
DESIGN AND PERFORMANCE ANALYSIS

OF A

SUPER-SCALAR

VIDEO-ON-DEMAND SYSTEM

L E E CHUNGKING

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF PHILOSOPHY

IN

INFORMATION ENGINEERING

©THE CHINESE UNIVERSITY OF HONG KONG

AUGUST 2001

THE CHINESE UNIVERSITY OF HONG KONG HOLDS THE COPYRIGHT OF THIS THESIS.
ANY PERSON(S) INTENDING TO USE A PART OR WHOLE OF THE MATERIALS IN THE THESIS
IN A PROPOSED PUBLICATION MUST SEEK COPYRIGHT RELEASE FROM THE DEAN OF THE
GRADUATE SCHOOL.

I
j

』

T ® W 三I

.i

-
:s

i

To my family and Sylvia

i

Acknowledgements

This thesis is dedicated to my family. I would like to thank them for giving me

support and care. Thank them especially for the delicious food and nutriment. I am

especially grateful to my supervisor Professor Jack Y. B. Lee for his invaluable

advice and guidance on my study. Through his guidance, both of m y knowledge and

vision broadened.

I also like to thank my colleagues, Ah Mo, Ken, Edward, Rudolf and Raymond

for their kind advice and valuable idea. I am so appreciate to know all the people of

IE Mphil99 who play and share with me over the years. Without them, I cannot have

an enjoyable study period.

Finally, I would like to thank Sylvia who is the most special person in m y life.

Thank for her endless support especially for her patience on me.

ii

Abstract

Despite the availability of video-on-demand (VoD) services in a handful of

cities around the world, large-scale deployment of VoD services in a metropolitan is

still economically impractical. A lot of researches have been done in improving the

scalability of VoD systems, but to this day, the ultimate capacity of a video server is

still finite.

In this thesis, we present a Super-Scalar Video Server (SS-VoD) which is a

novel architecture to tackle this capacity problem. By the intelligent use of network

multicast and client-side caching, the proposed architecture can vastly reduce server

and network resource requirement. More importantly, the resource reduction

increases with the load, and the server latency asymptotically approaches a constant

when the load is further increased. For example, a small server with hardware

capacity, which is equivalent to 50 concurrent streams in traditional video servers,

can serve a 120-min video with an average latency no more than 5.6 seconds,

regardless of the customer arrival rate. This thesis presents this new architecture,

derives an approximate performance model, and evaluates the architecture using

numerical results from analytical models, simulations, and benchmarking.

iii

摘要

儘管在世界上很多城市已經可以享受視頻點播服務(VoD)，但是在大城

市裏大規模地提供視頻點播服務還是不切實際的。人們已經做了很多硏究來提

高視頻點播系統的容量，但是直到今天，視頻伺服器的最終容量還是有限的。

在本論文中，我們提出了一種新的結構來處理系統容量問題：超容量視頻

伺服器（Super-Scalar Video Server) °通過智慧化地應用網路廣播（network

multicast)和用戶端緩存(client-side caching) ’我們提出的構造可以極大地減

少對伺服器和網路資源的需求。更重要的是，資源需求的減少和網路的負載成

正比’而且當負載進一步增加時’伺服器的延遲接近一個常數。例如，對於一

個支援50個資料流程的小伺服器，我們的構造可以支援無限多的人欣賞一齣

長一百二十分鐘的錄像’並且平均延遲不超過5.6秒。本論文的內容包括：提

出了這種新的構造，推出了一個近似的性能模型，用理論模型的數値結果分析

了這種構造°

iv

Contents

Acknowledgements ii

Abstract iii

List of Figures vii

1. Introduction 1

1.1 Contributions of This Thesis 3

1.2 Organizations of This Thesis 3

1.3 Publication 4

2. Overview of VoD Systems 5

2.1 True VoD 6

2.2 Near VoD 7

2.3 Related Works 9

2.3.1 Batching 9

2.3.2 Patching 11

2.3.3 Mcache 11

2.3.4 Unified VoD 12

2.4 Discussions 15

3. Super-Scalar Architecture 17

3.1 Transmission Scheduling 20

3.2 Admission Control 21

3.3 Channel Merging 26

3.4 Interactive Control 29

4. Performance Modeling 31

4.1 Waiting Time for Statically-Admitted Clients 32

4.2 Waiting Time for Dynamically-Admitted Clients 33

4.3 Admission Threshold 38

V

4.4 Channel Partitioning 39

5. Performance Evaluation 40

5.1 Model Validation 40

5.2 Channel Partitioning 42

5.3 Latency Comparisons 44

5.4 Channel Requirement 46

5.5 Performance at Light Loads 47

5.6 Multiplexing Gain 49

6. Implementation and Benchmarking 51

6.1 Implementation Description 51

6.2 Benchmarking 53

6.2.1 Benchmarking Setup 53

6.2.2 Benchmarking Result 55

7. Conclusion 56

Appendix.... 57

Bibliography 61

vi

List of Figures

FIGURE 2.1： A TYPICAL VIDEO-ON-DEMAND SYSTEM 6

FIGURE 2.2： CHANNEL SCHEDULING OF T V O D 7

FIGURE 2.3: CHANNEL SCHEDULING OF N V O D 8

FIGURE 2.4： ARCHITECTURE OF THE U V O D SYSTEM 12

FIGURE 2.5： SCHEDULING OF MULTICAST CYCLES FOR A MOVIE IN U V O D 13

FIGURE 3.1： SYSTEM ARCHITECTURE 18

FIGURE 3.2： TRANSMISSION SCHEDULE FOR ONE MOVIE 20

FIGURE 3.3： STATE-TRANSITION DIAGRAM FOR THE ADMISSION CONTROLLER 22

FIGURE 3.4: STATE-TRANSITION DIAGRAM FOR THE SERVICE NODES 24

FIGURE 3.5： STATICALLY-ADMITTED 27

FIGURE 3.6： DYNAMICALLY-ADMITTED 27

FIGURE 3.7： CHANNEL MERGENCE OF MULTI-USER ON SS-VOD 28

FIGURE 4.1 ： USER CLASSIFICATION IN DYNAMIC MULTICAST CHANNEL 34

FIGURE 5.1： LATENCY COMPARISON OF ANALYTIC AND SIMULATION RESULTS 41

FIGURE 5.2： NORMALIZED LATENCY VERSUS PROPORTIONS OF DYNAMIC MULTICAST

CHANNEL 42

FIGURE 5.3： OPTIMUM CHANNEL ALLOCATION OF SS-VOD AND U V O D 44

FIGURE 5.4： LATENCY COMPARISON OF SS-VOD WITH TYPICAL VOD SYSTEMS 45

vii

FIGURE 5.5： CHANNEL REQUIREMENT OF SS-VOD AND TYPICAL V O D SYSTEMS 4 6

FIGURE 5.6： CHANNEL REDUCTION OVER T V O D 4 8

FIGURE 5.7： MULTIPLEXING GAIN OF SS-VOD SYSTEM 50

FIGURE 6.1: A SS-VoD NETWORK 52

viii

Chapter I. Introduction

Chapter 1

Introduction

Video-on-demand (VoD) systems have been commercially available for many

years. However, except for a few cities, large-scale deployment of VoD service is

still uncommon. One of the reasons is the high cost in provisioning large-scale

interactive VoD service. The traditional model of true-video-on-demand (TVoD)

calls for a dedicated channel, both at the server and at the network, for each active

user during the entire duration of the session (e.g. 1-2 hours for movies). In a city

with potentially millions of subscribers, the required infrastructure investment would

be immense.

To tackle this problem, a number of researchers have started to investigate

various innovative architectures in an attempt to improve the scalability and

efficiency of large-scale VoD systems [1-15]. Examples include the periodic

broadcasting approach by Chiueh et al. [1], the batching approach by Dan et al [2]

and Shachnai et al. [3], the split and merge protocol by Liao et al. [4], the stream

tapping scheme by Carter et al. [5], the pyramid broadcasting approach by

Viswanathan et al. [6] and Aggarwal et al. [7], the piggybacking approach by

1

Chapter I. Introduction

Golubchik et al [8], Aggarwal et al [9], the patching approach by Hua et al. [10]

and the Mcache approach by Ramesh et al [11]，and so on. It is beyond the scope of

this thesis to compare these difference approaches and the interested readers are

referred to [5] for some comparative discussions.

In this thesis, we present a Super-Scalar Video-on-Demand architecture (SS-

VoD) to tackle this capacity problem. By the intelligent use of network multicast and

client-side caching, the proposed architecture can vastly reduce server and network

resource requirement. Specifically, our goal in this thesis is to design a video-on-

demand system that scales in a super-linear manner. Consequently, the average

latency as experienced by new customers should asymptotically approach a constant

(e.g. a few seconds). For example, our results show that a small SS-VoD server with

hardware capacity equivalent to 50 concurrent streams in traditional video server can

serve a 120-min video with an average latency no more than 5.6 seconds, regardless

of the customer arrival rate.

This super-scalar property will enable the VoD system to serve a huge number

of concurrent users — a requirement for metropolitan-scale deployments. Unlike

traditional video servers where the server cost increases proportionally for larger user

population, the server-cost per customer for the proposed super-scalar architecture

decreases for larger user population. Hence this super-scalar architecture can provide

a cost-effective solution for deploying large-scale, city-wide video-on-demand

services.

