
‘....

.、
. . . 、 •%.,

、 ; \
s

Performance Study of Protocols in
Replicated Database

By
Ching-Ting, Ng

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF M A S T E R OF P H I L O S O P H Y

DIVISION OF COMPUTER SCIENCE AND ENG INEER ING

THE CHINESE UNIVERSITY OF HONG KONG

JUNE 1 996

^^^ (i[1 0 MMjHi|

^ ^ r

I

i
i
i
'l

I
1 I

i

Abstract

For the traditional protocols in replicated database, their transaction managements are

centralized. That is, when there are a number of operations 01,02,03，...On in a transac-

tion and some operation Oi depends on the result of some previous operation Oj, some

communication overhead is required to secure the result of Oj before Oi is started.

As communication cost is high compared to computational and data storage cost in

many applications [Gra88], especially for the WAN, some researchers have recently pro-

posed to eliminate this type of communication overhead by replication of transaction. In

particular, Transaction Replication Scheme(TRS) [cFlC94] is shown, theoretically, to be

efficient in terms of communication time and message. Instead of centralized control of

each transaction, the transaction is broadcasted so as to reduce the message overhead

involved. TRS only considers two kinds of data, shared private data and public data.

Compared with other previous work on replicated distributed database systems which

assumes only public data, it utilizes the semantics of node autonomy. Moreover, TRS

also can handle partition failure and site failure.

As the practical performance characteristics of TRS has not been studied extensively.

In this thesis, we will investigate the performance characteristics of TRS, that includes the

parametric value of TRS period, the ratio of local to public transactions and the number

of operations, etc.

i

Our approach is to build a simulation model to make a comparison study on both

the traditional centralized transaction management protocols such as Majority Quorum

Consensus and Tree Quorum Protocols, as well as the replication transaction management

protocols (TRS).

ii

Acknowledgement

I gratefully acknowledge the support and encouragement from my thesis advisor, Prof.

Ada Wai-Chee Fu, without whom this thesis could not have been completed. She has

been the most patient and kindest advisor. I thank my thesis committee, Prof. Chin Lu

and Prof. John Lui for their efforts in making thoughtful comments on this thesis.

For these two years, I am glad that there are a number of friends supporting me. Sau-

Ming Lau patiently told me about the techniques of simulation. Keith Hang-Kwong Mak

shared the experience of using CSIM with me. Terry, Wai-Kwong Lau discussed with me

about Transaction Replication Scheme. Johnson, Chiu-Fai Chong taught me a lot about

Matlab.

iii

_
:
:

 .
 .

 .

 v

 ",

 k
0

^

 :

 ..

 \

 .•

 _

 ?•
•

f
 ¥

 -
¾
 A
^

〉：..

、

 “

 1

 :

.

.
/
:
.
;

 ¾
¾
¾
¾
^
^
¾

」
.
.
：
1
 •

 •

 \

 -

 ‘

 ,
」
.
-

 v)y.....̂
:.̂
,̂
,̂

-̂«̂
4

.

 r

 i

 .

 1

.

.

 ,.

.
z
r
&
.
k
.
p
s
s
^
M

.•

“

.

 ：、.

，

 .

 、

 k
^

“

 :

 I

 ,

 \

/
 i

、
J

一
>

 ..:..

•

.

.

 /
.

.

 、
,

；
：
…
^
邏

.
 。

 M

 ,

 v
/
^
f
e
k

-

、

、

i

 ,,

“

.

•

 .,

•
 .:

-
 :
二
.
滅

\
 .

 t

 ,

.

,

.

^

一

^
/
i
,
0
&

I
 :
:

 :
:
•

^̂
ŵ
r.
 .
"

 c

•

•

.

 .

 y

 .

 .
1
:
:
:
.
J

 :

:
 .
:
:

,

 \
，
.
；i,-4̂
!-.:j

^
p
.
^
-
?
.
:
 r,v-...

 ,
-

 ̂
^
^
.
-
.
.
.
.
.
-
^
'
^
.
.
.
.
.
:

〉
。
•

 ̂.
^
^
.
.
.
.
^
.
.
:
.
.
.
.
-
.
-
,
u
.
.
.
^
^
^

 ,

 •

 \
,
-
>

 .

 -
C
"
1

^
^
^
a
^
.
i
^
 _̂
-̂̂
-̂
-

 r
_
^

 .P
^
R
,
^
l
a
^
T
-

 l
*
-
l
r

 >

 5
f
,
^

 t

、
！
丨

 ̂
 I

 .

 ="..

 .
"

 »

 ••-..

 •

 -

 邓
一

 •
-

 I
!

 .._̂

 •
 •

 K
 ,f-.

 “„•

 -L
r
A
t
^
.
^
^
-
^
%

^̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
"̂
*̂
^̂

*̂̂
^̂
*̂
^̂
^̂
^̂
*̂
*̂
^̂
^̂
*̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
-̂
*̂

*̂̂

̂"̂
"*̂
"̂

*̂̂
^̂
"̂
--mifiTiifwl̂
1̂

ŝ̂
^̂
î
t̂
iifî

%̂̂
.siTrt"、L-
 t^
.
r
&
r
r
L
^
.
,
 ̂.K̂
.t..̂

 ..,...“.：”

-.:..:,.〕卜-....「.，：1..;.

.r..丨.rr̂
F'.̂
,

L
,
k

 L
r
^
f
t
^
^
k
^
^
^
,
^
^
r
'
^
.
.
.
.
.

....

 i
.
.
-

 ...

 ...I-

 ̂
 ”.
.
A
r
.
\
v
.
i
.

 -,
-
:
r
:
,
L
.
.
-
^
f
J
l

知

t
^
 t
f

 >
f

 L

 J

 r
f
 I

 i,

，

Contents

Abstract i

Acknowledgement iii

1 Introduct ion 1

2 Background 5

2.1 Protocols tackling site failure 5

2.2 Protocols tackling Partition Failure 6

2.2.1 Primary site 6

2.2.2 Quorum Consensus Protocol 7

2.2.3 Missing Writes . . . 10

2.2.4 Virtual Partition Protocol 11

2.3 Protocols to enhance the Performance of Updating 11

2.3.1 Independent Updates and Incremental Agreement in Replicated

Databases 12

2.3.2 A Transaction Replication Scheme for a Replicated Database with

Node Autonomy 13

3 Transaction Replication Scheme 17

3.1 A TRS for a Replicated Database with Node Autonomy 17

3.1.1 Example 17

3.1.2 Problem 18

V

3.1.3 Network Model 18

3.1.4 Transaction and Data Model 19

3.1.5 Histories and One-Copy Serializability 20

3.1.6 Transaction Broadcasting Scheme 21

3.1.7 Local Transactions 22

3.1.8 Public Transactions 23

3.1.9 A Conservative Timestamping Algorithm 24

3.1.10 Decentralized Two-Phase Commit 25

3.1.11 Partition Failures 27

4 Simulat ion Mode l 29

4.1 Simulation Model 29

4.1.1 Model Design 29

4.2 Implementation 37

4.2.1 Simulation 37

4.2.2 Simulation Language 37

5 Performance Results and Analysis 39

5.1 Simulation Results and Data Analysis 39

5.1.1 Experiment 1 : Variation of TRS Period 44

5.1.2 Experiment 2 : Variation of Clock Synchronization 47

5.1.3 Experiment 3 : Variation of Ratio of Local to Public Transaction . 49

5.1.4 Experiment 4 : Variation of Number of Operations 51

5.1.5 Experiment 5 : Variation of Message Transmit Delay 55

5.1.6 Experiment 6 : Variation of the Interarrival Time of Transactions . 58

5.1.7 Experiment 7 : Variation of Operation CPU cost 61

5.1.8 Experiment 8 : Variation of Disk I/O time . . . 64

5.1.9 Experiment 9 : Variation of Cache Hit Ratio 66

5.1.10 Experiment 10 : Variation of Number of Data Access 68

5.1.11 Experiment 11 : Variation of Read Operation Ratio 70

vi

5.1.12 Experiment 12 : Variation of One Site Failed 72

5.1.13 Experiment 13 : Variation of Sites Available 74

6 Conclusion 77

Bibl iography 79

A Implementat ion 83

A.1 Assumptions of System Model 83

A.1.1 Program Description 83

A.1.2 TRS System 85

A.1.3 Common Functional Modules for Majority Quorum and Tree Quo-

rum Protocol 88
A.1.4 Majority Quorum Consensus Protocol 90

A.1.5 Tree Quorum Protocol 91

vii

r... •,..- ‘' ;.! , ••‘ ••‘• . . . ‘ , V ;. . . •
,.:...•......•• . •• . ‘ ：,..: ...: .. . ；••• .
k •••• :,.., ” ‘ , •, . -.

.. . . .• . . ,••. ;•• •丨 • :•
V.:,-,....、.： - - . '••；•••• , .,...• . •
••‘ • • . : ‘ , • : . : : . . ： : - . , . ； ； . . : , . .
•:.: • • • .

t . V.
:|. .'.

'\..

%

•'；•.

. • • • •

VU1

.. ’ - , . ».. . . , . ‘ , . -' / '•'• •. ..,"T.-':..:.:." ,••:「、.:

List of Tables

5.1 TRS, Tree Quorum, Majority Quorum Consensus Models' Common Pa-

rameters 40

5.2 Additional parameters for Tree Quorum and Majority Quorum Models . . 41

5.3 Additional parameters for TRS Models 41

5.4 TRS, Tree Quorum and Majority Quorum Consensus Common Models'

Metrics 42

5.5 Additional TRS Model Performance Metrics 42

5.6 Basic Model Metrics 42

5.7 Experiment 1 Varying TRS period 44

5.8 Experiment 2 Varying Clock Synchronization 48

5.9 Experiment 3 TRS Model: Vary Ratio of Local to Public Transaction . . . 49

5.10 Experiment 4 Varying Number of Operations in a transaction 53

5.11 Experiment 5 Varying Message Transmit Delay 55

5.12 Experiment 6 TRS Model: Vary Interarrival time of transaction 58

5.13 Experiment 7 TRS Model: Vary Computational cost 62

5.14 Experiment 8 Varying Disk I /O time 65

5.15 Experiment 9 Varying Cache Hit . 67

5.16 Experiment 10 Varying Number of Data Access 69

5.17 Experiment 11 Varying Read Operation Ratio . . 70

5.18 Experiment 12 Varying of Sites Failed 73

5.19 Experiment 13 Varying of Sites Failed 75

ix

，
 ：
•
.

 i

.:

 ,.

 -

 .v.:.f.sî
^̂

ŝ

:
:
?
.
.

 -

 二
、

 v
/
，
1

r
 •

 :

 ::._

,
.
-

:
:
.
0

•

 .

 “

 ‘

 ̂
^
¾
¾

-

“

，

 f
4
Y
_

..
 V
 .

 .

 、

乂
 ̂

 ̂

 ̂
¾

、

 w.

 h

 .

 /
¾
¾
^
^

、
-
:
.
.
.
.

‘

.

“

^

；

^
 S
 v
;
J
v
t

^
 ’&:...」；一
 >
-
.
.
„
 .

 .

 .

 .

 1

u

i
.
,
 f

A
h
^

一
〜
‘

.

，

,

,

,

f

 .
严
\
,
、

^

.
-

.

 ...

 ̂.

！

 ̂

 ..

 f
>

 ,,：

,

 I

,

.

.

”

？
 a
、
仏
&
 产
塵

f

:

 。
、
「
遍

•J.
 “
「V
:
.
”
.
、)
^
M

i
l
i
i
i
l
i
l
l
g
l
l
l
^
^

List of Figures

2.1 The diagram of Ternary Tree 9

2.2 Centralized Transaction Management 13

2.3 Replication of Transaction 14

3.1 Public and Shared-private data 18

3.2 Transaction broadcast and multiple versions of shared-private data 23

3.3 Two Phase Commit Protocol 26

3.4 Algorithm of TRS 28

4.1 The diagram of Database Management System (DBMS) 30

4.2 The diagram of a Closer Look at the DBMS model 31

4.3 The diagram of a Closer Look at the TRS model 34

4.4 The diagram of a Closer Look at the Majority Quorum Consensus model . 35

4.5 The diagram of a Closer Look at the Tree Quorum model 36

5.1 Experiment 1 The diagram of TRS period Vs Response time 45

5.2 Experiment 1 The diagram of TRS period Vs Maximum number of versions

of shared-private data 46

5.3 Experiment 2 The diagram of TRS period Vs Response time by varying

clock synchronization accuracy 47

5.4 (a) For both Public and Local Transactions 49

5.5 (b) Diagram of Ratio of Local to Public Transaction Vs Response Time . . 50

5.6 Logical Tree Structure of Tree Quorum 51

xi

5.7 Experiment 4 The diagram of Number of Operations Vs Response time . . 52

5.8 Experiment 4 The diagram of Number of Operations Vs Response time • . 54

5.9 Experiment 5 The diagram of Message Time Vs Response Time for TRS . 56

5.10 Experiment 5 The diagram of Message Time Vs Response Time for TRS,

Tree Quorum and Majority Quorum 57

5.11 Experiment 6: The diagram of Interarrival time of Transaction Vs Response

time for TRS 58

5.12 Experiment 6: The diagram of Interarrival time of Transaction Vs Response

time 59

5.13 Experiment 6: The diagram of Interarrival rate of Transaction Vs Comple-

tion Rate 60

5.14 Experiment 7: The diagram of Operation Computational cost Vs Response

time 61

5.15 Experiment 7: The diagram of Operation Computational cost Vs Response

time 62

5.16 Experiment 7: The diagram of Computational cost Vs Completion Rate of

Transactions 63

5.17 Experiment 8 The diagram of Disk I /O time Vs Response time 64

5.18 Experiment 8 The diagram of Disk I /O time Vs Response time 65

5.19 Experiment 9 The diagram of Cache Hit Vs Response time 66

5.20 Experiment 9 The diagram of Cache Hit Vs Response time 67

5.21 Experiment 10 Varying Number of Data Access Vs Response Time 68

5.22 Experiment 10 Varying Number of Data Access Vs Commit Rate 69

5.23 Experiment 11 Varying Read Operation Ratio Vs Response Time 70

5.24 Experiment 12 Varying of Sites Failed Vs Success Rate of First Trial . . . 72

5.25 The diagram of Ternary Tree 73

5.26 Number of Sites available Vs Success Rate of First Trial 74

A.1 Simulation Model 83

xii

A.2 Program module of TRS 85

A.3 The Program Module of Majority Quorum Consensus and Tree Quorum • 89

xiii

Chapter 1

Introduction

Replicated Database is a database which stores data at multiple sites. Its objective is to

increase fault-tolerance since copies of data continue to be available to applications in the

event of local site failure or network failure; and to improve the performance as data are

stored at all sites at which it is required rather than remotely across the network.

However, in order to achieve the above objectives, the system must ensure that all

copies of replicated data items are consistent. One way to achieve this is to make sure

that all sites at which replicas are stored to be operational and connected to the network;

and all copies of each data item are updated by each logical update.

However, there are problems with this approach, they are:

1. in the event of network or site failure, it may not be possible to update copies of such

replicated data items at all. Especially in the event of partition failure, data copies

in one partition may be updated by one transaction while copies of data in another

partition are subjected to a different update by another transaction. These two

transactions are executed independent of one another since due to partitioning of

network, no communication between two sites is possible. Hence if they are allowed

to commit, then versions of replicated data can diverge resulting in consistency

problem.

2. updating all copies of each data item instead of one copy of data item would counter

the efficiency factor.

1

.»

Chapter 1 Introduction 2

Therefore, the advantages of improved performance, availability, and site autonomy of

Replicated Database mainly apply to read-only applications, and are jeopardized by the

need for propagating updates to all sites.

There are other protocols which tackle these problems. These include:

1. Protocols tackling site failures, including Write All Available Approach [PVN87

and Directory Oriented Available Copies [PVN87],

2. Protocols tackling partition failure, including Primary site [PVN87], Quorum Con-

sensus [PVN87], Missing Writes [PVN87] and Virtual Partition [AS89];

3. Protocols tackling the performance of updating all copies of each data item in-

cluding: Distributing Writes Immediately [PVN87], Defer Writes Until Transaction

Terminates [PVN87；

Recent Research is interested in protocols for enhancing the performance because for

the real life applications such as flight reservation, the factors of performance and effi-

ciency is very significant. For instance, it is unacceptable for a flight reservation system

to become blocked or unavailable in case of a site failure or network partition. Therefore,

current research focuses on delayed propagation of updates [SHKS95], transaction chop-

ping [SLSV95] and transaction replication(TRS) [cFlC94]. Such recent research mainly

emphasize on how to improve the performance and efficiency of replicated database pro-

tocols.

Nowadays, as an organization usually spans a large geographical area, the bottleneck

of replicated database is mostly due to the long message transmission time in WAN, The

situation cannot be alleviated even when applications are run on advanced HW platforms

with plenty of physical resources.

The Transaction Replication Scheme (TRS) [cFlC94] has been proposed to address

this problem. In this thesis, we investigate the performance characteristics of the Trans-

action Replication Scheme. Thus, we are motivated to build a simulation model and

Chapter 1 Introduction 3

simulate different types of system workload, different I /O requests, different amount of

concurrent request conflicts and communication delay, etc.

The objective of our work is not only to evaluate the comparative performance of TRS,

with other protocols such as Majority Quorum Consensus and Tree Quorum Protocols,

but also to identify the factors that lead to its superior performance. The findings in our

study can be used to pinpoint the aspects that require more attentions when designing

new concurrency control algorithms. The ultimate aim is to give a guideline for database

designers in choosing a concurrency control algorithm during the design of a database

engine.

The basic contributions of our research are summarized as follows:

• Build a simulator to investigate the performance characteristic of different protocols

under various database workloads

• identify the essential factors that lead to better performance

• compare traditional protocols and TRS.

This thesis is organized as follows. Chapter 2 introduces the motivation of our work

and summarizes the background study of related protocols and the TRS protocol. The

details of TRS can be found in Chapter 3. In Chapter 4, the simulation model of the

system is introduced, followed by the simulation results and data analysis in Chapter 5.

We conclude in Chapter 6.

1
—
-
*
"
"
^
^
T
^
^
^
F
!
*
^
^
^
^
^
^
^
^
T
^
^
^
^
^
^
"
"
T
^
"
"
^
"
"
^
"
"
5
^
!
*
"
^
"
^
^
^
i
"
^
^
"
^
^
^
*
^
^
^
^
^
^
^
^
^
"
^
w
p
^
"
^
l
"
^
p
^
!
^
5
"
^
^
^
^
^
^
^
P
B
i
^
^
^
"
^
^
^
^
^
^
w
l
w
^
i
p
w
l
i
l
l
l
i
i
i
i
l
i
i
^
^
i
i
*
I
H
P
!
p
p
^
i
i
i
l
p
i
i
p

i.̂
.̂
r̂̂
....ca_

^
¾
^
/
½
 r
：

^

i
 -

、
：

 .

