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Abstract

Despite the availability of video-on-demand (VoD) services in a handful of
cities around the world, large-scale deployment of VoD services in a metropolitan is
still economically impractical. A lot of researches have been done in improving the
scalability of VoD systems, but to this day, the ultimate capacity of a video server is
still finite.

In this thesis, we present a Super-Scalar Video Server (SS-VoD) which isa
novel architecture to tackle this capacity problem. By the intelligent use of network
multicast and client-side caching, the proposed architecture can vastly reduce server
and network resource requirement. More 1mportantly, the resource reduction
increases with the load, and the server latency asymptotically approaches a constant
when the load is further increased. For example, a small server with hardware
capacity, which 1s equivalent to 50 concurrent streams in traditional video servers,
can serve a 120-min video with an average latency no more than 5.6 seconds,
regardless of the customer arrival rate. This thesis presents this new architecture,
derives an approximate performance model, and evaluates the architecture using

numerical results from analytical models, simulations, and benchmarking.
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Chapter 1. Introduction

Chapter 1

Introduction

Video-on-demand (VoD) systems have been commercially available for many
years. However, except for a few cities, large-scale deployment of VoD service is
still uncommon. One of the reasons is the high cost in provisioning large-scale
interactive VoD service. The traditional model of true-video-on-demand (TVoD)
calls for a dedicated channel, both at the server and at the network, for each active
user during the entire duration of the session (e.g. 1-2 hours for movies). In acity
with potentially millions of subscribers, the required infrastructure investment would
be immense.

To tackle this problem, a number of researchers have started to investigate
various 1innovative architectures in an attempt to improve the scalability and
efficiency of large-scale VoD systems [1-15]. Examples include the periodic
broadcasting approach by Chiueh et al. [1], the batching approach by Dan et al [2]
and Shachnai et al. [3], the split and merge protocol by Liao et al. [4], the stream
tapping scheme by Carter et al. [5], the pyramid broadcasting approach by

Viswanathan et al. [6] and Aggarwal et al. [7], the piggybacking approach by
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Golubchik et al [8], Aggarwal et al [9], the patching approach by Hua et al. [10]
and the Mcache approach by Ramesh et al [11] > and so on. It is beyond the scope of
this thesis to compare these difference approaches and the interested readers are
referred to [5] for some comparative discussions.

In this thesis, we present a Super-Scalar Video-on-Demand architecture (SS-
VoD) to tackle this capacity problem. By the intelligent use of network multicast and
client-side caching, the proposed architecture can vastly reduce server and network
resource requirement. Specifically, our goal in this thesis is to design a video-on-
demand system that scales in a super-linear manner. Consequently, the average
latency as experienced by new customers should asymptotically approach a constant
(e.g. a few seconds). For example, our results show that a small SS-VoD server with
hardware capacity equivalent to 50 concurrent streams in traditional video server can
serve a 120-min video with an average latency no more than 5.6 seconds, regardless
of the customer arrival rate.

This super-scalar property will enable the VoD system to serve a huge number
of concurrent users — a requirement for metropolitan-scale deployments. Unlike
traditional video servers where the server cost increases proportionally for larger user
population, the server-cost per customer for the proposed super-scalar architecture
decreases for larger user population. Hence this super-scalar architecture can provide

a cost-effective solution for deploying large-scale, city-wide video-on-demand

SErvices.
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1.1 Contributions of This Thesis

The main contribution of this thesis 1s in the design and performance evaluation
of the Super-Scalar Video-on-Demand (SS-VoD) architecture, which provides a
solution to the capacity challenge in city-wide VoD service deployments. Specifically,
we developed a transmission scheduling algorithm for scheduling multicast
transmission, and an admission control algorithm for processing and scheduling
client requests. To characterize the performance of the SS-VoD architecture, we
derived an approximate performance model for system dimensioning. The
performance model 1s validated against simulation results and is shown to be a
reasonable approximation. To prove the feasibility of the SS-VoD architecture, we
implement a SS-VoD prototype with off-the-shelf computer hardware and software.
Benchmarking results obtained from the prototype show that the SS-VoD

architecture 1s indeed super-scalar, and can be scaled up to millions of users.

1.2 Organizations of This Thesis

This thesis 1s organized as follows. Chapter 1 presents an introduction to this
study. Chapter 2 presents an overview of video-on-demand systems and related
works. Chapter 3 presents the SS-VoD architecture. Chapter 4 presents an
approximate performance model of SS-VoD. Chapter 5 evaluates the performance of

SS-VoD vianumerical and simulation results. Chapter 6 presents the implementation
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of the SS-VoD prototype and benchmarking results. Finally, Chapter 7 concludes this

thes1s.

1.3 Publication

V.C.H. Lee, J.Y.B. Lee, "Improving UVoD System Efficiency With Batching,"
Proc. International Conference on Software, Telecommunications and Computer

Networks — SoftCOM, Croatia, October 2000.
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Chapter 2

Overview of VoD Systems

Many video-on-demand (VoD) systems have been developed in the last decade.
Figure 2.1 depicts a typical VoD system, consisting of a video server, an
intercommection network, and multiple video clients. The video server usually is a
high-performance computer that stores compressed digital video in harddisks for
transmission to clients over the network. A video client receives video data from the
video server and decodes them for playback. Client device can be a single personal
computer (PC) or a set-top box (STB) connected to a television. The interconnection
network can be implemented using Ethernet, ATM or other network technologies.

The following sections review the existing VoD architectures.
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Figure 2.1: A typical video-on-demand system

2.1 True VoD

The most common type of VoD systems i1s called true video-on-demand
(TVoD), depicted inFigure 2.2. To mitiate a new video session, a client first sends a
request to the video server for a specific video. The video server processes the
request by retrieving video data from the storage and streaming the video data over
the network to the client device. The client device typically first buffers a small
amount of video data and then starts video playback while concurrently receiving

video data from the server.
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1 O
Video Server Client PC

represent a channel

Figure 2.2: Channel Scheduling ofTVoD

In a TVoD system, each client has its own dedicated channel for video
streaming where a channel refers to network and server resources allocated for a
video session. As each user has a dedicated channel, one can perform interactive
VCR-11ke controls such as pause/resume, fast-forward and rewind at any time.
However, as the video server has a limited number of channels for serving users,
arriving users will be denied service once all these channels are occupied. Therefore
the resource requirement of a TVoD system 1s proportional to the desired system

capacity and this limits the scalability of VoD systems designed using the TVoD

architecture.

2.2 Near VoD

Another type of VoD system, commonly called near video-on-demand (NVoD)
[1], repeatedly transmits a video stream over multicast or broadcast channels as

shown inFigure 2.3. The channels are scheduled in advance and independent of the
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client request. For example, suppose there are 10 channels assigned for a video, and

the movie length 1s 120 minutes. Then the movie will be restarted every 12 minutes

as shown 1n Figure 2.3.
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Figure 2.3: Channel Scheduling o fNVoD

To start a new video session, a client simply waits for the next upcoming

transmission cycle to begin playback. Given that the video 1s restarted once every 12

minutes, the average and worst-case waiting time will be equal to 6 minutes and 12

minutes respectively.
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An 1important characteristic of NVoD 1is that when a new transmission cycle
starts, all the waiting clients can share the multicast/broadcast channel and start video
playback at the same time. This eliminates the need for allocating a dedicated
channel to each video session and hence the resource requirement of aNVoD system
1s 1ndependent of the desired system capacity. In theory, a NVoD system can serve
any number of users, albeit at the expense of longer start-up latency and limited

Interactivity.

