
- i

FAST DATA-PARALLEL
RENDERING OF DIGITAL VOLUME IMAGES

BY

SONG Z O U

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF PHILOSOPHY

DIVISION OF INFORMATION ENGINEERING

T H E CHINESE UNIVERSITY OF HONG KONG

JUNE 1995

h�/统系馆書

1：：1 2 7 JOl 簡 肩

Acknowledgement

I would like to express my gratitude to my supervisor, Dr. W. Y. Ng, for his
always being supportive and his guidance and help throughout the two years.

I would also like to thank the members of Visual Information Lab, H.Z. Li,
W. Jiang, J. Yao, W. K. Cheung, Maxi Hui and Edward Yau, for their helpful
discussion, advice and support. 二

Finally, this thesis is dedicated to my parents and Amanda Kuet.

ii

Abstract

In the fast growing field of visualization in scientific and medical data, volume
rendering has emerged as a useful technique for inspecting volumetric objects.
Wi th appropriate assignment of color, degree of translucence and brightness to
voxels, the rendered scene may be seen “through" and its structure revealed.
Wi th different perspectives, the spatial relationship within the volume may be
examined. However, since the best parameters for rendering cannot be deter-
mined as a priori, it is desirable to adjust them interactively.

Interactive volume rendering is highly computation intensive since operations
are often repeated on large volume of data. SIMD parallel machines, where one
instruction is carried simultaneously on multiple processors, suit for the data
parallel algorithms in volume rendering.

This thesis discusses data parallel approaches to volume rendering. Col-
ors and opacities are assigned to each voxel. Then, they are resampled and
composited according to different perspectives. Techniques in different phases
of rendering such as data parallel resampling, ray composition as well as the
implementation issues on the parallel platform are given particular attention.

In data parallel resampling, we present a new matching algorithm which is
minimum in mismatch distance and flexible for different resampling schemes.

- iii

In parallel implementation, we propose a binary swap algorithm to reorder the
data in the SIMD processor array with low communication overhead. The Monte
Carlo ray composition is a fast algorithm for efficient ray composition.

‘ iv

Contents

1 Introduct ion 1

2 Rela ted works 7
2.1 Spatial domain methods 8
2.2 Transformation based methods 9
2.3 Parallel Implement at ion 10

3 Parallel computat ion model 12
3.1 Introduction 12
3.2 Classifications of Parallel Computers 13
3.3 The SIMD machine architectures 15
3.4 The communication within the parallel processors 16
3.5 The parallel display mechanisms 17

4 Data preparation 20
4.1 Introduction 20
4.2 Original data layout in the processor array 21
4.3 Shading 21
4.4 Classification 23

V

5 Fast data parallel rotation and resampling algorithms 25
5.1 Introduction 25
5.2 Affine Transformation 26
5.3 Related works 28

5.3.1 Resampling in ray tracing 28
5.3.2 Direct Rotation 28
5.3.3 General resampling approaches 29
5.3.4 Rotation by shear 29

5.4 The minimum mismatch rotation 31
5.5 Load balancing 33
5.6 Resampling algorithm 35

5.6.1 Nearest neighbor 36
5.6.2 Linear Interpolation 36
5.6.3 Aitken's Algorithm 38
5.6.4 Polynomial resampling in 3D 40

5.7 A comparison between the resampling algorithms 40
5.7.1 The quality 42
5.7.2 Implement at ion and cost 44

6 Data reordering using binary swap 47
6.1 The sorting algorithm . , 48
6.2 The communication cost 51

7 Ray composi t ion 53
7.1 Introduction 53
7.2 Ray Composition by Monte Carlo Method， . . 54

‘ vi

7.3 The Associative Color Model 56
7.4 Parallel Implementation 60
7.5 Discussion and further improvement 63

8 Conclusion and further work 67

Bibl iography 69

- • •

Vll

Chapter 1

Introduction

The technology advances in computed tomography (CT) and magnetic reso-
nance imaging (MRI)，confocal scanning microscopy, etc. as well as large scale
computer simulation complex systems such as fluid flow etc. have made 3D
digital image become popular. The analysis of such data set is by means of vi-
sualization. Volume rendering, as an emerging field in the area of Visualization
in scientific computing (ViSC) provides the ideal tool of such analysis.

By means of visualization, meaningful information from complex volume
data is presented by interactive graphics and imaging. Two kinds of techniques
are often used here, namely the graphic method and the volumetric method. In
a graphic approach, geometric surface primitives, such as polygons, curves are
fitted to the volume data with a binary classification to extract such primitives.
Therefore, the error due to the inaccuracy in classification may lead to visual
artifacts in the generated image. These artifacts may manifest themselves as
spurious surfaces (false positives) or erroneous holes (false negatives) [5]. Volume
Rendering, the volumetric technique, starts directly from the voxels and avoids

- 1

Chapter 1 Introduction

any binary classification. It is supposed to be free of visual artifacts due to the
error of extraction and possible to interpret complex volume structure with no
obvious graphic primitives. In addition, the volumetric method may interpret
volume data as transparent material with interior structures being seen through
the translucent surface.

When volume data are rendered from 3D to the 2D screen, it is inevitable
that the information shown is significantly reduced. However, interactive speed
to different perspectives and opacities may compensate the loss by providing
time as another dimension. To be interactive, the rendering speed should be at
least two or three frames per second, for which highly intensive computation is
required considering the size of volume data. For example, a volume of 256^ will
need a 500 Mflops computation power to afford 5 operations per voxel, 2 times
per second. The development of parallel machine, especially the SIMD (Sin-
gle Instruction Multiple Data) parallel architecture provides a possible solution
to the requirement of interactivity. An SIMD machine, where an instruction
is executed simultaneously on multiple data, may reduce the processing time
significantly by efficiently exploiting the parallelism in the rendering process.

Recent years, there have been many researches on volumetric rendering as
well as their implementations on parallel platforms. There will be a survey on
the related researches in chapter 2.

We based our research on Levoy[17]'s volume rendering model shown in figure
1.1. The voxel value is used as the input of two independent processes, namely
the shading process and the classification process. The shading process maps
the input value to color and yields the effect of illusion of smooth surfaces. The
classification process maps the input value to opacity, which is the attenuation

- 2

Chapter 1 Introduction

Voxel Values I(x)

1

Shading Classification
I p — J f

Voxel Colors I | Voxel Opacities

Re-sampling
Re-sampling

i r — *
Sample Colors | Sample Opacity

，f Composition
Rendered Image

Figure 1.1: The rendering pipeline

property of each voxel. The colors and opacities are then resampled according
to a given perspective. The final step, composition, composites the voxels in the
order of back to front or front to back of the viewing perspective.

This thesis discusses the parallel implementation of the volumetric rendering
technique. In parallel algorithms, the computation is carried simultaneously by
many processors. Based on the rendering pipeline described above, the volume
data are distributed into the parallel processors. While the processes of shading,
classification and resampling are possible to be carried independently on each
processor using only local information, the composition must combine the data
on the entire ray which are often in different processors. Moreover, in order
to display the rendered image, it is necessary to have it laid in the processor

3

Chapter 1 Introduction

Voxel Values I(x)
Distributed in the processor array�.

Shading Classification
(Locally 冰 (Locally) |

Voxel Colors | | Voxel Opacities

n 1. Re-sampling Re-samplmg
(Locally) (L o c a l l ^

Sample Colors I | Sample Opacity

Composition (Locally)
Locally Rendered Image

Globally reordering and composition

Rendered Image

Display

Figure 1.2: The rendering pipeline

4

Chapter 1 Introduction

array according to a certain virtualization scheme. Therefore, communication
between the processors is inevitable.

The parallel rendering pipeline designed in this thesis is shown in figure
1.2. The composition is pipelined into three parts: the local composition, the
reordering process and the global composition. The reordering process is used to
align the locally rendered image to the global virtualization model. It is essential
for algorithms to minimize not only the computation but also the communication
overhead.

As the methods for shading and classification may be identical to conven-
tional methods on non-parallel platforms, special focuses are given on the part
of re-sampling and composition as well as their parallel implementations. In the
re-sampling part, we proposed a new algorithm which could be efficiently imple-
mented on the SIMD machine. In the ray composition part, we proposed a fast
algorithm through the Monte Carlo integration. Moreover, there is a reordering
algorithm for globally compositing the volume at a minimum communication
cost.

Chapter 2 gives a survey of recent researches on volume rendering and parallel
implementation of volume rendering.

Chapter 3 surveys the parallel computation models for volume rendering.
Different paradigms for parallel processing are discussed and compared. Detail
descriptions are given to the SIMD architecture: the model, the communication
mechanism and the display mechanism.

Chapter 4 presents the preprocessing part. The voxel values are loaded into
the processor array in a block by block manner; the color of each voxel is obtained
by a shading process; the opacity of each voxel is obtained by a classification

5

Chapter 1 Introduction

process.
Chapter 5 focuses on data parallel rotation and resampling algorithms. By

leaving the data in place, the coordinates in the object space will be mapped to
the viewing space for consequent resampling. A new fast data parallel rotation
and resampling scheme on the SIMD machine is given.

Chapter 6 gives a data reordering algorithm to align the resampling and local
composition results to the viewing space layout in the processor. Only regular
communication patterns are used.

Chapter 7 surveys the previous techniques for ray composition, presents a
new ray composition method by Monte Carlo integration, demonstrates its use
in parallel platforms. Although there are rooms for improvement, it does have
some advantages over the conventional methods.

Chapter 8 gives the conclusion and possible future works.

6

Chapter 2

Related works

The basic idea of volume rendering is to simulate light transmission through
the volume. In 1984, Kajiya[14] modeled the problem as a radiation transport
problem with a complex differential equation. Since then, other simplified meth-
ods for fast implementation are also presented. Generally, three kinds of effects
of the materials in the volume are showii[4]: (a) they are luminous and emit
light; (b) they act as translucent filters absorbing the incoming light and (c)
they contain surfaces or particle scatterers which at tenuate as well as reflect
light. Separating the processing of shading and classification, the Levoy's model
described in chapter 1 provides a simple yet efficient way of volume rendering.
Many variants of it have also been proposed; most of them give improvement in
one or two components of the rendering pipeline(figure 1.1). Since shading and
classification are able to be pre-processed, resampling and composition are the
critical parts when interactivity is concerned. As the focus of this thesis is fast
algorithms of volume rendering, we will give a brief survey of the researches on
resampling and composition methods.

