. Unlike 

the Movie-map or the Virtual Museum, which only have the panning motion in one 

direction, the Navigable Movie offers 2D rotation. An object was photographed with 

a camera pointing at an object's center and orbiting in both the longitude and the 

latitude directions at roughly 10° increments. This process resulted in hundreds of 

frames corresponding to all the available viewing directions. The frames were stored in 

a 2D array which were indexed by two rotational parameters in interactive playback. 

When displaying the object against a static background, the effect was the same as 

rotating the object. Panning to look at a scene was accomplished in the same way. 

The frames in this case represented views of the scene in different view orientations. 

After the conception of image-based rendering, creating a realistic scene with low-

end P C become feasible. In particular, with the introduction of QuickTime V R ™ 

11] and the pioneer work by McMillan et aL [57], many other navigation methods 

have been proposed towards better performance and higher realism. Recently, Hirose 

et aL proposed their virtual dome [30] for generating wide-range virtual environment. 

On the other hand, Darsa et aL also developed their image-based navigation system 

15] by means of mesh triangulation and morphing. However, in most commercial 

panoramic packages, moving in space is currently accomplished by jumping to points 

where panoramic images are attached, in such a way that the whole panoramic view 

changes all of a sudden whenever a user walks from one node to another. In order to 
•• 

minimize the disturbing discontinuity in view transitions and to provide users with 

a more immersed feeling, some methods [15][29] have been proposed. Nevertheless, 

these algorithms require either high-performance machines or z-bufFered images. To 

get rid of these limitations, a simpler and real-time algorithm which makes use of im-

age scaling was proposed by Fu et aL [20]. Their implementation would be described 

in greater details below, and used as the basis for our discussions. * 

5.2.3 Texture Window Scaling 
Theoretically speaking, changing the camera field of view is equivalent to zooming in 

and out in the image space. Let A G [0,1] be a walkthrough parameter (also known 

as the directional linear magnification factor) proportional to the relative distance 

between nodes, so that the whole Io (or /i respectively) will be displayed in the 

viewer when A = 0 (or A = 1 respectively), and that a sequence of in-between frames 
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Figure 5.5: Sample panoramic walkthrough results from direct texture window scaling 

(left and right: original panoramic frames, center: an in-between synthesized view). 

from /o to /i can be generated along different values of A. For example, given a 

starting node Po and an ending node Pi, nine intermediate views can be generated 

by scaling up or down /。and h with A = 0.1,0.2, ...,0.9. ln short, a synthesized view 

R{X) can be described by the following rendering equation: 

R(A) = (l-A")/o(A) + A"7(/i) 

where /(/i) is the reposition function of /] inside /o (A), and n G [1, oo] describes 

the amount of occlusion (n will be large if the total feature matching error is large 

in order to reduce the amount of incorrect blending). For the actual rendering of 

these intermediate views, various interpolation or scaling methodologies, e.g. simple n 
linear interpolation, positional weighted blending, view morphing, etc. have been 

suggested to mix /。and /i and to smooth out their pixel differences. In this way, by 

properly adjusting the magnification ratios for /o and /i, the problem of panoramic 

walkthrough is simplified into a texture window scaling problem (Fig. 5.5). 

5.2.4 Problems with Simple Texture Window Scaling * 
However, there exists several problems with this simple scaling of texture windows. 

First of all, owing to the inaccurate modeling of nonlinear camera, projections, slight 

deviations in point correspondences among panoramas would be highly magnified 

as observable patch mis-alignments or image ghosts. This significant discontinuity 

in contrast or intensity levels among texture windows, and jagged edges near the 

stitching boundary can be easily seen at the center image in Fig. 5.5. In addition, al-

though sophisticated smoothing filters and weighted patch-based merging techniques 
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have been applied in the stitching process, zooming out through image reduction may 

create aliasing artifacts as the sampling rate falls below the Nyquist limit. Direct syn-

thesis under such conditions usually results in severe blurring, especially when the 

contents and qualities of source images differ by a rather large margin (close-up im-

ages usually contain more details fhan distant snapshots). Furthermore, using image 

magnification to zoom in does not provide more details. Instead, pixel enlargement 

could very probably lead to coarse images with ragged feature edges. Empirical ex-

periments suggest that enlarging a, typical image (of 300 dot per inch) by more than 

three times its original size will lead to observable glass-block effects. Another limita-

tion associated with this method is the frequent image resampling that contributes to 

accelerated image quality degradation. Although this problem can be readily solved 

by using high resolution source images or other multi-resolution techniques, this is 

usually not a good choice for the increase in storage, equipment requirements and 

computational cost [57]. 

5.3 Our Walkthrough Approach 
Our approach in achieving panoramic walkthrough would be described in later sec-

tions, after an overview of some modeling techniques used in dealing with cylindrical 

projection. 

