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Abstract 

As a result of technology advance, there is a widening gap between the rate at 

which a processing unit can consume operands and the rate at which the memory 

system can supply them. The introduction of cache helps alleviate this problem, 

and the design of cache memory is very critical to the overall system perfor-

mance. Due to the limited space on the processors, on-chip caches are usually 

small. Therefore, the cache space should be used carefully and efficiently. Accu-

rate prefetching and careful replacement of cache lines i are essential to improve 

the performance. In order to further improve the cache performance, different pre-

fetching algorithms for cache have been proposed[BaC91] [KlL91] [Smi78a]. With 

prefetching, data could be available before their actual use. However, due to the 

large volume and the random behaviour of data usage, it is difficult to prefetch 

data accurately and this results in cache pollution. 

Lau [Lau96] has proposed an accurate prefetching scheme, the Instruction 

Opcode and Addressing Mode Prefetching (IAP), which makes use of the future 

reference patterns embedded in certain instructions. Further to their study, it is 

also found that most prefetched data by the IAP scheme are likely to be referenced 

only once. Therefore, we proposed to use a mixed replacement policy to use 

together with the IAP scheme, to minimize the number of thrashing misses. Using 

both Least Recently Used (LRU) and Instant Zero (IZ) replacement algorithms 

with the IAP scheme outperforms the result of using LRU only. 

Furthermore, in order to optimize the benefit of temporal locality and minimize 

iA l ine is a b lock of data in context of the cache. Usually, line size is the same as block 
size. In our paper, block refers to data located in memory or lower-level caches, line refers to 
the data in level 1 cache. However, they are interchangeable. 
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the cache pollution problem, another hardware replacement design is presented in 

this thesis. We propose a priority pre-updating scheme, which is used to update 

the priorities of cache lines prior to their normal updating situation. Simulation 

experiments are done wit this priority pre-updating scheme in cache model with 

prefetch-on-miss prefetching scheme. From the results, it is found that priority 

pre-updating helps minimizing the number of thrashing misses, optimizes the ben-

efit of temporal locality and reduces cache pollution. In order to obtain promising 

cache performance improvement, we add a victim cache to hold those fresh pre-

fetched lines that displaced from the data cache. The experimental results show 

that using priority pre-updating with the victim cache can achieve up to 50% 

reduction in memory delay. 

Beside the research on replacement of cache lines, we propose another hardware 

design, which concerns the placement of IAP lines. The cache lines prefetched by 

the Instruction Opcode and Addressing Mode Prefetching pose a referenced-once 

property, i.e., most of them are referenced one and only one time before the 

program terminates. Owing to this special reference behavior, a prefetch cache, 

which is dedicated to prefetched lines by Instruction Opcode and Addressing Mode 

Prefetching scheme, is implemented separately. The prefetch cache can reduce 

memory delay time up to 99%. 
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Chapter 1 

Introduction 

Cache memory is a special high speed memory designed to supply the processor 

with the most frequently requested instructions and data. Instructions and data 

located in cache memory can be accessed many times faster than instructions and 

data located in main memory. The more instructions and data the processor can 

access directly from cache memory, the faster the computer runs as a whole. 

Memory caching is effective because most programs access the same data or 

instructions over and over. By keeping as much of this information as possible in 

cache memory (which is usually implemented with faster SRAM), the computer 

avoids accessing the slower main memory (which is usually implemented with 

slower DRAM). Some memory caches are built into the architecture or micropro-

cessors. Such internal on-chip caches are often called Level 1 (L1) caches. Cache 

memory makes use of the principal of locality. Locality of reference states basically 

that even within very large programs with several megabyte of instructions, only 

small portions of this code generally get used at once. Programs tend to spend 

large periods of time working in one small area of the code, perform the same job 

many times with slightly different operands, and move on to another area of code 

for another batch of routine jobs. This occurs because of loops, which are what 

programs use to do work many times in a rapid succession. 

Generally, there are two kinds of localities - temporal locality and spatial local-

ity. Temporal locality describes the likelihood that a recently-referenced address 
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Chapter 1 Introduction 

will be referenced again soon, while spatial locality describes the likelihood that 

a close neighbor of a recently-referenced address will be referenced soon. Con-

ventional cache memories rely on a program's temporal and spatial localities to 

reduce the average memory access latency. 

The gap between main memory and processor clock speeds is growing at an 

alarming rate. As a result, the system performance is increasingly dominated by 

the latency of servicing memory accesses, particularly those accesses which are not 

easily predicted by the temporal and spatial localities captured by conventional 

cache memory organizations [Smi82] [HeP95 . 

One obvious way to reduce number of the cache misses is enlarging the cache 

as much as possible, however, it is often difficult to achieve practically. There 

are two main reasons that limit the size of Level 1 cache: [1] The performance 

gained is not enough to compensate the cost for cache, which typically uses fast 

but expensive static RAM chips. The speed for SRAM is approximate 4 times 

faster than DRAM, however, SRAM chips cost more than six times as much 

as the DRAM chips normally used for main memory. Besides, the performance 

improvement is not linearly proportional to the size of cache, that is, a 512K bytes 

cache memory may not obtain 2 times better performance than a 256K bytes one. 

2] The CPU chip is usually small while SRAM size is comparable large, thus only 

limited space for Level 1 cache, while maintaining a reasonable processor chip size. 

Due to the large speed gap between the processor and main memory, it is 

obvious that performance of the system will then be largely determined by [1 

how effectively the on-chip memory is able to manipulate operands, minimize the 

frequencies of off-chip accesses, and [2] the rate at which the external memory 

system can supply operands. 

The main aim of cache memory is to reduce the CPU's idle waiting time. 

Improving cache performance of programs is one way of increasing the systems 

throughput. The effectiveness of the on-chip cache to maintain useful operands 

and minimizing the frequencies of off-chip accesses is one of the main factor to 

determine the performance of the system. 
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Chapter 1 Introduction 

In order to reduce the disparity between processor speed and memory ac-

cess time, many solutions have proposed to tackle this problem. Some have 

proposed adding additional features such as non-blocking fetches [Kro81], vic-

tim caches [Jou90], and sophisticated hardware prefetching [ChB92] to alleviate 

the access penalties for those references that have locality characteristics that are 

not captured by most conventional designs. 

1.1 Overlapping Computations with Memory Ac-

cesses 

Many solutions have been proposed to reduce the memory access and/or hide 

memory latency. An important approach is cache prefetching[Smi78a] [Smi78b 

Smi82] [HeP95], that is, the action of bringing data to the cache before they are 

actually needed. Prefetching is similar to speculative loads in the sense that it is 

non-blocking and behaves like a hint without incurring semantic faults. The main 

difference between prefetching and speculative loads is that data are loaded into 

the caches rather than registers. 

Depending on how prefetch requests are determined and initiated, prefetching 

can be either hardware-controlled [BaC91] [FuP91] [FuP92] or software-directed[Por89 

KlL91][MoL92]. The hardware approach detects accesses with regular patterns 

and issues prefetches at the run time of the programs, whereas the software ap-

proach relies on the compiler to analyze programs and to insert prefetch instruc-

tions during compilation of the programs. 

However, because of the low accuracy of some prefetching algorithms, there is 

a risk that the prefetched data that are never used before they are displaced from 

the cache. This leads to waste of memory space and bandwidth, thus poorer per-

formance results. The problem become worse when the prefetched data displace 

some useful data in the cache. The phenomenon is called cache pollution. 

3 



Chapter 1 Introduction 

1.2 Cache Line Replacement Policies 

Different replacement policies are employed to manage operands in the memory. 

Replacement takes place when a particular cache line or a set of cache lines is 

already full, and the line has to be evicted its contents to make room for the new 

incoming line. There is still no ideal replacement policy being invented, and it 

is unlikely that one would exist. Replacement policy in cache is different from 

the problem of replacement in paged main memories because the cache replace-

ment algorithm must be implemented entirely in hardware and must execute very 

quickly so as to catch up with the processor speed. 

Least Recently Used and First-In-First-Out are two most commonly used re-

placement policies. Beside these two well-known algorithms, there are Random, 

Pseudo-Least Recently Used which are used in some special systems. 

Not knowing whether a line will be accessed soon, Least Recently Used strategy 

is usually used in conventional cache as the replacement scheme. However, if the 

displaced line is referenced by the processor again, a thrashing miss i will occur. 

The situation may become worse, since one thrashing miss can lead to another 

thrashing miss. A good cache line replacement policy should try to find out the 

best candidate to be displaced and will help minimize these thrashing misses. 

1.3 The Rest of This Paper 

In this dissertation, we focus on techniques on better management of the pre-

fetched lines for cache with the IAP scheme and that with a traditional prefetch 

scheme - prefetch-on-miss only. 

IAP is an accurate prefetching scheme, in which it makes use of the information 

provided by the instruction opcodes and addressing modes for prediction. A brief 

review on IAP scheme will be given in Chapter 2. 

Chapter 3 will briefly describe the cache pollution problem brought by con-

ventional prefetching schemes, the reference-once property of IAP lines and how 

iA thrashing miss occurs when the line which was replaced must itself be reloaded 
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IAP works. 

Chapter 4 will briefly describe previous research on prefetching, and stream 

buffers. 

The implementation of the replacement policy, Instant Zero (IZ) cache line 

replacement policy, will be discussed in Chapter 5. The details of another re-

placement policy, Priority Pre-Updating (PPU), which is designed to be used 

with different types of prefetching algorithms, will be given in the same chapter. 

The effect of using Priority Pre-Updating with victim cache ( P P U V C ) is also 

discussed in this chapter. 

In the same chapter, details on the placement policy of prefetched lines, pre-

fetch cache, will be given. 

Chapter 6 will present the simulation methodology, performance metrics that 

used and the results of performance evaluation. The designs are evaluated by 

simulating the some benchmark program in a uniprocessor environment. The 

results show that either IZ, PPU with victim cache and prefetch cache alone can 

obtain significant improvement in system performance. 

Finally, Chapter 7 will give an insight on future directions, and we will conclude 

this paper in Chapter 8. 
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Chapter 2 

A Brief Review of IAP Scheme 

2.1 Embedded Hints for Next Data References 

In the design of latest processor architectures, instruction opcodes and the ad-

dressing modes of the architecture definition usually have built-in mechanism to 

support the address calculation of future data references while the current datum 

is being referenced. It is also found that compound instructions are commonly 

used in RISC architecture to reduce the program execution path length. As it 

can be found frorn program instrumentation and tracing, certain simple RISC in-

structions are executed in pair. So it might be useful to define a single compound 

or extended opcode to execute the instruction pair, and this is particular useful if 

the new instruction opcode does not affect the processor clock cycle. Up to now, 

there are several machines have such kind of opcodes. For example, ADD-AND-

BRANCH, COMPARE-AND-BRANCH, LOAD- WORD-AND-UPDATE, etc. in 

HP's Precision Architecture 1.1 [HP94]. IBM and PowerPC has LOAD-UPDATE, 

LOAD-MULTIPLE[lBM89] [Mot92] [IBM94] [WeS94], etc.. The total number of 

instructions defined in current RISC processors range from 150 and 200, which 

is much larger than that of early RISC processors (about 50 to 70 instructions). 

The reason is that latest processors find these compound or extended opcodes 

to be very useful, and this embedded them into the instruction set. Among 

these compound instructions, it is found that the LOAD/STORE-UPDATE (or 
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LOAD/STORE-MODIFY), are very helpful to manage on-chip cache activities. 

Array or pointer references to a large set of data are one of the major types of 

data references in typical programs. Data will be referenced one after another suc-

cessively, index-displacement and index-hased register addressing modes are usually 

employed for this type of accesses. Because these accesses occur very frequently, 

as a result, many systems tend to use compound opcodes like LOAD-UPDATE 

and STORE-UPDATE for the accesses. Beside loading or storing a datum into 

the register, the content of the index register, which is used in the address cal-

culation of current data reference, will be updated by each of these instructions. 

The operations of the LOAD-UPDATEdind STORE- UPDATE instructions using 

either index-displacement or index-hased registers addressing mode are shown in 

Figure 2.1. 

LOAD RriRx + Disp) LOAD Rr{Rx + Ry) 

Equivalent to Equivalent to 

Eff. Addr. = (¾) + Disp Eff. Addr. 二 {R^) + {Ry) 
Rr = {Eff. Addr.) Rr = {Eff. Addr.) 
7¾ = Eff. Addr. R^ = Eff. Addr. 

(a) (b) 

Figure 2.1: Operations of LOAD-UPDATE and STORE-UPDATE (a) using the 
index-displacement addressing mode and (b) using the index-based registers ad-
dressing mode 

The updating action ofthe LOAD-UPDATEov the STORE- UPDATE instruc-

tion is the preparation of the content of register R^ which is used in calculating 

of the effective address of the next expected datum. R^ is equal to the sum of the 

current data reference address Eff. Addr. (or the updated content of register i ^ ) 

and the displacement Disp (in the index-displacement addressing mode) or the 

register content Ry (in the index-hased register addressing mode). Thus, accurate 

data cache prefetching can be carried out and the address of prefetched data is 

equal to {Eff. Addr. + Disp) or {Eff. Addr. + Ry). It should be noted that values 
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of Eff.Addr. and Disp (or Ry) are available to the cache prefetching unit during 

the execution of LOAD Rr{Rx + Disp) or LOAD Rr{Rx + Ry) instruction. 

2.2 Instruction Opcode and Addressing Mode 

Prefetching 

By using these hints of data references provided by the instruction opcode and 

addressing modes, Instruction Opcodes and Addressing Mode Prefetching (IAP) 

scheme which provides accurate data prefetching for on-chip cache is proposed 

by Lau [Lau96]. In Lau's study, IBM POWER architecture ( or the PowerPC 

architecture) is used as an example to show how IAP scheme should be designed 

and implemented. 