- 7

Chapter 2 Related works

One way to accelerate resampling and composition is by exploiting the spa-
tial coherence: Data are organized as octree where those with same properties
are grouped as one cell. The cells are processed first to provide a perspective
independent footprint. As the result, the number of voxels to be processed for
resampling and composition is reduced. Progressiveness is achieved by refining
the hierarchical data structure.

To evaluate the footprint of each cell, West over [26] presents an algorithm
that allows the renderer to use a pre-computed footprint function table to build
the view-transformed footprint of a particular view.

Another way is to take advantage of the properties of certain transforms to
reverse the order of composition and resampling. In this way, resampling is
only carried on the composited image which is two dimensional only. Fourier
transforms [25], wavelet transforms [20] and shear-warp transforms [15] are used
for this purpose.

However, not all methods mentioned aboved are suitable for parallel imple-
mentation, which requires operations use only local information and the work-
loads on each processor are about the same to fully utilize the SIMD machine.
Hsu[13] presents an implementation on the DEC-mpp SIMD machine. The data
are allocated in the processors in a cell by cell manner; the composition is carried
in the order of shooting light.

2.1 Spatial domain methods

Levoy[18] improved his model by hierarchical enumeration and adaptive termi-
nation for fast processing. Hierarchical enumeration is by grouping the voxels

- 8

Chapter 2 Related works

with opacities zero together and processing only once when compositing. Adap-
tive termination is to terminate the ray tracing when the rest of the ray has less
than the threshold significance to the final composited image. These methods
reduce the amount of computation. However, they are not suitable for parallel
implementation because global information of the volume is needed.

Westover[26]'s footprint evaluation provided an approach suitable for parallel
implementation. The view-transformed footprint of every sub-cell of the volume
is built by the pre-computed footprint table independently.

Based on Westover's method, the hierarchical splatting by Laur and Hanrahan[16
uses a pyramidal volume representation. An octree is used to fit the pyramid
given the user-supplied precision. This octree is then drawn using a set of foot-
prints, each scales to match the size of the projection of a cell. This method
significantly reduces the number of cells. Moreover, it is a progressive method
which is very useful for interactive applications. It is ideal for volumes with sim-
ple structures. For medical data, there may be not much voxels with the same
properties that can be grouped together in the octree, therefore the number of
cells is not reduced that much to justify the cost of providing such a hierarchical
data structure.

2.2 Transformation based methods

Totsuka and Levoy[25] proposed the frequency domain rendering method due to
the Fourier Projection Slice Theorem: once volume data are Fourier transformed,
an (orthographic) image for any viewing direction can be obtained by inversely
transforming a 2D slice extracted from the 3D spectrum at the given orientation.

9

Chapter 2 Related works

Linear depth cueing and directional diffuse reflection are used. Depth cueing
is obtained by weighting voxels according to their distance from the observer.
The resampling process is only used for extracting the 2D slice and the cost of
implementation is dominated by the 2D inverse Fourier Transform. However,
since the composition is not a linear process to the voxel value, it cannot be
replaced by a linear transformation. Only the linear process such as depth
cueing may be simulated.

Muraki[20] proposed a hierarchical method based on wavelet transform. By
using a smoothly decreasing 3D orthonormal wavelet, a hierarchical structure of
local primitives at different scales is obtained. However, again the nonlinearity
makes the process of composition difficult to replicate.

Lacroute and Levoy[15],s shear-warp algorithm decomposes the transforma-
tion into a two-pass process. The composition is after the first and the resam-
pling after the second. The advantage of this method is that the resampling
process is in 2D only; and the disadvantage is resampling quality may be low-
ered.

2.3 Parallel Implementation

Hsu[13] implemented his parallel volume rendering algorithms on the Dec-mpp
SIMD machine: Volume data are divided into many identical cubes and dis-
tributed in the parallel processors; the composition is by shooting the ray into
the voxels and the samples are computed as the ray being traced. However, the
processors are not fully utilized since some processors have to wait for the ray
to arrive.

10

Chapter 2 Related works

Schroder[23]'s implementation avoids this problem by transforming the co-
ordinate only and leaving the data in their place. A five-pass decomposition of
rotation transform is used. However, overhead is introduced to keep track of the
relative movement of neighbors and the quality of resampling is lowered due to
sequential lossy filtering. Finally, the communication overhead occurs when the
data are aligned to the viewing space for composition.

Ma et al.[19] proposed a binary swap algorithm (luring the time the commu-
nication scheme in this thesis was derived. His implementation is on a group
of workstation. Similar to the methods used in this thesis, the binary swap
algorithm uses only local communication to align the volume in the processors
to the viewing space.

11

Chapter 3

Parallel computation model

3.1 Introduction

Before we explore the problem, we explore the tools: the platform able to render
the volume data fast and efficiently. Such platform shall have sufficient compu-
tation power as well as the mechanism to display the result of interactive volume
rendering.

The huge demand for computation capacity recent years has led to the
widespread availability of parallel processing facilities. By combining the re-
sources of certain number of processors, the theoretical system performance may
be increased to match the processing demand of interactive volume rendering.
For example, DEC-mpp 12000 Massively Parallel Computer, with 8192 proces-
sor elements, has a peak performance of 665 MFLOPS and 13000 MIPS, which
is able for more than 5 operations per voxel and 2 times per second for a 256^
volume.

In this chapter, the general concepts of parallel processing are reviewed.

‘ 1 2

Chapter 3 Parallel computation model

Then within the context of volume rendering, systems with different paradigms
are described and compared. Focus is on the SIMD paradigm: its architecture,
communication mechanism and display mechanism.

3.2 Classifications of Parallel Computers

A number of schemes have been designed for classifying the types of parallel
computat ion mo(iel[9]. The most widely quoted is the Flynn's Taxonomy[&^,
where different types of parallel computers are distinguished by the relationship
between the instructions executed by a machine, and the data upon which these
instructions operate. Whether the instruction stream and the da ta stream are
multiple or single results in the following four categories:

Single Instruction stream, Single Data stream (SISD), which is the conven-
tional sequential computer. A single instruction processing unit executes sequen-
tially the operations in the instruction stream on one data stream, although the
instructions may be pipelined.

Single Instruction stream，Multiple Data stream (SIMD), which usually con-
sists of a grid of Parallel Element(PE)s and a central processor. The central
processor broadcasts an instruction to the PEs , which execute the same in-
struction on separate data.

Multiple Instruction stream，Single Data Stream (MISD). In this class, pro-
cessors execute distinct instruction streams on the same stream of data. No
practical realization of this category has been forthcoming.

Multiple Instruction stream, Multiple Data Stream (MIMD). In contrast to
SIMD systems, the MIMD systems consist of distinct processors which operate

13

Chapter 3 Parallel computation model

asynchronously, each on a distinct set of data, without central processor. Also,
there are interaction mechanisms between the processors for possibly sharing
the resources.

The most powerful paradigms of parallel processing which have so far seen
extensive use are the MIMD and SIMD models[21 .

The MIMD model suits for control-parallel algorithms where distinct tasks
are distributed between the processors for concurrent processing. Mechanisms to
support asynchronous communication are supported in addition to a program-
ming environment which provides task scheduling, allocation, synchronization
and coordination.

The SIMD model, on the other hand, suits for data-parallel algorithms. Not
only a single instruction is carried simultaneously on all the PEs, but also the
communication within the processors is synchronous. This simplicity make the
number of PEs supported by the SIMD model much more than the number
by the MIMD model. In addition, design as well as implementation of the
algorithms is much easier.

Volume rendering algorithms, where most of the operations should be re-
peated on the vast amount of volume data, are data parallel in general. More-
over, the communication incurred in parallel volume rendering is synchronous
in general. These make the SIMD model well suited for volume rendering. In
the following sections, we will discuss the SIMD model: its architecture, its
communication mechanism and its display mechanism.

14

/

Chapter 3 Parallel computation model

3.3 The SIMD machine architectures

A massively data parallel system is a system with more than one thousand
processors. The system used in this thesis is a massively data parallel system:
the DEC-mpp 12000 which is identical to the Maspar System[3]. It consists of a
front end and a Data Parallel Unit (DPU). The front end includes a workstation
that runs an implementation of a UNIX operating system and standard I/O.
The DPU consists of an Array Control Unit(ACU), an array of 8,192 Processor
Element(PE)s (extentable to 16,384PEs), and communication mechanisms. The
DPU has its own I/O and display functions.

The volume data are first read through the I/O functions built in the DPU
for consequent operations in the PEs. Finally the rendered image stored in the
PEs is displayed through the display function built in the DPU. Two kinds of
overheads are used to evaluate the algorithms, namely, the computation over-
head and the communication overhead. The computation overhead is measured
by the number of additions, multiplications and comparisons. For the exam-
ple of the DEC-mpp system 1200, the timing for addition and multiplication in
PEs of character operands is 6 and 41 timing clocks respectively, which means
that multiplication is much more expensive than addition. In our algorithms,
additions are preferred.

The communication overhead is the time for the processors in the DPU
to exchange their data. In the next section, we will discuss the communication
mechanism in the SIMD architecture and measure the communication overhead.

- 15

Chapter 3 Parallel computation model

Proc Iproc | Proc [Proc Proc Proc

Proc Proc Proc Proc Proc Proc

Proc Proc Proc Proc Proc Proc

M i HH , • • ^
• « •
• • • • • •
• • • •

rZ r Z Proc Proc Proc
Proc Proc Proc h _

r - " r I • Proc Proc Proc Proc Proc Proc h h m i

n r ^ " " " r I V — Tv" Proc Proc Proc Proc Proc ^ Proc ^ ^

Figure 3.1: The processors elements arrays in the SIMD structure

3.4 The communication within the parallel pro-

cessors

The communication of the massive parallel machine consists of the communica-
tion between the PEs within the DPU as well as the communication between
the DPU and the front end.

