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ABSTRACT 

"Hyperspectral Data Analysis of Typical Surface Covers in Hong Kong，， 

Submitted by MA Fung-yan 
for the degree of Master of Philosophy 

at the Chinese University of Hong Kong in June, 1999 

Subtropical environment is characterized by a great diversity of flora that is 

increasingly vulnerable to human impact. It is hoped that hyperspectral data which 

have been extensively studied for environmental monitoring in other areas will insert 

new insight to this environment. 

In this study, a high resolution spectrometer was available for taking 

hyperspectral reflectances of a selected number of surface covers. Spectra of 25 tree 

species were measured in the laboratory for four seasons. 138 bands of the original 

spectra from 400 nm to 900 nm together with their first and second derivatives were 

used for tree species recognition. In situ spectral reflectance were also taken for ten 

surface covers including several tree species, grass, fem，water and concrete. A 

hyperspectral database was then set up. 

l 

Identification of the 25 tree species using linear discriminant analysis and 

artificial neural network yielded satisfactory results with overall accuracy of more 

than 70% using original spectra. Both classifiers generated similar results using the 

original spectra. For the first and the second derivatives data, neural network yielded 

better results than linear discriminant analysis which generated very poor results with 

overall accuracy under 26%. However, linear discriminant analysis was still 

recommended for classification of hyperspectral data as neural networks were 
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inefficiently slow and difficult to use. 

Results also showed that the use of derivatives spectra could not improve tree 

species recognition in this study. Using the original spectra produced better 

classification results compared with using either the first or the second derivatives 

spectra. Meanwhile, using the first derivatives spectra performed better than using the 

second derivatives spectra. Seasonal comparison of 21 tree species indicated that 

seasonal variability affected the results of tree species recognition significantly. 

Autumn and winter data outperformed those in spring and summer. 

Principal components analysis was applied to both the in situ data and the 

laboratory data. It was shown that hyperspectral data possess extra information which 

traditional broadband multispectral data do not have. PC3 and PC4 contained useful 

information for understanding and interpretation ofhyperspectral data. 

Results of band selection indicated the redundant nature of hyperspectral data. 

Appropriate band selection was essential for tree species recognition and improved the 

classification results significantly. It was found that the spectral bands along the edges 

^ including two edges before and after the green peak as well as the red edge which were 

neglected in traditional broadband multispectral sensors tended to contain useful 

information for tree species recognition. 
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摘要 

香港典型地表物之高光譜數據分析 

本硏究利用一高分辨率光譜儀收集香港典型地表物之高光譜反射波譜數 

據，並建立一高光譜數據庫。數據收集分兩部份•• 一部份於實驗室內量度四季 

中二十五種樹木品種的光譜，以進行樹木判別；另一部份於野外收集十個典型 

地表物的光譜，包括五個樹木品種、草地、蕨類、水體及石屎地。 

樹木判別利用在400 nm至900 nm光譜範圍內138波段的反射光譜、一階 

導數光譜及二階導數光譜，以線性判別分析和神經網絡系統進行分類，兩者均 

能利用反射光譜獲得總體精度超過70%的滿意結果，而對於導數光譜，神經網 

絡系統就比線性判別分析優勝，但因爲神經網絡系統分析時間長及操作困難， 

線性判別分析仍是較爲適合作高光譜數據分析的分類硏究。 

硏究結果發現反射光譜對於樹木判別較一階導數光譜爲佳，而一階導數光 

譜又較二階導數光譜爲佳。季節性因素也對識別結果有一定影響，在香港，秋 

^ 冬兩季的數據，比春夏的數據較能獲得更好分類結果。 

主成份分析的結果顯示，高光譜數據的第三成份及第四成份擁有一些傳統 

寬頻多光譜儀器未能得到的訊息。而波段選擇的結果發現高光譜數據包含很多 

剩餘訊息，適當的波段選擇可改良判別樹木的準確度，並發現於綠光峰値前後 

的波段及紅光邊沿之波段對樹木判別均有裨益。 

iii 



ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to my supervisor, Dr. Fung Tung, for 

his patient and painstaking guidance, support and help during the research. 

Special thanks should also be given to Dr. Siu Wai-lok, for his enthusiastic 

participation in the whole research from the experimental design to the discussions on 

data analysis; Mr. Cheung Chun-man, for his assistance in data collection and data 

analysis; and Dr. Gong Peng and Mr. Pu Ruliang, for their help on solving the 

technical problems of instrumentation and advice on the implementation of the neural 

network program. 

I would also like to thank my fellow colleagues, Miss Pauline Poon Mei-yan and 

Miss Chan Fong, and all the staffs in the Geography Department, for their help and 

support. 

Lastly, I would like to acknowledge all the staffs who were responsible for the 

interesting and inspiring general education course "Earth as seen from space" in my 

final year undergraduate study. This course brought me into a new era of knowledge 
^ 

and gave me this invaluable opportunity to pursue further studies in a completely new 

field that I had never thought of. 

iv 



TABLE OF CONTENTS 
Pages 

Abstract i 
Acknowledgements iv 
Table of Contents v 
List of Tables ix 
List ofFigures x 

CHAPTER 1 INTRODUCTION 

1.1 Introduction and background 1 
1.2 Objectives 4 
1.3 Significance 5 
1.4 Organization of the thesis 5 

CHAPTER2 LITERATURE REVIEW 

2.1 Introduction 7 
2.2 Hyperspectral remote sensing 7 

2.2.1 Current imaging spectrometers available 8 
2.2.2 Applications ofhyperspectral remote sensing 9 

2.2.2.1 Biochemistry of vegetation 10 
2.2.2.2 Spatial and temporal patterns of vegetation 12 

2.3 Tree species recognition 12 
2.3.1 Factors affecting spectral reflectance of vegetation 14 

2.3.1.1 Optical properties of leaf 14 
2.3.1.2 Canopy structure 15 
2.3.1.3 Canopy cover 16 
2.3.1.4 Illumination and viewing geometry 16 
2.3.1.5 Spatial and temporal dynamics of plants 17 

2.3.2 Classification algorithms for hyperspectral analysis 17 
2.3.2.1 Use of derivative spectra for tree species 17 

1 recognition 
2.3.2.2 Lineardiscriminantanalysis 18 
2.3.2.3 Artificial neural network 19 

2.3.3 Tree species recognition using hyperspectral data 21 
2.4 Data compression and feature extraction 22 

2.4.1 Analytical techniques of data compression 23 
2.4.2 Analytical techniques of feature extraction 25 

2.4.2.1 Feature selection by correlation with biochemical 25 
and biophysical data 

2.4.2.2 Spatial autocorrelation-based feature selection 27 
2.4.2.3 Spectral autocorrelation-based feature selection 29 

2.4.2.3.1 Optimization with distance metrics 29 
2.4.2.3.2 Stepwise linear discriminant analysis 30 

V 



2.5 Summary 31 

CHAPTER 3 METHODOLOGY 

3.1 Introduction 33 
3.2 Study site 33 

• 3.3 Instrumentation 34 
3.4 Data collection 35 

3.4.1 Laboratory measurement 36 
3.4.2 In situ measurement 39 

3.5 Methods of data analysis 40 
3.5.1 Preprocessing of data 40 
3.5.2 Compilation ofhyperspectral database 42 
3.5.3 Tree species recognition 42 

3.5.3.1 Linear discriminant analysis 44 
3.5.3.2 Artificial neural network 44 
3.5.3.3 Accuracy assessment 45 
3.5.3.4 Comparison of different data processing strategies 45 

and classifiers 
3.5.3.5 Comparison of data among different seasons 46 
3.5.3.6 Comparison of laboratory and in situ data 46 

3.5.4 Data compression 47 
3.5.5 Band selection 47 

3.6 Summary 48 

CHAPTER 4 RESULTS AND DISCUSSIONS OF TREE SPECIES 
RECOGNITION 

4.1 Introduction 50 
4.2 Characteristics ofhyperspectral data 50 
4.3 Tree species recognition 79 

4.3.1 Comparison of different classifiers 82 
^ 4.3.1.1 Efficiency of the classifiers 8 3 

4.3.1.2 Discussions 83 
4.3.2 Comparison of different data processing strategies 84 
4.3.3 Comparison of data among different seasons 86 
4.3.4 Comparison oflaboratory and in situ data 88 

4.4 Summary 92 

CHAPTER 5 RESULTS AND DISCUSSIONS OF DATA 
COMPRESSION AND BAND SELECTION 

5.1 Introduction 93 
5.2 Data compression 93 

5.2.1 PCA using in situ spectral data 93 

vi 



5.2.1.1 Characteristics of PC loadings 95 
5.2.1.2 Scatter plots ofPC scores 96 

5.2.2 PCA using laboratory spectral data 99 
5.2.2.1 Characteristics ofPC loadings 102 
5.2.2.2 Scatter plots ofPC scores 103 
5.2.2.3 Results of tree species recognition using PC scores 107 

^ 5.2.3 Implications 107 
5.3 Band selection 108 

5.3.1 Preliminary band selection using stepwise discriminant 108 
analysis 
5.3.1.1 Selection of spectral bands 109 
5.3.1.2 Classification results of the selected bands 109 
5.3.1.3 Seasonal comparison using stepwise linear 114 

discriminant analysis 
5.3.1.4 Implications 116 

5.3.2 Band selection using hierarchical clustering technique 116 
5.3.2.1 Hierarchical clustering procedure 116 
5.3.2.2 Selection of spectral band sets 119 
5.3.2.3 Classification results of the selected band sets 124 

5.4 Summary 127 

CHAPTER 6 SUMMARY AND CONCLUSION 

6.1 Introduction 129 
6.2 Summary 129 

6.2.1 Tree species recognition 129 
6.2.2 Data compression 130 
6.2.3 Band selection 131 

6.3 Limitations of this study 132 
6.4 Recommendations for further studies 133 
6.5 Conclusion 136 

� BIBLIOGRAPHY 137 

APPENDICES 

Appendix 1 Reflectance of the 25 tree species in four seasons with 142-166 
three levels of leaf density 

Appendix 2 Confusion matrices of tree species recognition using 167-178 
original spectra, first derivatives spectra and second 
derivatives spectra with 138 bands classified by linear 
discriminant analysis for each season 

Appendix 3 Confusion matrices of tree species recognition using 179-190 
original spectra, first derivatives spectra and second 
derivatives spectra with 138 bands classified by neural 
networks for each season 

Appendix 4 Confusion matrices of tree species recognition using 21 191-193 

vii 



tree species with original spectra classified by linear 
discriminant analysis for seasonal comparison 

Appendix 5 Confusion matrices of tree species recognition using the 194-197 
first eight PC scores classified by linear discriminant 
analysis for each season 

Appendix 6 Confusion matrices of tree species recognition using 198-209 
original spectra, first derivatives spectra and second 
derivatives spectra classified by stepwise linear 
discriminant analysis (Case 2) for each season 

Appendix 7 Confusion matrices of tree species recognition using 210-220 
original spectra, first derivatives spectra and second 
derivatives spectra classified by stepwise linear 
discriminant analysis (Case 3) for each season 

Appendix 8 Confusion matrices of tree species recognition using 21 221-229 
tree species with original spectra, first derivatives spectra 
and second derivatives spectra classified by stepwise 
linear discriminant analysis for seasonal comparison 

� Appendix 9 Confusion matrices of tree species recognition using the 230-257 
spectral bands selected by hierarchical clustering 
procedures and classified by linear discriminant analysis 
for each season 

1 

viii 



LIST OF TABLES 

Pages 
2.1 Wavelengths that are correlated with biochemical or biophysical 26 

information found by different researchers 
2.2 Twenty narrow band features selected from AVIRIS data using 29 

spatial autocorrelation feature selection 
‘ 3.1 The 25 tree species selected in this study 37 

4.1 Classification results of tree species recognition using all 13 8 bands 80 
4.2 Classification results of each tree species using original spectra for 81 

the four seasons 
4.3 Significant testing ofKappas for comparing different data processing 85 

strategies 
4.4 Classification results of linear discriminant analysis using 21 tree 87 

species with the original spectra for seasonal comparison 
4.5 Significant testing of Kappas for comparing classification results 87 

using linear discriminant analysis for seasonal comparison 
5.1 Eigenvalues and percentage variance of the first four PCs for in situ 94 

data 
5.2 Eigenvalues and percentage variance of the first four PCs for 99 

laboratory data in each season 
5.3 Classification results of stepwise linear discriminant analysis for 111 

band selection 
5.4 Significant testing of Kappas for comparing classification results of 112 

stepwise linear discriminant analysis 
5.5 Classification results of stepwise linear discriminant analysis using 115 

21 tree species for seasonal comparison 
5.6 Significant testing of Kappas for comparing classification results of 115 

stepwise discriminant analysis for seasonal comparison 
5.7 Spectral band sets selected from hierarchical clustering to test the 120 

discriminating power of different spectral regions 
5.8 Comparison of the spectral bands that are correlated with 123 

biochemical or biophysical information found by different 
researchers and the 13 bands selected from hierarchical clustering 
procedures in this study 

5.9 Classification results of the selected band sets generated from 124 
^ hierarchical clustering procedures 

5.10 Significant testing of Kappas for comparing classification results 125 
with different selected band sets generated from hierarchical 
clustering procedures 

ix 



LIST OF FIGURES 

Pages 
3.1 The experimental setup 3 g 
3.2 The structure of the hyperspectral database 43 
4.1 Spectral reflectance curves of the 25 tree species in spring 51，52 — 

‘ 4.2 Spectral reflectance curves of the 25 tree species in summer 53,54 
4.3 Spectral reflectance curves of the 24 tree species in autumn 55,56 一 
4.4 Spectral reflectance curves of the 21 tree species in winter 57,58 
4.5 First derivatives spectra of the 25 tree species in spring 60,61 
4.6 First derivatives spectra of the 25 tree species in summer 62,63 
4.7 First derivatives spectra of the 24 tree species in autumn 64,65 
4.8 First derivatives spectra of the 21 tree species in winter 66,67 
4.9 Second derivatives spectra of the 25 tree species in spring 69,70 
4.10 Second derivatives spectra of the 25 tree species in summer 71,72 
4.11 Second derivatives spectra of the 24 tree species in autumn 73,74 
4.12 Second derivatives spectra of the 21 tree species in winter 75,76 
4.13 Spectral reflectance curves of the in situ data 77 
4.14 In situ and laboratory reflectance spectra of Acacia confusa, 89-91 

Castanopsis fissa, Dimocarpus longan, Fiscus microcarpa and 
Taxodium distichum 

4.15 The t value for comparison between in situ and laboratory data 91 
5.1 The first five PC loadings of in situ data 94 
5.2 Scatter plots ofPC score 1 versus PC score 2, PC score 1 versus PC 97,98 

score 3 and PC score 1 versus PC score 4 of in situ data 
5.3 The first five PC loadings of laboratory data in each season 100,101 
5.4 Scatter plots ofPC score 1 versus PC score 2, PC score 2 versus PC 104-106 

score 3 and PC score 2 versus PC score 4 of laboratory data 
5.5 The bands selected by stepwise linear discriminant analysis 110 
5.6 Result of the first 22 hierarchical clustering iterations 117 

1 

V 



CHAPTER ONE 

INTRODUCTION 

1.1. Introduction and background 

In the past decade, hyperspectral data analysis has generated wide interest in the 

remote sensing community. From in situ measurement with imaging spectrometers to 

airbome hyperspectral imaging, studies have been undertaken covering a wide range 

of applications such as forest monitoring (Blackburn and Milton, 1997), vegetation 

biochemistry (Curran, 1989; Wessman et al., 1989; Yoder et al., 1995 and Zagolski 

et aL, 1996) and classification of soil spectra (Palacios-Orueta and Ustin, 1996). 

However, few hyperspectral studies have been done in the tropical and subtropical 

areas. Indeed, these areas comprise of a great variety of flora and fauna that cannot 

be found in other areas. Increasing population pressure and human activities have put 

tremendous pressure on these environments and has alerted increasing concem on the 

conservation and preservation of these resources. There is a great potential for using 

hyperspectral sensors in environmental monitoring and protection in the tropical and 

subtropical areas. 

更 For the conservation and preservation of forest resources, it is essential to have 

effective forest management which depends greatly on correct recognition of tree 

species. Conventionally, reliable recognition of tree species is made by costly and 

labor intensive field surveys and interpretation of large-scale aerial photographs. 

Broadband multispectral images can successfully distinguish between broad-leaf and 

conifer trees O^elson et al., 1985 and Shen et al., 1985). Other studies using 

broadband data can classify more detailed forest types (Frank, 1988; Skidmore, 
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1989; Franklin, 1994; Foody, 1994 and Schriever and Congalton, 1995). However, 

identification of individual tree species remains unresolved due to limitations of 

spatial and spectral resolution of the broadband multispectral sensors. If individual 

tree species can be successfully recognized by hyperspectral data analysis, it would 

have significant implications to the remote sensing community and to ecological and 

environmental researches. Recently, Gong et al. (1997) successfully identified six 

conifer tree species in Sierra Nevada, California using in situ hyperspectral data with 

high accuracy. It shows the potential of hyperspectral data for tree species 

recognition. It has significant implication to similar work in the identification of 

tropical and subtropical tree species. However, two difficulties exist. 

First，tropical and subtropical forests are a mosaic of many different tree species 

and a pure stand of any one species seldom exists. In contrast, temperate and boreal 

forests are made up of relatively few tree species with a common occurrence of a 

pure stand of one species or a mix of few species. As a result, it is more difficult to 

thoroughly investigate the classification of individual tropical and subtropical tree 

species than temperate tree species with the limited spatial resolution of the currently 

operating airbome hyperspectral sensors or the developing spacebome instruments. 

f Martin et al. (1998) determined the forest species composition using AVIRIS data of 

which spatial resolution is 20 m. They can only classify the forest species into eleven 

categories which exhibits a general similarity in tree species composition. It indicates 

that spatial resolution is also an important factor for identification of individual tree 

species besides spectral resolution. It also shows that the nature of tropical and 

subtropical forest as a mixture of many different tree species may be a problem for 

the identification of individual tree species. 
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The second difficulty is a more crucial concem for tree species recognition. 

Tropical and subtropical forests typically contain a huge number of different tree 

species. It is not uncommon that more than hundreds of tree species are found in a 

tropical forest in a particular area. Although hyperspectral analysis has proved to 

recognize some individual tree species successfully in previous studies (Gong et al., 

1997), it is doubtful whether the spectral variations in the reflectance spectra ofthose 

hundreds or thousands of tree species can be detected and discriminated among one 

another by hyperspectral data. Thus, hyperspectral separability of tropical and 

subtropical tree species must be investigated. 

Besides the ability of hyperspectral data for the identification of tree species, an 

understanding of the intrinsic properties of hyperspectral data in tropical and 

subtropical environment is also essential. Hyperspectral instruments can acquire data 

from hundreds to thousands of channels. However, some studies found that 

hyperspectral data contain a large number of redundant bands (Baret, 1995; Warner 

and Shank et al., 1997 and Thenkabail et al., 1999). For any particular applications, 

there should be an optimum set of wavebands, waveband centers and waveband 

1 widths required to maximize information. For vegetation, Curran (1989) found 42 

bands from 400 nm to 2400 nm that are correlated with the concentration of organic 

compound such as cellulose, lignin and protein in leaves. Martin et aL (1998) 

selected nine AVIRIS bands which were closely correlated with field measured 

canopy nitrogen and lignin concentration to classify forest cover types. Thenkabail 

et aL (1999) recommended twelve bands along with their bandwidths in the visible 

and near-infrared spectral region as optimal number of wavebands required for 
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extracting agricultural crop biophysical information. The wave bands that were 

selected by the above three researchers are not consistent with each other. The only 

conclusion that can be drawn is that useful information of vegetation characteristics 

contains in several bands from the visible to the mid-infrared region. However, 

determining which wave bands are important still needs more study efforts. 

1.2. Objectives 

As few hyperspectral studies have been done in tropical and subtropical 

environments, hyperspectral data in the subtropical environment of Hong Kong are 

intended to study in this research. Hong Kong is located in the subtropical monsoon 

climate zone in South China with highly urbanized areas as well as non-agricultural 

mountainous areas. It has a relatively well-preserved natural environment with over 

300 tree species although only 13% of the 1080 square kilometers territory is covered 

with woodland (Thrower, 1988). It is an excellent representative to South China 

areas. 

This study aims at setting up a hyperspectral database of typical surface covers 

in Hong Kong. The database contains a selected number of surface cover types that 

! commonly appear in an image scene if seen from satellites, with an emphasis in tree 

species. With the hyperspectral database, the spectral separability of subtropical tree 

species is studied to give insights to the problem of subtropical tree species 

recognition. Algorithms for tree species recognition are tested and compared in order 

to determine the most promising techniques for tree species recognition. The inherent 

hyperspectral data structure is then investigated with the help of principal 

components analysis and band selection to determine which spectral bands or regions 
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are useful for vegetation studies especially tree species recognition. 

To summarize, the three objectives are 

1. to measure hyperspectral reflectance of a selected number of surface covers, in 

particular tree species in the subtropical environment of Hong Kong and set up a 

hyperspectral database, 

2. to examine the ability of hyperspectral data for identification of subtropical tree 

species and 

3. to understand the inherent data structure through principal components analysis 

and band selection. 

1.3. Significance 

This research is the first hyperspectral study in Hong Kong. The hyperspectral 

database generated in this study can be used as a reference to the general remote 

sensing community and particularly to the users of hyperspectral data in Hong Kong 

and its surrounding areas. The results of band selection can help the design of the 

future generation of hyperspectral sensors to carry the optimal band set. It is hoped 

that the success of this pioneer research will lead to more applications of 

jf hyperspectral data in land use studies, forest management and environmental 

protection in Hong Kong as well as other areas particularly South China in the future. 