“ 5.3.1 Cylindrical Projection onto Image Plane 
As mentioned in section 5.1, only a portion of a complete panorama could be seen 

at a time. The exact coordinates or size of this texture window can be calculated 

from viewing parameters like camera field of view, size of panoramic cylinders, etc., 

as shown in Fig. 5.6. 

Given lyisMe = r0, where r is the radius of the panorama, and 0 is the horizon-

tal camera angle of view (in radian). A texture window on the image plane after 

cylindrical warping can be described by: 

. 0 (. 1. 9r = — (t - - ) 
^^image 乙 

where ¢^ is the angle from left hand side of the panorama for the z-th pixel column, 

and Wimage is the horizontal resolution or width of the image plane. Then the height 
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Figure 5.6: Cylindrical projection of panoramic segment onto an image plane. 

of tlie i-th column in the image plane (/“）can also be estimated: 

/ A. — (] . \ 
h. - h. { 1 _ ^h__^™l 

/6¾ 一 ii'iniaQe \ 丄 V r ； .‘ 
, 「 ( 0\ (0\^ =himage 1 一 COS ¢) - - + COS -L V V \ ^ J . 

where hi^age is the maximum height of the image plane, (“ is the object depth for 

column i in the image plane, and dmin is the minimal object depth given by 
/ f ^ ()\ 

di = r cos 0  
V V / i ^ \ ‘ 

dmin = r COS I - I 

Fig. 5.7 shows a panorama segment with curved horizontal edges created with 

PhotoVista™, and its projection oii the image plane after the full perspective cylin-

drical projection as discussed above. Note that the curved horizontal edges in the top 

image are rectified after this process. 
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Figure 5.7: (Top) A panorama segment with curved horizontal edges. (Bottom) The 

same segment texture-mapped onto the inner surface of a cylinder, followed by full 

perspective projection. 

5.3.2 Generating Intermediate Frames 
Imagine what a user observes when lie/slie zooms-in an object with a physical camera, 

ln ilie first place, tlie user could see a. large pari ()f ilie sceiie but wltli little details. 

W h e n he/she zooms-in gradually, more details a,re revealed for each object in the 

scene. Our virtual zooming algorithm also makes use of a, similar idea. The goal is 

thai when a user click on an object ii】our viewer program, a. sequence of intermediate 

frames is generated on-the-fly which progressively morph from a distant view to a near 

view to mimic a forward movement (Fig. 5.8). The main criteria are obviously the 

accuracy of synthesized intermediate frames, and how images segments are aligned. 

As shown in Fig. 5.9, 
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Figure 5.8: Procedure for generating intermediate frames. 
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Figure 5.9: Relationship among visual angles between two panoramas. 
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where ̂ ,知 and Si are the visual angles of an object a,s viewed at nodes Po, Pi and 

Pi respectively, 1 is the maximum overlapping of two panoramas, h is the height of the 

object, Zo and Zi are the depth inforiiiation of the object from Po and Pi respectively, 

and Az is the walkthrough distance from Po to Pj. 

For each possible pair of /。and /]., N pairs of corresponding points q^^ = (uki^ Vki) 

are selected as input, where k 二 0 or 1 is an index to the two source images, and 

i 二 1,…’ N in symbols q, u or v is an index to the z-th corresponding point. This ex-

traction process may be automatic with feature extraction and correlation algorithms. 

However, in our current implementation, we use four pairs of manually-selected points 

because both feature extraction and correlation are time-consuming processes. By 

involving a little user intervention, the running time of oiir program can be tremen-

dously shortened. These points are then used to calculate the linear magnification 

ratio of /。with respect to li along both w-axis and u-axis, so that Wi and W2 are 

given by simple mathematics: 

1 r ] 
wi = - [ m,u — mi ?2o - ?ii + T7coci 

W2 = W �+ 777.1 ni 

where *7coci is the offset of object centroids. 

After the above calculations, we can identify the region in /0 which do not appear 

in /1. Suppose we are going to generate a frame sequence of M frames (including /。 

as the zeroth frame and h as the (M — 1 )-th frame) to zoom-in gradually from /• 

to /1, we would divide those uncovered regions in /。into M — 1 rings. For example, 

to compose the j-th frame I2j (note that we have introduced a second subscript 

j = Q,..., M — 1 as the frame index, in addition to the first subscript k = 0,1 or 2 as 
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Figure 5.10: Boundary coordinates of the M — j — 1 rings in /〇. 

image index), we first calculate the boundary coordinates of the inner most M — j — 1 
rings in /o. 

ln the next step (Fig, 5.10), all we need to do is to magnify the region enclosed 

by W3j and W4j in 1。to the original image size nio x ",o pixels to give I。” and scale 

down I] from size mo x ?7,o to � / � � x n]〕to give I] j. By overlapping /。』and I” within 

a region B bounded by Wi,- and W2, (see below), we have our j-th resulting frame 

J2j in our movie sequence, ln oiir current implementation, all image resizing are done 

by bilinear interpolation, though it would inevitably lead to quality degradation and 

loss of details. In addition, the 3D counterparts of q̂ i should at best lie on a plane 

parallel to the focal plane to get more accurate estimates, ln an ideal case when the 

approximations are accurate, the centroids of /。and /1 should always overlap at a 

point. However, owing to input error and rounding error in practice, the calculated 

centroid positions are only very close to each other. 

