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ABSTRACT 

Existing free-form deformation techniques deform an object by 

deforming the space enclosing the object. This provides good visual effect for 

the deformed objects. However, further operation such as Boolean operations on 

the deformed object may not be possible. This thesis is concerned with the 

techniques of applying free-form deformation on solid models represented by the 

Constructive Shell Representation (CSR). The primitives of CSR are truncated 

tetrahedron, called "trunctet", which is formed by intersecting a quadric surface 

with a tetrahedron. The quadric surface passes through two or three vertices of 

the tetrahedron. A CSR solid object is formed by the union and subtraction of 

trunctets from a polyhedron core. 

By applying free-form deformation on the surface points of the trunctets 

of a CSR object so that the vertices and the quadric patch polynomial of the 

trunctets are changed, the shape of the object can be modified. The polyhedron 

core is also deformed. This technique can be used to deform globally smooth 

solid models or general solid models with sharp edges. The deformation can be 

applied either globally or locally. Techniques for the deformation are discussed 

in detail. Experiments are conducted and the results are also presented. 

4 



槪論 

現存之物件變形技術只能把物件所在的空間改變，雖然這種方法 

能造出不錯的視覺效果，但變形後的物件並不能和其他物件結合 

(例如不能使用Boolean Operation)，這份論文便是針對這個問題 

提出解決方法，把”Free-Form Deformation (FFD)”變形技術應用 

於”Constructive Shell Representation (CSR)”上.CSR 的基本元f 二 

稱作”tmnctet”, Trunctet是由一個四面体和一個二次元曲面相交而 

成.一個CSR物件便是由一個多面体減去和結合tmnctet所造成. 

只要利用FFD改變trunctet表面上的點，同時改變多面体，便能造 

出整個物件的變形效果.這種技術能應用於整個物件或物件某 

部份的變形.詳細技術及實驗結果均詳述於本論文. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation and Objectives 

Despite the popularity of the free-form deformation (FFD) techniques for 

generating special effects in graphics and animations, its use as a modeling tool 

has not been fully explored. This is a result of the fact that the deformed object 

is not converted to an existing object representation scheme. For instance, solid 

objects represented in Boundary representation (B-rep) or Constructive Solid 

Geometry (CSG) can be deformed using the FFD techniques. However, further 

operations such as Boolean operations on the deformed object cannot be 

performed since the deformed object is not converted to a B-rep or CSG model. 

In order to overcome this problem, a proper representation scheme for 

solid model, especially free-form objects, is needed. Traditionally, free-form 

surfaces are represented as parametric patches of high degree in B-rep, which are 

very successful as far as design and rendering are concerned. However, 

manipulating and reasoning about physical objects with parametric patches poses 

fundamental difficulties. For example, the difficulty of evaluating and 

representing the intersection of parametric patches has hindered the development 

of solid modeling systems based on parametric patches. In this thesis, the 

Constructive Shell Representation (CSR) is adopted for representing solid 
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objects. This allows free-form solids to be represented as CSG models so that 

existing modeling techniques can be applied. 

In Constructive Shell Representation, a free form solid model is 

represented by the union and subtraction of trunctets from a polyhedron core, 

where the trunctets form a "thick shell" that contains the free-form surface. 

/ \ \ outer trunctet 
construction / \ \ 
tetrahedron / \ 

# < s 
/ / inner trunctet 

quadric patch 

Figure 1.1 Trunctets and its construction tetrahedron. 

One of the bounding faces of each trunctet is a quadric patch, which is a subset 

of the free-form surface; the other faces are planar. Wherever the surface is 

convex, the corresponding trunctet is unioned to the polyhedron core. Wherever 

the surface patch is concave, the corresponding trunctet is subtracted from the 

polyhedron core. 

Traditional Constructive Solid Geometry (CSG) is weak in representing 

free-formed solid model. However, by combining CSG with CSR, most solid 

models can be represented. 
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In the deformation of solid models, the free-form deformation (FFD) 

technique presented by Thomas W. Sederberg [3] is adopted. In applying FFD to 

a solid modelled with Constructive Shell Representation, it is observed that there 

are several ways to combine FFD with CSR to achieve the objective of 

deforming a general solid model in a free-form manner. These approaches 

include the deformation of vertices and normals, the use of vertices' 

neighborhoods, and surface fitting approach. Details of these approaches will be 

discussed in Chapter 4. 

The objective of this research is to develop an approach for the free form 

deformation of a CSR object so as to provide a complete representation of the 

solid model before and after the deformation. The three approaches as stated 

above are considered. Among these approaches, the surface fitting approach is 

found to be most effective. This approach can also be applied to ordinary CSG 

primitives by converting them into CSR first. 
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1.2 Thesis Organization 

Chapter 2 describes the different deformation techniques and their major 

applications. Algebraic patch techniques is also given. Then, the essential 

background knowledge on CSR, algebraic patches and FFD is given in Chapter 

3. 

Chapter 4 discusses several possible ways to link CSR and FFD together. 

Then, the idea of connecting CSR and FFD by using surface fitting is presented. 

It starts with the deformation of a single trunctet. The use of double 

tetrahedrons, and their subdivision is discussed. An algorithm is presented. The 

method is then extended for general CSG solid models. Representation of the 

core of a CSR object is also presented. 

Finally, Chapter 5 discusses the implementation of the proposed 

techniques. Experimental results are presented. 
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CHAPTER 2 

RELATED WORKS 

2.1 Deformation Techniques 

In general, the deformation techniques can be classified into those using a 

deformation tool, and those working directly on the object. 

2.1.1 Deformation Techniques Requiring a Deformation Tool 

Deformation techniques requiring a deformation tool refer to those 

techniques that require a lattice or an axis. In these approaches, the deformed 

object is computed from the deformation applied to the deformation tool. These 

3 3 

models involve a mapping represented by the deformation function D\ R R 

that associates with each point C/ e R^ and its new position D(U). 

The deformation tool used by free-form deformation (FFD), which was 

developed by T. W. Sederberg and S. R. Parry in 1986 [3], is a parallelepipedical 

volume called lattice. To deform an object the user deforms the lattice by 
I 

moving its control points. Any point lying inside the lattice is deformed 

according to the lattice deformation. In particular, the deformation of an object 

inside the lattice follows the displacement of the lattice control points. 

The deformation of the object "follows" the displacement of the control 

points of the lattice. Thus, it is not easy to get a precise displacement of a given 
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point of the object. This technique is particularly well-suited to global 

deformation. 

Extended Free-Form Deformation (EFFD), developed by S. Coquillart 

in 1990 [4], extends the FFD technique to allow non-parallelepipedical lattices. 

In particular, elementary or composite prismatic lattices are defined. Elementary 

prismatic lattices are obtained by moving or merging control points of a 

parallepipedical lattice. For example, the cylindrical lattice is obtained by 

welding two opposite faces of a parallelepipedical lattice and by merging all 

control points of the cylinder axis. 

Rational Free-Form Deformation (RFFD), developed by P. Kalra, A. 

Mangili, N. M. Thalmann and D. Thalmann in 1992 [5], is also another extension 

of FFD. It allows incorporation of weights defined at each control point of the 

parallelepipedical lattice. However, when the weights at each control point are 

unity, the deformations are equivalent to that obtained with FFD. To control the 

deformation, the user either moves the lattice control points or modifies their 

associated weights. The use of a weight associated at each control point provides 

one more degree of freedom to define the deformation. However, the 

unpredictability of the deformation obtained by changing the weight at a control 

point could be a limitation of this technique. 

In Axial Deformation, developed by F. Lazarus, S. Coquillart and P. 

Jancene in 1992 [6], the object deformation is controlled by a new deformation 

tool: an axis. The shape of the deformation is linked to the axis deformation. 
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The only deformations that can be obtained are specified by bending or 

stretching the axis. In addition, scaling and twisting operations are possible by 

associating to each point of the axis a scale and a twist factor before and after the 

deformation. 
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2.1.2 Directly Specified Deformation Techniques 

The deformation of the object is simply specified by the displacement of 

arbitrary selected points called constraints. The size and the boundary of a 

bounding box centered around each constraint point allows control of the extent 

of the deformation. Depending on this extent, the whole object can be included 

(global deformation) or only a limited area around the constraint point (local 

deformation). 

The Space Deformation, was developed by P. Borrel and D. Bechmann 

in 1990 [7]. Using space deformation, the displacement of any point in space is 

computed so as to satisfy certain constraints. A constraint is simply the 

displacement vector of an arbitrary selected point called constraint point. In 

particular, a constraint point can be an object point. Then, it is trivial to achieve 

exact placement of object points. The system can satisfy as many constraints as 

the user specifies unless two conflicting constraints are applied to a unique point 

in space. In that case, the system computes the best approximation to the 

solution. 

The Direct Free-Form Deformation (DFFD) technique, developed by 

W. H. Hsu, J. F. Hughes and H. Kaufman in 1992 [8] embeds the object to be 

deformed inside a trivariate lattice defined by an array of control points. The 

object deformation follows the lattice deformation but the displacements of the 

lattice control points are computed from actions such that: "move this point of 

the object to there." 
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Using DFFD it is trivial to achieve exact placement of object points. The 

computation of the deformed lattice satisfying the displacement of object points 

is transparent to the user. However, the displacement of a given object point 

affects the surrounding points. 

2.1.3 Comparison on Different Deformation Technique. 

The following table shows a summary on the features of different 
deformation techniques. 

Best form of Displacement Shape of lattice 
deformation Accuracy 

FFD Global Low Parallelepiped 
EFFD Global and local Low Prismatic or any shape 
RFFD Global Low Parallelepiped 
AXIAL Global — Low — Curve 
DFFD Global and local High Parallelepiped 
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2.2 Application of Deformation 

The techniques of deformation have been used in many different areas. 

In this section, some applications of different deformation techniques on models 

or surfaces are described. 

2.2.1 Deforming Superquadrics 

Eric Bardinet, Laurent D. Cohen and Nicholas Ayache [9] described a 

two-step method to fit a parametric deformable surface to 3-D points. Their 

approach for shape reconstruction applied to 3-D medical data is based on a two 

steps approach. In the first step, the best fit with a superquadric model is 

evaluated. This is followed by a second step for refining the details of the model 

by using free-form deformation (FFD). The idea is to put the superquadric 

model in a rubber-like box and deform that box by moving its control points. 

