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ABSTRACT
“Hyperspectral Data Analysis of Typical Surface Covers in Hong Kong”
Submitted by MA Fung-yan

for the degree of Master of Philosophy
at the Chinese University of Hong Kong in June, 1999

Subtropical environment is characterized by a great diversity of flora that is
increasingly. vulnerable to human impact. It is hoped that hyperspectral data which
have been extensively studied for environmental monitoring in other areas will insert

new insight to this environment.

In this study, a high resolution spectrometer was available for taking
hyperspectral reflectances of a selected number of surface covers. Spectra of 25 tree
species were measured in the laboratory for four seasons. 138 bands of the original
spectra from 400 nm to 900 nm together with their first and second derivatives were
used for tree species recognition. /n situ spectral reflectance were also taken for ten
surface covers including several tree species, grass, fern, water and concrete. A

hyperspectral database was then set up.

Identification of the 25 tree species using linear discriminant analysis and
artificial neural network yielded satisfactory results with overall accuracy of more
than 70% using original spectra. Both classifiers generated similar results using the
original spectra. For the first and the second derivatives data, neural network yielded
better results than linear discriminant analysis which generated very poor results with
overall accuracy under 26%. However, linear discriminant analysis was still

recommended for classification of hyperspectral data as neural networks were



inefficiently slow and difficult to use.

Results also showed that the use of derivatives spectra could not improve tree
species recognition in this study. Using the original spectra produced better
classification results compared with using either the first or the second derivatives
spectra. Meanwhile, using the first derivatives spectra performed better than using the
second derivatives spectra. Seasonal comparison of 21 tree species indicated that
seasonal vaﬁability affected the results of tree species recognition significantly.

Autumn and winter data outperformed those in spring and summer.

Principal components analysis was applied to both the in sifu data and the
laboratory data. It was shown that hyperspectral data possess extra information which
traditional broadband multispectral data do not have. PC3 and PC4 contained useful

information for understanding and interpretation of hyperspectral data.

Results of band selection indicated the redundant nature of hyperspectral data.
Appropriate band selection was essential for tree species recognition and improved the
classification results significantly. It was found that the spectral bands along the edges
including two edges before and after the green peak as well as the red edge which were
neglected in traditional broadband multispectral sensors tended to contain useful

information for tree species recognition.
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CHAPTER ONE

INTRODUCTION

1.1. Introduction and background

In the past decade, hyperspectral data analysis has generated wide interest in the
remote sensing community. From in sifu measurement with imaging spectrometers to
airborne hyperspectral imaging, studies have been undertaken covering a wide range
of applications such as forest monitoring (Blackburn and Milton, 1997), vegetation
biochemistry (Curran, 1989; Wessman et al., 1989; Yoder et al., 1995 and Zagolski
et al., 1996) and classification of soil spectra (Palacios-Orueta and Ustin, 1996).
However, few hyperspectral studies have been done in the tropical and subtropical
areas. Indeed, these areas comprise of a great variety of flora and fauna that cannot
be found in other areas. Increasing population pressure and human activities have put
tremendous pressure on these environments and has alerted increasing concern on the
conservation and preservation of these resources. There is a great potential for using
hyperspectral sensors in environmental monitoring and protection in the tropical and

subtropical areas.

For the conservation and preservation of forest resources, it is essential to have
effective forest management which depends greatly on correct recognition of tree
species. Conventionally, reliable recognition of tree species is made by costly and
labor intensive field surveys and interpretation of large-scale aerial photographs.
Broadband multispectral images can successfully distinguish between broad-leaf and
conifer trees (Nelson et al., 1985 and Shen et al., 1985). Other studies using

broadband data can classify more detailed forest types (Frank, 1988; Skidmore,



1989; Franklin, 1994; Foody, 1994 and Schriever and Congalton, 1995). However,
identification of individual tree species remains unresolved due to limitations of
spatial and spectral resolution of the broadband multispectral sensors. If individual
tree species can be successfully recognized by hyperspectral data analysis, it would
have significant implications to the remote sensing community and to ecological and
environmental researches. Recently, Gong ef al. (1997) successfully identified six
conifer tree species in Sierra Nevada, California using in situ hyperspectral data with
high accuracy. It shows the potential of hyperspectral data for tree species
recognition. It has significant implication to similar work in the identification of

tropical and subtropical tree species. However, two difficulties exist.

First, tropical and subtropical forests are a mosaic of many different tree species
and a pure stand of any one species seldom exists. In contrast, temperate and boreal
forests are made up of relatively few tree species with a common occurrence of a
pure stand of one species or a mix of few species. As a result, it is more difficult to
thoroughly investigate the classification of individual tropical and subtropical tree
species than temperate tree species with the limited spatial resolution of the currently
operating airborne hyperspectral sensors or the developing spaceborne instruments.
Martin et al. (1998) determined the forest species composition using AVIRIS data of
‘which spatial resolution is 20 m. They can only classify the forest species into eleven
categories which exhibits a general similarity in tree species composition. It indicates
that spatial resolution is also an important factor for identification of individual tree
species besides spectral resolution. It also shows that the nature of tropical and
subtropical forest as a mixture of many different tree species may be a problem for

the identification of individual tree species.



The second difficulty is a more crucial concern for tree species recognition.
Tropical and subtropical forests typically contain a huge number of different tree
species. It is not uncommon that more than hundreds of tree species are found in a
tropical forest in a particular area. Although hyperspectral analysis has proved to
recognize some individual tree species successfully in previous studies (Gong et al.,
1997), it is doubtful whether the spectral variations in the reflectance spectra of those
hundreds or thousands of tree species can be detected and discriminated among one
another by hyperspectral data. Thus, hyperspectral separability of tropical and

subtropical tree species must be investigated.

Besides the ability of hyperspectral data for the identification of tree species, an
understanding of the intrinsic properties of hyperspectral data in tropical and
subtropical environment is also essential. Hyperspectral instruments can acquire data
from hundreds to thousands of channels. However, some studies found that
hyperspectral data contain a large number of redundant bands (Baret, 1995; Warner
and Shank ef al., 1997 and Thenkabail ef al., 1999). For any particular applications,
there should be an optimum set of wavebands, waveband centers and waveband
widths required to maximize information. For vegetation, Curran (1989) found 42
bands from 400 nm to 2400 nm that are correlated with the concentration of organic
compound such as cellulose, lignin and protein in leaves. Martin et al. (1998)
selected nine AVIRIS bands which were closely correlated with field measured
canopy nitrogen and lignin concentration to classify forest cover types. Thenkabail
et al. (1999) recommended twelve bands along with their bandwidths in the visible

and near-infrared spectral region as optimal number of wavebands required for



extracting agricultural crop biophysical information. The wave bands that were
selected by the above three researchers are not consistent with each other. The only
conclusion that can be drawn is that useful information of vegetation characteristics
contains in several bands from the visible to the mid-infrared region. However,

determining which wave bands are important still needs more study efforts.

1.2. Objectives

As few - hyperspectral studies have been done in tropical and subtropical
environments, hyperspectral data in the subtropical environment of Hong Kong are
intended to study in this research. Hong Kong is located in the subtropical monsoon
climate zone in South China with highly urbanized areas as well as non-agricultural
mountainous areas. It has a relatively well-preserved natural environment with over
300 tree species although only 13% of the 1080 square kilometers territory is covered
with woodland (Thrower, 1988). It is an excellent representative to South China

areas.

This study aims at setting up a hyperspectral database of typical surface covers
in Hong Kong. The database contains a selected number of surface cover types that
commonly appear in an image scene if seen from satellites, with an emphasis in tree
species. With the hyperspectral database, the spectral separability of subtropical tree
species is studied to give insights to the problem of subtropical tree species
recognition. Algorithms for tree species recognition are tested and compared in order
to determine the most promising techniques for tree species recognition. The inherent
hyperspectral data structure is then investigated with the help of principal

components analysis and band selection to determine which spectral bands or regions



are useful for vegetation studies especially tree species recognition.

To summarize, the three objectives are

1. to measure hyperspectral reflectance of a selected number of surface covers, in
particular tree species in the subtropical environment of Hong Kong and set up a
hyperspectral database,

2. to examine the ability of hyperspectral data for identification of subtropical tree
species and

3. to understand the inherent data structure through principal components analysis

and band selection.

1.3. Significance

This research is the first hyperspectral study in Hong Kong. The hyperspectral
database generated in this study can be used as a reference to the general remote
sensing community and particularly to the users of hyperspectral data in Hong Kong
and its surrounding areas. The results of band selection can help the design of the
future generation of hyperspectral sensors to carry the optimal band set. It is hoped
that the success of this pioneer research will lead to more applications of
hyperspectral data in land use studies, forest management and environmental

protection in Hong Kong as well as other areas particularly South China in the future.

1.4. Organization of the thesis
The thesis is divided into six chapters. Chapter One introduces the problem and
background of this research. The objectives and the significance of this study are

stated in this chapter. Chapter Two is the literature review. It briefly introduces what



hyperspectral remote sensing is all about and the current hyperspectral sensors
available including airborne and spaceborne sensors and field spectrometers. The
applications of hyperspectral remote sensing are also mentioned focusing on
vegetation studies. Finally, previous studies and analytical techniques of tree species
recognition, data compression and feature extraction are discussed and reviewed in
detail. Then, Chapter Three goes into the details of the experimental design and
methodology of this study. The study site, data collection and methods of data
analysis will be described in detail in this chapter. Chapter Four presents the results
and discussions for tree species recognition whereas Chapter Five covers the results
and discussions for data compression and feature extraction. Finally, Chapter Six is

the summary and conclusion of this study.



CHAPTER TWO

LITERATURE REVIEW

2.1. Introduction

This chapter presents a literature review for this study. The literature review
is mainly divided into three parts: introduction to hyperspectral remote sensing, tree
species recognition, and data compression and feature extraction. In the first part,
hyperspectral remote sensing is introduced briefly explaining what hyperspectral
remote sensing is. The current hyperspectral instruments available are mentioned. A
brief review on the applications of hyperspectral remote sensing is presented with a
focus on vegetation studies which include biochemistry of vegetation and spatial and
temporal patterns of vegetation. In the second part, another application of
hyperspectral remote sensing, tree species recognition is discussed in detail. The
factors affecting the spectral reflectance of vegetation, the classification algorithms
used for tree species recognition and a review on tree species recognition using
hyperspectral data are described and discussed in this part. Finally, the analytical
techniques used in data compression and band selection are reviewed in the third

part.

2.2. Hyperspectral remote sensing

Hyperspectral remote sensing, or imaging spectrometry are techniques that
acquire spectral data or images in many, very narrow, contiguous spectral bands
throughout the ultraviolet, visible, near-infrared and mid-infrared regions of the
electromagnetic spectrum (Lillesand and Kieffer, 1994). Typically, several hundreds

channels of data can be collected for every pixel in the scene, thus, providing us a lot



more information than the conventional broad-band imagery such as Landsat or
SPOT images. Hyperspectral imaging permits discrimination among earth surface
features that have diagnostic absorption and reflectance characteristics over narrow
wavelength intervals that are lost within the relatively coarse bandwidths of the
various channels of a conventional multispectral scanner. Price (1994a) has analyzed
the spectral properties of various materials and concluded that high spectral
resolution, of the order of 10 nm, would permit unique discrimination of a wide
range of surface types such as rocks, soils and vegetation. Therefore, hyperspectral
imaging provides opportunities for us to improve our understanding of the Earth’s

surface.

2.2.1. Current imaging spectrometers available

Currently several airborne imaging spectrometers are operational and
spaceborne systems are being developed and will be launched soon (Curran, 1994
and Kunkel ef al., 1997). The most commonly used and successful airborne imaging
spectrometer is Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS)
developed by NASA (Green, 1994). The AVIRIS sensor acquires data in 224
contiguous spectral channels covering spectral region from 400 nm to 2500 nm of
approximately 10-nm bandwidth. It became operational in 1989. Another one is
Hyperspectral Digital Imagery Collection Experiment (HYDICE) which is in service
since 1996. The HYDICE sensor acquires data in 210 channels from 400 nm to 2500
nm. Its spectral resolution ranges from 3 nm for the short wavelengths to 10-20 nm

for the long wavelengths.

For the developing spaceborne imaging spectrometers, Moderate Resolution



Imaging Spectrometer (MODIS) developed by NASA is one of the instruments in
Earth Observing System (EOS) sensor systems (Jensen, 1994). It will provide
imagery in 36 bands from 0.4 Fm to 15 Fm. Another one is OrbView-4 which will be

the first commercial satellite to acquire hyperspectral imagery (Orbital Imaging Co.,
1998). It is scheduled to launch in 2000. It will provide 200-channel hyperspectral

imagery from 450 nm to 2500 nm with eight-meter spatial resolution.

Despite airborne and spaceborne imaging spectrometry, field spectrometry
also plays an important role in hyperspectral remote sensing. Milton ef al. (1995)
gave an outline of some field spectrometers being used and discussed thoroughly
about field spectrometry. Point measurements in the field or from a low-level
platform are more cost-effective and appropriate for some applications when image
data are not necessary. Besides, field spectroscopy is used to characterize the
reflectance of surfaces intended to be used for the in-flight calibration of airborne or

spaceborne sensors.

2.2.2. Applications of hyperspectral remote sensing

A wide range of researches in hyperspectral remote sensing has been
undertaken. Geological, ecological, aquatic and many other research topics have
been conducted using either airborne sensors or taking measurements on ground with
imaging spectrometers. High spectral resolution and rich information available
allows questions that would not be answered using conventional remote sensing
techniques ten years ago can now be addressed. In this review, applications of
hyperspectral remote sensing will be discussed with a focus on vegetation studies:

biochemistry of vegetation and spatial and temporal patterns of vegetation.



2.2.2.1. Biochemistry of vegetation

Biochemistry of vegetation has been widely investigated from leaf to canopy
scales using hyperspectral data. The biochemical content of vegetation can provide
us information of plant productivity, rate of litter decomposition and availability of
nutrients in space and time (Curran, 1989). Hyperspectral data show promise of
estimating biochemistry of vegetation globally and help us to understand ecosystem

properties.

At the laboratory level, dried and powdered leaves are prepared for the
reflectance spectra measurements. Correlation between chemical contents and
spectral measurements is then obtained using stepwise multiple linear regression.
This approach reveals the predictive relationships of the best linear combinations of
wavelengths for assessing chemical concentrations. Curran (1989) gave a thorough
review of foliar chemistry obtained from spectral data of vegetation at the laboratory
level. Fourty-two minor absorption features were identified from the spectra of dried
and ground leaves which were found to have correlation with the concentration of

organic compounds such as cellulose, lignin and protein in dried leaves.

At the remote sensing level, chemical contents of vegetation covers at the
canopy level are retrieved by either field or airborne hyperspectral remote sensing
techniques combined with ground measurements of foliar and canopy chemical
contents. Wessman et al. (1989) estimated forest canopy chemistry with Airborne
Imaging Spectrometer (AIS) data over deciduous and coniferous forests. Ground
measurements of foliar biomass and canopy nitrogen and lignin content were made.

Strong correlations were found between AIS data and canopy lignin concentration in

10



both deciduous and coniferous forests. They also demonstrated that the canopy lignin

content was strongly related to the measured annual nitrogen mineralization.

Yoder et al. (1995) predicted nitrogen and chlorophyll content and
concentrations by field spectrometry. Reflectance spectra (R) of fresh leaves were
obtained in the laboratory and canopy reflectance spectra were also measured in the
field. They found that the best predictors for nitrogen and chlorophyll appeared with
first-difference transformations of log (1/R) and the best predictors for nitrogen were

shortwave infrared bands while that for chlorophyll were visible bands.

Zagolski et al. (1996) also studied forest canopy chemistry at two levels
which included laboratory spectral measurements of dried ground leaves by two
laboratory spectrometers and airborne measurements of forest canopy by two
airborne sensors: AVIRIS and Infrared SpectroMeter (ISM). They aimed at
establishing laboratory derived relationships between spectrometric information and
concentrations of chemical compounds and validating these relationships with the
airborne measurements. Results from these two airborne sensors were compared.
They found that the laboratory derived predictive relationships were quite different
depending on the laboratory spectrometers and the year of sampling. It revealed the
difficulty to establish predictive relationships accurately. The application of
laboratory derived predictive equations to airborne data suggested relatively strong
correlation for nitrogen and cellulose but poor correlation for lignin. This result
contradicted with that derived by Wessman ef al. (1989). Better results were obtained

with ISM spectra that had better signal-to-noise ratio.

11



2.2.2.2. Spatial and temporal patterns of vegetation

Spatial and temporal patterns of vegetation have been investigated widely
using remote sensing techniques, from broadband to hyperspectral sensors. With the
contiguous and high spectral resolution data, hyperspectral remote sensing has been
applied to forest monitoring, vegetation mapping, change detection and seasonal
variations monitoring with greater details and higher accuracy. These applications
are important for ecological and environmental research. For example, Blackburn
and Milton (1995) used a tower-mounted spectrometer to measure the seasonal
changes in the reflectance properties of ash and beech canopies during an one-year
experiment. Roberts et al. (1997) applied AVIRIS data to monitor the seasonal
changes in atmospheric water vapor, liquid water, and green vegetated and
nonphotosynthetic vegetated surface cover. Blackburn and Milton (1997) applied
Compact Airborne Spectrographic Imager (CASI) data to create an accurate map of
canopy gaps which were created by the death or destruction of trees within deciduous
woodlands. Shaw et al. (1998) used field spectrometers to investigate the spectral
properties of naturally regenerating Scots pine in relation to sapling cover and

s€ason.