Figure 2.2 shows the control flow of IAP scheme. For each instruction i that is 

decoded and executed, its opcode will be checked first to determine if it belongs 

to LOAD-UPDATEoi STORE-UPDATE instruction. If such a case is detected, 

the address of next datum expected to be referenced in the near future will be 

re-calculated. Using the same addressing mode as i but with the updated contents 

of all registers used in the address calculation of i. Afterwards, this new address 

will be sent to the cache prefetch unit for accurate data prefetching. Beside these 

basic ideas, two enhancements have been integrated into the IAP scheme: 

• Default Prefetching vs. Selective Prefetching 

When executing each LOAD/STORE instruction z, if this instruction i be-

longs to LOAD/STORE- UPDATE instructions group, then the IAP scheme 

will be used for data prefetching, else the prefetch-on-miss is used as the de-

fault prefetching scheme for data prefetching. 

• Cache Block Prefetching vs. Next Data Reference Prefetching 

For each data prefetch requested by IAP scheme, if the target prefetched 

block j containing the candidate datum is not the same as current data 
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Chapter 2 A Brief Review of IAP Scheme 

referencing line z, then a prefetch of block j will be issued. If they are the 

same, then a prefetch request of block i + 1 will be issued. 

The above IAP scheme together with the two enhancements are the combined 

IAP that we use in this paper. 

2.3 Chapter Summary 

In this chapter, a general design for hardware controlled prefetching, which was 

proposed by Lau [Lau96], is introduced. By using information embedded in the 

instruction opcodes, Lau's design is able to single out the data references with 

constant strides from the pool of all data references and also able to find the 

corresponding stride values. With this valuable information, accurate prefetching 

can be accomplished and consequently, the CPU stall time due to data cache 

misses can be reduced. The cache block prefetching is introduced to tackle the 

problem of limited memory bus bandwidth. In order to exploit the spatial locality, 

the combined IAP scheme is equipped with default prefetching to issue prefetch 

requests for the mm-LOAD/STORE UPDATE instructions. 

9 



Chapter 2 A Brief Review of IAP Scheme 

H X — — I 

r ^ n 
Get next • 

instruction I • 

s ^ 
< LOAD/STORE- ^ ^  

r ^ ^ 
八 r ^ 
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Figure 2.2: Control flow for IAP scheme 
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Chapter 3 

Motivation 

Over the last two decades, the CPU clock cycle time has been decreasing at a 

much faster rate than the main memory access time. The average number of 

cycles per instruction has also been decreasing dramatically. The effect is more 

obvious for RISC machines with higher clock speed and data consumption rate. 

Unfortunately, a high bandwidth of the microprocessor is meaningless unless 

it is matched by a similarly powerful memory subsystem. Most of current micro-

processors rely on caches to reduce their effective memory access time. However, 

cache miss affects the overall performance of a system, i.e., if either the instruc-

tion or the operand required by the operations is not found in cache(s), the actual 

performance would decline for the large amount of cache misses. 

With current VLSI developments, several functional units, instruction and 

data caches, and some special hardware functional units can be included on the 

processor chip. Therefore, a first obvious method for reducing the average memory 

access time is to implement multi-level cache hierarchies [BaW89] with an on-chip 

first level cache. However, under the usual caching mechanism, the processor 

will still be stalled on a first-level cache miss and of course also on misses on 

any of the next levels of the memory hierarchy with an even larger penalty time, 

until the miss is resolved. Since a processor must stall on a cache miss, caches 

do not totally hide memory latency but, instead, they eliminate many off-chip 

memory accesses. In order to make further progress towards the reduction of 
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memory latency, memory accesses due to cache misses must proceed in parallel 

with the processor execution. As a result, a number of different solutions have 

been proposed to allow computations to be overlapped with memory accesses. 

They basically provide efficient mechanisms to allow buffering and pipelining of 

memory references. 

Various data prefetching algorithms exist, some are hardware-assisted, some 

are software-directed and others are hybrid. The main fault of many of these 

algorithms is that they do not integrate replacement algorithms with prefetching 

methods. There is often a large penalty for prefetching into the cache because the 

wrong line was replaced. 

When incorporating the prefetching algorithms in a processor, several things 

have to take into consideration. First, it is possible to prefetch data into the cache 

that will never be used by the processor. This not only pollutes the cache, but 

also increases memory traffic. Second, if the data is prefetched too early, it can 

become stale before it is referred, this may also increase memory traffic. Therefore, 

in designing a processor with prefetching, careful balance between performance 

gains and tradeoff like cache pollution and memory traffic increase are required. 

From a different viewpoint, a conventional cache's hardware does not know 

the likelihood of whether a line will be accessed soon. A blind strategy is usually 

used to choose the line to be replaced when a miss has occurred, e.g. choose the 

least recently used line. However, if it happens that the displaced line is referenced 

by the processor again, a thrashing miss will occur. The problem becomes more 

serious since one thrashing miss can lead to another thrashing miss. 

It is estimated that 50% of all misses are thrashing misses, and that most of 

these can be avoided. A good cache replacement policy will help minimize these 

thrashing misses. 

There exists an accurate prefetching, the Instruction Opcodes and Addressing 

Modes Prefetching, which is proposed by Lau [Lau96]. IAP, which making use 

of the run-time information provided by the instruction opcodes and addressing 

modes, prefetches data accurately. However, it is found that data prefetched by 
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IAP scheme have not posed the temporal locality property, a large portion of the 

data prefetched by the IAP scheme ^ are likely to be referenced one and only one 

time 2 before the program terminates. In order to handle the replacement of the 

data lines in the cache, a new strategy, tentatively termed as Instant Zero (IZ), is 

proposed. This new strategy aims at replacing the IAP lines intelligently, which 

will be explained in detail later. 

On-chip cache is usually small ,̂ thus the precious cache space should be used 

carefully. Cache pollution problem highly affects the system performance, one 

obvious solution to solve the cache pollution problem is to kick out useless data 

in case of conflict or capacity misses. However, which data is useless and how 

to determine which should be kicked out is really a difficult problem. A poorly 

designed prefetching algorithm aggravates cache pollution problem, and wrong 

displacement of useful data degrades system performance. From Figure 3.1, we 

can find out that in some benchmark programs, more than 90% of prefetch-on-miss 

lines are unreferenced. It is obvious that most prefetch-on-miss lines are useless, 

i.e., they are not referenced before the program terminates. It is beneficial to 

shorten the life time of those possibly erroneously prefetched lines in the cache to 

minimize cache pollution. We propose a Priority Pre- Updating (PPU) scheme to 

tackle the problem, PPU helps determining the data to be kicked out and reduce 

cache pollution. 

As mentioned above, IAP lines are likely to be referenced one and only one 

time before the program terminates. Therefore, placing them in a separate cache 

space can localize their effects and minimize the cache pollution problems. As 

a result, we proposed to use an on-chip prefetch cache to hold all those data 

prefetched by IAP scheme. 

ilines prefetched by IAP scheme will tentatively called IAP lines in later sections. 
^Termed as reference-once property 
^Usually ranging from 4K bytes to 32K bytes. Though large on-chip cache is also found in 

current architecture, it is not common. 
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Figure 3.1: Percentage of Prefetch-On-Miss lines that are not referenced in IAP 
scheme 

3.1 Chapter Summary 

Cache pollution is a side-effect of data prefetching, a poorly designed prefetching 

algorithm aggravates cache pollution problem. This problem has diverse effect on 

cache performance. A blind replacement strategy increase the thrashing misses, 

reduce the utilization of cache and indirectly cause cache pollution. The tech-

niques, Instant Zero replacement policy and Priority Pre-Updating with victim 

cache, tend to alleviate this problems and improve the cache performance. The 

cache lines prefetched by IAP scheme have a reference-once property, and placing 

them in a separate cache space, prefetch cache, is able to localize their influence 

and also reduce the cache pollution problem. 
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Chapter 4 

Related Work 

For recent computer applications, it is common that there are many matrix ma-

nipulations with highly regular and sequential data references, and a lot of data 

are needed in performing computation. If the operands are not found in cache, 

the actual performance of the system would decline for the large amount of cache 

misses. 

In order to reduce the number of cache miss penalty, data should be pre-

fetched into the cache before their actual usage. Prefetching techniques consist of 

both hardware and software approaches. Existing cache prefetching schemes, ei-

ther hardware-driven [BaC91] [Smi78b] or software-assisted [Tha81] [Bre87] [Por89 

GoG90] [CaK91] [ChM91] [KlL91] [MoG91] [MoL92], are not very effective in reduc-

ing the processor idle time due to memory accesses. 

Hardware prefetching typically uses dynamic stride detection to perform run-

time calculation of prefetch addresses to be issued[ChB92] [FuP91] [FuP92]. The 

overheads of hardware prefetching are the cost for the additional hardware, and 

the limited ability of the dynamic units to perform any prefetching other than 

through arrays with linear strides. 

The prefetching accuracy oftraditional hardware driven data prefetching schemes 

is low (though it is relatively easier to be implemented), thus cannot get signifi-

cant improvement in data cache performance. Though we can find some accurate 
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hardware-driven prefetching schemes of constant stride array elements, they usu-

ally require some complicated add-on hardware such as a prediction table. As a 

result, they are not suitable to be implemented as the first-level on-chip cache as 

the space on the CPU chip is very limited. Chen and Baer [ChB94] evaluated 

the effectiveness of lockup-free caches and hardware prefetching, and proposed a 

hybrid scheme based on a combination of these approaches. 

Software prefetching is more flexible than hardware prefetching, having the ad-

vantage of compile-time knowledge, but pays the price of software overhead, both 

in instructions issued and code size[CaK91] [KlL91] [MoL92]. Software-assisted 

cache prefetching schemes can also achieve high accuracy in prefetching array data 

references with constant strides, but the runtime overhead introduced is a big ob-

stacle to their popularity. Furthermore, architectural and compiler supports are 

needed for the software-assisted prefetching schemes. These also restrict the usage 

of software prefetching scheme in current processors and computer systems. Beside 

these, some promising approaches use hybrid hardware and software techniques, 

issuing limited instructions that provide hints to the prefetch hardware[Chi94 . 

When the cache or a particular set is full, and information is requested by 

the CPU from the lower level memory, some information in the cache must be 

selected for replacement. This implies that a cache miss needs not only a fetch 

but also a replacement. Cache replacement policies should implement totally in 

hardware and execute very quickly, so it will not have bad influence on the system 

performance. The replacement algorithms are mainly classified into usage-based 

and non-usage-based. Section 4.1 will give a brief description of some known 

replacement policies. 

4.1 Existing Replacement Algorithms 

In brief, cache misses can occur for three reasons: [1] the requested data have never 

been accessed before [compulsory miss), [2] the requested data have been accessed 

before, but the size of the working data set exceeds the cache size {capacity miss), 

16 



Chapter 4- Related Work 

or [3] the requested data had been in the cache but was displaced by an intervening 

reference to another address {conflict miss). Information resident in the cache has 

to be removed to bring in future information in the event of cache misses. The 

replacement algorithm determines the information to be discarded. The algorithm 

may be Least Recently Used (LRU), First In First Out (FIFO), Random, Pseudo-

LRU, etc. 

A truly random strategy is completely unacceptable for production test rea-

sons, as it is difficult to run test vectors on a chip that does not have completely 

deterministic behavior. Some relatively common replacement algorithms are as 

follows: 

1. Least Recently Used (LRU): An usage-based algorithm under which the line 

which has not been accessed for the longest time is replaced with the hope 

of reducing the chance of throwing out information that will soon be needed 

again. Its implementation requires every line to have extra bits to keep track 

of the age of its contents thus making the controller design more complicated. 

2. First in First Out (FIFO): The First In-First Out replacement policy chooses 

the page which has been in the memory the longest to be the one replaced, 

i.e., the page to be replaced is the oldest page in the cache, the one which 

was loaded before all the others. A pointer into the line space is maintained. 

On replacement, the line pointed by the pointer is ejected, and the pointer 

is incremented. The pointer is set to zero when the end of the line space is 

reached. 

3. Clock (or Second-chance): A pointer in the line space is maintained. On 

replacement, the used bit of the line pointed to by the pointer is checked. 

If it is set, it will be cleared and the pointer is incremented. The last step 

is repeated until a line with the used bit cleared is found and that line is 

ejected. The used bit is set on every access, and is cleared periodically. 

This method can be used to approximate LRU, but the periodicity of the 

clearing needs to be carefully set. It will be difficult to find an eject-able 
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line if the period is too long. If the period is too short, locality will be lost 

and thrashing will occur frequently. 

4. Least Recently Modified: The Li^^7bits of lines is modified only on writes. 

5. Not-Most-Recently-Used: The most recently used line is kept in the cache, 

one of the remaining lines is selected and replaced. 

6. Least Frequently Used (LFU) 

The page to be replaced is the one used least often of the pages currently in 

the cache. 

7. Last In First Out (LIFO) 

The page to be replaced is the one most recently loaded into the cache. 

8. Optimal (OPT or MIN) 

The page to be replaced is the one that will not be used for the longest 

period of time. This algorithm requires future knowledge of the reference 

string which is not usually available. Thus, this policy is used for comparison 

studies. 

Among all of the above algorithms, the usage-based LRU is most commonly-

used in current memory design. As mentioned above, implementation for LRU 

has to keep track of the age of every cache line, and thus requires every cache line 

to have extra bits. Though this makes the controller design more complicated 

and expensive, it works well in most architecture. FIFO and Random are non-

usage-based algorithms, non-usage-based algorithms use basis other than usage 

for replacement decision. It is shown that non-usage-based algorithms all yield 

comparable performance [Smi82 . 