The interesting aspect of this approach is that it gives a description of a 

complex shape with only a small number of parameters. 

2.2.2 Volume Warping 

Thomas J.Ture and John F. Hughes [10] presented a technique for 

deforming sampled volumetric data using B-splines that is related to image 

warping and to the free-form deformation techniques. 

The volume warping described is feasible only for relatively small data 

sets, in order to attain interactive speeds. They presented only a method for 

implementing volume warping, and not a user interface for it. Their technique 
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has an advantage over direct deformations of polygonal models, in which 

boundaries between large polygons tend to crease. Since their isosurfaces 

comprise polygons of approximately constant size, creases do not tend to appear. 

Volume warping acts on the space in which a model lies rather than the 

parameters used to define the model. It is thus not appropriate for spline patch 

models, for instance. In contrast, volume warping is a powerful tool for 

deforming volumetric data. 

2.2.3 Deforming Linear Object 

HidefUmi Wakamatsu, Shinichi Hirai, and Kazuaki Iwata [11] described a 

systematic approach to the modeling of deformable fine linear objects. They 

develop an analytical method to model the shape of a deformable linear object 

such as cords and tubes. 

The geometric representation of large deformation of a linear object in 3-

dimensional space is established. Then the potential energy of a linear object and 

the geometric constraints imposed on it are formulated so as to obtain the stable 

shape of the object based on the formulation. 

2.2.4 FFD for Animation Synthesis 

Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos [12] 

extended the use of free-form deformation to a dynamic setting. They 

implemented a system that is capable of transforming a wide range of objects 

into dynamic characters. Their goal is to enable normally inanimate graphics 
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objects, such as teapots and tables, to become animated, and leam to move about 

in a charming, cartoon-like manner. 

Their formulation is based on parameterized hierarchical FFDs 

augmented with lagrangian dynamics, and provides an efficient way to animate 

and control the simulated characters. Objects are assigned mass distributions and 

elastic deformation properties, which allow them to translate, rotate, and deform 

according to internal and external forces. In addition, they implemented an 

automated optimization process that searches for suitable control strategies. 

2.2.5 Using FFD on feature-based surface 

James C Cavendish [13] presented the results that combine the feature-

based and free-form deformation design techniques into one 2-stage CAD design 

approach. They illustrated how the integration produces significant value in 

practical industrial surface design by combining the advantages offered by each 

method. 

2.2.6 NURBS-BASED Free-Form Deformation (NFFD) 

Henry J. Lamousin[18] described a technique that logically extends the 

FFD by basing them on nonuniform rational B-Splines. He used an NFFD to 

model the deformation of a human leg through a limited range of motion. 

NFFDs combine easily with global and local deformations, they provide an 

intuitive technique for deforming solids and surfaces, and they easily produce 

properties inherent in the deformation of physical materials, such as tapering and 
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necking. The combination of rational bases and a nonuniform mesh provides 

addional functionality for controlling the deformation of an embedded objects 

All the above deformation techniques demonstrated the power and usage 

of free-form deformation in various research and applications. However, most of 

them only focus on the deformation technique while the representation of the 

deformed model is not considered. This research aims at maintaining a 

consistent solid representation scheme, CSR, before and after a deformation. 

Further operations such as Boolean operations between the deformed solid 

models is thus possible. 
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2.3 Algebraic Patch Technique 

The survey of known techniques for constructing free-form surfaces by 

using 3-sided patches and 2-sided blend-patches are well described in [1]. The 

following survey focuses on quadric patches. 

2.3.1 Dahmen's Scheme 

In Dahmen's scheme [15], each facet of an input polyhedron, P, is split 

into six sub-facets, resulting in a 6-path macro-path. The resulting two-sided 

hole problem is then solved using four blend-patches. This scheme results in 

continuous patches, but cannot handle arbitrary P (because it requires the 

existence of a "transversal system" for P), and most importantly, the scheme fails 

to produce surfaces of pleasing shapes due to oscillations within each macro-

patch resulting from the split. 

2.3.2 Lodha and Warren's technique 

Lodha and Warren's technique [16] differs from all other technique, in 

that it does not interpolate the vertices of P, but instead works with a different 

Bezier control net. Their approach produces quadric surfaces of the explicit form 

z = F(x,y), for some quadratic polynomial F. This restricts patches to those 

whose extended surfaces at always interpolate the apex or "focal vertex" of the 

construction tetrahedra, but provides dual parametric/implicit representation for 

these patches. To build an extended mesh of C' continuous patches, 6-patch 

macro-patches are used together with four blend-patches, similar to Dahmen's 

approach. Due to the restricted nature of the patches, the kinds of surfaces that 
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can be modeled are limited mainly to "star-shaped objects, in which each point in 

the object is visible from a focal vertex common to all construction tetrahedra. 

2.3.3 Guo's method 

Guo's method [2] proposed to use quadrics for constructing free-form 

surfaces from an arbitrary polyhedron P. The technique assigns a single patch to 

each triangular facet of P without any patch-splitting. The resulting two sided 

holes are filled with blend-patches. Patch-splitting is avoided at the expense of 

continuity, i.e. G^ continuous patches are generated. This method interpolates all 

the vertices of P. 

Among all the techniques, Guo's method is promising for constructing 

free-form surface from an arbitrary input polyhedron P. Since FFD is the basic 

technique for various free-form deformation techniques, it is adopted in this 

research to deform algebraic patches constructed by Guo's method. 

21 



CHAPTER 3 

BACKGROUND THEORIES 

3.1 Algebraic Patches 

In the construction of quadric patches used in CSR, Guo's approach [2] is 

applied. The main target of his approach is to fit smooth piecewise algebraic 

surfaces on an arbitrary polyhedron with normals prescribed at its vertices, so 

that the surfaces smoothly contain the vertices of the polyhedron. 

In this section, representation of a single patch is reviewed first. Then, 

general steps in constructing free-form object are given. 

3.1.1 Bernstein-Bezier representation of a single patch 

The patch used is defined as a low degree implicit polynomial (degree 

two is assumed in this research) that is "clipped" by the walls of a tetrahedron. 

Control points for the patch are prescribed in the boundary of the tetrahedron, 

typically by the vertices of tetrahedron and additional points on the tetrahedral 

edges. Weights are associated with control points. The shape of the patch can be 

modified by changing the weights. 
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construction / \ 
tetrahedron / \ 

control point \ / 1 

T A O 
^My \ Vst- \ trunctets 

^ ^ alebraic patch 

Figure 3.1 An algebraic patch and associated trunctet solids. 

Consider a tetrahedron with vertices V2000, V0200, V0020 and V0002, where 

the Fs are non-coplanar points in E^ Let (s’ t, u, v) denote the local barycentric 

coordinates in the tetrahedron. A point q is expressed as 

q = SV2000 + tVoioo + uVooio + vVoooi ； s + t + u + v^ 1. (3.1) 

Let ab(s,t,u,v)diQnoiQ a polynomial scalar function. A contour surface of 

the function comprises all points for which ab(s,t,u,v) is constant. The algebraic 

patch p is defined as the zero contour of the function that is clipped by the 

tetrahedron, i.e., 

p = {q\ qe ab(s’t，u’v) = 0 ; s,t,u,v >0}, (3.2) 

where (s, t, u, v) are the barycentric coordinates of q. 

The Bernstein-Bezier basis polynomial is used to define the polynomial in 

a convenient basis that provides a reasonable handle on the behavior of the zero 
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contour. Specifically, a degree N algebraic patch can be defined by first 

imposing a lattice of (N+l)(N+2)(N+3)/6 control points Qjk, such that 

i j k , 
^ijk ~T7 ̂ Nooo + TT ̂ ONOO + "77 ̂ oojvo + "77 厂ooo", 

J N N N N 

(3.3) 

ij’k’l 凶;1+j+k+l 二 N 

For quadric patch, N=2, the lattice of control points is shown in Figure 

3.2 below. This lattice defines the control net for the patch, and its convex hull is 

the tetrahedron itself. 

1001 / \ ^^on 

2000 / ⑴一 _ ^ “ 

V � 产 
\ 厂 0110 

"00 

Figure 3.2 Lattice of control points for quadric patch. 

A weight、\，ijki is assigned to each control points, and the algebraic patch is 

defined using Bemstein-Bezier basis functions as 

/ � • N\ , , � / 

l,J.k.I>0 l.J.K.l. 
i +J + k + I = N; s, t, II, V = l-s-t-u 20. (3.4) 
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For quadric patch, 

ab(s,t,U,v) = W2000S^ + W0002t^ + W0020U^ + + 2W]iooSt + 2ww0lSV + 

2wooiiuv + 2woiiotu + 2wioiosu + 2woioitv (3.5) 

To construct a three-sided patches of a trunctet, the problem becomes: 

Given three noncollinear points, Xi (i = 1, 2, 3), and their corresponding normals 

m, find a quadric surface that smoothly contains the given points. 
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In general, a quadric surface f(x)=0, where x is a point on the surface, has 

nine degrees of freedom. A quadric surface f(x)=0 is a solution of the above 

problem if and only i f f ( x ) satisfies the constraints 

f(Xi) 二 0 (i = l，2，3) (3.6) 

and 

WM II rii (i 二 1，2，3) (3.7) 

Nine linear constraints result from (3.6) and (3.7). For each i，one of the 

following cases is selected for the constraint (3.7) 

1. If riix^O, use ni/y(xi) — m/xM = 0 and ntf办i) - m/xM = 0. (3.8a) 

2. If fiiyT^O, use ni//Xi) — ni/y(Xi) = 0 and ni/,(xi) — ni/y(xi) = 0. (3.8b) 

3. If niz use m/xM — ni/,(xi) = 0 and ni/,(Xi) — ni/y(xi) = 0. (3.8c) 

Here riix is the x-component of ni,fx = / dx, etc. 

Although there are nine constraints for nine unknowns in f(x), solution 

not always exist. The solution exists if and only if the following conditions are 

satisfied (proof can be found in [2]). 