2.3. Tree species recognition

Correct recognition of forest species is important in forest management,
ecological and environmental research and biodiversity studies. In the past, tree
species could only be classified by labor-intensive and time-consuming field surveys
which cannot provide complete coverage of large areas. In contrast, remote sensing
techniques are more effective that spectral data for large contiguous areas are

provided. Remotely sensed data have long been used to recognize forest cover types
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based on earlier photographic interpretation to more recently digital imaging
processing. Satellite multispectral broadband sensors have been used to identify
forest covers from which coniferous and deciduous tree stands can be successfully
discriminated (Nelson et al., 1985 and Shen ef al., 1985). Due to the relatively low
spatial resolution of the satellite sensors, classification of a forest type refers to the
classification of an area of forest which exhibits a general similarity in tree species
composition and character instead of individual tree species. Other studies using
broadband data to classify forest type achieved more detailed species resolution
(Frank, 1988; Skidmore, 1989; Franklin, 1994; Foody, 1994 and Schriever and
Congalton. 1995). For example, Frank (1988) used Landsat TM data combined with
digital terrain data to classify sixteen dominant vegetation communities. Schriever
and Congalton (1995) used also TM data to classify nine forest cover types. They
collected the data in May (bud break), September (leaf on) and October (senescence)
to explore whether different leaf phenology would improve the ability to generate

forest-cover-type maps.

With the contiguous and high spectral resolution of hyperspectral sensors,
classification of forest cover types should be improved with more precise
identification. However, whether each tree species corresponds to a unique and
diagnostic spectral reflectance signature is a fundamental problem for tree species
recognition. Baret (1995) stated that the spectral signature of canopy reflectance was
not strictly specific to a particular canopy. In other words, different canopies could
have very similar reflectance spectra. Price (1994a) revealed that high spectral
resolution data, on the order of 10 nm, offered unprecented opportunities for

uniquely identifying a range of vegetation types. However, spectra from one species
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might still match very closely spectra from another species, presenting the possibility
of faulty identification. Thus, more research efforts should be made to identify
unique tree species types. Recently, Gong ef al. (1997) successfully used in situ
hyperspectral data to classify six conifer tree species. It indicated the potential of

hyperspectral data for tree species recognition.

Spectral reflectance of vegetation is a complex function of various factors and
changes spatially and temporally. In order to understand those spectra, the factors
affecting the spectral reflectance of vegetation should be first studied. Thus, the
factors that affect spectral reflectance of vegetation are described in detail in this
session. Then the classification methods for hyperspectral analysis of tree species
recognition are discussed. Finally, previous studies in tree species recognition are

reviewed.

2.3.1. Factors affecting spectral reflectance of vegetation

Factors affecting spectral reflectance of vegetation are categorized into five
parts which are optical properties of leaf, canopy structure, canopy cover and
background effects, illumination and viewing geometry and spatial and temporal

dynamics of plants.

2.3.1.1. Optical properties of leaf

The dominant physical process at the visible wavelengths (400 to 700 nm) is
the absorption by photosynthetic pigments such as chlorophyll, xanthophyll, and
carotene (Wessman, 1991). These pigments have absorption maxima in the 300 to

500 nm region. Only chlorophyll absorbs in the red wavelengths. It has been shown
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that changes in chlorophyll concentration produce apparent spectral shifts of the

absorption edge near 700 nm.

High reflectance is characterized in the near-IR region (700 to 1300 nm). A
steep rise in reflectance near 750 nm is exhibited and termed the vegetation red edge.
The near infrared wavelengths are greatly influenced by the leaf internal structure
and in particular the number of air spaces and their arrangement (Wessman, 1991).
The mid-IR region (1300 to 2500 nm), on the other hand, is dominated by leaf water

absorption (Wessman, 1991).

Beside the water absorption features in the short-wave infrared (SWIR)
region, the spectra of organic compounds in this region are characterized by a
mixture of harmonic overtones and combinations that are mainly caused by
stretching and bending vibrations of strong molecular bonds between atoms of low
weight (Wessman, 1991). Extractions of foliar constituents have been spectrally
characterized by a number of researchers. Curran (1989) identified 42 absorption
features in visible and near-IR wavebands that have been related to particular foliar

chemical concentrations.

2.3.1.2. Canopy structure

Plant canopy reflectance is not only a simple function of the reflectance of the
component leaves but also depends on the number and size of the foliage elements
and their arrangement on individual plants. An important parameter accounting the
factor of canopy structure is the Leaf Area Index (LAI) which is defined as the one-

sided area of leaves per unit ground area (Peterson et al., 1987 and Spanner et al.,
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1990). It is a quantitative measure of the surface area available for the interception of
photosynthetically active radiation and for transpiration. Thus, LAI has been referred
to the most useful vegetation characteristic in ecological studies. Some preliminary
researches show that there is a negative relationship between LAI and red reflectance
but no relationship between LAI and near infrared reflectance (Peterson et al., 1987

and Spanner et al., 1990).

2.3.1.3. Canopy cover and background effects

Forest canopy cover is important in determining spectral response of forest
canopies because it controls the amount of understory vegetation, soil and litter
which is visible to the sensor. It was shown that canopy cover and background
effects influenced LAI significantly (Spanner ef al., 1990 and Caetano and Pereira,
1996). The variation in canopy cover and background reflectance plays an important
role in affecting the spectral variation in remotely sensed data instead of differences
in species. Canopy cover varies both spatially and temporally in forest canopies and
this effect, coupled with spatially, temporally and spectrally variable understory
reflectance poses a significant problem on the remote estimation of forest biophysical

variables.

2.3.1.4. Illumination and viewing geometry

In addition to the inherent properties of forest canopies, a set of independent
parameters also affects the remotely sensed response of forest canopies (Danson,
1995). Different target illuminations and viewing conditions alter the spectral
response considerably. The parameters include the solar zenith angle, the solar

azimuth angle, the sensor zenith view angle and the sensor azimuth view angle.
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2.3.1.5. Spatial and temporal dynamics of plants

It is a common sense that plants vary at a variety of spatial and temporal
scales. Plant growth and reproductive patterns are responsive to seasonal fluctuations
in climate (Hobbs, 1991). Many plant communities have distinct seasonal peaks of
growth and flowering activity that can markedly affect spectral reflectance. Yearly
climatic variations also account for differences in species growth and establishment
patterns, leading to changes in species composition and distributions. Moreover, over

long periods of time, directional vegetation changes may occur through succession.

2.3.2. Classification algorithms for hyperspectral analysis
2.3.2.1. Use of derivative spectra for tree species recognition

The derivative of a spectrum is actually its rate of change with respect to
wavelength. There are several methods to generate derivative spectra. The simplest
method is generating derivatives numerically by dividing the difference between
successive spectral values by the wavelength interval separating them (Demetriades-
Shah et al., 1990). This gives an approximation of the first derivative at the midpoint
between the values whose difference is used to compute the slope. Higher-order
derivatives are obtained by repeating the process. If the differentiation interval is
very small, then the differences between the successive values may be small in
comparison to the random noise and a noisy derivative spectrum is obtained. A larger
differentiating interval will reduce noise and maximize the signal but sharp spectral
features may be lost. Another method involves fitting the spectra by various
mathematical functions which are then differentiated (Cloutis, 1996). This method
may introduce artifacts due to noise amplification. Some information may be lost

during curve fitting.
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The accuracy of derivative analysis can be affected by the signal to noise
ratio. It is shown that some level of spectral preprocessing involving noise
suppression is usually helpful prior to derivative analysis. It is also determined that
lower order derivatives are less sensitive to noise and hence more useful in
operational remote sensing (Cloutis, 1996). However, some information may be lost

due to noise suppression.

The benefits of derivative analysis are its ability to eliminate background
signals. In vegetation studies, this technique is often applied in order to suppress soil
background reflectance. It is found that the spectral reflectance of most soils is an
approximately linear function of wavelength. Thus, second order derivative analysis
is in theory useful in eliminating the soil background (Demetriades-Shah et al.,
1990). Gong et al. (1997) used original reflectance spectra and first derivative
spectra to classify six conifer tree species. They found that first derivative data
produced better classification results than original reflectance spectra. The use of

derivative data may help to improve tree species recognition accuracy.

2.3.2.2. Linear discriminant analysis

Linear discriminant analysis is commonly applied in classification of forest
cover types (Nelson et al., 1984; Frank, 1988; Franklin, 1994 and Gong ef al., 1997).
It involves deriving a variate, the linear combination of the independent variables
that will discriminate best between a priori defined groups (Hair et al., 1995).
Discrimination is achieved by setting the variate’s weights for each variable to
maximize the between-group variance relative to the within-group variance. The

discriminant function, which is the linear combination for a discriminant analysis, is
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derived from

Z=WX;+WX;+W3X3+...+ WX,
where Z is the discriminant score, W; is the discriminant weight for variable i and X;
is the independent variable i. The absolute value of each discriminant weight
represents the relative contribution of its associated variable to the discriminant
function. In other words, independent variables with larger weights contribute more

to the discriminating power of the function.

2.3.2.3. Artificial neural network

Neural networks are algorithms that caricature the way information is
processed in biological networks of neurons. They are considered as a very powerful
tool to discriminate between variables or to relate one set of variables to another.
They are defined mainly by the type of neuron used, the way they are organized and

connected (the network architecture) and the learning rule.

The most commonly used neural network is backpropagation feed-forward
neural network. The network consists of one input layer, one or more hidden layers
and one output layer (Openshaw et al., 1997). The input nodes are fully connected to
the nodes of the hidden layer(s) which in turn are fully connected to the output
nodes. All signals flow from the input nodes through the hidden layers to the output
nodes in one direction. The connections between neurons are weighted which
represent the strength of connection through which knowledge or information is
encoded. These weights determine the threshold level of the activation function of a
node in the network, which in turn influences the level of activation of other nodes in

the network and ultimately determines the network outputs. An iterative training
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procedure determines the magnitude of the weights such that the network repeatedly
tries to learn the correct output for each of the training samples. The error between
the network output and the desired output is minimized in order to train the data. The
procedure will modify the weights between units until the network is able to
characterize the training data accurately. Once trained, the neural network may then

be used to classify other data.

Though neural network methods have been widely applied in classification of
remote sensing images (Paola and Schowengerdt, 1995), it is not commonly used in
tree species recognition. Gong et al. (1997) used neural network methods to classify
six conifer tree species. They found that neural networks worked superior to linear

discriminant analysis.

There are several advantages of neural network methods compared with
statistical methods (Openshaw et al., 1997). Firstly, neural network technique is a
distribution-free approach that the data are not necessary to satisfy a Gaussian
normal distribution which is required by most statistical methods. Secondly, it can
handle nonlinear data more efficiently. Thirdly, it can adapt to include multi-source
or ancillary data more easily and to interpret texture of the data more easily.
However, neural network has its own limitations. The training process is time and
computational intensive. The optimal network size is difficult to determine. In
addition, the network seems to be a black box that loses the interpretability of the

information about the decision regions.
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2.3.3. Tree species recognition using hyperspectral data

Not many studies have been reported in literature for tree species recognition
using hyperspectral data. Martin et al. (1998) used airborne hyperspectral data from
AVIRIS to classify eleven forest cover types, including pure and mixed stands of
conifer and deciduous species. Multiple linear regression analysis was used to select
eleven bands which were closely correlated with field measured canopy nitrogen and
lignin concentration. Transformed divergence values were then calculated for all
combinations of four to eleven of the selected bands to determine which band
combinations would provide the best separability of signature classes. A maximum
likelihood algorithm assigning all pixels in the image into one of the eleven
categories was used to classify forest cover types with the selected bands from first
difference reflectance spectra. An overall classification accuracy of 75% was yielded
using nine of the selected bands when comparing with a random selection of

validation pixels in the field.

Gong et al. (1997) used in situ hyperspectral data to identify six conifer tree
species. The data were measured above sunlit and shaded sides of tree canopies from
six study sites. Artificial neural network algorithm and linear discriminant analysis
were used for species identification with original reflectance spectra and first
derivatives of the spectra. They found that the six conifer species could be identified
with high accuracy. The highest percentage of accuracy obtained was 91% when
sunlit samples and first derivative spectra were used with neural network algorithms.
This study provides us insights of the capability of tree species recognition by
hyperspectral data. More analyses are necessary in terms of spectral measurements

made from more tree species and in different places and seasons.
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2.4. Data compression and feature extraction

For vegetation, the reflectance values in adjacent wavebands are often very
strongly correlated because most absorption features are relatively broad with at least
40 nm (Baret, 1995). It was shown that the spectral information could be described
by the reflectance observed in a small number of wavebands which is linked to the
number of independent variables required to describe the various factors affecting the
spectral reflectance of plant such as canopy structure and leaf optical properties.
Thus, it is desirable to remove some of the information contents algorithmically

before the data are analyzed.

The reasons for data compression as well as feature extraction are three-fold
(Price, 1994b). First, a trade-off exists between the spectral resolution and the spatial
resolution of the imagery acquired. The design of instruments is limited by cost,
power and transmission rate. Thus, more spectral bands mean less spatial resolution
though this factor may not be valid now as technologies are improving for more
powerful and faster instruments. Second, signal-to-noise ratio of the data acquired
trades off with the spectral resolution. Third, spectral information of the object of
interest may be optimized in particular spectral regions, bandwidth and band number
within each region. Therefore, data compression and feature extraction is
recommended, especially extracting important bands that reduce the data volume
without losing information. In this session, analytical techniques of data compression

and feature extraction will be introduced and discussed.

2.4.1. Analytical techniques of data compression

The most obvious technique for data compression is selecting those spectral
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bands for ranges which contain the most information for the specific application. It
may also be possible to average the bands along the spectral regions of interest where
the spectral information is expressed in the overall reflectance level rather than in
small bandwidth features. Such averaging is particularly useful in low signal regions

where the relative noise level will mask out spectral details (Mehl, 1994).

Another commonly used method for data compression is principal
components analysis (PCA). PCA is an analytical technique based upon a
transformation of spectral axes such as that spectral variability is maximized
(Cloutis, 1996). This technique is found to be useful for analysis of remote sensing
data for which certain channels exhibit high degrees of dependence. The greatest
benefit of PCA is that spectral discrimination can be maximized from a large number
of bands to the first few principal components. It makes PCA a useful tool for data
compression. However, determining the physical significance of each principal
component is sometimes difficult. Some information would be lost since the first few

principal components can generally represent up to 95% of the spectral variation.

In the past two decades, PCA or tasseled cap transformation which is a
technique similar to PCA for rotating data have been commonly applied in traditional
multispectral broadband data for data compression. Kauth and Thomas (1976)
rotated the Landsat MSS data by tasseled cap transformation such that the majority
of the information is contained in two components. The first component is a
weighted sum of all bands and is termed as brightness. It is defined in the direction of
the principal variation in soil reflectance. The second component which is

approximately orthogonal to brightness reveals contrast between the near-infrared
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and visible bands. It is called greenness and strongly related to the amount of green
vegetation. With the addition of two mid-infrared bands, TM data is found to have a
third tasseled cap component called wetness which is related to moisture status of

soil (Crist and Cicone, 1984).

For hyperspectral data analysis, few studies have been carried out using PCA.
Blackburn and Milton (1997) surveyed deciduous woodlands using CASI with
geobotany band setting which collects eight bands within the visible and near-
infrared spectral regions and PCA is used for analysis. They found that the
eigenvectors of the first component (PC1) reveal positive contributions from all
spectral bands and that of the second component (PC2) are dependent upon the
contrast between reflectance in visible and near infrared wavelengths. The third
component loads on the bands which are located around the upper part of the red-
edge. The first two eigenvectors were analogous to brightness and greenness
respectively derived from tasseled cap transformation using broadband multispectral
data. The images of the first three principal components are able to identify the
canopy gaps created by the death or destruction of trees. They demonstrated that
PCA remains to be an useful tool to interpret vegetation characteristics and
conditions. However, more effort is needed when it is applied to hyperspectral data

that have a much larger dimension than those studied.
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2.4.2. Analytical techniques of feature extraction

Feature extraction is a more difficult and complicated process. It is a process
to determine the bands that are most effective in discriminating each class from all
others (Jensen, 1994). Three approaches for feature extraction will be explained in
this section. The first approach is particularly used for vegetation studies. As the
characteristics of spectral reflectance depend greatly on foliar biochemical
concentrations and biophysical characteristics, correlation of the spectral bands with
these parameters is a common tool to select useful spectral bands for vegetation
studies. The other two methods which can be used for any applications are spatial

autocorrelation-based approach and spectral autocorrelation-based approach (Petrie

and Heasler, 1998).

2.4.2.1. Feature selection by correlation with biochemical and biophysical data
Selection of spectral bands that are closely correlated with biochemical and
biophysical data has been done by various researchers (Curran, 1989; Martin ef al.,
1998; Thenkabail et al. 1999). Reflectance spectra of vegetation are measured from
dried and powdered leaves at the laboratory level or from canopies at the remote
sensing level. Chemical contents or biophysical parameters are then obtained and
correlated with the spectral measurements using stepwise multiple linear regression.
The spectral bands that are closely correlated with the biochemical or biophysical

data are selected.

Curran (1989) selected forty-two minor absorption features that were

identified from the spectra of dried and ground leaves which were found to have

correlation with the concentration of organic compounds such as cellulose, lignin and
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Table 2.1. Wavelengths that are correlated with biochemical or biophysical
information found by different researchers

Curran, 1989 Martin et al., 1998 Thenkabail et al.,
1999
Number of bands 42 9 12
Spectral range 400 ~ 2400 nm 400 ~ 2500 nm 350 7 1050 nm

Visible bands 430 627 495
(400 — 700 nm) 460 525
640 550
660 568
668
682
696
Near-infrared bands 910 750 720
(700 — 1300 nm) 930 783 845
970 822 920
990 982
1020 1025
1040
1120
1200
Mid-infrared bands 1400 1641 =
(1300 — 2500 nm) 1420 1660
1450 2140
1490 2280
1510 2290
1530
1540
1580
1690
1780
1820
1900
1940
1960
1980
2000
2060
2080
2100
2130
2180
2240
2250
2270
2280
2300
2310
2320
2340
2350
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protein in dried leaves (Table 2.1). Martin et al. (1998) selected nine AVIRIS
spectral bands that were closely correlated with field measured canopy nitrogen and
lignin concentration for forest classification (Table 2.1). Thenkabail et al. (1999)
selected twelve spectral bands along with their bandwidths for extracting agricultural

crop biophysical information such as wet biomass, leaf area index, plant height and

yield (Table 2.1).

