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Abstract 

Both trellis-coded quantizer (TCQ) and trellis-coded vector quantizer (TCVQ) with 

unequally fine and coarse distortion are designed for Gaussian sources. The fine and 

coarse quantizers use the same trellis structure but with different codebooks. The 

distortion of the fine codebook is smaller than the minimum achievable distortion of the 

same encoding rate. However, as expected, the average of the fine and coarse distortion 

is slightly worse than the minimum achievable distortion of the same encoding rate. 

Encoding with fine and coarse codebooks alternatively through out the same trellis, the 

performance of unequal error protection is investigated on scalar TCQ, 2-dimensional 

TCVQ and 3-dimensional TCVQ, at different rates. Unequal distortion TCQ and TCVQ 

scheme on both memoryless and Markov Gaussian sources are studied. 
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摘要 

本論文針對高斯信源設計了具有不同的精確和粗略失真度的格架編碼量化器 

(TCQ)及格架編碼矢量量化器（TCVQ)，它們採用了相同的格架編碼結構 

(Trellis)，但使用了不同的碼本（Codebook)�精確碼本的失真度要比在相同編碼 

速率下的最小失真度還要小0但是’使用精確和粗略兩種失真度碼本的平均效果只 

比相同情況下的最小失真度差一些。 

通過在相同格架編碼方式下選用這兩種碼本’本文在不同的編碼速率下對標量 

TCQ ’ 二維TCVQ和三維TCVQ的不均句差錯編碼的保護性能進行了分析’並研 

究了在無記憶高斯信源和馬爾科夫高斯信源情況下TCQ與TCVQ兩者的不均句差 

錯編碼的特性。 
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Chapter 1 

Introduction 

Using the concept of information refinement [1], many types of signal compression 

can be provided with unequal distortion. Well-known techniques [2]-[3] such as 

multi-resolution signal compression or multi-stage vector quantizers (VQ) are used 

for the purpose of unequal distortion. For example, a multi-stage vector quantizer 

consists of successively approximating the input vector in several cascaded VQ 

stages，where the input vector from each stage is the quantization error from the 

preceding stage. In this way, multi-stage VQ serves as a sub-optimal VQ scheme 

with reduced complexity and storage. One immediate application of this rate 

scalability is in progressive transmission. 

In this thesis, another method for unequal distortion is studied using the same 

quantizer. The main idea is to use two different codebooks with unequal resolution 

on the same trellis for trellis-coded quantization (ICQ) [4]. 
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1.1 Quantization 

Without any distortion, an infinite number of bits per sample are required to 

represent an analog source without any distortion. It is impossible for a practical 

digital communication system to transmit infinite number of bits. Therefore, analog 

source is mapped into a finite set of reproductive symbols to restrict the bit rate to a 

practical level. However, this process will introduce distortion to the analog signal. 

The process of representing the analog source using finite number of symbols is 

called quantization [5] and the distortion is called quantization error. The 

quantization function Q is defined by 

Q(x) = Ck, k = l”..M, (1.1) 

where Ck is the codebook, and M is the number of symbols in the codebook. The 

function of Q{x) is a non-linear and non-invertible (many-to-one mapping) function. 

Quantization error D is defined as 

D = E[ix-Q{x)y]， （1.2) 

which is the squared distance between the source samples and the reproductive 

symbols. 
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An optimal quantizer provides a mapping function such that D is minimized. Rate 

distortion theory suggests that there is a tradeoff between bit rate and distortion. 

Given a coding rate R, a distortion limit D can be found for different source [6]. 

Quantization can operate on a group (or vector) of analog sources or a single analog 

source, namely, vector and scalar quantization, respectively. The quantization level 

Q{x) is a vector or a scalar for vector and scalar quantization, respectively. It is 

obvious that scalar quantization is a special case for vector quantization. In scalar 

quantization [5][7]’ each single source is quantized into a number of levels and these 

levels are then encoded into a binary sequence. In vector quantization [2] [8]’ a 

number of source samples are grouped as a vector and then quantized into a number 

of vectors (a finite set of vectors), called code vector. Information theory suggests 

that quantization can always achieve better performance by coding vector instead of 

scalar analog source. However, the complexity of vector quantization is always 

higher than that of scalar quantization. Scalar quantization is still widely used in 

many applications such as audio, video and waveform coding [9]. 

1.2 Trellis-Coded Quantization 

Trellis-Coded Quantization (TCQ) [4] is an efficient method for encoding analog 

sources. The quantization distortion performance of TCQ is excellent with modest 
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complexity. TCQ is a form of trellis coding that was motivated by Ungerboeck's 

formulation [5] of trellis-coded modulation (TCM) using a structured codebook with 

expanded set of quantization levels. While performance of TCQ is in many cases 

close to the theoretical rate-distortion bound, an improvement is always possible by 

generalizing its structure to the vector case. Trellis-coded vector quantization (TCVQ) 

is the multi-dimensional extension of TCQ. 

1.3 Thesis Organization 

In this thesis, we studied TCQ with unequal distortion. The design is based on 

unequal resolution codebooks for TCQ to provide unequal distortion. The 

performance measurement is based on the mean square error distortion. Simulations 

are performed on memoryless and Markov Gaussian source. Both scalar TCQ and 

TCVQ cases will be studied. The thesis organization is described as follows. 

Chapter 2 gives a brief summary about trellis coding starting from convolutional 

codes to TCM. The basic of trellis diagram and Ungerboeck codes will be 

introduced. 

The background of TCQ and TCVQ will be covered in Chapter 3. Details of set 

partitioning and codebook optimization will be discussed. These techniques will be 

used in later chapters. 
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An unequal error protection TCQ coder is designed in Chapter 4. The design 

procedures and issues are discussed. 

Performance of unequal distortion TCQ on memoryless Gaussian source is measured 

and presented in Chapter 4. Set partitioning of a codebook for memoryless Gaussian 

source is demonstrated. 

The simulation of unequal distortion TCQ is performed on Markov Gaussian source 

in Chapter 6. Performance of unequal distortion TCQ coder on Gaussian sources 

with different degree of correlation is discussed. 

Lastly, a conclusion comes in Chapter 7 as a summary and discussion on applications 

of the unequal distortion TCQ coder. 
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Chapter 2 
Trellis-Coded Modulation 

Trellis-coded modulation (TCM) is a combined coding and modulation scheme for 

improving the reliability of a digital transmission system without increasing the 

transmitted power or required bandwidth [10]. 

In all communication systems, both power and bandwidth are expensive resources. 

For a power-limited system, the desire system performance should be achieved with 

the smallest possible power. Error-correcting codes increase the power efficiency by 

adding extra bits to the transmitted symbol sequence, and this procedure requires the 

modulation system to be operated at a higher data rate and thus at a larger bandwidth. 

For the bandwidth-limited system, frequency utilization can be improved by 

choosing higher order modulation schemes (e.g. 8-PSK instead of 4-PSK), but a 

larger signal power would be needed to maintain the same signal separation and 

hence the same error probability. TCM is the solution that combines the choice of a 

higher order modulation scheme with that of a convolution code, instead of 

performing demodulation and decoding in two separate steps in the receiver, the two 

operations are combined into one. 

When the receiver combines demodulation and decoding in a single step, the 

performance of the transmission system do not depends on the free Hamming 
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distance of the convolutional code, but rather, depends on the free Euclidean distance 

between transmitted signal sequences of the additive white Gaussian noise channel. 

The optimization of the TCM design is based on Euclidean distances rather than on 

Hamming distances. The choice of the code and signal constellation cannot be 

performed separately. Encoding and decoding of TCM will be discussed in later 

sections and it is started by an introduction of convolutional code. 

2.1 Convolutional Codes 

There are two basic kinds of error-correcting codes, namely block codes and sliding 

window codes. A convolutional code, denoted by {k, n, X) is an error-correcting code 

with sliding window. 

Convolutional codes differ from block codes in that the encoder contains memory 

and the n-b\i encoder outputs at any given time unit depend not only on the it-bit 

inputs at that time unit but also on X previous input blocks [10] [12]. A (k, n, A) 

convolutional code can be implemented with a /:-input, n-output linear sequential 

circuit with input memory size A. Typically, n and k are small integers with k < n, but 

the memory order A can be large to achieve low error probabilities. In the important 

special case when k = 1, the information sequence is not divided into blocks and can 

be processed continuously. 
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The stream of information bits is partitioned into blocks of k bits (ii) each. Each 

block of k information bits is encoded into n coded bits (v). We call u and v as input 

and output symbol respectively (Figure 2.1). The rate of the convolutional code is kJn 

bits per sample where {n-k) bits are added as redundancy. Moreover, the encoded 

symbol v not only depends on the current block but also the /I pervious blocks. In 

other words, the convolutional coder has memory Ĵc bits. 

< stages • 

丨 n f 二 — i T 吓 、 I … I ， 、 I … I J [ - - > [ 7 1 2 I … I k 

6 6 0 

n encoded sequence (v) 
Figure 2.1 A (k, n，A) Convolution Encoder. 
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2,1.1 Generator Polynomials and Generator Matrix 

If 

oo 

u(jy) = Y^u�D丨 OTU = (mo, Ui, U2, ...) (2.1) 
1=0 

denotes input sequence to the encoder and 

oo 

v(D) = ^ V . D ' or V = (vo, v/，V2, . . .) (2.2) 
/=0 

denotes the output sequence where the indeterminate D is unit delay operator. Then 

the input-output relationships are expressed 

v(') (D) = u{D)XG, (D)，where G, (D) = ^ SijD^ (2.3) 
y=o 

and they are called the generator polynomials of convolutional code. For {n, k, A) 

code, there will have n generator polynomials. 

