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Abstract 

For the traditional protocols in replicated database, their transaction managements are 

centralized. That is, when there are a number of operations 01,02,03，...On in a transac-

tion and some operation Oi depends on the result of some previous operation Oj, some 

communication overhead is required to secure the result of Oj before Oi is started. 

As communication cost is high compared to computational and data storage cost in 

many applications [Gra88], especially for the WAN, some researchers have recently pro-

posed to eliminate this type of communication overhead by replication of transaction. In 

particular, Transaction Replication Scheme(TRS) [cFlC94] is shown, theoretically, to be 

efficient in terms of communication time and message. Instead of centralized control of 

each transaction, the transaction is broadcasted so as to reduce the message overhead 

involved. TRS only considers two kinds of data, shared private data and public data. 

Compared with other previous work on replicated distributed database systems which 

assumes only public data, it utilizes the semantics of node autonomy. Moreover, TRS 

also can handle partition failure and site failure. 

As the practical performance characteristics of TRS has not been studied extensively. 

In this thesis, we will investigate the performance characteristics of TRS, that includes the 

parametric value of TRS period, the ratio of local to public transactions and the number 

of operations, etc. 

i 



Our approach is to build a simulation model to make a comparison study on both 

the traditional centralized transaction management protocols such as Majority Quorum 

Consensus and Tree Quorum Protocols, as well as the replication transaction management 

protocols (TRS). 
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ŵ
r.
 .
"

 c

 
•

•

.

 .

 y

 .

 .
1
:
:
:
.
J

 :

 
:
 .
:
:

 
,

 \
，
.
；i,-4̂
!-.:j
 

^
p
.
^
-
?
.
:
 r,v-...

 ,
-

 ̂
^
^
.
-
.
.
.
.
.
-
^
'
^
.
.
.
.
.
:

〉
。
•

 ̂.
^
^
.
.
.
.
^
.
.
:
.
.
.
.
-
.
-
,
u
.
.
.
^
^
^

 ,

 •

 \
,
-
>

 .

 -
C
"
1
 

^
^
^
a
^
.
i
^
 _̂
-̂̂
-̂
-

 r
_
^

 .P
^
R
,
^
l
a
^
T
-

 l
*
-
l
r

 >

 5
f
,
^

 t

 

、
！
丨

 ̂
 I

 .

 ="..

 .
"

 »

 ••-..

 •

 -

 邓
一

 •
-

 I
!

 .._̂

 •
 •

 K
 ,f-.

 “„•

 -L
r
A
t
^
.
^
^
-
^
%
 

^̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
"̂
*̂
^̂

*̂̂
^̂
*̂
^̂
^̂
^̂
*̂
*̂
^̂
^̂
*̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
^̂
-̂
*̂

*̂̂

*̂"*̂
"*̂
"̂

*̂̂
^̂
"̂
--mifiTiifwl̂
1̂

ŝ̂
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Chapter 1 

Introduction 

Replicated Database is a database which stores data at multiple sites. Its objective is to 

increase fault-tolerance since copies of data continue to be available to applications in the 

event of local site failure or network failure; and to improve the performance as data are 

stored at all sites at which it is required rather than remotely across the network. 

However, in order to achieve the above objectives, the system must ensure that all 

copies of replicated data items are consistent. One way to achieve this is to make sure 

that all sites at which replicas are stored to be operational and connected to the network; 

and all copies of each data item are updated by each logical update. 

However, there are problems with this approach, they are: 

1. in the event of network or site failure, it may not be possible to update copies of such 

replicated data items at all. Especially in the event of partition failure, data copies 

in one partition may be updated by one transaction while copies of data in another 

partition are subjected to a different update by another transaction. These two 

transactions are executed independent of one another since due to partitioning of 

network, no communication between two sites is possible. Hence if they are allowed 

to commit, then versions of replicated data can diverge resulting in consistency 

problem. 

2. updating all copies of each data item instead of one copy of data item would counter 

the efficiency factor. 

1 

.» 



Chapter 1 Introduction 2 

Therefore, the advantages of improved performance, availability, and site autonomy of 

Replicated Database mainly apply to read-only applications, and are jeopardized by the 

need for propagating updates to all sites. 

There are other protocols which tackle these problems. These include: 

1. Protocols tackling site failures, including Write All Available Approach [PVN87 

and Directory Oriented Available Copies [PVN87], 

2. Protocols tackling partition failure, including Primary site [PVN87], Quorum Con-

sensus [PVN87], Missing Writes [PVN87] and Virtual Partition [AS89]; 

3. Protocols tackling the performance of updating all copies of each data item in-

cluding: Distributing Writes Immediately [PVN87], Defer Writes Until Transaction 

Terminates [PVN87； 

Recent Research is interested in protocols for enhancing the performance because for 

the real life applications such as flight reservation, the factors of performance and effi-

ciency is very significant. For instance, it is unacceptable for a flight reservation system 

to become blocked or unavailable in case of a site failure or network partition. Therefore, 

current research focuses on delayed propagation of updates [SHKS95], transaction chop-

ping [SLSV95] and transaction replication(TRS) [cFlC94]. Such recent research mainly 

emphasize on how to improve the performance and efficiency of replicated database pro-

tocols. 

Nowadays, as an organization usually spans a large geographical area, the bottleneck 

of replicated database is mostly due to the long message transmission time in WAN, The 

situation cannot be alleviated even when applications are run on advanced HW platforms 

with plenty of physical resources. 

The Transaction Replication Scheme (TRS) [cFlC94] has been proposed to address 

this problem. In this thesis, we investigate the performance characteristics of the Trans-

action Replication Scheme. Thus, we are motivated to build a simulation model and 
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simulate different types of system workload, different I /O requests, different amount of 

concurrent request conflicts and communication delay, etc. 

The objective of our work is not only to evaluate the comparative performance of TRS, 

with other protocols such as Majority Quorum Consensus and Tree Quorum Protocols, 

but also to identify the factors that lead to its superior performance. The findings in our 

study can be used to pinpoint the aspects that require more attentions when designing 

new concurrency control algorithms. The ultimate aim is to give a guideline for database 

designers in choosing a concurrency control algorithm during the design of a database 

engine. 

The basic contributions of our research are summarized as follows: 

• Build a simulator to investigate the performance characteristic of different protocols 

under various database workloads 

• identify the essential factors that lead to better performance 

• compare traditional protocols and TRS. 

This thesis is organized as follows. Chapter 2 introduces the motivation of our work 

and summarizes the background study of related protocols and the TRS protocol. The 

details of TRS can be found in Chapter 3. In Chapter 4, the simulation model of the 

system is introduced, followed by the simulation results and data analysis in Chapter 5. 

We conclude in Chapter 6. 
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 ŝ
/.1,.

 -_

 •
•

 
:
0
 

.

.

 

.
 .
?

 ••

 •-
:
,

 、

 

/
 -
.
r
=
r
i
:
p
)
f
t
 

:
l
<
v
v
-
.
.
.
)
？
.
-
.
:
 •
-

 •,,

 

.
)
.
-
.
:

 7
¾
-
-

 ....

 

)
 *

 ..

 

u
f
.

 ̂‘

 ̂
J

 
：

 
-
f
 

^̂
^̂

！̂穆驗.̂
*:”
 -
^

 ...-.

 
4
 
.

 、-.

 ..。••

 
.

 -
^

 
.

 
,

 
,

 
:

 
.

 
‘

 .
.
¾
¾
:
 

w
#
i
l
 \

 
一

 r

 /

 .

 .

 

,
,
1
.
 

^
-
i
^
-
^
-
c
l
r
.
 -
 .
 •

 4
-
^
^

 .

 
:

 ，.--

 
^

 ....

 
,

 .
:
.

 
•

 
‘
 
.

 .
•
?
-
.
,
:
?
 

.

“

.

"

)

 
^

 ̂,.

 
^
 )
：
；
.

 
-

 
-

 .
^
 

y
r
%
^
^
^
,
歸
 r

 i
 」
.

 "
,
-

 

,

.

 
,

.

.

 .

 ̂

 

r

 "̂‘

 /
 
m
 1

 ‘

 

>
 

•
•
 .

 ,,

 .

 .

 1
¾
 

,
、
.
d
,
f
 

r
 
)
 

,
:
.
 

:
•

 

.
 

.
 

1
 
H
 

.
\
 
.

 ̂̂
.

 
.

 *
 
.

 
,
 ；：:

 
/
 
.

 
、

 _
4

 
.

 
.

.

 
“

 
一
 

-
^
"
v
,
^
^
i
.
)
 ：、-

 ..

 .
 '',.r-:

 55
^
-
-
¾
.

 .

 .
 :
¾

 ..

 ̂

 .5.

 .-,.

 ..

 
.

 
.
 '̂
.

 ！̂

 

、
 H
t

 {

 
h
>

 y

 .
.

 .

 .
 

f
f
 «

 

-
 .

 ̂

 ,.•.,

 

.
-

.
 
>

 
合

*

 

/
 
,

 
-

J
^
^
n
^
^
:
^
\
^
.

 .•-•

 %
:
.

 

y
-
.

 ..i

 
.

 ?
•
•
*

 <
-

 .’

 
-

 二..

 ..,..•；••
 

、
 ̂rrt-.'-̂

-̂--̂
--

 A
,

 
._..

 r
 v
 •

 ̂
 .
.
.
/
f
 .
 U
5
4

 V.

 r
t

 •
?
.
:
.

 -.-.」
 

i
^
c
 

/
 :
/
*

 i

 r,

 ̂

 J

 ̂

 .¾
.

 •
•
-

 .
/

 :

 •

 V
-

 ̂.-

 •.
 

i

 f
 ̂

 J
 -
f

 1
4
 8

 <

 .,.

 ,

 -'-.̂
.̂

 

“
 s
 

霸
驗
.
暴
_
德
#
孕
-

。
-
5
吞
-
、
-
t
.
.
l
-
 •
,

 ,
¾

 ..

 .\.

 ̂

 .:..

 .:

 •_
.

 :
.
V
 

^

 
孴
 -
?
/

 -
^

 .
t
i

 .
1

 '
^
 
•

 --

 
•
-
.
-
.
.
:
/
"
 

%
 ,

 
_•

 ̂

 *

 k-
:

 .

 ®"_

 :r
.

 

"
r
.

 

:
 

.
 .
 

i

 f

 f
 ̂

 ̂

 L

 .

 :¾
:
.
 

:
v

 ::,」.-"..r,r—-l̂
.

 -
«
.
:

 .

 •—"

 .

 -

 v.-

 •

 :.
」
’
.
v
:
.
.
 

^
k
^

 ̂

 ‘
 i
4

 f

 :

 r.

 .

 •

 •
.
.

、
」
-
-

^
/

 

A
 J

 

z
 .

 .

 .

 .¾
+
-

%
^
y
 
-
 
s
 V
,
 

.

 

^
 
^
 

J
 

"
 ,
,

•
.
"

•

 •
:
 

•

 
1
 >v-v,-..--

 -

 ,

 
.
:
.
.
.
.
.
.
 ..
.

 ̂.
^

 

.
:
:
 
.
 :
.
:
V

 ..

 ...

 
-

 
.

 .二：.二-

i
 J

 t.

 -
•
*

 V
0
,
 

,:-
 
/

 
？

 
.

 -
j
.

 r

 .
-
.
-
:
.
 

T

 ,

 

f
 

'
.
 

r
 
S
 J

 

0
 .
 

,

 ̂
v

 

-
:

•
 :
?
:
?
.
:
.
:
\
.
’
l
.
.
:
.
.
.
i
i
.

 ‘
 -
 :•
•

 r
-

 ̂

 ...
 

«

 r
 

A
 

^
#
^
 .

 .

 1

 i

 I
 .

 .
 

/

 〜
-

 ？
<

 ,
#
1

 ..

 .
=
-

V

 

i
r
-
 #

 I

 

„
 

.
 ,

 .,
 

p
^
s
^
s
^
¥
?
»
.
-
>
>
-
'
>
,
:
-
^
-
 
^
^
-
 
-
p
.

 

I
.
 

,
 

,
 

.

.
-
.
 

.

.
V
 

^
^
^
¾
^
^
¾
-
¾
¾
?
¾
 
:
¾
)
：
於
：
.
V

 V

 
.

:

;

;
 

t

 i

 V

 “
 {
j

 -
i

 ,

 _..
 

L
F

 <
•
 4

 «
 .
;
J
Y
.
-

.
‘

 ̂

 . .

 ,
.

 -

 .

 
n
 

/
 V

 
1
 
.

 
爭
 

r
 

^

 

.
 

.
 
.

 
.

 ；
二
(
 

i
:
:
.
l
.
/
>
i
/
.
>
a
v
y
.
、
：
.
-r
:
.
^
?
 .¾.

 •:

 
"
,
r

 -

 

-
J
y
 

/
^

 

i
4
 

.
 •,:

 -

 --.
 

”“

 V
T

 f
 *r

 i

 .
 ,.

 .

 :
 

^
^
^
^
W
B
i

M
^
£
 ̂
v
^

 .
§
9
 ̂

 #
-
:
¾
¾
 ,

 .

 
.,

 .

 .

 

/
 

r
 
.

 ；
“
 

,
r
.
 『
n

 .

 .¾
.

 .

 _•

 .
-

 :
.

 -,.

 
:
 V

 >
 

“

 l;
.

 

f
 n

 V

 .

 .

 J
-

 .

 .?」.〈/.」；,
 

y
 

)
 
f

 \

 c
^

 \

 -

 ..、-

 .v_...

