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Abstract 

Despite the availability of video-on-demand (VoD) services in a handful of 

cities around the world, large-scale deployment of VoD services in a metropolitan is 

still economically impractical. A lot of researches have been done in improving the 

scalability of VoD systems, but to this day, the ultimate capacity of a video server is 

still finite. 

In this thesis, we present a Super-Scalar Video Server (SS-VoD) which is a 

novel architecture to tackle this capacity problem. By the intelligent use of network 

multicast and client-side caching, the proposed architecture can vastly reduce server 

and network resource requirement. More importantly, the resource reduction 

increases with the load, and the server latency asymptotically approaches a constant 

when the load is further increased. For example, a small server with hardware 

capacity, which is equivalent to 50 concurrent streams in traditional video servers, 

can serve a 120-min video with an average latency no more than 5.6 seconds, 

regardless of the customer arrival rate. This thesis presents this new architecture, 

derives an approximate performance model, and evaluates the architecture using 

numerical results from analytical models, simulations, and benchmarking. 
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摘要 

儘管在世界上很多城市已經可以享受視頻點播服務(VoD)，但是在大城 

市裏大規模地提供視頻點播服務還是不切實際的。人們已經做了很多硏究來提 

高視頻點播系統的容量，但是直到今天，視頻伺服器的最終容量還是有限的。 

在本論文中，我們提出了一種新的結構來處理系統容量問題：超容量視頻 

伺服器（Super-Scalar Video Server) °通過智慧化地應用網路廣播（network 

multicast)和用戶端緩存(client-side caching) ’我們提出的構造可以極大地減 

少對伺服器和網路資源的需求。更重要的是，資源需求的減少和網路的負載成 

正比’而且當負載進一步增加時’伺服器的延遲接近一個常數。例如，對於一 

個支援50個資料流程的小伺服器，我們的構造可以支援無限多的人欣賞一齣 

長一百二十分鐘的錄像’並且平均延遲不超過5.6秒。本論文的內容包括：提 

出了這種新的構造，推出了一個近似的性能模型，用理論模型的數値結果分析 

了這種構造° 
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Chapter I. Introduction 

Chapter 1 

Introduction 

Video-on-demand (VoD) systems have been commercially available for many 

years. However, except for a few cities, large-scale deployment of VoD service is 

still uncommon. One of the reasons is the high cost in provisioning large-scale 

interactive VoD service. The traditional model of true-video-on-demand (TVoD) 

calls for a dedicated channel, both at the server and at the network, for each active 

user during the entire duration of the session (e.g. 1-2 hours for movies). In a city 

with potentially millions of subscribers, the required infrastructure investment would 

be immense. 

To tackle this problem, a number of researchers have started to investigate 

various innovative architectures in an attempt to improve the scalability and 

efficiency of large-scale VoD systems [1-15]. Examples include the periodic 

broadcasting approach by Chiueh et al. [1], the batching approach by Dan et al [2] 

and Shachnai et al. [3], the split and merge protocol by Liao et al. [4], the stream 

tapping scheme by Carter et al. [5], the pyramid broadcasting approach by 

Viswanathan et al. [6] and Aggarwal et al. [7], the piggybacking approach by 
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Chapter I. Introduction 

Golubchik et al [8], Aggarwal et al [9], the patching approach by Hua et al. [10] 

and the Mcache approach by Ramesh et al [11]，and so on. It is beyond the scope of 

this thesis to compare these difference approaches and the interested readers are 

referred to [5] for some comparative discussions. 

In this thesis, we present a Super-Scalar Video-on-Demand architecture (SS-

VoD) to tackle this capacity problem. By the intelligent use of network multicast and 

client-side caching, the proposed architecture can vastly reduce server and network 

resource requirement. Specifically, our goal in this thesis is to design a video-on-

demand system that scales in a super-linear manner. Consequently, the average 

latency as experienced by new customers should asymptotically approach a constant 

(e.g. a few seconds). For example, our results show that a small SS-VoD server with 

hardware capacity equivalent to 50 concurrent streams in traditional video server can 

serve a 120-min video with an average latency no more than 5.6 seconds, regardless 

of the customer arrival rate. 

This super-scalar property will enable the VoD system to serve a huge number 

of concurrent users — a requirement for metropolitan-scale deployments. Unlike 

traditional video servers where the server cost increases proportionally for larger user 

population, the server-cost per customer for the proposed super-scalar architecture 

decreases for larger user population. Hence this super-scalar architecture can provide 

a cost-effective solution for deploying large-scale, city-wide video-on-demand 

services. 
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Chapter I. Introduction 

1.1 Contributions of This Thesis 

The main contribution of this thesis is in the design and performance evaluation 

of the Super-Scalar Video-on-Demand (SS-VoD) architecture, which provides a 

solution to the capacity challenge in city-wide VoD service deployments. Specifically, 

we developed a transmission scheduling algorithm for scheduling multicast 

transmission, and an admission control algorithm for processing and scheduling 

client requests. To characterize the performance of the SS-VoD architecture, we 

derived an approximate performance model for system dimensioning. The 

performance model is validated against simulation results and is shown to be a 

reasonable approximation. To prove the feasibility of the SS-VoD architecture, we 

implement a SS-VoD prototype with off-the-shelf computer hardware and software. 

Benchmarking results obtained from the prototype show that the SS-VoD 

architecture is indeed super-scalar, and can be scaled up to millions of users. 

1.2 Organizations of This Thesis 

This thesis is organized as follows. Chapter 1 presents an introduction to this 

study. Chapter 2 presents an overview of video-on-demand systems and related 

works. Chapter 3 presents the SS-VoD architecture. Chapter 4 presents an 

approximate performance model of SS-VoD. Chapter 5 evaluates the performance of 

SS-VoD via numerical and simulation results. Chapter 6 presents the implementation 
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Chapter I. Introduction 

of the SS-VoD prototype and benchmarking results. Finally, Chapter 7 concludes this 

thesis. 

1.3 Publication 

V.C.H. Lee, J.Y.B. Lee, "Improving UVoD System Efficiency With Batching," 

Proc. International Conference on Software, Telecommunications and Computer 

Networks — SoftCOM, Croatia, October 2000. 
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Chapter 2 

Overview of VoD Systems 

Many video-on-demand (VoD) systems have been developed in the last decade. 

Figure 2.1 depicts a typical VoD system, consisting of a video server, an 

interconnection network, and multiple video clients. The video server usually is a 

high-performance computer that stores compressed digital video in harddisks for 

transmission to clients over the network. A video client receives video data from the 

video server and decodes them for playback. Client device can be a single personal 

computer (PC) or a set-top box (STB) connected to a television. The interconnection 

network can be implemented using Ethernet, A T M or other network technologies. 

The following sections review the existing VoD architectures. 
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Chapter 2. Overview of VoD Systems 

Q Client PC 

\ /  

w^L/ 

r。。。。i““ I ^ ^ J j 
Set-top box „ , 

^ Television 

Figure 2.1: A typical video-on-demand system 

2.1 True VoD 

The most common type of VoD systems is called true video-on-demand 

(TVoD), depicted in Figure 2.2. To initiate a new video session, a client first sends a 

request to the video server for a specific video. The video server processes the 

request by retrieving video data from the storage and streaming the video data over 

the network to the client device. The client device typically first buffers a small 

amount of video data and then starts video playback while concurrently receiving 

video data from the server. 
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Chapter 2. Overview of VoD Systems 

Hr——n ESln 
i O 
Video Server  

Client PC 

represent a channel 

Figure 2.2: Channel Scheduling ofTVoD 

In a TVoD system, each client has its own dedicated channel for video 

streaming where a channel refers to network and server resources allocated for a 

video session. As each user has a dedicated channel, one can perform interactive 

VCR-like controls such as pause/resume, fast-forward and rewind at any time. 

