
REPLACEMENT AND PLACEMENT POLICIES FOR
PREFETCHED LINES

B Y

SZE SlU CHING

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF PHILOSOPHY

DIVISION OF COMPUTER SCIENCE AND ENGINEERING

THE CHINESE UNIVERSITY OF HONG HONG

JUNE 1998

%
^

_

零
啦
h
/
¥

^
¾
^

Copyright � 1998 by Computer Science and Engineering, the Chinese

University of Hong Kong

All right reserved.

ii

Acknowledgements

I want to give my hearty thanks to my family.

I also want to give my hearty thanks to Dr. Gilbert H. Young, Mr. S. C. Lau,

Mr. S. Y. Yiu and especially to Ms. Priscilla K. Chan.

It is clear there are many to whom I owe my thanks and acknowledgments. In

order not to miss anyone of them, I just want to say thanks.

Thanks for those who have helped me, taught me, carried me and supported

me during my studies. Thanks a lot.

iii

Abstract

As a result of technology advance, there is a widening gap between the rate at

which a processing unit can consume operands and the rate at which the memory

system can supply them. The introduction of cache helps alleviate this problem,

and the design of cache memory is very critical to the overall system perfor-

mance. Due to the limited space on the processors, on-chip caches are usually

small. Therefore, the cache space should be used carefully and efficiently. Accu-

rate prefetching and careful replacement of cache lines i are essential to improve

the performance. In order to further improve the cache performance, different pre-

fetching algorithms for cache have been proposed[BaC91] [KlL91] [Smi78a]. With

prefetching, data could be available before their actual use. However, due to the

large volume and the random behaviour of data usage, it is difficult to prefetch

data accurately and this results in cache pollution.

Lau [Lau96] has proposed an accurate prefetching scheme, the Instruction

Opcode and Addressing Mode Prefetching (IAP), which makes use of the future

reference patterns embedded in certain instructions. Further to their study, it is

also found that most prefetched data by the IAP scheme are likely to be referenced

only once. Therefore, we proposed to use a mixed replacement policy to use

together with the IAP scheme, to minimize the number of thrashing misses. Using

both Least Recently Used (LRU) and Instant Zero (IZ) replacement algorithms

with the IAP scheme outperforms the result of using LRU only.

Furthermore, in order to optimize the benefit of temporal locality and minimize

iA l ine is a b lock of data in context of the cache. Usually, line size is the same as block
size. In our paper, block refers to data located in memory or lower-level caches, line refers to
the data in level 1 cache. However, they are interchangeable.

iv

the cache pollution problem, another hardware replacement design is presented in

this thesis. We propose a priority pre-updating scheme, which is used to update

the priorities of cache lines prior to their normal updating situation. Simulation

experiments are done wit this priority pre-updating scheme in cache model with

prefetch-on-miss prefetching scheme. From the results, it is found that priority

pre-updating helps minimizing the number of thrashing misses, optimizes the ben-

efit of temporal locality and reduces cache pollution. In order to obtain promising

cache performance improvement, we add a victim cache to hold those fresh pre-

fetched lines that displaced from the data cache. The experimental results show

that using priority pre-updating with the victim cache can achieve up to 50%

reduction in memory delay.

Beside the research on replacement of cache lines, we propose another hardware

design, which concerns the placement of IAP lines. The cache lines prefetched by

the Instruction Opcode and Addressing Mode Prefetching pose a referenced-once

property, i.e., most of them are referenced one and only one time before the

program terminates. Owing to this special reference behavior, a prefetch cache,

which is dedicated to prefetched lines by Instruction Opcode and Addressing Mode

Prefetching scheme, is implemented separately. The prefetch cache can reduce

memory delay time up to 99%.

V

Contents

1 Introduction 1

1.1 Overlapping Computations with Memory Accesses 3

1.2 Cache Line Replacement Policies 4

1.3 The Rest of This Paper 4

2 A Brief Review of IAP Scheme 6

2.1 Embedded Hints for Next Data References 6

2.2 Instruction Opcode and Addressing Mode Prefetching 8

2.3 Chapter Summary 9

3 Motivation 11

3.1 Chapter Summary 14

4 Related Work 15

4.1 Existing Replacement Algorithms 16

4.2 Placement Policies for Cache Lines 18

4.3 Chapter Summary 20

5 Replacement and Placement Policies of Prefetched Lines 21

5.1 IZ Cache Line Replacement Policy in IAP scheme 22

5.1.1 The Instant Zero Scheme 23

5.2 Priority Pre-Updating and Victim Cache 27

5.2.1 Priority Pre-Updating . . . 27

5.2.2 Priority Pre-Updating for Cache 28

vi

5.2.3 Victim Cache for Unreferenced Prefetch Lines 28

5.3 Prefetch Cache for IAP Lines . 31

5.4 Chapter Summary 33

6 Performance Evaluation 34

6.1 Methodology and metrics 34

6.1.1 Trace Driven Simulation 35

6.1.2 Caching Models . . : 36

6.1.3 Simulation Models and Performance Metrics 39

6.2 Simulation Results 43

6.2.1 General Results 44

6.3 Simulation Results of IZ Replacement Policy 49

6.3.1 Analysis To IZ Cache Line Replacement Policy 50

6.4 Simulation Results for Priority Pre-Updating with Victim Cache . 52

6.4.1 PPUVC in Cache with IAP Scheme 52

6.4.2 PPUVC in prefetch-on-miss Cache 54

6.5 Prefetch Cache 57

6.6 Chapter Summary 63

7 Architecture Without LOAD-AND-STORE Instructions 64

8 Conclusion 66

A CPI Due to Cache Misses 68

A.1 Varying Cache Size 68

A.1.1 Instant Zero Replacement Policy 68

A.1.2 Priority Pre-Updating with Victim Cache 70

A.1.3 Prefetch Cache 73

A.2 Varying Cache Line Size 75

A.2.1 Instant Zero Replacement Policy 75

A.2.2 Priority Pre-Updating with Victim Cache 77

A.2.3 Prefetch Cache 80

vii

A.3 Varying Cache Set Associative 82

A.3.1 Instant Zero Replacement Policy 82

A.3.2 Priority Pre-Updating with Victim Cache 84

A.3.3 Prefetch Cache 87

B Simulation Results of IZ Replacement Policy 89

B.1 Memory Delay Time Reduction 89

B.1.1 Varying Cache Size 89

B.1.2 Varying Cache Line Size 91

B.1.3 Varying Cache Set Associative 93

C Simulation Results of Priority Pre-Updating with Victim Cache 95

C.1 PPUVC in IAP Scheme 95

C.1.1 Memory Delay Time Reduction 95

C.2 PPUVC in Cache with Prefetch-On-Miss Only 101

C.2.1 Memory Delay Time Reduction 101

D Simulation Results of Prefetch Cache 107

D.1 Memory Delay Time Reduction 107

D.1.1 Varying Cache Size 107

D.1.2 Varying Cache Line Size 109

D.1.3 Varying Cache Set Associative 111

D.2 Results of the Three Replacement Policies 113

D.2.1 Varying Cache Size 113

D.2.2 Varying Cache Line Size 115

D.2.3 Varying Cache Set Associative 117

Bibliography 119

viii

List of Figures

2.1 Operations of LOAD-UPDATE and STORE-UPDATE (a) using

the index-displacement addressing mode and (b) using the index-

based registers addressing mode 7

2.2 Control flow for IAP scheme 10

3.1 Percentage of Prefetch-On-Miss lines that are not referenced in IAP

scheme 14

5.1 A theoretical representation of a set in a four-way set associative

cache 24

5.2 Before a reference to an IAP line 25

5.3 After reference to an IAP line 25

5.4 Control Flow of the IZ Replacement Policy 26

5.5 Architectural model of IAP scheme with PPU 28

5.6 Illustration of PPU 29

5.7 Control Flow of PPUVC 30

5.8 Cache Support in the IAP architecture 32

5.9 Control Flow of the Prefetch Cache Scheme 33

6.1 Trace-driven simulator using xtrace 35

6.2 Memory Model of the simulator: (a) Interleaved memory (b) Tim-

ing of data access， . . . 38

6.3 Comparison of number of prefetch-on-miss lines in IAP cache and

prefetch-on-miss-only cache 53

ix

6.4 Percentage of prefetch-on-miss lines referenced in total number of

prefetched lines 54

6.5 The effect of Prefetch Cache size on cache performance 58

6.6 An illustration of the performance difference between LRU and FIFO 61

6.7 An instance of line activities in IZ prefetch cache 63

A.1 MCPI by varying cache size in IZ scheme 69

A.2 MCPI by varying cache size in PPUVC with IAP scheme 71

A.3 MCPI by varying cache size in PPUVC with prefetch-on-miss scheme 72

A.4 MCPI by varying cache size in prefetch cache scheme 74

A.5 MCPI by varying cache line size in IZ scheme 76

A.6 MCPI by varying cache line size in PPUVC with IAP scheme . . 78

A.7 MCPI by varying cache line size in PPUVC with prefetch-on-miss

scheme 79

A.8 MCPI by varying cache line size in prefetch cache scheme 81

A.9 MCPI by varying set associative in IZ scheme 83

A.10 MCPI by varying set associative in PPUVC with IAP scheme . . 85

A.11 MCPI by varying set associative in PPUVC with prefetch-on-miss

scheme 86

A.12 MCPI by varying set associative in prefetch cache scheme 88

B.1 Results of the first group programs in IZ 89

B.2 Results of the second group programs in IZ 90

B.3 Results of the third group programs in IZ 90

B.4 Results of the first group programs in IZ 91

B.5 Results of the second group programs in IZ 91

B.6 Results of the third group programs in IZ 92

B.7 Results of the first group programs in IZ 93

B.8 Results of the second group programs in IZ 93

B.9 Results of the third group programs in IZ 94

V

C.1 Results of the first group programs in PPUVC 95

C.2 Results of the second group programs in PPUVC 96

C.3 Results of the third group programs in PPUVC 96

C.4 Varying line size 97

C.5 Results of the second group programs in PPUVC 97

C.6 Results of the third group programs in PPUVC 98

C.7 Varying set associative . . 99

C.8 Results of the second group programs in PPUVC 99

C.9 Results of the third group programs in PPUVC 100

C.10 Results of the first group programs in PPUVC 101

C.11 Results of the second group programs in PPUVC 101

C.12 Results of the third group programs in PPUVC 102

C.13 Results of the first group programs in PPUVC 103

C.14 Results of the second group programs in PPUVC 103

C.15 Results of the third group programs in PPUVC 104

C.16 Results of the first group programs in PPUVC 105

C.17 Results of the second group programs in PPUVC 105

C.18 Results of the third group programs in PPUVC 106

D.1 Results of the first group programs 107

D.2 Results of the second group programs 108

D.3 Results of the third group programs 108

D.4 Results of the fourth group programs 108

D.5 Results of the first group programs 109

D.6 Results of the second group programs 109

D.7 Results of the third group programs 110

D.8 Results of the fourth group programs 110

D.9 Results of the first group programs . . 111

D.10 Results of the second group programs 111

D.11 Results of the third group programs 112

xi

D.12 Results of the fourth group programs 112

D.13 Results of the first group programs 113

D.14 Results of the second group programs 113

D.15 Results of the third group programs 114

D.16 Results of the fourth group programs 114

D.17 Results of the first group programs 115

D.18 Results of the second group programs 115

D.19 Results of the third group programs 116

D.20 Results of the fourth group programs 116

D.21 Results of the first group programs 117

D.22 Results of the second group programs 117

D.23 Results of the third group programs 118

D.24 Results of the fourth group programs 118

xii

List of Tables

6.1 SPEC Benchmark Applications used 34

6.2 Percentages of LOAD/STORE-UPDATEs in SPEC92 Benchmark

Suite 39

6.3 Baseline CPIs of SPEC92 Benchmark Suite 43

xiii

Chapter 1

Introduction

Cache memory is a special high speed memory designed to supply the processor

with the most frequently requested instructions and data. Instructions and data

located in cache memory can be accessed many times faster than instructions and

data located in main memory. The more instructions and data the processor can

access directly from cache memory, the faster the computer runs as a whole.

Memory caching is effective because most programs access the same data or

instructions over and over. By keeping as much of this information as possible in

cache memory (which is usually implemented with faster SRAM), the computer

avoids accessing the slower main memory (which is usually implemented with

slower DRAM). Some memory caches are built into the architecture or micropro-

cessors. Such internal on-chip caches are often called Level 1 (L1) caches. Cache

memory makes use of the principal of locality. Locality of reference states basically

that even within very large programs with several megabyte of instructions, only

small portions of this code generally get used at once. Programs tend to spend

large periods of time working in one small area of the code, perform the same job

many times with slightly different operands, and move on to another area of code

for another batch of routine jobs. This occurs because of loops, which are what

programs use to do work many times in a rapid succession.

Generally, there are two kinds of localities - temporal locality and spatial local-

ity. Temporal locality describes the likelihood that a recently-referenced address

1

Chapter 1 Introduction

will be referenced again soon, while spatial locality describes the likelihood that

a close neighbor of a recently-referenced address will be referenced soon. Con-

ventional cache memories rely on a program's temporal and spatial localities to

reduce the average memory access latency.

The gap between main memory and processor clock speeds is growing at an

alarming rate. As a result, the system performance is increasingly dominated by

the latency of servicing memory accesses, particularly those accesses which are not

easily predicted by the temporal and spatial localities captured by conventional

cache memory organizations [Smi82] [HeP95 .

One obvious way to reduce number of the cache misses is enlarging the cache

as much as possible, however, it is often difficult to achieve practically. There

are two main reasons that limit the size of Level 1 cache: [1] The performance

gained is not enough to compensate the cost for cache, which typically uses fast

but expensive static RAM chips. The speed for SRAM is approximate 4 times

faster than DRAM, however, SRAM chips cost more than six times as much

as the DRAM chips normally used for main memory. Besides, the performance

improvement is not linearly proportional to the size of cache, that is, a 512K bytes

cache memory may not obtain 2 times better performance than a 256K bytes one.

2] The CPU chip is usually small while SRAM size is comparable large, thus only

limited space for Level 1 cache, while maintaining a reasonable processor chip size.

Due to the large speed gap between the processor and main memory, it is

obvious that performance of the system will then be largely determined by [1

how effectively the on-chip memory is able to manipulate operands, minimize the

frequencies of off-chip accesses, and [2] the rate at which the external memory

system can supply operands.

The main aim of cache memory is to reduce the CPU's idle waiting time.

Improving cache performance of programs is one way of increasing the systems

throughput. The effectiveness of the on-chip cache to maintain useful operands

and minimizing the frequencies of off-chip accesses is one of the main factor to

determine the performance of the system.

2

Chapter 1 Introduction

In order to reduce the disparity between processor speed and memory ac-

cess time, many solutions have proposed to tackle this problem. Some have

proposed adding additional features such as non-blocking fetches [Kro81], vic-

tim caches [Jou90], and sophisticated hardware prefetching [ChB92] to alleviate

the access penalties for those references that have locality characteristics that are

not captured by most conventional designs.

1.1 Overlapping Computations with Memory Ac-

cesses

Many solutions have been proposed to reduce the memory access and/or hide

memory latency. An important approach is cache prefetching[Smi78a] [Smi78b

Smi82] [HeP95], that is, the action of bringing data to the cache before they are

actually needed. Prefetching is similar to speculative loads in the sense that it is

non-blocking and behaves like a hint without incurring semantic faults. The main

difference between prefetching and speculative loads is that data are loaded into

the caches rather than registers.

Depending on how prefetch requests are determined and initiated, prefetching

can be either hardware-controlled [BaC91] [FuP91] [FuP92] or software-directed[Por89

KlL91][MoL92]. The hardware approach detects accesses with regular patterns

and issues prefetches at the run time of the programs, whereas the software ap-

proach relies on the compiler to analyze programs and to insert prefetch instruc-

tions during compilation of the programs.

However, because of the low accuracy of some prefetching algorithms, there is

a risk that the prefetched data that are never used before they are displaced from

the cache. This leads to waste of memory space and bandwidth, thus poorer per-

formance results. The problem become worse when the prefetched data displace

some useful data in the cache. The phenomenon is called cache pollution.

3

Chapter 1 Introduction

1.2 Cache Line Replacement Policies

Different replacement policies are employed to manage operands in the memory.

Replacement takes place when a particular cache line or a set of cache lines is

already full, and the line has to be evicted its contents to make room for the new

incoming line. There is still no ideal replacement policy being invented, and it

is unlikely that one would exist. Replacement policy in cache is different from

the problem of replacement in paged main memories because the cache replace-

ment algorithm must be implemented entirely in hardware and must execute very

quickly so as to catch up with the processor speed.

Least Recently Used and First-In-First-Out are two most commonly used re-

placement policies. Beside these two well-known algorithms, there are Random,

Pseudo-Least Recently Used which are used in some special systems.

Not knowing whether a line will be accessed soon, Least Recently Used strategy

is usually used in conventional cache as the replacement scheme. However, if the

displaced line is referenced by the processor again, a thrashing miss i will occur.

The situation may become worse, since one thrashing miss can lead to another

thrashing miss. A good cache line replacement policy should try to find out the

best candidate to be displaced and will help minimize these thrashing misses.

1.3 The Rest of This Paper

In this dissertation, we focus on techniques on better management of the pre-

fetched lines for cache with the IAP scheme and that with a traditional prefetch

scheme - prefetch-on-miss only.

IAP is an accurate prefetching scheme, in which it makes use of the information

provided by the instruction opcodes and addressing modes for prediction. A brief

review on IAP scheme will be given in Chapter 2.

Chapter 3 will briefly describe the cache pollution problem brought by con-

ventional prefetching schemes, the reference-once property of IAP lines and how

iA thrashing miss occurs when the line which was replaced must itself be reloaded

4

Chapter 1 Introduction

IAP works.

Chapter 4 will briefly describe previous research on prefetching, and stream

buffers.

The implementation of the replacement policy, Instant Zero (IZ) cache line

replacement policy, will be discussed in Chapter 5. The details of another re-

placement policy, Priority Pre-Updating (PPU), which is designed to be used

with different types of prefetching algorithms, will be given in the same chapter.

The effect of using Priority Pre-Updating with victim cache (P P U V C) is also

discussed in this chapter.

In the same chapter, details on the placement policy of prefetched lines, pre-

fetch cache, will be given.

Chapter 6 will present the simulation methodology, performance metrics that

used and the results of performance evaluation. The designs are evaluated by

simulating the some benchmark program in a uniprocessor environment. The

results show that either IZ, PPU with victim cache and prefetch cache alone can

obtain significant improvement in system performance.

Finally, Chapter 7 will give an insight on future directions, and we will conclude

this paper in Chapter 8.

5

Chapter 2

A Brief Review of IAP Scheme

2.1 Embedded Hints for Next Data References

In the design of latest processor architectures, instruction opcodes and the ad-

dressing modes of the architecture definition usually have built-in mechanism to

support the address calculation of future data references while the current datum

is being referenced. It is also found that compound instructions are commonly

used in RISC architecture to reduce the program execution path length. As it

can be found frorn program instrumentation and tracing, certain simple RISC in-

structions are executed in pair. So it might be useful to define a single compound

or extended opcode to execute the instruction pair, and this is particular useful if

the new instruction opcode does not affect the processor clock cycle. Up to now,

there are several machines have such kind of opcodes. For example, ADD-AND-

BRANCH, COMPARE-AND-BRANCH, LOAD- WORD-AND-UPDATE, etc. in

HP's Precision Architecture 1.1 [HP94]. IBM and PowerPC has LOAD-UPDATE,

LOAD-MULTIPLE[lBM89] [Mot92] [IBM94] [WeS94], etc.. The total number of

instructions defined in current RISC processors range from 150 and 200, which

is much larger than that of early RISC processors (about 50 to 70 instructions).

The reason is that latest processors find these compound or extended opcodes

to be very useful, and this embedded them into the instruction set. Among

these compound instructions, it is found that the LOAD/STORE-UPDATE (or

6

Chapter 2 A Brief Review of IAP Scheme

LOAD/STORE-MODIFY), are very helpful to manage on-chip cache activities.

Array or pointer references to a large set of data are one of the major types of

data references in typical programs. Data will be referenced one after another suc-

cessively, index-displacement and index-hased register addressing modes are usually

employed for this type of accesses. Because these accesses occur very frequently,

as a result, many systems tend to use compound opcodes like LOAD-UPDATE

and STORE-UPDATE for the accesses. Beside loading or storing a datum into

the register, the content of the index register, which is used in the address cal-

culation of current data reference, will be updated by each of these instructions.

The operations of the LOAD-UPDATEdind STORE- UPDATE instructions using

either index-displacement or index-hased registers addressing mode are shown in

Figure 2.1.

LOAD RriRx + Disp) LOAD Rr{Rx + Ry)

Equivalent to Equivalent to

Eff. Addr. = (¾) + Disp Eff. Addr. 二 {R^) + {Ry)
Rr = {Eff. Addr.) Rr = {Eff. Addr.)
7¾ = Eff. Addr. R^ = Eff. Addr.

(a) (b)

Figure 2.1: Operations of LOAD-UPDATE and STORE-UPDATE (a) using the
index-displacement addressing mode and (b) using the index-based registers ad-
dressing mode

The updating action ofthe LOAD-UPDATEov the STORE- UPDATE instruc-

tion is the preparation of the content of register R^ which is used in calculating

of the effective address of the next expected datum. R^ is equal to the sum of the

current data reference address Eff. Addr. (or the updated content of register i ^)

and the displacement Disp (in the index-displacement addressing mode) or the

register content Ry (in the index-hased register addressing mode). Thus, accurate

data cache prefetching can be carried out and the address of prefetched data is

equal to {Eff. Addr. + Disp) or {Eff. Addr. + Ry). It should be noted that values

7

Chapter 2 A Brief Review of IAP Scheme

of Eff.Addr. and Disp (or Ry) are available to the cache prefetching unit during

the execution of LOAD Rr{Rx + Disp) or LOAD Rr{Rx + Ry) instruction.

2.2 Instruction Opcode and Addressing Mode

Prefetching

By using these hints of data references provided by the instruction opcode and

addressing modes, Instruction Opcodes and Addressing Mode Prefetching (IAP)

scheme which provides accurate data prefetching for on-chip cache is proposed

by Lau [Lau96]. In Lau's study, IBM POWER architecture (or the PowerPC

architecture) is used as an example to show how IAP scheme should be designed

and implemented.

Figure 2.2 shows the control flow of IAP scheme. For each instruction i that is

decoded and executed, its opcode will be checked first to determine if it belongs

to LOAD-UPDATEoi STORE-UPDATE instruction. If such a case is detected,

the address of next datum expected to be referenced in the near future will be

re-calculated. Using the same addressing mode as i but with the updated contents

of all registers used in the address calculation of i. Afterwards, this new address

will be sent to the cache prefetch unit for accurate data prefetching. Beside these

basic ideas, two enhancements have been integrated into the IAP scheme:

• Default Prefetching vs. Selective Prefetching

When executing each LOAD/STORE instruction z, if this instruction i be-

longs to LOAD/STORE- UPDATE instructions group, then the IAP scheme

will be used for data prefetching, else the prefetch-on-miss is used as the de-

fault prefetching scheme for data prefetching.

• Cache Block Prefetching vs. Next Data Reference Prefetching

For each data prefetch requested by IAP scheme, if the target prefetched

block j containing the candidate datum is not the same as current data

8

Chapter 2 A Brief Review of IAP Scheme

referencing line z, then a prefetch of block j will be issued. If they are the

same, then a prefetch request of block i + 1 will be issued.

The above IAP scheme together with the two enhancements are the combined

IAP that we use in this paper.

2.3 Chapter Summary

In this chapter, a general design for hardware controlled prefetching, which was

proposed by Lau [Lau96], is introduced. By using information embedded in the

instruction opcodes, Lau's design is able to single out the data references with

constant strides from the pool of all data references and also able to find the

corresponding stride values. With this valuable information, accurate prefetching

can be accomplished and consequently, the CPU stall time due to data cache

misses can be reduced. The cache block prefetching is introduced to tackle the

problem of limited memory bus bandwidth. In order to exploit the spatial locality,

the combined IAP scheme is equipped with default prefetching to issue prefetch

requests for the mm-LOAD/STORE UPDATE instructions.

9

Chapter 2 A Brief Review of IAP Scheme

H X — — I

r ^ n
Get next •

instruction I •

s ^
< LOAD/STORE- ^ ^

r ^ ^
八 r ^
/ Addressing ^ ^ OTHER . Generate a

S > ^ ^ = " ^
INDEX-DISPLACEMENT

^ " " " "
Calculate
prefetch
address

~ A
� … X address ^ ^
Y i s < same as > ‘ ^

\^^ current line ^ ^
\ a d d r e s s ? ^ ^

i I v X y
Set prefetch address

as that of the „ _, ^
preceding or ^ Sendprefetch
following line > addressto ~ ~ I

accord ingtothe prefetch queue
direction of update

Figure 2.2: Control flow for IAP scheme

10

Chapter 3

Motivation

Over the last two decades, the CPU clock cycle time has been decreasing at a

much faster rate than the main memory access time. The average number of

cycles per instruction has also been decreasing dramatically. The effect is more

obvious for RISC machines with higher clock speed and data consumption rate.

Unfortunately, a high bandwidth of the microprocessor is meaningless unless

it is matched by a similarly powerful memory subsystem. Most of current micro-

processors rely on caches to reduce their effective memory access time. However,

cache miss affects the overall performance of a system, i.e., if either the instruc-

tion or the operand required by the operations is not found in cache(s), the actual

performance would decline for the large amount of cache misses.

With current VLSI developments, several functional units, instruction and

data caches, and some special hardware functional units can be included on the

processor chip. Therefore, a first obvious method for reducing the average memory

access time is to implement multi-level cache hierarchies [BaW89] with an on-chip

first level cache. However, under the usual caching mechanism, the processor

will still be stalled on a first-level cache miss and of course also on misses on

any of the next levels of the memory hierarchy with an even larger penalty time,

until the miss is resolved. Since a processor must stall on a cache miss, caches

do not totally hide memory latency but, instead, they eliminate many off-chip

memory accesses. In order to make further progress towards the reduction of

11

Chapter 3 Motivation

memory latency, memory accesses due to cache misses must proceed in parallel

with the processor execution. As a result, a number of different solutions have

been proposed to allow computations to be overlapped with memory accesses.

They basically provide efficient mechanisms to allow buffering and pipelining of

memory references.

Various data prefetching algorithms exist, some are hardware-assisted, some

are software-directed and others are hybrid. The main fault of many of these

algorithms is that they do not integrate replacement algorithms with prefetching

methods. There is often a large penalty for prefetching into the cache because the

wrong line was replaced.

When incorporating the prefetching algorithms in a processor, several things

have to take into consideration. First, it is possible to prefetch data into the cache

that will never be used by the processor. This not only pollutes the cache, but

also increases memory traffic. Second, if the data is prefetched too early, it can

become stale before it is referred, this may also increase memory traffic. Therefore,

in designing a processor with prefetching, careful balance between performance

gains and tradeoff like cache pollution and memory traffic increase are required.

From a different viewpoint, a conventional cache's hardware does not know

the likelihood of whether a line will be accessed soon. A blind strategy is usually

used to choose the line to be replaced when a miss has occurred, e.g. choose the

least recently used line. However, if it happens that the displaced line is referenced

by the processor again, a thrashing miss will occur. The problem becomes more

serious since one thrashing miss can lead to another thrashing miss.

It is estimated that 50% of all misses are thrashing misses, and that most of

these can be avoided. A good cache replacement policy will help minimize these

thrashing misses.

There exists an accurate prefetching, the Instruction Opcodes and Addressing

Modes Prefetching, which is proposed by Lau [Lau96]. IAP, which making use

of the run-time information provided by the instruction opcodes and addressing

modes, prefetches data accurately. However, it is found that data prefetched by

12

Chapter 3 Motivation

IAP scheme have not posed the temporal locality property, a large portion of the

data prefetched by the IAP scheme ^ are likely to be referenced one and only one

time 2 before the program terminates. In order to handle the replacement of the

data lines in the cache, a new strategy, tentatively termed as Instant Zero (IZ), is

proposed. This new strategy aims at replacing the IAP lines intelligently, which

will be explained in detail later.