There are i and j such that 

(Xi — Xj) .nj = (Xj - Xi) • rii = 0，(i ^ j ) (3.9) 

or 

O 3 ( ^ 3 ‘ 
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In order to construct the required quadric patch, an apex vertex, X4, that is 

not coplanar with the triangle [ X] X2 X3 ], is specified. Thus, a construction 

tetrahedron [x丨X2X3X4] is formed. 

The required quadric surface is represented in Bemstein-Bezier form as 

follows: 

2 2 2 2 f(s，t，u’v) 二 W2000S + W0002t + woo2ou + wqooiv + 2wiioost + 2W]00]SV + 

2wooiiuv + 2woiiotu + 2wioiosu + 2woioitv = 0 (3.11) 

where (s, t, u, v) is the local barycentric coordinate in the tetrahedron [X1X2X3X4]. 

The surface always passes through vertices xi, X2 and xj (with 

corresponding barycentric coordinate (1, 0，0，0), (0, 1, 0, 0) and (0，0，1, 0)). 

Substitute those barycentric coordinates into f(s,t,u,v) = 0 and get W2000 = W0200 = 

W0020 - 0. 

To decide the remaining control points so that S(f) smoothly contains the 

vertices of the triangle [ X] X2X37, the conditions (3.9) and (3.10) is used. When 

(3.9) is satisfied, for example, at / = 2 and j = 3, then the following can be 

assumed 

• /(Xi) = «i， 

一 jf ) •以 /o 7 9 \ 
V /(X2) = ~ ^hen (Xj — x � ) 关 0，otherwise V /(%2) = "2 ( . � 

V ) = —~—~— n�when (Xj _X3) • 0, otherwise V = 
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Otherwise, the condition (3.10) must be satisfied, and the following can be 

assumed 

• / ( X 丨丨， 

0丨-X2).«2 

The gradients of the polynomial f defined at Xi (i = 1, 2, 3) give rise to the 

control points off, 

2̂000 二 ̂0200 = %020 = • 

Wooo2=l (/ree parameter) 

>̂1010 -X3)»V/(X3)/2 (114) 

W0002 is a free-parameter and this means there is a family of quadric 

surfaces satisfying the given constraints. 
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3.1.2 Constructing free-form objects 

This section presents an algorithm that construct free-form objects. By 

applying the quadric patch and blend-patch concepts [2], a free-form object can 

be constructed with the following steps: 

Stepl: Specify a triangular faceted polyhedron core P whose vertices and 

associated surface normals {n!’ ..., rik} are to be interpolated by the 

surface. 

Step2: Provide a bounding volume for each quadric patch to be used, i.e., 

construct tetrahedrons for each triangular facet of P. 

Step3: (Interpolation Step) Replaces each facet of P by trunctet(s) that smoothly 

contain the vertices of the facet. 

Step4: (Smoothing Step) Create smooth transitions between the adjacent trunctets 

produced in the interpolation step by filling the two-sided holes with two-

sided trunctets. 

Step5: Obtain the required solid model by the union and subtraction trunctets to 

and from polyhedron P respectively. 

Details will be given in the following subsections. 

3.1.2.1 Bounding volumes for quadric patches 

A bounding volume is composed of tetrahedrons. The union of bounding 

volumes is a neighborhood Nb of the polyhedron core P. The free-form surface to 

be constructed lies in Nb. 
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The bounding volume is constructed as follows. For each facet F/ = [ xi 

X2 X3 ] of the polyhedron 尸，two points X4 and y^ of each side of the plane 

containing F are chosen, and they determine two tetrahedrons, [ X] X2 X3 X4 ] 

(Upper tetrahedron, J^i) and [xiX2X3y4] (Lower tetrahedron, J^i). These two 

tetrahedrons form the double tetrahedron of the facet F, denoted as A three-

sided trunctet can be constructed within the outer or inner tetrahedrons. Consider 

an adjacent facet Fj = [xj 'X2X3] and its double tetrahedron as Between the 

double tetrahedrons of facets F/ and Fj, there are two gaps. One gap lies between 

the tetrahedrons [ x i 'X2X3X4'] and [ x 1X2X3X4])•’ the other lies between [ x 1X2X3 

y4] and [ X]，X2X3y4，]. The first gap is filled with a pair of tetrahedrons [ xj ”X2 

X3 X4 ] and [ xi” X2 X4’ ] , and the second gap is filled with another pair of 

tetrahedrons [ yi" X2 X3 y4 ] and [ yi" X2 X3 y4，]. Two-sided trunctets are 

constructed within these tetrahedrons. Here xi" and yi" are points on the line 

segments [X4X4’] and [y4y4'] respectively. All these are shown in the following 

figure. 

Figure 3.3 Filling gaps between two double tetrahedrons. 

After constructing these bounding volumes, patches as well as trunctets can be 

formed based on the given normals and tetrahedrons (using the technique 

described in Section 3.1.1). 
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3.1.2.2 Filling two-sided gaps 

Two-sided trunctets provide smooth transitions between three-sided 

trunctets. 

2-sided hole 

等 
Figure 3.4 A 2-sided hole between trunctets. 

Here smooth means tangent-plane continuity. This smoothing step is best 

illustrated using the two adjacent facets Ft and Fj as discussed in the above 

section. After the interpolating step, two quadratic polynomials ft and f j are 

defined over the tetrahedron of Ft and Fj respectively. The smoothing step 

produces quadratic polynomials over the tetrahedrons used to fill the gaps 

between the two tetrahedrons so that the quadric patches defined by these 

polynomials and their bounding volumes provide a smooth transition between the 

quadric patches defined by^^ and f j and their bounding volumes. 

Consider the problem of constructing the quadratic polynomials g/ and gj 

in the tetrahedrons Wi = [ x j "X2X3X4] and Wj = [ x j X2 X3X4'] which fill the gap 

between the tetrahedrons Vi = [ xjx2 X3 X4J and Vj =[ xj 'x2 X3X4，]. 
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Suppose the two quadric surfaces fl and f j are tangent at the points x^ and 

X3, and t is the unit vector along [X2X3]. If (t.Vf/xs))兴 0, then there is a constant 

c such that 

Ffi(x2) = C Vfj(x2) (3.15) 

嘴 3)=cVfj(X3) (3.16) 

r' 2000 
— ， ’ f ， ： 0002 

/ \ 0011 \ H / •noil \ 
/1001 \ 、、、X i \續 

/ 010l\ “ 層 � / � � \ I \ 
/ \ /0101��\\ X3 \ 

/ \ 1 •；兴���low \ 
— A 一 一 / / -、、：：：^' 

\ / ^ ^ ^ 2000 

X2 

Figure 3.5 The smoothing step. 

It is assumed that Vfi(x2) = Vfj(X2) = n�and py/xj) = Vf/xs) = nj, (i.e. 

c=J) so that the gradients of g/ and gj at the points X2 and xj can be defined. 

The next step is to construct g/ and gj with G^ conditions across the faces 

[X2 X3 X4 J, [ X2 X3 xi，，], and [ X2 X3 X4' ] . Suppose fi and f j are expressed in 

Bemstein-Bezier representation as follows: 

fi(s,t,u,v) =(b2000)iS2 + (booo2)i t^ + (boo2o)i U + (booo2)i V^ 

+ 2(biioo)i St + 2(biooi)i sv + 2(booii)i uv 

+ 2(boiio)i tu + 2(bjoio)i su + 2(boioi)i tv = 0 (3.17a) 
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and 

fj(s’t’u，v) =(b2ooo)jS^ + (booo2)j t^ + (boo2o)j U + (boo02)j V^ 

+ 2(biioo)j St + 2(biooi)j sv + 2(booii)j uv 

+ 2(boiio)j tu + 2(bioio)j su + 2(hoioi)j tv = 0 (3.17b) 

Similarly, gi and gj is constructed in Bemstein-Bezier representation as well. 

2 2 2 2 
gi(s,t,u,v) =(a2ooo)iS + (aooo2)i t + (aoo2o)i u + (aooo2)i v 

+ 2(aiioo)i St + 2(aiooi)i sv + 2(aooii)i uv 

+ 2(aoiio)i tu + 2(aioio)i su + 2(aoioi)i tv = 0 (3.18a) 

and 

2 2 2 2 gj(s,t,u,v) =(a2ooo)jS + (aooozh t + (aoo2o)j u + (aoooi)] v 

+ 2(anoo)j st + 2(aiooi)j ^v + 2(aooii)j uv 

+ 2(aoiio)j tu + 2(aioio)j su + 2(aoioi)j tv = 0 (3.18b) 

The control points of gi and gj are defined as follows. The gradients at ；C2 

and X3 determine the following control points. 

(以 11��)/ =去K •C^; — "^2)) (3J9a) 

and 

(̂ 1010 )/ =去(《3 •C^; -^3)) (3.跳) 

If the barycentric coordinates of xj" with respect to Vi and Vj are ( / j , 72，n’ /d 

and (/I，，，’ 73 ’, 74 ‘) respectively, then 

(aiooi)i = ”(biooi)i + r2(boioi)i + /^(biooOi + ]^4(booo2)i (3.20a) 

and 

(aiooOj = ri'(biooi)j + 72 (b0101)j + rs'fbiooOj + y4'(booo2)j (3.20b) 
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Finally, 

(a2ooo)i = (a2ooo)j =帅iooi)i + ^ (aiooi)j (3.26c) 

where 5 and 5' satisfy 

Xi" = Sc4+ S'X4 ‘ 

Similarly, one can construct the quadratic polynomials over the 

tetrahedrons which fill the gap between the tetrahedrons [ x i x z x ^ y j and [x，1X2X3 

y'4] (Figure 3.4). The quadric patches defined by the quadratic polynomials 

constructed in the smoothing step provide smooth transitions between the 

adjacent patches produced by the interpolating step. 
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3.2 Constructive Shell Representation 

Among all the solid representation schemes, the CSG and B-Rep are the 

most commonly used solids representation schemes. 

Traditionally, free-form solids are represented in B-Rep composed of 

parametric patches. However, exact solutions for patch/patch intersection and 

curve/patch intersection cannot be obtained in general so that numerical method 

has to be used. On the other hand, the geometric coverage of CSG representation 

is limited by the primitive solids of sphere, cylinders, cones, blocks and torus so 

that it is not suitable for representing free-form objects. 