However, as the video server has a limited number of channels for serving users, 

arriving users will be denied service once all these channels are occupied. Therefore 

the resource requirement of a TVoD system is proportional to the desired system 

capacity and this limits the scalability of VoD systems designed using the TVoD 

architecture. 

2.2 Near VoD 

Another type of VoD system, commonly called near video-on-demand (NVoD) 

[1], repeatedly transmits a video stream over multicast or broadcast channels as 

shown in Figure 2.3. The channels are scheduled in advance and independent of the 
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client request. For example, suppose there are 10 channels assigned for a video, and 

the movie length is 120 minutes. Then the movie will be restarted every 12 minutes 

as shown in Figure 2.3. 

D 

I f ^ i r / ^ 5 
I'~'I I mj^ I Interconnnect CH2 |  

• 1 1 J - r r - ^ . Network ^ 

,DDDDDOD I, : ‘ V J a 
Video Server , \ / Client PC 

^ 层 
」 圉 " 
Client PC 

Start of CH1 End of CH I , and Start again 

/ i I I y ^ 
CHI i 1 1 1 1  t i l l 

I I I I 
I I I I 

(U I 1 1 1 1  
> CH2 ！ ！ ！ 
0 丨 ！ E 1 i 1 i——^ * 
<U J I 
1 CH3 I I I  

CH4 1 \ I 

Figure 2.3: Channel Scheduling ofNVoD 

To start a new video session, a client simply waits for the next upcoming 

transmission cycle to begin playback. Given that the video is restarted once every 12 

minutes, the average and worst-case waiting time will be equal to 6 minutes and 12 

minutes respectively. 
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Chapter 2. Overview of VoD Systems 

An important characteristic of N V o D is that when a new transmission cycle 

starts, all the waiting clients can share the multicast/broadcast channel and start video 

playback at the same time. This eliminates the need for allocating a dedicated 

channel to each video session and hence the resource requirement of a N V o D system 

is independent of the desired system capacity. In theory, a N V o D system can serve 

any number of users, albeit at the expense of longer start-up latency and limited 

interactivity. 

2.3 Related Works 

Apart from the TVoD and N V o D systems, researchers have recently 

investigated various new approaches to improve the efficient of VoD systems. In the 

following sections, we review some of these previous works that employ novel way 

of multicasting to achieve scalability but without the long startup latency commonly 

found in N V o D systems. 

2.3.1 Batching 

Batching is first proposed by Dan et al. [3] and later also investigated by 

Aggarwal et al. [5], Almeroth et al. [6] and Shachnai et al [7]. The principle of 

batching is to group users waiting for the same movie at a video server and serve 

them using a single multicast channel. Unlike N V o D system, the schedule of 

multicast channels is not fixed but dynamically determined depending on the user 
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request pattern. Clearly this batching technique can reduce resource requirement both 

at the server and in the network. However, as multiple users share a multicast 

channel, individual user then cannot perform interactive V C R controls such as pause-

resume, fast-forward, and fast-backward. To tackle this limitation, one can set aside 

some contingency channels to serve those users performing interactive controls as 

proposed and studied in Dan et al [3], Almeroth et al. [6], and Li et al [8]. 

There are several algorithms in which waiting users are scheduled for service in 

batching. For example, in FCFS batching [3], arriving users all join a single queue. 

Once a free channel becomes available in the server, the user at the head of queue 

will be served. Moreover, other queued users with the same movie selection will also 

be served together by the same multicast channel. 

Another algorithm called Maximum Queue Length (MQL) [3]，maintains a 

separate queue for each movie for the arriving users. Once a free channel becomes 

available, the movie with the maximum number of waiting users will be selected for 

service. This algorithm can improve batching efficiency at the expense of fairness as 

users waiting for unpopular movies are likely to experience longer waiting time than 

users waiting for popular movies. There are other more sophisticated batching 

algorithms and the interested readers are referred to the study by Shachnai et al. [7]. 

Their simulation results showed that resource reductions of up to 70% could be 

realized in large system serving around 5000 concurrent users, with an average 

waiting time of around one minute. 

10 
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2.3.2 Patching 

Hua et al [10] proposed a patching approach where client caching and channel 

hopping are used to merge channels with near starting time to reduce resource 

requirement. Specifically, all channels in patching are multicast channels and a 

channel can function as either a regular channel or a patching channel. Depending on 

the arrival time and other system parameters, an arriving user may start the video 

session with a regular channel. Or it may start the video session using a patching 

channel while concurrently cache data from another regular channel. After a short 

time period, the user can then release the patching channel by continuing video 

playback via the cached data and the regular channel. Their simulation results show 

that at a latency of zero, patching can provide 300% system capacity compared to an 

equivalent TVoD system. 

2.3.3 Mcache 

Ramesh et al recently proposed the multicast with cache {Mcache) approach 

[11] to further increase the performance of patching by using regional cache server. 

The regional cache server stores the first few minutes or even seconds, called prefix, 

of each video. Using the prefix from the cache server, a client can start video 

playback immediately while waiting for a free regular or patching channel. Hence by 

introducing the cache server, the latency of user request is reduced compared to pure 

patching. Simulation results [11] showed that at a latency of zero, Mcache with one-
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minute prefix can provide 1300% system capacity compared to an equivalent TVoD 

system. The tradeoff is the additional costs for the cache server. 

2.3.4 Unified VoD 

Lee [15] recently proposed a U V o D architecture where both unicast and 

multicast channels are employed for video delivery. By using intelligent client 

buffering and channel switching, a U V o D system can achieve latency similar to 

TVoD while at the same time dramatically reduces the resource requirement. 

r 1 

！ Ny Unicast Channels | 

I rQ i 
；Request Queue Q ；. 
； 1 1 j 1111.11 J . r ^ Unicast video  

^ 1 1 1 1 •剛 PI . [1/ transmission 

\ Admission \ ！ 1 
Requests [Z：；) Control ！ " Q " ； 

^ ^ i-^-K Multicast video 

！ I • V K transmission 

i Lo i 
• I 
• I 

1 Nm Multicast Channels I 

Figure 2.4: Architecture of the UVoD System 

Figure 2.4 depicts the UVoD architecture. Let N be the total number of 

available channels, where Nu of them are unicast channels, Nm = N - N u are multicast 

channels. Let M b e the number of movies of length L seconds each and movies are 

assumed to have the same length for simplicity. The multicast channels are evenly 

assigned to all movies and the architecture requires Nm > Msuch that each movie can 
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be allocated with at least one multicast channel. Therefore, there are \_N爪 IM_ 

multicast channels allocated for each movie. The movie is then transmitted over all 

allocated multicast channels repeatedly as shown in Figure 2.5. 

