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ABSTRACT 

Most manufacturing systems organize production by using a number of ma-

chines in tandem or a flowshop configuration. One of the characterising features 

of the dynamics of a flowshop is that inventory levels of semi-processed parts in 

buffers between any two machines, known as internal buffers, must be nonnega-

tive. This feature, together with the fact that machines are usually unreliable, 

namely, they are subject to the random discrete events of breakdowns and re-

pairs, makes the optimal production planning in a flowshop an extremely difficult 

problem, both theoretically and computationally. 

An effective way to analytically cope with the difficulty is to use the so-called 

hierarchical control approach. The idea is to average out the uncertainty in ma-

chines' capacities and replace the original stochastic problem by a deterministic 

(also called limiting) problem. One then tries to show that, under certain cir-

cumstances, the two problems are in fact very close to each other as the rate of 

change in machines' states becomes very large. Based on this, one can somehow 

use a good production policy for the deterministic problem, which is much easier 

to obtain, to construct a good policy for the original stochastic problem. 

In this thesis, we first consider open-loop production planning in manufac-

turing systems with two tandem unreliable machines and finite buffers. It is 
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emphasized that two-machine flowshops are basic elements in general manufac-

turing systems and possess the major difficulties in terms of various constraints. 

Asymptotic optimal production policies for the original problem are explicitly 

constructed from near-optimal policies of the limiting problem, and the error es-

timate for the constructed policies is obtained. Algorithms of constructing these 

polices are presented. 

Note that open-loop controls are of theoretical importantance in justifying 

the hierarchical control approach. While asymptotically optimal, the constructed 

open-loop controls are however not expected to perform well unless the rate of 

change in machine states is unrealistically large. What is required therefore is 

a construction of asymptotic optimal feedback controls. In this thesis, we subse-

quently consider the feedback controls for the stochastic two-machine flowshops. 

Once again, the idea is to use the hierarchical approach to replace the stochastic 

problem by a deterministic problem. Explicit optimal feedback controls for the 

deterministic problem are obtained. Furthermore, beginning with the solutions of 

the deterministic problem, a feedback control for the stochastic flowshops is ana-

lytically constructed, which is proved to be asymptotically optimal with respect 

to the rate of change in machine states. 

Finally, we numerically compare the performance of our constructed policy, 

referred to as Hierarchical Control (HC) policy with two well known heuristic 
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policies known as Kanhan Control (KC) policy and Two Boundary Control (TBC) 

policy. We show that HC performs, while simpler to construct, to understand, 

and to implement, as well as or better than KC and TBC. 
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Notation 

This thesis is divided into seven chapters, in which each of the first six chap-

ters is divided into sections and some sections are divided into subsections. In 

any given chapter, say Chapter 5, sections are numbered consecutively as 5.1, 

5.2, 5.3 and so on. The subsections in Section 5.3 are numbered consecutively 

as 5.3.1, 5.3.2, . . . . Similarly, mathematical expressions in Chapter 5, such as 

equations, inequalities, and conditions, will be numbered consecutively as (5.1), 

(5.2), (5.3), . . . . Figures and tables in that chapter are numbered consecutively 

as Fig. 5.1, Fig. 5.2, . • • and Table 5.1，Table 5.2, . . . . Also, theorems in Chapter 

5 are numbered consecutively as Theorem 5.1, Theorem 5.2, . . . . The same num-

bering scheme is used for lemmas, corollaries, definitions, remarks, assumptions, 

algorithms, and examples. 

We provide clarification of some frequently-used terms in this thesis. The 

terms “control”, "policy", "planning", and "decision" are used interchangeably. 

The terms "surplus", "inventory/shortage", and "inventory/backlog" are used in-

terchangeably. The terms "dynamic programming equation", "Hamilton-Jacobi-

Bellman equation", and "HJB equation" are used interchangeably. 

We make use of the following notation in this thesis: 
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2+ : = max{z ,0 } , for any real number ^; 

z_ : = m a x { - z , 0}, for any real number 2：; 

(z i , . . . , zn)| : = ki| + ——h kn|, for any vector {z i , - - - , zn) with 

any positive integer n] 

A' : the transpose of a vector or matrix A; 

B^ : the complement of a set B; 

Bi n B2 : the intersection of sets Bi and B2] 

Bi U B2 : the union of sets Bi and B2； 

C^[A) : set of continuously differentiable functions defined 

on a set A; 

Co, Ko : positive constants required in definition of the cost 

function; 

C, K, Ci, Ki, i — 1 ,2 , . . . : positive constants required in the analysis; 

XB : the indicator function of a set B; 

E^ : the expectation of a random variable ;̂ 

1̂  : the n-identity matrix ； 

J , J°, J^,. • • : cost functions ； 
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0{y) : a variable such that sup^ P ( " ) l / M < ⑴； 

P ( A ) : the probability of any event A; 

R^ : n-dimensional Euclidean space ； 

• ： indicator of the end of a proof. 