 .

 •.

 ."

 .
:

 I

 A
^

.
:
>
.
^
^
^

^

^

r
 ；
“

 .
.
.
,
.

 :
.

 〜，

 _,

 A
.
i

,.l.
 :
?
f

 :

 1
终
 5

)

 .
 i
 ：：

-

.

.

^

/
卜

 >
1

rs
，
：
？4
 -

 ：：

 -
:

 1

 「

 .,

 /
.

 -

 .

 .
、
c
i

€
^
¾
>
;
 ̂.

 ,
 ,
-

•
 :

 ‘

s
^
 c
v
i
 ‘
 ŝ
/.1,.

 -_

 •
•

:
0

.

.

.
 .
?

 ••

 •-
:
,

 、

/
 -
.
r
=
r
i
:
p
)
f
t

:
l
<
v
v
-
.
.
.
)
？
.
-
.
:
 •
-

 •,,

.
)
.
-
.
:

 7
¾
-
-

)
 *

 ..

u
f
.

 ̂‘

 ̂
J

：

-
f

^̂
^̂

！̂穆驗.̂
*:”
 -
^

 ...-.

4

.

 、-.

 ..。••

.

 -
^

.

,

,

:

.

‘

 .
.
¾
¾
:

w
#
i
l
 \

一

 r

 /

 .

 .

,
,
1
.

^
-
i
^
-
^
-
c
l
r
.
 -
 .
 •

 4
-
^
^

 .

:

 ，.--

^

,

 .
:
.

•

‘

.

 .
•
?
-
.
,
:
?

.

“

.

"

)

^

 ̂,.

^
)
：
；
.

-

-

 .
^

y
r
%
^
^
^
,
歸
 r

 i
 」
.

 "
,
-

,

.

,

.

.

 .

 ̂

r

 "̂‘

 /

m
 1

 ‘

>

•
•
 .

 ,,

 .

 .

 1
¾

,
、
.
d
,
f

r

)

,
:
.

:
•

.

.

1

H

.
\

.

 ̂̂
.

.

 *

.

,
 ；：:

/

.

、

 _
4

.

.

.

“

一

-
^
"
v
,
^
^
i
.
)
 ：、-

 ..

 .
 '',.r-:

 55
^
-
-
¾
.

 .

 .
 :
¾

 ..

 ̂

 .5.

 .-,.

 ..

.

.
 '̂
.

 ！̂

、
 H
t

 {

h
>

 y

 .
.

 .

 .

f
f
 «

-
 .

 ̂

 ,.•.,

.
-

.

>

合

*

/

,

-

J
^
^
n
^
^
:
^
\
^
.

 .•-•

 %
:
.

y
-
.

 ..i

.

 ?
•
•
*

 <
-

 .’

-

 二..

 ..,..•；••

、
 ̂rrt-.'-̂

-̂--̂
--

 A
,

._..

 r
 v
 •

 ̂
 .
.
.
/
f
 .
 U
5
4

 V.

 r
t

 •
?
.
:
.

 -.-.」

i
^
c

/
 :
/
*

 i

 r,

 ̂

 J

 ̂

 .¾
.

 •
•
-

 .
/

 :

 •

 V
-

 ̂.-

 •.

i

 f
 ̂

 J
 -
f

 1
4
 8

 <

 .,.

 ,

 -'-.̂
.̂

“
 s

霸
驗
.
暴
_
德
#
孕
-

。
-
5
吞
-
、
-
t
.
.
l
-
 •
,

 ,
¾

 ..

 .\.

 ̂

 .:..

 .:

 •_
.

 :
.
V

^

孴
 -
?
/

 -
^

 .
t
i

 .
1

 '
^

•

 --

•
-
.
-
.
.
:
/
"

%
 ,

_•

 ̂

 *

 k-
:

 .

 ®"_

 :r
.

"
r
.

:

.
 .

i

 f

 f
 ̂

 ̂

 L

 .

 :¾
:
.

:
v

 ::,」.-"..r,r—-l̂
.

 -
«
.
:

 .

 •—"

 .

 -

 v.-

 •

 :.
」
’
.
v
:
.
.

^
k
^

 ̂

 ‘
 i
4

 f

 :

 r.

 .

 •

 •
.
.

、
」
-
-

^
/

A
 J

z
 .

 .

 .

 .¾
+
-

%
^
y

-

s
 V
,

.

^

^

J

"
 ,
,

•
.
"

•

 •
:

•

1
 >v-v,-..--

 -

 ,

.
:
.
.
.
.
.
.
 ..
.

 ̂.
^

.
:
:

.
 :
.
:
V

 ..

 ...

-

.

 .二：.二-

i
 J

 t.

 -
•
*

 V
0
,

,:-

/

？

.

 -
j
.

 r

 .
-
.
-
:
.

T

 ,

f

'
.

r

S
 J

0
 .

,

 ̂
v

-
:

•
 :
?
:
?
.
:
.
:
\
.
’
l
.
.
:
.
.
.
i
i
.

 ‘
 -
 :•
•

 r
-

 ̂

 ...

«

 r

A

^
#
^
 .

 .

 1

 i

 I
 .

 .

/

 〜
-

 ？
<

 ,
#
1

 ..

 .
=
-

V

i
r
-
 #

 I

„

.
 ,

 .,

p
^
s
^
s
^
¥
?
»
.
-
>
>
-
'
>
,
:
-
^
-

^
^
-

-
p
.

I
.

,

,

.

.
-
.

.

.
V

^
^
^
¾
^
^
¾
-
¾
¾
?
¾

:
¾
)
：
於
：
.
V

 V

.

:

;

;

t

 i

 V

 “
 {
j

 -
i

 ,

 _..

L
F

 <
•
 4

 «
 .
;
J
Y
.
-

.
‘

 ̂

 . .

 ,
.

 -

 .

n

/
 V

1

.

爭

r

^

.

.

.

.

 ；
二
(

i
:
:
.
l
.
/
>
i
/
.
>
a
v
y
.
、
：
.
-r
:
.
^
?
 .¾.

 •:

"
,
r

 -

-
J
y

/
^

i
4

.
 •,:

 -

 --.

”“

 V
T

 f
 *r

 i

 .
 ,.

 .

 :

^
^
^
^
W
B
i

M
^
£
 ̂
v
^

 .
§
9
 ̂

 #
-
:
¾
¾
 ,

 .

.,

 .

 .

/

r

.

 ；
“

,
r
.
 『
n

 .

 .¾
.

 .

 _•

 .
-

 :
.

 -,.

:
 V

 >

“

 l;
.

f
 n

 V

 .

 .

 J
-

 .

 .?」.〈/.」；,

y

)

f

 \

 c
^

 \

 -

 ..、-

 .v_...

 :.
?

^
 &

 ̂-
5
:

/
^

1

f
»

、

.
-

 .
.
.
:
;
(

,

X

t
^

〜

I
.

(

”

.

.

:
.
 ，.

+
r

....

 7,

 ̂

,
:
:
i
,
,

r
^

.
:
7

 E
;
.

,

1

”

。
.

.
 ̂

.
:
.
:
.
.
i

.
1
l
k
:
 :

 ...,,

 ,

 .
.
.
.

 •.
:
,
;
?
.
.
:
-
.

:

.
J
g
,
c
/
 >

 .
 .

 •

 .

 .

 ,

 .

 •

 ,..__.

 ,

 /
.
:
.

 _.
.
;
.
r

丨
/

 A
J
l
A
?
。

 ：•：.：：：

.

.

 :
 ._
:
.
v
:

 V

Chapter 2

Background

Before we start our investigation on the Transaction Replication Scheme, we summarize

the known protocols for replicated database in this chapter. We first describe the tra-

ditional protocols which are mainly used to tackle the site failure including Write All

Available Approach [PVN87]; and Directory Oriented Available Copies [PVN87]. Next,

the protocols mainly used to handle partition failure including Primary Site [PVN87];

Quorum Consensus [PVN87]; Missing Writes [PVN87] and Virtual Partition [AS89] are

illustrated. Then, we summarize the protocols which are used for tackling the performance

of updating all copies of each data item. The protocols include Distributing Writes Im-

mediately [PVN87]; Defer Writes Until Transaction Terminates [PVN87]; Independent

Updates and Incremental Agreement in Replicated Databases [SHKS95]. In addition, an

overview of the Transaction Replication Scheme is given.

2.1 Protocols tackling site failure

1. Write-All Approach(Ideal World)[PVN87；

Assume sites never fail, Read{X) is translated into Read[Xa), where X。is any copy

of data item X. Write[X) is translated into Write{Xai), ...Write{Xan), where

Xai^...Xan aie all copies of X. However, Write-All approach is unsatisfactory if any

copy of X fails since it would have to delay processing Write{X) until it could write

all copies of X. Moreover, more copies of X implies a higher probability that one

5

.Chapter 2 Background 6

copy is unaccessible. In this case, increased replication of data actually makes the

system less available to update transactions.

2. Write-All Available Approach[PVN87；

A fixed set of copies for each data item is known to every site. Each copy is assumed

to be created once and can fail at most once. After creation and before failure a copy

is available. Otherwise, it is unavailable. A write operation writes into all available

copies. That is, it ignores any copies that are unavailable. However, this leads to the

problem of correctness. Some copies of X may not reflect the most up-to-date value

of X. This problem can be solved by preventing transactions from reading copies

from sites that have failed and recovered until these copies are brought up-to-date.

If the read operation of data copy Xa, R{Xa) is rejected, a negative acknowledgment

is returned and the transaction Ti is aborted. If R{Xa) is accepted, but, if site A is

down, it could submit R{Xb) to another site B. If no copy of X can be read, Ti is

aborted.

Writes for which there is no response are called Missing Writes. If Missing Writes

from all available sites are received, then the operation is rejected and the transaction

is aborted. Otherwise, it is successful.

3. Directory-Oriented Available Copies[PVN87；

It uses directories to define the set of sites that currently store the copies of an

item. Unlike Write-All Available Approach, Directory-Oriented Available Copies

can avoid transactions which attempt to update copies at down sites.

2.2 Protocols tackling Part i t ion Failure

2.2.1 Primary site

Every data item has one copy (at one site) as the primary copy; all other copies are

slave copies, each update is directed to the primary copy and then propagated to

.Chapter 2 Background 7

slave copies. In the event of network partitioning, only the partitions with primary

copies are available. If the primary site fails, it is possible to promote one of the

slave copies and designate it as the new primary copy. A new primary copy cannot

be elected if the network is partitioned due to communication failure because the

original primary site may still be operational but the other partitions have no way

of knowing this.

2.2.2 Quorum Consensus Protocol

One way to prevent conflicting transactions from executing in different partitions is

to allow only one partition to process any transaction at all. Since the partitions

cannot communicate with each other, each partition must independently decide

whether it can process transaction. A quorum is a set of sites. With quorum

consensus, a set of quorums which intersect each other is defined. For read and

wirte operations, read quorums and write quorums are defined so that each write

quorum intersects each other write quorum and each read quorum. Only the one

partition which contains a quorum of sites can process a transaction.

(a) Majority Quorum[AA91

It requires both read and write quorums to contain a majority of copies.

Let a Read Quorum be a set with Qr{X) copies and a Write Quorum be a set

with Qw{^) copies. Let N{X') be the total number of sites. We require that

Qr{X)^QUX)>N{X),^nd

2Q^{X) > N{X)

For instance, if there are 13 sites, i.e. N 二 13

We can set {Q^X) = 7, Qr{X) 二 6 } , {Q4X) = 8, Qr{X) 二 5}’ etc.

(b) Tree Quorum[AA92；

The replicated sites are organized in the form of a logical tree for constructing

.Chapter 2 Background 8

quorums. Given a set of N copies of an object X , we logically organize them

into a tree of height h and degree d, that is each node has d children and the

maximum height is h. We also assume that the tree is complete. A tree quo-

rum is said to have length 1 and width w, or, it has dimensions < 1, w〉. The

quorum is constructed by selecting the root and w children of the root, and for

each selected child, w of its children, and so on, for a depth of /. If successful,

this forms a tree quorum of height 1 and degree w.

We denote the dimensions of a read quorum Qr by < lr,Wr > ；

and the dimensions of a write quorum Quj by < lw)^w >•

The following constraints guarantee the nonempty intersection of read and

write quorums, and of 2 write quorums:

lf I lyj ^̂ h

Wr + Wyj > d

2ly, > h

2wuj > d

Consider a replicated object with thirteen copies. We superimpose a ternary

tree of height 3 on the copies as illustrated in Figure 2.1, with the sites num-

bered as shown.

For instance, Qr = < 1,2 >. As the length of a read quorum is one, so a read

quorum contains only the root of the tree.

Q^ = < 3,2 >, examples ofwrite quorums are {l,2,3,5,6,8,9}, {l,2,4,6,7,12,13>,etc

(c) Locking

The basic idea of locking is that whenever a transaction accesses a data item,

it locks it, and that a transaction which wants to lock a data item which is

already locked by another transaction must wait until the other transaction

.Chapter 2 Background 9

CD

G T ^ D ^ ^

C ^ 0 (^ 0 ^) 0 0 0
Figure 2.1: The diagram of Ternary Tree

has released the lock (unlock).

In fact, typical locking has the notion of a lock mode: a transaction locks

a data item in a shared mode if it wants only to read the data item and in

an exclusive mode if it wants to write the data item. A transaction is well-

formed if it always locks a data item in shared mode before reading it, and it

always locks a data item in exclusive mode before writing it. The following

compatibility rules exist between lock modes:

• A transaction can lock a data item in a shared mode if it is not locked at

all or it is locked in a shared mode by another transaction.

• A transaction can lock a data item in exclusive mode only if it is not locked

at all.

Whether the protocol is Majority Quorum or Tree Quorum, the site first have to

send the request lock message to a Read Quorum or a Write Quorum according to

the read operation r̂ or write operation W{. When the sites receive the request lock

message, if the lock is available, the site will send back the grant lock message to

the site which requests the lock. However, if the lock is unavailable, it will typically

queue up to wait for the lock for a time-out period. After the time-out period, if

the transaction still cannot receive the grant lock message,then it will be aborted.

If the transaction can successfully get the required number of lock messages, its

transaction operation will be executed and at the end, the locks are released by

1

.Chapter 2 Background 10

sending release lock messages to the quorum.

• Advantages
..\

: - i n the event of failure, quorum consensus provides greater data availability

! than Primary Copy and it involves less overhead to handle failures and

recoveries.

—Recoveries of copies require no special treatment as a copy of X that was

down and therefore missed some writes will not have the largest version

number. Thus, after it recovers, it will not be read until it has been written

at least once.

； • Disadvantages

— A transaction probably access more than one copy of each data item it

wants to read. This defeats one of the motivations for data replication.

Since it involves more overhead to process transaction during periods in

which no failures or recoveries take place as it requires consensus from a

I read or write quorum for every read or write operation.

—I t probably needs a large number of copies to tolerate a given number of

site failures.

—Al l copies of each data item must be known in advance. A known copy of

X can recover, but a new copy of X cannot be created immediately.
i
•(

2.2,3 Missing Writes

:i During normal operation since all copies are available in normal mode, the DBS

(Database Management System) processes Read{X) by reading any copy of X and

Write{X) by writing all copies of X. However, when failure is detected, the system

changes to failure mode and voting (Quorum Consensus) strategy is used.

^

j

1

.Chapter 2 Background 11

2-2.4 Virtual Partition Protocol

Each site maintains a view (a set of sites) which it believes it can communicate

with. Within the view in which transaction T executes, DBS uses the approach

of write-all and read any one copy. But, when a site detects a difference between

its present view and the set of sites it can actually communicate with, it needs to

execute a View Update Transaction.

• Advantages

Compared with Majority Quorum Consensus, a transaction never has to access

more than one copy to read a data item. Thus, the closest copy available to a

transaction can always be used for reading.

2 .3 Protocols to enhance the Performance of U p -

dat ing

(a) Immediate Write

When a transaction issues Write{X), the DBS is responsible for eventually

updating a set of copies of X . It can distribute these Writes immediately at

the moment it receives Write{X) from the transaction.

• Advantages: Early commitment of transaction and Early detection of con-

flicts between operations.

• Disadvantages: Immediate Write tends to use more messages than deferred

writing.

(b) Defer Writes on Replicated Copies until transaction terminates

When a transaction issues Write{X), the DBS is responsible for eventually

updating a set of copies of X. It can defer the Writes on replicated copies until

the transaction terminates.

.Chapter 2 Background 12

• Advantages: Since all replicated writes destined for the same site are put

in a single message so as to minimize the number of messages required to

execute a transaction. With deferred writing, the DBS delays the distribu-

tion of those Writes until after transaction T, has terminated. If 7] aborts

before it terminates, then the abortion is less costly than Immediate Write.

• Disadvantages: Performance is degraded as the commitment of a transac-

tion is delayed compared with the Immediate Writing. The detection of

conflicts between operation is delayed.

2.3.1 Independent Updates and Incremental Agreement

in Replicated Databases

Transaction atomicity and serializability are major obstacles to the development of

replicated databases. Many practical applications, such as automated teller machine

networks, flight reservation, and part inventory control, do not require these prop-

erties. One approach is incrementally updating a distributed, replicated database

without requiring multi-site atomic commit protocols. In [SHKS95] there are two

main characteristics introduced for dealing with the update propagation. They are

the progressive, and non-blocking characteristics. By progressive, we mean that

the transaction's coordinator always commits, possibly together with a group of

other sites. The update is later propagated asynchronously to the remaining sites.

Non-blocking means that each site can make unilateral decisions at each step of the

algorithm. Sites which cannot commit updates are brought to the same final state

by means of a reconciliation mechanism. This reconciliation mechanism uses the

history logs, which are stored locally at each site, to bring sites to agreement.

.Chapter 2 Background 13

2.3.2 A Transaction Replication Scheme for a Replicated

Database with Node Autonomy

Many replicated distributed database protocols manage execution of a given transac-

tions at one site, accessing local and remote data copies for its operation, and organize the

commit/abort of transaction from that site. This is referred to as centralized transaction

management.