Length of Multicast 

movie (L) repeated • ‘ • 

人 人 
r 二 」 

O n e multicast channel -i i ！ i i i ^ I I I I ！ I I 
I I ' I • — ‘ r^ r—IT171 1 1 ： 1 

1 1 1 
I j j I I I • I 

I f e t j ^ f f ^ l I I I 
I i I  
I I I •‘••»、： . * V*'-jJ I I ‘ ” I •〔，’••»,«?、-…fr*** ̂ I 

— k - I 
Tr 

Figure 2.5: Scheduling of multicast cycles for a movie in UVoD 

Note that transmission cycles are offset by 

^ ^ ^ (2.1) L斤J似」 

seconds between adjacent multicast channels allocated to the same movie. 

When a user arrives at the system, the admission controller (Figure 2.4) will 

assign the user to wait for either a unicast channel (admit-via-unicast) or a multicast 

channel (admit-via-multicast) to begin playback. The purpose of the admission 

controller is to equalize the average waiting time for users served initially by unicast 

channel and multicast channel [15]. Specifically, a parameter called admission 

threshold, denoted by S, is introduced for admission control. Let t be the time a user 

arrives at the system requesting movie /，and let tm be the start time of the next 

multicast cycle for movie i. The system will assign the user to wait for the upcoming 

13 
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multicast cycle if the resultant waiting time will be smaller than the admission 

threshold: 

( t m - t ) < S ( 2 . 2 ) 

The admitted user continues to receive video data from this multicast channel 

for the entire video playback as in a N V o D system. 

If the resultant waiting time is longer than the admission threshold, the 

admission controller will assign the user to wait for a free unicast channel to begin 

video playback. All unicast channels share a single input queue as shown in Figure 

2.4 and waiting users are served according to the first-come-first-serve (FCFS) 

queueing discipline. By adjusting the admission threshold, the system can maintain 

similar latency for both admit-via-multicast and admit-via-unicast users. 

For admit-via-unicast users, the client device first starts caching video data 

from the previous multicast of the requested movie. Then it waits for a free unicast 

channel to start playback. For example, assuming that the user arrives at time t, and 

let tm.\ and tm be the nearest epoch times of multicast channel m-\ and channel m, for 

which tm-i < t < (tm- S). Then at time t, the client starts caching video data from 

channel m-\ into the client's local storage. At the same time, the client enters the 

request queue and starts video playback using unicast once a free unicast channel 

becomes available. Therefore UVoD assumes that the client devices can receive two 

video channels simultaneously and have local storage to cache up to Tr seconds of 

video data. 

14 
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The admission process is not yet completed as the client still occupies one 

unicast channel. As the client concurrently caches multicasted video data for the 

movie starting from movie time {t-tm.\), the unicast channel can be released after a 

time {t-tm-\) and the client can continue video playback using the local cache. Hence 

similar to Liao et al. [4]，the local cache is used to add time delay to the multicast 

video stream so that it can be synchronized with the client playback. Since 0<(t-tm-

i)<{Tr- S)«L, we can see that the unicast channels are occupied for much shorter 

duration when compared to TVoD. This reduction in service time allows more 

requests to be served by the unicast channels. 

The analytic show that the 500% performance gain of U V o D to TVoD 

architecture can be achieved at a latency requirement of one second. In the 

meanwhile, this architecture provides pause/resume interactive control without 

incurs any additional system load. The optimum channel allocation on U V o D for 

multicast and unicast channel is depends on the system load, and the number of 

multicast channel increase as the increment in the system load. 

2.4 Discussions 

Reconsidering the UVoD architecture, we observe that the unicast channels 

within UVoD operate in the same way as a TVoD system. The difference is that a 

unicast channel in UVoD is not occupied for the entire duration of the movie. The 

channel will be released once the user is merged back to a stagger multicast channel. 

15 



Chapter 2. Overview of VoD Systems 

This motivates us to investigate applying algorithm similar to batching to these 

unicast channels to further improve the system performance. This new Super-Scalar 

Video-on-Demand (SS-VoD) architecture will be presented in the next chapter. 

16 
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Chapter 3 

Super-Scalar Architecture 

In this section we present the architecture and the motivation for the proposed 

Super-Scalar Video-on-Demand System (SS-VoD). The overall SS-VoD architecture 

is depicted in Figure 3.1. The system comprises a number of service nodes connected 

via a multicast-ready network to the clients. The clients form clusters according to 

their geographical proximity. An admission controller in each cluster performs 

authentication as well as scheduling requests forwarding to the service nodes. 

17 
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Z Client 

Regional \ • 

/ " " " ^ X / ^ X 乂 Network ) . 
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I Network ) • 

Admission 
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Figure 3.1: System architecture. 

Each service node operates independently from each other, having its own disk 

storage, memory, CPU, and network interface. Hence a service node is effectively a 

mini video server, albeit serving a small number of video titles to the entire user 

population. This modular architecture can simplify the deployment and management 

of the system. For example, since the configuration of each node is decoupled from 

the scale of the system and each server node carries just a few movies, a service 

provider simply deploys the right number of server nodes according to the desired 

video selections. Additional server nodes can be added when more movie selections 

are needed, with the existing nodes remain unchanged. 

To improve reliability, one can use disk mirroring for each server node. While 

parity-based schemes [16-18] have lower redundancy overhead, the number of disks 

involved present too much storage capacity for use in a server node, where only a 
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few movie is served. Additionally, mirroring greatly simplifies recovery from a disk 

failure as a failed disk can easily be replaced without the need to shutdown the server 

node (e.g. with hot-swap disks). Server performance can also be maintained despite a 

disk failure and the failed disk can be rebuilt off-line simply by reloading movie data 

from backup storage. 

In case of a complete node failure, the service provider can simply pull the 

disks from the failed node and install then into a spare node. The recovery time can 

be made very short and only users currently viewing movies served by the failed 

node will be affected. 

SS-VoD achieves scalability and bandwidth efficiency with two techniques. 

The first technique is through the use of multicast to serve multiple clients using a 

single multicast channel. However, simple multicast such as those used in a near-

VoD (NVoD) system limits the time for which a client may start a new video session. 

Depending on the number of multicast channels allocated for a video title, this 

startup delay can range from a few minutes to tens of minutes. To tackle this initial 

delay problem, we make use of the second technique: the use of client-side caching 

together with channel merging, to allow a client to start video playback at any time 

using a bridging channel until it can be merged back to an existing multicast channel. 

The following sections present these techniques in detail. 
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3.1 Transmission Scheduling 

Each service node in the system streams video data into multiple multicast 

channels. Let M b e the number of video titles served by each service node and let N 

be the total number of multicast channels available to a service node. For simplicity, 

we assume N is divisible by M and hence each video title is served by the same 

number of multicast channels, denoted by Nm^NIM. These multicast channels are 

then divided into two groups of NS static multicast channels and Nd=Nm~Ns dynamic 

multicast channels. 

8 n r n n i i — ^ 
_ _ _ I ~ ~ m i I— • 

Multicast ； 

Channels • 

lO __I~~in I I•二 

r p I I ^ • 
Ns Static O ^ I I i • 

Multicast -i ； 

Channels • 

L〇 ^ I ‘__• 

Figure 3.2: Transmission schedule for one movie. 