2

Chapter I. Introduction

1.1 Contributions of This Thesis

The main contribution of this thesis is in the design and performance evaluation

of the Super-Scalar Video-on-Demand (SS-VoD) architecture, which provides a

solution to the capacity challenge in city-wide VoD service deployments. Specifically,

we developed a transmission scheduling algorithm for scheduling multicast

transmission, and an admission control algorithm for processing and scheduling

client requests. To characterize the performance of the SS-VoD architecture, we

derived an approximate performance model for system dimensioning. The

performance model is validated against simulation results and is shown to be a

reasonable approximation. To prove the feasibility of the SS-VoD architecture, we

implement a SS-VoD prototype with off-the-shelf computer hardware and software.

Benchmarking results obtained from the prototype show that the SS-VoD

architecture is indeed super-scalar, and can be scaled up to millions of users.

1.2 Organizations of This Thesis

This thesis is organized as follows. Chapter 1 presents an introduction to this

study. Chapter 2 presents an overview of video-on-demand systems and related

works. Chapter 3 presents the SS-VoD architecture. Chapter 4 presents an

approximate performance model of SS-VoD. Chapter 5 evaluates the performance of

SS-VoD via numerical and simulation results. Chapter 6 presents the implementation

3

Chapter I. Introduction

of the SS-VoD prototype and benchmarking results. Finally, Chapter 7 concludes this

thesis.

1.3 Publication

V.C.H. Lee, J.Y.B. Lee, "Improving UVoD System Efficiency With Batching,"

Proc. International Conference on Software, Telecommunications and Computer

Networks — SoftCOM, Croatia, October 2000.

4

Chapter 2. Overview of VoD Systems

Chapter 2

Overview of VoD Systems

Many video-on-demand (VoD) systems have been developed in the last decade.

Figure 2.1 depicts a typical VoD system, consisting of a video server, an

interconnection network, and multiple video clients. The video server usually is a

high-performance computer that stores compressed digital video in harddisks for

transmission to clients over the network. A video client receives video data from the

video server and decodes them for playback. Client device can be a single personal

computer (PC) or a set-top box (STB) connected to a television. The interconnection

network can be implemented using Ethernet, A T M or other network technologies.

The following sections review the existing VoD architectures.

5

Chapter 2. Overview of VoD Systems

Q Client PC

\ /

w^L/

r。。。。i““ I ^ ^ J j
Set-top box „ ,

^ Television

Figure 2.1: A typical video-on-demand system

2.1 True VoD

The most common type of VoD systems is called true video-on-demand

(TVoD), depicted in Figure 2.2. To initiate a new video session, a client first sends a

request to the video server for a specific video. The video server processes the

request by retrieving video data from the storage and streaming the video data over

the network to the client device. The client device typically first buffers a small

amount of video data and then starts video playback while concurrently receiving

video data from the server.

6

Chapter 2. Overview of VoD Systems

Hr——n ESln
i O
Video Server

Client PC

represent a channel

Figure 2.2: Channel Scheduling ofTVoD

In a TVoD system, each client has its own dedicated channel for video

streaming where a channel refers to network and server resources allocated for a

video session. As each user has a dedicated channel, one can perform interactive

VCR-like controls such as pause/resume, fast-forward and rewind at any time.

However, as the video server has a limited number of channels for serving users,

arriving users will be denied service once all these channels are occupied. Therefore

the resource requirement of a TVoD system is proportional to the desired system

capacity and this limits the scalability of VoD systems designed using the TVoD

architecture.

2.2 Near VoD

Another type of VoD system, commonly called near video-on-demand (NVoD)

[1], repeatedly transmits a video stream over multicast or broadcast channels as

shown in Figure 2.3. The channels are scheduled in advance and independent of the

7

Chapter 2. Overview of VoD Systems

client request. For example, suppose there are 10 channels assigned for a video, and

the movie length is 120 minutes. Then the movie will be restarted every 12 minutes

as shown in Figure 2.3.

D

I f ^ i r / ^ 5
I'~'I I mj^ I Interconnnect CH2 |

• 1 1 J - r r - ^ . Network ^

,DDDDDOD I, : ‘ V J a
Video Server , \ / Client PC

^ 层
」 圉 "
Client PC

Start of CH1 End of CH I , and Start again

/ i I I y ^
CHI i 1 1 1 1 t i l l

I I I I
I I I I

(U I 1 1 1 1
> CH2 ！ ！ ！
0 丨 ！ E 1 i 1 i——^ *
<U J I
1 CH3 I I I

CH4 1 \ I

Figure 2.3: Channel Scheduling ofNVoD

To start a new video session, a client simply waits for the next upcoming

transmission cycle to begin playback. Given that the video is restarted once every 12

minutes, the average and worst-case waiting time will be equal to 6 minutes and 12

minutes respectively.

8

Chapter 2. Overview of VoD Systems

An important characteristic of N V o D is that when a new transmission cycle

starts, all the waiting clients can share the multicast/broadcast channel and start video

playback at the same time. This eliminates the need for allocating a dedicated

channel to each video session and hence the resource requirement of a N V o D system

is independent of the desired system capacity. In theory, a N V o D system can serve

any number of users, albeit at the expense of longer start-up latency and limited

interactivity.

2.3 Related Works

Apart from the TVoD and N V o D systems, researchers have recently

investigated various new approaches to improve the efficient of VoD systems. In the

following sections, we review some of these previous works that employ novel way

of multicasting to achieve scalability but without the long startup latency commonly

found in N V o D systems.

2.3.1 Batching

Batching is first proposed by Dan et al. [3] and later also investigated by

Aggarwal et al. [5], Almeroth et al. [6] and Shachnai et al [7]. The principle of

batching is to group users waiting for the same movie at a video server and serve

them using a single multicast channel. Unlike N V o D system, the schedule of

multicast channels is not fixed but dynamically determined depending on the user

9

Chapter 2. Overview of VoD Systems

request pattern. Clearly this batching technique can reduce resource requirement both

at the server and in the network. However, as multiple users share a multicast

channel, individual user then cannot perform interactive V C R controls such as pause-

resume, fast-forward, and fast-backward. To tackle this limitation, one can set aside

some contingency channels to serve those users performing interactive controls as

proposed and studied in Dan et al [3], Almeroth et al. [6], and Li et al [8].

There are several algorithms in which waiting users are scheduled for service in

batching. For example, in FCFS batching [3], arriving users all join a single queue.

Once a free channel becomes available in the server, the user at the head of queue

will be served. Moreover, other queued users with the same movie selection will also

be served together by the same multicast channel.

Another algorithm called Maximum Queue Length (MQL) [3]，maintains a

separate queue for each movie for the arriving users. Once a free channel becomes

available, the movie with the maximum number of waiting users will be selected for

service. This algorithm can improve batching efficiency at the expense of fairness as

users waiting for unpopular movies are likely to experience longer waiting time than

users waiting for popular movies. There are other more sophisticated batching

algorithms and the interested readers are referred to the study by Shachnai et al. [7].

Their simulation results showed that resource reductions of up to 70% could be

realized in large system serving around 5000 concurrent users, with an average

waiting time of around one minute.

10

Chapter 2. Overview of VoD Systems

2.3.2 Patching

Hua et al [10] proposed a patching approach where client caching and channel

hopping are used to merge channels with near starting time to reduce resource

requirement. Specifically, all channels in patching are multicast channels and a

channel can function as either a regular channel or a patching channel. Depending on

the arrival time and other system parameters, an arriving user may start the video

session with a regular channel. Or it may start the video session using a patching

channel while concurrently cache data from another regular channel. After a short

time period, the user can then release the patching channel by continuing video

playback via the cached data and the regular channel. Their simulation results show

that at a latency of zero, patching can provide 300% system capacity compared to an

equivalent TVoD system.

2.3.3 Mcache

Ramesh et al recently proposed the multicast with cache {Mcache) approach

[11] to further increase the performance of patching by using regional cache server.

The regional cache server stores the first few minutes or even seconds, called prefix,

of each video. Using the prefix from the cache server, a client can start video

playback immediately while waiting for a free regular or patching channel. Hence by

introducing the cache server, the latency of user request is reduced compared to pure

patching. Simulation results [11] showed that at a latency of zero, Mcache with one-

11

Chapter 2. Overview of VoD Systems

minute prefix can provide 1300% system capacity compared to an equivalent TVoD

system. The tradeoff is the additional costs for the cache server.

2.3.4 Unified VoD

Lee [15] recently proposed a U V o D architecture where both unicast and

multicast channels are employed for video delivery. By using intelligent client

buffering and channel switching, a U V o D system can achieve latency similar to

TVoD while at the same time dramatically reduces the resource requirement.

r 1

！ Ny Unicast Channels |

I rQ i
；Request Queue Q ；.
； 1 1 j 1111.11 J . r ^ Unicast video

^ 1 1 1 1 •剛 PI . [1/ transmission

\ Admission \ ！ 1
Requests [Z：；) Control ！ " Q " ；

^ ^ i-^-K Multicast video

！ I • V K transmission

i Lo i
• I
• I

1 Nm Multicast Channels I

Figure 2.4: Architecture of the UVoD System

Figure 2.4 depicts the UVoD architecture. Let N be the total number of

available channels, where Nu of them are unicast channels, Nm = N - N u are multicast

channels. Let M b e the number of movies of length L seconds each and movies are

assumed to have the same length for simplicity. The multicast channels are evenly

assigned to all movies and the architecture requires Nm > Msuch that each movie can

12

Chapter 2. Overview of VoD Systems

be allocated with at least one multicast channel. Therefore, there are _N爪 IM_

multicast channels allocated for each movie. The movie is then transmitted over all

allocated multicast channels repeatedly as shown in Figure 2.5.