Mathematically Wij to W4j are given by: 

Wij = Coj - Cij 

W2j = W i + 777,1, n〜j 

W3j = j (^cj^cj^ -^cj^Co) 
W4j = rriQ rio 一 j (^c,^cj^ + ^cj^co) 

where Ckj is the object centroids from “ with respect tx) the resulting image I2j, 

mij 7iij is the new image size for /、” <̂c,oC/i is the incremental offset of image 
^ J 

plane centroids, and Scĵ co is the incremental offset between image plane centroid and 
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Figure 5.11: Weight function g{dij) for stitching images. 

object centroid (cf. Appendix for derivation). .' 

In addition, a weight function g ( d i j ) e [0,1] is defined (Fig. 5.11) with respect 

to Iij. This function has two important characteristics: First of all, it has a constant 
r 1 T 

value of 1 for u v G B such that the central area, of /27 consists of mainly I i j 

(as can be seen at the flat mountain tip in Fig. 5.11). Secondly, a. cubic function in 

Eq. (5.1) is used to decrease its weight exponentially towards the image boundaries 

(as can be seen at the peripheral cubic slopes). It should be note that our particular 

choice of fall-off function is not unique, Eq. (5.2) or similar functions can also be 

used. 

iT 
g(dij) = 1, u V e B 

_ {d,,-i-d,,f ]T 
-,3 , (,—；~~r^3' “ ” t B 5.1) di:, + ( ( h j - [ c h j ) � 
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, K _ ) = c o s ( ^ ^ ) (5.2) 

. ]T . 

where dij is the perpendicular distance of an image point u v under consider-

ation to the nearest edge of region B , and d>2j is the maximum among all dij. 

In this way, I2j can be given by the stitching formula: 

I2j = [1 - g((hj)] loj + g(dij) ,ij 

so that for the first few frames, /•, lias exclusive significance and less is taken from Iij. 

Then as j increases, the contribution from /”• grows quickly while that for /oj decays. 

Tlie motivation of using this rather odd weight function is that, to compensate for 

the problem of insufficient resolution in digital zooming, 7o.? must contribute heavily 

for the first few frames while 1” pla.ys a major role in subsequent frames. Indeed, 

/20 = /0 and l2{M-1) = h' The final effect would be like niorphing from /0 to /1. 

Up to this stage, a. series of intermediate frames can be generated. However, owing 

to lens imperfection and accumulative errors in coordinate calculations, noticeable 

ghosting or stitching borders may be found in synthesized frames, even they are 

gradually fading away. An example is shown in Fig. 5.12 (left), which is the fifth 

frame of a 10-frame sequence. Note the blurring around frame center as a result of 
f/ 

combining /04 and /14. To tackle this problem, we liave to ta.ke into account the 

merging of /。)_ and Iij more carefully, and use certain image stitching strategies. A 

much better result is obtained in Fig. 5.12 (right), which clearly demonstrates the 

improvement and effectiveness of oiir strategies. 

First of all, a correlation filter is implemented to locate genuine feature points in 

the neighborhood of user-selected points, and register these probably more aceurate 

and reliable feature points instead. Since only a few small windows are of concern, 

the computational efforts in refining manually-selected feature points are minimal. 

In addition, /。and /1 are first pre-processed to smooth out any observable difference 

in intensity levels or image quality. However, its computational complexity may 

sometimes out-balanced the improvement in image quality, and there is a trade-off 

between output image quality a,ii(l algorithm execution speed. 
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p y c H 
I ^ H E J 9 
Figure 5.12: Synthesized frames: (left) without stitching optimization, (right) with 

optimization. 