4.2 Placement Policies for Cache Lines 

Techniques on holding prefetched data in intermediate space other than the first-

level cache has also been proposed. Jouppi [Jou90] proposed to use a stream 
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buffer to hold the prefetched data. Stream buffers prefetch cache lines starting 

at a cache miss address. The prefetched data is placed in the buffer instead of 

the cache. Stream buffers are useful in removing capacity and compulsory cache 

misses, as well as some instruction cache conflict misses. However, the stream 

buffer that proposed is actually a simple FIFO queues, and thus each time only 

the oldest element is visible to the processor. However, the newest replaced lines 

instead of older one are needed sometimes. As a result, the expected performance 

improvement in data cache is slight or nil. Therefore, multi-way stream buffer, 

which consists of four parallel stream buffers in a multi-way stream buffer and 

with LRU replacement policy, is proposed to solve the limited ability of stream 

buffer. When a miss occurs in the data cache that does not hit in any stream 

buffer, the least recently hit stream buffer is cleared and it is started fetching at 

the miss address. However, the utilization of buffer is still low, as only the first 

entry in each buffer can be searched. 

Jouppi [Jou90] has proposed another technique, miss caching, to minimize the 

miss penalty during a cache miss. A miss cache is a small fully-associate cache 

containing two to five cache lines of data. When a miss occurs, data is returned 

not only to the normal (upper) cache, but also to the miss cache under it, where 

it replaces the least recently used item. Each time the upper cache is probed, the 

miss cache is probed as well. If a miss occurs in the upper cache but the address 

hits in the miss cache, then the directed mapped cache can be reloaded in the 

next cycle from the miss cache. This replaces a long ofF-chip miss penalty with a 

short one-cycle on-chip miss. 

To make better use of the miss cache, victim caching is further proposed by 

Jouppi [Jou90]. Victim caching use a different replacement algorithm for the 

small fully-associative cache. Instead of loading the requested data into the miss 

cache on a miss, load the fully-associative cache with the victim line from the 

direct-mapped cache instead. With victim caching, no data line appears both 

in direct-mapped cache that hits in the victim cache, the contents of the direct-

mapped cache line and the matching victim cache are swapped. 
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4.3 Chapter Summary 

In this chapter, a brief review on different prefetching algorithms is given. Besides, 

review on existing replacement and placement policies is also introduced. 
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Chapter 5 

Replacement and Placement 
Policies of Prefetched Lines 

In order to minimize the cache pollution and localize the influences brought by 

prefetched lines, we have tried different approaches. The different schemes try to 

focus on handling the life time of prefetched lines in the cache, and placement 

of IAP lines. Firstly, we propose to use a mixed replacement policy with both 

IZ and LRU replacement policies, this scheme helps to shorten the life time of 

referenced and useless IAP lines and it retains the temporal locality of demand-

fetched lines. Secondly, the Priority Pre-Updating scheme (PPU) is proposed 

to shorten the life time of possibly erroneously prefetched lines. In addition to 

IAP scheme, we found that PPU can work well on caches employing different 

prefetching algorithms. Thirdly , we use a on-chip prefetch cache to hold the 

prefetched data to localize the influences of IAP lines, Following sections will give 

details on these three schemes. 
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5.1 IZ Cache Line Replacement Policy in IAP 

scheme 

Least Recently Used (LRU) is the most commonly used cache line replacement 

policy in both traditional cache designs and the IAP scheme mentioned in previous 

chapters. Though LRU is very popular in current cache designs, it still has many 

drawbacks. It is known that LRU cannot always replace the best line in the cache, 

and replace a wrong candidate line may cause cache miss afterwards. For example, 

consider the following code segment: 

f o r ( c o u n t = 0； count < 3; count++) 

f o r ( i = 0; i < 4 ； i++) 

a [ i ] += bCi]； 

let blocks A, B, C and D contain the data 6[0], 6[1], h[2] and b[3] respectively. If 

the cache is fully associated, with LRU chosen as the replacement policy, then the 

data blocks will be loaded into the cache in the following sequences: 

cache cache cache 

Z ] 回 [^ 
T T X 
^ 回 1^ 

(1) (2) (3) 

In (2), due to limited capacity, A is replaced by D as it is the least recently 

used one. However, block A is immediately in need after D when the outer loop 

is entered again (in (3)), and thus a cache miss follows. This situation continues 

until the end of the loops. The same situation occurs when FIFO policy is used. 

Though there is no prefect cache line replacement scheme found so far, a good 

replacement algorithm should try to reduce the probability of wrongly replacing 

a useful cache line. 

Although the IAP scheme can prefetch data accurately, the cache may not 

large enough to accommodate all lines brought in by demand fetch and prefetch 

22 



Chapter 5 Replacement and Placement Policies of Prefetched Lines 

requests. As a result, conflict misses occur frequently when the working set of 

the program is larger than the cache size, so we have proposed the Instant Zero 

replacement policy [SzY97] is proposed to handle the problem. IZ scheme is aimed 

at managing the cache replacement more efficiently and reducing the thrashing 

misses. It is found that the data in IAP lines are most likely to be referenced once 

only. If these prefetched lines are placed in the cache and obey the LRU cache line 

replacement policy, as they have lost the benefit of referencing in the near future 

once after being referenced, they are just occupying the precious space in cache 

without any contribution. As a result, most of them should be the best candidate 

to be replaced when either capacity or conflict misses occur. That is the reason 

why the proposed IZ replacement policy is used to handle these IAP lines. As a 

result, after the requested data of an IAP line has been referenced, it should be 

the best candidate to be discarded when there are conflicts among the cache lines. 

5.1.1 The Instant Zero Scheme 

In the IAP scheme, conflict misses are the main concern. If a line (say line i) 

is being referenced, and was not found in the cache, then a miss occurs. The 

idea of IZ is not to reduce the miss penalty caused by the reference to line i, 

but to minimize the probability of cache misses in the future. We can easily 

observe that most cache lines that generated by demand fetch or prefetch-on-miss 

possess certain degrees of localities, and those lines prefetched by the IAP scheme 

are likely to be referenced once only. As a result, the IAP lines that have been 

referenced should be the best candidate to be discarded if conflicts on the cache 

lines occur. Therefore, the replacement strategy in the IAP scheme is a mixed 

strategy by using both IZ and LRU. 

The mixed replacement policy of LRU and IZ can be summarized as follows. 

:1] The replacement policy for non-IAP scheme cache lines (either by demand fetch 

or by default prefetching) still obey the LRU policy. [2] For those lines prefetched 

by the IAP scheme will follow either LRU or IZ according to the following rule : 
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• If the prefetch address is not the same as the current data reference line, 

then this prefetched line will follow the LRU policy. On the other hand, if 

the prefetch is the same as current data reference line, then as mentioned 

before, the block preceding it or following it will be prefetched. And this 

prefetched line will obey the IZ policy, in which the priority of the line will 

set to 0 immediately after its reference. 

To indicate whether a line is prefetched by the IAP scheme, 1 extra bit for 

each cache line is needed. The cache lines in a four-way set associative cache will 

look like Figure 5.1. 

Di Hi li Si PTaĝ  Datâ  
•2 Hg l2 S2 PTag2 Data2 
D3 H3 l3 S3 PTag3 Dat^  
D4 H, l4 S, PTag, Data, 

^^^a^^^K^^^^^^^^^mmmmi^^^^mi^^^^^^^mmm^^^^^^m^^m^^^i^^^ 
1 2 1 1 

D Dirty bit 

H Hot bit, which indicates the priority of the corresponding data line 

I IAP bK, set if the line is prefetched by the IAP scheme 

S Line status bit (Valid bit): 

PTag Physical tag 

Data Cache Data 

Figure 5.1: A theoretical representation of a set in a four-way set associative cache 

The hot bits are used to indicate the priorities of the lines following LRU 

replacement policy. When a line in the cache is referenced or a new line is brought 

into the cache, the hot bits of the lines will be updated. In the former case, the 

referenced line will have the hot bits updated to the largest number within the 

same set. Those lines with hot bits value larger than the original value of that 

of the referenced line will have their hot bits decreased by 1，while others remain 

unchanged. In the latter case, the hot bits value of each cache line will be decreased 

by 1, and the one with new value equal to 0 will be displaced. The new line will 

have its hot bits value set to the highest number within the set. Therefore, lines 

24 



Chapter 5 Replacement and Placement Policies of Prefetched Lines 

with a lower priority are more likely to be kicked out, as they are the Least Recently 

Used one. In case of conflict in the cache lines, the line with hot bits equal to 0 

will be displaced in order to bring in a new line. 

line hotbits     

厂 0 0 10 1 1 

J 1 0 11 0 1 — 
QOt i </ ^^^.yv^ <tgSg ^^ ,¾¾ S* <NSS  

比1 ’ \ lOM iJmta. 
\ 2 0 01 1 1 ^ 

3 0 00 0 1 V L_ I  
^ ^ ™ ™ ™ ™ ^ ^ ^ ^ ™ ^ ^ — ^ ™ M ^ ^ ^ ^ ^ ^ M ^ ^ M ^ ^ — ^ ^ ^ — i ^ M ^ M ^ ^ M 

~ iowest priority \im 

Figure 5.2: Before a reference to an IAP line 

Now, let us have a look on how the IZ works within a set (say set i). Refer to 

Figure 5.2, if there has a miss to set i, then line 3 will be displaced. Since it is the 

one with lowest priority (the least recently used one). Suppose there is a reference 

go to line 0 before such a miss occurs, as it is an IAP line (with IAP bit set), it is 

then considered useless and will be the most likely one to be kicked out in future 

conflicts. Other than setting the priority of line 0 to 0, those lines with priorities 

lower than the original priority of line 0 should be incremented by 1. Those lines 

with priorities higher than the original priority of line 0 remain unchanged. As 

a result, the lines in the set with the priorities updated will look like Figure 5.3. 

Therefore, if there is a miss now, then line 0 instead of line 3 is the first one to be 

displaced. 

—iQW&ft priority Hm 
line ^ _ ^ _ ^  

厂 0 0 0 0 1 1 、 、 、 

J 1 0 11 0 1 
set 丨 < 2 t i T ^ ^ Baia  

、 3 0 01 0 1 

^ ^ ^ ^ ^ ™ ^ ^ ^ ™ ^ " ™ ^ ™ ^ ^ ^ ™ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ™ ^ ^ ™ ^ ^ ^ ™ ^ ^ ^ ^ ^ ™ i H ^ H B 

Figure 5.3: After reference to an IAP line 

The control flow of the proposed scheme is shown in Figure 5.4. 
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Figure 5.4: Control Flow of the IZ Replacement Policy 
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If a line is prefetched by the IAP scheme, then the IAP bit in the corresponding 

entry will be set to 1. These IAP lines will be treated as normal cache lines until 

there is a reference to it. When an IAP line is referenced, its priority will be set 

to 0 immediately after its reference to obey the IZ replacement policy. 

5.2 Priority Pre-Updating and Victim Cache 

In order to minimize the cache pollution and localize the influences brought by 

prefetched lines, we propose the Priority Pre-Updating scheme (PPU) to shorten 

the life time of possibly erroneously prefetched lines. The effect of adding a small 

fully-associative victim cache to hold the unreferenced prefetched lines ejected 

from cache is also discussed here. 

5.2.1 Priority Pre-Updating 

A PPU unit is added to keep track of all the prefetched lines according to their time 

of prefetching. Whenever there is a reference to a prefetched line, priorities ofthose 

former prefetched lines, which are unreferenced and precede the current referenced 

line in the PPU unit, will be decremented by a constant stride. Normally, the 

priority of a line updates only when there are references to any lines within the 

same set. However, under the PPU scheme, the priorities of other lines in different 

sets may also be changed. 

In fact, the PPU aims at reducing the cache pollution problem as well as 

retaining the potential temporal locality of other lines. Figure 5.5 shows the 

overview of the architectural model of the cache under the PPU scheme. 

As shown in Figure 5.6，each entry in PPU maps to a prefetched line in the 

cache. When there is a reference go to a cache line, say /me03 (entry 3 in PPU), 

since /meoi and /meio precede /me03 in PPU, their priorities will be decreased by 

1. The cache lines following /me03 in PPU，such as ^me^o, will not be affected. 
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Figure 5.5: Architectural model of IAP scheme with PPU 

5.2.2 Priority Pre-Updating for Cache 

The basic rules of PPU are — [1] All prefetch-on-miss lines will be recorded in PPU 

unit, and [2] When there is a reference, if the requested line is found in PPU unit, 

those preceding unreferenced lines will have their priority decrement by 1. [3] The 

corresponding entry in the PPU unit for this reference line will be deleted. 

5.2.3 Victim Cache for Unreferenced Prefetch Lines 

Owing to the long delay between references of successive data, the priority pre-

updating scheme cannot obtain significant improvement in the cache performance, 

Data which have high potential to be referenced in the near future, are sometimes 

trashed out before their actual reference. In order to minimize the influence of this 

situation, we use a small victim cache with few entries as a secondary buffer for 

the unreferenced prefetch line. Therefore, a small fully-associative victim cache 

with four entries, each with the same size as a cache line, is integrated with cache. 

As experimental results show that victim caches with FIFO and LRU replacement 

policies have similar performance, FIFO is chosen as replacement policy in victim 

cache, for the ease of implementation in hardware. 
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Figure 5.6: Illustration of PPU 
For each prefetched line discarded from the cache, it will first be checked if 

this line is unreferenced. If such a case is detected, this line will be placed in 

the victim cache. When the victim cache is full, the oldest line will be displaced. 

When there is a data reference to the cache, it will first check if the data appears 

in the data cache. If the data is not found in data cache, then it will check if the 

data is in the victim cache. If such a case happens, then one extra clock cycle will 

be spent to fetch the data from victim cache. 

Actually, the victim cache itself does not prefetch data but act as a secondary 

buffer to store prefetched data. Experimental results show that the cache per-

formance is significantly improved by using PPU with victim cache (PPUVC). 