We will focus on the communication within the parallel processors first. Fig-
ure 3.1 shows an example of the PE grids inter-connected in eight directions:
north, northeast, east, southeast, south, southwest and northwest. There are
two ways of communication within the parallel processors, namely the X-Net
Communication and the Global Router Communication. The X-Net mechanism
allows simultaneous data transfer in a single direction for a fixed distance; the
Global Router enables an arbitrary subset of processors to communicate with
any other subset of processors.

16

Chapter 3 Parallel computation model

The X-Net mechanism is much faster than the Global Router. In the DEC-
mpp, the cost of the X-net communication is:

{N^srze + 2) * Dist + 6 (3.1)

where the Nopsize is the number of bits of the operand to be transferred and the
Dist is the distance between the communicating parallel processors. The cost of
global communication depends on the number of collisions in the communication.
If one PE wants to broadcast a value to all other PEs，it may take approximately
as much as the number of processors times the time a random communication
between two processors. Generally, the global communication costs much more
than the X-net communication. For example, a random communication pat tern
with all PEs participating take an average of 5000 timing clocks for a 32 bit
operand while the X-Net communication takes much less according to equation
3.1.

Since the success of our algorithms heavily depends on a low communication
overhead, the X-Net communication is used whenever possible.

3.5 The parallel display mechanisms

The parallel display mechanism is used in the final step to display the rendered
results laid in the PEs. Sending the data from PEs to the front end for display,
it is equivalent to the communication between the front end and the DPU.

It is very important to understand the data format used for display, since
the identical data set may result in different images if different data formats
are used. Suppose the size of the image is equal to the size of the processor
array, the format of display becomes trivial: the coordinates of each processor

17

Chapter 3 Parallel computation model

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (0,0) (4,0) (1,0) (5,0) (2,0) (6,0) (3,0) (7,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (0,4) (4,4) (1,4) (5,4) (2,4) (6,4) (3,4) (7,4)

(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (0,1) (4,1) (1,1) (5,1) (2,1) (6,1) (3,1) (7,1)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3) (0,5) (5,5) (1,5) (5,5) (2,5) (6,5) (3,5) (7,5)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (7,4) (0,2) (4,2) (1,2) (5,2) (2,2) (6,2) (3,2) (7,2)

(0,5) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (7,5) (0,6) (4,6) (1,6) (5,6) (2,6) (6,6) (3,6) (7,6)

(0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) (7,6) (0,3) (4,3) (1,3) (5,3) (2,3) (6,3) (3,3) (7,3)

(0,7) (1,7) (2,7) (3,7) (4,7) (5,7) (6,7) (7,7) (0,7) (4,7) (1,7) (5,7) (2,7) (6,7) (3,7) (7,7)

The hierarchical model The cut and stack model

Figure 3.2: The hierarchical model and the cut and stack model

become the coordinates of the displayed image. However, in most of the cases,
the image size is greater than the size of the PE array. Therefore, some kinds of
virtualization techniques are used. In the DEC-mpp, two kinds of virtualizations
are supported, namely Hierarchical model and Cut-and-stack model.

Suppose there are pixels in the image and {N < n) processors, in
either X OT Y direction, where the data coordinate is x{y) and the processor
coordinate is X(Y).

In Hierarchical virtualization, virtual neighbors (neighboring pixels in the
image) are stored on the same PE whenever possible. The relationship between
the processor coordinate and the data coordinate is :

X DIV 2" 二 X (3.2)

If the coordinates are represented in binary, the N most significant bits of the
data coordinate are identical to the processor coordinate.

18

Chapter 3 Parallel computation model

In the Cut-and-stack virtualization, virtual neighbors are stored on the neigh-
boring processor when ever possible. The relationship between the processor
coordinate and the data coordinate is :

工 MOD = X (3.3)

If the coordinates are represented in binary, the N least significant bits of the
data coordinate are identical to the processor coordinate.

Figure 3.2 assumes an 8 x 8 image and a processor mesh of 4 x 4. The layout
on the left is according to the Hierarchical model and the one on the right is
according to the Cut and stack model.

It is essential that the final result of the rendered image is laid in the processor
array according to either one of the virtualization models to be displayed.

19

Chapter 4

Data preparation

4.1 Introduction

This chapter includes three parts: the original data layout in the processor array,
the shading process and the classification process. These topics are not the main
points of this thesis and are presented mainly for completeness.

The topics in this chapter are regarded as the preprocessing steps. The orig-
inal data should firstly be distributed in the parallel processor array. According
to the rendering pipeline described in chapter 1, the only information provided
is the voxel value; the materials which composite each voxel are often not pro-
vided. Opacity and color of the voxel, which are decided by which material it is
composed of, should be determined by the shading and classification processes
respectively.

20

Chapter 4 Data preparation

(0’2’2) y^i y^i , � ” � Proc Proc Proc Proc Proc Proc
X I X — " X r - 7 1 (,2,2,2) MM wmm • • • ^

(0,2,1) Z i i X l ！ X I Z . ， (0.0,0) (1,0,0) (2,0,0) (0.0,2) (1,0,2) (2,0,2)

(0,2.0) Proc _ P r o c • Proc . • • P r o c 圓 Proc • P r o c

. z • / I . 叫 / / (0,1,0) (1,1,0) (2.1,0) (0,1,2) (1,1,2) (2,1,2)

(0.1,0) 一 其 J ^i^^^ifSiE：^
.一丨 丨 Z ‘ / _ _ (2,0,2) Proc Proc Proc , • • Proc _ Proc _ Proc

乂二 乂 - 乂 _ J^(2，0’l) (0.2,0) 一 (1,2,0) 一 (2,2,0) , • • (0,2,2) | | (1,2,2) [i (2.2,2)

,卜 L^ IX • • : •••
(o，o，o) (1,0,0) (2.0,0) •

(0,0,1) (1.0,1) (2,0,1)
Proc Proc Proc

(0.1,1) 一 (1.1.1) (2,1,1)
Proc Proc Proc

(0,2,1)11 (1 . 2 , 1) ~ (2,2,1)
Figure 4.1: The Data layout in the processors

4.2 Original data layout in the processor array

The original data are three dimensional digital data. To be held in a two di-
mensional processor array, they are organized in each processor in a block by
block manner. That means every processor holds a cell of the whole image. (See
figure 4.1)

4.3 Shading

The shading process maps the original voxel value to color and provides a sat-
isfactory illusion of smooth surfaces at a reasonable cost. The shading model
chosen was developed by Phong[2]. Every voxel is regarded as a parallel light

21

Chapter 4 Data preparation

source whose intensity is the voxel value and direction is defined by the normal-

ized vector L. The color at voxel x is given by:

= + . L) + k�x(N�.HT] (4.1)

where Cx{x) is the A'th component of color at voxel location cĉ ; fx{x) is the A'th
component of light source at location x; ka,\ is the ambient reflection coefficient
for A'th component; kd,x is the reflection coefficient for A'th component; is
the specular reflection coefficient for A'th component; n is the exponent used
to approximate highlight; k^M are the constants used in linear approximation
for depth-cueing, d{x)is the perpendicular distance from picture plane to voxel
location x]N{x) is the surface normal at voxel location x] H is the normalized
vector in the direction of maximum highlight.

Since a parallel light is used, L is a constant. Furthermore

where V is the normalized vector in direction of observer. Since the projection

is orthographic, V and H are constants. Finally, the surface normal N{X) is

given by
外) 二 (4.3)

I v / � I
where the gradient vector • / � is approximated using the operator:

•/�=•/(a ;“2/ j，么 f c)

w [0.b{f{xi^uyj, Zk) — fixi-uVj, zk)), 0.5(/(x„ yj+uZk) — f [� i, Vj-uZk)),

=r’g’b

22

Chapter 4 Data preparation

I Histogram

s ‘ Constutite's distributions

'‘ Material assignments
100%

\ / ~ 厂
air V fat X tissue W bone

A / \ A .
Voxel Value

Figure 4.2: The Classification and Opacity assignment

4.4 Classification

To determine the opacities, a maximum-likelihood classifier for the classification
of CT data is used. The probability that a material is presented can be used as
an estimation of the percentage of the material presented in the voxel[4 .

For example, in musculoskeletal CT systems, the value at each voxel repre-
sents the x-ray radiation absorption of air, bone, soft-tissue, fat or mixtures of
them. The histogram of the x-ray absorption of the input volume is the sum of
four overlapping distributions, corresponding，in increasing order of intensity, to
air, fat, soft-tissue and bone. (Figure 4.2)

According to maximum-likelihood, the possibility P(I) that a voxel has an

23

Chapter 4 Data preparation

intensity of I is

= (4.4)

where n is the number of materials present in the volume, pi is the percentage

of material i in a given voxel, and 只•(/) is the probability that material i has

value I .
We give an example of Pi{I) in figure 4.2 which assuming every voxel is a

linear combination of at most two kind of materials. It is roughly the case here
since bone and fat rarely overlap.

However, sometimes the maximum likelihood does not work well. It cannot
tell a mixture of air and bone from an soft tissue since the soft tissue distri-
bution lies between the air and bone distributions. Using the knowledge of the
local neighborhood characteristics[24] can improve the performance. But in this
thesis, we are only using this method to classify CT data.

24

Chapter 5

Fast data parallel rotation and

resampling algorithms

5,1 Introduction

When colors and opacities of voxels are assigned after shading and classification,
they have to be resampled according to the desired perspective. Resampling
corresponds to an affine spatial transformation between the viewing space and
the object space. For interactivity, the algorithms must efficiently exploit the
parallelism within the transformation.

The concerned data are discrete so that the resampling algorithms shall map
a sample p in the object space X to the viewing space Y sample through a
mapping ^ shown as p 二 ii{p'). Should the object space and the viewing space
mesh exactly, the resampling becomes trivial. However, when the viewing space
is obtained by spatially transforming the object space, the corresponding samples
don't have such matches. Therefore, the algorithms hereby correspond not only

25

Chapter 5 Fast data parallel rotation and resampling algorithms

to a mapping between the two spaces, but also to a resampling algorithm.
When a transformation is implemented in a data parallel manner, either the

data are physically moved within the processor array, or the data are leaved in
place with their coordinates manipulated. Leaving the data in place is preferred
here since a transformation may incur irregular data movements^ in the SIMD
architecture. However, the result is that the data coordinates will no longer be
constant. To have the final rendered scene laid in the processor array conform
to either one of the virtualization model described in chapter 3 for display, a
process to shuffle the data is used after the transformation and resampling. We
will discuss this process in later chapter.