2.3 Related Works

Apart from the TVoD and NVoD systems, researchers have recently
investigated various new approaches to improve the efficient of VoD systems. In the
following sections, we review some of these previous works that employ novel way
of milticasting to achieve scalability but without the long startup latency commonly

found inNVoD systems.

2.3.1 Batching

Batching is first proposed by Dan et al. [3] and later also investigated by
Aggarwal et al. [5], Almeroth et al. [6] and Shachnai et al [7]. The principle of
batching 1s to group users waiting for the same movie at a video server and serve
them using a single multicast channel. Unlike NVoD system, the schedule of

multicast channels 1s not fixed but dynamically determined depending on the user
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request pattern. Clearly this batching technique can reduce resource requirement both
at the server and in the network. However, as multiple users share a multicast
channel, 1ndividual user then cannot perform interactive VCR controls such as pause-
resume, fast-forward, and fast-backward. To tackle this limitation, one can set aside
some contingency channels to serve those users performing interactive controls as

proposed and studied in Dan etal [3], Almeroth etal. [6], and Lietal [§].

There are several algorithms in which waiting users are scheduled for service in
batching. For example, mnFCFS batching [3], arriving users all join a single queue.
Once a free channel becomes available in the server, the user at the head of queue
will be served. Moreover, other queued users with the same movie selectionwill also
be served together by the same multicast channel.

Another algorithm called Maximum Queue Length (MQL) [3]° maintains a
separate queue for each movie for the arriving users. Once a free channel becomes
available, themovie with themaximum number of waiting users will be selected for
service. This algorithm can improve batching efficiency at the expense of faimess as
users waiting for unpopular movies are likely to experience longer waiting time than
users waiting for popular movies. There are other more sophisticated batching
algorithms and the interested readers are referred to the study by Shachnai et al. [7].

Their simulation results showed that resource reductions of up to 70% could be

realized in large system serving around 5000 concurrent users, with an average

waiting time of around one minute.

10
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2.3.2 Patching

Hua etal [10] proposed a patching approach where client caching and channel
hopping are used to merge channels with near starting time to reduce resource
requirement. Specifically, all channels in patching are multicast channels and a
channel can function as either a regular channel or a patching channel. Depending on
the arrival time and other system parameters, an arriving user may start the video
session with a regular channel. Or 1t may start the video session using a patching
channel while concurrently cache data from another regular channel. After a short
time period, the user can then release the patching channel by continuing video
playback via the cached data and the regular channel. Their simulation results show
that at a latency of zero, patching can provide 300% system capacity compared to an

equivalent TVoD system.

2.3.3 Mcache

Ramesh et al recently proposed the multicast with cache {Mcache) approach
[11] to further increase the performance of patching by using regional cache server.
The regional cache server stores thefirstfew minutes or even seconds, called prefix,
of each video. Using the prefix from the cache server, a client can start video
playback immediately while waiting for a free regular or patching channel. Hence by
introducing the cache server, the latency of user request is reduced compared to pure

patching. Simulation results [11] showed that at a latency of zero, Mcache with one-

11
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minute prefix can provide 1300% system capacity compared to an equivalent TVoD

system. The tradeoff is the additional costs for the cache server.

2.3.4 Unified VoD

Lee [15] recently proposed a UVoD architecture where both unicast and
multicast channels are employed for video delivery. By using intelligent client
buffering and channel switching, a UVoD system can achieve latency similar to
TVoD while at the same time dramatically reduces the resource requirement.

r 1
! Ny Unicast Channels |

| 0O |

; Request Queue Q .
;01 1 j111111 ) . r ©~  Unicast video
r1111 W PI . [1/ transmission

W Admission W ! 1
Requests [Z: ;)  Control ! " Q"

A A

i"-K Multicast video
J [ « VK transmission

:| LO |

1 Nm Multicast Channels I

Figure 2.4: Architecture of the UVoD System
Figure 2.4 depicts the UVoD architecture. Let N be the total number of
available channels, where Nu of them are unicast channels, Nm =N-Nu are multicast
channels. Let Mbe the number of movies of length L seconds each and movies are
assumed to have the same length for simplicity. The multicast channels are evenly

assigned to all movies and the architecture requires Nm > Msuch that eachmovie can

12
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be allocated with at least one multicast channel. Therefore, there are \NJ{UIM_

multicast channels allocated for each movie. The movie i1s then transmitted over all

allocated multicast channels repeatedly as shown in Figure 2.5.

Length of Multicast
movie (L) repeated o ‘e
A A

r —
One multicast channel —;\i | I' Ii | i i

| il I
™ PHITITI : % - %
I j ] I I . I
[fetjrffrl | | |
by ey I RPN N
— k - I
Tr

Figure 2.5: Scheduling of multicast cycles for amovie in UVoD

Note that transmission cycles are offset by
L, .
seconds between adjacent multicast channels allocated to the same movie.

When a user arrives at the system, the admission controller (Figure 2.4) will
assign the user towait for either a unicast channel (admit-via-unicast) or amulticast
channel (admit-via-multicast) to begin playback. The purpose of the admission
controller 18 to equalize the average waiting time for users served mitially by unicast
channel and multicast channel [15]. Specifically, a parameter called admission
threshold, denoted by S, is introduced for admission control. Let t be the time a user
arrives at the system requesting movie /> and let tm be the start time of the next

multicast cycle for movie I. The systemwill assign the user towait for the upcoming

13
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multicast cycle if the resultant waiting time will be smaller than the admission

threshold:

(tm-t)<s (2.2)

The admitted user continues to receive video data from this multicast channel
for the entire video playback as in aNVoD system.

If the resultant waiting time 1S longer than the admission threshold, the
admission controller will assign the user towait for a free unicast channel to begin
video playback. All unicast channels share a single input queue as shown inFigure
2.4 and waiting users are served according to the first-came-first-serve (FCES)
queueing discipline. By adjusting the admission threshold, the system can maintain
similar latency for both admit-via-multicast and admit-via-unicast users.

For admit-via-unicast users, the client device first starts caching video data
from the previous multicast of the requested movie. Then it waits for a free unicast
channel to start playback. For example, assuming that the user arrives at time t, and
let tm.\ and tm be the nearest epoch times of multicast channel m-\ and channel m, for
which tm-1 <t < (tm- S). Then at time t, the client starts caching video data from
channel m-\ into the client's local storage. At the same time, the client enters the
request queue and starts video playback using unicast once a free unicast channel
becomes available. Therefore UVoD assumes that the client devices can receive two

video channels simultaneously and have local storage to cache up to TF seconds of

video data.