Length of Multicast

movie (L) repeated • ‘ •

人 人
r 二 」

O n e multicast channel -i i ！ i i i ^ I I I I ！ I I
I I ' I • — ‘ r^ r—IT171 1 1 ： 1

1 1 1
I j j I I I • I

I f e t j ^ f f ^ l I I I
I i I
I I I •‘••»、： . * V*'-jJ I I ‘ ” I •〔，’••»,«?、-…fr*** ̂ I

— k - I
Tr

Figure 2.5: Scheduling of multicast cycles for a movie in UVoD

Note that transmission cycles are offset by

^ ^ ^ (2.1) L斤J似」

seconds between adjacent multicast channels allocated to the same movie.

When a user arrives at the system, the admission controller (Figure 2.4) will

assign the user to wait for either a unicast channel (admit-via-unicast) or a multicast

channel (admit-via-multicast) to begin playback. The purpose of the admission

controller is to equalize the average waiting time for users served initially by unicast

channel and multicast channel [15]. Specifically, a parameter called admission

threshold, denoted by S, is introduced for admission control. Let t be the time a user

arrives at the system requesting movie /，and let tm be the start time of the next

multicast cycle for movie i. The system will assign the user to wait for the upcoming

13

Chapter 2. Overview of VoD Systems

multicast cycle if the resultant waiting time will be smaller than the admission

threshold:

(t m - t) < S (2 . 2)

The admitted user continues to receive video data from this multicast channel

for the entire video playback as in a N V o D system.

If the resultant waiting time is longer than the admission threshold, the

admission controller will assign the user to wait for a free unicast channel to begin

video playback. All unicast channels share a single input queue as shown in Figure

2.4 and waiting users are served according to the first-come-first-serve (FCFS)

queueing discipline. By adjusting the admission threshold, the system can maintain

similar latency for both admit-via-multicast and admit-via-unicast users.

For admit-via-unicast users, the client device first starts caching video data

from the previous multicast of the requested movie. Then it waits for a free unicast

channel to start playback. For example, assuming that the user arrives at time t, and

let tm.\ and tm be the nearest epoch times of multicast channel m-\ and channel m, for

which tm-i < t < (tm- S). Then at time t, the client starts caching video data from

channel m-\ into the client's local storage. At the same time, the client enters the

request queue and starts video playback using unicast once a free unicast channel

becomes available. Therefore UVoD assumes that the client devices can receive two

video channels simultaneously and have local storage to cache up to Tr seconds of

video data.

14

Chapter 2. Overview of VoD Systems

The admission process is not yet completed as the client still occupies one

unicast channel. As the client concurrently caches multicasted video data for the

movie starting from movie time {t-tm.\), the unicast channel can be released after a

time {t-tm-\) and the client can continue video playback using the local cache. Hence

similar to Liao et al. [4]，the local cache is used to add time delay to the multicast

video stream so that it can be synchronized with the client playback. Since 0<(t-tm-

i)<{Tr- S)«L, we can see that the unicast channels are occupied for much shorter

duration when compared to TVoD. This reduction in service time allows more

requests to be served by the unicast channels.

The analytic show that the 500% performance gain of U V o D to TVoD

architecture can be achieved at a latency requirement of one second. In the

meanwhile, this architecture provides pause/resume interactive control without

incurs any additional system load. The optimum channel allocation on U V o D for

multicast and unicast channel is depends on the system load, and the number of

multicast channel increase as the increment in the system load.

2.4 Discussions

Reconsidering the UVoD architecture, we observe that the unicast channels

within UVoD operate in the same way as a TVoD system. The difference is that a

unicast channel in UVoD is not occupied for the entire duration of the movie. The

channel will be released once the user is merged back to a stagger multicast channel.

15

Chapter 2. Overview of VoD Systems

This motivates us to investigate applying algorithm similar to batching to these

unicast channels to further improve the system performance. This new Super-Scalar

Video-on-Demand (SS-VoD) architecture will be presented in the next chapter.

16

i

Chapter 3. Super-Scalar Architecture

Chapter 3

Super-Scalar Architecture

In this section we present the architecture and the motivation for the proposed

Super-Scalar Video-on-Demand System (SS-VoD). The overall SS-VoD architecture

is depicted in Figure 3.1. The system comprises a number of service nodes connected

via a multicast-ready network to the clients. The clients form clusters according to

their geographical proximity. An admission controller in each cluster performs

authentication as well as scheduling requests forwarding to the service nodes.

17

Chapter 3. Super-Scalar Architecture

Z Client

Regional \ •

/ " " " ^ X / ^ X 乂 Network) .
Service Node 1 — • Z \ ^

1 y s ^
Service Node 2 1 W „ . u \

| / Backbone Admission

• Network j Controller

• r ^ ^ 」 C l i e n t —

Service NodeN — • X / n • , V ^
> Regional \ •

I Network) •

Admission

Controller

Figure 3.1: System architecture.

Each service node operates independently from each other, having its own disk

storage, memory, CPU, and network interface. Hence a service node is effectively a

mini video server, albeit serving a small number of video titles to the entire user

population. This modular architecture can simplify the deployment and management

of the system. For example, since the configuration of each node is decoupled from

the scale of the system and each server node carries just a few movies, a service

provider simply deploys the right number of server nodes according to the desired

video selections. Additional server nodes can be added when more movie selections

are needed, with the existing nodes remain unchanged.

To improve reliability, one can use disk mirroring for each server node. While

parity-based schemes [16-18] have lower redundancy overhead, the number of disks

involved present too much storage capacity for use in a server node, where only a

18

Chapter 3. Super-Scalar Architecture

few movie is served. Additionally, mirroring greatly simplifies recovery from a disk

failure as a failed disk can easily be replaced without the need to shutdown the server

node (e.g. with hot-swap disks). Server performance can also be maintained despite a

disk failure and the failed disk can be rebuilt off-line simply by reloading movie data

from backup storage.

In case of a complete node failure, the service provider can simply pull the

disks from the failed node and install then into a spare node. The recovery time can

be made very short and only users currently viewing movies served by the failed

node will be affected.

SS-VoD achieves scalability and bandwidth efficiency with two techniques.

The first technique is through the use of multicast to serve multiple clients using a

single multicast channel. However, simple multicast such as those used in a near-

VoD (NVoD) system limits the time for which a client may start a new video session.

Depending on the number of multicast channels allocated for a video title, this

startup delay can range from a few minutes to tens of minutes. To tackle this initial

delay problem, we make use of the second technique: the use of client-side caching

together with channel merging, to allow a client to start video playback at any time

using a bridging channel until it can be merged back to an existing multicast channel.

The following sections present these techniques in detail.

19

Chapter 3. Super-Scalar Architecture

3.1 Transmission Scheduling

Each service node in the system streams video data into multiple multicast

channels. Let M b e the number of video titles served by each service node and let N

be the total number of multicast channels available to a service node. For simplicity,

we assume N is divisible by M and hence each video title is served by the same

number of multicast channels, denoted by Nm^NIM. These multicast channels are

then divided into two groups of NS static multicast channels and Nd=Nm~Ns dynamic

multicast channels.

8 n r n n i i — ^
_ _ _ I ~ ~ m i I— •

Multicast ；

Channels •

lO __I~~in I I•二

r p I I ^ •
Ns Static O ^ I I i •

Multicast -i ；

Channels •

L〇 ^ I ‘__•

Figure 3.2: Transmission schedule for one movie.

The video title is repeatedly multicasted over all Ns static multicast channels in

a time-staggered manner as shown in Figure 3.2. Specifically, adjacent channels are

offset by

T, = — (3.1)

20

Chapter 3. Super-Scalar Architecture

seconds, where L is the length of the video title in seconds. Transmissions are

continuously repeated, i.e. restart from the beginning of a video title after

transmission completes, regardless of the load of the server or how many users are

active. These static multicast channels are used as the main channel for delivering

video data to the clients. A client may start out with a dynamic multicast channel but

it will shortly be merged back to one of these static multicast channels to continue

the video session until completion. The next section presents the admission

procedure for starting a new video session and we explain in Chapter 3.3 how the

client is merged back to one of the static multicast channels.

3.2 Admission Control

To reduce the response time while still leveraging the bandwidth efficiency of

multicast, SS-VoD allocates a portion of the multicast channels and schedules them

dynamically according to the requests arrival patterns.

