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Abstract 

In this thesis, we analyze and illustrate the use of waveform methods for solving 

large sparse systems of ordinary differential equations (ODE). The methods can 

be viewed as an extension of classical methods to function spaces. The main 

algorithm that we focus on is waveform Krylov subspace method. This technique 

combines the idea of Krylov subspace, a method originally developed for solving 

general sparse linear algebraic systems, with waveform relaxation, an algorithm 

originally for solving very large differential equations arising from VLSI circuits. 

We show that waveform Krylov subspace methods give a better performance 

than waveform relaxation methods for tightly coupled systems. 

The convergence behaviors of the waveform methods are investigated by 

numerical experiments on both sequential and parallel computers. The methods 

has been implemented and extensively tested on a MasPar massively parallel 

computer. In particular, we present the use of inexact ODE solver for waveform 

methods and show that it is well-suited for this type of machines. 

We will also describe how to integrate the overlapped partitioning with the 

waveform Krylov subspace methods by domain decomposition technique. The 

subdomain solver acts as a preconditioner of waveform Krylov subspace methods. 

The resulting algorithm is the functional extension of an overlapping additive 

Schwarz method. 
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Chapter 1 

Introduction 

Many physical problems and engineering problems are modelled by differential 

equations. The numerical solution of these equations has been the subject of 

research activity long before the birth of digital computer. After the invention 

of digital computer, it plays a more important role in many applications. One 

of these applications that we will focus on is VLSI circuit simulation. Circuit 

simulation is a time-consuming task. In VLSI circuits, it is often that thousands 

of simultaneous differential equations needed to be solved in a reasonable time. 

Engineering requirement to the numerical algorithms is not just to be efficient, 

but also to be robust and reliable. In this thesis, we investigate the iterative 

approach for solving the circuit equations. One of the methods in this category 

is called waveform relaxation and has been studied for past ten years. We will 

address the convergence problems of this method for tightly coupled systems 

(which is well known) and suggest new methods to tackle this problem. The 

techniques that we develop will be applicable to not only circuit simulation, but 

can be also many applications that share the same numerical properties. The 

overview of the approach will be introduced step by step in the following sections 

in this chapter. 
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Chapter 1 Introduction 

1.1 Functional Extension of Iterative Methods 

There have been many iterative methods developed for solving large sparse lin-

ear and non-linear equations in recent years (see [38, 32] for reference). However, 

studies of iterative approaches to solution of a system of ordinary differential 

equations (ODE) or differential-algebraic equations (DAE) have been compar-

atively scarce. This is not really surprising because the standard numerical 

treatment takes the approach of discretizing the system in the time domain (we 

assumed that the independent variable is time for convenience of discussion) in 

the first step by the implicit integration methods, and the resulting algebraic 

equations at each time-step are solved by well-developed methods such as Gaus-

sian elimination or LU decomposition. This approach is called time-marching 

algorithm. However, this approach becomes inefficient when the problem size is 

large and is not easy to be parallelized. Another approach, which this thesis will 

focus on，is to extend classical iterative methods to function spaces. This idea 

dates back in the early '50s in the study of iterative methods in Banach and 

Hilbert spaces; see the survey by Patterson [54]. Many classical methods were 

generalized to function spaces around and after this period. They include the 

Jacobi method, the Gauss-Seidel method, the successive over-relaxation method, 

the alternating direction method, the steepest descent method and the conjugate 

gradient method [54]. 

1.2 Applications in Circuit Simulation 

Since the '80s, iterative methods in function spaces liave found an important ap-

plication, namely circuit simulation. In VLSI circuit simulation, the amount of 

work increases dramatically with the circuit size, and one has to solve a system 

of thousands of equations efficiently. In this case, the matrices are sparse and 
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Chapter 1 Introduction 

well-suited to iterative approach. More important, in the problem of circuit sim-

ulation, the step-sizes are often kept small in time-marching approach in order 

to achieve accurate results. To tackle this problem, waveform relaxation meth-

ods (WR) was proposed for circuit simulation in 1982 [40], and are sometimes 

also referred to in the literature as dynamic iteration (for example [74, 72, 74]) 

and Picard-Lindelof iteration (for example [49, 50, 51, 52, 47]). Those who are 

familiar with the classical iterative methods can imagine that the extended meth-

ods work similarly as the traditional ones, but the unknown is now a function 

with a bounded time interval (or simply called a waveform) instead of a single 

value, and the updating needs to solve an individual ODE equation instead of 

simply algebraic arithmatic. Compared with the time-marching approach, this 

approach can exploit the multi-rate behavior^ of the circuit variables [79], since 

the individual ODE's can have their own time-steps. The theoretical analysis 

of waveform relaxation methods can be based on the contraction mapping and 

fixed point theorems in Banach spaces. In Chapter 2, we will review the methods 

in more detail. Waveform relaxation has been certified to be applicable to the 

simulation of MOS circuits, in which the Jacobian matrices are often diagonally 

dominant. However, for tightly coupled systems such as bipolar circuits, the 

convergence of waveform relaxation methods can be extremely slow. This thesis 

aims to search for the more robust techniques to tackle this problem. 

1.3 Multigrid Acceleration 

Recently there have been many publications on the technique of multigrid ac-

celeration of waveform relaxation for solving parabolic partial differential equa-

tions (PDE) [75, 67, 71, 72, 70, 73, 68, 69, 74, 33]. Since the multigrid technique 

have been successfully used to solve elliptic problems, the generalized version 

^That is, the circuit variables are changing at very different rates 
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Chapter 1 Introduction 

is expected to have good performance for parabolic problems. However, the 

performance for applying this technique to the circuit problems is in question. 

Although some test problems in this thesis are in fact the parabolic problems, 

we are more interested in developing other techniques that are also applicable 

for circuit problems. 

1.4 Why Hilbert Space? 

In recent years, Krylov subspace methods have become popular over the relax-

ation methods in solving large linear algebraic systems [5]. It is natural to apply 

these techniques to the waveform relaxation methods. The idea is to extend 

Krylov subspace methods to function space. To do this, we need to look at 

a more specific space, namely the Hilbert space, where the concepts of inner 

product and orthogonality are introduced. For solving linear system of ODE's, 

new iterates on one waveform relaxation iteration are treated as a result of a 

linear operator applied to the old iterates [43]. The sequences of iterates are then 

accelerated by the generalized Krylov subspace methods. Recently, Lumsdaine 

et al. extended the generalized minimal residual method (GMRES) to acceler-

ate the waveform relaxation methods [43]. The method was implemented for 

semiconductor device simulation. Three times faster than waveform relaxation 

was reported. This motivates us to consider this method seriously for circuit 

simulation. However, a drawback to the waveform GMRES method is that the 

amount of storage is huge. This is due to the fact that the whole discretized 

waveforms have to be stored in the waveform methods, and to the requirement 

that all computed orthogonal vectors have to be kept in the GMRES method. 

In Chapter 3, a range of waveform Krylov subspace methods are further devel-

oped. They use less amount of storage than the waveform GMRES method. The 

adjoint operator is derived for the waveform bi-conjugate gradient method and 
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Chapter 1 Introduction 

the waveform quasi-minimal residual method by using the reverse ODE solving. 

The methods are then applied to solve tightly coupled circuit problems and the 

unstructured grid partial differential equations (Section 3.5). 

1.5 Parallel Implementation 

One of the advantages of waveform relaxation is that it can be implemented ef-

ficiently on parallel computers. In fact, there have been many parallel waveform 

relaxation programs implemented on this type of machines, for example [59, 71 . 

Since the Krylov subspace methods can be implemented efficiently on parallel 

computers, their functional counterparts are expected to be also suitable for par-

allel implementation. In this thesis, we give a parallel implementation of these 

new methods. In Chapter 4, we present the parallel implementation issues on 

a MasPar massively parallel computer. The use of inexact ODE solver is given 

in Chapter 5. Since the conventional ODE solvers are inherently sequential, the 

inexact ODE solver is proposed by taking time points from only previous wave-

form iteration for time integration. As a result, this method is truly massively 

parallel, as the equation is completely unfolded both in system and in time. 

1.6 Domain Decomposition 

Overlapped partitioning technique has been applied to tlie waveform relaxation 

methods for solving large scale initial value problems that arising from VLSI 

circuit simulation [64, 76, 3]. The motivation is mainly to improve robustness 

as well as convergence. Particularly for tightly coupled systems such as bipolar 

circuits, the convergence of the naive waveform relaxation methods can be very 

poor. However, if we group the tightly coupled component together and the 

iterative process are only applied among the inter-subdomain, the convergence 
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Chapter 1 Introduction 

will be improved [79]. Although the optimal partitioning for the criteria such as 

minimizing the spectral radius is believed to be NP-hard, some good heuristic 

algorithms have been reported [48, 3 . 

Another good reason for partitioning has to do with parallel or distributed 

processing on MIMD {Multiple Instruction, Multiple Data) computers or cluster 

workstations. A large circuit is divided into several subcircuits and each sub-

problem is distributed to a different processor. In Chapter 6, we argue that the 

overlapped partitioning technique can be applied to waveform Krylov subspace 

methods equally well as waveform relaxation methods. The idea is borrowed 

from the techniques in solving PDE problems, i.e., domain decomposition tech-

nique and preconditioning. The resulting algorithm is similar to the overlapped 

Schwarz method in solving the PDE problems. 

1.7 Contributions of This Thesis 

The main contributions of this thesis are: 

• By using adjoint operator, we extend the bi-conjugate gradient method 

and the quasi minimal residual method in function space. 

• The convergence behaviors of five of the previously untried waveform 

Krylov subspace methods, together with the waveform generalized minimal 

residual method, are investigated. Numerical results showed that conver-

gence was achieved for some tightly coupled systems where the conven-

tional waveform relaxation method would fail. Also, we observe that the 

convergence behaviors of these methods are similar to their non-functional 

counterparts. 

• The parallel implementation of waveform Krylov subspace methods on a 

massively parallel computer is developed to demonstrate the effectiveness 
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of these methods in parallel environments. The use of inexact ODE solver 

is proposed which is shown to be well-suited for massively parallel ma-

chines. 

• We propose using domain decomposition in order to integrate the over-

lapped partitioning techniques and waveform Krylov subspace methods. 

1.8 Outlines of the Thesis 

In this thesis, we will concentrate on the design and analysis of algorithms for 

linear ODE's. We will pay attention to the improvement in the system domain, 

such as using Krylov subspace methods and domain decomposition to accelerate 

the waveform relaxation methods, rather than in the time domain. Therefore, 

the development of advanced ODE methods for time domain, such as implicit 

Runge-Kutta methods and wavelet methods that have newly emerged will not be 

considered. The variables are real by default unless they are specified explicitly. 

The rest of this thesis is organized as follows: 

Chapter 2 presents a review of waveform relaxation methods, including the 

corresponding convergence theory. The basic concepts in functional anal-

ysis and linear algebra that are used in this thesis will be introduced. 

Chapter 3 starts with a review of Krylov subspace methods for linear alge-

braic systems. Their functional counterparts will then be introduced. In 

particular, we study the use of adjoint operator and the difficulty in us-

ing this operator will also be addressed. The convergence behaviors are 

investigated via numerical experiments. 

Chapters 4 and 5 address the implementation issues of waveform Krylov sub-

space methods on a massively parallel computer, named DECmpp 12000/Sx 
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or MasPar, for solving an unstructured grid problem. We show that the 

use of inexact ODE solver is most suitable for this type of machines. 

Chapter 6 presents some new ideas on how to integrate the overlapped parti-

tioning technique and the waveform Krylov subspace methods by domain 

decomposition setting and preconditioning. 

Chapter 7 concludes the thesis by presenting our main conclusions. 

Appendix A contains pseudo codes of waveform Krylov subspace methods re-

ferred to in the text. 

Appendix B contains an overview of recusive spectral bisection method that 

we have used in the experiment described in Chapter 6. 
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Chapter 2 

Waveform Relaxation Methods 

In this chapter, we review the waveform relaxation methods for solving a lin-

ear system of ordinary differential equations (ODE). The main purpose of this 

chapter is to provide the basic concepts of waveform relaxation and to intro-

duce some notations. The basic convergence analysis of waveform relaxation is 

reviewed. The relation between waveform relaxation methods for ordinary differ-

ential equations and relaxation methods for linear operator equations in Banach 

space will also be described. This is the key to understanding the methods in 

the following chapters. 

We exclude the discussion of the methods for non-linear systems. It is often 

that the non-linear equations are solved using the linearization by Newton's 

method (and this will be shown at the end of Chapter 3). Therefore it seems 

useful to study the waveform relaxation methods for linear systems in greater 

depth. For a complete introduction of the methods, the reader may consult the 

classic book of White and Sangiovanni-Vincentelli [79]. For more information of 

recent development on these methods, the reader may refer to the references at 

the end of this chapter. 
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Chapter 2 Waveform Relaxation Methods 

2.1 Basic Idea 

Consider the following linear time-varying system of ODE's with n unknown 

functions: 

B{t)y{t) + A{t)y{t) = /⑴， y{to) 二 yo, t G [to, t^] (2.1) 

where f and y are vector valued functions and t is a real variable. We refer t as 

time for convenience. A[t) and B{t) are square matrices and are usually large 

and sparse in our discussion. The cases of rectangular coefficients will not be 

considered. Moreover, y{t) denotes the derivative of y{t) with respect to t. This 

is an initial value problem and the initial value yo is given at time to. The Time-

marching approach is a standard technique for finding the numerical solution 

of Equation (2.1). In this approach, the system of ODE's is firstly discretized 

in the time domain by an implicit integration method such as Backward Euler 

method, and then the resulting linear algebraic equations are solved at each 

time-step directed from time zero. For example, if we approximate y{ti) by 

{y{ti) — y{ti-i))|j^ti where At^-三 ti — t,_i and tk > tj for k > j, the standard 

Backward Euler method can be written as solving the following equation: 

B{U) ( _ : . i ) ) + A{U)y{U) 二 勵 
\ ^ti / 

for i 二 1, 2 , . . . , m, where m is the number of discretized time points. The sparse 

Gaussian elimination is then used to solve the above linear algebraic equations at 

each time point. We refer the reader to the book of Brenan et al. [9] for further 

discussion on time-marching algorithms for solving initial-value problems. 

However, it is well-known that Gaussian elimination is inefficient when the 

problem size is large. In the waveform relaxation methods, the system of equa-

tions are decomposed into individual ODE equations with single unknown by 

an iterative process. In matrix notation, waveform relaxation can be written as: 

10 



Chapter 2 Waveform Relaxation Methods 

MB[t^t) + MA{t)y^'Kt) = NB{t)y^'-'Kt) + NA{t)y^'-'\t) + f(t), (2.2) 

where A{t) = M^(t) 一 N4t),B(t) = Ms( t ) - A^00. The k-th iteration is 

denoted by � . T h e choice of the splitting matrices is the same as that in clas-

sical relaxation methods. We refer the reader to the book of Hackbusch [32] for 

the general discussion of classical relaxation methods. For example in waveform 

Jacobi method, MA(t) and Mj5(t) are the diagonal parts of A{t) and B{t) respec-

tively. Similarly in waveform Gauss-Seidel method, MA{t) and Ms i t ) are the 

lower triangular parts of A{t) and B(t) respectively. As in the classical relaxation 

methods for solving linear algebraic systems, Ms(^), M ^ ( 4 A^s(^) and jV](t) 

are not formed explicitly in actual implementation. They are used for illustrat-

ing and analyzing the algorithms only. Algorithm 2.1 and Algorithm 2.2 show 

the waveform Jacobi method (WJAC) and the waveform Gauss-Seidel method 

(WGS) respectively in actual implementation. 