 :.
?
 

^
 &

 ̂-
5
:

 
/
^

 
1

 

f
»

 
、

 
.
-

 .
.
.
:
;
(
 

,

 
X
 

t
^
 

〜
 

I
.

 

(
 

”
 

.

.
 

:
.
 ，.

 

+
r
 
....

 7,

 ̂

 
,
:
:
i
,
,
 
r
^
 

.
:
7

 E
;
.
 

,
 
1
 

”
 

。
.
 

.
 ̂

 

.
:
.
:
.
.
i
 

.
1
l
k
:
 :

 ...,,

 ,

 .
.
.
.

 •.
:
,
;
?
.
.
:
-
.
 

:

 

.
J
g
,
c
/
 >

 .
 .

 •

 .

 .

 ,

 .

 •

 ,..__.

 ,

 /
.
:
.

 _.
.
;
.
r
 

丨
/

 A
J
l
A
?
。

 ：•：.：：：

 
.

 
.

 :
 ._
:
.
v
:

 V
 



Chapter 2 

Background 

Before we start our investigation on the Transaction Replication Scheme, we summarize 

the known protocols for replicated database in this chapter. We first describe the tra-

ditional protocols which are mainly used to tackle the site failure including Write All 

Available Approach [PVN87]; and Directory Oriented Available Copies [PVN87]. Next, 

the protocols mainly used to handle partition failure including Primary Site [PVN87]; 

Quorum Consensus [PVN87]; Missing Writes [PVN87] and Virtual Partition [AS89] are 

illustrated. Then, we summarize the protocols which are used for tackling the performance 

of updating all copies of each data item. The protocols include Distributing Writes Im-

mediately [PVN87]; Defer Writes Until Transaction Terminates [PVN87]; Independent 

Updates and Incremental Agreement in Replicated Databases [SHKS95]. In addition, an 

overview of the Transaction Replication Scheme is given. 

2.1 Protocols tackling site failure 

1. Write-All Approach(Ideal World)[PVN87； 

Assume sites never fail, Read{X) is translated into Read[Xa), where X。is any copy 

of data item X. Write[X) is translated into Write{Xai), ...Write{Xan), where 

Xai^...Xan aie all copies of X. However, Write-All approach is unsatisfactory if any 

copy of X fails since it would have to delay processing Write{X) until it could write 

all copies of X. Moreover, more copies of X implies a higher probability that one 

5 
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copy is unaccessible. In this case, increased replication of data actually makes the 

system less available to update transactions. 

2. Write-All Available Approach[PVN87； 

A fixed set of copies for each data item is known to every site. Each copy is assumed 

to be created once and can fail at most once. After creation and before failure a copy 

is available. Otherwise, it is unavailable. A write operation writes into all available 

copies. That is, it ignores any copies that are unavailable. However, this leads to the 

problem of correctness. Some copies of X may not reflect the most up-to-date value 

of X. This problem can be solved by preventing transactions from reading copies 

from sites that have failed and recovered until these copies are brought up-to-date. 

If the read operation of data copy Xa, R{Xa) is rejected, a negative acknowledgment 

is returned and the transaction Ti is aborted. If R{Xa) is accepted, but, if site A is 

down, it could submit R{Xb) to another site B. If no copy of X can be read, Ti is 

aborted. 

Writes for which there is no response are called Missing Writes. If Missing Writes 

from all available sites are received, then the operation is rejected and the transaction 

is aborted. Otherwise, it is successful. 

3. Directory-Oriented Available Copies[PVN87； 

It uses directories to define the set of sites that currently store the copies of an 

item. Unlike Write-All Available Approach, Directory-Oriented Available Copies 

can avoid transactions which attempt to update copies at down sites. 

2.2 Protocols tackling Part i t ion Failure 

2.2.1 Primary site 

Every data item has one copy (at one site) as the primary copy; all other copies are 

slave copies, each update is directed to the primary copy and then propagated to 
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slave copies. In the event of network partitioning, only the partitions with primary 

copies are available. If the primary site fails, it is possible to promote one of the 

slave copies and designate it as the new primary copy. A new primary copy cannot 

be elected if the network is partitioned due to communication failure because the 

original primary site may still be operational but the other partitions have no way 

of knowing this. 

2.2.2 Quorum Consensus Protocol 

One way to prevent conflicting transactions from executing in different partitions is 

to allow only one partition to process any transaction at all. Since the partitions 

cannot communicate with each other, each partition must independently decide 

whether it can process transaction. A quorum is a set of sites. With quorum 

consensus, a set of quorums which intersect each other is defined. For read and 

wirte operations, read quorums and write quorums are defined so that each write 

quorum intersects each other write quorum and each read quorum. Only the one 

partition which contains a quorum of sites can process a transaction. 

(a) Majority Quorum[AA91 

It requires both read and write quorums to contain a majority of copies. 

Let a Read Quorum be a set with Qr{X) copies and a Write Quorum be a set 

with Qw{^) copies. Let N{X') be the total number of sites. We require that 

Qr{X)^QUX)>N{X),^nd 

2Q^{X) > N{X) 

For instance, if there are 13 sites, i.e. N 二 13 

We can set {Q^X) = 7, Qr{X) 二 6 } , {Q4X) = 8, Qr{X) 二 5}’ etc. 

(b) Tree Quorum[AA92； 

The replicated sites are organized in the form of a logical tree for constructing 
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quorums. Given a set of N copies of an object X , we logically organize them 

into a tree of height h and degree d, that is each node has d children and the 

maximum height is h. We also assume that the tree is complete. A tree quo-

rum is said to have length 1 and width w, or, it has dimensions < 1, w〉. The 

quorum is constructed by selecting the root and w children of the root, and for 

each selected child, w of its children, and so on, for a depth of /. If successful, 

this forms a tree quorum of height 1 and degree w. 

We denote the dimensions of a read quorum Qr by < lr,Wr > ； 

and the dimensions of a write quorum Quj by < lw)^w >• 

The following constraints guarantee the nonempty intersection of read and 

write quorums, and of 2 write quorums: 

lf I lyj ^̂  h 

Wr + Wyj > d 

2ly, > h 

2wuj > d 

Consider a replicated object with thirteen copies. We superimpose a ternary 

tree of height 3 on the copies as illustrated in Figure 2.1, with the sites num-

bered as shown. 

For instance, Qr = < 1,2 >. As the length of a read quorum is one, so a read 

quorum contains only the root of the tree. 

Q^ = < 3,2 >, examples ofwrite quorums are {l,2,3,5,6,8,9}, {l,2,4,6,7,12,13>,etc 

(c) Locking 

The basic idea of locking is that whenever a transaction accesses a data item, 

it locks it, and that a transaction which wants to lock a data item which is 

already locked by another transaction must wait until the other transaction 
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CD 

G T ^ D ^ ^ 

C ^ 0 ( ^ 0 ^ ) 0 0 0 
Figure 2.1: The diagram of Ternary Tree 

has released the lock (unlock). 

In fact, typical locking has the notion of a lock mode: a transaction locks 

a data item in a shared mode if it wants only to read the data item and in 

an exclusive mode if it wants to write the data item. A transaction is well-

formed if it always locks a data item in shared mode before reading it, and it 

always locks a data item in exclusive mode before writing it. The following 

compatibility rules exist between lock modes: 

• A transaction can lock a data item in a shared mode if it is not locked at 

all or it is locked in a shared mode by another transaction. 

• A transaction can lock a data item in exclusive mode only if it is not locked 

at all. 

Whether the protocol is Majority Quorum or Tree Quorum, the site first have to 

send the request lock message to a Read Quorum or a Write Quorum according to 

the read operation r̂  or write operation W{. When the sites receive the request lock 

message, if the lock is available, the site will send back the grant lock message to 

the site which requests the lock. However, if the lock is unavailable, it will typically 

queue up to wait for the lock for a time-out period. After the time-out period, if 

the transaction still cannot receive the grant lock message,then it will be aborted. 

If the transaction can successfully get the required number of lock messages, its 

transaction operation will be executed and at the end, the locks are released by 
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sending release lock messages to the quorum. 

• Advantages 
..\ 

: - i n the event of failure, quorum consensus provides greater data availability 

! than Primary Copy and it involves less overhead to handle failures and 

recoveries. 

—Recoveries of copies require no special treatment as a copy of X that was 

down and therefore missed some writes will not have the largest version 

number. Thus, after it recovers, it will not be read until it has been written 

at least once. 

； • Disadvantages 

— A transaction probably access more than one copy of each data item it 

wants to read. This defeats one of the motivations for data replication. 

Since it involves more overhead to process transaction during periods in 

which no failures or recoveries take place as it requires consensus from a 

I read or write quorum for every read or write operation. 

—I t probably needs a large number of copies to tolerate a given number of 

site failures. 

—Al l copies of each data item must be known in advance. A known copy of 

X can recover, but a new copy of X cannot be created immediately. 
i 
•( 

2.2,3 Missing Writes 

:i During normal operation since all copies are available in normal mode, the DBS 

(Database Management System) processes Read{X) by reading any copy of X and 

Write{X) by writing all copies of X. However, when failure is detected, the system 

changes to failure mode and voting (Quorum Consensus) strategy is used. 

^ 



j 

1 

.Chapter 2 Background 11 

2-2.4 Virtual Partition Protocol 

Each site maintains a view (a set of sites) which it believes it can communicate 

with. Within the view in which transaction T executes, DBS uses the approach 

of write-all and read any one copy. But, when a site detects a difference between 

its present view and the set of sites it can actually communicate with, it needs to 

execute a View Update Transaction. 

• Advantages 

Compared with Majority Quorum Consensus, a transaction never has to access 

more than one copy to read a data item. Thus, the closest copy available to a 

transaction can always be used for reading. 

2 .3 Protocols to enhance the Performance of U p -

dat ing 

(a) Immediate Write 

When a transaction issues Write{X), the DBS is responsible for eventually 

updating a set of copies of X . It can distribute these Writes immediately at 

the moment it receives Write{X) from the transaction. 

• Advantages: Early commitment of transaction and Early detection of con-

flicts between operations. 

• Disadvantages: Immediate Write tends to use more messages than deferred 

writing. 

(b) Defer Writes on Replicated Copies until transaction terminates 

When a transaction issues Write{X), the DBS is responsible for eventually 

updating a set of copies of X. It can defer the Writes on replicated copies until 

the transaction terminates. 
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• Advantages: Since all replicated writes destined for the same site are put 

in a single message so as to minimize the number of messages required to 

execute a transaction. With deferred writing, the DBS delays the distribu-

tion of those Writes until after transaction T, has terminated. If 7] aborts 

before it terminates, then the abortion is less costly than Immediate Write. 

• Disadvantages: Performance is degraded as the commitment of a transac-

tion is delayed compared with the Immediate Writing. The detection of 

conflicts between operation is delayed. 

2.3.1 Independent Updates and Incremental Agreement 

in Replicated Databases 

Transaction atomicity and serializability are major obstacles to the development of 

replicated databases. Many practical applications, such as automated teller machine 

networks, flight reservation, and part inventory control, do not require these prop-

erties. One approach is incrementally updating a distributed, replicated database 

without requiring multi-site atomic commit protocols. In [SHKS95] there are two 

main characteristics introduced for dealing with the update propagation. They are 

the progressive, and non-blocking characteristics. By progressive, we mean that 

the transaction's coordinator always commits, possibly together with a group of 

other sites. The update is later propagated asynchronously to the remaining sites. 

Non-blocking means that each site can make unilateral decisions at each step of the 

algorithm. Sites which cannot commit updates are brought to the same final state 

by means of a reconciliation mechanism. This reconciliation mechanism uses the 

history logs, which are stored locally at each site, to bring sites to agreement. 
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2.3.2 A Transaction Replication Scheme for a Replicated 

Database with Node Autonomy 

Many replicated distributed database protocols manage execution of a given transac-

tions at one site, accessing local and remote data copies for its operation, and organize the 

commit/abort of transaction from that site. This is referred to as centralized transaction 

management. 

With centralized transaction management, if there are a number of operations O1,O2, 

....On in a transaction and some operation Oi depends on the result of some previous 

operation Oj, some communication overhead is required (See Figure 2.2). 

z 0 
。 ‘ 〉 0 

Ti 02 ^__ ^ ^-^ 

0 。 3 = ^ 0 

O n ^ ； ^ ^ ^ ^ ^ ^ ： 

0 
Figure 2.2: Centralized Transaction Management 

To eliminate this type of overhead, a transaction must be executed entirely at one site 

which contains replication of a relevant data. One possible way to achieve this is to have 

the execution of entire transactions replicated at data replication sites. 

We consider data of two types: 

• shared-private data owned by a particular site and which only the owner site can 

modify, 

• public data that all sites can modify 

Thereby, two types of transactions are considered: 
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X ® 
Z o i r ^ 

• 02 C i J 

0 " , ：： © 
\ On ^ ^ 

\ ； 
\ © 

Figure 2.3: Replication of Transaction 

• Local transaction - transaction initiated at site 5 that reads or writes only the data 

owned by site 5. That is, it can write only the shared-private data. 

• Public transaction - transaction can read both the public and /or shared-private 

data and can write only the public data. 

In this scheme, transactions accessing only shared-private data can normally be executed 

and committed under a local concurrency control protocol. 