Chapter 1 

Introduction 

1.1 Manufacturing Systems: An Overview 

Most manufacturing firms are large, complex systems characterized by several de-

cision subsystems, such as finance，personnel, marketing, and operations. They 

may have a number of plants and warehouses and produce a large number of dif-

ferent products using a wide variety of machines in tandem or a flowshop config-

uration. In such manufacturing systems, raw parts are fed into the first machine, 

get processed sequentially from one machine to the next, and eventually come out 

as finished parts from the last machine. Moreover, these systems are subjected 

to various discrete events such as machine failures and repairs, construction of 

new facilities, purchasing new equipment, hiring and layoff of workers, new prod-

1 
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uct introductions, etc. These events could be deterministic and/or stochastic. 

Management must recognize and react to these events. 

Typically, the managers of a manufacturing firm make production plans for 

finished products by considering forecasts of demand, sales, raw material avail-

ability, inventory levels, and plant (or machines) capacity. Frequently, they use 

Materials Requirements Planning or MRP (cf. Orlicky [36]). From the result-

ing high level plan, the requirements for the components that go into the final 

products can be determined. The various departments that are responsible for 

the manufacture of the components schedule their activities so as to meet the 

requirements dictated by the master production and the materials requirements 

plans (cf. Halevi [24] and Hitomi [27]). Unfortunately, MRP does not account 

for the finite (and varying) capacity of a manufacturing system. 

The manufacturing systems under consideration in this thesis are the stochas-

tic systems with machines in tandem (also called flowshops). The machines are 

unreliable, namely, they are subject to breakdowns and repairs (cf. Kimemia 

and Gershwin [32] and Akella and Kumar [2]). One of the characterizing fea-

tures of a flowshop is that inventory levels of semi-processed parts in buffers 

between any two machines, known as internal buffers, must be nonnegative, and 

the sizes of both internal and external buffers are practically finite. This feature, 

together with the fact that machines are unreliable, makes the optimal produc-
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tion planning in a flowshop an extremely difficult problem, both theoretically and 

computationally. 

1.2 Previous Research 

Beginning with Thompson and Sethi [58], Sethi and Thompson [40] and Kimemia 

and Gershwin [32], there has been a substantial interest in analyzing production 

planning problems under uncertainty as continuous-time stochastic optimal con-

trol problems with an objective of minimizing costs of inventory/shortages and 

of production over a finite or infinite horizon. While Sethi and Thompson [40 

formulated uncertainty in demand as a diffusion process, Kimemia and Gershwin 

modelled production capacity as a finite state Markov Process. Since then, a 

number of authors such as Bensoussan et al. [6], Akella and Kumar [2], Fleming, 

Sethi and Soner [13], Haurie and van Delft [25], Sethi et al. [39], Ghosh, Aro-

postathis and Markus [22], and Lou, Sethi and Zhang [34], have extended one or 

the other or both. 

With the exception of Akella and Kumar [2] (see also Bielecki and Kumar 

'7] and Sharifinia [51]), who explicitly solved the infinite horizon problem of a 

manufacturing system consisting of a single failure-prone machine with two states: 

up and down, and with a simple discounted cost structure, this line of research has 

resulted in existence and partial characterization of optimal production policies. 
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Indeed, it is by now well known that computation of optimal solutions is extreincly 

difficult except in simple cases. 

The recognition of the complexity of the production planning problems in 

stochastic manufacturing systems has resulted in various attempts to obtain sub-

optimal or near-optimal controls. We shall mention some of these efforts. Gersh-

win, Akella and Choong [20] proposed a heuristic approximation of the value 

function of the problem in order to obtain near-optimal controls. Cararnanis and 

Sharifnia [11] utilize a capacity set modification, based on the work of Kimemia 

and Gershwin [32] and Sharifnia [51], in order to design near-optimal controllers. 