On-chip cache is usually small ,̂ thus the precious cache space should be used

carefully. Cache pollution problem highly affects the system performance, one

obvious solution to solve the cache pollution problem is to kick out useless data

in case of conflict or capacity misses. However, which data is useless and how

to determine which should be kicked out is really a difficult problem. A poorly

designed prefetching algorithm aggravates cache pollution problem, and wrong

displacement of useful data degrades system performance. From Figure 3.1, we

can find out that in some benchmark programs, more than 90% of prefetch-on-miss

lines are unreferenced. It is obvious that most prefetch-on-miss lines are useless,

i.e., they are not referenced before the program terminates. It is beneficial to

shorten the life time of those possibly erroneously prefetched lines in the cache to

minimize cache pollution. We propose a Priority Pre- Updating (PPU) scheme to

tackle the problem, PPU helps determining the data to be kicked out and reduce

cache pollution.

As mentioned above, IAP lines are likely to be referenced one and only one

time before the program terminates. Therefore, placing them in a separate cache

space can localize their effects and minimize the cache pollution problems. As

a result, we proposed to use an on-chip prefetch cache to hold all those data

prefetched by IAP scheme.

ilines prefetched by IAP scheme will tentatively called IAP lines in later sections.
^Termed as reference-once property
^Usually ranging from 4K bytes to 32K bytes. Though large on-chip cache is also found in

current architecture, it is not common.

13

Chapter 3 Motivation

n ŷywsy|BM5MMflĵiM̂ ^

0.2% P 64 p ^ ^ ^ ^ _wave5
3 2 M ™ _ ^ . _丽腳 .懸酬^ ^ ^ ^ ^ o 4 n'ni|iii|̂ iiiiiii|iIiiiiiiiiwi o _ t o m c a t v

p 92 .1% ^iff(ffff||^mmmi a ‘ 95 .2%
k;�>^ - o ^ i < ^ '�� '�-<如、赦1 3 2 _ i _ i ^ ， M i m w - ! i ^ m m m m _ s u 2 c o r

W - - S = ^ 95 .2% -： .

I p , ^ ^ ~ ^ ^ 爾 ~ ~ " ~ ~ ^ ^ ^ ^ ^ 國5口丨06296

I 16 ^ _ ^ 2 % f 16 S w 丨..—.......9’,1% 1 2 ^ 95.1% 國 - 7
« "'̂ '““"""__"̂ '̂ T："…yrrn w 'l ^ ，'n�u",,k"M^^ •“
I " ^ ^ ^ 8 S l L l ^ Z：-'- I • 千 丨 . e s P r _
^ "'""'"a !•!̂ .̂̂ .̂̂ • /̂̂ • !̂̂•^̂ ^̂ ^̂ .̂ ^• .̂浓观.》鄉効 I

8 W S ^ M T 1 M i i i M m c o m p r e s s

_ ^ ^ : % 4 ^ 1 謎 ^ ^ , , " , : : 4 % .<'

0 % 5 0 % 1 0 0 % 1 5 0 % 0 % 5 0 % 1 0 0 % 0 % 5 0 % 1 0 0 %

P e r c e n t a g e of P O M l i n e s P e r c e n t a g e of P O M l i n e s P e r c e n t a g e of P O M

n o t r e f e r e n c e d n o t r e f e r e n c e d l i n e s n o t r e f e r e n c e d

(a) varying cache size (b) varying line size (c) varying set associativity

Figure 3.1: Percentage of Prefetch-On-Miss lines that are not referenced in IAP
scheme

3.1 Chapter Summary

Cache pollution is a side-effect of data prefetching, a poorly designed prefetching

algorithm aggravates cache pollution problem. This problem has diverse effect on

cache performance. A blind replacement strategy increase the thrashing misses,

reduce the utilization of cache and indirectly cause cache pollution. The tech-

niques, Instant Zero replacement policy and Priority Pre-Updating with victim

cache, tend to alleviate this problems and improve the cache performance. The

cache lines prefetched by IAP scheme have a reference-once property, and placing

them in a separate cache space, prefetch cache, is able to localize their influence

and also reduce the cache pollution problem.

14

Chapter 4

Related Work

For recent computer applications, it is common that there are many matrix ma-

nipulations with highly regular and sequential data references, and a lot of data

are needed in performing computation. If the operands are not found in cache,

the actual performance of the system would decline for the large amount of cache

misses.

In order to reduce the number of cache miss penalty, data should be pre-

fetched into the cache before their actual usage. Prefetching techniques consist of

both hardware and software approaches. Existing cache prefetching schemes, ei-

ther hardware-driven [BaC91] [Smi78b] or software-assisted [Tha81] [Bre87] [Por89

GoG90] [CaK91] [ChM91] [KlL91] [MoG91] [MoL92], are not very effective in reduc-

ing the processor idle time due to memory accesses.

Hardware prefetching typically uses dynamic stride detection to perform run-

time calculation of prefetch addresses to be issued[ChB92] [FuP91] [FuP92]. The

overheads of hardware prefetching are the cost for the additional hardware, and

the limited ability of the dynamic units to perform any prefetching other than

through arrays with linear strides.

The prefetching accuracy oftraditional hardware driven data prefetching schemes

is low (though it is relatively easier to be implemented), thus cannot get signifi-

cant improvement in data cache performance. Though we can find some accurate

15

Chapter 4- Related Work

hardware-driven prefetching schemes of constant stride array elements, they usu-

ally require some complicated add-on hardware such as a prediction table. As a

result, they are not suitable to be implemented as the first-level on-chip cache as

the space on the CPU chip is very limited. Chen and Baer [ChB94] evaluated

the effectiveness of lockup-free caches and hardware prefetching, and proposed a

hybrid scheme based on a combination of these approaches.

Software prefetching is more flexible than hardware prefetching, having the ad-

vantage of compile-time knowledge, but pays the price of software overhead, both

in instructions issued and code size[CaK91] [KlL91] [MoL92]. Software-assisted

cache prefetching schemes can also achieve high accuracy in prefetching array data

references with constant strides, but the runtime overhead introduced is a big ob-

stacle to their popularity. Furthermore, architectural and compiler supports are

needed for the software-assisted prefetching schemes. These also restrict the usage

of software prefetching scheme in current processors and computer systems. Beside

these, some promising approaches use hybrid hardware and software techniques,

issuing limited instructions that provide hints to the prefetch hardware[Chi94 .

When the cache or a particular set is full, and information is requested by

the CPU from the lower level memory, some information in the cache must be

selected for replacement. This implies that a cache miss needs not only a fetch

but also a replacement. Cache replacement policies should implement totally in

hardware and execute very quickly, so it will not have bad influence on the system

performance. The replacement algorithms are mainly classified into usage-based

and non-usage-based. Section 4.1 will give a brief description of some known

replacement policies.

4.1 Existing Replacement Algorithms

In brief, cache misses can occur for three reasons: [1] the requested data have never

been accessed before [compulsory miss), [2] the requested data have been accessed

before, but the size of the working data set exceeds the cache size {capacity miss),

16

Chapter 4- Related Work

or [3] the requested data had been in the cache but was displaced by an intervening

reference to another address {conflict miss). Information resident in the cache has

to be removed to bring in future information in the event of cache misses. The

replacement algorithm determines the information to be discarded. The algorithm

may be Least Recently Used (LRU), First In First Out (FIFO), Random, Pseudo-

LRU, etc.

A truly random strategy is completely unacceptable for production test rea-

sons, as it is difficult to run test vectors on a chip that does not have completely

deterministic behavior. Some relatively common replacement algorithms are as

follows:

1. Least Recently Used (LRU): An usage-based algorithm under which the line

which has not been accessed for the longest time is replaced with the hope

of reducing the chance of throwing out information that will soon be needed

again. Its implementation requires every line to have extra bits to keep track

of the age of its contents thus making the controller design more complicated.

2. First in First Out (FIFO): The First In-First Out replacement policy chooses

the page which has been in the memory the longest to be the one replaced,

i.e., the page to be replaced is the oldest page in the cache, the one which

was loaded before all the others. A pointer into the line space is maintained.

On replacement, the line pointed by the pointer is ejected, and the pointer

is incremented. The pointer is set to zero when the end of the line space is

reached.

3. Clock (or Second-chance): A pointer in the line space is maintained. On

replacement, the used bit of the line pointed to by the pointer is checked.

If it is set, it will be cleared and the pointer is incremented. The last step

is repeated until a line with the used bit cleared is found and that line is

ejected. The used bit is set on every access, and is cleared periodically.

This method can be used to approximate LRU, but the periodicity of the

clearing needs to be carefully set. It will be difficult to find an eject-able

17

Chapter 4- Related Work

line if the period is too long. If the period is too short, locality will be lost

and thrashing will occur frequently.

4. Least Recently Modified: The Li^^7bits of lines is modified only on writes.

5. Not-Most-Recently-Used: The most recently used line is kept in the cache,

one of the remaining lines is selected and replaced.

6. Least Frequently Used (LFU)

The page to be replaced is the one used least often of the pages currently in

the cache.

7. Last In First Out (LIFO)

The page to be replaced is the one most recently loaded into the cache.

8. Optimal (OPT or MIN)

The page to be replaced is the one that will not be used for the longest

period of time. This algorithm requires future knowledge of the reference

string which is not usually available. Thus, this policy is used for comparison

studies.

Among all of the above algorithms, the usage-based LRU is most commonly-

used in current memory design. As mentioned above, implementation for LRU

has to keep track of the age of every cache line, and thus requires every cache line

to have extra bits. Though this makes the controller design more complicated

and expensive, it works well in most architecture. FIFO and Random are non-

usage-based algorithms, non-usage-based algorithms use basis other than usage

for replacement decision. It is shown that non-usage-based algorithms all yield

comparable performance [Smi82 .

4.2 Placement Policies for Cache Lines

Techniques on holding prefetched data in intermediate space other than the first-

level cache has also been proposed. Jouppi [Jou90] proposed to use a stream

18

Chapter 4- Related Work

buffer to hold the prefetched data. Stream buffers prefetch cache lines starting

at a cache miss address. The prefetched data is placed in the buffer instead of

the cache. Stream buffers are useful in removing capacity and compulsory cache

misses, as well as some instruction cache conflict misses. However, the stream

buffer that proposed is actually a simple FIFO queues, and thus each time only

the oldest element is visible to the processor. However, the newest replaced lines

instead of older one are needed sometimes. As a result, the expected performance

improvement in data cache is slight or nil. Therefore, multi-way stream buffer,

which consists of four parallel stream buffers in a multi-way stream buffer and

with LRU replacement policy, is proposed to solve the limited ability of stream

buffer. When a miss occurs in the data cache that does not hit in any stream

buffer, the least recently hit stream buffer is cleared and it is started fetching at

the miss address. However, the utilization of buffer is still low, as only the first

entry in each buffer can be searched.

Jouppi [Jou90] has proposed another technique, miss caching, to minimize the

miss penalty during a cache miss. A miss cache is a small fully-associate cache

containing two to five cache lines of data. When a miss occurs, data is returned

not only to the normal (upper) cache, but also to the miss cache under it, where

it replaces the least recently used item. Each time the upper cache is probed, the

miss cache is probed as well. If a miss occurs in the upper cache but the address

hits in the miss cache, then the directed mapped cache can be reloaded in the

next cycle from the miss cache. This replaces a long ofF-chip miss penalty with a

short one-cycle on-chip miss.

To make better use of the miss cache, victim caching is further proposed by

Jouppi [Jou90]. Victim caching use a different replacement algorithm for the

small fully-associative cache. Instead of loading the requested data into the miss

cache on a miss, load the fully-associative cache with the victim line from the

direct-mapped cache instead. With victim caching, no data line appears both

in direct-mapped cache that hits in the victim cache, the contents of the direct-

mapped cache line and the matching victim cache are swapped.

19

Chapter 4- Related Work

4.3 Chapter Summary

In this chapter, a brief review on different prefetching algorithms is given. Besides,

review on existing replacement and placement policies is also introduced.

20

Chapter 5

Replacement and Placement
Policies of Prefetched Lines

In order to minimize the cache pollution and localize the influences brought by

prefetched lines, we have tried different approaches. The different schemes try to

focus on handling the life time of prefetched lines in the cache, and placement

of IAP lines. Firstly, we propose to use a mixed replacement policy with both

IZ and LRU replacement policies, this scheme helps to shorten the life time of

referenced and useless IAP lines and it retains the temporal locality of demand-

fetched lines. Secondly, the Priority Pre-Updating scheme (PPU) is proposed

to shorten the life time of possibly erroneously prefetched lines. In addition to

IAP scheme, we found that PPU can work well on caches employing different

prefetching algorithms. Thirdly , we use a on-chip prefetch cache to hold the

prefetched data to localize the influences of IAP lines, Following sections will give

details on these three schemes.

21

Chapter 5 Replacement and Placement Policies of Prefetched Lines

5.1 IZ Cache Line Replacement Policy in IAP

scheme

Least Recently Used (LRU) is the most commonly used cache line replacement

policy in both traditional cache designs and the IAP scheme mentioned in previous

chapters. Though LRU is very popular in current cache designs, it still has many

drawbacks. It is known that LRU cannot always replace the best line in the cache,

and replace a wrong candidate line may cause cache miss afterwards. For example,

consider the following code segment:

f o r (c o u n t = 0； count < 3; count++)

f o r (i = 0; i < 4 ； i++)

a [i] += bCi]；

let blocks A, B, C and D contain the data 6[0], 6[1], h[2] and b[3] respectively. If

the cache is fully associated, with LRU chosen as the replacement policy, then the

data blocks will be loaded into the cache in the following sequences:

cache cache cache

Z] 回 [^
T T X
^ 回 1^

(1) (2) (3)

In (2), due to limited capacity, A is replaced by D as it is the least recently

used one. However, block A is immediately in need after D when the outer loop

is entered again (in (3)), and thus a cache miss follows. This situation continues

until the end of the loops. The same situation occurs when FIFO policy is used.

Though there is no prefect cache line replacement scheme found so far, a good

replacement algorithm should try to reduce the probability of wrongly replacing

a useful cache line.

Although the IAP scheme can prefetch data accurately, the cache may not

large enough to accommodate all lines brought in by demand fetch and prefetch

22

Chapter 5 Replacement and Placement Policies of Prefetched Lines

requests. As a result, conflict misses occur frequently when the working set of

the program is larger than the cache size, so we have proposed the Instant Zero

replacement policy [SzY97] is proposed to handle the problem. IZ scheme is aimed

at managing the cache replacement more efficiently and reducing the thrashing

misses. It is found that the data in IAP lines are most likely to be referenced once

only. If these prefetched lines are placed in the cache and obey the LRU cache line

replacement policy, as they have lost the benefit of referencing in the near future

once after being referenced, they are just occupying the precious space in cache

without any contribution. As a result, most of them should be the best candidate

to be replaced when either capacity or conflict misses occur. That is the reason

why the proposed IZ replacement policy is used to handle these IAP lines. As a

result, after the requested data of an IAP line has been referenced, it should be

the best candidate to be discarded when there are conflicts among the cache lines.

5.1.1 The Instant Zero Scheme

In the IAP scheme, conflict misses are the main concern. If a line (say line i)

is being referenced, and was not found in the cache, then a miss occurs. The

idea of IZ is not to reduce the miss penalty caused by the reference to line i,

but to minimize the probability of cache misses in the future. We can easily

observe that most cache lines that generated by demand fetch or prefetch-on-miss

possess certain degrees of localities, and those lines prefetched by the IAP scheme

are likely to be referenced once only. As a result, the IAP lines that have been

referenced should be the best candidate to be discarded if conflicts on the cache

lines occur. Therefore, the replacement strategy in the IAP scheme is a mixed

strategy by using both IZ and LRU.

The mixed replacement policy of LRU and IZ can be summarized as follows.

:1] The replacement policy for non-IAP scheme cache lines (either by demand fetch

or by default prefetching) still obey the LRU policy. [2] For those lines prefetched

by the IAP scheme will follow either LRU or IZ according to the following rule :

23

Chapter 5 Replacement and Placement Policies of Prefetched Lines

• If the prefetch address is not the same as the current data reference line,

then this prefetched line will follow the LRU policy. On the other hand, if

the prefetch is the same as current data reference line, then as mentioned

before, the block preceding it or following it will be prefetched. And this

prefetched line will obey the IZ policy, in which the priority of the line will

set to 0 immediately after its reference.

To indicate whether a line is prefetched by the IAP scheme, 1 extra bit for

each cache line is needed. The cache lines in a four-way set associative cache will

look like Figure 5.1.

Di Hi li Si PTaĝ Datâ
•2 Hg l2 S2 PTag2 Data2
D3 H3 l3 S3 PTag3 Dat^
D4 H, l4 S, PTag, Data,

^^^a^^^K^^^^^^^^^mmmmi^^^^mi^^^^^^^mmm^^^^^^m^^m^^^i^^^
1 2 1 1

D Dirty bit

H Hot bit, which indicates the priority of the corresponding data line

I IAP bK, set if the line is prefetched by the IAP scheme

S Line status bit (Valid bit):

PTag Physical tag

Data Cache Data

Figure 5.1: A theoretical representation of a set in a four-way set associative cache

The hot bits are used to indicate the priorities of the lines following LRU

replacement policy. When a line in the cache is referenced or a new line is brought

into the cache, the hot bits of the lines will be updated. In the former case, the

referenced line will have the hot bits updated to the largest number within the

same set. Those lines with hot bits value larger than the original value of that

of the referenced line will have their hot bits decreased by 1，while others remain

unchanged. In the latter case, the hot bits value of each cache line will be decreased

by 1, and the one with new value equal to 0 will be displaced. The new line will

have its hot bits value set to the highest number within the set. Therefore, lines

24

Chapter 5 Replacement and Placement Policies of Prefetched Lines

with a lower priority are more likely to be kicked out, as they are the Least Recently

Used one. In case of conflict in the cache lines, the line with hot bits equal to 0

will be displaced in order to bring in a new line.

line hotbits

厂 0 0 10 1 1

J 1 0 11 0 1 —
QOt i </ ^^^.yv^ <tgSg ^^ ,¾¾ S* <NSS

比1 ’ \ lOM iJmta.
\ 2 0 01 1 1 ^

3 0 00 0 1 V L_ I
^ ^ ™ ™ ™ ™ ^ ^ ^ ^ ™ ^ ^ — ^ ™ M ^ ^ ^ ^ ^ ^ M ^ ^ M ^ ^ — ^ ^ ^ — i ^ M ^ M ^ ^ M

~ iowest priority \im

Figure 5.2: Before a reference to an IAP line

Now, let us have a look on how the IZ works within a set (say set i). Refer to

Figure 5.2, if there has a miss to set i, then line 3 will be displaced. Since it is the

one with lowest priority (the least recently used one). Suppose there is a reference

go to line 0 before such a miss occurs, as it is an IAP line (with IAP bit set), it is

then considered useless and will be the most likely one to be kicked out in future

conflicts. Other than setting the priority of line 0 to 0, those lines with priorities

lower than the original priority of line 0 should be incremented by 1. Those lines

with priorities higher than the original priority of line 0 remain unchanged. As

a result, the lines in the set with the priorities updated will look like Figure 5.3.

Therefore, if there is a miss now, then line 0 instead of line 3 is the first one to be

displaced.

—iQW&ft priority Hm
line ^ _ ^ _ ^

厂 0 0 0 0 1 1 、 、 、

J 1 0 11 0 1
set 丨 < 2 t i T ^ ^ Baia

、 3 0 01 0 1

^ ^ ^ ^ ^ ™ ^ ^ ^ ™ ^ " ™ ^ ™ ^ ^ ^ ™ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ™ ^ ^ ™ ^ ^ ^ ™ ^ ^ ^ ^ ^ ™ i H ^ H B

Figure 5.3: After reference to an IAP line

The control flow of the proposed scheme is shown in Figure 5.4.

25

Chapter 5 Replacement and Placement Policies of Prefetched Lines

<
V

Get next •
instruction I •

. S ,
<T LOAD/STORE- ^ ^ ！
\ UPDATE? ^ ^

A r ^
/ Addressing ^ ^ OTHER Generate a

V ^ ^ T ^
iNDEX-DISPLACEMENT

Y
Calculate I
prefetch •

L ^
A

v B ^ := N ^
\ ^ current line ^ ^

. \ X
——^—— _ ^ ^ i _ ^ _ V
Set prefetch address Ur

as that of the „ , _r:i::t..
preceding or Send prefetch Update priority •
following line address to — ^ "sing LRU m ^ >

according to the prefetch queue strategy •
direction of update •

^ ~ .
T̂ddre??tô I ™> Updatepriority |

prefetch queue I 严 using IZstrategy |
Figure 5.4: Control Flow of the IZ Replacement Policy

26

Chapter 5 Replacement and Placement Policies of Prefetched Lines

If a line is prefetched by the IAP scheme, then the IAP bit in the corresponding

entry will be set to 1. These IAP lines will be treated as normal cache lines until

there is a reference to it. When an IAP line is referenced, its priority will be set

to 0 immediately after its reference to obey the IZ replacement policy.

5.2 Priority Pre-Updating and Victim Cache

In order to minimize the cache pollution and localize the influences brought by

prefetched lines, we propose the Priority Pre-Updating scheme (PPU) to shorten

the life time of possibly erroneously prefetched lines. The effect of adding a small

fully-associative victim cache to hold the unreferenced prefetched lines ejected

from cache is also discussed here.

5.2.1 Priority Pre-Updating

A PPU unit is added to keep track of all the prefetched lines according to their time

of prefetching. Whenever there is a reference to a prefetched line, priorities ofthose

former prefetched lines, which are unreferenced and precede the current referenced

line in the PPU unit, will be decremented by a constant stride. Normally, the

priority of a line updates only when there are references to any lines within the

same set. However, under the PPU scheme, the priorities of other lines in different

sets may also be changed.

In fact, the PPU aims at reducing the cache pollution problem as well as

retaining the potential temporal locality of other lines. Figure 5.5 shows the

overview of the architectural model of the cache under the PPU scheme.

As shown in Figure 5.6，each entry in PPU maps to a prefetched line in the

cache. When there is a reference go to a cache line, say /me03 (entry 3 in PPU),

since /meoi and /meio precede /me03 in PPU, their priorities will be decreased by

1. The cache lines following /me03 in PPU，such as ^me^o, will not be affected.

27

Chapter 5 Replacement and Placement Policies of Prefetched Lines

EXECUTION UNIT Effective data address 一 ^̂

DATA CACHE . PPU UNIT ^
iNSTR, REGISTER

I I I I • � �： :
WB9M^g^^^ :•: I_:i_:
_丨丨丨______ ||||||||iiiii
||;|iiijijiij;i

ADDER

PREFETCH -QUEUE -

" ^ ' T r ' t T 7 > ^ P R E F E T l u N . T H ^
detected ？

Figure 5.5: Architectural model of IAP scheme with PPU

5.2.2 Priority Pre-Updating for Cache

The basic rules of PPU are — [1] All prefetch-on-miss lines will be recorded in PPU

unit, and [2] When there is a reference, if the requested line is found in PPU unit,

those preceding unreferenced lines will have their priority decrement by 1. [3] The

corresponding entry in the PPU unit for this reference line will be deleted.

5.2.3 Victim Cache for Unreferenced Prefetch Lines

Owing to the long delay between references of successive data, the priority pre-

updating scheme cannot obtain significant improvement in the cache performance,

Data which have high potential to be referenced in the near future, are sometimes

trashed out before their actual reference. In order to minimize the influence of this

situation, we use a small victim cache with few entries as a secondary buffer for

the unreferenced prefetch line. Therefore, a small fully-associative victim cache

with four entries, each with the same size as a cache line, is integrated with cache.

As experimental results show that victim caches with FIFO and LRU replacement

policies have similar performance, FIFO is chosen as replacement policy in victim

cache, for the ease of implementation in hardware.

28

Chapter 5 Replacement and Placement Policies of Prefetched Lines

entries in cache sets

PPU ""V jJ ::��

oldest |"7"^^^ : : : > setO

� . � � … - 1 - | > ：： _j

1 丨 t ^ ： £ \U
i I ： ： !in<;i: I
i Bmfmm& j ； :::
1 1 i - - i ： , ,

i i ::.. ^ I
\ Of I i--r-.. ：； ^^iset2
\ �1 ； ; .. ^ I
^ pr6f0toh i :…」 “呢- _j

i 丨 丨 一

1 丨 ： 丨 、 , “
1 ？ 「-1,......:凑 ‘

"̂ ¾ ?̂:¾¾¾::¾^ ‘ , -':'::::¾

v̂ yZ m-1 •
v _ ^ ^ , , ,

, T 1 n "ne-
youngest _ iin<;i.., ^
^ 口 队画遍 ^ > setn

^
line ..

L^ 2'-f J

Figure 5.6: Illustration of PPU
For each prefetched line discarded from the cache, it will first be checked if

this line is unreferenced. If such a case is detected, this line will be placed in

the victim cache. When the victim cache is full, the oldest line will be displaced.

When there is a data reference to the cache, it will first check if the data appears

in the data cache. If the data is not found in data cache, then it will check if the

data is in the victim cache. If such a case happens, then one extra clock cycle will

be spent to fetch the data from victim cache.

Actually, the victim cache itself does not prefetch data but act as a secondary

buffer to store prefetched data. Experimental results show that the cache per-

formance is significantly improved by using PPU with victim cache (PPUVC).

Figure 5.7 gives a summary of the control flow of the PPUVC.

29

Chapter 5 Replacement and Placement Policies of Prefetched Lines

<

Y

Data line D •

I
arrived •

^ ¾
Record this line in

t h e P P U u n i t , b y S .mp ly fo l l owLRU
secifying i tsset replacement

and line numbers P° 'ey

^ .
Place D in p

data cache

i
Cache is full
and line /̂ is

displaced

V

YES , X ^ P ^ ^ ! ! ! ^ ! ^ N �
<^ l ineand is ^ ^ — ~ "
\ fresh? ^ ^

———— ^ ^ ——^——L
Place /̂ in victim Write back if /^is |

丨 7 I I - I
T

Figure 5.7: Control Flow of PPUVC

30

Chapter 5 Replacement and Placement Policies of Prefetched Lines

When a data line arrives, it will first check if it is a prefetched line. If so,

then a record will be kept in the PPU unit. When there is a reference to any

cache line, then priorities of the lines will be checked and updated. If there is any

conflict occurs in the cache and a line has to be replaced, then the one with lowest

priority will be discarded. If the line to be discarded from cache is an unreferenced

prefetched line, then it will be placed to the victim cache. On the other hand, the

lines that have been referenced will not be placed in the victim cache. These lines

will be written back to lower level memory if they have been modified. Otherwise,

they will be simply discarded from cache.

5.3 Prefetch Cache for IAP Lines

IAP lines have quite different property as compared to demand-fetch lines and

prefetch-on-miss lines, since they are likely to reference only once during the entire

program execution time. In order to localize their effects and minimize their

influences to normal cache lines, a small on-chip prefetch cache is added [YoS98'.

All IAP lines will be placed in the prefetch cache instead of the on-chip cache.

A prefetch cache has the same structure as a cache, which consists of a series of

entries with a tag, an valid bit, a dirty bit, a hot bit and a data line. Prefetch

cache functions independently from the data cache. When there is a reference,

both data cache and prefetch cache will be checked in parallel for any potential

hits. Figure 5.8 gives the general picture of cache support in IAP architecture.

Through the on-chip cache controller, the processor attempts to access the

data in the primary cache. If the data is there, then the processor will retrieve it.

If a primary cache rniss occurs, i.e., the data is not found in the primary cache,

the cache controller checks to see if the data is in the secondary cache. If the data

is found in the secondary cache, it is fetched into the primary cache. If the data is

not present in the secondary cache, it is fetched as a cache line from main memory

and is written into both the secondary cache and the primary cache before the

processor retrieves it. For the sake of simplicity, we assumed these is no secondary

31

Chapter 5 Replacement and Placement Policies of Prefetched Lines

I CPU — — — — —

I Cache Controller < ^ • Main Memory ^

|' ^ I I " ^ " " — L Z Z ^
I Instruction
I Cache

I Data Prefetch

^ Cache Cache

1 、 ^ ^ ^ ^ ^ ^ ^ ^ ^ » 飄 ^ ^ ^ ^ ^ « ^ » 、 、 全

Secondary Cache _

~~pysa»»sssi»~»KiS5sssaâ�~aaa}tt»»i;fe»aiaS5;iSgSigîĝ；̂^

Figure 5.8: Cache Support in the IAP architecture

cache misses. In other words, the secondary cache is assumed to be infinitely large

to hold all data. It is possible for the data to appear in different levels of memory.