Figure 5.7 gives a summary of the control flow of the PPUVC. 
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Figure 5.7: Control Flow of PPUVC 
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When a data line arrives, it will first check if it is a prefetched line. If so, 

then a record will be kept in the PPU unit. When there is a reference to any 

cache line, then priorities of the lines will be checked and updated. If there is any 

conflict occurs in the cache and a line has to be replaced, then the one with lowest 

priority will be discarded. If the line to be discarded from cache is an unreferenced 

prefetched line, then it will be placed to the victim cache. On the other hand, the 

lines that have been referenced will not be placed in the victim cache. These lines 

will be written back to lower level memory if they have been modified. Otherwise, 

they will be simply discarded from cache. 

5.3 Prefetch Cache for IAP Lines 

IAP lines have quite different property as compared to demand-fetch lines and 

prefetch-on-miss lines, since they are likely to reference only once during the entire 

program execution time. In order to localize their effects and minimize their 

influences to normal cache lines, a small on-chip prefetch cache is added [YoS98'. 

All IAP lines will be placed in the prefetch cache instead of the on-chip cache. 

A prefetch cache has the same structure as a cache, which consists of a series of 

entries with a tag, an valid bit, a dirty bit, a hot bit and a data line. Prefetch 

cache functions independently from the data cache. When there is a reference, 

both data cache and prefetch cache will be checked in parallel for any potential 

hits. Figure 5.8 gives the general picture of cache support in IAP architecture. 

Through the on-chip cache controller, the processor attempts to access the 

data in the primary cache. If the data is there, then the processor will retrieve it. 

If a primary cache rniss occurs, i.e., the data is not found in the primary cache, 

the cache controller checks to see if the data is in the secondary cache. If the data 

is found in the secondary cache, it is fetched into the primary cache. If the data is 

not present in the secondary cache, it is fetched as a cache line from main memory 

and is written into both the secondary cache and the primary cache before the 

processor retrieves it. For the sake of simplicity, we assumed these is no secondary 
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Figure 5.8: Cache Support in the IAP architecture 

cache misses. In other words, the secondary cache is assumed to be infinitely large 

to hold all data. It is possible for the data to appear in different levels of memory. 

The data is kept consistent through the use of write back methodology, in which 

modified data is not written back to memory until the cache line is replaced. 

For any data prefetched by the prefetch unit, if this prefetch is generated by the 

IAP scheme, then it will be placed in the prefetch cache instead of the normal 

data cache. The data in prefetch cache is also kept consistent through write back 

methodology. 

In addition to implementing LRU, the conventional cache replacement policy, 

in the prefetch cache, we also try using the IZ and FIFO replacement policies in 

it. We have just implemented one non-usage-based algorithm, FIFO, since non-

usage-based algorithms are found to have similar performance as mentioned by 

Smith [Smi82 . 

Similar to the victim cache, the prefetch cache itself does not prefetch data 

but only keep prefetched data available for use. Figure 5.9 gives a summary of 

the control flow of the prefetch cache. 

For each data line arrived in cache, it will be checked if it is a prefetched line. 

If the data line is a demand fetch line, then place it in the normal data cache. 

Otherwise, it will be further checked to see if it is prefetched by the IAP scheme. 

If such a case is detected, then it will be placed in the prefetch cache, and all 
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other types of prefetched lines will placed in the normal data cache. 

5.4 Chapter Summary 
In this chapter, two designs for hardware controlled replacement schemes and one 

replacement policy are proposed. By careful selection of data line to be replaced 

when a cache miss occurs, our replacement policies, IZ and PPUVC, will be able 

to reduce the cache pollution problem and retain the benefit of localities pose by 

normal cache lines. With the reference-once property of IAP lines, the placement 

design, prefetch cache, is able to localize the influence of IAP lines. Again, it helps 

to alleviate the cache pollution problem. 
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Chapter 6 

Performance Evaluation 

6.1 Methodology and metrics 

In order to have a deeper understanding of the algorithms proposed, and to show 

their potentials, we evaluate our proposed architecture using detail trace-driven 

cache simulation. We use eight SPEC92 i benchmarks to generate traces for our 

study. They include three integer-intensive programs: compress, espresso and li, 

and five floating-point intensive programs: nasa7, spice2g6, su2cor, tomcatv and 

wave5. Table 6.1 gives a brief description of the benchmarks used. 

SPEC Benchmark Suite 
Program Language Description 
compress C Adaptive Lempel-Ziv compression 
espresso C Boolean function minimization 

J i C Lisp interpreter solving the nine queens problem 
nasa7 Fortran Seven floating-point synthetic kernels 
spice2g6 Fortran Analog circuit simulator 
su2cor Fortran Quantum physics mass computation 
tomcatv Fortran Mesh generation program 
wave5 Fortran Maxwell's equation solver 

Table 6.1: SPEC Benchmark Applications used 

iSPEC is a trademark of the Standard Performance Evaluation Corporation 
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6.1.1 Trace Driven Simulation 

Clearly, the type of jobs (i.e., the job mix or instruction mix) will be important 

to the cache simulation, since the cache performance can be highly data and code 

dependent. 

For example, given a cache size of 8K lines with an anticipated miss rate of 

10%, (1 miss in 10 memory references) we would require about 80K lines to be 

fetched from memory before it could reasonably be expected that each line in 

cache was replaced. To determine reasonable estimations of actual cache miss 

rates, each cache line should be replaced a number of times (the accuracy of the 

determination depends on the number of such replacements.) This net effect is a 

memory trace of some factor larger is required, say another factor of 10, or about 

800K lines. That is, the trace length would be at least 100 times the size of the 

cache. Therefore, we chose to collect 100 millions instructions for each benchmark 

programs. 

With the help of xtrace facilities, each of the chosen benchmark programs in 

the SPEC92 suite was traced on the IBM RS/6000 workstation and 100 million 

instructions for each benchmark were collected. The process of trace-driven sim-

ulation is summarized in Figure 6.1. 

executable code 

^̂ _r 
——Prog.instrument 

\ instrumented code 

xtrace facilities P rog .x t race 
” processor information (via a pipe) 

—— Prog.interface 

i address^ data trace 

configurations • Simulator 

T 

simulation results 

Figure 6.1: Trace-driven simulator using xtrace 
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The benchmarks were firstly compiled on the RS/6000 workstation. The exe-

cutable codes were then instrumented by the program instrument, which inserted 

extra codes into the executable codes in order to extract the processor informa-

tion during the program execution. The instrumented codes were then handled by 

xtrace and executed on the RS/6000 machine. The extracted processor informa-

tion was then passed to the program interface via an explicit pipe. The program 

interface could be defined by the users to produce the desired trace format. The 

following information was recorded for each instruction that was traced: 

Inst^ddress, Inst-Content, < DataJief—Address if any >, < No_ofJBytesJief if any > 

The simulator is designed such that it can read in the configuration descriptions 

such as cache size, set-associativity, line size etc., and simulation objects such as 

the CPU and the memory system are created based on these parameters. The 

trace data were stored in hard disk, such that a number of simulators could be 

run in parallel on different machines to speed up the simulations. The simulator 

read in the trace recorded one by one. Then the content of each instruction was 

decoded and the opcode, the addressing mode together with the register(s) used 

in the address calculation were found. 

6.1.2 Caching Models 

The baseline cache and the proposed caches use a write-back, write-allocate pol-

icy, and an 8-entry prefetch queue. We assumed that the processor has an ideal 

instruction cache with no instruction cache miss incurred. An elementary archi-

tectural model, which consists of a processor with perfect pipelined and a 4-way 

associative data cache with a line size of 32 bytes and a total size of 16K bytes, is 

defined for the simulations and the replacement algorithm is assumed to be LRU 

(Least Recently Used). For comparison, each dimension of the cache (cache size, 

line size and set associativity) is varied respectively for different simulations (cache 

sizes range from 8K bytes to 32K bytes, line size from 16 bytes to 64 bytes, and 
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set associativities simulated from 1 to 4) while the other two are kept constant. 

The memory model of the second level cache in the simulations is assumed to 

be interleaved and its design and timing characteristics are shown in Figure 6.2. 

The memory is organized into a number of banks (or modules) to handle multiple 

words at one time rather than a single word. Each bank is one word wide which 

is the same as the first level cache and the bus. A cache line usually consists of 

a number of words ( for example, a 32-bytes line consists of eight 4-byte words). 

Whenever a cache miss occurs in the first level cache and a fetching request is sent 

to the second level cache, the banks will work simultaneously - bank 0 will start 

reading for the first word in the block, bank 1, the second word, bank 2, the third 

word,... etc. However, since there is only one memory bus between the first and 

second level cache, the transfers of the words must be processed sequentially. As a 

result, the time for a demand fetch request to transfer a cache line between the first 

level cache and the second level cache memory can generally be summarized by the 

equation C1 + C2 x {hlocksize-l), where Ci is the delay time for the first word to 

arrive after a cache miss (that is, startup_cnjerhead + transfer_time-for—a-Word) 

and C2 as a parameter that indicates the bus bandwidth between the first level 

cache and the second level cache (that is, transfer time for a word). In our 

experiments, Ci was assumed to be 6 and 6¾ to be 1. 

For a given cache line size, the time for a demand request (due to the first 

level cache miss) to finish is assumed to be equal to the time for a prefetch (to 

the second level cache) to finish. The prefetch requests are reside in the prefetch 

queue and the request Rp at the beginning of the queue will be sent to the second 

level cache if the queue is not empty and the bus to the second level cache is 

free. If the address of the pending prefetch request immediately follows that of 

the current request R � ( d e m a n d fetch or prefetch) being processed in the second 

level cache (i.e. address—of—Rp = address_ofJlc + 1), the interleaved memory, 

that is, the second level cache, does not need to wait until the request R � i s 

completely finished. It can continue to process R^ when some memory banks are 

free, although the memory bus may be still transferring the data of R^. In this 
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Figure 6.2: Memory Model of the simulator: (a) Interleaved memory (b) Timing 
of data access 

case, the startup overhead of R^ can be hidden and the time for completing the 

prefetch request will be equal to C2 x blocksize. 

The second level cache can only handle one request at a time, no matter it is 

a demand fetch or prefetch request. When a demand fetch miss occurs in the first 

level cache, it will try to fetch the data from the second level cache. However, it 

may be in a situation that the second cache is serving a prefetch request. In case 

of such conflict, the priority will given to the demand fetch miss and the prefetch 

request will be aborted and the demand fetch request will be started next cycle. 

For simplicity, the second level cache (memory) is assumed to be infinitely 

large. That is, there is no cache miss in the second level cache. 
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Each instruction is assumed to be executed in one cycle and no superscalar 

architecture is simulated and cache access upon a cache hit is assumed to be one 

cycle. 

6.1.3 Simulation Models and Performance Metrics 

In Table 6.2, the percentages of LOAD/STORE-UPDATE instructions in the 

instruction mix of SPEC92 benchmarks programs are shown. As it can be seen 

from the percentages of the table, LOAD/STORE-UPDATE is fully utilized by 

current compiler technology. Ranging from a few percent to over 95 percent of 

the LOAD/STORE instructions belongs to LOAD/STORE- UPDATE category. 

Percentage of instructions Executed 
Benchmark Total LOAD-UPDATE Total STORE- UPDATE Total Total 

LOAD STORE LOAD/STORE LOAD/STORE- UPDATE 

compress— 21.5 0.0 9 .厂 0.3 30.7 0.3 
espresso "22.0 11.1 3.9 “ 1.3 25.9 — 1 ^ 
li 25.4 0.8 15.2 2.3 40.6 “ 3.1 
nasa7 _42.8 42.0 1.7 “ 1.4 44.5 43^ 
spice2g6 —18.3 1.4 9.9 “ 1.1 28.2 ^ 
su2cor — 26.4 8.5 14.1 6.1 4 0 . 5 _ 14.6 
tomcatv "29.6 18.3 11.1 10.1 ~" ̂ 4 ^ 2 ^ 
wave5 26.5 1.4 9.7 “ 2.2 — 36.2 ^ 

Table 6.2: Percentages of LOAD/STORE-UPDATEs in SPEC92 Benchmark Suite 

Numerous experiments on various caching models were simulated using the 

collected SPEC92 traces as the input. 

• The simulated cache size ranged from 8K bytes to 32K bytes. 

• The simulated line size ranged from 8 bytes to 64 bytes. 

• The simulated set associativities ranged from 1 to 4. 

• The Time for a demand fetch request to transfer a cache line between the 

first level cache and the second level cache memory was equal to (Cl + C2 x 

{LineSize — 1)), where C1 is the delay time for the first word to arrive 
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after a cache miss, and C2 is a parameter that indicates the bus bandwidth 

between the first level and the second level cache. 

• The time for a demand fetch request to finish was assumed to be the same 

as that for a prefetch request to finish for a given cache line size. 

• The second level cache/memory was assumed to be infinitely large, and there 

was no cache miss in the second level cache. 

• When there existed a memory request Ra trying to kill another request i ^ 

that was currently being served, there would be one cycle time delay before 

the new request Ra could start. 

• The size of the prefetch queue was assumed to be eight entries. 

• Each instruction was assumed to be executed in one cycle and no superscalar 

architecture was simulated. 

• One cycle access time was needed for a cache hit. 

• Seven cache prefetch models were simulated : 

1. Data cache without any prefetching. 

2. Data cache with prefetch-on-miss. 

3. Data cache with the combined IAP scheme - using the IAP scheme 

for LOAD/STORE- UPDATE instructions and the default prefetch-on-

miss for non-LOAD/STORE-UPDATE instructions. 

4. Data cache as mentioned in 3, but with a mixed replacement policy 

consisted of LRU and IZ. 

5. Data cache as mentioned in 2, but with priority pre-updating and vic-

tim cache to tackle with the prefetched lines. The size of the victim 

cache is assumed to be 4 entries, with one entry equal to the size of 

one line in data cache. 