The convolutional code is linear such that the coding equation can be described by 

the matrix multiplication. The generator polynomial can be organized into a 

semi-infinite matrix G, which is called generator matrix. The input-output 

relationships are defined as 

v = uG (2.4) 
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where 

Go G, G2 … G 又 

Gn Gi G, … G 2 G= 0 1 2 ^ (2.5) 
Go Gi G2 ... Ga 

• . • • • ' • 

and each Gi is a k by n matrix specified below: 

�JP ⑴ J?(2)...产 1 6 1,/ 6 1,/ 61./ 
o(l) 0(2) o(") 

广 一 6 2,/ 6 2,/ 6 2,/ /o AX 
G, - ： ： : (2.0) 

o ( l ) . . . o ( « ) 

where g:” = ( g j o， ’ g \ l �，… ) ’ 1 < i < < j <n, are the generator sequences. 

The generator matrix is used to specify a convolutional code. 

2.1.2 Circuit Diagram 

The convolutional code encoder can be implemented by a linear sequential circuit. 

The circuits consist of a shift register with kA stages. At each instant of time, k 

information bits (11) enter the shift register and the contents of the last k states of the 

shift register dropped. The n-bii output sequence (v) is generated by the it-bit input 

together with the memory of A stages, stored in the delay. The encoder depends on 

not only the k bits of input but also the kA contents from the memory. Figure 2.2 
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shows a circuit diagram of a convolutional code encoder with generator polynomials 

g, =1 + 1)2 and + 

“ » r ^ r ^ » “ parallel to 二 _ 
7\ 丨~ serial 

Figure 2.2 A circuit diagram of (1,2,2) convolutional encoder. 

2.1.3 State Transition Diagram 

Convolutional code can be represented as a finite-state machine. The total number of 

states is equal to 2队 where kX is number of stages in the coder. Given the input 

symbol u and the current state s, the output symbol v is calculated and the state is 

changed from s to s\ Figure 2.3 shows the state transition for the (1, 2, 2) 

convolutional code in Figure 2.2. The state transition edges are labeled by a/h where 

a and b represent the k-b\i input and the n-bit output, respectively. 
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, _ A 
\ / .. 

w 
乂1/01乂 

Figure 2.3 State transition diagram of the (1，2，2) convolutional code in Fig. 2.2. 

2.L4 Trellis Diagram 

A trellis diagram is used to show the various states and coded sequence of a 

convolutional code as time evolves. It shows the possible transitions and the coding 

path as well. Each block of k inputs causes a transition to a new state. Hence, there 

are branches leaving each state, one corresponding to each different input block. 

For a il,n,A) convolutional code, there are only two branches leaving each state. 

Each branch is labeled with the k inputs causing the transition and n corresponding 

outputs. Figure 2.4 depicts a trellis diagram of Figure 2.2 with a coding path. We will 

use trellis diagram in later chapters for analysis in encoder and decoder. 
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State 0 0/00 0/00 0/00 0/00 0/00 

\ 〇 
Figure 2.4 Trellis diagram of the (1，2，2) convolutional code in Fig. 2.2 with input sequence 

u = [0,1,0,1,0.. .J and output sequence v = [00,10,01,00,01.. .J. 

2.2 Trellis-Coded Modulation 

In a communication system, messages are represented by vectors in an 

N-dimensional Euclidean space R", called the signal space. When the vector x is 

transmitted, the received signal is represented by the vector 

y = x + n (2.7) 

where n is a noise vector whose components are independent Gaussian random 

variables with zero mean and the same variance NJl. The vector x is represented by 

a set ' consisting of M' signal vectors, the signal constellation. The average square 

signal energy is 

jcf (2.8) 

Consider now the transmission of a sequence {jc, 二丨 of signals of length K, where 
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the subscript i denotes discrete time. For the received sequence ^ o a : - i ‘ to 

minimize the average error probability, the receiver decodes and interprets the output 

sequence ,..., (the decoded signals are also represented by the signals from 

the s e t a ' ) if 

(2.9) 
»=o 

is minimized, or in other words, if the sequence jCq ,..., is closer to the received 

sequence than to any other allowable signal vector sequence. The resulting sequence 

error probability, as well as the symbol error probability, is upper bounded, at least 

for high signal-to-noise ratios, by a decreasing function of the ratio / Nq，where 

(i二 is the minimum squared Euclidean distance between two allowable signal 

vector sequences. 

2.2.1 Uncoded Transmission versus TCM 

A simple case occurs when the signals form an independent sequence, i.e. an 

uncoded sequence. The allowable signal sequences are all the elements of Q.'^ {K is 

the length of the signal), and hence cf is minimized by minimizing separately the 

individual terms for x G Q\ The performance of this symbol-by-symbol 

receiver will then depend on the minimum distance 

^ L (2.10) 
JC本X 
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as x\x" run through Q.\ In fact, the symbol error probability is upper bounded by 

/ f \ M -\ d P(e)< erfc - f ^ , (2.11) 
2 [H^o) 

where Nq is the energy of the noise. 

The performance [9] can be improved significantly with the coded sequence. The 

transmitted sequences can be restricted to a subset of Q’^. The transmission rate will 

also be reduced using just a subset of the space. To avoid the reduction of 

transmission rate, the size of Q' can be increased. For example, if the signal space is 

changed from ^2’ to Q e and M' to M > M\ and M’& sequences are selected as a 

subset of Q.，with the minimum distance between the sequences can be increased. 

A minimum distance dfree between two possible sequences can be greater than the 

minimum distance dmm between signals in the original signal space. To avoid a 

reduction of the value of the transmission rate, the constellation is expanded from 

to Q. This may entail an increase in the average energy expenditure from E' to E. 

The asymptotic coding gain of a TCM scheme can be defined as 

d l j E 
” A (2.12) 

"•min ‘ L 

where E' and E are the average energy spent to transmit with uncoded and coded 

transmission, respectively. 

Assumed that the signal Xn transmitted at discrete time n depends not only on the 

source symbol transmitted at the same time instant (as it would be with 

memoryless modulation), but also on a finite number of previous source symbols: 
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义,1 =fian, , a„.\, ..., an-O (2.13) 

By defining 

= {dn-l, ..., an-i) (2.14) 

as the state of the encoder at time n, we can rewrite the formulae in the more 

compact form 

Xn =f(an, , Sn) (2.15) 

Sn+\ = g{an, Sn) (2.16) 

Assume that the functions /and g are time invariant, the function /(.，.）depends not 

only on the corresponding source symbol, but also on current state Sn. In other words, 

at any time instant the transmitted symbol is chosen from a constellation that is 

selected by the value of 3„ (i.e. the current state). The function 容(•，.）describes the 

memory part of the encoder and shows the evolution of the modulator states, as 

shown in Figure 2.5. 

~ • memory part s„ • select constellation 

^ i 

^ select signal from x„ ^ 

constellation 

Figure 2.5 General model for TCM. 
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2.2.2 Trellis Representation 

Trellis is the graphical representation of the function f and g, with the parameter 

the encoder state at time n as the nodes of the trellis [9][12]. For each source symbol 

there are branches that stem from state Sn to the next state Sn+\. The branch is labeled 

by the corresponding value f . The trellis structure is determined by the function g, 

while f describes how channel symbols are associated with each branch along the 

trellis. 

If the source symbols are M'-ary, each node must have M' branches stemming from 

it (one per each source symbol). In some cases two or more branches connect the 

same pair of nodes; and it is called parallel transitions. For uncoded transmission, 

the trellis degenerates to a single state and thus all transitions are parallel transitions. 

Figure 2.6 shows a trellis with four states, and a constellation with four signals. 

Optimum decoding is the search of the most likely path through the trellis once the 

received sequence has been observed at the channel output. This search is best 

performed by Viterbi algorithm. 
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_ 

s s , 
Figure 2.6 A trellis describing a TCM scheme with four states and four channel symbols. 

m input bits m + l bits  
r—• Uncoded 

I 1 ^ p digits select 
“ 11 • signal from 

11 e 11 constellation 
I ‘ e ‘ J U (parallel 
I I I I—•• transitions) 

| | "'bits pî bits j | _ M a p p e r � 

—J M—• Convolutional I \ I : coded digits 
® I Encoder 1 I J 1 厂 躲'ect I) • I I I l| constellation 
* 1 » (Rate m/m + l) — U — — J 1 and move 

I .1 ./ / \ y encoder to 
^ � V next state 

Figure 2.7 Block diagram of an Ungerboeck code. 

2,2,3 Ungerboeck Codes 

Based on the trellis representation, we shall now describe a special trellis codes 

called Ungerboeck codes [5][12]. Figure 2.7 shows the Ungerboeck representation of 

a trellis encoder with a symbol mapper. The mapper is used to map each output 
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(m + 1) bits (symbol v) to a signal constellation. This process is called 

bits-to-symbol assignments. At each encoding step, the rate (m/m + 1) 

convolutional encoder receives m input bits and generates (m + 1) coded digits. 

The coded digits determine the sub-constellation from which the transmitted signal 

has to be chosen. The other (m-m) bits left uncoded and represent parallel 

transitions between two states. Those uncoded bits are used to choose an element 

from the sub-constellation. The method of grouping the signal constellations into 

subset is called set partitioning. This method is used to maximize possible Euclidean 

distance between the signal symbols assigned to same subset and to improve 

reliability of the trellis codes. 