The spectral bands selected by the above researchers are not consistent with
one another. The spectral bands selected by Curran (1989) and Martin et al. (1998)
were mainly the near-infrared and mid-infrared bands in which 38 out of 42 and 8
out of 9 were found respectively. Among the selected near-infrared and mid-infrared
bands, more mid-infrared bands were obtained. As the instrument used by
Thenkabail ef al. (1999) acquired wavebands between 350 nm and 1050 nm, no mid-
infrared bands were found. However, Thenkabail ef al. (1999) recommended more
visible bands than the previous two researchers. Seven visible bands were selected

while only five bands were near-infrared bands.

2.4.2.2. Spatial autocorrelation-based feature selection

Spatial autocorrelation-based feature selection methods are described in detail
by Warner and Shank et al. (1997). Ratioing of each band with every other band is
performed within a hyperspectral image. A noisy ratio image will be produced if the
two bands are redundant and random spatial autocorrelation will be exhibited within
the image. Thus, the resulting images are ranked according to their relative spatial
autocorrelation. The best two bands are selected from the image with highest spatial

autocorrelation. The third and the following bands are selected if highest spatial
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autocorrelation is obtained when they are ratioed with all the previously selected
bands. This feature selection process is termed narrow-band feature selection. Broad-
band feature selection groups multiple adjacent bands. Bands can be grouped into the
desired number of bands. Grouping is started from the identified best bands that are
determined with the narrow-band feature selection technique. Adjacent bands are
grouped into the identified best bands if the average spatial autocorrelation of the
combined bands increases. Bands are rejected if the combination decreases the
spatial autocorrelation. Nonadjacent multiple band feature selection is another
method similar to the broad-band feature selection technique, except that groupings

are allowed between nonadjacent bands.

Warner and Shank et al. (1997) used AVIRIS data to illustrate this method
for feature selection. Twenty narrow bands are selected from the full 186 band set
using narrow-band feature selection technique (Table 2.2). The bands that are
identified as most valuable are clustered in the visible and near infrared region. It
suggests that spectral and spatial information is not uniformly distributed throughout
the spectral region over which data is collected. Moreover, broad-band feature
selection technique identifies 20 broad bands, with an average width of 50 nm, that
are broader than the spectral resolution of the AVIRIS sensor. The result does not
deny the value of a narrow band sensor. Indeed, narrow band sensors are important

to determine the spectral bounds of those broad band features.
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Table 2.2. Twenty narrow band features selected from AVIRIS data using spatial
autocorrelation feature selection (Source: Warner and Shank 1997)

Rank AVIRIS band number Band center wavelength (nm)
12 11 478
1 19 557
16 22 587
7 25 616
17 28 646
4 31 676
9 37 704
19 38 713
5 39 723
6 47 799
13 57 895
iy 64 962
14 73 1048
20 81 1125
10 93 1240
15 117 1451
3 124 1521
18 130 1581
11 138 1660
8 186 2123

2.4.2.3. Spectral autocorrelation-based feature selection
Two algorithms are discussed for spectral autocorrelation-based feature
selection, namely, optimization with distance metrics and linear stepwise

discriminant analysis.

2.4.2.3.1. Optimization with distance metrics

Optimization with distance metrics often uses divergence as a means to
measure the statistical separability of a pair of probability distributions that has its
basis in their degree of overlap (Richards, 1993). In general, for selecting the best q
feature subset out of n bands to discriminate between two classes, there exist "Cq
combinations of the subset. Then the divergence values of the "C, combinations have

to be computed in order to identify the best gq-band subset that results in the largest
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divergence value. For the case where there are more than two classes, the average
divergence which is computéd by averaging over all possible pairs of classes while
holding the g-band subset constant is implemented and the best g-band subset is
identified by having the maximum average divergence values. (Jensen, 1994). Other
distance matrices are also used such as transformed divergence and Jeffries-Matusita
distance (Jensen, 1994 and Richards, 1993). This technique that has been applied to
Landsat TM data (Jensen, 1994) seems to be impractical to hyperspectral data
because the -calculation of divergence is very computationally intensive with

hyperspectral data which often possess over a hundred spectral bands.

2.4.2.3.2. Stepwise linear discriminant analysis

Linear discriminant analysis can also be used for band selection besides
classification. The spectral bands which best differentiated between classes are
selected in a stepwise way. It involves entering the independent variables (spectral
bands) into the discriminant function one at a time on the basis of their
discriminating power (Hair et al., 1995). The stepwise approach begins by choosing
the single best discriminating variable. The initial variable is then paired with each of
the other independent variables one at a time, and the variable that is best able to
improve the discriminating power of the function in combination with the first
variable is chosen. The third and any subsequent variables are selected in a similar
procedure. As additional variables are included, some previously selected variables
may be removed if the information they contain about group differences is available

in some combinations of the other variables included at later stages.

An additional means of interpreting the relative discriminating power of the
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independent variables is using the partial F values which indicate the associated level
of significance for each variable (Hair et al., 1995). This is accomplished by
examining the absolute sizes of the significant F values and ranking them. Large F

values indicate greater discriminating power.

Nelson et al. (1984) used stepwise linear discriminant analysis to select
Landsat TM bands determining which wavebands were most useful for delineating
boreal forest cover types. They found that useful waveband combinations included at

least one band from the visible, near-infrared and mid-infrared spectral regions.

2.5. Summary

Tree species recognition is improved with more precise identification of
forest types using hyperpsectral data. Previous tree species recognition studies found
that the use of derivatives spectra and artificial neural network algorithms
outperformed the use of original reflectance spectra and statistical algorithms
respectively. However, only few studies have been conducted for tree species
recognition using hyperspectral data. More experiments should be performed to

utilize hyperspectral data for tree species recognition.

With the redundancy of hyperspectral data, data compression and feature
extraction are found to be essential for hyperspectral data analysis. Principal
components analysis is a common tool for data compression. However, few studies

have been applied this technique for hyperspectral data analysis.

In contrast, more studies have been conducted on feature extraction of
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hyperspectral data. For vegetation studies, correlation of spectral bands with
biochemical and biophysical parameters is a common tool for selecting useful bands.
Other approaches are also used for band selection such as spatial autocorrelation,
optimization with distance metrics and linear stepwise discriminant analysis. These
studies reveal that hyperspectral data are highly redundant. It is essential to select the
optimal band sets for different applications. However, the selected bands found by

different researchers are not consistent with one another.
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CHAPTER THREE

METHODOLOGY

3.1. Introduction

This chapter describes in detail the experimental design and methodology used
in this study. The study site and the instruments used in this study are introduced.
The procedures of data collection including laboratory measurement and in situ
measurement are then described. Finally, methods of data analysis for tree species

recognition, data compression and band selection are explained.

3.2. Study site

Hong Kong has a territory of over 1080 square kilometers which accommodates
over six million population. It is located at a subtropical environment with an
average temperature of 20°C and annual precipitation of 1600-2000 mm. It nourishes
diverse types of flora with over 300 tree species which is quite a surprising number
when only 13% of the total area is woodland (Thrower, 1988). The primary
subtropical evergreen broadleaf forest and rainforest were destroyed by human
activities and rapid urban development. Since the 1960s, there has been tremendous
effect in tree plantation in both country parks and urban area using both indigenous

and exotic species.

In this study, hyperspectral measurements were taken in the campus of the
Chinese University of Hong Kong, located in Maliushui, Hong Kong. Maliushui was
originally a rural village. For the past 30 years, most of the original vegetation cover

were destroyed by construction and development of the campus. Meanwhile, tree
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plantation similar to that in other areas of Hong Kong was carried out. Thus, trees
- that were commonly planted in Hong Kong were also found in the CUHK campus.

As a result, the CUHK campus was selected as a primary study site in this research.

3.3. Instrumentation

A high spectral resolution spectrometer, S2000 fiber optic spectrometer (Ocean
Optics, Inc., 1999), was available for taking hyperspectral data. The spectrometer is
linked with a notebook computer for data acquisition and analysis. It is also
connected with a single-strand optical fiber through which light energy transmits.
Three optical fibers with fiber diameters of 50 Hm, 100 Mm and 400 Hm are
available. The effective range of the spectrometer is from 200 nm to 1100 nm. The

spectral resolution is approximately 0.5 nm. It has a field of view of 27,

During data collection, two references, a white and a dark, are used for
calibration. The dark reference corresponds to the response of the system with no
light being exposed to the detector whereas the white reference records the spectra
from a standard white panel close to perfect diffusion. Based on the illumination
condition, an integration time for collecting photons is selected to avoid saturation or

shortage.

In a dark room with two 500 W tungsten lamps, light intensity is 190 W/m? as
read from a pyranometer. An integration time of 80 ms is used with an optical fiber
of 400 Mm diameter. However, integration time varies remarkably when in situ
measurements are made. For a sunny day with clear sky condition, the light intensity

is greater than 500 W/m’. Under this illumination condition, optical fiber of a
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diameter of 50 Hm, the smallest one, is used. The integration time is reduced to 7 ms
and a cuvette holder is used to reduce light energy transmitted into the spectrometer
to avoid saturation. However, when light intensity reduces to less than 50 W/m? for
features lied under shadow, an integration time of more than 200 ms is used with an

optical fiber of a diameter of 400 Hm.

3.4. Data collection

Data collection was divided into two parts: laboratory measurement and in situ
measurement. Laboratory measurement was carried out for leaf samples of selected
tree species. The data collected from laboratory measurement were mainly used to
test the separability of hyperspectral data of different tree species. In situ

measurement was done for several selected surface covers in Hong Kong.

When the research project started in summer, 1997, all data were expected to be
collected in the field. However, severe problems were encountered. Firstly, 1997 was
a rainy year in Hong Kong. Few sunny days with cloudless skies were available for
taking spectral data. Even on a sunny day, wind and cloud were still present leading
to significant fluctuation in illumination. Secondly, the sensor of the spectrometer
was difficult to be held steadily and the direction of the sensor could not be
controlled precisely above the tree canopy due to technical difficulties. Other factors
including the distance between the sensor and the canopy, the proportion of the
leaves within the sampling area from which the sensor of the spectrometer read data
could not be controlled during in situ measurement. As a result, fluctuation in
spectral measurement was often recorded. Thirdly, trees in Hong Kong varies in

heights and yet it is not uncommon to find trees exceeding five to ten meters which
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poses difficulty for in situ measurement. It is advised to have a cherry picker truck
for in situ measurement from tree canopy so that the sensor of the spectrometer could
be held steadily while taking accounts for the factors mentioned above. Due to

financial limitation, cherry picker truck was not available in this project.

3.4.1. Laboratory measurement

Laboratory measurements were made and twenty-five tree species (Table 3.1)
were selected for tree species recognition. These tree species were selected so as to
include species with a wide variety of different characteristics and they are
commonly planted in Hong Kong. For example, these trees have obvious differences
in the sizes of their leaves. Some trees are native species while some are exotic
species which were introduced during the plantation campaign in Hong Kong. The
general characteristics of these tree species were listed in Table 3.1. Tree samples
were taken in the four seasons so that variation in different seasons can be traced.
The four seasonal periods were April, 1998 (spring), July, 1998 (summer), October,

1998 (autumn) and January, 1999 (winter).

In autumn and winter, some tree species suffered from a decrease in foliage and
no samples could be collected. Among the 25 tree species, no samples were obtained
for Firmiana simplex in the autumn and winter seasons and for Cratoxylum
ligustrinum, Delonix regia and Firmiana simplex in the winter season. Thus, the

number of tree samples was reduced to 24 and 21 for autumn and winter respectively.
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Table 3.1. The 25 tree species selected in this study

Species name

Code Descriptions (Thrower, 1988)  Remark

Acacia confusa ac Evergreen, small-leaf, exotic
Araucaria heterophylla ah  Evergreen, coniferous, exotic
Acacia mangium am Evergreen, broad-leaf, exotic
Bauhinia variegata bv  Deciduous, broad-leaf, native
Evergreen, broad-leaf, native
Cinnamomum camphora - of Eastern Asia and widely
cultivated in the tropics and
subtropics
Casuarina equisetifolia ce Evergreen, minute-leaf, exotic
Castanopsis fissa cf  Evergreen, broad-leaf, native
Cratoxylum ligustrinum cl  Deciduous, broad-leaf, native E>.<cluded ORI
winter data set
Aleurites moluccana ap ENSIBICE, broad-leaf, widely |
grown in the tropics
Dimocarpus longan dl  Evergreen, broad-leaf, native
Delonix regia dr Deciduous, small-leaf, exotic E)-(cluded fronthe
winter data set
Ficus microcarpa fm Evergreen, broad-leaf, native
Excluded from the
Firmiana simplex fs  Deciduous, broad-leaf, native autumn and winter
data set
Ficus variegata fv  Deciduous, broad-leaf, native
Hibiscus tiliaceus ht Buergeoon, broad-leaf, widely
grown in the tropics
Lophostemon conferta lc  Evergreen, broad-leaf, exotic
Liquidambar formosana  1f  Deciduous, broad-leaf, native
) ; Deciduous, broad-leaf, widely
Lagerstroemia speciosa Is . .
grown in the tropics
Melaleuca . mq Evergreen, small-leaf, exotic
quanqueenervia
Evergreen, broad-leaf, widely
Macaranga tanarius mt grown from South Asia to
Australia
Pinus elliottii pe Evergreen, coniferous, exotic
Thufa orfenialis . Evergreen, f:oniferous, native
of North China
Schima superba sm Evergreen, broad-leaf, native
Sapium sebiferum ss  Deciduous, broad-leaf, native E)fcluded Ham i
winter data set
Taxodium distichum td Deci‘duous, minute-leat,
exotic
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The experimental setup is shown systematically in Figure 3.1. The experiment
was conducted in a dark room with constant illumination from two 500W tungsten
lamps at a distance of 1.2 m apart. Both lamps were stationed with a height of 0.8 m.
The light intensity is 190 W/m® as read from a pyranometer. The sensor of the
spectrometer was pointed vertically downward and positioned at one meter from the
ground. With an 22° field of view of the sensor, the sampling area from which the
sensor read data should be a circle with diameter of 0.375 m on the ground. A black

cloth was lied on the ground so as to minimize noise from the background.

Figure 3.1. The experimental setup

Fiber optic
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~ / ~
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E N
Black cloth

Leaf samples

The procedures of the experiment were as followed. Five to six branches of
leaves of sampled trees were first collected in the field and brought to the dark room
for immediate data measurement. The leaves were then lied on the black cloth for
taking spectral measurement. A digital photograph was taken for each sample. The
proportion of leaves was measured later with image processing techniques. For each
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type of tree species, three different levels of density were used so as to simulate the
different densities of tree canopy. Under each density level, 12 samples are taken.

Thus, a total of 36 samples were obtained for each tree species.

3.4.2. In situ measurement

Various types of surface cover were originally selected for in situ hyperspectral
measurement to set up a hyperspectral database. The surface covers selected should
be the typical surface covers observable from satellite sensors including various road
pavement materials, various ro.of .covering materials of buildings, sand, coastal and
inland water, various species of grass, shrubs and trees, etc. Due to time limitation
and restrictions in in situ measurement explained earlier, only ten surface covers
were measured in the field. They were concrete, pond water, grass lawn, grass slope,
fern (Dicranopteris linearis) and five tree species including Acacia confusa,
Castanopsis fissa, Dimocarpus longan, Ficus microcarpa and Taxodium distichum.
The height of all five tree species were over four meters. Measurements could not be
made vertically above their canopies without the aid of a cherry picker truck which
was expensive and unavailable for this study. Instead, measurements were taken at

breast height (1 — 1.3 m) obliquely 10 — 20 cm from the canopies.

In situ measurement was done in November, 1998 which was late autumn in
Hong Kong. Measurements were made only on sunny days with clear sky condition.
The reasons for taking in situ measurement during this period are two-fold. Firstly,
the climate during this period is dry and cool. There were more sunny days for taking
measurements. Secondly, aerial photos and satellite images are usually obtained

during this period of time in Hong Kong so that hyperspectral data can be compared
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with the data obtained from aerial photos and satellite images.

In situ spectral measurements were made between 10 am to 3 pm of local time
because sun angle would not change considerably during this period of time. Dark
and white references were measured every five to ten minutes as necessary to
minimize the effect of possible change in illumination. Thirty-six samples were taken
for each surface type. For tree canopies, measurements were taken from shaded and
sunlit portions of the canopies in order to analyze the effect of different light

conditions.

3.5. Methods of data analysis
3.5.1. Preprocessing of data

Data which were shorter than 400 nm and longer than 900 nm were eliminated
to avoid noisy bands. There were totally 689 bands within the 400 nm to 900 nm
region. The original spectra were smoothed with a 20-channel Fast Fourier

Transform algorithm using the Origin 5.0 package (MicroCal Software, Inc., 1999).