14
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The admission process 1s not yet completed as the client still occupies one
unicast channel. As the client concurrently caches multicasted video data for the
movie starting from movie time {t-tm.\), the unicast channel can be released after a
time -y and the client can continue video playback using the local cache. Hence
similar to Liao et al. [4] > the local cache is used to add time delay to the multicast
video stream so that 1t can be synchronized with the client playback. Since — oc«ct-mn-
D<(rr-  S)«L, we can see that the unicast channels are occupied for much shorter
duration when compared to TVoD. This reduction in service time allows more
requests to be served by the unicast channels.
The analytic show that the 500% performance gain of UVoD to TVoD

architecture can be achieved at a latency requirement of one second. In the
meanwhile, this architecture provides pause/resume interactive control without
incurs any additional system load. The optimum channel allocation on UVoD for
multicast and unicast channel 1s depends on the system load, and the number of

multicast channel increase as the increment in the system load.

2.4 Discussions

Reconsidering the UVoD architecture, we observe that the unicast channels
within UVoD operate in the same way as a TVoD system. The difference 1s that a
unicast channel n UVoD 18 not occupied for the entire duration of the movie. The

channel will be released once the user 1s merged back toa stagger multicast channel.

15
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This motivates us to investigate applying algorithm similar to batching to these
unicast channels to further improve the system performance. This new Super-Scalar

Video-on-Demand (SS-VoD) architecture will be presented in the next chapter.

16
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Chapter 3

Super-Scalar Architecture

In this section we present the architecture and the motivation for the proposed
Super-Scalar Video-on-Demand System (SS-VoD). The overall SS-VoD architecture
1s depicted in Figure 3.1. The system comprises a number of service nodes connected
via a multicast-ready network to the clients. The clients form clusters according to
their geographical proximity. An admission controller in each cluster performs

authentication as well as scheduling requests forwarding to the service nodes.

17
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Figure 3.1: System architecture.

Each service node operates independently from each other, having its own disk
storage, memory, CPU, and network interface. Hence a service node 1s effectively a
mini video server, albeit serving a small number of video titles to the entire user
population. This modular architecture can simplify the deployment and management
of the system. For example, since the configuration of each node is decoupled from
the scale of the system and each server node carries just a few movies, a service
provider simply deploys therightnumber of server nodes according to the desired
video selections. Additional server nodes can be added when more movie selections
are needed, with the existing nodes remain unchanged.

To improve reliability, one can use disk mirroring for each server node. While

parity-based schemes [16-18] have lower redundancy overhead, the number of disks

involved present too much storage capacity for use in a server node, where only a
18
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fewmovie 18 served. Additionally, mirroring greatly simplifies recovery from a disk
failure as a failed disk can easily be replaced without the need to shutdown the server
node (e.g. with hot-swap disks). Server performance can alsobe maintained despite a
disk failure and the failed disk can be rebuilt off-line simply by reloading movie data

from backup storage.

In case of a complete node failure, the service provider can simply pull the
disks from the failed node and install then into a spare node. The recovery time can
be made very short and only users currently viewing movies served by the failed
node will be affected.

SS-VoD achieves scalability and bandwidth efficiency with two techniques.
The first technique 1s through the use of multicast to serve multiple clients using a
single multicast channel. However, simple multicast such as those used in a near-
VoD (NVoD) system limits the time for which a client may start anew video session.
Depending on the number of multicast channels allocated for a video title, this
startup delay can range from a few minutes to tens of minutes. To tackle this nitial
delay problem, we make use of the second technique: the use of client-side caching
together with channel merging, to allow a client to start video playback at any time
using a bridging channel until it can be merged back to an existingmulticast channel.

The following sections present these techniques in detail.

19
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3.1 Transmission Scheduling

Each service node in the system streams video data into multiple multicast
channels. Let Mbe the number of video titles served by each service node and let N
be the total number of multicast channels available to a service node. For simplicity,
we assume N 1is divisible by M and hence each video title is served by the same
number of multicast channels, denoted by Nm~NIy. These multicast channels are
then divided into two groups of NS static multicast channels and Nd=Nm~Ns  dynamic

multicast channels.

8nrn nii— n
_ __I~~m1 [— .
Multicast
Channels .

IO _bF~nl [

rp I I A
Ns Static @) ~ I | i
Multicast -
Channels .

LO A I .

Figure 3.2: Transmission schedule for one movie.

The video title 1s repeatedly multicasted over all Ns static multicast channels in
a time-staggered manner as shown inFigure 3.2. Specifically, adjacent channels are

offset by

T,=— (3.1)

20
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seconds, where L 1s the length of the video title in seconds. Transmissions are
continuously repeated, i.e. restart from the beginning of a video title after
transmission completes, regardless of the load of the server or how many users are
active. These static multicast channels are used as the main channel for delivering
video data to the clients. A client may start out with a dynamic multicast channel but
it will shortly be merged back to one of these static multicast channels to continue
the video session until completion. The next section presents the admission
procedure for starting a new video session and we explain in Chapter 3.3 how the

client 1s merged back to one of the static multicast channels.

3.2 Admission Control

To reduce the response time while still leveraging the bandwidth efficiency of
multicast, SS-VoD allocates a portion of the multicast channels and schedules them
dynamically according to the requests arrival patterns.

Specifically, a new request first goes to the admission controller, which first
performs authentication of the client. Armed with complete knowledge of the
transmission schedules for the static multicast channels, the admission controller then
determines 1f the new user should wait for the next upcoming multicast transmission
from the static multicast channels, or start playback with a dynamic multicast
channel. In the former case, the client just waits for the next multicast cycle to begin,

without incurring any additional load to the backend service nodes. In the latter case,

21
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the admission controller then performs additional processing to determine if a new

request needs to be sent to the appropriate service node to start a new dynamic

multicast stream.

~
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<r 0O =07 Ye . STARTED
~ ~  update {Ac, AJ and <) Decision
~on send sTART request X ~on
No Action
) * Event
update {iAc, /\J

Figure 3.3: State-transition diagram for the admission controller.

Figure 3.3 depicts the state-transition diagram defining the admission procedure.
Beginning from the IDLE state, suppose that anew request arrives at time a/ ° which 1S
between the start time of the previous multicast cycle, denoted by tm, and the start
time of the next multicast cycle, denoted by tmti. Now a predefined admission
threshold, denoted by S, determines the first admission decision made by the

admission controller: the new request will be assigned towait for the next multicast

22
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cycle to start playback if the waiting time, denoted by w/, 1is equal toor smaller than
15, 1.e.

-a.,<15 (3.2)

We call these requests statically-admitted and the admission controller returns

to the IDLE state afterwards. For a randomly arrived request (e.g. Poisson arrivals)
that 1s statically-admtted, the waiting time 1s uniformly distributed between zero and

15, with amean waiting time of S. This admission threshold is introduced to reduce

the amount of load going to the dynamic multicast channels. Configuration of this

admission thresholdwill be presented in Chapter 4.

If (2) does not hold, then the admission controller will proceed todetermine if a
request needs to be sent to the appropriate service node to start a new dynamic
multicast stream — dynamically-admitted. The service nodes and admission
controllers each keeps a counter and a length tuple: {Ac, Al), where Ac=0,l,..., and

for each video title being served. Therefore each service node will
have M such admission tuples and each admission controller will have MK such
admission tuples, where K 1s the total number of service nodes in the system. Both
the counter and the length fields are mitially set to zero.