A CSG representation with "trunctets" as primitives provides a 

representation scheme for free-form solids, called the Constructive Shell 

Representation (CSR) as introduced by J. P. Menon in 1992. 

Definition of CSR: A CSR of a free-form solid is a binary tree with union 

operators for nodes, and trunctet-subtrees for leaves; each trunctet-suhtree in 

turn has an intersection operator at its root, since trunctets are defined as the 

intersection of halfspaces. 

In this research, a simplified version of CSR is used, that is more suitable 

for free-form deformation. A CSR solid object is made up of trunctets and a 

polyhedron core P, whose vertices and associated surface normals determine a 

set of algebraic surfaces interpolating the vertices. A trunctet is formed by 
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intersecting an algebraic patch with a construction tetrahedron, where two or 

three vertices of the tetrahedron lie on the surface of the algebraic patch. 

y trunctet 

surface ^^^^^^ 

Figure 3.6 Fitting trunctets on a polyhedron. 

By the union and subtraction of trunctets from P, a free-form solid is 

formed. Consider an object A, the CSR representation of A can be expressed as 

CSR(A) =(P L/,/ u.,. u f n ) - (fiU... ut^m). 

(3.21) 

where 广/ and f ) are the "protrusion trunctets “ and "depression trunctets “ 

respectively. A protrusion trunctet is used to represent a convex portion of an 

object's surface, and is to be unioned to the polyhedron core. A depression 

trunctet f ) is used to represent a concave portion of an object's surface, and is to 

be subtracted from the polyhedron core. 

A construction tetrahedron outside the solid is defined as an upper 

tetrahedron, while the one inside the solid is defined as a lower tetrahedron. 
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Protrusion tmnctets are constructed inside upper tetrahedron and depression 

tmnctets are constructed inside lower tetrahedron. 

depression 

L 謝 / ^ A / A 
Tetralwdron / \ / P 

Upper • 
——^^^''^---^protrusion 

Figure 3.7 Depression and protrusion tmnctets. 

A CSR of a free-form solid is a binary tree with tmnctets at the leaf 

nodes. Each trunctet in turn is a subtree with an intersection operator at its root, 

and the five intersecting halfspaces at the leaves (4 from the construction 

tetrahedron and 1 from the algebraic patch). 

CSR(A) U 

quadric construction 
X patch tetrahedron 

\ 
Core u u 

u ... u u ... u 

/ \ / \ / \ / \ 
.p .p fp .p p p p p t 1 12 t „.] t n t 1 t 2 厂 m-1 t m 

Figure 3.8 Binary tree of a CSR object and a trunctet. 
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3.2.1 Properties of quadric patches and its construction tetrahedron and 

trunctets 

1. The boundary of a free-form solid, S, is expressed as the union of n patches, 

Pi of the trunctets. i.e. 

B(S) =pi up2 u u p n . (3.22) 

where B(S) denotes the boundary of S. 

2. Every patch is contained in its tetrahedron, 

i.e. for any point q on the patchp, 

q=sVi + tV2 + uVs + vV4； (3.23) 

0 < s,t,ii,v < 1 

s + t + u + y = J. 

where V]’ V2, V3, V4 are the vertices of the construction tetrahedron of the patch 

P' 

3. All patches are not overlapped, i.e. 

Pi npj = (h ^i'J ； i 关j, (3.24) 

4. Tetrahedrons may overlap. 

5. The patch halfspace 

The patch representation in barycentric coordinates p(s,t,u,v) = 0 (with 

respect to the construction tetrahedron) can be transformed into cartesian 

coordinates f(x,y,z) = by a linear transformation L. 
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i.e. 

f(x,y,z) = L(p(s,t,u,v)) {3.25) 

An algebraic patch halfspace is hence defined as f(x’y’z) < 0. 

6. Construction Tetrahedron 

The construction tetrahedron, T, is a regularized intersection of 4 planar 

halfspaces hi, i.e. 

T = h] nh2 nhs nh4. (3.26) 

where /z/'s boundary contains the triangular face/! of the tetrahedron. 

7. Trunctet 

A trunctet, ti ( f i or f j ) is defined as the intersection of the patch 

halfspace f and the construction tetrahedron T. i.e. 

ti 二f nT. (3.27) 
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3.3 Free-Form Deformation 

Free-form deformation (FFD) is a technique for deforming geometric 

models in a free-form manner. The technique can be used with any solid 

modeling system, such as CSG or B-rep. It involves a mapping from R^ to R^ 

through a trivariate tensor product Bernstein polynomial. The deformations can 

be applied either globally or locally. Local deformations can be imposed with 

any desired degree of derivative continuity with adjacent, undeformed regions of 

the model. 

3.3.1 Formulating Free-Form Deformation 

Mathematically, the FFD is defined in terms of a tensor product trivariate 

Bernstein polynomial[3]. By imposing a local coordinate system on a 

parallelepiped region, a point X can be expressed as 

X^Xo'r sS + tT^uU (3.27) 

八 

Figure 3.8 FFD Coordinate System 

The (s, t, u) coordinates of X can easily be found using linear algebra. A 

vector solution is 

40 



^ J x U j X - X J 
s 一 TxU-S 

SxU-T 
SxT{X-XJ 

u = 
SxT'U 

Note that for any point interior to the parallelepiped, 0<s<l, 0<t<l, 0<u<L 

A grid of control points Pijk can be constructed and imposed on the 

parallelpipe, so that 

Pijk 二 丄 U (3.29) 
I m n 

where I, m, n are the dimension of the grid in the S, T, U direction respectively. 

\ / y . / / / ) { / y / 

////// 
f / / _ _ / 

y m ^ ^ ^ 

^ > T m=2 

Figure 3.9 Imposed Control Points. 

The deformation is specified by moving the control point Pijk. The 

deformation function is defined by a trivariate tensor product Bernstein 

polynomial. The deformed position X/fd of an arbitrary point X is found by first 

computing its (s, t, u) coordinates from equation (3.28), and then evaluating the 

vector valued trivariate Bernstein polynomial: 
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X例二 t . (Is)'''AX . , (l-ur'u'l^^,]] f3.30J 
i=o V y 7=0 v y k=o\^J 

The control points P , are actually the coefficients of the Bernstein 

polynomial. As in the case of Bezier curves and surface patches, there are 

relationships between the deformation and the control point positions. 

The basic idea of applying FFD on CSR is to enclose a CSR solid model 

by a parallelpiped lattice, as showed in Figure 3.9. Then deform the CSR model 

by adjusting the position of control points on the lattice. As the positions of 

control points are changed, the corresponding CSR primitives, polyhedron core 

and tmnctets, of the model are modified. Details are given in Chapter 4. 
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CHAPTER 4 

FREE-FORM DEFORMATION 

OF 

CSR SOLID MODELS 

4.1 Construction of a 3D Lattice 

The first step in applying FFD on a CSR model is to construct a standard 

parallelpiped lattice enclosing the given CSR solid model. The dimension of the 

lattice is W*H*D where 

W = max(xi - Xj) 

H = max(yp-yq) 

D = max(zm — Zn) 

The origin of the FFD coordinate system is located at (min(x), min(y), min(z)) 

where x, y and z are the x, y and z component of any point on the given model. 

In addition to the size of the lattice, limitation has to be set on the 

minimum distance between any two adjacent control points of a lattice. If the 

control points are too close comparing to the size of a trunctet, the deformation 

effect may be insignificant or the deformed model cannot be formed normally. 

This constraint ensures the deformed surface of the given object can still be 

represented by a set of quadric patches. 

43 



Figure 4.1a shows an example where an improper lattice is used. The 

expected result cannot be represented by a quadric patch. On the other hand, if 

the size of a trunctet is small enough, the expected deformation can be attained 

(Figure 4.1b). 

1 — — r — — 1 r-x / T \ , / i i i i 丨、、、、、./ 丨、、、、、.，,, ： i i I ���� z I ���� 1 
I i ！ i \ � / i ���� 

. . . . . ^ - 一 k I , , k I I 
i i i \ ； •���. i i 
； i 丨 丨 、/ 丨 •.�4---' i 

———…- k I ,人、、 I .J 
�� \ I /' ������ i 

� � � I ���� i 
\ 1 / �-��� i z 

�\�i,,"' 
Deformed lattices 

Unable to 
/ \ represent this 
[ \ result 

Figure 4.1a Cross-section of a single trunctet. 
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A able to 
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Figure 4.1b Cross-section of a multiple trunctet. 
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The constraint is set as follows: 

Let Xi be a vertex of an input polyhedron P, 

Xj be an adjacent vertex of xu 

and Cm be a control point on the FFD lattice, 

Cn be an adjacent control point of Cm, 

Then, Dist(xi, x j ) <Dist(cm, Cn) , t/ i, j, m, n. (4.1) 
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4.2 Relation between Weights, Normals and Shape of a Trunctet 

Once a CSR object is deformed, it not only changes the location of the 

vertices of each trunctet, but the shape of tmnctets is also changed. The shape of 

a trunctet is closely related to the weights on its construction tetrahedron. 

Weights are determined by the surface normals at the base vertices of the 

construction tetrahedron. 

The relation between weights and normal is given in (3.21) and is restated 

here. 

2̂000 = %200 “ %020 =0 
州0002 二 1 (^ree parameter) 

州 1100 =(>2 -^ i )*V/ (Xi ) /2 

>̂1010 =(-̂ 1 -X3)®V/(X3)/2 

X4 

可(XI) ^ / \ \ 

Figure 4.2 

Assume that wuoo, wwoi are the weights associated with the control point p and q 

respectively as shown in Figure 4.2. 
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Let the angle between ^(xj) and (X2-X1) be 6, and the angle between 

\J(xi) and (X4-X1) be (f). Then, 

=丄（％2 — Xi) V/(Xi) cos<^ (4.2a) 

Wiooi = IIO4 (4.2b) 

If the control point p is located below the quadric surface interpolating xi, 

X2 and xs, the surface is locally convex and angle 0 lies between 90° and 180°. 