40 



Chapter 6 Performance Evaluation 

6. Data cache as mentioned in 3, but with priority pre-updating and vic-

tim cache to tackle with the prefetched lines. The size of the victim 

cache is assumed to be 4 entries, with one entry equal to the size of 

one line in data cache. 

7. Data cache as mentioned in 3, but with a prefetch cache added to hold 

the prefetched lines by the IAP scheme. 

• All the enhancements that mentioned in Section 2 were implemented in the 

IAP scheme simulated. And only LOAD/STORE-UPDATE instructions 

using index-displacement addressing mode was handled in the simulated 

IAP. While for any LOAD/STORE- UPDATE instructions using index-hased 

register addressing mode, the IAP scheme did not issue any prefetch request. 

In the past, cache design had been frequently taken as a back seat to CPU 

design: the cache subsystem was often designed to fit the constraints imposed 

by the CPU implementation. The execution time of a program fundamentally 

depended on how well the two units worked together to execute instructions. The 

execution time was most effectively minimized when the realities of cache design 

influenced the CPU design and vice versa. Furthermore, caches had traditionally 

been evaluated solely on the basis of hit (or miss) ratios - a metric that can often 

be deceiving. 

In order to reflect the actual performance of the algorithms proposed, two 

main metrics were used here to evaluate the performances of different schemes. 

The first performance metric is cycle per mstruction due to memory (date 

cache) misses. This performance parameter, MCPI, measures the average addi-

tional processor stall time due to the first level cache misses. It also helps to show 

the degree of degradation of CPU performance due to the data cache misses in 

terms of memory cycle stalls per instruction. Generally, it can be calculated with 

the execution CPI and baseline CPI by the equations: 

MCPI = CPIexecution — C PIhaseline 
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, p total-number-of—cycles—eocecuted 
LUI Lt^f o 0 ' Jr J. cXCCVjtioTi — 

totaLnumber^ofJnstructions 
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LLfvLi v_y 1 J. bascltTic — — — 

totaljnumher-ofJnstructions 

This is a better measurement parameter than the cache hit (or miss) ratio, 

as the penalty of a cache miss depends on the cache line size. Moreover, par-

tial cache hit (or miss) situation, which is the situation that when a block i is 

being prefetched, the cache line i is actually referenced, always occurs. Partial 

cache hit arises due to the limited bandwidth between the first level cache and 

the second level cache (or memory). When a partial hit occurs, the data pre-

fetching will be allowed to finished and the requested data are sent to the CPU. 

Thus the penalty of partial cache hits is not a constant, and it ranges from 1 to 

{maximum cache miss penalty — 1) (i.e. (C1 + C2 x {Block_Size — 1) — 1 ) ) . 

Under this situation, the cache hit ratio is much difficult to reflect the actual cache 

performance, as some part of the data is overlapped with the processor execution 

while other part of the data fetching time is visible to the processor. 

Since we assume the processor can execute each instruction in one cycle and 

there is an ideal instruction cache in the system, one may intuitively deduce that 

the fact that the memory bus between the processor and the first level cache is 

only 32-bit (4-byte) wide. It also means that at most 4 bytes can be transferred 

between the processor and the first level cache in one cycle. If the data needed 

to be loaded or stored by an instruction is longer than 4 bytes the instruction 

can only be finished after all required data are loaded in the processor and the 

execution time is sure to be longer than one cycle even when there is no cache miss. 

For example, a LOAD/STORE-DOUBLEWORD instruction will be executed for 

two cycles even when the data needed is found in the cache. As a result, the 

baseline CPI will probably be greater than one and this effect is more significant 

in the double precision floating point benchmarks such as nasa7 and tomcatv, in 

which most of the data are double words of 8 bytes long. Table 6.3 shows the 
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baseline CPIs found for the eight benchmarks programs used in our simulations. 

Benchmark baseline CPI 
compress 1.032 
espresso 1.011 
li — 1.075 — 
nasa7 1.444 
spice2g6 1.084 
su2cor 1.286 
tomcatv 1.407 
wave5 1.124 

Table 6.3: Baseline CPIs of SPEC92 Benchmark Suite 

Another one was the additional processor stall time due to the first level cache 

misses. 

The percentage of delay time reduction over no prefetch was defined as 

%DelayTimeReduction 二 

MemoryDelayTimeNoPrefetchCache — MemoryDelayTime prefetchCache 

MemoryDelayTimeNoPrefetchCache 

The metric can be used to show the extent of memory stall time reduces due 

to data cache miss with respect to an elementary cache using no prefetch scheme. 

6.2 Simulation Results 

In the following sections, the experimental results are presented to show the ben-

efits of the mixed replacement scheme in IAP, the impact of PPUVC in cache 

performance improvement and also the effect of cache performance with the use 

of a small prefetch cache. The architecture with the elementary caching model 

using no prefetch scheme is compared with the same architecture augmented by 

each of these schemes. 
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6.2.1 General Results 

• All the replacement and placement schemes that deal with IAP lines seemed 

to have no effect on the benchmark compress. It can be found out in Ta-

ble 6.2, only 0.3% of the total instructions (less than 1% of LOAD/STORE 

instructions) is of the type LOAD/STORE-UPDATE. As the prefetching 

actions of the IAP scheme is triggered by the LOAD/STORE-UPDATE 

instructions, only a few prefetched requests will be generated for the IAP 

scheme and their effects will be negligible. Therefore, IZ replacement pol-

icy, PPUVC and also the prefetch cache, which work upon IAP lines, had 

insignificant effect on the cache performance. Moreover, the combined IAP 

scheme would revert back to a simple prefetch-on-miss scheme and the two 

schemes suffered a slight performance degradation with respect to the no 

prefetch cache, which is probably due to the lack of constant stride refer-

ences in the program (as reflected by the lack of LOAD/STORE-UPDATE 

instructions). 

• Prefetch-on-miss, the traditional hardware prefetching scheme, generally has 

some improvements over most of caching models tested except for the bench-

mark compress. The combined IAP scheme showed performance improve-

ment over all caching models for almost all benchmarks used (except com-

press). 

Varying Cache Size 

Figures A.1, A.2, A.3 and A.4 in Appendix A shows the simulation results for 

the eight benchmark programs using cache size varies from 8K to 32K bytes. 

All experiments were done with caching models of 32-byte line size and 4-way 

associativity. 

As expected, one can find that the MCPI decreased as the cache size increased. 

However, for some benchmarks, such as su2cor and tomcatv, the pure IAP schemes 

44 



Chapter 6 Performance Evaluation 

showed little improvement when the cache size was small, i.e., 8K bytes, but ex-

hibited substantial improvement when the cache was increased to 16K and 32K 

bytes. For tomcatv, when the cache size is very small (8K bytes), the pure IAP 

scheme actually degraded the performance instead of improving it (can be ob-

served in Figure A.1 (g). This is probably due to the small cache size and the 

aggressive cache prefetching scheme. Even though the prefetching can be very 

accurate, those accurately prefetched data will displace each other away from the 

data cache before they have the chance to be used. However, as the cache size 

increased from 8K bytes to 16K bytes, this cache conflict problem was minimized 

and the IAP scheme started to have substantial cache performance improvement. 

However, in the three proposed schemes 一 IZ, PPUVC and prefetch cache, the 

performance improvement was generally more significant for small cache size in 

su2cor, tomcatv and wave5 (Figures A.1, A.2, A.3 and A.4). When the cache size 

increased, the performance improvement was comparable to the pure IAP scheme. 

The significant improvements for small cache size in IZ and PPUVC schemes 

are due to the careful selection of lines to be replaced. By using the specific dis-

placing criteria in these two schemes, lines, which are likely to be useless in the 

future, are displaced in cases of conflicts. When the cache size was small, conflict 

misses occurred more frequently. If a replacement algorithm can accurately pre-

dict which line should be discarded, then many future memory accesses can be 

eliminated. IZ scheme makes use of the reference-once property of IAP lines for 

deciding the replacement criteria, and it can accurately predict which line should 

be discarded for most of the benchmark programs. For the PPUVC, it helps to 

shorten the life time of possibly mispredicted lines as well as maintaining the 

properties of locality. 

Varying Cache Line Size 

Figures A.5, A.6, A.7 and A.8 in Appendix A shows the simulation results for the 

eight benchmark programs using different prefetching schemes. The experiments 

were done with caching models of 16K-byte cache size, 4-way associativity and 
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varying cache line size from 4 to 32 bytes. 

The MCPI curves for IAP schemes generally had U-like shapes. That is, the 

MCPIs of the programs first declined from small line size to the optimal line size. 

Then, the directions of the curve reversed and the MCPIs kept rising after the 

optimal line sizes. These observations are common to be found in most of the cache 

simulations. As the line size increases, more data will be fetched one time and 

the spatial locality between these data may be beneficial to processor execution. 

Moreover, it is also more economical on average to fetch a larger line one time than 

to fetch a smaller line several times separately because the time to fetch a line 

from memory is equal to Ci + C2 x {linesize - 1). As the line size increases from 

the smallest size to the optimal one, these effects are dominant and the MCPI 

continues to drop in this range. However, as the line size keeps increasing after 

that point, using larger cache line size for sequential prefetching seems to be not 

so effective. As the line size further increases, greater portions in the lines will 

contain data that will not be referenced in the near further and the lines will be 

kicked out without these data being touched. Moreover, increasing the cache line 

size elongates the time for fetching a line from the memory. This means the CPU 

must wait longer for the same amount of data needed (for example, the CPU is 

stalled longer for a 4-byte datum in a 64-byte line than a 4-byte datum in a 32-byte 

line). At the same time, this also increases the risks of killing the prefetches by 

demand fetches caused by real cache misses. Finally, the larger line size reduces 

the total number of distinct lines that can be put into the data cache and increases 

the conflicts between lines in the cache which may cause some useful data to be 

kicked out before it is referenced by the CPU. When these adverse effects of larger 

line size outweigh the benefits brought, increasing line size will mean higher miss 

rate, more processor idle time and lower CPU performance. These explain why 

the MCPI curves rose after passing the optimal line sizes. 

For some programs (compress, espresso, spice2g6 and su2cor), the MCPI 

curves showed that the caches worked better when the line size was small (4 

bytes). It is probably because the data of consecutive references are separated 
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far apart and do not reside in the same line. As a result, only small portions 

of the large lines fetched from the secondary memory will be referenced in the 

near future and the locality introduced by the large line size does not help much. 

On the other hand, with the smaller line size, the cache with the same size can 

contain more lines and it gives more flexibility for the IAP schemes to do accurate 

prefetching. As a conclusion, smaller cache line size is preferred in these situa-

tions. This also agrees with what Lee [Lee87] found about smaller line sizes for 

data cache. 

However, for espresso (Figures A.5, A.6, A.7 and A.8 (b)), the increasing MCPI 

curves ofthe schemes worked on IAP lines turn around and began to drop when the 

line size increases from 32 bytes to 64 bytes (similar phenomena were also observed 

for the cache only and prefetch-on-miss curves when the line size increased from 

16 bytes to 32 bytes). Although the explanation for this phenomenon is not very 

clear, we suspect that this is related to the data accesses with large stride values 

of 32 to 64 bytes in the program. From 4 bytes to 32 bytes cache line size, the 

number of lines that can be stored in the cache is reduced by half each time when 

the line size is doubled. However, if the stride size of the data accesses is large, a 

small increase in the line size does not capture more useful data. Consequently, 

increasing the cache line size below 32 bytes line size only causes cache pollution 

and results in poor cache performance. When the cache line size was increased 

from 32 bytes to 64 bytes, sequential data prefetching using large line size starts 

to have some effect and the cache performance is improved. 

It seems that the IAP lines in the program nasa7 had high temporal locality. 

For the PPU scheme, it could not obtain significant improvement in prefetch-

on-miss only cache where only prefetch-on-miss lines are involved. However, the 

PPU could obtain a quite significant decrease in MCPI, especially when the line 

size was small, in cache with IAP scheme. IAP lines in nasa7 has high temporal 

locality, which could be further confirmed by its performance degradation in IZ 

scheme when comparing with the combined IAP (Figure A.5 (d)). In IZ scheme, 

an IAP line would be kicked out very soon after it has been referenced, due to the 
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underlying assumption of low temporal locality in IZ scheme. However, it seems 

that this assumption is not true in nasa7. 

Varying Cache Set Associative 

Figures A.9, A.11, A.10 and A.11 in Appendix A shows the effect of increasing the 

cache set associativity. As it is expected, from the set associativity of 1 to 2, the 

performance was generally improved (except the benchmark su2cor). With a one-

way associativity (direct mapping) cache, every line could be placed at only one 

position. If it happens that two sequences of data accesses, for example, two arrays 

inside the same loop, are mapped to similar sets, they will continually displace 

each other's data line in the cache, although the displaced line may contain data 

that will be referenced in the near future. As a consequence, miss rate will be 

increased and the cache performance will be degraded. It accounts for the large 
/ 

improvement from one-way to two-way set associative cache. This effect was more 

obvious for the benchmark nasa7 (Figures A.9, A.11, A.10 and A.11 (d)). For 

the scheme PPUVC in the prefetch-on-miss-only cache model, the performance 

difference between direct-mapped and 2-way set associative was less significant 

than other schemes which involve IAP lines. For the direct-mapped case, IZ 

was actually reverted to combined IAP scheme. However, for prefetch cache and 

PPUVC in IAP scheme, the program nasa7 had a lower MCPI in direct-mapped 

situation than in others. The reason is that IAP has high accuracy of prefetching, 

and this aggressive prefetching prefetches data into the cache before their actual 

references. From Figure 6.2, we can find that almost all (over 90%) of the data 

references belong to the LOAD/STORE-UPDATE (constant stride) type and are 

mainly chains of array or pointer references. With this large amount of constant 

stride references, the chance of conflicts induced by the address mapping will 

probably be very high. Due to the relative high conflict misses in direct-mapped 

cache, some of these useful IAP lines were trashed out before their references. 