Now with the admission tuples, the admission procedure proceeds as follows.
For requests that cannot be statically-admtted, the admission controller will first
check the counter in the admission tuple for the requested video title. If the counter

Ac 1s zero, then the counter 18 increased by one, and the length field is set according

to
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(3.3)

which is essentially the length of time passed since the beginning of the last multicast.
At the same time a START request will be sent to the service node with the requested
video title and the admission controller enters the STARTED state.

If another request for the same video title arrives during the STARTED state, say
at time ai+\, the admission controller will not send another request to the service node,
but just update the length field according to

-C (3.4)

This process repeats for any additional requests arrived during the STARTED

state.
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Figure 3.4: State-transition diagram for the service nodes.
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At the service node side, upon receiving a START request from the admission

controller > the service node will attempt to allocate a channel from the No dynamic

multicast channels to start transmitting the video title for a duration ofAi seconds as
shown 1in Figure 3.4. If the allocation 1s successful, 1.e. free channels are available,

then the counter and the length fields are zeroed and a START reply sent back to all

admission controllers to announce the commencement of the new transmission.

Otherwise it will wait for a free channel to be released.

The admission controllers, upon receiving the START reply, will do one of two
things. If the local counter value is one, then both the counter and the length fields
are zeroed and the admission process completes. Otherwise, i.e. the counter is larger
than one, the admission controller will send an EXTEND request to the service node to
extend the transmission duration according to the value of the local length Al Note
that in this case, the length field at the admission controller will be larger than the
length field at the service node because only the length field at the admission
controller is updated for subsequent requests for the same video title. The length field
at the service node is always the one for the first request. Upon receiving the EXTEND
requests, the service node will update the interval transmission duration to the largest
one among all EXTEND requests. Transmission will stop after the specified
transmission duration expires.

It may appear that the previous admission procedure is unnecessarily complex

and the clients can better-off send requests directly to the service nodes. However,

this direct approach suffers from poor scalability. In particular, recall that each
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service node serves a few video titles to the entire user population. Therefore as the
user population grows, the volume of requests directed at a service node will increase
linearly and eventually exceed the service node's processing capability.

By contrast, the admission controller generates at most two requests, one START
request and one EXTEND request, for each dynamically-started multicast transmission,
irrespective of the actual number of client requests. Since the numbers of admission
controllers are orders of magnitude smaller than the user population, the processing
requirement at the service nodes can then be substantially reduced. For extremely-
large user populations where even requests from admission controllers can become
overwhelming, one can extend this request-consolidation strategy in a hierarchical
maimer by introducing additional layers of admission controllers to further

consolidate the requests until the volume becomes manageable by the service nodes.

3.3 Channel Merging

According to the previous admission control policy, a statically-admitted client
starts receiving streaming video data from a static multicast channel for playback
which 18 depicted in Figure 3.5. For dynamically-admitted clients, video playback
starts with video data received from a dynamically-allocated multicast channel. To
prepare merging the client back to an existing static multicast channel, the client
concurrently receives and caches video data from a nearby (in time) static multicast

channel as 1llustrated in the timing diagram in Figure 3.6.
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Since the dynamic multicast channel will cease transmission after a time AL, a

dynamically-admitted client will concurrently receive streaming video data from

another static multicast channel and store them locally either in memory or in the

harddisk. The goal here 1s to use the cached video data to continue playback after the

dynamic multicast channel is released.
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Figure 3.7: Channel Mergence of multi-user on SS-VoD

As an 1llustration, consider a dynamic multicast channel serving n dynamically-

admitted clients. Let a/ be the time client I arrives at the system and the nearest

multicast cycle starts at tm and tm+\ respectively, where tm<a\< a" ... < < {tm+\-

S). Client 1 will cache the data from A/ at the proper static multicast channel while
waiting for the upcoming dynamic channel. Then client i will leave the dynamic

channel to merge back to the static multicast channel after a service time of

{a1 — tm) as shown in Figure 3.7. The dynamic multicast channel can be released once
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all n clients are merged back to the staticmulticast channel. Therefore the holding
time of the dynamic channel is simply the maximum of (a, - )’ i=\,2...n. As a

consequence, the holding time 18 simply equal to the latest client joined to the system.

3.4 Interactive Control

In a conventional VoD system, the major types of interactive control are fast
forward/backward, pause/resume, and stop. Among them, pause/resume is the most
common control performed in movie-on-demand applications.

Intuitively, performing an interactive control essentially breaks the client away
from the current static multicast video stream, and then restarts it at the same point
within the video stream. Under this view, interactive control 18 no different from a
new request and hence can be served the same way as for a new-video request.
Obviously this approach will increase loads at the dynamic multicast channel, which
could increase waiting time for both new and interactive request. As there is no
generally accepted user-activity model, we do not attempt to quantify the
performance impact of this approach.

Due to the static channel allocation employed in SS-VoD, we can devise a
channel hopping algorithm to support pause-resume control without incurring
additional load at the unicast channels. Specifically, eachmovie 1s multicasted every
Tr seconds and the client has a buffer large enough to cache TF seconds of video.

When a user pauses, say at a movie time fp, the client just continue to buffer the
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incoming video data. If the user resumes playback before buffer overflows, then
nothing needs to be done. Otherwise, the client just stops buffering and enters and
1dle state once the buffer 1s full (ie. storing the movie segment from tp to {tp+[1).
When the user later resumes playback, the client can resume playback immediately
and at the same time determine the nearest multicast channel that is currently

multicasting the movie at the movie time tA>tp. Since a movie 1S repeated
multicasted every 7r seconds, we have (7 -7P)<174. Hence the client just needs to

start buffering again after the selected channel reaches movie time {tp+Ij”. This
channel -hopping algorithm 1s unique in the sense that no additional resource is
required at the server. Pause-resume 1s simply supported by buffering and switching
of multicast channel at the appropriate time. Hence, SS-VoD is particularly suitable

for movie-on-demand applications where pause-resume 1S the primary interactive

control needed.
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Chapter 4

Performance Modeling

In this section we present an approximate performance model for the SS-VoD
architecture. While exact analytical solution does not appear to be tractable,
conventional numerical methods can be applied to obtain performance results based
on the approximated model. The purpose of this performance model 1s to assist
system designers to quickly evaluate various design options and to perform
preliminary system dimensioning. Once the approximate system parameters are
known, one can resort to a more detailed simulation to obtain more accurate

performance results.

The primary performance metric we use in this thesis i1s average waiting time,
defined as the time a client submitted a request to the admission controller to the time
the beginning of the requested video starts streaming. For simplicity, we 1gnore
network delay, transmission loss, and processing time at the admission controller.
We further assume that there 1s a single movie stored in a service node. We will

investigate multiple-movie cases in Chapter 5.6.
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In the following sections, we will first derive the average waiting time for
statically-admitted clients and dynamically-admitted clients, and then investigate the

channel partitioning problem. We will compare results computed using this

approximate performance model with the simulation results inChapter 5.1.