For example, consider the linear differential equation: 

1 - 2 0 1 [ yi 1 [ 10 0 - 3 1 [ yi 1 [ 13 

0 5 - 6 i/2 + - 4 11 0 y2 = 14 . 

- 7 0 9 J |_ y3 J |_ 0 —8 12 J |_ y3 \ [ 15 

The waveform Jacobi method for this equation is written as: 

y['\t)^lOy['\t) = 13 + 2#-i)(f) + 3yri)W, 

^yi'\t)^nyi'\t) = U^6yt'\t)^Ayt'\t), 

9 # ) W + 12yf )W = 15 + 7 # - i ) ( 0 + % f - i ) ( 4 

and the waveform Gauss-Seidel method is written as: 

y['\t)^lOy['\t) 二 13 + 2 y ^ i ) W + 3 y f - i ) W , 

11 



Chapter 2 Waveform Relaxation Methods 

Choose y(o)(t) for t e [ W m ] 
for k = 1, 2 , . . . , max-iter 

for i = 1 , 2 , . . . , n 
solve 

~ ’ # ) W + a,,y\'\t) 二 则-TM4t”�t) - E ^ % ( ' - 1 ) ( 0 
j^i 计、 

with yP)(0) = ŷ ,o 
end 
check convergence; continue if necessary 

end 

Algorithm 2.1: The Waveform Jacobi Method (WJAC) 

Choose “ � � for t G [to,tm] 
for k = 1，2,..., max-iter 

for i = 1, 2 , . . .，n 
m :二1：]<乂,3彻 +&〉人力_̂—1)(0 

刚:=&<%yf)W + & > ^ 2 / 广 1 ) ( ” 
solve 

M!')W + a ^ ( t ) = 湖 - 则 - h , { t ) 

with yP)(0) = yi,Q 
end 
check convergence; continue if necessary 

end 

Algorithm 2.2: The Waveform Gauss-Seidel Method (WGS) 

12 



Chapter 2 Waveform Relaxation Methods 

5 # ) ( t ) + l l " ; ' ) « = 14 + 6 ^ - i ) ( f ) + 4y!")(f), 

9£\t)^l2yi'\t) = 15 + 7 # ) W + % f ) W . 

Each decomposed equation is solved individually. Waveform relaxation was 

originally proposed by Lelarasmee et al. [40] and have been widely studied in 

electrical and electronic engineering community for the past ten years. 

As in the classical relaxation method, the individual equations can be solved 

in parallel fashion in the waveform Jacobi method and those in the waveform 

Gauss-Seidel method are often solved in serial fashion. The parallelization of 

the waveform Gauss-Seidel method can be done by multi-color technique. One 

of such implementation is presented in Chapter 4. Note that the convergent 

rate of the waveform Gauss-Seidel method depends also on the ordering of the 

equations. In circuit simulation, the ordering usually follows the signal flow of 

circuits in order to enhance the rate of convergence. For example MOS circuits 

often exhibit a kind of unidirectional coupling. The source-to-drain current of 

an MOS transistor is controlled by the gate voltage, but the gate voltage is 

almost independent of the drain and the source voltage. Therefore, if we update 

the gate voltage before the drain or source voltage, the convergent rate will be 

improved. 

There is no doubt that waveform relaxation works in continuous-time, as it 

is supported by the theory of functional analysis on continuous functions (see 

also Section 2.4.1). However, practically, they are solved (approximated) by a 

numerical integration method, such as Backward Euler or multi-step method [79 . 

The method is then called discretized waveform relaxation. Sometimes we call 

discretized waveform relaxation simply waveform relaxation if it is understood 

in the context. Mostly only implicit integration methods are considered in dis-

cretized waveform relaxation. There is an exception that recently the use of 

Runge-Kutta method, which is an explicit method, was studied by Bellen and 
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Zennaro [7 . 

One of the advantages of waveform relaxation over the standard time march-

ing algorithm is that multi-rate behavior and latency can be exploited [79], 

especially in simulation of digital circuits. In discretized waveform relaxation, 

the individual ODE can be integrated with their own time-steps and the align-

ments between each pair of discretized waveforms while updating can be done by-

interpolations. We refer to this as multi-rate integration. To maintain the same 

accuracy, the multi-rate integration needs less time-points than that of time 

marching algorithm and hence the total computation times are reduced (assume 

that interpolations are inexpensive compared with function evaluations). 

2.2 Linear Operators between Banach Spaces 

To study the waveform relaxation methods in continuous time, it is worthwhile 

to discuss first some notions concerning operators between Banach spaces. The 

contents of this section are covered by the books of Zeidler [80] and Piccinini et 

al. [55], or introductory functional analysis books. A Banach space generalizes 

the notion of M^ as a linear space with a length function. In our linear ODE 

problems, we can assume that all variables are in this space. 

Let X and Y be two Banach spaces. A function A: X — Y is called a linear 

operator if 

A{axi + f^x2) = aA{xi) + PA{x2), Vxi, X2 G X, 

where a and f3 are real scalars (or complex if the spaces are over the complex 

field). A linear combination of vectors Xi^ X2, . . . , Xm of X is an expression of the 

form aiXi + a2X2 + • • • + <̂ m$m, where ai , a2, . . ., a^ are scalars. The set of 

all linear combination of vectors xi, x2 , . . . , Xm is called span and is denoted by 

span{xi, X2-) •. •, Xm}-
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This forms a linear subspace of X. One important linear subspace named Krylov 

subspace will be discussed in Chapter 3. 

A norm on X，denoted by || . ||, is a function from X into [0, oo) that has the 

following properties: 

1. \\x\\ = 0 if and only if x = 0 for x G X; 

2. \\ax\\ = |a| . ||a;|| for a G M and x G X; 

3. \\x + y|| < \\x\\ + ||y|| for x^ y G X. 

We consider the linear operators that are continuous at every point x of X. 

Recall that the function space L(X,Y) of continuous linear operators from X to 

Y is a Banach space under the operations 

(A + B)x = Ax + Bx 

(aA)x = a (Ax ) 

and the norm 
, I Za ; I , 

A = sup = sup Ax . 
0；邦 X ||圳=1 

L(X,X) are denoted by L(x) for simplicity. The Banach fixed-point theorem is 

the fundamental convergence theorem for a broad class of iterative methods. 

Theorem 2.2.1 (The fixed-point theorem) Let X be a Banach space and let an 

operator T: X — X be a contraction mapping such that 

\Tu — Tv\\ < a\\u — t;|| Vu, V G X 

and 0 < a < 1. The iteration y(&+i) 二 JTy(̂ ) has a unique fixed point y* such 

that y* 二 J^y\ 

A proof of this theorem can be found in [80, pp. 18—21]. Note that the 

operator JF does not need to be linear. 
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The spectrum of a continuous linear operator A^ denoted as cr{A)j is the set 

of numbers A G C for which the resolvent operator (A/ — A)~^ does not exist in 

L(X). In case that A is a matrix in M^^ ,̂ the elements of the spectrum are just 

the eigenvalues of that matrix. The following theorem is useful for the discussion 

of the convergence analysis of waveform relaxation: 

Theorem 2.2.2 (The spectral radius theorem). Let X be a Banach space and 

A G L{X). IfX G cr(A), then |A| < ||乂| . 

A proof of this theorem can be found in [55, Theorem 1.13]. Define the spectral 

radius of the operator A^ denoted by p{A)^ as sup{|A|, A G cr[A)}. In the 

following section, the relation between waveform relaxation methods and the 

linear operator theory just described will be presented. 

2.3 Waveform Relaxation Operators for ODE's 

Equation (2.1) can be viewed as a linear mapping from y{t) to f{t). Let A be a 

linear operator for such mapping. Therefore, we have: 

- {Ay){t) = m , (2.3) 

where A is a differential operator and is equal to [B(t)^^A{t)). Equation (2.3) 

is in the form highly similar to the linear algebraic system Ax = b. Therefore, 

it seems reasonable to apply methods of linear algebra to this equation, as the 

waveform relaxation does. Let A — A4 — Af. Assume that Ai is invertible. Let 

/C = yW—i M. From the fixed-point theorem, the iteration 

y^(t) =�JCy(k-”)�t) + _ 

where ^{t) = (A4~^f)(t), has a unique fixed point y*(t) such that (Ay*)(t)= 

/ � if it is a contraction. Note that JC is a linear integral-differential operator in 
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the context of waveform relaxation, and is called waveform relaxation operator. 

The operators M and Af for Equation (2.2) is equal to {MB{t)j-^ + M^(t)) and 

{NB{t)ji + NA{t)). In case of B{t) = / , Equation (2.1) becomes 

m + A{t)y{t) = f{t), y{to) 二 yo, t G [^o,U- (2.4) 

Then JC can be expressed explicitly as: 

{K,u){t) = l'^{t,s)NA{s)u{s) ds, 
Jto 

where $(t , to) is the transition matrix for u{t) = -MA{t)u{t) [10, pp.38-40]. The 

transition matrix satisfies the following property: 

� ( t , to) = -MA{t)^t, to) ¢(^0, to) = I. 

^{t) can be expressed as: 

^W = $(Mo)yo+ f � [ t , s ) f ( s ) ds. 
JtQ 

Furthermore, if A{t) is time invariant, Equation (2.4) can be rewritten as: 

y{t) + Ay{t) = / ⑴ ， y{t^) 二 yo, t G [^o,力爪] ( 2 . 5 ) 

the transition matrix can be further simplified as: 

^ ( f , < s ) = e - ( H ) M , 

and the solution of Equation (2.2) can be rewritten as: 

" � � = e - t M y o + f e-(“)M(yv^-i)(^ + /(,)) ds. 

Jto 

Returning to the general case, we classify waveform relaxation methods in 

terms of operators M and JV. Let L>x(t), —Lx(t) and - f / x ( t ) represent the 

diagonal, strictly lower-triangular and strictly upper-triangular parts of matrix 

K{t) respectively, three popular relaxation methods in function space are defined 

as: 
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Waveform Jacobi method ( W J A C ) : 

M = D B { t ) i ^ D A { t ) and 

Af = {LB{t) + U B _ + ( M , ) + 仏⑷） 

Waveform Gauss-Seidel method (WGS) : 

M 二 (DB(t) — L B _ + {DA{t) - L4t)) and 

^f=UB{t)i^UA{t) 

Waveform Successive Overrelaxation method ( W S O R ) : 

M = (DjB(t) - ojLB{t))f^ + {DA{t) — cjlA(t)) and 

AT = (CJ[/B(t) + (1 - C c ^ ) ^ W ) | + ( u ; U A ( t ) + (1 - Cj)VA(t)) 

where cu is a scalar called relaxation parameter. As in the classical SOR method, 

the WSOR method defined above can be derived by applying the extrapolation 

to the waveform Gauss-Seidel method: 

"(，)二̂(“)(《)+0；(彻—产_ 

where y denotes a Gauss-Seidel iterate. If uj = 1, the waveform SOR method is 

simplified back to the waveform Gauss-Seidel method. Algorithm 2.3 illustrates 

the actual implementation of the WSOR method. Note that the definition of 

the waveform SOR method here is different from that in [46]. In [46], the over-

relaxation is not applied to B{t) since only the case of B[t) 二 I was considered 

in that paper. 

In [43], a different type of SOR was proposed for accelerating waveform 

relaxation. The extrapolation process is through a convolution type operator: 

糊 = 严 1 ) ( 力 沖 着 ) 1 ( ’ ( 力 ） 

where w{t) is a scalar function. The convolution product is given by 

{wi.h){t) = Pio{T)h{t - r)dr. 

Jto 
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Choose y(o)(Z) for t G [tQ,tm] 
for k 二 1, 2 , . . . , max-iter 

for i = 1 , 2 , . . . , n 
9办):=EK^<)W +E3>A4':y) 
hi{t) ：= E j < ^ y f ) 0 0 + E _ ; . > ^ y _ f - i ) ( f ) 
solve 

k4')[t) + a,,M'\t) = Mt) 一 认‘⑷—刚 

with ?4~(0) = yi,o 
end 
乂⑷⑷：二 y(Li)(f ) + Lu{v^^\t) - y(")(t)) 
check convergence; continue if necessary 

end 

Algorithm 2.3: The Waveform Successive Overrelaxation Method (WSOR) 

It can be viewed as the relaxation parameter applied in frequency domain when 

we take the Laplace transform to both sides of the equation. As in the conven-

tional SOR method, both waveform SOR methods suffers from the difficulty in 

determining the optimal value of the relaxation parameter. 

2.4 Convergence Analysis 

The convergence analysis of waveform methods can be divided into continuous-

time analysis and discrete-time analysis. Continuous-time analysis assumes that 

the individual ODE are solved exactly (or analytically). So it is independent of 

the integration methods and gives us a more general statements of the conver-

gence. The discrete-time analysis is basically for discretized waveform relaxation 

algorithm and the numerical integration method is usually restricted to the lin-

ear multi-step method. 
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2.4.1 Continuous-time Convergence Analysis 

The theoretical continuous-time analysis of waveform relaxation method is based 

on the contraction mapping and fixed point theorems in Banach space. Recall 

that JC is the waveform relaxation operator mentioned in the previous section. 

From the fixed-point theorem, the waveform iteration 

y(")W = (X:y(H))W + Wt), 

will converge to the unique solution y* of Equation (2.3) with y(。）arbitrary if it 

is a contraction. According to the previous section, the necessary and sufficient 

condition for convergence is that the spectral radius of JC is less than one. In 

particular, if B{t) = I, the spectral radius is equal to zero and K is always a 

contraction [46 . 

The error is given by the estimate 

||y_)(t)1*W||U|X:|| ||糊—劑||. 

Let ek[t) = y*{t) — 乂⑷⑴.The reduction factors ||eA;+i(t)||/||eA;(t)|| tend to the 

spectral radius of JC [32, pp. 51]: 

_ lim ~ 糾 = p [ J C ) . 
k^oo e/j 

Therefore, the spectral radius can be used to represent the asymptotic convergent 

rate of the iterations. The following theorem gives a sufficient condition that the 

waveform Jacobi method and the waveform Gauss-Seidel method will converge. 

Theorem 2.4.1 ([79, Theorem 4.1]) The waveform Jacobi method and the wave-

form Gauss-Seidel method converges ifB(t) is strictly diagonally dominant for 

all t G to, tm.. 

Note that the convergence does not depend on A{t). The matrix B{t) is 

often a capacitance matrix for circuit simulation. It is known that if one node 
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of each capacitors is connected to the ground node, the resulting capacitance 

matrix is strictly diagonally dominant. Then the convergence of the waveform 

Jacobi method and the waveform Gauss-Seidel method is guaranteed for this 

type of circuits assuming that the step-size is small enough. 