2.2.4 Set Partitioning 

Referring to Figure 2.5, a constellation of signals is selected first and a signal is 

selected as output according to the input. Details shown in Figure 2.5 that m bits 

out of the m bits of input determine the next state as well as the constellation, as a 

subset of signals constellation. The idea of set partitioning comes from the 

maximization of the free distance ck忧’ the distance between the signals associated 

with a pair of paths that originate from an initial split and merge into a single node 

after L time units (Figure 2.8). 
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A A C 

C Z I > ^ ^ ^ ^ 
•J/i+l ^n+T-l 

L=1 L> 1 

Figure 2.8 Splitting and remerging paths for L = 1 (parallel transitions) and L > 1. 

The free distance d/ree is determined by parallel transmission for the case of L = 1. 

Consider next L > 1, using A, B, C, D to denote subsets of signals associated with 

each branch, and d{X, Y) denoting the minimum Euclidean distance between one 

signal in X and one in Y, dfree has the expression 

(A，奶 + …+ f (CD). (2.17) 

For an optimized code, subsets assigned to the same originating or to the same 

terminating state (it is called adjacent transitions or parallel transitions) must have a 

largest possible distance. Ungerboeck suggested a technique called set partitioning to 

achieve this objective [13]. 

Set partitioning is used to find a symbol assignment to the branches such that the 

subsets assigned to the same originating state or to the same terminating state have 

the largest possible distance. Ungerboeck's set partitioning method is widely used in 

design of TCM for its ease of use and understanding. The set partition process can be 
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summarized as the following rules: 

1. The Euclidean distance between the signal symbols within the same subset 

is in maximum possible value. In other words, the distance of signal 

symbols assigned to the parallel transitions are as large as possible. 

2. Signal symbols assigned to the transitions which diverging from or 

merging into a trellis state will have the next maximum possible Euclidean 

distance. 

Based on the above two rules, the set partitioning principle maximizes the 

normalized square free distance dl̂ ^ which is the minimum distance between two 

decoding paths. When dl̂ ^ is maximum, the reliability of the code is optimal. 

Ungerboeck demonstrated the set partitioning method for PAM, PSK and QASK 

signals. Figures 2.9 and 2.10 show examples of partitioning 8-AM and 16-QAM 

constellations, respectively. This will be used in the following chapters as codebook 

for scalar TCQ and 2-dimensional TCVQ. 
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7 6 5 4 3 2 1 0 

6 4 2 0 7 5 3 1 

Z \ Z \ 
4 0 6 2 5 1 7 3 

CK>-0-#-<>CK>-# Ch^-O-O-O-9-O-O 0 - 0 - # - 0 - 0 - 0 - # - 0 • H > < > < > - # - 0 - 0 - 0 

Figure 2.9 Set partitioning of 8-AM channel signals into 4 subsets. 

• 參 • 參 

• 參 參 • 

• • • • ^ ^ ^ 

• • • • • • • • 

/ • • • • V • 參 * 參 

參 • 參 * • • • • • 鲁 • 參 

• • • • • • • • • • • • • 蠢 • 鲁 

• • • • • • • • • • • • 
• • • • 參 • 蠢 • • • • • 

/ \ / \ / \ / \ • • 

• • 

Figure 2.10 Set partitioning of 16-QAM channel signals into 8 subsets. 

2.2.5 Decoding for TCM 

Encoding and decoding of TCM scheme using a trellis, branches of the trellis are 

associated with transitions between encoder states and with signals transmitted over 
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the channel. The task of the TCM decoder is to estimate the path that the encoded 

signal sequence traverses through the trellis. Each branch of the trellis is associated 

with a branch metric and the path with minimum total metric is chosen as the 

optimum path for decoding, using the same notation in section 2.2. Consider a 

sequence of M-ary symbols to be transmitted, 

X = {义0,义1，...，义)̂_1�• (2.18) 

where each Xi can take on M values. If additive random noise n{t) is added to the 

transmitted signal, the received signal is in the form of 

y{t) = x{t)^n{t) (2.19) 

The task of the demodulator is to process the observed signal yit) in order to produce 

an estimate x of the transmitted symbol sequence x, 

A �A A A "] /"̂/"W 
X ~ ' ' • • •» J \Z.Z\j) 

The metric is defined as 

K-\ 

⑴，= - x , f (2.21) 
k=0 

The decoding process is to find the minimum value of the above metric. 

For the simplest case that all the information symbols are equally likely (independent 
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of Xk)，all the terms ^ ŷ . -x^ are independent, the minimum of the sum 
k=0 

equals to the sum of the minima 

min m[y{t), x] = ^ min||}；̂  - x^ || (2.22) 
X k=0 � 

We can use symbol-by-symbol demodulation, in which separate demodulation of the 

symbol transmitted in each interval is indeed optimum [14]. The demodulation is 

looking for the value of Xk such that the Euclidean distance ||;y众-jc^ f between the 

received signal yk and the candidate signal jĉ tis minimum. 

If the coded sequence Xk is correlated instead of independent random variables, the 

symbol-by-symbol demodulation is not the optimal decoder but Viterbi algorithm. 

The Viterbi algorithm selects the maximum likelihood sequence [15]. The algorithm 

finds a continuous path which minimums the distortion between the received 

symbols yk and the estimated symbols m^. TCM receiver can use Viterbi algorithm 

as the core of coding. 

Given a sequence of received symbols {;y丄 the receiver finds a continuous path 

with minimum distortion D where 

(2.23) 
^ k=0 

is minimum and x̂  are the decoded sequence of transmitted symbols or 

equivalently TCM waveforms. The Viterbi algorithm does not minimize the 
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probability of error of the data bits. However, its performance is very close to that of 

the optimal symbol-by-symbol decoding algorithms in linear codes [14]. Viterbi 

algorithm is widely used in decoding convolutional code due to its low cost and low 

complexity. In geometry representation, Viterbi algorithm is exactly the shortest path 

algorithm, which finds a path having minimum distortion (cost). 
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Chapter 3 
Trellis-Coded Quantization 

3.1 Scalar Trellis-Coded Quantization 

Trellis-coded quantization (TCQ) is a form of trellis coding that labels the trellis 

branches with subsets of reproduction symbols. It was proposed by Marcellin and 

Fischer in 1990 [4]. TCQ is a "dual" process of TCM. The trellis structure of TCQ is 

exactly the same as TCM. For a R/iR+l) trellis code, the encoding rate of TCQ is R 

bits per samples. However, there are 2尺codewords in the codes and the codebook 

size is doubled. Each output symbol v of the trellis corresponds to a codeword of the 

codebook. However, the output of TCQ encoder is not a sequence of output symbols 

V. Instead, the output is the sequence of the symbol u, which is R bits per sample, 

indicating a continuous encoding path of the trellis. TCQ decoder goes through the 

path again using {u} and constructs our targeted codeword sequence. 
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0/Do  

l / A ' V ^ ^ ^ Do D, A D3 Do D, A D3  

(b) 

o/Dr 
(a) 

Figure 3.1 (a) Ungerboeck's four-state amplitude modulation trellis, (b) Output points and 
partition for 2 bits per sample TCQ. 

The original TCQ also uses Ungerboeck's method [5] to partition the output points 

(scalar quantization levels) into subsets {D/}. Figure 3.1 shows a 4-state trellis with 

parallel transitions. The output points are partitioned into four subsets by starting 

with the leftmost point and proceeding to the right. They are labeled as Do, Di, D2, 

D3，Do, D\, D2, D3, ... until the right most point is reached. Fig. 3.1 is the same as the 

Ungerboeck's four-state amplitude modulation (4-AM) trellis. 

The encoding path is found by Viterbi algorithm, which minimizes the distortion 

between the output points and the analog input samples. To simplify the idea of TCQ, 

Figure 3.2 shows an example of TCQ encoding. The input of TCQ is a sequence of 

real source samples a: = . Then TCQ finds the sequence of output 

symbols that minimize distortion D = ||jc-v||. The corresponded input symbols u of 

the trellis is the encoded output symbol of TCQ encoder. 
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Stag (VP ^ ^ 0/0 0/D 0/0 0/0 

M = [ 0 , 1 , 0 , 1 , 0 ] and v = [0 ,2 ,1 ,0 ,1] 

Figure 3.2 An example of TCQ encoding using 4-state trellis with R = 1. 

Tables 3.1 and 3.2 show the simulation results for encoding memoryless uniform 

source and memoryless Gaussian source respectively [4]. They are using Lloyd-Max 

quantizer output codewords. The performance of Lloyd-Max quantizer is put in here 

as comparison. An optimal quantizer follows the centroid condition: the optimal 

output level, yu for the 严 cell of the partition is the centroid of that part of the input 

pdf. This is observed by Lloyd in 1957 [7] and later by Max [5]. 

A sequence of 1000,000 source samples is used with block size 1000. Data are 

measured in terms of signal-to-distortion ratio (SDR) with dB as a unit. 
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Rate Trellis Size (States) Lbyd-Max Rate Distortion 

(bits) 4 8 I 16 I 32 I 64 I 128 256 Quantizer Bound 

1 ~ 5 . 7 8 5.96 6.06 6 . 1 3 ~ 6.19 6.33 — 6.02 — 6.79 
2 12.47 12.60 12.69 12.76 12.83 " T l ^ 12.93 — 12.04 13.21 ‘ 

3 18.77 18.90 18.98 19.04 19.10 19.16 19.20 18.06 19.42 
Table 3.1 Performance of TCQ for memoryless uniform source (Values are listed as SDR in dB). 

Rate Trellis Size (States) Lbyd-Max Rate Distortion 

(bits) 4 8 I 16 I 32 I 64 I 128 256 Quantizer Bound 

1 一 6 . 2 2 6 .33 6 . 3 9 6 . 4 4 ~ 6 .48 " T s T " 6 . 5 8 — 6 . 0 2 — 6 . 7 9 

2 12.62 12.73 12.80 12.85 “ 12.91 12.97 “ 13.00 12.04 13.21 

3 18.83 18.94 19.01 19.08 19.13 19.18 19.23 18.06 19.42 
Table 3.2 Performance of TCQ for memoryless Gaussian source (Values are listed as SDR in 

dB). 