Transaction Broadcasting Scheme: 

A short period of time [tl,t2) is considered and named TRS period. Let B be a batch 

of transactions submitted during such a period of time at all sites. B may contain both 

public and local transactions. Local transactions in B are executed immediately at their 

origin sites, while the public transactions in B submitted at each site are broadcast and 

executed on all replication sites. This means that local transaction and public transaction 

replicas in B are executed at different times. 

This scheme requires each site to remember some old versions of the shared-private 

data it owns. The basic step of the protocol for each site can be summarized as follows: 

• accumulate public transactions submitted at site s for a time period and broadcast 
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the public transaction at the end of the period. If no public transaction is accu-

mulated, then a null messages is sent. A history is recoverable if each transaction 

commits after commitment of all transactions from which it reads. A site may keep 

multiple versions of shared-private data for the execution of global transactions. For 

the execution of local transactions, it needs only to consider the latest version at 

any time. 

• At the end of each TRS period, site 5 broadcasts the latest committed values of 

shared-private data updated by local transactions committed in that period, to-

gether with a local batch of public transactions accumulated during that period at 

5. 

• After a global batch arrives, site s examines the messages that have been received 

from the other sites, which may contain new versions of the senders' shared-private 

data. Those new versions of shared-private data are first written to the local copies 

of shared-private data. Site s then executes the public transactions of the global 

batch received. 

Advantages 

With TRS, the execution of public transactions normally incurs only 2 communication 

delays. Hence TRS is more efficient than centralized transaction management schemes 

in terms of communication delay, especially when the transaction consists of multiple 

interdependent operations. 

Local concurrency control is adopted for local transactions that access only the shared-

private data and it can also enhance the performance. 

Disadvantages 

If public transactions are not frequent, then TRS may generate a lot of wasteful null 

messages. In addition, TRS repeats the execution of each transaction at multiple sites, 

hence it incurs more computation overhead if the transaction's computational cost is high. 
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Besides, the storage for keeping multiple versions of shared-private data is required, if this 

becomes a problem, all data is made public data. 

Appl icat ion 

As TRS generates null messages if no public transactions are received, it is more useful 

for busy system. Also, TRS transmits transactions instead of data items. In other words, 

it is especially more efficient if the size of transaction is smaller than that of the data. 

Moreover, TRS is better for the business applications which are more 1/0-oriented than 

computation-oriented. 



Chapter 3 

Transaction Replication Scheme 

3.1 A T R S for a Replicated Database wi th Node 

Au tonomy 

In the Transaction Replication Scheme (TRS), the execution of entire transactions is 

replicated at the data replication sites. 

In TRS, we consider data of two types (Figure 3.1). The first type is shared-private 

data, which is owned by a particular site and only the owner site can modify. The second 

type is public data, which all sites can modify. Since shared-private data is modified by 

only one owner site, a simpler concurrency control is sufficient. In TRS, transactions 

accessing only shared-private data can be executed and committed under a local concur-

rency control protocol. Most previous work on replicated distributed database assume 

only public data. With the introduction of shared-private data, TRS can utilize the 

semantics of node autonomy to improve the overall performance of transaction execution. 

3.1.1 Example 

For example, in an airline database system, there may be an accounting site, a flight 

scheduling site and many sites for seat reservation. Reservation sites read flight schedules 

and policies determined by the scheduling site and the accounting site but they will not 

modify such data. Hence flight schedules and accounting policies are shared-private data. 

17 
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© 
Shared-Private Data "a" 

Public Data "X", "Y" 

© © 

Shared-Private Data "b" Shared-Private Data "c" 

Public Data "X", "Y" Public Data "X"，"Y" 

Site A - read/write "a" by local transaction 

-read/write "X, Y" by public transaction 

-only read "b", "c" by public transaction 

Site B - read/write "b" by local transaction 
-read/write "X, Y" by public transaction 

-only read "a", ” c" by public transaction 

Site C - read/write "c" by local transaction 

-read/write "X, Y" by public transaction 

-only read "a" ’ "b" by public transaction 

Figure 3.1: Public and Shared-private data 

The seat plan of each flight is public data among reservation sites since each site can book 

seats and modify the data. Thus, the seat plan is considered public data. 

3.1.2 Problem 

As transactions are replicated at many sites, we have to ensure the essential {serialized) 

orderings of transaction execution are identical at all the replication sites. Therefore, 

the global timestamping and the Conservative Timestamping method are used to prevent 

aborts in normal operation. 

3.1.3 Network Model 

The system model includes a set of sites connected through a communication network. 

The sites store the replicated data and they are called replication sites. 

The assumptions about the network and timing are as follows:-
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1. Each replication site has a unique ID. 

2. Messages are sent in FIFO order. 

3. Each replication site has a clock. The clock are synchronized to within a small 

deriation from each other. 

4. Each site may suffer from fail-stop failure. That means, when a site fails, it stops 

processing. So, the site is either working correctly (is operational) or not working 

at all (is down). The communication links are subject to failures. The failures 

result in loss of messages. Furthermore, we assume that the communication link is 

a 2-way connection so that if the link between Site A and Site B fails, then both 

communication from Site A to Site B and from Site B to Site A are disabled. 

3.1.4 Transaction and Data Model 

A transaction accesses data X by operations READ(X, y) and WRITE(X, v). A READ(X, y) 

operation reads the value of data X and returns it in a variable y. WRITE{X, v) updates 

the value of X to that of v. In addition, each transaction contains a COMMIT or an 

ABORT as its last operation. 

The shared-private data and public data are defined in terms of transaction operations 

as follows:-

• Shared-private data X owned by site s - only transactions submitted by the owner 

site s of data X can perform WRITE{X, v); and these transactions can only access 

the shared-private data at <s; transactions submitted at other replication sites can 

only perform READ{X,y). 

• Public data X - transactions submitted at any site can perform WRITE{X, v) and 

READ{X,y). 

All shared-private and public data are assumed to be fully replicated at the repli-

cation sites. 
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Accordingly, we can identify two main types of transactions in TRS:-

• Local transaction - a transaction initiated at site s which reads or writes only logical 

data owned by site s. 

• Public transaction - a transaction which may read public and /or shared-private 

data and can write only public data. 

3.1,5 Histories and One-Copy Serializability 

Let X i denote the copy of a data object X at site i. A data object and its copies are 

called logical data object and physical data objects, respectively. When a transaction 

Ti is executed, the system uses a translation function r,- to translate a logical operation 

into a set of physical operations. That is, a write operation Wi that writes X , Wi[X], is 

translated into Wi[Xa],W,[Xb],..., Wi[Xi], where Xa,. . . ,X/ are copies of X and Ri[X] is 

translated into R^[Xl], ^-(¾], . . . , Rr[Xm], where X i , " . ,Xm are copies of X . 

A replicated history is used to model the execution of a set of transactions with 

replicated data objects. A set T of transactions is a partially ordered set {T,- 二 ( ¾ , <i)} 

where E^ is the set of reads and writes issued by transaction i, and <i indicates the order 

in which those operations execute. A replicated history over such a set T is a partially 

ordered set L 二 (S(T), <) such that 

1. S(T) = u{^QTi(T^i), where r,- is the translation function for Ti; 

2. for each i and any two operations pi and qi in S^, if a G Ti{pi), b G r,-(g,-) and pi <i 仏.， 

and if a and b operate at the same site, then a < b; 

3. all pairs of conflicting physical operations are < related; and 

4. T contains two fictitious transactions T。and T/. T。is translated into a set of 

physical write operations, one for each copy of each data object, and these precedes 

all other physical operations, T/ is translated into a set of physical read operations, 
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i 

one for each copy of each data object, and these are preceded by all other physical 
:i 

operations. 

i In the replicated histories, the ordering of logical operations within a transaction is 

preserved by its physical replicas at each site. A committed transaction Tj reads X from 

another transaction T,- in a replicated history L=(E(T), <) if there exists a copy X。such 

that 

1. Wi[Xa] and Rj[Xa] are operations in E(T); 

2. Wi[Xa] < Rj[Xa]; and 

3. there is no Wk[Xa] such that VF,[XJ < Wk[Xa] < Rj[Xa]. 

Tj may read X from two or more transactions, each physical read operation being per-

formed at a different copy. A one-to-one read-from relation exists if for each transaction 

T and for each X that T reads, T reads X from exactly one transaction. 

A replicated history Li is equivalent to another history L2 if both Li and L2 have the 

same read-from relation. A history H is serial if for any two transactions T“ Tj that appear 

in H, either all operations of Ti appears before all operations of Tj or vice versa. A one-

copy serial history is a serial history that consists only of logical operations. A replicated 

history is one-copy serializable if it is equivalent to a one-copy serial history over the same 

set of logical transactions. The TRS protocol will ensure one-copy serializability. 

3.1.6 Transaction Broadcasting Scheme 

Let the time at each site be divided into equal intervals called a TRS periods. Let B be 

I the batch of transactions submitted during a TRS period from all sites. B may contain 

both public and local transactions. Local transactions in B are executed immediately at 

their origin sites, while the public transactions in B submitted at each site are essentially 

broadcast and executed on all replication sites. This means that the local transaction and 

the public transaction replicas in B are executed at different times. 

I ― 一 一 
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• accumulate public transactions submitted at each site s for a TRS time period and 

broadcast the public transaction at the end of period. If no public transaction is 

accumulated, then a null message is sent. 

• At the end of each TRS period, Site s also broadcasts the latest committed values of 

shared-private data updated by local transaction committed in that period, that is, 

together with the local batch of public transaction accumulated during that period 

at Site s, 

• After a global batch has arrived, site s examines the messages that have been re-

ceived from the other sites, which may contain the new versions of senders' shared-

private data, these are first written to the local copies of the shared-private data. 

Site s then executes the public transactions of the global batch. 

Defini t ion 1: Clock values is a set of real numbers which can be divided into intervals 

of [t1,t2), where t2 - h is a constant value equal to 5. Each of these intervals is called a 

TRS period. S is the length of duration of a TRS period. 

Definit ion 2: A batch of public transaction collected in a TRS period of [t1,t2) at a 

site s is called a local batch of s at t2. We define the global batch at time h as the set of 

all the public transactions collected at each replication site in the period [ti,^)-

After every S time units, s starts the next period of global transaction accumulation 

and broadcast. For example, if h 二 0.5, then each site broadcasts at times 0.5, 1.0, 1.5,"., of 

its local clock. If we concatenate the submission TRS time of each global transaction with 

the unique site ID, then we get a globally unique timestamp for each global transaction. 

Once a site s has received broadcast messages from all sites at the same TRS time, it 

executes the global batch collected based on their timestamp order. 

3.1.7 Local Transactions 

Under the local concurrency control scheme, the sites can execute the local transactions 

‘ immediately upon submission. 

( 
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3.1.8 Public Transactions 

Consider a public transaction T broadcast by a site s<i at time t which is executed at 

site 5i, and suppose it reads a shared-private data object X . T should read the virtual 

version Xp of X , which was implicitly broadcast by some site 53 at time t, where 53 

is the owner site of X. If a physical version X^ actually exists for a virtual version of a 

shared-private data item X at time t and a newer version also exists, then version Xp is 

discarded when the execution of the global batch at t is finished. 

ti t2 t3 

^ A J 

^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ ^̂̂ _̂--~-~~̂^ ̂ ^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂ _̂̂  

old version use xl use x2 

xl keeps(xl, x2, newest version) keeps(x2, x3, newest version) 

each round = delta time units 

requires 3 versions 
tl t2 

A ^ 

broadcast x4, B4 x5, B5 x6 B6 

1 ^ ^ ^ ^ ^ ^ 
usexl use x2 use x3 use x4 

keeps(xl, x2, x3,x4, newest version) 
each round = 1/3 delta time units requires 5 versions 

Figure 3.2: Transaction broadcast and multiple versions of shared-private data 

In figure 3.2, we assume that a site s owns a shared-private data object X with 

consecutive versions, Xx,x^,x^,^^,^^,^^- When site s broadcasts a new version Xi, it 

also broadcasts a new local batch of public transactions Bi submitted at 5. When all 

the messages of a period are received from all sites, the execution can be started. For 
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example, in Figure 3.2, a site can start executing a global batch of public transactions B2 

at time t2. In this figure, we assume that all message transmit take A time. Between t2 

and t3, site 5 must keep X2 since execution of B2 uses X2, it keeps Xs because B3 will need 

xs, it also keeps the newest version of X which is used by the current local transactions. 

The lower half of the figure shows that for TRS periods of length A/3, 5 versions of 

shared-private data have to be kept. 

Generally, if a message sent at TRS time t at site 5 arrives at another site s' at TRS 

time i' where i' > t and t' = t + A, if each TRS period has length A/q, and if the execution 

of a global batch of transactions can be completed in S time units, then in the worst cast, 

"q] + 2 versions of some local shared-private data are required at s\ 

If t' < t above, then at most 2 versions are needed for s' but more versions will be 

needed at s since the clock of s is ahead of that of s'. We assume that the system can 

handle the execution of a global batch within one TRS period, else the system is receiving 

more work than it can manage. If the average message delay D is less than S and if 

clocks are closely synchronized, then only a maximum of 3 versions are required. If a 

shared-private data has not been updated in a period, then no extra version is needed for 

this period. 

3.1.9 A Conservative Timestamping Algorithm 

Concurrency control using conservative timestamping ordering does not require transac-

tion abortion. The periodical broadcasting of transactions makes this approach easier 

because little waiting is necessary for a site to make sure that no transaction with older 

timestamps will be received from other sites. We make use of the assumption that each 

transaction T pre-declares its readset and writeset, denoted by readset[T] and writeset[T], 

respectively. 