Before 20-channel Fast Fourier Transform algorithm was adopted, several
smoothing algorithms had been used and compared. Centered moving average with
S-channel to 20-channel and Fast Fourier Transform with 5-channel to 10-channel
have been tested. The smoothed spectral reflectance produced by these algorithms
were similar to each other and the classification results using these smoothed original
spectra revealed no significant difference between one another. However, significant
differences appeared after the derivatives procedure. The derivatives generated from

the spectral reflectance which were smoothed by 20-channel Fast Fourier Transform
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had clear and dominate features and were free of noise from 500 to 750 nm, but the
derivatives generated from the spectra which were smoothed by other algorithms
were extremely noisy for the whole spectral range and no significant features could
be identified from the resultant derivatives spectra. Centered moving average and 5-
channel to 10-channel Fast Fourier Transform could not reduce noises effectively
from the very noisy raw spectral bands. Derivatives procedures induced more noises
to the spectra as the spectrometer had very narrow band-width and fine spectral

resolution.

The smoothed spectra also contained 689 bands. The smoothed original spectra
were then merged and averaged for every five consecutive bands. As a result, the
reduced data set contained 138 bands. First and second derivatives were then taken
from the reduced reflectance data using the Origin 5.0 package. The number of bands
remained the same after the derivative procedures. Thus, three data sets were
produced and used for data analysis. They were the reduced original spectra (OS),
the first derivatives of the reduced spectra (1D) and the second derivatives of the

reduced spectra (2D).

Due to the property of neural network, values in each band of smoothed and
derivative spectra were linearly adjusted to the range of [0,1] before they were used
in training and testing the neural network. However, linear adjustment was not done
to any data which were trained and tested by linear discriminant analysis. This
arrangement should have no effect on the comparison of the performance of the two
classification algorithms because linear discriminant analysis is based on the

statistical structure of the data which will not be affected by linear adjustment.
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3.5.2. Compilation of hyperspectral database

A hyperspectral database was compiled and stored in excel files after the
spectral data were processed by the methods explained in the previous section. The
data stored in the database can be retrieved, processed, displayed and outputted in

various forms and formats according to the interest of the users.

The structure of the database was shown systematically in Figure 3.2. The
database was divided into two parts, laboratory database and in sifu database. The
laboratory database was composed of twelve excel files. Each season had three
separate files which contained the original spectra, the first derivatives of the spectra
and the second derivatives of the spectra for the measured tree species respectively.
The derivatives of the spectra were included in the database for their frequent uses in
data analysis. The in situ database contained only one file in which the original

spectral reflectance of the ten surface covers were stored.

3.5.3. Tree species recognition
Tree species recognition was done by two algorithms, linear discriminant

analysis and artificial neural networks.

Data were dividéd into two parts: the training set and the testing set. The
training set was inputted to train the classifiers and the testing set was used to test the
accuracy of classification. For each tree species, six spectral data were selected as the
training set in which two samples were randomly selected respectively from the three
levels of leaf density. The rest 30 samples were the testing set. Thus, the training set

represents 16.67% of the whole data set.
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3.5.3.1. Linear discriminant analysis

Linear discriminant analysis (DA) was done for tree species recognition using

the DISCRIM procedure in the SAS package (SAS Institute, 1990).

3.5.3.2. Artificial neural network

A feed-forward neural network (NN) algorithm with back-propagation training
mechanism was used for tree species recognition to compare with DA. A neural
network program developed by Pao (1989) and modified by Gong et al. (1997) was
adopted and used in this research. In order to build an efficient NN structure, the
learning rate (M), momentum coefficient (%), the number of hidden layers and the
number of hidden nodes should be optimized. According to Gong et al. (1997)’s
investigation, NN structure with 1=0.2, 0=().7 and one hidden layer with 50 nodes
was applied in this study. Several other NN topologies had also been tested using the
spring original spectral data set before the above NN structure was adopted. One
hidden layer with 50, 80 and 100 hidden nodes and several topologies using two
hidden layers with 20 to 80 hidden nodes were tested. Similar classification results
were obtained. NN structure of one hidden layers with 50 hidden nodes was adopted

due to faster training process.

The training convergence criterion was set such that the testing accuracy was
highest within 20000 iterations. Usually, the network was trained to reach its highest
accuracy within 20000 iterations and the testing accuracy declined beyond its

maxima.
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3.5.3.3. Accuracy assessment

For each classification, a confusion matrix was generated. Two methods of
accuracy assessment were adopted. The first method was the overall accuracy which
was computed by dividing the total number of correctly classified samples (sum of
the major diagonal cells of the confusion matrix) by the total number of test samples
used. However, this accuracy index does not take into account the off diagonal cells
of the confusion matrix. In other words, the errors of commission and the errors of
omission are not accounted for. Thus, the second method, Kappa coefficient of
agreement (K) developed by Cohen (1960), was introduced for accuracy assessment.
The estimate of Kappa is the proportion of agreement (diagonal cells of the
confusion matrix) after chance agreement (product of row and column marginals) is
removed from consideration (Rosenfield and Fitzpatrick-Lins, 1986). Perfect

agreement is represented by a Kappa value of one while zero for chance agreement.

3.5.3.4. Comparison of different data processing strategies and classifiers
A test of significance between two independent Kappa coefficients (Cohen,
1960) was used for assessing the difference between different methods of

classification. The standard normal deviate (Z) is calculated as

_ K- K>
JV(K)+V(K2)

where V(K)) and V(K;) are the approximate large sample variance of K, and K3
respectively. If the absolute value of Z exceeds 1.96, then the difference between the

two Kappa coefficients is significant at the 95 percent probability level.

Z was calculated between any two methods of classification within every data
set of the same season. The results were then justified to determine which method of
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classification was better for tree species identification.

3.5.3.5. Comparison of data among different seasons

Since the data sets of different seasons contained different number of tree
species, it is difficult for comparison. Thus, the spring, summer and autumn data
were reduced to 21 tree species as the winter ones. Linear discriminant analysis was
then adopted to classify the 21 tree species for data of each season using the original

spectra. Significant testing of Kappa was also done among different seasons.

3.5.3.6. Comparison of laboratory and in situ data

In situ spectral measurements were done for five tree species, namely Acacia
confusa, Castanopsis fissa, Dimocarpus longan, Ficus microcarpa and Taxodium
distichum. As the illumination condition, background effect and leaf orientation in
the field were totally different from those in the laboratory, in sifu spectral
reflectance data were expected to be different from the laboratory data. In order to
investigate how the two differed from each other, an analysis of means for comparing
the means of two independent samples with unequal variances was performed
(Norcliffe, 1982). A ¢ value was calculated for each wavelength using the in situ and

laboratory data of each tree species. The ¢ value was calculated as

Xi—~X0

Sx-1%,
where X1 and X: were the mean of data set one and data set two respectively and

S%_x, Was the standard deviation of the sampling distribution of the means which

was estimated from

46

S



S_ —_— —
X\ -X
17442 N - N2
where s”and s; were the variance of the data sets one and data sets two respectively

and N, and N, were the sample sum of the data set one and data set two. In this case,
the difference between the two data sets was significant at the 0.05 significance level

if the absolute value of ¢ exceeded 2.

3.5.4. Data compression

With the tremendous volume of spectral bands obtained, a certain degree of data
redundancy was expected. Principal components analysis (PCA) which is a common
tool to transform multidimensional data and extract useful vectors for data
compression was thus used for data compression. PCA was performed to investigate
how the spectral bands would be rotated and what information could be available

from PCA.

Separate PCAs were performed using the smoothed in sifu spectral reflectance
of the ten surface covers and the smoothed spectral reflectance of the 25 tree species
for each season respectively. The PC loadings were then investigated. For the PCs
generated by the 25 tree species, linear discriminant analysis was performed using
the first eight PC scores for each season in order to investigate the differentiating
power of the PCs. Another seasonal comparison was also performed with 21 tree

species using stepwise discriminant analysis.

3.5.5. Band selection

Other than data compression, band selection can be done to reduce data
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redundancy. Band selection is essential for data analysis in order to save
computational time and facilities as well as to improve analysis results. Two
algorithms were adopted for band selection. A preliminary band selection procedure
was first done using stepwise discriminant analysis for the spectral data of the 25 tree
species. Linear discriminant analysis was then performed to classify the tree species
using the selected bands. Significant testing of Kappa was done for comparing the
difference in accuracy between two classifications using all bands and selected

bands.

After the preliminary analysis, a hierarchical clustering procedure was carried
out using the original spectral data in autumn. The 400 — 900 nm spectral region was
grouped into clusters. The boundary and the spectral bands of the clusters were then
investigated in detail. In order to identify which spectral regions contain more
information for tree species recognition, several spectral band sets were selected
from the centers of the clusters and used to classify the tree species of four seasons
respectively. Again, significant testing of Kappa was then done to determine which

spectral band sets produced a better classification accuracy.

3.6. Summary

In this study, the Chinese University of Hong Kong campus was selected as a
primary study site to measure hyperspectral data. A high spectral resolution
spectrometer was available for data collection which was divided into two parts,
laboratory measurement and in situ measurement. Twenty-five tree species were
selected for laboratory measurement to test the separability of hyperspectral data of

different tree species. For in situ measurement, spectral reflectance of ten surface
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covers including several tree species, grass, fern, water and concrete were taken. A
hyperspectral database was then set up. The spectral reflectance and their derivatives
were eventually analyzed for tree species recognition, data compression and band
selection. The twenty-five tree species were classified using two classifiers, linear
discriminant analysis and neural network. For data compression, principal
components analysis was used whilst band selection was performed using stepwise

discriminant analysis and hierarchical clustering.
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CHAPTER FOUR

RESULTS AND DISCUSSIONS OF TREE SPECIES RECOGNITION

4.1. Introduction

This chapter presents the results and discussions of tree species recognition.
First, the characteristics of the hyperspectral data collected in this study are
described. They include the smoothed spectral reflectance curves, the first
derivatives and the second derivatives of the 25 tree species as well as the spectral
reflectances of the ten surface covers measured in the field. Then, the results of tree
species recognition are presented followed by discussions on comparison of different
classifiers, comparison of different data processing strategies, comparison of

different seasonal data and comparison of laboratory and in situ data.

4.2. Characteristics of hyperspectral data
Hyperspectral data measurements were taken in the laboratory for 25 tree

species in the four seasons as well as in the field for ten surface covers.

Figures 4.1 to 4.4 illustrated the smoothed spectral reflectance curves of the 25
tree species in spring, summer, autumn and winter respectively. In each season, the
25 tree species were separated into four groups, and their corresponding reflectance
curves were presented in four graphs. In general, low reflectance was found in the
spectral range from 400 to 690 nm where lied the visible bands and a peak appeared
centering at around 550 nm presenting the green peak. From 690 to 750 nm, the
reflectance rose markedly from very low to very high values. This rise was the red

edge. The high reflectance leveled off from 750 to 900 nm which was the near-
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Figure 4.1a Spectral reflectance curve of the first seven tree species in spring
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Figure 4.1b Spectral reflectance curve of the second six tree species in spring
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Figure 4.1c Spectral reflectance curve of the third six tree species in spring
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Figure 4.1d Spectral reflectance curve of the fourth six tree species in spring

50

—_ ——mt

>

o —Ppe

Q

§ —Ppp

Q

:__.‘) —sm

L

(a2 —SS
—td

400 450 500 550 600 650 700 750 800 850 900
Wavelength (nm)

52



Figure 4.2a Spectral reflectance curve of the first seven tree species in summer
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Figure 4.2b Spectral reflectance curve of the second six tree species in summer
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Figure 4.2¢ Spectral reflectance curve of the third six tree species in summer
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Figure 4.2d Spectral reflectance curve of the fourth six tree species in summer
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Figure 4.3a Spectral reflectance curve of the first six tree species in autumn
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Figure 4.3b Spectral reflectance curve of the second six tree species in autumn
70
o —cf
=
e —¢l
2
—ct
8
o —dl
[P
~ —dr
—fm

400 450 500 550 600 650 700 750 800 850 900
Wavelength (nm)

55



Figure 4.3¢ Spectral reflectance curve of the third six tree species in autumn
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Figure 4.3d Spectral reflectance curve of the fourth six tree species in autumn
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Figure 4.4a Spectral reflectance curve of the first six tree species in winter
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Figure 4.4b Spectral reflectance curve of the second five tree species in winter
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Figure 4.4c Spectral reflectance curve of the third five tree species in winter
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Figure 4.4d Spectral reflectance curve of the fourth five tree species in winter
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infrared bands. While all trees demonstrated a similar pattern of reflectance, a great
variation was found among them. Trees with large broad leaves tended to have a
comparatively high reflectance in the near-infrared bands, for example, Bauhinia
variegata. On the other hand, trees with small leaves like Acacia confusa or trees

with needle-leaves such as Pinus elliottii were low in the near-infrared bands.

Figures 4.5 to 4.8 showed the first derivatives of the 25 tree species in the four
seasons. The first derivatives had some dominate peaks in the spectral bands from
500 to 770 nm whilst the bands with wavelengths shorter than 550 nm and longer
than 770 nm remained approximately around zero value with some noises. A positive
peak and a negative peak were found at around 525 nm and 570 nm respectively
whilst zero value was found in between the two peaks at 550 nm. These features
demonstrated clearly the characteristics of the green peak which had a maxima at 550
nm and a positive slope before the maxima and vice versa. Some negative
irregularities with two small negative peaks were found between the green peak and
the red edge that indicated the some variations of the downward slope occurred in
this region. A very high peak occurred at around 725 nm illustrated the marked rise
of the red edge. Different tree species tended to have the peaks centered at slightly

different wavelengths. This might help to improve recognizing tree species.
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Figure 4.5a First derivatives of the first seven tree species in spring
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Figure 4.5b First derivatives of the second six tree species in spring
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Figure 4.5¢ First derivatives of the third six tree species in spring
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Figure 4.5d First derivatives of the fourth six tree species in spring
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Figure 4.6a First derivatives of the first seven tree species in summer
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Figure 4.6b First derivatives of the second six tree species in summer
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Figure 4.6¢ First derivatives of the third six tree species in summer
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Figure 4.6d First derivatives of the fourth six tree species in summer
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Figure 4.7a First derivatives of the first six tree species in autumn
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Figure 4.7b First derivatives of the second six tree species in autumn
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Figure 4.7¢ First derivatives of the third six tree species in autumn
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Figure 4.7d First derivatives of the fourth six tree species in autumn
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Figure 4.8a First derivatives of the first six tree species in winter
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Figure 4.8b First derivatives of the second five tree species in winter

First derivative

12

-0.6 t + u ~+ t t t t t
400 450 500 550 600 650 700 750 800 850 900
Wavelength (nm)

66



Figure 4.8c First derivatives of the third five tree species in winter
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Figure 4.8d First derivatives of the fourth five tree species in winter
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Figures 4.9 to 4.12 showed the second derivatives of the 25 tree species in the
four seasons. The second derivatives tended to have rather noisy bands in the
wavelengths shorter than 550 nm and longer than 770 nm. These noisy bands might
affect the recognition of tree species and lead to unsatisfactory classification results.
A positive peak at 510 nm and a negative peak at 530 nm demonstrated the positive
peak at 525 nm found in the first derivatives. Similarly, a negative peak at 560 nm
and a positive peak at 580 nm explained the negative peak at 570 nm in the first
derivatives. The two small negative peaks found in the first derivatives between the
green peak and the red edge were magnified in the second derivatives with some
obvious small positive and negative peaks in this region. The peak found in the first
derivatives at 725 nm created a dominant positive peak at 700 nm and a dominant

negative peak at 750 nm in the second derivatives.

Figure 4.13 showed the spectral reflectance of the ten surface covers measured
in the field. They were concrete, pond water, grass lawn, grass slope, fern
(Dicranopteris linearis) and five tree species including Acacia confusa, Castanopsis
fissa, Dimocarpus longan, Ficus microcarpa and Taxodium distichum. The five tree
species, grass lawn and fern had similar reflectance pattern as those measured in the
laboratory. Meanwhile, the spectral reflectance of fern appeared to be the greenest. It
had the highest green peak comparing with those of tree species and grass lawn.
Since grass in the site where reflectance of grass slope was measured did not grow
well and quite a lot of bare soil was exposed which was a common situation for grass
slopes in Hong Kong, the reflectance of grass slope showed no clear green peak but
was still high in the near-infrared bands. Concrete had reflectance with constantly

increasing gentle slope from 400 to 900 nm. Pond water had low reflectance in the
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Figure 4.9a Second derivatives of the first seven tree species in spring

Second derivative

Figure 4.9b Second derivatives of the second six tree species in spring

Second derivative
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Figure 4.9c Second derivatives of the third six tree species in spring
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Figure 4.10a Second derivatives of the first seven tree species in summer
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Figure 4.10b Second derivatives of the second six tree species in summer
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Figure 4.10c Second derivatives of the third six tree species in summer

Second derivative

Figure 4.10d Second derivatives of the fourth six tree species in summer
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Figure 4.11a Second derivatives of the first six tree species in autumn
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Figure 4.11b Second derivatives of the second six tree species in autumn
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Figure 4.11c Second derivatives of the third six tree species in autumn
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Figure 4.12a Second derivatives of the first six tree species in winter
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Figure 4.12¢ Second derivatives of the third five tree species in winter
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Figure 4.12d Second derivatives of the fourth five tree species in winter
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near-infrared bands which was a typical feature for the reflectance of water body.

Relatively higher reflectance was found in the visible bands with a dominant peak

centered at 560 nm.

Figure 4.13. Reflectance spectral curves of the in situ surface covers
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Appendix 1 showed the plots of spectral reflectance of the 25 tree species in
different seasons for each density level. Each curve was the average of 12 spectra
measured in different seasons for each density level. Different seasonal patterns
could be traced visually from the plots. Some deciduous tree species, for example,
Liquidambar formosana, Lagerstroemia speciosa and Taxodium distichum, had
obvious annual cycle. In spring, new green leaves started to grow again. New-growth
leaves tended to be in lighter and brighter green color so that spectral reflectance
were the highest in spring. In winter, leaves changed from green to red and yellow in
the beginning of winter and finally fell. A reduction in green and near-infrared
reflectance and a gain in yellow and red reflectance were found. This pattern was
obviously noticed in the spectral curves of Taxodium distichum. The green peak and
the near-infrared bands were the highest in spring while these bands were lower in
summer and autumn. In winter, the green peak disappeared. The reflectance
increased gradually from 400 nm to 600 nm. A small peak was found centered at
around 640 nm presenting the red bands and the reflectance dropped into a small
trough centered at 680 nm. From 680 nm onwards, a relatively steep rise occurred
until 720 nm presenting the red edge. In the near-infrared region from 720 nm to 900

nm, the reflectance increased with a gentle slope instead of leveled off.