The results show that TCQ can almost provide better performance than the 

Lloyd-Max scalar quantizer. When the number of state of trellis increases, the 

performance of TCQ also increases. For examples, TCQ achieves 0.46 dB 

improvement over Lloyd-Max scalar quantizer at = 1. More states in the trellis give 

more alternative path for which TCQ encoder can choose. TCQ is close to the 

theoretical rate-distortion bound. The Viterbi algorithm is used to find the path with 

minimum distortion. 

Here are the steps in designing a TCQ encoder: 

1. Selection of a trellis. 

2. Selection of codebook. 

2 9 



3. Set partitioning of the codebook. 

4. The assignment of subsets to the trellis branches. 

5. The optimization of the codebook for a fixed trellis. 

Firstly a suitable trellis must be chosen. Referring to Tables 3.1 and 3.2, the SDR 

increases as the number of states of the trellis increases. Of course, the computation 

complexity increases as well. A suitable trellis has to be chosen to achieve the 

targeted SDR performance with acceptable computation complexity. 

Secondly, choose a suitable codebook. This codebook serves as an initial codebook 

to be optimized in step 5. Using the 4-AM trellis as shown in Figure 3.1 as an 

example, the 8 codewords are distributed evenly on the linear scale. All the symbols 

on the sequence are quantized into these 8 output symbols only. 

Thirdly, the codewords are partitioned into subsets. The objective is to maximize the 

minimum distance within each subset. Using the 4-AM trellis as example, those 8 

codewords are partitioned into four subsets and are denoted as Do, Di, D2, D3, Do, Di, 

D2, £>3，in order. The positions denoted as Do belong to the same subsets and 

separated as far as possible in this partition. 

At last, assign each subset to trellis branch, and the codewords within each subset 

represents parallel transitions. Finally, codebook is optimized using generalized 

Lloyd algorithm. The generalized Lloyd algorithm is discussed in section 3.2.2. 
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The complexity of TCQ encoder is the same as that of Viterbi algorithm. The 

encoding requires only 4 multiplications, 4 additions and 4 scalar quantization per 

source sample, plus 2 additions and 1 comparison per trellis state per source sample. 

The encoding complexity is roughly independent of the encoding rate. The 

complexity depends on the number of state per trellis. 

TCQ has been applied in image coding [16]-[19]，combined with either DCT 

(discrete cosine transform) or wavelet-based coder and progressive transmission [17]. 

TCQ often uses with entropy coder to encode memory source. Different types of 

TCQ such as predictive TCQ [20], embedded TCQ [21] and multistage TCQ [22] 

had been developed as variation of TCQ. 

3.2 Trellis-Coded Vector Quantization 

TCQ offers better rate-distortion characteristic than Lloyd-Max scalar quantization 

by doubling the codebook size at a given code rate. Both TCQ and Lloyd-Max 

quantizer are all scalar quantization and work well for memoryless source. For 

correlated sources, vector quantization can provide better rate-distortion performance 

than that of scalar quantization. In vector quantization, a number of source samples 

are grouped as a vector and each vector is quantized into a vector codeword. 

Shannon's rate-distortion theory reveals that coding in vectors instead of scalars can 
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always achieve better performance, even for memoryless source [6][23]. 

Combining the idea of vector quantization and trellis-coded quantization, Fisher, 

Marcellin and Wang [24] proposed trellis-coded vector quantization (TCVQ) in 

which each codeword is a vector and the codebook size is twice the size of that of a 

normal vector quantizer. TCVQ can allow non-integer encoding rate. Like TCQ, the 

main design issues of TCVQ are the design of codebook and the set partitioning of 

the codebook. 

At each encoding step k, the encoder accepts m source samples jc* = ( x j [ ‘ ， 

each branches output symbol corresponds to an m dimensional codeword cjt. The 

Viterbi algorithm is employed (as the case of TCQ) to find the most likely path that 

minimizes the distortion D of 

^ N/m h fJl v"* 2 
(3.1) 

N t：! 

Here are the steps in designing a TCVQ encoder: 

1. Selection of a trellis. 

2. Selection of codebook. The initial codebook is designed by the LBG 

algorithm, which is purposed by Linde, Buzo and Gary [25] in 1980. 

3. Set partitioning of the codebook. 

4. The assignment of subsets to the trellis branches. 
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5. The optimization of the codebook for a fixed trellis. 

The steps are the same as that in designing TCQ. The main design issue of TCVQ is 

the set partitioning of the vector reproduction symbols. The principle of the set 

partitioning of TCVQ is the same as that of TCQ. The irregular codewords and 

increased dimensions increase the algorithm complexity. The codebook needs to be 

optimized as well. Details are discussed as below. 

3.2.1 Set Partitioning in TCVQ 

The initial codebook of TCVQ is designed by the LBG algorithm [25] to provide 

optimal codebooks. Afterward, the codewords are partitioned into subsets, as 

mentioned before. The objective is to maximize the minimum distance within each 

subset [26]. Given an initial codebook of size 2̂ +*，the distances between each pair of 

codewords are measured and sorted in ascending order, and stored in a table. If the 

ith entry of the distance is denoted as d^ = |c,. - c\, where c, and are the 

codewords, and those codewords are partitioned into two subsets, \ and A,，each 
p 

of size 2，the procedures are: 

1. Co and Co are placed into the subsets Â  and A, respectively; remove 

the entry d^ from the table. 
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2. From the table, find the minimum J. such that c, or c. belongs to 

A o U V 

3. If both c,. and c. belongs to u A,, remove the iih entry of. from the 

table. Go to step (2). 

4. If c. belongs to A�（or A丨）’ then add c. to A, (or If c. belongs 

to A � ( o r A,), then add c. to A, (or A )̂. 
n 

5. If the size of either subsets \ or A, reaches 2，then put all the 

remaining unassigned codewords to the other subset and stop. Otherwise, 

go to step (2). 

By applying the above procedures, the codewords can be partitioned into two subsets. 

The same procedures can be applied to the two subsets to generate four subsets, and 

so on. In this thesis, we partition the codebook using the above algorithm. 

3,2.2 Codebook Optimization 

To minimize quantization distortion, the quantization levels of a codebook can be 

optimized iteratively using the generalized Lloyd algorithm. Using a training 

sequence of analog samples, the algorithm is operated as following: 

1. An initial codebook is generated by LBG algorithm. 
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2. Encode the analog training sequence into a sequence of codewords using 

Viterbi algorithm. 

3. Update each codeword with the average of training samples that map to 

that quantization level, i.e., the centroid of the subset. Conduct the update 

for the codebook. 

4. Calculate the quantization distortion value; go to step 2 until the 

convergence of quantization distortion. 

The iterative optimization procedure may not in general yield truly globally 

optimized quantizers. The algorithm may just yield a locally optimized quantizer. Of 

course, good initial codebook may enhance the potential of the algorithm to provide 

better codebooks. 

5.2.3 Numerical Data and Discussions 

TCVQ achieves better performance compared to TCQ. As the dimension of TCVQ 

increases, the SDR value increases, in the tradeoff of computational complexity. 

Tables 3.3 and 3.4 show simulation results for TCVQ for integer and fractional rates, 

respectively. For an integer rate, the dimension k can be any arbitrary integer 

(including the scalar case of TCQ). For fractional rates k, kR requires to be an integer. 

Simulation results [26] on a training sequence of a zero-mean, unit-variance 
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memoryless Gaussian source of length 1,000,000 samples are presented in Tables 

3.3-3.4. 

Table 3.3 shows that TCVQ can yield from 0.1 to 0.8 dB improvement in SDR over 

TCQ. When the dimension is one, the TCVQ reduces to TCQ. Table 3.4 shows that 

TCVQ with fractional rate has SDR that is higher than that of a vector quantization 

(VQ) at the same rate by at least 0.5 dB. The 16-state trellis TCVQ with fractional 

rate is only from 0.38 to 0.58 dB worse than the theoretical rate distortion bound. 

TCVQ can also be regarded as a special case as a finite-state vector quantization 

(FSVQ), which is based on a finite state machine and state-dependent codebook. At 

each encoding step, TCVQ uses a state-dependent codebook to encode the source 

vector. Viterbi algorithm is used to search the trellis of the finite state machine. 

TCVQ achieves better SDR performance than TCQ. While TCQ always have lower 

computation complexity than TCVQ, TCQ cannot have with fractional rate. 
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Rate in bits per Dimension of Trellis size (states) Theroretical 
sample vectors 一 4 8 16 — bound 

1 ^ ^ 5.27 

2 ^ 5.20 5.29 

1 3 5.10 5.22 5.31 6.02 

4 ^ ^ 5.33 

6 ^ ^ ^  
1 ^ 10.70 ~ ~ i o . 7 8 

0 2 10.64 ~ ~ r o . 7 6 10.84 ， … 

3 ^ 10.96 

4 11.00 一11.22 

3 1 16.33 16.40 ~ 

2 1 6 . 3 4 ~ 16.56 16.62 

4 ！ 21.66 21.78 21.84， 
2 22.32 22.45 22.63 

Table 3.3 The SNR of TCVQ with integer rates for memoryless Gaussian source. 