In this chapter, we will discuss the data parallel rotation and resampling
algorithms. In particular, a new mapping algorithm is presented with optimal
mapping properties and flexible cost and quality tradeoff for different require-
ments of speed and quality.

5.2 Affine Transformation

An affine t r ans fo rmat ion^ is defined as a mapping fi between the viewing space

Y and the object space X by:

二 AX + V (5.1)

where A is a 3 x 3 matrix and V is a vector in 3D space.
Some examples of affine maps according to this form are shown as follow:

1 Examples of irregular data movement will be given in the next section.

26

Chapter 5 Fast data parallel rotation and resampling algorithms

Iden t i t y : given by V 二 0, the zero vector, and by A 二 /, the identity

matrix.
Trans la t ion: given by A 二 /, and a translation vector V.
Scal ing: given by V 二 0 and by a diagonal matrix A. The diagonal entries

are defined by how much each component of X is to be scaled.
Ro t a t i o n given by equaling A to the rotation matrix T,

/ 0 0 1 \ / siiK^ 0 cos(/> \ / cos 6 sin 9x 0 \
T := -sm(p cosip 0 X 0 1 0 x -sin6> cosO 0

V cosip sin 0 / \cos(l) 0 - sin / V 0 0 1/
(5.2)

and V 二 0
Shear: given by V = 0 and

/I a b\
A := 0 1 c (5.3)

\ 0 0 1/
Affine maps may be combined, and a complicated map may be decomposed

into a sequence of simpler maps. It has been shown that every affine map is
composed of translations, rotations, shears and scalings[6 .

Transformations, such as translations, scalings, where the transformed lines
and planes remain parallel to the original one, move the data in parallel. Ro-
tation and shear, however, don't have the parallelism which means the physical
movement of data in these transformations is very expensive in the SIMD model.
Hence, we choose to leave the data in place. In the next section, we give data
parallel rotation as an example of implementing affine transformations on the
SIMD architecture.

27

Chapter 5 Fast data parallel rotation and resampling algorithms

5.3 Related works

5.3.1 Resampling in ray tracing

The direction of ray composition determines the direction of resampling. Back-
ward methods, gathers the required information by shooting the ray from the
screen pixel into the object space[17]. The resampling algorithm corresponding
maps the 2D screen of the viewing space to the object space, requires the data
be accessed by the order of the shooting ray. However, the data layout in the
processors according to the object space may not align with the viewing space.
Either a transformation is required to align the data in the processors[4] or the
processors should wait for the shooting ray to arrive. The former leads to vast
volume of the costly irregular data movement between the processors; the latter
sacrifices parallelism, when in worst case, only TV out of iV x M processors in the
processor array are working while other waiting for the shooting ray to arrive.

5.3.2 Direct Rotation

Forward method calculates the object space samples' contribution to the final
image. Therefore, the resulting resampling algorithm should map the object
space sample to the viewing space. Such mappings have the advantage of possi-
ble to be performed simultaneously and realized in the SIMD platform efficiently.

The most straightforward way for mapping the object space sample to the
viewing space would be rotating a 3D coordinate at each processor, giving an
address of viewing space which the given sample falls. However, the given ad-
dress of the samples cannot match directly to the viewing space samples and

28

Chapter 5 Fast data parallel rotation and resampling algorithms

r 0
• • 眷 參 • _ I

7 • 丄 上 _ _ ^ • � ^ L

參 參 參 參 • 眷 •

— ^ #

• 參 眷 眷 仆
— — — — — ^

Figure 5.1: Examples of holes and doubles when directly rotating coordinates

a direct rounding will leave holes and doubles in the screen (See figure 5.1).
Instead, an algorithm that transforms the integer lattice points in the original
volume to the viewing space is needed.

5.3.3 General resampling approaches

Rotation transformation in the three dimensional space is defined by equation
5.2. Either T or the inverse transform T"^ may be used for the mapping.
Westover[26] used direct convolution for the transformation T, Wolberg and
Boult[28] used lookup table for mapping and reconstruction. Their methods in-
tegrate the process of reconstruction and mapping and provide general solutions
to resampling. Feibush et aL[7] adopt the inverse transformation T_i to map
polygons between two different spaces.

5.3.4 Rotation by shear

Decomposing the rotation into shears provides the multipass solution to avoid
the holes and doubles appear in direct rotation. The shear may be scale(stretch

29

Chapter 5 Fast data parallel rotation and resampling algorithms

L
X X

m
Figure 5.2: Rotation by shear on a plane

30

Chapter 5 Fast data parallel rotation and resampling algorithms

or shrink axes)[10] or not scale(distances preserved)[23]. Nonscaling shears have
I's along their diagonals as shown in equation 5.4.

Schroder and Salem[23] apply a scheme due to Paeth[22] to regularize the ro-
tational transformation by decomposing it into multiple orthogonal shear trans-
formations. Each shear is followed by rounding and interpolation. In general,
three shears are required for rotating a 2D image:

(COS0 s m e \ (I - t a n f \ / 1 0\ / I - t a n f \
Tr 二 = X X

.{-smO cose) \0 1 / \sin6> 1/ \ 0 1 /
\ (5.4)

and five for a volume image. A shear operates on only one coordinate at a time.
For a given X coordinate, the moving distance along the Y axis is constant,
and thus, when followed by a rounding, the consequential mapping between the
integer coordinates of the two space is indeed bijective. Figure 5.2 gives an
example of rotation by shear on a plane.

We also notice Wittenbrink[27] at the same time of this thesis developed a
warping algorithm due to rotation by shear. The inverse transformation T—i is
used after the shear transformation to provide more accurate results.

5.4 The minimum mismatch rotation

Supposed the volume data are distributed in the processor mesh according to
the object space layout. Subsequently, each processor may be addressed by the
groups of samples po e G that it maps to. Let H be the samples of viewing space
Y obtained by rotating X by 6. To get H, we need a mapping F H — G and
another sample to processor mapping C ' G P. Namely, processor Cif^'iPn))
will be assigned the responsibility to resample the image at pu G H. Ideally,

31

Chapter 5 Fast data parallel rotation and resampling algorithms

(a) the size of fi{pH) should be equal on each processor for high data-parallelism
and (b) grid-point-to-processor mismatch should be small, namely, po should
be close to the inverse mapping of pn on X for proximity to processors holding
neighboring pixels of pn required for resampling by interpolation.

By minimizing the grid-point-to-processor mismatch, we derive a data-parallel

rotation algorithm as follow: For pH G H, the mismatch-minimizing mapping is

given simply by
Ii*{ph) = Floor{Te x pn) Ph e H (5.5)

where Te is the inverse rotation matrix given by
/ 0 0 1\ / sin (j) 0 cos(f) \ / cosO sin 6* 0 \

Te ：二 -sinc^ 0 X 0 1 0 x - s i n 19 cos 6* 0
V COST siiK/：) 0/ \cos(^ 0 -sinct)/ \ 0 0 IJ

(5.6)

That is, according to resampling at the rotated grid point pn G H, or
Te X PH e G equivalently, is to be carried out by processor which
presumably does so by interpolating pixels neighboring Te x pH in G. Define the
grid neighborhood of point x e X.hy

Nj^cc, k) ：二 {pG ： lla：； — Pg|L< 1, PG ^ G}’ （5.7)

and the neighborhood of processor p G pp, by

Np{p, k) := {pp : lb — Pp\\oo< 1, PP e 尸 (5 . 8)

The neighborhood of the rotated grid-point Te x pn is contained in the re-

sampling processor viz.

N.{Te X ph) e NM^nPH))) (5.9)

32

Chapter 5 Fast data parallel rotation and resampling algorithms

\ \ ^ ^ \ Processor C

\ \ � P r o c e s s o r B
‘Processor A

Figure 5.3: Assigning data points to processors

which ensures processor ‘(/x*(Pif)) has immediate access to neighboring pixels
for resampling by interpolation.

Though this method minimizes the mismatch distance, it is not an one-to-one

matching. For instance, in figure 5.3，two data points are assigned to Processor

A while none is assigned to C. When loading is not equal in each processor，it

will be hard to get high processor utilization.

5.5 Load balancing

As the ul t imate concern is minimizing mismatch, load balancing will be done for
high processor utilization while maintaining the minimum mismatch property.

33

Chapter 5 Fast data parallel rotation and resampling algorithms

• • .>A ••
爆 Z \ • Sampling 眷

Reconstruction \ ^ •
Model \ / §

• \y •
Figure 5.4: Reconstruction from samples

the average processor holding of n x m x L if N and M is large enough. This

helps keep a high processor utilization.

5.6 Resampling algorithm

When a processor is assigned the responsibility of the viewing space samples，

a resampling algorithm is used. This resampling algorithm is identical to a
interpolation problem. Generally, the resampling quality is bet ter if more input
samples are used. However, computation complexity will increase as the result.

The interpolation process is depicted in figure 5.4 for one dimensional case.
There are two steps in the process, namely, the reconstruction and the sampling
process. The reconstruction is performed by convolving the discrete input signal
with a continuous interpolating function to model a continuous function; the
consequent sampling process samples the continuous function in the desired
position. In this section, the analysis is applied to one dimensional cases and
the interpolation in three dimension is a simple extension to the results of one
dimension.

Polynomial interpolation is the most fundamental of all interpolation con-
cepts and the simplest to be implemented. We will review different polynomial

35

Chapter 5 Fast data parallel rotation and resampling algorithms

interpolation schemes with respect to accuracy and efficiency.

5.6.1 Nearest neighbor

The simplest interpolation algorithm in the sense of computation complexity
is the nearest neighbor algorithm, where each desired interpolation point is as-
signed the value of its nearest neighbor. The reconstructed continuous function
is described by:

This may be achieved by convolving the discrete signal with a one pixel width
rectangle in the spatial domain. The convolution kernel in frequency domain is
the sine function(figure 5.5). The convolution of the kernel in spatial domain is
equivalent to multiplication of the sine function in the frequency domain.