Specifically, a new request first goes to the admission controller, which first

performs authentication of the client. Armed with complete knowledge of the

transmission schedules for the static multicast channels, the admission controller then

determines if the new user should wait for the next upcoming multicast transmission

from the static multicast channels, or start playback with a dynamic multicast

channel. In the former case, the client just waits for the next multicast cycle to begin,

without incurring any additional load to the backend service nodes. In the latter case,

21

Chapter 3. Super-Scalar Architecture

the admission controller then performs additional processing to determine if a new

request needs to be sent to the appropriate service node to start a new dynamic

multicast stream.

admit client via ^ m i c ^ send extend request

next multicast cycle ^ 旧匕“̂ ^

！ ^
I

^ I
明！
Si
CP

•o 2>|
'S c I
H k - � � � �

N o 、、、、！ ^ f

” I 丨 received 「Legends
i iSTART rep ly

^ ^ _ 1 ! State

< r � = 0 ? ^ Ye: • STARTED
^ ^ update {Ac, A J and < 〉 D e c i s i o n

^ ^ send START request X ^ ^

No • Action

• Event

update {iAc, /\J

Figure 3.3: State-transition diagram for the admission controller.

Figure 3.3 depicts the state-transition diagram defining the admission procedure.

Beginning from the IDLE state, suppose that a new request arrives at time a/，which is

between the start time of the previous multicast cycle, denoted by tm, and the start

time of the next multicast cycle, denoted by tm+i. Now a predefined admission

threshold, denoted by S, determines the first admission decision made by the

admission controller: the new request will be assigned to wait for the next multicast

22

Chapter 3. Super-Scalar Architecture

cycle to start playback if the waiting time, denoted by w/, is equal to or smaller than

15, i.e.

-a.,<15 (3.2)

W e call these requests statically-admitted and the admission controller returns

to the IDLE state afterwards. For a randomly arrived request (e.g. Poisson arrivals)

that is statically-admitted, the waiting time is uniformly distributed between zero and

15, with a mean waiting time of S. This admission threshold is introduced to reduce

the amount of load going to the dynamic multicast channels. Configuration of this

admission threshold will be presented in Chapter 4.

If (2) does not hold, then the admission controller will proceed to determine if a

request needs to be sent to the appropriate service node to start a new dynamic

multicast stream — dynamically-admitted. The service nodes and admission

controllers each keeps a counter and a length tuple: {Ac, Al), where Ac=0,l,..., and

for each video title being served. Therefore each service node will

have M such admission tuples and each admission controller will have MK such

admission tuples, where K is the total number of service nodes in the system. Both

the counter and the length fields are initially set to zero.

Now with the admission tuples, the admission procedure proceeds as follows.

For requests that cannot be statically-admitted, the admission controller will first

check the counter in the admission tuple for the requested video title. If the counter

Ac is zero, then the counter is increased by one, and the length field is set according

to

23

Chapter 3. Super-Scalar Architecture

(3.3)

which is essentially the length of time passed since the beginning of the last multicast.

At the same time a START request will be sent to the service node with the requested

video title and the admission controller enters the STARTED state.

If another request for the same video title arrives during the STARTED state, say

at time ai+\, the admission controller will not send another request to the service node,

but just update the length field according to

- C (3.4)

This process repeats for any additional requests arrived during the STARTED

state.

「 Legends

IDLE
, J State

, 4 —
tsi -dI 〈 ^ > Decision

1 1 羞丨 ^ ^
•p "E! • Action

> "i E丨

I i i Event
w Wj 0[^ ^

II
^ ^ have free ^ ^ mi

c h a n n e l ? ^ ^ ^ ，
^ ^ I received extend request,

1 ^、- - -…- - ^ 丨 厂―
O i l 丨 •
3 j I 丨 ！ XJ\ J I \

II _ _ l J L__]__ I
WAITING ______ : TRANSMITTING < - - '

"S m channel available ^
> send START reply
o "5 transmit for A, seconds

Figure 3.4: State-transition diagram for the service nodes.

24

Chapter 3. Super-Scalar Architecture

At the service node side, upon receiving a START request from the admission

controller，the service node will attempt to allocate a channel from the No dynamic

multicast channels to start transmitting the video title for a duration ofAi seconds as

shown in Figure 3.4. If the allocation is successful, i.e. free channels are available,

then the counter and the length fields are zeroed and a START reply sent back to all

admission controllers to announce the commencement of the new transmission.

Otherwise it will wait for a free channel to be released.

The admission controllers, upon receiving the START reply, will do one of two

things. If the local counter value is one, then both the counter and the length fields

are zeroed and the admission process completes. Otherwise, i.e. the counter is larger

than one, the admission controller will send an EXTEND request to the service node to

extend the transmission duration according to the value of the local length Al. Note

that in this case, the length field at the admission controller will be larger than the

length field at the service node because only the length field at the admission

controller is updated for subsequent requests for the same video title. The length field

at the service node is always the one for the first request. Upon receiving the EXTEND

requests, the service node will update the interval transmission duration to the largest

one among all EXTEND requests. Transmission will stop after the specified

transmission duration expires.

It may appear that the previous admission procedure is unnecessarily complex

and the clients can better-off send requests directly to the service nodes. However,

this direct approach suffers from poor scalability. In particular, recall that each

25

Chapter 3. Super-Scalar Architecture

service node serves a few video titles to the entire user population. Therefore as the

user population grows, the volume of requests directed at a service node will increase

linearly and eventually exceed the service node's processing capability.

By contrast, the admission controller generates at most two requests, one START

request and one EXTEND request, for each dynamically-started multicast transmission,

irrespective of the actual number of client requests. Since the numbers of admission

controllers are orders of magnitude smaller than the user population, the processing

requirement at the service nodes can then be substantially reduced. For extremely-

large user populations where even requests from admission controllers can become

overwhelming, one can extend this request-consolidation strategy in a hierarchical

maimer by introducing additional layers of admission controllers to further

consolidate the requests until the volume becomes manageable by the service nodes.

3.3 Channel Merging

According to the previous admission control policy, a statically-admitted client

starts receiving streaming video data from a static multicast channel for playback

which is depicted in Figure 3.5. For dynamically-admitted clients, video playback

starts with video data received from a dynamically-allocated multicast channel. To

prepare merging the client back to an existing static multicast channel, the client

concurrently receives and caches video data from a nearby (in time) static multicast

channel as illustrated in the timing diagram in Figure 3.6.

26

Chapter 3. Super-Scalar Architecture

t Cm ‘
m ,——r^ •
(D r I I
I c h x • … ‘ l ^ l ^ f W ^ ^ W W • 攀 _ .. .
^ Chx+1:
CO 1 i

8 k - H
1 F^ Tr H
^ ！ ！
O I I

I I

漠、 ^ ^ • time

\ ^ • Beginning of a new multicast cycle.

\ Client starts playback via a static multicast channel.

' • Request arrives, waits for next multicast cycle.

Figure 3.5: Statically-admitted

tm t .
~I 1 1 1 w

I I I I
I I I

static Ch: ‘ …
I i—I 1 .
I ..".I t j.•….：

Dynamic Ch: ; ••…•丨
I I I I I 1 I I
I I I • I I I I

\ \ \ ^ • Releases dynamic channel and continue

\ \ \ playback via cached static multicast stream.

\ \ ^ • A dynamic channel becomes available,

\ \ starts playback via dynamic channel.

\ ^ • Request arrives, starts

\ caching static multicast stream.

' • Start of a static multicast cycle.

Figure 3.6: Dynamically-admitted

27

Chapter 3. Super-Scalar Architecture

Since the dynamic multicast channel will cease transmission after a time AL, a

dynamically-admitted client will concurrently receive streaming video data from

another static multicast channel and store them locally either in memory or in the

harddisk. The goal here is to use the cached video data to continue playback after the

dynamic multicast channel is released.

""“1 I ^ ~ . . r->
I I I I I I I I I I I] I I

static Ch: I 1r> 2r»i“|/f> n ：> | !
~ = ！
！ ‘……Y……〒：•…•••�……：：…“…:• 丨 i 丨 I

User 1: ！ U——I ！ ！——•_!_……•’ ！

1 ！ ！ ！ ； i ！

User 2: ‘ | ^ j j H T T F l ...吾 j
I ！ ！ ‘ 丄

• I I I I I I ： I ： I I 1 - 1 I I i I I I I ： I I I j I
User/: i 1 i ^ i 1 12 I 71••…；I i

： i I I 1 ! I i i
• I I I I ： I I i

User/7: i i j i fe—H 1 I 2 1... I / I n I丨!
I i I r̂ n I~~*~—J * ^ I I I 1 I I I I

‘——‘ ‘——‘——‘ r e t i m e

Figure 3.7: Channel Mergence of multi-user on SS-VoD

As an illustration, consider a dynamic multicast channel serving n dynamically-

admitted clients. Let a/ be the time client i arrives at the system and the nearest

multicast cycle starts at tm and tm+\ respectively, where tm< a\< a^ ... < < {tm+\-

S). Client i will cache the data from AI at the proper static multicast channel while
waiting for the upcoming dynamic channel. Then client i will leave the dynamic

channel to merge back to the static multicast channel after a service time of

{ai — tm) as shown in Figure 3.7. The dynamic multicast channel can be released once

28

Chapter 3. Super-Scalar Architecture

all n clients are merged back to the static multicast channel. Therefore the holding

time of the dynamic channel is simply the maximum of (a, - ‘)，i=\,2...n. As a

consequence, the holding time is simply equal to the latest client joined to the system.