Rate in bits per Trellis size (states) Theroretical 

sample 4 I 8 I 16 ^ ^ bound 

0.500 “ 2 .50(2) 2.59 (2) 2 .63(2) “ 2 .07(2) “ 3.01 

0.667 3 . 3 8 ( 6 ) — 3.45(6) 一 3 . 5 1 ( 6 ) ~ 2 . 9 9 ( 6 ) ~ 4.01 一 

0.750 3 .80(4) 3 .90(4) 3.95 (4) “ 3.35 � _ 4.52 

0.800 4.09(5) 4 .18(5) 4 .24(5) “ 3 .67(5) “ 4.82 

0.833 4 .33(6) 4 .40(6) 4.45 (6) 3 .91(6) 5.02 

Table 3.4 The SNR of TCVQ compared with that of full search VQ and theoretical rate 
distortion bound for memoryless Gaussian source. The numbers in the parentheses show the 

dimension of vectors. 
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Chapter 4 
Trellis-Coded Quantization with 
Unequal Distortion 

Although there are many methods for unequal error protection associated with 

channel coding, the methods for unequal distortion for source coding are usually 

limited to the concept of information refinement [1] using mostly product or 

multistage vector quantizers or similar techniques [2]-[3]. The encoding techniques 

for unequal distortion are usually associated with scalable or multi-resolution signal 

compression. In practice, most of the previous works provide unequal distortion by 

changing the encoding rate, i.e. changing the rate R in D(R) = kl'^^, where it is a 

proportional constant depending on quantizer design. The refinement (or multistage) 

techniques in [l]-[3] provide methods to generate an embedded encoded sequence in 

which bits for coarse quantization can be reused for fine quantization. 

In this thesis, we provide another method for unequal distortion [27] within the same 

quantizer, i.e., 

D 八 = and = (4.1) 
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where Dj(R) and Dc(R) are the distortion function of fine and coarse quantizers, 

respectively, and kf and k � k f < k � a r e the corresponding proportional constants. 

Similar to the case for information refinement [l]-[3], quantizers with unequal 

distortion are usually worse than the optimal quantizer. In this thesis, the design 

objective is to ensure that 

(4.2) 

where 0<p< 1 is the fraction of the signal for fine quantizer. While multistage 

vector quantizers cannot perform better than single-stage optimal vector quantizers 

[2]，optimal quantizers with unequal distortion cannot perform better than optimal 

quantizers with equal distortion. The objective of (4.2) intends to guarantee that the 

average distortion is just a little bit worse than but having no significant difference 

with the minimum achievable distortion. 

As shown in Chapter 3, trellis-coded quantizer (TCQ) [4] has proven to be an 

efficient quantizer to reduce quantization distortion and trellis-coded vector 

quantization (TCVQ) is the same as TCQ, with multi-dimensional data sample [24]. 

In another words, TCQ is a particular case of TCVQ in one dimension. Both TCQ 

and TCVQ with unequal distortion is designed in this thesis. Usually, for equal 

distortion, a fixed codebook (or set of quantization levels) is used in the whole 

TCVQ encoding process. A TCVQ having two different codebooks (two sets of 

quantization levels) is used here to provide unequal distortion. One of the codebook 
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has fine quantization levels while the other one has coarse quantization levels. While 

the analog samples using fine codebook can provide smaller quantization distortion 

than that using coarse codebook, the average quantization distortion, like (4.2)，is just 

slightly worse than that with single codebook for equal distortion [27]. Usually, with 

the optimal design, the fine quantization distortion is also smaller than the minimum 

achievable distortion for the same encoding rate. 

4.1 Design Procedures 

The design of unequal distortion TCVQ is based on that of equal distortion one 

(section 3.2). For the traditional TCVQ, the same codebook is used though out the 

trellis in the encoding. While for unequal distortion TCVQ, we use different 

codebooks, with different resolutions, though out the same trellis to provide unequal 

distortion. 

For traditional TCVQ at the rate of R bits/sample, the number of quantization levels 

is 2尺+1. A codebook of 2尺十丨 different codewords is used. For unequal distortion 

TCVQ at the same rate, each codebook used still have 2 �！ codewords but different 

resolution. In the codebook with lower resolution, half of the codewords are equal to 

another half and this introduces greater distortion even the codebook size is 

unchanged. Multi-resolution codebooks of the same size are used for unequal 
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distortion TCVQ. 

For each codebook, codewords are partitioned into subsets according to the 

algorithm described in section 3.2.1’ in order to maximize the minimum distance 

within the subset. 

Finally, the codebooks will be optimized iteratively by the generalized Lloyd 

algorithm, as the same case in the traditional TCVQ, with equal distortion. Details 

will be discussed in the following sections. 

4.2 Fine and Coarse Codebooks 

Using codebooks with different resolutions on the same trellis, we can encode signals 

with unequal distortion [27]. This can be applied to encode signal to provide better 

fidelity at some part at the expense of less fidelity at the other part, with the same 

encoding rate of equal distortion. In general, more than two codebooks could be used 

to encode different part of the signal with many levels of protection. Without loss of 

generality, we confine our discussion to the case of only two codebooks. 

The codebooks Tq and 7] in Figure 4.1 can be used as the fine and coarse codebook, 

respectively, for unequal distortion. In the coarse codebook 7]，each quantization 

level represents two different labels in the codebook Tq and the trellis diagram. For 
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example, both symbols Do and Di use the same quantization level. Therefore, using 

coarse codebook will provide less signal fidelity than the fine codebook. 

If TCVQ uses the fine codebook alone, the minimum quantization distortion is equal 

to optimal TCVQ with equal distortion. If the TCVQ scheme just uses the coarse 

codebook alone, the performance is the same as 2^-level Lloyd-Max scalar (or vector) 

quantizer without trellis structure. The samples using the fine codebook have lower 

quantization distortion than those using the coarse codebook. The goal of this thesis 

is to guarantee that the fine distortion is smaller than the minimum achievable 

distortion for the same data-rate. However, in the same time, the average of fine and 

coarse distortion is just a little bit larger than the minimum achievable distortion for 

the same data-rate. 

0/Do, l/Eh ^ y 

0 / D I , 1 / D 3 V 

0/Do，1/D2 

To Do D i D2 D3 Do Di D2 D3 

v v v v 
0 / D 3 , 1 / D . 『 1 W D i D2.D3 DO.D. D . ,D3 

O/D2,1/Do , 

O/D3,1/Di ^ 

Figure 4.1 An 8-state trellis with subsets labeling and the fine codebook and coarse codebooks, 
partition for 2 bits/sample scalar TCQ. 

4 2 



The encoding process with unequal distortion is identical to the traditional TCVQ 

scheme with equal distortion. Because both fine and coarse codebooks have the same 

trellis structure, Viterbi algorithm is used to trace the trellis diagram to find the 

sequence with minimum distortion. The discrepancy with conventional TCVQ is the 

usage of two codebooks in Figure 4.1 instead of one codebook in conventional 

TCVQ. 

Without loss of generality, in latter part of this thesis, we consider the specific case 

that the fine and coarse codebooks are used alternatively sample after sample. Figure 

4.2 shows the 8-state trellis (same as that in Figure 4.1) using fine and coarse 

codebooks alternatively. For a particular stage, the TCQ coder encodes sample with 

the fine codebook TO, it encodes sample with coarse codebook 7] on the next stage. 

For example, one fine quantized sample follows by another coarse sample and vice 

versa. Noted that the unequal distortion scheme can be applied to any permutation 

and ratio of fine and coarse codebooks. Of course, even distribution of codebooks 

usually provides better performance for smaller distortion. 
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To Ti To Ti To 
Figure 4.2 An 8-state trellis with fine (r。）and coarse codebook (Ti) alternatively. 

4.3 Set Partitioning 

The fine and coarse codebooks are generated by the LBG algorithm [25] as initial 

codebooks. Afterward, codewords of each codebook are partitioned into subsets. Set 

partitioning is to maximize the minimum distance within each subset [26]. In this 

way, free distance of parallel transactions is maximized and quantization distortion 

can be minimized. As described in section 3.2.1，codewords are partitioned into two 

subsets, with minimum distance between codewords within subset maximized. The 

same procedures can be applied on the two subsets to generate four subsets and so 

on. 
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4.4 Codebook Optimization 

The quantization levels of a codebook for unequal distortion TCVQ can be optimized 

iteratively using the generalized Lloyd algorithm [2][8][25]. This is similar to the 

case of equal distortion. Using a training sequence of analog samples, the algorithm 

is operated as follows: 

1. Two initial codebooks with proper set partition, properly the Lloyd-Max 

quantizers [8] with and 2尺十丨 levels. 

2. Encode the analog training sequence into a sequence of codewords, using 

both fine and coarse codebooks. 

3. Update each codeword with the average of training samples that map to 

that quantization level, i.e.，the centroid of the subset. Conduct the update 

separately for fine and coarse codebooks. 

4. Calculate both fine and coarse quantization distortion values; go to step 2 

until the convergence of quantization distortion. 

Note that this procedure yield locally optimized codebook. It may not be the globally 

optimized one. The LBG algorithm can usually provide good initial codebook. 

Simulations are performed on memoryless Gaussian source and Markov Gaussian 

source in chapter 5 and 6，respectively. Numerical data and discussions will be 

presented in details in the following chapters. 
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4.5 Encoding for Unequal Distortion TCVQ 

Viterbi algorithm is used to encode unequal distortion TCVQ [27]. The Viterbi 

algorithm finds the path metric by sequentially moving the trellis stage by stage 

[15][12]. We have discussed decoding TCQ with Viterbi algorithm based on trellis 

representation on TCM encoder in section 2.2.5. 
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Chapter 5 
Unequal Distortion TCVQ on 
Memoryless Gaussian Source 

In chapter 4’ a trellis-coded vector quantization (TCVQ) encoder having two unequal 

distortion values is proposed for encoding signals. In this chapter, we apply the 

TCVQ encoder for memoryless Gaussian source. The trellis diagram and codebooks 

are similar to that in Figure 4.1. The fine and coarse codebooks are optimized, using 

the procedure in section 4.4. Using Viterbi algorithm, the encoding process of 

unequal distortion TCVQ is identical to that with equal distortion, except that 

different codebooks are used alternatively. The only difference is the metric in the 

Viterbi algorithm using different quantization codebooks. The computation 

complexity is also the same as that with equal distortion. 