Our approach is to preprocess all the transactions in each global batch B in a view to 

detect read/write and write/write conflicts. Let T1,T2,...Tn be the transactions in B in 

timestamp order. We propose an algorithm that maintains two sets: PRECEDE[J],X 
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and INFORM[Ti,X]. PRECEDE[Ti,X] contains all transactions that access X and 

which should be executed before T“ INFORM[Ti^X] keeps the transactions that should 

wait for Ti to finish before using X. 

We assume that a fictitious transaction To with a timestamp smaller than any of 

the current transactions writes to all data items initially. For each data object X , 

preprocessing examines each transaction J] that reads or writes X. If Ti writes X , 

then the algorithm looks for the latest preceding transaction Tj that writes X and 

puts it in PRECEDE[Ti,X]. All the transactions with timestamp between those of 

Tj and Ti that read X are also placed in PRECEDE[Ti,X]. For each transaction Tj in 

PRECEDE[T^,X], T, is inserted into the set INFORM{T),X], so that 7) can inform 

Ti about the completion of Tj when it finishes. If X is only read by T“ then the algo-

rithm looks for the closest preceding transaction Tj that writes X . Tj is then placed in 

PRECEDE[Ti,X], and J\ is inserted into the set INFORM[Tj,X, 

After the preprocessing, we can start execution. A transaction manager (TM) carries 

out these operations locally at each site. At the beginning, we assume that To has finished. 

When a transaction Tj finishes, TM examines each transaction Ti in INFORM[Tj,X 

and deletes T) from PRECEDE[Ti,X]. A transaction Ti cannot access data object X 

unless PRECEDE[T,,X] 二 0. 

3.1.10 Decentralized Two-Phase Commit 

A commit protocol is required to ensure that whenever a site decides to commit(abort) 

a public transaction, then every other site must also decide to commit(abort) the public 

transaction. 

In TRS, we have two types of "commit/abort". The first type is the conventional 

commit/abort of individual transactions and the second type is the "commit/abort" of 

the global transaction batches. If the global batch aborts, then all transactions in the 

batch abort. Public transactions batches are committed in a two-phase consensus. A 

decentralized two-phase commit protocol for each global batch is illustrated in Figure 3.3. 
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transaction batch ^ " ^ ^ problem detected 

decision 1 ^ J 丄 decision 

Q . . . ¾ 

V _ ^ ^ non-identical decisions \ J 

identical decisions 

0 
Figure 3.3: Two Phase Commit Protocol 

Phase 1 

Transactions are broadcast from all sites to all sites. After receiving a global batch, the 

site will execute transactions in the batch. Next, it will broadcast the tentative decision of 

the site on the commit/abort for each transaction in the batch. For example, if there are 

3 ordered transactions Ti, T2, T3 in a batch, and the site S tentatively decide to commit 

Ti，T2 but abort Ts, then its decision will be commit, commit, abort. We also define a 

special 丄 decision which is not identical with any other decision. If a site sends out 丄 

decision, it can go to state (a) since the decisions are guaranteed not to be identical. 

Phase 2 

If a site receives identical decisions from all sites, it can commit the batch. That is, the 

transaction batch moves from state (w) to state (c). A site S decides to abort when it 

receives non-identical decisions from two or more sitee. The transaction batch moves from 

state (w) to state (a). Transaction batch aborts are triggered only by exceptional cases, 

such as problems at some site, site failures or partition failures. 
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3.1.11 Partition Failures 

Under the failure conditions, a generalized version of the virtual parition protocol is used. 

Each transaction is executed under a view. The view of a site indicates what the site 

considers as the partition it currently belongs to, it is the "virtual partition" seen by the 

site. The major criteria of GVP is here: 

1. View-id: Each user transaction executes in a view. It is unique. 

2. Global read quorums: For each data object X , a global read quorum set RQ{X) is 

defined and it is a set of quorums of the replication sites of X. 

3. View quorums: For each data object X, a view read quorum set rq{X, V) and a 

view write quorum set wq{X, V) are defined. Each view write quorum in wq[X, V), 

if any, intersects each quorum in RQ{X) and each view read quorum in rq{X, V), 

if any. If wq{X, V) + 0 (rg(X, V) + 0), then X is said to be writable (readable) in 

y . 
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Step 1: Local Transaction "La" 

0Public Transaction "Pa" 

Shared-Private Data "a" 

f ^ Local Transaction "Lb" ^ ^ Local Transaction "Lc" 

V ^ Public Transaction "Pb" 1 ^ Public Transaction "Pc" 

Shared-Private Data "b" Shared-Private Date "c" 

Local transactions are executed immediately. 

Public transactions are collected. 

Step 2: At the arrival of TRS period 

( ^ "Pa"，"a" 

e T ^ ^ ^ ^ 

Site A broadcasts the batch of public transactions collected, "Pa" and the new version of 

shared-private data "a" to each sites. Similarly for site B and site C. 

Step 3: After receiving all the batches, 

C ^ "b",,,c,, 

V V "Pa","Pb","Pc" 

® "a"’ "c" © "a"，,,b" 

"Pa", "Pb", "Pc" "Pa"，"pb"’ "Pc" 

each site will execute the batch of public transactions collected with the version of shared-private data 

received. 

Step 4: After executing the batch of public transactions, 

0 、 
. ^ ^ — C _ Commit 

C o m m i t ^ ^ ^ ^ ^ ^ ^ 

© - ^ ^ ^ ^ 

There is no need to keep the version of shared-private data and the "Commit" message will be sent back to the 

the owner site. 

If the owner site receives all the "Commit" message from all the sites, the batch of public transactions will be 

committed. Else, they will be aborted. 

Figure 3.4: Algorithm of TRS 
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Simulation Model 

4.1 Simulat ion Mode l 

4丄1 Model Design 

A replicated Database Management System (DBMS) Simulation Model is developed for 

studying the performance of a variety of protocols including Transaction Replication 

Scheme (TRS), Majority Quorum Consensus(MQC) and Tree Quorum(TQ) protocol. 

Each site in the model has four components: 

• a SOURCE, which generates transactions and also maintains transaction-level per-

formance information for the site, 

• a TRANSACTION MANAGER(TM),which models the execution behavior of trans-

actions, 

• a CONCURRENCY CONTROL MANAGER(CC Manager), which implements the 

details of a particular concurrency control protocol (i.e. TRS, MQC, TQ) 

• a RESOURCE MANAGER, which models the CPU and I /O resources of the site, 

• a NETWORK MANAGER, which models the behavior of the communication net-

work. 

29 
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Qx 
^̂ "̂̂ ;̂;;;;;;;;̂^̂^̂^̂^̂^̂^̂^̂ f̂"̂^ |- j DDBMS site 

^ ^ v ^ f f i ^ l 
^ ^ NETWORK ； ；7^ ； 

Z~>̂  Ĥ̂1 /^^ . _ _ CC Manager 
^ ^^P \ Manager j f V 

< # ^ # ， 
V ^^^^f^^^^^^^^^^=::ZZ:k^ J \ V̂ 、̂~ Transaction Manager 

\̂^̂  Resource 
\( \ Manager 

Figure 4.1: The diagram of Database Management System (DBMS) 

These components are designed to support modularity, making it easy to replace the 

mechanism in any component (in particular, the Concurrency Control Manager) so as to 

implement different protocols for concurrency control (i.e. TRS, MQC and TQ) without 

affecting the others. 

S O U R C E 

SOURCE is responsible to generate the workload for a site. It generates the transactions 

of different classes for the site and maintains the transaction-level performance informa-

tion for the site. For example, it has to control the interarrival rate of transactions in 

order to simulate cases when the system is in a busy or idle state for different periods of 

time. 

We shall try different ratios of local transaction and public transaction for TRS. Each 

transaction has a different number of operations and the ratio of read/write operations is 

varied. We can increase the conflicts among transaction operations by decreasing the size 

of the set of data accessed. We believe that TRS behaves well in conflicting cases since 
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Source 

- Create Transaction 

Transaction Done Execute Transaction 

Transaction Manager CC Manager 

-Read/Write Page CC Request 

Commit/Abort Transaction > " Access Request 

- Commit 

CC Reply 

~~ 
Service Done Request Resource Resource Request Service Done 

Resource Manager (OS) 

-CPU 

-Disks 

\ 7 
Message Received \ / Send Message 

y^ 
Network \ 

^^^^; !̂y^^^^^^n^^^^^^yt;::^^ 
Figure 4.2: The diagram of a Closer Look at the DBMS model 

locks on data are not required. 

The transactions generated may access data object X by operation READ(X,y) and 

WRITE(X,v) for some variable x, y (see Section 3.1.4) and vary the number of data 

accesses so as to increase or reduce the data access conflicts. 

As TRS performs better when computational cost is comparatively lower, we can vary 

the factors of the computational time and disk I/O time of different transactions so as to 

verify its performance. 

T R A N S A C T I O N M A N A G E R 

The Transaction Manager(TM) models the execution behavior of transactions and is 

responsible for accepting transactions from the SOURCE so as to model their execution. 

For example, for read access, it involves a Concurrency Control (GC) request to get 

access permission, possibly followed by a disk I/O to read the page, followed by a period of 
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CPU usage for processing the operation. When the Concurrency Control request cannot 

be granted immediately, due to conflict, the transaction will wait until the request is 

granted by the CC Manager. 

R E S O U R C E M A N A G E R 

It is viewed as a model of a site's Operating System and Resource. It manages physical 

resources of site, including CPU and disks. It also provides message sending service 

(msg_cpu) because sending and receiving message involve the use of CPU resource. For 

each site, TM uses CPU and I/O service for read and write disk pages. The CC Manager 

also uses CPU service for processing CC request. 

N E T W O R K M A N A G E R 

It encapsulates a model of communication network. The main cost of sending messages 

in LAN is the CPU processing cost at sending and receiving sites. The bandwidth and 

propagation delay are the bottleneck in WAN [Gra88 . 

The time (delay) to send and receive a message is computed as follows:-

• Delay 二 Message Size/bandwidth + CPU+Transmit_Delay 

where Message Size is the size of message in bits, bandwidth is the speed(bits/second) 

of the communication media, and CPU is the processing time required to send and 

receive the message. 
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The following data is quoted from the paper [Gra88 . 
I 

Parameter LAN/WAN Value — 

TransmitJ)elay LAN 0.00001s 

WAN 0.01s ~ 

Message-Size 100 bytes 

Message header 32 bytes 

Bandwidth LAN “ 1 x 10^ bytes/T 

WAN lxlO^ bytes/s 

Message CPU — LAN 0.000025s 

一 WAN 0.00012s 

I /O time — 0.035s 

CPU time/ operation 0.005s 

We can vary the above parameters to model different types of distributed system. A 

distributed system can be modeled as processes communicating via messages. This model 

can abstract three degree of distributed system: shared memory(shared memory multi-

processes), local network(local network connecting several central nodes) and WAN(long 

haul network connecting several local network) in accordance with their differences in 

message transport cost and message transport reliability. 

The time of message transmissions can differ by at least an order of magnitude at each 

degree of distribution. The reliability of message transmission can also differ by at least 

an order of magnitude at each degree of distribution. The message cost of a distributed 

algorithm is an important measure of its cost, especially for wide-area networks. 

C O N C U R R E N C Y C O N T R O L M A N A G E R (CC Manager) 

It is the only module that may change from protocol to protocol. It is responsible for 

handling the CC requests made by TM. 

1. TRS 

After receiving both local and public transactions from the SOURCE, the SCHED-

ULER has to schedule the local transactions immediately and collect the public 

transactions in a batch within a TRS period. The local transactions will be sched-

uled to execute immediately. The batch of public transactions collected as well as 



！ 
m _ 

• Chapter 4 Simulation Model 34 目 
TRANSACTION ^ S £ E < 
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“ COMMIT PUBLIC TRANSACTION 
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/ LOCAL TRANSACTION 
TRANSACTION 

• I YES 

i SCHEDULER ^ ~ ； ] I 

^ “ * • I RECEIVE COMMIT MESSAGE OF PUBIC TRANSACTION FROM ALL SFTES 
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“ REQUEST REQUEST j NO 
I DONE SCHEDULETHEM j~"* 
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？、 ACCORDING TO I - _ J 

I TIMESTAMP 
• RESOURCE MANAGER 

. CPU YES 

！ DISK I/O I RECEIVE A BATCH 

I I 1 OF PUBLIC TRANS ACTIONS 

SEND COMMIT FROM ALL SITES | RRQADCA-ST MESSAGE I 

, MESSAGE WHEN WITHIN A TRS PERIOD 1 

^ A BATCH OF I * 

• PUBLIC TRANSACTIONS 
I COMMITTED “ 

I — I NETWORK MANAGER 

！ UPDATE LOCAL DATA RECEIVED 
• f CPU 

i ！ 
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I SEND A BATCH OF PUBLIC 

TRANSACTION WITHK^ A TRS 

^ RECEIVE MESSAGE PERIOD AND LATEST VERSON 

OFLOCALDATA 

« 

Figure 4.3: The diagram of a Closer Look at the TRS model 

i 

I 

the latest version of shared-private data will be broadcast to other sites. 

When the site receives the latest version of shared-private data from the other sites, 

it will immediately update the local data. After the site receives the batch of public 

transactions from all the sites within a TRS period, it will schedule these public 

transactions according to the Conservative Timestamp method and the SCHED-

ULER will schedule them to execute also. 

The SCHEDULER has to request from the RESOURCE MANAGER for the use of 

CPU and Disk I /O in order to execute the transaction. 