The data is kept consistent through the use of write back methodology, in which

modified data is not written back to memory until the cache line is replaced.

For any data prefetched by the prefetch unit, if this prefetch is generated by the

IAP scheme, then it will be placed in the prefetch cache instead of the normal

data cache. The data in prefetch cache is also kept consistent through write back

methodology.

In addition to implementing LRU, the conventional cache replacement policy,

in the prefetch cache, we also try using the IZ and FIFO replacement policies in

it. We have just implemented one non-usage-based algorithm, FIFO, since non-

usage-based algorithms are found to have similar performance as mentioned by

Smith [Smi82 .

Similar to the victim cache, the prefetch cache itself does not prefetch data

but only keep prefetched data available for use. Figure 5.9 gives a summary of

the control flow of the prefetch cache.

For each data line arrived in cache, it will be checked if it is a prefetched line.

If the data line is a demand fetch line, then place it in the normal data cache.

Otherwise, it will be further checked to see if it is prefetched by the IAP scheme.

If such a case is detected, then it will be placed in the prefetch cache, and all

32

Chapter 5 Replacement and Placement Policies of Prefetched Lines

<
Y

Data line D p •

arrived • r^
>r

/\ r ^
/ ^ ^ Nn Place D in normal

< ^ l s D p a n IAPI ine? ^ — ~ ~ > ^

v ^ ^^^^^
YES >r Place D in p

prefetch cache

Figure 5.9: Control Flow of the Prefetch Cache Scheme

other types of prefetched lines will placed in the normal data cache.

5.4 Chapter Summary
In this chapter, two designs for hardware controlled replacement schemes and one

replacement policy are proposed. By careful selection of data line to be replaced

when a cache miss occurs, our replacement policies, IZ and PPUVC, will be able

to reduce the cache pollution problem and retain the benefit of localities pose by

normal cache lines. With the reference-once property of IAP lines, the placement

design, prefetch cache, is able to localize the influence of IAP lines. Again, it helps

to alleviate the cache pollution problem.

33

Chapter 6

Performance Evaluation

6.1 Methodology and metrics

In order to have a deeper understanding of the algorithms proposed, and to show

their potentials, we evaluate our proposed architecture using detail trace-driven

cache simulation. We use eight SPEC92 i benchmarks to generate traces for our

study. They include three integer-intensive programs: compress, espresso and li,

and five floating-point intensive programs: nasa7, spice2g6, su2cor, tomcatv and

wave5. Table 6.1 gives a brief description of the benchmarks used.

SPEC Benchmark Suite
Program Language Description
compress C Adaptive Lempel-Ziv compression
espresso C Boolean function minimization

J i C Lisp interpreter solving the nine queens problem
nasa7 Fortran Seven floating-point synthetic kernels
spice2g6 Fortran Analog circuit simulator
su2cor Fortran Quantum physics mass computation
tomcatv Fortran Mesh generation program
wave5 Fortran Maxwell's equation solver

Table 6.1: SPEC Benchmark Applications used

iSPEC is a trademark of the Standard Performance Evaluation Corporation

34

Chapter 6 Performance Evaluation

6.1.1 Trace Driven Simulation

Clearly, the type of jobs (i.e., the job mix or instruction mix) will be important

to the cache simulation, since the cache performance can be highly data and code

dependent.

For example, given a cache size of 8K lines with an anticipated miss rate of

10%, (1 miss in 10 memory references) we would require about 80K lines to be

fetched from memory before it could reasonably be expected that each line in

cache was replaced. To determine reasonable estimations of actual cache miss

rates, each cache line should be replaced a number of times (the accuracy of the

determination depends on the number of such replacements.) This net effect is a

memory trace of some factor larger is required, say another factor of 10, or about

800K lines. That is, the trace length would be at least 100 times the size of the

cache. Therefore, we chose to collect 100 millions instructions for each benchmark

programs.

With the help of xtrace facilities, each of the chosen benchmark programs in

the SPEC92 suite was traced on the IBM RS/6000 workstation and 100 million

instructions for each benchmark were collected. The process of trace-driven sim-

ulation is summarized in Figure 6.1.

executable code

^̂ _r
——Prog.instrument

\ instrumented code

xtrace facilities P rog .x t race
” processor information (via a pipe)

—— Prog.interface

i address^ data trace

configurations • Simulator

T

simulation results

Figure 6.1: Trace-driven simulator using xtrace

35

Chapter 6 Performance Evaluation

The benchmarks were firstly compiled on the RS/6000 workstation. The exe-

cutable codes were then instrumented by the program instrument, which inserted

extra codes into the executable codes in order to extract the processor informa-

tion during the program execution. The instrumented codes were then handled by

xtrace and executed on the RS/6000 machine. The extracted processor informa-

tion was then passed to the program interface via an explicit pipe. The program

interface could be defined by the users to produce the desired trace format. The

following information was recorded for each instruction that was traced:

Inst^ddress, Inst-Content, < DataJief—Address if any >, < No_ofJBytesJief if any >

The simulator is designed such that it can read in the configuration descriptions

such as cache size, set-associativity, line size etc., and simulation objects such as

the CPU and the memory system are created based on these parameters. The

trace data were stored in hard disk, such that a number of simulators could be

run in parallel on different machines to speed up the simulations. The simulator

read in the trace recorded one by one. Then the content of each instruction was

decoded and the opcode, the addressing mode together with the register(s) used

in the address calculation were found.

6.1.2 Caching Models

The baseline cache and the proposed caches use a write-back, write-allocate pol-

icy, and an 8-entry prefetch queue. We assumed that the processor has an ideal

instruction cache with no instruction cache miss incurred. An elementary archi-

tectural model, which consists of a processor with perfect pipelined and a 4-way

associative data cache with a line size of 32 bytes and a total size of 16K bytes, is

defined for the simulations and the replacement algorithm is assumed to be LRU

(Least Recently Used). For comparison, each dimension of the cache (cache size,

line size and set associativity) is varied respectively for different simulations (cache

sizes range from 8K bytes to 32K bytes, line size from 16 bytes to 64 bytes, and

36

Chapter 6 Performance Evaluation

set associativities simulated from 1 to 4) while the other two are kept constant.

The memory model of the second level cache in the simulations is assumed to

be interleaved and its design and timing characteristics are shown in Figure 6.2.

The memory is organized into a number of banks (or modules) to handle multiple

words at one time rather than a single word. Each bank is one word wide which

is the same as the first level cache and the bus. A cache line usually consists of

a number of words (for example, a 32-bytes line consists of eight 4-byte words).

Whenever a cache miss occurs in the first level cache and a fetching request is sent

to the second level cache, the banks will work simultaneously - bank 0 will start

reading for the first word in the block, bank 1, the second word, bank 2, the third

word,... etc. However, since there is only one memory bus between the first and

second level cache, the transfers of the words must be processed sequentially. As a

result, the time for a demand fetch request to transfer a cache line between the first

level cache and the second level cache memory can generally be summarized by the

equation C1 + C2 x {hlocksize-l), where Ci is the delay time for the first word to

arrive after a cache miss (that is, startup_cnjerhead + transfer_time-for—a-Word)

and C2 as a parameter that indicates the bus bandwidth between the first level

cache and the second level cache (that is, transfer time for a word). In our

experiments, Ci was assumed to be 6 and 6¾ to be 1.

For a given cache line size, the time for a demand request (due to the first

level cache miss) to finish is assumed to be equal to the time for a prefetch (to

the second level cache) to finish. The prefetch requests are reside in the prefetch

queue and the request Rp at the beginning of the queue will be sent to the second

level cache if the queue is not empty and the bus to the second level cache is

free. If the address of the pending prefetch request immediately follows that of

the current request R � (d e m a n d fetch or prefetch) being processed in the second

level cache (i.e. address—of—Rp = address_ofJlc + 1), the interleaved memory,

that is, the second level cache, does not need to wait until the request R � i s

completely finished. It can continue to process R^ when some memory banks are

free, although the memory bus may be still transferring the data of R^. In this

37

Chapter 6 Performance Evaluation

r ' " r = | - :
CPU I

； P ^ ；

: L1 I ：
< cache 1 » : L,:Q;;::iJ ：
…’…^ ^ ^ ^ " " ^• ^ -

BUS

_ j^i^p^^^ _
Bank Bank Bank Bank
0 1 2 3

、.—. 一
V

Secondary Cache

(a)

fetch i fetch i+1

V V

K Ci H
H c , H

I 1 1
req i xfer i

1 1 1
req i+1 xfer i+1

(b)

Figure 6.2: Memory Model of the simulator: (a) Interleaved memory (b) Timing
of data access

case, the startup overhead of R^ can be hidden and the time for completing the

prefetch request will be equal to C2 x blocksize.

The second level cache can only handle one request at a time, no matter it is

a demand fetch or prefetch request. When a demand fetch miss occurs in the first

level cache, it will try to fetch the data from the second level cache. However, it

may be in a situation that the second cache is serving a prefetch request. In case

of such conflict, the priority will given to the demand fetch miss and the prefetch

request will be aborted and the demand fetch request will be started next cycle.

For simplicity, the second level cache (memory) is assumed to be infinitely

large. That is, there is no cache miss in the second level cache.

38

Chapter 6 Performance Evaluation

Each instruction is assumed to be executed in one cycle and no superscalar

architecture is simulated and cache access upon a cache hit is assumed to be one

cycle.

6.1.3 Simulation Models and Performance Metrics

In Table 6.2, the percentages of LOAD/STORE-UPDATE instructions in the

instruction mix of SPEC92 benchmarks programs are shown. As it can be seen

from the percentages of the table, LOAD/STORE-UPDATE is fully utilized by

current compiler technology. Ranging from a few percent to over 95 percent of

the LOAD/STORE instructions belongs to LOAD/STORE- UPDATE category.

Percentage of instructions Executed
Benchmark Total LOAD-UPDATE Total STORE- UPDATE Total Total

LOAD STORE LOAD/STORE LOAD/STORE- UPDATE

compress— 21.5 0.0 9 .厂 0.3 30.7 0.3
espresso "22.0 11.1 3.9 “ 1.3 25.9 — 1 ^
li 25.4 0.8 15.2 2.3 40.6 “ 3.1
nasa7 _42.8 42.0 1.7 “ 1.4 44.5 43^
spice2g6 —18.3 1.4 9.9 “ 1.1 28.2 ^
su2cor — 26.4 8.5 14.1 6.1 4 0 . 5 _ 14.6
tomcatv "29.6 18.3 11.1 10.1 ~" ̂ 4 ^ 2 ^
wave5 26.5 1.4 9.7 “ 2.2 — 36.2 ^

Table 6.2: Percentages of LOAD/STORE-UPDATEs in SPEC92 Benchmark Suite

Numerous experiments on various caching models were simulated using the

collected SPEC92 traces as the input.

• The simulated cache size ranged from 8K bytes to 32K bytes.

• The simulated line size ranged from 8 bytes to 64 bytes.

• The simulated set associativities ranged from 1 to 4.

• The Time for a demand fetch request to transfer a cache line between the

first level cache and the second level cache memory was equal to (Cl + C2 x

{LineSize — 1)), where C1 is the delay time for the first word to arrive

39

Chapter 6 Performance Evaluation

after a cache miss, and C2 is a parameter that indicates the bus bandwidth

between the first level and the second level cache.

• The time for a demand fetch request to finish was assumed to be the same

as that for a prefetch request to finish for a given cache line size.

• The second level cache/memory was assumed to be infinitely large, and there

was no cache miss in the second level cache.

• When there existed a memory request Ra trying to kill another request i ^

that was currently being served, there would be one cycle time delay before

the new request Ra could start.

• The size of the prefetch queue was assumed to be eight entries.

• Each instruction was assumed to be executed in one cycle and no superscalar

architecture was simulated.

• One cycle access time was needed for a cache hit.

• Seven cache prefetch models were simulated :

1. Data cache without any prefetching.

2. Data cache with prefetch-on-miss.

3. Data cache with the combined IAP scheme - using the IAP scheme

for LOAD/STORE- UPDATE instructions and the default prefetch-on-

miss for non-LOAD/STORE-UPDATE instructions.

4. Data cache as mentioned in 3, but with a mixed replacement policy

consisted of LRU and IZ.

5. Data cache as mentioned in 2, but with priority pre-updating and vic-

tim cache to tackle with the prefetched lines. The size of the victim

cache is assumed to be 4 entries, with one entry equal to the size of

one line in data cache.

40

Chapter 6 Performance Evaluation

6. Data cache as mentioned in 3, but with priority pre-updating and vic-

tim cache to tackle with the prefetched lines. The size of the victim

cache is assumed to be 4 entries, with one entry equal to the size of

one line in data cache.

7. Data cache as mentioned in 3, but with a prefetch cache added to hold

the prefetched lines by the IAP scheme.

• All the enhancements that mentioned in Section 2 were implemented in the

IAP scheme simulated. And only LOAD/STORE-UPDATE instructions

using index-displacement addressing mode was handled in the simulated

IAP. While for any LOAD/STORE- UPDATE instructions using index-hased

register addressing mode, the IAP scheme did not issue any prefetch request.

In the past, cache design had been frequently taken as a back seat to CPU

design: the cache subsystem was often designed to fit the constraints imposed

by the CPU implementation. The execution time of a program fundamentally

depended on how well the two units worked together to execute instructions. The

execution time was most effectively minimized when the realities of cache design

influenced the CPU design and vice versa. Furthermore, caches had traditionally

been evaluated solely on the basis of hit (or miss) ratios - a metric that can often

be deceiving.

In order to reflect the actual performance of the algorithms proposed, two

main metrics were used here to evaluate the performances of different schemes.

The first performance metric is cycle per mstruction due to memory (date

cache) misses. This performance parameter, MCPI, measures the average addi-

tional processor stall time due to the first level cache misses. It also helps to show

the degree of degradation of CPU performance due to the data cache misses in

terms of memory cycle stalls per instruction. Generally, it can be calculated with

the execution CPI and baseline CPI by the equations:

MCPI = CPIexecution — C PIhaseline

41

Chapter 6 Performance Evaluation

, p total-number-of—cycles—eocecuted
LUI Lt^f o 0 ' Jr J. cXCCVjtioTi —

totaLnumber^ofJnstructions

,PPT — total—number-of—cydes-executed-for_no-cache-miss
LLfvLi v_y 1 J. bascltTic — — —

totaljnumher-ofJnstructions

This is a better measurement parameter than the cache hit (or miss) ratio,

as the penalty of a cache miss depends on the cache line size. Moreover, par-

tial cache hit (or miss) situation, which is the situation that when a block i is

being prefetched, the cache line i is actually referenced, always occurs. Partial

cache hit arises due to the limited bandwidth between the first level cache and

the second level cache (or memory). When a partial hit occurs, the data pre-

fetching will be allowed to finished and the requested data are sent to the CPU.

Thus the penalty of partial cache hits is not a constant, and it ranges from 1 to

{maximum cache miss penalty — 1) (i.e. (C1 + C2 x {Block_Size — 1) — 1)) .

Under this situation, the cache hit ratio is much difficult to reflect the actual cache

performance, as some part of the data is overlapped with the processor execution

while other part of the data fetching time is visible to the processor.

Since we assume the processor can execute each instruction in one cycle and

there is an ideal instruction cache in the system, one may intuitively deduce that

the fact that the memory bus between the processor and the first level cache is

only 32-bit (4-byte) wide. It also means that at most 4 bytes can be transferred

between the processor and the first level cache in one cycle. If the data needed

to be loaded or stored by an instruction is longer than 4 bytes the instruction

can only be finished after all required data are loaded in the processor and the

execution time is sure to be longer than one cycle even when there is no cache miss.

For example, a LOAD/STORE-DOUBLEWORD instruction will be executed for

two cycles even when the data needed is found in the cache. As a result, the

baseline CPI will probably be greater than one and this effect is more significant

in the double precision floating point benchmarks such as nasa7 and tomcatv, in

which most of the data are double words of 8 bytes long. Table 6.3 shows the
42

Chapter 6 Performance Evaluation

baseline CPIs found for the eight benchmarks programs used in our simulations.

Benchmark baseline CPI
compress 1.032
espresso 1.011
li — 1.075 —
nasa7 1.444
spice2g6 1.084
su2cor 1.286
tomcatv 1.407
wave5 1.124

Table 6.3: Baseline CPIs of SPEC92 Benchmark Suite

Another one was the additional processor stall time due to the first level cache

misses.

The percentage of delay time reduction over no prefetch was defined as

%DelayTimeReduction 二

MemoryDelayTimeNoPrefetchCache — MemoryDelayTime prefetchCache

MemoryDelayTimeNoPrefetchCache

The metric can be used to show the extent of memory stall time reduces due

to data cache miss with respect to an elementary cache using no prefetch scheme.

6.2 Simulation Results

In the following sections, the experimental results are presented to show the ben-

efits of the mixed replacement scheme in IAP, the impact of PPUVC in cache

performance improvement and also the effect of cache performance with the use

of a small prefetch cache. The architecture with the elementary caching model

using no prefetch scheme is compared with the same architecture augmented by

each of these schemes.

43

Chapter 6 Performance Evaluation

6.2.1 General Results

• All the replacement and placement schemes that deal with IAP lines seemed

to have no effect on the benchmark compress. It can be found out in Ta-

ble 6.2, only 0.3% of the total instructions (less than 1% of LOAD/STORE

instructions) is of the type LOAD/STORE-UPDATE. As the prefetching

actions of the IAP scheme is triggered by the LOAD/STORE-UPDATE

instructions, only a few prefetched requests will be generated for the IAP

scheme and their effects will be negligible. Therefore, IZ replacement pol-

icy, PPUVC and also the prefetch cache, which work upon IAP lines, had

insignificant effect on the cache performance. Moreover, the combined IAP

scheme would revert back to a simple prefetch-on-miss scheme and the two

schemes suffered a slight performance degradation with respect to the no

prefetch cache, which is probably due to the lack of constant stride refer-

ences in the program (as reflected by the lack of LOAD/STORE-UPDATE

instructions).

• Prefetch-on-miss, the traditional hardware prefetching scheme, generally has

some improvements over most of caching models tested except for the bench-

mark compress. The combined IAP scheme showed performance improve-

ment over all caching models for almost all benchmarks used (except com-

press).

Varying Cache Size

Figures A.1, A.2, A.3 and A.4 in Appendix A shows the simulation results for

the eight benchmark programs using cache size varies from 8K to 32K bytes.

All experiments were done with caching models of 32-byte line size and 4-way

associativity.

As expected, one can find that the MCPI decreased as the cache size increased.

However, for some benchmarks, such as su2cor and tomcatv, the pure IAP schemes

44

Chapter 6 Performance Evaluation

showed little improvement when the cache size was small, i.e., 8K bytes, but ex-

hibited substantial improvement when the cache was increased to 16K and 32K

bytes. For tomcatv, when the cache size is very small (8K bytes), the pure IAP

scheme actually degraded the performance instead of improving it (can be ob-

served in Figure A.1 (g). This is probably due to the small cache size and the

aggressive cache prefetching scheme. Even though the prefetching can be very

accurate, those accurately prefetched data will displace each other away from the

data cache before they have the chance to be used. However, as the cache size

increased from 8K bytes to 16K bytes, this cache conflict problem was minimized

and the IAP scheme started to have substantial cache performance improvement.

However, in the three proposed schemes 一 IZ, PPUVC and prefetch cache, the

performance improvement was generally more significant for small cache size in

su2cor, tomcatv and wave5 (Figures A.1, A.2, A.3 and A.4). When the cache size

increased, the performance improvement was comparable to the pure IAP scheme.

The significant improvements for small cache size in IZ and PPUVC schemes

are due to the careful selection of lines to be replaced. By using the specific dis-

placing criteria in these two schemes, lines, which are likely to be useless in the

future, are displaced in cases of conflicts. When the cache size was small, conflict

misses occurred more frequently. If a replacement algorithm can accurately pre-

dict which line should be discarded, then many future memory accesses can be

eliminated. IZ scheme makes use of the reference-once property of IAP lines for

deciding the replacement criteria, and it can accurately predict which line should

be discarded for most of the benchmark programs. For the PPUVC, it helps to

shorten the life time of possibly mispredicted lines as well as maintaining the

properties of locality.

Varying Cache Line Size

Figures A.5, A.6, A.7 and A.8 in Appendix A shows the simulation results for the

eight benchmark programs using different prefetching schemes. The experiments

were done with caching models of 16K-byte cache size, 4-way associativity and

45

Chapter 6 Performance Evaluation

varying cache line size from 4 to 32 bytes.

The MCPI curves for IAP schemes generally had U-like shapes. That is, the

MCPIs of the programs first declined from small line size to the optimal line size.

Then, the directions of the curve reversed and the MCPIs kept rising after the

optimal line sizes. These observations are common to be found in most of the cache

simulations. As the line size increases, more data will be fetched one time and

the spatial locality between these data may be beneficial to processor execution.

Moreover, it is also more economical on average to fetch a larger line one time than

to fetch a smaller line several times separately because the time to fetch a line

from memory is equal to Ci + C2 x {linesize - 1). As the line size increases from

the smallest size to the optimal one, these effects are dominant and the MCPI

continues to drop in this range. However, as the line size keeps increasing after

that point, using larger cache line size for sequential prefetching seems to be not

so effective. As the line size further increases, greater portions in the lines will

contain data that will not be referenced in the near further and the lines will be

kicked out without these data being touched. Moreover, increasing the cache line

size elongates the time for fetching a line from the memory. This means the CPU

must wait longer for the same amount of data needed (for example, the CPU is

stalled longer for a 4-byte datum in a 64-byte line than a 4-byte datum in a 32-byte

line). At the same time, this also increases the risks of killing the prefetches by

demand fetches caused by real cache misses. Finally, the larger line size reduces

the total number of distinct lines that can be put into the data cache and increases

the conflicts between lines in the cache which may cause some useful data to be

kicked out before it is referenced by the CPU. When these adverse effects of larger

line size outweigh the benefits brought, increasing line size will mean higher miss

rate, more processor idle time and lower CPU performance. These explain why

the MCPI curves rose after passing the optimal line sizes.

For some programs (compress, espresso, spice2g6 and su2cor), the MCPI

curves showed that the caches worked better when the line size was small (4

bytes). It is probably because the data of consecutive references are separated

46

Chapter 6 Performance Evaluation

far apart and do not reside in the same line. As a result, only small portions

of the large lines fetched from the secondary memory will be referenced in the

near future and the locality introduced by the large line size does not help much.

On the other hand, with the smaller line size, the cache with the same size can

contain more lines and it gives more flexibility for the IAP schemes to do accurate

prefetching. As a conclusion, smaller cache line size is preferred in these situa-

tions. This also agrees with what Lee [Lee87] found about smaller line sizes for

data cache.

However, for espresso (Figures A.5, A.6, A.7 and A.8 (b)), the increasing MCPI

curves ofthe schemes worked on IAP lines turn around and began to drop when the

line size increases from 32 bytes to 64 bytes (similar phenomena were also observed

for the cache only and prefetch-on-miss curves when the line size increased from

16 bytes to 32 bytes). Although the explanation for this phenomenon is not very

clear, we suspect that this is related to the data accesses with large stride values

of 32 to 64 bytes in the program. From 4 bytes to 32 bytes cache line size, the

number of lines that can be stored in the cache is reduced by half each time when

the line size is doubled. However, if the stride size of the data accesses is large, a

small increase in the line size does not capture more useful data. Consequently,

increasing the cache line size below 32 bytes line size only causes cache pollution

and results in poor cache performance. When the cache line size was increased

from 32 bytes to 64 bytes, sequential data prefetching using large line size starts

to have some effect and the cache performance is improved.

It seems that the IAP lines in the program nasa7 had high temporal locality.

For the PPU scheme, it could not obtain significant improvement in prefetch-

on-miss only cache where only prefetch-on-miss lines are involved. However, the

PPU could obtain a quite significant decrease in MCPI, especially when the line

size was small, in cache with IAP scheme. IAP lines in nasa7 has high temporal

locality, which could be further confirmed by its performance degradation in IZ

scheme when comparing with the combined IAP (Figure A.5 (d)). In IZ scheme,

an IAP line would be kicked out very soon after it has been referenced, due to the

47

Chapter 6 Performance Evaluation

underlying assumption of low temporal locality in IZ scheme. However, it seems

that this assumption is not true in nasa7.

Varying Cache Set Associative

Figures A.9, A.11, A.10 and A.11 in Appendix A shows the effect of increasing the

cache set associativity. As it is expected, from the set associativity of 1 to 2, the

performance was generally improved (except the benchmark su2cor). With a one-

way associativity (direct mapping) cache, every line could be placed at only one

position. If it happens that two sequences of data accesses, for example, two arrays

inside the same loop, are mapped to similar sets, they will continually displace

each other's data line in the cache, although the displaced line may contain data

that will be referenced in the near future. As a consequence, miss rate will be

increased and the cache performance will be degraded. It accounts for the large
/

improvement from one-way to two-way set associative cache. This effect was more

obvious for the benchmark nasa7 (Figures A.9, A.11, A.10 and A.11 (d)). For

the scheme PPUVC in the prefetch-on-miss-only cache model, the performance

difference between direct-mapped and 2-way set associative was less significant

than other schemes which involve IAP lines. For the direct-mapped case, IZ

was actually reverted to combined IAP scheme. However, for prefetch cache and

PPUVC in IAP scheme, the program nasa7 had a lower MCPI in direct-mapped

situation than in others. The reason is that IAP has high accuracy of prefetching,

and this aggressive prefetching prefetches data into the cache before their actual

references. From Figure 6.2, we can find that almost all (over 90%) of the data

references belong to the LOAD/STORE-UPDATE (constant stride) type and are

mainly chains of array or pointer references. With this large amount of constant

stride references, the chance of conflicts induced by the address mapping will

probably be very high. Due to the relative high conflict misses in direct-mapped

cache, some of these useful IAP lines were trashed out before their references.

Therefore, there were wastes of clock cycles, as these lines had to fetch into the

cache again in the future. With the use of victim cache, to hold this lines, in IAP

48

Chapter 6 Performance Evaluation

scheme, it could extend the life time of these lines in the cache and avoid many

potential memory accesses. Similar performance improvement could be observed

in prefetch cache for nasa7, in which the fully-associative prefetch cache provided

a place to hold these IAP lines before their references. In both cases, the IAP

lines could stay somewhere near the cache before their references, and fetching

from these buffer space was much faster than fetching the data from lower level

memory.

However, the cache performance was more or less the same for 2-way and 4-

way set associativity. Although increasing the associativity gives more flexibility

for cache line placement, at the same time, the number of sets in the cache will be

halved and the performance will be less dependent on the associativity in these

situations.

6.3 Simulation Results of IZ Replacement Pol-

icy

From the figures in Appendix B, most of the experiments showed some improve-

ments when the IAP scheme together with the new replacement policy IZ was

implemented. More importantly, the implementation of the IAP and IZ in cur-

rent architecture is not difficult, as no processor architecture changes are necessary,

but only some simple additional on-chip cache hardware is required.

• The effects of the IZ scheme could be classified into two main streams.

The first group can achieve significant performance improvement, the sec-

ond group shows sightly improvement or nearly coincident with the original

scheme prefetch-on-miss scheme.

For some of the benchmarks such as spice2g6, espresso, li and nasa7, the

default prefetching scheme seemed to have no impact to the cache perfor-

mance. The curve for the IZ scheme almost overlapped with each other.

However, for su2cor, tomcatv and wave5, the IZ scheme helped to reduce

49

Chapter 6 Performance Evaluation

the memory stall time further. This can be explained as follows.