Figure 5.1 shows an example scalar TCQ with unequal distortion at the rate of 2 bits 

per sample, and the fine and coarse codebooks used for encoding [12]. The two 

codebooks contribute to encoding with different distortions. Figure 5.2 shows 

encoding path of the trellis of the unequal distortion TCQ. Note that the TCQ coder 

encodes with the fine codebook Tq at the first stage, and coarse codebook T\ at the 

second stage, and so on alternatively. Distortions are measured from the simulations 
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on memoryless Gaussian source and will be presented in the later sections. 

0 / D o  

o m ^ ^ ^ y ^ RO Do D I D 2 D 3 DO D I D 2 D 3 

V V V V 
o/or — • • • • ~ 

； ; d ' 。 ， d ; d ; , d ； d ; , d； d ; , d ； 

Figure 5.1 Ungerboeck's four-state amplitude modulation trellis with subsets labeling and the 
fine codebook and coarse codebook, partition for 2 bits/sample scalar TCQ. 

To Ti To Ti To 

Figure 5.2 A 4-state TCQ with fine and coarse codebooks, with path sequence {«} = {0,1,0,1,0} 

and output symbol sequence 丨v 丨={D�，D�’ D,，D'�, D,} • 

% 
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5.1 Memoryless Gaussian Source 

Gaussian memoryless/independent source {jC)t} is a sequence of random variable x. 

The probability density function of x is given by: 

f 入 x ) : 芯 e 2�2 (5.1) 

where nix is the mean and a^ is the variance of the random variable jc. In our 

simulated system, a sequence of Gaussian random variable with zero mean and unit 

variance is used as input samples. 

5.2 Set Partitioning of Codewords of Memoryless Gaussian Source 

Set partitioning of codewords is to maximize the minimum distance between 

codewords within subsets [26]. Using memoryless Gaussian source as coding signal, 

and grouping 2 samples into 2-dimensional vector, codebook is designed by the LBG 

algorithm and then set partitioned into subsets as described in section 3.2.1. 
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Figure 5.3 a codebook for a memoryless Gaussian source is set partitioned into 4 subsets. 

For a memoryless Gaussian source with 2 samples grouped as a 2-dimensional vector, 

Figures 5.3 shows partitioning on the irregular codebook of 16 codewords of the 

source into 2 subsets and 4 subsets, respectively. Using the partitioning algorithm, 

the closest 2 codewords are always assigned into different subsets. When two subsets 

are generated, the algorithm can be applied to these two subsets to generate 4 

subsets. 
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5.3 Numerical Results and Discussions 

Training sequence of length of 100,000 samples is used in the simulations. Tables 

5.1-5.3 show the signal-to-distortion ratio (SDR) of scalar TCQ, 2-dimesional TCVQ, 

and 3-dimensional TCVQ, respectively, for memoryless Gaussian source [27]. All 

values of SDR are measured in unit of dB, and defined as 

K 

SDR = - ^ ， (5.2) 

it=l 

where x,^ is the reproductive codeword for the signal sequence x�of length K. 

The simulations are performed at various rates and trellis with various numbers of 

states. The fine codebook To and the coarse codebook T] are used for unequal 

distortion. Two different distortion values are calculated separately for fine and 

coarse quantization. With equal distortion, the optimal performance with maximum 

SDR from [4] is also shown for comparison. Similar to [4], the trellises listed in [13] 

are used in scalar TCQ for Table 5.1. 

From Tables 5.1-5.3, SDR of fine and coarse quantization is always better and worse 

than the SDR for equal distortion, respectively. The SDR of coarse quantization is 

worse than that of Lloyd-Max quantizer with the same coding rate. In general, SDR 

of both fine and coarse quantization increases with both coding rate and the number 

of states. Tables 5.1-5.3 also show the average SDR of both fine and coarse SDR. 
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The average SDR of the fine and coarse quantization is calculated by finding the 

average quantization distortion, similar to (4.2)，and then divided by the signal power. 

The average SDR of the fine and coarse distortion is simply called the average 

distortion in the later paragraphs. The average distortion is slightly worse than the 

SDR of equal distortion. 

For scalar TCQ, the SDR of fine distortion is 0.5 to 0.9 dB higher than that with 

equal and minimum distortion. For 2-dimensional TCVQ, the SDR of fine distortion 

is also 0.5 to 0.9 dB higher than that with equal distortion. For 3-dimensional TCVQ, 

the SDR of fine distortion is 0.5 to 0.6 dB higher than that with equal distortion. It is 

shown that the SDR of fine quantization is always better than the SDR for equal 

distortion. 

For scalar TCQ, the average SDR is 0.2 to 0.9 dB lower than that with the equal and 

minimum distortion. For 2-dimensional TCVQ, the average SDR is 0.2 to 0.6 dB 

lower than that with equal distortion. For 3-dimensional TCVQ, the average SDR is 

0.2 to 0.4 dB lower than that with equal distortion. It is shown that the average SDR 

is close to that with equal distortion. Usually, the discrepancy between the average of 

unequal distortion and the equal distortion increases with rate. Also, the discrepancy 

decreases as the dimension increases. 

Depending on coding rate and number of states, the SDR difference between the fine 

and coarse quantization is from 1.5 to 2.8 dB, 1.6 to 2.2 dB and 1.4 to 1.5 dB for 
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scalar TCQ, 2-D TCVQ and 3-D TCVQ, respectively. Usually, the difference in SDR 

increases with rate. 

Figures 5.4-5.6 plot the SDR as a function of code rate for scalar TCQ, 

2-dimensional TCVQ and 3-dimensional TCVQ, respectively, for 16-state trellis and 

memoryless Gaussian source. These figures confirm that the average SDR is very 

close to the minimum achievable SDR for equal distortion, i.e., expression equation 

(4.2). 

Average SDR increases when the dimension of TCVQ increases, that means from 

scalar TCQ to 2-D TCVQ and 3-D TCVQ. Comparing Tables 5.1-5.3，the average 

SDR increases 0.3 and 0.5 dB when it changes from scalar TCQ to 2-D and 3-D 

TCVQ, at the rate 2 bits/sample and 16-state trellis, for memoryless Gaussian source. 

Similar to vector quantization, the higher dimension is the unequal distortion TCVQ, 

the better is the performance. Note that higher dimension always means higher 

complexity. 
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Rate in bits no. of Equal Unequal Distortion  
per sample states Distortion fine coarse average 

4 5.04 5.57 4.03 4.73 

1 8 5.19 5.93 4.16 —4.96 
16 5.23 5.95 —4.20 _ 4 . 9 9 

4 ~10.53 ~11.06 —8.81 —9.81 
2 8 ~10.68 ~11.41 —9.05 —10.08 

16 ~10.74 ~11.36 —9.12 _10.09 
4 —16.14 —16.69 — 14.15 一 15.26 

3 8 ~16.37 ~17.18 ~14.35 —15.55 
16 ~16.42 ~17.08 ~14.48 —15.59 
4 21.67 一 22.27 — 19.91 _ 20.92_ 

4 8 ~21.78 —22.72 一 19.89 — 21.07 
16 21.92 22.66 20.02 21.13 

Table 5.1 SDR (in dB) of equal and unequal distortion scalar TCQ for memoryless Gaussian 
source. 

25.00 

20.00 -

m 1 5 . 0 0 - ' ' 

g r n 
(fi 10.00 - 一•——equal 

--X-- fine 

-’ --+ - coarse 
5.00 i r - I — X - average 

0.00 ‘ 1  

1 2 3 4 
Code Rate (bits/sample) 

Figure 5.4 SDR performance as a function of code rate for 16-state scalar TCQ for memoryless 
Gaussian source. 
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Rate in bits no. of Equal Unequal Distortion  
per sample states Distortion fine coarse average 

4 5.09 — 5.63 一 4.08 4.78 

1 8 5.20 5.93 4.19 — 4.97 

16 5.26 5.88 4.24 4.99 
4 10.68 ~11.30 9.56 10.34 

2 8 10.80 11.17 9.60 ~ 1 0 3 1 
16 10.84 11.37 9.61 10.40 ~ 

4 16.49 16.96 15.11 15.93 

3 8 16.59 17.24 15.24 16.11 — 

16 16.64 17.18 15.32 16.14 一 

4 22.74 23.51 21.40 22.32 

4 8 22.83 23.72 ~21.48 ~22.45 

16 22.88 23.74 21.54 2 2 . 5 5 ~ 
Table 5.2 SDR (in dB) of equal and unequal distortion 2-diinensional TCVQ for memoryless 

Gaussian source. 

25.00 

20.00 -

m 15.00 -
g 

⑴ 10.00 - ‘ 

“ “ ‘ ~ • ~ equal 

“‘ --X-- fine 
5.00 I ‘ ‘ - - + - coarse 

• * 

X average 

0.00 ‘ 
1 2 3 4 

Code Rate (bits/sample) 

Figure 5.5 SDR performance as a function of code rate for 16-state 2-dimensional TCVQ for 
memoryless Gaussian source. 
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rate in bits no. of Equal Unequal Quantization  
per sample states Quantization fine coarse overall 

4 —5.14 ~ 5 . 6 0 4.23 4.86 
1 8 5.20 5.70 4.33 4.96 

16 5.28 5.71 ~ l 3 8 4.99 
4 10.83 11.40 9.90 10.59 

2 8 10.91 11.31 9.91 10.56 — 
16 10.93 11.43 9.91 10.61 — 

Table 5.3 SDR (in dB) of equal and unequal distortion 3-dimensional TCVQ for memoryless 
Gaussian source. 