According to the sampling theory, the ideal reconstruction of the band lim-
ited signal is the idea low pass filter. However, due to the prominent side lobes
and infinite extent, a sine function makes a poor low pass filter. Therefore, the
alais effect introduced by the nearest neighbor may be large.

5.6.2 Linear Interpolation

Linear interpolation passes a straight line through every two consecutive points
of the input signal. Given two discrete point j^i and X2 in an interval {xi,x2)
and the discrete inputs /i and f) at xi and the reconstructed continuous
function is defined by:

Xi — Xq

36

Chapter 5 Fast data parallel rotation and resampling algorithms

IH(f)l

-5 - 4 - 3 - 2 - 1 0 1 2 3 4 5

Figure 5.5: The magnitude of Sine function

The interpolation kernel corresponds to linear interpolation is

1 —|cc| — l < x < l
h { x) 二 （5-12)

0 otherwise
<

The frequency domain of this kernel is in the form of 5mc2(See figure 5.6).
The energy is more concentrate on low frequency area and the side lobes are far
less prominent which indicates improved performance in the stop band. It is a
much better low pass filter in the frequency domain than the one used in the
nearest neighbor method.

The linear interpolation method is widely used for the reasonable result it
produces at moderate cost. However, when high fidelity is required, more so-

phisticated algorithms have been formulated.

37

Chapter 5 Fast data parallel rotation and resampling algorithms

IH(f)l 1| 1 1 ！ ！ -K 1 ！ I ！

0.9-........丨………丨………………i…….n…....丨.....…！.….；..一

-.......：.........：—丨........：......：•......丨.......r：：：：：：：：

�.7-…..…：………丨………丨………丨..…r……：………i ：；
0.6 - ： ： ： I ； • 1 ； ： ：

； ： 丨 丨 丨 J..........：..........L.......：........-
0.5 - ： r ； ： ：… ： ： ：

丨 丨 丨 丨 J._........：..........丨.........：........-
0.4 - ： ； ： 「…-.…：…Y ：

::::丨::l:::::t::::l/::〖::|::t=̂
I i - ： ^ — i — ^ I - —

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5.6: The magnitude of Sine function

5.6.3 Aitken's Algorithm

In the nearest neighbor and the linear interpolation method, the number of
discrete inputs is one and two respectively. When more inputs are available,
more accurate results are possible. For our resampling algorithm, not only the
first order neighbor but also the higher order neighbors may be used.

We extend the interpolation method to the case of n inputs. Suppose the
discrete inputs at are with value /。，/i . . . /n respectively. The re-
constructed continuous function shall have the same value as the discrete inputs
3/t 33o’CCi • • • •

Define the Lagrange Polynomials as:

� _ 卢(冗一巧） (5.13)
- ™ (V —工.、

38

Chapter 5 Fast data parallel rotation and resampling algorithms

with the property:
r 1 J^ 2

L^xk) = — (5.14)
0 otherwise

The n'ih order interpolation function f{x) is given by
/o,i...n(x) = t x f t X L^x)) (5.15)

i=0
The interpolation method derived from this reconstruction function is call

the Lagrange Polynomials. In this method, if the accuracy of a low order inter-
polation is not enough and requires higher order interpolation, the continuous
reconstruction function has to be built from the beginning.

Aitken's algorithms overcome this by observing the following:

— - (5.16)
/o，i�(4 — ^LXn“汝(工广。)

— ^ x n 几—1 - 巧) + f n?二i’.7六(冗—巧)

二 /o，l...n-l + ^^(/o，l."n-l - /l’2".n)
Xri — 工 0

In Aitken，s algorithms, the approximation is made in a progressive manner.
The zero order interpolation functions 九•�, /二 •. • , (T h e nearest neighbor)
are calculated first, then the first order interpolation function (The linear inter-
polation) is calculated by applying equation 5.17 to the zero order functions.
Recursively, higher order interpolations are achieved as follow:

作0) \

/�(ri) fLn \
睿 會 •
• • • • • •

/0(工 n) fxn-l,Xn fxn-2,^n-UXn ... fxo’Xi...Xn

39

Chapter 5 Fast data parallel rotation and resampling algorithms

The higher order Lagrange Polynomials, whose corresponding low pass fil-
ter in the frequency domain is closer to the ideal low pass filter, have bet ter
performance at the cost of more computation. We will discuss this trade-off

later.

5.6.4 Polynomial resampling in 3D

Resampling in 3D is an extension to the case of one dimension by applying
equation 5.17 in each each dimension respectively. For the example of linear
interpolation in three dimension, we first interpolate on one dimension to give
four interpolated point out of the eight neighbors of the desired sample point,
then, two interpolated points out of the four in the next dimension and finally
the result is given.

The interpolated results of the nearest neighbor method, the linear interpo-
lation method and the second order interpolation method in two dimensional
image are given in figure 5.7, 5.8 and 5.9.

5.7 A comparison between the resampling al-

gorithms

This section presents a comparison between our minimum mismatch algorithm
and the multi-pass methods. Quality and cost are used as criterions. In addition,
the progressiveness of the algorithm, which is the ability of progressively getting
high quality results from the low quality results at no additional cost, is very
important for a fair trade-off between the speed and quality.

40

Chapter 5 Fast data parallel rotation and resampling algorithms

.麵.
- 2 - 2

Figure 5.7: Nearest neighbor interpolation

- 2 - 2 Figure 5.8: Linear interpolation 41

Chapter 5 Fast data parallel rotation and resampling algorithms

- 2 - 2

Figure 5.9: Second orcler(Cubic) interpolation
5.7.1 The quality
The quality of resampling is evaluated by two factors: the filter quality and the
distance between viewing space samples and the object space samples.

For the example of zero-order hold reconstruction filter, the distance incurred
by mapping is due to the rounding operation. In the multipass mapping, round-
ing is performed after every shear operation and the resulting image is degraded
as non-proximal points are used for reconstruction. The mis-match introduced
by resampling may accumulate and there maybe artifacts due to the regular pat-
tern introduced by such rounding and resampling. However, in the minimum
mismatch method, the rounding is performed only once and less error will be
introduced. It is shown in figure 5.10 and figure 5.11 that the mismatch distance
in the multipass method is much higher.

Wittenbrink[27] reduced the mismatch distance by introducing a inverse

42

Chapter 5 Fast data parallel rotation and resampling algorithms

12「

I +
10- Ny N^

广 广 ？ V
8 - 广 V ‘ 、 广

• \ “ ^ V ^ \
6 一 、 、 ^ \ 、

十 广 ^ \ ^ V ^
4- -c \ N - +

\ \
qI i ‘ ‘ ‘ ‘
^ - 2 0 2 4 6 8

Figure 5.10: The mismatch in the multi-pass method

12�
十

10- N- T

8- \ + � Z ^
z 力 八

十、 Z ^ ^ 、 \ 尹 、

4- \ + \ + 、 < \ +

2- ； 大 、 广 4 Z

、 ' 广 \
o' ‘ 1 ‘ ^ ‘ ― ‘

-4 -2 0 2 4 6 8

Figure 5.11: The mismatch in the min imum mismatch method

43

Chapter 5 Fast data parallel rotation and resampling algorithms

transformation after the rounding. However, the problem of using non-proximal
points for reconstruction still exist. For example in equation 5.4, when 0 二 30�

and X = 4:7,y 二 181, the error distance in coordinate x will be 1.04 which
means the using of non-proximal points for reconstruction. When the rotation
is extended to 3D, the error may more easily accumulate.

For higher order filters, the error of the n，th order Lagrange Polynomials can
be estimated by:

if the (n + lyth order derivative of f(x) exists, and the upper bound

of the error is given by :

祕 (5 . 1 8)

When higher order filters are used, the error is not only related to the max-
imum value of (n + lyth order derivatives, but also related to the value of the
function U]=o{x - Xj). The mis-matching distance of two samples is propor-
tional to the n ? = � 0 - Xj) and can also be used as an estimation for the error
introduced.

For a band limit signal, there will be a upper bound in the n'th order deriva-

tives, which means the error will decrease at a factor of ^ as n'th order interpo-

lations are used.

5.7.2 Implementation and cost

The implementation of the minimum mismatch algorithm comprises four steps,
namely the forward transformation to estimate the volume where the processor
shall hold the responsibility for resampling, the inverse transformation to find

‘ 44

Chapter 5 Fast data parallel rotation and resampling algorithms

the matching point, the load balancing which only involves local communications

and the interpolation.
The cost when implemented in a parallel machine comprises the cost of com-

putat ion and communication within the processors. The computation complex-
ity is denoted by the cost of multiplication(M), addition(A) and roundmg(R).

Our method does not need the shear operation. Instead the cost depends
heavily on the cost of reconstruction scheme. The mapping algorithm only
requires a forward rotation and an inverse rotation, each is composed of 9 mul-
tiplications and 6 additions. If a processor hold a cube oi N x M x L, only 8
forward transformations of the vertices is needed to estimate the volume in the
viewing space. The volume of the estimated viewing space may vary according
to the viewing perspective and is proportional to the average number of data
each processor holds. Generally, the number of inverse rotation is9M R

per sample. If the nearest neighbor interpolation scheme is used, the cost may
be est imated as 9M + 3A + R. If the linear interpolation is used, the cost of the
linear interpolation in 3D is 14M + 7A and the total cost become 23M-^9R+10A

In Schroder's method, every shear operation is followed by a rounding and a
resampling process. The shear operation requires an addition and a multiplica-
tion, or one addition and two multiplication in 3D if the shear operation involves
the other two coordinate. The resampling process requires 2 multiplication and
an addition and 6 multiplication and 3 addition when the following resampling
is according to two coordinate. When 4 shears in one coordinate and 1 shear in
two coordinate is used, the computation cost in their method is 20M + 9i?+l lA.

The communication complexity is estimated by the local communication
used. In Schmder's method, one of the time consuming process is to keep track of

45

Chapter 5 Fast data parallel rotation and resampling algorithms

neighbors after each shear operation. Also, the local communication is incurred
every t ime the resampling after the shear operation. The minimum mismatch
only requires the local communication in the final interpolation scheme as well
as the load balancing process. If the nearest neighbor scheme is chosen, there is
no need for communication.