1.4. Organization ofthe thesis 

The thesis is divided into six chapters. Chapter One introduces the problem and 

background of this research. The objectives and the significance of this study are 

stated in this chapter. Chapter Two is the literature review. It briefly introduces what 
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hyperspectral remote sensing is all about and the current hyperspectral sensors 

available including airbome and spacebome sensors and field spectrometers. The 

applications of hyperspectral remote sensing are also mentioned focusing on 

vegetation studies. Finally, previous studies and analytical techniques of tree species 

recognition, data compression and feature extraction are discussed and reviewed in 

detail. Then, Chapter Three goes into the details of the experimental design and 

methodology of this study. The study site, data collection and methods of data 

analysis will be described in detail in this chapter. Chapter Four presents the results 

and discussions for tree species recognition whereas Chapter Five covers the results 

and discussions for data compression and feature extraction. Finally, Chapter Six is 

the summary and conclusion of this study. 

t 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1. Introduction 

This chapter presents a literature review for this study. The literature review 

is mainly divided into three parts: introduction to hyperspectral remote sensing, tree 

species recognition, and data compression and feature extraction. In the first part, 

hyperspectral remote sensing is introduced briefly explaining what hyperspectral 

remote sensing is. The current hyperspectral instruments available are mentioned. A 

brief review on the applications of hyperspectral remote sensing is presented with a 

focus on vegetation studies which include biochemistry of vegetation and spatial and 

temporal patterns of vegetation. In the second part, another application of 

hyperspectral remote sensing, tree species recognition is discussed in detail. The 

factors affecting the spectral reflectance of vegetation, the classification algorithms 

used for tree species recognition and a review on tree species recognition using 

hyperspectral data are described and discussed in this part. Finally, the analytical 

techniques used in data compression and band selection are reviewed in the third 

part. 

t 

2.2. Hyperspectral remote sensing 

Hyperspectral remote sensing，or imaging spectrometry are techniques that 

acquire spectral data or images in many, very narrow, contiguous spectral bands 

throughout the ultraviolet, visible, near-infrared and mid-infrared regions of the 

electromagnetic spectrum (Lillesand and Kieffer, 1994). Typically, several hundreds 

channels of data can be collected for every pixel in the scene, thus, providing us a lot 
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more information than the conventional broad-band imagery such as Landsat or 

SPOT images. Hyperspectral imaging permits discrimination among earth surface 

features that have diagnostic absorption and reflectance characteristics over narrow 

wavelength intervals that are lost within the relatively coarse bandwidths of the 

various channels of a conventional multispectral scanner. Price (1994a) has analyzed 

the spectral properties of various materials and concluded that high spectral 

resolution, of the order of 10 nm, would permit unique discrimination of a wide 

range of surface types such as rocks, soils and vegetation. Therefore, hyperspectral 

imaging provides opportunities for us to improve our understanding of the Earth's 

surface. 

2.2.1. Current imaging spectrometers available 

Currently several airbome imaging spectrometers are operational and 

spacebome systems are being developed and will be launched soon (Curran, 1994 

and Kunkel et al., 1997). The most commonly used and successful airbome imaging 

spectrometer is Airbome VisibleAnfraRed Imaging Spectrometer (AVIRIS) 

developed by NASA (Green, 1994). The AVIRIS sensor acquires data in 224 

contiguous spectral channels covering spectral region from 400 nm to 2500 nm of 

I approximately 10-nm bandwidth. It became operational in 1989. Another one is 

Hyperspectral Digital Imagery Collection Experiment (HYDICE) which is in service 

since 1996. The HYDICE sensor acquires data in 210 channels from 400 nm to 2500 

nm. Its spectral resolution ranges from 3 nm for the short wavelengths to 10-20 nm 

for the long wavelengths. 

For the developing spacebome imaging spectrometers, Moderate Resolution 
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Imaging Spectrometer (MODIS) developed by NASA is one of the instruments in 

Earth Observing System (EOS) sensor systems (Jensen, 1994). It will provide 

imagery in 36 bands from 0.4 ^½ to 15 ^m. Another one is OrbView-4 which will be 

the first commercial satellite to acquire hyperspectral imagery (Orbital Imaging Co., 

1998). It is scheduled to launch in 2000. It will provide 200-channel hyperspectral 

imagery from 450 nm to 2500 nm with eight-meter spatial resolution. 

Despite airbome and spacebome imaging spectrometry, field spectrometry 

also plays an important role in hyperspectral remote sensing. Milton et al. (1995) 

gave an outline of some field spectrometers being used and discussed thoroughly 

about field spectrometry. Point measurements in the field or from a low-level 

platform are more cost-effective and appropriate for some applications when image 

data are not necessary. Besides, field spectroscopy is used to characterize the 

reflectance of surfaces intended to be used for the in-flight calibration of airbome or 

spacebome sensors. 

2.2.2. Applications of hyperspectral remote sensing 

A wide range of researches in hyperspectral remote sensing has been 

t undertaken. Geological, ecological, aquatic and many other research topics have 

been conducted using either airbome sensors or taking measurements on ground with 

imaging spectrometers. High spectral resolution and rich information available 

allows questions that would not be answered using conventional remote sensing 

techniques ten years ago can now be addressed. In this review, applications of 

hyperspectral remote sensing will be discussed with a focus on vegetation studies: 

biochemistry of vegetation and spatial and temporal patterns of vegetation. 
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2.2.2.1. Biochemistry of vegetation 

Biochemistry of vegetation has been widely investigated from leaf to canopy 

scales using hyperspectral data. The biochemical content of vegetation can provide 

us information of plant productivity, rate of litter decomposition and availability of 

nutrients in space and time (Curran, 1989). Hyperspectral data show promise of 

estimating biochemistry of vegetation globally and help us to understand ecosystem 

properties. 

At the laboratory level, dried and powdered leaves are prepared for the 

reflectance spectra measurements. Correlation between chemical contents and 

spectral measurements is then obtained using stepwise multiple linear regression. 

This approach reveals the predictive relationships of the best linear combinations of 

wavelengths for assessing chemical concentrations. Curran (1989) gave a thorough 

review of foliar chemistry obtained from spectral data of vegetation at the laboratory 

level. Fourty-two minor absorption features were identified from the spectra of dried 

and ground leaves which were found to have correlation with the concentration of 

organic compounds such as cellulose, lignin and protein in dried leaves. 

! At the remote sensing level, chemical contents of vegetation covers at the 

canopy level are retrieved by either field or airbome hyperspectral remote sensing 

techniques combined with ground measurements of foliar and canopy chemical 

contents. Wessman et al. (1989) estimated forest canopy chemistry with Airbome 

Imaging Spectrometer (AIS) data over deciduous and coniferous forests. Ground 

measurements of foliar biomass and canopy nitrogen and lignin content were made. 

Strong correlations were found between AIS data and canopy lignin concentration in 
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both deciduous and coniferous forests. They also demonstrated that the canopy lignin 

content was strongly related to the measured annual nitrogen mineralization. 

Yoder et aL (1995) predicted nitrogen and chlorophyll content and 

concentrations by field spectrometry. Reflectance spectra (R) of fresh leaves were 

obtained in the laboratory and canopy reflectance spectra were also measured in the 

field. They found that the best predictors for nitrogen and chlorophyll appeared with 

first-difference transformations of log (l/R) and the best predictors for nitrogen were 

shortwave infrared bands while that for chlorophyll were visible bands. 

Zagolski et aL (1996) also studied forest canopy chemistry at two levels 

which included laboratory spectral measurements of dried ground leaves by two 

laboratory spectrometers and airbome measurements of forest canopy by two 

airbome sensors: AVIRIS and Infrared SpectroMeter (ISM). They aimed at 

establishing laboratory derived relationships between spectrometric information and 

concentrations of chemical compounds and validating these relationships with the 

airbome measurements. Results from these two airbome sensors were compared. 

They found that the laboratory derived predictive relationships were quite different 

I depending on the laboratory spectrometers and the year of sampling. It revealed the 

difficulty to establish predictive relationships accurately. The application of 

laboratory derived predictive equations to airbome data suggested relatively strong 

correlation for nitrogen and cellulose but poor correlation for lignin. This result 

contradicted with that derived by Wessman et aL (1989). Better results were obtained 

with ISM spectra that had better signal-to-noise ratio. 
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2.2.2.2. Spatial and temporal patterns ofvegetation 

Spatial and temporal patterns of vegetation have been investigated widely 

using remote sensing techniques, from broadband to hyperspectral sensors. With the 

contiguous and high spectral resolution data, hyperspectral remote sensing has been 

applied to forest monitoring, vegetation mapping, change detection and seasonal 

variations monitoring with greater details and higher accuracy. These applications 

are important for ecological and environmental research. For example, Blackbum 

and Milton (1995) used a tower-mounted spectrometer to measure the seasonal 

changes in the reflectance properties of ash and beech canopies during an one-year 

experiment. Roberts et al. (1997) applied AVIRIS data to monitor the seasonal 

changes in atmospheric water vapor, liquid water, and green vegetated and 

nonphotosynthetic vegetated surface cover. Blackbum and Milton (1997) applied 

Compact Airbome Spectrographic Imager (CASI) data to create an accurate map of 

canopy gaps which were created by the death or destruction of trees within deciduous 

woodlands. Shaw et aL (1998) used field spectrometers to investigate the spectral 

properties of naturally regenerating Scots pine in relation to sapling cover and 

season. 

I 2.3. Tree species recognition 

Correct recognition of forest species is important in forest management, 

ecological and environmental research and biodiversity studies. In the past, tree 

species could only be classified by labor-intensive and time-consuming field surveys 

which cannot provide complete coverage of large areas. In contrast, remote sensing 

techniques are more effective that spectral data for large contiguous areas are 

provided. Remotely sensed data have long been used to recognize forest cover types 
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based on earlier photographic interpretation to more recently digital imaging 

processing. Satellite multispectral broadband sensors have been used to identify 

forest covers from which coniferous and deciduous tree stands can be successfully 

discriminated C^elson et al., 1985 and Shen et al., 1985). Due to the relatively low 

spatial resolution of the satellite sensors, classification of a forest type refers to the 

classification of an area of forest which exhibits a general similarity in tree species 

composition and character instead of individual tree species. Other studies using 

broadband data to classify forest type achieved more detailed species resolution 

(Frank, 1988; Skidmore, 1989; Franklin, 1994; Foody, 1994 and Schriever and 

Congalton. 1995). For example, Frank (1988) used Landsat TM data combined with 

digital terrain data to classify sixteen dominant vegetation communities. Schriever 

and Congalton (1995) used also TM data to classify nine forest cover types. They 

collected the data in May (bud break), September (leaf on) and October (senescence) 

to explore whether different leaf phenology would improve the ability to generate 

forest-cover-type maps. 

With the contiguous and high spectral resolution of hyperspectral sensors, 

classification of forest cover types should be improved with more precise 

之 identification. However, whether each tree species corresponds to a unique and 

diagnostic spectral reflectance signature is a fundamental problem for tree species 

recognition. Baret (1995) stated that the spectral signature of canopy reflectance was 

not strictly specific to a particular canopy. In other words, different canopies could 

have very similar reflectance spectra. Price (1994a) revealed that high spectral 

resolution data, on the order of 10 nm, offered unprecented opportunities for 

uniquely identifying a range of vegetation types. However, spectra from one species 
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might still match very closely spectra from another species, presenting the possibility 

of faulty identification. Thus, more research efforts should be made to identify. 

unique tree species types. Recently, Gong et aL (1997) successfully used in situ 

hyperspectral data to classify six conifer tree species. It indicated the potential of 

hyperspectral data for tree species recognition. 

Spectral reflectance of vegetation is a complex function of various factors and 

changes spatially and temporally. In order to understand those spectra, the factors 

affecting the spectral reflectance of vegetation should be first studied. Thus, the 

factors that affect spectral reflectance of vegetation are described in detail in this 

session. Then the classification methods for hyperspectral analysis of tree species 

recognition are discussed. Finally, previous studies in tree species recognition are 

reviewed. 

2.3.1. Factors affecting spectral reflectance of vegetation 

Factors affecting spectral reflectance of vegetation are categorized into five 

parts which are optical properties of leaf, canopy structure, canopy cover and 

background effects, illumination and viewing geometry and spatial and temporal 

I dynamics of plants. 

2.3.1.1. Optical properties ofleaf 

The dominant physical process at the visible wavelengths (400 to 700 nm) is 

the absorption by photosynthetic pigments such as chlorophyll, xanthophyll, and 

carotene (Wessman, 1991). These pigments have absorption maxima in the 300 to 

500 nm region. Only chlorophyll absorbs in the red wavelengths. It has been shown 
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that changes in chlorophyll concentration produce apparent spectral shifts of the 

absorption edge near 700 nm. 

High reflectance is characterized in the near-IR region (700 to 1300 nm). A 
-*. 

steep rise in reflectance near 750 nm is exhibited and termed the vegetation red edge. 

The near infrared wavelengths are greatly influenced by the leaf intemal structure 

and in particular the number of air spaces and their arrangement (Wessman, 1991). 

The mid-IR region (1300 to 2500 nm), on the other hand, is dominated by leaf water 

absorption (Wessman, 1991). 

Beside the water absorption features in the short-wave infrared (SWIR) 

region, the spectra of organic compounds in this region are characterized by a 

mixture of harmonic overtones and combinations that are mainly caused by 

stretching and bending vibrations of strong molecular bonds between atoms of low 

weight (Wessman, 1991). Extractions of foliar constituents have been spectrally 

characterized by a number of researchers. Curran (1989) identified 42 absorption 

features in visible and near-IR wavebands that have been related to particular foliar 

chemical concentrations. 

1 

2.3.1.2. Canopy structure 

Plant canopy reflectance is not only a simple function of the reflectance of the 

component leaves but also depends on the number and size of the foliage elements 

and their arrangement on individual plants. An important parameter accounting the 

factor of canopy structure is the Leaf Area Index (LAI) which is defined as the one-

sided area of leaves per unit ground area (Peterson et al., 1987 and Spanner et al., 
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1990). It is a quantitative measure of the surface area available for the interception of 

photosynthetically active radiation and for transpiration. Thus, LAI has been referred 

to the most useful vegetation characteristic in ecological studies. Some preliminary 

researches show that there is a negative relationship between LAI and red reflectance 

but no relationship between LAI and near infrared reflectance (Peterson et al., 1987 

and Spanner etal., 1990). 

2.3.1.3. Canopy cover and background effects 

Forest canopy cover is important in determining spectral response of forest 

canopies because it controls the amount of understory vegetation, soil and litter 

which is visible to the sensor. It was shown that canopy cover and background 

effects influenced LAI significantly (Spanner et al., 1990 and Caetano and Pereira, 

1996). The variation in canopy cover and background reflectance plays an important 

role in affecting the spectral variation in remotely sensed data instead of differences 

in species. Canopy cover varies both spatially and temporally in forest canopies and 

this effect, coupled with spatially, temporally and spectrally variable understory 

reflectance poses a significant problem on the remote estimation of forest biophysical 

variables. 

t 

2.3.1.4. Illumination and viewing geometry 

In addition to the inherent properties of forest canopies, a set of independent 

parameters also affects the remotely sensed response of forest canopies (Danson, 

1995). Different target illuminations and viewing conditions alter the spectral 

response considerably. The parameters include the solar zenith angle, the solar 

azimuth angle, the sensor zenith view angle and the sensor azimuth view angle. 
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2.3.1.5. Spatial and temporal dynamics of plants 

It is a common sense that plants vary at a variety of spatial and temporal 

scales. Plant growth and reproductive patterns are responsive to seasonal fluctuations 

in climate (Hobbs, 1991). Many plant communities have distinct seasonal peaks of 

growth and flowering activity that can markedly affect spectral reflectance. Yearly 

climatic variations also account for differences in species growth and establishment 

patterns, leading to changes in species composition and distributions. Moreover, over 

long periods of time, directional vegetation changes may occur through succession. 

2.3.2. Classification algorithms for hyperspectral analysis 

2.3.2.1. Use of derivative spectra for tree species recognition 

The derivative of a spectrum is actually its rate of change with respect to 

wavelength. There are several methods to generate derivative spectra. The simplest 

method is generating derivatives numerically by dividing the difference between 

successive spectral values by the wavelength interval separating them (Demetriades-

Shah et al., 1990). This gives an approximation of the first derivative at the midpoint 

between the values whose difference is used to compute the slope. Higher-order 

derivatives are obtained by repeating the process. If the differentiation interval is 

更 very small, then the differences between the successive values may be small in 

comparison to the random noise and a noisy derivative spectrum is obtained. A larger 

differentiating interval will reduce noise and maximize the signal but sharp spectral 

features may be lost. Another method involves fitting the spectra by various 

mathematical functions which are then differentiated (Cloutis, 1996). This method 

may introduce artifacts due to noise amplification. Some information may be lost 

during curve fitting. 
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The accuracy of derivative analysis can be affected by the signal to noise 

ratio. It is shown that some level of spectral preprocessing involving noise 

suppression is usually helpful prior to derivative analysis. It is also determined that 

lower order derivatives are less sensitive to noise and hence more useful in 
�-

operational remote sensing (Cloutis, 1996). However, some information may be lost 

due to noise suppression. 

The benefits of derivative analysis are its ability to eliminate background 

signals. In vegetation studies, this technique is often applied in order to suppress soil 

background reflectance. It is found that the spectral reflectance of most soils is an 

approximately linear function of wavelength. Thus, second order derivative analysis 

is in theory useful in eliminating the soil background (Demetriades-Shah et aL, 

1990). Gong et aL (1997) used original reflectance spectra and first derivative 

spectra to classify six conifer tree species. They found that first derivative data 

produced better classification results than original reflectance spectra. The use of 

derivative data may help to improve tree species recognition accuracy. 

2.3.2.2. Linear discriminant analysis 

1 Linear discriminant analysis is commonly applied in classification of forest 

cover types OSfelson et aL, 1984; Frank, 1988; Franklin, 1994 and Gong et aL, 1997). 

It involves deriving a variate, the linear combination of the independent variables 

that will discriminate best between a priori defined groups (Hair et aL, 1995). 

Discrimination is achieved by setting the variate's weights for each variable to 

maximize the between-group variance relative to the within-group variance. The 

discriminant function, which is the linear combination for a discriminant analysis, is 
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derived from 

Z = W i X i + W 2 X 2 + W 3 X 3 + . . . + W n X n 

where Z is the discriminant score, Wj is the discriminant weight for variable i and Xj 

is the independent variable i. The absolute value of each discriminant weight 

represents the relative contribution of its associated variable to the discriminant 

function. In other words, independent variables with larger weights contribute more 

to the discriminating power of the function. 

2.3.2.3. Artificial neural network 

Neural networks are algorithms that caricature the way information is 

processed in biological networks of neurons. They are considered as a very powerful 

tool to discriminate between variables or to relate one set of variables to another. 

They are defined mainly by the type of neuron used, the way they are organized and 

connected (the network architecture) and the learning rule. 

The most commonly used neural network is backpropagation feed-forward 

neural network. The network consists of one input layer, one or more hidden layers 

and one output layer (Openshaw et aL, 1997). The input nodes are fully connected to 

更 the nodes of the hidden layer(s) which in tum are fully connected to the output 

nodes. All signals flow from the input nodes through the hidden layers to the output 

nodes in one direction. The connections between neurons are weighted which 

represent the strength of connection through which knowledge or information is 

encoded. These weights determine the threshold level of the activation function of a 

node in the network, which in tum influences the level of activation of other nodes in 

the network and ultimately determines the network outputs. An iterative training 
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procedure determines the magnitude of the weights such that the network repeatedly 

tries to leam the correct output for each of the training samples. The error between 

the network output and the desired output is minimized in order to train the data. The 

procedure will modify the weights between units until the network is able to 

characterize the training data accurately. Once trained, the neural network may then 

be used to classify other data. 

Though neural network methods have been widely applied in classification of 

remote sensing images (Paola and Schowengerdt, 1995), it is not commonly used in 

tree species recognition. Gong et aL (1997) used neural network methods to classify 

six conifer tree species. They found that neural networks worked superior to linear 

discriminant analysis. 

There are several advantages of neural network methods compared with 

statistical methods (Openshaw et aL, 1997). Firstly, neural network technique is a 

distribution-free approach that the data are not necessary to satisfy a Gaussian 

normal distribution which is required by most statistical methods. Secondly, it can 

handle nonlinear data more efficiently. Thirdly, it can adapt to include multi-source 

^ or ancillary data more easily and to interpret texture of the data more easily. 

However, neural network has its own limitations. The training process is time and 

computational intensive. The optimal network size is difficult to determine. In 

addition, the network seems to be a black box that loses the interpretability of the 

information about the decision regions. 
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2.3.3. Tree species recognition using hyperspectral data 

Not many studies have been reported in literature for tree species recognition 

using hyperspectral data. Martin et aL (1998) used airbome hyperspectral data from 

AVIRIS to classify eleven forest cover types, including pure and mixed stands of 

conifer and deciduous species. Multiple linear regression analysis was used to select 

eleven bands which were closely correlated with field measured canopy nitrogen and 

lignin concentration. Transformed divergence values were then calculated for all 

combinations of four to eleven of the selected bands to determine which band 

combinations would provide the best separability of signature classes. A maximum 

likelihood algorithm assigning all pixels in the image into one of the eleven 

categories was used to classify forest cover types with the selected bands from first 

difference reflectance spectra. An overall classification accuracy of75% was yielded 

using nine of the selected bands when comparing with a random selection of 

validation pixels in the field. 