Other deciduous tree species, for example, Ficus variegata lost their leaves in
late winter so that spectral measurement could be done before their leaves
disappeared. Their leaves turned dull and dry in winter while new-grown leaves in
spring were bright and light green. Thus, the spectral reflectance especially for the
green peak and the near-infrared bands were higher in spring and summer but lower

in autumn and winter. There was no consistent pattern for evergreen trees. Some
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evergreen tree species, for example, Acacia mangium and Cinnamomum camphora,
had higher spectral reflectance in spring and summer and lower reflectance in
autumn and winter. Especially for Cinnamomum camphora, the green peak and the
near-infrared regions in spring were dominantly higher than those in other seasons.
However, some evergreen species got a reversed pattern such as Ficus microcarpa
and Lophostemon conferta. The green peak and the near-infrared regions of Ficus

microcarpa were especially higher in autumn than those in other seasons.

4.3. Tree species recognition

The 25 tree species were classified by two recognition algorithms, linear
discriminant analysis (DA) and artificial neural networks (NN). Table 4.1 showed the
classification results of the four seasonal data sets by these two algorithms. The
confusion matrices for each classification using linear discriminant analysis and
neural networks were listed in Appendix 2 and Appendix 3 respectively. The overall
accuracies for linear discriminant analysis ranged from 9.07% to 80.69% and those
for neural networks were from 40.40% to 76.67%. Except the very poor results
obtained by linear discriminant analysis using derivatives data, the classification
results were satisfactory particularly for the original spectral reflectance data which
yielded over 70% overall accuracy. It confirmed the discriminating power of

hyperspectral data to recognize different tree species.
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Table 4.1. Classification results of tree species recognition using all 138 bands

Original Spectra

DA NN
OA (%) Kappa (x100) OA (%) Kappa (x100) Zpa NN
Spring 74.27 73.19 72.27 71.11 0.8751
Summer 68.93 67.64 72.40 71.25 - -1.4762
Autumn 80.69 79.86 76.67 75.65 1.8931
Winter 70.16 68.67 74.29 73.00 -1.6378
AITETEE 73.51 72.34 7391 72.75
accuracy
First Derivatives
DA NN
. OA (%) Kappa (x100) 04 (%) Kappa (x100) Zpa nN"
Spring 20.67 17.36 60.40 58.75 -17.2458
Summer 9.07 5.28 62.13 60.56 -25.9166
Autumn 17.36 13.77 63.19 61.59 -20.0825
Winter 14.44 10.17 61.59 59.67 -19.9130
EReIage 15.39 11.65 61.83 60.14
accuracy
Second Derivatives
DA NN
OA4 (%) Kappa (x100) 04 (%) Kappa (x100) Zpa nN'
Spring 9.73 5.97 40.40 37.92 -14.9923
Summer 10.40 6.67 49.87 47.78 -18.6676
Autumn 13.61 9.86 50.14 4797 -16.2671
Winter 25.87 22.17 50.48 48.00 -9.3461
Ehcriae 14.90 11.17 47.72 45.42
accuracy
=2 KDA — KNN . .
ZpaNN = where Kp4 and Kyy are the Kappas calculated from the classification
'\[V(KDA) +V(Kyw)

results using linear discriminant analysis and neural networks respectively.

When the confusion matrices were compared with one another, no consistency
was found among the patterns of classification and misclassification. Table 4.2
showed a summary of the classification results of each tree species for the four
seasons using original spectra. The average accuracy of each tree species was
calculated and compared. The average accuracy of Bauhinia variegata was 91.25%
which was the highest among all tree species. Bauhinia variegata had large leaves

and possessed the highest reflectance in green and near-infrared spectral regions in
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the four seasons which made it more distinctive from other species. Araucaria
heterophylla, Delonix regia, Liquidambar formosana, Melaleuca quanqueenervia,
Sapium sebiferum and Taxodium distichum also obtained good classification results
with the average accuracy of 80% to 84%. On the contrary, Ficus microcarpa got the
lowest average accuracy among all with only 60.00% whilst Castanopsis fissa,
Dimocarpus longan and Lophostemon conferta had average accuracy of 61% to
65%. Unlike Bauhinia variegata, these trees did not have any particularly distinctive
characteristics in terms of leaf size and spectral reflectance which made them more
easily differentiated from each other. The confusion matrices also did not reveal a

consistent confusion pattern (Appendix 2 and 3).

Table 4.2 Classification results of each tree species using original spectra for the
four seasons

Spring Summer Autumn Winter Overall accuracy of
DA NN DA NN DA NN DA NN each tree species (%)
ac 66.67 33.33 83.33 100.00 76.67 93.33 43.33 56.67 69.17
ah 100.00 86.67 83.33 96.67 90.00 83.33 80.00 40.00 82.50
am 66.67 66.67 40.00 40.00 96.67 96.67 50.00 83.33 67.50
bv 93.33 100.00 100.00 93.33 96.67 86.67 83.33 76.67 91.25
cc 70.00 83.33 43.33 60.00 90.00 93.33 56.67 56.67 69.17
ce 70.00 96.67 53.33 100.00 80.00 83.33 63.33 86.67 79.17
cf 70.00 50.00 76.67 56.67 73.33 50.00 56.67 56.67 61.25
cl 53.33 83.33 50.00 56.67 93.33 96.67 - B 72.22
ct 93.33 73.33 70.00 70.00 83.33 93.33 90.00 33.33 75.83
dl 53.33 30.00 66.67 53.33 86.67 70.00 66.67 90.00 64.58
dr 90.00 70.00 93.33 70.00 80.00 100.00 - - 83.89
fm 60.00 23.33 43.33 23.33 96.67 96.67 56.67 80.00 60.00
fs 60.00 90.00 63.33 90.00 - - - - 75.83
fv 86.67 73.33 8333 90.00 76.67 13.33 66.67 96.67 73.33
ht 86.67 93.33 66.67 83.33 86.67 56.67 66.67 66.67 75.84
lc 56.67 76.67 7333 3333 96.67 50.00 63.33 56.67 63.33
If 90.00 66.67 86.67 86.67 100.00 63.33 86.67 76.67 82.09
Is 60.00 40.00 73.33 43.33 70.00 56.67 93.33 96.67 66.67
mq 93.33 100.00 53.33 70.00 76.67 96.67 83.33 90.00 82.92
mt 63.33 3333 60.00 73.33 70.00 76.67 83.33 76.67 67.08
pe 70.00 83.33 83.33 86.67 46.67 50.00 83.33 73.33 72.08
pp 63.33 90.00 63.33 90.00 70.00 93.33 66.67 76.67 76.67
sm 56.67 96.67 76.67 70.00 80.00 86.67 33.33 90.00 73.75
ss 100.00 83.33 53.33 86.67 70.00 93.33 - - 81.11
td 83.33 83.33 83.33 86.67 50.00 60.00 100.00 100.00 80.83

Average overall
accuracy of each 74.27 7227 6893 72.40 80.69 76.67 70.16 74.29
algorithm (%)
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- 4.3.1. Comparison of different classifiers

Table 4.1 showed the classification results of the two classifiers and also the
results of significant testing of Kappa between the two classifiers. For the
classifications using original spectra, discriminant analysis obtained better results for
spring and autumn with overall accuracy of 74.27% and 80.69% respectively while
neural network algorithm was better for summer and winter with overall accuracy of
72.40% and 74.29% respectively. However, the differences were not statistically
significant as all absolute values of Z were less than the critical value of 1.96 at 0.05
significance level. In addition, the average overall accuracy of four seasons for
discriminant analysis and neural network is 73.51% and 73.91% respectively which

also suggested no significant differences for the two classifiers.

For the classifications using first and second derivatives, the differences
between neural networks and discriminant analysis were greatly significant. Neural
networks generated average overall accuracy of 61.83 and 47.72% by using first and
second derivatives respectively. However, the average overall accuracy generated by
discriminant analysis were extremely poor with 15.39% and 14.90% by using first
and second derivatives respectively. Neural networks outperformed discriminant
analysis by using either first or second derivatives. It has been shown earlier that
within the first derivatives data, many spectral bands had data value close to zero
whilst the second derivatives data possessed a lot of noisy bands. The presence of
these bands might have detrimental effect on the classification results in using linear
discriminant analysis which relied on the ratio of between-group variance versus
within-group variance as zero data values and noisy bands might decrease these ratio.

This effect was less critical in neural networks which was more adaptive to the data
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themselves.

4.3.1.1. Efficiency of the classifiers

For the efficiency of the classifiers, discriminant analysis worked better than
neural networks in two aspects. Firstly, the training process required to produce a
neural network was extremely time and computational intensive although the trained
classifier worked very fast. It spent more than one day on a Sun SPARCstation 10 for
the training process. On the contrary, discriminant analysis was less time and
computation consuming. Only a few seconds were used for the training and testing
process on the same system used by the neural networks. Secondly, neural networks
needed to specify obscure parameters such as learning rate, momentum rate, hidden
layer size and training convergence criterion which made neural network less

convenient and more difficult to use.

4.3.1.2. Discussions

After discussing the performance of the two classifiers in terms of their
classification accuracy and efficiency, several implications can be drawn. The new
technique, neural networks did outperform the traditional linear discriminant analysis
in classification accuracy for the derivatives data. But the results were indifferent if
the original spectra were used. The advantages of neural network to deal with
distribution-free, nonlinear, multi-source and ancillary data make it a trend for
classification technique in the future. However, neural network algorithms are still
not mature enough for classification of hyperspectral data. The large number of input
nodes and output nodes necessitates lengthy training time and a number of

parameters such as learning rate and momentum rate need to be specified. These two
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factors can solely hinder users from choosing neural networks for classification. For

efficiency, it is obvious that linear discriminant analysis excels.

The backpropagation feed-forward neural network used in this study was among
the slowest neural networks developed so far. Apart from backpropagation feed-
forward neural network, another neural network, Kohonen’s learning vector
quantization (LVQ) has been used and tested (Neural Network Research Center,
1998). The time for training and testing process is only a few seconds which is much
shorter than that used by backpropagation feed-forward neural network. However,
the results were not satisfactory. Classification accuracy of around 20% was obtained
for classifying an original spectra data set. More studies should be made to develop

convenient and fast neural networks for hyperspectral data analysis.

4.3.2. Comparison of different data processing strategies

Using the original spectra produced better results than using either the first or
the second derivatives. It is particularly obvious when discriminant analysis is used.
Table 4.3 showed the significant testing of Kappa comparing different data
processing strategies. Overall accuracy generated from discriminant analysis ranged
from 70.16% to 80.69% for the four seasons using the original spectra. But it reduces
to only 9.07% to 25.87% when using the first and second derivatives. The significant
testing of Kappa also demonstrated very high degree of significance between the

original spectra and the derivatives spectra.
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Table 4.3. Significant testing of Kappas for comparing different data processing
strategies (absolute value > 1.96 indicates significant difference at 0.05 significance

level)
Spring Data '
Original spectra First derivatives Second derivatives
DA NN DA NN DA NN
Original spectra - - 14.7477 49165  33.6111 13.3402
First derivatives -14.7477  -4.9165 - - 6.0276 8.0294
Second derivatives  -33.6111 -13.3402 -6.0276  -8.0294 - .
Summer Data
Original spectra First derivatives Second derivatives
DA NN DA NN DA NN
Original spectra - - 30.2852  4.2692  29.2339  9.234]
First derivatives -30.2852  -4.2692 - - -0.8947  4.8338
Second derivatives = -29.2339  -9.234] 0.8947 -4.8338 - -
Autumn Data
Original spectra First derivatives Second derivatives
DA NN DA NN DA NN
Original spectra - - 31.1192  5.6466  34.6128 10.9074
First derivatives -31.1192  -5.6466 - - 1.9814 5.0549
Second derivatives ~ -34.6128 -10.9074 -1.9814  -5.0549 - -
Winter Data
Original spectra First derivatives Second derivatives
DA NN DA NN DA NN
Original spectra - - 24.4815  4.8805 17.6258  9.0270
First derivatives -24.4815  -4.8805 - - -5.1881 42138
Second derivatives  -17.6258 -9.0270  5.1881 -4.2138 - -

For neural networks, overall accuracy ranging from 72.27% to 76.67% were

produced using original spectra. Using first and second derivatives generated lower

overall accuracy of 60.40% to 63.19% and 40.40% to 50.48% respectively. The tests

of significance, again, invoked that using original spectra was significantly better

than using derivatives data. The poor results obtained by derivatives data contradict

the results done by previous researchers. For example, Gong et al. (1997) obtained

higher overall accuracy in classifying six tree species with spectral derivatives than

reflectance spectra using neural networks. Their spectral measurements were made in

the field which background soil effect posed an important factor on the reflectance
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spectral data. Derivatives procedure could partly remove the effects of low frequency
background soil spectra in target spectra, therefore, leading to an increase in
recognition accuracy. However, spectral measurements in this study were taken in a
controlled environment where a black cloth was used as a background to minimize
the background effect. Thus, derivatives procedure did not help to improve
recognition accuracy in this study. On the contrary, it enhanced noise during the

procedure and led to decreased recognition accuracy.

The difference between first and second derivatives spectra was not obvious
using discriminant analysis. Spring and autumn data produced higher overall
accuracy using first derivatives but summer and winter data had opposite results.
However, neural networks yielded significantly better results when using first
derivatives than using second derivatives. Using first derivatives produced an
average overall accuracy of 61.83% which was 14.11% higher than that of using
second derivatives. The very noisy bands in second derivatives with wavelengths
shorter than 550 nm and wavelengths longer than 770 nm might reduce the

classification accuracy in second derivatives.

4.3.3. Comparison of data among different seasons

Vegetation changes during the course of a year, especially for deciduous trees
which lose their leaves during winter. The changes of leaf colors from green to red
and yellow during autumn and winter can markedly affect their spectral reflectances.
Besides, many trees have distinct seasonal peaks of growth, flowering and fruiting
activities that can also affect spectral reflectance. Among the 25 tree species that

were investigated, some of the tree species did change color during winter and their
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spectral reflectances were significantly different from those measured in other

S€asons.

Based on the discriminant analysis results using the original spectra of 21 tree
species for each season, a comparison among different seasons was performed. The
classification results of the four seasons were shown in Table 4.4 while the results of
significant testing of Kappas comparing classifications of different seasons were
listed in Table 4.5. The confusion matrices were shown in Appendix 4. Autumn data
was able to generate the most accurate results with overall accuracy of 72.86%.
Spring and winter data produced slightly lower accuracy of 71.90% and 70.16%
respectively, but the different is statistically insignificant. Summer data generated the

lowest classification accuracy of 65.71%.

Table 4.4. Classification results of linear discriminant analysis using 21 tree species
with the original spectra for seasonal comparison

0OA (%) K (x100)
Spring 71.90 70.50
Summer 65.71 64.00
Autumn 72.86 71.50
Winter 70.16 68.67

Table 4.5. Significant testing of Kappas for comparing classification results using
linear discriminant analysis for seasonal comparison (absolute value >1.96 indicates
significant difference at 0.05 significance level)

Spring Summer Autumn Winter

Spring - 2.2649 -0.3602 0.6512

Summer -2.2649 - -2.6257 -1.6122

Autumn 0.3602 2.6257 - 1.0113
Winter -0.6512 1.6122 -1.0113 -
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4.3.4. Comparison of laboratory and in sifu data

Five tree species were selected for in sifu spectral measurements, namely
Acacia confusa, Castanopsis fissa, Dimocarpus longan, Ficus microcarpa and
Taxodium distichum. Figure 4.14 showed individual plots of laboratory and in situ
average spectral reflectance of the five tree species. The in sifu data tended to have
higher reflectance. This might be due to the different illumination conditions.
Besides, the laboratory data were averaged by the 36 samples for each species. Two
third of the 36 samples were measured with low and medium level of leaf density
which might lower the average reflectance. No particular conclusion could be drawn
visually from the plots. All five tree species had higher near-infrared bands for in situ
data than for laboratory data. The green peaks of Castanopsis fissa were similar for
both in situ and laboratory data. Acacia confusa and Taxodium distichum had higher
green peaks for in situ data than for laboratory data while Dimocarpus longan had
lower green peaks for in situ data. The green peak of Ficus microcarpa shifted

slightly to a longer wavelength in the in situ data than in the laboratory data.