From (4.2a), wuoo will be negative. On the other hand, if p is located above the 

surface (Figure 4.3), the surface is locally concave and the angle 0 lies between 

0° and 90°. Then, wjjoo will be positive. 

X4 

Figure 4.3 Pointp is locate above the surface. 

In some extreme cases, the surface may be deformed such that the surface 

patch of a trunctet is no longer bounded by its construction tetrahedron. For 

example, if the surface is deformed and so that the control point q lies below the 

surface (Figure 4.4), then angle 卢 will be >90° and wjooi is negative. 
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X2 

Figure 4.4 Point q is located below the surface. 

By observing the relationship between weights and shape of surface, it 

can be concluded that if a control point p is located above the surface, the 

corresponding weight will be positive, otherwise, the weight will be negative. In 

this way, the shape of a deformed trunctet can be roughly predicted. This 

prediction is useful when applying FFD on CSR objects. Details will be 

discussed in sections 4.4.1.5 and 4.4.1.6. 
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4.3 Applying FFD on CSR solid models 

In this section, two different approaches for applying the Free-Form 

Deformation technique on CSR solid model are discussed. In Section 4.4, 

another approach, surface fitting which is adopted in this research, will be 

described. 

As described in Chapter 3, a CSR solid model contains trunctets and core. 

The unions of trunctets form a thick shell that constitutes the boundary (and the 

surface) of the solid. In order to analyze the deformation of a solid model, it is 

important to study the ways of deforming a trunctet. The parameters of a trunctet 

include the location of vertices, Vi, V2, V3 and V4 of the construction tetrahedron, 

and the three surface normals, n!’ n? and ns of the patch as well as the surface 

patch (Figure 4.5). In order to deform a trunctet in a proper way, it is crucial to 

determine how FFD should be applied to those parameters. 

V2 
Figure 4.5 Parameters of a trunctet. 

The Free-Form Deformation technique is a function f that takes a point X 

as input and gives a new point Xffd as output. 

i . e . ,胸=Xffd 
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Traditionally, FFD takes every surface point of the original object as input, and 

deform the object by changing the position of all the surface points. When 

applying FFD (or in other words, the function力 on a CSR solid model, the kinds 

of input to be given to /have to be decided. 

Deforming the polyhedron core directly and reconstruct normals (by 

averaging adjacent facet normals [2]) is not possible since there is no control on 

surface normals at polyhedron vertices, while the surface shape of a model is 

determined by those surface normals. The reconstructed normals cannot lead to 

expected result since the actual deformed surface normals may not be the same 

as the reconstructed one. 

,“reconstructed surface normal \ / \ f 
actual surface normal 

Figure 4.6 Cross-section ofpart of a polyhedron core. 

The first approach focuses on deforming the surface normals at the 

vertices directly. The second approach focuses on deforming the normals 

indirectly by using surface points around the vertices. Whilst, the third method 

in Section 4.4 aims at deforming the surface patches directly. 
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Problem statement: 

Given a CSR free-form solid A, (i.e., a triangular faceted polyhedron P 

with surface normals H. specified at the vertices Vi, and each triangular facet of 

the polyhedron is "replaced" by a three-sided tmnctets ti.), find a way to deform 

it using FFD by changing the trunctet parameters as well as the location of the 

vertices of the triangular faceted polyhedron. 

An example is shown in Figure 4.7, where the two-sided holes are not 

filled for simplicity. The FFD lattice is shown in Figure 4.8, and the deformed 

object is shown in Figure 4.10. 

Figure 4.7 Original solid model A. 

/ / / / Original y Deformed 
Z lattice ^ ^ ^ ^ ^ Z lattice 

/ / 乂 
_ _ _ _ 1 / 

Figure 4.8 FFD Lattice used. 
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4.3.1 Deforming Normal at Vertices 

When deforming a solid model, it is obvious that the direction of any 

surface normals on the model will be changed. Those changes depend on how 

the model is deformed. 

Consider a solid model A, constructed with polyhedron P and the 

associated trunctets ti, tj, tm. Assume the solid ^ to be a simple convex 

model. Then 

A=P u(ti ut2 u... utm) (4,3) 

{Note: the trunctet U is defined by the polygon vertices on P and the associated 

surface normals at the vertices.) 

The polyhedron P with vertices V), V2,…，is deformed by changing 

the location of all its vertices so that the vertices of the deformed polyhedron Pffd 

are (Vi)ffd, (V2)ffd, (Vn)ffd. 

The surface normal at vertex Vi is treated as a unit vector starting from 

Vi to Vi’. A surface normal is "deformed" by applying the FFD function f on the 

corresponding V] and V i T h e deformed surface normal, (nj/fd is thus a vector 

defined by (Vi，加-(Vi)ffd. (Figure 4.9) 

The deformed trunctet (tjfju is constructed by using the corresponding 

"deformed" vertices (Vi)ffd on Pffd and the associated "deformed" surface normals 

(njffd-
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Figure 4.9 Deformed parameters. 

Finally, the deformed solid model Afju is generated by the union of Pffd 

and ti s. i.e., 

Affd = Pffd ̂ ((tl)ffd U( t2)ffd U," CY tm)ffd) (4.4) 

Figure 4.10 shows the result of deforming the object in Figure 4.7 by deforming 

normals at the vertices. 

•9 
Figure 4.10 Result of deforming the object in Figure 4.7 by deforming normals. 
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4.3.2 Using Vertices' Neighborhoods 

Similar to the method discussed in the previous section, an object is 

deformed by adjusting the surface normals. In this approach, the "deformed" 

surface normals are found by making use of the neighboring point of the vertices. 

Qijj 个 

Figure 4.11 Two adjacent points of Vj. 

Consider a trunctet tj with vertex Vi and surface normal as one of its 

base vertices and normals respectively. Two points, Q i j j and Q i j j , adjacent to 

Vi are selected. If Q i j j and Q t j j were chosen such that they are very close to 

Vi, the cross product of vector V.Q. j j and V.Q. j ^ would produce a vector 

having same direction as «.. i.e., 

m _ j j X m�—i = a (4.5) 

where a is a scalar. 

Applying the FFD function f to points Vi, Qijj and Qi�j gives the 

"deformed" points (VJfju, (Qijj)ffd and (QijjJf/d. The direction of the 

"deformed" surface normal at (T如 is found by the cross product of 

(⑵讽（ a丄 i V and ( V 丨 驟 丄 • 
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i.e., 

(njffd = P( 朋 X (K)ffAQi_j_2)ff, ) (4.6) 

where y^is a scalar. 

In this approach, (nj/fd is assumed to be a unit vector. 

So,/? 二 1 - (4.7) 

Under this circumstance, deformed trunctets sharing the same vertex 

(Vi)ffd would have the same surface normal at (ViJ/fd. Hence, the surface of the 

solid model will be smooth at the "vertices" with G^ continuous. Figure 4.12 

shows the result of deforming the object in Figure 4.7 using vertices' 

neighborhoods. 

Figure 4,12 Result of deforming the object in Figure 4.7 using vertices ‘ 

neighborhood. 
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The techniques described in Section 4.3.1 only concentrate on deforming 

surface normals but no surface points are concerned. In addition, unit surface 

normals are assumed, but if surface normal with other magnitude are used, 

different results are obtained. Figure 4.13 shows two normals (pjp2 and pips) 

with different magnitudes would give different results. The deformation result 

does not only depend on FFD, but also the magnitude of surface normals used. 

However, there are no rules on choosing the magnitude of surface normals that 

affects the deformation result. 

r 1 r — 、 

！ 丨 \ \ 1 : �� \ 丨 丨 \ \ 
丨 丨 \ \ 
I \ \ 
\ PS \ P3 

个 \ 个 \ 
i n, deform \ P2 \ 

r 言—-— n — 7 
^ Pi * Pi / 

i 丨 ‘’ / 

I I / / 丨 丨 / / 1 1 / 

L i /：..... / 

Figure 4.13 A FFD Lattice applied on two normals. 

In order to take surface points into account when deforming surface 

normals, technique in Section 4.3.2 is adopted. However, the main problem of 

this approach is that the magnitude of the surface normals cannot be determined 

in a simple and proper way. In other words, there is not enough parameter to 

construct the expected model. This leads to the surface fitting approach to be 

discussed in the following section. 
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4.4 Free-Form Deformation of CSR Objects by Surface Fitting 

In order to deform a CSR solid model, both the trunctets and the cores of 

the object have to be deformed. Since a trunctet is the intersection of four planes 

(of the construction tetrahedron) and a surface patch, deformation of the planes is 

determined by the positions of the tetrahedron vertices. In the surface fitting 

approach, the surface patches are deformed directly. 

4.4.1 Deforming a Single Surface Patch 

As discussed in section 3.2.1 (Equation 3.18), a quadric patch is 

represented by the surface equation. 

ab(s’t，u,v) = W2000S +wo2oot +W0020U +wooo2y +2wiioost+2wiooisv+ 

2 Wool] uv+2woi iotu+2w 101 osu+2wo witv = 0’ (4.8) 

where s, t, u and v are expressed in barycentric coordinates. The variables W2000, 

W0200, W0020, ^0002, ...，wojoj are the weights associated with the control points 

lying on the construction tetrahedron (ref to Figure 3.5). 

Altogether, there are 10 variables in ab(s，t，u，v). However, the surface 

patch always passes through the base vertices Vi (s=l, t=0, u=0，v=0), ¥2(3=0, 

t=l, u=0, v=0) and ¥3(5=0, t=0, u=l, v=0) of the trunctet so that the weights at 

these vertices are zero, i.e., 

^2000 — ^0200 — y^0020 ~ 0 

Hence, Equation (4.8) is rewritten as 

ab(s,t,u,v) = wooo2V^+2w}}oost+2wiooisv+ 2wooiiuv + 

2woiiotu+2wioiosu+2woioitv = 0. (4.9) 
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Without loss of generality, W0002 is set to 1. The number of unknowns is 

thus reduced to 6. Six non-coplanar points on the surface of the deformed 

trunctet are thus sufficient for determining the deformed surface. 

A general procedure of deforming a quadric surface patch is given below 

(details will be given in the following subsections): 

Step I: Locate 6 pointspj, P2,P3, qi, qi and q^ on the base triangle. 