The local transactions can be committed or aborted by the site itself. For the pub-

lic transactions, after executing the batch of public transactions. It will send the 

commit message to all the other sites. At the same time, the site will commit the 

batch of public transactions if and only if all the commit messages of that batch of 

public transactions are also received from all the sites and they are identical. 



I 

m 

潘 
Chapter 4 Simulation Model 35 

^, 

TRANSACTION QUEUE UPTOWAITFOR J x i M E - O U T ? ~ 

GENERATOR A TIME-OUT PERIOD ^~"| 

NO YES 

^ SITE i ^ 1 

: COMMIT 厂 RESOURCEREOUEST RELEASELOCK CHECKTHELOCK 
TRANSACTION RESOURCEREQUEST AFTERCOMMIT FREEORNOT? 

_ ^ _ _ i TRANSACTION — 

>SCHEDULER 

• SENDMESSAGETO REQUEST 
DONE REQUESTFORLOCK LOCK SENDMESSAGE 

RECEIVE ENOUGH MESSAGE OF FAILED IN 

J LOCK FOR EXECUTION ^ _ J _ _ _ ! LOCKING ^ 
RESOURECE ^ ^ FORATIME-OUT I NETWORKMANAGER 

MANAGER PERIOD? CPU 
CPU 
niSK T/n NO SEND MESSAGE 

\ 丽 1 / 0 _ _ [ ^ _ _ ^ R E C m V E OFHOLDINGLOCK 

ABORT MESSAGE 
TRANSACTION OFGETTING 

LOCK RECEIVE MESSAGE OF 

REQUEST FOR LOCK 

FROM OTHER SITES 

SEND 

MESSAGETO 

SITES ACCORDING 

TO MAJORITY QUORUM 

^ Figure 4.4: The diagram of a Closer Look at the Majority Quorum Consensus model 

2. Majority Quorum Consensus 

After the site receives the transactions, the SCHEDULER has to send via the net-

work manager the request message for the LOCK to a majority number of sites 

(selected randomly). 

When the site receives the request LOCK message, it will grant the LOCK to that 

sender and send a "Grant lock" message back if the LOCK is free. Otherwise, if 

the lock is unavailable, the request is queued up to wait until the lock is free for a 

time-out period. After time out, the request will not wait for the request lock and 
4 

it will receive the failure message for granting the lock. 

If the site gets all the required lock messages, the transaction can be executed and 

i it will request from the RESOURCE MANAGER for the use of CPU and disk I /O. 

After executing the transaction, the site has to release all the locks held and so it 

has to send “Release lock" messages to those sites it has locked. Then, a two-phase 

•i 

\ commit protocol [KS91] is carried out. 

i 

I i 
I 
I 
f 

I 
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> SITE 
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TRANSACTION RESOURCEREQUEST AFTERCOMMIT FREEORNOT? 

L _ ^ _ _ i TRANSACTION — 

> SCHEDULER _ , 

SEND MESSAGE TO REQUEST „ 
DONE REQUESTFORLOCK LOCK SENDMESSAGE 

RECEIVEENOUGH MESSAGE OFFAILEDIN 

LOCK FOR EXECUTION ^ _ L _ _ A LOCKING ^ 

RESOURECE ^ 1 ^ FOR A TIME-OUT I NETWORK MANAGER 

MANAGER PERIOD? CPU 

CPU “ 

r>iQK T/n NO SEND MESSAGE 
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ABORT MESSAGE 
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LOCK RECEIVE MESSAGE OF 

REQUEST FOR LOCK 

FROM OTHER SITES 

SEND 
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SITES ACCORDING 

TO TREE QUORUM 

Figure 4.5: The diagram of a Closer Look at the Tree Quorum model 

3. Tree Quorum 

After the site receives the transactions, the SCHEDULER has to send the request 

message for the LOCK to the sites in accordance with the Tree Quorum[AA92 . 

When a site receives tlie request LOCK message, it will grant the LOCK to that 

sender and send the "Grant lock” message back if the LOCK is free. Otherwise, if 

the lock is unavailable, the request is queued up to wait until the lock is free for a 

time-out period. After time out, the requesting site will receive the failure message 

for granting the lock. 

If the site gets all the required lock messages, the transaction can be executed and it 

requests from the RESOURCE MANAGER for the use of CPU and disk I/O. After 

executing the transaction, the site has to release all the locks held and so it has 

to send “Release lock" messages to the locked sites and then a two-phase commit 

1 protocol [KS91] is carried, 

51 
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') 

4.2 Imp lementa t ion 

•i 

4.2.1 Simulation 

A system is modeled as a collection of resources together with a collection of processes 

competing for the use of these resource. A resource can be a CPU, Disk I /O or commu-

nication channel. A process can model the behavior of program execution in a computer 

system. A process-oriented simulation program declares the resources of the system; indi-

vidual program segment and then mimics the behavior of processes as they visit first one 

resource and then another, until either the process leaves the system or the simulation 

terminates. 

4.2.2 Simulation Language 

The simulation language CSIM17[Sch] is employed and it is a library of routines, for use 

with C or C++[Fai] program, which allows us to create process-oriented, discrete-event 

simulation models. In the C++/CSIM library, all of the structures of CSIM are defined 

as classes, and most of CSIM verbs have become methods in these classes. The advantage 

of CSIM is that by using the inheritance features of C++，we can build new classes which 

are derived from the existing C++/CSIM base classes. Details of the implementation is 

given in Appendix A. 
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Chapter 5 

Performance Results and Analysis 

5.1 S imulat ion Results and Da t a Analysis 

By using the simulation models for Transaction Replication Scheme, Majority Quorum 

Protocol and Tree Quorum, we can now compare their performance. 

In the simulation, we have to consider various types of parameter settings of the 

system. First of all, we have to consider the variation of the message cost, since TRS is 

expected to perform better compared with the other Protocols when the message cost is 

high. The message cost is calculated by the factors of Message CPU (msg_cpu), Transmit 

Delay (transmit_delay) and Bandwidth (bandwidth), these are the input parameters for 

the system simulation. 

Secondly, as TRS should perform better than traditional protocols when the number 

of operations per transaction is large, so the number of operations ( maxoper) is also one 

of the parameter settings being studied. 

We have to determine the length of the simulation time the simulation needs to arrive 

at a stable state, i.e. the results we obtained from the simulation jobs are steady. 

Moreover, we have to consider the interarrival rate of transactions (lar_tm) to ensure 

that the system is not overloading. That is, about 90% of transactions generated can be 

completed within the simulation time. 

The ratio of read/write operations per transaction (ratiorw) has to be studied as it 

will determine the read and write quorum of Tree Quorum Protocols. 
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The number of sites (numsite) within the system is also varied. We have to set up 

different number of sites to get different performance results. 

The total number of data (numdata) and the frequently accessed data(accd) can affect 

the data conflict of the simulation. 

In addition, the Disk I /O time (diskio) and the Computational Cost (op_cpu) are the 

time cost of executing a transaction operation. 

The following are the parameters for the system:-

Parameter Meaning 

sim_time Simulation Time of the System Model 

numsite number of site 

numdata number of data 

accdata number of data access 

lar_tm interarrival time of transaction 

maxoper maximum number of operation 

ratiorw ratio on the number of read write operation per transaction 

msg_cpu cpu time for processing receive or send message 

transmit—delay delay time for message transmission 

bandwidth speed of transferring number of bytes per second 

diskio disk io time 

op_cpu computational cost for a transaction 

Table 5.1: TRS, Tree Quorum, Majority Quorum Consensus Models' Common Parameters 

The Table 5.1 shows the common Parameters setting of TRS, Majority Quorum and 

Tree Quorum. However, for the Tree Quorum and Majority Quorum Model, we have to 

consider one additional parameter, time out period, i.e. the maximum period that a site 

will wait for a lock it requests. After timeout, if the site still cannot acquire the lock, it 

will assume that deadlock occurs and it will abort its transaction. 

I 
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I Parameter Meaning 

timingout Maximum time a site will wait for a lock, when time is out, 

the corresponding transaction will abort 
I 

； Table 5.2: Additional parameters for Tree Quorum and Majority Quorum Models 

For TRS, there are also some other parameters to be considered. They are the TRS 

period, i.e. the fixed interval of time at which each site will broadcast a batch of public 

transactions and the latest version of shared-private data. Moreover, we also have to 

consider the number of public and local data, unlike the traditional protocols which just 

treat all the data as public type. The ratio of local transaction to public transaction is 

also one of the TRS parameters. 

Parameter Meaning 

TRS TRS period for broadcasting a batch of public transaction and 

latest version of shared-private data 

numpublic number of public data for all replicated sites 

numlocal~~ number of local data each site 

ratio ratio of local transaction to public transaction 

Table 5.3: Additional parameters for TRS Models 

After formulating the simulation system, we have to consider the performance metrics 

of the simulation system for comparison and analysis. The measure of the performance 

of the system mainly bases on the response time of the transactions. In addition, the 

throughput of the system is monitored so as to find out the breakdown point of the 

system for TRS, Majority Quorum and Tree Quorum protocols. Moreover, the commit 

rate of the transactions against data conflict, site failure and partition failure is measured. 
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I 
1 . 
I The following parameters would be measured from the simulation system:-

.i 
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j Performance Index Meaning 

i throughput Number of transactions completed per second 

I response time average response time of transactions 

I Commit rate number of transactions committed 

Table 5.4: TRS, Tree Quorum and Majority Quorum Consensus Common Models' Metrics 

For TRS, the overall response time of both public and local transactions, the response 

time of public transactions and the response time of local transactions are measured. 

Performance Index Meaning • 

overall response time average response time of both local and public transactions 

public response time average response time of public transactions 

local response time~~ average response time of local transactions 

Table 5.5: Additional TRS Model Performance Metrics 

A number of basic parameter settings are as follows:-

Performance Index Value 

Number of Operations per transaction 20 

Disk I/O 0.007s 

Read Write Ratio on Operation 6:4 

Simulation Time — 5000s 

Interarrival Time of Transaction 20s 

Ratio of Local to Public Transaction 1:1 

Number of local data each site ^ 

Number of public data each site 1000 

Transmit Delay 0.3s 

Message Size 100 %tes 

Message Header Size 32 bytes 

Bandwidth 1 乂 10̂  bytes/second 

Message CPU time — 0.000025s 

Number of Sites 4, 13 
Cache Hit — 80% 

CPU time for operation 0 

Ratio of Local to Public Transaction 1:1 

Table 5.6: Basic Model Metrics 

The performance is studied by the following experiments. They include: 
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1. variation of TRS period, 

2. variation of clock synchronization accuracy, 

3. variation of the ratio of Local to Public Transactions, 

4. variation of message transmit delay, 

5. variation of interarrival rate of transactions, 

6. variation of transaction computational cost, 

7. variation of disk I /O time, 

8. variation of cache hit ratio, 

9. variation of number of data access, 

10. variation of ratio of read/write operation, 

11. variation of one particular failed site, 

12. variation of number of sites available, 
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5丄1 Experiment 1 : Variation of TRS Period 

In this experiment, the simulation is done with 4 sites and 13 sites respectively. The length 

of simulation time is 5000s. Each transaction has 20 operations and each transaction has 

the ratio of read/write operation 6:4. The computational cost is Os and the disk I /O time 

is 0.007s with the cache hit ratio of 80%. The interarrival time of transaction is at each 

site 20s. The ratio of local to public transaction is 1:1. The number of public data is 1000 

and the local data for each site is 100. The message size is 100 bytes and the message 

header size is 32 bytes, the bandwidth is 

1x10® bytes/second, the message transmit delay is 0.3s and the message CPU time is 

0.000025s. 

For different values of the TRS period, we find out the behavior of Transaction Replica-

tion Scheme by measuring its response time and the number of versions of shared-private 

data stored. The range of TRS period variation is from 0.8s to 3s. 

Performance Index Value 

TRS 0.8，1.0, 1.5, 2，2.5，3(second) 

Table 5.7: Experiment 1 Varying TRS period 
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i A Graph of TRS vs Response Time A Graph of TRS vs Response Time For Public Transactions 
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A Graph of TRS vs Response Time For Local Transaction 
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(c) For local transactions 

Figure 5.1: Experiment 1 The diagram of TRS period Vs Response time 

Figure 5.1(a) shows that when TRS period is decreased from 3 second to about 1 

second, the response time decreases correspondingly. However, after the minimum point 

(about 1 — 1.2 second), the response time will increase. This is because when the TRS 

period is too long, the public transactions have to wait for a longer time (greater TRS 

period) to be executed. Therefore, when the TRS period increases, the response time 

increases accordingly. On the other hand, if the TRS period is too short, it implies 

the public transactions have to be frequently broadcast. Moreover, the system may not 

always complete the execution of the batch of public transactions in a period. That is 

why the response time of A the transactions increases. In figure 5.1(c), the response time 
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of local transaction is very low compared with figure 5.1 (a). The response time of local 

transaction is not much affected by the different size of TRS period. This is because the 

local transaction are executed immediately under node autonomy and so there is no close 

relationship with the TRS period. 
:i 
•i 
I 

i 
I A Graph of TRS period vs Number of Versions 
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i 

Figure 5.2: Experiment 1 The diagram of TRS period Vs Maximum number of versions 

I of shared-private data 

From Figure 5.2(a), the number of versions of shared-private data we needed is about 

40 to 110. This is the maximum number of old versions of all the shared-private data a 

site has to keep during the simulation time. The number of data that a site has to store 

is small. Therefore the data storage for shared-private data is not a problem in TRS. 