In the spice2g6, espresso, li and nasa7 programs, the reason may either [l]the

spatial and temporal localities are weak in these programs, or [2] most of data

references with strong temporal locality are referenced by LOAD/STORE-

UPDATE instructions. It seems that the former one is more likely, since

performance degradation will surely be observed if case[2] is true. As a re-

sult, IZ just had no further significant improvement when comparing with

combined IAP in these programs. On the other hand, for su2cor, tomcatv

and wave5, a significant portion of the data references with strong locali-

ties are referenced by non- LOAD/STORE-UPDATE instructions and the

numerous amount of prefetched lines generate conflicts and misses in the

cache. The IZ scheme helps to resolve these conflicts and improve the cache

performance.

• Referring to Figures B.1 to B.9. The memory stall time reduction that could

be achieved by the IZ scheme ranged from about a few percent to over 90%,

with an average of about 50%. These figures really show the potentials of

the IZ schemes. This kind of improvement in cache performance over a wide

range of benchmark programs (instead of some small routines or kernels such

as Livermore Kernels) is really substantial. Furthermore, this performance

improvement can be obtained by just modifying the on-chip cache hardware

and no change to the processor architecture (such as the instruction set) is

required.

6.3.1 Analysis To IZ Cache Line Replacement Policy

With reference to the figures in Appendix B, some factors affecting the perfor-

mance of IZ could be observed.

• Instruction Mix of Benchmark Programs

When a benchmark program, such as compress, contains only few LOAD/STORE-

UPDATE instructions, there was no improvement brought by the IZ policy.

50

Chapter 6 Performance Evaluation

This is up to our expectation, as IZ policy is mainly applicable to the lines

prefetched by the IAP scheme. When there are only few of IAP lines, the ef-

fect brought by IZ will naturally be small. On the other hand, for benchmark

programs with lots of LOAD/STORE- UPDATE instructions, IZ contributed

significant improvement on the cache performance when the cache was not

large enough to hold all the demand fetched and prefetched lines. This can

be reflected by the simulation results of su2cor and tomcatv.

As a result, the number of LOAD/STORE- UPDATE instructions affects the

performance of cache with IZ policy.

• Cache Size

With reference to the two benchmark programs, su2cor and tomcatv, IZ

had obtained the greatest improvement among the eight programs, it could

be easily observed that there was larger improvement on cache performance

for smaller cache size than large cache size. This scenario could be easily

observed in the benchmark program wave5. The reason is that for larger

cache size, the cache has enough space to hold the lines fetched or prefetched

from the main memory. Thus the replacement of lines occurs less frequently,

the effect of IZ cannot be observed then. However, as small cache size is

not enough to hold all the data that needed, and thus replacement of lines

occurs frequently. As a result, IZ can improve the utilization of cache space

by displacing the referenced IAP lines out instead of other lines that may

possess strong spatial or temporal localities.

Generally, the number of prefetched lines actually referenced increased for

cache with IZ scheme together with the combined IAP. This can be explained

by the fact that some prefetched lines may have to wait a long time before

their actual references, when there is not enough space in cache, some of

these lines have to displaced out by LRU scheme before referencing. It will

certainly be a waste of cycle time, as these lines have high probabilities for

being referenced later and they may have to load into cache again. However,

51

Chapter 6 Performance Evaluation

by using IZ scheme, these lines could stay in the cache for a longer time. As

those referenced IAP lines will be displaced instead of other prefetched lines

which have higher potential to be referenced in the future.

IZ did show its worthiness on cache performance for small cache size and when

the cache could not accommodate all the lines that contain data to be referenced.

6.4 Simulation Results for Priority Pre-Updating

with Victim Cache

For any data reference, sequential checking of data cache and victim cache was

performed. The data cache will be checked first to see if the requested data is

there. If the data is not found in data cache, then a miss occurs, the cache

controller will be informed to search the victim cache. If the data is found in the

victim cache, then the processor use one more cycle to fetch the data from the

victim cache. Otherwise, lower level memory should be involved.

Referring to the figures in Appendix C, the performance improvement in the

eight benchmark programs can be classified into three categories:

1. the performance improvement was large (over 20%),

2. the performance improvement was slight to moderate (1% to 20%),

3. the improvement was nil or caused a minor degradation.

6.4.1 PPUVC in Cache with IAP Scheme

The metric on comparison were based on the comparison with combined IAP. The

delay time reduction figures that quoted, was based on a 16K bytes cache size, 32

bytes line size and 4-way set associative.

IAP scheme has high accuracy in performing prefetching, the number of mis-

predicted lines is few. Due to its accuracy, cache misses are highly reduced. As a

result, prefetch-on-miss lines are few, Figure 6.3 gives a comparison of number of

52

Chapter 6 Performance Evaluation

prefetch-on-miss lines in cache with IAP and prefetch-on-miss only cache. More-

over, the references to prefetch-on-miss lines is few in the cache model with IAP

scheme. Figure 6.4 shows the actual number of prefetch-on-miss lines referenced

when comparing with the total number of prefetched lines. These explain the

insignificant improvement for PPU in IAP schemes.

I 6 4 r t.........."....".'....‘.‘...‘... ..,.........‘.....'...==23 E3nasa:POM

山 ^^^^^^^_^^^^__^_r_,i:T"_r_nn^^^^^^^^^^^^_^ - f e = i ^ ^ ^ ^ @nasa:IAP

I 16 L t 16 p — I 2 � ~ ^ ^ ̂ 口一“
w p ^ — ^ . ^ ^ ^ S g ^ H ^ P Q(isp:iAP

I "|^:._^^^"^S^..'"i 1 8 广 = I _p”!-”P!，ffl!»»__.l
。 8 ^ ^ 」 8 ^ 1 ^ = 因 ™

^ ^ j ^ ; g ; j ^ g g j ; j ^ j ^ ^ g ^ ^ ^ ^ ^ g g g j ; j ; j ; ; j g g ^ g j j g j g j j g g j g j 4 & ^ i ^ ^ i j ^ _ | ^ ^ ^ | _ 0espr:IAP

^aaaaa__, 1 1 1 1 ‘
0 1 2 3 4 0 1 2 3 4

0 5 1 0 1 5 2 0 2 5 Hcomp:POM

N u m b e r of P O M L i n e s x 1 0 “̂ N u m b e r of P O M L i n e s x 1 0 ^ N u m b e r o f P O M L i n e s x 1 0 ^ E c o _ A P

6 4 r ^ 1^ E]wave;POM

3 2 J^^^^^f^^mam _ m 4 +剛眼丨丨丨丨屑 0wave:IAP

c ！ , ^ I - P ™ I P . . … . … . :•^^^•:•^ 0tomc:POM
® 16 „„„JJJJJJ„„„>^ 孟 , R l.v/.'.v.v.v.'.v.v.'.vj g 2 1 一
." ! ! ! !^ -s 16 ^ ^ i ^ ™ ^ j r r _ i s.omo:iAP
I - ™ = — | I - ^ ™ 湧 j--丨「丨丨丨:丨-丨⑴h��ww
Q S " 罢 g ^^^j j | | j j j j j j jy .W |-. i i-|V -I- • - ^ ^ ^ ^ UAAAMMj'

8 -,,,,;,"i"-_-.-_^^^^ = ^ m ^ . 1 卜 "........-^^ Osu2c:POM
m^^^^^^^y^^l^^^^^^^^^^^^^^.-.��� . . ，.」 4 ûuUUiuum.____ '••'•' • L...... , . . . ' 0su2c:IAP

1 1 1 1 1 |ĵ Jŷ ĵ̂ ŷ ĵ :̂ B̂ TTUTT- "*"""""^^^""^^^^^^ I I I .厂 1 1
0 1 2 3 4 5 ‘ ‘ ‘ 0 1 2 3 4 5

0 1 0 2 0 3 0 Hspic:POM

N u m b e r of P O M L ines x 10 “̂ N u m b e r of P O M L ines x 10 “® N u m b e r of P O M L ines x 10 ^ E3splc:iAP

(a) Varying cache size (b) Varying line size (c) Varying set associativity

Figure 6.3: Comparison of number of prefetch-on-miss lines in IAP cache and
prefetch-on-miss-only cache

The programs can be divided into three groups, the first group consists of

su2cor and tomcatv, which could achieve over 20% of memory delay time reduction

for the default cache parameters .̂

The second group consists of espresso, li and nasa7, in which each could obtain

few percent of performance improvement.

The third group consists of compress and wave5, as a little performance degra-

dation was observed. The classification is based on the default cache parameters.

Though wave5 could obtain quite large performance improvement when the cache

size was small, it is classified as in the third group for the sake of consistency.

2l6K bytes cache size, 32 bytes line size and 4-way set-associative

53

Chapter 6 Performance Evaluation

1-..:.:..:::::"¾ 下;._‘“-1.....‘..“1.,-“-“-..“-“.;.“-;.“他̂^̂ ~̂ v̂:̂ ^̂ ^̂ ^̂ '̂A'Â Â 'JJJJ•̂ ^̂ ŵ'J•̂ •̂ Â̂ •̂ •̂ •̂ •̂ Ĵ [•••••••••••••j 64 pffiP'' ^^—— 64.4% [::::::_:_.:_:::___.; —^ lwave 32 p J ^ >•• : 4 _ J i M i - t̂omc
I g " " ~ | 3 2 ； ^ ^ 請 。 ^ & — - -

16 ^ ^ j 16 ̂ = I 2 ^ ~ • 二

I p i ^ ^ ^ I B ^ ^ • i ^ ^ ^ = r

^^^^^^^m «.1% 4 ^ r .一 ,53.5% CZZiiiî ti!iii!itlZZllllll:: . c o m p

r I 1 N=- I 1 P ： I
0% 50% 100% 0% 50% 100% 0% 50% 100%

Percen tage of P O M lines in total number of Percentage of P O M lines in total number of Percentage of P O M lines in to ta l n u m b e r of

p re fe tched l ines prefe tched lines p re fe tched l ines

(a) Varying cache size (b) Varying line size (c) Varying set associativity

Figure 6.4: Percentage of prefetch-on-miss lines referenced in total number of
prefetched lines

Actually, the effect of PPUVC for IAP lines is not great. The reason is that

IAP scheme has very high accuracy of prefetching, and thus mispredicted lines

are few. On the other hand, it may degrade the performance when the time

between two successive references to IAP lines is long. Thus these IAP lines, which

are waiting for being referenced, may be determined as useless and have their

priorities pre-updating by the mechanism. They bear the risks to be discarded

before their actual reference. This situation will cause more potential cache misses

and increases the number of memory accesses.

For the first group of programs, the performance improvement for the two

programs was actually less than that of PPUVC in prefetch-on-miss-only cache

when the cache size was small. At which PPUVC in IAP could obtain only 28%

of memory delay time reduction, while PPUVC in prefetch-on-miss-only cache

could obtain 35%. The reason maybe possibly be due to relative small number

of prefetch-on-miss lines in the IAP cache, and thus pre-updating of mispredicted

prefetched lines has little effect.

6.4.2 PPUVC in prefetch-on-miss Cache

From the simulation results, one can easily see that PPU combined with vic-

tim cache resulted in better cache performance on average. All programs except

54

Chapter 6 Performance Evaluation

spice2g6, in which with two curves nearly coincident, could achieve a further re-

duction in memory delay when compared with prefetch-on-miss-only cache.

For the program compress, it had a little performance degradation when com-

paring with no prefetch cache, however, the degradation was small in this case

when comparing with IZ. As compress posses low spatial locality property and

there are few constant stride references, and therefore, the prefetched data by

prefetch-on-miss are most likely to be useless. These caused a waste of clock cycle

as well as pollution of the cache. For the PPU scheme, unlike IZ which only work

on IAP lines, it helps to shorten the life time of mispredicted lines, and thus a

better result could be observed when comparing with IZ.

The programs can be divided into three groups. The first group could achieve

up to 49% of memory delay time reduction, which was about 46% further re-

duction than prefetch-on-miss. This group of programs consists of su2cor and

tomcatv. For the default parameters: 16K bytes cache size, 32 bytes line size and

4-way set associative, su2cor could achieve 35.6% of Memory delay time reduc-

tion in PPUVC scheme, while prefetch-on-miss could obtain only 2.4%. Tomcatv

could achieve 43.0% of memory delay time reduction while prefetch-on-miss only

obtained 15.3%. i.e., there were about 33% and 28% further reduction in memory

delay in su2cor and tomcatv respectively.

The second group consists of espresso, li and wave5, in which they could achieve

1% to 3% of memory delay time reduction. Note that when implementing PPUVC

in IAP scheme, wave5 had a little performance degradation (about 1%) for the

cache with default parameters.

The third group consists of compress, nasa7 and spice2g6, in which the curves

of nasa7 and spice2g6 were nearly coincident with that of prefetch-on-miss. How-

ever, compress showed a little performance degradation when comparing with no

prefetch cache.

55

Chapter 6 Performance Evaluation

The Effect of On-chip Cache Size on Victim Cache Performance

When the cache size is small, the number of available lines in cache is few. As

a result, thrashing of cache lines occurs frequently. Many prefetched lines are

displaced from cache before their references. Therefore, memory cycles have to be

spent to fetch these lines back into cache during their actual references. With the

addition of priority pre-updating and victim cache, those prefetched lines that have

not been referenced for a long time after their fetching will be discarded first. The

miss penalty for erroneously displacing useful lines is reduced by using the small

victim cache. This situation easily follows from the fact that some benchmark

programs could obtain significant performance improvement when the cache size

was small, while less promising results when the cache size became larger. The

programs that highly illustrated this including tomcatv and wave5. Tomcatv could

achieve a 50% further reduction in 8K bytes cache, when it is compared with no

improvement when the cache size increased to 32K bytes. Wave5 obtained 27%

further reduction in memory delay comparing with no improvement for 32K bytes

cache. Figures C.10, C.11 and C.12 show the memory delay time reduction of

victim cache by varying cache size.

The Effect of Line Size of On-chip Cache on Victim Cache Performance

When line size is large, the number of lines in the cache is reduced and thrashing

of lines occurs more frequently. With PPUVC, the penalty due to discarding use-

ful data is minimized. Victim cache is able to hold few lines that are likely useful

in the future. At the time these lines are actually needed, one cycle is needed to

fetch them to use by the processor comparing with the long miss penalty when

fetching from lower level memories. The program su2cor obtained 47% further

memory delay time reduction with 64 bytes line size while there is no significant

improvement for 4 bytes line size. With line size 4 bytes, tomcatv had no signif-

icant further improvement compared with prefetch-on-miss-only cache, however,

the deviation between memory delay time reduction in of prefetch-on-miss-only

56

Chapter 6 Performance Evaluation

cache and the cache with PPUVC became greater. In which tomcatv had a 59%

of further reduction in memory delay for 64 bytes line size. The same situation

was observed in wave5, which could obtain a 14% of further memory delay time

reduction. Figures C.13 and C.14 shows the results of these two benchmarks.

The Effect of Set Associativity of On-chip Cache on Victim Cache Per-

formance

Comparing with prefetch-on-miss, most programs could obtain better performance

improvement with victim cache when the degree of associativity was low. When

the associativity was low, say, direct-mapped, thrashing of lines occurs frequently.

For direct-mapped cache, memory blocks would map to the same cache line due

to the mapping algorithm such as bit selection. This may result in the situation

that numerous blocks compete for the same cache line，while many cache lines are

remained unused. Consequently, utilization of cache is low, arid also many data

are discarded before being referenced. The use of victim cache helps alleviate

this problem. Figures C.16 to C.18 show the results of varying set associativity.

Programs such as espresso, lisp, nasa7, su2cor, tomcatv and wave5 could achieve

a further memory delay reduction ranged from 8% to 46%. While compress and

spice2g6 had similar performance as the original one in direct-mapped cache.

The results for victim cache show that the addition of a small amount of hard-

ware can dramatically improve the system performance. It is difficult, mostly

impossible, to derive algorithms for caches that can optimize the system perfor-

mance of every programs and applications. An algorithm that can satisfy most of

the programs seems to be more applicable and practical.

6.5 Prefetch Cache

The default size for the prefetch cache was lK bytes. Simulations were done on

cache model with prefetch cache sizes ranged from 256 bytes to 4K bytes and

results are shown in Figure 6.5. Prefetch cache of size lK bytes is a reasonable

57

Chapter 6 Performance Evaluation

choice, though larger size seems to have better performance for certain bench-

marks. However, larger size means larger delay. Different set associativities were

also perform in the prefetch cache, the associativity ranged from direct-mapped

to fully associative.

For any data references, parallel checking of prefetch cache and data cache

was performed. It is assumed that there was no extra cycle delay for checking the

prefetch cache. We chose lK bytes prefetch cache size, 32 bytes line size, 4-way

set associative and fully-associative, as the default parameters.

16 Kbytes cache size, 32 bytes line size, 4-way set-associative

1.6 TFWfi flTl pMTl Wn 1.2 T 1-2 T 1.4 -• ‘ ‘ , r̂ T"S nsTfl rwT8 c^r^ rST^ VMTM iJMTS ̂ TT
‘ , ‘ I -- B; 1 - _ � ‘ 04Kbytes

1 . 2 - - :i:- •:•: 55 ::::: •；;： :::: 均 ：« & ::::: ft i Cy
; "• 1 f { , ;•

1 -- - ； 0.8 - ^ ； 0.8 -- - ‘ '', S2Kbytes

E 0.8-.; “ , •'- g 0 .6� ； ： ； g 0.6 -k ^ (I 01Kby,es
0.6 - ' ‘ . � 0 4 -� ‘‘ 1 , "i , ‘
0 4 -• 1 , ‘ . ^ ‘ '- 0-4 - - ' , ‘ “ : 0512 bytes

02 -1 ‘ y 0.2 --: ；‘ ‘ I 02 -- ‘ ^
u-d ：； ," , ., , ,： U.̂ ; ‘ „ B256 bytes

0 | 剛 邏 1 謝 湖 | 頃 丨 . 踊 | 謝 1 丨 0 I I I I 0 I I I ^

1 2 4 fully- 1 2 4 fully- i 2 4 fully-
set assoc. assoc setassoc assoc set assoc. assoc

a. c o m p r e s s b. e spresso c . x l i sp

2.5 丁 1.6 j 3 丁

1 4 - - � ,; r ^ ~ F ®

2 M { l ^ _ 1:2 1 : "丨 2.5 - - _ _ J
1.5 M f f i M i m 1-- :' � ’ 2 - , ff r | f

§ 1__I ‘ : ‘ ‘ s 二--:1 ； ： : 3 s 1.5-: ^ \ ；
1 ？ . ‘̂ , 0.6 - - . ''? ĵ ^ g s 錄 j :¾

0.5--| : ： , 0.4--: ; ； II [丨 ： . \
瞧： ： ； ： 。 [- ' ‘ ： °-5--; - “

0 I I I I 0 丨卜_ 1_|丨,.避 _|Ui fSiNji 0 I 國 I I W —
1 2 4 fu l ly - 1 2 4 fu l ly - 1 2 4 fu l ly -

set assoc. assoc set assoc. assoc set assoc. assoc

d. nasa7 e. s p i c e f. s u 2 c o r

2.5 丁 1.2 T

2 J T | 圓 1 i 丨： ： 1 1 ff[
I I psrl 0.8 --丨 r ‘ .

‘i.;:l: S I IT ‘ � . “ ; : ；
p : 、、 : ： 0 . 4 一 丨 . , ,

。 . 5 - | 丨 ； : \ 。.2-1 ‘ , :

0 I I I I 0 I fM丨 I I
1 2 4 fu l ly- 1 2 4 fu l ly -

set assoc. assoc set assoc. assoc

g. t o m c a t v h. w a v e 5

Figure 6.5: The effect of Prefetch Cache size on cache performance

We examined further the performance curves by dividing the eight benchmarks

58

Chapter 6 Performance Evaluation

into four groups: [1] performed extremely well, [2] performance improvement was

moderate, [3] yielded a slight improvement to the performance, and [4] contribu-

tion to the reduction in data access penalty was nil.

Prefetch Cache with FIFO Replacement Policy

The following observations were obtained in the fully-associative prefetch cache.

All programs except nasa7 obtained better performance than the basic IAP, and

all obtained better results than prefetch-on-miss-only cache. The memory delay

time reduction was up to 99% ^ as found in tomcatv.

The first group is formed by su2cor and tomcatv with memory delay time

reduction ranged from 51% to 99% in fully-associative prefetch cache. There

was 44% to 55% further reduction than basic IAP. In Figure D.1 the delay time

reduction of these two programs were clearly shown.

The second group contains only wave5, which achieved 81% memory delay

reduction over no prefetch, and was 21% further performance improvement than

basic IAP. Figure D.2 show the simulation results of wave5 in terms of its the

delay time reduction.

The third group includes espresso, li and spice2g6. The memory delay time

reduction was 33% up to 83%, which was 1% to 4% further reduction. Refer to

Figure D.3 for the results of this group of programs.

The fourth group contains only compress and nasa7, which had got no per-

formance improvement, and nasa7 had a slightly performance degradation when

comparing with basic IAP. Figure D.4 shows the results.

Prefetch Cache with LRU Replacement Policy

In the fully-associative prefetch cache, the programs espresso, su2cor, tomcatv

and wave5 showed better system improvement. The performance improvement of

compress, li and spice2g6 was slight. Besides, nasa7 had a slightly performance

^A11 percentages quoted are obtained by using the cache parameters: 16K bytes cache size,
32 bytes line size and 4-way set associative

59

Chapter 6 Performance Evaluation

degradation. In fully-associative prefetch cache, all benchmark programs showed

same pattern and similar degree of performance improvement as that of FIFO

prefetch cache. Refer to Figures D.13 to D.16 for the results of the four groups of

programs in LRU prefetch cache.

Referring to Table 6.2, only 0.3% of the instructions executed belonged to

LOAD/STORE- UPDATE in compress, thus IAP lines were few in this benchmark

program. As a result, the influence and usage of prefetch cache is insignificant.

However, a different situation was observed in nasa7, which contained up to 43.4%

of instructions executed belonged to LOAD/STORE-UPDATE, resulting in nu-

merous number of IAP lines. The prefetch cache may not be large enough to

hold all the prefetched IAP lines, and some unreferenced IAP lines are thrashed

by new prefetched IAP lines. The thrashing misses caused the degradation of

performance in nasa7. As a result, nasa7 got a performance drop in both prefetch

cache with FIFO and LRU replacement policy.

Prefetch Cache with IZ Replacement Policy

Using IZ replacement policy in fully-associative prefetch cache showed degradation

in the performance. However, the degradation was of a much lesser extent in the

4-way prefetch cache. In some programs, IZ in 4-way prefetch cache could even

achieve similar performance as that of FIFO.

The Effect of Set Associative on Prefetch Cache Performance

Basically, prefetch cache with 4-way set-associative exhibited similar performance

as that of fully-associative prefetch cache. However, in the programs su2cor and

tomcatv, the performance improvement was of a lesser extent. Programs such as

tomcatv could only achieve a maximum of 70% and 81% memory delay time reduc-

tion when using LRU and FIFO replacement policy respectively. Another bench-

mark su2cor also had smaller performance improvement. The smaller promising

performance improvement in 4-way set-associative prefetch cache maybe due to

the reason that IAP lines in tomcatv and su2cor were mapped to some particular

60

Chapter 6 Performance Evaluation

sets, leaving other sets unused and thus thrashing of lines in the prefetch cache

occurs. Utilization of prefetch cache is thus lower than that of fully-associative

prefetch cache, in which the thrashing misses is minimized or eliminated.

Comparison of the Three Simulated Replacement Policies

In general, LRU replacement policy is a better choice for data cache when ignoring

its costs [Smi82]. However, among all replacement policies that simulated, FIFO

seems to be the most suitable one in prefetch cache. Figure 6.6 illustrates the

reason why there is performance difference between LRU and FIFO replacement

policies.

Time] ^ "youngest" line RFO
line., ^ —• line., H 丁“ ̂ -, ,

^ _ ^ The displacement
0 line.^ line.2 1 order of lines in Set i

, line.g line.g f (all lines are valid
I]j^4 ;oldesr line_ j ^ and unreferenced)

i (a) •
； "Aie" //ne"

丁1 line.^ line.^
line. line .„ " A reference to 閣
_i4 • line., • _i4

(b) •
_抖 , Hne.. ffi A new ^

Tg l'̂ îi prefetched IAP "朋,2
line.^ line brings into //ne,̂
- sef i V；~~’
1—3 _憐

(C)
丨 — 腳 丨 — 酬

丁3 、、論搏 line.^
line.^ line.^

y-"^^]T 丨—2 linel
< l—3'�s % �
(displaced (\ > line.^ is displaced

*-^->sy^''^;x<^^
\\��5 $•��� �\\

Figure 6.6: An illustration of the performance difference between LRU and FIFO

In Figure 6.6 ,̂ we consider a set i which is full. All cache lines {linen, /me^2,

^Referenced lines are shaded

61

Chapter 6 Performance Evaluation

linci2,, linei4) in set i are valid and unreferenced originally at To. Please be re-

minded that the cache lines are drawn according to the order of their displacement

(i.e., their priorities), but not representing their actual placement in cache set i.

That is, the one with lowest priority will place at the bottom, while the one with

highest priority at the top. If there is a reference to /mej4, which is the one with

lowest priority, at time J\ in Figure 6.6b. Then lirWi4 will become the highest pri-

ority one in the set when following LRU replacement policy. However, it is obvious

that its priority will be the same when FIFO replacement policy is used. At T2,

there is a new prefetched line brought into set i, thus a line has to be discarded to

accommodate the new line. As a result, we can see from Figure 6.6d that /me^3 is

discarded if follows LRU replacement policy, but linea is displaced when follows

FIFO policy. As mentioned before, IAP scheme poses very high accuracy, and

thus linCis is very likely to be referenced in the future. Besides, most IAP lines

pose referenced-once properties, linei4 is most possibly useless in the future. Thus

discarding linei4 instead of linei^ may improve the system performance. These

illustrate why LRU replacement policy performed worse than FIFO replacement

policy.

Using IZ replacement policy prefetch cache yielded the worst performance

improvement. When applying to a data cache which mixed with IAP lines and

normal cache lines, IZ replacement policy yielded good results. However, when

comparing with other simulated replacement policies, it is not strange for IZ to

obtain poor performance improvement in prefetch cache which contains only IAP

lines. IAP lines pose reference-once properties, and thus once they are referenced,

they are considered useless and can be discarded. In prefetch cache, all are IAP

lines, and thus there exists cases that some referenced IAP lines remained in the

prefetch cache for the entire executing time of the program. As an example,

consider the situation in Figure 6.7. In which the oldest line linei4^ may remain in

the prefetch cache for the entire execution time of program.

Moreover, FIFO is a good choice as FIFO replacement policy requires the

simplest hardware complexity among the above three replacement policy.

62

Chapter 6 Performance Evaluation

The displacement | line,^ line,. Iine,, line., A npw i ina
“ “ “ “ n • .口“* inew

order of lines in Set i J Hne,^ A reference^ //ne,.̂ Areferencew Hne,^ . Iine., prefetched ^ line；,

(all lines are valid and ^ line,^ ‘ 'xo'linel '^ line,， ‘ '{o'lin'el •， ffm^ ^ “ “ ‘ — 让 ' lAPl ine b r i i i g r line,,
unreferenced) [| //ne,, [_ : J | : : : 涵 : : . : 1 � 广… … …胁〔 into Seti | ffml 厂

bring to the head rV^^^^^^^^
� (b) (c) ^ (d) fei^)

U v . / X / - . v ^

Figure 6.7: An instance of line activities in IZ prefetch cache

Figures D.13 to D.16 show the results for the four groups of programs in

FIFO and LRU, all the three simulated policies in 4-way set associative and fully

associative prefetch cache.

The results for prefetch cache show that the addition of a small amount of

hardware can dramatically improve the system performance.

6.6 Chapter Summary

In this chapter, the performance of IZ, PPUVC and prefetch cache is evaluated

using cycle by cycle simulations of the eight SPEC92 benchmarks. For comparison,

the performance of a traditional hardware prefetching scheme, prefetch-on-miss,

is also included. Besides, to show the potential of the proposed schemes, we also

include the performance of the combined IAP scheme. Cache models with varying

cache size, line size and associativity are simulated. Except the slight performance

degradation for the benchmark program compress, the results show that the three

schemes are generally effective in reducing the data access penalty in almost all

the other benchmark programs tested.