Step 2: Find 6 surface points on the quadric surface. A surface point Pj is 

found by intersecting a line 1 (passing through p! with direction of the 

normal vector of the base triangle) with the quadric surface. Other 

surface points are found in the same way. 

Step 3: Apply FFD on 6 surface points. 

Step 4: Solve the unknown weights wnoo, wjow, woiw, ^looi, wowi and wooii of 

the new deformed quadric patch by using deformed surface points. 
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4.4.1.1 Locating Surface Points 

In order to avoid numerically unstable result, the surface points, Pi, P2, 

P3, Q], Qi and g j , are chosen so that they are approximately evenly distributed. 

First, locate six points p!, p2, ps, qu qi and q^ (as shown in Figure 4.14), on the 

base triangle of the construction tetrahedron. The points are defined as follows: 

A = ， (4J0a) 

(4.10b) 

(4.10c) 

仏 - X , ) (4.10d) 

Qi -^2) (4.10e) 

(4.10J) 

where r is a factor controlling the location of qj, q2 and 豹.Normally, set r = 1/4 

and check if the resulted 6 surface points are coplanar or not. If they are 

coplanar, use r = 1/3 or other values instead to produce non-coplanar surface 

points. 

X； PI 

Figure 4.14 Points on base triangle. 
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Let a vector n (with direction (a,b,c)) be the normal of the plane 

containing x“ X2 and X3. A surface point P! is found by intersecting the surface 

by a line I passing through pi, (pix, piy, ph), with direction n, the surface point Pj 

is the intersecting point of line I and the quadric surface (Line-Surface 

intersection). 

X4 

..秦 
Figure 4,15 Plane normal on base triangle. 

That is, any point (x,y,z) on the line I is (pix+ar, piy+br, piz+cr) where r 

is a variable. The conversion between Barycentric and Cartesian Coordinates is 

a linear transformation, as discussed in the following sections. 
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4.4.1.2 Conversion Between Barycentric and Cartesian Coordinates 

In a deformation process, the vertices of the trunctet and the surface 

points in Cartesian coordinates are transformed using the free-form deformation 

function of Equation 3.30. The Cartesian coordinates of all the surface points are 

obtained by the linear transformation, 

Ps(x，y，z) = Vi + t(V2 — Vj) + u(V2 — Vi) + v(V4 - Vj) (4.11) 

The weights of the deformed truncets are obtained by solving Equation 4.12. 

aAs.t.u.v) = 0 
广 “ (4.12) 

S +t + U + V = \ 

This requires converting the deformed surface points into barycentric coordinates 

with the following equations: 

- - | - i 

� , 1 (y2-vn ( 厂 o � p 厂 

U = (V/-V/) (V/-V/) (V/-V/) y-V/， (4-1� 

H (厂厂1 ” {v;-v：) {v:-vn [ z - ( 

s = \-t-u-v (4.14) 

where VT V}' V' are the x, y, and z components of Vi. 
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4.4.1.3 Evaluating the Deformed Surface Patch 

Use Equation 4.9 and assuming the deformed surface points arepi ‘ = (sj, 

tl, Uj, Vi),p2’ = (S2, t2, U2, V2),P3’ ： (S3, ts, U3, Vj), qj，= (S4’ t4, U4, V4), q2，= (Ss, ts, 

U5, V5), and qs' = (s6, t6, ue, V6), the weights of the deformed surface are obtained 

by solving the equation 

“ 2 "I 

25,/, 25,V, 2wjVj Is^u^ vî iioo 
2 

Isjt: Iŝ y-̂  2W2V2 以2 252̂ 2 2̂ 2Vj w î 
V32 + 2s)�253V3 2W3V3 2从 Is^u, 2t,v, Wool, =0 (4.15a) 
v^ 2^4/4 2̂ 4V4 2W4V4 2/4W4 Is^u^ 2̂ 4V4 Wquo 
V3' 2̂ 5V5 2W5V5 Is^U, 2/5V5 W , o i o 

2 [ 2^6 2�V6 lu^v^ 2 认 Is^u^ It^v^ J[woioi _ 
_ 6 J 

Hence, 

J r 2" 
Wiioo Iŝ t̂  2w,v, It̂ v̂  
W,oo, Is it 7 lu^V^ It^U^ Is^U^ 2^2 V2 
冰0011 =_ 253̂ 3 2̂ 3V3 2W3V3 2“以3 2�"3 It^v^ (4.15b) 
州0110 2� ,4 Iŝ v̂  2W4V4 2从 Iŝ û  It̂ v̂  v/ 
Wjoio Is^t^ 2̂ 5V5 2W5V5 255W5 2/5V5 ^ 2 

,010丨」 L2V6 2�V6 2队 Iŝ û  2 认 � ^ 2 

_ 6 _ 

Finally, the normals rii at the vertices are determined with the following 

sets of equations. 

Wi1�0=|(72 -厂1 )•(«!)//" 

< >^101。=去(厂3-厂 1 ) •⑷讽 (4.16a) 

>^11��=|(厂1 -厂2)_(«2)//c/ 

1011。=去（厂3-厂2)參（"2)," (4.16b) 

>̂ 。丨。1=|(厂4 - 厂 
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>^101�=i(厂1 -厂 

<>^)11。=去(厂2一 厂 ( 4 . 1 6 c ) 

>^。。11=|(厂4-厂3)*(«3)//" 

H e n c e , 

> 2 -厂丨(厂2 -厂山(厂2-叫—1� W丨1。。-

(厂3—厂 1), ( 厂 3 — 厂 ( 4 . 1 7 ( 1 ) 

• 4 - [ ) “厂 4 - 厂山 (厂 4 - 厂丨 ) J k .00 ._ 

> 1 - 厂 A (厂 1 - 厂 (厂丨 -厂 A ]—丨卜。。-

打 2 ， = ( 厂 3 - 厂 丄 （ 厂 3 - 厂 ( 厂 3 - 厂 〈 〜 

•4-厂2)“厂4-厂2)“厂4 -厂2) J [州讓― 

>1-^3).(厂1-厂3), 

"3 丨=(厂2-厂3), (V2-V,)y (厂2-厂3)z >^011� 

•4 -厂3) “厂 4 -厂 3 )“ 厂4-厂3) J 
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4.4.1.4 Saddle Shape Trunctet 

Apart from pure concave and pure convex trunctet within a single 

construction tetrahedron, a saddle shape trunctet can also be formed inside a 

tetrahedron. It is constructed as an ordinary trunctet by using the vertices and 

their normals. It is independent of whether the saddle point is located at a vertex, 

on an edge or on the surface of a trunctet. No special treatment is needed. 

Figure 4.16a shows a single trunctet containing the saddle point while Figure 

4.16b to 4.16d show a wider saddle shape surface with the saddle point located at 

different part of a trunctet. The equation of the surface is z = 1 + x^ - y^ and the 

saddle point is located at (0,0). 

• 
Figure 4A6a A saddle shape trunctet. 
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n 
Figure 4.16b Saddle point at a vertex. 

Figure 4.16c Saddle point on an edge. 

Figure 4.16d Saddle point on surface. 
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4.4.1.5 Using Double Tetrahedrons 

Normally, in the process of replacing a triangular facet of Polyhedron 

with a trunctet, one trunctet is used if the corresponding surface does not 

intersect the base triangle of the trunctet. If the surface does intersect the base 

triangle, a double tetrahedron has to be used. A double tetrahedron is composed 

of two opposite tetrahedron sharing the same base triangle. 

Upper / \ 
tetrahedron / \ 

\ / Lower 
\ / tetrahedron 

Figure 4.17 Double Tetrahedron composes of upper and lower tetrahedron. 

The upper tetrahedron is the one on the outside of an input polyhedron while the 

lower tetrahedron is the one in the inside of an input polyhedron. A convex 

surface relative to the upper tetrahedron is a concave surface relative to the lower 

tetrahedron and vice versa. 

The following tables explain which tetrahedron(s) should be used for 

building trunctets after deformation. The determination is based on the sign of 

the weights, wnoo, ^loio and woiw, of the control points on the edges of the base 

triangle of a construction tetrahedron (the relation is described in Section 4.2). 
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Case 1 ： The original trunctet is built inside the upper trunctet only. 

Sign of weights after deformation Construction Tetrahedron to be used 

All of w1100, wjoio and woiw <0. Upper Tetrahedron 

All of wijoo, y^ioio and wquo >0. Lower Tetrahedron 

"^1100,^1010 and wouo have different Double Tetrahedron 
signs. 

Case2: The original trunctet is built inside the lower trunctet only. 

Sign of weights after deformation Construction Tetrahedron to be used 

All ofwuoo, ^1010 and wojio <0- Lower Tetrahedron 

All of w 1100, ^1010 and woiio >0. Upper Tetrahedron 

wiioo, y îoio and woiw have different Double Tetrahedron 
signs. 

Case 3: The original trunctet is built inside a double tetrahedron. 

In this case, check both upper tetrahedron and lower tetrahedron using the 

tables in Case 1 and Case 2. 

ODD 
Figure 4.18 One of the edge weights (w]wo) is positive. 
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IBD 
Figure 4.19 Two of the edge weights (wjoio cmd \vo!io) are positive. 
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4.4.1.6 Surface Subdivision 

In some extreme cases, the original surface, S, within a single tetrahedron 

(with base triangle (xj, X2, X3)) may be deformed (deformed surface S /fd) so that it 

is no longer bounded by its construction tetrahedron (Section 4.2 explained how 

this case can be detected). That means more than one trunctet is needed to 

represent that surface. This is done by subdividing the surface. 

The subdivision algorithm is to pick a central surface point, c on Sffd. 

This is found in the same manner as locating surface point in Section 4.4.1.1 with 

the "intersecting line" passing through the centroid of the base triangle. Three 

new construction tetrahedrons with base triangles (xj, x2, c), (x2, xs, c) and (xs, xi, 

c) are then constructed (Figure 20a). 

肩一鳥 
X2 

X2 

Figure 4.20a Subdividing a surface into three. 
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Repeat this process if needed until all divided surfaces can be bounded by its 

construction tetrahedron. The following figure shows a 2D example explain how 

the subdivision algorithm work. 