Gong et aL (1997) used in situ hyperspectral data to identify six conifer tree 

species. The data were measured above sunlit and shaded sides of tree canopies from 

six study sites. Artificial neural network algorithm and linear discriminant analysis 

^ were used for species identification with original reflectance spectra and first 

derivatives of the spectra. They found that the six conifer species could be identified 

with high accuracy. The highest percentage of accuracy obtained was 91% when 

sunlit samples and first derivative spectra were used with neural network algorithms. 

This study provides us insights of the capability of tree species recognition by 

hyperspectral data. More analyses are necessary in terms of spectral measurements 

made from more tree species and in different places and seasons. 
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2.4. Data compression and feature extraction 

For vegetation, the reflectance values in adjacent wavebands are often very 

strongly correlated because most absorption features are relatively broad with at least 

40 nm (Baret, 1995). It was shown that the spectral information could be described 

by the reflectance observed in a small number of wavebands which is linked to the 

number of independent variables required to describe the various factors affecting the 

spectral reflectance of plant such as canopy structure and leaf optical properties. 

Thus, it is desirable to remove some of the information contents algorithmically 

before the data are analyzed. 

The reasons for data compression as well as feature extraction are three-fold 

(Price, 1994b). First, a trade-off exists between the spectral resolution and the spatial 

resolution of the imagery acquired. The design of instruments is limited by cost, 

power and transmission rate. Thus, more spectral bands mean less spatial resolution 

though this factor may not be valid now as technologies are improving for more 

powerful and faster instruments. Second, signal-to-noise ratio of the data acquired 

trades off with the spectral resolution. Third, spectral information of the object of 

interest may be optimized in particular spectral regions, bandwidth and band number 

更 within each region. Therefore, data compression and feature extraction is 

recommended, especially extracting important bands that reduce the data volume 

without losing information. In this session, analytical techniques of data compression 

and feature extraction will be introduced and discussed. 

2.4.1. Analytical techniques of data compression 

The most obvious technique for data compression is selecting those spectral 
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bands for ranges which contain the most information for the specific application. It 

may also be possible to average the bands along the spectral regions of interest where 

the spectral information is expressed in the overall reflectance level rather than in 

small bandwidth features. Such averaging is particularly useful in low signal regions 
•». 

where the relative noise level will mask out spectral details (Mehl, 1994). 

Another commonly used method for data compression is principal 

components analysis (PCA). PCA is an analytical technique based upon a 

transformation of spectral axes such as that spectral variability is maximized 

(Cloutis, 1996). This technique is found to be useful for analysis of remote sensing 

data for which certain channels exhibit high degrees of dependence. The greatest 

benefit ofPCA is that spectral discrimination can be maximized from a large number 

of bands to the first few principal components. It makes PCA a useful tool for data 

compression. However, determining the physical significance of each principal 

component is sometimes difficult. Some information would be lost since the first few 

principal components can generally represent up to 95% of the spectral variation. 

In the past two decades, PCA or tasseled cap transformation which is a 

更 technique similar to PCA for rotating data have been commonly applied in traditional 

multispectral broadband data for data compression. Kauth and Thomas (1976) 

rotated the Landsat MSS data by tasseled cap transformation such that the majority 

of the information is contained in two components. The first component is a 

weighted sum of all bands and is termed as brightness. It is defined in the direction of 

the principal variation in soil reflectance. The second component which is 

approximately orthogonal to brightness reveals contrast between the near-infrared 
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and visible bands. It is called greenness and strongly related to the amount of green 

vegetation. With the addition of two mid-infrared bands, TM data is found to have a 

third tasseled cap component called wetness which is related to moisture status of 

soil (Crist and Cicone，1984). 
�— 

For hyperspectral data analysis, few studies have been carried out using PCA. 

Blackbum and Milton (1997) surveyed deciduous woodlands using CASI with 

geobotany band setting which collects eight bands within the visible and near-

infrared spectral regions and PCA is used for analysis. They found that the 

eigenvectors of the first component (PC1) reveal positive contributions from all 

spectral bands and that of the second component (PC2) are dependent upon the 

contrast between reflectance in visible and near infrared wavelengths. The third 

component loads on the bands which are located around the upper part of the red-

edge. The first two eigenvectors were analogous to brightness and greenness 

respectively derived from tasseled cap transformation using broadband multispectral 

data. The images of the first three principal components are able to identify the 

canopy gaps created by the death or destruction of trees. They demonstrated that 

PCA remains to be an useful tool to interpret vegetation characteristics and 

f conditions. However, more effort is needed when it is applied to hyperspectral data 

that have a much larger dimension than those studied. 

2 4 



2.4.2. Analytical techniques of feature extraction 

Feature extraction is a more difficult and complicated process. It is a process 

to determine the bands that are most effective in discriminating each class from all 

others (Jensen, 1994). Three approaches for feature extraction will be explained in 
� 

this section. The first approach is particularly used for vegetation studies. As the 

characteristics of spectral reflectance depend greatly on foliar biochemical 

concentrations and biophysical characteristics, correlation of the spectral bands with 

these parameters is a common tool to select useful spectral bands for vegetation 

studies. The other two methods which can be used for any applications are spatial 

autocorrelation-based approach and spectral autocorrelation-based approach (Petrie 

and Heasler, 1998). 

2.4.2.1. Feature selection by correlation with biochemical and biophysical data 

Selection of spectral bands that are closely correlated with biochemical and 

biophysical data has been done by various researchers (Curran, 1989; Martin et al., 

1998; Thenkabail et al. 1999). Reflectance spectra of vegetation are measured from 
I 

dried and powdered leaves at the laboratory level or from canopies at the remote 

sensing level. Chemical contents or biophysical parameters are then obtained and 

1 correlated with the spectral measurements using stepwise multiple linear regression. 

The spectral bands that are closely correlated with the biochemical or biophysical 

data are selected. 

Curran (1989) selected forty-two minor absorption features that were 

identified from the spectra of dried and ground leaves which were found to have 

correlation with the concentration of organic compounds such as cellulose, lignin and 
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Table 2.1. Wavelengths that are correlated with biochemical or biophysical 
information found by different researchers 

Curran, 1989 Martinetal., 1998 Thenkabail et aL,“ 
1999 

Number of bands 42 9 12 
Spectral range 400 “ 2400 nm 400 “ 2500 nm 350~ 1050 nm 

> Visible bands 430 627 4 ^ 
(400 - 700 nm) 460 525 

640 550 
660 568 

668 
682 
^  

~~Near-infrared bands ^ 7l0 ™ 
(700- 1300 nm) 930 783 845 

970 822 920 
990 982 
1020 1025 
1040 
1120 
^  

~~Mid-infrared bands f400 T m : 
(1300-2500 nm) 1420 1660 

1450 2140 
1490 2280 
1510 2290 
1530 
1540 
1580 
1690 
1780 
1820 
1900 
1940 
1960 
1980 
2000 
2060 
2080 

t 2100 
2130 
2180 
2240 
2250 
2270 
2280 
2300 
2310 
2320 
2340 
2350 

26 

1 



protein in dried leaves (Table 2.1). Martin et aL (1998) selected nine AVIRIS 

spectral bands that were closely correlated with field measured canopy nitrogen and 

lignin concentration for forest classification (Table 2.1). Thenkabail et aL (1999) 

selected twelve spectral bands along with their bandwidths for extracting agricultural 
� . 

crop biophysical information such as wet biomass, leaf area index, plant height and 

yield (Table2.1). 

The spectral bands selected by the above researchers are not consistent with 

one another. The spectral bands selected by Curran (1989) and Martin et aL (1998) 

were mainly the near-infrared and mid-infrared bands in which 38 out of 42 and 8 

out of 9 were found respectively. Among the selected near-infrared and mid-infrared 

bands, more mid-infrared bands were obtained. As the instrument used by 

Thenkabail et aL (1999) acquired wavebands between 350 nm and 1050 nm, no mid-

infrared bands were found. However, Thenkabail et aL (1999) recommended more 

visible bands than the previous two researchers. Seven visible bands were selected 

while only five bands were near-infrared bands. 

2.4.2.2. Spatial autocorrelation-based feature selection 

^ Spatial autocorrelation-based feature selection methods are described in detail 

by Wamer and Shank et aL (1997). Ratioing of each band with every other band is 

performed within a hyperspectral image. A noisy ratio image will be produced if the 

two bands are redundant and random spatial autocorrelation will be exhibited within 

the image. Thus, the resulting images are ranked according to their relative spatial 

autocorrelation. The best two bands are selected from the image with highest spatial 

autocorrelation. The third and the following bands are selected if highest spatial 
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autocorrelation is obtained when they are ratioed with all the previously selected 

bands. This feature selection process is termed narrow-band feature selection. Broad-

band feature selection groups multiple adjacent bands. Bands can be grouped into the 

desired number of bands. Grouping is started from the identified best bands that are 
.̂ 

determined with the narrow-band feature selection technique. Adjacent bands are 

grouped into the identified best bands if the average spatial autocorrelation of the 

combined bands increases. Bands are rejected if the combination decreases the 

spatial autocorrelation. Nonadjacent multiple band feature selection is another 

method similar to the broad-band feature selection technique, except that groupings 

are allowed between nonadjacent bands. 

Wamer and Shank et aL (1997) used AVIRIS data to illustrate this method 

for feature selection. Twenty narrow bands are selected from the full 186 band set 

using narrow-band feature selection technique (Table 2.2). The bands that are 

identified as most valuable are clustered in the visible and near infrared region. It 

suggests that spectral and spatial information is not uniformly distributed throughout 

the spectral region over which data is collected. Moreover, broad-band feature 

selection technique identifies 20 broad bands, with an average width of 50 nm, that 

更 are broader than the spectral resolution of the AVIRIS sensor. The result does not 

deny the value of a narrow band sensor. Indeed, narrow band sensors are important 

to determine the spectral bounds of those broad band features. 
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Table 2.2. Twenty narrow band features selected from AVIRIS data using spatial 
autocorrelation feature selection (Source: Wamer and Shank 1997) 

Rank A VIRIS band number Band center wavelength (nm) 
12 n 478 
1 19 557 

16 22 587 
� 7 25 616 

17 28 646 
4 31 676 
9 37 704 
19 38 713 
5 39 723 
6 47 799 
13 57 895 
1 64 962 

14 73 1048 
20 81 1125 
10 93 1240 
15 117 1451 
3 124 1521 
18 130 1581 
11 138 1660 
8 J86 ^  

2.4.2.3. Spectral autocorrelation-based feature selection 
( 

Two algorithms are discussed for spectral autocorrelation-based feature j 
I 

selection, namely, optimization with distance metrics and linear stepwise 

discriminant analysis. 

^ 2.4.2.3.1. Optimization with distance metrics 

Optimization with distance metrics often uses divergence as a means to 

measure the statistical separability of a pair of probability distributions that has its 

basis in their degree of overlap (Richards, 1993). In general, for selecting the best q 

feature subset out of n bands to discriminate between two classes, there exist "Cq 

combinations of the subset. Then the divergence values of the "Cq combinations have 

to be computed in order to identify the best q-band subset that results in the largest 
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divergence value. For the case where there are more than two classes, the average 

divergence which is computed by averaging over all possible pairs of classes while 

holding the q-band subset constant is implemented and the best q-band subset is 

identified by having the maximum average divergence values. (Jensen, 1994). Other 
� 

distance matrices are also used such as transformed divergence and Jeffries-Matusita 

distance (Jensen, 1994 and Richards, 1993). This technique that has been applied to 

Landsat TM data (Jensen, 1994) seems to be impractical to hyperspectral data 

because the calculation of divergence is very computationally intensive with 

hyperspectral data which often possess over a hundred spectral bands. 
I 
j 

1 

I 

I 

2.4.2.3.2. Stepwise linear discriminant analysis 
/ 

Linear discriminant analysis can also be used for band selection besides 

classification. The spectral bands which best differentiated between classes are 

selected in a stepwise way. It involves entering the independent variables (spectral 
t 
f 
I 

bands) into the discriminant function one at a time on the basis of their j 

discriminating power (Hair et al., 1995). The stepwise approach begins by choosing j 
I 

the single best discriminating variable. The initial variable is then paired with each of 

the other independent variables one at a time, and the variable that is best able to 

^ improve the discriminating power of the function in combination with the first 

variable is chosen. The third and any subsequent variables are selected in a similar 

procedure. As additional variables are included, some previously selected variables 

may be removed if the information they contain about group differences is available 

in some combinations of the other variables included at later stages. 

An additional means of interpreting the relative discriminating power of the 
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independent variables is using the partial F values which indicate the associated level 

of significance for each variable (Hair et al., 1995). This is accomplished by 

examining the absolute sizes of the significant F values and ranking them. Large F 

values indicate greater discriminating power. 
� -

Nelson et al. (1984) used stepwise linear discriminant analysis to select 

Landsat TM bands determining which wavebands were most useful for delineating 

boreal forest cover types. They found that useful waveband combinations included at 

least one band from the visible, near-infrared and mid-infrared spectral regions. 
I j 

I 

1 
I 
I 

2.5. Summary 
I 

Tree species recognition is improved with more precise identification of 

forest types using hyperpsectral data. Previous tree species recognition studies found 

that the use of derivatives spectra and artificial neural network algorithms 
i . i 

outperformed the use of original reflectance spectra and statistical algorithms 

respectively. However, only few studies have been conducted for tree species 
I 

recognition using hyperspectral data. More experiments should be performed to 

utilize hyperspectral data for tree species recognition. 
1 

With the redundancy of hyperspectral data, data compression and feature 

extraction are found to be essential for hyperspectral data analysis. Principal 

components analysis is a common tool for data compression. However, few studies 

have been applied this technique for hyperspectral data analysis. 

In contrast, more studies have been conducted on feature extraction of 
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hyperspectral data. For vegetation studies, correlation of spectral bands with 

biochemical and biophysical parameters is a common tool for selecting useful bands. 

Other approaches are also used for band selection such as spatial autocorrelation, 

optimization with distance metrics and linear stepwise discriminant analysis. These 
� . 

studies reveal that hyperspectral data are highly redundant. It is essential to select the 

optimal band sets for different applications. However, the selected bands found by 

different researchers are not consistent with one another. 

I 

I 1 

I 

I 

( 
( 

• i 

! 
I 

t 

1 
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CHAPTERTHREE 

METHODOLOGY 

3.1. Introduction 
� 

This chapter describes in detail the experimental design and methodology used 

in this study. The study site and the instruments used in this study are introduced. 

The procedures of data collection including laboratory measurement and in situ 

measurement are then described. Finally, methods of data analysis for tree species 
I 

I 

recognition, data compression and band selection are explained. ； 
{ 
I 

1 

I 

3.2. Study site 
( 

Hong Kong has a territory of over 1080 square kilometers which accommodates 

over six million population. It is located at a subtropical environment with an 

average temperature of 20°C and annual precipitation of 1600-2000 mm. It nourishes 
/ 

diverse types of flora with over 300 tree species which is quite a surprising number 
j 

when only 13% of the total area is woodland (Thrower, 1988). The primary | 

subtropical evergreen broadleaf forest and rainforest were destroyed by human 

activities and rapid urban development. Since the 1960s，there has been tremendous 

i effect in tree plantation in both country parks and urban area using both indigenous 

and exotic species. 

In this study, hyperspectral measurements were taken in the campus of the 

Chinese University of Hong Kong, located in Maliushui, Hong Kong. Maliushui was 

originally a rural village. For the past 30 years, most of the original vegetation cover 

were destroyed by construction and development of the campus. Meanwhile, tree 
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plantation similar to that in other areas of Hong Kong was carried out. Thus, trees 

that were commonly planted in Hong Kong were also found in the CUHK campus. 

As a result, the CUHK campus was selected as a primary study site in this research. 

，. 

3.3. Instrumentation 

A high spectral resolution spectrometer, S2000 fiber optic spectrometer (Ocean 

Optics, Inc., 1999), was available for taking hyperspectral data. The spectrometer is 

linked with a notebook computer for data acquisition and analysis. It is also 

connected with a single-strand optical fiber through which light energy transmits. 

Three optical fibers with fiber diameters of 50 hn , 100 ^4n and 400 h n are 

available. The effective range of the spectrometer is from 200 nm to 1100 nm. The 
• o 

spectral resolution is approximately 0.5 nm. It has a field ofview of22 . 

During data collection, two references, a white and a dark, are used for 

calibration. The dark reference corresponds to the response of the system with no 

light being exposed to the detector whereas the white reference records the spectra 

from a standard white panel close to perfect diffusion. Based on the illumination 

condition, an integration time for collecting photons is selected to avoid saturation or 

t shortage. 

2 

In a dark room with two 500 W tungsten lamps, light intensity is 190 W/m as 

read from a pyranometer. An integration time of 80 ms is used with an optical fiber 

of 400 ^4n diameter. However, integration time varies remarkably when in situ 

measurements are made. For a sunny day with clear sky condition, the light intensity 

is greater than 500 W/m^. Under this illumination condition, optical fiber of a 
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diameter of 50 ^m, the smallest one, is used. The integration time is reduced to 7 ms 

and a cuvette holder is used to reduce light energy transmitted into the spectrometer 
/^ 

to avoid saturation. However, when light intensity reduces to less than 50 W/m for 

features lied under shadow, an integration time of more than 200 ms is used with an 
X 

optical fiber of a diameter of 400 hn . 

3.4. Data collection 

Data collection was divided into two parts: laboratory measurement and in situ 

measurement. Laboratory measurement was carried out for leaf samples of selected 
j 

tree species. The data collected from laboratory measurement were mainly used to 

test the separability of hyperspectral data of different tree species. In situ 

measurement was done for several selected surface covers in Hong Kong. 

When the research project started in summer, 1997, all data were expected to be 

collected in the field. However, severe problems were encountered. Firstly, 1997 was i 

a rainy year in Hong Kong. Few sunny days with cloudless skies were available for | 

taking spectral data. Even on a sunny day, wind and cloud were still present leading 

to significant fluctuation in illumination. Secondly, the sensor of the spectrometer 

1 was difficult to be held steadily and the direction of the sensor could not be 

controlled precisely above the tree canopy due to technical difficulties. Other factors 

including the distance between the sensor and the canopy, the proportion of the 

leaves within the sampling area from which the sensor of the spectrometer read data 

could not be controlled during in situ measurement. As a result, fluctuation in 

spectral measurement was often recorded. Thirdly, trees in Hong Kong varies in 

heights and yet it is not uncommon to find trees exceeding five to ten meters which 
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poses difficulty for in situ measurement. It is advised to have a cherry picker truck 

for in situ measurement from tree canopy so that the sensor of the spectrometer could 

be held steadily while taking accounts for the factors mentioned above. Due to 

financial limitation, cherry picker truck was not available in this project. 
* 

3.4.1. Laboratory measurement 

Laboratory measurements were made and twenty-five tree species (Table 3.1) 

were selected for tree species recognition. These tree species were selected so as to 

include species with a wide variety of different characteristics and they are 

commonly planted in Hong Kong. For example, these trees have obvious differences 

in the sizes of their leaves. Some trees are native species while some are exotic 

species which were introduced during the plantation campaign in Hong Kong. The 

general characteristics of these tree species were listed in Table 3.1. Tree samples 

were taken in the four seasons so that variation in different seasons can be traced. 

The four seasonal periods were April, 1998 (spring), July, 1998 (summer), October, 

1998 (autumn) and January，1999 (winter). 丨 
I 

In autumn and winter, some tree species suffered from a decrease in foliage and 

I no samples could be collected. Among the 25 tree species, no samples were obtained 

for Firmiana simplex in the autumn and winter seasons and for Cratoxylum 

ligustrinum, Delonix regia and Firmiana simplex in the winter season. Thus, the 

number of tree samples was reduced to 24 and 21 for autumn and winter respectively. 
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Table 3.1. The 25 tree species selected in this study 

Species name Code Descriptions (Thrower, 1988) Remark  
Acacia confusa ac Evergreen, small-leaf, exotic  
Araucaria heterophylla ah Evergreen, coniferous, exotic — 
Acacia mangium am Evergreen, broad-leaf, exotic 

• Bauhinia variegata bv Deciduous, broad-leaf, native 
� ‘ Evergreen, broad-leaf, native 

Cinnamomum camphora of Eastem Asia and widely 
cultivated in the tropics and 
subtropics  

Casuarina equisetifolia ce Evergreen, minute-leaf, exotic 
Castanopsis fissa cf Evergreen, broad-leaf, native 

“ “ “ “ “ “ “ ~~~“ :. Excluded from the 
Cratoxylum ligustrinum cl Deciduous, broad-leaf, native winter data set . 