It is observed that IZ, PPUVC and prefetch cache outperform the combined

IAP for most of the eight benchmark programs. Ranging from a few percent up

to over 50% of further memory delay time reduction when comparing with the

combined IAP scheme.

63

Chapter 7

Architecture Without
LOAD-AND-STORE Instructions

The IAP that has been proposed so far requires the definition of LOAD/STORE-

UPDATE compound instructions in the architecture. Power series such as the

IBM/MOTOROLA/Apple PowerPC and the IBM RS/6000 contain such kind of

instructions. For those machines without LOAD/STORE-UPDATE instructions,

the IAP scheme still can be easily extended.

First, some architectures have compound instructions that are functionally

equivalent to the LOAD/STORE- UPDATE instructions defined in IBM PowerPC

or RS/6000. One of these instructions is the LOAD/STORE-MODIFY in the

HP's Precision Architecture (PA RISC) 1.1. As a result, the IAP scheme can be

easily extended to this type of machines without any difficulties. Second, for those

machines without similar kind of compound instructions, if an update-counter per

register is available, then the IAP scheme can still be implemented. The function

of the update-counter UC is to book-keep its corresponding register R(UC), if

the register is an index register used by some LOAD/STORE instructions using

index-displacement addressing mode in a loop, the value of the stride used by

the index displacement LOAD/STORE instructions will be learnt during the first

iteration of the loop and will be stored into the update-counter UC. Consequently,

very accurate data prefetching comparable to the IAP scheme can be carried out

64

Chapter 1 Architecture Without LOAD-AND-STORE Instructions

in the remaining iterations of the loop to improve the cache performance. As long

as the IAP scheme can be implemented, the IZ scheme can also be used.

Moreover, to show the potential of Priority Pre-Updating scheme, it is possi-

ble to import pre-updating into architectures which employ different prefetching

algorithm, no matter it is prefetch-on-miss or one-block-lookahead.

65

Chapter 8

Conclusion

In this dissertation, we propose two cache line replacement policies — IZ and

PPUVC, and one placement policy - prefetch cache. These three policies are

specially designed for prefetched lines.

The first replacement policy,called IZ, is to be implemented with the IAP

scheme. This is used to improve data cache performance. From our simulation

study, we found that with this replacement policy built into the combined IAP

scheme, the processor idle time due to memory access can easily be reduced by

over 20%. In some programs, this replacement can even achieve a 99% of memory

delay time reduction.

In fact, the IZ replacement policy with IAP scheme has very good potential

to be imported into current cache designs. The reasons are: [1] no change in the

architecture is required, [2] no new compiler optimization technique is required,

3] the IZ scheme can work with different kinds of replacement policies, [4] the

IZ with IAP has high potential to improve system performance. Though the

controller design for the IZ replacement strategy is similar to LRU, it is worthy

to implement due to the low cost of hardware.

The second replacement policy, Priority Pre-Updating, helps to determine

which data should be replaced during cache misses by shortening the life time

of those suspected erroneously prefetched lines. However, using PPU solely may

not be able to obtain significant improvement. The program data set is usually

66

Appendix Conclusion

much larger than the cache size, and thus thrashing of unreferenced useful lines

occurs frequently. Therefore, a small fully-associative victim cache is added to

hold those unreferenced prefetched lines, which have been displaced from data

cache due to capacity or conflict misses. By using combined PPU and victim

cache, it is possible to achieve iip to 50% memory delay time reduction in some

of the SPEC92 benchmark suite in the cache model with prefetch-on-miss only.

PPUVC can achieve up to 100% of memory delay time reduction in cache model

with IAP scheme.

Victim cache consists of only four entries, each entry is of the same size as

a cache line, and is insignificant when comparing with the size of data cache.

Therefore, it is worthy to implement it in current architecture. A more important

concern, perhaps, is the extra hardware logic necessary to search the PPU and

updating the cache. With the even-increasing amount of hardware logic available

on a chip, the quantity of it involved is not really a serious problem.

The placement policy 一 prefetch cache is used to hold prefetched IAP lines.

With the assumption that the data cache and prefetch cache will be checked for a

data reference, it is possible to achieve up to 90% of memory delay time reduction.

Hardware costs are now low enough to permit extra hardware for prefetch

cache, i.e., the amount of cache available for data is not necessarily reduced as a

prefetch cache is added. As a result, it is worthy to implement prefetch cache in

current architectures. This technique helps to reduce cache pollution and increases

system performance.

Whether or not the proposed mechanisms would be practical to implement in

hardware is not really addressed in our experimentation, but the indications are

that the difficulties would be the minor. Having some of the more complicated

heuristics proven to be extremely useful, then their introduction into a hardware

scheme could have proven challenging.

67

Appendix A

CPI Due to Cache Misses

A.1 Varying Cache Size

A.1.1 Instant Zero Replacement Policy

0.7 T 0.25 了

T _ 4 _ IAP with

0.6 - 陶 、 ^ IZ
� 5 , � < � , � � � � . 2 - \

u - �- - � � � “ ^ \ “™m~~~combined

0.4 __ 一 °.15 - ^ X IAP

M C P I M C P I \ \
0.3 - - � 1 n ^ � \ \ ~^fr™~ prefetch-

\ � \ \為\ . �] ^ o n - m i s s
0.2 -- � � l \ \
0.1 _. 0.05 — ^ ^ ^ ^ ^g.... no

prefetch

0 "J 1 1 1 1 0 J 1 1 1 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

a. compress b. espresso

68

Appendix A CPI Due to Cache Misses

0 . 1 2 丁 0.9 丁

T p̂ _^IAPwith
0.8 一 ® � �� � . _ IZ

0.1 -. g J 罔

\ 0.7 — \

0.08 .. \ \ 06 \ ..̂ .̂ .combined
i^\\ \ IAP

M C P I 0.06 -_ \ \ \ M C P I 0.5 — ‘ � ^ \

\ \ H 0.4 -- \’ \ ™~̂ ™prefetch-
0.04 _. \ k \ . ^ �_3 - \ \ �n_miss

^ ^ \ : H 0.2 __ \ \
0.02 -• ^ ^ i i » ~ ^ \\ i n o

^ 0.1 - " ^ ^ ^ ^ v ^ ^ \ _ prefetch

0 J 1 1 1 1 0 J 1 1~~^-^ 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

c. Ii d. nasa7

0.9 T 2 丁

T _ 4 ~ IAP with
0.8 . . g 1.8 , |z

0.7 -• \ 1.6 —_ ^ ¾ ^
06 \ 1-4 -- ~~~' 4K% ~~m™~combined
�:5 ：： t : : : : ^ � 1.2 -- % 'AP

M C P I ^ ^ ^ \ ^ M C P I 1 一 ^ \

0-4 ““ “ ^ 0.8 _— V ® ……*—P'efetch-
0.3 - - \怨 o n - m i s s

0.6 ―― \

0-2 - 0.4 一 -

01 ™^no
0-2 —- prefetch

0 J I 1 1 1 0 J 1 1 1~~ ,
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

e. spice2g6 f. su2cor

2.5 丁 0.09 .T
_ ^ _ IAP with

0 . 0 8 IZ

2 - 气 � . � 7 __ 气

^ \ 0.06 —— \ -_*^combined
1.5- \ % O.OS i � \ IAP

MCPI \\\\ MCPI 1 \ \
1 .. \\\k 0.04 —_ \ \ \ ^^prefetch-

\ \ K ^ \ 0.03 I \ \ ^ X o n - m i s s

� . 5 . - ^ : : : : : ^ ^ « :

0 1 1 ^ 1 0 J 1 1 ^ ^ ^ ,
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

g. tomcatv h. wave5

Figure A.1: MCPI by varying cache size in IZ scheme

69

Appendix A CPI Due to Cache Misses

A.1.2 Priority Pre-Updating with Victim Cache

0-7 丁 0.25 T „ „ . . ^ T _ ^ _ PPU and

0.6 .. - ^. F'FO
^ ^ " ^ ^ ¾ ^ 0.2 - \

�-5 -- 八 . ^ ^ ^ _ \ _̂ *__combined
0.4 •• 八 0.15 一 ^ ^ ÂP

M C P I M C P I ' \
0.3 . . 1 ^ \ \ — ^ ^ p r e f e t c h -

0'1 — ^ X ^ ^ X " ' m on-miss

�-2 -• ^ ^ ^
0 1 _ 0.05 - ^ ½ — g „ „ . n o

prefetch

° H 1 1 1 1 0 _| 1 1 1 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

a. compress b. espresso

0.12 丁 0.9 —厂

T 厂 1¾ _^PPUand
0.8 ―― L J � FIFO

0.1 - g H
H 0.7 - \

0.08 .. 气 \ 0.6 \ ~ ~ « ™ c o m b i n e d
^ \ _AP

M C P I 0.06 - . A \ \ M C P I °.5 - . � \

W i s 0-4 - - \ \ ―合、™ prefetch-

0.04 __ ^ ^ \ \ 0.3 — \ \ on-miss
® ^ \ H 0.2 _— \\ 0-02 - ^ < > p \\ -S"" "°

� 0.1 - ¥ i b : ^ 每 prefetch

0 J i 1 1 1 0 J 1 1 ^ ^ 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

C. Ii d. nasa7

70

Appendix A CPI Due to Cache Misses

0.9 _ 2

T _ ^ _ PPU and

0-8 - S . . . 1-8 - - ^ FIFO

0.7 .. \ 、 1.6 一 1 ^ ¾

0 6 H \ 1.4 — 各 ~~~m~™combined

05 " < ^ � � � �\|g 1.2 - ^ - ^ - - ^ % ,AP
M C P I • __ ^ " " " * ^ " ^ ^ ^ X ^ M C P I 1 - \ \ \

�.4 - ~ ^ � � „ � \ \%^ -^P^efetch-
03 _ � 0.8 —— \ \ ^ on-miss

0.2 -- n/i \ _
u-4 - - \ — g „ , „ n 0

0-1 - - 0.2 —— prefetch

° "I 1 1 1 1 0 J 1 i 1 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

e. spice2g6 f. su2cor

2.5 _̂ 0.09 ^
T T _ • _ PPU and

0.08 - FIFO

2 - 崎 0.07 .. ^

\ 0.06 -̂*^combined
1.5 - \ \ \ 'AP

舂 % °-05 -- A \
M C P I \ \ \ \ M C P I 气 \

1 \ ^ 0.04 — W X - _ ^ p r e f e t c h -

•" \ ^ \ 乂 0.03 "Ĉ \\ �n-m"

V . , ^ \ 0.01 - ^ ^ v ! ^ ® • prefetch

0 \ 1 1 ^ ½ 1 0 J 1 1 — — ^ 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

g. tomcatv h. wave5

Figure A.2: MCPI by varying cache size in PPUVC with IAP scheme

0.7 丁 0.25

4
0.6 - - ^ _ _ ^ \ — ^ _ _ PPU and

0 . 5 _ . " ^ ^ ^ ^ ^ 1 \ F_FO

04 � -15 I X
•^CPI M C P I ® V \ 纖…….prefetch-

0.3 - - … ^ v \ on-miss

-- X \
0.2 -. ^V
0 1 0.05 \ 凝 ― ^ ~ ~ " n o

prefetch

0 "I 1 1 1 i 0 J 1 1 1 [
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

a. compress b. espresso

71

Appendix A CPI Due to Cache Misses

0.12 0.9

,&���
0.1 . . . 0_8 - 、、％ - ^ P P U a n d

' \ 0.7 — \ FIFO

0.08 - 1 \ 0.6 —— \
M C P I 0.06 _- \ \ M C P I 0-5 - - ® ~ - — - ^ \ ~ ~ » ™ ~ Prefetch-

\ \ 0.4 - \ \ on-miss

0.04 - XX̂ . �-3 -- \\
X ^ 0.2 —— \\

0.02 __ ^ \\ ™-̂k™" no
0.1 - - N ^ prefetch

0 H 1 H 1 1 0 J 1 1 1 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

C. li d. nasa7

0.9 丁 2

0.8 . . fy-_ 1.8 __
\ ^ ¾ , . , _ ^ P P U a n d

0.7 -_ \ \ 1-6 - - ^ FIFO

o,__ \ - \
纖 、 \ \ 1.2 _— \

MCP. 0.5 -- \ \ 、；> "̂CP_ 1 4-___,^^ \ .̂ ..prefetch-
：：•• � O.S ：； \ \ on_s

0.6 —_ \
0.2 . . „ , V

0.4 - • — f l O

0-1 - - 0.2 __ prefetch

° \ 1 ^ 1 1 0 J 1 1 ! 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

e. spice2g6 f. su2cor

2.5 _ 0.09 丁

^ 0.08 - 為 — • — PPU and

““ % 0.07 -_ \ FIFO

\ 0.06 —- \
1.5 - \ , \ \

M C P I \\ M C P I 0.05 - - \ \ ^ 1 L
V x \ \ ~ - m ~ ~ prefetch-

i - _ ^ ^ \ :::: ^ x —
0.5 “ ^ " " ^ ^ °.°2 ^ ^ \ N ^ ~ ~ ^ n o

^ 0.01 + ^ ^ m prefetch

0] 1 1 i 1 0 J 1 ^ 1 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

g. tomcatv h. wave5

Figure A.3: MCPI by varying cache size in PPUVC with prefetch-on-miss scheme

72

Appendix A CPI Due to Cache Misses

A.1.3 Prefetch Cache

� - 7 T 0-25 T » Fully-

Q g K | a s s o c .

• __ B ^ ^ : ^ ; p 0.2 — \ with FIFO

0.5 -- W^- .^ \ ^^combined
m \ IAP

0.4 _. � - 1 5 - - , � k

• • M C P I “ � \ \ ，^_prefetch-

• ' " 0.1 _ ^ ^ \ \ o n - m i s s

0. - " ^ \ "®
0.05 _ ^ ^ 、 i n o

0.1 . . ^ prefetch

° ^ 1 1 1 1 0 J 1 1 1 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

a. compress b. espresso

0.12 丁 0.9 ~ # ~ Fully-

0.8 ® ^ � � � � a s s o c .
0.1 - - ^ ‘ ^ H with FIFO

^ 0.7 — \
'\ \ ~ ~ - p ~ _ ~ c o m b i n e d

0-08 - - 4 ^ \ 0.6 \ � IAP

M C P I 0.06 _• \ \ V M C P I ° ' - - 备 〜 � �A \ , , h
\ \ V] 0.4 一 \ \ — * — p r e f e t c h -

0.04 _. ^ ^ \ \ 0.3 — \ \ �n-miss

0.0. _• ^ ^ ^ 0.2 -- |,,_ .、％ -¾--
� 0.1 — ^ “ ™ ‘ " ^ ¾ ¾ ¾ ^ ^ ^ ^ prefetch

0 \ 1 1 1 1 0 J 1 1——^^ 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

c. li d. nasa7

73

Appendix A CPI Due to Cache Misses

0.9 丁 2 ~ # ~ F u l l y -

0.8 . . IX} 1.8 —- assoc.

0.7 .. \ 1.6 - fe^ w i t _
^ ^̂ ¾̂ —^—combined

0-6 - - , \ \ ” ^ , IAP

0 5 1 、 〉 、 " ^ ^ 1.2 一 \<^、、

M c m 二 •• * " " ^ ¾ : : ^ M C P I 1 __ % ^ - ^ p r e f e t c h -

0 3 ^ ^ ^ 0.8 — ‘ ~ " — — < L Y ® o n - m i s s

0.2 - 0.4 _— ^ ^ —g^no
0.1 ._ 02 prefetch

0 •] 1 1 1 1 0 J 1 1 1 ,
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

e. spice2g6 f. su2cor

2.5 T 0.09 • Fully-

0.08 . . assoc .

0 _ H with FIFO
2 - - ^ . 0.07 — \

\ \ ~ ~ p ™ - c o m b i n e d

1.5— \ 。 • [- 气 \ IAP
\ \ \ 0.05 一 翻 \ \

MCP1 \ \ \ M C P I ^ \ \
\ \ w 0.04 — A \ \ \ - ^ i r - prefetch-

1 - \ ^ ^ \ 0.03 一 \ ^ \ —

0.5 ._ K ^ \ > 0.02 —_ \ ^ ^ ； \ f n o

\ ^ 0.01 ^ ^ C > § � prefetch

0 \ • • ^1 1 0 J 1 ^ - ^ 1
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes

g. tomcatv h. wave5

Figure A.4: MCPI by varying cache size in prefetch cache scheme

74

Appendix A CPI Due to Cache Misses

A.2 Varying Cache Line Size

A.2.1 Instant Zero Replacement Policy

1 T 0.16 了

_ m ~#~ IAP with
G_9 •• 1 0.14 __ X ° \ ,Z
0-8 -• / 0.12 一 产 、'®

0-7 -- / / ~™ _̂_combined
0.6 - - / 0.1 _. - . . . • � � ” IAP

MCPI 0.5 _. 声丨 MCPI 0.08 一 my^^u^^^m^ 一、、̂^
：：-- z * l Z o.oe — ^ / ^ ^ ^ ^ ^ + 二

0.3 “ , - , ' 0.04 ―― �
0.2 - - 賺 ^ n o

0-1 - 002 prefetch
0 J 1 1 1 1 1 1 0 J 1 1 1 1 1 1

4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes
a. compress b. espresso

0.14 丁 3 _�
� _ 4 _ IAP with

0.12 .. fOT oT IZ
^1� 2.5 —— g

0-1 -- \ 2 \ ―徽^combined
0.08 .. . fe^ \ IAP

MCPI \ \, MCPI 1.5 — g] 。.。6 -义风、—, \ \ + =
�.�4 • ^^:=i：：=^ — v N ^ i
0.02 .. 0.5 -- • ~ V � \ ^ — ~ ^ ^ « ^ " °

湖 ™ ^v prefetch
• ~ » � ^ r = = = = « < _ » _ _ ^ 0 A 1 ! 1 1 1 1 0 ^ 1 1 !——^——I 1

4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes
c. Ii d. nasa7

75

Appendix A CPI Due to Cache Misses

1 T 3 丁 T _^~_ IAP with
0.9 -- „

H 25
�.8 - / — P
0.7 -- / g] f/ ~~M“™combined
�.6 - / _ ^ — \ / IAP

MCPI 0.5 - B ^ zfr〜A：；^ MCPI 1.5 - \ ^ W

: : : : i = ^ ^ ^ ^ ^ ^ ^ 1— ^ ^ ^ . =

Q 5 |^^.| n 0

0.1 -- prefetch

0 "I 1 1 1 1 1 1 0 J 1 1 1 1 1 1
4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes

e. spice2g6 f. su2cor

3 丁 0.12 ^

T ~*«_ IAP with
ra ,z

2.5 - \ 0.1 —- 罔

2 -. \ 0.08 _ \ ~̂~~combined
k f \ IAP

MCPI 1.5 -- A \ //p MCPI 0.06 __ A H
\ \ // /^ "\ \ ~"̂ r™ prefetch-

1 " ^ _ : # �.�4 - ^ \ � \ M �n-m'ss
0.5 .. ^"^==¾¾¾^^^ 0.02 — ^ ^ > 〜 〜 ^ ^ - & - "°

^ W ^ - ^ ^ < m W：：：：̂ prefetch

0 \ 1 1 i 1 1 1 0 J 1 1 + 1 1 1
4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes

Figure A.5: MCPI by varying cache line size in IZ scheme

76

Appendix A CPI Due to Cache Misses

A.2.2 Priority Pre-Updating with Victim Cache

1 T 0.16 _̂
T p^ — • — PPU and

0-9 - - |] 0.14 - , / / ® \ FIFO
0.8 - / 0.12 _ ,PZ .¾
0.7 - - / / ™纖™ ™ c o m b i n e d

0.6 - / 0.1 - i^l:.-.s IAP
|rf A^ . 1 � �

MCPI 0.5 -_ / ^ MCPI 0.08 —_ 网„，4#1 1 �

：：-• 乂 o.oe — ^ ^ ^ ^ ^ * ^ 二 ： ：
0 2 __ • - . . . 0.04 一 W ‘

0.1 . . °-02 prefetch

° H 1 1 1 1 1 1 0 J 1 1 1 i 1 1
4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes

a. compress b. espresso

0.14 丁 3 丁

丁 _ ^ _ PPU and
0 1 2 r~> FIFO

-• H 2.5 .— _
\ N

0-1 - - 2 \ ™™^~™ c 0 m b i n e d

V i —_ \ IAP 0.08 - . 么 B.. \
MCPI \ MCPI 1.5 __ _

0.06 - - i L X B- - . . . r~n A \ —务—prefetch-
^ X ^ � �B".一.® 1 X � > n on-miss

0.04 -- \ t 、 ： ： ^ — V 日 \ ”
•“>"^>======^ 狐、 \ H�...••调

0.02 _. 0.5 _— � � ~ ^> ^ ^ . . • ^ . . " ' & " . n o
m m prefetch

o J ~ ~ ~ . ~ ~ ^ , ~ ~ , ~ . _ . ~ I o J _ _ t f - ^ T - ^ ^ ^ ^ _ ,
4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes

c. Ii d. nasa7

77

Appendix A CPI Due to Cache Misses

1 丁 3
T _ ^ _ PPU and

0-9 - - 问 FIFO
0.8 - / ^ 2.5 —_
0.7 -. , 2 H / _^^combined
1 - , , . ^ T \ y , 'Ap

M C P I 0.5 . . S . � . , . . ^ ¾ ^ V ： ^ ^ M C P I 1.5 一 \ . , ^ /

::-• ^ ' ^ ^ ^ 1— ^><Si5^^7 + =
0-2 - - Q g ^ v ^ ^ ^ ' ' ^ ^ „ , „ g „ „ no

0.1 . . prefetch

° \ 1 1 1 1 1 1 0 J 1 1 1 1 1 1
4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes

e. spice2g6 f. su2cor

3 丁 0.12 丁

T ~ A ~ PPU and
H n FIFO

2.5 - - 0.1 - _

\ \
™ ^ ™ c o m b i n e d

2 - - 0>08 - -
\ m \ IAP
H / ^ \

M C P I 1.5 - - A / 7 p t M C P I 0.06 —_ ^ S
\ \ / / / \ \ ™ ~ s ! ^ prefetch-

1 - - » ^ ^ ^ ： ^ - — & X ^ . . � . " -— S o n - m -

0.5 -- \ i ^ ^ / 0.02 — ^ ' i r - ^ …S•…no
* ' ^ ^ ^ V ^ W = = = = ^ ‘̂ » prefetch

0 \ 1 I ¢^~~I 1 1 0 J ！ 1 1 1 1 1
4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes

g. tomcatv h. wave5

Figure A.6: MCPI by varying cache line size in PPUVC with IAP scheme

1 j- 0.16

0-9 -- 1 0.14 — 广 \ -#—PPUand
0.8 - - / < ^¾ FIFO

1 - / … /
�.6 •• / �-1 - X ^ ^ ^ * ^

M C P I 0.5 - - y M C P I 0.08 —— & _ ^ ^ ^ ^ ^ — m — prefetch-

0-4 - � Z 0.06 __ r on_miss
0.3 ._ ^sssss©**"^"^ 0.04 —_
0.2 . . �

0.1 - �.02 I ~~^no
0 ——I——I——I——I——！——1 0 ,——,__, ^ I _丨 , prefetch

4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes

a. compress b. espresso

78

Appendix A CPI Due to Cache Misses

0.14 3

_ 4 _ _ PPU and
0 . 1 2 . . >, „ 「

¾̂ 2.5 . FIFO

l _ \ 2 — _ \
0.08 - - m - \ \ ~~«~~. prefetch-

^PI 0 06 X \ ^P_ 1.5 - \ on-miss
• __ 乂 \ 、 . 一 ‘ — \ \

0.04 __ 、 》 ^ ^ ~ » ^ 1 -- \ 乂 \ 、

〜 、 砍 〜 1

0.02 . . 0.5 _. ^ ¾ - ^ — — „ " ~ ^ " °
prefetch

0 H 1 1 1 1 1 1 0 J 1 1 1 1 1 1
4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes

c. li d. nasa7

1 j 3

0.9 - - _ < 4 _ PPU and

0.8 - - , 2-5 - p FIFO

l - / 2 — _ \ /

0.6 “ / y^ \ J
M C P I 0.5 - . l \ � � , ^ M - - - ^ ^ M C P I 1.5 - \ ^ ~~m~~~ prefetch-

0.4 __ . - " " ^ “ 1 ^ : : : ; ; ; ^ ^ ^ _ _ ^ ^ ^ 。n-m'"

0.2 . .
0.5 - -

0.1 - - — ^ . — no

n , , . , , , n prefetch

0 ^ 1 1 1 1 1 1 0 ̂ 1 ！ j 1 1 i
4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes

e. spice2g6 f. su2cor

3 了 0.12

4 ~ > « ~ PPU and
2.5 - \ 0.1 - \ FIFO

2 -- \ 0.08 —- \
\ t \

M C P I 1.5 - - 4 \ / / M C P I 0.06 —_ 1^ 气 ™ * ™ prefetch-
^\^ \ / / N ^ \ cm-miss

1- v ^ ^ … \ ^ 、 一
0.5 - ^ ^ ^ ^ ^ ' ' ^ 0.02 ._ ^^--^-¾=:^ _ ,^no

prefetch

0 H 1 1 ! 1 1 1 0 J 1 i 1 1 , 1
4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes

g. tomcatv h. wave5

Figure A.7: MCPI by varying cache line size in PPUVC with prefetch-on-miss
scheme

79

Appendix A CPI Due to Cache Misses

A.2.3 Prefetch Cache

1 j 0.16 _ ^ _ _ Fully-

0.9 -- fi 0.14 __ / , ® \ assoc.
0.8 .. f 0 12 ^" \® w _ t _
0,7 __ 雜 0-12 - ! _纖™combined
0.6 - / °.1 - : > ‘ � � IAP

M C P I 0.5 _. , 1 ¾ M C P I 0.08 —_ g . . ^ i : ^ l s ��

0.4 _— / _ y>*"^>"""^^::: ; ;ri +Prefetch-
z f t 0.06 Z X p ^ ^ ^ ^ on-miss

二 " , - � • ' 0.04 . ^ y ^

01 -• 0.02 _. / ™«~""°
u'i - - prefetch

° H 1 1 1 1 1 1 0 J 1 1 1 1 1 1
4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes
a. compress b. espresso

0-14 丁 3 _ ^ _ Fully-

assoc.
0.12 _ . ^1

K | 2.5 -— 1 ^ With FIFO

0-1 -- '\ 2 \ ™-̂ ™combined
0.08 _- 办 ^ \ IAP

M C P I " X \ M C P I 1.5 - ^

0-06 -- * < X ^ ^ � . H g \ \ +prefetch-
- - ^ < ： ： ^ 1- \ : 、 1 —
0-02 -• 0.5 — " ^ \ ^ 〜 〜 金 — — A „ ^ ^ „ no

® "*s% r̂===::gg-ê -̂ "l prefetch
0 H 1 1 1 1 ! 1 0 ^ 1 1 1 +̂ 1 1

4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes
c. li d. nasa7

80

Appendix A CPI Due to Cache Misses

1 丁 3 ~~#~~Fu l l y -

0.9 _. assoc .

0:8 : : / ® 2.5 —_ wi thFIFO

/ _ ^ ~ ~鐵~ ~ c o m b i n e d

::::: 八 2 - \ / -

"^^' ：： ：： ^ ^ = ^ " " ' '•； ：； ‘ _ ^ ^ ^ ， 女 =

0.2 .. ~~~~~^^\^^^ ~~«~-"°
0-5 • prefetch

0.1 . .

0 •! 1 1 1 1 1 1 0 J i 1 1 ！ 1 1
4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes

e. spice2g6 f. su2cor

3 j 0.12 _ _ ^ ^ Fully-

g] assoc.