I 、 
( 
•！ 

Conclusion 
•！ 

:i 

i The choice of TRS period is rather significant. If the TRS period is too large, the response 

j time becomes great. If the TRS period is too small, the response time becomes la rger 

j too. In the following experiments, we will use a TRS period of 2.0 seconds. 
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j 5.1.2 Experiment 2 : Variation of Clock Synchronization 

\ From [Mil88], the network time protocol NTP synchronizes clocks of nodes on geograph-

ically distributed networks. It does this at low cost and provides clocks that are synchro-

nized to within a few milliseconds of one another. NTP is running on the internet today 

and is used to synchronize clocks of nodes throughput the United States, Canada, and 

various places in Europe. Since clock synchronization belongs to the lower levels of the 

system, and it is outside the scope of this thesis, we do not consider the overhead of clock 

synchronization. 

As TRS has to broadcast messages periodically, that is according to the length o f 

TRS period. We do an experiment about the variation of clock synchronization to find 

out whether it w ill deteriorate the performance of TRS. We vary the clock synchronization 

from 0 to 9 milliseconds. As we can see from f igure 5.3(a) k (b), the accuracy of clock 

synchronization do not affect much the response time. This is because the optimal TRS 

period is about 1 second. This shows that the accuracy of cl ock synchronization is not a 

problem in TRS broadcasting. 

A Graph of TRS vs Response Time 
A Graph of TRS vs Response Time 4 -

:i z . \ • i 
y y ^ \ o Clock Synchronization=0,001 

1.9- . y ^ ® 3 _ \ + Clock Synchronization=0.005 
I A # p I * Clock Synchronization=0.009 

1 \ ̂ ^ ^ ' ^ 
1 g \\ ^,^^^ o Clock Synchronization=0.001 \ ^̂ ŝ̂ f(f""̂  

、^^^?^^ + Clock Synchronization=0.005 2 - L ^̂ ^̂ ^̂ ^̂ ,̂ f̂  
14 j^^^ 來 Clock Synchronization=0.009 ^ •• m ""̂ ^̂^ 
1.3。5 1 1.5 TRS 2 “ 3 1.sL ； i:i~~ "̂“̂ 2 i!i 3 

TRS 
( a ) 4 s i tes ( b ) 13 s i t es 

Figure 5.3: Experiment 2 The diagram of TRS period Vs Response time by varying clock 

synchronization accuracy 
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Performance Index Value 

Clock Synchronization 0, 1, 5, 9 (milliseconds) 

Table 5.8: Experiment 2 Varying Clock Synchronization 

Conclusion 

The accuracy of clock synchronization does not have any effect on the performance of 

TRS. 
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'i 

5丄3 Experiment 3 : Variation of Rat io of Local to Publ ic 
i 
•j 

Transaction 
.i 

In this experiment, we vary the ratio of local transactions to find out the impact on 

the performance by the introduction of the new transaction type, i.e. local transaction 

(unlike the traditional protocols). In this experiment, the interarrival time of transactions 

for each site is 20 second. 

Performance Index Value 

" ™ S " ~ ~ 2 

Local to Public transaction Ratio 2:1,6:1,10:1,14:1,18:1 

Table 5.9: Experiment 3 TRS Model: Vary Ratio of Local to Public Transaction 

A Graph of local transaction ratio vs Response Time 
2.2r 

o TRS sites=4 

2 ^ + TRS sites=13 
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local transaction ratio 

Figure 5.4: (a) For both Public and Local Transactions 

From Figure 5.4a, we observe that when the ratio of local transaction increases, the 

overall response time of both public and local transactions decreases. This is because 

the local transaction can be executed and committed immediately, which is unlike public 

transactions which have to wait for the arrival of TRS period to execute. 
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I A Graph of local transaction ratio vs Response Time For Public Transaction A Graph of local transaction ratio vs Response Time For Local Transaction 
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(a) For Public Transactions (b) For Local Transactions 

Figure 5.5: (b) Diagram of Ratio of Local to Public Transaction Vs Response Time 

Conclusion 

TRS performs better when there is a higher ratio of local transactions. 
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j 5-1.4 Experiment 4 : Variation of Number of Operations 

As TRS can reduce the number of messages among the operations within a transaction, 

so we verify its performance by varying the number of operations per transaction. The 

number of operations is varied from 5 to 25. In this experiment, as we compare with Tree 

Quorum and Majority Quorum protocols, the numbers of sites are 4 and 13 respectively 

since these numbers of sites can form the complete logical tree of Tree Quorum. 

c ^ ^ ^ ^ ^ 

(a) 4 sites 

^ ^ ^ 

i ^ ： ^ ^ ^ © ^ ^ 

® ® c i c ^ " ^ ^ © ^ ® 
(b) 13 sites 

j g g j i i @ @ @ ( ¾ ( ¾ ^ @ @ ® ® 0 © 

(c) 40 sites 

Figure 5.6: Logical Tree Structure of Tree Quorum 
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！ A Graph of Number of Operations vs Response Time for 13 sites 
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Figure 5.7: Experiment 4 The diagram of Number of Operations Vs Response time 

In Figure 5.7(a), the overall response time of both public and local transaction increase 

with the increase in the number of operations within a transaction. This is the same for 

local transaction (Figure 5.7c). In this experiment, we have the ratio of local to public 

transaction of 1:1. 
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I Performance Index Value 

Number of Sites 4, 13 
I _ ^ _ ^ ^ . . . _ _ _ ^ ^ ^ _ ^ ^ ^ ^ _ _ _ — _ — — ^ ^ _ ^ ^ — . — — — ^ — ~ — ~ — — — — - — ^ ~ ~ " ~ ~ ~ ~ ' ' ~ ' ~ ^ ~ ~ ~ ~ ~ " ~ " ~ " 

Ratio of Local to Public transaction 1:1 

TRS 飞 
Number of Operations 5,10,15,20,25 

Table 5.10: Experiment 4 Varying Number of Operations in a transaction 

As we want to compare the performance of TRS with Tree Quorum and Majority 

Quorum, to be fair for the traditional protocols, we generate only the public transactions 

in TRS. This is the same for the Tree Quorum and Majority Quorum, they also generate 

transactions which access the same set of public data. Figure 5.7(a) shows the comparison. 

While the number of operations per transaction increases, the response time for TRS, 

Tree Quorum and Majority Quorum increases. The overall response time of TRS is the 

best compared with Tree Quorum and Majority Quorum. 

The high rate of increase in the response time for Majority Quorum and Tree Quorum 

is due to the communication cost among the number of operations within a transaction 

for Quorum Consensus Protocols, this communication cost can be eliminated for TRS. 
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A Graph of Number of Operations vs Response Time for 4 sites A Graph of Number of Operations vs Response Time <or 13 sites 
30「 ^ 40 • 
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Figure 5.8: Experiment 4 The diagram of Number of Operations Vs Response time 

Conclusion 

TRS performs better than Tree Quorum and Majority Quorum when the number of 

operations of a transaction is high. 
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5.1-5 Experiment 5 : Variation of Message Transmit Delay 

We vary the message transmit delay time to verify whether TRS performs better for high 

message cost. In Figure 5.9a, b and c，we have the TRS simulation experiments with the 

ratio of local to public transaction 1:1. The response time of total transactions, public 

transactions and local transactions are measured respectively. The range of message 

transmit delay is from 0.01s to 2s. 

Performance Index Value 

Number of Operations ^ 

Simulation Time 5000s - _ • 

Interarrival Time of Transaction 80s 

Time Out 100s . -

TRS period ‘ ls (message transmit delay < Q.5s) 

“ ‘ 2s (message transmit delay==0.5s), 

‘ 10s (message transmit delay > 0.5s) 

Message Transmit Delay 0.01, 0.02, 0.04, 0.06, 0.08, 0.2, 0.4, 0.5’ 1，1.5, 2 (second) 

Table 5.11: Experiment 5 Varying Message Transmit Delay 

The TRS period has to be increased so as to ensure that the batch of public transac-

tions can be received within one TRS period. For the public transactions (Figure 5.9b), 

the increase in the message transmit delay causes the increase in the response time of 

public transactions. This is because the batch of public transactions are broadcast at 

the end of each TRS period. Thus, if the time for broadcasting message is longer, the 

response time is also longer. However, for local transactions (Figure 5.9c)’ as the local 

transactions are executed immediately under node autonomy, it is not affected by the 

message time. As we want to compare the performance of TRS with Tree Quorum and 

Majority Quorum protocols, TRS is executed with public transactions only which access 

the same set of public data as Quorum Protocols. When the message cost increases, the 

response time increases correspondingly. The response time of TRS is much lower than 

those of Majority Quorum and Tree Quorum. 
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•] A Graph of Message Trasmit Delay vs Response Time for public and local transaction 
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Figure 5.9: Experiment 5 The diagram of Message Time Vs Response Time for TRS 

Figures 5.10 a k b shows that rate of increase in response time in TRS is much lower 

than those of Majority Quorum and Tree Quorum protocols. 
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Figure 5.10: Experiment 5 The diagram of Message Time Vs Response Time for TRS, 

Tree Quorum and Majority Quorum 

• Conclusion 
i 

； TRS performs the best among the tested protocols when the message transmit delay is 
% 

】 reasonably large. 
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5.1.6 Experiment 6 : Variation of the Interarrival Time of 

Transactions 

Through this experiment, we can find out which system performs the best in a busy 

system, i.e. the interarrival time of transactions is small. 

Performance Index Value 

TRS period “ 2s 

Interarrival Rate of Transaction 10,30,50,70,90 (second) 

Number of Sites 4, 13 

Table 5.12: Experiment 6 TRS Model: Vary Interarrival time of transaction 
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(b) Public Transaction (c) Local Transaction 

Figure 5.11: Experiment 6: The diagram of Interarrival time of Transaction Vs Response 

time for TRS 
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We set up the experiment with 4 and 13 sites and with the interarrival time of trans-

action from 10 second to 90 second. 

The response time decreases with the increase in the interarrival time of transactions. 

•j 

'i A Graph of Interarrival Time of Transactions vs Response Time A Graph of Interarrival Time of Transactions vs Response Time 
! 120r 80「 

\ TOO \ o TRS 
； \ 。 r 7 0 - \ + TQ 

: F \ • \ 

' r ^ V _ 1 < ^ 
2。- ^ V - ~ r ^ ~ ~ T 10-

: 0 ^ _ e o 

- 2 0 30 |nt:iva|ii=fT_=:ng ^ 即 . 0 % 20 30 |nt:ivai:T=ions ^ ^ 90 
(a) 4 sites (b) 13 sites 

Figure 5.12: Experiment 6: The diagram of Interarrival time of Transaction Vs Response 

time 
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.1 For Majority and Tree Quorum protocols, the commit rate of transactions is decreas-

ing, they are overloaded at about the 30s interarrival time point. 

A Graph of Interarrival Time of Transactions vs Commit Rate A Graph of lnterarrh/al Time of Transactions vs Commit Rate 1「 - *—— ^ 1「 ^ 
^ ^ , : ^ ^ ^ ^ ^ 円 ^ ^ - ^ ^ ^ 

0.9 - %̂^̂^̂^ * QC ^- '̂'̂  ^̂ ^̂ .̂̂ -̂"‘̂  

|o.6- / i ^y^ / 1+ TQ 
.| A |0.94.^ / 来 QC 

V 〜: / 
0 . 2 y k 

' i 20 30 |n,e:|:_fl ” ^ 卯 ^ “̂ l^_i:i_eti^ ^ 90 

(a) 4 sites (b) 13 sites 

Figure 5.13: Experiment 6: The diagram of Interarrival rate of Transaction Vs Completion 

Rate 

Conclusion 

As the interarrival time of transactions decreases, TRS performs the best as it has the 

lowest response time compared with Majority and Tree Quorum Protocols. 
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5丄7 Experiment 7 : Variation of Operation CPU cost 

By varying the CPU cost, we can verify the impact of computational cost on TRS when 

the computational cost is an overhead. However, in business systems, it is rare that the 

computational cost is high. Instead, the computational cost is usually negligible. The 

computational cost we vary is the cpu time used for each transaction. The computational 

cost is varied from 0 second to 0.9 second. 