Therefore, there were wastes of clock cycles, as these lines had to fetch into the 

cache again in the future. With the use of victim cache, to hold this lines, in IAP 
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scheme, it could extend the life time of these lines in the cache and avoid many 

potential memory accesses. Similar performance improvement could be observed 

in prefetch cache for nasa7, in which the fully-associative prefetch cache provided 

a place to hold these IAP lines before their references. In both cases, the IAP 

lines could stay somewhere near the cache before their references, and fetching 

from these buffer space was much faster than fetching the data from lower level 

memory. 

However, the cache performance was more or less the same for 2-way and 4-

way set associativity. Although increasing the associativity gives more flexibility 

for cache line placement, at the same time, the number of sets in the cache will be 

halved and the performance will be less dependent on the associativity in these 

situations. 

6.3 Simulation Results of IZ Replacement Pol-

icy 

From the figures in Appendix B, most of the experiments showed some improve-

ments when the IAP scheme together with the new replacement policy IZ was 

implemented. More importantly, the implementation of the IAP and IZ in cur-

rent architecture is not difficult, as no processor architecture changes are necessary, 

but only some simple additional on-chip cache hardware is required. 

• The effects of the IZ scheme could be classified into two main streams. 

The first group can achieve significant performance improvement, the sec-

ond group shows sightly improvement or nearly coincident with the original 

scheme prefetch-on-miss scheme. 

For some of the benchmarks such as spice2g6, espresso, li and nasa7, the 

default prefetching scheme seemed to have no impact to the cache perfor-

mance. The curve for the IZ scheme almost overlapped with each other. 

However, for su2cor, tomcatv and wave5, the IZ scheme helped to reduce 
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the memory stall time further. This can be explained as follows. 

In the spice2g6, espresso, li and nasa7 programs, the reason may either [l]the 

spatial and temporal localities are weak in these programs, or [2] most of data 

references with strong temporal locality are referenced by LOAD/STORE-

UPDATE instructions. It seems that the former one is more likely, since 

performance degradation will surely be observed if case[2] is true. As a re-

sult, IZ just had no further significant improvement when comparing with 

combined IAP in these programs. On the other hand, for su2cor, tomcatv 

and wave5, a significant portion of the data references with strong locali-

ties are referenced by non- LOAD/STORE-UPDATE instructions and the 

numerous amount of prefetched lines generate conflicts and misses in the 

cache. The IZ scheme helps to resolve these conflicts and improve the cache 

performance. 

• Referring to Figures B.1 to B.9. The memory stall time reduction that could 

be achieved by the IZ scheme ranged from about a few percent to over 90%, 

with an average of about 50%. These figures really show the potentials of 

the IZ schemes. This kind of improvement in cache performance over a wide 

range of benchmark programs (instead of some small routines or kernels such 

as Livermore Kernels) is really substantial. Furthermore, this performance 

improvement can be obtained by just modifying the on-chip cache hardware 

and no change to the processor architecture (such as the instruction set) is 

required. 

6.3.1 Analysis To IZ Cache Line Replacement Policy 

With reference to the figures in Appendix B, some factors affecting the perfor-

mance of IZ could be observed. 

• Instruction Mix of Benchmark Programs 

When a benchmark program, such as compress, contains only few LOAD/STORE-

UPDATE instructions, there was no improvement brought by the IZ policy. 
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This is up to our expectation, as IZ policy is mainly applicable to the lines 

prefetched by the IAP scheme. When there are only few of IAP lines, the ef-

fect brought by IZ will naturally be small. On the other hand, for benchmark 

programs with lots of LOAD/STORE- UPDATE instructions, IZ contributed 

significant improvement on the cache performance when the cache was not 

large enough to hold all the demand fetched and prefetched lines. This can 

be reflected by the simulation results of su2cor and tomcatv. 

As a result, the number of LOAD/STORE- UPDATE instructions affects the 

performance of cache with IZ policy. 

• Cache Size 

With reference to the two benchmark programs, su2cor and tomcatv, IZ 

had obtained the greatest improvement among the eight programs, it could 

be easily observed that there was larger improvement on cache performance 

for smaller cache size than large cache size. This scenario could be easily 

observed in the benchmark program wave5. The reason is that for larger 

cache size, the cache has enough space to hold the lines fetched or prefetched 

from the main memory. Thus the replacement of lines occurs less frequently, 

the effect of IZ cannot be observed then. However, as small cache size is 

not enough to hold all the data that needed, and thus replacement of lines 

occurs frequently. As a result, IZ can improve the utilization of cache space 

by displacing the referenced IAP lines out instead of other lines that may 

possess strong spatial or temporal localities. 

Generally, the number of prefetched lines actually referenced increased for 

cache with IZ scheme together with the combined IAP. This can be explained 

by the fact that some prefetched lines may have to wait a long time before 

their actual references, when there is not enough space in cache, some of 

these lines have to displaced out by LRU scheme before referencing. It will 

certainly be a waste of cycle time, as these lines have high probabilities for 

being referenced later and they may have to load into cache again. However, 
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by using IZ scheme, these lines could stay in the cache for a longer time. As 

those referenced IAP lines will be displaced instead of other prefetched lines 

which have higher potential to be referenced in the future. 

IZ did show its worthiness on cache performance for small cache size and when 

the cache could not accommodate all the lines that contain data to be referenced. 

6.4 Simulation Results for Priority Pre-Updating 

with Victim Cache 

For any data reference, sequential checking of data cache and victim cache was 

performed. The data cache will be checked first to see if the requested data is 

there. If the data is not found in data cache, then a miss occurs, the cache 

controller will be informed to search the victim cache. If the data is found in the 

victim cache, then the processor use one more cycle to fetch the data from the 

victim cache. Otherwise, lower level memory should be involved. 

Referring to the figures in Appendix C, the performance improvement in the 

eight benchmark programs can be classified into three categories: 

1. the performance improvement was large (over 20%), 

2. the performance improvement was slight to moderate (1% to 20%), 

3. the improvement was nil or caused a minor degradation. 

6.4.1 PPUVC in Cache with IAP Scheme 

The metric on comparison were based on the comparison with combined IAP. The 

delay time reduction figures that quoted, was based on a 16K bytes cache size, 32 

bytes line size and 4-way set associative. 

IAP scheme has high accuracy in performing prefetching, the number of mis-

predicted lines is few. Due to its accuracy, cache misses are highly reduced. As a 

result, prefetch-on-miss lines are few, Figure 6.3 gives a comparison of number of 
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prefetch-on-miss lines in cache with IAP and prefetch-on-miss only cache. More-

over, the references to prefetch-on-miss lines is few in the cache model with IAP 

scheme. Figure 6.4 shows the actual number of prefetch-on-miss lines referenced 

when comparing with the total number of prefetched lines. These explain the 

insignificant improvement for PPU in IAP schemes. 
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Figure 6.3: Comparison of number of prefetch-on-miss lines in IAP cache and 
prefetch-on-miss-only cache 

The programs can be divided into three groups, the first group consists of 

su2cor and tomcatv, which could achieve over 20% of memory delay time reduction 

for the default cache parameters .̂ 

The second group consists of espresso, li and nasa7, in which each could obtain 

few percent of performance improvement. 

The third group consists of compress and wave5, as a little performance degra-

dation was observed. The classification is based on the default cache parameters. 

Though wave5 could obtain quite large performance improvement when the cache 

size was small, it is classified as in the third group for the sake of consistency. 

2l6K bytes cache size, 32 bytes line size and 4-way set-associative 
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Figure 6.4: Percentage of prefetch-on-miss lines referenced in total number of 
prefetched lines 

Actually, the effect of PPUVC for IAP lines is not great. The reason is that 

IAP scheme has very high accuracy of prefetching, and thus mispredicted lines 

are few. On the other hand, it may degrade the performance when the time 

between two successive references to IAP lines is long. Thus these IAP lines, which 

are waiting for being referenced, may be determined as useless and have their 

priorities pre-updating by the mechanism. They bear the risks to be discarded 

before their actual reference. This situation will cause more potential cache misses 

and increases the number of memory accesses. 

For the first group of programs, the performance improvement for the two 

programs was actually less than that of PPUVC in prefetch-on-miss-only cache 

when the cache size was small. At which PPUVC in IAP could obtain only 28% 

of memory delay time reduction, while PPUVC in prefetch-on-miss-only cache 

could obtain 35%. The reason maybe possibly be due to relative small number 

of prefetch-on-miss lines in the IAP cache, and thus pre-updating of mispredicted 

prefetched lines has little effect. 

6.4.2 PPUVC in prefetch-on-miss Cache 

From the simulation results, one can easily see that PPU combined with vic-

tim cache resulted in better cache performance on average. All programs except 
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spice2g6, in which with two curves nearly coincident, could achieve a further re-

duction in memory delay when compared with prefetch-on-miss-only cache. 

For the program compress, it had a little performance degradation when com-

paring with no prefetch cache, however, the degradation was small in this case 

when comparing with IZ. As compress posses low spatial locality property and 

there are few constant stride references, and therefore, the prefetched data by 

prefetch-on-miss are most likely to be useless. These caused a waste of clock cycle 

as well as pollution of the cache. For the PPU scheme, unlike IZ which only work 

on IAP lines, it helps to shorten the life time of mispredicted lines, and thus a 

better result could be observed when comparing with IZ. 

The programs can be divided into three groups. The first group could achieve 

up to 49% of memory delay time reduction, which was about 46% further re-

duction than prefetch-on-miss. This group of programs consists of su2cor and 

tomcatv. For the default parameters: 16K bytes cache size, 32 bytes line size and 

4-way set associative, su2cor could achieve 35.6% of Memory delay time reduc-

tion in PPUVC scheme, while prefetch-on-miss could obtain only 2.4%. Tomcatv 

could achieve 43.0% of memory delay time reduction while prefetch-on-miss only 

obtained 15.3%. i.e., there were about 33% and 28% further reduction in memory 

delay in su2cor and tomcatv respectively. 

The second group consists of espresso, li and wave5, in which they could achieve 

1% to 3% of memory delay time reduction. Note that when implementing PPUVC 

in IAP scheme, wave5 had a little performance degradation (about 1%) for the 

cache with default parameters. 

The third group consists of compress, nasa7 and spice2g6, in which the curves 

of nasa7 and spice2g6 were nearly coincident with that of prefetch-on-miss. How-

ever, compress showed a little performance degradation when comparing with no 

prefetch cache. 
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The Effect of On-chip Cache Size on Victim Cache Performance 

When the cache size is small, the number of available lines in cache is few. As 

a result, thrashing of cache lines occurs frequently. Many prefetched lines are 

displaced from cache before their references. Therefore, memory cycles have to be 

spent to fetch these lines back into cache during their actual references. With the 

addition of priority pre-updating and victim cache, those prefetched lines that have 

not been referenced for a long time after their fetching will be discarded first. The 

miss penalty for erroneously displacing useful lines is reduced by using the small 

victim cache. This situation easily follows from the fact that some benchmark 

programs could obtain significant performance improvement when the cache size 

was small, while less promising results when the cache size became larger. The 

programs that highly illustrated this including tomcatv and wave5. Tomcatv could 

achieve a 50% further reduction in 8K bytes cache, when it is compared with no 

improvement when the cache size increased to 32K bytes. Wave5 obtained 27% 

further reduction in memory delay comparing with no improvement for 32K bytes 

cache. Figures C.10, C.11 and C.12 show the memory delay time reduction of 

victim cache by varying cache size. 

The Effect of Line Size of On-chip Cache on Victim Cache Performance 

When line size is large, the number of lines in the cache is reduced and thrashing 

of lines occurs more frequently. With PPUVC, the penalty due to discarding use-

ful data is minimized. Victim cache is able to hold few lines that are likely useful 

in the future. At the time these lines are actually needed, one cycle is needed to 

fetch them to use by the processor comparing with the long miss penalty when 

fetching from lower level memories. The program su2cor obtained 47% further 

memory delay time reduction with 64 bytes line size while there is no significant 

improvement for 4 bytes line size. With line size 4 bytes, tomcatv had no signif-

icant further improvement compared with prefetch-on-miss-only cache, however, 

the deviation between memory delay time reduction in of prefetch-on-miss-only 
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cache and the cache with PPUVC became greater. In which tomcatv had a 59% 

of further reduction in memory delay for 64 bytes line size. The same situation 

was observed in wave5, which could obtain a 14% of further memory delay time 

reduction. Figures C.13 and C.14 shows the results of these two benchmarks. 

The Effect of Set Associativity of On-chip Cache on Victim Cache Per-

formance 

Comparing with prefetch-on-miss, most programs could obtain better performance 

improvement with victim cache when the degree of associativity was low. When 

the associativity was low, say, direct-mapped, thrashing of lines occurs frequently. 

For direct-mapped cache, memory blocks would map to the same cache line due 

to the mapping algorithm such as bit selection. This may result in the situation 

that numerous blocks compete for the same cache line，while many cache lines are 

remained unused. Consequently, utilization of cache is low, arid also many data 

are discarded before being referenced. The use of victim cache helps alleviate 

this problem. Figures C.16 to C.18 show the results of varying set associativity. 

Programs such as espresso, lisp, nasa7, su2cor, tomcatv and wave5 could achieve 

a further memory delay reduction ranged from 8% to 46%. While compress and 

spice2g6 had similar performance as the original one in direct-mapped cache. 

The results for victim cache show that the addition of a small amount of hard-

ware can dramatically improve the system performance. It is difficult, mostly 

impossible, to derive algorithms for caches that can optimize the system perfor-

mance of every programs and applications. An algorithm that can satisfy most of 

the programs seems to be more applicable and practical. 