2,4.2 Discrete-time Convergence Analysis 

In discrete-time analysis, we assume that each individual ODE equation is solved 

by a linear multi-step method. Here we only give the main results of the fixed-

rate analysis. In the fixed-rate analysis, we assume that the time frames of all 

discretized waveforms are aligned. For the discussion of the multi-rate analysis, 

see [79]. Let the time interval be discretized at time points to < ti < t2 < 

.• • < tm and let Atj = tj — f j_ i . The standard discretized waveform iteration 

is formulated as: 

+ ^ a , M B f e - 0 " ( ' ) f e - 0 + ^ A M 4 V 0 " ( ' ) f e - 0 = 
� j i = 0 i = 0 (cy ^N 

1 1 1 1 ( � • ” 
Y.a,NB{t,.,)y^'-'\t,_,) + X > A ^ t " . ) y ( ^ ) f e _ , ) + ^ A / f e - 0 , 

� J _ i=0 2=0 z=0 
for 1 < j < m. 

Recall that the following three integration methods are frequently used: 

• Forward Euler method: a 二（1, —1) and p 二 (0,1), 

• Backward Euler method: a = (1, —1) and /? = (1,0), 

• Crank—Nicolson method: a = (1 , -1 ) and p 二（0.5,0.5). 

The equation above is totally unfolded and can be embedded in a huge sparse 

linear algebraic system. The convergence analysis is hence not different from the 

traditional one. The main theorem of convergence is given in [61]: 
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Theorem 2.4.2 The waveform relaxation that corresponds to Equation (2.6) 

converges if and only if the following condition holds: 

max l p i i ^ ^ + 哪 - 1 � 7響 + … � ) ) ) < 1. (2-7) 
1<^<^ V Po A t j po ^tj J 

Proof : We start the proof from Equation (2.6). Define the error e ^ ( / j )三 

y(M(tj) — " ( n ) ( t j ) . It can easily be shown that 

去 亡 《 她 ( 《 卜 0 6 ( 〜 卜 , ) + 亡 伐 似 也 _ 0 6 ( " ) ( ‘ 0 = 

� j i=0 i=0 

| i > W f e - 0 ^ ) f e - 0 + E A A ^ - 0 e ( ' - i ) ( f r 0 
� j i=0 i=0 

for 1 < j < m. The above system of equations can be rewritten in matrix 
form as 

“Gi,i 1 � e W ( t i ) 1 �J^i,i ] � e ( H ) ( t i ) _ 
G2,l G2,2 eW(t2) 丑2’1 丑2’2 e(&-l)(t2) 

. . • . • . • • 
-^m,l ^m,2 … Gm,m • _ e^(tm) _ _ IT̂ ,i m̂,2 ... Hm,m _ _ e(& l)(tm) _ 

or denoted as 

Ĝe(A) 二 H^-” 

where 

洲 二 （ 6 ( 知 ) ( 力 1 ) 了 , 6 ( 知 ) ( “ ) 了 ， . . . ， 已 叫 ( 力 饥 ) 了 ) 了 

‘ ^ M s ( ^ p ) + A M ^ ( t , ) i f p = q , 

G^q = ^fMs(t,)+^p_,M^(t,) 'iiq<p<q^l, 

0 otherwise. 

‘^NB(tp^Hf^oNA(tp) if P = q, 

Hp,q = ¾f iVB¾)+ /?p - , iVA(t , ) -iiq<p<q + l, 

0 otherwise. 
\ 
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Because G is a block lower triangular matrix, G~^ is also a block trian-

gular matrix with diagonal submatrices (G'"p). Since H is a block lower 

triangular matrix, consequently {G~^H) is a block lower triangular matrix 

with diagonal submatrices (fi^Hp,p). We know that the eigenvalues of a 

lower triangular matrix are determined by the eigenvalues of its diagonal 

submatrices. Therefore, we have 

P{G-'H) 二 i ^ x ^ ^ i J ” ） 

f aoMB{tp) � � _ i , Q o A ^ f a ) , , . ” � � � 

=1?^¾^ P ( 7 5 " ~ 7 r ^ ^ ^ A [ t p ) ) ( - ~ ~ j ^ + NA[tp)). 
^<V<m \ Po Atp Po /\tp ) 

Since the equation converges if and only if p{G~^H) < 1, this gives the 

theorem. • 

Note that the spectral radius is independent of the time interval. The con-

vergence characteristic is dominated by B{t) if the time-step is small enough. 

Therefore, if B{ i ) is strictly diagonally dominant, the waveform Jacobi method 

and the waveform Gauss-Seidel method will converge properly by using small 

time-steps-. Waveform relaxation has been certified to be successfully applied to 

the simulation of MOS circuits, in which the Jacobian matrices are often diag-

onally dominant. However, for tightly coupled systems such as bipolar circuits, 

the convergence of the waveform relaxation methods can be extremely slow. 

This deficiency prohibits the use of waveform relaxation methods for general 

circuit simulation. In the next chapter, we will present a more sophisticated 

technique, namely Krylov subspace method, that potientially accelarates wave-

form relaxation. 
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2.5 Further references 

Waveform relaxation have been successfully applied to MOS circuit simula-

tion. Other applications presently being investigated include electric power 

system analysis [23, 21, 22], chemical process [62, 63], semiconductor device 

simulation [60, 42，78] and transmission line simulation [36, 8, 57, 58, 2, 1, 

15, 16, 20, 18, 17, 19, 45, 39]. Nevanlinna investigated quite extensively on 

the convergence behavior of waveform relaxation [46, 49, 50, 51, 52, 47]. Re-

cently the spectra and the pseudo-spectra of waveform relaxation operators 

are studied in [44]. Vandewalle et aL worked on the use of waveform re-

laxation for parabolic partial differenetial equations with multigrid accelera-

tion [75, 67, 71, 72, 70, 73, 68, 69, 74, 33, 34, 35]. The method can be viewed 

as the functional extension of classical multigrid relaxation in Banach spaces. 

In [43], waveform Krylov subspace methods were proposed that we will investi-

gate deeply in the rest of this thesis. 
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Chapter 3 

Waveform Krylov Subspace 

Methods 

In the previous chapter, we introduced the basic idea of the waveform relaxation 

methods. In recent years, Krylov subspace methods have become popular over 

relaxation methods in solving large linear algebraic systems. It is natural to 

apply these techniques to accelerate the waveform relaxation methods. In this 

chapter, we firstly review the basic concepts of Krylov subspace methods and 

waveform Krylov subspace methods in §3.1 and §3.3 respectively. In addition, 

we generalize a range of Krylov subspace methods described in [5] using a similar 

technique by Lumsdaine et al [43]. The methods include the waveform conju-

gate gradient method (WCG), the waveform conjugate gradient squared method 

(WCGS), the waveform bi-conjugate gradient stabilized method (WBiCG-Stab) 

and the waveform generalized minimal residual method (WGMRES). In §3.4, 

we derive an adjoint operator that is used in the waveform bi-conjugate gradient 

method (WBiCG) and the waveform quasi-minimal residual method (WQMR). 

The difficulty for developing the adjoint operator will be addressed. Finally, 
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numerical results on a sequential machine are given in §3.5. The parallel imple-

mentation on a MasPar computer will be given later in Chapters 4 and 5. 

3.1 Overview of Krylov Subspace Methods 

We briefly describe the basic concepts of Krylov subspace methods for linear 

algebraic systems Ax = b, where A is an n x n matrix. This field of research 

is active and new methods are still emerging. In this section, we introduce the 

most popular ones that are described in Barrett et al. [5]. For further details, 

the reader may consult the references therein. 

Consider the linear relaxation iteration 

Mz(m+i) = yV3̂ W + 6 m = 0 , l , . . . , (3.1) 

where A = M — N. This iteration can be rewritten as 

z(m+i) 二 M-\Nx^^^ + h)=工(爪)+ M-\b — Aa:—)). 

Let ro = b — Aa;(�). It follows by induction that a:(— can be expressed as 

m — l 
_ ] — 二 ;̂ (o) + E a , ( M - ' A ) ^ M " V o , (3.2) 

i=0 

where oti is a constant. Let us say M — I. This refers to the Richardson iteration 

to Equation (3.1). The equation above is then simplified as: 

m — l 

X(-) = :c(o) + Y^ a,AVo. (3.3) 
t=0 

Hence, 0 ；问 is constructed by a;(。）plus a vector from the space spanned by AVo, 

i = 0 , 1 , . . . , m — 1. Denote the Krylov subspace 

Km{A] ro) = span{ro, A r � , . . . ， A ^ - V � } . 
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Equation (3.3) can be rewritten as 

x W = :r(o) + z, with z G / C ( A ; ro). 

In the classical relaxation iteration, the values of a{ are predetermined, inde-

pendent of A. Krylov subspace methods differ from relaxation methods in that 

the values of oti change at each iteration in a way that tries to meet two criteria. 

One is orthogonality. The residual r ( � （三 b — Aa;(—) is either orthogonal to 

Krn{A] ^o) or Krn{^^] ^o). The other one is the minimization of residuals. For 

example, in the generalized minimal residual method (GMRES), the orthonor-

mal basis (U1,U2,..., Vm) for /i"^(A; r � ) is formed by a modified Gram-Schmidt 

procedure or Householder transformations. Let vi = r0/||r̂ 0||2 and let {x, y) de-

note an inner product of a vector x and a vector y. The so-called Arnoldi process 

is given by: 

1. Wm •— ^^m 

2. For k = 1 , 2 , . . . , m, 

hk,m •= {Wm,Vk) 

^m '•— ^m 一 ^k,m^k 

end 

3. /im+l,m •— ^m 2 

^m+l ‘― ^m/hm+l,m 

Step 1 is used to expand the Krylov subspace / i : ( A ; r o ) . Each time when 

the subspace is expanded in one more ranking, a new unit vector Vm+i that 

is mutually orthogonal to all the previous ones is computed by the modified 

Gram-Schmidt procedure shown in Step 2 and Step 3. The GMRES iterates are 

constructed as 

a：(— ：= 3::(O) + y^vi + y2V2 + h VrnVm 
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where yi are chosen to minimize the residual norm ||6 — Ax̂ ^^||2. The mini-

mization is computed without x(m) having been formed as shown immediately 

below. 

To find yi, let Hm be the (m + 1) x m Hessenberg matrix whose non-zero 

entries are hi,]. Define Vm = (h , ”2 , . . . ,Um) , y = (y1,y2, • • -,ymY, P = |k0||2 

and 6i = (1, 0, 0 , . . . , 0)^. Followed by the Arnoldi process, it can be shown that 

^ K n 二 Vm+lHm. 

Let z — YmV- Then we have 

m i n | | 6 _ A c ( , 2 = min||6-A(z(o) + z)||2 

——min ||ro — A2:||2 

二 min||ro-AKny||2 

=min||ro - Vm^iHmyh 

=min||Ki+i(/^ei - Hmy)W2 

=min||/?ei - Hmyh-

The solution of y is given by solving HmV = P^i- Note that the factorization of 

the Hessenberg matrix Hm can be updated efficiently with the Given Rotation 

method in linear time. Since the set of orthogonal vectors Vi is less than n, the 

iteration process will terminate in at most n steps (assuming exact arithmetic). 

Note that all computed orthogonal vectors Vi have to be kept in the GMRES 

method. To reduced the storage cost, the restart versions of GMRES, denoted 

by GMRES(fc), are used to limit the number of vectors to be k. 

The GMRES method uses long recurrences to retain orthogonality and to 

minimize the norm of residual. In fact Faber and Manteuffel proved that one 

cannot minimize the norm of residual using short recurrences for general nonsym-

metric matrix [29]. Note that if A is symmetric positive definite, the well-known 
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conjugate gradient method can minimizes ||r̂ ||̂ -i using two-term recurrence. 

Some other Krylov subspace methods, such as the bi-conjugate gradient method 

(BiCG) and the Quasi-Minimal Residual method (QMR) take another approach 

of generating the bi-orthogonal basis. In the BiCG method, two sequences of 

residuals that are mutually orthogonal (or bi-orthogonal) to each other are gen-

erated. One sequence of residuals is in /<"^(A; r。）and the other is in / i : ( A T ; ro). 

We call these A-sequence and A^-sequence respectively. This method requires 

the matrix transpose A^. The convergence may be irregular since there is no 

minimization process in the BiCG method. Even worse the method may break-

down. 

There are two types of break-down that may occur in the BiCG method. 

One is called Lanczos break-down, which can be partially cured via Look-Ahead 

technique (see Parlett, Taylor and Liu [53]). Another break-down occurs when 

the implicit LU decomposition of the reduced tridiagonal system does not exist. 

The QMR method solves the reduced tridiagonal system in a least square sense, 

similar to the approach in GMRES, to avoid this break-down. One can also 

observe that the convergence behavior of QMR is typically smoother than that 

of BiCG. The Conjugate Gradient Squared method (CGS) attempts to apply 

the updatings for the A-sequence and the A^-sequence both to the same vectors. 

The resulting method is a variant of BiCG that ideally would double the con- ^ 

vergence rate. In practice convergence may be much more irregular than that 

of BiCG. The Bi-conjugate gradient stabilized method (BiCG-Stab), like CGS, 

use different updates for the A^-sequence. It can be interpreted as the product 

of BiCG and repeatedly applied GMRES(1). A residual vector is minimized 

locally, which leads to a smoother convergence behavior. 

As in the above methods, as well as other Krylov subspace methods, in-

ner products are used to retain the orthogonality while matrix-vector products 

(Az;'s) are used to expand the Krylov subspace. Note that we do not need an 
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explicit A as we access to it via the matrix-vector product. 

3.2 Krylov Subspace methods in Hilbert Space 

We have examined the waveform relaxation methods and their relations of op-

erator equations in Banach space in Section 2.2. To extend the Krylov subspace 

methods to a function space, we need to look at a more specific space, namely 

the Hilbert space, where the concepts of inner product and orthogonality are 

introduced. 

Let X be a Banach space over M. A Hilbert space over M is a Banach space 

X together with an inner product defined as follows. An inner product on X, 

denoted by (x, y), assigns to each pair of x, y G X a number such that for all 

X, y, z G 1 and a, p G M the following hold: 

1. (x, x) > 0, and (x, x) — 0 if and only if x = 0. 

2. (x, ay + Pz) = a{x, y) + P{x, z) 

A vector x is said to be orthogonal to y if and only if {x^ y) = 0. Define a linear 

operator A : X ~^ X in a Hilbert space. The linear operator is called positive 

definite if and only if {Ax^ x) > 0 for all x + 0. The definition of the adjoint 
'i 

operator A* is based on the condition: 

{Ax^ y) — (x, A*y) for all x, y G X. 

The linear operator is called self-adjoint if and only if A is equal to A*. Note 

that if the linear operator is a matrix, its adjoint operator is the transpose of 

this matrix. 

Krylov subspace can be defined similarly to the previous section by: 

Km{A, ro) = span{ro, A r o , . . . , A^~^ro}. 
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Consider the linear ordinary differential equation given in Equation (2.1). 