5.3,3 Occlusion Handling 
Theoretically speaking, forward na.vigation from Po to P^ iiiduces an occlusion prob-

lem on tlie background scene, as ca,ii be seen by the fact that "。。> "oi hi Fig. 5.13 

(the second subscript denotes tirne instants). This problem is due to the fact that 

according to the formulation of the full perspective projection, the projected size of 

an object in the image plane ¢^ depends on its dimensions in the 3D object space 

and varies inversely-proportional to its depth (Z{), so that a, nearby object will always 

has a higher rate of change in image size than that of a distant object whenever there 
“ 

is a transition of viewpoint: 

洲， 1 
^ oc -0Zi Zi 

and 

^^^ d^, 
- ~ ~ > ~ ^ . dzi dzj ‘ 

for any Zi < Zĵ  where |.| denotes absolute value in this occasion. These unequal 

rates of change in image sizes create an occlusion problem that some part of the 

background would be occluded by nearby objects in front of the camera, especially 

when the background scene is very far behind those foreground objects. But for 

practical purposes, if the depth disparity between foreground and background is small 
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Figure 5.13: Background occlusion by nearby objects in panoramic walkthrough. 

relative to that between camera and background, and that the translation in camera 

viewpoint Az is small, we may take the following assumption: “ 

loi = m 
Without loss of generality, 

0 , " , = � & 
so that given any three features visible in both panoramas with their dimensions in 

the 3D object space , we could further enhance our walkthrough algorithm to handle 

partial occlusions: 

1. Get a circular patch of pan()m.mic segment of visual angle [0,¾] from Po. 

2. Scale up this segment so that it covers a, visual angle [0,(̂ ]̂ from P” 
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3. Get another circular patch of panoramic, segment of visual angle | — 7y-, | to 

cover a visual angle of (̂ " | in P,. 

5.4 Experimental Results 
Eleven panoramic images of size 2700 x 300 pixels were used to test our algorithm. 

Figs. 5.14 to 5.16 show part of the movie sequences. For each figure, frames (a) and 

(f) are the two panoramic segments (/。and ii), while frames (b) to (e) are synthesized 

intermediate frames between /。and /i. 

With our Matlab 5.1 implementation executed on a. Pentium II 300 PC, it takes 

about 20 minutes to synthesize a. 10-frame movie sequence at a, resolution 500 x 300 

pixels. O n the otlier hand, our Visual C + + implementation takes about 15 seconds 

to generate the same movie sequence a.t a.n even higher resolution 756 x 504 pixels on 

the same machine. Such processing time can be further reduced if source images of 

lower resolutions, e.g. 300 x 200 pixels, are used. Although there are noticeable delays 

in generating a sequence on-tlie-fly, the resulting image quality is much superior to 

the case of digital zooming (pixel enlargement), as can be seen from the sharp feature 

outlines in the figures above. This clearly demonstrates the value of our algorithm, 

and justifies itself for the cost. 

5.5 Discussions ., 
W e have implemented an algorithm to bridge two mosaic nodes smoothly and real-

istically. Though there is still room for improvements, our methods can synthesize 

intermediate movie frames to simulate panoramic walkthrough with minimal sacrifice 

in image quality and execution speed. W e are currently investigating the following 

possible enhancements: ‘ 

1. Other computer vision tools may be applied to enhance both the speed and 

output quality in panoramic walkthrough. For example, as there are viewpoint 

difference among starting and ending nodes, epipolar geometry [89] may be used 

to estimate the fundamental matrix F and transform the 21) feature matching 

search space down to ID. Together with model fitting methods like R A N S A C 

19], information about F helps to drop out significant portions of false matches 

which effectively increa.se the image quality in synthesized views. 
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Figure 5.14: Sample movie sequence #1 . Frames (a) and (f) are source images, and 
frames (b) to (e) are synthesized intermediate frames. 
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Figure 5.14: Sample movie sequence #1 . Frames (a) and (f) are source images, and 
frames (b) to (e) are synthesized intermediate frames. 
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^̂^̂^̂MHRHHB88KIPIHRMt@llfî ŜS£̂SISISSS89BflH9̂l̂.::‘'̂^̂ .̂..:j - ‘ ̂^̂ 151̂ 81̂ 8̂1̂ ^̂ 1̂ 8̂ ^̂ ^̂ ^̂ ^̂ 8̂¾¾¾ 
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Figure 5.14: Sample movie sequence #1 . Frames (a) and (f) are source images, and 
frames (b) to (e) are synthesized intermediate frames. 
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2. The performance of our panoramic viewer is greatly affected by the resolution 

and size of the source images. For example, synthesizing a single 500 x 300 

pixels frame takes about two minutes, while the time required for a 1000 x 500 

frame is over five minutes, with our Matlab implementation. Our next goal is 

to incorporate a more efficient spatial pyramid to minimize this effect. 

•• 



Chapter 6 
Conclusion 
An iterative algorithm based on the Gauss-Newton method for the Perspective-3-

Point (P3P) problem is derived. A majority of existing methods make use of linearized 

camera models (e.g. weak-perspective projection model) to ameliorate problems that 

arise with closed-form perspective solutions (such as ambiguity and ill-conditioned 

error propagation). Unfortunately, these models are approximations which validity is 

sometimes questionable in practice. In our system, by given the 3D dimensions of a 

rigid body in the object space, its motion parameters, R and t , are calculated from 
subsequent image points under the full perspective projection model. Both real images 

and synthetic data have been used to verify our algorithm, showing that it is efficient 

(a thousand frames in 0.11 sec.) and may be employed for real-time applications. 