A Graph of Operation CPU cost vs Response Tim© for public and local transaction 

i X ^ 
0 y ^ eT 0 4 sites 
g Z ^ y ^ M 13 sites 

、^̂  
J , • • 1 ‘ ‘ ‘ ‘ 
^0 0.1 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9 

Operation CPU cost 
(a) For Both Public and Local Transactions 

A Graph of Operation CPU cost vs Response T.me for public transaction A Graph of Operation CPU cost vs Response Time for local transaction 

:l y^ 1 Z 
1 5 - X ' ^ Z P y ^ 1 ° 4si.es 

^ Z X o 4 sites ® ^ X 13sites 
g4.5 - / / * 13sites o . ^ X ^ I ^ 

i ^ ' k ^ 
2^ > ‘ ^ f ^ ^ ± ^ 5 ^ 09 0 oTi 0 ^ ^ ^ 0.5 0.6 0.7 0.8 0.9 
0 0.1 0.2 0.3 opeOra1ior̂ CP^5cos, 0.6 。.? °-« " '^ Ope^«onCPUcost 

(b) For Public Transaction (c) For Local Transaction 

Figure 5.14: Experiment 7: The diagram of Operation Computational cost Vs Response 

time 

As the increase in computational cost, there is increase in the response time for both 

public and local transactions. 
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1 Performance Index Value 

:| TRS 2s 

i Simulation Time 5000s 

I Computational cost 0.0, 0.1, 0.3, 0.5, 0.7, 0.9(second) 

Table 5.13: Experiment 7 TRS Model: Vary Computational cost 

A G r a p h of O p e r a t i o n C P U c o s t v s R e s p o n s e T i m e A G r a p h of O p e r a t i o n C P U c o s t v s R e s p o n s e T i m e 

3 0 • ^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂  3 5 

20.___^^^^- ^^^-^^ 25 ^ ^ ^ ^ K ^ 

1 ^ ^ | 2 O - ^ ^ K ^ ^ 
P ^ ^ ^ 0 T R S ^ ^ ^ ^ ^ 
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E. ——MQ |i5： + TO 
S ^ — M Q 
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5 ^ _ _ e ^ ^ ^ " ^ ^ " " ‘ ^ 。 ' ^ ^ ^ _ - - ^ ^ ^ ^ ^ ^ “ ^ ^ ^ 一 
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(a) 4 sites (b) 13 sites 

Figure 5.15: Experiment 7: The diagram of Operation Computational cost Vs Response 

time 
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j 

The commit rate of transactions is not much affected according to the increase in 

i computational cost. 

1 

i A Graph of Operation CPU cost vs Commit Rate A Graph of Operation CPU cost vs Commit Rate 

； I ^ ^ ^ ^ ^ — ^ K , ^ = ： = ： = . = — ^ ^ 
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0.98- 1+ TQ 0.98- J _ M Q 
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I 1 
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0.93 - 0.93 -

0.92 - 0.92 -

0.91 - 0.91 -

。 . 9 ! 。 、 。 : 2 。 : 3 。 : ； 』 ; 5 。 : 6 。 : 7 0 ： 3 。 : 9 。 . 9 。 0 . 1 0 . 。 、 二 一 ： 广 。 ” 。 』 ^ 

(a) 4 sites (b) 13 sites 

Figure 5.16: Experiment 7: The diagram of Computational cost Vs Completion Rate of 

Transactions 

Conclusion 

TRS performs the best compared with Tree and Majority Quorum protocols with the 

increase in computational cost. 
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5丄8 Experiment 8 : Variation of Disk I / O t ime 
j 

； By varying the disk I /O time, we can verify the impact of disk I /O time on the performance 

I of TRS, Quorum Consensus and Tree Quorum. The disk I /O time we vary is from 0.001 

second to 0.1 second. 
1 

A Graph of Disk I/O vs Response Time for public and local transaction 

2.7「 

2. _ ^ . 

2.5 - 5̂ ___•—5*̂ ^ 

厂 
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] ‘ Disk 1/0 

(a) For Both Public and Local Transactions 
A Graph of Disk I/O vs Response Time for local transaction 

A Graph of Disk I/O vs Response Time for public transaction 0.7「 M 
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2 . ! o ~ ^ 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.01 0.02 O.Od o isk l /O 

Disk I/O 
(b) Public Transaction (c) Local Transaction 

Figure 5.17: Experiment 8 The diagram of Disk I /O time Vs Response time 

As the increase in disk I /O time, the response time for both public and local transac-

tions also increases. 
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Performance Index Value 

Message Transmit Delay 0.3s 

Interarrival Time 80s 

Simulation Time 5000s 

TRS 2s 

Number of Operations 20 

Disk I /O 0.001, 0.005, 0.01，0.02’ 0.04, 0.05, 0.06, 0.08, Q.l(second) 

Table 5.14: Experiment 8 Varying Disk I /O time 

AGrapho fD isk l /OvsResponseT ime AGrapho fD isk l /OvsResponseT ime 
25「 30[ 

2 5 ^ ^ J ^ ^ ^ _ ^ _____ “ 
2 。 " " " " ^ ^ " " ^ " " " " ' " ^ ' ' X ^ ^ ^ ^ _ . . , , _ _ _ _ ^ ^ ^ ^ ^ ^ ^ ^ " ^ " " “ ^ ‘ 

2 0 -

® 

i l 5 ^ ^ ^ , ^ ^ 
^ - ® H——I ^ 

i § 1 5 -

I 。 TRS I 
a 10 - + TQ °^ o TRS 

* MQ 10 - + TQ 

* MQ 

5- 5-

, _ ^ ^ _ ^ _ ^ e 3 ^ _ ^ _ ^ e ° 

。！ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 O.OB 0.的 0：1 % 0.01 0.02 0.03 0.04 ^ ^ 5 ^ 0.06 0.07 0.08 0.09 0.1 

Disk 丨/O 

(a) 4 sites (b) 13 sites 

Figure 5.18: Experiment 8 The diagram of Disk I /O time Vs Response time 

For the Majority Quorum, Tree Quorum protocols and TRS, the response time does 

not change with the increase of the disk I /O time. 

Conclus ion 

The performance of TRS are not affected by the increase of disk I /O time. 
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5.1.9 Experiment 9 : Variation of Cache Hit Ratio 

j The percentage of cache hit affects the execution time of the transaction. The cache hit •| 
I 

ratio we vary in this experiment is from 20% to 80%. 

i 
j 

A Graph of Cache Hit vs Response Time for public and local transaction 
2.25r 

51«̂ ^̂ ^ 0 4 sites 
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Cache Hit 

(a) For Both Public and Local Transaction 
A Graph of Cache Hit vs Response Time for local transaction 

A Graph of Cache Hit vs Response Time for public transaction 0.18「 I 
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(b) Public Transaction (c) Local Transaction 

i Figure 5.19: Experiment 9 The diagram of Cache Hit Vs Response time 

As the cache hit ratio increases, the response time of both public and local transactions 

decrease. 
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Performance Index Value 

Transmit Delay 0.3s 

Interarrival Time of transaction 8Qs 

Simulation Time 5000s 

Disk I /O " 0 W s — 

Number of Operations 20 

TRS 2s 一 

Cache Hit 20%, 4 0 %， 6 0 %， 8 0 % 

Table 5.15: Experiment 9 Varying Cache Hit 

A Graph of Cache Hit vs Response Time A Graph of Cache Hit vs Response Time 

20「 ^ ^ 30「 
_ _ _ ^ " " " " " ^ ^ " ^ 一 ^ “ ^ 
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2 3 4 cach5eHit ‘ CacheHit 

(a) 4 sites (b) 13 sites 

Figure 5.20: Experiment 9 The diagram of Cache Hit Vs Response time 

There is nearly no change for the response time in TRS, Majority Quorum and Tree 

Quorum protocols with the change of the cache hit ratio. 

Conclusion 

The size of cache hit ratio is not significant enough to affect the performanace of TRS, 

Tree Quorum and Majority Quorum. 
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5.1.10 Experiment 10 : Variation of Number of Data Access 

Through this experiment, the variation of the number of data access is used to adjust the 

data conflict such that we can verify the performance of TRS, Tree Quorum and Majority 

Quorum under the situation of data conflict. As the total number of public data for each 

site is 1000. We vary the number of data access for each site from 50 to 900. The set of 

varied data is the same. 

A Graph of Number of Data Access vs Response Time A Graph of Number of Data Access vs Response Tlme 
2 0 r 35 • 

./ , 
16- 3。. ^ ^ 
14 4 ^ _ I I , , h 25 - \ \ _ ^ 

” . ! - \ 
|10- I \ , , , ^ 
I o TRS i " l5-
I 8 - + TO °^ 0 TRS 

——MQ + TO 
6 - L_ l _ J 1。- 一 M Q 
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5 -
2 • Q _ _ g _ _ ~ ^ e o 0 0 ^- e e o 

。！ 100 200 300 恥 。 5 ^ 6 ^ 7 ^ «00 900 °0 100 200 咖 ： 卩 豸 = 。 ^ : 700 BOO 900 

Number of Data Access 

(a) 4 sites (b) 13 sites 

Figure 5.21: Experiment 10 Varying Number of Data Access Vs Response Time 

In Figure 5.23’ as the number of data access is decreased, the percentage of data 

conflict increases. The performance of TRS is not affected much because there is no 

locking required to secure the data. However, for Majority Quorum and Tree Quorum 

Protocols, data locks are required during data access and that is why the performance of 

Majority and Tree Quorum protocols is poorer. 
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Performance Index Value 

Interarrival Time of transaction 80s 

TRS ~Ys~~ 

Number of Data Access 50, 100, 300, 500, 700, 900 

Table 5.16: Experiment 10 Varying Number of Data Access 

From figure 5.25(b), For Majority Quorum and Tree Quorum, their commit rate are 

decreasing due to data conflict access. 

A Graph of Number of Data Access vs Commit Rate A Graph of Number of Data Access vs Commit Rate 
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+ TQ ^ / ^ 
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Number of Data Access 

(a) 4 sites (b) 13 sites 

Figure 5.22: Experiment 10 Varying Number of Data Access Vs Commit Rate 

Conclusion 

The performance of TRS is not affected -by the amount of data conflict. However, for 

Majority Quorum and Tree Quorum Protocol, its performance decrease by the increase 

in data conflict. 
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5丄11 Experiment 11 : Variation of Read Operation Rat io 

By varying the ratio of the read operation to write operation, we find out whether the 

performance of TRS, Tree Quorum and Majority Quorum are afFected. The ratio of read 

operation to write operation is varied from 20 to 100%. 

Performance Index Value 

Interarrival Time of transaction 80s 

TRS ^ ~~ 

Read Operation Ratio 20%, 40%, 60%, 80%, 100% 

Table 5.17: Experiment 11 Varying Read Operation Ratio 

A G r a p h of Pe rcen tage of R e a d vs Response T i m e A G r a p h of Percen tage of R e a d v s Response T i m e 

2 5 r 30 -

. X _ _ _ ^ - - - ^ ^ - ^ ^ 

____̂ ^ *____^^^^ ^ \ ^ 
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… 1 0 - 来 M Q 

* M Q 
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^ Q e - 0 

1 30 ；0 s o eO f A j ' ° B O " “ “ ^ ^ - - 30 40 B O _ , - , , J O 80 90 100 

Percen tage of R e a d 

(a) 4 sites (b) 13 sites 

Figure 5.23: Experiment 11 Varying Read Operation Ratio Vs Response Time 
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From figure 5.26, as the ratio of read operation increases, the response time decreases 

for Tree Quorum Protocol. This is because the tree quorum protocol have a read quorum 

which consists of just one site, i.e. the root of the logical tree. Unlike Majority Quorum, 

which have the same weight for both read and write quorum. There is nearly no change 

on the response time for Majority Quorum Protocol. For TRS, there is no problem of 

acquiring quorums, that is why there is no change on the response time. 

I： 

Conclusion 

Both the performance of TRS and Majority Quorum is not afFected by the ratio of read 

operation within a transaction. The response time of Tree Quorum is decreased by the 

increase in the ratio of the read operation. 
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I 5.1.12 Experiment 12 : Variation of One Site Failed 

As each site has a unique site identity number in this system, we vary different site failed 

each time. That is varying different site ID failed. Therefore, we can find out whether 

I there is any effect on the performance of the system by the failure of different site. In 

this experiment, the success rate of first trial is measured. That means, the success rate 

is measured due to the site requests for the quorum at first round only. As described in 

the Section 3.1.11，Virtual Partition Protocol is used in TRS. 

A Graph of One Site failed vs Success Rate of First Trial 
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(a) TRS for public transaction only 
A Graph of Site Failed vs Success Rate of First Trial A Graph of One Site Failed vs Success Rate of First Trial 
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i %L--î  1 6 8 W ^ °4 2 4 6 8 tS 2̂ 14 
1 。 2 si teFai led OneSiteFa,led 

(b) Tree Quorum (c) Majority Quorum 

! ) 

I Figure 5.24: Experiment 12 Varying of Sites Failed Vs Success Rate of First Trial 
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I Performance Index Value 

j Transmit Delay 0.3s 

Interarrival Time of transaction 80s 

Simulation Time 5000s 

TRS 2s 一 

Site Failed 1-4, l-TT 

Table 5.18: Experiment 12 Varying of Sites Failed 

The success rate of first trial is the highest for TRS. It implies that even under the site 

failure condition, TRS also performs better compared with Tree Quorum and Majority 

Quorum Protcols. As described in Section 2.2.2, the tree quorum protocol employs the 

dimension of read quorum <1,2〉and write quorum <3,2>. Thus, the failure of the site 

1 (i.e. the root) makes the success rate of first trial zero because the root is the critical 

site of the logical tree at first trial. 

0̂ "̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ¾ 
Figure 5.25: The diagram of Ternary Tree 

Conclusion 

Even there is a site failure, TRS also performs the best compared with Tree Quorum and 

Majority Quorum Protocols. 
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5.1.13 Experiment 13 : Variation of Sites Available 

In this experiment, we vary the number of sites available, that means the number of 

sites which function normally. We vary the number of sites available from 1 to 4 (where 

the total number of sites is 4) and from 1 to 13 (where the total number of sites is 13) 

respectively. Through this experiement, we want to find out how TRS performs under 

failure condition. 

A Graph of Number of Sites Available vs Success Rate of First Trial 
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Figure 5.26: Number of Sites available Vs Success Rate of First Trial 
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Performance Index Value 

Transmit Delay 0.3s 

Interarrival Time of transaction 80s 

Simulation Time 5000s 

Disk I /O 0.007s~~ 

Number of Operations ^ 

TRS 2s 一 

Sites Available 1-4，1-13 

Table 5.19: Experiment 13 Varying of Sites Failed 

As the number of sites failed increases, the commit rate of transaction decreases. For 

Tree and Majority Quorum, the commit rate decreases to zero when the number of sites 

failed decrease to a certain number. TRS performs better, this is because even the number 

of sites failed is more than half of the total number of sites, there are still local transactions 

can be executed under node autonomy. 