With centralized transaction management, if there are a number of operations O1,O2,

....On in a transaction and some operation Oi depends on the result of some previous

operation Oj, some communication overhead is required (See Figure 2.2).

z 0
。 ‘ 〉 0

Ti 02 ^__ ^ ^-^

0 。 3 = ^ 0

O n ^ ； ^ ^ ^ ^ ^ ^ ：

0
Figure 2.2: Centralized Transaction Management

To eliminate this type of overhead, a transaction must be executed entirely at one site

which contains replication of a relevant data. One possible way to achieve this is to have

the execution of entire transactions replicated at data replication sites.

We consider data of two types:

• shared-private data owned by a particular site and which only the owner site can

modify,

• public data that all sites can modify

Thereby, two types of transactions are considered:

! .

Chapter 2 Background 14

X ®
Z o i r ^

• 02 C i J

0 " , ：： ©
\ On ^ ^

\ ；
\ ©

Figure 2.3: Replication of Transaction

• Local transaction - transaction initiated at site 5 that reads or writes only the data

owned by site 5. That is, it can write only the shared-private data.

• Public transaction - transaction can read both the public and /or shared-private

data and can write only the public data.

In this scheme, transactions accessing only shared-private data can normally be executed

and committed under a local concurrency control protocol.

Transaction Broadcasting Scheme:

A short period of time [tl,t2) is considered and named TRS period. Let B be a batch

of transactions submitted during such a period of time at all sites. B may contain both

public and local transactions. Local transactions in B are executed immediately at their

origin sites, while the public transactions in B submitted at each site are broadcast and

executed on all replication sites. This means that local transaction and public transaction

replicas in B are executed at different times.

This scheme requires each site to remember some old versions of the shared-private

data it owns. The basic step of the protocol for each site can be summarized as follows:

• accumulate public transactions submitted at site s for a time period and broadcast

.Chapter 2 Background 15

the public transaction at the end of the period. If no public transaction is accu-

mulated, then a null messages is sent. A history is recoverable if each transaction

commits after commitment of all transactions from which it reads. A site may keep

multiple versions of shared-private data for the execution of global transactions. For

the execution of local transactions, it needs only to consider the latest version at

any time.

• At the end of each TRS period, site 5 broadcasts the latest committed values of

shared-private data updated by local transactions committed in that period, to-

gether with a local batch of public transactions accumulated during that period at

5.

• After a global batch arrives, site s examines the messages that have been received

from the other sites, which may contain new versions of the senders' shared-private

data. Those new versions of shared-private data are first written to the local copies

of shared-private data. Site s then executes the public transactions of the global

batch received.

Advantages

With TRS, the execution of public transactions normally incurs only 2 communication

delays. Hence TRS is more efficient than centralized transaction management schemes

in terms of communication delay, especially when the transaction consists of multiple

interdependent operations.

Local concurrency control is adopted for local transactions that access only the shared-

private data and it can also enhance the performance.

Disadvantages

If public transactions are not frequent, then TRS may generate a lot of wasteful null

messages. In addition, TRS repeats the execution of each transaction at multiple sites,

hence it incurs more computation overhead if the transaction's computational cost is high.

.Chapter 2 Background 16

Besides, the storage for keeping multiple versions of shared-private data is required, if this

becomes a problem, all data is made public data.

Appl icat ion

As TRS generates null messages if no public transactions are received, it is more useful

for busy system. Also, TRS transmits transactions instead of data items. In other words,

it is especially more efficient if the size of transaction is smaller than that of the data.

Moreover, TRS is better for the business applications which are more 1/0-oriented than

computation-oriented.

Chapter 3

Transaction Replication Scheme

3.1 A T R S for a Replicated Database wi th Node

Au tonomy

In the Transaction Replication Scheme (TRS), the execution of entire transactions is

replicated at the data replication sites.

In TRS, we consider data of two types (Figure 3.1). The first type is shared-private

data, which is owned by a particular site and only the owner site can modify. The second

type is public data, which all sites can modify. Since shared-private data is modified by

only one owner site, a simpler concurrency control is sufficient. In TRS, transactions

accessing only shared-private data can be executed and committed under a local concur-

rency control protocol. Most previous work on replicated distributed database assume

only public data. With the introduction of shared-private data, TRS can utilize the

semantics of node autonomy to improve the overall performance of transaction execution.

3.1.1 Example

For example, in an airline database system, there may be an accounting site, a flight

scheduling site and many sites for seat reservation. Reservation sites read flight schedules

and policies determined by the scheduling site and the accounting site but they will not

modify such data. Hence flight schedules and accounting policies are shared-private data.

17

Chapter 3 Transaction Replication Scheme 18

©
Shared-Private Data "a"

Public Data "X", "Y"

© ©

Shared-Private Data "b" Shared-Private Data "c"

Public Data "X", "Y" Public Data "X"，"Y"

Site A - read/write "a" by local transaction

-read/write "X, Y" by public transaction

-only read "b", "c" by public transaction

Site B - read/write "b" by local transaction
-read/write "X, Y" by public transaction

-only read "a", ” c" by public transaction

Site C - read/write "c" by local transaction

-read/write "X, Y" by public transaction

-only read "a" ’ "b" by public transaction

Figure 3.1: Public and Shared-private data

The seat plan of each flight is public data among reservation sites since each site can book

seats and modify the data. Thus, the seat plan is considered public data.

3.1.2 Problem

As transactions are replicated at many sites, we have to ensure the essential {serialized)

orderings of transaction execution are identical at all the replication sites. Therefore,

the global timestamping and the Conservative Timestamping method are used to prevent

aborts in normal operation.

3.1.3 Network Model

The system model includes a set of sites connected through a communication network.

The sites store the replicated data and they are called replication sites.

The assumptions about the network and timing are as follows:-

Chapter 3 Transaction Replication Scheme 19

1. Each replication site has a unique ID.

2. Messages are sent in FIFO order.

3. Each replication site has a clock. The clock are synchronized to within a small

deriation from each other.

4. Each site may suffer from fail-stop failure. That means, when a site fails, it stops

processing. So, the site is either working correctly (is operational) or not working

at all (is down). The communication links are subject to failures. The failures

result in loss of messages. Furthermore, we assume that the communication link is

a 2-way connection so that if the link between Site A and Site B fails, then both

communication from Site A to Site B and from Site B to Site A are disabled.

3.1.4 Transaction and Data Model

A transaction accesses data X by operations READ(X, y) and WRITE(X, v). A READ(X, y)

operation reads the value of data X and returns it in a variable y. WRITE{X, v) updates

the value of X to that of v. In addition, each transaction contains a COMMIT or an

ABORT as its last operation.

The shared-private data and public data are defined in terms of transaction operations

as follows:-

• Shared-private data X owned by site s - only transactions submitted by the owner

site s of data X can perform WRITE{X, v); and these transactions can only access

the shared-private data at <s; transactions submitted at other replication sites can

only perform READ{X,y).

• Public data X - transactions submitted at any site can perform WRITE{X, v) and

READ{X,y).

All shared-private and public data are assumed to be fully replicated at the repli-

cation sites.

Chapter 3 Transaction Replication Scheme 20

Accordingly, we can identify two main types of transactions in TRS:-

• Local transaction - a transaction initiated at site s which reads or writes only logical

data owned by site s.

• Public transaction - a transaction which may read public and /or shared-private

data and can write only public data.

3.1,5 Histories and One-Copy Serializability

Let X i denote the copy of a data object X at site i. A data object and its copies are

called logical data object and physical data objects, respectively. When a transaction

Ti is executed, the system uses a translation function r,- to translate a logical operation

into a set of physical operations. That is, a write operation Wi that writes X , Wi[X], is

translated into Wi[Xa],W,[Xb],..., Wi[Xi], where Xa,. . . ,X/ are copies of X and Ri[X] is

translated into R^[Xl], ^-(¾], . . . , Rr[Xm], where X i , " . ,Xm are copies of X .

A replicated history is used to model the execution of a set of transactions with

replicated data objects. A set T of transactions is a partially ordered set {T,- 二 (¾ , <i)}

where E^ is the set of reads and writes issued by transaction i, and <i indicates the order

in which those operations execute. A replicated history over such a set T is a partially

ordered set L 二 (S(T), <) such that

1. S(T) = u{^QTi(T^i), where r,- is the translation function for Ti;

2. for each i and any two operations pi and qi in S^, if a G Ti{pi), b G r,-(g,-) and pi <i 仏.，

and if a and b operate at the same site, then a < b;

3. all pairs of conflicting physical operations are < related; and

4. T contains two fictitious transactions T。and T/. T。is translated into a set of

physical write operations, one for each copy of each data object, and these precedes

all other physical operations, T/ is translated into a set of physical read operations,

1

,1 .

) Chapter 3 Transaction Replication Scheme 21

i

one for each copy of each data object, and these are preceded by all other physical
:i

operations.

i In the replicated histories, the ordering of logical operations within a transaction is

preserved by its physical replicas at each site. A committed transaction Tj reads X from

another transaction T,- in a replicated history L=(E(T), <) if there exists a copy X。such

that

1. Wi[Xa] and Rj[Xa] are operations in E(T);

2. Wi[Xa] < Rj[Xa]; and

3. there is no Wk[Xa] such that VF,[XJ < Wk[Xa] < Rj[Xa].

Tj may read X from two or more transactions, each physical read operation being per-

formed at a different copy. A one-to-one read-from relation exists if for each transaction

T and for each X that T reads, T reads X from exactly one transaction.

A replicated history Li is equivalent to another history L2 if both Li and L2 have the

same read-from relation. A history H is serial if for any two transactions T“ Tj that appear

in H, either all operations of Ti appears before all operations of Tj or vice versa. A one-

copy serial history is a serial history that consists only of logical operations. A replicated

history is one-copy serializable if it is equivalent to a one-copy serial history over the same

set of logical transactions. The TRS protocol will ensure one-copy serializability.

3.1.6 Transaction Broadcasting Scheme

Let the time at each site be divided into equal intervals called a TRS periods. Let B be

I the batch of transactions submitted during a TRS period from all sites. B may contain

both public and local transactions. Local transactions in B are executed immediately at

their origin sites, while the public transactions in B submitted at each site are essentially

broadcast and executed on all replication sites. This means that the local transaction and

the public transaction replicas in B are executed at different times.

I ― 一 一

Chapter 3 Transaction Replication Scheme 22

• accumulate public transactions submitted at each site s for a TRS time period and

broadcast the public transaction at the end of period. If no public transaction is

accumulated, then a null message is sent.

• At the end of each TRS period, Site s also broadcasts the latest committed values of

shared-private data updated by local transaction committed in that period, that is,

together with the local batch of public transaction accumulated during that period

at Site s,

• After a global batch has arrived, site s examines the messages that have been re-

ceived from the other sites, which may contain the new versions of senders' shared-

private data, these are first written to the local copies of the shared-private data.

Site s then executes the public transactions of the global batch.

Defini t ion 1: Clock values is a set of real numbers which can be divided into intervals

of [t1,t2), where t2 - h is a constant value equal to 5. Each of these intervals is called a

TRS period. S is the length of duration of a TRS period.

Definit ion 2: A batch of public transaction collected in a TRS period of [t1,t2) at a

site s is called a local batch of s at t2. We define the global batch at time h as the set of

all the public transactions collected at each replication site in the period [ti,^)-

After every S time units, s starts the next period of global transaction accumulation

and broadcast. For example, if h 二 0.5, then each site broadcasts at times 0.5, 1.0, 1.5,"., of

its local clock. If we concatenate the submission TRS time of each global transaction with

the unique site ID, then we get a globally unique timestamp for each global transaction.

Once a site s has received broadcast messages from all sites at the same TRS time, it

executes the global batch collected based on their timestamp order.

3.1.7 Local Transactions

Under the local concurrency control scheme, the sites can execute the local transactions

‘ immediately upon submission.

(

s

！

Chapter S Transaction Replication Scheme 23

3.1.8 Public Transactions

Consider a public transaction T broadcast by a site s<i at time t which is executed at

site 5i, and suppose it reads a shared-private data object X . T should read the virtual

version Xp of X , which was implicitly broadcast by some site 53 at time t, where 53

is the owner site of X. If a physical version X^ actually exists for a virtual version of a

shared-private data item X at time t and a newer version also exists, then version Xp is

discarded when the execution of the global batch at t is finished.

ti t2 t3

^ A J

^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ _̂--~-~~̂^ ̂ ^̂ _̂̂

old version use xl use x2

xl keeps(xl, x2, newest version) keeps(x2, x3, newest version)

each round = delta time units

requires 3 versions
tl t2

A ^

broadcast x4, B4 x5, B5 x6 B6

1 ^ ^ ^ ^ ^ ^
usexl use x2 use x3 use x4

keeps(xl, x2, x3,x4, newest version)
each round = 1/3 delta time units requires 5 versions

Figure 3.2: Transaction broadcast and multiple versions of shared-private data

In figure 3.2, we assume that a site s owns a shared-private data object X with

consecutive versions, Xx,x^,x^,^^,^^,^^- When site s broadcasts a new version Xi, it

also broadcasts a new local batch of public transactions Bi submitted at 5. When all

the messages of a period are received from all sites, the execution can be started. For

Chapter 3 Transaction Replication Scheme 24

example, in Figure 3.2, a site can start executing a global batch of public transactions B2

at time t2. In this figure, we assume that all message transmit take A time. Between t2

and t3, site 5 must keep X2 since execution of B2 uses X2, it keeps Xs because B3 will need

xs, it also keeps the newest version of X which is used by the current local transactions.

The lower half of the figure shows that for TRS periods of length A/3, 5 versions of

shared-private data have to be kept.

Generally, if a message sent at TRS time t at site 5 arrives at another site s' at TRS

time i' where i' > t and t' = t + A, if each TRS period has length A/q, and if the execution

of a global batch of transactions can be completed in S time units, then in the worst cast,

"q] + 2 versions of some local shared-private data are required at s\

If t' < t above, then at most 2 versions are needed for s' but more versions will be

needed at s since the clock of s is ahead of that of s'. We assume that the system can

handle the execution of a global batch within one TRS period, else the system is receiving

more work than it can manage. If the average message delay D is less than S and if

clocks are closely synchronized, then only a maximum of 3 versions are required. If a

shared-private data has not been updated in a period, then no extra version is needed for

this period.

3.1.9 A Conservative Timestamping Algorithm

Concurrency control using conservative timestamping ordering does not require transac-

tion abortion. The periodical broadcasting of transactions makes this approach easier

because little waiting is necessary for a site to make sure that no transaction with older

timestamps will be received from other sites. We make use of the assumption that each

transaction T pre-declares its readset and writeset, denoted by readset[T] and writeset[T],

respectively.

Our approach is to preprocess all the transactions in each global batch B in a view to

detect read/write and write/write conflicts. Let T1,T2,...Tn be the transactions in B in

timestamp order. We propose an algorithm that maintains two sets: PRECEDE[J],X

Chapter 3 Transaction Replication Scheme 25

and INFORM[Ti,X]. PRECEDE[Ti,X] contains all transactions that access X and

which should be executed before T“ INFORM[Ti^X] keeps the transactions that should

wait for Ti to finish before using X.

We assume that a fictitious transaction To with a timestamp smaller than any of

the current transactions writes to all data items initially. For each data object X ,

preprocessing examines each transaction J] that reads or writes X. If Ti writes X ,

then the algorithm looks for the latest preceding transaction Tj that writes X and

puts it in PRECEDE[Ti,X]. All the transactions with timestamp between those of

Tj and Ti that read X are also placed in PRECEDE[Ti,X]. For each transaction Tj in

PRECEDE[T^,X], T, is inserted into the set INFORM{T),X], so that 7) can inform

Ti about the completion of Tj when it finishes. If X is only read by T“ then the algo-

rithm looks for the closest preceding transaction Tj that writes X . Tj is then placed in

PRECEDE[Ti,X], and J\ is inserted into the set INFORM[Tj,X,

After the preprocessing, we can start execution. A transaction manager (TM) carries

out these operations locally at each site. At the beginning, we assume that To has finished.

When a transaction Tj finishes, TM examines each transaction Ti in INFORM[Tj,X

and deletes T) from PRECEDE[Ti,X]. A transaction Ti cannot access data object X

unless PRECEDE[T,,X] 二 0.

3.1.10 Decentralized Two-Phase Commit

A commit protocol is required to ensure that whenever a site decides to commit(abort)

a public transaction, then every other site must also decide to commit(abort) the public

transaction.

In TRS, we have two types of "commit/abort". The first type is the conventional

commit/abort of individual transactions and the second type is the "commit/abort" of

the global transaction batches. If the global batch aborts, then all transactions in the

batch abort. Public transactions batches are committed in a two-phase consensus. A

decentralized two-phase commit protocol for each global batch is illustrated in Figure 3.3.

Chapter 3 Transaction Replication Scheme 26

transaction batch ^ " ^ ^ problem detected

decision 1 ^ J 丄 decision

Q . . . ¾

V _ ^ ^ non-identical decisions \ J

identical decisions

0
Figure 3.3: Two Phase Commit Protocol

Phase 1

Transactions are broadcast from all sites to all sites. After receiving a global batch, the

site will execute transactions in the batch. Next, it will broadcast the tentative decision of

the site on the commit/abort for each transaction in the batch. For example, if there are

3 ordered transactions Ti, T2, T3 in a batch, and the site S tentatively decide to commit

Ti，T2 but abort Ts, then its decision will be commit, commit, abort. We also define a

special 丄 decision which is not identical with any other decision. If a site sends out 丄

decision, it can go to state (a) since the decisions are guaranteed not to be identical.

Phase 2

If a site receives identical decisions from all sites, it can commit the batch. That is, the

transaction batch moves from state (w) to state (c). A site S decides to abort when it

receives non-identical decisions from two or more sitee. The transaction batch moves from

state (w) to state (a). Transaction batch aborts are triggered only by exceptional cases,

such as problems at some site, site failures or partition failures.

Chapter 3 Transaction Replication Scheme 27

3.1.11 Partition Failures

Under the failure conditions, a generalized version of the virtual parition protocol is used.

Each transaction is executed under a view. The view of a site indicates what the site

considers as the partition it currently belongs to, it is the "virtual partition" seen by the

site. The major criteria of GVP is here:

1. View-id: Each user transaction executes in a view. It is unique.

2. Global read quorums: For each data object X , a global read quorum set RQ{X) is

defined and it is a set of quorums of the replication sites of X.

3. View quorums: For each data object X, a view read quorum set rq{X, V) and a

view write quorum set wq{X, V) are defined. Each view write quorum in wq[X, V),

if any, intersects each quorum in RQ{X) and each view read quorum in rq{X, V),

if any. If wq{X, V) + 0 (rg(X, V) + 0), then X is said to be writable (readable) in

y .