46

Chapter 6

Data reordering using binary

swap

The result of the resampling process is that data in the processors are assigned
viewing space coordinates and values; the actual volume of each processor repre-
sented is unchanged. The remaining job for rendering is to have the data along
the rays composited and the result displayed. To efficiently composite the rays,
it is desirable to have all the data in one shooting ray laid in one processor; to
efficiently display the result, the final result should be laid in the processor array
according to a certain virtualization model.

The visualization pipeline of figure 1.2 meets the above requirement by com-
position in three steps: the local composition, the reordering process and the
global composition. The local composition forms a polygon in each processor by
compositing the data within each processor; the reordering process re-arranges
the data in the processor array to the viewing space layout where data in the
same ray are grouped in one processor; and the global composition composites

47

Chapter 6 Data reordering using binary swap

the da ta into the rendered result. The global composition and re-ordering may
be combined as global composition may be done while reordering.

We will discuss the reordering in this chapter and the composition in chapter
7. Suppose the local composition is complete, the footprints are held in the
processors as polygons. The polygons are laid in the processor array according
to object space layout and may overlap if projected on the screen in the viewing
space. The reordering algorithm groups the overlapping part of the polygon in
one processor for efficient composition and lays the final image according to the
Cut and stack virtualization model with minimum communication overhead. As
the local x-net communication is much cheaper than the global communication,
we choose it as the communication mechanism of the reordering algorithms.

6.1 The sorting algorithm

Since original data layout and the desirable data layout of the final image in
the processor is according to object space and viewing space respectively, the
reordering could also be described as a sorting process while the overlapping
parts are composited.(Figure 6.1)

Assuming P and D are the binary representations of the processor coordinate
and data coordinate respectively:

P 二 PN-IPN-2...PO (6.1)

when there are processors in x{y) direction and pixels in x{y) direction
h : D P is the mapping of voxels with data coordinate D to processor

‘ 48

Chapter 6 Data reordering using binary swap

^ ^ [7 \ f / ^ ^ / 丨 /
》 < ‘ / 7 — — — —y
广 J i L 譯 一 — — 乂 i t Z

v A . / y ：7 � . Z : „ • • ,
/ V •，• ’ /
• ^ r - — y
\ 入 / " " " Z / 乂 /

\ / \ / / \ /

、 • • 。 • _ _ • 、 • ； 一 - — — X * z /

, � / t 入 , b I � , z K
Figure 6.1: The process of volume merging

grid P :

h 二 D … 广 . D 。 o (6 . 3)

In the cases of Cut and stack model, we have

h •. ak 二 Kk 二 0 …N — 1) (6.4)

From the sorting point of view, to reorder the locally rendered volume means
to find an algorithm that changes the h of original data layout to the h of the
Cut and stack model.

We design our algorithm as follow: Suppose the resulting size of image will
be in x{y) direction and the size of processor mesh is in x{y) direction.
We shall do the reordering both in X and Y.

• Let the reordering distance be 1: Define the reordering hit to be the non-
zero bit of the binary representation of the reordering distance.

• Data on the processor shall exchange in a way that those data with x{y)
coordinate i and processor coordinate I should have their reordering bit in
common to achieve the mapping of the Cut and stack model. For example,

49

Chapter 6 Data reordering using binary swap

PO PI P2 P3
0,1,2,3 I I 4,5,6,7 I I 8，9，10,ll| | 12,1344,15"

The reordering
，f distance is 1 ”

PO PI P2 P3
0,2,4,6 I I 1，3，5，7 I I 8,10,12,141 | 9,11,13,15

The reordering
，‘ distance is 2 ，'

PO PI P2 P3
0，4，8，12 I I 1,5,9,13| I 2,6,10,14 | | 3，7，11，15

Figure 6.2: Example of binary swap with 16 data samples in 4 processors

if the reordering distance is 1，the reordering bit is the last bit, the data
exchange should be done that the data with even coordinate are on even
X{Y) coordinate processor, data with odd x{y) coordinate are on odd
coordinate processor.

The processor pairs in distance of the reordering distance exchange their
data: those data have the same reordering bit as the processor coordinates
remain and others swap out. Figure 6.2 give an example of binary swap
of 16 data laid in 4 processors.

• For each processor, those data with the same coordinate, which is the
overlapping part of the two polygon should be composited using method
described in chapter 7.

• If the distance of reordering is less then then double the distance
of reordering and exchange the data according to the reordering bit using

50

Chapter 6 Data reordering using binary swap

the method described above.

6.2 The communication cost

The overhead introduced by the reordering process is the communication over-
head. The reordering algorithms of [23] [13] are simply by sending the local re-
sults to the corresponding processor in the viewing space, which involves global
communication. In the reordering algorithms described aboved, only the x-net
communication is used, which is very efficient in the SIMD parallel machine as
described in chapter 3. Below is an estimation of the communication overhead.

Suppose data coordinate is x{y) and the processor coordinate is X{Y). From
the properties of swapping, after M times of reordering, the M' th least signifi-
cant bits of X is equal to M' th least significant bits of X:

mod 2财 二 JC mod (6-5)

This means after the M' th reordering in X and N'th reordering in Y , the Cut
and stack model exists in the sub-processor mesh X data are equally

distributed in the sub-processor mesh.
We argue that in every time of the swap, about half of the data in a processor

are swapped out. Noting that in the beginning the data in each processor
represent a polygon, which means the both the x and y coordinates on the
processor are continuous. After M' th swap in X and iV'th swap in Y, a bigger
polygon is virtualized in the x 2" sub-processor mesh, which means that
continuity exists in [青]and [杀]i. With this continuity, half of [责]([步])is

^[x] represent the largest integer number less than x

‘ 51

Chapter 6 Data reordering using binary swap

odd; the da ta coordinate's reordering hit is half one and half zero.
To est imate the amount of the data in the processor, we first est imate the

area of the biggest cross section polygon of a cube. It is easy to prove tha t
in a cube of volume a X 6 x c, the biggest cross section polygon's area is less
than + 62 + c2), which may be used to estimated as the max imum number
of da ta a processor could ever have. After several swaps, the overlapping par t
of the polygons are composited. Since the data are evenly distributed in the
processor mesh, the amount of the data in each processor are decreasing. Since
there will be M and N swaps in X and Y respectively, the total volume of the
x-net communication is no greater than M x N X + + c^).

Another advantages of the re-ordering algorithm is its balance of loading
among the processors. Since all locally rendered polygons are identical, both in
shape and orientation with the only difference is in their locations in the.viewing
space, we expect the workload on each processor is about the same.

i

52

/

Chapter 7

Ray composition

7.1 Introduction

The final step of volume rendering is the ray composition. By composition, the
image is reduced from 3D to 2D according to a lighting model. In the mean

time, fast speed of composition is desirable.
Different operations according to different lighting models have been pro-

posed. They are classified as commutative operations and non-commutative
operations. One example of commutative operations [11][12] is averaging the
intensities of voxels along parallel rays from the volume to the image plane.
Commutative operations are good for their simplicity and easy for calculation
and parallelization. Non-commutative operations, where compositions are per-
formed in the order of the shooting ray, model precisely the light transmission
through the volume. However, the computation complexity is increased; the
parallelism of the operation is lowered. One example of the non-commutative

53

Chapter 1 Ray composition

operation is the Kaijiya[14]'s visualization model with radiation transport equa-

tions.
The most commonly used equation for composition [13] [23] [1] is simply the

transparency formula, which is simply a linear interpolation[17]:

a . , = -a)^-aC (7.1)

where C and a are color vector and opacity of the voxel respectively. Using this
formula, every voxel has to be counted from the back to front or front to back
order. Therefore the computation overhead in this step is very high considering
the number of voxels. Although improvements such as adaptive termination[18
and hierarchical splatting[16] have been designed to simplify the calculation, it
seems inevitable to heavily use multiplication operations and count in the voxels
with little contribution to the final image.

In this chapter, an algorithm is presented for efficient ray composition through
a Monte-Carlo method. Voxels are sampled according to the opacity distribu-
tion in the ray. It provides a way for progressive composition and allows easy
tradeoff between speed and quality. We will first look into the question of ray
composition along a ray; then extend it to an associative solution and finally
the implementation on an SIMD machine.

7.2 Ray Composition by Monte Carlo Method

The composition of a ray with N voxels using (7.1) is:

u = 它 a-. a, - n a - + c n I [{ I — (7 . 2)
i=0 j=0 j=0

54

Chapter 1 Ray composition

where Ci and ai are color vectors and opacities of the N voxels from front to

back respectively.
The coefficients of Ci in equation (7.2) sum up to 1 and C may be considered

as the expectation of Ci where / is a random variable with distribution

= � “ < N (7.3)

From the Law of Large Numbers, we have:

e 二》m 1 E CR饥 (7.4)
N—oo pj

where Rm are samples of I.
Samples of I may be generated as follow:
Suppose Xk is a series of independent random variable uniformly distributed

on [0 , 1；

(1) A; = 0
(2) if Xk < OLk

sample R = k
else ii k < N

k=k+ l ; repeat (2)
else sample R = N

The estimation is a process of sampling, where voxels with high contribution

to the final image are sampled heavily.

55

Chapter 1 Ray composition

7.3 The Associative Color Model

According to equation (7.1), operation o{X, F, Z�..) for compositing voxel X�Y, Z,...

is defined as follow:

o (足 Y) = Cx{1-cxy) + o^yCy (7.5)

o (X, y, Z) = o(o(X, y), Z) = {Cx{l - ay) + cxy){1 - az) + (7.6)

where operation o implies no associativity; composition must be in the order of

A more efficient operation is possible by introducing a new at t r ibute of voxel,

associative color C', defined as

C ' ^ a x C (7.7)

and new operator o of composition on associative color C and opacity a\

• 全 [C 二 ， (7 . 8)

where

c卿= + C'Y (7.9)

anew = (1 - + (7.10)

It is easy to show that operation o is associative, namely,

o (X, y, Z) 二 •(•(足 > 0，幻 =•(足 幻） （7.11)

Associativity is helpful for parallelism since different parts of the ray may be
processed independently. Blinn[l] shows more advantages of associative color in
image interpolation and filtering.