3.4 Interactive Control

In a conventional VoD system, the major types of interactive control are fast

forward/backward, pause/resume, and stop. Among them, pause/resume is the most

common control performed in movie-on-demand applications.

Intuitively, performing an interactive control essentially breaks the client away

from the current static multicast video stream, and then restarts it at the same point

within the video stream. Under this view, interactive control is no different from a

new request and hence can be served the same way as for a new-video request.

Obviously this approach will increase loads at the dynamic multicast channel, which

could increase waiting time for both new and interactive request. As there is no

generally accepted user-activity model, we do not attempt to quantify the

performance impact of this approach.

Due to the static channel allocation employed in SS-VoD, we can devise a

channel hopping algorithm to support pause-resume control without incurring

additional load at the unicast channels. Specifically, each movie is multicasted every

Tr seconds and the client has a buffer large enough to cache Tr seconds of video.

When a user pauses, say at a movie time tp, the client just continue to buffer the

29

Chapter 3. Super-Scalar Architecture

incoming video data. If the user resumes playback before buffer overflows, then

nothing needs to be done. Otherwise, the client just stops buffering and enters and

idle state once the buffer is full (ie. storing the movie segment from tp to {tp+Tî).

When the user later resumes playback, the client can resume playback immediately

and at the same time determine the nearest multicast channel that is currently

multicasting the movie at the movie time t^>tp. Since a movie is repeated

multicasted every Tr seconds, we have {T^ -TP)<TJ^. Hence the client just needs to

start buffering again after the selected channel reaches movie time {tp+Tĵ . This

channel-hopping algorithm is unique in the sense that no additional resource is

required at the server. Pause-resume is simply supported by buffering and switching

of multicast channel at the appropriate time. Hence, SS-VoD is particularly suitable

for movie-on-demand applications where pause-resume is the primary interactive

control needed.

30

Chapter 4. Performance Modeling

Chapter 4

Performance Modeling

In this section we present an approximate performance model for the SS-VoD

architecture. While exact analytical solution does not appear to be tractable,

conventional numerical methods can be applied to obtain performance results based

on the approximated model. The purpose of this performance model is to assist

system designers to quickly evaluate various design options and to perform

preliminary system dimensioning. Once the approximate system parameters are

known, one can resort to a more detailed simulation to obtain more accurate

performance results.

The primary performance metric we use in this thesis is average waiting time,

defined as the time a client submitted a request to the admission controller to the time

the beginning of the requested video starts streaming. For simplicity, we ignore

network delay, transmission loss, and processing time at the admission controller.

W e further assume that there is a single movie stored in a service node. W e will

investigate multiple-movie cases in Chapter 5.6.

31

Chapter 4. Performance Modeling

In the following sections, we will first derive the average waiting time for

statically-admitted clients and dynamically-admitted clients, and then investigate the

channel partitioning problem. W e will compare results computed using this

approximate performance model with the simulation results in Chapter 5.1.

4.1 Waiting Time for

Statically-Admitted Clients

As described in Chapter 3.2, there are two ways where a client can be admitted

to the system to start a video session. The first way is admission through a static

multicast channel as shown in Figure 3.5. Given that any clients arriving within the

time window of IS seconds will be admitted this way, it is easy to see that the

average waiting time for statically-admitted clients, denoted by JVs(S), is equal to

half of the admission threshold:

= ̂ (4.1)

assuming it is equally probable for a request to arrive at any time within the time

window.

32

Chapter 4. Performance Modeling

4.2 Waiting Time for

Dynamically-Admitted Clients

The second way to admit a new client is through a dynamic multicast channel

as shown in Figure 3.6. Unlike static multicast channels, dynamic multicast channels

are allocated in an on-demand basis according to the admission procedure described

in Chapter 3.2. Specifically, if there are one or more free channels available at the

time a request arrives, a free channel will be allocated to start transmitting video data

to the client immediately and the resultant waiting time will be zero.

On the other hand, if there is no channel available at the time a request arrives,

then the resultant waiting time will depend on when a request arrive and when a free

dynamic multicast channel becomes available. Specifically, requests arriving at the

admission controller will be consolidated using the procedure described in Chapter

3.2 where the admission controller will send a consolidated START request to a

service node to initiate video transmission.

33

Chapter 4. Performance Modeling

Free channel

f ~ A
to tl tz (3

① I ② ③ 1 1 丨

Client Requests: \| \ \ \ ... \ \ \ I \| \ \ \ .. . \ \ \ 1
nV � 、A l A/A/ A/ \ ^
1 ！ I I ^
責 1 1 •
I I I I
I I I I
I I i • I i I I
I 1 1 i
I i I I
I ! ! 1 ^ ^ ri i

START Requests: '1 ； j l |
I， • •， I
I I I I I I I i
I i I I
I • • I
I I I I

一 time in waiting for a free 一丨 L time in waiting for a free 一

I dynamic multicast channel ‘ 丨 dynamic multicast channel 丨

Request inter-arrival time

Figure 4.1: User classification in dynamic multicast channel

Figure 4.1 illustrates this admission process. This example assumes that there is

no request waiting and all dynamic multicast channels are occupied before client

request 1 arrives. After receiving request 1, the admission controller sends a START

request to a service node to initiate a new multicast transmission for this request.

However as all channels are occupied, the transmission will not start until a later time

ti when a free channel becomes available. During this waiting time, additional client

requests such as request 2, 3, and so on arrives but the admission controller will not

send additional START request to the service node. This process repeats when a new

request arrives at time h.

Based on this mode, we first derive the average waiting time experienced by a

START request at the service node. For the arrival process, we assume that user

34

Chapter 4. Performance Modeling

requests form a Poisson arrival process with rate X. The proportion of client requests

falls within the admission threshold 5 is given by

(4.2)
Tr

and these clients will be statically-admitted.

Correspondingly, the proportion of dynamically-admitted clients is equal to (1—

Ps). W e assume the resultant arrival process at the admission controller is also

Poisson, with a rate equal to

(4.3)

Referring to Figure 4.1, we observe that the time between two adjacent START

requests is composed of two parts. The first part is the waiting time for a free

dynamic multicast channel; and the second part is the inter-arrival time for

dynamically-admitted client requests. Let Wc{d) be the average waiting time for a

free dynamic multicast given 5. Then the inter-arrival time for START requests will be

given by

± = + ̂ (4.4)

儿S 儿£>

where As is the arrival rate for START requests. For simplicity, we assume that the

arrival process is Poisson.

For the service time of START request, it depends on the last user joined to the

system as shown in Figure 3.7. In particular, the service time of the last user equals

to the arrival time a„ minus the time tm-i for the previous multicast of the requested

35

Chapter 4. Performance Modeling

movie. The service time, denoted by s, can range from 0 to {Tr-2S). W e assume the

service time s is uniformly distributed between

^ < s < T ^ - 1 5 (4.5)

Therefore the dynamic multicast channels form a multiserver queueing system

with Poisson arrival and uniformly-distributed service time. As there is no close-

form solution for such queueing model, we resort to the approximation by Allen and

Cunneen [19] for G/G/m queues to obtain the average waiting time for a dynamic

multicast channel:

/ 2 2 \

"D(1-")、 2 J

where 1 is the coefficient of variation of Poisson process,

(T ^ ^ M Y 1 (4.7)

s 12 \Tj,-2d) 3

is the coefficient of variation for uniformly-distributed service time, and Ts is the

average service time, given by

(4.8)

Additionally, u^X^Ts is the traffic intensity, p^u/No is the server utilization,

and Ec(Nd,u、is the Erlang-C function:

u^D / N I

Ec { N d ， = — — D • … (4.9)

k=Q 紀！

36

Chapter 4. Performance Modeling

Since the traffic intensity depends on the average waiting time, and the traffic

intensity is needed to compute the average waiting time, Equation (4.6) is in fact

defined recursively. Due to (4.9)，Equation (4.6) does not appear to be analytically

solvable. Therefore, we use numerical methods in solving for Wc(S) in computing

the numerical results in Chapter 5.

Now that we have obtained the waiting time for a START request, we can

proceed to compute the average waiting time for dynamically-admitted client

requests. Specifically, we assume the waiting time for START request is exponentially

distributed with mean JVc(^. W e classify client requests into two types. A Type-1

request is the first request that arrives at the beginning of the admission cycle. Type-

2 requests are the other requests that arrive after a Type-1 request. For example,

request 1 in Figure 4.1 is a Type-1 request, and request 2 and 3 are Type-2 requests.

W e first derive the average waiting time for Type-2 requests. Let 炉 b e the

average waiting time for Type-2 requests which can be found to be (see Appendix):

f 1 ,] 1 n -(Tr -

『2⑷二『c⑷ 1 2 : ⑵ (二 (4 . 1 0)

V y

Next for Type-1 requests, the average waiting time, denoted by Wi{S), is simply

equal to Wc{S). Therefore the overall average waiting time can be computed from a

weighted average of both Type-1 and Type-2 requests. Specifically, the average

37

Chapter 4. Performance Modeling

number of Type-2 requests arriving in an admission cycle, denoted by M2、S), can be

computed from

= (4.11)

Let Wd{S) be the average waiting time for all Type-1 and Type-2 requests. W e

can then compute it from the weighted average of both Type-1 and Type-2 average

waiting times:

J一 \ + MJS)
2、7 (4.12)

一 L +

4.3 Admission Threshold

In the previous derivations, we have assumed that the admission threshold value

is given a priori. Consequently, the resultant average waiting time for statically-

admitted and dynamically-admitted users may differ. To maintain a uniform average

waiting time in both cases, we can adjust the admission threshold according to the

average waiting time at the unicast channels:

S = min{x丨(炉&(x)-W^(x))<£jj, >x>0} (4.13)

so that the waiting-time differences are less than some small value s.