The video title is repeatedly multicasted over all Ns static multicast channels in 

a time-staggered manner as shown in Figure 3.2. Specifically, adjacent channels are 

offset by 

T, = — (3.1) 
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seconds, where L is the length of the video title in seconds. Transmissions are 

continuously repeated, i.e. restart from the beginning of a video title after 

transmission completes, regardless of the load of the server or how many users are 

active. These static multicast channels are used as the main channel for delivering 

video data to the clients. A client may start out with a dynamic multicast channel but 

it will shortly be merged back to one of these static multicast channels to continue 

the video session until completion. The next section presents the admission 

procedure for starting a new video session and we explain in Chapter 3.3 how the 

client is merged back to one of the static multicast channels. 

3.2 Admission Control 

To reduce the response time while still leveraging the bandwidth efficiency of 

multicast, SS-VoD allocates a portion of the multicast channels and schedules them 

dynamically according to the requests arrival patterns. 

Specifically, a new request first goes to the admission controller, which first 

performs authentication of the client. Armed with complete knowledge of the 

transmission schedules for the static multicast channels, the admission controller then 

determines if the new user should wait for the next upcoming multicast transmission 

from the static multicast channels, or start playback with a dynamic multicast 

channel. In the former case, the client just waits for the next multicast cycle to begin, 

without incurring any additional load to the backend service nodes. In the latter case, 
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the admission controller then performs additional processing to determine if a new 

request needs to be sent to the appropriate service node to start a new dynamic 

multicast stream. 
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Figure 3.3: State-transition diagram for the admission controller. 

Figure 3.3 depicts the state-transition diagram defining the admission procedure. 

Beginning from the IDLE state, suppose that a new request arrives at time a/，which is 

between the start time of the previous multicast cycle, denoted by tm, and the start 

time of the next multicast cycle, denoted by tm+i. Now a predefined admission 

threshold, denoted by S, determines the first admission decision made by the 

admission controller: the new request will be assigned to wait for the next multicast 
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cycle to start playback if the waiting time, denoted by w/, is equal to or smaller than 

15, i.e. 

-a.,<15 (3.2) 

W e call these requests statically-admitted and the admission controller returns 

to the IDLE state afterwards. For a randomly arrived request (e.g. Poisson arrivals) 

that is statically-admitted, the waiting time is uniformly distributed between zero and 

15, with a mean waiting time of S. This admission threshold is introduced to reduce 

the amount of load going to the dynamic multicast channels. Configuration of this 

admission threshold will be presented in Chapter 4. 

If (2) does not hold, then the admission controller will proceed to determine if a 

request needs to be sent to the appropriate service node to start a new dynamic 

multicast stream — dynamically-admitted. The service nodes and admission 

controllers each keeps a counter and a length tuple: {Ac, Al), where Ac=0,l,..., and 

for each video title being served. Therefore each service node will 

have M such admission tuples and each admission controller will have MK such 

admission tuples, where K is the total number of service nodes in the system. Both 

the counter and the length fields are initially set to zero. 

Now with the admission tuples, the admission procedure proceeds as follows. 

For requests that cannot be statically-admitted, the admission controller will first 

check the counter in the admission tuple for the requested video title. If the counter 

Ac is zero, then the counter is increased by one, and the length field is set according 

to 
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(3.3) 

which is essentially the length of time passed since the beginning of the last multicast. 

At the same time a START request will be sent to the service node with the requested 

video title and the admission controller enters the STARTED state. 

If another request for the same video title arrives during the STARTED state, say 

at time ai+\, the admission controller will not send another request to the service node, 

but just update the length field according to 

- C (3.4) 

This process repeats for any additional requests arrived during the STARTED 

state. 
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Figure 3.4: State-transition diagram for the service nodes. 
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At the service node side, upon receiving a START request from the admission 

controller，the service node will attempt to allocate a channel from the No dynamic 

multicast channels to start transmitting the video title for a duration ofAi seconds as 

shown in Figure 3.4. If the allocation is successful, i.e. free channels are available, 

then the counter and the length fields are zeroed and a START reply sent back to all 

admission controllers to announce the commencement of the new transmission. 

Otherwise it will wait for a free channel to be released. 

The admission controllers, upon receiving the START reply, will do one of two 

things. If the local counter value is one, then both the counter and the length fields 

are zeroed and the admission process completes. Otherwise, i.e. the counter is larger 

than one, the admission controller will send an EXTEND request to the service node to 

extend the transmission duration according to the value of the local length Al. Note 

that in this case, the length field at the admission controller will be larger than the 

length field at the service node because only the length field at the admission 

controller is updated for subsequent requests for the same video title. The length field 

at the service node is always the one for the first request. Upon receiving the EXTEND 

requests, the service node will update the interval transmission duration to the largest 

one among all EXTEND requests. Transmission will stop after the specified 

transmission duration expires. 

It may appear that the previous admission procedure is unnecessarily complex 

and the clients can better-off send requests directly to the service nodes. However, 

this direct approach suffers from poor scalability. In particular, recall that each 
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service node serves a few video titles to the entire user population. Therefore as the 

user population grows, the volume of requests directed at a service node will increase 

linearly and eventually exceed the service node's processing capability. 

By contrast, the admission controller generates at most two requests, one START 

request and one EXTEND request, for each dynamically-started multicast transmission, 

irrespective of the actual number of client requests. Since the numbers of admission 

controllers are orders of magnitude smaller than the user population, the processing 

requirement at the service nodes can then be substantially reduced. For extremely-

large user populations where even requests from admission controllers can become 

overwhelming, one can extend this request-consolidation strategy in a hierarchical 

maimer by introducing additional layers of admission controllers to further 

consolidate the requests until the volume becomes manageable by the service nodes. 

3.3 Channel Merging 

According to the previous admission control policy, a statically-admitted client 

starts receiving streaming video data from a static multicast channel for playback 

which is depicted in Figure 3.5. For dynamically-admitted clients, video playback 

starts with video data received from a dynamically-allocated multicast channel. To 

prepare merging the client back to an existing static multicast channel, the client 

concurrently receives and caches video data from a nearby (in time) static multicast 

channel as illustrated in the timing diagram in Figure 3.6. 
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Since the dynamic multicast channel will cease transmission after a time AL, a 

dynamically-admitted client will concurrently receive streaming video data from 

another static multicast channel and store them locally either in memory or in the 

harddisk. The goal here is to use the cached video data to continue playback after the 

dynamic multicast channel is released. 
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Figure 3.7: Channel Mergence of multi-user on SS-VoD 

As an illustration, consider a dynamic multicast channel serving n dynamically-

admitted clients. Let a/ be the time client i arrives at the system and the nearest 

multicast cycle starts at tm and tm+\ respectively, where tm< a\< a^ ... < < {tm+\-

S). Client i will cache the data from AI at the proper static multicast channel while 
waiting for the upcoming dynamic channel. Then client i will leave the dynamic 

channel to merge back to the static multicast channel after a service time of 

{ai — tm) as shown in Figure 3.7. The dynamic multicast channel can be released once 
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all n clients are merged back to the static multicast channel. Therefore the holding 

time of the dynamic channel is simply the maximum of (a, - ‘)，i=\,2...n. As a 

consequence, the holding time is simply equal to the latest client joined to the system. 

3.4 Interactive Control 

In a conventional VoD system, the major types of interactive control are fast 

forward/backward, pause/resume, and stop. Among them, pause/resume is the most 

common control performed in movie-on-demand applications. 