2.5 - . ^ 0.1 - - , with FIFO

\ \ ™ ~ ^ ™ c o m b i n e d
2 - \ 0.08 - \ IAP

k / g \
M C P I 1.5 - - 4 \ / m M C P I 0.06 __ A S

\ \ / / / ^ \ ^ � "…*……prefetch-

1 - - 丨) : # - —_ ^ > - « ^ on-miss

0-5 - ^ ^ ^ \ t / ' i 0.02 _— . ^ < ^ - - ^ " : : : : : J * - " °
^ \ ^ � " ^ " ^ ^ m ^ ' " ^ ^ ^ ^ prefetch

0 H 1 1 ~ " I ^ ~ ~ � •‘ ^ ^ ~ ^ t 1 0 J 1 V t ' t ^ ^ 1
4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes

g. tomcatv h. wave5

Figure A.8: MCPI by varying cache line size in prefetch cache scheme

81

Appendix A CPI Due to Cache Misses

A.3 Varying Cache Set Associative

A.3.1 Instant Zero Replacement Policy

0.62 T 0.18
T 1 ^ _ ^ ~ _ IAP with

B 0.16 - 四 � \ \ IZ

0-6 -• \ 0.14 一 、 & "— - ®

0.58 _. H \ 0.12 »*_™c�mbined
\ \ �1 “ �\ IAP

M C P I 0.56 . . \ k � � M C P I 0-1 - ^ ^ \ 4 - " ^
\ �� . � •^ 0.08 - - ^ x ^ ~~1k.™~ prefetch-

n _ 树 、 、 … ™ • o n - m i s s
0.54 - . I~~̂ ‘ "~~"g 0.06 一_

Q 52 …“_*4j.“" n o

0.02 - - prefetch

0-5 \ 1 1 1 1 0 J 1 1 ! 1
1 2 4 1 2 4

set assoc. set assoc.

a. compress b. espresso

0.3 丁 1 —「
� _ ¢ , _ IAP with

0.9 —_ ,7
0.25 - . S \

\ 0 . 8 -- 、 \ 阿 一 一 H

0.7 一- � ^ … … 鐵 ^ c o m b i n e d

0, \ -
M C P I 0.5 - \

0 4 \ \ - ^ - " ^ j r - " prefetch-

� : 3 ：： \ ° n ‘ s s

u.u3 _|_ � � $ ^ 0_2 —- \ ^ - S " " " °
^ ^ 0.1 - - P " “ ^ prefetch

0 4 "H 1 1 1 0 J 1 1 1 1
1 2 4 1 2 4

set assoc. set assoc.

c. li d. nasa7

82

Appendix A CPI Due to Cache Misses

0.8 _ 1.7 丁
T _ 4 _ IAP with IZ

0.7 -_ ^ — » m _ 1-65 - f ^
U 粉 一 一 — g ^ , . , g J " " ^

0.6 - - 1.6 _— r ^ f f Z y^-~"~~~>—•^

t̂ , / ~-*™-combined
0.5 - - A.„, — — A 1.55 - - Z ' 1 IAP

1"~~~~~>^=SzzzLi 这 y ^ - " " " s ,
M C P I 0.4 - - M C P I 1.5 __ . /

, Z 叙 一„^叙—prefetch-
0.3 •• 1.45 ^ " ^ \ ^ ^ ^ on -miss

0.2 . . 1.4 _. �

™f&-no
01 - - 1-35 ； prefetch

0 J 1 1 1 1 1-3 J 1 1 1 1
1 2 4 1 2 4

set assoc. set assoc.

e. spice2g6 f. su2cor

1-4 丁 0.25 丁

T _ 0 _ IAP with

' 2 - S ^ \ —閃 � .2-- ^ 'Z
1 - - \ \ � @ "一 " 執 ~ ~ « ~ ~ c o m b i n e d

o.s .. V ^ ^ ^ — ^ o.s — \ -
M C P I ^ ‘ ^ MCPI � ' l

0.6 - . ^ s ^ - - ^ ^ 0 1 \ -™*&™~ prefetch-
^ v \ on -miss

�-4 •• � V
- • • °.�5 -- ^ l : :

0 1 1 i 1 0 J i 1 ^ ? 1

1 2 4 1 2 4

set assoc. set assoc.

g. tomcatv h. wave5

Figure A.9: MCPI by varying set associative in IZ scheme

83

Appendix A CPI Due to Cache Misses

A.3.2 Priority Pre-Updating with Victim Cache

0-62 0.18 丁 „„.. __

T T B, _^PPUand
0 6 � ! 0.16 —- \ . . , F IFO

^ ^ ’ 0.14 — ® ®

0.58 _• H \ 0.12 — , |Combined
\ \ �� IAP

\ 0.1 —— 翔 \
M C P I 0.56 -- \ % ^ M C P I 徽 \ � . l 惑

........,.."*""-̂ ^=¾¾¾^ 0.08 - - ^ _ _ _ ^ \ � "““^™™ prefetch -
„ . . > q „ „ , ^ ^ ^ » — ~ » o n - m i s s
0.54 - - I _ I - - - - - . g ^ 0.06 - -

Q 5 2 "..“卡：̂叶̂…,n o

0.02 - prefetch

0-5 \ 1 1 1 1 0 J 1 1 1 1
1 2 4 1 2 4

set assoc. set assoc.

a. compress b. espresso

0.3 丁 1 了
T _ _ ^ _ P P U and

� - 9 p ^ FIFO
0.25 - - y � .

i 0.8 -- \ \ 歡 . 一 . 一 … H
0.2 . . A °.7 A ^ _ ^ c o m b i n e d

% �.6 —— \ IAP
M C P I 0.15 . . \ � . M C P I 0.5 \ �

Ny% 4 � \.叙 :4 ™ � _̂™ prefetch-

0.1 ._ % 0_4 - - \ o n - m i s s
% \ 0.3 - \

0.05 - . ^ ^ ¾ 0-2 - - \ " . . g . . ' .•no
^ ^ “ ^ 0.1 - ^ f - f prefetch

0] 1 1 1 1 0 J 1 1 1 1
1 2 4 1 2 4

set assoc. set assoc.

C. li d. nasa7

84

Appendix A CPI Due to Cache Misses

0-8 了 1.8

�.7 -- • — … S . ~ - . — . 1.6 - , ^ ^ ^ 5 * = ¾ + = n d
0.6 .. L」 1-4 - • 一

1 2 ™ " 徽 ™ c o m b i n e d

0-5 - - ^_ . .__ , ._y^__……—惑 ^ IAP
Wr^ _ 相 1 __

M C P I 0,4 - - M C P I

0 3 0.8 - - __叙__ prefetch-

0.6 on-miss

0,2 —
0.4 —

."""•^�^!-•j"", n 0 0.1 .. 02 t^
"•^ prefetch

° \ 1 1 1 1 0 J 1 1 1—— I

1 2 4 1 2 4

set assoc. set assoc.

e. spice2g6 f. su2cor

1-4 丁 0.25 ^
T _ % _ PPU and

1 2 FIFO

• '" S > \ ,团 0, __ \

1 - - ^ ^ : ® ' " . " S \ ™ ~ « ™ c o m b i n e d

H^ ^ - — i , \ � IAP
0.8 •_ \ �-15 -- \ %

M C P I ^" -m^ M C P I \ \
0.6 -- 〜〜、〜權 0 1 \ � > i V ^ p r e f e t c h -

- ^ ^ ^ . — \ �n-m'ss

1 - … ^ ^ •....•…：：

0 1 H 1 1 0 J 1 1 1 1

1 2 4 1 2 4

set assoc. set assoc.

g. tomcatv h. wave5

Figure A.10: MCPI by varying set associative in PPUVC with IAP scheme

0.62 T 0.18

_ 0.16 - ^ \ - 4 - P P U and

0-6 - \ 014 \ �― ― ^ FIFO

0.58 -- \ \ °.12 - 騰 \

M C P I 0.56 . . \ V _ MCPi D-1 ^ ^ - ^ i ™~M~™prefeteh-

X*.̂ ：：；：；;̂ ^ 0.08 — on-miss

0.54 -- ^ 〜 、 ^ ^ 0.06 --

0.04 —

0.52 . - ~™叙™_ n 0
0-02 prefetch

0-5 J 1 1 1 1 0 J ！——-——I i i
1 2 4 1 2 4

set assoc. set assoc.

a. compress b. espresso

85

Appendix A CPI Due to Cache Misses

0.3 1
T _ « _ PPU and

0.9 - -

0.25 - &^� FIFO

1 0.8 -- \ 一 一 A
0 , .. \ 。.7 - 鐵 、 、

\ 0.6 —— \ _ _ _ ^ p r e f

M C P I 0.15 - - N ^ M C P I 0.5 - - t < - , , , _ ^ v etch-on-

\ 0.4 — ^ ~ - ~ ~ ^ „ « » « " « « " » ^ miss

� . i “ V -
0.05 __ ^ = ^ i ^ 0.2 _— —•^no

^ m 0.1 prefetch

0 H 1 1 1 1 0 J 1 1 1 1
1 2 4 1 2 4

set assoc. set assoc.

c. li d. nasa7

0.8 _j. 1.8

0.7 - 一 一 〜 六 1.6 -- r ^ ^ ^ ^ ^ = * = i + = n d
0.6 -. 1-4
0-5 - ^ —*———m •""'""^^^^^^

• 1 - - "“織—prefetch-
M C P I 0.4 - - MCPI ^

0.8 — on-miss
0.3 - .

0 . 6 - -

0.2 - 0.4
0.1 —_ 0 2 一 如 “

u-<s prefetch

0 H 1 1 1 1 0 J i 1 i 1
1 2 4 1 2 4 ‘

set assoc. set assoc.

e. spice2g6 f. su2cor

1.4 丁 0.25

_ 4 _ PPU and
1.2 -- 、 離

i > \ 0.2 —— ^ FIFO

1 - ^ ^ . � ^

0.8 - , �_15 V \
M C P I MCPI \ \ ~~«~_pr"efeteh_

«•« -- • ^ ~ ^ . 1 ^ ^ 0.1 —_ \ on_miss
� . 4 •• \ .

0.05 - 警 0 \

0-2 - ^^^^� - -^. " n�
^ = w prefetch

0 1 i 1 1 0 j ^ 1 1 1

1 2 4 1 2 4

set assoc. set assoc.

g. tomcatv h. wave5

Figure A.11: MCPI by varying set associative in PPUVC with prefetch-on-miss
scheme

86

Appendix A CPI Due to Cache Misses

A.3.3 Prefetch Cache

0.62 丁 0.18 ~ # ~ ~ Fully-

0 16 &^<^ assoc.
0.6 - - ^ ‘ � � � g ~ ™ ~. . — ™ f g with FIFO

V 0-14 _™®___combined

0.58 - - H \ 0.12 ^ IAP

MCPI 0.56 -- N,̂ V',.̂ ^^ MCPI • : 鼠 \ " ^ ' ^i—prefetch-
0.54 •_ fe��.g 0.06 — ‘ ~ ~ ^ ^ on.ss

0.04 - - _ ™ g — n o
0.52 -- prefetch

0.02

°-5 H 1 1 1 1 0 J 1 1 1 1
1 2 4 1 2 4

set assoc. set assoc.
a. compress b. espresso

0.3 丁 1 _^ _ ^ _ _ Fully-

0.9 assoc.
0.25 - . 0 8 B \ with FIFO

l _ I ::::: \ 、 _ 一 . ^ ~

M C P I 0,15 - - % M C P I 0.5 __ \
m ^ 、'％.—^"^^»—"�/• ™™̂^ prefetch-

�.i -• V :::: \ ̂ — ~
0.05 . . ^ ^ ¾] 0.2 - ^ V _ ^ - e - " °

^ = ^ 0.1 i i prefetch
0 \ 1 1 1 1 0 J 1 1 1 1

1 2 4 1 2 4

set assoc. set assoc.
c. li d. nasa7

87

Appendix A CPI Due to Cache Misses

0.8 丁 1.8 ~ _ 4 ~ F u l l y -

0.7 -• & — — ~ g 1.6 - P ^ = f S = Z ^ : : , F 0
„^ ^ 1 4 H-"•一
0-6 -- • ™„^__™combined
0 5 1.2 -- IAP

%̂ -"""——^ ^̂=̂ 1 __
M C P I 0.4 - - M C P I 1 ^^A _ .p re fe tch -0.8 —— ^--—^~~~~~ “

0 3 • • on-miss
. “ 0.6 ――

0-2 - - 0.4 ―― ™ g ~ _ n o

n 1 prefetch
0.1 - - 0 .2

0 _| 1 1 1 1 0 1 1 1 1 1
1 2 4 1 2 4

set assoc. set assoc.

e. spice2g6 f. su2cor

1.4 丁 0.25 ~ # _ F u l l y -
assoc.

1_2 - 1 0.2 — i withFIFO
1 _. m î_^combined

03 _• \ l � 0 . _— % IAP

瞭 ' 0 6 � � \ MCPI ^ -^Prefetoh-
, 0.1 yX on-miss

0.4 . . ^ ^
0.05 -— W : � \ \ - ^ - n o

0-2 -- ^ ¾ ^ ^ prefetch

0 \ f • f 1 0 J 1 ^ ^ 1
1 2 4 1 2 4

set assoc. set assoc.

g. tomcatv h. wave5

Figure A.12: MCPI by varying set associative in prefetch cache scheme

88

Appendix B

Simulation Results of IZ
Replacement Policy

B.1 Memory Delay Time Reduction

B.1.1 Varying Cache Size

•—•— IAP with IZ
~~m™ combined IAP
~~~&~~~ prefetch-on-miss 

70.0% 丁 A67 0% 100.0% T J|99.7% 80.0% T 77.8¾ 
7 ‘ y/r39.2% y^ 

8 60.0% - / g 80.0% - 曹丨/ c 70.0% - B 4 . 7 o ^ / 職 

1 50.0% - / •云 / / -| 60.0% - ^ 7 ^ ) . 3 % 
召 / 召 6 0 . 0 % - / / = c n no/ / 

2 40.0% - / • £ 4i.5ov^ J 声 , . 产 ？ 舰 - - / . , 

I 30.0o/o - 26_3^_!!^ A - 3 - 1 40.0% -- Z / - r "�',> ^ 40.0% - . , , / ^ - i T ^ - . -
名 / 召 / / ^ 30.0% - / > 20.0% - / > 20.0% -- / / ^ ,�. 4' o / o /z.(s')% S 20.0% -- 26.1̂  E 10 0% -- 6.7%/ A E 2,5%.v,Z 2 ^ m- m z..-^ s.s% o 0.0% _~r7^ 1 1 1 1 10.0% -
^ O Q o / 5 . 4 % y ^ … ― 和 . 、 、 2 - : . % i g ” I 

0 . 0 / o 4 ^ r ^ 丨 I ‘ • 。 / 8 1 6 3 2 0 . 0 % 1 1 1 1 

8 16 32 -20.0/o 3 16 32 
cache size in Kbytes cache size in Kbytes cache size in Kbytes 

(a) su2cor (b) tomcatv (c) wave5 
Figure B.1: Results of the first group programs in IZ 

89 



Appendix B Simulation Results of IZ Replacement Policy 

- ^ • ― IAP with IZ 
—••— combined IAP 
•"•-•-Js"”"• prefetch-on-miss 

60.0% j 54 9% 53 5% 50.0% 丁 46 2� 90-°% T 86.6°/- ^ -̂̂ ^__^89.4% 
- . n n°/ 5??.^=^^¾?^ 48.9% 45.0% - 42_8^ ;̂̂ 46.2% 80.0% -- 82.9# fe% 86.5% 
I 50-0/o - - … ^ i 9 ^ 4 _ g 40.0% -- ^ , - - 呢 I 70.0% 
I 40.0% - ^ _ • ^ / Z -..^ o 35.0% - / / o 60.0% -
^ 38,7̂  -̂38.6% "g 30.0% -- • � ‘ / I � 
> 30.0% -- ^ 25.0% -- 2̂ -7# A % t 50.0% --
I I 20.0% - /Z，《3% 24.1% I 40.0% - ^ . ” r^〔？ r "^ .� . : ;G 
^ 20.0% - - 15.0o/o -- . e . r i 30.0o/o 
i 10.0% - I 10.0% o 20.0% 
I I 5.0% - o 10.0% 

0.0% •! 1 1 1 1 0.0% J 1 1 1 1 芝 0.0% J I I I I 
8 16 32 8 16 32 8 16 32 

cache size in Kbytes cache size In Kbytes cache size in Kbytes 

(a) espresso (b) ii (c) nasa7 

Figure B.2: Results of the second group programs in IZ 

0.0% H 1 1 1 1 40.0% T 37.7% 
c -0_5% - 8 16 - 35.0% - - 聽 % ^ ^ 二 ^ ; r " " 
0 .2 30 0 % -- 惑 、 3 : . G � z 33.2% _ i 

~ t3 JU -u/o 3 0 . ( ) % f \ � \ z 
= - 1 . 0 % - % 25.0% -- %；购 0) 2 �‘ ^ . co/ > 20.0% -*-combined ffi -1.5% -- « 
« -2.0% 召 15.0% - IAP 
^ -2.0% - -2.1%^,^^^^ 1̂  10.0% __ 
1 ,Pi0 4̂ >-2-3% E 5.0% --
i -2-5% - - � . 6 ^ z z A ^ �� I I , , +prefetch-

,̂ .,„. ^ O.0/o H I 1 1 1 on-miss 
- 3 . 0 % 丄 - ‘ 协 -么？‘彳： 8 1 6 3 2 

cache size in Kbytes cache size in Kbytes 

(a) compress (b) spice2g6 

Figure B.3: Results of the third group programs in IZ 

90 



Appendix B Simulation Results of IZ Replacement Policy 

B.1.2 Varying Cache Line Size 

— • — IAP with IZ 
~~m""• combined IAP 
-"i&~~~ prefetch-on-miss 

70.0o/o T eio. 100.0o/o 丁 " V ^ 9 0 % 70.Qo/o 丁63。/。 ^5% 62。/。 

, 6 0 . 0 o / o - J s ^ [ 9 0 . 0 % - ^ ^ • “ ^ [ 6 0 . 0 % - < ^ ^ " > t ^ ^ ^ ^ H r " " ^ 

0 56% X̂ o 80.0% -- \ o ��,^^““M 61%�\ 
1 50.0% - \ \ .云 70.0% - 瞧 鄉 V 云 50.0% - - 嫩 『 Y 
| 4 0 . 0 % ? � X ^ % I 6 0 . 0 % - - 飄 、 、 - ^ \ 6 0 % 售 4 0 . 0 % ， 1 \ . ^ 4 < 鄉 。 

j 3 0 . 0 % - - \ X ^ ^ 2 0 % I 二 = : 祝 ^ ； 1 ^ \ |30.0%-- ^ -
I 20.0% - \ \ ,3% ^ > 30.0% - \ \ > 20.0% -
1 10.00/o - P ^ g =:， - - V � _ 1B̂  i 10.00/o -
^ 9%^^\ 1% « 10.0% -- \4 „.. § 
^ 0 . 0 % ——I“^I——I~"^=^¾^ ^ 0 . 0 % ——I""~"I~~I^I~~h^ 0 . 0 % ——I——I——I——I~~I~~~I 

••} /C-

- 1 0 . 0 % 丄 4 8 1 6 3 2 6 4 4 8 1 6 3 2 6 4 4 8 1 6 3 2 6 4 

line size in bytes line size in bytes line size in bytes 

(a) su2cor (b) tomcatv (c) wave5 

Figure B.4: Results of the first group programs in IZ 

— • — IAP with IZ 
徽“.…combined IAP 

”™”叙™™ prefetch-on-miss 60.0% T 50.0% T 48°/¾ 4ROA 

._�La,. 4 2 � � :, r r ^ ^ ^ ^ = •% p ^ : ^ ^ 
1 丽 。 - - a f , - i . , , � 1 " - � \ 3 » 18。.。％ - ’ - % ' » 

E 30.0% - ^ / ？ 30.0% - ��� ® 31% I 60.0% -

I 20.0% --%y/.o. I := : ^̂ X̂ .. I 40.0.�—‘、t;r.、\ 
^ 10.0% - \ 1 1 ^ 15.0% -- � ' c ^ ^ � � , — 
1 0.0% ^ " ~ h ^ ^ ^ ~ ~ 1 ^ ^ , ~ ~ 1 I 10二 o 20.0% - 、‘一 

2 - 1 0 . 0 % - 4 1 16 32 64 I o ! o % I ~ ~ I ~ ~ I ~ ~ i ~ ~ ~ I ~ ~ I ~ ^ ^ I ^ Q .0% J ~ ~ 1 ^ ^ I ~ ~ I • _ • I _ I _ ^ | 

-20.0% i 4 8 16 32 64 4 8 16 32 64 

line size in bytes line size in bytes line size in bytes 

(a) espresso (b) li (c) nasa7 
Figure B.5: Results of the second group programs in IZ 

91 



Appendix B Simulation Results of IZ Replacement Policy 

6.0% 丁 5% 40.0% 丁 37% 

5.0% --證气 35.0% - 1 j 3 $ _ ^ I A P w i t h 

• = : : \ I 30.0. - \ ^ ： ； 'Z 
I 2.0�/�— \ I 2 5 , % — - \ \ f 
^ 1.0% -_ ^ > 20.0% --i9%j^ \ \ / / ~«™-combined 
•S 0.0% ——i^h^H~~I^^I~~I I 15.0% -- \ 1 / / IAP 
I -1.0%- 4 8 : | ^ 64 I • / � _ _ \ ^ / 
o -2.0% -- - 1 " ½ ^ -3% i \ 10赞/ 

£ l|^^^ c 5.0% -- \ / 
® -3.0% -- \ 5 • A^^ / .—•™~prefetch-
^ -4.0% -- , . > ,.4% 0.0% ^ ~ " ^ ~ ^ ~ " ^ ^ “ ^ ‘ ^ ‘ on-miss 

-5.0% 丄 4 8 i^ 32 64 
line size in bytes line size in bytes 

(a) compress (b) spice2g6 

Figure B.6: Results of the third group programs in IZ 

92 



Appendix B Simulation Results of IZ Replacement Policy 

B.1.3 Varying Cache Set Associative 

— • — IAP with IZ 
~~M~~~ combined IAP 
""~i&™~ prefetch-on-miss 

35 .0% j 3 3 . 9 ° 、 80 .0% 丁 70 .0% T 615°/ 

,30.0o/o - ^ ^ ! ! ^ 8 . 0 % , 70.0% - 65^^0-^% 60.0% - A i . 
I 25.0o/o I ^ I 60.0% - - ; > ^ I 50.0% - - ^ 
召 ^ o , 召 5 0 . 0 % - % 4 0 . 0 % - / / / 42.1% 0 20.0% -- 0) m ^ / / / > ^ 40.0% -- ^44.2% £ 30.0% -- / iT28A 
1 15-0% 本 I 30 0% - ^ « 20.0o/o - I5.2j/ f / 
TJ T> OU.U /o _^'^3Q 6 % ® 4 / 在 

^ 10.0% - s.9% 霧 \ > 20.0% - 22 3</省7 ^ 10.0% - / 聰 

1 5.0% - ^ - ^ ^ , 7 % I 10.0% - , — f Z Z ^ 1日3,“ 1 0.0% ——h^——I——I 
芝 0.0% 个 � ^ ^ ‘溪 丨 芝 0.0% L �r ^ ， . 7 % I ^ ~ I i -10.0% -- , 3 . # 2 4 

1 2 4 1 2 4 -20.0% 1 ,.̂ 6,t̂  
set assoc. set assoc. set assoc. 

(a) su2cor (b) tomcatv (c) wave5 

Figure B.7: Results of the first group programs in IZ 

— • — IAP with IZ 
~~~m-~ combined IAP 
-'~~̂ ™~~ prefetch-on-miss

60.0% T 55.1% 53.8% 53 5�z 45.0% y 42.8% 90.0% 丁 ^_f" |6.6%
= 5 0 . 0 % - " ^ " : ^ r f ' L = 40.0% - 33.5^V^Q.8% = 80.0% - ^ f c r A s -
.2 y .2 35.0% - Z / .2 70.0% -- /
? 40.0% - 4 : - ^ z l ~—， ,�‘ c c , I 30.0%-- / J I 60.0%-- /
TJ . Z 39 p% ^rf.i:;% T3 / g V "D / £ -̂-"" £ 25.0% - ,„.<,,/ P..,., A £ 50.0% -- / ^ 30.0% -- o, 4 >. 19.53/ / h b y^ 24.3% >. 44.2%d « �..’ ’ � 1̂ 20.0% -- 4 / /Z £ 40.0% - _ 声 ^ .n-' 0 0 / ^/ 0 /40.4% -'••-'" ^ 20.0% - ^ 15.0% - //fb.S% ^ 30.0% - z
5 … 。 ， S 10.0% -- / / '̂ “ ‘ 1* 20.0% - ‘ c 10.0% -- E / E H««o, 19.0%
5 S 5 . 0 % - - 4 . 2 % d/ S 1 0 . 0 % -

芝 0.0% 1 1 1 1 芝 0.0% H——：^ 1 1 1 芝 0.0% J 1 1 1 1

1 2 4 1 2 4 1 2 4

set assoc. set assoc. set assoc.

(a) espresso (b) li (c) nasa7

Figure B.8: Results of the second group programs in IZ

93

Appendix B Simulation Results of IZ Replacement Policy

0 . , t ~ ~ ^ — — 2 — — I — — ‘ 400% T 34.6% 35.1% ^
C • ° c 35.0/o 33.7% ̂ " " " " " " * " f e ^ - ^ l .9% |Z
0 -1.0% -- o 30.0% -- 4 ,v ^1.6%
云 Z 29.4% W^^~^
3 -1.5% - 3 25.0% - 1 26.4% -a -2.0% T3
2 -2.0% - -2.4^^^^ £ 20.0% ^ * - c o m b i n e d
1 - 2 - 5 % - - / ^ ^ - . z ® ; : ^ 1 5 . 0 % - I A P

> -3.0% - ' ^ - ^ ^ / - 2 . B % > 10.0% -
E -3.5% -- / i 5.0% - ^ , . ,
o / 0) —hr— prefetch-
S -4.0% -- -4.o%| S 0.0% ^ 1 1 1 1 on-miss

- 4 . 5 % 丄 ” 1 2 4

set assoc. set assoc.