Another major contribution of our work is the enhancements to the classic P3P 

formulation to reduce multiple solutions. Applying our proposed constraints to the 

P3P calculations greatly simplifies the efforts in locating unique control points for 

view synthesis. Model fitting methods like R A N S A C may be used to further improve 

the system reliability. 

O n the other hand, a robust model-based walkthrough algorithm is proposed and 

implemented. Traditional approaches to navigate in a virtual environment are usually 

accomplished by viewpoint-hopping techniques (jumping from one node to another 

instantaneously) that provide users with little sense of scene immersion. Also they 

require massive storage space and support from expensive graphic hardware. By 

applying computer vision techniques like P3P, our method can estimate the depths 

of feature points in the 3D space from their subsequent image point correspondences. 

Based on this sparse point correspondences and the 3D object dimensions, appropriate 

121 
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segments are extracted out from source mosaic images to synthesize intermediate 

views. Real panoramic images have been used to verify our method with satisfactory 

results. More research work will be focused on relaxing the requirements on apriori 
point correspondences or feature dimensions, and the further application of computer 

vision methodologies in creating realistic walkthrough video sequences. 

“ 



Appendix A 
Formulation of Fischler and Bolles， 
Method for P3P Problems 
With all the assumptions and simplifications made in Chapter 3, and by using Cosines 

rule for each pair of line-of-sight, we can get a set of quadratic equations involving 

the unknowns. The resulting system in /12, /13 and /23 is shown below: 

i l 2 = | O p 2 | ' + |Op3|2 - 2 | O p 2 | | O p 3 | " 2 3 

'L = |OPi|2 + |Op3|2-2|Opi||Op3|pi3 

2̂3 = |Opi|2 + |Op2|' - 2 |Opi| |Op2| Pi2 
where 

n 

p23 = cos(Zp2Op3) = ( 6 p ^ . 0^3)/(|0p2| |0p3|) 

P l 3 = C O s ( Z p 1 O p 3 ) = ( 6 ^ 1 . O ^ 3 ) / ( | O p 1 | | O p 3 | ) 

P12 = cos (Zp1Op2) = ( 6 p i . Op2) / ( |Opi | |Op2|) 

- ^ • ^ " ^ - — ^ _ - ^ - — ^ 

and O p i , O p 2 , O p 3 are unit vectors along directions O p ” O p 2 and O p 3 respectively. 
Expressing |Op2| and |Op3| in terms of |Opi 

Op2| = c j i |Op i | (A.la) 
O p 3 | = u ; 2 | O p 1 | (A.lb) 

we have 

123 
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ll2 = ^1 |Opi|'+a;^ |Opi|2 - 2cjicj2 |Op1|V23 (A.2a) 

/?3 = |Opi|' + cj2 |Opi|2 - %J2 |Opi|Vi3 (A.2b) 

/23 = |Opi|' + o;? |Opi|2 - 2u, |Op1|V12 (A.2c) 

From Eqs. (A.2a) and (A.2b), 

/12 [1 + ^\ — 2u;2Pi3] = 1̂3 [^\ + ^2 一 2u;i<̂ 2P23] (A.3) 

From Eqs. (A.2a) and (A.2c), 

lu [1 + ^1 - 2u;1P12] = 2̂3 [^i + ^2 - ^^1^2P23] (A.4) 

Let (|j^)2 = cj3 and (j^)? = cj4, from Eqs. (A.3) and (A.4), 

Ĉ 2 (1 — ^3) + 2u;2 [^3plZ - ^lP2^ + ^1 _ ^3 = 0 

Û 2 一 2ct̂ iCJ2̂ 23 + ^1 (1 一 W4) + 2u;i^Pl2 — ^4 = 0 (A.5) 

Eq. (A.5) has the form: 

“ 

mijj\ + puj2 + q = 0 (A.6a) 

m'Jl + p'u2 + g' = 0 (A.6b) 

Multiplying Eqs. (A.6a) and (A.6b) by m' and m respectively and subtracting, 

(pm, - p'm) U2 + {m'q - mq') = 0 (A.7) 

Multiplying Eqs. (A.6a) and (A.6b) by q' and q respectively, subtracting and 
dividing by a;2, 

{m'q — mq') Lo] + {p'q - pq') uj2 = 0 

{m'q - mq') U2 + (p'q - pq') = 0 (A.8) 
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Multiplying Eqs. (A.7) by (m'q — mq') and (A.8) by (pm' — p'm), and subtract 

to obtain 

2 

(m'q — mq') — {pm' — p'm) {p'q — pq') = 0 (A.9) 