Chapter 3 Transaction Replication Scheme 28

Step 1: Local Transaction "La"

0Public Transaction "Pa"

Shared-Private Data "a"

f ^ Local Transaction "Lb" ^ ^ Local Transaction "Lc"

V ^ Public Transaction "Pb" 1 ^ Public Transaction "Pc"

Shared-Private Data "b" Shared-Private Date "c"

Local transactions are executed immediately.

Public transactions are collected.

Step 2: At the arrival of TRS period

(^ "Pa"，"a"

e T ^ ^ ^ ^

Site A broadcasts the batch of public transactions collected, "Pa" and the new version of

shared-private data "a" to each sites. Similarly for site B and site C.

Step 3: After receiving all the batches,

C ^ "b",,,c,,

V V "Pa","Pb","Pc"

® "a"’ "c" © "a"，,,b"

"Pa", "Pb", "Pc" "Pa"，"pb"’ "Pc"

each site will execute the batch of public transactions collected with the version of shared-private data

received.

Step 4: After executing the batch of public transactions,

0 、
. ^ ^ — C _ Commit

C o m m i t ^ ^ ^ ^ ^ ^ ^

© - ^ ^ ^ ^

There is no need to keep the version of shared-private data and the "Commit" message will be sent back to the

the owner site.

If the owner site receives all the "Commit" message from all the sites, the batch of public transactions will be

committed. Else, they will be aborted.

Figure 3.4: Algorithm of TRS

Chapter 4

Simulation Model

4.1 Simulat ion Mode l

4丄1 Model Design

A replicated Database Management System (DBMS) Simulation Model is developed for

studying the performance of a variety of protocols including Transaction Replication

Scheme (TRS), Majority Quorum Consensus(MQC) and Tree Quorum(TQ) protocol.

Each site in the model has four components:

• a SOURCE, which generates transactions and also maintains transaction-level per-

formance information for the site,

• a TRANSACTION MANAGER(TM),which models the execution behavior of trans-

actions,

• a CONCURRENCY CONTROL MANAGER(CC Manager), which implements the

details of a particular concurrency control protocol (i.e. TRS, MQC, TQ)

• a RESOURCE MANAGER, which models the CPU and I /O resources of the site,

• a NETWORK MANAGER, which models the behavior of the communication net-

work.

29

Chapter 4 Simulation Model 30

Qx
^̂ "̂̂ ;̂;;;;;;;;̂^̂^̂^̂^̂^̂^̂^̂ f̂"̂^ |- j DDBMS site

^ ^ v ^ f f i ^ l
^ ^ NETWORK ； ；7^ ；

Z~>̂ Ĥ̂1 /^^ . _ _ CC Manager
^ ^^P \ Manager j f V

< # ^ # ，
V ^^^^f^^^^^^^^^^=::ZZ:k^ J \ V̂ 、̂~ Transaction Manager

\̂^̂ Resource
\(\ Manager

Figure 4.1: The diagram of Database Management System (DBMS)

These components are designed to support modularity, making it easy to replace the

mechanism in any component (in particular, the Concurrency Control Manager) so as to

implement different protocols for concurrency control (i.e. TRS, MQC and TQ) without

affecting the others.

S O U R C E

SOURCE is responsible to generate the workload for a site. It generates the transactions

of different classes for the site and maintains the transaction-level performance informa-

tion for the site. For example, it has to control the interarrival rate of transactions in

order to simulate cases when the system is in a busy or idle state for different periods of

time.

We shall try different ratios of local transaction and public transaction for TRS. Each

transaction has a different number of operations and the ratio of read/write operations is

varied. We can increase the conflicts among transaction operations by decreasing the size

of the set of data accessed. We believe that TRS behaves well in conflicting cases since

Chapter 4 Simulation Model 31

Source

- Create Transaction

Transaction Done Execute Transaction

Transaction Manager CC Manager

-Read/Write Page CC Request

Commit/Abort Transaction > " Access Request

- Commit

CC Reply

~~
Service Done Request Resource Resource Request Service Done

Resource Manager (OS)

-CPU

-Disks

\ 7
Message Received \ / Send Message

y^
Network \

^^^^; !̂y^^^^^^n^^^^^^yt;::^^
Figure 4.2: The diagram of a Closer Look at the DBMS model

locks on data are not required.

The transactions generated may access data object X by operation READ(X,y) and

WRITE(X,v) for some variable x, y (see Section 3.1.4) and vary the number of data

accesses so as to increase or reduce the data access conflicts.

As TRS performs better when computational cost is comparatively lower, we can vary

the factors of the computational time and disk I/O time of different transactions so as to

verify its performance.

T R A N S A C T I O N M A N A G E R

The Transaction Manager(TM) models the execution behavior of transactions and is

responsible for accepting transactions from the SOURCE so as to model their execution.

For example, for read access, it involves a Concurrency Control (GC) request to get

access permission, possibly followed by a disk I/O to read the page, followed by a period of

I ̂
:i

Chapter 4 Simulation Model 32

CPU usage for processing the operation. When the Concurrency Control request cannot

be granted immediately, due to conflict, the transaction will wait until the request is

granted by the CC Manager.

R E S O U R C E M A N A G E R

It is viewed as a model of a site's Operating System and Resource. It manages physical

resources of site, including CPU and disks. It also provides message sending service

(msg_cpu) because sending and receiving message involve the use of CPU resource. For

each site, TM uses CPU and I/O service for read and write disk pages. The CC Manager

also uses CPU service for processing CC request.

N E T W O R K M A N A G E R

It encapsulates a model of communication network. The main cost of sending messages

in LAN is the CPU processing cost at sending and receiving sites. The bandwidth and

propagation delay are the bottleneck in WAN [Gra88 .

The time (delay) to send and receive a message is computed as follows:-

• Delay 二 Message Size/bandwidth + CPU+Transmit_Delay

where Message Size is the size of message in bits, bandwidth is the speed(bits/second)

of the communication media, and CPU is the processing time required to send and

receive the message.

Chapter 4 Simulation Model 33

The following data is quoted from the paper [Gra88 .
I

Parameter LAN/WAN Value —

TransmitJ)elay LAN 0.00001s

WAN 0.01s ~

Message-Size 100 bytes

Message header 32 bytes

Bandwidth LAN “ 1 x 10^ bytes/T

WAN lxlO^ bytes/s

Message CPU — LAN 0.000025s

一 WAN 0.00012s

I /O time — 0.035s

CPU time/ operation 0.005s

We can vary the above parameters to model different types of distributed system. A

distributed system can be modeled as processes communicating via messages. This model

can abstract three degree of distributed system: shared memory(shared memory multi-

processes), local network(local network connecting several central nodes) and WAN(long

haul network connecting several local network) in accordance with their differences in

message transport cost and message transport reliability.

The time of message transmissions can differ by at least an order of magnitude at each

degree of distribution. The reliability of message transmission can also differ by at least

an order of magnitude at each degree of distribution. The message cost of a distributed

algorithm is an important measure of its cost, especially for wide-area networks.

C O N C U R R E N C Y C O N T R O L M A N A G E R (CC Manager)

It is the only module that may change from protocol to protocol. It is responsible for

handling the CC requests made by TM.

1. TRS

After receiving both local and public transactions from the SOURCE, the SCHED-

ULER has to schedule the local transactions immediately and collect the public

transactions in a batch within a TRS period. The local transactions will be sched-

uled to execute immediately. The batch of public transactions collected as well as

！
m _

• Chapter 4 Simulation Model 34 目
TRANSACTION ^ S £ E <

_ GENERATOR | 1"""^ f

“ COMMIT PUBLIC TRANSACTION

- LOCALTRANSACTION COMMFT PUBLIC

/ LOCAL TRANSACTION
TRANSACTION

• I YES

i SCHEDULER ^ ~ ；] I

^ “ * • I RECEIVE COMMIT MESSAGE OF PUBIC TRANSACTION FROM ALL SFTES

K I

“ REQUEST REQUEST j NO
I DONE SCHEDULETHEM j~"*

TRS PERIOD ARRIVE? “
？、 ACCORDING TO I - _ J

I TIMESTAMP
• RESOURCE MANAGER

. CPU YES

！ DISK I/O I RECEIVE A BATCH

I I 1 OF PUBLIC TRANS ACTIONS

SEND COMMIT FROM ALL SITES | RRQADCA-ST MESSAGE I

, MESSAGE WHEN WITHIN A TRS PERIOD 1

^ A BATCH OF I *

• PUBLIC TRANSACTIONS
I COMMITTED “

I — I NETWORK MANAGER

！ UPDATE LOCAL DATA RECEIVED
• f CPU

i ！
I RECEIVE LATEST VERS ION OF LOCAL DATA «

I SEND A BATCH OF PUBLIC

TRANSACTION WITHK^ A TRS

^ RECEIVE MESSAGE PERIOD AND LATEST VERSON

OFLOCALDATA

«

Figure 4.3: The diagram of a Closer Look at the TRS model

i

I

the latest version of shared-private data will be broadcast to other sites.

When the site receives the latest version of shared-private data from the other sites,

it will immediately update the local data. After the site receives the batch of public

transactions from all the sites within a TRS period, it will schedule these public

transactions according to the Conservative Timestamp method and the SCHED-

ULER will schedule them to execute also.

The SCHEDULER has to request from the RESOURCE MANAGER for the use of

CPU and Disk I /O in order to execute the transaction.

The local transactions can be committed or aborted by the site itself. For the pub-

lic transactions, after executing the batch of public transactions. It will send the

commit message to all the other sites. At the same time, the site will commit the

batch of public transactions if and only if all the commit messages of that batch of

public transactions are also received from all the sites and they are identical.

I

m

潘
Chapter 4 Simulation Model 35

^,

TRANSACTION QUEUE UPTOWAITFOR J x i M E - O U T ? ~

GENERATOR A TIME-OUT PERIOD ^~"|

NO YES

^ SITE i ^ 1

: COMMIT 厂 RESOURCEREOUEST RELEASELOCK CHECKTHELOCK
TRANSACTION RESOURCEREQUEST AFTERCOMMIT FREEORNOT?

_ ^ _ _ i TRANSACTION —

>SCHEDULER

• SENDMESSAGETO REQUEST
DONE REQUESTFORLOCK LOCK SENDMESSAGE

RECEIVE ENOUGH MESSAGE OF FAILED IN

J LOCK FOR EXECUTION ^ _ J _ _ _ ! LOCKING ^
RESOURECE ^ ^ FORATIME-OUT I NETWORKMANAGER

MANAGER PERIOD? CPU
CPU
niSK T/n NO SEND MESSAGE

\ 丽 1 / 0 _ _ [^ _ _ ^ R E C m V E OFHOLDINGLOCK

ABORT MESSAGE
TRANSACTION OFGETTING

LOCK RECEIVE MESSAGE OF

REQUEST FOR LOCK

FROM OTHER SITES

SEND

MESSAGETO

SITES ACCORDING

TO MAJORITY QUORUM

^ Figure 4.4: The diagram of a Closer Look at the Majority Quorum Consensus model

2. Majority Quorum Consensus

After the site receives the transactions, the SCHEDULER has to send via the net-

work manager the request message for the LOCK to a majority number of sites

(selected randomly).

When the site receives the request LOCK message, it will grant the LOCK to that

sender and send a "Grant lock" message back if the LOCK is free. Otherwise, if

the lock is unavailable, the request is queued up to wait until the lock is free for a

time-out period. After time out, the request will not wait for the request lock and
4

it will receive the failure message for granting the lock.

If the site gets all the required lock messages, the transaction can be executed and

i it will request from the RESOURCE MANAGER for the use of CPU and disk I /O.

After executing the transaction, the site has to release all the locks held and so it

has to send “Release lock" messages to those sites it has locked. Then, a two-phase

•i

\ commit protocol [KS91] is carried out.

i

I i
I
I
f

I

i j
j

i Chapter 4 Simulation Model 36
.i
i
1

I
i 1 ^______^___^^__^^__^

丨 TRANSACTION QUEUEUPTO WAIT FOR _ j T I M E - O U T ? “

I GENERATOR ATIME-OUTPERIOD T ^

丨 NO YES

> SITE
i COMMIT ^ ^ RELEASE LOCK CHECK THE LOCK

TRANSACTION RESOURCEREQUEST AFTERCOMMIT FREEORNOT?

L _ ^ _ _ i TRANSACTION —

> SCHEDULER _ ,

SEND MESSAGE TO REQUEST „
DONE REQUESTFORLOCK LOCK SENDMESSAGE

RECEIVEENOUGH MESSAGE OFFAILEDIN

LOCK FOR EXECUTION ^ _ L _ _ A LOCKING ^

RESOURECE ^ 1 ^ FOR A TIME-OUT I NETWORK MANAGER

MANAGER PERIOD? CPU

CPU “

r>iQK T/n NO SEND MESSAGE
D _ ' " ^ " RECEIVE OFHOLDINGLOCK

ABORT MESSAGE

TRANSACTION oF GETTING

LOCK RECEIVE MESSAGE OF

REQUEST FOR LOCK

FROM OTHER SITES

SEND

MESSAGE TO

SITES ACCORDING

TO TREE QUORUM

Figure 4.5: The diagram of a Closer Look at the Tree Quorum model

3. Tree Quorum

After the site receives the transactions, the SCHEDULER has to send the request

message for the LOCK to the sites in accordance with the Tree Quorum[AA92 .

When a site receives tlie request LOCK message, it will grant the LOCK to that

sender and send the "Grant lock” message back if the LOCK is free. Otherwise, if

the lock is unavailable, the request is queued up to wait until the lock is free for a

time-out period. After time out, the requesting site will receive the failure message

for granting the lock.

If the site gets all the required lock messages, the transaction can be executed and it

requests from the RESOURCE MANAGER for the use of CPU and disk I/O. After

executing the transaction, the site has to release all the locks held and so it has

to send “Release lock" messages to the locked sites and then a two-phase commit

1 protocol [KS91] is carried,

51

I I \

•]

1 Chapter 4 Simulation Model 37

')

4.2 Imp lementa t ion

•i

4.2.1 Simulation

A system is modeled as a collection of resources together with a collection of processes

competing for the use of these resource. A resource can be a CPU, Disk I /O or commu-

nication channel. A process can model the behavior of program execution in a computer

system. A process-oriented simulation program declares the resources of the system; indi-

vidual program segment and then mimics the behavior of processes as they visit first one

resource and then another, until either the process leaves the system or the simulation

terminates.

4.2.2 Simulation Language

The simulation language CSIM17[Sch] is employed and it is a library of routines, for use

with C or C++[Fai] program, which allows us to create process-oriented, discrete-event

simulation models. In the C++/CSIM library, all of the structures of CSIM are defined

as classes, and most of CSIM verbs have become methods in these classes. The advantage

of CSIM is that by using the inheritance features of C++，we can build new classes which

are derived from the existing C++/CSIM base classes. Details of the implementation is

given in Appendix A.

ipi

“」
.~ n s I. /^
《「
1 . . cc,lf.-^.lli^ 4̂^̂.̂'%̂^̂.̂;:

-iT% ., .… 。-,:1/ -.： :、^:. J 、？玄><,老义黨：^|:

..1 . V ’ .. ； :> f 一 c.s^.. y^

.... ̂ *
V

<
. ̂ -

. . ,.;3:.f..,:: 、•._•.:..、 • ‘： §. ^ 5』

, .- . .t，

. -.• 」： . .® s>『 ,
w 一

. s

•.
 > . 二 ..

 <计.〜
,tO . -r . • -.fc -----?.-.|

.. - .. ._::...-. 』. V.〜(.

一 '-..<, .S.::4-J

:.: :\ 一 * ̂ s

.. 丄.--二

.. .,_ c ̂,. -
。
i

•.:..‘.v;.
、^.
」
f^..rf"K_:"

、
.K r- ̂

.. ._ . 1

-r . , < • -
、
... .
¾ •:.::
「n-..:. •(？、<-;: — • . . "- V l:-f- l,-:,ll

. . :• . .^

. .• .- •".. _:. .:-:;\ :「、：f」一

. ,:一 .-I

r -r-. r 纖

...:."1--.:』

lf- - ‘ .
a
. i ..-̂S
H

r _
一

：； ...,:

 j r ̂ ̂

- ..’ i , 《\一

- ...? . :i:s

,̂

^ - j

. :.1.::/:;
.1 . *)

f

 一

. -lr .“

,. ..,-.h .
、
. . . - -J 一」|J nw%^ ..

一_ -

- .,.,^,....:

- •
、
•-.-. .i
^s .4

.• r) ；fr)；：i
. . •. . ^ ...̂ .-;..:-,’.：，』，.-.:-;.-t̂v.&

• . • • -.̂----.v.̂_ ,^^hi

.,>i

- 1 - .-, -.:_〕-••‘(

 ；vfi.s ,-

..... . :\V

: ...j 「；”；v_ :.^p

 ppm f tfs. f ̂¾.. ̂ _

;;/- a^ . 八 ，| >.:./J-.--:4 . . , . _ , .- ：： .-. I :./”.-.-:-==_<,:.:= .

••
. s - .，.--: , ^

>:vv,- ...
UJ- .-、. ,- ::.-.....,:,:
、
-:>;;-

」
i!:<-- 1..:.::::-. ..
= . - . . , J

-.: -i .-...:..:-;; .,. - - :.,」.、-,>-.;,、..:..,...:、"：,..•: :> •-::- ， ,.％?£/,>,>? y
M2.
V

 ̂̂.5, '¾¾'^

"-.u. 7 , r -;\ _ . .
T

」
„. , . , . „ , . §

, 1 , 一 _ 一 t 1 V 7 一 , \ , \ r
 ’ . . . -

 , .
 -- , I

41;;: ¾ ̂,..-^.-^-^ ;.-- • ̂^-^.^-^^^¾¾-¾^^¾& . ;、： r/ ,

鍵

I i
i
i
'i .

i j
！ j

H
I

1
^
.•)

^ 、
-

！ i

Chapter 5

Performance Results and Analysis

5.1 S imulat ion Results and Da t a Analysis

By using the simulation models for Transaction Replication Scheme, Majority Quorum

Protocol and Tree Quorum, we can now compare their performance.

In the simulation, we have to consider various types of parameter settings of the

system. First of all, we have to consider the variation of the message cost, since TRS is

expected to perform better compared with the other Protocols when the message cost is

high. The message cost is calculated by the factors of Message CPU (msg_cpu), Transmit

Delay (transmit_delay) and Bandwidth (bandwidth), these are the input parameters for

the system simulation.

Secondly, as TRS should perform better than traditional protocols when the number

of operations per transaction is large, so the number of operations (maxoper) is also one

of the parameter settings being studied.

We have to determine the length of the simulation time the simulation needs to arrive

at a stable state, i.e. the results we obtained from the simulation jobs are steady.