12.00 

一】< 
11.00 -

1 0 . 0 0 - z Z ^ C T ' z 

9.00 - Z ^ ^ ^ z Z 

S z 
^ 8.00 -

CO ' ' ' 
7.00 -

, , ^ ^ ' 一 ’ ’ ’ ~ • ~ e q u a l 

6 . 0 0 z Z ' --X-- fine 

z 一 --+ - coarse 

5.00 ) r " - X average 

• ft 

4.00 

1 Code Rate (bits/sample) 2 

Figure 5.6 SDR performance as a function of code rate for 16-state 3-dimensional TCVQ for 
memoryless Gaussian source. 
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Chapter 6 
Unequal Distortion TCVQ on Markov 
Gaussian Source 

In the previous chapter, a TCVQ encoder having two unequal distortion values is 

designed for memoryless Gaussian source. In this chapter, the coder is applied to 

Markov Gaussian source. Same algorithm and design procedures are used as 

mentioned in chapter 5, with different training samples. 

Although many real-life signals can be modeled as Gaussian distributed random 

variable, they are in general correlated or having dependence from sample to sample. 

Therefore, TCVQ are applied to the Markov Gaussian source. 

6.1 Markov Gaussian Source 

A Markov/correlated Gaussian source is the classic model for correlated samples of 

speech and images. The theory for Markov source is straightforward and can 

describe practical source well. A Gaussian source is autoregressive of order k if it 

satisfies 
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k 

义y-' (6.1) 

where the uj are zero-mean independent Gaussian with variance o^. It is a filtered 

memoryless Gaussian source where the filter is the all-pole with z-transform 

1/(1 - A(z))，where A(z) = a^z'^ + a^z'^ + - " + . The Markov Gaussian sources 

provide a very simple model for real-life signals. Speech, images, biowaveforms, and 

solar signals all have a low pass spectrum. Low order all-pole filters are the simplest 

realization of a low pass filter. It is natural to model these signals as the output of 

such a filter with an independent sample excitation at the input. This is particular 

close to the model for speech generation. The excitation is white noise for unvoiced 

sounds and a pulse train for voiced sounds, both of which can be viewed as white in 

spectrum, while the all-pole filter coefficients can be related directly to vocal tract 

parameters such as the spacing of the lips, teeth and palate. 

6.2 Set Partitioning of Codewords of Markov Gaussian Source 

The initial codebook is generated by the LBG algorithm and then set partition the 

codewords into subsets as the procedures in section 3.2.1. With 2-dimensional 广 

order Markov Gaussian source of correlated coefficient p = 0.9 as training sequence, 

codebook with 32 codewords is generated and set partitioned into 2 and 4 subsets as 
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shown in Figures 6.1. 
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Figure 6.1 A codebook for 1幼 order Gaussian source with p = 0.9 is set partitioned into 4 subsets. 

6.3 Numerical Results and Discussions 

The simulations of unequal distortion TCVQ are performed on 广 order Markov 

Gaussian source, with correlation coefficient, p = 0.9. Tables 6.1-6.3 show the SDR 

of scalar TCQ, 2- and 3-dimensional TCVQ, respectively, for order Markov 

Gaussian source [27]. 
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From Tables 6.1-6.3, SDR with fine and coarse quantization is always better and 

worse than the SDR for equal distortion, respectively. The SDR of coarse 

quantization is even worse than that of Lloyd-Max quantizer with the same coding 

rate. In general, SDR of both fine and coarse quantization increases with both coding 

rate and the number of states. Tables 6.1-6.3 also show the average SDR of both fine 

and coarse SDR. 

For scalar TCQ, the average SDR is up to 1.0 dB higher than that of the equal 

distortion. For 2-dimensional TCVQ, the average SDR is up to 0.9 dB higher than 

that of the equal distortion. For 3-dimensional TCVQ, the average SDR is up to 0.6 

dB higher than that of the equal distortion. It is show that the SDR of fine 

quantization is better than that of equal distortion. 

From Table 6.1, for scalar TCQ, the average SDR is 0.5 to 1.3 dB lower than that 

with equal distortion. From Table 6.2’ for 2-dimensional TCVQ, the average SDR is 

0.3 to 0.6 dB lower than that with equal distortion. From Table 6.3，for 3-dimensional 

TCVQ, the average SDR is 0.2 to 0.3 dB lower than that with equal distortion. The 

average SDR is quite close to that of equal distortion, in particular for high 

dimension TCVQ. Usually, the discrepancy between the average distortion and the 

equal distortion increases with rate, similar to memoryless Gaussian source. Also, the 

discrepancy decreases as the dimension increases. 

Depending on coding rate and number of states, the SDR difference between the fine 
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and coarse quantization is from 1.5 to 2.6 dB, 1.3 to 2.2 dB and 1.1 to 1.5 dB for 

scalar TCQ, 2-D TCVQ and 3-D TCVQ, respectively. Usually, the difference in SDR 

increases with rate. 

Figures 6.2-6.4 plot the SDR as a function of code rate for scalar TCQ, 

2-dimensional TCVQ and 3-dimensional TCVQ, respectively, for 16-state trellis and 

Markov Gaussian source. Figures 6.2-6.4 show that the average SDR is close to the 

minimum achievable SDR for equal distortion, similar to the case of memoryless 

source. 

Average SDR increases when the dimension of TCVQ increases. Comparing Tables 

6.1-6.3，the average of unequal distortion increases 3.8 and 5.2 dB when it changes 

from scalar TCQ to 2- and 3-dimensional TCVQ, at the rate of 2 bits/sample and 

16-state trellis, for order Markov Gaussian source. The changes are much more 

significant in the case of Markov Gaussian source, compared to memoryless 

Gaussian source. 

Comparing Tables 5.1 and 6.1’ the average SDR of scalar TCQ of Markov Gaussian 

source is up to 0.3 dB higher than that of memoryless source. If 2-dimensional 

TCVQ is applied, the difference is much higher. The average SDR of 2-dimensional 

TCVQ of Markov source is 3.4 to 3.8 dB higher than that of memoryless source. The 

difference of up to 4.9 dB is even higher for 3-dimensional TCVQ. 
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Rate in bits no. of Equal Unequal Distortion 
per sample states Distortion fine — coarse average — 

4 5.35 一5.66 4.15 4.84 

1 8 6.46 6.48 4.22 5.20 

16 6.58 6.59 — 4.32 — 5.30 

_ ^ _ ~ 0 . 5 8 10.95 9.22 10.00~ 

2 8 10.95 11.44 9.21 

16 11.02— 11.56 9.34 — 10.31 “ 

4 15.78 一16.24 —14.39 15.22 

3 _§____16.19 17.00~ 14.48^ 

16 16.35— 17.24 一 14.61 _ 15.73 “ 

4 21.44 一 22.10 - 20.02 20.93 
4 _ J _ _ ^ . 7 4 22.76~ 

16 21.98 22.92 20.29 21.41~ 
Table 6.1 SDR (in dB) of equal and unequal distortion scalar TCQ for Markov Gaussian source 

with p = 0.9 

25.00 

% f 

20.00 - .‘：̂；；̂：̂̂^̂丨 
一 - 一 一 ’ ’ 

^ 15.00 -

⑴ 10.00 - , 

'一’’’’ ~ •~equa l 

i r ^^O ' 一 - - X- - fine 
一 ' - ' 

5.00 --’ -- + - coarse 

—% average 

0.00 1  

1 2 3 4 
Code Rate (bits/sample) 

Figure 6.2 SDR performance as a function of code rate for 16-state scalar TCQ for Markov 
Gaussian source with p = 0.9 
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Rate in bits no. of ~ E q u a l U n e q u a l Distortion 一 

per sample states Distortion fine coarse average 
—4 一 8.80 8.86 — 7.59 8.18 

1 _ 8 8.87 9.17 7.69 8.37 
16 8.94 9.32 ~ 7.81 “ 8.50 

— 4 14.28 —14.51 一13.26 _ _ i 3 j 4 _ 

2 8 14.39 14.98 13.34 

16 14.45 14.94 13.43 14.12 

~20.54 18.80 
3 8 20.19 20.91 18.927^ 

16 20.26 20.91_ 18.95 一 19.82 
— 4 ~26.24 ~26.88 24.98 ~ 2 ^ 8 3 ~ 

4 8 26.37 27.23~ 25.05^ 
16 26.42 27.22 25.12 26.04~ 

Table 6.2 SDR (in dB) of equal and unequal distortion 2-dimensional TCVQ for Markov 
Gaussian source with p = 0.9 

30.00 — 

25.00 -

g 20 .00 -

� 15.00 - J f ^ ^ ' 
equal 

一 - - X - fine 

10.00 ' -—-coarse 

I — X -average 

5.00 ‘ 
1 2 3 4 

Code Rate (bits/sample) 

Figure 6.3 SDR performance as a function of code rate for 16-state 2-dimensional TCVQ for 
Markov Gaussian source with p = 0.9 
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rate in bits no. of Equal Unequal Quantization 一 

per sample states Quantization fine coarse overall 
4 ~10.03 ~ r o . 3 1 9.21 ~ 

1 8 10.08 10.57 — 9.25 • 9.86 
16 10.12 10.53 9.32 9.88 
4 15.63 16.08 14.73 15.35 

2 _ 8 15.72 16.28 14.81 一 15.48 
16 15.76 16.23 14.87 15.50 

Table 6.3 SDR (in dB) of equal and unequal distortion 3-dimensional TCVQ for Markov 
Gaussian source with p = 0.9 

17.00 

16.00 -

15.00 - Z： ^，• 

14.00 -

•D - ’ z z 
^ 13.00 - . 