An analysis of means was performed to compare the laboratory and in situ
spectral reflectance data statistically for the five tree species. Figure 4.15 showed the
t value calculated for each wavelength. If the absolute value of ¢ exceeds 2, the
difference is significant at the 0.05 significance level. Most ¢ values obtained were
greater than 2. The results showed that the laboratory and in situ data were
significantly different. This might be due to the different illumination conditions
between the laboratory and the field as well as the different background conditions in

the locations of in situ measurement.
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Figure 4.14a In situ and laboratory reflectance spectra of Acacia confusa
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Figure 4.14b In situ and laboratory reflectance spectra of Castanopsis fissa
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Figure 4.14c In situ and laboratory reflectance spectra of Dimocarpus longan
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Figure 4.14d In situ and laboratory reflectance spectra of Ficus microcarpa
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Figure 4.14e In situ and laboratory reflectance spectra of Taxodium distichum
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4.4. Summary

The results of tree species recognition were satisfactory with over 70% overall
accuracy using original spectral reflectance data. In general, neural networks
outperformed linear discriminant analysis. Using original spectral reflectance
generated significantly better classification results than using either first derivatives
spectra or second derivatives spectra. Meanwhile, classification results using first
derivatives were better than those using second derivatives. For seasonal comparison,
autumn data yielded the best classification result while summer data produced the
lowest accuracy. It is found that seasonal effect did pose a great concern for tree
species recognition. Finally, the laboratory and in situ data were found to be
statistically different that might be due to the different illumination conditions and

background effect.
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CHAPTER FIVE
RESULTS AND DISCUSSIONS OF DATA COMPRESSION

AND BAND SELECTION

5.1. Introduction

This chapter presents the results and discussions of data compression and band
selection. Principal components analysis is performed for data compression using the
in situ spectral reflectance of the ten surface covers and the laboratory data of the tree
species. Band selection is done by stepwise discriminant analysis and hierarchical

clustering procedure using the laboratory data of the tree species.

5.2. Data compression
Data compression was done by principal components analysis (PCA). Two

separate PCAs were done using i situ data and laboratory data respectively.

5.2.1. PCA using in situ spectral data

For in situ data, PCA was performed using the smoothed spectral reflectance of
the ten surface covers. Figure 5.1 showed the first five PC loadings. Table 5.1
showed the eigenvalues and the percentage variance explaining the first four PCs.
The reflectance data were rotated such that the majority of the spectral information
was contained in the first four PCs which totally expressed 99.78% of the total

variability in the spectral data.
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Table 5.1. Eigenvalues and percentage variance of the first four PCs for in situ data

: 0
Eigenvalue % of variance Cumula_tlve % of
variance
PC1 411.166 59.676 59.676
PC2 242.337 35.172 94.848
PC3 20.120 2.920 97.768
PC4 12.379 1.797 99.565
Figure 5.1. The first five PC loadings of in situ data
12
ol
08 r
06 | =—PC1
% 04 —PQ2
° —PC3
O 02}
P —PC4
0 d : : ; :
/ —PC5
" /V
-04 f
-0.6 i
400 450 500 550 600 650 700 750 800 850 900
Wavelength (nm)

94

N G g Ny



5.2.1.1. Characteristics of PC loadings

The first principal component (PC1) represented 59.68 % of the total variance in
the spectral data and had heavy positive loadings from 400 nm to around 700 nm
which was visible spectral range while a very small trough was found near the green
peak centered at 550 nm. It dropped sharply from positive to negative value around
the red edge between 700 nm and 750 nm and leveled off. Significant contrast
between the visible and the near-infrared bands was formed in PC1 which was
analogous to the greenness measures obtained from PCA or tasseled cap

transformation using broadband satellite multispectral data (Crist and Cicone, 1984).

PC2 loaded positively for all bands and expressed 35.17% of the total variance
of the data. It could be considered as similar to the brightness measures derived from
broadband data. Its pattern was very similar to the spectral reflectance of trees in
which a green peak was found at round 550 nm and a sharp rise occurred at the red

edge with a very high near-infrared plateau.

Most broadband multispectral data normally yielded two-dimensional
information in terms of brightness and greenness from visible and near-infrared
bands. PC3s and PC4s produced from hyperspectral data, however, possessed useful
information. PC3 derived from in situ spectral data explained 2.92% of the total
variance. PC3 had positive loadings from 400 nm to 520 nm in the blue bands and
dropped to a negative trough centered at the green band of 550 nm. It rose to positive
value from 640 nm to 690 nm with a little peak at 675 nm in the red bands and
dropped again to a deeper trough centered at around 720 nm along the red edge. It

rose again to positive from 750 nm onwards. It could be interpreted as a contrast
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between the strong absorption blue and red bands versus the strong reflectance green

bands and the steep rise of the red edge.

PC4 explained 1.80% of the total variance. PC4 had negative loadings from 400
nm to around 600 nm in which a trough was found at 550 nm in the green bands
similar to that found in PC3. It rose to positive values from 600 nm to 720 nm in
which a higher peak was found at also 675 nm in the red bands as compared to that
in PC3. It dropped to negative again from 720 nm to 820 nm and rose slightly to
positive afterwards. It could be interpreted as a contrast between the green bands and

the red bands.

5.2.1.2. Scatter plots of PC scores

Figure 5.2 showed the scatter plots of PC1 versus PC2, PC1 versus PC3 and
PC1 versus PC4. In the three plots, pond water, concrete and grass slope in which
quite a lot of bare soil was exposed tended to scatter into separate clusters from the
vegetated covers of grass, fern and trees. The vegetated covers appeared to group
together. Meanwhile, different vegetation was clearly separated from each other. For
example, fern came out as a distinct cluster as shown in Figure 5.2b. It showed that
different surface cover types including different tree species had distinct inherent

spectral characteristics that can be discriminated by PCA.
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Figure 5.2a Scatter plot of PC score 1 versus PC score 2 for in situ data
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Figure 5.2b Scatter plot of PC score 1 versus PC score 3 for in situ data
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Figure 5.2¢ Scatter plot of PC score 1 versus PC score 4 for in situ data
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5.2.2. PCA using laboratory spectral data

For laboratory data, separate PCA was performed for each season using the
smoothed reflectance spectra of the tree species. Figure 5.3 showed the first five PC
loadings for the four seasons. Table 5.2 showed the eigenvalues and the percentage
variance of the first four PCs for the four seasons. The first four PCs totally
expressed more than 97.5% of the total variability in the spectral data of the four

s€asons.

Table 5.2. Eigenvalues and percentage variance of the first four PCs for laboratory

data

Spring data
1 0
Eigenvalue % of variance Cumula‘tlve % of
variance
PCl1 109.421 79.290 79.290
PC2 18.507 13.411 92.701
PC3 5.976 4.331 97.032
PC4 2.301 1.667 98.699
Summer data
3 0
Eigenvalue % of variance Cumula'tlve % of
variance
PCl1 120.349 87.209 87.209
PC2 8.923 6.466 93.675
PC3 5.669 4.108 97.783
PC4 1.382 1.001 98.785
Autumn data
9 0
Eigenvalue % of variance Cumula-tlve % of
variance
PC1 115.384 83.611 83.611
PC2 11.733 8.502 92.114
PC3 7.227 5.237 97.351
PC4 1.644 1.191 98.542
Winter data
Eigenvalue % of variance Cumula.tive % of
variance
PCl1 104.107 75.440 75.440
PC2 19.488 14.122 89.562
PC3 7.762 5.625 95.186
PC4 3.309 2.398 97.584
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Figure 5.3a The first five PC loadings of spring data
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Figure 5.3c The first five PC loadings of autumn data
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Figure 5.3d The first five PC loadings of winter data

PC loading

12

06
400 450 500 550 600 650 700 750 800 850 900
Wavelength (nm)
101

—PC1
—PC2
S €
—PC4
— PC5

—PCl1
—PC2
=—PC3
—PC4
=—PC5

- kG T el . T

CWad o

N —=F5— ==<=s



5.2.2.1. Characteristics of PC loadings

Results of the four seasons were quite consistent. PCls were loaded positively
and heavily from the 450 to 900 nm spectral range which did not reveal any contrast
among specific spectral bands. They represented more than 75% of the variance in
the spectral data and were approximately the average brightness from all bands. This

was quite similar to brightness vector derived from broadband multispectral data.

PC2s were consistent for spring, summer and winter in which positive loadings
were found in the visible bands from 400 nm to around 700 nm while the loadings
dropped to negative values along the red edge from 690 nm to 750 nm and leveled
off in the near-infrared bands from 750 nm to 900 nm. For the positive loadings
along the visible bands, troughs were found at around 550 nm in which the green
peak was located. PC2s formed significant contrast between the visible and near-
infrared bands. A similar but opposite pattern was found in summer in particular in
longer wavelengths beyond the red edge. However, the loadings in the visible band
region were not totally negative values. The peak at 550 nm raised to positive values
from 510 nm to 620 nm. PC2s can be considered as greenness measures similar to

those obtained using broadband spectral data.

Similar to the situation using in situ data, PC3s and PC4s generated by
laboratory data also possessed useful information. PC3s were consistent for spring,
summer and autumn. Positive loadings were found in the blue bands from 400 nm to
510 nm. Loadings dropped to negative values in the green bands from 510 nm to 660
nm and rose slightly to positive again just before the red edge in the 660 to 680 nm

range and peaked at around 670 nm. It then dropped to a negative trough at 700 nm
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and leveled off. PC3s had a similar pattern as the PC3 derived from in sifu data. PC3
of winter data were different from PC3s of the other seasons. It had positive loadings
from 400 nm to 570 nm which were the blue and green bands and negative loadings
from 570 nm to 900 nm. PC3s for spring, summer and autumn could be interpreted
as a contrast between the blue and red bands versus the green and yellow bands plus

the red edge.

PC4s for spring, summer and autumn and PC5 for winter were consistent and
the pattern of the loadings was in a reversed trend from 560 nm to 900 nm as
compared to PC3s for spring, summer and autumn. From 400 nm to 560 nm, positive
loadings were found before 440 nm while loadings dropped to negative from 440 nm
to 560 nm. Thus, a contrast between the shorter blue bands and the longer blue bands
existed. In both PC3 and PC4, the red edge formed a very distinct phenomenon
which was previously overlooked. It might contain useful information that deserve

further investigation.

5.2.2.2. Scatter plots of PC scores

Scatter plots of PC1 versus PC2, PC2 versus PC3 and PC2 versus PC4 were
shown in Figure 5.4. These plots showed that different tree species were slightly
scattered into different groups. However, tree species in the plot of PC1 versus PC2
were grouped more disperse than the other two plots. In the plot of PC1 versus PC2,
Bauhinia variegata, Delonix regia and Schima superba were separated from other
tree species while more tree species were dispersed and mixed with other tree
species, for example, Aleurites moluccana, Liquidambar formosana and

Lagerstroemia speciosa.
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Figure 5.4a Scatter plot of PC score 1 versus PC score 2 for laboratory data
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Figure 5.4b Scatter plot of PC score 2 versus PC score 3 for laboratory data
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In the plot of PC2 versus PC3 and PC2 versus PC4, more tree species appeared
to group together among themselves, for example, Ficus microcarpa, Melaleuca
quanqueenervia and Thuja orientalis in the former and Aleurites moluccana,
Bauhinia variegata and Ficus microcarpa in the latter. It revealed that the minor
PCs, PC3 and PC4, did contain useful information in differentiating different tree

species.

5.2.2.3. Results of tree species recognition using PC scores

In order to further investigate the differentiating power of these PCs, linear
discriminant analysis was performed to identify tree species using the first eight PCs
which explained more than 99.7% of the variance of the spectral data. The confusion
matrices of the classification results were shown in Appendix 5. Overall accuracy of
around 74% were yielded for spring, autumn and winter and 68.67% was found for
summer. The results were similar to those obtained by linear discriminant analysis
and neural network using all of the 138 bands. This showed that the PCs possessed

similar differentiating power to the original spectral bands.

5.2.3. Implications

For hyperspectral data, similar results weré found for PC1 and PC2 compared
with two-dimensional information obtained by broadband multispectral data in terms
of brightness and greenness from visible and near-infrared bands. However, PC3 and
PC4 generated by hyperspectral data possess extra information that is not provided
by broadband multispectral data and give insight to the understanding of the inherent

structure of hyperspectral data.
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In this study, the PCA using in situ spectral data can be considered as a
preliminary study of extracting information for hyperspectral images with various
surface covers whilst the PCA using laboratory data of tree species represents PCA to

extract information for vegetation studies.

5.3. Band selection

Two separate band selection schemes were used in this study. In order to
determine whether band selection helped to improve classification results, a
preliminary band selection procedure was done by stepwise discriminant analysis.
Then a hierarchical clustering procedure was performed for the original spectral data.
Spectral bands were selected from the centers of the clusters formed during the
clustering procedure to determine which spectral regions were useful for tree species

recognition.

5.3.1. Preliminary band selection using stepwise discriminant analysis
Preliminary band selection was done using stepwise discriminant analysis. The
bands that were selected and entered into the analysis were adjusted by the F
probability of entry and removal or F value of entry and removal. In this study, two
independent stepwise discriminant analyses were done. The first one used a criterion
that bands entered if the significance level of F value was smaller than 0.05 and
removed if the significance level of F was greater than 0.1. A different criterion was
used in the second analysis with F value greater than 3.84 for band entry and F value
less than 2.71 for band removal. The latter criterion was the default setting used in

the SPSS package while the former criterion allowed more bands to be selected.
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5.3.1.1. Selection of spectral bands

Figure 5.5 showed the bands selected by these two criteria. Nine to 37 bands
and seven to thirteen bands were selected using the first and second criterion
respectively. Using the first criterion, more bands were selected but no particular
pattern could be found. In general, fewer bands were selected in the infrared region
from 770 to 900 nm that a consistent information was formed in this spectral range.
However, with the second criterion, fewer bands were selected and the bands tended
to cluster into two groups. The first group ranged approximately from 500 to 570 nm
that was centered in spectral region of the green peak. The second one was from 650
to 750 nm around the red edge. It revealed that important spectral bands were mainly
found within the spectral range of the green peak and along the red edge. It was
interesting that one isolated band was found in the infrared region for the original
spectra of summer, autumn and winter data but no bands were selected from this
spectral region for the derivatives data. It suggested that the infrared plateau of the
spectral reflectance gave some information for identifying tree species, but no
significant information was found for the derivatives data which were approximately

zero or quite noisy in this spectral region.

5.3.1.2. Classification results of the selected bands

In order to determine how band selection affected the classification results,
linear discriminant analysis was performed using all the spectral bands (Case 1), the
bands selected by the first criterion (Case2) and the bands selected by the second
criterion (Case 3). Table 5.3 listed the classification results and Table 5.4 showed the
significant testing of Kappas. The confusion matrices were shown in Appendix 6 and

Appendix 7 for Case 2 and Case 3 respectively.
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Figure 5.5a The bands selected by stepwise discriminant analysis using the first

criterion (Case 2)
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Figure 5.5b The bands selected by stepwise discriminant analysis using the second

criterion (Case 3)
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Table 5.3. Classification results using stepwise linear discriminant analysis for band

selection

Original spectra

Case 1 Case 2 Case 3
No. of K No. of No. of K
bands 94 (x100) bands Gdpa (x 100) bands 94 %% (x100)
Spring 138 7427 73.19 10 79.73  78.89 7 77.60 76.67
Summer 138 68.93 67.64 11 81.20 80.42 7 81.73  80.97
Autumn 138 80.69 79.86 18 90.28 89.86 8 87.78 87.25
Winter 138 70.16 68.67 9 91.27 90.83 9 91.27 90.83
HYRREE 73.51 7234 85.62 85.00 84.58  83.93
accuracy
First Derivatives
Case 1 Case 2 Case 3
No. of o K No. of " K No. of " K
bands e (x100) bands Qb (x100) bands Q) (x100)
Spring 138 20.67 17.36 21 81.47 80.69 10 79.07 78.19
Summer 138 9.07 5.28 28 82.40 81.67 9 79.73  78.89
Autumn 138 17.36 13.77 31 86.67 86.09 11 85.55 84.93
Winter 138 14.44 10.17 23 88.10 87.50 13 86.03 85.33
SVerage 1539 11.65 84.66 83.99 82.60 81.84
accuracy
Second Derivatives
Case 1 Case 2 Case 3
No. of K No. of K No. of 5 K
banits 409 o) bands P4 (100 bands O4CY (g 00)
Spring 138 9.73 5.97 25 70.13  68.89 7 64.13 62.64
Summer 138 1040 6.67 20 72.00 70.83 8 73.87 72.78
Autumn 138 13.61 9.86 37 75.56 74.49 9 71.11  69.86
Winter 138 25.87 22.17 26 84.44 83.67 9 75.08 73.83
Ayerage 1490 11.17 75.53  74.47 71.05  69.78
accuracy
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Table 5.4. Significant testing of Kappas for comparing classification results of
stepwise linear discriminant analysis (absolute value >1.96 indicates significant

difference at 0.05 significance level)

Original Spectra

Z between Case 1

Z between Case 1

Z between Case 2

and Case 2 and Case 3 and Case 3
Spring -2.5221 -1.5126 1.0090
Summer -5.5503 -5.8191 -0.2657
Autumn -5.2129 -3.7096 1.5188
Winter -9.8640 -9.8640 0

First Derivatives

Z between Case 1

Z between Case 1

Z between Case 2

and Case 2 and Case 3 and Case 3
Spring -29.8225 -28.0008 1.1695
Summer -42.3729 -39.4597 1.3198
Autumn -36.5732 -35.4470 0.6094
Winter -39.2600 -36.8978 1.0930

Second Derivatives

Z between Case 1

Z between Case 1

Z between Case 2

and Case 2 and Case 3 and Case 3
Spring -30.4475 -26.5366 2.4802
Summer -31.4225 -32.8509 -0.8145
Autumn -30.3694 -27.2727 1.9109
Winter -25.9885 -20.1571 4.1665

Note:

Case 1 represents classification using all 138 bands
Case 2 represents classification using bands selected by the first criterion with 9-37 selected bands
Case 3 represents classification using bands selected by the second criterion with 7-13 selected bands
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Better recognition accuracy was obtained using the selected bands than using all
bands available. It was particularly obvious for the derivatives data. For original
spectra, overall accuracy of 68.93% to 74.27% were obtained in Case 1. Better
results with overall accuracy of 79.73% to 91.27% and 77.60% to 91.27% were
produced in Case 2 and Case 3 respectively. Table 4.8 showed that Case 2 and Case 3
which used selected bands produced significantly better recognition accuracy than
using all bands. The average overall accuracy for Case 2 (85.62%) was slightly
higher than that for Case 3 (84.58%), but the difference was statistically

insignificant.