(a) compress (b) spice2g6

Figure B.9: Results of the third group programs in IZ

94

Appendix C

Simulation Results of Priority
Pre-Updating with Victim Cache

C.1 PPUVC in IAP Scheme

C.1.1 Memory Delay Time Reduction

Varying Cache Size

70.0%T /67% 1 0 隱 � 1 ^ ^ P P U a n d
c 60.00/�- / 80.0o/o 690/o / / FIFO
•5 50.0% -- / I y /
I 40 0% -- / ? 60.0% Z / -*^combined i . 28% 31%y ,6% "g 36% X^% y A ' ' - IAP
_| 30.0% -- ^ ^ ^ • " ^ " " ‘ Z ^ 40.0% ^ ^ z . Z

i 20.0%- / ! 20.0% / ,^,, , ~~^prefetch-
E 10-0% -- 5% ^ 7 % y z ^ R � o 3% /zZ on-miss

- 。 • 。 ％ • -- V=^^r , _ _ , I 0.0% - - ^ ~ ~ ‘ ~ ~ ' ~ ~ ~ ^
o i f i o p 8 16 32 8 16 32 -20.0% 1

cache size in Kbytes cache size in Kbytes

(a) su2cor (b) tomcatv

Figure C.1: Results of the first group programs in PPUVC

95

Appendix C Simulation Results of Priority Pre- Updating with Victim Cache

— • — PPU and FIFO
~~m~~~ combined IAP
“™".ik“™" prefetch-on-miss

60.0% J 53�/ 50.0% T 90.0% r 8 7 � 8 7|：^^^#9 %
?， r t f e ^ : i : L ^ 49�/ 45.0% - 4 ^ ! t < : ^ 4 6 % 80.0% - 8 3 # ^ ^ " 1 # " " " " " " S6%

8 50.0% - 5 : ^ ^ a ^ = ^ c 40.0o/o - ^ i f ^ ? 6 . i 70.0%

0 4 0 . 0 % - 惑 — — 、 . 级 ‘ 1 3 5 . 0 % 2 8 o / o / ^ I 6 0 . 0 % _

^ 39¾ ^ 30.0% ^ / ^ 50.0%

>• 30.0% - > 25.0% - , e # J^~~~~~~~~^狄：^ 40.0% -- ^^""^““^f"""^43%
1 I 20.0% — z 24% o „ n no/ 山:)％ 吼^

^ 20.0% - - 15.0% I C > 3 0 . 0石 -
C c 丨，。 ir o n n<%. -
i io.oo/o - i 1�-0% - g ' °1/ I I 5.0% - I 10-0% -

0.0% A 1 1 1 1 0.0% J 1 i 1 1 0.0% ^ i ！ 1 1

8 1 6 3 2 8 1 6 3 2 8 1 6 3 2

cache size in Kbytes cache size in Kbytes cache size in Kbytes

(a) espresso (b) li (c) nasa7

Figure C.2: Results of the second group programs in PPUVC

— • — PPU and FIFO
—m— combined IAP
"""A™~ prefetch-on-miss

0.0% H 1 1 1 1 40.0% 丁 38% 80.0% T ^ 8 %

,,„, 8 16 32 35.0% - 3 7 ^ ^ X ^ ^ 2 t ^ ^ [70.0% -- e o . . _ ^ ' ^
c -。-5% •• I 30.0% -- , ^ . ^ ^ 3 ^ ^ % I 60.0% -- ^ - ¾ ;

0 o 丄‘"-.\��Z o /
•云 -1.0% -- % 25.0% - ^ 26% 召 50.0% / 1 t 20.0% - t 40.0% - 38%^ /-4iiT“…^3% t -1.5% -- ro i5 n„„。， Z t -2.0% « 15.0% - 名 30.0% - z
"35 -2 1 % • ^ 巡
^ -2.0% -- #^^^^^^ \ 10.0% 5 20.0% 25%
I ''- 5i<J^^^ -2-3% g 5.0% - i 10.0% -
I -2.5% -- -2.¾-;^ \ ^ ..2,7% 芝 0 . 0 % J——i——1——I——I 0 . 0 % J , 1 ！ 1

_3.0% i -2.7% 8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes cache size in Kbytes

(a) compress (b) spice2g6 (c) wave5

Figure C.3: Results of the third group programs in PPUVC

96

Appendix C Simulation Results of Priority Pre- Updating with Victim Cache

Varying Cache Line Size

70.0% j 100.0% T ‘

61% • r»r««o/ „̂ „, ~~̂ ~"-̂ ^ 88% ~•~PPU and
60.0o/o - ^ - ^ 肌0% 96% ^ ' • ^ • ^ FIFO

:>6%- \ c 80.0% - \
.9 50.0% - 1 \ 4 2 % I 70.0% - ^ ' ^ \ V
1 40.0% -”％^\ K I 60.0% - � ~ » " ^ \ \ ^ % -^*-combined
2 \ \ ^ “ 50.0% - ¾̂% ,. V IAP
i 3D_a% - \ X ^ 2 % I 40.0% - ^ 一 〜 《 丨 \
g 20.0% -- W i 3 % > 30.0% — \ \ \ \ —••̂ --- prefetch-

S 10.0% - y ^ > i I 20.0% - \ \ _ % orvmiss
E 狐 9 % 、 \ ： 5 " \ 1 % « 1 0 . 0 % - ^ - ^ 8 %

I 0.0%——I——I——I~~>--^^ ^ 0.0% J——I——I——I——I——I——I
- 1 0 . 0 % 1 4 8 1 6 3 2 6 4 ‘ 4 8 1 6 3 2 6 4

line size in bytes line size in bytes

(a) su2cor (b) tomcatv

Figure C.4: Varying line size

^ # ~ PPU and FIFO
— m ~ — c o m b i n e d I A P
—I™™ prefetch-on-miss

60.0% y 50.0% j r ° 48% 100.0% J ^ % 4_^______^o

- - - • - 42^^AC . r ： ：： - ^ V ^ , = :>^^^^^^6%
I ：：： ::4 f r �I = : : � 3 乂 1 = ：： I
I 3 � . “ \ / ^ 25.0% - \ � I 50.0% - ^ - . ^ ^ %
> 20_0% -.20%̂ \ / 产 20% I 20.0% - \ I 40.0% - 众 t \
® 10.0% •- \ f / \ 15.0% - ’S% : 30.0% -- 、 拽

？ 0 . 0 % - ^ • \ I / I I • • i = - I 20 .0% -c \ <D 5.0% 芸 10.0% --
I -10.0% - 4 、 1 6 32 64 芝 0.0% | 芝 0.0% | , , , , , ,

-20.0% i 4 8 16 32 64 4 8 16 32 64

line size in bytes line size in bytes line size in bytes
(a) espresso (b) li (c) nasa7

Figure C.5: Results of the second group programs in PPUVC

97

Appendix C Simulation Results of Priority Pre- Updating with Victim Cache

— ^ PPU and FIFO
~~-m~~ combined IAP
™™i_ prefetch-on-miss

6-。％T W � w 40.0%T37\ _ 70.0% [63 6^
5.0o/o -5.3l|--^^ 35.0% - 1 ^ 60.0% __̂ ">fĉ ^̂ ^̂ ^̂ 5=̂ =̂̂ ^̂ 5̂7%

i = ：： \ I 30.0% -4 .̂丨％ I 50_0% :��:?*^r^6%
I 2.0%-- \ \ 25.0%-- \\ f % 40.0o/o < f Z � � \ �

！ • -- . K ：- 20.0% - 1 ’ � h > 3D_0% - X a . .
I ° - °% - " ~ 1 ' V l . O o i I 1 I 15.0% -- \ \ J i %
名 - 1 . 0 % -- 4 8 . , . , % ^ 2 64 > 10.0% - \ ^ ^ / ^ 20.0% -

1 - = - - ^ 2 . 7 % I 5_oo/�_— \ ， I 10.0% --
1 -3-0/° __ \ 2 „„。， 1¾.�•̂^̂>1 1% 2
2 _4.0% -- 4̂.1% 0.0% ^ 1 i~^^^i 1——I 0.0% ^ 1 1 1 1 1 1

- 5 . 0 % 1 德 4 8 1 6 3 2 6 4 4 8 1 6 3 2 6 4

line size in bytes line size in bytes line size in bytes

(a) compress (b) spice2g6 (c) wave5

Figure C.6: Results of the third group programs in PPUVC

98

Appendix C Simulation Results of Priority Pre- Updating with Victim Cache

Varying Cache Line Size

35.0% 丁 3 2 % 70.0% T ^ ° • „„ . . ^ ,̂.̂ ^ 29% J2° 60% ^ ^ — ^ PPU and
c 30.0% -- ^ " ^ ^ - - - - ^ - - ' ' ^ ' ^ ^ r 60.0% 54�/� ^ ^ ^ ^ FIFO 0 o ^ - " " ^
f= 25.0% -- = 50.0% 3 y 44% ^ . . . ^ = m ~~~m™~combined
2 20.0% -- I 40.0% -- z ^ IAP

1 15.0% -- | - 30.0% - 3 ， ^ '

i 10.0% -- o., 1 i 20.0% - 狐 f +prefetch-
5 l � \ 5 % 7% I* , J 6 % on-miss
E 5.0% -- A E 10.0% -- 7 % , z ' z
i S% kh-. 1笼—.一一^ 2% I 6% i^^..»-»•“^'

0 . 0 % ^ 1 ^ 1 1 0 . 0 % ^ 1 1 1 1

1 2 4 1 2 4

set assoc. set assoc.

(a.)su2cor (b) tomcatv

Figure C.7: Varying set associative

—^•― PPU and FIFO
~~m”™ combined IAP
™~sls~~™ prefetch-on-miss

60.0% T 5 5 V _ ^ 53�/� 45.0% T ^ % 90.0% T 8 9 % ^ K ^ _ _ ^ Z | ^ %
• > — — i 40.0% - ^ 4 1 % 80.0% -- / ½ % 83%

c 50.0% - z ^ ' 。 ： 奶 ^ § 35.0o/o - ^ ^ y y i 70.0% - /

0 40.0% -- '' '"® .̂ ~~~̂ —̂ i 30.0% -- / / 1 60.0% /
^ _-..z 39% 39% ^ „ ^ „ „ , / U TD ^_ „ „ . /
£ 30 0% , . r ^ ' 2 25.0% -- / p2.6o. ^ ,4% £ 50.0% - /
S � & t 20.0% - l ^ y / X t 40.0% -彳 ' ' � _ / f e "^^> ' „
名 20.0% -- 名 15.0% 声二， 名 30.0% -- Z
> >. / / 1 o% >, /

1 10.0% - i 1。.。％ j/ I 20.0% ,.#^
o o 5.0% 4% g / 5 10.0% --
芝 0.0% J 1 1 1 1 乏 0.0% H ^ ^ ~ I 1 1 0.0% 1 1 1 1

1 2 4 1 2 4 1 2 4

set assoc. set assoc. set assoc.

(a) espresso (b) li (c) nasa7

Figure C.8: Results of the second group programs in PPUVC

99

Appendix C Simulation Results of Priority Pre- Updating with Victim Cache

— • — PPU and FIFO
~™«~~~ combined IAP
~~~h™~̂  prefetch-on-miss 

0.0% H 1 1 1 1 40.0% 丁 70.0% j 60% 

-0.5% - 1 2 4 c 35.0% -- ^ : > ^ ^ ¾ < ^ > ^ , c 60.0% — ^ ^ 

% -1-0% - .2 30.0% -- i, n 132-'� I 50.0% 4 1 % ^ 
I -1.5% - I 25.0% - - 嫩 ^ r 、 l 2 S % 1 40.0% - X 7 , _ % ® -2% ^ "g / / / 
^ -2.0% -- - 2 % ^ ^ ^ j % ^ 20.0% -- ^ 30.0% -_ / J / 

I -2.5% -- ^•^ ^ .觀 -；孜 "S 15.0% - ^ 20.0% -- 13% / / / 
"° ; ;3%s!^:" T j "S y / 0., yo,-
g* -3.0% - - -3% Z/，'。 1» 10.0% - ^ 10.0% - / ” 

i -3.5% -- ^ / g 5.0% E 0.0% ^ / — ^ 1 1 

-4.0% -- - 4 % ^ ^ 0.0% J 1 1 1 1 芝 - 1 0 . 0 % — A7P!.W 2 4 

- 4 . 5 % J- ‘“ 1 2 4 - 2 0 . 0 % 1 "息1〔;％ 

set assoc. set assoc. set assoc. 

(a) compress (b) spice2g6 (c) wave5 

Figure C.9: Results of the third group programs in PPUVC 

100 



Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 

C.2 PPUVC in Cache with Prefetch-On-Miss Only 

C.2.1 Memory Delay Time Reduction 

Varying Cache Size 

50.0% T 50.0% T 48.8° /^ 49.6J^ » PPU and 
45.0% - ^>470% 45.0% -̂̂ ^̂ ^̂ ^̂ _̂̂ ^̂ 489% FIFO 

I 40.0o/o 3 5 , % y I 40.0% 43.0% / + p r e f e t c h . 
^ 35.0o/o 35.0.^ ^ § 35.0% / on-miss 
^ 30.0% •§ 30.0% / 
> 25.0% - ^ 25.0% - / 

^ 20.0% ^ 20.0% J 
‘ 1 5 . 0 % - ^ 15.0% -- ^16 .3% 
I 10.0% - ^ 鄉 ’ o 10.0% - Z 
1 5.0% - 棚 ^ ^ - ^ ^ 1 5.0% - , X 
2 0.0% 21^ f - f — _ , , 2 0.0% 2.s% f — — I 1 , 

8 16 32 8 16 32 

cache size in Kbytes cache size in Kbytes 

(a) su2cor (b) tomcatv 

Figure C.10: Results of the first group programs in PPUVC 

— • — PPU and FIFO 

~~m™ prefetch-on-miss 

50.0% T 47.5% 30.0% j 60.0% T 
45.0% -- 39 5% 39.6% ^ ^ ^ 24.7% 25.8。/。 

§ 40.0% - ; = ^ z < 碰 ， = 2 5 . 0 % - M=：^ I 50.0% - 5 0 . 5% < l ^ 4 4 8 % 

1 二： ： -% 见孤 1 隱 - - - / ^ 汉''。I 舰 - - ^ r < : 
> 25.0% - >. 15.0% - ^ 30.0% - / 
I 20.0% -- I 16.6% 2 25.i%ir 
Z 15.0% ？. 10.0% - Z 20.0% 

i 10-0% - i 5.0% - i 10.0% 5 5.0% - o o 
芝 0 . 0 % J 1 1 1 1 0 . 0 % J 1 1 i 1 0 . 0 % J 1 1 1 1 

8 16 32 8 16 32 8 16 32 

cache size in Kbytes cache size in Kbytes cache size in Kbytes 

(a) espresso (b) li (c) wave5 

Figure C.11: Results of the second group programs in PPUVC 

101 



Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 

- ^ - PPU and FIFO 
™~m“™ prefetch-on-miss 

0 . 0 % 1 ‘ ‘ ‘ ‘ 4 5 . 0 % y 奶 牧 4 0 ^ _ ^ 4 4 . 1 % 3 5 . 0 % 丁 33.6% 
8 16 3 2 4 0 . 0 % - - 4 0 . 3 . - W % A % 43.0% 30.1% ^ ^ 3 3 . 2 % 

c -0-5% -- § 35.0% - o 肌 0 , �- - 3 0 . 0 t \ ^ ^ ^ 
.2 -1.0% o _ .o/ •云 2 5 . 0 % - ^ 2 6 . 4 % 

0 -1.0% ^ 召 30.0/o = 
召 y^ £ 25.0% o 20.0% -S -1.4%^ > : > -1.5% y ^ ^ 20.0% £ 15.0% 
^ / ^ 15.0% -- 名 - „ „ „ , 

！ -2.o% -- - 2 . i ^ r 10.0% - r 则 ％ 

1 � z i � i 5.0% - i 5.0% -
I -2.5% -- _2g.^'^ "^^^^ 芝 0.0% J 1 1 1 1 芝 0.0% J 1 1 1 1 

-3.0% ^ -2.7% 8 16 32 8 16 32 

cache size in Kbytes cache size in Kbytes cache size in Kbytes 

(a) compress (b) nasa7 (c) spice2g6 

Figure C.12: Results of the third group programs in PPUVC 

102 



Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 

Varying Cache Line Size 

5 0 . 0 % T 46.6% 7 0 . 0 % T 
4 5 0 � / 44.5% A 61.6% 

i 40:0o/: - - A / § 60.0o/o -- / 
Z 3 5 . 0 % -- \ \ / 云 5 0 . 0 % -- ) 4 ^ ^ < < = = i : : ; r > > ^ l ^ / 

！ 二： ：： \Nz ！ 藝 - - - 4 ^ S ^ ^PPUand 
I 20.0% - \ I 30.0% - \ FIFO 
！ 1 5 . 0 % \ > 2 0 . 0 % \ ™ * ~ - p r e f e t c h -

I 1 0 . 0 % - - V p , „ „ „ , l \ o n - m i s s 

I 5.0o/o - - 9彳。,。\ I 10.0o/o -- > 3 . 

0 . 0 % 1 1 1 +^^"‘^ i 0 . 0 % ^ 1 1 1 1 1 1 

-5.0% 1 4 8 16 32 64^"'''' 4 8 16 32 64 

l i n e s i z e i n b y t e s l i n e s i z e i n b y t e s 

(a) su2cor (b) tomcatv 

Figure C.13: Results of the first group programs in PPUVC 
— • — P P U a n d F I F O 

~~^™~ p r e f e t c h - o n - m i s s 

40.0% T /^38.4% 35.0% T 1 ^ 50.0% 丁 ,,.^ 45.6% 
= 3 0 . 0 % -- / 双4% 30.0% -- 3 3 . ； ^ ^ = = ：： € : : : ^ ^ ^ ¾ " " ^ 

•I 蕭 ^ 雷 4 1 2 5 . 0 % - - - o f ^ I 35：0% , 6 W ^ 4 4 . 7 / �\ 

\ 匪 - - , 1 / - - I 20.0o/o -- 、 應 I 3 0 . 0 % -- X . S . 

I 10.0% -- \\ / / f 15.0o/o - iw% I 20：0% ” 

I 。•。％ - ' M ' 1 I ‘ t 1 0 二 -- i ) = ： 

1 -10.0% - 4 f 16 32 64 | • - | 5.0% -
2 i 0.0% H 1 1 1 1 1 1 0.0% ^ 1 1 1 1 1 1 

_20.0% 1 4 8 16 32 64 4 8 16 32 64 

l i n e s i z e i n b y t e s l i n e s i z e i n b y t e s l i n e s i z e i n b y t e s 

(a) espresso (b) li (c) wave5 

Figure C.14: Results of the second group programs in PPUVC 

103 



Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 

— ^ ~ PPU and FIFO 
—m— prefetch-on-miss 

8.0% T ^ 7.5% 50.0% J 45.4% ^ ^ 35.0% 丁 

\ 45.0% - r - ^ ^ " ^ ^ Q_。, T ^30.8% 

C 6_0% - \ = 40.0% --仇3% ' ^ ) % ^ X ^ C 30.0/o - ^ ^ c . 6 % 

.2 4�o/o __ 5 . 3 ^ ^ \ Z 35.0% - \ 3 2 . 2 % 1 25.0% - ¥ 

I 2:0% -- \\ ！ == ：： 1 1 舰- f% / 
I 0.0% - I V y : i , , I - - -- 1 1 通 - n / 
i 4 8 U S > 64 1 15.0% -- > 10.0% - \ / 
t -2.0% - -1¾ xr\^ o 10.0% o \ / i \ \ - 现 I 5.0% -- i 5.0% - \W 
i -4.0% - \ , ^ 乏 0.0% J ~ ~ I ^ ~ I ~ ~ I ~ ~ I ~ ~ ~ I ~ ~ I 芝 0.0% J ^ I 7 ^ ：的’~^ I ~ ~ 1 

_6.o% 1 4 8 16 32 64 4 8 16 32 64 
line size in bytes line size in bytes line size in bytes 

(a) compress (b) nasa7 (c) spice2g6 

Figure C.15: Results of the third group programs in PPUVC 

104 



Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 

Varying Cache Line Size 

40.0% j 50.0% j 47.9% 

[ 3 5 . 0 % -- W ° 45.0% -- ^ - ^ 6 % 4ao% 

I 30.0% - 27.8% Z I 40.0% -

0 4 ^ / o 35.0% -- —•— PPU and 
1 25.0% - ^--<22^ I 30.0% FIFO 
^ 20.0% ^ 25.0% --
I 15.0% - I 20.0% - ^~~~ prefetch-
\ 10.0% - \ 15.0% - /̂ 15,3% on-miss 
I o 10.0% __ ^ ^ 
i 5-。％ - 3,4.. » � > • 溪 I 5.0% - 5,5% ^ ^% 

0.0% ^~~^-^——^^^ 1 1 ^ 0.0% ^ 1 1 1 i 
1 2 4 1 2 4 

set assoc. set assoc. 
(a) su2cor (b) tomcatv 

Figure C.16: Results of the first group programs in PPUVC 

— • — PPU and FIFO 
~~m™ prefetch-on-miss 

j«««, 39.5% 39̂% 39.6% 24 7% 
40.0% 丁 4 # n : M 25.0% y M ° 50 0 % 丁 

# 39.2%̂  38.6% ^ P 24,3% "̂ " ' �T 44.8% 
_ 35.0% -- 31.7%// ^ 2 0 . 4 % / ^ / ymno/ y%. 

I 30.0o/o - - 徽 I 20.0% -- y / . 40.0% - 3 3 ^ - -

I 25.0% -- I 15.0o/o -- A < . e . 1 30-0% 一 / / 
；20.0% - ^ 10.7�// / o 20.0% -- / J 
I 15.0%-- I 10.0% -- Z / I 100%_- 12.2/ ^ -
& 10.0% -- ^ e。。， / 名 / i … i 5.0% - > 0.0% 1 I 1 1 
I -- 室 'W I 1 / 2 4 

0.0% J 1 1 1 1 芝 0.0% J W 1 1 1 I -10.0% - / 
1 2 4 1 2 4 . 2 0 . 0 % J- - - . 贴 ％ 

set assoc. set assoc. set assoc. 
(a) espresso (b) li (c) wave5 

Figure C.17: Results of the second group programs in PPUVC 

105 



Appendix C Simulation Results of Priority Pre- Updating with Victim Cache 

— • — PPU and FIFO 
—»— prefetch-on-miss 

0.0% i 1 1 1 1 45.0% 丁 41.0% 41.5% 408�/ 30.0% j30-0% ^ 
-0.5% - 1 2 4 40.0% -- • p = m 40,4% 29.4。攀〜^^% 

I -1.0o/o - . i 35.0% -- /奶 < ) 1 29-0% -- - 1 ^ 

I -1.5% - - i . Z % I = ：： / I - -- \ 
t _2.0% -- / ^ ^ 20.0o/o - / ^ 27.0% - X.e.5o. 
® _2.5% - / ^ - ^ -2..% o 棚‘7舞 o ipe4% ^ / g r ^ 15.0% -- "o 26.0% - 2G4� 

I -30% -- / 挑 r 10.0% - r 
I -3-5% -- - • ‘ / I 5.0% -- I 25.0% -

-4.0% - ,w%_ 0.0% J 1 1 1 1 芝 24.0% J 1 1 1 1 
-4.5% 丄 1 2 4 1 2 4 

set assoc. set assoc. set assoc. 

(a) compress (b) nasa7 (c) spice2g6 

Figure C.18: Results of the third group programs in PPUVC 

106 



Appendix D 

Simulation Results of Prefetch 
Cache 

D.1 Memory Delay Time Reduction 

D.1.1 Varying Cache Size 

60.0% T cno�/ 100.0% T 99.4% « « p 9 2% 

50.8% 9 9 ^ 799.0% — 4 — Fully-
c 50.0% - - 5 1 0 % • ^ ^ - - , ^ 4 6 . 2 % 80.0% - / assoc. 
.2 ^ ^ c / with FIFO 
0 40 0% - - • - / 

% pe.3% o 60.0% - / 
1 30.0% - / ^ ...,>, J A . . ~~*~~combined 
^ / ^ 40.0% — ”4( 'c / ^ /”r f�<> ,Ap 
名 20.0% -- / I / / 
g- / ^ 20.0% — / y 
F 10.0% -~ J .4 ^ /̂ .-"'̂ 5,3% I . . . r : : m i z z Z ‘ 1 0.0% _ ^ _ ^ ^ ^ — — , — — , … … 叙 - p r e f e t c h -

0 . 0 % ^ - ^ ^ ^ ~ ^ — — ‘ ‘ ^ -.! 4% 8 16 32 o n - m _ s s 
8 16 32 -20.0% i 

cache size in Kbytes cache size in Kbytes 

a. su2cor b. tomcatv 

Figure D.1: Results of the first group programs 

107 



Appendix D Simulation Results of Prefetch Cache 

1。。'。％ I 8120/ j92.0% + F u l l y 

90.0% -- ' ' ' \ ^ assoc. 
§ 80.0% -- ^ , 7 孤 with FIFO 
Z 70.0% -- / z 
！ = ::4,3% / > ^ — 

! =::3?.�^:>H",b 'AP 
0 2 0 . 0 % - - » 5 1 % 义么 

1 10.0% -- —tk~™ prefetch-
芝 0.0% J 1 1 1 1 on-miss 

8 16 32 

cache size in Kbytes 

a. wave5 

Figure D.2: Results of the second group programs 

~ # ~ Fully-assoc. with FIFO 
~~~m~™ combined iAP 

仰 3� , 全 prefetch-on-miss
60.0% T 59 .3%, ,^_^6o/o 50.0% y 4 3 . 5 % ^ ' ' ' ' ^ ' 40.0% 丁 3 8 . 5� / � 1

. S 0 . 0 . - - ^ . ¾ ^ - [= : y ^ - = 3 5 . 0 % - - ^ ^ S ^ ^ 5 t
1 40.0% - ^ ^ - 1 35.0% -- / 驅 I 30.0% -- 3 o J r ^ J > - -

^ SS./% …、 召 30.0% - 28 4%y/ 召 25.0% -- 广

2 „„„„, 2 t/ 0 26.4%
> 30.0% -- ^ 25.0% - 2,,^.® 名 — — ^ ^ 20.0%
芸 SS 2 0 0。/ -- ,'<、").、’ 24,1% f
名 20.0% -- •§ f f J ^ Z A),c I 15.0%
> > 15-0/° — -l6.S% >.
I 10.0% -- 0 10.0% o 10-0%
§ i 5.0% - o 5.0% -

0.0% 1 1 1 1 ^ nno/ I I , I 芝
0.0% H 1 1 1 1 0.0% -I 1 1 1 1

8 16 32 o _(c oo
8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes cache size in Kbytes

a. espresso b. li c. spice2g6
Figure D.3: Results of the third group programs

0.0% i 1 1 1 1 90.0% j 32.9% 83.2% ™86.5%
8 16 32 80.0% - _ % i = ^ r r n ^ + P u l l y _

n co/ __ 81.0% ^ " " ^ 7 8 . 6 % a s s o c .

i c 70.0% with FIFO
•云-1.0% -- 5 60.0%

3]
•g ^ 50.0% ...„.鐵—combined
i -1.5% •• I 40.0% -奶4^.—•““.…二――t,, IAP
名-2.0% - .3% 罢 30.0o/o 丨^、
^ -2.5% _ _ _ _ _ _ ^ ^ 20.0%

1 -2.5%-- H T ^ " ^ ^ ^ ^ - 2 . ^ , e t 1 = -- , , I ^ ~ "
2 „ .,.；'•'•'〜 2 0.0% 1 1 1 1 on-miss

- 3 . 0 % 丄 -•̂-•丨“ „ ,

8 16 32

cache size in Kbytes cache size in Kbytes

a. compress b. nasa7

Figure D.4: Results of the fourth group programs

108

Appendix D Simulation Results of Prefetch Cache

D.1.2 Varying Cache Line Size

6 0 . 0 % 丁58% • 58% • 100.0% T ^_i#>->^%

[- r K 7 ^ e = J > ^ +=.
S 40.0% -啦％ 'M V -¾ 70.0% 68% ^ - ^ ^^ with FIFO
I 30.0. - \ I = ， - ‘ 洛 （ r � , � \
: \ \ > 50.0% -- _ _一 . |〜 \ ™™iH~combined
« 2 0 . 0 % - - \气 _ I 40 .0% -45% “ 迹\ \ I A P

名 \ V i " ^ 30.0% -- \ \ I 则％ • L ^ ^ ^ \ i I 20.0% -- V t
§ 0 - 0 % ‘ — — " — — ‘ ~ ~ 卜 . ！ . 1 % I I 1。-。％ ―― ^ B % ™ ^ p r e f e t c h .
^ .10 0% 1 4 8 16 32 64 0 _ 0 % � 1 1 ‘ ‘ ‘ ‘ on-miss

4 8 16 32 64

line size in bytes line size in bytes

a. su2cor b. tomcatv

Figure D.5: Results of the first group programs

90.0% 丁〜 88%_4^

80.0% p% ^ ^ ^ " " " " ^ ^ ^ 6 9 % +Pully_
g 70.0% - - 65% N ^ assoc.
•B J » ^ � with FIFO
1 60.0% -- ^ _ ^ ^ � \
2 50.0% -f>4% N?^<. _ __• _,
“ A 一各��令 腦 一條一 c o m b i n e d « 40.0% --,2% “ y � � i Z 45% � \ |AP
•S 30.0% -- 3̂2%
S 20.0% --
0) 10.0% __ —sii-~~ prefetch-
乏 0 .0% J i 1 1 i 1 1 o n - m i s s

4 8 16 32 64

line size in bytes

a. wave5

Figure D.6: Results of the second group programs

109

Appendix D Simulation Results of Prefetch Cache

~ • ^ Fully-assoc. with FIFO
“™m™" combined IAP
-•"••is- prefetch-on-miss

肌°% T73�/i 50.0% T49o/o^ ^ ¾ ^ 40.0% 丁
70.0% -- ° \ 45.0% --49% ^ ^ ¾ ^ % ^ ^ 35Qo/o ._36%4 J ^

I 50：0% ” j \ ^ ¾ ^ ¾ I 35：0% -:��、5% I 3 0 . 0 o . 孤 ^ ^ ^

i 40.0% - �W % A ^ ^ - ^ 3 . . i 30.0% - �� 、.丨％ I 25.0% - \ \ f
i 30.0% - \ v y y ^ 25.0o/o \ \ > 20.0% - 4 ^
I 20.0% - ^ v % ^ \ / ^ 2 0 % I 20.0% - � 1 8 % I 15.0% -- 19%\ ^ £ ^ /
\ 10.0% - \ V / ^ : = -- ？ 10.0% - \ : > j /
i o_o% -~~I \ I / 1~ " I~ " I~~I i 1�-0% —- i 5 0% \ /
1 -10.0% -- 4 V 16 32 64 | 5.0% — | • ^._/l%
2 H 1 •� ô oH 2 0.0% 1 1 1 1 1 1 ^ 0.0% 1 i ¥ 1 1 1

-20.0% 1

4 8 16 32 64 4 8 16 32 64

line size in bytes ||ne size in bytes line size in bytes

a. espresso b. li c. spice2g6

Figure D.7: Results of the third group programs

6.0% T 5% 90.0% 丁39% » ^ ^ _ _ ^ ^

5.0% - ; � / ��汽 80.0% - � � * " — ^ 1 ; ^ ^ ¾ ^ ^ .,2¾ - ^ F u l l y -
4.0% -- \ c 70.0% y n ^ % ^ 1 assoc.