We are now ready to apply the techniques of Krylov subspace method to solve 

this equation. The idea is the same as the arguments described in Section 2.2. 

Note that for the linear ordinary differential equations as in Equation (2.1), 

A is a pure differential operator. The mechanism of step-size control^ will be 

lost. To solve this problem, we can apply the idea of preconditioning in the 

Krylov subspace methods. In the following section, we describe the approach 

of Lumsdaine et aL [43] in which the waveform Krylov subspace methods are 

applied to the preconditioned system. 

3.3 Waveform Krylov Subspace Methods 

As mentioned in Section 3.1, there are two essential operations that should be 

considered in the design of Krylov subspace methods, namely the matrix-vector 

product and the inner product. The inner product can be easily extended to a 

function space by: 

{x{t),y{t))= f^x^{s)y{s)ds, (3.4) 
Jto 

and the norm of y{t) is defined accordingly as: 

l b W I I 二 \1議遍, 、 

The matrix-vector product can be replaced hy the operator-function product 

(Ap){t). However, recall that for the linear ordinary differential equation, A — 

{B{t ) j^^A{t ) ) is a pure differential operator. The step-size control mechanism is 

lost. In [43], the preconditioned system is used, i.e., {M~^Ay){t) = {M~^f){t). 

Let 侧=(A^—i/)00. Then we have: 

{M-'Aym 二 (M-ifm 

^Numercial integration software typically adjust the step-size At during the course of the 
integration in order to reduce the truncation error. 
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{M-'{M-Af)y){t) = m 

{ { I - M - ' A f ) y ) { t ) = 糊 

{{I-)C)ym = 佩 

where X is the identity operator. Recall that JC is the waveform relaxation 

operator mentioned in Section 2.3. The operator-function product can be im-

plemented as one step of a waveform relaxation iteration [43]. More specifically, 

the operator-function product w(t)三((工—JC)p){t) is given by the following 

procedure: 

1. Solve the following equation for the intermediate variable q{t): 

MB{t)q{t) + MA{t)q{t) = NB{t)m + NA{t)p{t) 

with q{to) = po — 0 

2. Set w(t) := p(t) - q(t). 

In operator notation, the initial residual 厂⑶⑷ is given by: 

r(o)(t) = ^(t)-((I-K:)y('^m 

- = ( ( Q ’ ( t ) + ^ t ) ) — y(°)(f). 

The correponding procedure for 厂⑶⑴ is then given by: 

1. Solve the following equation for the intermediate variable q{t): 

MB(t)q(i) + MA(t)q(t)=糊舞、+ 侧^⑶⑴ + f{t) 

with q{to) = yo 

2. Set r(o)(t) : = ？ ⑴ — ^ / ⑶ ⑴ . 

Let vi{t) = r(o)(f)/||r(o)(q|. The Arnoldi process in a Hilbert space can be 

written as: 
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1. w;W(t) := ((X-/C)^;W)(t) 

2. For k = 1 , 2 , . . . , m, 

hk,m '= {Wjn{t),Vk{t)) 

Wm{t) ： = Wm{t) hk,mVk{t) 

end 

3. /im+l,m :二 ^m{t) 

^m+l{t) '= Wm{t)/hm+l,m 

Note that unlike the linear algebraic problem, the set of orthogonal vectors is 

infinite here. Hence, there is no guarantee that the WGMRES method converges 

in finite number of steps. 

By this process, the waveform conjugate gradient method (WCG), the wave-

form conjugate gradient squared method (WCGS), the waveform bi-conjugate 

gradient stabilized method (WBiCG-Stab) and the waveform generalized mini-

mal residual method (WGMRES) can be derived (See Appendix A for pseudo-

codes). 

Note that if {X-K,) is a self-adjoinf and positive definite^ operator, the wave-

form conjugate gradient method will converge for any given initial iterates [54, 

pp.l59]. Unfortunately, JC is not self-adjoint for ODE problems in general. 

3.4 Adjoint Operator for WBiCG and W Q M R 

Recall that the bi-conjugate gradient method (BiCG) and the quasi-minimal 

residual method (QMR) also need the matrix transpose, i.e. A^. Analogously, 

to implement the WBiCG method and the WQMR method, we propose using 

an adjoint operator. Before calculating the adjoint operator for the waveform 

^An operator is self-adjoint if and only if {JC(x),y) = (x,JC{y)) for all x and y. 
^An operator is positive definite if and only if {JC{x), x) > 0 for all x. 
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relaxation operator, let us consider the adjoint operator for the differential op-

erator 羞（c.f. [24, pp. 604]). Let X be the Hilbert space L2(t0, ^m) whose norm 

and inner product are defined as those in the previous section. Let 丁 二 ̂  with 

dz 
D{T) = {z G X I z{tQ) = 0 and — G i^2(^0,^m)}, 

where D ( T ) denotes the domain of T. The inverse of T is given by 

{T-^x){t) = fx{s)ds. 
Jto 

To calculate (T~^)*, we consider 

rtm ft 
{T-'x,y) = / / af^[s)y[t)dsdt 

Jto Jto 
ftm rtm 

= / / X {s)y{t)dt ds by change of variables 
Jto Js 

f^rn / ftm \ 
= / x^(5) / y{t) dt ds 

Jto \Js J 
= ( ^ , ( r - ^ ) * y ) . 

We have [(T"^)*y](5) = f^y[t) dt. This can be approximated numerically by 

reverse integration. It is easy to see that 

_ 丫 * dy 
Ty 二 1 

dz 
with L > ( r * ) = { z e X I z{t^) 二 0 and — 6 L2(/0,力饥)}’ 

Therefore, we propose the adjoint operator-function product (X — K^)p[t) be 

given by the following procedure: 

1. Solve the following equation in reverse time for the itermediate variable 
•• 

-MEmt)^M^mi) = p(i) 

with q{tm) = p(tm) = 0 
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2. Set w{t) = p{t) - {N^{t)q{t) + Nj{t)q{t)) 

The pseudo-codes of the WBiCG method and the WQMR method are given 

in Appendix A. 

Note that in a discrete time system, the property (A^(x), y) — (x, fC^{y)) 

may not hold exactly. In the experiment as described below, Equation (3.5) 

acts as the inner product for the discrete system. It matches nicely with the 

Backward Euler method for fixed-rate implementation. However, if we choose 

the Backward Euler method as the ODE solver and the trapezoidal rule as the 

integrator in Equation (3.4), the two inner products may have some discrepancy. 

Some numerical experiments showed that this difference will cause the WBiCG 

method or the WQMR method not to converge. The situation may be even worse 

when the multi-rate integration technique is used. Therefore, the waveform 

Krylov subspace methods that requires the adjoint operator may need further 

investigation. 

3.5 Numerical Experiments 

In this section, experimental results will be given. Although we follow the works 

of Lumsdaine et al. [43] on the waveform Krylov subspace methods, some re-

sults here are new in this field of research. Firsltly, we give the first evidence 

that the waveform Krylov subspace methods are applicable to tightly coupled 

circuit systems. Secondly, the convergence behaviors of five waveform Krylov 

subspace methods are examined extensively by solving an unstructured grid 

problem. Particularly the effects on the length of the time-interval are investi-

gated. The results are valuable in discussion on the convergence of waveform 

Krylov subspace methods. 

All the computations were done in MATLAB on a Sparc workstation. The 

basic ODE solver was the Backward Euler method and the basic relaxation 
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method for the waveform Krylov subspace methods was the WJAC method. 

The restart version of WGMRES was used and the restart value k was 30. The 

inner product as defined in Equation (3.4) was replaced by the following formula 

in the discretized system: 

n m 

剛， y { t ) ) = ̂  E 八化化 )幽 (3.5) 
i=l j=l 

where m is the number of points in the time domain. 

3.5.1 Test Circuits 

The linear circuit shown in Figure 3.1 is used as a test circuit. It was taken 

from [48]. The values of Ci = C2 = C3 — C4 = lF. The values of Cbi 二 

Cb2 二 Cb3 二 Cb4 = O.lF. The values of gi 二 lmho, g2 二 2mho, g^ — 4mho 

and 4̂ = 8mho. The values of gmi = Qm2 — 9m3 = gm4 — Qm- The time 

interval is 10 sec. The time-step is 0.1 sec. The iteration stops whenever the 

residual is decreased relatively by 1 x 10—8 times its initial values. The results 

are shown in Table 3.1. Each entry of the table represents the total number 

of operator-function product used in the method, except the waveform Jacobi 

method where the entry represents the number of iterations. Assume that the 

operator-function product dominates the computation time of each iterations 

(which is a valid assumption in circuit simulation), the entries can represent the 

relative performance of the methods. Note that when g^ is small, the circuit is 

loosely coupled. The waveform Jacobi method converges (see Table 3.1). When 

gm is large, the circuit becomes tightly coupled and the waveform Jacobi method 

did not converge in 1000 iterations, whereas all the Krylov subspace methods 

converged. In this experiment, the waveform conjugate gradient squared method 

(WCGS) converged fastest. 

Another test circuit is a ring modulator, which was taken from [25]. This is 
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a non-linear circuit. The ODE is of the form 

My{t) = F{t,y), y(0) = y , 

with 

y G 脱15, t G [0,10-3:. 

The function F is defined by [25 

/ \ 

ys — 0.5yio + 0.5yn + y14 一 R yi 

y9 — 0.5yi2 + 0.5yi3 + yi5 — R'^V2 

yio — q{UDi) + q{UD4) 

1 1 1 + q{UD2) - q(Um) 

y12 + q(Um) — q[Um) 

-yi3 一 q{UD2) + q{Uo4) 

-R-^yi + q{Uoi) + q{UD2) - q{UD3) 一 g(%M) 

F{i.y)- —yi , (3.6) 

1 2 

- (0 .5yi — ys — Rg2y10) 

- ( - 0 . 5 y i + y4 — Rg3Vii) 

-(0-5^2 — y5 — Rg2y12) 

-(-0.5^2 + y& — Rg3y13) 

- ( - y i + UinY — {Ri + Rgi)y14) 

� - ( l 2 - {Rc + Rgi)y15) j 

and 

M = diag[(C, C, Cs, Cs, Cs, Cs, Cp, _L", Lh, ̂ s2, ̂ s3, ̂ s2, Ls3, Lsi, Lsi). 

The auxiliary function Um, Um, %>3, " m , q, Uini and Uin2 are: 

Um 二 ys - 2/5 - y? - Uin2, 
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Um = —y4 — y6 — y7—"m2, 

UD3 = V4 + Vb + y? + ^n2, 

Um = - y 3 — y6 + y7 + ^n2, 

q{u) = 7(e'^-i), 

Uini{t) = 0.5sm(20007Tt), 

Uin2(t) = 2sin(20007Tt). 

The values of the parameters C, Cs, Cp, R, Rp, Lh, Lsi, Ls2, Ls3, Rgi, Rg2, Rg3y 

Ri, Rc, 7 and S are given by: 

C = 1.6 X 10-8, 

Cs = 10-9, 

Cp = 10-8， 

R 二 25000, 

Rp 二 50’ 

Lh 二 4.45, 

Lsi = 0.002, 

- Ls2 = 5 X 10-4, 

Ls^ = 5 x 1 0 - 4 ’ 

Rgi = 36.3, 

Rg2 = 17.3, 

Rg3 = 17.3, 

双 = 5 0 , 

Rc = 600, 

7 = 40.67286402 x 10_9, 

(̂  二 17.7493332. 
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Finally, the inital vector yo is given by 

yo = (0,0，0’ 0’ 0’ 0,0,0，0,0’ 0，0,0,0, O f . 

We applied the Newton linearization to Equation (3.6) to yield the following 

iteration: 

My^'+'\t) — J(t, y ( % ( ’ ) = F{t, ^ � ) — J ( t , ”叫)舞), (3.7) 

where J is the Jacobian of F. Note that M tends to be singular as Cs tends 

to be zero. The system is ill-conditioned and it can be easily to shown that the 

spectral radius is greater or equal to one if M is singular. In this experiment, 

the differentiation of F was calculated analytically by hand and the formulas 

for J were hard-coded inside the program. The formula of Equation (3.7) at 

each Newton's iteration was solved by waveform Krylov subspace methods. We 

calculated the solution to 5 psec. with the time-step 0.1 fi sec. The results are 

shown in Table 3.2. Again the total number of operator-function products was 

counted for each method. The waveform Jacobi method failed to converge for 

this circuit. The waveform bi-conjugate gradient stabilized method converged 

fastest in this experiment. 

As the results show, the waveform Krylov subspace methods can be used to 

accelerate the basic waveform relaxation methods for tightly coupled systems. 

The remaining question may be which waveform Krylov subspace method is most 

suitable for circuit simulation. As in the conventional Krylov subspace methods, 

there is no definite answer to this question. Particularly there is always a tradeoff 

between efficiency and robustness. 

3.5.2 Unstructured Grid Problem 

In this experiment, we intend to examine the convergence behavior of waveform 

Krylov subspace method. Consider a dimensionless heat conducting equation in 
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^bl Cb2 Ci,3 ^\ ( V2 ( 3̂ ( 4̂ 

"iV〔）gi Ci ^~ 5mm��92 (¾;; 9m2V2 ^^ 93 ^¾;; gm3V3^^ 94 C^~ 

_̂_̂  

Figure 3.1: The linear test circuit (taken from [49]) 

Table 3.1: Comparison between the waveform methods applied to the linear 
circuit. WJAC is the classical waveform Jacobi method. 

Qm Classical Waveform Krylov Subspace methods 
(mho) W J A C ~ WCGS WBiCG WBiCG-Stab WGMRES(30) W Q M R " 

^ ^ l 0 74 ~ ^ ^ 42 ^ M 
20 139 66 88 72 60 88 
30 >1000 90 104 96 120 104 

Table 3.2: Comparison between the waveform methods applied to the ring mod-
ulator circuit. 

The method 11 WCGS WBiCG WBiCG-Stab WGMRES(30) WQMR 
1 ^ . oiKv's|K*v's II 418 742 252 600 738 
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w 
Figure 3.2: The "Eppstein" mesh 

two space variables in an irregular domain H: 

du[x,y,t) d^u{x,y,t) d^u{x,y,t) 
~^r~~ = dx^ + dy2 地1卞),fG(0,T) 

“ (3.8) 
u = 0 on dQ, 

Using the finite element method for spatial discretization in an unstructured 

mesh, we transform the above equation to Equation (2.5). We consider the 

unstructured mesh "Eppstein" as shown in Figure 3.2 for our numerical experi-

ment. It has 547 vertices, 1566 edges and 72 boundary vertices. 

The time interval was set to be (0, 60). The step size was fixed at 1.0 unit. 

The initial value was chosen to be the steady state solution of Equation (3.8) 

when g = 1. The transient solution was then computed by taking g 二 0. This 

configuration simulated the situation when the loading was suddenly removed. 