Expanding Eq. (A.9) and grouping terms we obtain a quartic polynomial in u� ! � 

G4u;t + G^^l + G2ujl + GicJi + Go = 0 (A.10) 

where 

G4 = {0j3LO4 一 W3 — cj4)2 — 4a;3a;4/)23 

Gs = 4cJ4 (1 - 0；3) (u;3a;4 - CJ3 - LO4) /9i2 

+ 4u;3P23 [(^3^4 - ^3 + ^4) Pi3 + ^^AP12P23. 
G2 = [20；4 (1 - cJs) P i ^ + 2 (cj3cj4 + cj3 - uj4) (w3a;4 - uj3 - cj4) 

+ 4cJ3 [(^3 - ^4) pl3 + (1 - W4) ̂ 3pL - 2ĉ 4 (1 + 灼 ) P n P l 3 p 2 3 . 

Gi = 4cJ4Pi2 (1 - ^3) (̂ 3̂ 4̂ + ^3 - ^4) 

+ 4cJ3 [(^3^4 — ^3 + ^4) P13P23 + ^^3<^4pupl3. 
Go = (cj3cj4 + u;3 — uj4f - 4ulu4pl^ 

“ 

For each positive real root of Eq. (A.10), we determine a single positive real value 

for each of the sides | O p J and |Op2|. From Eq. (A.2c) we have 

|Op1| = /23 (0；卜20； 1�+ 1 ) - " 2 

and from Eq. (A.la), we can find |Op2| as ‘ 

Op2| = U；! |Opi 

If m'q + mq', then from Eq. (A.8) we have 

p'q - pq' ,A 11� 
^2 = ~": (A.11) 

mq' — m'q � ‘ 
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If m'q = mq', then Eq. (A.11) is undefined and we obtain two values of u02 from 
Eq. (A.2b): 

^2 = Pi3 士 [/̂ 3 + ^ 3 - |Opi|2) / |Opi|2]"2 

For each real positive value of W2, we obtain a value of | O p J from Eq. (A.lb): 

Op3| =u;2|Op1 

With this formulation of | O p J , |Op2| and |Op3|, Zi, Z2 and z^ are given by: 

: l = [ | O P l | 2 / V W + ”? + /2)]"2 

Z 2 = [ l O p , f f / { u U v l ^ f ) Y ^ ' 
z s = [ l O p , l ' f / { u l ^ v l ^ f ) f ' 

“ 



Appendix B 
Derivation of zi and 2:3 in terms of 
^2 

From Eq. (3.15)，Eq. (3.18) and Eq. (3.19), 

ll2P = >̂ izl - 2X4Z1Z2 + X2zl (B.la) 

ll3P = >^i4 - ^hz1z3 + Xszl (B.lb) 

/23f = >^2zl 一 2XeZ2Z3 + A3̂ 3' (B.lc) 

Without loss of generality, rearranging (B.la) gives 

Xizl - 2X4Z1Z2 + \2zl - ll2f^ = 0 
Dividing both sides by Ai, and completing the squares for zi and Z2 gives “ 

( , A ^ y j A , / A 4 V l , l l P n 

r^ “ y.'V ^ [ ^ " U J J ^ ^ " ^ = ' 
or 

f A4 V i\,p [A2 f x , y ] 2 Zl - T-Z2 = — — - — Z； 
\ ^1 / Ai |̂ Ai \Ai/ J 

SO that 

之1 = 去 i V ^ ^ / ' A i - ( A i A 2 - A ^ zl + A4^2 ^ • 

1 「 , 
二 — ±V^+A42;2 

Al L 
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by Eq. (3.21a). Similarly, Z3 can be expressed in terms of z2 from Eq. (B.lc) and 

Eq. (3.21b) as 

1 � _ 
々 = : ± y / l h P > ^ 3 - { X 2 X 3 - X l ) ̂1 + Aê 2 

1 r 1 
= — ± V ^ + 入6:2 

^3 L J 

•I 



Appendix C 
Derivation of ei and e2 
Rearranging Eq. (3.22a) gives the following error function: 

ei [z1,z2) = {Xizl - 2X^ZiZz + \zzl — l l J ^ f 
On the other hand, the object centroid (2��, Vĉ  :c) as calculated by the three given 

object points is 

( � _ (Xi + X2 + Xz yi + y2 + y3 Zl + Z2 + 幻、 

(工。yc, Zc) = V 3 ， 3 , 3 ) 

which after full perspective projection gives 

f xi + x2 + a:3 ,?/i + J/2 + y3\ 
(̂ c,i,̂ c,i = f ~ " - ~ ~ 7 ^ J — ~ ~ — 

V 1̂ + Z2 + 23 Zl + Z2 + 23 / 
_ ^UiZi + U2Z2 + U32;3 1̂̂ 1 + ̂ 2̂ 2 + 仍~̂3、 " 