As adjusting the admission threshold does not affect existing users, the

adjustment can be done dynamically while the system is online. In particular, the

system can maintain a moving average of previous users' waiting time as the

38

Chapter 4. Performance Modeling

reference for threshold adjustment. This enables the system to maintain a uniform

waiting time, referred to as latency thereafter, for both statically-admitted and

dynamically-admitted users.

4.4 Channel Partitioning

An important configuration of SS-VoD is partitioning of available channels for

use as dynamic and static multicast channels. Intuitively, having too many dynamic

multicast channels will increase the traffic intensity at the dynamic multicast

channels due to increases in the service time (c.f. Equations (3.1) and (4.4)). On the

other hand, having too few dynamic multicast channels may also result in higher load

at the dynamic multicast channels.

Similar to the study by Lee [15] on UVoD, an optimal channel partitioning

policy can be obtained by enumerating all possibilities, which in this case is of 0{N).

Unlike UVoD, we found that the optimal channel partitioning policy is relatively

independent of the user arrival rate. See Chapter 5.2 for more details.

39

Chapter 5. Performance Evaluation

Chapter 5

Performance Evaluation

In this section, we present simulation and numerical results to evaluate the SS-

VoD architecture studied in this thesis.

5.1 Model Validation

To verify the accuracy of the performance model derived in Section IV，we

developed a simulation program using C N C L [20] to obtain simulation results for

comparison. A set of simulations is run to obtain the average waiting over a range of

arrival rates. Each run simulates a duration of 1440 hours (60 days), with the first 24

hours of data skipped to reduce initial condition effects. There is one movie in the

system, with a length of 120 minutes. W e divide available multicast channels equally

into static-multicast and dynamic-multicast channels. W e do not simulate user

interactions and assume all users playback the entire movie from start to finish.

40

Chapter 5. Performance Evaluation

1 1 1 1

40 - -

^ 30 -,-；：：：： -

8 /
(1> J 思 r

i 20/ -
IS

‘ … … 寸 t
10 - W -

-e--”------乃 • -

M - 1 1 1 1
1 2 3 4 5

Arrival Rate (requests/second)

Simulation Result (20 channels)
Analytical Result (20 channels)

+ + + Simulation Result (30 channels)
•H"十 Analytical Result (30 channels)

Simulation Result (50 channels)
0 0 0 Analytical Result (50 channels)

Figure 5.1: Latency Comparison of analytic and simulation results

Figure 5.1 shows the average waiting time versus arrival rate ranging from

1x10—3 to 5.0 requests per second. W e observe that the analytical results are

reasonable approximations for the simulation results. At high arrival rates (e.g. over

1 requests per second), the analytical results over-estimate the simulation results by

up to 50/0.

As discussed in the beginning of Chapter 4, the analytical model is primary

used for preliminary system dimensioning. Detailed simulation, while lengthy (e.g.

hours), is still required to obtain accurate performance results.

41

Chapter 5. Performance Evaluation

5.2 Channel Partitioning

To investigate the performance impact of different channel allocations, we

conducted simulations with proportion of dynamic multicast channels, denoted by r,

ranging from 0.3 to 0.7. The results are plotted in Figure 5.2. Note that we use a

normalized latency instead of actual latency for the y-axis to facilitate comparison.

Normalized latency is defined as

_ _ _ _ _ (5.1)

min{w(r), Vr} .

where w(r) is the latency with r^ dynamic multicast channels.

I I •
arrival rate = 0.5 / sec

v arrival rate = 5 / sec /

1 — 町 _ * • —

1 I I
0.3 0.4 0.5 0.6

Proportion of Dynamic Channel
+ + + N = 20
e e e N = 30

N = 50
—•1•十 N = 20
o e o N = 30

-o- N = 50

Figure 5.2: Normalized latency versus proportions of dynamic multicast channel

42

Chapter 5. Performance Evaluation

W e simulated three sets of parameters with N=20, 30，and 50 for two arrival

rates, namely heavy load at 5 requests/second and light load at 0.5 requests/second.

Surprisingly, the results show that the latency is minimized by assigning half of

channels to dynamic multicast and the other half to static multicast. By contrast,

U V o D [15] exhibits a different behavior and requires more channels allocated to

static multicast channels to minimize latency at high loads. Figure 5.3 compares the

optimal channel allocation for U V o D and SS-VoD for a 50-channel configuration.

For UVoD, the optimal proportion of static multicast channel increases with the

arrival rate. For example, the optimal proportion of static multicast channel is 86%

(43 static multicast channels) at an arrival rate of one user per second. For

comparison, the optimum proportion of static multicast channel for SS-VoD remains

50% for the entire range of loads in this example.

43

Chapter 5. Performance Evaluation

1001 1 1 1 1

8 0 - -

}
I 60 - ^^^^ -
I X
C/3

i 40 - —
€ o

cu
2 0 - -

ol 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Arrival Rate (requests/second)

SS-VoD
KKK UVoD

Figure 5.3: Optimum Channel Allocation of SS-VoD and UVoD

The channel reallocation scheme affects the behavior of admitted users so the

complexity of practical system implementation increases in UVoD. In contract, the

optimal channel allocation of SS-VoD is simply independent with the system load

for a wide range of loads. This property greatly enhances the practicability of SS-

VoD system.

5.3 Latency Comparisons

Figure 5.4 plots the latency for SS-VoD, UVoD, TVoD, and N V o D for arrival

rates up to 5 requests per second. The service node (or video server for TVoD/NVoD)

has 50 channels and serves a single movie of length 120 minutes. The first

44

Chapter 5. Performance Evaluation

observation is that except for NVoD, which has a constant latency of 72 seconds, the

latency generally increases with higher arrival rates as expected. For TVoD, the

server overloads for arrival rates larger than 1.16x10—4 requests per second. U V o D

performs significantly better with the latency asymptotically approaches that of

NVoD. SS-VoD performs even better with the latency level off and approaches 5.6

seconds, or a 92% reduction compared to UVoD.

80 I 1 1 1 1

O

TVOD , 一

60 y NVoD 一
^ ’) n 厂 UVoD

I /
^ 40 - ^ -
0 I
1 /

^ I
20 一 』 / SS-VOD 一

/

<I + + • 十 十 • 十 十 I |i、l +•十十
olfcdi- 1 I I ^ l U

0 1 2 3 4 5

Arrival Rate (requests/second)

Figure 5.4: Latency comparison of SS-VoD with typical VoD Systems

It is worth noting that the performance gain of SS-VoD over UVoD does not

incur any tradeoff at the client side. Specifically, the buffer requirement and

bandwidth requirement are the same for both SS-VoD and UVoD. The only

differences are the replacement of the unicast channels in UVoD with multicast

channel; and the more complex admission procedure in the admission controller.

45

Chapter 5. Performance Evaluation

5.4 Channel Requirement

To investigate the channel requirement for a range of arrival rate, Figure 5.5

plots the channel requirement of SS-VoD, UVoD, TVoD, and N V o D in log-scale

versus the arrival rates from 0.01 to 5 requests per second. There is a single movie of

length 120 minutes. The latency constraint is equal to or shorter than one second.

The channel requirement in the y-axis, denoted by C, is computed from

C = m i n { « | ^ < l , V « = 0 ,1 , . "} (5.2)

where Wis the waiting time for the systems at the given arrival rate.

1 .io4 ！：^ 1 1 1

C-)

1 r <

• | l . l o 3 乂乂 \ NVOD 一

t I
I I TVoD

•S
u -----

I
I 100 - O
^ f UVoD

/ SS-VoD

10 I 1 1 1 1
0 1 2 3 4 5

Arrival Rate (r e q u e s t s / s e c o n d)

Figure 5.5: Channel requirement of SS-VoD and typical VoD systems

As expected, number of channel required for N V o D is a constant value and

equal to 3600. The channel requirement of TVoD rapidly increases with the arrival

rate and the number of channels required is larger than that of N V o D for the arrival

46

Chapter 5. Performance Evaluation

rate of 0.485 request per second. The channel requirement of SS-VoD and U V o D is

much lower than TVoD and N V o D in all the arrival rates. The channel requirement

of U V o D increases gracefully with the arrival rate. For example, the channel

requirement of U V o D is equal to 130 at the arrival rate of one request per second,

and it increases to 274 at the arrival rate of five requests per second. The channel

requirement of SS-VoD increases relatively slower compare to U V o D for arrival rate

up to one request per second. For arrival rate higher than one request per second, the

channel requirement of SS-VoD increases insignificantly. Specifically, the number of

channel required is equal to 90 and 108 at the arrival rate of one and five requests per

second respectively. Note that the channel requirement only increases 20% for the

five times increase in the arrival rate.