A plot of the residual versus the number of iterations is shown in Figure 3.3. 
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Waveform Krylov subspace methods with exact ODE solver, T=60 
1C)15 , , , 1 ] 

/ V I iWCGS 

i�i° ：. . . ^ i T ： 

r ^ ^ K ^ ^ ^ ^ 
r:p^^^^i^^ 
• i � ’ \ . . . . . . j j 丨 j j j j . . . • _ . . - ： 

10-10 -_ .., .WMRES(20) ；.. I .^^V|J^^^^yi|ijj. 1 ……: 
- ： \ ： \ ^ • 

15: : 、 W B i C G - S t a b : ^ ^ 丄 ： 

10_15| 1 1 1 1 
0 50 100 150 200 250 

Number of iterations 

Figure 3.3: Logio of the residual norm versus the number of iterations for the 
waveform Krylov subspace methods. 

The result of the WCG method is not shown in this figure as it failed to con-

verge as expected, because the operator is not self-adjoint. The WGMRES(20) 

method showed the most stable convergence behavior. This is because in WGM-

RES (or GMRES as well), the residual norm is minimized at each stage of iter-

ations. Due to the absence of minimization process in the WBiCG method, the 

irregular convergence behavior was observed. The convergence behavior of the 

W Q M R method was much smoother than that of the WBiCG method. However, 

the precision which the WQMR method can achieve seems to be low. As in the 

CGS method that always magnifies the irregular pattern in the BiCG method, 

42 



Chapter 3 Waveform Krylov Subspace Methods 

a highly irregular convergence behavior was observed in the WCGS method. 

On the contrast, a considerably smoother convergence behavior was observed in 

the WBiCG-Stab method. It shows that the convergence behaviors exhibited 

in this experiment are confirmed with the observations in their non-functional 

counterparts. 

Next, we investigate the effect of the time interval. As shown in Figures 3.4— 

3.9, the longer the time interval, the larger number of iterations are required in 

all methods. In some cases, the waveform methods may even fail to converge 

if the time interval is too long. Practically, time-windowing technique can be 

applied, i.e., divide the time interval into several regions and solve each region 

step by step by the waveform methods. Note also that if the time-window size 

is too small, the advantage of the multi-rate integration is lost. See [79] for the 

discussion of the time-windowing technique. 

In §5.3, we will return to this experiment by using a DECmpp 12000/Sx 

massively parallel computer. 
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Waveform Jacobi method with exact ODE solver 

4 
1 0 I 1 1 ！ ！ ！ ！ ! 

t:::̂ ^̂ ^̂ î : 
10-12- i . . ^ . . . . ： ^ ^ T = 2 0 . . ^ _ 

T=10 : T=30 
10_14| 1 1 1 I I I I 

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 

Number of iterations 
Figure 3.4: Logio of the residual norm versus the number of iterations in different 
time intervals for the waveform Jacobi method. 
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Waveform BiCG method with exact ODE solver 
101� , , , , "• ̂ î 丨丨 二 

K ^ f i ； ^ ; : . . : 

'TWx 
IO-15|̂  ； V=10>20 V = 3 0 ; V = 4 0 V 5 0 ； T=60-

0 50 100 150 200 250 
Number of iterations 

Figure 3.5: Logio of the residual norm versus the number of iterations in different 
time intervals for the waveform BiCG method. 
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Waveform BiCG-Stab method with exact ODE solver 
10i0 , , , , , 

園 
- T=10^T-20 V=30 \=40 ^T=50 ^^=30 

10_15| 1 1 1 1 1 
0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 

Number of iterations 
Figure 3.6: Logio of the residual norm versus the number of iterations in different 
time intervals for the waveform BiCG-STAB method. 
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Waveform CGS method with exact ODE solver 

1。15 ； ^ ^ 1 1 1 ； 

丨：̂R̂k :] 
£ : [ : : ¾ ¾ ¾ ^ ^ 

： ：\ W ； \ \ ^\ -
10—15̂  U=10^20 T?30 W0 . .T .50 V=60 
1 0_20 [ 1 1 I I ： 

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 

Number of iterations 

Figure 3.7: Logio of the residual norm versus the number of iterations in different 
time intervals for the waveform CGS method. 
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g Waveform GMRES(20) method with exact ODE solver 
10 1 1 1 1 1 1 1 

慰 、 : : 
1 10-6 - VlO... .>=20. . N ^ 3 0 . . . . . . : . . . . . X ^ ^ 5 ^ . . . . . ； -: : : : : • � • � 

1 0 - ••• . : ： • •. . — 

1 0_12 1 1 1 I I I I 

0 2 4 6 8 10 12 14 16 
Number of iterations 

Figure 3.8: Logio of the residual norm versus the number of iterations in different 
time intervals for the waveform GMRES(20) method. 
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g Waveform QMR method with exact ODE solver 

10 I I I I I I 

纖 _ : | 
|io- -.. ....̂J\||"̂\.....； -

t::::::pn--̂ .̂.....: 
1。-1。:..........KA--：............丨.........丨.........丨 丨...........； 

1 0_12 1 1 1 1 1 I 

0 50 100 150 200 250 300 350 
Number of iterations 

Figure 3.9: Logio of the residual norm versus the number of iterations in different 
time intervals for the waveform QMR method. 
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Chapter 4 

Parallel Implementation Issues 

In this chapter and the next chapter, we describe the parallel implementation of 

waveform methods on a DECmpp 12000/Sx massively parallel computer. This 

chapter provides the general techniques of the parallel implementation issues in 

case the reader wants to know the implementation details. The reader may skip 

to the next chapter that specifically describes the use of inexact ODE solver 

for waveform methods. In this chapter, we will firstly review the hardware of 

DECmpp 12000/Sx computer and the high performance Fortran in §4.1. Then 

a sparse matrix format for our implementation is described in §4.3. Section 4.4 

contains the multi-coloring technique for the Gauss-Seidel implementation. 

4.1 DECmpp 12000/Sx Computer and HPF 

In this section, we introduce some basic hardware features of DECmpp 12000/Sx 

computer and how DECmpp 12000/Sx High Performance Fortran language 

(HPF) takes advantage of these features. The descriptions are however incom-

plete because of limited space. For more details, readers should read the user's 

guide and reference manual provided by Digital Equipment Corporation [26, 27'. 
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y \ ^ DPU I Front End 
〈 R o u t e r 〉 I y^l 

Router ~ - ^ ^ — 1 2 8 x 6 4 ^ _ _ _ _ _ > _ _ > _ Router i 
P E a r ray L _ _ l | 

ACU i Host 

I/O Control ； 

Figure 4.1: The block diagram of the MP-1 computer 

Note that a detailed understanding of the DECmpp 12000/Sx architecture is not 

needed to program in HPF. However, it is important to understand some basic 

concepts of this machine in order to help you program more effectively. 

DECmpp 12000/Sx computer is a single-instruction multiple-data (SIMD) 

type machine. It is also named as a MasPar computer. The model that we use 

is MP-1, which has 8,192 processor elements (PE) (maximum up to 16,384 PE's 

with the theoretical peak performance about 550Mflops/s. The more advanced 

model, MP-2, can achieve 2.4Gflops/s with 16,384 PE's. [66]) It mainly consists 

of a Front-end, which is a DECstation, and a Data Parallel Unit (DPU). All 

program developments can be done on the Front-end. The DPU has two com-

ponents: the Array Control Unit (ACU) and the PE array. The ACU controls 

the executions of PE array and performs sequential program executions within 

DPU. The PE Array consists of 128 x 64 processors arranged in a rectangular 

shape. Each PE contains 64kbytes local memory. Figure 4.1 shows the block 

diagram of the MP-1 computer. 
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You can write Fortran 77 statements in HPF, for example, 

do i=l,128 

do j=l,128 

C(i,j) = A(i,j) + B(i,j) 

end do 

end do 

When compiled on the DECmpp 12000/Sx, this fragment produces scalar code 

that executes on the Front-end. By using the array extensions of HPF, the 

previous operation can be recoded in HPF much more simply: 

C(l:128,l:128) = A(l:128,l:128) + B(l:128,l:128) 

The HPF compiler allocates this recoded segment on the DPU, where it executes 

in parallel fashion. 

The compiler handles cases that the array size exceeds the machine size. 

However, by sizing the array to the machine size, better performance can be 

achieved. This is due to the fact that the HPF compiler now maps arrays that 

are less than or equal to the machine size into PE register instead of into PE 

memory. If the array is larger than the machine size, the whole array is stored 

in PE memory. To take advantage of this, it is better to write code so that the 

problem matches the machine size. Using a blocked algorithm can help you do 

this. The pay-off is that your program will be less comprehensive. 

Each PE can identify itself by hard-coded local variables. In MPL (a C-
like parallel language in DECmpp 12000/Sx), these variables are called iproc, 

ixproc and iyproc [28]. In HPF, there is no such similar variable. However, the 
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compiler internally use these variables to generate parallel code for the FORALL 
statement. For example: 

forall (i=l:1000) A(i) = 1.0/i 

Although each PE can only execute same instructions simultaneously, it can 

be set to be active or inactive. If a PE is in the inactive set, the instruction will 

not be carried out by this PE. In HPF, control of the active set is achieved by 

the WHERE statement. For example, execution of the statement 

where (A.gt.4) A = -A 

will negate every elements of matrix A that are greater than 4. Masking option 

in some intrinsic functions also makes use of this feature. For example: 

error = sum(r*r, mask=id.eq.1) 

There are two types of communication operations in HPF, namely Global 
router operations and XNet operations. Global router operations results from 
irregular communication patterns (for example, TRANSPOSE's). It makes use 
of the global router, which is a three-stage crossbar switch. This type of commu-
nication is efficient but can be sixteen times slower than XNet communication. 
Router code can also be generated by vector-valued subscripts, for example, 

A(:) = B(I(:)) 
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Figure 4.2: The block diagram of X-Net connections 

that can be used in sparse matrix operations (see the next section). XNet oper-

ations result from regular communication patterns (for example, CSHIFT's and 

EOSHIFT's). Each PE connects to its eight nearest neighbors through XNet, 

which is the fastest type of communication preferable to router communication 

(see Figure 4.1). Also a SPREAD operation might use XNet communication to 

create the additional dimension. 

The HPF compiler supports the table-lookup feature to take advantage of local 

indirect addressing capability of DECmpp 12000/Sx. For example, the following 

code fragment will utilize tliis feature without generating the router code: 

integer B(1024) 

dimension TAB(10,1024) 

dimension A(1024) 

cmpf map TAB(memory,allbits) 

forall (i=l:1024) A(i) = TAB(B(i),i) 

One of the applications of this feature is load balancing [65 . 
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X o - ^ ^ - ^ ^ ^ 
A ^ ^ ¾ ¾ ^ 

T X Z ^ I ^ E 
^ ¾ ^ ^ ¾ ^ 

t 
Figure 4.3: Data-mapping strategy 

4.2 Data Mapping Strategy 

In order to minimize the communication cost of our program, the following data-

mapping strategy is used. Each processor contains a space-time variable. The 

x-direction of processors is referred to the space points and the y-direction of 

processors is referred to the time points. That is, one row of processors contains 

a whole discretized waveform of one space variable (See Figure 4.3). 

Here, we assume that the number of variables does not exceed the number 

of processors since the parallel virtualization can be done automatically by the 

compiler [27]. The complier will internally wrap-around the data in the corre-

sponding dimension. 

4.3 Sparse Matrix Format 

The sparse matrices are stored in a form that is similar to Purdue storage (see 

Barrett et al. [5, pp. 61]). For example, the following sparse matrix: 
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8.9 0.0 0.0 1.2 0.0 

0.0 5.6 3.4 7.8 0.0 

0.0 0.0 8.9 0.0 3.4 

8.9 0.0 0.0 7.8 0.0 

2.3 6.7 0.0 0.0 5.6 

will be stored as: 

a ( : , l ) a ( : , 2 ) a ( : , 3 ) 

8.9 1.2 0.0 

5.6 3.4 7.8 

8.9 3.4 0.0 

7.8 8.9 0.0 

5.6 6.7 2.3 

together with an array of column indices: 

c o l ( : , 1 ) c o l ( : , 2 ) c o l ( : , 3 ) 

1 4 0 

2 3 4 

3 5 0 

4 1 0 

5 2 1 

Note that for convenience, the diagonal elements of the sparse matrix are put in 

the first column of a ( :， : ) . Beside this, an additional one dimensional array is 

used to store the information about whether the nodes is a boundary or a non-

boundary point specifically for unstructured grid problem. Figure 4.4 shows 

a code fragment that illustrates an implementation of the Jacobi method for 
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solving a system of linear algebraic equation. The global router communication 

is employed for the communication needed in the vector valued array indexing 

(i.e. x ( c o l ( l : n , i ) ) ) . 

c 

c Jacobi iteration 

c 

ap(l:n) = 0.D0 

do i = 2， maxdegree 

where (bound(l:n) .eq. 1) 

ap(l:n) = ap(l:n) + x(col(l:n,i)) * a(l:n,i) 

endwhere 

enddo 

where (bound(l:n) .eq. 1) 

x(l:n) = b(l:n) - ap(l:n) / a(l:n,l) 

endwhere 

c 

c end Jacobi iteration 

c 

Figure 4.4: The HPF code fragment for solving linear system by Jacobi method. 

4.4 Graph Coloring for Unstructured Grid Prob-

lems 

In order to parallelize the waveform Gauss-Seidel (WGS) code, a multi-coloring 

algorithm is employed. In this section, the graph coloring problem is reviewed 

and then the implementation issues are described. We adopt the notation and 

terminology of graph theory. Recall that a graph G representing a matrix con-

sists of a set of vertices V and a set of edges E. A subset of V is called in-

dependent if there is no edge joining any of the vertices in the set. We denote 

an independent subset as I. To color the vertices of G means that we assign 
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Parallel coloring algorithm : 
v ' :二 y 
while V' + 0 

Choose a maximal independent set I from V' 
Color I in parallel 
r := V' \ I 

end while 

Algorithm 4.1: Outline of a parallel coloring algorithm 

the vertices into several independent subsets. From the Gauss-Seidel implemen-

tation, the vertices in the same independent subset (color) can be updated in 

parallel. We call that G is k-colorable if k independent subsets are used. The 

smallest k is called the chromatic number and is denoted by x {^) -

It is well known that to determine the chromatic number of a graph is NP-

hard. However, many heuristic algorithms can achieve good solution to the 

coloring problem practically. In this thesis, we implement a parallel graph col-

oring method that was proposed by Jones and Plassmann [37]. Recall that a 

maximal independent subset is an independent subset that no extra vertex can 

be inserted resulting in an independent subset. In other words, if a vertex is 

inserted to a maximal independent subset, it must be adjacent to one of the ver-

tices of this subset. Note that there can be more than one maximal independent 

subset in a graph. The idea of the algorithm is to choose a maximal independent 

set from a graph and then assign all elements of the set in one color each time. 

The maximal independent set problem is solved by Ludy's alogrithm [41], which 

is proven to be in randomized NC. The method is outlined in Algorithm 4.1. 