56

Chapter 1 Ray composition

The associative color can be regarded as a regular color vector composited
onto black background. We simply add a black voxel as voxel TV +1 to the result
of equation (7.2) to estimate the composited associative color with Monte Carlo

method:
N ^

y) = Yl y) • . n (1 - ")) (7.12)

The composited opacity can be obtained by extending equation (7.10) to N
voxel: N

石 二 1 —fi(l — a j (7 . 1 3)

3=0

According to equation (7.12), the generation of samples is slightly different:
The sample of I may reach the new voxel N + 1 with probability — ^ j)
where the color vector is zero. Opacity is estimated by the number of samples not
reaching iV-f 1. The estimation of color is decreased by a factor of — �
comparative to the estimation in section I.

Compared to the conventional method, our method requires multiplication
only in the random number generation. Large amount of multiplication between
the colors and opacities is substituted by comparison between opacities and
random numbers and averaging of the samples. Different rays may share the
same random number for sample generation and different components of the
color vector may share the same sample since they are independent.

Consider a volume with N^ voxels. Direct computation requires times
of multiplications and additions for compositing the color vectors. Adaptive
termination method would give a saving of a factor t, which is the ratio of voxels
in a ray being traced before terminated by the accumulating opacity. However,
it introduces the composition of opacity a as well as comparison of a with the
threshold. It requires N^ X i x t m u l t i p l i c a t i o n s ’ i V 3 x 4 x t additions as well as

57

Chapter 7 Ray composition

. . . 1 ！ ！ ^

1-.......‘..1...........1..........i...........丨...........丨.........-
S ； Z .^一

p - ;…….
2 - ^ ^ … ； -

1 - . … . … ^ ^ 卞 4 丨

r^m l̂l—l i i i 1 1 ‘ ：^^
2 4 6 8 1 0 1 2 1 4 1 6

Number of voxels x 1 q®

Figure 7.1: Computation vs. number of voxels in different methods^

X t comparisons. The factor t is also used here as an estimator for the number
of comparisons in our method since most of the comparisons will stop before the
termination. In Monte Carlo estimation with n samples, we require N xn times
of multiplications and N^ x n times of comparisons for sample generation, plus
JV2 X n X 3 additions for averaging the color vectors. Table 7.1 compares the
complexity of ray composition for direct computation, adaptive termination and
the Monte Carlo method with different volume size. Image with 32 samples^ are
given as example for direct comparison with others. Generally, the computation
cycle for addition and comparison is about the same, so they are counted with
one timing value A. Figure 7.1 shows the trend of computation intensity versus
the number of voxels. It can be shown that the number of multiplication is
far less in our method. The number of comparison in our method is larger(10

i(o) for the direct calculation; (+) for adaptive termination and (x) for Monte Carlo Method
with 32 samples.

2We will show later that 32 sample is sufficient for most compositions.

58

Chapter 1 Ray composition

Size Multiplication Addition Comparison Total
Direct 2563 256^ • 4 256^ • 4 0 ~~6.68e7M + 6.68e7A

Adap. Term. 256^ . 4 .1 ~ 256^ . 4~T" 0 (6.68e7M + e .eSelAfT
32 Samples “ 256 .32 32 . 256^ -T 32 . 256^ . t 8.2e3M + 6MeSA • t
N Samples 256 . — A^. 2562 . 4 N ‘ 256^ • t N{256M + 2.6e5A • t)

Direct " T ^ 1283.4 128̂ • 4 0 8.3e6M+8.3e6A
Adap. Term. “ 128^ 128̂ . 4. t 0 (8.3e6M+8.3e6A)t .
32 Samples 128.32 32 • 128̂ • 4 32 • 128^ • t 4.1e3M + 6.7e7A • t

" ^ T ^ m p l e s 128.7V | iV . 1282 . 4 | N '舰• t | + 2.1e6v4
Table 7.1: Complexity estimation for different ray composition model

times), but generally, a comparison will cost less than multiplication (e.g. DEC
MP-1, a comparison needs 24 timing clocks while a multiplication needs 239
timing clocks) The increase in comparison can be easily compensated by the
decrease in multiplication. In addition, the advantage of Monte Carlo method
increases as the number of voxels increases. The sample variance may be used
to measure the accuracy of the estimation:

— 1 N 1
var[C] = var[—Y^CR^] = — • var[CR^] (7.14)

The probability that a voxel's color vector Ci being sampled is determined
by its opacity and the opacities of the voxels that lie before it in the viewing
ray. The bigger its opacity value, the higher the probability of it being sampled.
The probability decreases exponentially after the first few opaque voxels and the
composited result is often determined ,by only a few voxels. In our experiment,
a volume image of 256 x 256 x 256 is composited using the Monte Carlo method
(figure 7.7) and the direct computation(figure 7.4 and 7.5) respectively. Figure
7.2 shows the trend when we increase the number of samples. Peak to peak
Signal to Noise Ratio (PSNR) measures the difference to the result of direct
computation, which is the expectation of our estimation. Generally, a image

59

Chapter 1 Ray composition

48 j 1 1— 1 ！ — ^

46--‘.......i......
4 4 - ： •… ： :

\ 广 丨 丨 ：
1 4 2 - : / ： ： ； ：

r......A.........丨............i.......:[:::]:::
3 8 - … … ： ： ： ： ：

3 6 - y ： ： ： ； ：

n 丨 1 I I : 1 : : :
3 2 - ： ： ： ： ：

0 j i i 1 I
3 0。 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

Number of samples

Figure 7.2: Error decrease when number of sample increase

with a PSNR higher than 38dB will be visibly identical to the original one. In
our experiment, when samples are more than 32，there are little visible difference
from the direct computation (figure 7.6). So, number 32 is a threshold, after
which no further collection of the sample is need.

7.4 Parallel Implementation

The parallel implementation of the composition as described in the previous
chapter involves three parts: the local composition, the re-ordering process and
the global composition. As we have discussed the reordering and global composi-
tion process in the previous chapter, this chapter will focus on how to composite
the data in each processor to get the locally composited results.

By simply applying the Monte Carlo process on the sub-ray in each processor,
we get the results of associated colors as well as the associated opacities as the

60

Chapter 1 Ray composition

locally rendered results.
In this section, we evaluate the resulting quality and cost of the global result,

and compare it to the conventional approach.
On DEC MP-1, an integer multiplication need 239 timing clocks on parallel

processors while an integer multiplication need only 37 timing clocks on the
central processor(ACU); the adding and comparison is much cheaper, with only
24 t ime clocks for integer and 6 clocks for character. Every processor process
a sub-block of resampled data for composition of color R, G, B and opacity a
respectively. As the random number used in the Monte Carlo process in each
processor may be shared, we locate the generation of the random number in the
ACU, where the cost of multiplication is less.

The number of rays and the length of the rays in each processor may vary for
different perspectives. For simplicity, we assume the case of compositing a sub-
block of 8 X 8 X 8 which is perpendicularly projected on the viewing space, where
the number of rays in each processor is 8 X 8 with 8 samples each. To composited
the results of R, G, B and opacity a, the direct method need one multiplication
on every sample of the ray in each component, which is 8 x 8 x 8 x 4 二 2048;
the Monte Carlo method with 32 samples each ray need to generate at most
8x32 random numbers. The number of addition is 8 x 8 x 32 and the max imum
number of comparison is 8 x 8 X 8 X 32. Table 7.2 gives a comparison of the
implementat ion cost to get the locally rendered results. We can see tha t the
computat ion t ime is significantly reduced in our Monte Carlo method.

To evaluate the result, we compare the final composited image using our
parallel implementation to the result of direct computation. PSNR is again
used as the measurement (Figure 7.3). According to equation (7.2):

61

Chapter 1 Ray composition

- Multiplication Adding Comparison Total time
n u m . J t i m ^ time "num. t ime" " (timing clocks)

Dir-^ m m 一 0 “ 538624
32 Sample " W 9472 " "204^ 49152 16384 98034 156658
^ Sample 512 19944 4096 98304 32768 196608 314856

Table 7.2: Time for ray composition with different methods
431 1 I —I ！ ！

^ i 丨 … … -
4 2 - i : s r ^

41.............丨.............丨..............t.........:i=:
4�.............：..............:..............丨.............
3 9 : ； : i

：.....•…........： i ； ；

37 - i ^ \ : i ： ；

36 丨../...1
……t.........：..............丨._....._.:l:] = = l : =

•…… ：

I I
33^ ^ ^ to SO eo 70

Number of samples in each subray

Figure 7.3: Error decrease when number of sample in each subray increase

（ 7 . 1 5)

where the voxel color vector and opacity are substituted for Monte Carlo esti-
mated color vector Ci and opacity a for sub-rays computed by the processors
in a distributed manner.

Since the variance of voxel color is much smaller in the sub-ray according to
the low-pass characteristic of the image, the estimation in the sub-ray should
be more accurate. However, only a small error in the estimation of a will be
accumulated and amplified in the final result(figure 7.8 and 7.9 and 7.10). Also，

some Ci may have little contribution and waste the computation resource. As

62

Chapter 1 Ray composition

國
m y

Figure 7.4: The composition result using direct computation
we can see from our experiment, the result is not as good as the one we got
before. It requires 32 samples in each sub ray to get the similar result when
total composition method only need 32 samples alone. It is because by using
the same number of samples on each sub-ray is not close to the distribution of
the contribution of samples to the final ray.

We have seen from the results of the Monte Carlo composition on the entire
ray(figure 7.6 and figure 7.7) as well as the on the sub-ray(figure 7.8 and 7.9
and 7.10) that some artifact may be introduced. The concentric artifacts seen
in figure 7.6 and figure 7.7 are due to the same random number used for each
ray to generate the samples. The quality of figure 7.8，figure 7.9 and figure 7.10
is not good because of the error in the estimation of opacities.