“ Evergreen, broad-leaf, widely i 
Al—ites moluccana ct ^^^^^ 他 ̂ he tropics  

Dimocarpus longan dl Evergreen, broad-leaf, native | 
“ ~ ~ ~ “ :. Excluded from the 丨 

Delonix regia dr Deciduous, small-leaf, exotic ^.^^^^ data set j 

Ficus microcarpa fin Evergreen, broad-leaf, native : 
i 

“ ~~ Excluded from the 
I 

Firmiana simplex fs Deciduous, broad-leaf, native autumn and winter ； 
data set 

Ficus variegata fv Deciduous, broad-leaf, native 
\ f 

^ ^ _ _ ^ _ ^ _ _ _ _ « _ ^ _ « ^ ^ _ » ^ ^ ^ « ^ ^ ~ ~ « ^ ~ ~ ~ ~ " ^ « « " ^ ~ " " " " ^ ^ ~ ~ ^ ~ ~ ~ " — ^ ~ ~ ~ ~ ~ ~ ~ " " " * ~ " ^ ~ " " ~ " ^ ^ ‘ 

7 1 Evergreen, broad-leaf, widely 
腕謂 tiliaceus ht grown in the tropics  
Lophostemon conferta lc Evergreen，broad-leaf, exotic ( 
Liquidambar formosana lf Deciduous, broad-leaf, native , 

1 Deciduous, broad-leaf, widely 
Lagerstroemia speciosa ls g^own in the tropics  

她她職 mq Evergreen, small-leaf, exotic 
quanqueenervia  

I Evergreen, broad-leaf, widely 
Macaranga tanarius mt grown from South Asia to 

Australia  
Pinus elliottii pe Evergreen, coniferous, exotic  

Evergreen, coniferous, native 
T _ o ^ — i s PP ofNorthChina  
Schima superha sm Evergreen, broad-leaf, native 

7~ “ “ ~ “ “ ~~~“ “ Excluded from the 
Sapium sebiferum ss Deciduous, broad-leaf, native winter data set 

~ ~ ~ ~ . ~ 7 ~ i 7.~~Deciduous, minute-leaf, Taxodium distichum td ,. 
exotic  
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The experimental setup is shown systematically in Figure 3.1. The experiment 

was conducted in a dark room with constant illumination from two 500W tungsten 

lamps at a distance o f l . 2 m apart. Both lamps were stationed with a height of 0.8 m. 

0 / 
The light intensity is 190 W/m as read from a pyranometer. The sensor of the 

>. 

spectrometer was pointed vertically downward and positioned at one meter from the 

ground. With an 22° field of view of the sensor, the sampling area from which the 

sensor read data should be a circle with diameter of 0.375 m on the ground. A black 

cloth was lied on the ground so as to minimize noise from the background. ^ 
t 

I 
t 

Figure 3.1. The experimental setup | 

！ 

f I fi 
I 

Fiber optic^_ _^^ 丨 

500W s^sor ^ * " - X ^ | 
Tungsten A N ^ i 

rî �yvN\ : 
1 m � , m \ / \ r a ^ \ 

\ / \ j High resolution Notebook 
/ \ , spectrometer computer 

丄 丄 j - ^ - ^ \  
更 , . Z Black cloth 

Leaf samples 

The procedures of the experiment were as followed. Five to six branches of 

leaves of sampled trees were first collected in the field and brought to the dark room 

for immediate data measurement. The leaves were then lied on the black cloth for 

taking spectral measurement. A digital photograph was taken for each sample. The 
‘ I 

proportion of leaves was measured later with image processing techniques. For each 
j 
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type of tree species, three different levels of density were used so as to simulate the 

different densities of tree canopy. Under each density level, 12 samples are taken. 

Thus, a total of 36 samples were obtained for each tree species. 

.̂ 

3.4.2. In situ measurement 

Various types of surface cover were originally selected for in situ hyperspectral 

measurement to set up a hyperspectral database. The surface covers selected should 

be the typical surface covers observable from satellite sensors including various road � 

pavement materials, various roof covering materials of buildings, sand, coastal and 丨 

inland water, various species of grass, shrubs and trees, etc. Due to time limitation 1 

and restrictions in in situ measurement explained earlier, only ten surface covers I 
s 

\ 

were measured in the field. They were concrete, pond water, grass lawn, grass slope, j 

fem {Dicranopteris linearis) and five tree species including Acacia confusa, ！ 
\ 

Castanopsis fissa, Dimocarpus longan, Ficus microcarpa and Taxodium distichum. 
''f \ 

The height of all five tree species were over four meters. Measurements could not be | 
< 

i 

made vertically above their canopies without the aid of a cherry picker truck which J 

was expensive and unavailable for this study. Instead, measurements were taken at 

breast height (1 - 1.3 m) obliquely 10 - 20 cm from the canopies. 

I 

In situ measurement was done in November, 1998 which was late autumn in 

Hong Kong. Measurements were made only on sunny days with clear sky condition. 

The reasons for taking in situ measurement during this period are two-fold. Firstly, 

the climate during this period is dry and cool. There were more sunny days for taking 

measurements. Secondly, aerial photos and satellite images are usually obtained 

during this period of time in Hong Kong so that hyperspectral data can be compared 
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with the data obtained from aerial photos and satellite images. 

In situ spectral measurements were made between 10 am to 3 pm of local time 

because sun angle would not change considerably during this period of time. Dark 
*. 

and white references were measured every five to ten minutes as necessary to 

minimize the effect of possible change in illumination. Thirty-six samples were taken 

for each surface type. For tree canopies, measurements were taken from shaded and 

sunlit portions of the canopies in order to analyze the effect of different light 

conditions. \ 
i 

f 
！ 

I I » 

) 

3.5. Methods of data analysis 
f 

1 

3.5.1. Preprocessing of data j 

Data which were shorter than 400 nm and longer than 900 nm were eliminated 
to avoid noisy bands. There were totally 689 bands within the 400 nm to 900 nm 

, f 
region. The original spectra were smoothed with a 20-channel Fast Fourier } 

:< 

Transform algorithm using the Origin 5.0 package (MicroCal Software, Inc., 1999). j 
• 

Before 20-channel Fast Fourier Transform algorithm was adopted, several 

^ smoothing algorithms had been used and compared. Centered moving average with 

5-channel to 20-channel and Fast Fourier Transform with 5-channel to 10-channel 

have been tested. The smoothed spectral reflectance produced by these algorithms 

were similar to each other and the classification results using these smoothed original 

spectra revealed no significant difference between one another. However, significant 

differences appeared after the derivatives procedure. The derivatives generated from 

the spectral reflectance which were smoothed by 20-channel Fast Fourier Transform 
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had clear and dominate features and were free of noise from 500 to 750 nm, but the 

derivatives generated from the spectra which were smoothed by other _algorithms 

were extremely noisy for the whole spectral range and no significant features could 

be identified from the resultant derivatives spectra. Centered moving average and 5-
、， 

channel to 10-channel Fast Fourier Transform could not reduce noises effectively 

from the very noisy raw spectral bands. Derivatives procedures induced more noises 

to the spectra as the spectrometer had very narrow band-width and fine spectral 

resolution. 丨 

i 
I 

I 

i 

！ 

The smoothed spectra also contained 689 bands. The smoothed original spectra 

were then merged and averaged for every five consecutive bands. As a result, the f 
< 

1 
reduced data set contained 138 bands. First and second derivatives were then taken | 

r 

from the reduced reflectance data using the Origin 5.0 package. The number ofbands : 

remained the same after the derivative procedures. Thus, three data sets were ‘ 
i 

produced and used for data analysis. They were the reduced original spectra (OS), i 
4 

the first derivatives of the reduced spectra (lD) and the second derivatives of the 
t 

reduced spectra (2D). 

� Due to the property of neural network, values in each band of smoothed and 

derivative spectra were linearly adjusted to the range of [0,1] before they were used 

in training and testing the neural network. However, linear adjustment was not done 

to any data which were trained and tested by linear discriminant analysis. This 

arrangement should have no effect on the comparison of the performance of the two 

classification algorithms because linear discriminant analysis is based on the 

statistical structure of the data which will not be affected by linear adjustment. 

41 

i 



3.5.2. Compilation of hyperspectral database 

A hyperspectral database was compiled and stored in excel files after the 

spectral data were processed by the methods explained in the previous section. The 

data stored in the database can be retrieved, processed, displayed and outputted in 
， 

various forms and formats according to the interest ofthe users. 

The structure of the database was shown systematically in Figure 3.2. The 

database was divided into two parts, laboratory database and in situ database. The 
I 

laboratory database was composed of twelve excel files. Each season had three ； 
I 

separate files which contained the original spectra, the first derivatives ofthe spectra | 
i 

and the second derivatives ofthe spectra for the measured tree species respectively. I 
! 

The derivatives ofthe spectra were included in the database for their frequent uses in ‘ 

data analysis. The in situ database contained only one file in which the original 

spectral reflectance of the ten surface covers were stored. 

‘ i 
( 
I j 

3.5.3. Tree species recognition | 
f 

Tree species recognition was done by two algorithms, linear discriminant 

analysis and artificial neural networks. 

1 

Data were divided into two parts: the training set and the testing set. The 

training set was inputted to train the classifiers and the testing set was used to test the 

accuracy ofclassification. For each tree species, six spectral data were selected as the 

training set in which two samples were randomly selected respectively from the three 

levels of leaf density. The rest 30 samples were the testing set. Thus, the training set 

represents 16.67% of the whole data set. 
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3.5.3.1. Linear discriminant analysis 

Linear discriminant analysis (DA) was done for tree species recognition using 

the DISCRIM procedure in the SAS package (SAS Institute, 1990). , 

�• 

3.5.3.2. Artificial neural network 

A feed-forward neural network (NN) algorithm with back-propagation training 

mechanism was used for tree species recognition to compare with DA. A neural 
I 

network program developed by Pao (1989) and modified by Gong et aL (1997) was ； 

adopted and used in this research. In order to build an efficient NN structure, the 

learning rate (^), momentum coefficient (a), the number of hidden layers and the , 
1 
i 

5j 

number of hidden nodes should be optimized. According to Gong et aL (1997)'s � 

？: 
investigation, NN structure with ”=0.2, ^=0.7 and one hidden layer with 50 nodes j 

i 

was applied in this study. Several other NN topologies had also been tested using the | 

spring original spectral data set before the above NN structure was adopted. One 

hidden layer with 50，80 and 100 hidden nodes and several topologies using two | 
� 

hidden layers with 20 to 80 hidden nodes were tested. Similar classification results 

were obtained. NN structure of one hidden layers with 50 hidden nodes was adopted 

due to faster training process. 
t 

The training convergence criterion was set such that the testing accuracy was 

highest within 20000 iterations. Usually, the network was trained to reach its highest 

accuracy within 20000 iterations and the testing accuracy declined beyond its 

maxima. 
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3.5.3.3. Accuracy assessment 

For each classification, a confusion matrix was generated. Two methods of 

accuracy assessment were adopted. The first method was the overall accuracy which 

was computed by dividing the total number of correctly classified samples (sum of ’ 
� 

the major diagonal cells of the confusion matrix) by the total number of test samples 

used. However, this accuracy index does not take into account the off diagonal cells 

of the confusion matrix. In other words, the errors of commission and the errors of 

omission are not accounted for. Thus, the second method, Kappa coefficient of 

agreement {K) developed by Cohen (1960), was introduced for accuracy assessment. ; 

The estimate of Kappa is the proportion of agreement (diagonal cells of the , 

confusion matrix) after chance agreement ^>roduct of row and column marginals) is ！ 

'I 
removed from consideration (Rosenfield and Fitzpatrick-Lins, 1986). Perfect ‘ 

|) 
agreement is represented by a Kappa value of one while zero for chance agreement. — | 

I 

i 
f 
I 

3.5.3.4. Comparison of different data processing strategies and classifiers || 
r 

A test of significance between two independent Kappa coefficients (Cohen, [i 
{ 

1960) was used for assessing the difference between different methods of 

classification. The standard normal deviate (Z) is calculated as 

1 Z — K\-K2 
^V(K1) + V{K2). 

where V(Ki) and V(K2) are the approximate large sample variance of Ki and K2 

respectively. Ifthe absolute value of Z exceeds 1.96，then the difference between the 

two Kappa coefficients is significant at the 95 percent probability level. 

Z was calculated between any two methods of classification within every data 

set of the same season. The results were then justified to determine which method of 
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classification was better for tree species identification. 

3.5.3.5. Comparison of data among different seasons 

Since the data sets of different seasons contained different number of tree ‘ 

species, it is difficult for comparison. Thus, the spring, summer and autumn data 

were reduced to 21 tree species as the winter ones. Linear discriminant analysis was 

then adopted to classify the 21 tree species for data of each season using the original 

spectra. Significant testing ofKappa was also done among different seasons. 

I 

3.5.3.6. Comparison oflaboratory and in situ data 

In situ spectral measurements were done for five tree species, namely Acacia I 

confusa, Castanopsis fissa, Dimocarpus longan, Ficus microcarpa and Taxodium ‘ 

distichum. As the illumination condition, background effect and leaf orientation in [ 

the field were totally different from those in the laboratory, in situ spectral * 

reflectance data were expected to be different from the laboratory data. In order to l< 

investigate how the two differed from each other, an analysis of means for comparing 
( 

the means of two independent samples with unequal variances was performed 

QSforcliffe, 1982). A t value was calculated for each wavelength using the in situ and 

� laboratory data of each tree species. The t value was calculated as 

Xl - X2 t=  
^ - ^ 2 

where X\ and Xi were the mean of data set one and data set two respectively and 

s was the standard deviation of the sampling distribution of the means which 
A 1 _ A 2 

was estimated from 
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f ^ ~ ~ ^ ‘ 
o _ _ = i i _ + i L . 

^•-^^ ^ N\ N, 

where f̂ and s\ were the variance of the data sets one and data sets two respectively 

and N\ and A^ were the sample sum of the data set one and data set two. In this case, 
� . 

the difference between the two data sets was significant at the 0.05 significance level 

ifthe absolute value of t exceeded 2. 

3.5.4. Data compression 

With the tremendous volume of spectral bands obtained, a certain degree of data 

redundancy was expected. Principal components analysis (PCA) which is a common ： 

tool to transform multidimensional data and extract useful vectors for data ‘ 

compression was thus used for data compression. PCA was performed to investigate : 

how the spectral bands would be rotated and what information could be available | 

from PCA. ‘ 

i 
I 

Separate PCAs were performed using the smoothed in situ spectral reflectance \ 

ofthe ten surface covers and the smoothed spectral reflectance ofthe 25 tree species 

for each season respectively. The PC loadings were then investigated. For the PCs 

I generated by the 25 tree species, linear discriminant analysis was performed using 

the first eight PC scores for each season in order to investigate the differentiating 

power of the PCs. Another seasonal comparison was also performed with 21 tree 

species using stepwise discriminant analysis. 

3.5.5. Band selection 

Other than data compression, band selection can be done to reduce data 
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i 

‘ redundancy. Band selection is essential for data analysis in order to save 

computational time and facilities as well as to improve analysis results. Two 

algorithms were adopted for band selection. A preliminary band selection procedure 

was first done using stepwise discriminant analysis for the spectral data of the 25 tree 
.̂ 

species. Linear discriminant analysis was then performed to classify the tree species 

using the selected bands. Significant testing of Kappa was done for comparing the 

difference in accuracy between two classifications using all bands and selected 

bands. ^ 

After the preliminary analysis, a hierarchical clustering procedure was carried 

out using the original spectral data in autumn. The 400 - 900 nm spectral region was I 

grouped into clusters. The boundary and the spectral bands of the clusters were then ‘ 

investigated in detail. In order to identify which spectral regions contain more 
i 

information for tree species recognition, several spectral band sets were selected ‘ 
r 

from the centers ofthe clusters and used to classify the tree species of four seasons | 
I 

respectively. Again, significant testing of Kappa was then done to determine which ！ 

spectral band sets produced a better classification accuracy. 

I 3.6. Summary 

In this study, the Chinese University of Hong Kong campus was selected as a 

primary study site to measure hyperspectral data. A high spectral resolution 

spectrometer was available for data collection which was divided into two parts, 

laboratory measurement and in situ measurement. Twenty-five tree species were 

selected for laboratory measurement to test the separability of hyperspectral data of 

different tree species. For in situ measurement, spectral reflectance of ten surface 
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/ } 

covers including several tree species, grass, fem, water and concrete were taken. A 

hyperspectral database was then set up. The spectral reflectance and their derivatives 

were eventually analyzed for tree species recognition, data compression and band 

selection. The twenty-five tree species were classified using two classifiers, linear 
X 

discriminant analysis and neural network. For data compression, principal 

components analysis was used whilst band selection was performed using stepwise 

discriminant analysis and hierarchical clustering. 

i 

49 



CHAPTER FOUR 

RESULTS AND DISCUSSIONS OF TREE SPECIES RECOGNITION 

4.1. Introduction 
% 

This chapter presents the results and discussions of tree species recognition. 

First, the characteristics of the hyperspectral data collected in this study are 

described. They include the smoothed spectral reflectance curves, the first 

derivatives ahd the second derivatives of the 25 tree species as well as the spectral 

reflectances of the ten surface covers measured in the field. Then, the results of tree 

species recognition are presented followed by discussions on comparison of different 

classifiers, comparison of different data processing strategies, comparison of 

different seasonal data and comparison oflaboratory and in situ data. 

4.2. Characteristics of hyperspectral data 

Hyperspectral data measurements were taken in the laboratory for 25 tree 

species in the four seasons as well as in the field for ten surface covers. 

Figures 4.1 to 4.4 illustrated the smoothed spectral reflectance curves of the 25 

I tree species in spring, summer, autumn and winter respectively. In each season, the 

25 tree species were separated into four groups, and their corresponding reflectance 

curves were presented in four graphs. In general, low reflectance was found in the 

spectral range from 400 to 690 nm where lied the visible bands and a peak appeared 

centering at around 550 nm presenting the green peak. From 690 to 750 nm, the 

reflectance rose markedly from very low to very high values. This rise was the red 

edge. The high reflectance leveled off from 750 to 900 nm which was the near-
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Figure 4.1a Spectral reflectance curve of the first seven tree species in spring 
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Figure 4.1b Spectral reflectance curve of the second six tree species in spring 
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Figure 4.1a Spectral reflectance curve of the first seven tree species in spring 
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Figure 4. ld Spectral reflectance curve of the fourth six tree species in spring 
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Figure 4.1a Spectral reflectance curve of the first seven tree species in spring 
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Figure 4.2b Spectral reflectance curve of the second six tree species in summer 
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Figure 4.1a Spectral reflectance curve of the first seven tree species in spring 

60 1 ~~, 

/ I Z ^ 
t „„̂ '̂"-~"~"—-̂  

g 4 o - - l!r • " ^ ^ " ^ �: 二 

I 3 0 - f ^ ^ = = ^ ^ = = " ^ - 1 C 

I / / - ^ 

(2 20 - V —Is 

/ —mq 
1 0 : ^ ^ ^ ^ ^ ^ / 

^ g ^ ^ S ^ ^ ^ " " ^ ^ * " " " " " * ^ ^ ^ ^ = = ^ ^ 
0 "I 1 1 1 1 1 1 1 1 1  

4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 

Wavelength (nm) 

Figure 4.2d Spectral reflectance curve of the fourth six tree species in summer 
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Figure 4.1a Spectral reflectance curve of the first seven tree species in spring 
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Figure 4.3b Spectral reflectance curve of the second six tree species in autumn 
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Figure 4.1a Spectral reflectance curve of the first seven tree species in spring 
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Figure 4.3d Spectral reflectance curve of the fourth six tree species in autumn 
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Figure 4.1a Spectral reflectance curve of the first seven tree species in spring 
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Figure 4.4b Spectral reflectance curve of the second five tree species in winter 
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Figure 4.1a Spectral reflectance curve of the first seven tree species in spring 
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Figure 4.4d Spectral reflectance curve of the fourth five tree species in winter 
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infrared bands. While all trees demonstrated a similar pattem of reflectance, a great 

variation was found among them. Trees with large broad leaves tended to have a 

comparatively high reflectance in the near-infrared bands, for example, Bauhinia 

variegata. On the other hand, trees with small leaves like Acacia confusa or trees 
� 

with needle-leaves such as Pinus elliottii were low in the near-infrared bands. 

Figures 4.5 to 4.8 showed the first derivatives of the 25 tree species in the four 

seasons. The first derivatives had some dominate peaks in the spectral bands from 

500 to 770 nm whilst the bands with wavelengths shorter than 550 nm and longer 

than 770 nm remained approximately around zero value with some noises. A positive 

peak and a negative peak were found at around 525 nm and 570 nm respectively 

whilst zero value was found in between the two peaks at 550 nm. These features 

demonstrated clearly the characteristics of the green peak which had a maxima at 550 

nm and a positive slope before the maxima and vice versa. Some negative 

irregularities with two small negative peaks were found between the green peak and 

the red edge that indicated the some variations of the downward slope occurred in 

this region. A very high peak occurred at around 725 nm illustrated the marked rise 

of the red edge. Different tree species tended to have the peaks centered at slightly 

更 different wavelengths. This might help to improve recognizing tree species. 
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Figure 4.5a First derivatives of the first seven tree species in spring 
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Figure 4.5b First derivatives of the second six tree species in spring 
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Figure 4.5a First derivatives of the first seven tree species in spring 
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Figure 4.5d First derivatives of the fourth six tree species in spring 
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Figure 4.5a First derivatives of the first seven tree species in spring 
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Figure 4.6b First derivatives of the second six tree species in summer 

1.2 厂 

i :r f\ H 
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Figure 4.5a First derivatives of the first seven tree species in spring 
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Figure 4.6d First derivatives of the fourth six tree species in summer 
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Figure 4.5a First derivatives of the first seven tree species in spring 
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Figure 4.7b First derivatives of the second six tree species in autumn 
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Figure 4.5a First derivatives of the first seven tree species in spring 
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Figure 4.7d First derivatives of the fourth six tree species in autumn 
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Figure 4.5a First derivatives of the first seven tree species in spring 
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Figure 4.8b First derivatives of the second five tree species in winter 
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Figure 4.5a First derivatives of the first seven tree species in spring 
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Figure 4.8d First derivatives of the fourth five tree species in winter 
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Figures 4.9 to 4.12 showed the second derivatives of the 25 tree species in the 

four seasons. The second derivatives tended to have rather noisy bands in the 

wavelengths shorter than 550 nm and longer than 770 nm. These noisy bands might 

affect the recognition of tree species and lead to unsatisfactory classification results. 
� . 