Ho and Cao [28] develop perturbation analysis to obtain consistent gradient es-

timates based on a single simulation run. Caramanis and Liberopoulos [10] use 

perturbation analysis [28] to obtain approximate solution of the dynamic pro-

gramming equation for the value function. Yan, Zhou and Yin [61] use pertur-

bation analysis [28] and stochastic approximation to obtain optimal number of 

Kanbans in a two-machine flowshop. Van Ryzin, Lou and Gershwin [59], Lou and 

Van Ryzin [35], and Bai and Gershwin [4] provide an approximation of optirnaI 

feedback controls in the case of manufacturing systems consisting of two or three 

machines in tandem. 

Of particular importance is the so-called hierarchical controls approach based 

on the reduction of a given complex problem into simpler approximate problems 
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or subproblems and to construct a satisfactory solution for the given problem from 

the solutions of the simpler problems. Moreover, in cases with stochastic systems, 

in which fluctuation rates or frequencies of some processes are much faster than 

the frequencies associated with other processes, the hierarchical approach provides 

us with solutions that are asymptotically optimal as the frequencies of the faster 

processes tend to become infinitely large. The approach is used by Gershwin [18], 

Lehoczky et al. [33], Sharifnia, Caramanis and Gershwin [52], Sethi, Zhang and 

Zhou [47, 45], Soner [55], Sethi and Zhang [42, 43], and Sethi and Zhou [48, 49, 50], 

to name a few; see also Sethi and Zhang [44] for a recent book on the topic. 

Furthermore, Gershwin, Caramanis and Murray [21] and Samaratunga, Sethi 

and Zhou [38] have reported some simulation experience with the hierarchical 

approach, while Srivatsan, Bai and Gershwin [57] have looked into its application 

to semiconductor manufacturing. 

1.3 Motivation 

In the previous research on hierarchical production planning [45, 47, 48] for pro-

duction planning problems in stochastic manufacturing systems, it is assumed 

that the sizes of internal and external buffers are infinite, which is a reasonable 

assumption only when the buffers have very large spaces so that the expected 

inventory levels will never exceed the sizes of respective buffers. 
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Unfortunately, this assumption is hardly reasonable in real manufacturing sys-

tems due to obvious reasons. Recently, Sethi, Zhang, and Zhou [46] augmented 

their method of lifting and modification (developed in [45]) by another special 

technique called "squeezing" in order to construct asymptotic optimal open-loop 

controls for a two-machine flowshop with only the internal buffer being upper 

bounded. Practically, however, the managers of manufacturing firms must also 

take the upper bound of the external buffer (such as warehouses) into considera-

tion, especially in the situation of scarce space and/or high rent. Indeed, produc-

tion planning problems for stochastic manufacturing systems with finite buffers 

were cited as outstanding open problems by the previous research [46, 48, 44 . 

One of the main purposes of this thesis is to study hierarchical open-loop 

production planning for two-machine flowshops with both internal and exter-

nal buffers being of finite size and with general production costs and inven-

tory /backlog costs. It is worth indicating that these two-machine flowshops are 

relatively simple manufacturing systems and are, at the same time, sufficiently 

rich for possible applications. This is because the state (inventory) constraint 

represents a typical complexity present in systems with machines in tandem. A 

major difficulty in this case is proving the Lipschitz continuity of the value func-

tions for both the original (stochastic) problem and the limiting (deterministic) 

problem, which plays an essential role in the hierarchical analysis. It should be 
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noted that in [45, 46], the constructive proof of the Lipschitz property needs only 

to take care of the constraints on internal buffer without worrying about the ex-

ternal buffer. The proof does not go through in our case. To handle ihe probleiri, 

we shall in this thesis introduce and prove some weak-Lipschitz property, which 

is weaker than Lipschitz continuity but sufficient for subsequent analysis. 

Another major difficulty is in constructing asymptotic optimal controls and 

obtaining error estimates. Owing to the upper bound constraints on both bufFers, 

the lifting, the squeezing and modification method in [46] does rio longer work. 

The reason is that lifting and squeezing the internal buffer will violate the up-

per bound constraint on the external buffer. In this thesis, we develop a "con-

straint domain approximation" method to overcome the difficulty and to obtain 

the asymptotic optimal controls. As in [45, 46], we shall give the error estimate 

of the constructed asymptotic controls. 