6.5 Prefetch Cache 

The default size for the prefetch cache was lK bytes. Simulations were done on 

cache model with prefetch cache sizes ranged from 256 bytes to 4K bytes and 

results are shown in Figure 6.5. Prefetch cache of size lK bytes is a reasonable 
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choice, though larger size seems to have better performance for certain bench-

marks. However, larger size means larger delay. Different set associativities were 

also perform in the prefetch cache, the associativity ranged from direct-mapped 

to fully associative. 

For any data references, parallel checking of prefetch cache and data cache 

was performed. It is assumed that there was no extra cycle delay for checking the 

prefetch cache. We chose lK bytes prefetch cache size, 32 bytes line size, 4-way 

set associative and fully-associative, as the default parameters. 

16 Kbytes cache size, 32 bytes line size, 4-way set-associative 
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0.5--| : ： , 0.4--: ; ； II [ 丨 ： . \ 
瞧： ： ； ： 。 [ - ' ‘ ： °-5--; - “ 

0 I I I I 0 丨卜_ 1_|丨,.避 _|Ui fSiNji 0 I 國 I I W — 
1 2 4 fu l ly - 1 2 4 fu l ly - 1 2 4 fu l ly -

set assoc. assoc set assoc. assoc set assoc. assoc 

d. nasa7 e. s p i c e f. s u 2 c o r 

2.5 丁 1.2 T  

2 J T | 圓 1 i 丨： ： 1 1 ff[ 
I I psrl 0.8 --丨 r ‘ . 

‘i.;:l: S I IT ‘ � . “ ; : ； 
p : 、、 : ： 0 . 4 一 丨 . , , 

。 . 5 - | 丨 ； : \ 。.2-1 ‘ , : 

0 I I I I 0 I fM丨 I I 
1 2 4 fu l ly- 1 2 4 fu l ly -

set assoc. assoc set assoc. assoc 

g. t o m c a t v h. w a v e 5 

Figure 6.5: The effect of Prefetch Cache size on cache performance 

We examined further the performance curves by dividing the eight benchmarks 
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into four groups: [1] performed extremely well, [2] performance improvement was 

moderate, [3] yielded a slight improvement to the performance, and [4] contribu-

tion to the reduction in data access penalty was nil. 

Prefetch Cache with FIFO Replacement Policy 

The following observations were obtained in the fully-associative prefetch cache. 

All programs except nasa7 obtained better performance than the basic IAP, and 

all obtained better results than prefetch-on-miss-only cache. The memory delay 

time reduction was up to 99% ^ as found in tomcatv. 

The first group is formed by su2cor and tomcatv with memory delay time 

reduction ranged from 51% to 99% in fully-associative prefetch cache. There 

was 44% to 55% further reduction than basic IAP. In Figure D.1 the delay time 

reduction of these two programs were clearly shown. 

The second group contains only wave5, which achieved 81% memory delay 

reduction over no prefetch, and was 21% further performance improvement than 

basic IAP. Figure D.2 show the simulation results of wave5 in terms of its the 

delay time reduction. 

The third group includes espresso, li and spice2g6. The memory delay time 

reduction was 33% up to 83%, which was 1% to 4% further reduction. Refer to 

Figure D.3 for the results of this group of programs. 

The fourth group contains only compress and nasa7, which had got no per-

formance improvement, and nasa7 had a slightly performance degradation when 

comparing with basic IAP. Figure D.4 shows the results. 

Prefetch Cache with LRU Replacement Policy 

In the fully-associative prefetch cache, the programs espresso, su2cor, tomcatv 

and wave5 showed better system improvement. The performance improvement of 

compress, li and spice2g6 was slight. Besides, nasa7 had a slightly performance 

^A11 percentages quoted are obtained by using the cache parameters: 16K bytes cache size, 
32 bytes line size and 4-way set associative 
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degradation. In fully-associative prefetch cache, all benchmark programs showed 

same pattern and similar degree of performance improvement as that of FIFO 

prefetch cache. Refer to Figures D.13 to D.16 for the results of the four groups of 

programs in LRU prefetch cache. 

Referring to Table 6.2, only 0.3% of the instructions executed belonged to 

LOAD/STORE- UPDATE in compress, thus IAP lines were few in this benchmark 

program. As a result, the influence and usage of prefetch cache is insignificant. 

However, a different situation was observed in nasa7, which contained up to 43.4% 

of instructions executed belonged to LOAD/STORE-UPDATE, resulting in nu-

merous number of IAP lines. The prefetch cache may not be large enough to 

hold all the prefetched IAP lines, and some unreferenced IAP lines are thrashed 

by new prefetched IAP lines. The thrashing misses caused the degradation of 

performance in nasa7. As a result, nasa7 got a performance drop in both prefetch 

cache with FIFO and LRU replacement policy. 

Prefetch Cache with IZ Replacement Policy 

Using IZ replacement policy in fully-associative prefetch cache showed degradation 

in the performance. However, the degradation was of a much lesser extent in the 

4-way prefetch cache. In some programs, IZ in 4-way prefetch cache could even 

achieve similar performance as that of FIFO. 

The Effect of Set Associative on Prefetch Cache Performance 

Basically, prefetch cache with 4-way set-associative exhibited similar performance 

as that of fully-associative prefetch cache. However, in the programs su2cor and 

tomcatv, the performance improvement was of a lesser extent. Programs such as 

tomcatv could only achieve a maximum of 70% and 81% memory delay time reduc-

tion when using LRU and FIFO replacement policy respectively. Another bench-

mark su2cor also had smaller performance improvement. The smaller promising 

performance improvement in 4-way set-associative prefetch cache maybe due to 

the reason that IAP lines in tomcatv and su2cor were mapped to some particular 
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sets, leaving other sets unused and thus thrashing of lines in the prefetch cache 

occurs. Utilization of prefetch cache is thus lower than that of fully-associative 

prefetch cache, in which the thrashing misses is minimized or eliminated. 

Comparison of the Three Simulated Replacement Policies 

In general, LRU replacement policy is a better choice for data cache when ignoring 

its costs [Smi82]. However, among all replacement policies that simulated, FIFO 

seems to be the most suitable one in prefetch cache. Figure 6.6 illustrates the 

reason why there is performance difference between LRU and FIFO replacement 

policies. 

Time ] ^ "youngest" line RFO 
line., ^ —• line., H 丁“ ̂ -, , 

^ _ ^ The displacement 
0 line.^ line.2 1 order of lines in Set i 

, line.g line.g f (all lines are valid 
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； "Aie" //ne" 
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Figure 6.6: An illustration of the performance difference between LRU and FIFO 

In Figure 6.6 ,̂ we consider a set i which is full. All cache lines {linen, /me^2, 

^Referenced lines are shaded 
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linci2,, linei4) in set i are valid and unreferenced originally at To. Please be re-

minded that the cache lines are drawn according to the order of their displacement 

(i.e., their priorities), but not representing their actual placement in cache set i. 

That is, the one with lowest priority will place at the bottom, while the one with 

highest priority at the top. If there is a reference to /mej4, which is the one with 

lowest priority, at time J\ in Figure 6.6b. Then lirWi4 will become the highest pri-

ority one in the set when following LRU replacement policy. However, it is obvious 

that its priority will be the same when FIFO replacement policy is used. At T2, 

there is a new prefetched line brought into set i, thus a line has to be discarded to 

accommodate the new line. As a result, we can see from Figure 6.6d that /me^3 is 

discarded if follows LRU replacement policy, but linea is displaced when follows 

FIFO policy. As mentioned before, IAP scheme poses very high accuracy, and 

thus linCis is very likely to be referenced in the future. Besides, most IAP lines 

pose referenced-once properties, linei4 is most possibly useless in the future. Thus 

discarding linei4 instead of linei^ may improve the system performance. These 

illustrate why LRU replacement policy performed worse than FIFO replacement 

policy. 

Using IZ replacement policy prefetch cache yielded the worst performance 

improvement. When applying to a data cache which mixed with IAP lines and 

normal cache lines, IZ replacement policy yielded good results. However, when 

comparing with other simulated replacement policies, it is not strange for IZ to 

obtain poor performance improvement in prefetch cache which contains only IAP 

lines. IAP lines pose reference-once properties, and thus once they are referenced, 

they are considered useless and can be discarded. In prefetch cache, all are IAP 

lines, and thus there exists cases that some referenced IAP lines remained in the 

prefetch cache for the entire executing time of the program. As an example, 

consider the situation in Figure 6.7. In which the oldest line linei4^ may remain in 

the prefetch cache for the entire execution time of program. 

Moreover, FIFO is a good choice as FIFO replacement policy requires the 

simplest hardware complexity among the above three replacement policy. 

62 



Chapter 6 Performance Evaluation 
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Figure 6.7: An instance of line activities in IZ prefetch cache 

Figures D.13 to D.16 show the results for the four groups of programs in 

FIFO and LRU, all the three simulated policies in 4-way set associative and fully 

associative prefetch cache. 

The results for prefetch cache show that the addition of a small amount of 

hardware can dramatically improve the system performance. 

6.6 Chapter Summary 

In this chapter, the performance of IZ, PPUVC and prefetch cache is evaluated 

using cycle by cycle simulations of the eight SPEC92 benchmarks. For comparison, 

the performance of a traditional hardware prefetching scheme, prefetch-on-miss, 

is also included. Besides, to show the potential of the proposed schemes, we also 

include the performance of the combined IAP scheme. Cache models with varying 

cache size, line size and associativity are simulated. Except the slight performance 

degradation for the benchmark program compress, the results show that the three 

schemes are generally effective in reducing the data access penalty in almost all 

the other benchmark programs tested. 

It is observed that IZ, PPUVC and prefetch cache outperform the combined 

IAP for most of the eight benchmark programs. Ranging from a few percent up 

to over 50% of further memory delay time reduction when comparing with the 

combined IAP scheme. 
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Architecture Without 
LOAD-AND-STORE Instructions 

The IAP that has been proposed so far requires the definition of LOAD/STORE-

UPDATE compound instructions in the architecture. Power series such as the 

IBM/MOTOROLA/Apple PowerPC and the IBM RS/6000 contain such kind of 

instructions. For those machines without LOAD/STORE-UPDATE instructions, 

the IAP scheme still can be easily extended. 

First, some architectures have compound instructions that are functionally 

equivalent to the LOAD/STORE- UPDATE instructions defined in IBM PowerPC 

or RS/6000. One of these instructions is the LOAD/STORE-MODIFY in the 

HP's Precision Architecture (PA RISC) 1.1. As a result, the IAP scheme can be 

easily extended to this type of machines without any difficulties. Second, for those 

machines without similar kind of compound instructions, if an update-counter per 

register is available, then the IAP scheme can still be implemented. The function 

of the update-counter UC is to book-keep its corresponding register R(UC), if 

the register is an index register used by some LOAD/STORE instructions using 

index-displacement addressing mode in a loop, the value of the stride used by 

the index displacement LOAD/STORE instructions will be learnt during the first 

iteration of the loop and will be stored into the update-counter UC. Consequently, 

very accurate data prefetching comparable to the IAP scheme can be carried out 
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in the remaining iterations of the loop to improve the cache performance. As long 

as the IAP scheme can be implemented, the IZ scheme can also be used. 

Moreover, to show the potential of Priority Pre-Updating scheme, it is possi-

ble to import pre-updating into architectures which employ different prefetching 

algorithm, no matter it is prefetch-on-miss or one-block-lookahead. 
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Conclusion 

In this dissertation, we propose two cache line replacement policies — IZ and 

PPUVC, and one placement policy - prefetch cache. These three policies are 

specially designed for prefetched lines. 

The first replacement policy,called IZ, is to be implemented with the IAP 

scheme. This is used to improve data cache performance. From our simulation 

study, we found that with this replacement policy built into the combined IAP 

scheme, the processor idle time due to memory access can easily be reduced by 

over 20%. In some programs, this replacement can even achieve a 99% of memory 

delay time reduction. 

In fact, the IZ replacement policy with IAP scheme has very good potential 

to be imported into current cache designs. The reasons are: [1] no change in the 

architecture is required, [2] no new compiler optimization technique is required, 

3] the IZ scheme can work with different kinds of replacement policies, [4] the 

IZ with IAP has high potential to improve system performance. Though the 

controller design for the IZ replacement strategy is similar to LRU, it is worthy 

to implement due to the low cost of hardware. 

The second replacement policy, Priority Pre-Updating, helps to determine 

which data should be replaced during cache misses by shortening the life time 

of those suspected erroneously prefetched lines. However, using PPU solely may 

not be able to obtain significant improvement. The program data set is usually 
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much larger than the cache size, and thus thrashing of unreferenced useful lines 

occurs frequently. Therefore, a small fully-associative victim cache is added to 

hold those unreferenced prefetched lines, which have been displaced from data 

cache due to capacity or conflict misses. By using combined PPU and victim 

cache, it is possible to achieve iip to 50% memory delay time reduction in some 

of the SPEC92 benchmark suite in the cache model with prefetch-on-miss only. 

PPUVC can achieve up to 100% of memory delay time reduction in cache model 

with IAP scheme. 

Victim cache consists of only four entries, each entry is of the same size as 

a cache line, and is insignificant when comparing with the size of data cache. 

Therefore, it is worthy to implement it in current architecture. A more important 

concern, perhaps, is the extra hardware logic necessary to search the PPU and 

updating the cache. With the even-increasing amount of hardware logic available 

on a chip, the quantity of it involved is not really a serious problem. 

The placement policy 一 prefetch cache is used to hold prefetched IAP lines. 

With the assumption that the data cache and prefetch cache will be checked for a 

data reference, it is possible to achieve up to 90% of memory delay time reduction. 

Hardware costs are now low enough to permit extra hardware for prefetch 

cache, i.e., the amount of cache available for data is not necessarily reduced as a 

prefetch cache is added. As a result, it is worthy to implement prefetch cache in 

current architectures. This technique helps to reduce cache pollution and increases 

system performance. 