Sometimes the optimal solution is not required. For example, if the number 

of processors is 100 and the number of vertices is 1000. Ten colors are then 

needed for parallelization even though the chromatic number may be six. On the 

contrary, the balancing of the color distribution is more important here, which 

means that each color set should contain about the same number of elements 
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and it cannot exceed the number of processors. More details of discussion of 

balanced graph coloring can be found in [31]. As [37] mentioned, Algorithm 4.1 

generates the solution which is not well-balanced. In this thesis, we propose 

a simple post-processing algorithm to balance color usage of a given coloring 

assignment. The basic idea is as follows. Denote the number of elements of a 

set S as |S'|. Given an initial solution of a coloring algorithm that constains m 

independent set { / i , / 2 , . . . , /爪}. Choose the independent set that contains the 

largest number of nodes and denote it as Ij. Similarly choose the independent 

set that contains the smallest number of nodes and denote it as / “ The idea 

is to equalize both set by re-assigning certain vertices from the larger set Ij to 

Ii. To make sure that the assignment will not conflict the independence, the 

vertices of Ij which belong to the neighbor of U (denoted by N{Ii)) should be 

removed first. The procedure is repeated until a balance allocation of colors has 

been achieved or no improvement can be further performed. The detail of the 

algorithm is shown in Figure 4.2. 

We find that the algorithm can provide a well-balanced results and suits 

our test problems well. Since our primary goal is just to provide a coloring 

solution for the parallel implementation of waveform Gauss-Seidel method, detail 

performance analysis and comparsion with other balancing algorithms will not 

be presented in this thesis. In the next chapter, we will present the parallel 

implementation of waveform relaxation and waveform Krylov subspace methods 

on DECmpp 12000/Sx massively parallel computer. Numerical results will also 

be given. 
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Given a graph G and the initial solution { / i , / 2 , . . . , /饥}. 

balance := .false. 
while .not. balance 

Choose Ij that contains the largest number of nodes 
Choose Ii that contains the smallest number of nodes 
a := L(|/,| - |/,|)/2J 
i f a > 0 

h := IAN{U) 
if h = 0 

balance := .true. 
else 

h :二 min(a, |/̂；|) 

assign h vertices from Ik to Ii 
end 

else 
balance := .true. 

end 
end 

Algorithm 4.2: Outline of post-balancing heuristic for coloring 
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Chapter 5 

The Use of Inexact ODE Solver 

in Waveform Methods 

In the classification of parallel ODE methods for initial value problems (IVPs), 

waveform relaxation can be categorized as parallelism across system [30]. How-

ever, little discussion has been made on the parallelism across time, especially 

for large-scale parallelism. Bellen et al. [6] mentioned a low efficiency of iterative 

parallel ODE solvers because of the sequential nature of IVPs. Nevertheless, one 

may wish to parallelize both across system and across time if a massively parallel 

computer is available. In this chapter, we employ an inexact ODE solver which. 

performs only one iteration of an iterative ODE method in each W R iteration. 

The idea of this method is also similar to "relaxing" both the space and time 

points simultaneously and to the one that was proposed by Bellen et al. [7'. 

The basic method is then accelerated by the Krylov subspace methods similar 

to that of Chapter 3. 

In §5.1, we demonstrate the idea by considering a problem of solving the heat 

conducting equation in an irregular spatial domain that was described in §3.5.2. 

The formulation of waveform methods with an inexact ODE solver is derived. 
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Then we will examine the convergence properties of both the exact method and 

the inexact method in §5.1.1. In §5.3, numerical results are given. 

5.1 Inexact ODE Solver for Waveform Relax-

ation 

Consider the dimensionless heat conducting equation given in Equation (3.8) on 

an irregular domain Q: 

du d^u d^u ,, \ � m_> 
瓦 = 际 + ¥ +取仏《)，fG[o,r] 

u = 0 on dCl, 

where [0, T] is the time interval in interest. Using the finite element method for 

spatial discretization, we transform the above equation to a system of ODEs: 

y{t)^ Ay{t) = m , with y(0) = yo, t G [0,T], 

where A is a general sparse matrix and y is the approximate solution of u on 

the grid point of the given domain. This discretization method is also known 

as the method of lines. The ODE equation above is just a simplified version 

of Equation 2.1 where B{t) = I and A is time-invariant. A standard splitting 

technique can be applied to A = M — N: 

m + M y{t) = N y{t) + /⑴，with y ( 0 ) 二 yo, t G [0, T ] . 

The A:-th waveform iteration is then formulated as: 

y(^)(t) + My(^)(t) = Ny^' - ' ) { t ) + / ( t ) , with y(0) = yo, te[0,T]. 

We now consider the linear multi-step method with fixed time steps for time 

discretization. Let the time interval be discretized at time points 0 = t � < ti < 
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力2 < . • • < tm — T and let Atj = tj — tj—i. The standard discretized waveform 

iteration is formulated as: 

ia,y^'Kt,_i) + A t , ^ A M y ( ^ ) ( V O = 
' = � ， o , (5.1) 

At3j2_y�k-”[t]—i) + A t ] Y A ^ - l 
i=0 i=0 

for 1 < j < m. We will call this method the "exact” method. Let a be 

(ai , «25 • • •, Oik) and p be ( /¾, /¾, . . . , /¾) . In order to further "relax" the time 

points, we slightly modify Equation (5.1) such that the previous time points of 

integration can only be taken from the previous iteration: 

卿 ⑷ ⑷ + A t _ ^ ) = -J2a,y^'-'\t,_,) — A t ] j 2 _ # — � “ � 
i~l i=l 

+At]j2_#-i��t]—“ + A / , ^ A / f e - 0 , 
i=0 i=0 

or simplified as 

i 
(ao / + Z%%M)y(&) fe ) = - ^ ( a , / + At ,A-M)y(^- i ) fe_ , ) 

口 1 i . (叫 

+ A f j . X > # " ( H ) f e - 0 + A ^ , X : A / f e - 0 -
i=0 t=0 

This will be called the "inexact" method. 

5.1.1 Convergence Analysis 

In this section, we present the fixed-rate discrete-time analysis of the "inexact" 

method. Let a spectral radius of matrix A^ denoted by p{A)^ be the largest 

absolute eigenvalue of A. A simplified version of Theorem 2.4.2 in Section 2.4.2 

is given by: 
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Theorem 5.1.1 The “exact” waveform relaxation that corresponds to Equa-

tion (5.1) converges if and only if the following condition holds: 

m^axp((ao/ + At jpoM)~\At jPoN) ) < 1. (5.3) 

Note that the spectral radius is independent of T. We perform the convergence 

analysis for our method similarly. Particularly, we liave a theorem as follows. 

Theorem 5.1.2 The “inemct” waveform relaxation that corresponds to Equa-

tion (5.2) converges if and only if the following condition holds: 

max p((aoI + AtjpoM)-\AtjpoN)) < 1. (5.4) 
l<j<m 

which is identical to inequality (5.3). 

Proof : The technique of proving is similar to the proof of Theorem 2.4.2 in 

Section 2.4.2. Define the error 已⑷⑷）三 y ( � j ) — y(M(t]). It can easily 

be shown that 
i 

(ao / + At,/^oM) e(^)fe) = - ^ ( a , / + At ,A 'M) e^'"^HVO 
i=i 

+ A t , ^ f t 7 V e ( ^ - i ) ( V 0 -
z=0 

The above system of equations can be rewritten in matrix form as 

Gi n 1 � e ^ ( t i ) 1 �丑1’1 � 1 � “ “ i ) ( t i ) 1 
G2 U eW(t2) _ 丑2,1 ^.2 0 e(^D(t2) 

• • • • • . 
• • • . . 

n e(^){tm) „ rr' ‘ „ ei^-^){tm) 
yj Gm L Hm,l m̂,2 . . . Hm,m � L �叫 J 

or denoted as 

Ge^^^ = H^-” 

where 
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gW = ( e W ( t i ) T , e ( % t 2 r , . . . , e ( ’ m ) � 

Gp = aoI + Atpf3oM, 

‘Atpf3oN ifp = q, 

Hp,q = —ap—qI+AtqPp_qM + AtqPp-qN if Q < p < q + k, 

0 otherwise. 
V 

Because G is a block diagonal matrix, G~^ is also block diagonal. Since H 

is a block lower triangular matrix, consequently [G~^H) is a block lower 

triangular matrix with diagonal submatrices (G"^i/p,p). We know that the 

eigenvalues of a lower triangular matrix are determined by the eigenvalues 

of its diagonal submatrices. Therefore, we have 

P { G - ' H ) = max ^ ^ - ^ ¾ , , ) 
l<P<TO 主 

- m a x p{{aoI + Atj,poM)-'{Atpf3oN)). 
l<p<m 

• 

The above theorem shows that the spectral radius of the iteration equation 

resulting from the "inexact" solver is the same as that from the standard method, 

and hence the new method is robust. 

5.2 Inexact ODE Solver for Waveform Krylov 

Subspace Methods 

Krylov subspace methods can be applied to Eqaution (5.2) by the similar tech-

niques discussed in Chapter 3. The only problem is that we need a new ad-

joint operator for the "inexact" method. In this section, we firstly reformulate 
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Equation (5.1) and Equation (5.2) in matrix notations since tliey have been un-

folded in space and time. Then the description of the waveform Krylov subspace 

methods and the adjoint operator will be further derived. Also, we employ the 

Kronecker product notation to simplify the mathematic matrix notations. Recall 

that the Kronecker product of two matrices A G M^^^ and B G 脱似〜denoted 

by A � B, is a large matrix with the size of (m n) x (m n) formed by: 

Oa,iB ai,2JB . . . ch,mB 

ao iB ao 2B • . . ao mB 
A®B^ ， ’ ’ , 

• • • • 

• • • • 
<^m,lB Clrn,2B . . . am,mB 

where ai,j is the z-th row the j-th column element of A. It is easily shown that 

{A^B)^C 二 {A^C)^{B^C) 

a n d { A ^ B f 二 乂了 0 _ 0 了 

for any matrices A, B and C. Let 

«0 Po 

Oil <̂ o Pi fh 

A . «1 Q̂o 1 - . fh Po a = and jj 二 . 
oti • • • Pi • • • 

• • • • • • • • 

0^1 . Ck!l «0 f3l . Pi pQ 
L J U. ‘ ‘ -

We denote a diagonal matrix with the diagonal elements ai’i, a2,2, . . ., cin,n by 
A 

diag[(ai,i, a2,2, .. .，an,n)] and let 5 = diag[(Ati, At2,. • ., Af^)] . Let a discretized 

vector function of w{t) be "stacked" in a column vector denoted by w. That is 

& = (w(tif,w(^t2f)...)w(tmff. 
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Denote the identity matrix of order k as h here. The “exact” method which 

corresponds to Eqaution (5.1) can be now rewritten as: 

( « 0 /n)P(") + (幼③ M � # � =脚 0 A0§("-1) + (幼③ In)f, 

or simplified as 

[(a 0 In) + {SP ® M)]y") = {SP ® A05("-1) + ( 幼 � In)f. 

The “inexact，，method which corresponds to Eqaution (5.2) can be rewritten as: 

[{aoIm 0 In) + WoS 0 M)]y(^) = [{aoIm - a) 0 /Jy^'"'^ 

^WoIm - h � M ] # - 1 ) + {Sfi ® A 0 # - 1 ) + 御 0 / n ) / , 

or simplified as 

[{aoIm®In)^{Po5®M)]y^^^ = 

[{aoIm — a) 0 4 + Hf^oIm - h ® M + {S0 � A0]#—1) + (幼③ h)f. 

Define the matrices M , N, M and N as: 

M = (a 0 Q + {5^ 0 M) 

"N 三{Vp ® N) 

M = ao/m + {Po5 0 M) 

N 三（ao/^-6O0/n + & A ) / m - / ^ 0 A f + (^5 0 A O . 

The discrete version of waveform relaxation operators defined in Chapter 2 (and 

hence are matrices here) for the "exact" and "inexact" methods are given by: 

K = M—iN and K 二 M " ^ N 

respectively. The corresponding adjoint operators defined in Chapter 3 are given 

by: 

K* =. K^ = N ^ M - ^ and K* = KT = ^Tp^-T 
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respectively. Note that 

M ^ = {a^ 0 Q 4- 0^S 0 M^) 

N^ = 0^S 0 N^) 

M ^ = aoIm + {PoS 0 M^) 

N^ = {adm - a^) ® In + {f3oIm - P^)S 0 M^ + 0^S 0 N^). 

Based on these formulas, the corresponding procedures can be setup for adjoint 

operator-function products. 

5.3 Experimental Results 

We consider again the unstructured mesh as shown in Figure 3.2 for our numer-

ical experiments in DECmpp 12000/Sx computer. The data-mapping strategy 

and the sparse matrix format were described in the previous chapter. 

First, we compare the two versions of waveform Jacobi method (WJAC) 

in two different time intervals, (0,63) and (0,127). The step size was fixed 

to be 1.0 unit. The initial value yo is chosen to be the steady state solution 

of Equation (3.8) when f = 1. The transient solution was then computed 

using the W R methods by taking f = 0. This configuration simulated the 

situation when the loading was suddenly removed. All the computations were 

in double precision. The iterations were stopped when the maximum absolute 

error max,-,j \yi^\tj) — yi^~^\tj) \ is less than 1 x 10~®. We plotted the absolute 

error versus the number of iterations as shown in Figure 5.1. The solid lines 

represent the results of T = 63 and the dotted lines represent the results of 

T = 127. We observed that the asymptotic behaviors of the four methods were 

similar. It supported the theoretical results mentioned in Theorem 5.1.2 that 

the spectral radii of both methods are identical. 
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Table 5.1: Comparison between the exact Backward Euler (BE) solver and the 
inexact BE solver for solving the equation (1) on the domain as shown in Figure 6 
(Time step = 1.0) by WJAC 

Time Inexact BE solver Exact BE solver 
intervals DPU times no. of iter. DPU times no. of iter. 
0.0-10 20.0 sec. m 73.8 sec. l M 
0.0-20 31.3 sec. 234 224.2 sec. 215 
0.0-30 41.8 sec. 298 420.3 sec. 270 
0.0—40 49.7 sec. 359 840.3 sec. 321 
0.0—50 57.8 sec. 418 1096.7 sec. 370 
0.0-60 67.5 sec. 474 1365.3 sec. 416 

In Table 5.1, we presented the comparison of the execution times and the 

numbers of iterations between the two WJAC methods. Only the execution 

times of the subroutines of the solvers were measured by the internal timer of 

the Data Processing Unit (DPU), excluding all the setup times. We observed 

that the number of iterations was increased linearly against the time interval in 

both methods, and the exact method always needed less iterations. However, 

because of the large-scale parallelism, the inexact method was much faster than 

the exact method. 

In Table 5.2, we showed the measurement results of WJAC and WGS, while 

the inexact ODE solver was used. The configuration of the experiment was the 

same as the above experiment. Five colors were used in WGS, which means that 

each iteration consists of five sequential steps. A factor of two improvement was 

observed from WGS over WJAC after performing multi-coloring technique. 

The results of waveform Krylov subspace methods are given in Table 5.3 and 

Table 5.4. The corresponding residual plots are given in Figures 5.3— 5.8. 