A positive peak at 510 nm and a negative peak at 530 nm demonstrated the positive 

peak at 525 nm found in the first derivatives. Similarly, a negative peak at 560 nm 

and a positive peak at 580 nm explained the negative peak at 570 nm in the first 

derivatives. The two small negative peaks found in the first derivatives between the 

green peak and the red edge were magnified in the second derivatives with some 

obvious small positive and negative peaks in this region. The peak found in the first 

derivatives at 725 nm created a dominant positive peak at 700 nm and a dominant 

negative peak at 750 nm in the second derivatives. 

Figure 4.13 showed the spectral reflectance of the ten surface covers measured 

in the field. They were concrete, pond water, grass lawn, grass slope, fem 

{Dicranopteris linearis) and five tree species including Acacia confusa, Castanopsis 

flssa, Dimocarpus longan, Ficus microcarpa and Taxodium distichum. The five tree 

species, grass lawn and fem had similar reflectance pattem as those measured in the 

1 laboratory. Meanwhile, the spectral reflectance of fem appeared to be the greenest. It 

had the highest green peak comparing with those of tree species and grass lawn. 

Since grass in the site where reflectance of grass slope was measured did not grow 

well and quite a lot ofbare soil was exposed which was a common situation for grass 

slopes in Hong Kong, the reflectance of grass slope showed no clear green peak but 

was still high in the near-infi:aied bands. Concrete had reflectance with constantly 

increasing gentle slope from 400 to 900 nm. Pond water had low reflectance in the 
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Figure 4.10a Second derivatives of the first seven tree species in summer 
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-0.03 -- \ y 
- 0 . 0 4 "1 1 1 1 1 1 1 H 1 1  

4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 

Wavelength (mn) 

Figure 4.9b Second derivatives of the second six tree species in spring 
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Figure 4.10a Second derivatives of the first seven tree species in summer 
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Figure 4.9d Second derivatives of the fourth six tree species in spring 
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Figure 4.10a Second derivatives of the first seven tree species in summer 
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Figure 4.10b Second derivatives of the second six tree species in summer 
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-0.03 - y 

- 0 . 0 4 - -

- 0 . 0 5 ] 1 1 1 1 1 1 1 1 1  

4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 

Wavelength (mn) 

71 



Figure 4.10a Second derivatives of the first seven tree species in summer 
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Figure 4.10d Second derivatives of the fourth six tree species in summer 
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Figure 4.1 la Second derivatives of the first six tree species in autumn 
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Figure 4.1 lb Second derivatives of the second six tree species in autumn 
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Figure 4.1 lc Second derivatives of the third six tree species in autumn 
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Figure 4.1 ld Second derivatives of the fourth six tree species in autumn 
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Figure 4.10a Second derivatives of the first seven tree species in summer 
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Figure 4.12b Second derivatives of the second five tree species in winter 
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Figure 4.10a Second derivatives of the first seven tree species in summer 
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Figure 4.12d Second derivatives of the fourth five tree species in winter 
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near-infrared bands which was a typical feature for the reflectance of water body. 

Relatively higher reflectance was found in the visible bands with a dominant peak 

centered at 560 nm. 

X 

Figure 4.13. Reflectance spectral curves of the in situ surface covers 
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Appendix 1 showed the plots of spectral reflectance of the 25 tree species in 

different seasons for each density level. Each curve was the average of 12 spectra 

measured in different seasons for each density level. Different seasonal patterns 

could be traced visually from the plots. Some deciduous tree species, for example, 
， 

Liquidambar formosana, Lagerstroemia speciosa and Taxodium distichum, had 

obvious annual cycle. In spring, new green leaves started to grow again. New-growth 

leaves tended to be in lighter and brighter green color so that spectral reflectance 

were the highest in spring. In winter, leaves changed from green to red and yellow in 

the beginning of winter and finally fell. A reduction in green and near-infrared 

reflectance and a gain in yellow and red reflectance were found. This pattem was 

obviously noticed in the spectral curves of Taxodium distichum. The green peak and 

the near-infrared bands were the highest in spring while these bands were lower in 

summer and autumn. In winter, the green peak disappeared. The reflectance 

increased gradually from 400 nm to 600 nm. A small peak was found centered at 

around 640 nm presenting the red bands and the reflectance dropped into a small 
I 

trough centered at 680 nm. From 680 nm onwards, a relatively steep rise occurred 丨 

i 

until 720 nm presenting the red edge. In the near-infrared region from 720 nm to 900 

nm, the reflectance increased with a gentle slope instead of leveled off. 

t 

Other deciduous tree species, for example, Ficus variegata lost their leaves in 

late winter so that spectral measurement could be done before their leaves 

disappeared. Their leaves tumed dull and dry in winter while new-grown leaves in 

spring were bright and light green. Thus, the spectral reflectance especially for the 

green peak and the near-infrared bands were higher in spring and summer but lower 

in autumn and winter. There was no consistent pattem for evergreen trees. Some 
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evergreen tree species, for example, Acacia mangium and Cinnamomum camphora, 

had higher spectral reflectance in spring and summer and lower reflectance in 

autumn and winter. Especially for Cinnamomum camphora, the green peak and the 

near-infrared regions in spring were dominantly higher than those in other seasons. 
� 

However, some evergreen species got a reversed pattem such as Ficus microcarpa 

and Lophostemon conferta. The green peak and the near-infrared regions of Ficus 

microcarpa were especially higher in autumn than those in other seasons. 

4.3. Tree species recognition 

The 25 tree species were classified by two recognition algorithms, linear 

discriminant analysis (DA) and artificial neural networks fNN). Table 4.1 showed the 

classification results of the four seasonal data sets by these two algorithms. The 
I 
！ 

1 

confusion matrices for each classification using linear discriminant analysis and 

neural networks were listed in Appendix 2 and Appendix 3 respectively. The overall 

accuracies for linear discriminant analysis ranged from 9.07% to 80.69% and those 
I 

for neural networks were from 40.40% to 76.67%. Except the very poor results , 
i f 

obtained by linear discriminant analysis using derivatives data, the classification 

results were satisfactory particularly for the original spectral reflectance data which 

I yielded over 70% overall accuracy. It confirmed the discriminating power of 

hyperspectral data to recognize different tree species. 
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Table 4.1. Classification results of tree species recognition using all 138 bands 

Original Spectra  
DA 丽 

• OA(%) Kappa (xlOO) OA(%) Kappa (xlQQ) ZpA,NN 
""^Sprmg 74l7 73.19 72.27 TUl 0 ^ 

Summer 68.93 67.64 72.40 71.25 -1.4762 
. Autumn 80.69 79.86 76.67 75.65 1.8931 

Winter 70.16 68.67 74.29 73.00 -1.6378 
Avemge 735^ 72.34 73.91 72.75 
accuracy  

First Derivatives  
DA 厕 

. OA(%) Kappa (xlOO) OA(%) Kappa (xlQQ) ZpA,NN 
~~Sprmg 2 ^ 17.36 60.40 58.75 -17.2458~~ 

Summer 9.07 5.28 62.13 60.56 -25.9166 
Autumn 17.36 13.77 63.19 61.59 -20.0825 
Winter 14.44 l _ ^ 61.59 59.67 -19.9130 

Average ^539 n.65 61.83 60.14 
accuracy  

Second Derivatives 丨 
DA 丽 ‘ 

OA{%J Kappa (xlOO) OA(%) Kappa (xlOO) ZpA,NN ！ 
^Sprmg ^ 5.97 4040 “ W9l ~~-14.9923~~ 

Summer 10.40 6.67 49.87 47.78 -18.6676 
Autumn 13.61 9.86 50.14 47.97 -16.2671 , 
Winter 25.87 22.17 50.48 48.00 -9.3461 1  ; j 

Avemge ^490 1 1 . 1 7 4 7 . 7 2 4 5 . 4 2 ； 

accuracy | 

I 
K - K ‘ 

"ZoA NN = I Dx • - where KoA and K _ are the Kappas calculated from the classification ‘ 
‘ ^ y { K ^ A ) + v { K , , ) 

results using linear discriminant analysis and neural networks respectively. 

I When the confusion matrices were compared with one another, no consistency 

‘ w a s found among the patterns of classification and misclassification. Table 4.2 

showed a summary of the classification results of each tree species for the four 

seasons using original spectra. The average accuracy of each tree species was 

calculated and compared. The average accuracy of Bauhinia variegata was 91.25% 

which was the highest among all tree species. Bauhinia variegata had large leaves 

and possessed the highest reflectance in green and near-infrared spectral regions in 
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the four seasons which made it more distinctive from other species. Araucaria 

heterophylla, Delonix regia, Liquidamhar formosana, Melaleuca quanqueenervia, 

Sapium sebiferum and Taxodium distichum also obtained good classification results 

with the average accuracy of 80% to 84%. On the contrary, Ficus microcarpa got the 
X 

lowest average accuracy among all with only 60.00% whilst Castanopsis fissa, 

Dimocarpus longan and Lophostemon conferta had average accuracy of 61% to 

65%. Unlike Bauhinia variegata, these trees did not have any particularly distinctive 

characteristics in terms of leaf size and spectral reflectance which made them more 

easily differentiated from each other. The confusion matrices also did not reveal a 

consistent confusion pattem (Appendix 2 and 3). 

Table 4.2 Classification results of each tree species using original spectra for the 
four seasons 

Spring Summer Autumn Winter Overall accuracy of 
DA NN DA NN DA NN DA NN each tree species (%) 

i3 66.67 33.33 83.33 100.00 76.67 93.33 43.33 56.67 6 ^ 
ah 100.00 86.67 83.33 96.67 90.00 83.33 80.00 40.00 82.50 
am 66.67 66.67 40.00 40.00 96.67 96.67 50.00 83.33 67.50 , 
bv 93.33 100.00 100.00 93.33 96.67 86.67 83.33 76.67 91.25 
cc 70.00 83.33 43.33 60.00 90.00 93.33 56.67 56.67 69.17 
ce 70.00 96.67 53.33 100.00 80.00 83.33 63.33 86.67 79.17 ‘ 
cf 70.00 50.00 76.67 56.67 73.33 50.00 56.67 56.67 61.25 ' 
cl 53.33 83.33 50.00 56.67 93.33 96.67 - - 72.22 
ct 93.33 73.33 70.00 70.00 83.33 93.33 90.00 33.33 75.83 
dl 53.33 30.00 66.67 53.33 86.67 70.00 66.67 90.00 64.58 
dr 90.00 70.00 93.33 70.00 80.00 100.00 - - 83.89 

. fm 60.00 23.33 43.33 23.33 96.67 96.67 56.67 80.00 60.00 
fs 60.00 90.00 63.33 90.00 - - - - 75.83 
fv 86.67 73.33 83.33 90.00 76.67 13.33 66.67 96.67 73.33 
ht 86.67 93.33 66.67 83.33 86.67 56.67 66.67 66.67 75.84 
lc 56.67 76.67 73.33 33.33 96.67 50.00 63.33 56.67 63.33 
lf 90.00 66.67 86.67 86.67 100.00 63.33 86.67 76.67 82.09 
ls 60.00 40.00 73.33 43.33 70.00 56.67 93.33 96.67 66.67 

mq 93.33 100.00 53.33 70.00 76.67 96.67 83.33 90.00 82.92 
mt 63.33 33.33 60.00 73.33 70.00 76.67 83.33 76.67 67.08 
pe 70.00 83.33 83.33 86.67 46.67 50.00 83.33 73.33 72.08 
pp 63.33 90.00 63.33 90.00 70.00 93.33 66.67 76.67 76.67 
sm 56.67 96.67 76.67 70.00 80.00 86.67 33.33 90.00 73.75 
ss 100.00 83.33 53.33 86.67 70.00 93.33 - - 81.11 
td 83.33 83.33 83.33 86.67 50.00 60.00 100.00 100.00 80.83 

Average overall 
accuracy ofeach 74.27 72.27 68.93 72.40 80.69 76.67 70.16 74.29 

algorithm (%) 
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4.3.1. Comparison of different classifiers 

Table 4.1 showed the classification results of the two classifiers and also the 

results of significant testing of Kappa between the two classifiers. For the 

classifications using original spectra, discriminant analysis obtained better results for 
M . 

spring and autumn with overall accuracy of 74.27% and 80.69% respectively while 

neural network algorithm was better for summer and winter with overall accuracy of 

72.40% and 74.29% respectively. However, the differences were not statistically 

significant as all absolute values of Z were less than the critical value of l .96 at 0.05 

significance level. In addition, the average overall accuracy of four seasons for 

discriminant analysis and neural network is 73.51% and 73.91% respectively which 

also suggested no significant differences for the two classifiers. 

For the classifications using first and second derivatives, the differences 

between neural networks and discriminant analysis were greatly significant. Neural 

networks generated average overall accuracy of 61.83 and 47.72% by using first and 
:| 

second derivatives respectively. However, the average overall accuracy generated by 丨 'i 
• 

discriminant analysis were extremely poor with 15.39% and 14.90% by using first 

and second derivatives respectively. Neural networks outperformed discriminant 

I analysis by using either first or second derivatives. It has been shown earlier that 

within the first derivatives data, many spectral bands had data value close to zero 

whilst the second derivatives data possessed a lot of noisy bands. The presence of 

these bands might have detrimental effect on the classification results in using linear 

discriminant analysis which relied on the ratio of between-group variance versus 

within-group variance as zero data values and noisy bands might decrease these ratio. 

This effect was less critical in neural networks which was more adaptive to the data 
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themselves. 

4.3.1.1. Efficiency of the classifiers 

For the efficiency of the classifiers, discriminant analysis worked better than 
^. 

neural networks in two aspects. Firstly, the training process required to produce a 

neural network was extremely time and computational intensive although the trained 

classifier worked very fast. It spent more than one day on a Sun SPARCstation 10 for 

the training process. On the contrary, discriminant analysis was less time and 

computation consuming. Only a few seconds were used for the training and testing 

process on the same system used by the neural networks. Secondly, neural networks 

needed to specify obscure parameters such as leaming rate, momentum rate, hidden 

layer size and training convergence criterion which made neural network less 

convenient and more difficult to use. 

4.3.1.2. Discussions 

After discussing the performance of the two classifiers in terms of their 
I 

classification accuracy and efficiency, several implications can be drawn. The new 

technique, neural networks did outperform the traditional linear discriminant analysis 

I in classification accuracy for the derivatives data. But the results were indifferent if 

the original spectra were used. The advantages of neural network to deal with 

distribution-free, nonlinear, multi-source and ancillary data make it a trend for 

classification technique in the future. However, neural network algorithms are still 

not mature enough for classification of hyperspectral data. The large number of input 

nodes and output nodes necessitates lengthy training time and a number of 

parameters such as leaming rate and momentum rate need to be specified. These two 
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factors can solely hinder users from choosing neural networks for classification. For 

efficiency, it is obvious that linear discriminant analysis excels. 

The backpropagation feed-forward neural network used in this study was among 
^. 

the slowest neural networks developed so far. Apart from backpropagation feed-

forward neural network, another neural network, Kohonen's learning vector 

quantization (LVQ) has been used and tested fNeural Network Research Center, 

1998). The time for training and testing process is only a few seconds which is much 

shorter than that used by backpropagation feed-forward neural network. However, 

the results were not satisfactory. Classification accuracy of around 20% was obtained 

for classifying an original spectra data set. More studies should be made to develop | 

convenient and fast neural networks for hyperspectral data analysis. i 
'I 

]i 
I 

4.3.2. Comparison of different data processing strategies 

Using the original spectra produced better results than using either the first or 
I 

the second derivatives. It is particularly obvious when discriminant analysis is used. | 
:l 
.t 

Table 4.3 showed the significant testing of Kappa comparing different data 

processing strategies. Overall accuracy generated from discriminant analysis ranged 

( from 70.16% to 80.69% for the four seasons using the original spectra. But it reduces 

to only 9.07% to 25.87% when using the first and second derivatives. The significant 

testing of Kappa also demonstrated very high degree of significance between the 

original spectra and the derivatives spectra. 
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Table 4.3. Significant testing of Kappas for comparing different data processing 
strategies (absolute value > 1.96 indicates significant difference at 0.05 significance 
level) 

Spring Data 
Original spectra First derivatives Second derivatives 
DA NN DA NN DA NN 一 

, Original spectra - - 14.7477 4.9165 33.6111 13.3402 
First derivatives -14.7477 -4.9165 - - 6.0276 8.0294 

Second derivatives -33.6111 -13.3402 -6.0276 -8.0294 - -

Summer Data  
Original spectra First derivatives Second derivatives 
DA NN DA NN DA NN 

~~Or ig ina l spectra - = 30.2852 4.2692 29.2339 9.2341 
First derivatives -30.2852 -4.2692 - - -0.8947 4.8338 

Second derivatives -29.2339 -9.2341 0.8947 -4.8338 - -

Autumn Data  
Original spectra First derivatives Second derivatives 
DA NN DA NN DA NN “ 

~~Or ig ina l spectra - : 31.1192 !：64^ 34.6128~~10.9074 
First derivatives -31.1192 -5.6466 - - 1.9814 5.0549 

Second derivatives -34.6128 -10.9074 -1.9814 -5.0549 - -

Winter Data 
Original spectra First derivatives Second derivatives 
DA NN DA NN DA NN — 

Original spectra : ^ 24.4815 4M05 17.6258 9.0270 
First derivatives -24.4815 -4.8805 - - -5.1881 4.2138 

Second derivatives -17.6258 -9.0270 5.1881 -4.2138 - -

1 

For neural networks, overall accuracy ranging from 72.27% to 76.67% were 

produced using original spectra. Using first and second derivatives generated lower 

^ overall accuracy of60.40% to 63.19% and 40.40% to 50.48% respectively. The tests 

of significance, again, invoked that using original spectra was significantly better 

than using derivatives data. The poor results obtained by derivatives data contradict 

the results done by previous researchers. For example, Gong et aL (1997) obtained 

higher overall accuracy in classifying six tree species with spectral derivatives than 

reflectance spectra using neural networks. Their spectral measurements were made in 

the field which background soil effect posed an important factor on the reflectance 
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spectral data. Derivatives procedure could partly remove the effects of low frequency 

background soil spectra in target spectra, therefore, leading to an increase in 

recognition accuracy. However, spectral measurements in this study were taken in a 

controlled environment where a black cloth was used as a background to minimize 
， 

the background effect Thus, derivatives procedure did not help to improve 

recognition accuracy in this study. On the contrary, it enhanced noise during the 

procedure and led to decreased recognition accuracy. 

The difference between first and second derivatives spectra was not obvious 

using discriminant analysis. Spring and autumn data produced higher overall 

accuracy using first derivatives but summer and winter data had opposite results. 丨 

However, neural networks yielded significantly better results when using first li 
' I 
't j 

derivatives than using second derivatives. Using first derivatives produced an 

average overall accuracy of 61.83% which was 14.11% higher than that of using 丨 
j< 

second derivatives. The very noisy bands in second derivatives with wavelengths � 

j 
shorter than 550 nm and wavelengths longer than 770 nm might reduce the j 

.f 

classification accuracy in second derivatives. 

1 4.3.3. Comparison of data among different seasons 

Vegetation changes during the course of a year, especially for deciduous trees 

which lose their leaves during winter. The changes of leaf colors from green to red 

and yellow during autumn and winter can markedly affect their spectral reflectances. 

Besides, many trees have distinct seasonal peaks of growth, flowering and fruiting 

activities that can also affect spectral reflectance. Among the 25 tree species that 

were investigated, some of the tree species did change color during winter and their 
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spectral reflectances were significantly different from those measured in other 

seasons. 

Based on the discriminant analysis results using the original spectra of 21 tree 
,̂ 

species for each season, a comparison among different seasons was performed. The 

classification results of the four seasons were shown in Table 4.4 while the results of 

significant testing of Kappas comparing classifications of different seasons were 

listed in Table 4.5. The confusion matrices were shown in Appendix 4. Autumn data 

was able to generate the most accurate results with overall accuracy of 72.86%. j 
I •I 丨丨丨 

Spring and winter data produced slightly lower accuracy of 71.90% and 70.16% j 
t 

respectively，but the different is statistically insignificant. Summer data generated the 1 
I 

lowest classification accuracy of 6 5.71 %. \ 
i .! '̂i 

. … . - I 

Table 4.4. Classification results of linear discriminant analysis using 21 tree species :� 

with the original spectra for seasonal comparison � 
I 

OA(%) K(xlOO) I 
Sprmg 7L90 70.50 

Summer 65.71 64.00 ) 
Autumn 72.86 71.50 
Winter 70.16 68.67 

I 

Table 4.5. Significant testing of Kappas for comparing classification results using 
linear discriminant analysis for seasonal comparison (absolute value >1.96 indicates 
significant difference at 0.05 significance level) 

Spring Summer Autumn Winter 
Sj^Sg - 2 2 ^ -0.3602 06 lT2 

Summer -2.2649 - -2.6257 -1.6122 
Autumn 0.3602 2.6257 - 1.0113 
Winter -0.6512 1.6122 -1.0113 -
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4.3.4. Comparison of laboratory and in situ data 

Five tree species were selected for in situ spectral measurements, namely 

Acacia confusa, Castanopsis fissa, Dimocarpus longan, Ficus microcarpa and 

Taxodium distichum. Figure 4.14 showed individual plots of laboratory and in situ 
� 

average spectral reflectance of the five tree species. The in situ data tended to have 

higher reflectance. This might be due to the different illumination conditions. 