\ ^1 + Z2 + Z3 ， Zi + Z2 + Z3 J 
= / T ^ U j Z i Y^VjZi^ 
— \ ~ ^ ' ~ ^ ) 

However, the same image plane should have also been calculated via the three 

given image points as 

( 、 f / h f^2\ {uc,2^Vc,2) = ( ^ y , y ^ 

Thus 62 is given by 

e , - m a x f f ^ ^ ^^V (^'^'^ ^A^] e 2 - m - � � ^ 3 - y J A ^ - y J 1 
from Eqs. (3.23a), (3.23b) and (3.23c). 
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Appendix D 
Derivation of the Update Rule for 
Gauss-Newton Method 
Rearranging Eq. (3.22a), we get another form for e! {zi^zz) in terms of Z2 

e1[z2) = Xizl - 2XsZ1Z3 + Xszl - llJ^ 

dei dzi dzi dz3 dz3 ^ = 2Ai2i- 2XsZ3- 2 A 5 Z 1 — + 2A32:3-0z2 0z2 0z2 0z2 0z2 
= 2 (Ai^i - X5z3) 1 ^ - 2 (X5Z1 - X3z3) 1 ^ 0z2 0z2 

zi = Y^ ±V ^ / 2 A i - ( A i A 2 - A D ^2 + ^4^2 

尝 = 1 [土 [ i y x , — (A1A2 - A ^ | 1 h (A1A2 - A^) z2] + A； 

= + T " ^ ( A i A 2 _ A D 2 2 + A4 
Ai L v ^ i . 

幻 = 去 i V ^ / ' A 3 - ( A 2 A 3 - A ^ )叫 6 : 2 • 

dz3 1 「 1 ‘\ 、 、2、 、 
K = # # A 2 A 3 _ A 6 " 2 + A6 . 

Then by the Gauss-Newton method, the depth estimate z^ can be updated ac-
cording to the following formula, 

dti 
2̂,n+l = 2̂,n + ^L- 

C22,n 
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where z2,i is the estimation after i iterations，and a is a stabilization factor less than 
1. 
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Appendix E 
Proof of ( A 1 A 2 - A | ) . > O 

(A1A2 - Xl) 
=(uf + '“？ + f ) {u? + ”？ + n - {u[u', + ^/i^4 + /2)2 
二 (u';u';+uy^+u'^r+u'x+v'x+v?f+</2+”?p+n 

-{u'^u'^ + v[h^ + /4 + 2u[u'^v[v'^ + 2u[u'j' + 2v[v'J^) 
= K < - 2u[vW2v[ + t4Vi2) + {u?f - 2u[u',f + u?/2) + {v^f — 2v[v',f + v ^ f ) 
=(u'A - ^Wif + f « - < f + f W - v',f 
> 0 

The last step in the above proof follows from the fact that the three image points 

are distinct and that the second and third terms cannot be zero simultaneously. 

Similarly, (A2A3 - A^) > 0. “ 
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Appendix F 
Derivation of (/> and ĥ  

^ = _ i _ ( . _ i ) + ^ . 

^image ^^image 
0 “ 1、 

= (z - - ) 

^image ^ 
Given di, dmin and dmax as 

( e\ 
di = r cos ¢)—-

V 2/ 

, fO\ 
dmin 二 rCOS ̂ -

d^max — r 
“ 

小 _ f} . ( rJ _ \ 
I 一 I I ^1 ^mtn I 1 ^min 
"i 一 f^image 一 ^image ^ ] ] X 丄 一 j 

^max 一 ^min \ ^max} ( d — d \ 
一 f I 1 "t ^min 

— I^ i m a g e 丄一 
V r y 

= h i m a g e 1 - COS ^(/> - ^ + COS ^ ^ . 

where dmax is the maximal object depth. 
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Appendix G 
Derivation of wij to w4j 
Let mo X n�be the image size of Ik, where mo is the number of columns and no is 
the number of rows, and the first subscript k = 0 or 1 is an index to the two source 

images. The image content in /i is assumed to be completely enclosed in a rectangular 

region inside 1。of size mi x ni, which upper-left and lower-right corners are denoted 

by Wi and W2 respectively (so that a scaled-down version of /1 would properly fit into 

the region enclosed by Wi and W2 in /0, probably with some misalignments). 