Construction 
Tetrahedron \ New 

/\ ^ ^ /\ Tetrahedrons 
/ � � ^ � � / \ / � 

/ \ r \ \ f 7 % j 
Deform / A Subdivision \ / ��\/ 

e七-• 
Figure 4.20b Subdivision Process. 

This "unbounded surface problem" can always be solved by the 

subdivision process. Consider the angle ^(90°<^180°) in the following figure. 
X4 

X] X2 

Figure 4.21 Subdivision Process. 

After subdivision, new 卢’ is always smaller than (p. Repeat the subdivision 

process until (p < 90°. The problem is always solvable. 
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Figure 4.22a Subdivide one quadric surface into 15 pieces. 

A 
Figure 4.22b Top view of subdivided base triangles of the model in figure 4.22 a. 
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4.4.2 Deforming Entire Solid Model 

Given a solid model in CSR, the algorithm for deforming the solid is 

listed below. 

Symbols: 
5 - C S R Solid. 
P — Polyhedron core. 
f — Number of facets on P. 
Fi - Facet on P, for i = 1 t o / 
V - Number of vertices on P. 
Vq - Vertex on P, for g = 1 to v. 
f i - Protrusion trunctet on F,-. 
f i — Depression trunctet on F/. 

— Upper tetrahedron. 
J^ - Lower tetrahedron. 
A?沿—{wiioo, wjow， 0̂110 of t̂ i or (set of weights on base triangle's edges)}. 
bP,d - {wjooi, woioh Woo!! of t̂ i or t°i (set of weights on side edges)}. 
()ffd- Deformed points or object. 
FFD() — Free-form deformation function. 

Input: 
S, PJ, F , V, V,, f , 

Output: 
� f f d , 

// Lattice Construction 
Size of lattice: W*H*D 
W = max Xq 
H 二 maxyq 
D = max Zq 
V V q = (Xq, Yq, Zq). 

Origin of the Lattice: (X, Y, Z) 
X = min Xq 
Y = min yq 
Z 二 min Zq 
V V q = (Xq, yq, Zq). 

Number of control points of lattices in : 
x-direction: int(W/Dmax) 
y-direction: int(H/Dmax) 
z-direction: i n t ( D / D m a x ) 

where Dmax = Max(Vi-Vj) Vi，j 

//Deformpolyhedron core. 
for q = 1 to V 

{ 

(Vq)ffd = FFD(Vq) 
} 

Construct a deformed polyhedron core using (Vi)ffd, ..., (Vv)ffd. 
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//Deform trunctets on each facet. 
for each facet 

{ 

if (Fj is a facet not obtained by subdivision) 
{ 

//Deform three base vertices vt!’ v/?, vts ofF). 
(vt,)ffd = FFD(vti) 
(vt2)ffd = FFD(vt2) 
(vt3)ffd 二 FFD(vt3) 

// Locate 6 surface points. 
Get 6 surface points ptl, pt2, pt3, pt4, pt5, pt6 from t̂ i or t̂ ĵ. 

// Deform 6 surface points. 
(pti)ffd 二 FFD(pti) 
(pt2)ffd 二 FFD(pt2) 
(pt3)ffd = FFD(pt3) 
(pt4)ffd = FFD(pt4) 
(pt5)ffd = FFDCpts) 
(pt6)ffd = FFD(pt6) 
} 

II Create deformed trunctets. 
// Assume the trunctet is constructed inside the upper tetrahedron. 
Construct T" over Fj (base vertices: (vti)ffd, (vt2)ffd, (vt3)ffd). 
Solve AP and B? of t̂ i inside T" using (pti)ffd, ..., (pt6)ffd. 

if (any weights in B^ < 0) //Surface is unbounded by the tetrahedron and subdivision needed. 
{ 

Subdivide(Fi) II Call subdivision function. 

} 
else if (all weights in A^ < 0) //No depression trunctet required. 

{ 

Construct t̂ j 
t V n u l l 
} 

else if (all weights in Set A^ > 0 and all weights in Set B^ > 0) //Surface on the other side. 
{ 

// The trunctet is constructed inside the lower tetrahedron. 
Construct T̂  over F； (base vertices: (vti)ffd, (vt2)ffd’ (vt3)ffd). 
Solve and of t°i inside T̂  using (pti)ffd, ..., (pt6)ffd. 

if (any weights in < 0) //Subdivision needed. 
{ 

Subdivide(Fi) II Call subdivision function. 

} 
else if (all weights in Set < 0) //No protrusion trunctet required. 

{ 

Construct 
t̂ i 二 null 
} 

else if (weights in A^ have different signs) II double tetrahedron needed. 

Construct t̂ i 
Construct T̂  over F； (base vertices: (vti)ffd, (vt2)ffd, (vt3)ffd). 
Solve AD and B° of t°i inside 丁[ using (pti)ffd, ..., (pt6)ffd. 
Construct t°i 

} 
} 
Fill two-sided gaps 
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// Obtain deformed Solid. 
(S)ffd = ((P)fTd^t^)-t^j ViJ 

The algorithm for subdividing a surface is listed below: 
//Subdivision Function. 
Input: A facet F； (with (vti)ffd, (vt2)ffd, (vt3)ffd and (pti)ffd, ..., (pt6)ffd). 
output: new base vertices and (pti)ffd, ..., (pt6)ffd. 

Locate a "centroid" on the surface. 

// Three new facets formed 
Ff+i ： (vti)ffd, (Vt2)ffd，centroid. 
Ff+2 ： (vti)ffd, (Vt3)ffd，centroid. 
Ff+3 ： (Vt2)ffd，(Vt3)ffd, centroid. 

Add Fi, F2, F3 to the list of facets. 
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4.4.3 Comparison on Different Approaches 

The following table gives a comparison on the three different approaches 

for applying FFD on CSR solid model. Those three approaches are described in 

Section 4.3.1 (method 1), 4.3.2 (method 2) and 4.4 (method 3). 

Method 1 Method 2 Methods 

Lattice Parallelpiped Lattice Parallelpiped Lattice Parallelpiped Lattice 
Structure 
CSR parameters 1. Normals directions 1. Surface points 1. Surface points 
for controlling at vertices around vertices over entire solid 
deformation 2. Vertices of 2. Vertices of model. 

Polyhedron core Polyhedron core 2. Vertices of 
Polyhedron core. 

Relative Low High High 
Computation 
Effort 

In fact, method 1 and method 2 can be considered as counter examples of 

applying FFD on CSR and the reasons are given in the corresponding sections. 

(Section 4.3.1 and 4.3.2) 
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4.5 Conversion of CSG solid models into CSR 

General steps of deforming a CSG solid model: 

1. Locate the primitives (leaves), such as cylinder, sphere or block, of a CSG 

solid model in its binary tree. (Example given in Figure 4.23) 

广 

CSG 
Z Solid 

u 

z 

R z ^ Z Z 

U 1 ^ 

a cylinder a block 
primitive primitive 

Figure 4.23 A CSG binary tree. 

2. Reconstruct those primitives as subtrees of intersection of halfspaces. 
• 鬥 
u L Z Z I / 

n 

z \ 。 
/ \ cylindrical . . . . 

/ \ halfspace / \ / \ 

plane 1 plane2 plane I ... plane6 

Figure 4.24 Subtree of intersection of halfspaces. 

3. Convert the halfspaces into CSR objects, (will be explained in Section 4.5.1) 

4. Apply FFD on the converted halfspaces and the core of the CSR object. 
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5. Check each converted halfspaces to see whether they are deformed properly 

by monitoring the sign of the weights of the trunctets. Subdivide trunctets if 

needed. Then, fill the two-sided gaps. 

6. Generate a deformed solid model by using the CSG tree with the deformed 

primitive core and halfspaces at the leaves. {Figure 4.25) 

A (A)ffd 

deformation^ 
• •• • • • 參鲁套 參參參 

八八 八八 
hi h2 ... hn (hl)ffd (h2)ffd ... (hnjffd 

Figure 4.25 Deforming halfspaces. 

4.5.1 Converting Halfspaces into CSR objects 

In this section, the idea of converting halfspaces into CSR object is given. 

The number of patches used to model a halfspace is not fixed. Greater flexibility 

for the Free-Form Deformation can be attained if more trunctets are used. 

However, the time taken for deforming and displaying the deformed object will 

be increased. The basic idea of converting CSG primitive to CSR is to use a 

polyhedron core to approximate the shape of the CSG primitive, where the 

vertices on the polyhedron core should lie on the surface of the CSG primitive. 

Trunctets are then constructed on the vertices of the core to model the shape of 

the halfspaces. A few examples are shown illustrating the conversion of 

halfspaces. Experiment results are also given. 
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CSR model of a sphere: 

The input polyhedron core is composed of two pyramids. 3-sided 

tmnctets are attached to the triangular faceted surfaces to obtain a sphere 

represented in CSR. 

Z ^ ^ ^ ^ Polyhedron 

Figure 4,26 A CSR Sphere. • 
Figure 4.27 A CSR sphere (Two-sided gaps are not filled). 
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CSR model of a cylindrical surface: 

Similar to the modeling of a sphere, an input polyhedron is constructed 

approximating the cylindrical surface as shown in Figure 4.28, 

� \ � � � r N / \ f \ f \ 

i\ /1 
I \ f ‘ 

® 
Figure 4.28 Polyhedron core of a CSR cylinder. 

3-sided trunctets are then constructed on each of the triangular facet of the 

polyhedron giving a CSR representation of the cylindrical surface as shown in 

Figure 4.29. 

Figure 4.29 A CSR cylindrical surface. 
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CSR model of planes: 

After deformation, a plane may become a curved surface and has to be 

represented by a CSR object. It is thus essential to model a plane by CSR object 

before the deformation in order to tackle the possible shape change. 

All primitives, trunctets and polyhedron core, in CSR are finite elements 

that occupy finite volume in 3D space. However, a plane is a halfspace defining 

infinite volume in 3D space. Hence, it is impossible to model a ‘‘true plane “ in 

CSR. An alternative is to decide how much "space" is needed and model a 

"virtualplane" which is used to model a CSG plane for deformatoin. A "virtual 

plane “ is a volume with a planar surface, and formed in a similar way as other 

CSR objects. The following figure shows the step of modeling a "virtual 

plane ". 