Besides, the laboratory data were averaged by the 36 samples for each species. Two 

third of the 36 samples were measured with low and medium level of leaf density 

which might lower the average reflectance. No particular conclusion could be drawn 

visually from the plots. All five tree species had higher near-infrared bands for in situ , 

data than for laboratory data. The green peaks of Castanopsis fissa were similar for 1 
I 
？ 

both in situ and laboratory data. Acacia confusa and Taxodium distichum had higher ! 
i [ 

green peaks for in situ data than for laboratory data while Dimocarpus longan had ； 
f, 

lower green peaks for in situ data. The green peak of Ficus microcarpa shifted 
卜 iV 

slightly to a longer wavelength in the in situ data than in the laboratory data. ‘ 
I 
s 
寺 

An analysis of means was performed to compare the laboratory and in situ 

spectral reflectance data statistically for the five tree species. Figure 4.15 showed the 

史 t value calculated for each wavelength. If the absolute value of t exceeds 2, the 

difference is significant at the 0.05 significance level. Most t values obtained were 

greater than 2. The results showed that the laboratory and in situ data were 

significantly different. This might be due to the different illumination conditions 

between the laboratory and the field as well as the different background conditions in 

the locations of in situ measurement. 
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Figure 4.14e In situ and laboratory reflectance spectra of Taxodium distichum 
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Figure 4.14c In situ and laboratory reflectance spectra of Dimocarpus longan 
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Figure 4.14e In situ and laboratory reflectance spectra of Taxodium distichum 
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4.4. Summary 

The results of tree species recognition were satisfactory with over 70% overall 

accuracy using original spectral reflectance data. In general, neural networks 

outperformed linear discriminant analysis. Using original spectral reflectance 
� . 

generated significantly better classification results than using either first derivatives 

spectra or second derivatives spectra. Meanwhile, classification results using first 

derivatives were better than those using second derivatives. For seasonal comparison, 

autumn data yielded the best classification result while summer data produced the 
; j 

• ^ 

lowest accuracy. It is found that seasonal effect did pose a great concem for tree | 
0 ;i _l̂  

species recognition. Finally, the laboratory and in situ data were found to be J 
I 
I 

statistically different that might be due to the different illumination conditions and | 
p 
I 

background effect. ^ 
f a 'i' 
；/ 

A 

i 
n 
i— 
^ 

I 
I 
/ 

t 
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CHAPTER FIVE 

RESULTS AND DISCUSSIONS OF DATA COMPRESSION 

AND BAND SELECTION 

^. 

5.1. Introduction 

This chapter presents the results and discussions of data compression and band 

selection. Principal components analysis is performed for data compression using the 

in situ spectral reflectance of the ten surface covers and the laboratory data of the tree 
•j 

species. Band selection is done by stepwise discriminant analysis and hierarchical | 
！ 

I 
clustering procedure using the laboratory data of the tree species. 丨 

L 3 

I f 
5.2. Data compression ^ 

I 
Data compression was done by principal components analysis (PCA). Two ) 

'i 
separate PCAs were done using in situ data and laboratory data respectively. j 

h î  y 

, M f 
5.2.1. PCA using in situ spectral data | 

/ 

For in situ data, PCA was performed using the smoothed spectral reflectance of 

the ten surface covers. Figure 5.1 showed the first five PC loadings. Table 5.1 

I showed the eigenvalues and the percentage variance explaining the first four PCs. 

The reflectance data were rotated such that the majority of the spectral information 

was contained in the first four PCs which totally expressed 99.78% of the total 

variability in the spectral data. 
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Table 5.1. Eigenvalues and percentage variance of the first four PCs for in situ data 

Eigenvalue % o f v a r i a n c e " " C u m u l a t i v e % o f  
variance  

?Cl 411.166 59.676 5 9 ^ 
PC2 242.337 35.172 94.848 
PC3 20.120 2.920 97.768 

� PC4 12.379 lJ97 99.565 

Figure 5.1. The first five PC loadings of in situ data 
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5.2.1.1. Characteristics ofPC loadings 

The first principal component (PC1) represented 59.68 % of the total variance in 

the spectral data and had heavy positive loadings from 400 nm to around 700 nm 

which was visible spectral range while a very small trough was found near the green ^ 
� 

peak centered at 550 nm. It dropped sharply from positive to negative value around 

the red edge between 700 nm and 750 nm and leveled off. Significant contrast 

between the visible and the near-infrared bands was formed in PC1 which was 

analogous to the greenness measures obtained from PCA or tasseled cap 
.s 

母 

transformation using broadband satellite multispectral data (Crist and Cicone, 1984). I 
i 
i 'i •� 

PC2 loaded positively for all bands and expressed 35.17% of the total variance | 
f 

of the data. It could be considered as similar to the brightness measures derived from ^ 
i 
I 

broadband data. Its pattem was very similar to the spectral reflectance of trees in J 
|i 

which a green peak was found at round 550 nm and a sharp rise occurred at the red 'j 
fi # 

edge with a very high near-infrared plateau. , 
f 

• I 
f< 

Most broadband multispectral data normally yielded two-dimensional 

information in terms of brightness and greenness from visible and near-infrared 

I bands. PC3s and PC4s produced from hyperspectral data, however, possessed useful 

information. PC3 derived from in situ spectral data explained 2.92% of the total 

variance. PC3 had positive loadings from 400 nm to 520 nm in the blue bands and 

dropped to a negative trough centered at the green band of 550 nm. It rose to positive 

value from 640 nm to 690 nm with a little peak at 675 nm in the red bands and 

dropped again to a deeper trough centered at around 720 nm along the red edge. It 

rose again to positive from 750 nm onwards. It could be interpreted as a contrast 
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between the strong absorption blue and red bands versus the strong reflectance green 

bands and the steep rise of the red edge. 

PC4 explained 1.80% of the total variance. PC4 had negative loadings from 400 
,-

nm to around 600 nm in which a trough was found at 550 nm in the green bands 

similar to that found in PC3. It rose to positive values from 600 nm to 720 nm in 

which a higher peak was found at also 675 nm in the red bands as compared to that 

in PC3. It dropped to negative again from 720 nm to 820 nm and rose slightly to 
•2 

positive afterwards. It could be interpreted as a contrast between the green bands and J 
I 

the red bands. !杰 
k \ 
;s 丨丨? 
I 

5.2.1.2. Scatter plots of PC scores 么 
I 

Figure 5.2 showed the scatter plots of PC1 versus PC2, PC1 versus PC3 and J 
i 

PC1 versus PC4. In the three plots, pond water, concrete and grass slope in which | 
!'> f 

quite a lot of bare soil was exposed tended to scatter into separate clusters from the '' 
II 
( 

vegetated covers of grass, fem and trees. The vegetated covers appeared to group | 
/ 

together. Meanwhile, different vegetation was clearly separated from each other. For 

example, fem came out as a distinct cluster as shown in Figure 5.2b. It showed that 

I different surface cover types including different tree species had distinct inherent 

spectral characteristics that can be discriminated by PCA. 
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Figure 5.2a Scatter plot ofPC score 1 versus PC score 2 for in situ data 
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Figure 5.2c Scatter plot ofPC score 1 versus PC score 4 for in situ data 
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5.2.2. PCA using laboratory spectral data 

For laboratory data, separate PCA was performed for each season using the 

smoothed reflectance spectra of the tree species. Figure 5.3 showed the first five PC 

loadings for the four seasons. Table 5.2 showed the eigenvalues and the percentage 
� 

' variance of the first four PCs for the four seasons. The first four PCs totally 

expressed more than 97.5% of the total variability in the spectral data of the four 

seasons. 

i 2 l 

Table 5.2. Eigenvalues and percentage variance of the first four PCs for laboratory I 
data I 

Spring data | 
~ “ ~~"“ ！ Cumulative % o f ~ i Eigenvalue % of variance . f̂  ® variance ^ 

FUI 109.421 79.290 79.290 | 
PC2 18.507 13.411 92.701 | 
PC3 5.976 4.331 97.032 ® 
PC4 2 ^ \ _ ^ 98.699 | 

Summer data  
M M ^ B _ M H M M H H M M M M M H M H M M H M M H M a H H M M M M M H M ^ M ^ ^ ^ ^ ^ ^ ^ ^ ^ H ^ M H M M ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H ^ ^ ^ H ^ ^ M M M M ^ ^ M ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H H B H M M M M M M M M H M M M M M M M H M M M M ^ M ^ ^ ^ H ^ ^ L 

^ . , „. ^ • Cumulative % of f Eigenvalue % of variance • ^ variance | 
PCl 120.349 W ^ 8 7 ^ I 
PC2 8.923 6.466 93.675 f 
PC3 5.669 4.108 97.783 ^ 
PC4 l _ ^ 1.001 98.785 

Autumn data 
_. , �^ . Cumulative % of Eigenvalue % of variance . I ® variance 

P ^ 115.384 8 3 ^ 8 l ^ 
PC2 11.733 8.502 92.114 
PC3 7.227 5.237 97.351 
?C4 1.644 l_m 98.542 

Winter data 
T̂ . , n/ _c . Cumulative % of Eigenvalue % of variance . variance  

?C~\ 104.107 75M0 7 l 4 4 0 
PC2 19.488 14.122 89.562 
PC3 7.762 5.625 95.186 
PC4 3.309 2.398 97.584 

99 

J 



Figure 5.3a The first five PC loadings of spring data 
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Figure 5.3c The first five PC loadings of autumn data 
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5.2.2.1. Characteristics ofPC loadings 

Results of the four seasons were quite consistent. PCls were loaded positively 

and heavily from the 450 to 900 nm spectral range which did not reveal any contrast 

among specific spectral bands. They represented more than 75% of the variance in 
气 

the spectral data and were approximately the average brightness from all bands. This 

was quite similar to brightness vector derived from broadband multispectral data. 

PC2s were consistent for spring, summer and winter in which positive loadings 
^ 

were found in the visible bands from 400 nm to around 700 nm while the loadings 1 
iS 
I 

dropped to negative values along the red edge from 690 nm to 750 nm and leveled ； 

off in the near-infrared bands from 750 nm to 900 nm. For the positive loadings | 
•4 

along the visible bands, troughs were found at around 550 nm in which the green t 1 f! 
peak was located. PC2s formed significant contrast between the visible and near- :j 

infrared bands. A similar but opposite pattem was found in summer in particular in j 
•( f< 

longer wavelengths beyond the red edge. However, the loadings in the visible band ‘ 

. .. I 
region were not totally negative values. The peak at 550 nm raised to positive values | 

/ 

from 510 nm to 620 nm. PC2s can be considered as greenness measures similar to 

those obtained using broadband spectral data. 
I 

Similar to the situation using in situ data, PC3s and PC4s generated by 

laboratory data also possessed useful information. PC3s were consistent for spring, 

summer and autumn. Positive loadings were found in the blue bands from 400 nm to 

510 nm. Loadings dropped to negative values in the green bands from 510 nm to 660 

nm and rose slightly to positive again just before the red edge in the 660 to 680 nm 

range and peaked at around 670 nm. It then dropped to a negative trough at 700 nm 
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and leveled off. PC3s had a similar pattem as the PC3 derived from in situ data. PC3 

of winter data were different from PC3s of the other seasons. It had positive loadings 

from 400 nm to 570 nm which were the blue and green bands and negative loadings 

from 570 nm to 900 nm. PC3s for spring, summer and autumn could be interpreted 
� . 

as a contrast between the blue and red bands versus the green and yellow bands plus 

the red edge. 

PC4s for spring, summer and autumn and PC5 for winter were consistent and 
; i 

the pattem of the loadings was in a reversed trend from 560 nm to 900 nm as j 
i 

compared to PC3s for spring, summer and autumn. From 400 nm to 560 nm, positive J 
<« 

;j 
loadings were found before 440 nm while loadings dropped to negative from 440 nm ) 

•« 

to 560 nm. Thus, a contrast between the shorter blue bands and the longer blue bands ^ 
I 

existed. In both PC3 and PC4, the red edge formed a very distinct phenomenon "| 

which was previously overlooked. It might contain useful information that deserve 

further investigation. ‘ 
多 
f / 

5.2.2.2. Scatter plots ofPC scores 

Scatter plots of PC1 versus PC2, PC2 versus PC3 and PC2 versus PC4 were 

^ shown in Figure 5.4. These plots showed that different tree species were slightly 

scattered into different groups. However, tree species in the plot of PC1 versus PC2 

were grouped more disperse than the other two plots. In the plot ofPCl versus PC2, 

Bauhinia variegata, Delonix regia and Schima superba were separated from other 

tree species while more tree species were dispersed and mixed with other tree 

species, for example, Aleurites moluccana, Liquidambar formosana and 

Lagerstroemia speciosa. 
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Figure 5.4a Scatter plot ofPC score 1 versus PC score 2 for laboratory data 
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Figure 5.4b Scatter plot ofPC score 2 versus PC score 3 for laboratory data 
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Figure 5.4c Scatter plot ofPC score 2 versus PC score 4 for laboratory data 
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In the plot of PC2 versus PC3 and PC2 versus PC4, more tree species appeared 

to group together among themselves, for example, Ficus microcarpa, Melaleuca 

quanqueenervia and Thuja orientalis in the former and Aleurites moluccana, 

Bauhinia variegata and Ficus microcarpa in the latter. It revealed that the minor 
X 

PCs, PC3 and PC4, did contain useful information in differentiating different tree 

species. 

5.2.2.3. Restilts of tree species recognition using PC scores 

In order to further investigate the differentiating power of these PCs, linear / 
I 

discriminant analysis was performed to identify tree species using the first eight PCs ^ 
i I, 

which explained more than 99.7% of the variance of the spectral data. The confusion | 
1 

f g 
it' 

matrices of the classification results were shown in Appendix 5. Overall accuracy of ^ 

. I 
around 74% were yielded for spring, autumn and winter and 68.67% was found for j 

i i , 

summer. The results were similar to those obtained by linear discriminant analysis j 
1« 

and neural network using all of the 138 bands. This showed that the PCs possessed '; 

I 
similar differentiating power to the original spectral bands. 

/ 

5.2.3. Implications 

I For hyperspectral data, similar results were found for PC1 and PC2 compared 

with two-dimensional information obtained by broadband multispectral data in terms 

of brightness and greenness from visible and near-infrared bands. However, PC3 and 

PC4 generated by hyperspectral data possess extra information that is not provided 

by broadband multispectral data and give insight to the understanding of the inherent 

structure ofhyperspectral data. 
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In this study, the PCA using in situ spectral data can be considered as a 

preliminary study of extracting information for hyperspectral images with various 

surface covers whilst the PCA using laboratory data of tree species represents PCA to 

extract information for vegetation studies. 
^ 

5.3. Band selection 

Two separate band selection schemes were used in this study. In order to 

determine whether band selection helped to improve classification results, a 

preliminary band selection procedure was done by stepwise discriminant analysis. ; 

Then a hierarchical clustering procedure was performed for the original spectral data. J 

Spectral bands were selected from the centers of the clusters formed during the | 
^ 

clustering procedure to determine which spectral regions were useful for tree species \ 
I 

recognition. ;| 
I] 

i 
, v 

5.3.1. Preliminary band selection using stepwise discriminant analysis j 

Preliminary band selection was done using stepwise discriminant analysis. The L 
f / 

bands that were selected and entered into the analysis were adjusted by the F 

probability of entry and removal or F value of entry and removal. In this study, two 

I independent stepwise discriminant analyses were done. The first one used a criterion 

that bands entered if the significance level of F value was smaller than 0.05 and 

removed if the significance level o f F was greater than 0.1. A different criterion was 

used in the second analysis with F value greater than 3.84 for band entry and F value 

less than 2.71 for band removal. The latter criterion was the default setting used in 

the SPSS package while the former criterion allowed more bands to be selected. 
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5.3.1.1. Selection of spectral bands 

Figure 5.5 showed the bands selected by these two criteria. Nine to 37 bands 

and seven to thirteen bands were selected using the first and second criterion 

respectively. Using the first criterion, more bands were selected but no particular 
气 

pattem could be found. In general, fewer bands were selected in the infrared region 

from 770 to 900 nm that a consistent information was formed in this spectral range. 

However, with the second criterion, fewer bands were selected and the bands tended 

to cluster into two groups. The first group ranged approximately from 500 to 570 nm 

that was centered in spectral region of the green peak. The second one was from 650 j 
j 

to 750 nm around the red edge. It revealed that important spectral bands were mainly ！ 
•1 
X 

found within the spectral range of the green peak and along the red edge. It was ] 
•« 

interesting that one isolated band was found in the infrared region for the original 1 
I 

spectra of summer, autumn and winter data but no bands were selected from this j 

spectral region for the derivatives data. It suggested that the infrared plateau of the | 

spectral reflectance gave some information for identifying tree species, but no :丨 
. I 

significant information was found for the derivatives data which were approximately i 
f 
/ 

zero or quite noisy in this spectral region. 

I 5.3.1.2. Classification results of the selected bands 

In order to determine how band selection affected the classification results, 

linear discriminant analysis was performed using all the spectral bands (Case 1), the 

bands selected by the first criterion (Case2) and the bands selected by the second 

criterion (Case 3). Table 5.3 listed the classification results and Table 5.4 showed the 

significant testing of Kappas. The confusion matrices were shown in Appendix 6 and 

Appendix 7 for Case 2 and Case 3 respectively. 
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Figure 5.5a The bands selected by stepwise discriminant analysis using the first 
criterion (Case 2) 
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Figure 5.5b The bands selected by stepwise discriminant analysis using the second ^ 
criterion (Case 3) f 
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Table 5.3. Classification results using stepwise linear discriminant analysis for band 
selection 

Original spectra  
C<3>yg 1 Case 2 Case 2 — 

No. of ^ . 糾 K No. of ^ . ,0/ K No. of ^. „., K~~ 
bands 似 _ (xlOO) hands 似广%」(xlOO) hands 似〈％」(.100) 

. Spring f38 7427~~7H9 l0 7 9 ? D ~ ~ 7 ^ 7 T7M~~WFT 
Summer 138 68.93 67.64 11 81.20 80.42 7 81.73 80.97 
Autumn 138 80.69 79.86 18 90.28 89.86 8 87.78 87.25 
Winter 138 70.16 68.67 9 91.27 90.83 9 91.27 90.83 

Average 73.51 72.34 85.62 85.00 84.58 83.93 
accuracy  

First Derivatives  
Case 1 Case 2 Case 3 ^ 

No. of ^ , � � K No. of ^ . .„/, K No. of ^.爪八 K � 
bands 似〈％) (xlOO) hands 導)(xlOO) h a n d s � • (xlOO) ； 

Spring m 20j^~~1736 Yl 8L47~~80.69 l0 79.07~~78.19 | 
Summer 138 9.07 5.28 28 82.40 81.67 9 79.73 78.89 1 
Autumn 138 17.36 13.77 31 86.67 86.09 11 85.55 84.93 ^ 
Winter 138 14.44 10.17 23 88.10 87.50 13 86.03 85.33 | 

I - I 

Avemge 15.39 u.65 84.66 83.99 82.60 81.84 ！ 
accuracy ‘ 

I 
f 

Second Derivatives - j 
Case 1 Case 2 Case 3 ‘ 

f - / _ ) , f _ f . / OA(oA) , f _ f . / 0 4 W , f _ 丨 
hands ^ ^ (xlOO) bands ^ z (xlOO) bands ^ ^ (xlOO) 

Spring n 8 ^ 5 ^ Ys 7^3~~68.89 ~~7 64l3~~62.64 ‘ 
Summer 138 10.40 6.67 20 72.00 70.83 8 73.87 72.78 | 
Autumn 138 13.61 9.86 37 75.56 74.49 9 71.11 69.86 丨 
Winter 138 25.87 22.17 26 84.44 83.67 9 75.08 73.83 f 

Average 14.90 11.17 75.53 74.47 71.05 69.78 
accuracy 

i 
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Table 5.4. Significant testing of Kappas for comparing classification results of 
stepwise linear discriminant analysis (absolute value >1.96 indicates significant 
difference at 0.05 significance level) 

Original Spectra 
Z between Case 1 Z between Case 1 Z between Case 2 

and Case 2 and Case 3 and Case 3 
� Spring -2.5221 -1.5126 1.0090 

Summer -5.5503 -5.8191 -0.2657 
Autumn -5.2129 -3.7096 1.5188 
Winter -9.8640 -9.8640 0  

First Derivatives 
Z between Case 1 Z between Case 1 Z between Case 2 

and Case 2 and Case 3 and Case 3 
Spring -29.8225 -28.0008 Y J m ~~ ; 

Summer -42.3729 -39.4597 1.3198 j 
Autumn -36.5732 -35.4470 0.6094 j 
Winter -39.2600 -36.8978 1.0930 ； 

H H B M ^ M a M ^ M ^ H ^ M M M M M M M M M M M B ^ H ^ M H H H H ^ H ^ H ^ H ^ ^ ^ ^ ^ H ^ ^ ^ ^ ^ M M M M M M M M B M M ^ H ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H M M M ^ M H M M M M ^ M M I ^ M M M N M M ^ M a ^ M M M M H M M H ^ M ^ H ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ M M M M ^ ^ ^ ^ W 

1 
Second Derivatives ？ 

Z between Case 1 Z between Case 1 Z between Case 2 ] 
•i 

and Case 2 and Case 3 and Case 3 ,i 
Spring -30.4475 -26.5366 2.4802 ~ ~ ( 

Summer -31.4225 -32.8509 -0.8145 丨 
Autumn -30.3694 -27.2727 1.9109 丨 
Winter -25.9885 -20.1571 4.1665 

¢5 

Note: .¾ 
Case 1 represents classification using all 138 bands , 
Case 2 represents classification using bands selected by the first criterion with 9-37 selected bands | 
Case 3 represents classification using bands selected by the second criterion with 7-13 selected bands ^ 

t 
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Better recognition accuracy was obtained using the selected bands than using all 

bands available. It was particularly obvious for the derivatives data. For original 

spectra, overall accuracy of 68.93% to 74.27% were obtained in Case 1. Better 

results with overall accuracy of 79.73% to 91.27% and 77.60% to 91.27% were 
^. 

produced in Case 2 and Case 3 respectively. Table 4.8 showed that Case 2 and Case 3 

which used selected bands produced significantly better recognition accuracy than 

using all bands. The average overall accuracy for Case 2 (85.62%) was slightly 

higher than that for Case 3 (84.58%), but the difference was statistically 
insignificant. ； 

I ? 