Conclusion 

Even when more than half of the total number of sites failed, there is still success rate of 

first trial for TRS, which is better than those of Tree Quorum and Majority Quorum. 
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iî
^̂
^̂
^̂
^̂
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Chapter 6 

Conclusion 

From the above Simulation Results, we can conclude that TRS performs much better than 

Tree Quorum Protocol and Majority Quorum Consensus Protocol under some conditions. 

Also, Tree Quorum Protocol performs better than Majority Quorum Consensus Protocol. 

For the TRS model, selecting TRS period is rather significant because it would affect the 

overall performance, especially the response time. If TRS period is too large compared 

to the time required to execute a batch of public transactions, the response time will 

be greater. However, if the TRS period is too short, execution of a batch of public 

transaction cannot be finished within one TRS period. Moreover，the frequency of message 

broadcasting increases. So, the response time increases if the TRS period is too short. 

TRS performs better when the ratio of local transactions is larger than that of public 

transactions. As the local transactions can be executed immediately, its response time 

is rather short. The overall response time is deteriorated by the high response time of 

public transactions. 

Compared among TRS, Tree Quorum and Majority Quorum Consensus Protocol, TRS 

performs much better than the others when the number of transaction operation is rea-

sonably large, for example, 25. 

TRS performs better if the message cost is much greater than the disk I /O and com-

putational cost. The performance of TRS is not much affected by the variation of disk 

I /O and computatoinal cost. 
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Chapter 6 Conclusion 

From [Mil88] the clock synchronization is within a few milliseconds, compared with 

TRS period which is in the order of second, the accuracy of the clock synchronization 

does not have much effect on the performance of the TRS. 

I Also, data conflict does not affect the performance of TRS because no locking is 
i 
j required due to data access. Unlike TRS, the performance of Tree and Majority Quorum 
I 

Protocols is affected by the data conflict. 

To conclude, TRS is suitable for the nowadays business applications which involve 

high message cost (e.g. in WAN), and which are more l/0-oriented than computation-

oriented. 

i 
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Appendix A 

Implementation 

A.1 Assumpt ions of System Mode l 

The network is assumed to be completely connected. That is, when a site broadcast 

messages to all the other sites, it sends message to the other site point-to-point directly. 

Each site holds a different number of local data. In our design, it is assumed to be a 

maximum number of 1000 local data for each site. 

And, each site holds the same mmber of public data. This number can be set to a 

value <二 100. 

f ^ " ^ N ^ / R e s o u r c ^ 

( R _ r c e k ^ _ ^ f (Facility) 

I ^ c ^ i ^ : ^ ^ ^ ^ t ^ ^ Y ^ ^ " ^ ^ 
1 Network \ / site \ 

Transaction Arrive >^ (Process) j V " ~ Transaction Arrive 
_ _ _ _ _ _ J V ^ ^ _ _ ^ \ Manager 1^^ ^ ^ v o c ^ 

^ ^ ~ ^ > ^ ~ ~ ^ ^ ^ " ^ ^ > ^ 
/ Y 7 Resource \ 
f Resource ) ( (Facility) 1 

^ C " ^ " ^ ^ ^ T A 
Transaction Arrive ~ ~ i ( P r o c e s s W ( ^p|.Qeess)| TmnsactionArrive 

Figure A.1: Simulation Model 

A.1.1 Program Description 

First of all, we have to simulate a number of sites in the system. In our design, we have 

implemented 4, 13 and 40 sites and a site is programmed as a class called "serve". 
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As each site can process the same function, there are member functions for the class 

"serve". Each site is distinguished by its unique identity number and in our design is 

"serve_Qo". For example, site 1 has serve.serve_QO=l. 

At the beginning of the program, there are two member functions for this class "serve" 

invoked to initialize and start the site's execution. They are "serveinit" and "start" re-

spectively. 

C o m m o n Funct ional Modules for TRS , Tree Quo rum and Ma jor i ty Q u o r u m 

• "serveinit" is to initialize the version and timestamp of each site's data. 

• "start" is a process created to simulate that the site is now starting to operate 

throughout the simulation time. In our design, all the "start" processes created at 

the same time and executed independently. 

• "sending" is a process created and get the site's cpu time (simulated by site's facility) 

for sending message. 

• "usechannel" is a process invoked after completion on the holding of site's cpu time 

for sending message. It is used to reserve the facility "channel" and hold the message 

transmit time to simulate sending the message. 

• "receivetime" is to simulate the receipt sites holding message cpu time to receive 

the commit message. 

• "result" is to generate each sites performance on the execution of transaction. 

• "report" and "mdlstat" are CSIM function to report on the utilization of each CSIM 

facility used. 
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Start 

丨 Serveinit 

丨 一 ^ ^ ^ ^ ^ ^ ^ ^ 
Transaction Broadtime Exelocal Exepublic 

7\ / \ Committime 

\ / \ Exetran 
Appendlocal Appendpublic / \ Exeop Sendcommit 

/ \ Usechannel 

, / \ I 
““ , , , Receivetime 

Getallpublic Broadcast Checkbroadcast ——「 」 
Receivecommit 

Sending 

Checkresp 

Sendbroad 

I 

Usechannel 

Recei vebroadtime 

I 
Receivebroad 

I — 
Servesch 

Figure A.2: Program module of TRS 

A.1.2 TRS System 

The START process is created at each site, the START process invokes four processes 

simultaneously. They are transaction, broadtime, exelocal and exepublic. 

TRS which include the following functions: 

• "transaction" is a process which is executed throughout the simulation time and used 

to generate the local and public transactions to its own site. We can make variation 

on the interarrival rate of transaction by using "exponential rate”, variation on 

the ratio of local to public transaction. And each transaction consists of 1 to 20 

(uniform)read/write operations. The cpu time needed to execute an operation is 

varied by input of the "cpu time”. The data access consists of local or public types, 
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the site belonged to if it is a local data and the identity number of data for that 

I site. When local transaction arrives at a site, it will be scheduled to a queue for 
i 

！ holding the local transactions. Similarly, for the public transaction arrival, it will 

be scheduled to a queue for holding the public transactions. 

• "exelocal" is a process created and executed throughout the simulation time. It is 

used for handling the local transaction received and then pass to "exetran". When 

there is no local transaction, this "exelocal" process will wait until another local 

transaction arrive. 

• "exetran" is a process to execute the local transaction independently which is used 

for passing the transaction operation to "exeop". 

• ”exeop” is a process to find out whether this site's cpu(simulated by CSIM class 

"facility") is available or not. If available, it will execute the local transaction 

immediately and execute the transaction according to the executed time it required. 

Else if the site's cpu is not available, this "exeop" process will be appended to the 

queue and wait until the site's cpu is available. 

• ,,broadtime,, is a process including both two process of "broadcast" and "check-

broadcast". 

• "broadcast" is a process created and executed throughout the simulation time. It 

is used to broadcast all the public transactions and the latest version of its local 

data that are received within a TRS period. That is, when TRS period arrives, 

this "broadcast" process will send all the public transactions and the latest version 

of local data received to all the other sites. During broadcasting, it calls a process 

I "sending". 

• ,,dieckbroadcast,, is a process to check whether the site can receive all the broadcast 

message from all the sites within a "time-out" period. Else, after "time-out", the 

network is assumed to be partitioned. 

86 



• "receivebroadtime" is a process created for getting the receiver site's cpu time (sim-

ulated by site's facility) for receiving message. After that, it calls "receivebroad". 

• "receivebroad" is a process created to store up the public transactions and the latest 

version of local data received from the sender's site. After storing, the site will check 

I out whether the messages are received from all sites. If so, the site will call another 

process "servesch" and set the event "done". After so, the process "receivebroad" 

I will terminate, 
i 

• "servesch" is a process created to schedule the public transactions received according 
. I 

to the timestamp order of the transaction. 

I • "exepublic" is a process created to execute the public transactions which are already 

scheduled. In our design, it will wait until the event "done" set. So, the process 

"exepublic" starts to execute the scheduled public transaction. It also has to hold 

！ the site's cpu time (by reserving the site's facility). If the site's cpu is imavailable, it 

has to schedule to a queue waiting until the site's cpu is available. When a batch of 

public transactions are committed in the site, it will invoke a process "committime". 

• ,’committime” is a process created to send commit message to all the other sites to 

acknowledge them a batch of public transactions are committed. When a site receive 

•i commit message from all sites, this batch of public transactions are confirmed to be 

I committed also. 
I 
1 

I -
I • append is used for queuing up the incoming local transaction. 

I 
• appendpublic is used for queuing up the incoming public transaction. 

• getallpublic means that the site receives the batch of public transactions within a 

TRS period from all sites. 

I . 

j • sendbroad is used to invoke the receipt site to receive the broadcast message. 

‘ • sendcommit is used to invoke the receipt sites to receive the commit message. 

87 



1 ‘； 

I • receivecommit is used to check whether the commit message of the same batch of 

I public transaction within a TRS period are received from all sites. 

• checkresp is responsible for checking the response time of a batch of public transac-

tion. 

Da t a Structures 

Fields of Transaction—type 

• arrive time of the transaction 

• number of operation in a transaction 

• read operation or write operation 

• access which site's data 

• access which data for that particular site 

• access local or public data for public transaction 

• cpu time for processing the operation 

Fields of Commit_Batch_Public_Transaction 

書 timestamp of the batch 

• number of public transactions per batch 

A.1.3 Common Functional Modules for Majority Quorum and 

Tree Quorum Protocol 

At the beginning of the program, there are two member functions for this class "serve" 

； invoked to initialize and start the site's execution. They are l)"serveinit" and 2)"start" 
« 

respectively. 
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Serveinit 

I ! i 
i 
j 

I Transaction 

Exelocal 

i 

I 

i Exetran 
i 

Sending 

i I 

i Sendbroad 

Usechannel 
I '• • 

Receivebroadtime j • 

I Receivebroad 

i Getlock 

_ ^ ^ ^ ^ 
I Waitlock Freelock Releaselock 
I 

Figure A.3: The Program Module of Majority Quorum Consensus and Tree Quorum 

I • "transaction" is a process which is executed throughout the simulation time and 

I used to generate the transactions to its own site. We can vary the interarrival rate 

of transaction by using "exponential rate". And each transaction consists of 1 to 20 

(uniform) read/write operations. The cpu time needed to execute an operation is 

varied by input of the "cpu time". Each data object has its own identity number. 

When transaction arrives to a site, it will be scheduled to a queue for holding the 

transactions. 

I • sendbroad is to ask for "lock request" according to Majority Quorum Consensus, 
i 
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• receivebroadtime is to invoke the receipt sites to hold message cpu time to receive 

the lock request message. 

• receivebroad is that each site receives its lock message which it requests and has to 

check whether all the request lock message are received. 

I • getlock is to check the lock available or not. 

I • waitlock is a process such that if the lock requested is not available, wait it for a 
! 

"time-out" period. 

I • releaselock is for checking whether all the locks hold are released. 
i I 

1 • freelock is used for releasing the lock. 

1 A.1.4 Majority Quorum Consensus Protocol 

I • "exelocal" is a process created and executed throughout the simulation time. It is 

used for executing the transaction (arrived to its own site only). That is, when there 

j is transaction arriving to the queue, firstly, it will request its own lock for this data 

accessed. Then, it will invoke another process "sending" which sends the request 

丨 message for this data lock to the Majority of the sites. That is, in this case, as 

there are 13 sites total, and one of its own site's lock is already hold, so, it has to 

ask another 6 sites to get the locks respectively. When the other sites receive the 

1 request message, it will send the message back to the request site in case the lock 
j -

I is free. If the lock is hold already, then it will queue up to wait the free lock for 
] 

a time-out period. If after the time-out period, the site still cannot get the lock, 

it will abort the transaction. If the site can get the lock on time, it will wait until 

the majority request locks' message are received. Next, the site will execute the 

transaction in case its cpu is available. If not, it will schedule to the queue for the 

cpu. When the operation is executed, it will release its own lock. Then, it will send 

the release lock message to all the other majority sites. 
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A.1.5 Tree Quorum Protocol 

If there are 13 sites total, they are arranged as a ternary tree. There are read and write 

quorum. The read quorum has length and width as (1,2). i.e. site 1. The Write Quorum 

has length and width as〈3’ 2〉. i.e. either〈1,2,3,5,6,8,9〉or〈1,2,3,6, 7,8,9〉. 

• "exelocal" is a process created and executed throughout the simulation time. It is 

used for executing the transaction (arrived to its own site only). That is, when there 

is transaction arriving to the queue, it will request the lock according to the read 

or write operation by its read or write quorum. When the other sites receive the 

request message, it will send the message back to the request site in case the lock 

is free. If the lock is already hold, it will wait for a time-out period. If the site still 

cannot wait the lock after time-out period, it will abort the transaction. Else, if the 

site can get the lock on time, it will wait until all the request lock's message are 

received. After that, the site will execute the operation in case its cpu is available. 

If not, it will schedule to the queue for the cpu. When the operation is executed, it 

will release its own lock. Then, it will send the release lock message to all the other 

sites. 

j 

i 
i 

i 
i 

j . 

i 
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