4.1 Waiting Time for

Statically-Admitted Clients

As described inChapter 3.2, there are two ways where a client can be admitted
to the system to start a video session. The first way 1s admission through a static
multicast channel as shown inFigure 3.5. Given that any clients arriving within the
time window of IS seconds will be admitted this way, it is easy to see that the
average waiting time for statically-admitted clients, denoted by JVS(S), is equal to
half of the admission threshold:

= 4.1)
assuming 1t 1S equally probable for a request to arrive at any time within the time

window.
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4.2 Waiting Time for

Dynamically-Admitted Clients

The second way to admit a new client 1S through a dynamic multicast channel
as shown inFigure 3.6. Unlike static multicast channels, dynamic multicast channels
are allocated in an on-demand basis according to the admission procedure described
in Chapter 3.2. Specifically, if there are one or more free channels available at the
time a request arrives, a free channel will be allocated to start transmitting video data
to the client immediately and the resultant waiting time will be zero.

On the other hand, if there 1s no channel available at the time a request arrives,
then the resultant waiting time will depend on when a request arrive and when a free
dynamic multicast channel becomes available. Specifically, requests arriving at the
admission controller will be consolidated using the procedure described in Chapter

3.2 where the admission controller will send a consolidated START request to a

service node to initiate video transmission.
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Figure 4.1: User classification in dynamic multicast channel

Figure 4.1 1llustrates this admission process. This example assumes that there is
no request waiting and all dynamic multicast channels are occupied before client
request 1 arrives. After receiving request 1, the admission controller sends a START
request to a service node to mitiate a new multicast transmission for this request.
However as all channels are occupied, the transmissionwill not start until a later time
ti when a free channel becomes available. During this waiting time, additional client
requests such as request 2, 3, and so on arrives but the admission controller will not

send additional START request to the service node. This process repeats when a new

request arrives at timeh.

Based on this mode, we first derive the average waiting time experienced by a

START request at the service node. For the arrival process, we assume that user
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requests form a Poisson arrival process with rate X. The proportion of client requests

falls within the admission threshold 5 is given by

(4.2)
Tr

and these clients will be statically-admitted.

Correspondingly, the proportion of dynamically-admitted clients 18 equal to (I—
Ps). We assume the resultant arrival process at the admission controller is also
Poisson, with a rate equal to
(4.3)
Referring to Figure 4.1, we observe that the time between two adjacent START
requests 1s composed of two parts. The first part is the waiting time for a free
dynamic multicast channel; and the second part 1s the inter-arrival time for
dynamically-admitted client requests. Let Wc{d) be the average waiting time for a
free dynamic multicast given 5. Then the inter-arrival time for START requests will be

given by

r = + A (4.4)

JLS 7S
where As 1s the arrival rate for START requests. For simplicity, we assume that the
arrival process 1s Poisson.
For the service time of START request, it depends on the last user joined to the
system as shown inFigure 3.7. Inparticular, the service time of the last user equals

to the arrival time a,, minus the time tm-1 for the previous multicast of the requested
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movie. The service time, denoted by s, can range from O to {Tr2S). We assume the
service time S 18 uniformly distributed between

N<s<TA-15 (4.5)

Therefore the dynamic multicast channels form a multiserver queueing system
with Poisson arrival and uniformly-distributed service time. As there 1s no close-
form solution for such queueing model, we resort to the approximation by Allen and

Cunneen [19] for G/G/m queues to obtain the average waiting time for a dynamic

multicast channel:

/2 2\

”D(l'”)‘ 2 J

where 1 18 the coefficient of variation of Poisson process,

(T r»"MM Y 1 4.7)
S 12 \Tj,-2d) 3

1s the coefficient of variation for uniformly-distributed service time, and Ts 1S the

average service time, given by

(4.8)
Additionally, uMX"Ts 1s the traffic intensity, pAu/No 1s the server utilization,

and Ee(Nd,u ~ is the Erlang-C function:

u’D /N 1
Ec{Nd » =— — D« - (4.9)

sz &1
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Since the traffic intensity depends on the average waiting time, and the traffic
intensity is needed to compute the average waiting time, Equation (4.6) 1s in fact
defined recursively. Due to (4.9), Equation (4.6) does not appear to be analytically
solvable. Therefore, we use numerical methods in solving for We(S) 1n computing
the numerical results in Chapter 5.

Now that we have obtained the waiting time for a START request, we can
proceed to compute the average waiting time for dynamically-admitted client
requests. Specifically, we assume the waiting time for START request 1S exponentially
distributed with mean JVc(”. We classify client requests into two types. A Type-1
request 18 the first request that arrives at the beginning of the admission cycle. Type-
2 requests are the other requests that arrive after a Type-1 request. For example,
request 1 in Figure 4.1 1s a Type-1 request, and request 2 and 3 are Type-2 requests.

We first derive the average waiting time for Type-2 requests. Let 7 b e the

average waiting time for Type-2 requests which can be found to be (see Appendix):

f Xn -(Tr-]

\ y
Next for Type-1 requests, the average waiting time, denoted by Wi{S), 1s simply
equal to we{s). Therefore the overall average waiting time can be computed from a

weighted average of both Type-1 and Type-2 requests. Specifically, the average
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number of Type-2 requests arriving in an admission cycle, denoted by M2 ~S), can be

computed from
= (4.11)

Let Wd{S) be the average waiting time for all Type-1 and Type-2 requests. We

can then compute 1t from the weighted average of both Type-1 and Type-2 average

waiting times:

— \+ MJS)
27 (4.12)

4.3 Admission Threshold

In the previous derivations, we have assumed that the admission threshold value
18 given a priori. Consequently, the resultant average waiting time for statically-
admitted and dynamically-admitted users may differ. To maintain a uniform average
walting time in both cases, we can adjust the admission threshold according to the
average waiting time at the unicast channels:

S=min{x | (JF&(x)-WA(x))<Ejj, >x>0} (4.13)

so that the waiting-time differences are less than some small value S.

As adjusting the admission threshold does not affect existing users, the
adjustment can be done dynamically while the system 1s online. In particular, the

system can maintain a moving average of previous users' waiting time as the
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reference for threshold adjustment. This enables the system to maintain a uniform
waiting time, referred to as latency thereafter, for both statically-admitted and

dynamically-admitted users.

4.4 Channel Partitioning

An 1mportant configuration of SS-VoD is partitioning of available channels for
use as dynamic and static multicast channels. Intuitively, having too many dynamic
multicast channels will increase the traffic intensity at the dynamic multicast
channels due to increases in the service time (c.f. Equations (3.1) and (4.4)). On the
other hand, having too few dynamic multicast channels may also result in higher load
at the dynamic multicast channels.

Similar to the study by Lee [15] on UVoD, an optimal channel partitioning
policy can be obtained by enumerating all possibilities, which in this case 1s of O{N).
Unlike UVoD, we found that the optimal channel partitioning policy 1s relatively

independent of the user arrival rate. See Chapter 5.2 for more details.
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Chapter 5

Performance Evaluation

In this section, we present simulation and numerical results to evaluate the SS-

VoD architecture studied in this thesis.