ZA / Given a CSG plane. 

ly 
广 〉 C r e a t e a "box “ 

X \y/ y to represent the 

/ \ / \ / \ / \ / y -dpart. 

Figure 4.30 Construct "virtualplane ". 
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Construct tetrahedrons over facets so that the box become a polyhedron 

core with five rectangular side and one faceted side which is used to represent the 

plane. 

t 1 
H H ^ g g ^ H 

Figure 4,31 A Deformed polyhedron core. 

in 
Figure 4.32 Attach trunctets on the polyhedron core and gives a deformed 

virtual plane. 
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CHAPTER 5 

IMPLEMENTATION 

AND 

EXPERIMENTAL RESULTS 

5.1 Implementation 

An experimental system was implemented using a CSG geometric kernel 

SvLis. It is written in C++ and available as a library of header files and 

procedures that can be used to build applications programs. 

An important feature of SvLis is that it can be used to model solids that 

can be expressed as an implicit polynomial inequality of up to a polynomial 

degree of eight. 

SvLis models polynomial primitive inequalities by performing arithmetic 

with planes. Polynomial of a quadric patch is obtained by doing arithmetic with 

4 planes: 

^ = Ls(x,y，z) = 0 t = Lt(x，y’z) = 0 

u = Lu(x’y’z) - 0 V = Ly(x,y,z) = 0 

which are the conversion between barycentric and Cartesian coordinates. At the 

same time, these 4 planes are the faces of the construction tetrahedron. 
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Consider a trunctet with vertices vi, V2, V3 and V4. The polynomial of the 

quadric patch is obtained by substituting s =�(二"^，匸), t = Al^Zi^ ^ u 

L, (x,y,z) L^{x,y,z). 
=———-——and V =———-——into 

Du 代 

y >2 2 

ab(s,t,u,v) = W2000S + woooit + W0020U + W0002V + 2wiioost + 2wiooisv 

+2wooiiuv+ 2woiiotu + 2w]oiosu + 2woioitv 

where A is the distance from the vertex vl to the plane containing v2, v3 and v4. 

Dt is the distance from the vertex v2 to the plane containing vl, v3 and v4. 

Du is the distance from the vertex v3 to the plane containing vl, v2 and v4, 

Dy is the distance from the vertex v4 to the plane containing vl, v2 and v3. 

Hence, the quadric patch is a function of the four planes, i.e., 

a(x,y,z) = at(Ls(x,y,z), Ls(x,y,z), U(x,y,z), Ls(x’y，z)) 

Finally, by intersecting a(x,y,z) with the construction tetrahedron, a 

trunctet is obtained. 

83 



5.2 Experimental Results 

Experiment 1: Local and Global deformation of a CSR object. 

A CSR representation of a cylindrical object is constructed. The object is 

enclosed within an FFD lattice as shown in Figure 5.1. The object is deformed 

globally be moving four of the lattice vertices as illustrated in Figure 5.2. By 

using a lattice with more control points, the object can be deformed locally as 

shown in Figure 5.3 

• 
Figure 5.1 Impose a FFD Lattice on an input object. 

Figure 5,2 Global deformation. 

H 
Figure 5.3 Local deformation by using another lattice. 
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Experiment 2: Construct a "Hair Dryer “ by using FFD. 

A hair dryer is composed of a nozzle, a body and a handle. Both the 

nozzle and handle are made by deforming a cylinder. 

曲 
u 

Figure 5.4 Binary tree of a Hair Dryer. 
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original lattice deformed lattice 

Figure 5.5 Lattice applied on a cylinder to form the nozzle. 

Deform 

山一III 
Figure 5.6 Deform a cylinder to form a nozzle. 
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original lattice deformed lattice 

彰：難 
Figure 5.7 Lattice applied on a cylinder to form the handle. 

Deform ^ K t 

^ 漏 
m ^ m 

^ J 
Figure 5.8 Deform a cylinder to form a handle. 
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Experiment 3: Deforming a toothpaste. Similar to the construction of the hair-

dryer handle, the body of the toothpaste is constructed by deforming a cylinder. 

Figure 5.9 Binary tree of a toothpaste. 

The toothpaste is deformed (Figure 5.8) by using a lattice similar to the 

one used in Figure 5.2. This experiment demonstrated the capability of applying 

FFD on a deformed model 

Figure SAO Deformed toothpaste. 
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Experiment 4: A cylinder modeled in CSG representation is converted into a 

cylinder in CSR. The cylinder is then deformed. Finally, a square hole is 

subtracted from the cylinder. Two sided gaps is not filled for simplicity. 

Apply ^ H ^ ^ ^ ^ ^ H 

^ / 
Convert to CSR H ^ ^ ^ H K • 

_ _ • n 
Figure 5.11 Deformed short cylinder with square hole subtracted. 
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Experiment 5: Deforming the handle of a dumbbell. This experiment 

demonstrates that the deformation can be applied to a specific element of a CSG 

solid, 

只D 
u 

丨\ 
«參 _ • • • 

Figure 5.12 CSG tree of the undeformed dumbbell. 
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Remark 

Efficiency of Deformation: 

The time taken to deform a model is determined by two factors: 

• Number of control points on the lattice, (i.e. (l+l) x(m+l) x(n+l)). 

• Number of patches. 

The following table shows statistics on the time taken to deform 128 patches 

with lattice composed of different number of control points. 

Number of || 12 | 16 | 18 | 20 | 24 | 28 | 30 | 40 | 50 
control points 

Time taken ‘ 0.200 0.221 0.230 0.24 0.267 0 . 2 9 0 . 3 0 0.363 0.421 
(sec) 

The following table shows statistics on the time taken to deform a model with 

different patches by a 12-control point lattice. 

Number of || 128 160 192 224 246 286 320 
patches 
Time taken (sec)|| 0.200 0.250 0.300 0.350 0.400 0.450 0 . 5 ^ 

Remark: The experiment is done in a SGI power challenge multiprocessor 
supercomputer. 
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CHAPTER 6 

CONCLUSION AND SUGGESTIONS FOR FURTHER WORK 

6.1 Conclusion 

In this research, several approaches for applying FFD on CSR is 

analyzed. The surface fitting approach is found to be the most satisfactory in 

fulfilling the objective. A detailed study on this approach is performed. Both 

algorithm and experiment results are given. CSR is used to represent a deformed 

solid model, so that further operation such as Boolean operation can be applied to 

the deformed model. Several ways to apply FFD on CSR objects have been 

studied, including the deformation of normals at the polyhedron core vertices, the 

deformation of neighborhood points around vertices of the polyhedron core, and 

the Surface fitting approach. This thesis also explain how the FFD lattice should 

be set according to the given CSR solid model. 

The surface fitting approach is proposed to apply Free-Form Deformation 

on a solid object in CSR. A CSR solid model is formed by the union and 

subtraction of trunctets from an input polyhedron core. The deformation is 

affected by deforming trunctets and the polyhedron core. 

The polyhedron core is deformed by applying FFD to the polyhedron 

vertices. The deformation of a trunctet is performed by deforming six evenly 
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distributed surface points on the quadric patch of a trunctet using FFD. Finally, 

by evaluating the weights on the trunctet, a deformed trunctet is constructed. A 

trunctet can be convex, concave or saddle shape. 

In the process of constructing trunctets, upper, lower or double 

tetrahedron should be used according to the convexity of the quadric patch and 

whether the patch intersect the facet. Rules are given to determine which 

tetrahedron should be used. The decision is made based on an analysis of the 

weights of a trunctet. A protrusion trunctet formed inside an upper tetrahedron is 

used to model convex surface. A depression trunctet formed inside a lower 

tetrahedron is used to model concave surface. A saddle shape surface can be 

modeled by a protrusion or a depression trunctet. Double tetrahedron, as well as 

both protrusion and depression trunctets is used when a surface associated with a 

facet changes from concave to convex. 

After deformation, if a trunctet is not able to enclose its surface patch, 

surface subdivision is required on that patch so that more trunctets is used to 

model the patch. 

This deformation technique is extended for CSG objects by converting 

the CSG object into a CSR object. Experiment results were presented to show 

local and global deformation, the use of CSG and CSR objects in deformation, 

the conversion from CSG to CSR, deformation specific element in a CSG tree, 

and further operations after deformation. 
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A limitation of the proposed approach is that the best location of the 

lattice control points for deformation is not precisely controlled. Since FFD is 

used for the deformation, exact location of tan object point in the deformed solid 

cannot be controlled.. 
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6.2 Suggestions for Furtherwork 

The performance of the FFD system may be greatly enhanced if there is 

new stand alone modeler that specifically designed for the modelling and display 

of trunctets. By developing a special trunctet display algorithm for "SvLis ”，the 

performance of the whole system can be improved. The algorithm of 

ploygonization of implicit surface patches developed by K. C. Hui and Z. H. 

Jiang [17] can be adopted for display propose. In their approach, a patch is 

adaptively subdivided into smaller tetrahedrons according to certain criteria. The 

result of polygonization is a set of triangular facets approximating the surface 

that can be used for visualization analysis. 

In addition, the deformation flexibility may be pushed to an upper level if 

other deformation technique such as direct FFD method described in Section 

2.1.2 is used. Moreover, cubic patches (instead of quadric patches used now) 

may also be used. Since cubic patch is capable of representing more complex 

surface, the number of patches used to model a given object can be reduced. 

Comparison and further analysis can be performed. 

Since applying FFD on CSR objects is the main focus of this research, 

most of the original CSR models and CSG models are not made automatically. 

A more complete system can be made if all CSR object can be formed 

automatically by simply specifying a few parameter of a solid object. An 

advanced method to convert CSG object into CSR object can also be studied. J. 

P. Menon[l] also described how CSG representations of free form solids 
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bounded by algebraic patches can be computed as Boolean compositions of 

tmnctets, shells, cores and input polyhedrons. 

Finally, the interface between the system and end-users can be further 

improved so as to provide a user friendly environment for the operation. 

I 
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