We found that the WBiCG method, the WCGS method and the W Q M R 
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4 10 I 1 1 1 1 1 1 1 

r ^ � . . 
10"®- X2) \1) �� � i ) 
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0 100 200 300 400 500 600 700 800 
number of iterations 

Figure 5.1: Logio of the error versus the number of iterations. (1) The "inexact" 
method, time interval 二 (0,63). (2) The "exact" method, time interval = (0,63). 
(3) The "inexact" method, time interval = (0,127). (4) The "exact" method, 
time interval 二 (0,127). 
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Table 5.2: Comparison between WJAC and WGS on "Eppstein" mesh. (Time 
step = 1，Tolerance = le-6). 

Time~~ WJAC WGS (5 c o l o r s ) — 
intervals DPU times no. of iter. DPU times no. of iter. 
0.0-10 20.0 sec. 1 ^ 12.1 sec. ^ 
0.0-20 31.3 sec. 234 22.0 sec. 131 
0.0-30 41.8 sec. 298 27.8 sec. 168 
0.0-40 49.7 sec. 359 33.7 sec. 204 
0.0-50 57.8 sec. 418 39.3 sec. 238 
0.0-60 67.5 sec. 474 45.0 sec. 272 

Table 5.3: Comparison between the waveform Jacobi method (WJAC) and five 
waveform Krylov subspace methods in term of number of operator-function 
products. (Time step : 1, Tolerance = le-6). 

Time interval WJAC WBiCG-Stab WGMRES(20) WBiCG WCGS WQMR 
o F I o 1^ ^ ^ fIo ^ no~~~ 
0.0-20 234 98 160 158 138 160 
0.0-30 298 136 200 258 - -
0.0-40 359 170 220 522 - -
0.0-50 418 226 280 - - -
0.0-60 474 266 300 - - — 
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Table 5.4: Comparison between the waveform Jacobi method (WJAC) and five 
waveform Krylov subspace methods in term of execution times in second. (Time 
step = 1, Tolerance = le-6). 

Time interval WJAC WBiCG-Stab WGMRES(2Q) WBiCG WCGS W Q M R 
0.0-10 ^ STO m U l 0 M7~~ 
0.0-20 31.3 14.3 28.9 23.9 20.5 48.6 
0.0—30 41.8 23.1 38.6 40.6 - -
0.0-40 49.7 26.7 41.6 84.0 - -
0.0-50 57.8 35.4 52.5 - - -
0.0-60 67.5 41.7 55.8 - - -

method, which have less stable convergence behavior, failed to converge when 

the time intervals were long. In the previous section, we proved that the spectral 

radius of both exact and inexact W R method are the same. In spite of this, it 

can only be used to measure the asymptotic behavior. The results show here 

that some waveform Krylov subspace methods were less stable when the inexact 

ODE solver was used. However, the relatively stable WBiCG-Stab method and 

the WGMRES method still have good performance. 

5.4 Concluding Remarks 

We summarize the techniques that we described in the previous chapters and 

this chapter in an overall view. A methodology of design and analysis of wave-

form methods can be as follows. Consider a linear ordinary differential equation 

problem. We reformulate the problem in the form of {Ay){t) = f ( t ) , where A 

is described by the giving equation. The techniques in linear algebra can then 

be applied, as if we are solving an ordinary matrix problem. The numerical 

results showed that the convergence behaviors of those methods are similar to 
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Waveform Krylov subspace methods with inexact ODE solver, T=10 
10 1 ,_- , , , , , , , 
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H:Nf̂i；…；-： 
_10 - l^GMRES(20) \ ： 1 \ ^ X ： W。MR . 

1 � : . . ‘ — . . . 丨 . . . … • … 丨 . . . ^ ^ ^ ^ 
:WBiCG-Stab : \ : ^ : \ 

\ ： \ ... N/IVBiCG . 
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0 10 20 30 40 50 60 70 80 90 100 
Number of iterations 

Figure 5.2: Logio of the residual norm versus the number of iterations for the 
waveform Krylov subspace methods. 

their non-functional counterparts. With this conceptual framework in mind, 

in the next chapter we will further consider the domain decomposition tech-

nique applied to the developed waveform Krylov subspace methods for solving 

large sparse ordinary differential equations. Domain decomposition is acted as a 

preconditioner in the waveform Krylov subspace methods. The resulting meth-

ods are similar to the overlapping Schwarz methods for solving elliptic partial 

differential equations. 
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4 Waveform Jacobi method with inexact ODE solver 

1 0 ！ 1 1 ！ 1 1 1 

G l 
10-1� A--- :^I=20.... . . ,^_ 

_ T=10 L--̂ 3o 
1 0_14 I I I I I I I 

0 50 100 150 200 250 300 350 400 
Number of iterations 

Figure 5.3: Logio of the residual norm versus the number of iterations in different 
time intervals for the waveform Jacobi method. 

74 



Chapter 5 The Use of Inexact ODE Solver in Waveform Methods 

Waveform BiCG method with inexact ODE solver 
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Figure 5.4: Logio of the residual norm versus the number of iterations in different 
time intervals for the waveform BiCG method. 
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Waveform BiCG-Stab method with inexact ODE solver 
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Figure 5.5: Logio of the residual norm versus the number of iterations in different 
time intervals for the waveform BiCG-STAB method. 
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,„ Waveform CGS method with inexact ODE solver in̂ o , 
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Figure 5.6: Logio of the residual norm versus the number of iterations in different 
time intervals for the waveform CGS method. 
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4 Waveform GMRES(20) method with inexact ODE solver 
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Figure 5.7: Logio of the residual norm versus the number of iterations in different 
time intervals for the waveform GMRES(20) method. 

78 



Chapter 5 The Use of Inexact ODE Solver in Waveform Methods 

5 Waveform QMR method with inexact ODE solver 
1 0 I ！ ！ 1 ！ ！ ！ ！ ！ 

^ ： - ^ ^ ^ ； ； ； :T=50,60 

|1。。: . ...j.:A; V^-_ .：...丨..-N^ -; 
I : I KXH i 丨 i 
I . ： \ : \ ： . ^~^“^~：~：~~^N30 
1 1 0 " - . . . . . . ： … … ; - r - V ; . . . … V . . . j 一 . . … … … … … … . … ； . . … -

::I 1 ^ i : : I : 細 

-- ： \ ； ： : : -

iQ-io| 1 1 1 ~ ~ � I I I I I I h-=io 
0 20 40 60 80 100 120 140 160 180 200 

Number of iterations 
Figure 5.8: Logio of the residual norm versus the number of iterations in different 
time intervals for the waveform QMR method. 
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Chapter 6 

Domain Decomposition 
Technique 

6.1 Introduction 

Overlapped partitioning technique has been applied to waveform relaxation 

methods for solving large scale initial value problems that arise from VLSI circuit 

simulation [64, 76, 3]. The motivation is mainly to improve the robustness as 

well as convergence. Particularly for the tightly coupled systems such as bipolar 

‘circuits, the convergence of the naive waveform relaxation methods can be very 

poor. However, if we group the tightly coupled component together and the 

iterative process is only applied among the inter-subdomains, convergence will 

be improved. Although the optimal partitioning to meet certain criteria such as 

minimizing the spectral radius is believed to be NP-hard, some good heuristic 

algorithms have been reported [48, 3 . 

Another good reason for partitioning is concerned with parallel or distributed 

processing. A large circuit is divided into several sub-circuits and each sub-

problem is distributed to a different processor. While minimizing the cut-set 
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for reducing the communication, we must maintain load-balancing. In this case, 

the problem of minimizing bisection cut-set was proven to be NP-complete. We 

refer the reader to the references [13] for the discussion of this issue. 

In the following section, we will show how to integrate overlapped partition-

ing technique with waveform Krylov subspace methods by the domain decompo-

sition setting. The methods are quite similar to the overlapping Schwarz meth-

ods for solving elliptic partial differential equations. Also, we propose the use of 

a differential operator A for generating a Krylov subspace sequence rather than 

the waveform relaxation operator JC. We conclude by a numerical experiment 

given in Section 6.3 to show that the differential operator is more appropriate 

in domain decomposition. 

6.2 Overlapped Schwarz Methods 

The domain decomposition algorithm described below works in the same way 

as one for linear algebraic equations [11, 13]. Let the domain 0 be divided 
A A A A 

into p overlapping subregions O i ,仏，…，0 ^ such that ULi ^ = ^- The 
A A A 

corresponding indices of the unknown vectors are denoted by / i , /2, . . . , I^. Let 
- A A 

Ui be the number of indices in / “ For each subdomain (¾, let Ri denote the 

n X hi restriction matrix that restricts a vector of y(t) of length n to Riy{t) of 

length hi by choosing the subvector having indices /^. The transpose of Ri is an 

extension matrix that extents the yi{t) back to y{t). Thus 
‘ A 

,pT /,XN iv_k i fAie/z. 
( ¾ yz{t))k = 

0 otherwise. 
\ 

Note that the matrices are not formed explicitly in the implementation. The 

additive Schwarz preconditioner is defined as: 

^^- i = f X A _ i ^ . 
i=i 
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where { A j ^ R i f ) { t ) represents the exact solution in subdomain 1¾. In practice, 

we can use the inexact subdomain solver, such as incomplete LU factorization. 

The overlapping additive Schwarz method can be viewed as a generalized block 

Jacobi method. Similarly, the overlapping multiplicative Schwarz method rep-

resents a generalized block Gauss-Seidel method. That is, the solves on each 

subdomain are performed sequentially. In this thesis, we consider the additive 

method only since the convergence behaviors of the two methods are similar. 

The convergence theory of domain decomposition methods for partial dif-

ferential equations was studied quite maturely for the uniform grids. The dis-

cussion on the theory for unstructured grids can be found in a recent paper by 

Chan et al. [14]. For the circuit simulation, the convergence may rely on a good 

partitioning algorithm. 

As is known for the case of linear algebraic problem, the convergence rate of 

this algorithm may deteriorate as tlie number of subdomain p increases and hence 

it may not be scalable. In the finite element context, this problem is successfully 

handled by inserting a coarse grid solver to the preconditioner, which acts as 

a mechanism for global communication of information. However, in the circuit 

simulation context, whether the "coarse grid" is meaningful is still in question. 

Here we only consider the overlapping Schwarz methods without coarse grid 

correction. 

We notice that «M—i reasonablely approximates A~^. However, it may not 

well precondition the waveform relaxation operator {X-JC). Hence, we attempt 

to use the differential operator A directly for generating the Krylov subspace 

sequence. The {Ap){t) product w{t) corresponding to Equation 2.1 is given by: 

w{t) := B{t)p{t)^A{t)p{t). 

Note that A is a pure differential operator and hence no integration method 

is applied. The step-size control mechanism then rely only on the subdomain 
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solvers. 

In the following, we call the overlapping additive method for the waveform 

relaxation operator as Scheme 1 and the overlapping additive method for the 

differential operator as Scheme 2 respectively. In considering the multi-rate 

integration, Scheme 2 allows only each subdomain to have its own step-size. The 

interpolation occurs only at the interfaces between subdomains. In Scheme 1, 

more alignments are needed when updating. In the next section, we compare 

the convergence properties of these two schemes by numerical experiments. 

6.3 Numerical Experiments 

6.3.1 Delay Circuit 

We consider the problem of solving the transient solution of the delay circuit 

shown in Figure 6.1, which is taken from [77, p. 618]. The values of the param-

eters are listed as follows: Ci = 0.0152, L) 二 0.0451, C's = 0.0741, L^ = 0.1016, 

^5 = 0.1269, Le 二 0.1499, CV = 0.1708, Ls 二 0.1916, C^ = 0.2175, L^ 二 0.2639, 

Cii = 0.3955 and R [ = 1.0, which give an approximate one second delay time 

response. - Then we cascade four parts of circuits, that each part is basically 

identical to the circuit shown in Figure 6.1, to form a four seconds delay circuit. 

Figure 6.2 shows the circuit diagram. The value of g^ is 1. The exact output 

waveforms are shown in Figure 6.3. 

The circuit is naturally divided into four sub-domains. A small overlapping 

is introduced by including the load voltage (e.g. t;u) of the previous stage as 

the element of the current stage. The basic ODE solver is the Backward Euler 

method and the waveform relaxation operator for Scheme 1 is based on the 

waveform Jacobi method. The restart version of WGMRES was used and the 

restart value is 20. 
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Figure 6.1: One second delay circuit 

L"^i 2̂2 v33 v44 
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Figure 6.2: Four seconds delay circuit 
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Figure 6.3: Output waveforms of the four seconds delay circuit 
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Table 6.1: The results of solving the transient solution of Delay circuit in term 
of number of operator-function products. (Time step = 0.01, Tolerance = le-8, 
T = 2 ) The subdomain problems are solved by direct method. 

“methods WBiCG WBiCG-Stab WCGS WGMRES(20) W Q M R 
no dd ^ breakdown f l 6 1 ^ ^ ~ ~ ~ 

Scheme 1 fail 286 108 60 392 
Scheme 2 12 6 4 20 12 

The inner product as defined in Equation (3.4) was replaced by Equation (3.5) 

in the discretized system. The results are shown in Table 6.1. 

As the result shown, the waveform Krylov subspace methods needed larger 

number of operator-function products in general when no domain decomposition 

was applied. Breakdown even occurred in the WBiCG-Stab method. When 

Scheme 1 was applied, however, the overall performance was poor. There are 

no great improvements in WCGS. The WQMR method needed more iterations 

to converge. Even worse, the WBiCG method failed to converge. Actually, 

this is the motivation that we investigate Scheme 2. In fact, there were only 

a few iterations needed in Scheme 2 for convergent. Of course in general the 

convergence depends on the spectrum of M~^{X — KL) or M~^A. 

6.3.2 Unstructured Grid Problem 

In our second experiment, we solve a dimensionless heat conducting equation in 

two space dimension on the unstructured mesh shown in Figure 6.4: 

du d^u d^u . � 

W 二际+ ¥+乂工，仏《)’力〔（0，乃 

u — 0 on dVt, 

The equation is discretized by a standard finite element method. The mesh is 

partitioned into eight nonoverlapping subdomains by recursive spectral bisection 

method (RSB) (see Appendix B for brief introduction to this method). The 
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Table 6.2: The results of solving the unstructured grid problem with Scheme 1 
in term of number of operator-function products. (Time step = 1, Tolerance = 
le-8, 8 partitions). The subdomain problems are solved by direct method. 

ovlp WBiCG WBiCG-Stab WCGS WGMRES(20) W Q ^ i ^ 
~~0 m 76 ^ 1 ^ m ~ ~ 

1 116 56 82 80 114 
2 112 52 60 60 112 
3 124 60 68 60 124 
4 132 66 68 60 124 

method was originally proposed by Pothen et al. [56]. To speed up the process 

of finding the Fiedler vector (see Appendix B for the definition of Fiedler vector), 

we employ the multilevel version of the RSB method [4]. Then the overlapping 

subdomains are obtained by extending one element from the boundary nodes. 

Figure 6.5 illustrates a subdomain with one-element extension. We can also 

apply the extension procedure again to obtain a larger overlapping subdomain. 

The subdomains were solved by direct method. The rest of the settings was 

the same as described in Chapter 3. Table 6.2 and Table 6.3 show the results 

of Schemes 1 and 2 respectively. In both tables, odp=Q means no overlap-

ping and ovlp=k means that the extension procedure has been applied k times. 