7.5 Discussion and further improvement

Further improvements may be given if we choose to calculate the composited
opacities instead of using Monte Carlo estimation. For some sub-rays with
higher composited opacities, an adaptive algorithm may be developed to take

63

Chapter 7 Ray composition

Figure 7.5: The composition result using direct computation with resampling

• l i i
Figure 7.6: The composition result using Monte Carlo estimation(32 samples)

Figure 7.7: The composition result using Monte Carlo estimation (64 samples)

- 64

Chapter 1 Ray composition

Figure 7.8: The composition result using 32 samples in one sub-ray each

_

Figure 7.9: The composition result using 32 samples in one sub-ray each with
resampling

^ y j
Figure 7.10: The composition result using 64 samples in one sub-ray each with
resampling

65

Chapter 1 Ray composition

more samples out. This will make the sample distribution more conform to its

contribution to the final result.
In this method, the quality of the output image may be easily predicted

by the variance and the number of samples. This is good for the t ime and
quality tradeoff. Another advantage is progressiveness, which is very useful for
interactivity. Sometimes, only a few samples will roughly give an acceptable
rendering effect when time is important. Refinement of it does not require
additional computation.

Nowadays computers may have more floating point power and the cost of

multiplication is reduced a lot. This will make the advantage of Monte Carlo
method lesser. However, the implementation cost for Monte Carlo composition
may be reduced by using precomputed comparison table for specified opacities,
and hardware implementation of random number generater.

The error caused by this method is equal to composite a ray with different
opacities, which in most of the applications are assigned by user. If the difference
in opacity is only moderate, the difference will be insignificant. As a result, the
perceptual error would also be insignificant.

Like in hierarchical splatting[16], some large volumes of data with similar
opacities and color vector can be associated first. With no chances of being
sampled, voxels with transparent opacity may be dropped first.

66

Chapter 8

Conclusion and further work

In this thesis, we emphasize on the new techniques in parallel volume rendering.
A prototype system implementing our algorithms has been developed on the

Maspar System.
We develop a rendering pipeline for parallel volume rendering on the SIMD

machine shown in figure 1.2. The resampling, reordering and composition part

of the pipeline are given particular interest.
In the resampling part, we provide a resampling algorithms that minimize

the mismatch distance between the viewing space sample and the object space
sample. The mapping is more flexible for different filtering techniques. With
only one mapping, different order filters can be built from the lower order one at
no additional cost using the Aitken,s algorithms. Comparing to the conventional
resampling by 画Itipass method, our method provides more flexibility and more
accuracy. The trade-off is that the workload in each processor may be uneven,
but this can be solved by the load balancing algorithms provided.

The reordering algorithm using binary swap is the only algorithm that uses

67

Chapter 8 Conclusion and further work

only the local communication mechanism to align the object space samples to
the viewing space layout when writing this thesis. Since the local communica-
tion is much more efficient in the SIMD machine, our algorithm is superior in
performance. In addition, the workload on each processor is even and regardless
of the perspectives. This provides a stable rendering speed, while the speed
of the general global communication may vary in different perspectives since

collision may be high in certain perspectives.
The Monte Carlo composition method proposed in this thesis is a new

method for efficient composition. By sampling the data in each ray accord-
ing to their contribution to the final results, the composition may be efficient.
However, we have seen that the resulting quality is not satisfactory in the par-
allel implementation. This is due to the corresponding sampling distribution is
not relating to the overall ray distribution. Further work will be done to adjust
the distribution and improve the performance. The performance of the Monte
Carlo method is slightly better than the adaptive termination in our model.
However, modern machine often have the same operation cycle for both multipli-
cation and addition, which may make the advantage of the Monte Carlo method
lesser. However, the Monte Carlo method also has rooms for improvement,
which includes hardware implementation of comparison. Also, a pre-computed
comparison table could also trade the speed for more memory.

As a volume rendering system, works should also be done on a friendly user

interface.

‘ 68

Bibliography

[1] James F. Blinn. Compositing, part i. IEEE Computer Graphics and Appli-

cations, pages 83-88, September 1994.

[2] B.T.Phong. Illumination for computer-generated pictures. Communications

of the ACM, 18(5):311-317, June 1975.

[3] Digital Equitment Crop. DECmpp 1200/Sx System Overview Manual，

Programming Language Reference Manual, Programming Language User's
Guide, Commands Reference Manual

[4] Robert A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering.

Computer Graphics, 22(4):65-74, August 1988.

[5] Robert A. Drebin, Elliot K. Fishman, and Donna Magid. Volumetric

three d i m e n s i o n a l image rendering: Thresholding vs. non-thresholding tech-

niques. Radiology, 165:131, 1987.

[6] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design:

A Practical Guide. Academic Press Inc., 1990.

[7] E. Feibush, M. Levoy, and R. Cook. Synthetic texturing using digital filters.

Computer Graphics, 14(3):294-301, July 1980.

69

8] Michael J. Flynn. Some computer organizations and their effectiveness.

IEEE Transactions on Computers, 21:948-960, 1972.

[9] Stuart Green. Parallel Processing for Computer Graphics, chapter 3,

page 23. The MIT Press, 1991.

[10] Pa t Hanrahan. Three-pass affine transforms for volume rendering. Com-

puter Graphics, 25(5):71-78, November 1990.

[11] Loowell D. Harris, R. A. Robb, T. S. Yuen, and E. E. Ri tman. Non-invasive
numerical dissection and display of anatomic structure using computerized
x-ray tomography. PTocccdmgs SPIE, 152:10-18’ 1978.

[12] Karl H. Hoehne, R. L. Delapaz, R. Bernstein, and R. C. Taylor. Com-
bined surface display and reformatting for the three-dimensional analysis
of tomographic data. Investigative Radiology, 22(7):658-664, July 1987.

[13] Will iam M Hsu. Segmented ray casting for data parallel volume rendering.

Parallel Rendering Symposium Proceedings, pages 7-13, 1993.

[14] James T. Kaijiya and Brian P.Von Herzen. Ray tracing volume densities.

Computer Graphics, 18(3), 1984.

[15] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-
warp factorization of the v i e w i n g transformation. Computer Graphics Pro-
ceedings, Annual Conference Series, pages 451-458, 1994.

[16] David Laur and Pat Hanrahan. Hierachical splatting: A progressive refine-
ment algorithm for volume rendering. Computer Graphics, 25(4):285-288,

July 1991.

[17] Mark Levoy. Display of surface from volume data. IEEE Computer and

Graphics and Applications, 8(5), 1988.

[18] Mark Levoy. Efficient ray tracing of volume data. ACM Transactions on

Graphics, 9(3):245-261, July 1990.

[19] Kwan-Liu Ma, James S. Painter, Charles D. Hansen, and Michael F. Krogh.

Parallel volume rendering using binary-swap compositing. IEEE Computer

Graphics and Applications, pages 59-68, 1994.

[20] Shigeru Muraki. Volume data and wavelet transforms. IEEE Computer

Graphics & Applications, pages 50-56, 1993.

[21] 1. Page. Parallel Processing for computer vision ad display, chapter 6,

page 89. Addison-Wesley, 1989.

[22] A. W. Peath. A fast algorithm for general raster rotation. Proceedings

Graphics Interface, pages 77-81, May 1986.

[23] P. Schroder and J.B. Salem. Fast rotation of volume data on da ta parallel
architectures. Technical report, Thinking Machines Corporation, 1991.

[24] Victor T. Tom. Adaptive filter techniques of digital image enhancement.
SPIE Digital Image Processing: Critical Review of Technology, 528, 1985.

[25] Takashi Totsuka and Marc Levoy. Frequency domain volume rendering.
Computer Graphics Proceedings，Annual Conference Series, pages 271-278，

1993.

[26] L. Westover. Footprint evaluation for volume rendering. Computer Graph-

ics, 24(4):367-376, August 1990.

[27] C. Wit tenbrink and A.Somani. Permutat ion warping. Parallel rendering

symposium proceedings, pages 57-60, 1993.

[28] G. Wolberg and T.E. Boult. Separable image warping with spatial lookup

tables. Computer Gaphics, 23(3):369-378, July 1989.

^
^

二
丨

A

、
：

.
…

.
.

•

：

.

,

.
.
.
.

^
^

•

•

•

.

•

.

：

：

_

^
‘

.
r

,
-

•
‘

f
^

/
I

.,

；

.

.

：

.
、

.

^

卞

•
為

：

，

飞

：
：

。

一
，

髮
j

，
‘
、

-
�

.
.

^
r^

i
r

=
.

^
.

…
•

-
：

：
-

^

•1
 ‘

！：
;；

；^
?.

：V

•
.

.
-

-
-

广
々

、
、

-
广

‘
...

.
•

-
r

-
•

、

..
.？

.i�
!si

i.i
：

卜

-

^

^

-.
』
,_̂
:.
..
.-

-

.

：
,.

巧
：
：

 、
•

•
.
-
•

:
•

‘
,
：

-
rs

li
*-

嵌
货

：

•

‘
—

:.
S；

.-
.?

.

‘

.
.

丫

1
.
-
:
.
：

應

.
.

.
.

.
.

.
•

“

,
,

‘

•
-̂i

-
-.

r

‘
•
3

.

•

‘

.
 •

-

二
…

：
‘

.

取
、

.
:

.

•

•

•

•
、

.
，

-
•

•

:.
-?

、
、
：
：
..

.
.

-
.

-
.

:
、

:
�

:

、
•

.
.“

,.
.》

::
::

•
辜

.
，

-
.

.
.

.

.

,

•

I
-

•

；

^

•
.

.
.

.
“

•-•
-v

、
.’

，
.

L

•
•

•

.
.

…

•
=

,

•
•
•
-

‘
.

•
V.

‘
.

.
.

-

-

：
•

-

.

,

...

•

•

•

.
.
.
.

.

.

，

,y

P

V

.

/
.

^

.

.，
：

vr>
�

• .
 -

 ,
•

••
•

.
r'i

v：
'
.
.
：

•。」
U

••
.

..

-

.
.

‘

；
.

_F
 •
:丨
丨
-

：
..

：
.

.

I
：
：
-•

.

卜
“

.
.

,

.

济
：
•
.

_

.

.

-
卜

•

丨
冬

）
：

.
：

i
.

-
‘

CUHK L i b r a r i e s

0035=Jfl7?a