5.1 Model Validation

To verify the accuracy of the performance model derived in Section IV > we
developed a simulation program using CNCL [20] to obtain simulation results for
comparison. A set of simulations 18 run to obtain the average waiting over a range of
arrival rates. Each run simulates a duration of 1440 hours (60 days), with the first 24
hours of data skipped to reduce initial condition effects. There 1s one movie in the
system, with a length of 120 minutes. We divide availablemulticast channels equally
into static-multicast and dynamic-multicast channels. We do not simulate user

interactions and assume all users playback the entire movie from start to finish.
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Figure 5.1: Latency Comparison of analytic and simulation results

Figure 5.1 shows the average waiting time versus arrival rate ranging from
1x10—3 to 5.0 requests per second. We observe that the analytical results are
reasonable approximations for the simulation results. At high arrival rates (e.g. over
1 requests per second), the analytical results over-estimate the simulation results by
up to /0.

As discussed in the beginning of Chapter 4, the analytical model 1s primary
used for preliminary system dimensioning. Detailed simulation, while lengthy (e.g.

hours), 1is still required to obtain accurate performance results.
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5.2 Channel Partitioning

To 1nvestigate the performance impact of different channel allocations, we
conducted simulations with proportion of dynamic multicast channels, denoted by r,
ranging from 0.3 to 0.7. The results are plotted in Figure 5.2. Note that we use a
normalized latency instead of actual latency for the y-axis to facilitate comparison.

Normalized latency 1s defined as

_____ (5.1)
min{w(r), Vr}
where w(r) 1s the latency with r™ dynamic multicast channels.

I I .
arrival rate = 0.5 / sec
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Figure 5.2: Normalized latency versus proportions of dynamic multicast channel

42



Chapter 5. Performance Evaluation
We simulated three sets of parameters with N=20, 30 and 50 for two arrival
rates, namely heavy load at 5 requests/second and light load at 0.5 requests/second.
Surprisingly, the results show that the latency is minimized by assigning half of
channels to dynamic multicast and the other half to static multicast. By contrast,
UVoD [15] exhibits a different behavior and requires more channels allocated to
static multicast channels tominimize latency at high loads. Figure 5.3 compares the
optimal channel allocation for UVoD and SS-VoD for a 50-channel configuration.
For UVoD, the optimal proportion of static multicast channel increases with the
arrival rate. For example, the optimal proportion of staticmulticast channel 18 86%
(43 static multicast channels) at an arrival rate of one user per second. For
comparison, the optimum proportion of static multicast channel for SS-VoD remains

50% for the entire range of loads in this example.
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Figure 5.3: Opt imum Channel Allocation of SS-VoD and UVoD

The channel reallocation scheme affects the behavior of admitted users so the
complexity of practical system implementation increases in UVoD. In contract, the
optimal channel allocation of SS-VoD 1s simply independent with the system load

for a wide range of loads. This property greatly enhances the practicability of SS-

VoD system.

5.3 Latency Comparisons

Figure 5.4 plots the latency for SS-VoD, UVoD, TVoD, and NVoD for arrival
rates up to 5 requests per second. The service node (or video server for TVoD/NVoD)

has 50 channels and serves a single movie of length 120 minutes. The first

44



Chapter 5. Performance Evaluation
observation 1s that except for NVoD, which has a constant latency of 72 seconds, the
latency generally increases with higher arrival rates as expected. For TVoD, the
server overloads for arrival rates larger than 1.16x10—4 requests per second. UVoD
performs significantly better with the latency asymptotically approaches that of
NVoD. SS-VoD performs even better with the latency level off and approaches 5.6

seconds, or a 92% reduction compared to UVoD.
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Figure 5.4: Latency comparison of SS-VoD with typical VoD Systems

It 1s worth noting that the performance gain of SS-VoD over UVoD does not
incur any tradeoff at the client side. Specifically, the buffer requirement and
bandwidth requirement are the same for both SS-VoD and UVoD. The only
differences are the replacement of the unicast channels m UVoD with multicast

channel; and the more complex admission procedure in the admission controller.
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5.4 Channel Requirement

To 1investigate the channel requirement for a range of arrival rate, Figure 5.5
plots the channel requirement of SS-VoD, UVoD, TVoD, and NVoD in log-scale
versus the arrival rates from (0.0l to 5 requests per second. There is a singlemovie of
length 120 minutes. The latency constraint is equal to or shorter than one second.
The channel requirement in the y-axis, denoted by C, is computed from

C =min{«|"<1,V« =0,1,."} (5.2)

where Wis the waiting time for the systemsat the given arrival rate.
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Figure 5.5 Channel requirement of SS-VoD and typical VoD systems

As expected, number of channel required for NVoD 1s a constant value and
equal to 3600. The channel requirement of TVoD rapidly increases with the arrival

rate and the number of channels required 15 larger than that of NVoD for the arrival
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rate of 0.485 request per second. The channel requirement of SS-VoD and UVoD 1is
much lower than TVoD and NVoD 1n all the arrival rates. The channel requirement
of UVoD increases gracefully with the arrival rate. For example, the channel
requirement of UVoD 1sequal to 130 at the arrival rate of one request per second,
and 1t 1ncreases to 274 at the arrival rate of five requests per second. The channel
requirement of SS-VoD increases relatively slower compare toUVoD for arrival rate
up toone request per second. For arrival rate higher than one request per second, the
channel requirement of SS-VoD increases insignificantly. Specifically, the number of
channel required i1s equal to 90 and 108 at the arrival rate of one and five requests per
second respectively. Note that the channel requirement only increases 20% for the
five times increase in the arrival rate.

It 13 worth noting that the channel requirement of SS-VoD 1is relatively constant
for arrival rate from one request per second. Having this nearly constant channel
requirement property, SS-VoD will never experience overflow, and the overall user

latency will not be increased significantly for a sudden increase in the arrival rate.

5.5 Performance at Light Loads

The previous results are computed using relatively high arrival rates. Intuitively,
the performance gains will decrease at lower arrival rates as fewer requests will be
served by a dynamic multicast channel. To investigate this 1ssue, we compute the

number of channels required at a given arrival rate so that the latency is equal to or
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shorter than one second. Figure 5.6 shows the channel reduction over TVoD in
percentage versus the arrival rate from 1x10"" to 0.01 for SS-VoD and UVoD. The

channel reduction percentage in the y-axis, denoted by G, 1s calculated from

G —min{" | WA <IlVvn =0,1, ...}-min{"W<\\n=0,1,...} ° (")
min{«I by <1 0 = 0,1,}

where Wis the average waiting time for SS-VoDAJVoD at the given arrival rate.
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Figure 5.6: Channel Reduction over TVoD

As expected, the results show that SS-VoD requires fewer channels for arrival
rates greater than 1.810—4 request per second. At this arrival rate, both TVoD and
SS-VoD require only six channels. Note that the minimum number of channels

required under SS-VoD 1is two and for arrival rates lower than 1x10—9 request per
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second, TVoD will require only one channel. This suggests that SS-VoD 1s likely to

outperform TVoD 1in practice.

5.6 Multiplexing Galin

Inderiving the performance mode!l in Chapter 4 > we assumed there 1s one movie
in the service node. To support more than one movie, one can treat each movie
independently and assign channels according to the expected arrival rate and latency
constraint. We call this partitioned SS-VoD 1in light of the fact that channels are

partitioned (i.e. not shared) between different movies.

On the other hand, we can also pool the dynamic multicast channels together
and share them among all movies in a first-care-first-serve manner. We call this
multiplexed SS-VoD. Intuitively, partitioned SS-VoD 1s less efficient because a
request for amovie can be blocked even if there are free dynamic multicast channels
assigned to other movies. By contrast, multiplexed SS-VoD avoids this problem by
pooling and sharing dynamic multicast channels and hence can achieve better
performance.