Note that a considerable drop of the number of operator-function products was 

observed from odp=0 to ovlp=l. This characteristic is typical when domain 

decomposition is applied to elliptic partial differential equations. The reason 

for the considerable drop is that the information between subdomains can be 

communicated by sufficient small overlapping. However, the further enlarged 

overlapping may not significantly decrease the number of iterations, or even in-

crease it. The optimal size of overlapping depends on the size of the meshes. In 

this experiment, Scheme 2 have only slightly better performance than Scheme 1. 
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i m 
_ 

Figure 6.4: "Eppstein" grid partitioned into 8 subdomains 

Table 6.3: The results of solving the unstructured grid problem with Scheme 2 
in term of number of operator-function products. (Time step = 1，Tolerance = 
le-8, 8 partitions). The subdomain problems are solved by direct method. 

ovlp WBiCG WBiCG-Stab WCGS WGMRES(20) WQMR 
~ 0 1^ ^ ^ 1^ 1^~~ 

1 86 50 56 60 84 
2 82 42 52 60 82 
3 74 40 40 40 74 
4 76 40 44 40 76 
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Figure 6.5: A subdomain with one-element extension 
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Conclusions 

7.1 Summary 

Waveform methods are strongly supported by mathematical theories. They in-

clude functional analysis and operator theory. As you have seen in the previous 

chapters, the concepts and terminologies such as spectral radius and spectrum 

are throughout this thesis. Also as we treat the waveform relaxation methods in 

continuous time, the contraction mapping and fixed-pointed theorem in Banach 

space can be applied for convergence analysis. Note that not only the math-

ematical theories are useful for analysis, but also that they sometimes help us 

in design of algorithms. For example in this thesis, we have borrowed the idea 

of adjoint operator in Hilbert space for the design of the waveform bi-conjugate 

gradient method and the waveform quasi minimal residual method. 

Another area that seems to be equally important in the design of waveform 

methods is Applied Linear Algebra. In this thesis, we have adopted the tech-

nique of Krylov subspace and the related techniques such as preconditioning 

and domain decomposition. The adoption is based on the generalization of the 

concept of matrices to linear operators in Hilbert space. Five previously untried 
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methods, together with the waveform generalized minimal residual method that 

was newly proposed by Lumsdaine et al. [43], have been investigated in Chap-

ter 3. They include the waveform conjugate gradient method, the waveform bi-

conjugate gradient method, the waveform conjugate gradient squared method, 

th_e waveform bi-conjugate gradient stabilized method and tlie waveform quasi 

minimal residual method. 

These methods have been extensively examined via numerical experiment on 

both sequential and DECmpp 12000/Sx massively parallel computers. The test 

problems are taken from circuits and heat conducting equation on unstructured 

grids. One important evidence that we have observed from numerical exper-

iments is that waveform Krylov subspace methods can be applied to tightly 

coupled systems. We also concluded that the convergence behaviors of those 

methods are similar to their non-functional counterparts. This is important be-

cause it makes the characteristics of the new methods more predictable as we 

have understood the traditional methods quite mutually well. 

Although the new methods are the extension of the traditional methods, they 

do have their own properties that do not appear in the non-functional counter-

parts. In this thesis, we have pointed out that the waveform Krylov subspace 

methods which need adjoint operators may induce difficulty in actual implemen-

tation. The effect of the length of time interval has also been investigated. 

In Chapter 5, we have developed data-parallel versions of waveform Krylov 

subspace methods on a DECmpp 12000/Sx computer. The programs were writ-

ten in High Performance Fortran and hence can be portable to other platform. 

We have demonstrated the efficiency of the waveform Krylov subspace methods 

on parallel environments. 

In Chapter 6, domain decomposition technique for waveform Krylov sub-

space methods was further investigated. This research was partially motivated 

by the fact that overlapped partitioning techniques for waveform relaxation were 
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studied in recent years. The techniques can be applied to the waveform Krylov 

subspace methods equally well by using domain decomposition and precondi-

tioning. We have showed that domain decomposition can work well in function 

space. We also pointed out that the differential operator A is more suitable than 

the waveform relaxation operator K for generating the Krylov sequence if the 

overlapped Schwarz preconditioner has been used. 

7.2 Future Works 

In this thesis, we observed promising results of waveform Krylov subspace meth-

ods in solving large sparse ODE's. Therefore, in my opinion, these methods will 

be important in future research as well as industrial applications. Here, we 

identify some future works in this area. 

Obviously, the practical implementation of waveform methods with the ap-

plication of circuit simulation is worth being considered. This may be a cross-

disciplinary project that invokes Computer Science, Electrical Engineering and 

Mathematics. Furthermore, the parallel implementation on distributed environ-

ments will be particular of interest, as the traditional methods may be inefficient 

on these environments. Beside the application of circuit simulation, waveform 

relaxation have been applied to other areas such as transmission line simula-

tion and chemical processing. Hence, the more advanced techniques that we 

described in this thesis may be also suitable in these areas. 

Beside the practical implementations, some theoretical researches are sug-

gested. In this thesis, we mainly focused on the algorithms to handle the cou-

pling in system domain. In theory, Krylov subspace methods can operate on 

any kinds of linear operators. Hence, intuitively the knowledge in time domain 

are not considered in Krylov subspace methods when the ODE equations are 

transformed into linear operators. On the other hand, some new methods such 
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as implicit Runge-Kutta method and wavelet method have been proposed re-

cently for improvement in time domain. Nevertheless, at the same time the 

knowledge of the coupling has not been considered in these methods. Therefore, 

there is no conflict between these two approaches and the integration of these 

two approaches may further improve the overall performance. 
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Pseudo Codes for Waveform 

Krylov Subspace Methods 
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Appendix A Pseudo Codes for Waveform Krylov Subspace Methods 

Compute r{t) for some initial guess y{t) 
Choose r(t) (for example, r{t) = r{t)) 
for i = 1 , 2 , . . . 

z{t) := {M-'r){t) 
z{t) := [M'-'r){t) 
p:={z{t)rz{t)) 
if p = 0 method fails 
i fz = 1， 

P(t) := z{t) 
m : = m 

else 
P '= p|pi 
m --=z{t)+f3p{t) 
p{t):=m^mt) 

end 
q{t) := {Ap){t) 
m '•= {^'pm 
ai ••= pi-i/{p{t),q{t)) 
y{t) := y{t) + ap{t) 
r{t) := r{t) - aq{t) 
r{t) := r{t) — ai(t) 
Pi := P 
check convergence; continue if necessary 

end 

Algorithm A.1: The Waveform Bi-Conjugate Gradient Method (WBiCG) 
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Appendix A Pseudo Codes for Waveform Krylov Subspace Methods 

Compute r{t) for some initial guess y{t) 
Choose r{t) (for example, r[t) = r{t)) 
for i — 1,2，... 

p:={r{t),r{t)) 
if p — 0 method fails 
ifz = 1, 

P{t) := r[t)', 
else 

P:={p|p,){a|u:) 
P{t) -=r{t)^[5[p{t)-uov{t)) 

end 
Pit) •= {M-'pm 
v{t) ••= {Ap){t) 
a:=p|{r{t),v{t)) 
s{t) := r{t) — av{t) 
check ||5(t)||2; if small enough: set y{t) :二 y � t � + ap{t) and stop 
s{t) := {M-^s){t) 
d[t) :二 {As){t) 
u:=(d{t),s{t))/{d{t),d{t)) 
y{t) :=y(0 + o^Kt) + cc;<^(f) 
r{t) := s{t)-ujd{t) 
Pi •= P 
check convergence; continue if necessary 
for continuation it is necessary that uj + 0 

end 
-

Algorithm A.2: The Waveform Bi-Conjugate Gradient Stabilized Method 
(WBiCG-Stab) 
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Appendix A Pseudo Codes for Waveform Krylov Subspace Methods 

Compute r{t) for some initial guess y{t) 
for i = 1, 2 , . . . 

z{t) := {M-'r){t) 
P'= {r{t).z{t)) 
i fz = 1, 

P{t) •= 4t) 
else 

P •= p|pi 
P{t) :=z{t) + f]p{t) 

end 
q{t) •= {Ap){t) 
^i -=p/{p{t)^q{t)) 
y{t) :=y(t) + ap[t) 
r{t) := r{t) — aq{t) 
Pi •= P 
check convergence; continue if necessary 

end 

Algorithm A.3: The Waveform Conjugate Gradient Method (WCG) 
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Appendix A Pseudo Codes for Waveform Krylov Subspace Methods 

Compute r{t) for some initial guess y[t) 
Choose r[t) (for example, r{t) = r(t)) 
for i = 1, 2 , . . . 

p:={m.r{t)) 
if p — 0 method fails 
ifz = 1， 

u{t) := r{t) 
P{t) '= u{t) 

else 
/? :二 p|pi 
u{t) -r{t)^pq[t) 
P{t) -=u{t) + f3{q{t) + pp{t)) 

end 
m := {M-'p){t) 
m '•= m { t ) 
a:=p/{r{t),v{t)) 
q{t) := u(t) - av{t) 
u{t):={M-^u + q)){t) 
y-{t) •= y{t) + Mt) 
m ••= {Aum 
r{t) := r{t) - aq{t) 
Pi := P 
check convergence; continue if necessary 

end 

Algorithm A.4: The Waveform Conjugate Gradient Squared Method (WCGS) 
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Appendix A Pseudo Codes for Waveform Krylov Subspace Methods 

y(o)(Z) is an initial waveform 
for j — 1, 2 , . . . 

r{t) :=M-'{f{t)-{Ay^')){t)) 
vi'){t):=r{t)/Wr{t)W2 
5 ：= ||r(t)||2ei 
for i = 1,2, •.., m, 

w{t) := {M-^Av^^){t) 
hk,“= {w{t),v(^){t)) 
w{t) — w{t) — "fc’，00 

end 
hi+i,i ：= Ww{t)W2 
”(终1)(《)：=w{t)/h,̂ ,, 
Solve Hky = s 
y{t) • = “ � � + Vky., 
check convergence; continue if necessary 

end 

Algorithm A.5: The Waveform GMRES(m) Method (WGMRES(m)) 
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Appendix A Pseudo Codes for Waveform Krylov Subspace Methods 

Compute r(t) for some initial guess x(t) 

冲）:=”(作卵）:=(̂ 「̂1句00;/̂ :=||卵)||2 
Choose w(t) (for example, w(t) 二 明 ） 

^：⑴:={M^^w){t)- <e ：- 1iz(/)ii2 
7 := 1； rj := —1; 9 := 0 

for i 二 1, 2 , . . . 
if p = 0 or ^ — 0 method fails 
^；⑴：=v{t)|p-卵）：=y[t)/p 
^(t) ••= Mm\ 么⑷： = A m 
^ ：二 {z{t),y[t)Y i fJ = 0 method fails 
• := {M^'y)(t); z(t) ：= {Mr'z)(t) 
if i 二 1 

p[t) : = m;m ••= z{i) 
else 

p{t) ••= m — m^)p(t) 
m ••= m — {pS/e)q(t) 

end 
P{t) :二 {Ap){t) 
e := {q{t),p{t)); if £ = 0 method fails 
(3 := e|8] if P = 0 method fails 
v{t) -.= p[t)-i3v{t) 
m ••= {M^^v)[t) 
Pi •= P\ P := ||^(^)||2 
w{t) := {A*q)[t)-i3w{t) 
z{t) = [Mr'w)[t) 
^••=\W)h 
7i := 7； 1̂ :二 0 

0 := p/(71|/^|); 7 := l / v T T ^ ; i f 7 = 0 method fails 
77 := -T7Pi7V(/^7i) 
if i = 1 

d[t) -.= r^v{t)- s(t) := r^p{t) 
else 

dit) := T)P(f) + {9ij)^d(t) 
s{t) :=rjp(t)^ieij)^s{t) 

end 
x{t) := x(t) + d(t); r{t) := r(t) - s(t) 
check convergence; continue if necessary 

end 

Algorithm A.6: The Waveform Quasi Minimal Residual Method (WQMR) with-
out Look-ahead 

100 



Appendix B 

Overview of Recursive Spectral 
Bisection Method 

For solving unstructured grid problems on MIMD {Multiple Instruction-streams 

Mulitple Data-streams) computers, it is commonly that a mesh is firstly par-

titioned into pieces and then each piece is assigned to each processor. The 

partitioning problem here is to partition the mesh in tlie way that the com-

munication overhead is to be minimized, while the load balancing should be 

maintained. The corresponding idealized mathematical graph problem can be 

formulated as finding a minimum cut bisection of an undirected graph. In this 

case, it is well-known that the problem is NP-complete. One of the most success-

ful heuristic algorithms is the recursive spectral bisection method (RSB) [56 . 

In this appendix, we describe the method below. 

Given an undirected, connected graph G = (V,E). Assume that |V| = n is 

even. Let L be the set of lattices vectors with components equals 1 or —1： 

L = { / G M " | / , G { - 1 , 1 } } . 
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Appendix B Overview of Recursive Spectral Bisection Method 

Let B be the set of load balanced vectors defined as: 

B = {beR^\ f > = 0}. 
i=l 

The set of bisection vectors, denoted by 尸,is defined as L 门 B. We associate 

eadi node of the graph with a variable Xi, whose value is 1 or -1 corresponding 

the two sides of the cut. The size of the cut set corresponding to a bisection 

vector X can be expressed as 

C\xeP = ^ J2 i^y ~ ^^)^-
(v,w)eE 

An n X n Laplacian matrix Q 二 (g,-j) of G is defined as: 

—1 if {v,,vj) G E 

%3 = deg(t;,) if i = j 

0 otherwise. 

Then it can be easily shown that 

x^Qx = Yu (^^ ~ ^^f' 
{v,w)eE 

The Laplacian matrix Q has the property of positive semi-definite, i.e., z^Qz > 0 

for all z G M .̂ The smallest eigenvalue of Q is equal to zero with the associated 

eigenvector (1 ,1 , . . . , 1)^. The eigenvector associated with the smallest nonzero 

eigenvalue A2 is called the Fiedler vector. The trick of the RSB method is to 

relax the constraint of x G P to the continuous space B. We have the following 

inequality: 

min C = - TsAnx^Qx > — min x^Qx — -XoQxo = —Ao, xeP 4 ^eP ^ - 4 xeB,\\x\\l 4 “ 2 , 

where X2 is the Fielder vector normalized as ||a:2||2 二 几.Since x2 is orthogonal 

to (1 ,1 , . . . , l)T, it is automatically in B. The minimum cut problem is then 
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Appendix B Overview of Recursive Spectral Bisection Method 

relaxed to finding the eigenvector with the second smallest eigenvalue of the 

Laplacian matrix. After finding X2, we need to map X2 to the "nearby" vector 

P G P to get the solution. The heuristic is that when X2 minimizes x^Qx, it is 

reasonably believed that p is also to be a good solution. The "nearby" vector 

is commonly given by the median cut method, i.e., find the median value of the 

components of X2 and map the components above that median value to +1 and 

map the components below that median value to -1. We denote the median 

cut vector as p^. Recently, Chan et al. proved that p^ is in fact the nearest 

bisection vector of X2 in any “-norm [12 . 
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