For the first derivatives, the classification accuracy of using selected bands were | 

significantly much better than using all bands. Only accuracy of 9.07% to 20.67% i 
ii 
ii' 

were obtained in Case 1, but much higher accuracy of 81.47% to 88.10% and | 

79.09% to 86.03% were produced in Case 2 and Case 3 respectively. Results of Case ,| 

2 with an overall accuracy of 84.66% were better than that of Case 3 which had an ‘ 

I 
overall accuracy of 82.60%. Again, their difference was statistically insignificant. 1 f / 

Similar to the first derivatives case, second derivatives produced significantly 

I much better classification results when using selected bands than using all bands. 

Case 1 produced overall accuracy of 9.73% to 25.87% only, but Case 2 and Case 3 

generated much higher overall accuracy of 70.13% to 84.44% and 64.13% to 75.08% 

respectively. Again, results of Case 2 with an overall accuracy of 75.53% were better 

than that of Case 3 which had an overall accuracy of 71.05%. The difference was 

quite significant for spring and winter. 
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5.3.1.3. Seasonal comparison using stepwise linear discriminant analysis 

As the classification results of the derivatives data using linear discriminant 

analysis with 138 bands were poor and the previous seasonal comparison showed no 

significant difference among the four seasons, another comparison among different 
� -

seasons was performed. The seasonal comparison used stepwise linear discriminant 

analysis in which the spectral bands were selected by the second criterion with 21 

tree species for each season. The classification results of the four seasons were 

shown in Table 5.5 while the results of significant testing of Kappas comparing 
i 

classifications of different seasons were listed in Table 5.6. The confusion matrices ; 
/ 

were shown in Appendix 8. ： 
.,t 

n 

Again, using the original spectra produced better results than those using the ^ 
I 

first and second derivatives. Winter data was able to generate the most accurate ！ 

results with overall accuracy of 91.27% using the original spectra. The fact that some .| 

of the tree species changed in leaf color during winter might help to improve the i .� 
classification results. Autumn data yielded a slightly lower accuracy of 87.62% than ^ 

\ 
/ 

the winter ones but statistically the differences were only marginal. The results of 

summer and spring, however, were significantly lower than those in autumn and 

I winter. In general, autumn and winter data outperformed those in spring and summer. 

The results were consistent with previous studies in which seasonal variability 

was shown to affect tree species classification accuracy significantly (Eder, 1989 and 

Schriever and Congalton, 1995). Eder (1989) showed that autumnal senescence 

helped to increase accuracy in hardwood forest type delineation when applied to 

aerial photography. However, Schriever and Congalton (1995) showed that spring 
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data produced better results than autumn data for the identification of hardwood 

species. The fact that bud break of some species was sooner than others in spring 

helped to improve classification results in spring. Although the previous two studies 

contradict with one another, the most important implication is that seasonal 
X 

variability can significantly affect the results of tree species recognition. Whether the 

data should be collected in a particular season or month for best classification results 

depends on different leaf phenology of different forest types in particular areas. 

Table 5.5. Classification results of stepwise linear discriminant analysis using 21 � 

tree species for seasonal comparison | 

Original Spectra First Derivatives Second Derivatives } 
OA(%) K(xlOO) OA(%) K(xlOO) OA(%) K(xlOO) 1 

Sprmg 8 3 ^ SlTZ 8 ^ Sl：^ 6429 6 ^ ~ . 
Summer 81.43 80.50 83.17 82.33 77.78 76.67 ！ 
Autumn 87.62 87.00 84.60 83.83 71.43 70.00 J 
Winter 91.27 90.83 86.03 85.33 75.08 73.83 ] 

‘ V 

j 
Table 5.6. Significant testing of Kappas for comparing classification results of 
stepwise linear discriminant analysis for seasonal comparison (absolute value >1.96 乂 
indicates significant difference at 0.05 significance level) S 

Original Spectra f 
Spring Summer Autumn Winter 

Spring - 0 ^ -1.8594 -3.9643 
Summer -1.1938 - -3.0506 -5.1474 
Autumn 1.8594 3.0506 - -2.1134 
Winter 3.9643 5.1474 2.1134 -

t   
First Derivatives 

Spring Summer Autumn Winter 
Spring : 0.3037 -0.3864 -1.1036 

Summer -0.3037 - -0.6897 -1.4064 
Autumn 0.3864 0.6897 - -0.7167 
Winter -1.1036 1.4064 0.7167 : 

Second Derivatives 
Spring Summer Autumn Winter 

Spring - -5.3469 -2.7278 -4.2033 
Summer 5.3469 - 2.5990 1.1298 
Autumn 2.7278 -2.5990 - -1.4668 
Winter 4.2033 -1.1298 -1.4668 -
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5.3.1.4. Implications 

Some implications could be drawn from this preliminary band selection analysis 

using stepwise discriminant analysis. Firstly, band selection did help to improve 

classification accuracy. It suggested further studies for comparing different band 
� 

selection methods. Secondly, redundancy in spectral bands occurred remarkably in 

hyperspectral data. In Case 3, using only seven to thirteen bands could produce better 

results than using all 138 bands. Only little improvements in accuracy were found 

when more spectral bands (9 to 37 bands) were used in Case 2. Thirdly, the selected 
j 

bands mainly lied in the spectral regions of the green peak and the red edge. This ； 

indicated that spectral bands in these regions had stronger discriminating power than J 
.t i 

other regions such as the blue and red regions. 彳 

1̂ 
tl 

•j 

I 

:j 

5.3.2. Band selection using hierarchical clustering technique ) 
\ 

5.3.2.1. Hierarchical clustering procedure 

A hierarchical clustering procedure was done using the original spectral data of 
ii 
4 
\ 1 

autumn. Figure 5.6 showed the clusters generated throughout the first twenty-two > 
I • 

iterations during the clustering procedure. In the first iteration, the 400 - 900 nm 

spectral region was divided into two clusters such that one belonged to the visible 

I bands (400 — 720 nm) and the other lied on the infrared region (720 - 900 nm). This 

indicates that these two spectral regions had different inherent spectral properties. 

This was consistent with our well-accepted understanding of the spectral bands. 
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Figure 5.6 Result of the first 22 hierarchical clustering iterations 
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From the second to the sixth iterations, small clusters were generated in the 

spectral range from 705 nm to 740 nm along the red edge. Spectral bands in the 

region of the red edge tended to be differentiated from the visible and near-infrared 

bands. It shows that the red edge may contain different information other than that 
.̂ 

obtained from the visible and infrared regions. 

From the seventh to the thirteenth iterations, one more cluster was generated in 

the visible region which was the green bands from 525 nm to 580 nm whilst more 
j 
.1, 

clusters came out in the region of the red edge from 697 nm to 755 nm. The results ) ̂
 

I' 
,;• 

were as expected since spectral information did contain in the green peak. Except the J 
I. 
'f 

clusters found in the red edge, the three clusters in the visible region and the single j 
-r) '1 

cluster in the infrared bands can be considered as the blue, green, red and near-
•;• 

infrared bands present in traditional broadband multispectral sensors. Certainly, these 

four broad bands contain useful information. However, they are not informative 

enough to recognize tree species. The spectral bands in the red edge which have been 
•'1 
if' 
？ 

neglected in traditional multispectral sensors seem to contain extra information for ! 
i z 

tree species recognition. 

I From the fourteenth to the nineteenth iterations, two more clusters were 

generated in the visible region so that a total of five clusters appeared in the visible 

region. The first cluster lied from 400 nm to 504 nm which was the blue bands. It is 

noted that a small cluster from 400 nm to 407 nm was generated from the 

seventeenth iteration onwards. This cluster may be formed due to relatively noisy 

bands existed in this region so that it was ignored and combined into the first cluster. 

The second one was in the spectral range of the edge appeared before the green peak 
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from 504 nm to 526 nm and the third one was the green peak which lied from 526 

nm to 582 nm. The fourth one was another edge after the green peak from 582 nm to 

654 nm while the last cluster was the red bands from 654 nm to 686 nm. Again, more 

clusters were generated in the red edge from 686 nm to 766 nm. The infrared bands 
X 

remained a single cluster. From the five clusters generated in the visible region, the 

two edges before and after the green peak may contain information other than that 

obtained from the traditional blue, green and red broad bands. More experiments 

should be implemented to explore how the spectral bands in the edges including the 

two edges before and after the green peak as well as the red edge help to recognize 

tree species. 

From the twentieth to the twenty-second iterations, more clusters were formed 

in the visible region as most clusters in the red edge cannot be divided any further. 

The newly generated clusters appeared mainly in the spectral region ofthe two edges 

before and after the green peak except the two clusters which divided the blue bands 

into two groups from 400 nm to 452 nm and from 452 nm to 504 nm respectively. . 
• 

This suggests that more information may exist in the two edges before and after the 

green peak than the traditional blue, green and red bands. 

t 

5.3.2.2. Selection of spectral band sets 

Seven sets of spectral band were selected to test the discriminating power of 

different spectral regions. Table 5.7 showed the seven selected spectral band sets 

systematically. The bands were selected at the center of the clusters formed in 

different stages of the previous hierarchical clustering procedure. 
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Table 5.7. Spectral band sets selected from hierarchical clustering to test the 
discriminating power of different spectral regions 

Spectral band sets Description Selected bands 
4 bands Represents the four 450.28 nm (blue) 

traditional blue, green, red 550.00 nm (green) 
(RGB) and near-infrared 670.37 nm (red) 

� O^HR) broad bands. 835.39 nm (infrared)  
3 edges Includes the two edges 516.89 nm (edge before green peak) 

before and after the green 619.51 nm (edge after green peak) 
peak and one red edge. 728.14 nm (red edge) 

7 bands Includes the RGB and NIR 450.28 nm (blue) 
bands and 3 edges. 516.89 nm (edge before green peak) 

550.00 nm (green peak) 
619.51 nm (edge after green peak) 
670.37 nm (red) 
728.14nm (red edge) � 

835.39 nm (infrared) ； 
5 red edges Includes five red edges to 695.69 nm (red edge) ( 

determine the discriminating 710.13 nm (red edge) | 
power of the red edge only. 728.14 nm (red edge) 1 

742.52 nm (red edge) '' 
760.46 nm (red edge) j 

7 edges Includes the two edges 516.89 nm (edge before green peak) ， 
before and after the green 619.51 nm (edge after green peak) i 
peak and five red edges to 695.69 nm (red edge) i, 
determine the discriminating 710.13 nm (red edge) 
power of the edges. 728.14 nm (red edge) 

742.52 nm (red edge) 
760.46 nm (red edge) 

11 bands Includes the RGB and NIR 450.28 nm (blue) 
bands and the seven edges. 516.89 nm (edge before green peak) 

550.00 nm (green peak) \ 
619.51 nm (edge after green peak) .., 
670.37 nm (red) ；̂] 
695.69 nm (red edge) , 
710.13 nm (red edge) 
728.14 nm (red edge) 
742.52 nm (red edge) 
760.46 nm (red edge) 

I 835.39 nm (infrared) 
13 bands Includes bands from "11 427.29 nm (blue) 

bands" set with the blue 476.24 nm (blue) 
region and the edge after 516.89 nm (edge before green peak) 
green peak region divided 550.00 nm (green) 
into two bands. 597.62 nm (edge after green peak) 

630.43 nm (edge after green peak) 
670.37 nm (red) 
695.69 nm (red edge) 
710.13 nm (red edge) 
728.14 nm (red edge) 
742.52 nm (red edge) 
760.46 nm (red edge) 
835.39 nm (infrared)  

120 

A 



The first band set (4 bands) included four spectral bands which represented the 

traditional multispectral broad bands including blue, green, red (RGB) and near-

infrared O^IR) bands. As the traditional broad bands did not consider the edges 

including the edges before and after the green peak and the red edge, the second band 
H. 

set (3 edges) tried to determine the potential of using these edges for tree species 

recognition. Thus, the second band sets included three bands taking from the spectral 

regions of the edges before and after the green peak and the red edge. In the previous 

two band setS, the bands were selected from the center of clusters formed throughout 
.1 
.� 

the fourteenth to the nineteenth iteration of the clustering procedure. The third band ) 
.( i i? 

set (7 bands) included seven bands which contained in the previous two band sets i.e. ！ 
.K 
•f 

the four traditional multispectral broad bands, RGB and NIR, and the three edges. ,1 
•n .1 

.j 

h 

As most of the clusters generated from the clustering procedure lied in the red 

edge region, five spectral bands were selected from this region solely to determine 

the discriminating power of the red edge in the fourth band set (5 red edges). Then, , 

the fifth band set (7 edges) included the five red edges and the two edges before and I 
r^ 

after the green peak to ftoher investigate the discriminating power of the edges. The 

sixth band set (11 bands) included eleven bands containing RGB and NIR bands in 

t the first band set and the seven edges in the fifth band set. 

Finally, the seventh band set (13 bands) included thirteen bands which were 

selected from the center of the clusters from throughout the twentieth and the twenty-

second iterations of the clustering procedure. The blue region and the edge after the 

green peak region were divided into two bands in the seventh band set while other 

bands remained the same. 
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The bands in the “13 bands" band set were compared with the wavelengths that 

were correlated with biochemical or biophysical information found by other 

researchers (Table 5.8). The selected bands found by Curran (1989) and Martin et aL 

(1998) were mainly the near-infrared and mid-infrared bands while those found by 
气 

Thenkabail et aL (1999) and the thirteen bands found in this study mainly lied in the 

visible and the near-infrared bands. Although the bands found by these researchers 

and in this study were not consistent with one another, some wavelengths or spectral 

regions were commonly selected. 
:.1 
I， 

I) 

I 
The two blue bands found in this study, 429 nm and 476 nm, were close to the ^ 

t i 
I 
•') 

two found by Curran (1989), 430 nm and 460 nm while Thenkabail et aL found one ;l 
•n :.I 

blue band at 495 nm. It is interesting that no green bands were selected by Curran � 
b 

(1989) and Martin et al. (1998) when three green bands were included by Thenkabail 

et aL (1999) and in this study. The three green bands found in these two studies were 

quite consistent. Both studies selected 550 nm which is the green peak. The other 
.'! 
•'?l 

two green bands represented the two edges after and before the green peak . J" :«_. 

respectively in both studies. Three red bands were found by Thenkabail et al. (1999) 

and in this study while two were selected by Curran (1989) and one by Martin et aL 

I (1998). The spectral bands, 640 nm selected by Curran (1989), 627 nm selected by 

Martin et aL (1998) and 630 nm found in this study were consistent. They 

represented the yellow edge after the green peak. Moreover, the spectral bands, 660 

nm found by Curran (1989), 668 nm found by Thenkabail et aL (1999) and 670 nm 

found in this study were consistent such that they represented the red trough. Both in 

this study and by Thenkabail et aL (1999) used the 696-nm band. The commonly 

selected bands in the visible region reveals that some particular wavelengths are 
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Table 5.8. Comparison of the spectral bands that are correlated with biochemical or 
biophysical information found by different researchers and the 13 bands selected 
from hierarchical clustering procedures in this study 

Curran, 1989 Martin et al., Thenkabail et al., This study 
7PP5 1999 

Number ofbands ^ 9 12 13 
, Spectral range 400 “ 2400 nm 400 ~ 2500 nm 350~105Qnm 400 ~ 900 n m ~ 

Blue bands 4 ^ ~ 495 429 
(400 - 500 nm) ^ ^  

Green bands - - ^ 5l7 
(500 - 600 nm) 550 550 

^ 598 
Red bands ^ 丽 ^ ^ 

(600 - 700 nm) 660 682 670 
. ^ 696 

Near-infrared bands ^ 7l0 720 TTO 
(700- 1300 nm) 930 783 845 728 

970 822 920 743 
990 982 760 
1020 1025 835 
1040 
1120 
^  

Mid-infrared bands R ^ f ^ = 二 
(1300-2500nm) 1420 1660 

1450 2140 
1490 2280 
1510 2290 
1530 
1540 
1580 
1690 
1780 
1820 
1900 
1940 
1960 
1980 
2000 
2060 
2080 

i 2100 
2130 
2180 
2240 
2250 
2270 
2280 
2300 
2310 
2320 
2340 
2 ^ . 
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useful and important for vegetation studies. An optimal combination of narrow bands 

exists in the visible spectral region. — 

In the near-infrared region, the selected bands were less consistent. Curran 

(1989) included no bands in the red edge. Martin et al. (1998) and Thenkabail et al. 
，. 

(1999) selected one band in the red edge from 700 nm to 760 nm while four red 

edges were selected in this study. For the near-infrared plateau from 760 nm to 940 

nm, Curran (1989), Martin et al. (1998) and Thenkabail et al. (1999) selected two 

bands while one band was included in this study. 

5.3.2.3. Classification results of the selected band sets 

Linear discriminant analysis was used again to classify tree species using 

original spectra ofthe selected band sets for four seasons in order to determine which 

spectral regions were important in tree species recognition. Table 5.9 showed the 

classification results and Table 5.10 showed the significant testing of Kappas among 

the classification results. The confusion matrices were shown in Appendix 9. 

Table 5.9. Classification results of the selected band sets generated from hierarchical 
clustering procedures 

Spring Summer Autumn Winter 办汉呢它 overaU 
i accuracy (%) 

4 bands OA (%) 48.27 3 9 ^ ! O 0 4 ^ 4 ^ 
K(xiOO) 46.11 36.67 47.83 44.33 43.74 

3 edges OA(%) 42.40 47.73 39.44 49.05 44.66 
K(^100) 40.00 45.56 36.81 46.50 42.22 

7 bands OA (%) 76.00 76.27 79.86 76.51 77.16 
K(><100) 75.00 75.28 78.99 75.33 76.15 

5 red edges OA(%) 54.53 55.20 54.17 58.57 55.62 
KClOO) 52.64 53.33 52.17 56.50 53.66 

7 edges OA(%) 72.13 73.60 69.31 76.83 72.97 
K(^100) 70.97 72.50 67.97 75.67 71.78 

11 bands OA (%) 86.80 87.33 88.89 86.03 87.26 
K(xiOO) 86.25 86.81 88.41 85.33 86.70 

13 bands OA(%) 87.47 88.40 91.94 89.37 89.30 
K(xiOO) 86.94 87.92 91.59 88.83 88.82 
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Table 5.10. Significant testing of Kappas for comparing classification results with 
different selected band sets generated from hierarchical clustering procedures (value 
> 1.96 indicates significant difference at 0.05 significance level) 

Spring  
4 bands 3 edges 7 hands 5 red edges 7 edges 11 bands 13 bands 

~~4 bands - 2.2967~~-11.5927"""-2.4413 -9.7664~"-17.5348 -17.9759 
. 3 edges -2.2967 - -14.1364 -4.7533 -12.2428 -20.3604 -20.8282 

7 bands 11.5927 14.1364 - 8.3684 1.7128 -5.4316 -5.8213 
5 red edges 2.4413 4.7533 -8.3684 - -7.2076 -14.6971 -15.1168 

7 edges 9.7664 12.2428 -1.7128 7.2076 - -7.1545 -7.5462 
11 bands 17.5348 20.3604 5.4316 14.6971 7.1545 - -0.3858 
13 bands 17.9759 20.8282 5.8213 15.1168 7.5462 0.3858 -

Summer  
4 bands 3 edges 7 bands 5 red edges 7 edges 11 bands 13 bands 

~~4 bands : -3.3742 -15.7761~~~-6.3311 ~~-14.4259 -22.4678 -23.2475 
3 edges 3.3742 - -11.9657 -2.9169 -10.6926 -18.1593 -18.8691 
7 bands 15.7761 11.9657 - 8.8417 1.1954 -5.6183 -6.2495 

5 red edges 6.3311 2.9169 -8.8417 - -7.6121 -14.7497 -15.4200 
7 edges 14.4259 10.6926 -1.1954 7.6121 - -6.8277 -7.4607 
11 bands 22.4678 18.1593 5.6183 14.7497 6.8277 - -0.6331 
13 bands 23.2475 18.8691 6.2495 15.4200 7.4607 0.6331 -

Autumn  
4 bands 3 edges 7 bands 5 red edges 7 edges 11 bands 13 bands 

~~4 bands - 4Xi^~"-12.5341~~-1.5897~~~-7.6414 -17.7104 -19.8129 
3 edges -4.0683 - -16.9648 -5.6897 -11.9844 -22.9364 -25.2963 
7 bands 12.5341 16.9648 - 10.8203 4.6503 -4.7641 -6.7014 

5 red edges 1.5897 5.6897 -10.8203 - -6.0095 -15.8735 -17.9183 
7 edges 7.6414 11.9844 -4.6503 6.0095 - -9.4460 -11.3789 
11 bands 17.7104 22.9364 4.7641 15.8735 9.4460 - -1.9736 
13 bands 19.8129 25.2963 6.7014 17.9183 11.3789 1.9736 -

Winter  
4 bands 3 edges 7 bands 5 red edges 7 edges 11 bands 13 bands 

~"4 bands : -0.7350~~-11.3423~~~-4.1585~~-11.4874 -16.1688 -18.1822 
3 edges 0.7350 - -10.5284 -3.4120 -10.6715 -15.2788 -17.2538 

I 7 bands 11.3423 10.5284 - 6.9373 -0.1334 -4.3685 -6.1619 
5 red edges 4.1585 3.4120 -6.9373 - -7.0746 -11.4602 -13.3227 

7 edges 11.4874 10.6715 0.1334 7.0746 - -4.2350 -6.0286 
11 bands 16.1688 15.2788 4.3685 11.4602 4.2350 - -1.8050 
13 bands 18.1822 17.2538 6.1619 13.3227 6.0286 1.8050 -
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The “4 bands" and “3 edges" band set obtained the lowest classification 

accuracy with average overall accuracy of 46.11% and 44.66 % respectively. 