It is worth noting that the channel requirement of SS-VoD is relatively constant

for arrival rate from one request per second. Having this nearly constant channel

requirement property, SS-VoD will never experience overflow, and the overall user

latency will not be increased significantly for a sudden increase in the arrival rate.

5.5 Performance at Light Loads

The previous results are computed using relatively high arrival rates. Intuitively,

the performance gains will decrease at lower arrival rates as fewer requests will be

served by a dynamic multicast channel. To investigate this issue, we compute the

number of channels required at a given arrival rate so that the latency is equal to or

47

Chapter 5. Performance Evaluation

shorter than one second. Figure 5.6 shows the channel reduction over TVoD in

percentage versus the arrival rate from 1x10"^ to 0.01 for SS-VoD and UVoD. The

channel reduction percentage in the y-axis, denoted by G, is calculated from

G — min{" | W腳 <lVn = 0,l，...}-min{"\W<\,\fn = 0,1,...} “ (”）

min{« I WryoD < 1 ， = 0,1,...} .

where Wis the average waiting time for SS-VoDAJVoD at the given arrival rate.

100 I

I
髮 50 - -

I Z ,

1 z
0 - X ' -

X
1 -10 4 1 . 1 0 ” 0.01

Arrival Rate (request/second)

SS-VoD over TVoD
UVoD over TVoD

Figure 5.6: Channel Reduction over TVoD

As expected, the results show that SS-VoD requires fewer channels for arrival

rates greater than 1.8x10—4 request per second. At this arrival rate, both TVoD and

SS-VoD require only six channels. Note that the minimum number of channels

required under SS-VoD is two and for arrival rates lower than 1x10—9 request per

48

Chapter 5. Performance Evaluation

second, TVoD will require only one channel. This suggests that SS-VoD is likely to

outperform TVoD in practice.

5.6 Multiplexing Gain

In deriving the performance model in Chapter 4，we assumed there is one movie

in the service node. To support more than one movie, one can treat each movie

independently and assign channels according to the expected arrival rate and latency

constraint. W e call this partitioned SS-VoD in light of the fact that channels are

partitioned (i.e. not shared) between different movies.

On the other hand, we can also pool the dynamic multicast channels together

and share them among all movies in a first-come-first-serve manner. W e call this

multiplexed SS-VoD. Intuitively, partitioned SS-VoD is less efficient because a

request for a movie can be blocked even if there are free dynamic multicast channels

assigned to other movies. By contrast, multiplexed SS-VoD avoids this problem by

pooling and sharing dynamic multicast channels and hence can achieve better

performance.

To investigate the effect of this multiplexing gain, we conducted simulations for

partitioned SS-VoD, and multiplexed SS-VoD with 2 movies, 8 movies and 32

movies respectively. For all cases, we assign 50 channels to each movie and assume

all movies to be equally popular. Under these assumptions, the latency for partitioned

SS-VoD is independent of the number of movies in the system.

49

Chapter 5. Performance Evaluation

6 I 1 1 1 1 1

5 - -

1 3 - •二

“ 身 " _
1 - //z'®' -

//P
qI If •'广 I I I I

0.1 0.2 0.3 0.4 0.5
per-movie Arrival Rate (requests/second)

partitioned SS-VoD
^-XX multiplexed SS-VoD (2 movies)
s e a multiplexed SS-VoD (8 movies)
o e o multiplexed SS-VoD (32 movies)

Figure 5.7: Multiplexing gain of SS-VoD system

Figure 5.7 shows the latency for partitioned SS-VoD and multiplexed SS-VoD

for per-movie arrival rates up to 0.6 requests per second. As expected, the results

show that multiplexed SS-VoD outperforms partitioned SS-VoD and the

multiplexing gain increases with more movies. For example, at a per-movie arrival

rate of 0.6 request per second, multiplexed SS-VoD with 2 movies outperforms

partitioned SS-VoD by 15%. If we increase the number of movies to 32, multiplexed

SS-VoD will outperform partitioned SS-VoD by as much as 32%. This suggests that

the multiplexing gain is significant and hence it is worthwhile to adopt the

multiplexed SS-VoD instead of partitioned SS-VoD in practice.

50

Chapter 6. Implementation and Benchmarking

Chapter 6

Implementation and Benchmarking

In this chapter we present the implementation detail as well as the

benchmarking results. The simulation and analytic result shows the designed

architecture substantial increase the system capacity. To prove the feasibility of this

system, we implement a SS-VoD prototype with up-to-date hardware and software.

To further validate the analytic model, we run a set of benchmarking to compare with

the analytic results.

6.1 Implementation Description

The SS-VoD prototype is implemented using off-the-shelf software and

hardware. The hardware configuration is shown in Figure 6.1.

51

Chapter 6. Implementation and Benchmarking

a � � 1 o •丄 1 SS-VoD Admission Network Switch „ ^ „
]__ Controller

Si in°n°n°n°n°n°n°ni 丨圓丨
„„„ „ J = l i i ^ ^ | a

^DDDinnn L-J 丨 口 口 • • 巨 J — ^ ^ ^ ^
^^^DOO：： I I 0 —

t^^DQD J .. J
^^L^DOOOODD^

Network Switch | | _ i k m z o i] | [• [u m m i]

^ ^ o ^ ^ o

SS-VoD Clients

Figure 6.1: A SS-VoD Network.

There are three components in the prototype, which are SS-VoD service node,

SS-VoD admission controller, and SS-VoD clients. Both the SS-VoD service node

and the SS-VoD admission controller are implemented using the C++ programming

language on the Red Hat Linux 6.2 [21] operating system platform. The SS-VoD

client application is implemented using the Java programming language and the Java

Media Framework (IMF) 2.1 [22].

The operation of the system is as follows. First, digitized and compressed video

data for each movie is stored in a service node, and each service node is running the

SS-VoD service node software. Each SS-VoD service node connects to the SS-VoD

admission controller for registering the movie. Client stations running the SS-VoD

client software can then send request to the SS-VoD admission controller. SS-VoD

52

Chapter 6. Implementation and Benchmarking

admission controller will transmit the proper information (e.g. multicast address of

the video channels, detail movie information, latency for available channels) to the

client. The client then receives video data from the SS-VoD service node directly and

starts the movie playback.

6.2 Benchmarking

W e have discussed the system performance of SS-VoD in the previous chapters.

To provide a more realistic figure for this architecture, benchmarking is a necessary

and importance procedure. As there are limited hardware resources, we setup up a

test-bed for a signal movie system. The benchmarking experiment consists of three

major components: SS-VoD service node, admission controller, and client generator.

The role of service node and admission controller remains unchanged. W e have

developed a Java application called client generator, and the purpose of the client

generator is to generate the desirable client request rate for the benchmarking. The

detail benchmarking setup and result are presented in the following sub-sections.

6.2.1 Benchmarking Setup

The hardware configurations for different system components in the test-bed

are listed in Tables 6.1 to 6.4 in the following:

53

Chapter 6. Implementation and Benchmarking

Component Model and Configuration

Motherboard Compaq server-grade mainboard (2 PCI slots, 4 G M B D R A M)

CPU Intel Pentium III SOOMhz

Disk Controller Compaq UltraS SCSI

Disk 2 X Fujitsu MAJ3182MC (UltraS SCSI)

Network Intel PRO/IOOOT (1000Mbps)

Table 6.1: Service Node Configuration (Compaq Proliant DL360)

Component Model and Configuration
Motherboard Compaq server-grade mainboard (6 PCI slots, 256MB D R A M)

CPU Intel Pentium III 500Mhz

Disk Controller Compaq Ultra2 SCSI

Disk 3 X Fujitsu MAG3182LC (Ultra2 SCSI)

Network Intel PRO/IOOOT (1000Mbps)

Table 6.2: Admission Controller Configuration (Compaq Proliant 1600)

Component Model and Configuration
CPU Intel Pentium III 500Mhz

Memory 256M S D R A M

Network Intel PRO/IOOOT (1000Mbps)

Table 6.3: Client Generator Configuration

Component Model and Configuration
Switch Extreme Networks Summit24

Table 6.4: Interconnection Network Configuration

In conducting the benchmarking tests, the service node only serves one movie

and the length of movie is 120 minutes. W e run the benchmarking tests for 30

54

Chapter 6. Implementation and Benchmarking

channels for arrival rate from one to five requests per second. For each configuration,

we run the benchmarking tests for a length of 6 hours with the first hour of data

skipped to reduce initial condition effects. In the implementation, the latency is

known for users when they join to the system. Therefore, the latency is captured in

the client generator.

6.2.2 Benchmarking Result

Table 6.5 compares the latencies obtained from the analytic performance model,

simulation, and benchmarking respectively. W e observe that the benchmarking

results agree with the analytical results and simulation results. The maximum

difference between benchmarking and analytic result is less than 4.5% in this range

of load. Therefore, the benchmarking results serves as a proof for the feasibility and

correctness of the SS-VoD architecture, and verifies the performance model derived

in Chapter 4.