Intuitively, performing an interactive control essentially breaks the client away 

from the current static multicast video stream, and then restarts it at the same point 

within the video stream. Under this view, interactive control is no different from a 

new request and hence can be served the same way as for a new-video request. 

Obviously this approach will increase loads at the dynamic multicast channel, which 

could increase waiting time for both new and interactive request. As there is no 

generally accepted user-activity model, we do not attempt to quantify the 

performance impact of this approach. 

Due to the static channel allocation employed in SS-VoD, we can devise a 

channel hopping algorithm to support pause-resume control without incurring 

additional load at the unicast channels. Specifically, each movie is multicasted every 

Tr seconds and the client has a buffer large enough to cache Tr seconds of video. 

When a user pauses, say at a movie time tp, the client just continue to buffer the 
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incoming video data. If the user resumes playback before buffer overflows, then 

nothing needs to be done. Otherwise, the client just stops buffering and enters and 

idle state once the buffer is full (ie. storing the movie segment from tp to {tp+Tî ). 

When the user later resumes playback, the client can resume playback immediately 

and at the same time determine the nearest multicast channel that is currently 

multicasting the movie at the movie time t^>tp. Since a movie is repeated 

multicasted every Tr seconds, we have {T^ -TP)<TJ^. Hence the client just needs to 

start buffering again after the selected channel reaches movie time {tp+Tĵ . This 

channel-hopping algorithm is unique in the sense that no additional resource is 

required at the server. Pause-resume is simply supported by buffering and switching 

of multicast channel at the appropriate time. Hence, SS-VoD is particularly suitable 

for movie-on-demand applications where pause-resume is the primary interactive 

control needed. 
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Chapter 4 

Performance Modeling 

In this section we present an approximate performance model for the SS-VoD 

architecture. While exact analytical solution does not appear to be tractable, 

conventional numerical methods can be applied to obtain performance results based 

on the approximated model. The purpose of this performance model is to assist 

system designers to quickly evaluate various design options and to perform 

preliminary system dimensioning. Once the approximate system parameters are 

known, one can resort to a more detailed simulation to obtain more accurate 

performance results. 

The primary performance metric we use in this thesis is average waiting time, 

defined as the time a client submitted a request to the admission controller to the time 

the beginning of the requested video starts streaming. For simplicity, we ignore 

network delay, transmission loss, and processing time at the admission controller. 

W e further assume that there is a single movie stored in a service node. W e will 

investigate multiple-movie cases in Chapter 5.6. 
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In the following sections, we will first derive the average waiting time for 

statically-admitted clients and dynamically-admitted clients, and then investigate the 

channel partitioning problem. W e will compare results computed using this 

approximate performance model with the simulation results in Chapter 5.1. 

4.1 Waiting Time for 

Statically-Admitted Clients 

As described in Chapter 3.2, there are two ways where a client can be admitted 

to the system to start a video session. The first way is admission through a static 

multicast channel as shown in Figure 3.5. Given that any clients arriving within the 

time window of IS seconds will be admitted this way, it is easy to see that the 

average waiting time for statically-admitted clients, denoted by JVs(S), is equal to 

half of the admission threshold: 

= ̂  (4.1) 

assuming it is equally probable for a request to arrive at any time within the time 

window. 
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4.2 Waiting Time for 

Dynamically-Admitted Clients 

The second way to admit a new client is through a dynamic multicast channel 

as shown in Figure 3.6. Unlike static multicast channels, dynamic multicast channels 

are allocated in an on-demand basis according to the admission procedure described 

in Chapter 3.2. Specifically, if there are one or more free channels available at the 

time a request arrives, a free channel will be allocated to start transmitting video data 

to the client immediately and the resultant waiting time will be zero. 

On the other hand, if there is no channel available at the time a request arrives, 

then the resultant waiting time will depend on when a request arrive and when a free 

dynamic multicast channel becomes available. Specifically, requests arriving at the 

admission controller will be consolidated using the procedure described in Chapter 

3.2 where the admission controller will send a consolidated START request to a 

service node to initiate video transmission. 
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Free channel 

f ~ A 
to tl tz (3 

① I ② ③ 1 1 丨 

Client Requests: \| \ \ \ ... \ \ \ I \| \ \ \ .. . \ \ \ 1 
nV � 、A l A/A/ A/ \ ^ 
1 ！ I I ^ 
責 1 1 • 
I I I I 
I I I I 
I I i • I i I I 
I 1 1 i 
I i I I 
I ! ! 1 ^ ^ ri i 

START Requests: '1 ； j l | 
I， • •， I 
I I I I I I I i 
I i I I 
I • • I 
I I I I 

一 time in waiting for a free 一丨 L time in waiting for a free 一 

I dynamic multicast channel ‘ 丨 dynamic multicast channel 丨 

Request inter-arrival time 

Figure 4.1: User classification in dynamic multicast channel 

Figure 4.1 illustrates this admission process. This example assumes that there is 

no request waiting and all dynamic multicast channels are occupied before client 

request 1 arrives. After receiving request 1, the admission controller sends a START 

request to a service node to initiate a new multicast transmission for this request. 

However as all channels are occupied, the transmission will not start until a later time 

ti when a free channel becomes available. During this waiting time, additional client 

requests such as request 2, 3, and so on arrives but the admission controller will not 

send additional START request to the service node. This process repeats when a new 

request arrives at time h. 

Based on this mode, we first derive the average waiting time experienced by a 

START request at the service node. For the arrival process, we assume that user 
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requests form a Poisson arrival process with rate X. The proportion of client requests 

falls within the admission threshold 5 is given by 

(4.2) 
Tr 

and these clients will be statically-admitted. 

Correspondingly, the proportion of dynamically-admitted clients is equal to (1— 

Ps). W e assume the resultant arrival process at the admission controller is also 

Poisson, with a rate equal to 

(4.3) 

Referring to Figure 4.1, we observe that the time between two adjacent START 

requests is composed of two parts. The first part is the waiting time for a free 

dynamic multicast channel; and the second part is the inter-arrival time for 

dynamically-admitted client requests. Let Wc{d) be the average waiting time for a 

free dynamic multicast given 5. Then the inter-arrival time for START requests will be 

given by 

± = + ̂  (4.4) 

儿S 儿£> 

where As is the arrival rate for START requests. For simplicity, we assume that the 

arrival process is Poisson. 

For the service time of START request, it depends on the last user joined to the 

system as shown in Figure 3.7. In particular, the service time of the last user equals 

to the arrival time a„ minus the time tm-i for the previous multicast of the requested 

35 



Chapter 4. Performance Modeling 

movie. The service time, denoted by s, can range from 0 to {Tr-2S). W e assume the 

service time s is uniformly distributed between 

^ < s < T ^ - 1 5 (4.5) 

Therefore the dynamic multicast channels form a multiserver queueing system 

with Poisson arrival and uniformly-distributed service time. As there is no close-

form solution for such queueing model, we resort to the approximation by Allen and 

Cunneen [19] for G/G/m queues to obtain the average waiting time for a dynamic 

multicast channel: 

/ 2 2 \ 

"D(1-")、 2 J 

where 1 is the coefficient of variation of Poisson process, 

( T ^ ^ M Y 1 (4.7) 

s 12 \Tj,-2d) 3 

is the coefficient of variation for uniformly-distributed service time, and Ts is the 

average service time, given by 

(4.8) 

Additionally, u^X^Ts is the traffic intensity, p^u/No is the server utilization, 

and Ec(Nd,u、is the Erlang-C function: 

u^D / N I 

Ec { N d ， = — — D • … (4.9) 

k=Q 紀！ 
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Since the traffic intensity depends on the average waiting time, and the traffic 

intensity is needed to compute the average waiting time, Equation (4.6) is in fact 

defined recursively. Due to (4.9)，Equation (4.6) does not appear to be analytically 

solvable. Therefore, we use numerical methods in solving for Wc(S) in computing 

the numerical results in Chapter 5. 