Moreover, we have to consider the interarrival rate of transactions (lar_tm) to ensure

that the system is not overloading. That is, about 90% of transactions generated can be

completed within the simulation time.

The ratio of read/write operations per transaction (ratiorw) has to be studied as it

will determine the read and write quorum of Tree Quorum Protocols.

39

^

•(

j

i %
%

•

-!

Chapter 5 Performance Results and Analysis 40

The number of sites (numsite) within the system is also varied. We have to set up

different number of sites to get different performance results.

The total number of data (numdata) and the frequently accessed data(accd) can affect

the data conflict of the simulation.

In addition, the Disk I /O time (diskio) and the Computational Cost (op_cpu) are the

time cost of executing a transaction operation.

The following are the parameters for the system:-

Parameter Meaning

sim_time Simulation Time of the System Model

numsite number of site

numdata number of data

accdata number of data access

lar_tm interarrival time of transaction

maxoper maximum number of operation

ratiorw ratio on the number of read write operation per transaction

msg_cpu cpu time for processing receive or send message

transmit—delay delay time for message transmission

bandwidth speed of transferring number of bytes per second

diskio disk io time

op_cpu computational cost for a transaction

Table 5.1: TRS, Tree Quorum, Majority Quorum Consensus Models' Common Parameters

The Table 5.1 shows the common Parameters setting of TRS, Majority Quorum and

Tree Quorum. However, for the Tree Quorum and Majority Quorum Model, we have to

consider one additional parameter, time out period, i.e. the maximum period that a site

will wait for a lock it requests. After timeout, if the site still cannot acquire the lock, it

will assume that deadlock occurs and it will abort its transaction.

I

1
.i ；

i Chapter 5 Performance Results and Analysis 41
i

I Parameter Meaning

timingout Maximum time a site will wait for a lock, when time is out,

the corresponding transaction will abort
I

； Table 5.2: Additional parameters for Tree Quorum and Majority Quorum Models

For TRS, there are also some other parameters to be considered. They are the TRS

period, i.e. the fixed interval of time at which each site will broadcast a batch of public

transactions and the latest version of shared-private data. Moreover, we also have to

consider the number of public and local data, unlike the traditional protocols which just

treat all the data as public type. The ratio of local transaction to public transaction is

also one of the TRS parameters.

Parameter Meaning

TRS TRS period for broadcasting a batch of public transaction and

latest version of shared-private data

numpublic number of public data for all replicated sites

numlocal~~ number of local data each site

ratio ratio of local transaction to public transaction

Table 5.3: Additional parameters for TRS Models

After formulating the simulation system, we have to consider the performance metrics

of the simulation system for comparison and analysis. The measure of the performance

of the system mainly bases on the response time of the transactions. In addition, the

throughput of the system is monitored so as to find out the breakdown point of the

system for TRS, Majority Quorum and Tree Quorum protocols. Moreover, the commit

rate of the transactions against data conflict, site failure and partition failure is measured.

1

)

•I

i i
I Chapter 5 Performance Results and Analysis 42

I
1 .
I The following parameters would be measured from the simulation system:-

.i
^ _ _ _ _ _ „ _ ^ ^ ^ _ « ^ ^ _ « - « ^ _ ~ « ~ « ^ ^ ~ ~ ~ ~ ~ - ^ ~ ~ ~ ^ ^ ~ ~ " ^ ^ ^ ^ ^ ^ ^ ~ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ~ ^ ^ ^ ^ " " ^ ~ ~ " ~ " ~ ~ ~ " ~ ^ ~ ^ ~ ~ " ~ ^ ^ ~ ~ ~ " ~ ~ " ~ " " " ~ ~ ~ " " ^ ~ ~ * ~ * ~ " ~ ~

j Performance Index Meaning

i throughput Number of transactions completed per second

I response time average response time of transactions

I Commit rate number of transactions committed

Table 5.4: TRS, Tree Quorum and Majority Quorum Consensus Common Models' Metrics

For TRS, the overall response time of both public and local transactions, the response

time of public transactions and the response time of local transactions are measured.

Performance Index Meaning •

overall response time average response time of both local and public transactions

public response time average response time of public transactions

local response time~~ average response time of local transactions

Table 5.5: Additional TRS Model Performance Metrics

A number of basic parameter settings are as follows:-

Performance Index Value

Number of Operations per transaction 20

Disk I/O 0.007s

Read Write Ratio on Operation 6:4

Simulation Time — 5000s

Interarrival Time of Transaction 20s

Ratio of Local to Public Transaction 1:1

Number of local data each site ^

Number of public data each site 1000

Transmit Delay 0.3s

Message Size 100 %tes

Message Header Size 32 bytes

Bandwidth 1 乂 10̂ bytes/second

Message CPU time — 0.000025s

Number of Sites 4, 13
Cache Hit — 80%

CPU time for operation 0

Ratio of Local to Public Transaction 1:1

Table 5.6: Basic Model Metrics

The performance is studied by the following experiments. They include:

1

j Chapter 5 Performance Results and Analysis 43

1. variation of TRS period,

2. variation of clock synchronization accuracy,

3. variation of the ratio of Local to Public Transactions,

4. variation of message transmit delay,

5. variation of interarrival rate of transactions,

6. variation of transaction computational cost,

7. variation of disk I /O time,

8. variation of cache hit ratio,

9. variation of number of data access,

10. variation of ratio of read/write operation,

11. variation of one particular failed site,

12. variation of number of sites available,

Chapter 5 Performance Results and Analysis 44

5丄1 Experiment 1 : Variation of TRS Period

In this experiment, the simulation is done with 4 sites and 13 sites respectively. The length

of simulation time is 5000s. Each transaction has 20 operations and each transaction has

the ratio of read/write operation 6:4. The computational cost is Os and the disk I /O time

is 0.007s with the cache hit ratio of 80%. The interarrival time of transaction is at each

site 20s. The ratio of local to public transaction is 1:1. The number of public data is 1000

and the local data for each site is 100. The message size is 100 bytes and the message

header size is 32 bytes, the bandwidth is

1x10® bytes/second, the message transmit delay is 0.3s and the message CPU time is

0.000025s.

For different values of the TRS period, we find out the behavior of Transaction Replica-

tion Scheme by measuring its response time and the number of versions of shared-private

data stored. The range of TRS period variation is from 0.8s to 3s.

Performance Index Value

TRS 0.8，1.0, 1.5, 2，2.5，3(second)

Table 5.7: Experiment 1 Varying TRS period

i

i

？

I 、

I

1

.•) ,j

I Chapter 5 Performance Results and Analysis 45

'i
•i j

i A Graph of TRS vs Response Time A Graph of TRS vs Response Time For Public Transactions

! 4「 4.5「

I ^ 0 TRS s i t e s = 4 " " ° TRSsites=4

1 + TRSsites=13 + TRSsites=13

'! 3.5 - \ 4 - t

I 3 - \ 3 .5- \

t ^ ' U ^
5̂ ； !̂i 2 i!i 3 1.5o5 1 1.5 TAS 2 2.5 3

TRS
(a) For both public and local transactions (b) For public transaction

A Graph of TRS vs Response Time For Local Transaction

0.05「

0.049 -

0.048 -

驟 - ^ ; ; ^ ^ ^ ^ r Z Z l > ^ < x : :
1 0 . 0 4 6 - ^ “ ^ " “^
§ 0.045 -
o
8- I 1
^ 0.044 - o TRS sites=4

+ TRS sites=13

0.043 -

0.042 -

0.041 -

。.。4o ts ^ ？̂ 2 i!i 3
TRS

(c) For local transactions

Figure 5.1: Experiment 1 The diagram of TRS period Vs Response time

Figure 5.1(a) shows that when TRS period is decreased from 3 second to about 1

second, the response time decreases correspondingly. However, after the minimum point

(about 1 — 1.2 second), the response time will increase. This is because when the TRS

period is too long, the public transactions have to wait for a longer time (greater TRS

period) to be executed. Therefore, when the TRS period increases, the response time

increases accordingly. On the other hand, if the TRS period is too short, it implies

the public transactions have to be frequently broadcast. Moreover, the system may not

always complete the execution of the batch of public transactions in a period. That is

why the response time of A the transactions increases. In figure 5.1(c), the response time

j Chapter 5 Performance Results and Analysis 46

of local transaction is very low compared with figure 5.1 (a). The response time of local

transaction is not much affected by the different size of TRS period. This is because the

local transaction are executed immediately under node autonomy and so there is no close

relationship with the TRS period.
:i
•i
I

i
I A Graph of TRS period vs Number of Versions
i 120r

i 0 TRS sites=4 .

丨 ，,。. L = y
w 1 0 0 - /

I /

I i ; v ^ ^ ^ ^ ^ ^ ^ ^ ^

] .n I I 1 ‘
^ 0 5 1 1.5 2 2.5 3

;i TRS period

(a) TRS Vs number of version for all sites

i

Figure 5.2: Experiment 1 The diagram of TRS period Vs Maximum number of versions

I of shared-private data

From Figure 5.2(a), the number of versions of shared-private data we needed is about

40 to 110. This is the maximum number of old versions of all the shared-private data a

site has to keep during the simulation time. The number of data that a site has to store

is small. Therefore the data storage for shared-private data is not a problem in TRS.

I 、
(
•！

Conclusion
•！

:i

i The choice of TRS period is rather significant. If the TRS period is too large, the response

j time becomes great. If the TRS period is too small, the response time becomes la rger

j too. In the following experiments, we will use a TRS period of 2.0 seconds.

.-> • ii

j Chapter 5 Performance Results and Analysis 47

j 5.1.2 Experiment 2 : Variation of Clock Synchronization

\ From [Mil88], the network time protocol NTP synchronizes clocks of nodes on geograph-

ically distributed networks. It does this at low cost and provides clocks that are synchro-

nized to within a few milliseconds of one another. NTP is running on the internet today

and is used to synchronize clocks of nodes throughput the United States, Canada, and

various places in Europe. Since clock synchronization belongs to the lower levels of the

system, and it is outside the scope of this thesis, we do not consider the overhead of clock

synchronization.

As TRS has to broadcast messages periodically, that is according to the length o f

TRS period. We do an experiment about the variation of clock synchronization to find

out whether it w ill deteriorate the performance of TRS. We vary the clock synchronization

from 0 to 9 milliseconds. As we can see from f igure 5.3(a) k (b), the accuracy of clock

synchronization do not affect much the response time. This is because the optimal TRS

period is about 1 second. This shows that the accuracy of cl ock synchronization is not a

problem in TRS broadcasting.

A Graph of TRS vs Response Time
A Graph of TRS vs Response Time 4 -

:i z . \ • i
y y ^ \ o Clock Synchronization=0,001

1.9- . y ^ ® 3 _ \ + Clock Synchronization=0.005
I A # p I * Clock Synchronization=0.009

1 \ ̂ ^ ^ ' ^
1 g \\ ^,^^^ o Clock Synchronization=0.001 \ ^̂ ŝ̂ f(f""̂

、^^^?^^ + Clock Synchronization=0.005 2 - L ^̂ ^̂ ^̂ ^̂ ,̂ f̂
14 j^^^ 來 Clock Synchronization=0.009 ^ •• m ""̂ ^̂^
1.3。5 1 1.5 TRS 2 “ 3 1.sL ； i:i~~ "̂“̂ 2 i!i 3

TRS
(a) 4 s i tes (b) 13 s i t es

Figure 5.3: Experiment 2 The diagram of TRS period Vs Response time by varying clock

synchronization accuracy

:l;

I

:？
.1
I

Chapter 5 Performance Results and Analysis 48

Performance Index Value

Clock Synchronization 0, 1, 5, 9 (milliseconds)

Table 5.8: Experiment 2 Varying Clock Synchronization

Conclusion

The accuracy of clock synchronization does not have any effect on the performance of

TRS.

I
i

I Chapter 5 Performance Results and Analysis 49

)

'i

5丄3 Experiment 3 : Variation of Rat io of Local to Publ ic
i
•j

Transaction
.i

In this experiment, we vary the ratio of local transactions to find out the impact on

the performance by the introduction of the new transaction type, i.e. local transaction

(unlike the traditional protocols). In this experiment, the interarrival time of transactions

for each site is 20 second.

Performance Index Value

" ™ S " ~ ~ 2

Local to Public transaction Ratio 2:1,6:1,10:1,14:1,18:1

Table 5.9: Experiment 3 TRS Model: Vary Ratio of Local to Public Transaction

A Graph of local transaction ratio vs Response Time
2.2r

o TRS sites=4

2 ^ + TRS sites=13

1.8 - \ ^

' ： \ ^ ^ ^ ^ ^ ^ " ~ " ~ ^ ~ ~ ~ ~ ~ ^ ~ " ~ ^

。,- \ _̂̂ ^̂
0.6. ^ ^ ^ ^ - ^ _ _ _ _ _ _ _

o
r , A I I I 1 1 ' ‘ ‘

^•^2 4 6 8 10 12 14 16 18
local transaction ratio

Figure 5.4: (a) For both Public and Local Transactions

From Figure 5.4a, we observe that when the ratio of local transaction increases, the

overall response time of both public and local transactions decreases. This is because

the local transaction can be executed and committed immediately, which is unlike public

transactions which have to wait for the arrival of TRS period to execute.

’:；
•i
I 3
I
j) 'h

1

1 J

i

Chapter 5 Performance Results and Analysis 50

I A Graph of local transaction ratio vs Response Time For Public Transaction A Graph of local transaction ratio vs Response Time For Local Transaction
2.5r 0.05r

！ 0 T R S s i t e s : ~ " ° TRS sites=4
I 2 .45 . + TRSsites=13 。 侧 . | + _ e s = 1 3

] 2.4 - 0.048 • i
2-35 • _ 7 ' ^ ^ ^ ^ ^ ^ _ ^ i _ _ _ ^ _ _ _ ^ ^ ^ ；

I 2.3- | 0 . 046-^ “ ^ ^ ^ ~ 0 ^ ^ ^ ^ ^

‘ P '^

§ 2.25 - 2 0.045 -

I ^ I

I? 2.2 = ‘ ^ ^ 卜 ^ ~ ~ - ~ ~ ~ y ^ ^ ^ tt0.044-

2.15- ^ ^ ^ ^ " ^ i / ^ 0.043 -

2.1 - 0 042 -

2.05 - 0.041 -

2 ——^——^ \ 广 0 • " " ^ " “ ^ ^ ^ " ~ " t e " ^ • ^ ； 8 讀 2 4 6 8 10 1 2 ~ ~ U ~ ~ t s ~ ~ 1 8
localtransactionratio localtransact,onrat,o

(a) For Public Transactions (b) For Local Transactions

Figure 5.5: (b) Diagram of Ratio of Local to Public Transaction Vs Response Time

Conclusion

TRS performs better when there is a higher ratio of local transactions.

V

|., t
1

.1
I
1
i

I]

1

i Chapter 5 Performance Results and Analysis 51
1

i

j 5-1.4 Experiment 4 : Variation of Number of Operations

As TRS can reduce the number of messages among the operations within a transaction,

so we verify its performance by varying the number of operations per transaction. The

number of operations is varied from 5 to 25. In this experiment, as we compare with Tree

Quorum and Majority Quorum protocols, the numbers of sites are 4 and 13 respectively

since these numbers of sites can form the complete logical tree of Tree Quorum.

c ^ ^ ^ ^ ^

(a) 4 sites

^ ^ ^

i ^ ： ^ ^ ^ © ^ ^

® ® c i c ^ " ^ ^ © ^ ®
(b) 13 sites

j g g j i i @ @ @ (¾ (¾ ^ @ @ ® ® 0 ©

(c) 40 sites

Figure 5.6: Logical Tree Structure of Tree Quorum

.1 ^

•|

.i i

I

i

!
I
1
i

i Chapter 5 Performance Results and Analysis 52

'i
I

！ A Graph of Number of Operations vs Response Time for 13 sites
： 4 0「

3 5 - 卜 ™ S 7
+ Tree Quorum y ^
X Majority Quorum > ^

30 - I y ^

广 ^ /
i 20 - /^ /̂̂ ^

i ^
(, e e "S 0

nT I X 1 ‘
5 10 15 20 25

Number of Operations

(a) For both public and local transaction
A Graph of Number of Operations vs Response Time for public transaction A Graph of Number of Operations vs Response Time for local transaction

2.3「 ^^___ , _ ^ ^ 。.。6[.

. . ^ ^ ^ ' ^ ' ^ ^ ^ ^ 。。55 Z

0.05 - ^ ¢ # ^

0 4 sites ^ ^ *

2 2 . * 13sites 0.045 - ^^；；；^

I g。。4- / ^
§ 2 . 1 5 - i y ^

8. S-0.035 - y ^

I ^̂ ^ ^ y^
^ 2.1- ^ ^ ^ \ /^^^~""^^\„ _- y ^ 1° “ites

^ ^ ^ ^ ^ ^ ^ \ ^ X ^ ^ ^ ^ * 13 sites

- X ^ : : L ^
2l 1^ to 25 5 w ^5 立 25

5 10 Nu.beroJopera t ions Numbero,Operations
(b) for public transaction only (c) for local transaction only

Figure 5.7: Experiment 4 The diagram of Number of Operations Vs Response time

In Figure 5.7(a), the overall response time of both public and local transaction increase

with the increase in the number of operations within a transaction. This is the same for

local transaction (Figure 5.7c). In this experiment, we have the ratio of local to public

transaction of 1:1.

K O

i Chapter 5 Performance Results and Analysis ^^

]
••i

I Performance Index Value

Number of Sites 4, 13
I _ ^ _ ^ ^ . . . _ _ _ ^ ^ ^ _ ^ ^ ^ ^ _ _ _ — _ — — ^ ^ _ ^ ^ — . — — — ^ — ~ — ~ — — — — - — ^ ~ ~ " ~ ~ ~ ~ ' ' ~ ' ~ ^ ~ ~ ~ ~ ~ " ~ " ~ "

Ratio of Local to Public transaction 1:1

TRS 飞
Number of Operations 5,10,15,20,25

Table 5.10: Experiment 4 Varying Number of Operations in a transaction

As we want to compare the performance of TRS with Tree Quorum and Majority

Quorum, to be fair for the traditional protocols, we generate only the public transactions

in TRS. This is the same for the Tree Quorum and Majority Quorum, they also generate

transactions which access the same set of public data. Figure 5.7(a) shows the comparison.

While the number of operations per transaction increases, the response time for TRS,

Tree Quorum and Majority Quorum increases. The overall response time of TRS is the

best compared with Tree Quorum and Majority Quorum.