12.00 - ,, 
~•~equa l 

11.00 Z ； ： ^ - X - fine 

" z ' ' ---h- coarse 

10.00 丨 r y Z : a g e | 

• « , 

9.00 

1 Code Rate (bits/sample) 2 

Figure 6.4 SDR performance as a function of code rate for 16-state 3-dimensional TCVQ for 
Markov Gaussian source with p = 0.9 
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We performed the simulations on Markov Gaussian source again, with correlation 

coefficient, p = 0.5. Tables 6.4-6.6 show the SDR of scalar TCQ, 2-dimensional 

TCVQ and 3-dimensional TCVQ, respectively. Figures 6.5-6.7 plot the SDR as a 

function of code rate for scalar TCQ, 2-dimensional TCVQ and 3-dimensional 

TCVQ, respectively, for 16-state trellis. As an intermediate between memoryless 

source and correlated source with p = 0.9，there are continuous trends in various 

aspects. 

For scalar TCQ, the SDR of fine distortion is 0.5 to 0.9 dB higher than that with 

equal and minimum distortion. For 2-dimensional TCVQ, the SDR of fine distortion 

is 0.3 to 1.2 dB higher than that with equal distortion. For 3-dimensional TCVQ, the 

SDR of fine distortion is 0.3 to 0.5 dB higher than that with equal distortion. It is 

shown that the SDR of fine quantization is always better than the SDR for equal 

distortion. 

From Table 6.4, for scalar TCQ, the average SDR is 0.2 to 0.8 dB lower than that 

with equal distortion. From Table 6.5，for 2-dimensional TCVQ, the average SDR is 

0.2 to 0.5 dB lower than that with equal distortion. While from Table 6.6, for 

3-dimensional TCVQ, the average SDR is 0.2 to 0.3 dB lower than that with equal 

distortion. Both the value and discrepancy decreases as the dimension increases. 

These figures show the average of unequal distortion is close to that of equal 

distortion. 
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Average SDR increases when the correlation of the Gaussian source increases. From 

Tables 5.1 and 6.4，comparing memoryless Gaussian source and Markov Gaussian 

source with correlation coefficient p = 0.5，the average SDR is 0.1 dB higher, at the 

rate of 2 bits/sample and for 16-state trellis. From Tables 5.1 and 6.1，comparing 

memoryless Gaussian source and Markov Gaussian source with correlation 

coefficient p = 0.9，the average SDR is 0.2 dB higher, at the same rate and same 

trellis. This shows that higher the correlation of the sample source, the higher 

average SDR can be achieved by unequal distortion scalar TCQ. This result is more 

obvious in the case of 2-dimensional TCVQ. From Tables 5.2 and 6.5，comparing 

memoryless Gaussian source and Markov Gaussian source with correlation 

coefficient p = 0.5，the average SDR is 0.6 dB higher. From Tables 5.2 and 6.2， 

comparing memoryless Gaussian source and Markov Gaussian source with 

correlation coefficient p = 0.9，the average SDR is 3.7 dB higher. The average SDR 

of Markov source with correlation coefficient p = 0.5 is 1.1 dB higher than that of 

memoryless source, and that of Markov source with correlation coefficient p = 0.9 is 

4.9 dB higher than that of memoryless source. 
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rate in bits no. of Equal Unequal Quantization  
per sample states Quantization fine coarse overall 

4 ~ 5.17 ~ 5 . 7 0 4.00 4.77 
1 8 ^ 5.99 ~ l l 3 4.96 

16 5.28 6.09 4.25 5.07 
4 10.55 11.08 8.97 ~ 9 . 9 0 

2 8 10.71 11.60 9.04 ~ l O . U 
16 10.81 11.45 9.25 10.20 — 
4 16.23 16.71 14.34 15.37 

3 8 16.39 17.16 14.46 15.59 
16 16.51 17.29 — 14.52 — 15.69 
4 21.65 22.27 19.88 20.92 

4 8 21.97 ~22.88 19.99 21.21 
16 22.21 22.97 20.21 21.36 

Table 6.4 SDR (in dB) of equal and unequal distortion scalar TCQ for Markov Gaussian source 
with p - 0.5 

25.00 

V 

20.00 - . : 

m 15.00 -

g J ^ ^ -
⑴ 1 0 . 0 0 - ' 一 ^ 

. • “ e q u a l 

..、• --X-- fine 

5.00 —I—coarse 

X average 

0.00 ‘ 1  
1 2 3 4 

Code Rate (bits/sample) 

Figure 6.5 SDR performance as a function of code rate for 16-state scalar TCQ for Markov 
Gaussian source with p = 0.5 

6 7 



rate in bits no. of Equal Unequal Quantization  
per sample states Quantization fine coarse overall 

4 — 5.77 ~ 6 . 0 5 4.90 5.43 
1 8 187 6.40 ~ 4 . 9 8 5.62 

16 5.92 6.40 5.03 5.65 
4 11.23 11.62 10.06 10.76 

2 8 11.36 11.93 10.14 10.94 
16 11.42 11.88 10.22 10.97_ 
4 17.11 ~17.60 15.76 16.58 

3 8 17.23 17.86 15.84 16.72_ 
16 17.27 17.84 15.90 16.75 
4 23.69 24.66 22.21 23.30 

4 8 23.81 24.96 22.30 23.46 
16 23.83 24.91 22.38 23.49 

Table 6.5 SDR (in dB) of equal and unequal distortion 2-dimensional TCVQ for Markov 

Gaussian source with p = 0.5 

3 0 . 0 0 

2 5 . 0 0 -

20.00 -

m 

含 1 5 . 0 0 - 一 

的 

10.00 - equal 

‘ --X - fine 

r 1 - - ’ 一一 + - coarse 
5 . 0 0 ‘'' 

X average 

0.00 ‘ J  

1 2 3 4 

Code Rate (bits/sample) 

Figure 6.6 SDR performance as a function of code rate for 16-state 2-dimensional TCVQ for 
Markov Gaussian source with p - 0.5 
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rate in bits no. of Equal Unequal Quantization  
per sample states Quantization fine coarse overall 

4 一 6.23 ~ 6 . 5 4 5.41 5.93 
1 8 6J5 5.50 ~ 6 . 0 7 

16 6.34 6.69 ~ 5 . 5 7 6.09 
4 11.83 12.20 10.94 11.53 

2 8 11.92 12.39 11.06 11.67— 
16 11.95 12.39 11.10 11.70~ 

Table 6.6 SDR (in dB) of equal and unequal distortion 3-dimensional TCVQ for Markov 
Gaussian source with p = 0.5 

1 3 . 0 0 

12.00 -

11 .00 - ^ ' 

10.00 - ^ c T ^ z ' ' 
•D 一 - ’ z z 
^ 9 . 0 0 -

8.00 - z ^ ； ； ： ^ z I e q u a l 
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I " . ' ' -- + - coarse 

6 . 0 0 〉广 , , , I —X -average 

5 . 0 0 

1 2 
Code Rate (bits/sample) 

Figure 6.7 SDR performance as a function of code rate for 16-state 3-dimensional TCVQ for 
Markov Gaussian source with p = 0.5 
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Chapter 7 

Conclusions 

Trellis-coded quantizers using two different codebooks are designed for unequal 

distortion. The computational complexity is the same as that with one set of 

codebook for equal distortion. While samples quantized with fine and coarse 

codebooks achieve better and worse distortion, respectively, than that with single 

codebook. The average SDR of the fine and coarse distortion (average SDR) is 

slightly less than the minimum achievable distortion. 

For 2-dimensional TCVQ, the SDR of the fine distortion is up to 0.9 dB higher than 

that of the equal distortion, for both memoryless and Markov Gaussian (p=0.9) 

sources. The fine distortion is always better than that of equal distortion. 

For 2-dimensional TCVQ, the average SDR of unequal distortion is 0.2-0.6 dB and 

0.3-0.6 dB lower than that with equal distortion, for memoryless and Markov 

Gaussian sources (/?=0.9), respectively. The performance of unequal distortion coder 

is close to the equal distortion one. 
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Performance is always improved with the increase of the dimension of TCVQ is 

applied. At the rate of 2 bits/sample and 16-state trellis, the increase in average SDR 

for 2-dimensional TCVQ over scalar TCQ is 0.3 and 3.8 dB, for memoryless and 

Markov Gaussian (/?=0.9) sources, respectively. 

The unequal distortion TCVQ coder performs better in correlated sources than 

memoryless source. The average SDR of Markov Gaussian sources (/?=0.9) is up to 

0.3 dB higher than that of memoryless Gaussian source, for scalar TCQ. The 

difference is much higher if 2-dimensional TCVQ is used, resulting 3.4-3.8 dB 

improvements. For 3-dimensional TCVQ, the average distortion of Markov Gaussian 

source is up to 4.9 dB higher than that of the memoryless one. 

Future work can be done on applying unequal distortion TCVQ over signal 

compression. TCVQ with unequal distortion can be applied for systems with two 

different classes of signal, each having different importance. In image compression 

using wavelet transform, as a simple example, the fine distortion TCVQ can be 

applied to low-frequency subbands having higher visual importance and the coarse 

quantization can be applied to high-frequency subbands having lower visual 

importance. Although this kind of scalable signal compression can be traditionally 

accomplished through bit allocation, quantizers with unequal distortion may provide 

better method to resolve this problem. 
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