For the first derivatives, the classification accuracy of using selected bands were
significantly much better than using all bands. Only accuracy of 9.07% to 20.67%
were obtained in Case 1, but much higher accuracy of 81.47% to 88.10% and
79.09% to 86.03% were produced in Case 2 and Case 3 respectively. Results of Case
2 with an overall accuracy of 84.66% were better than that of Case 3 which had an

overall accuracy of 82.60%. Again, their difference was statistically insignificant.

Similar to the first derivatives case, second derivatives produced significantly
much better classification results when using selected bands than using all bands.
Case 1 produced overall accuracy of 9.73% to 25.87% only, but Case 2 and Case 3
generated much higher overall accuracy of 70.13% to 84.44% and 64.13% to 75.08%
respectively. Again, results of Case 2 with an overall accuracy of 75.53% were better
than that of Case 3 which had an overall accuracy of 71.05%. The difference was

quite significant for spring and winter.
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5.3.1.3. Seasonal comparison using stepwise linear discriminant analysis

As the classification results of the derivatives data using linear discriminant
analysis with 138 bands were poor and the previous seasonal comparison showed no
significant difference among the four seasons, another comparison among different
seasons was performed. The seasonal comparison used stepwise linear discriminant
analysis in which the spectral bands were selected by the second criterion with 21
tree species for each season. The classification results of the four seasons were
shown in Table 5.5 while the results of significant testing of Kappas comparing
classifications of different seasons were listed in Table 5.6. The confusion matrices

were shown in Appendix 8.

Again, using the original spectra produced better results than those using the
first and second derivatives. Winter data was able to generate the most accurate
results with overall accuracy of 91.27% using the original spectra. The fact that some
of the tree species changed in leaf color during winter might help to improve the
classification results. Autumn data yielded a slightly lower accuracy of 87.62% than
the winter ones but statistically the differences were only marginal. The results of
summer and spring, however, were significantly lower than those in autumn and

winter. In general, autumn and winter data outperformed those in spring and summer.

The results were consistent with previous studies in which seasonal variability
was shown to affect tree species classification accuracy significantly (Eder, 1989 and
Schriever and Congalton, 1995). Eder (1989) showed that autumnal senescence
helped to increase accuracy in hardwood forest type delineation when applied to

aerial photography. However, Schriever and Congalton (1995) showed that spring
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data produced better results than autumn data for the identification of hardwood
species. The fact that bud break of some species was sooner than others in spring
helped to improve classification results in spring. Although the previous two studies
contradict with one another, the most important implication is that seasonal
variability can significantly affect the results of tree species recognition. Whether the
data should be collected in a particular season or month for best classification results

depends on different leaf phenology of different forest types in particular areas.

Table 5.5. Classification results of stepwise linear discriminant analysis using 21
tree species for seasonal comparison

Original Spectra First Derivatives Second Derivatives

OA4 (%) K(x100)0 OA(%) K(x100) OA(%) K (x100)
Spring 83.97 83.17 83.81 83.00 64.29 62.50
Summer 81.43 80.50 83.17 82.33 77.78 76.67
Autumn 87.62 87.00 84.60 83.83 71.43 70.00
Winter 91.27 90.83 86.03 85.33 75.08 73.83

Table 5.6. Significant testing of Kappas for comparing classification results of
stepwise linear discriminant analysis for seasonal comparison (absolute value >1.96

indicates significant difference at 0.05 significance level)

Original Spectra

Spring Summer Autumn Winter
Spring - 1.1938 -1.8594 -3.9643
Summer -1.1938 - -3.0506 -5.1474
Autumn 1.8594 3.0506 - -2.1134
Winter 3.9643 5.1474 2.1134 -
First Derivatives
Spring Summer Autumn Winter
Spring - 0.3037 -0.3864 -1.1036
Summer -0.3037 - -0.6897 -1.4064
Autumn 0.3864 0.6897 - -0.7167
Winter -1.1036 1.4064 0.7167 -
Second Derivatives
Spring Summer Autumn Winter
Spring - -5.3469 -2.7278 -4.2033
Summer 5.3469 - 2.5990 1.1298
Autumn 2.7278 -2.5990 - -1.4668
Winter 42033 -1.1298 -1.4668 -
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5.3.1.4. Implications

Some implications could be drawn from this preliminary band selection analysis
using stepwise discriminant analysis. Firstly, band selection did help to improve
classification accuracy. It suggested further studies for comparing different band
selection methods. Secondly, redundancy in spectral bands occurred remarkably in
hyperspectral data. In Case 3, using only seven to thirteen bands could produce better
results than using all 138 bands. Only little improvements in accuracy were found
when more spectral bands (9 to 37 bands) were used in Case 2. Thirdly, the selected
bands mainly lied in the spectral regions of the green peak and the red edge. This
indicated that spectral bands in these regions had stronger discriminating power than

other regions such as the blue and red regions.

5.3.2. Band selection using hierarchical clustering technique
5.3.2.1. Hierarchical clustering procedure

A hierarchical clustering procedure was done using the original spectral data of
autumn. Figure 5.6 showed the clusters generated throughout the first twenty-two
iterations during the clustering procedure. In the first iteration, the 400 — 900 nm
spectral region was divided into two clusters such that one belonged to the visible
bands (400 — 720 nm) and the other lied on the infrared region (720 — 900 nm). This
indicates that these two spectral regions had different inherent spectral properties.

This was consistent with our well-accepted understanding of the spectral bands.
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Figure 5.6 Result of the first 22 hierarchical clustering iterations
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From the second to the sixth iterations, small clusters were generated in the
spectral range from 705 nm to 740 nm along the red edge. Spectral bands in the
region of the red edge tended to be differentiated from the visible and near-infrared
bands. It shows that the red edge may contain different information other than that

obtained from the visible and infrared regions.

From the seventh to the thirteenth iterations, one more cluster was generated in
the visible region which was the green bands from 525 nm to 580 nm whilst more
clusters came out in the region of the red edge from 697 nm to 755 nm. The results
were as expected since spectral information did contain in the green peak. Except the
clusters found in the red edge, the three clusters in the visible region and the single
cluster in the infrared bands can be considered as the blue, green, red and near-
infrared bands present in traditional broadband multispectral sensors. Certainly, these
four broad bands contain useful information. However, they are not informative
enough to recognize tree species. The spectral bands in the red edge which have been
neglected in traditional multispectral sensors seem to contain extra information for

tree species recognition.

From the fourteenth to the nineteenth iterations, two more clusters were
generated in the visible region so that a total of five clusters appeared in the visible
region. The first cluster lied from 400 nm to 504 nm which was the blue bands. It is
noted that a small cluster from 400 nm to 407 nm was generated from the
seventeenth iteration onwards. This cluster may be formed due to relatively noisy
bands existed in this region so that it was ignored and combined into the first cluster.

The second one was in the spectral range of the edge appeared before the green peak
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from 504 nm to 526 nm and the third one was the green peak which lied from 526
nm to 582 nm. The fourth one was another edge after the green peak from 582 nm to
654 nm while the last cluster was the red bands from 654 nm to 686 nm. Again, more
clusters were generated in the red edge from 686 nm to 766 nm. The infrared bands
remained a single cluster. From the five clusters generated in the visible region, the
two edges before and after the green peak may contain information other than that
obtained from the traditional blue, green and red broad bands. More experiments
should be implemented to explore how the spectral bands in the edges including the
two edges before and after the green peak as well as the red edge help to recognize

tree species.

From the twentieth to the twenty-second iterations, more clusters were formed
in the visible region as most clusters in the red edge cannot be divided any further.
The newly generated clusters appeared mainly in the spectral region of the two edges
before and after the green peak except the two clusters which divided the blue bands
into two groups from 400 nm to 452 nm and from 452 nm to 504 nm respectively.
This suggests that more information may exist in the two edges before and after the

green peak than the traditional blue, green and red bands.

5.3.2.2. Selection of spectral band sets

Seven sets of spectral band were selected to test the discriminating power of
different spectral regions. Table 5.7 showed the seven selected spectral band sets
systematically. The bands were selected at the center of the clusters formed in

different stages of the previous hierarchical clustering procedure.
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Table 5.7. Spectral band sets selected from hierarchical clustering to test the
discriminating power of different spectral regions

Spectral band sets Description Selected bands

4 bands Represents the four 450.28 nm (blue)
traditional blue, green, red 550.00 nm (green)

(RGB) and near-infrared 670.37 nm (red)
(NIR) broad bands. 835.39 nm (infrared)

3 edges Includes the two edges 516.89 nm (edge before green peak)
before and after the green 619.51 nm (edge after green peak)
peak and one red edge. 728.14 nm (red edge)

7 bands Includes the RGB and NIR ~ 450.28 nm (blue)
bands and 3 edges. 516.89 nm (edge before green peak)

550.00 nm (green peak)

619.51 nm (edge after green peak)
670.37 nm (red)

728.14 nm (red edge)

835.39 nm (infrared)

5 red edges Includes five red edges to 695.69 nm (red edge)
determine the discriminating 710.13 nm (red edge)
power of the red edge only. ~ 728.14 nm (red edge)

742.52 nm (red edge)
760.46 nm (red edge)

7 edges Includes the two edges 516.89 nm (edge before green peak)
before and after the green 619.51 nm (edge after green peak)
peak and five red edges to 695.69 nm (red edge)
determine the discriminating 710.13 nm (red edge)
power of the edges. 728.14 nm (red edge)

742.52 nm (red edge)
760.46 nm (red edge)

11 bands Includes the RGB and NIR ~ 450.28 nm (blue)

bands and the seven edges. 516.89 nm (edge before green peak)

550.00 nm (green peak)
619.51 nm (edge after green peak)
670.37 nm (red)
695.69 nm (red edge)
710.13 nm (red edge)
728.14 nm (red edge)
742.52 nm (red edge)
760.46 nm (red edge)
835.39 nm (infrared)

13 bands Includes bands from “11 427.29 nm (blue)

bands” set with the blue
region and the edge after
green peak region divided
into two bands.

476.24 nm (blue)

516.89 nm (edge before green peak)
550.00 nm (green)

597.62 nm (edge after green peak)
630.43 nm (edge after green peak)
670.37 nm (red)

695.69 nm (red edge)

710.13 nm (red edge)

728.14 nm (red edge)

742.52 nm (red edge)

760.46 nm (red edge)

835.39 nm (infrared)
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The first band set (4 bands) included four spectral bands which represented the
traditional multispectral broad bands including blue, green, red (RGB) and near-
infrared (NIR) bands. As the traditional broad bands did not consider the edges
including the edges before and after the green peak and the red edge, the second band
set (3 edges) tried to determine the potential of using these edges for tree species
recognition. Thus, the second band sets included three bands taking from the spectral
regions of the edges before and after the green peak and the red edge. In the previous
two band sets, the bands were selected from the center of clusters formed throughout
the fourteenth to the nineteenth iteration of the clustering procedure. The third band
set (7 bands) included seven bands which contained in the previous two band sets i.e.

the four traditional multispectral broad bands, RGB and NIR, and the three edges.

As most of the clusters generated from the clustering procedure lied in the red
edge region, five spectral bands were selected from this region solely to determine
the discriminating power of the red edge in the fourth band set (5 red edges). Then,
the fifth band set (7 edges) included the five red edges and the two edges before and
after the green peak to further investigate the discriminating power of the edges. The
sixth band set (11 bands) included eleven bands containing RGB and NIR bands in

the first band set and the seven edges in the fifth band set.

Finally, the seventh band set (13 bands) included thirteen bands which were
selected from the center of the clusters from throughout the twentieth and the twenty-
second iterations of the clustering procedure. The blue region and the edge after the
green peak region were divided into two bands in the seventh band set while other

bands remained the same.
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The bands in the “13 bands” band set were compared with the wavelengths that
were correlated with biochemical or biophysical information found by other
researchers (Table 5.8). The selected bands found by Curran (1989) and Martin et al.
(1998) were mainly the near-infrared and mid-infrared bands while those found by
Thenkabail et al. (1999) and the thirteen bands found in this study mainly lied in the
visible and the near-infrared bands. Although the bands found by these researchers
and in this study were not consistent with one another, some wavelengths or spectral

regions were commonly selected.

The two blue bands found in this study, 429 nm and 476 nm, were close to the
two found by Curran (1989), 430 nm and 460 nm while Thenkabail ez al. found one
blue band at 495 nm. It is interesting that no green bands were selected by Curran
(1989) and Martin et al. (1998) when three green bands were included by Thenkabail
et al. (1999) and in this study. The three green bands found in these two studies were
quite consistent. Both studies selected 550 nm which is the green peak. The other
two green bands represented the two edges after and before the green peak
respectively in both studies. Three red bands were found by Thenkabail et al. (1999)
and in this study while two were selected by Curran (1989) and one by Martin ef al.
(1998). The spectral bands, 640 nm selected by Curran (1989), 627 nm selected by
Martin et al. (1998) and 630 nm found in this study were consistent. They
represented the yellow edge after the green peak. Moreover, the spectral bands, 660
nm found by Curran (1989), 668 nm found by Thenkabail ef al. (1999) and 670 nm
found in this study were consistent such that they represented the red trough. Both in
this study and by Thenkabail et al. (1999) used the 696-nm band. The commonly

selected bands in the visible region reveals that some particular wavelengths are
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Table 5.8. Comparison of the spectral bands that are correlated with biochemical or
biophysical information found by different researchers and the 13 bands selected
from hierarchical clustering procedures in this study

Curran, 1989 Martin et al., Thenkabail et al., This study
1998 1999

Number of bands 42 9 12 13
Spectral range 400 72400 nm 400 ~2500 nm 350 ~ 1050 nm 400 ~ 900 nm

Blue bands 430 - 495 429
(400 — 500 nm) 460 476
Green bands - - 525 517
(500 — 600 nm) 550 550
568 598
Red bands 640 627 668 630
(600 — 700 nm) 660 682 670
, 696 696
Near-infrared bands 910 750 720 710
(700 — 1300 nm) 930 783 845 728
970 822 920 743
990 982 760
1020 1025 835
1040
1120
1200
Mid-infrared bands 1400 1641 = =
(1300 — 2500 nm) 1420 1660
1450 2140
1490 2280
1510 2290
1530
1540
1580
1690
1780
1820
1900
1940
1960
1980
2000
2060
2080
2100
2130
2180
2240
2250
2270
2280
2300
2310
2320
2340
2350
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useful and important for vegetation studies. An optimal combination of narrow bands
exists in the visible spectral region.

In the near-infrared region, the selected bands were less consistent. Curran
(1989) included no bands in the red edge. Martin et al. (1998) and Thenkabail et al.
(1999) selected one band in the red edge from 700 nm to 760 nm while four red
edges were selected in this study. For the near-infrared plateau from 760 nm to 940
nm, Curran (1989), Martin et al. (1998) and Thenkabail et al. (1999) selected two

bands while one band was included in this study.

5.3.2.3. Classification results of the selected band sets

Linear discriminant analysis was used again to classify tree species using
original spectra of the selected band sets for four seasons in order to determine which
spectral regions were important in tree species recognition. Table 5.9 showed the
classification results and Table 5.10 showed the significant testing of Kappas among

the classification results. The confusion matrices were shown in Appendix 9.

Table 5.9. Classification results of the selected band sets generated from hierarchical
clustering procedures

Average overall

Spring ~ Summer Autumn  Winter accuracy (%)

4 bands OA (%) 4827 3920  50.00  46.8 46.11
K (X100) 46.11  36.67  47.83 4433 43.74
3 edges OA (%) 4240 4773 3944  49.05 44.66
K (X100) 4000 4556 3681  46.50 42.22
7 bands OA(%)  76.00 7627  79.86  76.51 77.16
K (X100)  75.00 7528 7899 7533 76.15
Srededges OA(%) 5453 5520  54.17  58.57 55.62
K (<100) 52.64 5333 5217  56.50 53.66
7 edges OA(%) 7213 7360 6931  76.83 72.97
K (*100) 7097 7250 6797  75.67 71.78
Ilbands  OA(%) 8680  87.33  88.89  86.03 87.26
K (*100) 8625  86.81 8841 8533 86.70
13bands  OA(%) 8747 8840 9194 8937 89.30
K (X100) 8694 8792 9159  88.83 88.82
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Table 5.10. Significant testing of Kappas for comparing classification results with
different selected band sets generated from hierarchical clustering procedures (value
> 1.96 indicates significant difference at 0.05 significance level)

Spring

4 bands 3 edges 7 bands 5rededges 7edges 1l bands 13 bands

- 22967 -11.5927 -2.4413  -9.7664 -17.5348 -17.9759

3 edges -2.2967 - -14.1364  -4.7533  -12.2428 -20.3604 -20.8282
7 bands 11.5927 14.1364 - 8.3684 1.7128  -5.4316 -5.8213
Srededges 2.4413  4.7533  -8.3684 - -7.2076 -14.6971 -15.1168
7 edges 9.7664 122428 -1.7128  7.2076 - -7.1545  -7.5462
11 bands  17.5348 20.3604 54316  14.6971  7.1545 - -0.3858

13 bands 17.9759 20.8282 5.8213  15.1168  7.5462  0.3858 -

4 bands

Summer

4 bands 3 edges 7 bands 5rededges 7edges 1l bands 13 bands
-3.3742  -15.7761  -6.3311  -14.4259 -22.4678 -23.2475
-11.9657 -2.9169 -10.6926 -18.1593 -18.8691
8.8417 1.1954 -5.6183  -6.2495
-7.6121 -14.7497 -15.4200

4 bands -

3 edges 3.3742 -

7 bands 15.7761  11.9657 -
Srededges 6.3311 29169 -8.8417 -

7 edges 14.4259 10.6926 -1.1954  7.6121 - -6.8277  -7.4607

11 bands 22.4678 18.1593  5.6183 14.7497  6.8277 - -0.6331

13 bands  23.2475 18.8691  6.2495 15.4200  7.4607  0.6331 -

Autumn

4 bands 3 edges 7 bands 5rededges 7edges 1l bands 13 bands

- 4.0683 -12.5341 -1.5897 -7.6414 -17.7104 -19.8129
3 edges -4.0683 - -16.9648 -5.6897 -11.9844 -22.9364 -25.2963
7 bands 12.5341 16.9648 - 10.8203  4.6503 -4.7641 -6.7014

5red edges 1.5897  5.6897 -10.8203 - -6.0095 -15.8735 -17.9183
7 edges 7.6414 119844 -4.6503  6.0095 - -9.4460 -11.3789
11 bands  17.7104 229364 4.7641 15.8735  9.4460 - -1.9736
13 bands  19.8129 25.2963 6.7014  17.9183 11.3789 1.9736 -

4 bands

Winter

4 bands 3edges 7 bands 5rededges 7edges 1l bands 13 bands

4 bands - -0.7350 -11.3423  -4.1585 -11.4874 -16.1688 -18.1822

3 edges 0.7350 - -10.5284  -3.4120 -10.6715 -15.2788 -17.2538

7 bands 11.3423 10.5284 - 6.9373 -0.1334  -43685 -6.1619
Srededges 4.1585 34120 -6.9373 . -7.0746 -11.4602 -13.3227
7 edges 11.4874 10.6715 0.1334 7.0746 - -4.2350 -6.0286

11 bands 16.1688 15.2788  4.3685 11.4602  4.2350 - -1.8050

13 bands  18.1822 17.2538  6.1619 13.3227  6.0286 1.8050 -
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The “4 bands” and “3 edges” band set obtained the lowest classification
accuracy with average overall accuracy of 46.11% and 44.66 % respectively.
Although the average overall accuracy for “4 bands” was higher than “3 edges”, “4
bands” obtained higher overall accuracy for spring and autumn while “3 edges” had
higher overall accuracy for summer and winter. Thus, it was difficult to conclude
which band set got higher discriminating power for tree species recognition.
However, the results confirmed that the spectral region of the edges which had been
ignored in traditional multispectral broadband sensors contained considerably useful

information as the traditional RGB and NIR spectral bands.