To investigate the effect of this multiplexing gain, we conducted simulations for
partitioned SS-VoD, and multiplexed SS-VoD with 2 movies, 8 movies and 32
movies respectively. For all cases, we assign 50 channels to each movie and assume
all movies to be equally popular. Under these assumptions, the latency for partitioned

SS-VoD 1s 1ndependent of the number of movies in the system.
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Figure 5.7: Multiplexing gain of SS-VoD system

Figure 5.7 shows the latency for partitioned SS-VoD and multiplexed SS-VoD
for per-movie arrival rates up to 0.6 requests per second. As expected, the results
show that multiplexed SS-VoD outperforms partitioned SS-VoD and the
multiplexing gain increases with more movies. For example, at a per-movie arrival
rate of 0.6 request per second, multiplexed SS-VoD with 2 movies outperforms
partitioned SS-VoD by 15%. If we increase the number of movies to 32, multiplexed
SS-VoD will outperform partitioned SS-VoD by as much as 32%. This suggests that
the multiplexing gain 1is significant and hence 1t is worthwhile to adopt the

multiplexed SS-VoD instead of partitioned SS-VoD in practice.
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Chapter 6

Implementation and Benchmarking

In this chapter we present the implementation detail as well as the
benchmarking results. The simulation and analytic result shows the designed
architecture substantial increase the system capacity. To prove the feasibility of this
system, we 1mplement a SS-VoD prototype with up-to-date hardware and software.

To further validate the analytic model, we run a set of benchmarking to compare with

the analytic results.

6.1 Implementation Description

The SS-VoD prototype 1s implemented using off-the-shelf software and

hardware. The hardware configuration 1s shown in Figure 6.1.
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Figure 6.1: A SS-VoD Network.

There are three components in the prototype, which are SS-VoD service node,
SS-VoD admission controller, and SS-VoD clients. Both the SS-VoD service node
and the SS-VoD admission controller are implemented using the C++ programming
language on the Red Hat Linux 6.2 [21] operating system platform. The SS-VoD
client application is implemented using the Java programming language and the Java
Media Framework (IMF) 2.1 [22].

The operation of the system 1s as follows. First, digitized and compressed video
data for each movie 1s stored in a service node, and each service node 1s running the
SS-VoD service node software. Each SS-VoD service node connects to the SS-VoD
admission controller for registering the movie. Client stations running the SS-VoD

client software can then send request to the SS-VoD admission controller. SS-VoD
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admission controller will transmit the proper information (e.g. multicast address of
the video channels, detail movie information, latency for available channels) to the
client. The client then receives video data from the SS-VoD service node directly and

starts the movie playback.

6.2 Benchmarking

We have discussed the system performance of SS-VoD in the previous chapters.
To provide a more realistic figure for this architecture, benchmarking 1s a necessary
and 1mportance procedure. As there are limited hardware resources, we setup up a
test-bed for a signal movie system. The benchmarking experiment consists of three
major components: SS-VoD service node, admission controller, and client generator.
The role of service node and admission controller remains unchanged. We have
developed a Java application called client generator, and the purpose of the client
generator 18 to generate the desirable client request rate for the benchmarking. The

detail benchmarking setup and result are presented in the following sub-sections.

6.2.1 Benchmarking Setup

The hardware configurations for different system components in the test-bed

are listed 1n Tables 6.1 to 6.4 in the following:
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Component Model and Configuration
Motherboard Compagq server-grade mainboard (2PCI slots, 4GMB DRAM)
CPU Intel Pentium IIT SOOMhz
Disk Controller Compaq UltraS SCSI
Disk 2 XFujitsuMAJ 3182MC (UltraS SCSI)
Network Intel PRO/I000T (1000Mbps)

Table 6.1: Service Node Configuration (Compaqg Proliant DL360)

Component Model and Configuration
Motherboard Compagq server-grade mainboard (6 PCI slots, 256MB DRAM)
CPU Intel Pentium III 500Mhz
Disk Controller Compaq Ultra2 SCSI
Disk 3XFujitsuMAG3182LC (Ultra2 SCSI)
Ne twork Intel PRO/I000T (1000Mbps)

Table 6.2: Admission Controller Configuration (Compaqg Proliant 1600)

Component Model and Configuration
CPU Intel Pentium 11T 500Mhz
Memory 256M SDRAM
Network Intel PRO/IOO00T (1000Mbps )

Table 6.3: Client Generator Configuration

Component Model and Configuration

Switch Extreme Networks Summi t24

Table 6.4: Intercomnection Network Configuration

In conducting the benchmarking tests, the service node only serves one movie

and the length of movie 1s 120 minutes. We run the benchmarking tests for 30

o4



Chapter 6. Implementation and Benchmarking
channels for arrival rate from one to five requests per second. For each configuration,
we run the benchmarking tests for a length of 6 hours with thefirsthour of data
skipped to reduce initial condition effects. In the implementation, the latency is
known for users when they join to the system. Therefore, the latency 1s captured in

the client generator.

6.2.2 Benchmarking Result

Table 6.5 compares the latencies obtained from the analytic performance model,
similation, and benchmarking respectively. We observe that the benchmarking
results agree with the analytical results and simulation results. The maximum
difference between benchmarking and analytic result is less than 4.5% in this range
of load. Therefore, the benchmarking results serves as a proof for the feasibility and
correctness of the SS-VoD architecture, and verifies the performance model derived

in Chapter 4.

Request per second  Analytic Result Simulation Benchmarking
1 13.90s 12.95s 13.86s
2 14.39s 13.34s 13.78s
3 14.52s 13.59s 14.20s
4 14.57s 13.61s 14.770s
5 14.67s 13.68s 14.58s

Table 6.5: Latency comparison of analytic, simulation and benchmarking results
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Chapter 7

Conclusion

In this study, we present and analyze a Super-Scalar Video-on-Demand (SS-
VoD) architecture that can achieve super-linear scalability by utilizing network
multicast together with client-side caching. This SS-VoD architecture 1s particularly
suitable for metropolitan-scale deployment as the resource savings increase
exponentially with higher arrival rates. In fact, there is no inherent scalability limit to
this SS-VoD architecture provided that the network 1s multicast-ready, and has
sufficient bandwidth to connect all customers. With more and more existing
residential broadband networks being upgraded to support multicast, the presented

SS-VoD architecture could provide a cost-effective solution to the scalability

challenge.
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Appendix

To compute the average waiting time for Type-2 request, denoted by M2(5), we
first compute the apparent waiting time distribution of the dynamic multicast
channels for Type-2 user request, denoted by fc*{t)- We then can compute the
average waiting time of Type-2 user request.

The apparent waiting time distribution of dynamic multicast channel for Type-2

user 1s given by [23]:

T e (A1)

where fc*(t) be the apparent waiting time distribution of dynamic multicast
channels for Type-2 user,/c(0 be the waiting time distribution of dynamic multicast

channels and Mc be the mean waiting time of dynamic multicast channel.