For each of the possible pair of 1�and /1, N pairs of corresponding points q^,= 
[ukî  Vki) from Ik are selected as input, where k = 0 or 1 is an index to the two source 

images, and i = 1,..., N in q, u or v is an index to the z-th pair of corresponding 

points. These points are then used to calculate the linear magnification ratio of /。 

with respect to /1 along both w-axis and u-axis: 

1/ 

u ratio = m a x ! u i a i _ u ^ 
max (u0a3 - u0a4) 

max(t;ic,i - via2) , , 
” ratio = ^ , ai + a2,a3 + a4 

max (t;oa3 一 VoaJ 
rrii rii is then given by: ‘ 

mi ni = u ratio x mo v ratio x no 

We further define the object centroids Ck and the image plane centroids c/^ as 
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(1,1) 、 
个 i. 

w 1 ^ ^ Region not 

^ covered in 1̂  

X 
"1 〜 qo,q" ^ « , , 

^ _̂>><>__̂  Border of 

/ ^ ^ ""^^^ intersection 
山 1 ^ r ^ �f F\ 

/0 ^2 

r K > V < ‘ > 

� < > 
Figure G.1: Notations and conventions. 

1 N 

^^ = 7 7 E ^ -
J=1 1 

c/fc = - [ rrik Uk 

giving the offset of object centroids r)coci， 

n 

VcoCx = Co — Ci 

SO that Wi and W2 are given by simple mathematics: 

1 ] 
wi = 2 [ _ 一 叫 彻 一 … + ^coCi , 

W2 = Wi + rrii rii 

After the above calculations, we can identify the region in /0 which do not appear 

in /1. Suppose we are going to generate a frame sequence of M frames (including /。as 

the zeroth frame and as /1 the ( M - l)th frame) to zoom-in gradually from /。to /1，we 

would divide those uncovered regions in /。into M - 1 rings. For example, to compose 

the jth frame I2j (note that we have introduced a second subscript j = 0，..., M — 1 

as the frame index, in addition to the first subscript k = 0,1,2 as image index), we 
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• m ... . ,i:i....... .、... 
^ 3i 'f. ^ ,.¾¾-.-
tf_v>jJ" X!* ^ , • * • � * � ̂ • • “ Ĵ * . T ..* • • • 
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Figure G.2: Boundary coordinates of the M — j — 1 rings in /。. 

first calculate the boundary coordinates of the inner most M — j — 1 rings in /0 (Fig. 
5.10). 

In the next step, all we need to do is to magnify the region enclosed by W3j and 

W4j in /0 to the original image size mo x no to give /oj, and scale down /1 from 
size mo x no to rriij x nij to give Iij. By overlapping Ioj and Iij (with additional 

feathering and other stitching tools to smooth out image difference within region 

bounded by Wij and W2j), we have our jth resulting frame I2j in our movie sequence. 

In our current implementation, all image resizing are done by bilinear interpolation. 

However, it should be note that, to get more accurate estimates, the 3D counterparts 

of qki should at best lie on a plane parallel to the focal plane. In an ideal case when 

the approximations are accurate, the centroids of /。and /1 should always overlap at 

a point. However, owing to input error and rounding error in practice, the calculated 

centroid positions are only very close to each other. 

Mathematically W3j and W4j are given by: 

W3, = j X (<Jc,oC,i - <Jc,oCo) 
_ « 

W4j = mo no _jx(dcioCji+<$CkCo) 

where Scĵ cĵ  is the incremental offset of image plane centroids, and Scĵ co is the 

incremental offset of image plane centroid with object centroid: 

A — C/o - c/i 
。c/。c,i = l i T T T 

c _ C/o - Co 
〜。c。= j ^ f Z T 
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W e further find the new image size for Iij - mij riij : 

「 1 mo ^0 rriij riij = mi ni  
L L 」W 4 j — W3j 

and the object centroids from /。and /1 with respect to the resulting image I2j are 

mo no 
Coj = (Co - W3j) . ̂   

W4, - W3j 

c“ = ci . [ ̂  ^ 

J 1 mo no 
and eventually 

Wlj 二 Coj — Cij 

W2j = Wi + mij riij 

“ 



Appendix H 
More Experimental Results on 
Panoramic Stitching Algorithms 

•I 

1^^^ 
Figure H.1: Sample panorama # 1 by 8-parameter planar projective transformation algorithm. 
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P W i i _ i n P j ^ M ^ ^ ^ ^ ^ * ^ ^ ^ ^ S ^ i M B ^ ! ^ i l ^ m M q 
Figure H.2: Sample panorama # 2 by 8-parameter planar projective transformation 

algorithm. 
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Figure H.3: Sample panorama # 3 by 8-parameter planar projective transformation 

algorithm. 
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i ^ ^ M 
Figure H.4: Sample panorama #1 by 3D rotational alignment algorithm. 

^ ^ ^ ^ ¾ 

Figure H.5: Sample panorama # 2 by 3D rotational alignment algorithm. 
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Figure H.6: Sample panorama # 3 by 3D rotational alignment algorithm. 
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Figure H.7: Sample panorama # 1 by our stitching algorithm. 
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Figure H.8: Sample panorama # 2 by our stitching algorithm. 
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Figure H.9: Sample panorama # 3 by our stitching algorithm. 
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