The “7 bands” band set comprised of the bands in the previous two band sets.
The average overall accuracy was 77.16% which was significantly better than that in
the previous band sets. This indicates that the spectral bands in the edges do help to
differentiate different tree species instead of using the traditional RGB and NIR
bands only. Besides, “7 bands” also generated better classification results than using
all 138 bands. This, again, shows that redundancy exists in hyperspectral spectra and
band selection can not only save computational time and resources, but also improve

tree species recognition.

The “5 red edges” band set contained five spectral bands located only in the red
edge in order to investigate the discriminating power of the red edge. The average
overall accuracy was 53.66% which was significantly higher than those obtained
using “4 bands” and “3 edges”. The results clearly show that spectral bands in the red
edge contain quite a lot of information for tree species recognition. The “7 edges”

band set added the two bands located in the region of the edges before and after the
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green peak to the “S red edges” band set. The average overall accuracy was 72.97%
which is only slightly lower than those using all 138 bands. It further convinces the

potential of including the edges for tree species recognition.

The “11 bands” and “13 bands” band set performed the best with average
overall accuracy of 87.26% and 89.30% respectively. Significant improvements of
9.03% to 12.86% in overall accuracy for four seasons were found when “11 bands”
were used instead of “7 bands”. It means that including four more spectral bands in
the red edge region helps to improve classification accuracy for more than 9%.
Besides, the “13 bands” band set had higher overall accuracy than the “11 bands”
band set for each season although significant testing showed insignificant differences
between the two. This indicates that classification accuracy can be improved further
when more bands are appropriately selected for tree species recognition.
Furthermore, the results were also superior to those produced using selected bands

obtained by stepwise discriminant analysis.

5.4. Summary

Data compression was done by principal components analysis using in sifu data
and laboratory data separately. For both PCAs, more information was yielded from
hyperspectral data as compared to the two dimensional PCs representing greenness
and brightness measures obtained from PCA or tasseled cap transformation using
broadband multispectral data. PC3 and PC4 possessed useful information in
interpretation and understanding of the inherent structure of hyperspectral

reflectances in different surface types.
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Band' selection was performed using stepwise discriminant analysis and
hierarchical clustering procedures. Both band selection procedures improved
significantly the classification accuracies of tree species recognition. The bands that
were selected by stepwise discriminant analysis mainly lied in the spectral regions
around the green peak and the red edge. Hierarchical clustering suggested that the
spectral bands along the edges including two edges before and after the green peak as

well as the red edge contain useful information for tree species recognition.
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CHAPTER SIX

SUMMARY AND CONCLUSION

6.1. Introduction

This chapter is the summary and conclusion of this study. A brief summary on
the results and discussions of tree species recognition, data compression and band
selection is presented. The limitation of this study is then stated followed by

recommendations for further studies. Finally, a conclusion on this study is given.

6.2. Summary

In this study, hyperspectral data were collected in the Chinese University of
Hong Kong campus. Laboratory data of 25 tree species were taken to test the
separability of hyperspectral data of different tree species. In situ spectral reflectance
of ten surface covers including several tree species, grass, fern, water and concrete

were measured to set up a hyperspectral database.

6.2.1. Tree species recognition

Tree species recognition was done by two classification algorithms, linear
discriminant analysis and artificial neural networks, using 138 bands from 400 nm to
900 nm. The classification results were satisfactory for the original spectral
reflectance data which yielded over 70% overall accuracy using both classifiers. It

confirms the differentiating power of hyperspectral data for tree species recognition.

When the classification results generated from linear discriminant analysis were

compared with those from neural networks, no significant differences existed
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between the two using original spectra. Both classifiers yielded overall average
accuracy of around 73%. However, linear discriminant analysis generated very poor
results with under 26% overall accuracy using both the first and the second
derivatives data. Neural network generated better results for the derivatives data from
overall accuracy of 40.40% to 63.19%. For the efficiency of the classifiers, linear

discriminant analysis worked faster and more convenient than neural networks.

For comparison of different data processing strategies, using the original spectra
produced better classification results than using either the first or the second
derivatives of the spectra. Meanwhile, using the first derivatives spectra generated

better results than using the second derivatives spectra.

For the seasonal comparison of 21 tree species using linear discriminant
analysis, autumn data obtained the most accurate results while summer data
produced the lowest accuracy. However, the differences were statistically

insignificant.

6.2.2. Data compression

Data compression was done by principal components analysis using in sifu data
and laboratory data separately. For both PCAs, more information was yielded from
hyperspectral data as compared to the two dimensional PCs representing greenness
and brightness measures obtained from PCA or tasseled cap transformation using
broadband multispectral data such as Landsat MSS or SPOT. PC3 and PC4 possessed
useful information in interpretation and understanding of the inherent structure of |

hyperspectral reflectances in different surface types.

130



6.2.3. Band selection

Band selection was performed using stepwise discriminant analysis and
hierarchical clustering procedures. It was found that both band selection procedures
improved significantly the classification accuracies of tree species recognition. An
overall accuracy of over 87% was attained using 8 — 18 bands selected by stepwise
discriminant analysis for the original spectra of autumn and winter data. The 13
bands selected from hierarchical clustering procedures were able to obtain an overall

accuracy of over 89% using the original spectra of autumn and winter data.

Seasonal comparison done by stepwise linear discriminant analysis showed that
autumn and winter data outperformed those in spring and summer. Winter data was
able to produce the most accurate results with overall accuracy of 91.27% using the
original spectra. It was shown that seasonal variability affected tree species

recognition significantly.

The bands that were selected by stepwise discriminant analysis mainly lied in
the spectral regions around the green peak and the red edge. Hierarchical clustering
suggested that the spectral bands along the edges including two edges before and
after the green peak as well as the red edge which were neglected in traditional
broadband multispectrai sensors tended to contain useful information for tree species

recognition.
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6.3. Limitations of this study

Several limitations exist in this study. First, hyperspectral data of tree species
were measured in a controlled environment with leaf and branch samples lied on a
surface instead of collected above tree canopies in the field. Although leaves and
branches contain essential biochemical, biophysical and physiological information of
trees, the spectral characteristics of a forest canopy as recorded in airborne or
spaceborne remotely sensed data cannot be completely and precisely accounted for
by the spectra of their leaf and branch components. The canopy shape, LAI and the
orientation of leaves and branches cannot be simulated by the three density levels of
leaf and branch samples in this experiment. The difference between laboratory data

and in situ data is well demonstrated by the t-test between the two.

Second, the hyperspectral database being set up is far from comprehensive due
to time limitation. The in situ data were intended to be collected in autumn. At the
same time, autumn data of tree species were measured. As a result, only ten in situ
surface cover types were measured. Many dominant surface cover features have not
been included in the database such as sands, soils, rocks, coastal water, mangroves

and different types of grass, fern, shrub and trees, etc.

Third, foliar biochemical data are not included in this study. The spectral bands
in the edges including two edges before and after the green peak as well as the red
edge are proved to be useful for tree species recognition only empirically by band
selection procedures. However, the reasons why these bands were selected and how
they help to recognize tree species are unknown. Combining foliar biochemical data

to hyperspectral data may give us hints for interpretation of the selected spectral
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bands.

Fourth, the number of data samples for tree species recognition should be
increased. Thirty-six samples were totally taken for each tree species in each season
with only six of them used as training samples. Theoretically, the number of training
samples should exceed ten times the number of variables i.e. the number of spectral
bands (Jensen, 1994). However, 689 bands are present from 400 nm to 900 nm in
hyperspectral data for this study. It means that it requires 6890 training samples

which is quite an impossible number.

Finally, hyperspectral imagery is not available in this study. Currently, no
airborne hyperspectral sensors are available in Hong Kong. If hyperspectral images
are available, tree species recognition using the laboratory data can be verified with
the image data in larger area and including more tree species types. Moreover,
principal components analysis can be performed to generate principal components
images which are more easily interpretable than using the principal components

loadings and the scatterplots of the principal components scores.

6.4. Recommendations for further studies

After discussing the limitations of this study, some recommendations for further
studies are listed in this section. First, a more comprehensive hyperspectral database
with in situ data and airborne or spaceborne hyperspectral imagery is recommended.
The hyperspectral data that were collected in this study are far from comprehensive
as a hyperspectral database for the subtropical environment. Tropical and subtropical

forests are mixed with hundreds to thousands tree species that cannot be found in
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other areas. More samples for tree species and other surface covers in tropical and

subtropical environment should be included in the future hyperspectral database.

Moreover, hyperspectral database should focus on in sifu measurements of tree
canopies instead of laboratory measurements of leaf and branch components.
However, tropical and subtropical climate with high annual rainfall and relatively
high subtropical tree stands pose difficulties for in situ measurement. A much longer
study period is needed to generate a comprehensive database. Thus, large area
surveys using airborne or spaceborne hyperspectral imagery are the future trend for

obtaining hyperspectral data.

Second, a wider spectral region for tree species recognition is recommended.
The spectral region used for data analysis in this study is from 400 to 900 nm which
includes the visible and the near-infrared bands. Spectral bands with wavelengths
shorter and longer than this region are excluded to avoid too much noise. However,
the excluded bands also contain important spectral features which helps to identify
tree species, especially wavelengths longer than 900 nm. According to Curran
(1989), among 42 absorption features related to particular foliar chemical
concentrations, only four bands lie in the 400 to 900 nm region. The other 38 spectral
bands fall into the spectral range from 900 to 2400 nm which may contribute to tree
species recognition. Thus, more experiments should be carried out to explore the
potential of using spectral bands from visible to near and mid-infrared spectral

regions for tree species recognition.

Third, biochemical data are suggested to be included for tree species recognition
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and band selection. The absorption features of foliar spectra are the results of
electron transitions in chlorophyll and of the bending and stretching of the O-H band
in water and other chemicals (Curran, 1989). Chlorophyll concentration, water
moisture level and concentration of other chemicals vary among different tree
species. As a result, these absorption features are crucial factors for tree species
recognition. Foliar biochemical data can be correlated with the hyperspectral data
collected. Bands that are correlated with the biochemical data can be obtained.
Experiments can then be conducted to determine how these bands help to improve

tree species recognition.

Martin et al. (1998) used AVIRIS imagery to correlate with nitrogen and lignin
concentration of foliage. Nine bands that were closely correlated with the two
chemicals were selected to classify eleven forest type covers. An overall accuracy of
75% was yielded by a random selection of validation pixels. This showed the

potential of using biochemical data for tree species recognition.

On the other hand, foliar biochemical data can help to interpret the bands
selected by different band selection procedures. The selected spectral bands are
found only empirically with no theoretical explanations on why they are selected.
Correlation of the selected bands with different biochemical data may explain why

they are useful for tree species recognition.

Fourth, more frequent spectral measurements of tree species, for instance,
monthly measurements are recommended to monitor the leaf phenology of different

tree species throughout one year. The period of bud break in spring, flowering,
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fruiting and autumnal senescence of trees varies from one species to another. These
seasonal variability significantly affect the spectral reflectance of the tree species and
hence the results of tree species recognition. Thus, a detailed study of the seasonal

variability of different tree species is essential.

Finally, more algorithms for band selection are suggested to apply for tree
species recognition. Band selection procedures used in this study did help to improve
classification results significantly. This reveals the importance of band selection and
the redundant nature of hyperpectral data. The optimal number and position of
wavebands, useful spectral regions and optimal bandwidth should be identified for
different applications. More experiments should be undertaken to explore the various

methods of band selection.

6.5. Conclusion

This study successfully classifies 25 subtropical tree species using hyperspectral
data with satisfactory classification accuracy. The accomplishment of this
preliminary test validates the ability of hyperspectral data for identification of
subtropical tree species. In Hong Kong, using original spectra collected in autumn or
winter with a stepwise linear discriminant analysis can generate reasonably
satisfactory result for tree species recognition. It is also suggested that the spectral
bands along the edges including two edges before and after the green peak as well as
the red edge which have been neglected in traditional broadband multispectral
sensors tended to contain useful information for tree species recognition. More
experiments should be conducted to explore the potential of using these spectral

bands for vegetation studies in particular tree species recognition.
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Appendix 1.1. Reflectance of Acacia confusa in four seasons with low level (top),
medium level (middle) and high level (bottom) of leaf density
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Appendix 1.2. Reflectance of Araucaria heterophylla in four seasons with low level
(top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.3. Reflectance of Acacia mangium in four seasons with low level (top),
medium level (middle) and high level (bottom) of leaf density

25
20 -
S — Spring
~. 15
% — Summer
E 10 — Autumn
— Winter
5 -
0 L] Bl T T (] T L} L} L
4000 450 5000 5500 6000 650 7000 7500 800 850 900
Wavelength (nm)

35

30 -

25 '
& — Spring
2 20
% 2 — Summer!|
% 15 — Autumn
(-4

10 A — Winter

5

0 T T T T T T T T T

400 450 500 5500 6000 650 700 7500 800 850 900
Wavelength (nm)

45

40

35
SER — Spring
g 25 — Summer;|

20
3 — Autumn
E 15 A

— Winter

10 A

0 T T 1 Ll T T T T T

400 450 500 550 600 650 700 750 800 850 900
Wavelength (nm)

144




Appendix 1.4. Reflectance of Bauhinia variegata in four seasons with low level (top),
medium level (middle) and high level (bottom) of leaf density
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Appendix 1.5. Reflectance of Cinnamomum camphora in four seasons with low Ievel
(top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.6. Reflectance of Casuarina equisetifolia in four seasons with low level
(top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.7. Reflectance of Castanopsis fissa in four seasons with low level (top),
medium level (middle) and high level (bottom) of leaf density
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Appendix 1.8. Reflectance of Cratoxylum ligustrinum in spring, summer and autumn
with low level (top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.9. Reflectance of Aleurites moluccana in four seasons with low level

(top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.10. Reflectance of Dimocarpus longan in four seasons with low level
(top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.11. Reflectance of Delonix regia in spring, summer and autumn with low
level (top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.12. Reflectance of Ficus microcarpa in four seasons with low level (top),

medium level (middle) and high level (bottom) of leaf density
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Appendix 1.13. Reflectance of Firmiana simplex in spring and summer with low level
(top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.14. Reflectance of Ficus variegata in four seasons with low level (top),
medium level (middle) and high level (bottom) of leaf density
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Appendix 1.15. Reflectance of Hibiscus tiliaceus in four seasons with low level (top),

medium level (middle) and high level (bottom) of leaf density
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Appendix 1.16. Reflectance of Lophostemon conferta in four seasons with low level

(top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.17. Reflectance of Liquidambar formosana in four seasons with low Ievel

(top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.18. Reflectance of Lagerstroemia speciosa in four seasons with low level
(top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.19. Reflectance of Melaleuca quanqueenervia in four seasons with low
level (top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.20. Reflectance of Macaranga tanarius in four seasons with low level
(top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.21. Reflectance of Pinus elliottii in four seasons with low level (top),
medium level (middle) and high level (bottom) of leaf density
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Appendix 1.22. Reflectance of Thuja orientalis in four seasons with low level (top),
medium level (middle) and high level (bottom) of leaf density
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Appendix 1.23. Reflectance of Schima superba in four seasons with low level (top),
medium level (middle) and high level (bottom) of leaf density
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Appendix 1.24. Reflectance of Sapium sebiferum in spring, summer and autumn with
low level (top), medium level (middle) and high level (bottom) of leaf density
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Appendix 1.25. Reflectance of Taxodium distichum in four seasons with low level
(top), medium level (middle) and high level (bottom) of leaf density
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