Although the average overall accuracy for “4 bands" was higher than “3 edges", “4 

bands" obtained higher overall accuracy for spring and autumn while “3 edges" had 
� 

higher overall accuracy for summer and winter. Thus, it was difficult to conclude 

which band set got higher discriminating power for tree species recognition. 

However, the results confirmed that the spectral region of the edges which had been 

ignored in traditional multispectral broadband sensors contained considerably useful 

information as the traditional RGB and NIR spectral bands. 

The “7 bands" band set comprised of the bands in the previous two band sets. 

The average overall accuracy was 77.16% which was significantly better than that in 

the previous band sets. This indicates that the spectral bands in the edges do help to 

differentiate different tree species instead of using the traditional RGB and NIR 

bands only. Besides, "7 bands" also generated better classification results than using 

all 138 bands. This, again, shows that redundancy exists in hyperspectral spectra and 

band selection can not only save computational time and resources, but also improve 

tree species recognition. 

t 

The “5 red edges" band set contained five spectral bands located only in the red 

edge in order to investigate the discriminating power of the red edge. The average 

overall accuracy was 53.66% which was significantly higher than those obtained 

using “4 bands" and "3 edges". The results clearly show that spectral bands in the red 

edge contain quite a lot of information for tree species recognition. The “7 edges" 

band set added the two bands located in the region of the edges before and after the 
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green peak to the "5 red edges" band set. The average overall accuracy was 72.97% 

which is only slightly lower than those using all 138 bands. It further convinces the 

potential of including the edges for tree species recognition. 

X 

The “11 bands" and “13 bands" band set performed the best with average 

overall accuracy of 87.26% and 89.30% respectively. Significant improvements of 

9.03% to 12.86% in overall accuracy for four seasons were found when "11 bands" 

were used instead of “7 bands". It means that including four more spectral bands in 

the red edge region helps to improve classification accuracy for more than 9%. 

Besides, the “13 bands" band set had higher overall accuracy than the “11 bands" 

band set for each season although significant testing showed insignificant differences 

between the two. This indicates that classification accuracy can be improved further 

when more bands are appropriately selected for tree species recognition. 

Furthermore, the results were also superior to those produced using selected bands 

obtained by stepwise discriminant analysis. 

5.4. Summary 

Data compression was done by principal components analysis using in situ data 

1 and laboratory data separately. For both PCAs, more information was yielded from 

hyperspectral data as compared to the two dimensional PCs representing greenness 

and brightness measures obtained from PCA or tasseled cap transformation using 

broadband multispectral data. PC3 and PC4 possessed useful information in 

interpretation and understanding of the inherent structure of hyperspectral 

reflectances in different surface types. 
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Band selection was performed using stepwise discriminant analysis and 

hierarchical clustering procedures. Both band selection procedures improved 

significantly the classification accuracies of tree species recognition. The bands that 

were selected by stepwise discriminant analysis mainly lied in the spectral regions 

around the green peak and the red edge. Hierarchical clustering suggested that the 

spectral bands along the edges including two edges before and after the green peak as 

well as the red edge contain useful information for tree species recognition. 

I 
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CHAPTER SIX 

SUMMARY AND CONCLUSION 

6.1. Introduction 
� . 

This chapter is the summary and conclusion of this study. A brief summary on 

the results and discussions of tree species recognition, data compression and band 

selection is presented. The limitation of this study is then stated followed by 

recommendations for further studies. Finally, a conclusion on this study is given. 

6.2. Summary 

In this study, hyperspectral data were collected in the Chinese University of 

Hong Kong campus. Laboratory data of 25 tree species were taken to test the 

separability ofhyperspectral data of different tree species. In situ spectral reflectance 

of ten surface covers including several tree species, grass, fem, water and concrete 

were measured to set up a hyperspectral database. 

6.2.1. Tree species recognition 

Tree species recognition was done by two classification algorithms, linear 

I discriminant analysis and artificial neural networks, using 138 bands from 400 nm to 

900 nm. The classification results were satisfactory for the original spectral 

reflectance data which yielded over 70% overall accuracy using both classifiers. It 

confirms the differentiating power ofhyperspectral data for tree species recognition. 

When the classification results generated from linear discriminant analysis were 

compared with those from neural networks, no significant differences existed 
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between the two using original spectra. Both classifiers yielded overall average 

accuracy of around 73%. However, linear discriminant analysis generated very poor 

results with under 26% overall accuracy using both the first and the second 

derivatives data. Neural network generated better results for the derivatives data from 
气  

overall accuracy of 40.40% to 63.19%. For the efficiency of the classifiers, linear 

discriminant analysis worked faster and more convenient than neural networks. 

For comparison of different data processing strategies, using the original spectra 

produced better classification results than using either the first or the second 

derivatives of the spectra. Meanwhile, using the first derivatives spectra generated 

better results than using the second derivatives spectra. 

For the seasonal comparison of 21 tree species using linear discriminant 

analysis, autumn data obtained the most accurate results while summer data 

produced the lowest accuracy. However, the differences were statistically 

insignificant. ；； 

6.2.2. Data compression 

I Data compression was done by principal components analysis using in situ data 

and laboratory data separately. For both PCAs, more information was yielded from 

hyperspectral data as compared to the two dimensional PCs representing greenness 

and brightness measures obtained from PCA or tasseled cap transformation using 

broadband multispectral data such as Landsat MSS or SPOT. PC3 and PC4 possessed 

useful information in interpretation and understanding of the inherent structure of 

hyperspectral reflectances in different surface types. 
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6.2.3. Band selection 

Band selection was performed using stepwise discriminant analysis and 

hierarchical clustering procedures. It was found that both band selection procedures 
*». 

improved significantly the classification accuracies of tree species recognition. An 

overall accuracy of over 87% was attained using 8 - 18 bands selected by stepwise 

discriminant analysis for the original spectra of autumn and winter data. The 13 

bands selected from hierarchical clustering procedures were able to obtain an overall 

accuracy of over 89% using the original spectra of autumn and winter data. 

Seasonal comparison done by stepwise linear discriminant analysis showed that 

autumn and winter data outperformed those in spring and summer. Winter data was 

able to produce the most accurate results with overall accuracy of 91.27% using the 

original spectra. It was shown that seasonal variability affected tree species 

recognition significantly. 

The bands that were selected by stepwise discriminant analysis mainly lied in 

the spectral regions around the green peak and the red edge. Hierarchical clustering 

I suggested that the spectral bands along the edges including two edges before and 

after the green peak as well as the red edge which were neglected in traditional 

broadband multispectral sensors tended to contain useful information for tree species 

recognition. 
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6.3. Limitations of this study 

Several limitations exist in this study. First, hyperspectral data of tree species 

were measured in a controlled environment with leaf and branch samples lied on a 

surface instead of collected above tree canopies in the field. Although leaves and 
•*». 

branches contain essential biochemical, biophysical and physiological information of 

trees, the spectral characteristics of a forest canopy as recorded in airbome or 

spacebome remotely sensed data cannot be completely and precisely accounted for 

by the spectra of their leaf and branch components. The canopy shape, LAI and the 

orientation of leaves and branches cannot be simulated by the three density levels of 

leaf and branch samples in this experiment. The difference between laboratory data 

and in situ data is well demonstrated by the t-test between the two. 

Second, the hyperspectral database being set up is far from comprehensive due 

to time limitation. The in situ data were intended to be collected in autumn. At the 

same time, autumn data of tree species were measured. As a result, only ten in situ 

surface cover types were measured. Many dominant surface cover features have not 
!• 

been included in the database such as sands, soils, rocks, coastal water, mangroves 

and different types of grass, fem，shrub and trees, etc. 

i 

Third, foliar biochemical data are not included in this study. The spectral bands 

in the edges including two edges before and after the green peak as well as the red 

edge are proved to be useful for tree species recognition only empirically by band 

selection procedures. However, the reasons why these bands were selected and how 

they help to recognize tree species are unknown. Combining foliar biochemical data 

to hyperspectral data may give us hints for interpretation of the selected spectral 
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bands. 

Fourth, the number of data samples for tree species recognition should be 

increased. Thirty-six samples were totally taken for each tree species in each season 
� 

with only six of them used as training samples. Theoretically, the number of training 

samples should exceed ten times the number of variables i.e. the number of spectral 

bands (Jensen, 1994). However, 689 bands are present from 400 nm to 900 nm in 

hyperspectral data for this study. It means that it requires 6890 training samples 

which is quite an impossible number. 
«；' 

•ii 
) 
•;i 

Finally, hyperspectral imagery is not available in this study. Currently, no 丨 
i 

airbome hyperspectral sensors are available in Hong Kong. If hyperspectral images 

are available, tree species recognition using the laboratory data can be verified with 

the image data in larger area and including more tree species types. Moreover, 

principal components analysis can be performed to generate principal components 
I 

images which are more easily interpretable than using the principal components 
r\ 
|. 

loadings and the scatterplots of the principal components scores. 

6.4. Recommendations for further studies 
i 

After discussing the limitations of this study, some recommendations for further 

studies are listed in this section. First, a more comprehensive hyperspectral database 

with in situ data and airbome or spacebome hyperspectral imagery is recommended. 

The hyperspectral data that were collected in this study are far from comprehensive 

as a hyperspectral database for the subtropical environment. Tropical and subtropical 

forests are mixed with hundreds to thousands tree species that cannot be found in 133 



other areas. More samples for tree species and other surface covers in tropical and 

subtropical environment should be included in the future hyperspectral database. 

Moreover, hyperspectral database should focus on in situ measurements of tree 
气 

canopies instead of laboratory measurements of leaf and branch components. 

However, tropical and subtropical climate with high annual rainfall and relatively 

high subtropical tree stands pose difficulties for in situ measurement. A much longer 

study period is needed to generate a comprehensive database. Thus, large area 
:i 

surveys using airbome or spacebome hyperspectral imagery are the future trend for 
'；! 

obtaining hyperspectral data. :: 
.i 

！ 

i 

j 

Second, a wider spectral region for tree species recognition is recommended. 

The spectral region used for data analysis in this study is from 400 to 900 rnn which 

includes the visible and the near-infrared bands. Spectral bands with wavelengths 

shorter and longer than this region are excluded to avoid too much noise. However, 

the excluded bands also contain important spectral features which helps to identify , 
] 

tree species, especially wavelengths longer than 900 nm. According to Curran 

(1989), among 42 absorption features related to particular foliar chemical 

1 concentrations, only four bands lie in the 400 to 900 nm region. The other 38 spectral 

bands fall into the spectral range from 900 to 2400 nm which may contribute to tree 

species recognition. Thus, more experiments should be carried out to explore the 

potential of using spectral bands from visible to near and mid-infrared spectral 

regions for tree species recognition. 

Third, biochemical data are suggested to be included for tree species recognition 
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and band selection. The absorption features of foliar spectra are the results of 

electron transitions in chlorophyll and of the bending and stretching of the 0-H band 

in water and other chemicals (Curran, 1989). Chlorophyll concentration, water 

moisture level and concentration of other chemicals vary among different tree 
，. 

species. As a result, these absorption features are crucial factors for tree species 

recognition. Foliar biochemical data can be correlated with the hyperspectral data 

collected. Bands that are correlated with the biochemical data can be obtained. 

Experiments can then be conducted to determine how these bands help to improve 
,a 

tree species recognition. ) 
•j 
;i, 

:;' 

i 
；• 

Martin et aL (1998) used AVIRIS imagery to correlate with nitrogen and lignin j 
p 

concentration of foliage. Nine bands that were closely correlated with the two , 

chemicals were selected to classify eleven forest type covers. An overall accuracy of 

75% was yielded by a random selection of validation pixels. This showed the 

potential of using biochemical data for tree species recognition. 
1 

• I 
丨. 

On the other hand, foliar biochemical data can help to interpret the bands 

selected by different band selection procedures. The selected spectral bands are 

I found only empirically with no theoretical explanations on why they are selected. 

Correlation of the selected bands with different biochemical data may explain why 

they are useful for tree species recognition. 

Fourth, more frequent spectral measurements of tree species, for instance, 

monthly measurements are recommended to monitor the leaf phenology of different 

tree species throughout one year. The period of bud break in spring, flowering, 
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fruiting and autumnal senescence of trees varies from one species to another. These 

seasonal variability significantly affect the spectral reflectance of the tree species and 

hence the results of tree species recognition. Thus, a detailed study of the seasonal 

variability of different tree species is essential. 
,‘ 

Finally, more algorithms for band selection are suggested to apply for tree 

species recognition. Band selection procedures used in this study did help to improve 

classification results significantly. This reveals the importance of band selection and 
.iS 

the redundant nature of hyperpectral data. The optimal number and position of 

wavebands, useful spectral regions and optimal bandwidth should be identified for :' 
II 

'；! 

different applications. More experiments should be undertaken to explore the various 丨 
.；> 

methods ofband selection. ； 
1 

6.5. Conclusion 

This study successfully classifies 25 subtropical tree species using hyperspectral 

data with satisfactory classification accuracy. The accomplishment of this : 
•丨， 

preliminary test validates the ability of hyperspectral data for identification of 

subtropical tree species. In Hong Kong, using original spectra collected in autumn or 

^ winter with a stepwise linear discriminant analysis can generate reasonably 

satisfactory result for tree species recognition. It is also suggested that the spectral 

bands along the edges including two edges before and after the green peak as well as 

the red edge which have been neglected in traditional broadband multispectral 

sensors tended to contain useful information for tree species recognition. More 

experiments should be conducted to explore the potential of using these spectral 

bands for vegetation studies in particular tree species recognition. 
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Appendix 1.2. Reflectance oiAraucaria heterophylla in four seasons with low level 
(top), medium level (middle) and high level (bottom) of leaf density 
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Appendix 1.2. Reflectance oiAraucaria heterophylla in four seasons with low level 
(top), medium level (middle) and high level (bottom) of leaf density 
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Appendix 1.9. Reflectance of Aleurites m o l u c c a n a in four seasons with low IeveI 
(top), medium level (middle) and high level (bottom) ofleaf density 
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Appendix 1.2. Reflectance oiAraucaria heterophylla in four seasons with low level 
(top), medium level (middle) and high level (bottom) of leaf density 
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Appendix 1.9. Reflectance of Aleurites m o l u c c a n a in four seasons with low IeveI 
(top), medium level (middle) and high level (bottom) ofleaf density 

30 1 ~ l 

� 25- / n 

霍 20 - / —Spring 

I 15 - / | " ^ ^ Z I I Z Z Z Z ^ — s _ e r 

iS / | f / —Autumn 
S 1 0 - \ 

/ / / —Winter 

5 _ ^ = ^ ^ j ^ 
0 1 I I I - I I —I I I 1 I 

400 450 500 550‘ 600 650 700 750 800 850 900 
Wavelength (nm) 

40 1  

30 - / 

g25 - / ^ ^ ^ = = = = ^ - S P _ 
I 20 - l | r — S _ e r 

I 15 - / / - A u t u m n 

10 - / /^ -Winter 

5 . ^ ^ ^ ^ ^ j ^ 
0 ^ 1 1 i 1 1 1 1 1 1  

400 450 500 550 600 650 700 750 800 850 900 
Wavelength (nm) 

60 1  

50 - 广 “ 

g 40 - / ^̂ ^̂ ::::::=:==̂ =̂ ^̂ ^̂  —Spring 
S OA / if 一Summer 

i / / 
e / / ——Autumn 1 20 - / / 

J —Winter 

: _ ^ ^ ^ ^ ^ U H 1 1 1 1 1 1 1 1 1  
400 450 500 550 600 650 700 750 800 850 900 

Wavelength (mn) 

146 



Appendix 1.2. Reflectance oiAraucaria heterophylla in four seasons with low level 
(top), medium level (middle) and high level (bottom) of leaf density 
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Appendix 1.7. Reflectance of Castanopsis fissa in four seasons with low level (top), 
medium level(middle) and high level(bottom) ofleafdensity 
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Appendix 1.8. Reflectance of Cratoxylum ligustrinum in spring, summer and autumn 
with low level (top), medium level (middle) and high level (bottom) ofleaf density 
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Appendix 1.9. Reflectance of Aleurites moluccana in four seasons with low IeveI 
(top), medium level (middle) and high level (bottom) ofleaf density 
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Appendix 1 .9 . Reflectance of Aleurites moluccana in four seasons with low IeveI 
(top), medium level (middle) and high level (bottom) ofleaf density 
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Appendix 1.11. Reflectance of Dehnix regia in spring, summer and autumn with low 
level (top), medium level (middle) and high level (bottom) ofleaf density 
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Appendix 1 .9 . Reflectance of Aleurites moluccana in four seasons with low IeveI 
(top), medium level (middle) and high level (bottom) ofleaf density 
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Appendix 1.13. Reflectance ofFirmiana simplex in spring and summer with low level 
(top), medium level(middle) and high level(bottom) ofleaf density 
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Appendix 1.2. Reflectance o iAraucar ia heterophylla in four seasons with low level 
(top), medium level (middle) and high level (bottom) of leaf density 
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Appendix 1.15. Reflectance of Hibiscus tiliaceus in four seasons with low level (top)� 

medium level(middle) and high level(bottom) ofleaf density 
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Appendix 1.16. Reflectance ofLophostemon conferta in four seasons with low IeveI 
(topX medium level (middle) and high level (bottom) of leaf density 

30 n  

25- f ~ ~ ~ _ _ _ 
g 20 - U —Spring 

8 / ！广 “ “‘~" — Summer 

I 15 - W 
S III —Autumn 
§ '» - J f —Winta 

' - ^ ^ ^ ^ ^ ^ 
0 n 1 1 1 1 1 ! 1 1 1 1 ii_ 
400’ 450 500 550 600 650 700 750 800 850 900' j 

I 

Wavelength (nm) | 

45 1  
40 - 一 I 

35- f ^ ^ \ ~ ^ ~ 
g 3 0 - ! ^ — z r z r —Spring 
I 25 - 11^ —Summer | 

I : : 1 - A — I 
10 - / h ^ 
5 ^ = ^ ^ ^ ^ - ^ / i 
0 4̂  1 1 1 1 1 1 1 1 1  

400 450 500 550 600 650 700 750 800 850 900 

Wavelength (nm) 

60 n  

50 - ^ ^ ^ Z = = ^ 

^ 40 - ! —Spring 

I 30 - l l | — S — e r 

c5 M/ 一Autumn 

I 20 - / 

! —Winter 

' " _ , - ^ / 
0 n 1 1 1 1 1 1 1 1 1  

400 450 500 550 600 650 700 750 800 850 900 

Wavelength (nm) 

157 

j 



Appendix 1.17. Reflectance ofLiqmdambarformosana in four seasons with low level 
(topX medium level(middle) and high level(bottom) ofleafdensity 
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Appendix 1.18. Reflectance ofLagerstroemia speciosa in four seasons with low level 
(top), medium level (middle) and high level (bottom) ofleafdensity 
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Appendix 1.19. Reflectance of Melaleuca quanqueenervia in four seasons with low 
level (top), medium level (middle) and high level (bottom) of leaf density 
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Appendix 1.20. Reflectance ofMacaranga tanarius in four seasons with low IeveI 
(top), medium level (middle) and high level (bottom) ofleafdensity 

35 n  

30 -

, . - - f r ^ 
g , — —Spring 
^ 20 - / / 
a 11/^ - ^ — Summer 

I 15 ‘ f - A — 
10 - f —Winter 

^ ^ _ ^ ^ ^ ^ 
0 ^ 1 ‘ I i 1 1 1 1 1 1  

400 450 500 550 600 650 700 750 800 850 900 

Wavelength (nm) i 

40 1  

35 - 广 " " " ^ 一 丨 

g 25 - � " ~ �_ 一 j 
I 20 - I —Summer | 
I 15 - | / —Autumn 

10 - I I —Winter 

' - ^ ^ ^ ^ ^ ^ j 丨 

0 ^ 1 1 1 1 1 1 1 r ： 

400 450 500 550 600 650 700 750 800 850 900 

Wavelength (mn) 

60 1  
‘一.' ^ 

50 - f  

r — r ‘ F ^ 
I 30 - M —Summer 

菊 / —Autumn 
^ 20 - f 

I —Winter 

1 � — 产 ^ y 

0 ^ 1 1 I 1 1 1 ~1 1 1  
400 450 500 550 600 650 700 750 800 850 900 

Wavelength (nm) 

161 



Appendix 1.20. Reflectance ofMacaranga t a n a r i u s in four seasons with low IeveI 
(top), medium level (middle) and high level (bottom) ofleafdensity 
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Appendix 1.20. Reflectance o f M a c a r a n g a tanarius in four seasons with low IeveI 
(top), medium level (middle) and high level (bottom) ofleafdensity 
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Appendix 1.20. Reflectance o f M a c a r a n g a tanarius in four seasons with low IeveI 
(top), medium level (middle) and high level (bottom) ofleafdensity 
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Appendix 1.24. Reflectance of Sapiurn sebiferum in spring, summer and autumn with 
low level (top), medium level (middle) and high level (bottom) of leaf density 
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Appendix 1.25. Reflectance ofTaxodium distichum in four seasons with low level 
(topX medium level(middle) and high level(bottom) ofleafdensity 
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Iî
 =
 
= 

= 
= 

= 
= 

= 
= 

90
.0
0 

^ 
J
^
 

1 
2 
23
 
3 

1 
76
.6
7 

ĝ 
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