0 3.0% -- \ % 60.0% y 70% with FIFO

1 2.0% -- \ I 50.0% - 概 ^ ^ 〜 、 、

？ 1.0% -- \ 2 40.0% -- 45% , , r ^ +combined
t 0.0% ——1~~^-V^~~‘~~‘ I 30.0% - ‘ �肥 � IAP
名 - 1 . 0 % - 4 8 , . ^ . 3 2 64 ^ 20.0% _

5 -2-。％ -- X i 10.0%
I 墨• X ^ ' , , I 0.0% ~ ~ , ~ ~ ！ ~ ™ I ^ ~ , ^ ^ ^ I ^ I + p r e f e t c h -
S -4 0% -- W'̂ >''o on-miss

- 5 . 0 % 工 4 8 1 6 3 2 6 4

line size in bytes "ne size in bytes

a. compress b. nasa7

Figure D.8: Results of the fourth group programs

110

Appendix D Simulation Results of Prefetch Cache

D.1.3 Varying Cache Set Associative

60.0% j 100.0% y 99.4<>/_——^ ^99.4%

51.4% .0 8% 90.0% _^#^Ful ly-
c 50.0% -- ~̂~~~~~~«4ĝ 2̂̂__________<<<""-̂ • c 80 0% assoc.
•I -B 7n n% -- with FIFO
0 40.0% -- o 70.0/o

^ "g 60.0%
^ 30.0% -- ^ 50.0% ^ 4 2o., - » - combined
1 I 40.0% -- 30.6% z Z ^ ‘ "AP
^ 20-0% -• ^ 30.0% - z � Z
0 0 20 0% — 22.3% » ^

E 10.0% --s.9% _s%_Jj^ _^.7% I 10.0% - 么1:淡� .„rpfptrh
1 3.4% 知、、〜~"^ f . . , � . I 1°.0石 5.5% ^ . _ . ^ r % i ^ p r e f e t c h -

0.0% 1 s : t t;i^~~i 0.0% ^ 1 1 1 1 on-miss

1 l f ; 4 1 2 4

set assoc. set assoc.

a. su2cor b. tomcatv

Figure D.9: Results of the first group programs

90.0% T 灰 rr••••••
。 一 / ‘ 8 1 . 2 % - ^ - Fully-
80.0% -- / assoc.

§ 7G.0% _• / withFIFO
•5 60.0% -- / M''-"'
I 40：0% ：： 38.8% / ^ A , 2 . 1 % —織—combined
> /T^.Z^ ,Z IAP
•g 30.0% -- / W V '

1 20.0% -- X î̂ k
i 10.0% -- • / / , , ^ - ^ - p r e f e t c h -
I 0.0% ^-y^"•I 1 1
S / / on-miss

_1M% "-13,.% f^- 2 4
-20.0% i - 16 .5%

set assoc.

a. wave5

Figure D.10: Results of the second group programs

111

Appendix D Simulation Results of Prefetch Cache

~ 4 ~ Fully-assoc. with FIFO
™m~~~ combined IAP

.h prefetch-on-miss
60.0% T 5 8 . 0 ^ ^ ^ ^ ^ ^ . 6 % 45.00. J . 5 % 40.0% T 36.2%

50.0o/o - ^ = ^ - 3 . . 二 ： ： 3 5 ^ 娜 . 3 5 . 0 o / o — 3 3 ^ 1 = ^ ^ 3 3 . 0 %

•云.ono/ '、么观 、 •云,„•„, / / •云 30.0% - 29 4% 4 k ll.S%
I 4�.0% -- z t ; r 4 3 ^ 召 30.0% -- / / = __ S;^-^.s,4%
£ 30no/ - 念 , ^ 2 2 5 . 0 % - / ^ . 2 % > 2 4 . 3 % ^ 2 5 . 0石

t 31,7% t 20.0% - / / , Z ^ 20.0% -
！ 20.0% - I 15.0% ^ o J / j C . I 15-0%
1 10.0% - I 1�-0% - y / I 10-。％

I I 5.0% — 4 . 2 l i / I 5.0% --
0 . 0 % • ! 1 1 1 1 0 . 0 % J ~ ^ 1 1 1 0 . 0 % J 1 1 1 1

1 2 4 1 2 4 1 2 4

set assoc. set assoc. set assoc.

a. espresso b. li c. spice2g6

Figure D.11: Results of the third group programs

0.0% "I 1 1 1 1 90.0% J 86.2"/̂ ___̂ ^̂ 83.5% 83.2% _4_Fully_
-0.5% -- 1 2 4 80.0% - ^"""__*^7;^^^f= | io% 二 ： .

c -1.0% -- I 70.0% - / with FIFO

1 -1.5% - 1 60.0% - /
T3 „„„, o 50.0% / ~~m~~~combined £ -2.0% -- -2.3<%p /：% ^ 44,2% g ,._
^ , „ , -2.6% ^ ^ S : ^ ^ 40.0% 十 > ^40,4% IAP
« -2.5% -- no.Jk-r^^^^'''^ 0 X40.4%
名 -^-^Pm- ^ 30.0% - . Z
i -3.0% - - 3 . 5 V ^ r 20.0% - 1.0. z
I -3.5% - V ' I 10.0% - f p r e f e t c h -

^ -4.0% - - -¾^ ^ O.0o/o i , , , , �n-m_ss
-4.5% 丄 1 2 4

set assoc. set assoc.

a. compress b. nasa7

Figure D.24: Results of the fourth group programs

112

Appendix D Simulation Results of Prefetch Cache

D.2 Results of the Three Replacement Policies

D.2.1 Varying Cache Size

1K bytes prefetch cache size, 32 bytes line size

60.0% T 100.0% T W] 00% W] 00% _ 99% ~ • ~ 4-way with

51% 51% ^ • ^ L R U

I 50.0%-- t : : S ^ - I 80.0%-- 72^^^^^_tS qo%+4 ,aywj th
I • % — 叙 ^ . 33. I _ % - - e f ^ ^ ^ T - e o ： IZ
> 30.0% - ⑶ 、 閱 為 2 、、瀬 49% …金 4-waywith
« » • � � * ^ 7 % | - 40.0% - FIFO
T3 20.0% -- � 1 20% •§
^ > 20 0% - � g � F u l l y - a s s o c .
I 10.0% o . � with LRU

‘ : 1 f i f ^ - 3 % 1 i ：丄 f ^ ~ ~ ^ ^ - i 3 。/，： r � c .
~~$~~ Fully-assoc.

cache size in Kbytes cache size in Kbytes ㈨他 nFO

(a) su2cor (b) tomcatv

Figure D.13: Results of the first group programs

1K bytes prefetch cache size, 32 bytes line size

100.0% 丁 92% " • •~~ 4-way with

= ^t===^90% LRU
I 80.0% - ^ B ^ / ^ ~~m~~~ 4-way with

I 60.0% - 4 8 % ^,... .Laywith

I —�-- X, ^ :'7
t , j m 2 8 % ••�...B.....Fully-assoc.
i • % - - ^ ^ ^ ^ / ^ ^ ^ 1 4 % _LRU
I ffi u ™ g ™ Fully-assoc.

0.0% J 1 1 1 1 with IZ
8 16 32 ___^_ Fully-assoc.

cache size In Kbytes with FIFO

(a) wave5

Figure D.14: Results of the second group programs

113

Appendix D Simulation Results of Prefetch Cache

~ # ~ 4-way with LRU
~~m~~~ 4-way with IZ

4-way with FIFO
1K bytes prefetch cache size, 32 bytes line size Q “ Pully-assoc. with LRU

g]..." Fully-assoc. with IZ
~~•~~ Fully-assoc. with FIFO

60.0% T KL59% 50.0% T M\ 49% ._ _„,
T ®^^^^56o/o T 442M^ 40.0% T g39o/o

0 : - - 4 6 % ^ ¾ : |40 .0%- - ^ ^ - ! = : : t < ^ : :
1 • ° ^ « 37% I 30.0% - ^ / I 25.0% - ^''^'"'*^6°/°
i- 30.0% - ^~~~~m^% > y ^ 23% 1 20.0% -
S 20.0% - 減 I • % -- - . 20% ^ I 15.00/�-
o 10.0% - S 10.0% - 2̂%--̂ °̂/° I 10.0% -
E P ‘~~‘ o
5 g E 5.0% --
2 0.0% 1 1 1 1 S nno/ , , , , •§

0-0/° ^ 1 1 1 1 S 0.0% ^ 1 1 1
8 16 32 o _(cj oo

8 16 32 8 16 32

cache size in Kbytes cache size in Kbytes cache slze in Kbytes

(a) espresso (b) li (c) spice2g6
Figure D.15: Results of the third group programs

1K bytes prefetch cache size, 32 bytes line size

0.0% H 1 1 1 1 90.0% T ~#~ 4-way with
80% 81% • _ , , c -0.5% -- 8 16 32 80.0% - g H ^ g 79% LRU

•B 1 Qo/ o 70.07�-- --¾~~" 4-way with
I _ • � _ _ Z 6 0 . 0 % - I Z

^ _1.5̂ -- "S 50.0% -- •: 4-waywith
« -2.0% - ^ 40.0% - FIFO

i -2.5%-- -2ffir-"^;;;*^::::^ _2.8% i 200% ” ^ 24% @ Fully-assoc.
i - 3 . 0 % - - / • 5 肌 �而 , w i t h L R U
o / I 10.0% - /
芝 -3.5% - ^6% o 0 0% I ^ _ _ I |~®~Fully-assoc.

.^o/ 仏‘。。, - 5 % ^ m -5% with IZ
-4.0% 丄 -10.0% 丄 ^^ W 32

~ • ~ Fully-assoc.

cache size in Kbytes cache size in Kbytes with FIFO

(a) compress (b) nasa7

Figure D.24: Results of the fourth group programs

114

Appendix D Simulation Results of Prefetch Cache

D.2.2 Varying Cache Line Size

1K bytes prefetch cache size, 32 bytes line size

6�+�% T . r B ^ 1 � _ T M ^ ^ 9» + 4 : w i , h

I : :: 5 ^ ： ^ : I ：： :: e # ^ ^ - r -
© 30.0% -- \ ^ N ^ ^ \ \ ^̂̂̂̂̂^̂ ;;; 4-way with
t 20.0% - \ \ I 40.0% -- 3 g � 4 1 � / � FIFO
i 10.0% - \ \ 13% t 20.0% - \ & Fully-assoc.
5 \ ^ ^ \ with LRU

室 0.0% 1 1 ^ ^ ^ B -17¾ 0% I I 0.0% ——I ^ ^ ^ i) k j - ^ - j ; ^ E 代 I - B - F u l l y - a s s o c .
芝 - 1 0 . 0 % 丄 寸 ① - 突 S 2 寸 � ^ ^ ^ " " ^ ^ with IZ

-20.0% 1 r ••
~~•~~ Fully-assoc.

line size in bytes line size in bytes with FIFO

(a) su2cor (b) tomcatv
Figure D.17: Results of the first group programs

1K bytes prefetch cache size, 32 bytes line size

~ # ~ 4-way with
100.0% y LRU

0 80.0% - » 5 = * ^ = = « -t4-waywith
？ ' S ^ ^ 6 9 � / � IZ

1 60.0% - \ l 7 % ...• 4_waywith

« 40.0% - V^^^^ FIFO

I 20.0% -- ^ ™ ^ - , : = � •
J 0.0% J 1 1 1 1 1 1 g] Fully-assoc.

寸 °° ^ ^ S with IZ

~ ~ • ~ Fully-assoc.
Iinesizein bytes with FIFO

(a) wave5

Figure D.18: Results of the second group programs

115

Appendix D Simulation Results of Prefetch Cache

~ ~ # ~ 4-way with LRU
~~~m™~ 4-way with IZ 

4-way with FIFO 
1K bytes prefetch cache size, 32 bytes line size „„,.g„„. Pully-assoc. wi th LRU 

g] Fully-assoc. with IZ 
~ ® ^ Fully-assoc. with FIFO 

8 0 . 0 % 丁 73。, 5 0 . 0 % 丁 ^49% ^K49% 4 0 . 0 % -

I 5aoI ：； \ ^ ^ =« I 30.0%—— X^ Y “‘ 1 =二：： m /F^" 
1 = ：： J p ^ : : ; I 腿 - - \ ‘ - i = ：： x V / 
5 20.0% - ^ 6 ¾ o 10.0% - & ^ 10% 5 10.0% - V W 
I 1 0 . 0 % - I I 5 . 0 % - ^ \ ^ 

芝 0.0% ——I——I~I——I——I——I O.Qo/o J 1 1 1 1 1 1 芝 0.0% J——I——I m 1%I I I 
寸 CO CO oj 寸 

寸 00 CD CM 寸 T~ CO (D 寸 00 CD CM 寸 T- CO CD T- CO CD 

line size in bytes 'ine size in bytes iine size in bytes 

(a) espresso {b) li (c) spice2g6 

Figure D.19: Results of the third group programs 

1K bytes prefetch cache size, 32 bytes line size 

6.0% T " • ~ ~ 4-way with 

§ 4.0%-- \5_2% 100.0% 81% 81�/� LRU 
1 浙 。 - V i 8 0 . 0 % -- 7 ^ ^ ^ ^ ^ ; ; 5 P < ^ ^ 7 0 % - ^ " - a v w l t h 

2 H 1.1% Z 60.0% - 57°/<̂  J ^ *63% 

t 0.0% - _ _ _ I ? V ‘ ‘ I I 40.0% - l i ^ 急 5 = y w i t h 
0) 寸 ® C 0 f c ^ 1 % 寸 L \^ h*llhU 
�- 2 . 0 % - ^ ^ V . 3 o . I 20.0% - Ĵ …因…Fu,,y-assoc. 
i -4.0% -- 、 僅 I 0.0% -寸丨 j \ ' > S ^ , . ： withLRU 
芝 6oo/ 1 -2。-。％-- V S % �^Fully-assoc . 

- 6 - ° /。 2 - 4 0 . 0 % 丄 四 with IZ 
line size in bytes ,. • . ^ ‘ ~ « ~ Fully-assoc. 

Ime size in bytes with FIFO 
(a) compress (b) nasa7 

Figure D.24: Results of the fourth group programs 

116 



Appendix D Simulation Results of Prefetch Cache 

D.2.3 Varying Cache Set Associative 

1K bytes prefetch cache size, 32 bytes line size 

60.0%T 1 0 0 . 0 %丁 g ^ ^ : _ ^ ~ ~ H 9 9 0 / < , -^4-waywith 
qjo^ L R U 

=50.0% - &̂ "">̂ >̂ __̂ Z2î <̂  51% c 80.0% - 7p0/ .,.•... .8Q%......4 81% 
§ ra^ ^ 4 5 % .2 ^ A " " ^ . 7.0/ " « - 4-way with 
•f� 40.0% -- 35%.^^ 0 ^ - ^ f ^ 17 
吕 37%---^..^ 召 60.0% - - _ ® ' j L « 58% IZ 
•§ 30.0% -- 釣％ 27% £ 5 ： ^ ^ • 4-waywith 
I 2 0 . 0 % - 1 、 、 ^ » ^ I 40.0%-- FIFO 
Z 10 0°/ t 20.0% - ... H•• Fully-assoc. 
^ — 1 � / 0 with L R U I 。•。％ ——^°°-Hg^"^ I 0.0% _^,o^^__^^^^_7% 丨 i Ful,y-assoc. 
芝-10.00/0丄 1 2 4 .20.0o/, 1 ^ ^ * ^ withlZ 

~ m ~ Fully-assoc. 

set assoc. set assoc. with FIFO 

(a) su2cor (b) tomcatv 

Figure D.21: Results of the first group programs 

1K bytes prefetch cache size, 32 bytes line size 

90.0% 丁 ~ " 4 ~ 4-way with 
^ 8 0 . 0 % - m 81% L R U 

•| 70.0% - f ~~i|™ 4-way with IZ 
3 60.0% -- / 

£ 5 0 . 0 % 丄 / ^ .+h 
/ ：： 4-way with « 40.0% - ^ 39% p|po 

% 30.0% I y ^ ^ 8 % FIFO 
I* 20.0% - io% Z 1 0 > / ^ ^ ^ .....S Fully-assoc. 
E 10.0% - K K . . ^ ^ S ' ^ with LRU 4�/ ® ^̂ '̂̂""'̂^̂  — 
芝 0 . 0 % ^ ^ ^ 1 1 u g ~ F u l l y - a s s o c . 

1 2 4 with IZ 
~ • ~ ~ Fully-assoc. 

set assoc. with FIFO 

(a) wave5 

Figure D.22: Results of the second group programs 

117 



Appendix D Simulation Results of Prefetch Cache 

~ « ~ 4-way with LRU 
~~~M~™ 4-way with IZ 

4-way with FIFO
1K bytes prefetch cache size, 32 bytes line sizeg..... Fully-assoc. with LRU

- W r - Fully-assoc. with IZ
m Fully-assoc. with FIFO

60.0% T jfcL 45.0% y HSi 44% 40 n%
[• 5 t = : r = i 5 6 % 観 ^ 3 3 . c 3 5 孤 3 ^ _ ^

5̂¾ 4̂90/0 510/0 0 35.0% - ^ ^ I 30 0% 3m____29r^33%
g 40.0% - 吕 30.0% - 4 ^ 1 % o 3 0 - 0 / �- ^ W - - - # - _ ^ 6 %

1 • � / 29% ^30/ 1 25.0%- / I 25.0�/�-- ^ ^
i 30.0o/o-- ^ ^ _ ^ ^ ! ^ 8 / o ^ 20.0% - / 1« 20.0% -

名 20.0% - ® 召 15.0% - 1 0 / 11。， 1 15.0% -
5 5 10.0% - I ^ 3 ^ |- 10.0% -
E 10.0% - E ^ / ® I I I 5.0% - ^ ^ 1 5.0% -

0.0% J 1 1 1 1 0.0% J m^——I 1 1 芝 0.0% J 1 1 1
1 2 4 1 2 4 1 2 4

set assoc. set assoc. set assoc.

(a) espresso (b) li (c) spice2g6

Figure D.23: Results of the third group programs

1K bytes prefetch cache size, 32 bytes line size

0.0% ^ 1 1 1 1 100.0% y """ •~ 4-way with
nqo/ 1 1 2 4 ^ K L L R U c - 0 - 5 / ° — - c 8 0 . 0 % - 8 ^ ? ~ — f l ^ ~ H 8 1 % 真

.2 _i 0 % - .2 ^ 8 i / o u ~~»~-4-waywith
1 1 .0/ •§ 60.0% - IZ
T3 -1.5/0 - - "D
2 2 """.ik""". 4-way with > -2.0% - .2 3% >. 40.0% - p,po
- 0 丄 - 2 . 6 % ^ _ _ ^ « FIFO
名 - 2 . 5 % - ^==== f̂̂ ^^^ -̂2.5。/。 名 20.0% - ..".'@ Ful ly -assoc.
1* -3-0% - 3 5 � x ̂ 挑 5 2% 4�/ With LRU
i -3.50/0— W i _ o ——,’ ^ _ • ^ 5 — _ ^ F u " y - a s s o c .

芝 - 4 . 0 % 丄 芝 -20.0% 丄 1 2 with IZ
~~•~~ Fully-assoc.

set assoc. set assoc. with FIFO

(a) compress (b) nasa7

Figure D.24: Results of the fourth group programs

118

Bibliography

BaW89] Baer, J.L., Wang, W.H., “Multi-level cache hierarchies: Organizations,

protocols and performance," Journal of Parallel and Distributed Computing,

Volume 6, Number 3, 1989, pp.451-476.

BaC91] Baer, J.L., Chen, T.F., "An effective on-chip preloading scheme to reduce

data access penalty," Proceedings of the 1991 International Conference on

Supercomputing, 1991, pp.176-186.

Bre87] Brent, G.A., "Using program structure to achieve prefetching for cache

Memories," Ph.D Thesis, University of Illinois at Urbana-Champaign, Jan-

uary 1987.

CaK91] Callahan, D., Kennedy, K., Porterfield, A., “Software prefetching," Pro-

ceedings of the Fourth Symposium on Architectural Support for Programming

Languages and Operating Systems, April 1991, pp.40-52.

ChB92] Chen, T.F., Baer, J.L., “Reducing memory latency via non-lining and

prefetching caches," Proceedings of the Fifth International Conference on

Architectural Support for Programming Languages and Operating Systems,

Boston, MA, October 1992, pp.51-61.

ChB94] Chen, T.F., Baer, J.L., "A performance study of software and hard-

ware data prefetching schemes," 21st Annual International Symposium on

Computer Architecture, 1994, pp.223-232

119

ChM91] Chen, W . Y , Mahlke, S.A., Chang, P.P., Hwu, W.W.，"Data access

microarchitectures for superscalar processors with cmpiler-assisted data pre-

fetching," Proceedings of Microcomputing 24-, 1991.

Chi94] Chiueh, T.C., "Sunder: A programmable hardware prefetch architecture

for numerical loops," Proceedings of the 1994 ^CM SIGMETRICS Con-

ference on Measurements and Modeling of Computer Systems, May 1994,

pp.128-137.

FuP91] Fu, W.C., Patel, J.H., "Data prefetching in multiprocessor vector cache

memories," Proceedings of the 18th Annual Symposium on Computer Archi-

tecture, May 1991, pp.54-63.

FuP92] Fu, W.C., Patel, J.H., "Stride directed prefetching in scalar processors,"

Proceedings of the 25th International Symposium on Microarchitecture, 1992,

pp.102-110.

GoG90] Gornish, E., Granston, E., Veidenbaum, A., “ Compiler-directed data

prefetching in multiprocessor with memory hierarchies," Proceedings of the

1990 International Conference on SuperComputing, 1990, pp.354—368.

HeP95] Hennessy, J., Patterson, D., Computer Architecture: A Quantitative

Approach, Morgan Kauffmann, 1995.

HP94] Hewlett-Packard, Inc., PA-RISC 1.1 Architecture and Instruction Set

B,eference Manual, HP Part Number 09740-90039, third Edition, February

1994.

IBM89] IBM, AIX V3.2for RISC Systems/6000: Assembler Language Reference,

SC23-2197-01, 1989.

IBM94] IBM, The PowerPC Architecture, edited by May, C., Silha, E., Simpson,

R., Warren, H., Morgan Kauffmann, 1994.

120

Jou90] Jouppi, N.P., "Improving direct-mapped cache performance by the addi-

tion of a small fully-associative cache and prefetch buffers," Proceedings ofthe

18th Annual Symposium on Computer Architecture, May 1990, pp.364-373.

KlL91] A.C.Klaiber and H.M.Levy., "An architecture for software-controlled

data prefetching," Proceedings of the 18th Annual International Symposium

on Computer Architecture, 1991, pp.43-53.

'Kro81] Kroft, D., "Lockup-free instruction fetch/prefetch cache organization,"

8th Annual International Symposium on Computer Architecture, IEEE Com-

puter Society Press, 1981, pp.81-87.

Lau96] Lau, S.C., "Improving on-chip data cache performance using instruction

register information," Master Thesis, Department of Computer Science and

Engineering, the Chinese University of Hong Kong, June 1996.

'Lee87] Lee, R.L., "The effectiveness of caches and data prefetch buffers in large-

scale memory multiprocessors," Ph.D Thesis, Department of Computer Sci-

ence, University of Illinois at Urbana- Champaign^ May 1987.

MoG91] Mowry, T.C., Gupta A., “Tolerating latency through software-controlled

prefetching in shared-memory multiprocessor," Journal of Parallel and Dis-

tributed Computing, Volume 1, Number 2, June 1991, pp.87-106.

'MoL92] Mowry, T.C., Lam, M.S., Gupta, A., "Design and evaluation of a com-

piler algorithm for prefetching," Proceedings of the Fifth International Con-

ference on Architectural Support for Programming Languages and Operating

System, Boston, M.A., October 1992, pp.62-73.

Mot92] Motorola Inc., PowerPC601 RISC Microprocessor User's Manual, Pub-

lication Number MPC601UM/AD, 1992.

Por89] Porterfield, A.K., “ Software methods for improvement of cache perfor-

mance on supercomputer applications," Technical Report COMP TR 89-93,

Rice University, May 1989.

121

Smi78a] Smith, A.J., “Sequentially and prefetching in database systems," ACM

Transactions on Database Systems, Volume 3, Number 3, 1978, pp.223-247.

Smi78b] Smith, A.J., “Sequential program prefetching in memory hierarchies,"

IEEE Computer, Volume 11, Number 12，December 1978, pp.7-21.

Smi82] Smith, A.J., “Cache memories," ACM Computing Surveys, Volume 14,

Number 3, September 1982, pp.473-530,

SzY97] Sze, S.C., Young, G.H., "Accurate data prefetching with intelligent re-

placement policy," Proceedings of the International Conference on Imag-

ing Science, Systems, and Technology, Las Vegas, Nevada, USA, July 1997,

pp.74-77.

Tha81] Thabit, K.D., “Cache management by the computer," Ph.D Thesis, Rice

University, November 1981.

;WeS94] Weiss, S., Smith, J.E., POWER and PowerPC, Morgan Kauffmann,

1994.

'YoS98] Young G.H., Sze, S.C., Lau, S.C., "An effective placement policy in cache

for prefetched lines," to appear in ISORA，98, Kunrnng, China, August 1998.

122

i
f
i
s
$
E
s
s
m
r

1
«

A

 ̂
J

 i
w
i
f
A
«
^

<

 ̂
a
«
^
f
i
n
^
J
»
1
3
s
a
®

.
 >

f
^
^
.
,
 .

-
;

¾
,

.
f
f
e
7
.
u
^
^
 ̂
1
.
 s,,-....->A.V

...
 ̂
...J,..
 .

 1

:
“
"

.

 ̂
1

.

^

 J
^
i
J

-

-!(..̂
.-1.

.“•-:-.

:
T
4
i
:
.
J

.
-
,

 一

.
1
r
1
.
n
.
,

「
.
.
.
,
.
,
j
l
^
J
r

 ...;,f̂
'J3<̂
nŝ

—-•—1̂
J.̂
JJly1̂
.

.-•.»'
 ...XĴ
i
 i

M
^
-
;

M

-----MM

¢.¾̂
.¾̂
-
 ..̂
-.̂
v-

 1^
^
¾

 -.

 ...,\

 ̂.
{
.
^
i
^

 £,ii..f̂
:.̂
.

...,•

.,

 .

..

 .

 .

 •:
•

-
J
"
.

 ,^

 .v

<
 "
.

 -^
^
1

#

、

.

 ；•

>

 .)

 .

 —

 ,

,

r

 ’

、；，？,

.

r

 3
 A

V
;

-
 .

3
f
^

.

.

—

 .〕.？•

...
 -

t
A

.

4

..一

^

,
j

•

 •!

.
)

」

-
.
-
:
j

.

1

s
^

-

.

 ..

|
!
.
一

.
,

-
.

¾

一；.〕

-

；

 ,.._

¥

C U H K L i b r a r i e s

l ___ l l l l
UU37U3772