Now that we have obtained the waiting time for a START request, we can 

proceed to compute the average waiting time for dynamically-admitted client 

requests. Specifically, we assume the waiting time for START request is exponentially 

distributed with mean JVc(^. W e classify client requests into two types. A Type-1 

request is the first request that arrives at the beginning of the admission cycle. Type-

2 requests are the other requests that arrive after a Type-1 request. For example, 

request 1 in Figure 4.1 is a Type-1 request, and request 2 and 3 are Type-2 requests. 

W e first derive the average waiting time for Type-2 requests. Let 炉 b e the 

average waiting time for Type-2 requests which can be found to be (see Appendix): 

f 1 , ] 1 n -(Tr -

『2⑷二『c⑷ 1 2 : ⑵ ( 二 ( 4 . 1 0 ) 

V y 

Next for Type-1 requests, the average waiting time, denoted by Wi{S), is simply 

equal to Wc{S). Therefore the overall average waiting time can be computed from a 

weighted average of both Type-1 and Type-2 requests. Specifically, the average 
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number of Type-2 requests arriving in an admission cycle, denoted by M2、S), can be 

computed from 

= (4.11) 

Let Wd{S) be the average waiting time for all Type-1 and Type-2 requests. W e 

can then compute it from the weighted average of both Type-1 and Type-2 average 

waiting times: 

J一 \ + MJS) 
2、7 (4.12) 

一 L + 

4.3 Admission Threshold 

In the previous derivations, we have assumed that the admission threshold value 

is given a priori. Consequently, the resultant average waiting time for statically-

admitted and dynamically-admitted users may differ. To maintain a uniform average 

waiting time in both cases, we can adjust the admission threshold according to the 

average waiting time at the unicast channels: 

S = min{x丨(炉&(x)-W^(x))<£jj, >x>0} (4.13) 

so that the waiting-time differences are less than some small value s. 

As adjusting the admission threshold does not affect existing users, the 

adjustment can be done dynamically while the system is online. In particular, the 

system can maintain a moving average of previous users' waiting time as the 
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reference for threshold adjustment. This enables the system to maintain a uniform 

waiting time, referred to as latency thereafter, for both statically-admitted and 

dynamically-admitted users. 

4.4 Channel Partitioning 

An important configuration of SS-VoD is partitioning of available channels for 

use as dynamic and static multicast channels. Intuitively, having too many dynamic 

multicast channels will increase the traffic intensity at the dynamic multicast 

channels due to increases in the service time (c.f. Equations (3.1) and (4.4)). On the 

other hand, having too few dynamic multicast channels may also result in higher load 

at the dynamic multicast channels. 

Similar to the study by Lee [15] on UVoD, an optimal channel partitioning 

policy can be obtained by enumerating all possibilities, which in this case is of 0{N). 

Unlike UVoD, we found that the optimal channel partitioning policy is relatively 

independent of the user arrival rate. See Chapter 5.2 for more details. 
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Chapter 5 

Performance Evaluation 

In this section, we present simulation and numerical results to evaluate the SS-

VoD architecture studied in this thesis. 

5.1 Model Validation 

To verify the accuracy of the performance model derived in Section IV，we 

developed a simulation program using C N C L [20] to obtain simulation results for 

comparison. A set of simulations is run to obtain the average waiting over a range of 

arrival rates. Each run simulates a duration of 1440 hours (60 days), with the first 24 

hours of data skipped to reduce initial condition effects. There is one movie in the 

system, with a length of 120 minutes. W e divide available multicast channels equally 

into static-multicast and dynamic-multicast channels. W e do not simulate user 

interactions and assume all users playback the entire movie from start to finish. 
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Figure 5.1: Latency Comparison of analytic and simulation results 

Figure 5.1 shows the average waiting time versus arrival rate ranging from 

1x10—3 to 5.0 requests per second. W e observe that the analytical results are 

reasonable approximations for the simulation results. At high arrival rates (e.g. over 

1 requests per second), the analytical results over-estimate the simulation results by 

up to 50/0. 

As discussed in the beginning of Chapter 4, the analytical model is primary 

used for preliminary system dimensioning. Detailed simulation, while lengthy (e.g. 

hours), is still required to obtain accurate performance results. 
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5.2 Channel Partitioning 

To investigate the performance impact of different channel allocations, we 

conducted simulations with proportion of dynamic multicast channels, denoted by r, 

ranging from 0.3 to 0.7. The results are plotted in Figure 5.2. Note that we use a 

normalized latency instead of actual latency for the y-axis to facilitate comparison. 

Normalized latency is defined as 

_ _ _ _ _ (5.1) 

min{w(r), Vr} . 

where w(r) is the latency with r^ dynamic multicast channels. 
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Figure 5.2: Normalized latency versus proportions of dynamic multicast channel 
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W e simulated three sets of parameters with N=20, 30，and 50 for two arrival 

rates, namely heavy load at 5 requests/second and light load at 0.5 requests/second. 

Surprisingly, the results show that the latency is minimized by assigning half of 

channels to dynamic multicast and the other half to static multicast. By contrast, 

U V o D [15] exhibits a different behavior and requires more channels allocated to 

static multicast channels to minimize latency at high loads. Figure 5.3 compares the 

optimal channel allocation for U V o D and SS-VoD for a 50-channel configuration. 

For UVoD, the optimal proportion of static multicast channel increases with the 

arrival rate. For example, the optimal proportion of static multicast channel is 86% 

(43 static multicast channels) at an arrival rate of one user per second. For 

comparison, the optimum proportion of static multicast channel for SS-VoD remains 

50% for the entire range of loads in this example. 
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Figure 5.3: Optimum Channel Allocation of SS-VoD and UVoD 

The channel reallocation scheme affects the behavior of admitted users so the 

complexity of practical system implementation increases in UVoD. In contract, the 

optimal channel allocation of SS-VoD is simply independent with the system load 

for a wide range of loads. This property greatly enhances the practicability of SS-

VoD system. 

5.3 Latency Comparisons 

Figure 5.4 plots the latency for SS-VoD, UVoD, TVoD, and N V o D for arrival 

rates up to 5 requests per second. The service node (or video server for TVoD/NVoD) 

has 50 channels and serves a single movie of length 120 minutes. The first 
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observation is that except for NVoD, which has a constant latency of 72 seconds, the 

latency generally increases with higher arrival rates as expected. For TVoD, the 

server overloads for arrival rates larger than 1.16x10—4 requests per second. U V o D 

performs significantly better with the latency asymptotically approaches that of 

NVoD. SS-VoD performs even better with the latency level off and approaches 5.6 

seconds, or a 92% reduction compared to UVoD. 
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Figure 5.4: Latency comparison of SS-VoD with typical VoD Systems 

It is worth noting that the performance gain of SS-VoD over UVoD does not 

incur any tradeoff at the client side. Specifically, the buffer requirement and 

bandwidth requirement are the same for both SS-VoD and UVoD. The only 

differences are the replacement of the unicast channels in UVoD with multicast 

channel; and the more complex admission procedure in the admission controller. 
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5.4 Channel Requirement 

To investigate the channel requirement for a range of arrival rate, Figure 5.5 

plots the channel requirement of SS-VoD, UVoD, TVoD, and N V o D in log-scale 

versus the arrival rates from 0.01 to 5 requests per second. There is a single movie of 

length 120 minutes. The latency constraint is equal to or shorter than one second. 