Let be the average waiting time of the apparent distribution, and it can

be calculated as following:

T (A.2)

Therefore fromequation (A.1) and (A.2),
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Wr.{S)= ["-"-"ANdt (A.3)

From the definition, theminimum waiting time should be a non-negative value,
and the max imum waiting time of user in dynamic channel is equal to {Tr-2S). We

can simpl1fy the above equation to:

HH o= r

Mc

[

(A . 4)

We assume fc{t) is truncated exponential distributed with mean equal to

The range of t 1s from zero to {7r-1S). The distribution 1s given by:

F HTY-25) Y1 -t

le(,)= (l-¢ o, ¢ 4 /(A . 5 )
Vv y

From equation (A.4) and (A.5),

PFee4)=1 A dt (A.6)
{\-e - YWc{Sf
Here, we then computer the average apparent waiting time of dynamic multicast

channels by integration,
W D - 1 PR +
{\-e o O 0 i} WciS)
(A.7)
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First, we calculate the left part, it becomes

-(TR-29) -t
We*(4) = —  AEM——dt
{lle M)Wc{S) {\-e )Wc{5)
(A.8)
We simply the equation by integration by parts for the right part,
-{TR-25) -t TR-1S t
WC* (4)= — - (T, - 2 S (T, -25)H4
(1-e w  W,(S) (1-e o (1-e t)
(A.9)
After calculating the second term, 1t becomes
-(Tj,-2S) -fa-2 77 -t
W iT,-25fe 2 (T R - 2 4 m , L
+ 0
(I-e 7% (I~e Tc(4) (le 70
(A. 10)
Grouping the first and second parts of (A. 10), then,
-fa-2 7 -t
wer(4)=- ([ (icr) fANE2 ] +r
L -(Tr-2S jy J) -{.Tr-28)
(I-e ~(4)3 V Tev X)) (l-i\ ~(4))
(A. 11)

59



Appendix

After integrate the right-most part and simplify the equation, 1t gives

( -(T.,-25) |
W 4 - 2 B 1 — +
c* (4) 2 W \] BH

F 1, IT,-25) ]

1i -(t,-2S)

2W - (S) 1 2 A A

\% y

(A. 12)

For Poisson process, the user randomly arrives to the dynamic multicast
channel. Hence, the average waiting time of Type-2 user request should be equal to
the half of the average apparent waiting time of dynamic multicast channel by Type-

2 user requests. Therefore,

(.{T" -25 )

g2 (T ° X : ( A . 13)
Lc " - 2 1t
\%

60



Bibliography

Bibliography

T.C. Chiueh and C.H. Lu, "A Periodic Broadcasting Approach to Video-on-
demand Service," Proc. ofSPIE, 1996, pp. 162-169.

A. Dan, D. Sitaram, and P. Shahabuddin, "Scheduling Policies for an On-
Demand Video Server with Batching," Proc. 2”7 ACM International
Conference on Multimedia, 1994, pp. 15-23.

H. Shachnai and P.S. Yu, ‘“ExploringWaiting Tolerance in Effective Batching
for Video-on-Demand Scheduling," Proc. 847 Israeli Conference on Computer
Systems and Software Engineering, Jun 1997, pp.67-76.

W. Liao and V.0O.K. Li, "The Split and Merge protocol for interactive video-
on-demand," IEEE Multimedia, vol4(4), 1997 » pp.51-62.

S.W. Carter, D.D.E. Long, K. Makki, L.M. N1, M. Singhal, and N. Pissinou,
"Improving Video-on-Demand Server Efficiency Through Stream Tapping,"
Proc. International Conference on Computer Communications and
Networks, Sep 1997 > pp.200-207.

S. Viswanathan and T. Imielinski, "Metropolitan area video-on-demand service
using pyramid broadcasting," ACM Multimedia Systems, vol.4(4), 1996,
pp. 197-208.

C.C. Aggarwal, J_[. .Wolf, and P.S. Yu, "A permutation-based pyramid
broadcasting scheme for video-on-demand systems>”  Proc. International
Conference on Multimedia Computing and Systems, June 1996, pp.118-26.

L. Golubchik, J.C.S. Lu1, and R.R. Muntz, "Adaptive piggybacking: a novel

technique for data sharing in video-on-demand storage servers," ACM
Multimedia Systems’ vol.4(30), 1996, pp.14-55.

61



Bibliography

[9] C.C. Aggarwal, J_I. .Wolf, and P.S. Yu, ‘On optimal piggyback merging
policies for video-on-demand systems, > ° Proc. International Conference on
Multimedia Systems, June 1996 » pp.253-258.

[10] Kien A. Hua, Ying Cai and Simon Sheu, "Patching: a multicast technique for
true video-on-demand services," Proc. international conference on
Multimedia, Sept 1998, pp 191 - 200.

[11] Ramesh, S. > Rhee, I., Guo, K, "Multicast with cache (Mcache): an adaptive
zero-delay video-on-demand service," IEEE Transactions on Circuits and
Systemsfor Video Technology, vol.11(3), March 2001 > pp. 440 -456

12] K.C. Almeroth and M.H. Ammar, "The Use of Multicast Delivery toProvide a
Scalable and Interactive Video-on-Demand Service," IEEE Journal of Selected
Areas in Communications, vol. 14(6), Aug 1996, pp.1110-1122.

[13] H.K. Park, and H.B. Ryou, "Multicast Delivery for Interactive Video-on-
Demand Service," Proc. International Conference on Information
Networking, Jan 1998, pp.46-50.

[14] E.L. Abram-Profeta and K.G. Shin, "Providing Unrestricted VCR Functions in
Multicast Video-on-Demand Servers," Proc. IEEE International Conference on
Multimedia Computing and Systems, July 1998, pp.66-75.

[15] J.Y.B. Lee, "UVoD — A Unified Architecture for Video-on-Demand Services,"
IEEE Communications Letters, vol.3(9), September 1999 > pp.277-279.

[16] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A. Patteson, ‘Raid: High-
performance, reliable secondary storage," ACM Computing Surveys, vol. 26°
pp. 145-185, June 1994.

[17] S. Berson, L. Golubchik, andR. R. Muntz, "Fault tolerant design of multimedia
servers," Proceedings ofSIGMOD '95, pp. 364-375, May 1995.

[18] R. Tewar1i, D.M. Dias, W. Kish, and H.Vin, "Design and performance tradeoffs
in clustered video servers," Proceedings IEEE International Conference on
Multimedia Computing and Systems (ICMCS'96), pp. 144-150, June 1996.

[19] A.O. Allen, Probability, Statistics, and Queueing Theory with Computer
Science Applications,  Ed. Academic Press, New York, 1990.

[20] ComNets Class Library and Tools:
http://www.comets. rwth-aachen.de/doc/cnclhtml

62


http://www.comnets.rwth-aachen.de/doc/cncLhtml

Bibliography
[21 ] Red Hat Linux: http://www.rcdhat.com

[22] JavaMedia Framework 2.1:
http://1ava.sun.com/products/1ava-media/jmf/index.html

[23] L. Kleinrock, Queueing Systems Vol I: Theory, Wiley-Interscience, 1975.

63


http://www.rcdhat.com
http://iava.sun.com/products/iava-media/jmf/index.html




CUHK Libraries

—t

H

11 | 10

DO3fi7m3b