The high rate of increase in the response time for Majority Quorum and Tree Quorum

is due to the communication cost among the number of operations within a transaction

for Quorum Consensus Protocols, this communication cost can be eliminated for TRS.

>8

'4

~l
>

j Chapter 5 Performance Results and Analysis 69

A Graph of Number of Operations vs Response Time for 4 sites A Graph of Number of Operations vs Response Time <or 13 sites
30「 ^ 40 •

o TRS / 35_ o TRS ^

2 5 - + Tree Quorum / + Tree Quorum ^ X
x Majority Quorum / * MajorityQuorum ^ ^

p ^ y ^
0! ‘ 工 ' 25 。5 10 5̂ M 25

5 1D NumberofOperations NumberofOperations
(a) 4 sites (b) 13 sites

Figure 5.8: Experiment 4 The diagram of Number of Operations Vs Response time

Conclusion

TRS performs better than Tree Quorum and Majority Quorum when the number of

operations of a transaction is high.

s

1

j Chapter 5 Performance Results and Analysis 55

5.1-5 Experiment 5 : Variation of Message Transmit Delay

We vary the message transmit delay time to verify whether TRS performs better for high

message cost. In Figure 5.9a, b and c，we have the TRS simulation experiments with the

ratio of local to public transaction 1:1. The response time of total transactions, public

transactions and local transactions are measured respectively. The range of message

transmit delay is from 0.01s to 2s.

Performance Index Value

Number of Operations ^

Simulation Time 5000s - _ •

Interarrival Time of Transaction 80s

Time Out 100s . -

TRS period ‘ ls (message transmit delay < Q.5s)

“ ‘ 2s (message transmit delay==0.5s),

‘ 10s (message transmit delay > 0.5s)

Message Transmit Delay 0.01, 0.02, 0.04, 0.06, 0.08, 0.2, 0.4, 0.5’ 1，1.5, 2 (second)

Table 5.11: Experiment 5 Varying Message Transmit Delay

The TRS period has to be increased so as to ensure that the batch of public transac-

tions can be received within one TRS period. For the public transactions (Figure 5.9b),

the increase in the message transmit delay causes the increase in the response time of

public transactions. This is because the batch of public transactions are broadcast at

the end of each TRS period. Thus, if the time for broadcasting message is longer, the

response time is also longer. However, for local transactions (Figure 5.9c)’ as the local

transactions are executed immediately under node autonomy, it is not affected by the

message time. As we want to compare the performance of TRS with Tree Quorum and

Majority Quorum protocols, TRS is executed with public transactions only which access

the same set of public data as Quorum Protocols. When the message cost increases, the

response time increases correspondingly. The response time of TRS is much lower than

those of Majority Quorum and Tree Quorum.

"1

s Chapter 5 Performance Results and Analysis ^^

i

•] A Graph of Message Trasmit Delay vs Response Time for public and local transaction
i 12「

丨 Z \ 10- ^ ^

: I . . < ^
0) ^ ^ ^ / o 4 sites
C 6 ‘ 5 i r ^ ^ / 米 13 sites

羞 ^ ^ / ^ w
„1 I J I I 1 I 1 1 1 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Message Transmit Delay

(a) For Both Public and Local Transactions
A Graph of Message Transmit Delay vs Response Time for public transaction A Graph of Message Transmit Delay vs Response Time for local transaction

i4[°"K_ ^ _ , _ ^ _ ^ ^ ^ ^

12- ^ ^ -¢^^^^^=^^"=^========^^^^^^^"^""^""^^^^ ‘

^ ^ ； ； ^ ^ ^ 0 4 sites

10 - ^ ^ ^ ^ ^ * 13s i tes

i / / ^ ^ , . " “ ^ P 8- ^^/ -

§ ^ ^ / l o 4s i .es 言 讓 5 -

16- ^ ^ / r 她 I
, J ^ ^ / 0.03 -

4_ /

^ S f ^ 0.025 -

^ . ^
I , , , I I I I I 1

0> ‘ ‘ ‘ ^ J ：^ 7 ^ t k ^ i 0.02 0 2 0 4 0 6 0.8 1 1.2 1.4 1.6 1.8 2
0 0.2 0.4 Q.6 M ° s L g e T r l n s . i t l) L y ^ “ ' ^ ' ^ ‘ M e s s a g o T r a n s . i , D e , a y

(b) Public Transaction (c) Local Transaction

Figure 5.9: Experiment 5 The diagram of Message Time Vs Response Time for TRS

Figures 5.10 a k b shows that rate of increase in response time in TRS is much lower

than those of Majority Quorum and Tree Quorum protocols.

.1

I

•4
奋 I

j Chapter 5 Performance Results and Analysis 57

I
•n
^

•m -;.d

1 A Graph of Message Transmit Delay vs Response Time A Graph of Message Transmit Delay vs Response Time
4 120[150[^ ^ ^ _ ^ ^

1 y ^ o TRS ^ - " ^

I j ^ ^
: i / L ^ UL=.
：' 。 K ^ ^ ^ " ^ ~ ^ X ^ : 4 1:6 1:8 -。^^""^^~""^a“n:y1:4 ^̂ "̂̂ ^
: (a) 4 sites (O.Ols-2s) (b) 13 sites (0.01s-2s)
‘ A Graph of Message Transmrt Delay vs Response Time ^^ A Graph of Message TransmK Delay vs Response Time

‘ 丨 ^./^^^ h^^-^：^^^ 2. ̂ ^^___ 。 v̂=̂ ^
0 - ^ « ^ ： ^ ^ ®"""" J ^ . • > 1 1 ‘ ‘ ‘ ‘

m ^ "o 0 0? 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
n I I _ - _ I 1 ‘ ‘ “ ^ r ^ ？‘̂ Message Transmrt Delay

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Message Transmit Delay

(a) 4 sites (0.01s-0.2s) (b) 13 sites (0.01s-0.2s)

Figure 5.10: Experiment 5 The diagram of Message Time Vs Response Time for TRS,

Tree Quorum and Majority Quorum

• Conclusion
i

； TRS performs the best among the tested protocols when the message transmit delay is
%

】 reasonably large.
3
-

b
.1.

^

1
m
•^

I
•_i j
^

1
I
a«

種

雪

I

, Chapter 5 Performance Results and Analysis ^^
\

5.1.6 Experiment 6 : Variation of the Interarrival Time of

Transactions

Through this experiment, we can find out which system performs the best in a busy

system, i.e. the interarrival time of transactions is small.

Performance Index Value

TRS period “ 2s

Interarrival Rate of Transaction 10,30,50,70,90 (second)

Number of Sites 4, 13

Table 5.12: Experiment 6 TRS Model: Vary Interarrival time of transaction

A Graph o1 lnlerarrival Time o(Transaction vs Response Time (cx puWic and k>cal transaction

- _ ^ ^ ^ ^ . ~ ^ ^ . _ _ _ ^

0 4 sil8s
2 - H 13srtes

i

j l . 9 .

1 8 -

- ^ - - ^ . ^ _ _ ^ ^ ^
13 20 30 40 50 60 70 SO 90

Interarrival Tlm© of Transaction

(a) For Both Public and Local Transactions
A G,aph o. , n , ™ , T ^ o(Transactt«, vs Rosponsa T〖™ .o, pU,lK: t^ansactK>n ^5 ‘ ° ™ ^ ° ' ' " ' " ^ ^ ^ ' ™ ° ' ^ ' ^ ^ “ ^ ^ 一 l o r M — U o n

2 .Sr I 1 r I
o 4 Sites o 4 sites

, : , s 0.049 H l 3s i t es
2.45 - • 13a tes

2 4 0,04B •

23 君0«6̂ ^̂ ^̂ ^̂ ^̂ ^̂ "̂̂ ^̂ "*""""̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ \^̂ _̂ _̂ "̂ ^̂ ^̂

^ / ^ ^ ^ io^s- ^ ^ 0 ^ ^
S 2 . 2 s _ _ _ _ ^ ^ % Y

I 圣 0 044 •
S 2.2-

‘“~"~~ 。 0,043 •
Z , 5 . ^ ― ^ ^ > » ~ \ ^ ^

2 . , - \ ^ ^ Z ^ ^ 0 拟

" \ ^ ^y^ 0.041 -
2 05 X o ^

2 ! ^ ^ ± n X M °®^10 20 30 40 50 60 70 80 90
1。 ^ ^ , n U ^ a l T - ^ o r T r a n ^ > K ^ l n ^ a ^ a i T ^ C T r a n s a C o n

(b) Public Transaction (c) Local Transaction

Figure 5.11: Experiment 6: The diagram of Interarrival time of Transaction Vs Response

time for TRS

j Chapter 5 Performance Results and Analysis 74

We set up the experiment with 4 and 13 sites and with the interarrival time of trans-

action from 10 second to 90 second.

The response time decreases with the increase in the interarrival time of transactions.

•j

'i A Graph of Interarrival Time of Transactions vs Response Time A Graph of Interarrival Time of Transactions vs Response Time
! 120r 80「

\ TOO \ o TRS
； \ 。 r 7 0 - \ + TQ

: F \ • \

' r ^ V _ 1 < ^
2。- ^ V - ~ r ^ ~ ~ T 10-

: 0 ^ _ e o

- 2 0 30 |nt:iva|ii=fT_=:ng ^ 即 . 0 % 20 30 |nt:ivai:T=ions ^ ^ 90
(a) 4 sites (b) 13 sites

Figure 5.12: Experiment 6: The diagram of Interarrival time of Transaction Vs Response

time

y；

i
j

:!

夸

I
“

I

j

j Chapter 5 Performance Results and Analysis 60

.1 For Majority and Tree Quorum protocols, the commit rate of transactions is decreas-

ing, they are overloaded at about the 30s interarrival time point.

A Graph of Interarrival Time of Transactions vs Commit Rate A Graph of lnterarrh/al Time of Transactions vs Commit Rate 1「 - *—— ^ 1「 ^
^ ^ , : ^ ^ ^ ^ ^ 円 ^ ^ - ^ ^ ^

0.9 - %̂^̂^̂^ * QC ^- '̂'̂ ^̂ ^̂ .̂̂ -̂"‘̂

|o.6- / i ^y^ / 1+ TQ
.| A |0.94.^ / 来 QC

V 〜: /
0 . 2 y k

' i 20 30 |n,e:|:_fl ” ^ 卯 ^ “̂ l^_i:i_eti^ ^ 90

(a) 4 sites (b) 13 sites

Figure 5.13: Experiment 6: The diagram of Interarrival rate of Transaction Vs Completion

Rate

Conclusion

As the interarrival time of transactions decreases, TRS performs the best as it has the

lowest response time compared with Majority and Tree Quorum Protocols.

I

I ̂
4
V i

!

j Chapter 5 Performance Results and Analysis 61

5丄7 Experiment 7 : Variation of Operation CPU cost

By varying the CPU cost, we can verify the impact of computational cost on TRS when

the computational cost is an overhead. However, in business systems, it is rare that the

computational cost is high. Instead, the computational cost is usually negligible. The

computational cost we vary is the cpu time used for each transaction. The computational

cost is varied from 0 second to 0.9 second.

A Graph of Operation CPU cost vs Response Tim© for public and local transaction

i X ^
0 y ^ eT 0 4 sites
g Z ^ y ^ M 13 sites

、^̂
J , • • 1 ‘ ‘ ‘ ‘
^0 0.1 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9

Operation CPU cost
(a) For Both Public and Local Transactions

A Graph of Operation CPU cost vs Response T.me for public transaction A Graph of Operation CPU cost vs Response Time for local transaction

:l y^ 1 Z
1 5 - X ' ^ Z P y ^ 1 ° 4si.es

^ Z X o 4 sites ® ^ X 13sites
g4.5 - / / * 13sites o . ^ X ^ I ^

i ^ ' k ^
2^ > ‘ ^ f ^ ^ ± ^ 5 ^ 09 0 oTi 0 ^ ^ ^ 0.5 0.6 0.7 0.8 0.9
0 0.1 0.2 0.3 opeOra1ior̂ CP^5cos, 0.6 。.? °-« " '^ Ope^«onCPUcost

(b) For Public Transaction (c) For Local Transaction

Figure 5.14: Experiment 7: The diagram of Operation Computational cost Vs Response

time

As the increase in computational cost, there is increase in the response time for both

public and local transactions.

I
ryn

j Chapter 5 Performance Results and Analysis “
1 j

. . i
; }

•i 1 j
]

1 Performance Index Value

:| TRS 2s

i Simulation Time 5000s

I Computational cost 0.0, 0.1, 0.3, 0.5, 0.7, 0.9(second)

Table 5.13: Experiment 7 TRS Model: Vary Computational cost

A G r a p h of O p e r a t i o n C P U c o s t v s R e s p o n s e T i m e A G r a p h of O p e r a t i o n C P U c o s t v s R e s p o n s e T i m e

3 0 • ^̂ 3 5

20.___^^^^- ^^^-^^ 25 ^ ^ ^ ^ K ^

1 ^ ^ | 2 O - ^ ^ K ^ ^
P ^ ^ ^ 0 T R S ^ ^ ^ ^ ^
® ^ ^ i T r . P z Z 0 T R S

g15- ^ + TQ § h^^ + ™
E. ——MQ |i5： + TO
S ^ — M Q
QC

1 0 -
1 0 -

5 ^ _ _ e ^ ^ ^ " ^ ^ " " ‘ ^ 。 ' ^ ^ ^ _ - - ^ ^ ^ ^ ^ ^ “ ^ ^ ^ 一

^ i ^ " " ^ ^ ^ ^ ; : : 6 。 : 7 。 : 8 。 : 9 。。Q.1 - - O p ^ o . C ^ o . - Q.7 ^ ^

(a) 4 sites (b) 13 sites

Figure 5.15: Experiment 7: The diagram of Operation Computational cost Vs Response

time

4 •

I
：

：

'3
.̂

J

j Chapter 5 Performance Results and Analysis 63

j

The commit rate of transactions is not much affected according to the increase in

i computational cost.

1

i A Graph of Operation CPU cost vs Commit Rate A Graph of Operation CPU cost vs Commit Rate

； I ^ ^ ^ ^ ^ — ^ K , ^ = ： = ： = . = — ^ ^

0.99 - 0.99 - “~" •“

0.98- 1+ TQ 0.98- J _ M Q
——MQ L _ _ _

0.97 - 0.97 -

0) 0.96 - 2 0.96 -

I 1
1 0.95 - 1 0.95 -i i
0 0.94 - 0 0.94 -

0.93 - 0.93 -

0.92 - 0.92 -

0.91 - 0.91 -

。 . 9 ! 。 、 。 : 2 。 : 3 。 : ； 』 ; 5 。 : 6 。 : 7 0 ： 3 。 : 9 。 . 9 。 0 . 1 0 . 。 、 二 一 ： 广 。 ” 。 』 ^

(a) 4 sites (b) 13 sites

Figure 5.16: Experiment 7: The diagram of Computational cost Vs Completion Rate of

Transactions

Conclusion

TRS performs the best compared with Tree and Majority Quorum protocols with the

increase in computational cost.

1

？

j .{ r'i

i
^
u

i
.i

..1 5

Chapter 5 Performance Results and Analysis 64
.1
]

5丄8 Experiment 8 : Variation of Disk I / O t ime
j

； By varying the disk I /O time, we can verify the impact of disk I /O time on the performance

I of TRS, Quorum Consensus and Tree Quorum. The disk I /O time we vary is from 0.001

second to 0.1 second.
1

A Graph of Disk I/O vs Response Time for public and local transaction

2.7「

2. _ ^ .

2.5 - 5̂ ___•—5*̂ ^

厂
2.4 - / 0 4 sites

y 来 13 sites

§2.2- ^ ^ ^ ^ ^ ^ ^

I2-1 K , y ^ y^"""-""^

1.9- ^ ^

1.8 - n 八 ^ ^ ^ ^ ^

&^^0 “
. • ! I , 1 I 1 _ — _ I 1 1 ‘ ‘

： ^ ' 0 0 01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

] ‘ Disk 1/0

(a) For Both Public and Local Transactions
A Graph of Disk I/O vs Response Time for local transaction

A Graph of Disk I/O vs Response Time for public transaction 0.7「 M

: / / ^ i 1 ^ / " ^ 1 " " " " ^

S / / 0 j C ^ 0 4s i tes

|2.4- / / p r ^ ô.3- y ^ ^ ^

: L ^ ^ X
, n ̂ • • ‘ I i L_ 1 1 ‘

• , 1 • • 1 ‘ ‘ ‘——^~r^ ;f, °0 0 01 0 02 0 03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2 . ! o ~ ^ 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.01 0.02 O.Od o isk l /O

Disk I/O
(b) Public Transaction (c) Local Transaction

Figure 5.17: Experiment 8 The diagram of Disk I /O time Vs Response time

As the increase in disk I /O time, the response time for both public and local transac-

tions also increases.

s .)

,
i

A ^

I

i Chapter 5 Performance Results and Analysis 65

i

,-i

Performance Index Value

Message Transmit Delay 0.3s

Interarrival Time 80s

Simulation Time 5000s

TRS 2s

Number of Operations 20

Disk I /O 0.001, 0.005, 0.01，0.02’ 0.04, 0.05, 0.06, 0.08, Q.l(second)

Table 5.14: Experiment 8 Varying Disk I /O time

AGrapho fD isk l /OvsResponseT ime AGrapho fD isk l /OvsResponseT ime
25「 30[

2 5 ^ ^ J ^ ^ ^ _ ^ _____ “
2 。 " " " " ^ ^ " " ^ " " " " ' " ^ ' ' X ^ ^ ^ ^ _ . . , , _ _ _ _ ^ ^ ^ ^ ^ ^ ^ ^ " ^ " " “ ^ ‘

2 0 -

®

i l 5 ^ ^ ^ , ^ ^
^ - ® H——I ^

i § 1 5 -

I 。 TRS I
a 10 - + TQ °^ o TRS

* MQ 10 - + TQ

* MQ

5- 5-

, _ ^ ^ _ ^ _ ^ e 3 ^ _ ^ _ ^ e °

。！ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 O.OB 0.的 0：1 % 0.01 0.02 0.03 0.04 ^ ^ 5 ^ 0.06 0.07 0.08 0.09 0.1

Disk 丨/O

(a) 4 sites (b) 13 sites

Figure 5.18: Experiment 8 The diagram of Disk I /O time Vs Response time

For the Majority Quorum, Tree Quorum protocols and TRS, the response time does

not change with the increase of the disk I /O time.