The channel requirement in the y-axis, denoted by C, is computed from 

C = m i n { « | ^ < l , V « = 0 ,1 , . "} (5.2) 

where Wis the waiting time for the systems at the given arrival rate. 
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Figure 5.5: Channel requirement of SS-VoD and typical VoD systems 

As expected, number of channel required for N V o D is a constant value and 

equal to 3600. The channel requirement of TVoD rapidly increases with the arrival 

rate and the number of channels required is larger than that of N V o D for the arrival 
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rate of 0.485 request per second. The channel requirement of SS-VoD and U V o D is 

much lower than TVoD and N V o D in all the arrival rates. The channel requirement 

of U V o D increases gracefully with the arrival rate. For example, the channel 

requirement of U V o D is equal to 130 at the arrival rate of one request per second, 

and it increases to 274 at the arrival rate of five requests per second. The channel 

requirement of SS-VoD increases relatively slower compare to U V o D for arrival rate 

up to one request per second. For arrival rate higher than one request per second, the 

channel requirement of SS-VoD increases insignificantly. Specifically, the number of 

channel required is equal to 90 and 108 at the arrival rate of one and five requests per 

second respectively. Note that the channel requirement only increases 20% for the 

five times increase in the arrival rate. 

It is worth noting that the channel requirement of SS-VoD is relatively constant 

for arrival rate from one request per second. Having this nearly constant channel 

requirement property, SS-VoD will never experience overflow, and the overall user 

latency will not be increased significantly for a sudden increase in the arrival rate. 

5.5 Performance at Light Loads 

The previous results are computed using relatively high arrival rates. Intuitively, 

the performance gains will decrease at lower arrival rates as fewer requests will be 

served by a dynamic multicast channel. To investigate this issue, we compute the 

number of channels required at a given arrival rate so that the latency is equal to or 
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shorter than one second. Figure 5.6 shows the channel reduction over TVoD in 

percentage versus the arrival rate from 1x10"^ to 0.01 for SS-VoD and UVoD. The 

channel reduction percentage in the y-axis, denoted by G, is calculated from 

G — min{" | W腳 <lVn = 0,l，...}-min{"\W<\,\fn = 0,1,...} “ (”） 

min{« I WryoD < 1 ， = 0,1,...} . 

where Wis the average waiting time for SS-VoDAJVoD at the given arrival rate. 
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Figure 5.6: Channel Reduction over TVoD 

As expected, the results show that SS-VoD requires fewer channels for arrival 

rates greater than 1.8x10—4 request per second. At this arrival rate, both TVoD and 

SS-VoD require only six channels. Note that the minimum number of channels 

required under SS-VoD is two and for arrival rates lower than 1x10—9 request per 
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second, TVoD will require only one channel. This suggests that SS-VoD is likely to 

outperform TVoD in practice. 

5.6 Multiplexing Gain 

In deriving the performance model in Chapter 4，we assumed there is one movie 

in the service node. To support more than one movie, one can treat each movie 

independently and assign channels according to the expected arrival rate and latency 

constraint. W e call this partitioned SS-VoD in light of the fact that channels are 

partitioned (i.e. not shared) between different movies. 

On the other hand, we can also pool the dynamic multicast channels together 

and share them among all movies in a first-come-first-serve manner. W e call this 

multiplexed SS-VoD. Intuitively, partitioned SS-VoD is less efficient because a 

request for a movie can be blocked even if there are free dynamic multicast channels 

assigned to other movies. By contrast, multiplexed SS-VoD avoids this problem by 

pooling and sharing dynamic multicast channels and hence can achieve better 

performance. 

To investigate the effect of this multiplexing gain, we conducted simulations for 

partitioned SS-VoD, and multiplexed SS-VoD with 2 movies, 8 movies and 32 

movies respectively. For all cases, we assign 50 channels to each movie and assume 

all movies to be equally popular. Under these assumptions, the latency for partitioned 

SS-VoD is independent of the number of movies in the system. 

49 



Chapter 5. Performance Evaluation 

6 I 1 1 1 1 1  

5 - -

1 3 - •二 

“ 身 " _ 
1 - //z'®' -

//P 
qI If •'广 I I I I  

0.1 0.2 0.3 0.4 0.5 
per-movie Arrival Rate (requests/second) 

partitioned SS-VoD 
^-XX multiplexed SS-VoD (2 movies) 
s e a multiplexed SS-VoD (8 movies) 
o e o multiplexed SS-VoD (32 movies) 

Figure 5.7: Multiplexing gain of SS-VoD system 

Figure 5.7 shows the latency for partitioned SS-VoD and multiplexed SS-VoD 

for per-movie arrival rates up to 0.6 requests per second. As expected, the results 

show that multiplexed SS-VoD outperforms partitioned SS-VoD and the 

multiplexing gain increases with more movies. For example, at a per-movie arrival 

rate of 0.6 request per second, multiplexed SS-VoD with 2 movies outperforms 

partitioned SS-VoD by 15%. If we increase the number of movies to 32, multiplexed 

SS-VoD will outperform partitioned SS-VoD by as much as 32%. This suggests that 

the multiplexing gain is significant and hence it is worthwhile to adopt the 

multiplexed SS-VoD instead of partitioned SS-VoD in practice. 
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Chapter 6 

Implementation and Benchmarking 

In this chapter we present the implementation detail as well as the 

benchmarking results. The simulation and analytic result shows the designed 

architecture substantial increase the system capacity. To prove the feasibility of this 

system, we implement a SS-VoD prototype with up-to-date hardware and software. 

To further validate the analytic model, we run a set of benchmarking to compare with 

the analytic results. 

6.1 Implementation Description 

The SS-VoD prototype is implemented using off-the-shelf software and 

hardware. The hardware configuration is shown in Figure 6.1. 
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Figure 6.1: A SS-VoD Network. 

There are three components in the prototype, which are SS-VoD service node, 

SS-VoD admission controller, and SS-VoD clients. Both the SS-VoD service node 

and the SS-VoD admission controller are implemented using the C++ programming 

language on the Red Hat Linux 6.2 [21] operating system platform. The SS-VoD 

client application is implemented using the Java programming language and the Java 

Media Framework (IMF) 2.1 [22]. 

The operation of the system is as follows. First, digitized and compressed video 

data for each movie is stored in a service node, and each service node is running the 

SS-VoD service node software. Each SS-VoD service node connects to the SS-VoD 

admission controller for registering the movie. Client stations running the SS-VoD 

client software can then send request to the SS-VoD admission controller. SS-VoD 
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admission controller will transmit the proper information (e.g. multicast address of 

the video channels, detail movie information, latency for available channels) to the 

client. The client then receives video data from the SS-VoD service node directly and 

starts the movie playback. 