Request per second Analytic Result Simulation Benchmarking

1 13.90s 12.95s 13.86s

2 14.39s 13.34s 13.78s

3 14.52s 13.59s 14.20s

4 14.57s 13.61s 14.70s

5 14.67s 13.68s 14.58s

Table 6.5: Latency comparison of analytic, simulation and benchmarking results

55

Chapter 7. Conclusion

Chapter 7

Conclusion

In this study, we present and analyze a Super-Scalar Video-on-Demand (SS-

VoD) architecture that can achieve super-linear scalability by utilizing network

multicast together with client-side caching. This SS-VoD architecture is particularly

suitable for metropolitan-scale deployment as the resource savings increase

exponentially with higher arrival rates. In fact, there is no inherent scalability limit to

this SS-VoD architecture provided that the network is multicast-ready, and has

sufficient bandwidth to connect all customers. With more and more existing

residential broadband networks being upgraded to support multicast, the presented

SS-VoD architecture could provide a cost-effective solution to the scalability

challenge.

56

Appendix

Appendix

To compute the average waiting time for Type-2 request, denoted by ̂ 2̂(5), we

first compute the apparent waiting time distribution of the dynamic multicast

channels for Type-2 user request, denoted by fc*{t)- W e then can compute the

average waiting time of Type-2 user request.

The apparent waiting time distribution of dynamic multicast channel for Type-2

user is given by [23]:

= (A.1)
MC

where fc*(t) be the apparent waiting time distribution of dynamic multicast

channels for Type-2 user,/c(0 be the waiting time distribution of dynamic multicast

channels and M c be the mean waiting time of dynamic multicast channel.

Let be the average waiting time of the apparent distribution, and it can

be calculated as following:

工的 (A.2)

Therefore from equation (A.l) and (A.2),

57

Appendix

Wr.{S)= [^-^-^^dt (A.3)

From the definition, the minimum waiting time should be a non-negative value,

and the maximum waiting time of user in dynamic channel is equal to {Tr-2S). W e

can simplify the above equation to:

明 = r 麵 (A . 4)
‘‘ Mc

W e assume fc{t) is truncated exponential distributed with mean equal to

The range of t is from zero to {Tr-IS). The distribution is given by:

F HTr-2S) 丫 1 -t

/c(,)= (1-e 秘 , c ⑷ 斤 (A . 5)

V y

From equation (A.4) and (A.5),

-t

妒c* ⑷ = i ^ dt (A.6)

{\-e •)Wc{Sf

Here, we then computer the average apparent waiting time of dynamic multicast

channels by integration,

W � - 1 & 点) +
{\-e • � 0 啊 WciS)

(A.7)

58

Appendix

First, we calculate the left part, it becomes

-(TR-2S) -t

Wc* ⑷ = ——^EM——dt

{l-e 啊) W c { S) {\-e 秘) W c { 5)

(A.8)

W e simply the equation by integration by parts for the right part,

-{TR-25) -t TR-1S _t

WC* ⑷= — - { T , - 2 S) -{T,-25)出

(1-e 哪 W,(S) (1-e 秘）o (1-e 秘)

(A.9)

After calculating the second term, it becomes

-(Tj,-2S) -fa-2 力 -t
w iT,-2Sfe 2 (T R - 2 外 啊 , 丄

十 J)

(l-e 秘 (l~e『c⑷） （1-e 秘)

(A. 10)

Grouping the first and second parts of (A. 10), then,

-fa-2 力 -t

wc* ⑷=-(口 (i c r) f ^ ^ + 2] + r
L -(Tr-2S) jy J) -{.Tr-28)

(l-e 〜⑷）V cv 乂) (1-^ 〜⑷)

(A. 11)

59

Appendix

After integrate the right-most part and simplify the equation, it gives

(-(T„-2S) \

W ⑷ - 2 明 1 — +
c* ⑷ 2 �V J 明

F 1 , IT,-2S)]
1 i -(t„-2S)

-2W (S) 1 2 明 ^

V y

(A. 12)

For Poisson process, the user randomly arrives to the dynamic multicast

channel. Hence, the average waiting time of Type-2 user request should be equal to

the half of the average apparent waiting time of dynamic multicast channel by Type-

2 user requests. Therefore,

(. { T ^ -25))
響 (父 、 (T 。 又 、 (A . 13)

1 (" - 2 化

V

M

60

Bibliography

Bibliography

1] T.C. Chiueh and C.H. Lu, "A Periodic Broadcasting Approach to Video-on-
demand Service," Proc. ofSPIE, 1996, pp. 162-169.

[2] A. Dan, D. Sitaram, and P. Shahabuddin, "Scheduling Policies for an On-
Demand Video Server with Batching," Proc. 2” ACM International
Conference on Multimedia, 1994, pp. 15-23.

[3] H. Shachnai and P.S. Yu, “Exploring Waiting Tolerance in Effective Batching
for Video-on-Demand Scheduling," Proc. 8出 Israeli Conference on Computer
Systems and Software Engineering, Jun 1997, pp.67-76.

[4] W . Liao and V.O.K. Li, "The Split and Merge protocol for interactive video-
on-demand," IEEE Multimedia, voL4(4), 1997，pp.51-62.

[5] S.W. Carter, D.D.E. Long, K. Makki, L.M. Ni, M. Singhal, and N. Pissinou,
"Improving Video-on-Demand Server Efficiency Through Stream Tapping,"
Proc. International Conference on Computer Communications and
Networks, Sep 1997，pp.200-207.

:6] S. Viswanathan and T. Imielinski, "Metropolitan area video-on-demand service
using pyramid broadcasting," ACM Multimedia Systems, vol.4(4), 1996,
pp. 197-208.

[7] C.C. Aggarwal, J丄.Wolf, and P.S. Yu, "A permutation-based pyramid
broadcasting scheme for video-on-demand systems，” Proc. International
Conference on Multimedia Computing and Systems, June 1996, pp.118-26.

[8] L. Golubchik, J.C.S. Lui, and R.R. Muntz, "Adaptive piggybacking: a novel
technique for data sharing in video-on-demand storage servers," ACM
Multimedia Systems’ vol.4(30), 1996, pp.14-55.

61

Bibliography

[9] C.C. Aggarwal, J丄.Wolf, and P.S. Yu, “On optimal piggyback merging
policies for video-on-demand systems,，，Proc. International Conference on
Multimedia Systems, June 1996，pp.253-258.

[10] Kien A. Hua, Ying Cai and Simon Sheu, "Patching: a multicast technique for
true video-on-demand services," Proc. international conference on
Multimedia, Sept 1998, pp 191 - 200.

[11] Ramesh, S.，Rhee, I., Guo, K, "Multicast with cache (Mcache): an adaptive
zero-delay video-on-demand service," IEEE Transactions on Circuits and
Systems for Video Technology, vol.11(3)，March 2001，pp. 440 -456

12] K.C. Almeroth and M.H. Ammar, "The Use of Multicast Delivery to Provide a
Scalable and Interactive Video-on-Demand Service," IEEE Journal of Selected
Areas in Communications, vol. 14(6)，Aug 1996, pp.1110-1122.

[13] H.K. Park, and H.B. Ryou, "Multicast Delivery for Interactive Video-on-
Demand Service," Proc. International Conference on Information
Networking, Jan 1998, pp.46-50.

[14] E.L. Abram-Profeta and K.G. Shin, "Providing Unrestricted V C R Functions in
Multicast Video-on-Demand Servers," Proc. IEEE International Conference on
Multimedia Computing and Systems, July 1998, pp.66-75.

[15] J.Y.B. Lee, "UVoD — A Unified Architecture for Video-on-Demand Services,"
IEEE Communications Letters, vol.3(9), September 1999，pp.277-279.

[16] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A. Patteson, “Raid: High-
performance, reliable secondary storage," ACM Computing Surveys, vol. 26，
pp. 145-185, June 1994.

[17] S. Berson, L. Golubchik, and R. R. Muntz, "Fault tolerant design of multimedia
servers," Proceedings ofSIGMOD '95, pp. 364-375, May 1995.

[18] R. Tewari, D.M. Dias, W . Kish, and H.Vin, "Design and performance tradeoffs
in clustered video servers," Proceedings IEEE International Conference on
Multimedia Computing and Systems (ICMCS'96), pp. 144-150, June 1996.

[19] A.O. Allen, Probability, Statistics, and Queueing Theory with Computer
Science Applications, Ed. Academic Press, New York, 1990.

[20] ComNets Class Library and Tools:
http://www.comnets.rwth-aachen.de/doc/cncLhtml

62

http://www.comnets.rwth-aachen.de/doc/cncLhtml

Bibliography

[21] Red Hat Linux: http://www.rcdhat.com

[22] Java Media Framework 2.1:
http://iava.sun.com/products/iava-media/jmf/index.html

[23] L. Kleinrock, Queueing Systems Vol I: Theory, Wiley-Interscience, 1975.

63

http://www.rcdhat.com
http://iava.sun.com/products/iava-media/jmf/index.html

i

-

-

.

：

•

、

.
•
、
.

 .；；.：.......

.

.

.

.

：

；

-

-

 ../「〔

•

：
：

 ：

.

-

I
!

J
J
I

-

 -

r

—
 ..

,
 ,

 .

i
‘
？
如
%

i
1

i

CUHK L i b r a r i e s

圓圓_111丨111111
D03fi7m3b