Conclus ion

The performance of TRS are not affected by the increase of disk I /O time.

j Chapter 5 Performance Results and Analysis 66

5.1.9 Experiment 9 : Variation of Cache Hit Ratio

j The percentage of cache hit affects the execution time of the transaction. The cache hit •|
I

ratio we vary in this experiment is from 20% to 80%.

i
j

A Graph of Cache Hit vs Response Time for public and local transaction
2.25r

51«̂ ^̂ ^ 0 4 sites
2 . 2 - ^ \ ^ ^ ^ ^ 3K 13 sites

2_15- ^ _ _ _ _ _ _ _ _ _ ^

2.1 -

! 2 . 0 5 -
®
« 2 -
o
8-
^ 1 . 9 5 -

: 1.9_

1.85<^ s ^ _ ^ ^

1.8- ^ ~ _ _ _ _ _ _ _
； o

. 7C I U 1 1 ‘ ‘
1.75g 3 4 5 6 7 8

Cache Hit

(a) For Both Public and Local Transaction
A Graph of Cache Hit vs Response Time for local transaction

A Graph of Cache Hit vs Response Time for public transaction 0.18「 I

2.38* I j o 4 sites
\ o 4 sites ^ k 来 13sites

2 36 - \ 米 13 sites 0.16 ^̂N：：̂ 1 >

\ —— ^ v
2.34- \ 0.14- ^ V
2.32 - \ ① ^ V

I - V _ _ r \ ^
1-^, ^ ^ ^ - ^ ^ . - _ _ _ _ _ _ ” . [^ \ ^ ^

、 : \ ： ^ \
2.22- \ ^ ^_^--^^"^^--^^__^ ^ ^

2 2 l , V - " " " " " ^ , ^ r ^ ^ 0.04 ^ 1 5 6 7 8
2 3 4 c J e H i t 6 ^ CacheHit

(b) Public Transaction (c) Local Transaction

i Figure 5.19: Experiment 9 The diagram of Cache Hit Vs Response time

As the cache hit ratio increases, the response time of both public and local transactions

decrease.

•:i.

.1 1

i

I

I

Chapter 5 Performance Results and Analysis 67

i

Performance Index Value

Transmit Delay 0.3s

Interarrival Time of transaction 8Qs

Simulation Time 5000s

Disk I /O " 0 W s —

Number of Operations 20

TRS 2s 一

Cache Hit 20%, 4 0 %， 6 0 %， 8 0 %

Table 5.15: Experiment 9 Varying Cache Hit

A Graph of Cache Hit vs Response Time A Graph of Cache Hit vs Response Time

20「 ^ ^ 30「
_ _ _ ^ " " " " " ^ ^ " ^ 一 ^ “ ^

18jĵ

25f ~^f 一

1 6 -

14-= “ ‘ ‘ ‘ 20-
a>

® 12 - E
E '^ jz .

P o TRS
§ 1 0 - + TQ § 1 5 -

I ^ MQ 8 。TRS
S: 8- °= + TQ

10 - * MQ
6 -
4- 5-

2,. e e 0 e - e ®

o' ‘ i ^ ^ 7 8 。2 3 i 5 6 7 8
2 3 4 cach5eHit ‘ CacheHit

(a) 4 sites (b) 13 sites

Figure 5.20: Experiment 9 The diagram of Cache Hit Vs Response time

There is nearly no change for the response time in TRS, Majority Quorum and Tree

Quorum protocols with the change of the cache hit ratio.

Conclusion

The size of cache hit ratio is not significant enough to affect the performanace of TRS,

Tree Quorum and Majority Quorum.

•••i'

j Chapter 5 Performance Results and Analysis 68

5.1.10 Experiment 10 : Variation of Number of Data Access

Through this experiment, the variation of the number of data access is used to adjust the

data conflict such that we can verify the performance of TRS, Tree Quorum and Majority

Quorum under the situation of data conflict. As the total number of public data for each

site is 1000. We vary the number of data access for each site from 50 to 900. The set of

varied data is the same.

A Graph of Number of Data Access vs Response Time A Graph of Number of Data Access vs Response Tlme
2 0 r 35 •

./ ,
16- 3。. ^ ^
14 4 ^ _ I I , , h 25 - \ \ _ ^

” . ! - \
|10- I \ , , , ^
I o TRS i " l5-
I 8 - + TO °^ 0 TRS

——MQ + TO
6 - L_ l _ J 1。- 一 M Q
4 -

5 -
2 • Q _ _ g _ _ ~ ^ e o 0 0 ^- e e o

。！ 100 200 300 恥 。 5 ^ 6 ^ 7 ^ «00 900 °0 100 200 咖 ： 卩 豸 = 。 ^ : 700 BOO 900

Number of Data Access

(a) 4 sites (b) 13 sites

Figure 5.21: Experiment 10 Varying Number of Data Access Vs Response Time

In Figure 5.23’ as the number of data access is decreased, the percentage of data

conflict increases. The performance of TRS is not affected much because there is no

locking required to secure the data. However, for Majority Quorum and Tree Quorum

Protocols, data locks are required during data access and that is why the performance of

Majority and Tree Quorum protocols is poorer.

1

I

j Chapter 5 Performance Results and Analysis 69

Performance Index Value

Interarrival Time of transaction 80s

TRS ~Ys~~

Number of Data Access 50, 100, 300, 500, 700, 900

Table 5.16: Experiment 10 Varying Number of Data Access

From figure 5.25(b), For Majority Quorum and Tree Quorum, their commit rate are

decreasing due to data conflict access.

A Graph of Number of Data Access vs Commit Rate A Graph of Number of Data Access vs Commit Rate

1 「 ^ ‘ ‘ 丨——1' 1[, _ - ^ ' I
+ TQ ^ / ^

0.99 - — MQ 0.98 - ^ ^

098 - 0.96 - + TQ 0.98 — MQ

0.97- 0.94-

„ 0 . 9 6 - | 0 . 9 2 _
« CC 1
1 0 . 9 5 - | 0 . 9 .

^ 0 . 9 4 - 、 8 _ I

0.93 - 0 .86.

0.92 - 0.84 _

… 0.82-
0.91 -

。.9! 100 2 ; 。 3 ； 0 400 500 3；0 7；0 3；0 ‘ "'^0 100 .00 300 : . 1 3 : ^ 6 ^ 0 ^“ ^“ ^ 0

Number of Data Access

(a) 4 sites (b) 13 sites

Figure 5.22: Experiment 10 Varying Number of Data Access Vs Commit Rate

Conclusion

The performance of TRS is not affected -by the amount of data conflict. However, for

Majority Quorum and Tree Quorum Protocol, its performance decrease by the increase

in data conflict.

j
、’

j Chapter 5 Performance Results and Analysis 70

5丄11 Experiment 11 : Variation of Read Operation Rat io

By varying the ratio of the read operation to write operation, we find out whether the

performance of TRS, Tree Quorum and Majority Quorum are afFected. The ratio of read

operation to write operation is varied from 20 to 100%.

Performance Index Value

Interarrival Time of transaction 80s

TRS ^ ~~

Read Operation Ratio 20%, 40%, 60%, 80%, 100%

Table 5.17: Experiment 11 Varying Read Operation Ratio

A G r a p h of Pe rcen tage of R e a d vs Response T i m e A G r a p h of Percen tage of R e a d v s Response T i m e

2 5 r 30 -

. X _ _ _ ^ - - - ^ ^ - ^ ^

____̂ ^ *____^^^^ ^ \ ^

I - ^̂ >̂>̂ >̂ _̂ __ r ^ ^ ^ ^ - ^ _ _ _ _
i , ^ \ _ 1 - — — ^~"~~~^̂

io. ra ^ ,1。 冃
… 1 0 - 来 M Q

* M Q

5 - 5 •

^ Q e - 0

1 30 ；0 s o eO f A j ' ° B O " “ “ ^ ^ - - 30 40 B O _ , - , , J O 80 90 100

Percen tage of R e a d

(a) 4 sites (b) 13 sites

Figure 5.23: Experiment 11 Varying Read Operation Ratio Vs Response Time

Chapter 5 Performance Results and Analysis 71

From figure 5.26, as the ratio of read operation increases, the response time decreases

for Tree Quorum Protocol. This is because the tree quorum protocol have a read quorum

which consists of just one site, i.e. the root of the logical tree. Unlike Majority Quorum,

which have the same weight for both read and write quorum. There is nearly no change

on the response time for Majority Quorum Protocol. For TRS, there is no problem of

acquiring quorums, that is why there is no change on the response time.

I：

Conclusion

Both the performance of TRS and Majority Quorum is not afFected by the ratio of read

operation within a transaction. The response time of Tree Quorum is decreased by the

increase in the ratio of the read operation.

！

< r̂

1 ^

P%.

I i •

i

I
1

i

Chapter 5 Performance Results and Analysis ^^

'i
-]

I
I 5.1.12 Experiment 12 : Variation of One Site Failed

As each site has a unique site identity number in this system, we vary different site failed

each time. That is varying different site ID failed. Therefore, we can find out whether

I there is any effect on the performance of the system by the failure of different site. In

this experiment, the success rate of first trial is measured. That means, the success rate

is measured due to the site requests for the quorum at first round only. As described in

the Section 3.1.11，Virtual Partition Protocol is used in TRS.

A Graph of One Site failed vs Success Rate of First Trial

0.95r

I 。.9. ^ W - . — " ^ ^ ^ - ^

_ 0.85 -.J5
2 o TRS srtes=4

, £ 0-8- + TRS sites=13
0
0>

1
W 0.75 -
CO s o 3
(/)

0.7 -

0.65 - ^̂*̂^̂ e '̂̂

, _ _ j j _ I 1 1 I
^ •% 2 4 6 8 10 12 14

One Site failed

(a) TRS for public transaction only
A Graph of Site Failed vs Success Rate of First Trial A Graph of One Site Failed vs Success Rate of First Trial

1 r I 。.5-

o TQ sites=4 ^ ^ ^ / " ^ ^ * \ / \ y ^
0 .9 - + TQ sites=13 , ^ _ _ _ ^ ^ ^ ' ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ . ^ N ^ \ , , X

0 . 8 -

i0.7. 1 0.4-
t 2 o QC sites=4
£ 。 6 - / - ^ _ ^ _ _ ^ £ + 。 C # 1 3

i- / x ^ " ^ ^ v _ _ r '
8 0.4- K / I

I 】 : | f y • : A ^

i %L--î 1 6 8 W ^ °4 2 4 6 8 tS 2̂ 14
1 。 2 si teFai led OneSiteFa,led

(b) Tree Quorum (c) Majority Quorum

!)

I Figure 5.24: Experiment 12 Varying of Sites Failed Vs Success Rate of First Trial

I

1
i
:1
'S
\

Chapter 5 Performance Results and Analysis ^^

i
. !

i
1
I ,] •

I Performance Index Value

j Transmit Delay 0.3s

Interarrival Time of transaction 80s

Simulation Time 5000s

TRS 2s 一

Site Failed 1-4, l-TT

Table 5.18: Experiment 12 Varying of Sites Failed

The success rate of first trial is the highest for TRS. It implies that even under the site

failure condition, TRS also performs better compared with Tree Quorum and Majority

Quorum Protcols. As described in Section 2.2.2, the tree quorum protocol employs the

dimension of read quorum <1,2〉and write quorum <3,2>. Thus, the failure of the site

1 (i.e. the root) makes the success rate of first trial zero because the root is the critical

site of the logical tree at first trial.

0̂ "̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ¾
Figure 5.25: The diagram of Ternary Tree

Conclusion

Even there is a site failure, TRS also performs the best compared with Tree Quorum and

Majority Quorum Protocols.

j Chapter 5 Performance Results and Analysis 74

5.1.13 Experiment 13 : Variation of Sites Available

In this experiment, we vary the number of sites available, that means the number of

sites which function normally. We vary the number of sites available from 1 to 4 (where

the total number of sites is 4) and from 1 to 13 (where the total number of sites is 13)

respectively. Through this experiement, we want to find out how TRS performs under

failure condition.

A Graph of Number of Sites Available vs Success Rate of First Trial

；：I /
i。_6. / X
r / /

: ' ^ 乂 r ^

d ^ ^ ^ 0 TRS sites=4

0 1 - / ^ ^ ^ + TRS sites=13
n , (^ : d ^ ^ , I I • ‘ ‘

°0 2 4 6 8 0̂ 12 14
Number of Sites Available

(a) For Public Transaction Only
A Graph of Number of Sites Available Vs Success Rate of First Trial ^ 八 Graph of Si.es Available vs Success Rate of First Trial

;l f i| ^̂ ^ /
^ 0 6 - / i P - 6 - 0 QCsites=4 /
u： ^ / ^ + QC sites=13 /

S 0 5 - 。 T Q s i t e s = 4 / ^ 0 . 5 - f
£ + TQsites=13 / ^ /

il^iLZL
i ① / ,~1“‘~+~"‘~i fo tr- 4 “ 2 I~"广~"6 ‘ 8 10 2̂ 14

。 2 4 N u m b e r o f S i t e s A v a : e ^itesAvailable
(b) Tree Quorum (c) Majority Quorum

Figure 5.26: Number of Sites available Vs Success Rate of First Trial

I
1
<

Chapter 5 Performance Results and Analysis ^^

Performance Index Value

Transmit Delay 0.3s

Interarrival Time of transaction 80s

Simulation Time 5000s

Disk I /O 0.007s~~

Number of Operations ^

TRS 2s 一

Sites Available 1-4，1-13

Table 5.19: Experiment 13 Varying of Sites Failed

As the number of sites failed increases, the commit rate of transaction decreases. For

Tree and Majority Quorum, the commit rate decreases to zero when the number of sites

failed decrease to a certain number. TRS performs better, this is because even the number

of sites failed is more than half of the total number of sites, there are still local transactions

can be executed under node autonomy.

Conclusion

Even when more than half of the total number of sites failed, there is still success rate of

first trial for TRS, which is better than those of Tree Quorum and Majority Quorum.

.
,
,
:
^
、
.

.
 ；"..(、."-;:-

 .
-
>
、
。
•
 ,.,,,

 1
一
义

6

7

,
-

.

%
 .„;.

 .

 ..-

 .?;,、....

 ...

:
.
.
€

..-

:
,

.
5
2

C
O

^

7
f
t
 a

n

A

,
a

n

a

^

5
3

s

e

丑
 e

c

n

a

™

咖

e

p

5
 r

^

叩

f
i
S
 .

 •

•
 •

 ̂

 •

 .

•

 c

 •

 •

^
f
v
 .

 .

.

.
;
.
:
.
.
.
.
.
r

-

.

,
1

.
:

、

 .：，.

.
.
 y
.

.

.

.
-
.

.
.
.

.

.

.

.

.

.

.

.

.

:

•
 .
;
-
:
.
:
.

 --

 .

 •

 -

 --

.

.

-

.

.

.

-

-

-

:

:

i
i
s
^
i
i
^
i
i
l
^
i
^
l
i
>
!
^
^
s
i
s
^
i
^
i
s
i
i
i
^
^
*
^
^
r
1
3
g
;
j
m
^
^
^
^
^
^
^
^
^
^
j
^
j
l
^
;
^
^
f
p
a
a
a
^
a
B
a
i
&
i
a
6
^
a
g
i
5
^
S
J
t
>
^
^
^
5
!
,
=
i
^
^
^
^
a
l
^
^
^
:
:
^
^
.
i
.
:
.
^
a
^

、
.
f
-
&
^
‘
，
-
.
.
^
〈
M
.
;
^
.
.
u
;
-
;
:
.
r
.
i
"
^
>
^
-
:
.
.
J
-
-
-
r
r
l
u
:
u
_
-
-
^
.
.
.
p

i
i
"

 i—f.-;l-...l.L.vt.、.？.ii.,“

.
.
.

.
.

.
i

 ̂
t
.
.
.
'
h
y
>
 .
l
.
f
,
.
^
-
.

.
l
.
i

 .
-
,
i

 ..
l

“
 1

 f..

.

,

 -..:.-f....
.

.
.
.

I

 ;

 .

 -r
-

 ..

.....

,
,
:
-
,

 ;.
,

 ,.

 ..,,•:“.

 L
 :...

 ,.”.

-
x
^
,
.
-

.

.
 ..,..

 L,
v

 ‘；...-..:.-

 -...

 .?...

 .,.,..:

 、.

 t.̂
-.

 .l,r..

 .

 ̂

 ..

 .

 .
 %

 t

r

K
.
.
.

gM̂
^̂
BŴ
^̂
^̂
^̂
*̂
*̂
^̂

ĝ̂
J-̂
-f̂
^̂
^̂
^̂
^̂

>̂̂
.!ls<Ln1!̂
!̂
-#-g-̂

-̂̂
^̂
^̂
^̂

-̂̂

-̂̂

*̂̂

î̂
*̂
^̂
>î
iî
^̂
^̂
^̂
^̂

îiiî
aî
lliiMiiti!l

1
j

I

Chapter 6

Conclusion

From the above Simulation Results, we can conclude that TRS performs much better than

Tree Quorum Protocol and Majority Quorum Consensus Protocol under some conditions.

Also, Tree Quorum Protocol performs better than Majority Quorum Consensus Protocol.

For the TRS model, selecting TRS period is rather significant because it would affect the

overall performance, especially the response time. If TRS period is too large compared

to the time required to execute a batch of public transactions, the response time will

be greater. However, if the TRS period is too short, execution of a batch of public

transaction cannot be finished within one TRS period. Moreover，the frequency of message

broadcasting increases. So, the response time increases if the TRS period is too short.

TRS performs better when the ratio of local transactions is larger than that of public

transactions. As the local transactions can be executed immediately, its response time

is rather short. The overall response time is deteriorated by the high response time of

public transactions.

Compared among TRS, Tree Quorum and Majority Quorum Consensus Protocol, TRS

performs much better than the others when the number of transaction operation is rea-

sonably large, for example, 25.

TRS performs better if the message cost is much greater than the disk I /O and com-

putational cost. The performance of TRS is not much affected by the variation of disk

I /O and computatoinal cost.

77

. 78
Chapter 6 Conclusion

From [Mil88] the clock synchronization is within a few milliseconds, compared with

TRS period which is in the order of second, the accuracy of the clock synchronization

does not have much effect on the performance of the TRS.

I Also, data conflict does not affect the performance of TRS because no locking is
i
j required due to data access. Unlike TRS, the performance of Tree and Majority Quorum
I

Protocols is affected by the data conflict.

To conclude, TRS is suitable for the nowadays business applications which involve

high message cost (e.g. in WAN), and which are more l/0-oriented than computation-

oriented.

i

]

i

I
i

i

Bibliography

[AA91] Divyakant Agrawal and Amr El Abbadi. An Efficient and Fault-Tolerant So-

lution for Distributed Mutual Exclusion. ACM Transaction on Computer Sys-

tems^ February 1991.