6.2 Benchmarking 

W e have discussed the system performance of SS-VoD in the previous chapters. 

To provide a more realistic figure for this architecture, benchmarking is a necessary 

and importance procedure. As there are limited hardware resources, we setup up a 

test-bed for a signal movie system. The benchmarking experiment consists of three 

major components: SS-VoD service node, admission controller, and client generator. 

The role of service node and admission controller remains unchanged. W e have 

developed a Java application called client generator, and the purpose of the client 

generator is to generate the desirable client request rate for the benchmarking. The 

detail benchmarking setup and result are presented in the following sub-sections. 

6.2.1 Benchmarking Setup 

The hardware configurations for different system components in the test-bed 

are listed in Tables 6.1 to 6.4 in the following: 
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Component Model and Configuration 

Motherboard Compaq server-grade mainboard (2 PCI slots, 4 G M B D R A M ) 

CPU Intel Pentium III SOOMhz 

Disk Controller Compaq UltraS SCSI 

Disk 2 X Fujitsu MAJ3182MC (UltraS SCSI) 

Network Intel PRO/IOOOT (1000Mbps) 

Table 6.1: Service Node Configuration (Compaq Proliant DL360) 

Component Model and Configuration 
Motherboard Compaq server-grade mainboard (6 PCI slots, 256MB D R A M ) 

CPU Intel Pentium III 500Mhz 

Disk Controller Compaq Ultra2 SCSI 

Disk 3 X Fujitsu MAG3182LC (Ultra2 SCSI) 

Network Intel PRO/IOOOT (1000Mbps) 

Table 6.2: Admission Controller Configuration (Compaq Proliant 1600) 

Component Model and Configuration 
CPU Intel Pentium III 500Mhz 

Memory 256M S D R A M 

Network Intel PRO/IOOOT (1000Mbps) 

Table 6.3: Client Generator Configuration 

Component Model and Configuration 
Switch Extreme Networks Summit24 

Table 6.4: Interconnection Network Configuration 

In conducting the benchmarking tests, the service node only serves one movie 

and the length of movie is 120 minutes. W e run the benchmarking tests for 30 
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channels for arrival rate from one to five requests per second. For each configuration, 

we run the benchmarking tests for a length of 6 hours with the first hour of data 

skipped to reduce initial condition effects. In the implementation, the latency is 

known for users when they join to the system. Therefore, the latency is captured in 

the client generator. 

6.2.2 Benchmarking Result 

Table 6.5 compares the latencies obtained from the analytic performance model, 

simulation, and benchmarking respectively. W e observe that the benchmarking 

results agree with the analytical results and simulation results. The maximum 

difference between benchmarking and analytic result is less than 4.5% in this range 

of load. Therefore, the benchmarking results serves as a proof for the feasibility and 

correctness of the SS-VoD architecture, and verifies the performance model derived 

in Chapter 4. 

Request per second Analytic Result Simulation Benchmarking 

1 13.90s 12.95s 13.86s 

2 14.39s 13.34s 13.78s 

3 14.52s 13.59s 14.20s 

4 14.57s 13.61s 14.70s 

5 14.67s 13.68s 14.58s 

Table 6.5: Latency comparison of analytic, simulation and benchmarking results 
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Chapter 7 

Conclusion 

In this study, we present and analyze a Super-Scalar Video-on-Demand (SS-

VoD) architecture that can achieve super-linear scalability by utilizing network 

multicast together with client-side caching. This SS-VoD architecture is particularly 

suitable for metropolitan-scale deployment as the resource savings increase 

exponentially with higher arrival rates. In fact, there is no inherent scalability limit to 

this SS-VoD architecture provided that the network is multicast-ready, and has 

sufficient bandwidth to connect all customers. With more and more existing 

residential broadband networks being upgraded to support multicast, the presented 

SS-VoD architecture could provide a cost-effective solution to the scalability 

challenge. 
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Appendix 

To compute the average waiting time for Type-2 request, denoted by ̂ 2̂(5), we 

first compute the apparent waiting time distribution of the dynamic multicast 

channels for Type-2 user request, denoted by fc*{t)- W e then can compute the 

average waiting time of Type-2 user request. 

The apparent waiting time distribution of dynamic multicast channel for Type-2 

user is given by [23]: 

= (A.1) 
MC 

where fc*(t) be the apparent waiting time distribution of dynamic multicast 

channels for Type-2 user,/c(0 be the waiting time distribution of dynamic multicast 

channels and M c be the mean waiting time of dynamic multicast channel. 

Let be the average waiting time of the apparent distribution, and it can 

be calculated as following: 

工的 (A.2) 

Therefore from equation (A.l) and (A.2), 
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Wr.{S)= [^-^-^^dt (A.3) 

From the definition, the minimum waiting time should be a non-negative value, 

and the maximum waiting time of user in dynamic channel is equal to {Tr-2S). W e 

can simplify the above equation to: 

明 = r 麵 ( A . 4 ) 
‘‘ Mc 

W e assume fc{t) is truncated exponential distributed with mean equal to 

The range of t is from zero to {Tr-IS). The distribution is given by: 

F HTr-2S) 丫 1 -t 

/c(,)= (1-e 秘 , c ⑷ 斤 ( A . 5 ) 

V y 

From equation (A.4) and (A.5), 

-t 

妒c* ⑷ = i ^ dt (A.6) 

{\-e • )Wc{Sf 

Here, we then computer the average apparent waiting time of dynamic multicast 

channels by integration, 

W � - 1 & 点 ) + 
{\-e • � 0 啊 WciS) 

(A.7) 
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First, we calculate the left part, it becomes 

-(TR-2S) -t 

Wc* ⑷ = ——^EM——dt 

{l-e 啊 ) W c { S ) {\-e 秘 ) W c { 5 ) 

(A.8) 

W e simply the equation by integration by parts for the right part, 

-{TR-25) -t TR-1S _t 

WC* ⑷= — - { T , - 2 S ) -{T,-25)出 

(1-e 哪 W,(S) (1-e 秘）o (1-e 秘) 

(A.9) 

After calculating the second term, it becomes 

-(Tj,-2S) -fa-2 力 -t 
w iT,-2Sfe 2 ( T R - 2 外 啊 , 丄 

十 J) 

(l-e 秘 (l~e『c⑷） （1-e 秘) 

(A. 10) 

Grouping the first and second parts of (A. 10), then, 

-fa-2 力 -t 

wc* ⑷=-(口 ( i c r ) f ^ ^ + 2 ] + r 
L -(Tr-2S) jy J) -{.Tr-28) 

(l-e 〜⑷）V cv 乂 ) (1-^ 〜⑷) 

(A. 11) 
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After integrate the right-most part and simplify the equation, it gives 

( -(T„-2S) \ 

W ⑷ - 2 明 1 — + 
c* ⑷ 2 �V J 明 

F 1 , IT,-2S) ] 
1 i -(t„-2S) 

-2W (S) 1 2 明 ^ 

V y 

(A. 12) 

For Poisson process, the user randomly arrives to the dynamic multicast 

channel. Hence, the average waiting time of Type-2 user request should be equal to 

the half of the average apparent waiting time of dynamic multicast channel by Type-

2 user requests. Therefore, 

( . { T ^ -25) ) 
響 ( 父 、 ( T 。 又 、 ( A . 13) 

1 ( " - 2 化 

V 

M 
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