Whether or not the proposed mechanisms would be practical to implement in 

hardware is not really addressed in our experimentation, but the indications are 

that the difficulties would be the minor. Having some of the more complicated 

heuristics proven to be extremely useful, then their introduction into a hardware 

scheme could have proven challenging. 

67 



Appendix A 

CPI Due to Cache Misses 

A.1 Varying Cache Size 

A.1.1 Instant Zero Replacement Policy 
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Figure A.1: MCPI by varying cache size in IZ scheme 
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A.1.2 Priority Pre-Updating with Victim Cache 
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Figure A.2: MCPI by varying cache size in PPUVC with IAP scheme 
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Figure A.3: MCPI by varying cache size in PPUVC with prefetch-on-miss scheme 

72 



Appendix A CPI Due to Cache Misses 
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Figure A.4: MCPI by varying cache size in prefetch cache scheme 
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A.2 Varying Cache Line Size 

A.2.1 Instant Zero Replacement Policy 
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Figure A.6: MCPI by varying cache line size in PPUVC with IAP scheme 
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Figure A.7: MCPI by varying cache line size in PPUVC with prefetch-on-miss 
scheme 
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Figure A.8: MCPI by varying cache line size in prefetch cache scheme 
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A.3.1 Instant Zero Replacement Policy 

0.62 T 0.18 
T 1 ^ _ ^ ~ _ IAP with 

B 0.16 - 四 � \ \ IZ 

0-6 -• \ 0.14 一 、 & "— . . . . - ® 

0.58 _. H \ 0.12 »*_™c�mbined 
\ \ �1 “ �\ IAP 

M C P I 0.56 . . \ k � � M C P I 0-1 - ^ ^ \ 4 - " ^ 
\ �� . � •^ 0.08 - - ^ x ^ ~~1k.™~ prefetch-

n _ 树 、 、 … ™ • o n - m i s s 
0.54 - . I~~̂ ‘ "~~"g 0.06 一_ 

Q 52 …“_*4j.“" n o 

0.02 - - prefetch 

0-5 \ 1 1 1 1 0 J 1 1 ! 1 
1 2 4 1 2 4 

set assoc. set assoc. 

a. compress b. espresso 

0.3 丁 1 —「 
� _ ¢ , _ IAP with 

0.9 —_ ,7 
0.25 - . S \ 

\ 0 . 8 -- 、 \ 阿 一 一 H 

0.7 一- � ^ … … 鐵 ^ c o m b i n e d 

0, \ -
M C P I 0.5 - \ 

0 4 \ \ - ^ - " ^ j r - " prefetch-

� : 3 ：： \ ° n ‘ s s 

u.u3 _|_ � � $ ^ 0_2 —- \ ^ - S " " " ° 
^ ^ 0.1 - - P " “ ^ prefetch 

0 4 "H 1 1 1 0 J 1 1 1 1 
1 2 4 1 2 4 

set assoc. set assoc. 

c. li d. nasa7 

82 



Appendix A CPI Due to Cache Misses 

0.8 _ 1.7 丁 
T _ 4 _ IAP with IZ 

0.7 -_ ^ — » m _ 1-65 - f ^ 
U 粉 一 一 — g ^ , . , g J " " ^ 

0.6 - - 1.6 _— r ^ f f Z y^-~"~~~>—•^ 

t̂  , / ~-*™-combined 
0.5 - - A.„, — — A 1.55 - - Z ' 1 IAP 

1"~~~~~>^=SzzzLi 这 y ^ - " " " s , 
M C P I 0.4 - - M C P I 1.5 __ . / 

, Z 叙 一„^叙—prefetch-
0.3 •• 1.45 ^ " ^ \ ^ ^ ^ on -miss 

0.2 . . 1.4 _. � 

™f&-no 
01 - - 1-35 ； prefetch 

0 J 1 1 1 1 1-3 J 1 1 1 1 
1 2 4 1 2 4 

set assoc. set assoc. 

e. spice2g6 f. su2cor 

1-4 丁 0.25 丁 

T _ 0 _ IAP with 

' 2 - S ^ \ —閃 � .2-- ^ 'Z 
1 - - \ \ � @ "一 " 執 ~ ~ « ~ ~ c o m b i n e d 

o.s .. V ^ ^ ^ — ^ o.s — \ -
M C P I ^ ‘ ^ MCPI � ' l 

0.6 - . ^ s ^ - - ^ ^ 0 1 \ -™*&™~ prefetch-
^ v \ on -miss 

�-4 •• � V 
- • • °.�5 -- ^ l : : 

0 1 1 i 1 0 J i 1 ^ ? 1 

1 2 4 1 2 4 

set assoc. set assoc. 

g. tomcatv h. wave5 

Figure A.9: MCPI by varying set associative in IZ scheme 
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A.3.2 Priority Pre-Updating with Victim Cache 
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Figure A.10: MCPI by varying set associative in PPUVC with IAP scheme 
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Figure A.11: MCPI by varying set associative in PPUVC with prefetch-on-miss 
scheme 
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Figure A.12: MCPI by varying set associative in prefetch cache scheme 
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Simulation Results of IZ 
Replacement Policy 
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Figure B.3: Results of the third group programs in IZ 
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Appendix B Simulation Results of IZ Replacement Policy 

B.1.2 Varying Cache Line Size 
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Figure B.4: Results of the first group programs in IZ 
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Figure B.5: Results of the second group programs in IZ 
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Appendix B Simulation Results of IZ Replacement Policy 
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Figure B.6: Results of the third group programs in IZ 
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Appendix B Simulation Results of IZ Replacement Policy 

B.1.3 Varying Cache Set Associative 
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Figure B.7: Results of the first group programs in IZ 
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Figure B.8: Results of the second group programs in IZ 
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Appendix B Simulation Results of IZ Replacement Policy 

0 . , t ~ ~ ^ — — 2 — — I — — ‘ 400% T 34.6% 35.1% ^ 
C • ° c 35.0/o 33.7% ̂ " " " " " " * " f e ^ - ^ l .9% |Z 
0 -1.0% -- o 30.0% -- 4 ,v ^1.6% 
云 Z 29.4% W^^~^ 
3 -1.5% - 3 25.0% - 1 26.4% -a -2.0% T3 
2 -2.0% - -2.4^^^^ £ 20.0% ^ * - c o m b i n e d 
1 - 2 - 5 % - - / ^ ^ - . z ® ; : ^ 1 5 . 0 % - I A P 

> -3.0% - ' ^ - ^ ^ / - 2 . B % > 10.0% -
E -3.5% -- / i 5.0% - ^ , . , 
o / 0) —hr— prefetch-
S -4.0% -- -4.o%| S 0.0% ^ 1 1 1 1 on-miss 

- 4 . 5 % 丄 ” 1 2 4 

set assoc. set assoc. 

(a) compress (b) spice2g6 

Figure B.9: Results of the third group programs in IZ 
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Appendix C 

Simulation Results of Priority 
Pre-Updating with Victim Cache 

C.1 PPUVC in IAP Scheme 

C.1.1 Memory Delay Time Reduction 

Varying Cache Size 
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Figure C.1: Results of the first group programs in PPUVC 
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Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 
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Figure C.2: Results of the second group programs in PPUVC 
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Figure C.3: Results of the third group programs in PPUVC 
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Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 

Varying Cache Line Size 
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Figure C.4: Varying line size 
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Figure C.5: Results of the second group programs in PPUVC 
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Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 
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Figure C.6: Results of the third group programs in PPUVC 
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Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 

Varying Cache Line Size 
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Figure C.7: Varying set associative 
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Figure C.8: Results of the second group programs in PPUVC 
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Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 
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Figure C.9: Results of the third group programs in PPUVC 
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Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 
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Figure C.10: Results of the first group programs in PPUVC 

— • — PPU and FIFO 

~~m™ prefetch-on-miss 

50.0% T 47.5% 30.0% j 60.0% T 
45.0% -- 39 5% 39.6% ^ ^ ^ 24.7% 25.8。/。 

§ 40.0% - ; = ^ z < 碰 ， = 2 5 . 0 % - M=：^ I 50.0% - 5 0 . 5% < l ^ 4 4 8 % 

1 二： ： -% 见孤 1 隱 - - - / ^ 汉''。I 舰 - - ^ r < : 
> 25.0% - >. 15.0% - ^ 30.0% - / 
I 20.0% -- I 16.6% 2 25.i%ir 
Z 15.0% ？. 10.0% - Z 20.0% 

i 10-0% - i 5.0% - i 10.0% 5 5.0% - o o 
芝 0 . 0 % J 1 1 1 1 0 . 0 % J 1 1 i 1 0 . 0 % J 1 1 1 1 

8 16 32 8 16 32 8 16 32 

cache size in Kbytes cache size in Kbytes cache size in Kbytes 

(a) espresso (b) li (c) wave5 

Figure C.11: Results of the second group programs in PPUVC 
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Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 
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Figure C.12: Results of the third group programs in PPUVC 
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Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 

Varying Cache Line Size 
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Figure C.13: Results of the first group programs in PPUVC 
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Figure C.14: Results of the second group programs in PPUVC 
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Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 
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Figure C.15: Results of the third group programs in PPUVC 
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Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 

Varying Cache Line Size 
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Figure C.16: Results of the first group programs in PPUVC 
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Figure C.17: Results of the second group programs in PPUVC 
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Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 
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Figure C.18: Results of the third group programs in PPUVC 
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Appendix D 

Simulation Results of Prefetch 
Cache 

D.1 Memory Delay Time Reduction 

D.1.1 Varying Cache Size 
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Figure D.1: Results of the first group programs 
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Appendix D Simulation Results of Prefetch Cache 
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Figure D.2: Results of the second group programs 
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Figure D.3: Results of the third group programs 
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Figure D.4: Results of the fourth group programs 
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Appendix D Simulation Results of Prefetch Cache 

D.1.2 Varying Cache Line Size 
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Figure D.5: Results of the first group programs 
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Figure D.6: Results of the second group programs 
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Appendix D Simulation Results of Prefetch Cache 
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Figure D.7: Results of the third group programs 
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Figure D.8: Results of the fourth group programs 
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Appendix D Simulation Results of Prefetch Cache 

D.1.3 Varying Cache Set Associative 
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Figure D.9: Results of the first group programs 
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Figure D.10: Results of the second group programs 

111 



Appendix D Simulation Results of Prefetch Cache 
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Figure D.11: Results of the third group programs 
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Figure D.24: Results of the fourth group programs 
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Appendix D Simulation Results of Prefetch Cache 

D.2 Results of the Three Replacement Policies 

D.2.1 Varying Cache Size 
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Figure D.13: Results of the first group programs 
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Figure D.14: Results of the second group programs 
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Figure D.15: Results of the third group programs 

1K bytes prefetch cache size, 32 bytes line size 

0.0% H 1 1 1 1 90.0% T ~#~ 4-way with 
80% 81% • _ , , c -0.5% -- 8 16 32 80.0% - g H ^ g 79% LRU 

•B 1 Qo/ o 70.07�-- --¾~~" 4-way with 
I _ • � _ _ Z 6 0 . 0 % - I Z 

^ _1.5̂  -- "S 50.0% -- •: 4-waywith 
« -2.0% - ^ 40.0% - FIFO 

i -2.5%-- -2ffir-"^;;;*^::::^ _2.8% i 200% ” ^ 24% @ Fully-assoc. 
i - 3 . 0 % - - / • 5 肌 �而 , w i t h L R U 
o / I 10.0% - / 
芝 -3.5% - ^6% o 0 0% I ^ _ _ I |~®~Fully-assoc. 

.^o/ 仏‘。。, - 5 % ^ m -5% with IZ 
-4.0% 丄 -10.0% 丄 ^^ W 32 

~ • ~ Fully-assoc. 

cache size in Kbytes cache size in Kbytes with FIFO 

(a) compress (b) nasa7 

Figure D.24: Results of the fourth group programs 
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Appendix D Simulation Results of Prefetch Cache 

D.2.2 Varying Cache Line Size 

1K bytes prefetch cache size, 32 bytes line size 
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Figure D.17: Results of the first group programs 

1K bytes prefetch cache size, 32 bytes line size 
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Figure D.18: Results of the second group programs 
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Appendix D Simulation Results of Prefetch Cache 
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Figure D.19: Results of the third group programs 

1K bytes prefetch cache size, 32 bytes line size 
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Figure D.24: Results of the fourth group programs 
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Appendix D Simulation Results of Prefetch Cache 

D.2.3 Varying Cache Set Associative 

1K bytes prefetch cache size, 32 bytes line size 

60.0%T 1 0 0 . 0 %丁 g ^ ^ : _ ^ ~ ~ H 9 9 0 / < , -^4-waywith 
qjo^ L R U 
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Figure D.21: Results of the first group programs 

1K bytes prefetch cache size, 32 bytes line size 

90.0% 丁 ~ " 4 ~ 4-way with 
^ 8 0 . 0 % - m 81% L R U 

•| 70.0% - f ~~i|™ 4-way with IZ 
3 60.0% -- / 

£ 5 0 . 0 % 丄 / ^ .+h 
/ ：： 4-way with « 40.0% - ^ 39% p|po 

% 30.0% I y ^ ^ 8 % FIFO 
I* 20.0% - io% Z 1 0 > / ^ ^ ^ .....S Fully-assoc. 
E 10.0% - K K . . ^ ^ S ' ^ with LRU 4�/ ® ^̂ '̂̂""'̂^̂  — 
芝 0 . 0 % ^ ^ ^ 1 1 u g ~ F u l l y - a s s o c . 

1 2 4 with IZ 
~ • ~ ~ Fully-assoc. 

set assoc. with FIFO 

(a) wave5 

Figure D.22: Results of the second group programs 
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Appendix D Simulation Results of Prefetch Cache 
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Figure D.23: Results of the third group programs 

1K bytes prefetch cache size, 32 bytes line size 
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Figure D.24: Results of the fourth group programs 
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