[AA92] D. Agrawal and A. El Abbadi. The Generalized Tree Quorum Protocol: An

Efficient Approach for Managing Replicated Data. ACM Transactions on

Database Systems, 17(4):689-717, December 1992.

[Agr85] Rakesh Agrawal. Models for Studying Concurrency Control Performance Alter-

natives and Implications. Proceedings ofthe 1985 Sigmod Conference, Austin,

pages 108-121, May 1985.

AS89] A. El. Abbadi and S.Toueg. Maintaining Availability in Partitioned Replicated

Database. ACM Transactions on Database Systems, 14(2):264-290, June 1989.

BC] Jerry Banks and John S. Carson. Discrete-Event System Simulation.

[BG92] D. Bell and J. Grimson. Distributed Database Systems. Addison-Wesley, 1992.

[CDY90] Bruno Ciciani, Daniel M. Dias, and Philip S. Yu. Analysis of Replication in

Distributed Database Systems. IEEE Transactions on Knowledge and Data

Engineering, 2(2):247-261, June 1990.

[cFlC94] Ada Wai chee Fu and David Wai lok Cheung. A Transaction Replication

Scheme for a Replicated Database with Node Autonomy. In Proceedings of the

j 20th VLDB Conference, pages 214-225, 1994.
I 1

j 79
.ii

,t
.|

j i

-5

;i

[CL91] Michael J. Carey and Miron Livny. Conflict Detection Tradeoffs for Replicated

Data. ACM Transactions on Database Systems, 1991.

[Fai] Ted Faison. Borland C++ Object-Oriented Programming.

[FJCS95] Paul J. Fortier and Jr John C. Sieg. Simulation Analysis of Early Commit

Concurrency Control Protocols. Proceedings of the 28th Annual Simulation

Symposium, pages 322-331, April 1995.

Gra88] J im Gray. The Cost of Messages. ACM Transactions on Database System,

1988.

[Gra91] J i m Gray. The Benchmark Handbook for Database and Transaction Processing

Systems. Morgan Kanfmann, 1991.

[HM84] J. Y. Halpern and Y. Moses. Knowledge and Common Knowledge in a Dis-

tributed Environment. In Proceedings of the Third Symposium on Principles

of Distributed Computing, pages 50-61, August 1984.

Hug88] J. G. Hughes. Database Technology. Prentice Hall, 1988.

[KC91] Akhil Kumar and Shun Yan Cheung. A high availability y/N hierarchical grid

algorithm for replicated data. Information Processing Letters, North-Holland,

40(6):311-316, December 1991.

[KS91] Henry F. Korth and Abraham Silberschatz. Database System Concepts.

McGraw-Hill, 1991.

[KS93] Akhil Kumar and Arie Segev. Cost and Availability Tradeoffs in Replicated

Data Concurrency Control. ACM Transactions on Database Systems, 1993.

[Lam78] Leslie Lamport. Time, Clocks and the Ordering of Events. Communications

of the ACM, 21(7):558-565, July 1978.

i
\
\

80

[Mae85] Ma Mom Maekawa. a v ^ algorithm for mutual exclusion in decentralized

systems. ACM Transactions on Computer Systems, May 1985.

[Mil88] D. L. Mills. Network Time Protocol (Version 1) Specification and Implemen-

tation. DARPA-Internet Report RFC-1059, July 1988.

I

[ON92] M.Tamer Ozsu and Youping Niu. Effects of Network Protocols on Distributed

Concurrency Control Algorithm Performance. Proceedings, ICCI,92, Forth

\ International Conference on Computing and Information, pages 301—306, May

1992.
j

[PGM89] F. Pittelli and H. Garcia-Molina. Reliable Scheduling in a TMR Database

System. ACM Transactions on Computer Systems, 7(1):25-60, February 1989.

[PN81] P.A.Bernstein and N.Goodman. Concurrency Control in Distributed Database

Systems. ACM Computing Surveys, 13(2):185-221, June 1981.

PVN87] P.A.Bernstein, V.Hadzilacos, and N.Goodman. Concurrency Control and Re-

covery in Database Systems. Addison-Wesley, ReadingMass., 1987.

[Rah93] Erhard Rahm. Empirical Performance Evaluation of Concurrency and Co-

herency Control Protocols for Database Sharing Systems. ACM Transactions

on Database System, 1993.

[Sch] Herb Schwetman. Getting Started with CSIM17 (C++ Version).

I [SG84] S.Ceri and G.Pelagatti. Distributed Databases Principles and Systems.

丨 McGraAv-mil, 1984.

i

[SHKS95] S.Ceri, M.A.W. Houtsma, A.M. Keller, and P. Sammarati. Independent Up-

dates and Incremental Agreement in Replicated Database. Distributed and

\ Parallel Databases An International Journal, 3(3):225-245, July 1995.

'>,
•\

81

•I

•1

I
I
1
i
I

1 [SLSV95] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. Trans-

i action Chopping:Algorithms and Performance Studies. ACM Transactions on
]

丨 Database Systems, 20(3):325-363, September 1995.

[TOV91] M . Tamer-Ozsu and P. Valduriez. Principles of Distributed Database Systems.

Prentice Hall, 1991.

[VP] Stewart V.Hoover and Ronald F. Perry. Simulation - A Problem Solving Ap-

proach.

WN90] Kevin Wilkinson and Marie-Anne Neimat. Maintaining Consistency of Client-

Cached Data. Proceedings ofthe 16th VLDB Conference Brisbane, Australia,

1990.

'i

:j

82

1 .j

Appendix A

Implementation

A.1 Assumpt ions of System Mode l

The network is assumed to be completely connected. That is, when a site broadcast

messages to all the other sites, it sends message to the other site point-to-point directly.

Each site holds a different number of local data. In our design, it is assumed to be a

maximum number of 1000 local data for each site.

And, each site holds the same mmber of public data. This number can be set to a

value <二 100.

f ^ " ^ N ^ / R e s o u r c ^

(R _ r c e k ^ _ ^ f (Facility)

I ^ c ^ i ^ : ^ ^ ^ ^ t ^ ^ Y ^ ^ " ^ ^
1 Network \ / site \

Transaction Arrive >^ (Process) j V " ~ Transaction Arrive
_ _ _ _ _ _ J V ^ ^ _ _ ^ \ Manager 1^^ ^ ^ v o c ^

^ ^ ~ ^ > ^ ~ ~ ^ ^ ^ " ^ ^ > ^
/ Y 7 Resource \
f Resource) ((Facility) 1

^ C " ^ " ^ ^ ^ T A
Transaction Arrive ~ ~ i (P r o c e s s W (^p|.Qeess)| TmnsactionArrive

Figure A.1: Simulation Model

A.1.1 Program Description

First of all, we have to simulate a number of sites in the system. In our design, we have

implemented 4, 13 and 40 sites and a site is programmed as a class called "serve".

83

:1
i

As each site can process the same function, there are member functions for the class

"serve". Each site is distinguished by its unique identity number and in our design is

"serve_Qo". For example, site 1 has serve.serve_QO=l.

At the beginning of the program, there are two member functions for this class "serve"

invoked to initialize and start the site's execution. They are "serveinit" and "start" re-

spectively.

C o m m o n Funct ional Modules for TRS , Tree Quo rum and Ma jor i ty Q u o r u m

• "serveinit" is to initialize the version and timestamp of each site's data.

• "start" is a process created to simulate that the site is now starting to operate

throughout the simulation time. In our design, all the "start" processes created at

the same time and executed independently.

• "sending" is a process created and get the site's cpu time (simulated by site's facility)

for sending message.

• "usechannel" is a process invoked after completion on the holding of site's cpu time

for sending message. It is used to reserve the facility "channel" and hold the message

transmit time to simulate sending the message.

• "receivetime" is to simulate the receipt sites holding message cpu time to receive

the commit message.

• "result" is to generate each sites performance on the execution of transaction.

• "report" and "mdlstat" are CSIM function to report on the utilization of each CSIM

facility used.

84

i
j

i

Start

丨 Serveinit

丨 一 ^ ^ ^ ^ ^ ^ ^ ^
Transaction Broadtime Exelocal Exepublic

7\ / \ Committime

\ / \ Exetran
Appendlocal Appendpublic / \ Exeop Sendcommit

/ \ Usechannel

, / \ I
““ , , , Receivetime

Getallpublic Broadcast Checkbroadcast ——「 」
Receivecommit

Sending

Checkresp

Sendbroad

I

Usechannel

Recei vebroadtime

I
Receivebroad

I —
Servesch

Figure A.2: Program module of TRS

A.1.2 TRS System

The START process is created at each site, the START process invokes four processes

simultaneously. They are transaction, broadtime, exelocal and exepublic.

TRS which include the following functions:

• "transaction" is a process which is executed throughout the simulation time and used

to generate the local and public transactions to its own site. We can make variation

on the interarrival rate of transaction by using "exponential rate”, variation on

the ratio of local to public transaction. And each transaction consists of 1 to 20

(uniform)read/write operations. The cpu time needed to execute an operation is

varied by input of the "cpu time”. The data access consists of local or public types,

85

I
.i
^

.1
j

1

I j

the site belonged to if it is a local data and the identity number of data for that

I site. When local transaction arrives at a site, it will be scheduled to a queue for
i

！ holding the local transactions. Similarly, for the public transaction arrival, it will

be scheduled to a queue for holding the public transactions.

• "exelocal" is a process created and executed throughout the simulation time. It is

used for handling the local transaction received and then pass to "exetran". When

there is no local transaction, this "exelocal" process will wait until another local

transaction arrive.

• "exetran" is a process to execute the local transaction independently which is used

for passing the transaction operation to "exeop".

• ”exeop” is a process to find out whether this site's cpu(simulated by CSIM class

"facility") is available or not. If available, it will execute the local transaction

immediately and execute the transaction according to the executed time it required.

Else if the site's cpu is not available, this "exeop" process will be appended to the

queue and wait until the site's cpu is available.

• ,,broadtime,, is a process including both two process of "broadcast" and "check-

broadcast".

• "broadcast" is a process created and executed throughout the simulation time. It

is used to broadcast all the public transactions and the latest version of its local

data that are received within a TRS period. That is, when TRS period arrives,

this "broadcast" process will send all the public transactions and the latest version

of local data received to all the other sites. During broadcasting, it calls a process

I "sending".

• ,,dieckbroadcast,, is a process to check whether the site can receive all the broadcast

message from all the sites within a "time-out" period. Else, after "time-out", the

network is assumed to be partitioned.

86

• "receivebroadtime" is a process created for getting the receiver site's cpu time (sim-

ulated by site's facility) for receiving message. After that, it calls "receivebroad".

• "receivebroad" is a process created to store up the public transactions and the latest

version of local data received from the sender's site. After storing, the site will check

I out whether the messages are received from all sites. If so, the site will call another

process "servesch" and set the event "done". After so, the process "receivebroad"

I will terminate,
i

• "servesch" is a process created to schedule the public transactions received according
. I

to the timestamp order of the transaction.

I • "exepublic" is a process created to execute the public transactions which are already

scheduled. In our design, it will wait until the event "done" set. So, the process

"exepublic" starts to execute the scheduled public transaction. It also has to hold

！ the site's cpu time (by reserving the site's facility). If the site's cpu is imavailable, it

has to schedule to a queue waiting until the site's cpu is available. When a batch of

public transactions are committed in the site, it will invoke a process "committime".

• ,’committime” is a process created to send commit message to all the other sites to

acknowledge them a batch of public transactions are committed. When a site receive

•i commit message from all sites, this batch of public transactions are confirmed to be

I committed also.
I
1

I -
I • append is used for queuing up the incoming local transaction.

I
• appendpublic is used for queuing up the incoming public transaction.

• getallpublic means that the site receives the batch of public transactions within a

TRS period from all sites.

I .

j • sendbroad is used to invoke the receipt site to receive the broadcast message.

‘ • sendcommit is used to invoke the receipt sites to receive the commit message.

87

1 ‘；

I • receivecommit is used to check whether the commit message of the same batch of

I public transaction within a TRS period are received from all sites.

• checkresp is responsible for checking the response time of a batch of public transac-

tion.

Da t a Structures

Fields of Transaction—type

• arrive time of the transaction

• number of operation in a transaction

• read operation or write operation

• access which site's data

• access which data for that particular site

• access local or public data for public transaction

• cpu time for processing the operation

Fields of Commit_Batch_Public_Transaction

書 timestamp of the batch

• number of public transactions per batch

A.1.3 Common Functional Modules for Majority Quorum and

Tree Quorum Protocol

At the beginning of the program, there are two member functions for this class "serve"

； invoked to initialize and start the site's execution. They are l)"serveinit" and 2)"start"
«

respectively.

88

start

Serveinit

I ! i
i
j

I Transaction

Exelocal

i

I

i Exetran
i

Sending

i I

i Sendbroad

Usechannel
I '• •

Receivebroadtime j •

I Receivebroad

i Getlock

_ ^ ^ ^ ^
I Waitlock Freelock Releaselock
I

Figure A.3: The Program Module of Majority Quorum Consensus and Tree Quorum

I • "transaction" is a process which is executed throughout the simulation time and

I used to generate the transactions to its own site. We can vary the interarrival rate

of transaction by using "exponential rate". And each transaction consists of 1 to 20

(uniform) read/write operations. The cpu time needed to execute an operation is

varied by input of the "cpu time". Each data object has its own identity number.

When transaction arrives to a site, it will be scheduled to a queue for holding the

transactions.

I • sendbroad is to ask for "lock request" according to Majority Quorum Consensus,
i

89

• receivebroadtime is to invoke the receipt sites to hold message cpu time to receive

the lock request message.

• receivebroad is that each site receives its lock message which it requests and has to

check whether all the request lock message are received.

I • getlock is to check the lock available or not.

I • waitlock is a process such that if the lock requested is not available, wait it for a
!

"time-out" period.

I • releaselock is for checking whether all the locks hold are released.
i I

1 • freelock is used for releasing the lock.

1 A.1.4 Majority Quorum Consensus Protocol

I • "exelocal" is a process created and executed throughout the simulation time. It is

used for executing the transaction (arrived to its own site only). That is, when there

j is transaction arriving to the queue, firstly, it will request its own lock for this data

accessed. Then, it will invoke another process "sending" which sends the request

丨 message for this data lock to the Majority of the sites. That is, in this case, as

there are 13 sites total, and one of its own site's lock is already hold, so, it has to

ask another 6 sites to get the locks respectively. When the other sites receive the

1 request message, it will send the message back to the request site in case the lock
j -

I is free. If the lock is hold already, then it will queue up to wait the free lock for
]

a time-out period. If after the time-out period, the site still cannot get the lock,

it will abort the transaction. If the site can get the lock on time, it will wait until

the majority request locks' message are received. Next, the site will execute the

transaction in case its cpu is available. If not, it will schedule to the queue for the

cpu. When the operation is executed, it will release its own lock. Then, it will send

the release lock message to all the other majority sites.

90

1
,3 .
•.?

1

j

A.1.5 Tree Quorum Protocol

If there are 13 sites total, they are arranged as a ternary tree. There are read and write

quorum. The read quorum has length and width as (1,2). i.e. site 1. The Write Quorum

has length and width as〈3’ 2〉. i.e. either〈1,2,3,5,6,8,9〉or〈1,2,3,6, 7,8,9〉.

• "exelocal" is a process created and executed throughout the simulation time. It is

used for executing the transaction (arrived to its own site only). That is, when there

is transaction arriving to the queue, it will request the lock according to the read

or write operation by its read or write quorum. When the other sites receive the

request message, it will send the message back to the request site in case the lock

is free. If the lock is already hold, it will wait for a time-out period. If the site still

cannot wait the lock after time-out period, it will abort the transaction. Else, if the

site can get the lock on time, it will wait until all the request lock's message are

received. After that, the site will execute the operation in case its cpu is available.

If not, it will schedule to the queue for the cpu. When the operation is executed, it

will release its own lock. Then, it will send the release lock message to all the other

sites.

j

i
i

i
i

j .

i

91

lllljllllgl̂
jgll̂
jĵ
lŝ
l̂
illp̂
al̂

p̂̂

n̂̂

l̂llp̂
^̂

l̂̂
l̂
llllllĵ
llll̂
p̂
î
ŷ

l̂î
^̂
^̂

î̂
l̂
^̂
^̂
ĝ
l̂

ĝ̂
ŷ
l̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
,̂
^̂

l̂̂
^̂
m̂
^̂
^̂
^̂

l̂l̂

l̂̂
^̂
^̂

ĵ̂
l̂
lĵ
^̂
,gĝ
ĵ
jljf̂
^̂
.lil...p̂

l̂̂

ŷ『§̂
-_

 ___̂
^̂
Ĵ
^̂
^̂
^̂
^̂
^̂
^̂
gjĴ
^̂
^̂
^̂
^̂
^̂
^̂
Ĵ̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
l̂_&
 i
g

 §

 F

 =【---

 -..『.-vv
 :

 -
 .

 .

 •

 „"
V
J
L
—
l
f
、.
.
^
-
~
^
"
^

^̂
®̂î
^̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
J!?̂
??r̂
^̂
^̂
r̂̂
T̂̂
T̂̂
^̂
Ŝ?̂
?̂!T̂
r̂"̂
ŝs?̂
®̂̂
®̂?f5̂
^̂
T?̂
^̂
^̂
^̂
"?!3m

^
i
*
l
s
i
/
 -

/
/

 :、Ĥ
^̂
^̂
J

1¾...-.、
 、
：
i
_
.
“
l
i

:
道
「
、
.
％

:

’

 >
迹
囊
)

震
"
二
〔
 .
.
.
，
暴

v.s.::,
 “
」

 .
、
暴
磨

M
m
§

 h
"
急

^
^
i
k
l
 ,

 :
.

 -

 -r_

^
p
%
 .

 .

 .

 -..,¾

•3、：：
 •
:

•

 /
,

霞
胸
，
.
，
：
 ：：•

:
0

^
/

f

y
^
1

C
F
 --

 V

,
 v.
:

 .

 -

.
<
。

^
,
^
^
,
,
.
f
^
}

^
W
B
M
W
M
^
i
^
^
^
.
.
^
.
 ̂
-
.
.
-
「
义
：
：
/

 .
r

 •

 .

 -

 .

 -

 .

 h
 ,

 .---̂
.S3PS

p
^
^
^

:
,

“
 :
‘

^
^
^
4
^
J
,
 A
 ,

 .
,

?
)
，
\

3
)
7
J
 d

^
p
s
r
 :

 .

 J

_:

二

CUHK L i b r a r i e s

_ . _ l _ l l l
0D3Sl lDf l l