Note that the open-loop policy does not react to the current inventory/backlog 

state, whereas the feedback policy does. Moreover, basically only open-loop con-

trols were constructed in [45，47, 48] which were shown to be asymptotic optimal. 

Open-loop controls are of theoretical importance in justifying the hierarchical 

control approach. While asymptotically optimal, the constructed open-loop con-

trols are not expected to perform well unless the rate of change in machine states 

is unrealistically large. What is required therefore is a construction of asyrnp-
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totic optimal feedback controls. Another main purpose of this thesis is to study 

hierarchical feedback production planning for the two-ma.chine flowshops with fi-

nite buffers. Once again, the idea is to use the hierarchical approach to replace 

the stochastic problem by a deterministic problem. We first solve explicitly the 

deterministic problem by virtue of "weak-Lipschitz" and "constraint domain ap-

proximation" which we developed. Then, based on the explicit characterization 

of the optimal controls for deterministic problem, a suitable feedback control for 

the stochastic flowshops, analytically constructed, is proved to be asymptotically 

optimal with respect to the rate of change in machine states. 

Finally, we shall compare the performance of our constructed policy, referred 

to as Hierarchical Control policy, to a stochastic extension of Kanhan Control 

policy developed in Sethi et al. [41] and Two Boundary Control policy developed 

in van Ryzin, Lou and Gershwin [59] and Lou and Van Ryzin [35]. It will be 

shown that hierarchical controls perform better or no worse than Kanban controls. 

The costs of hierarchical controls and two-boundary controls are not significantly 

different, although the former is a much simpler policy than the latter. 

1.4 Outline of the Thesis 

The plan of this thesis is as follows: 

In the next chapter, we formulate the deterministic and stochastic production 
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planning problems for two-machine flowshops respectively. We review the concept 

of Markov chain and state some lemmas which will be used later on. 

In Chapter 3, we consider the open-loop production planning problem for 

the stochastic flowshops. Since the sizes of both internal and external buffers 

are practically finite, the problem is one with state constraints. A deterministic 

limiting problem in which the stochastic machines capacities are replaced by their 

mean capacities is considered instead. "Weak-Lipschitz" property of the value 

functions for both original and limiting problems is introduced and proved, and a 

"constraint domain approximation" approach is developed to show that the value 

function of the original problem converges to that of the limiting problem as the 

rate of change in machines' states approaches infinity. Production policies for 

the original problem are explicitly constructed from near-optimal policies of the 

limiting problem in a way which guarantees their asymptotic optimality, and the 

error estimate for the constructed policies is obtained. Algorithms of constructing 

these polices are presented. 

In this thesis, we would like to eventually construct optimal feedback controls 

for stochastic two-machine flowshops with machines subject to random break-

downs and repairs. As the problem is extremely difficult to solve, it can be 

approximated by a deterministic problem in which the stochastic machines' ca-

pacities are replaced by their average capacities when the rates of machine failures 
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and repairs become large. Therefore, in Chapter 4，we first construct explicitly 

optimal feedback controls for the deterministic problem with both internal and 

external buffers being finite. 

In Chapter 5, we consider the feedback production planning for the stochas-

tic flowshops. Based on the explicit characterization of optimal controls for the 

deterministic problem in Chapter 4, a suitable feedback control for the stochas-

tic flowshops is analytically constructed, which is proved to be asymptotically 

optimal with respect to the rate of change in machine states. 

In Chapter 6, we report numerical computations of hierarchical controls and 

compare the performance of these controls with heuristic methods known as Kan-

ban controls and two-boundary controls. Finally, we conclude this thesis and give 

some future research directions in Chapter 7. 



Chapter 2 

Preliminaries 

2.1 Problem Formulation: Deterministic Pro-

duction Planning 

In this chapter, we first consider a deterministic dynamic two-machine fiowshop 

or a deterministic manufacturing system consisting of two machines Mi and M2 

in tandem as shown in Fig. 2.1. We assume that the machines Mi and M2 can 

produce mostly a! and «2 per time unit, respectively. Then the machines Mi and 

M2 have maximum production capacities «1 and a2, respectively. 

We use wi(t) and W2(t), t > 0, to denote the production rates on the first 

and the second machine, respectively. We denote the inventory level in the exit 

buffer of Mi (i.e., the internal buffer) as Xi{t) > 0 and the surplus level of the 

11 
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^1 ^2 
- ^ i H Ml h - Q ^ 从 h " 0 ^ 

«1 «2 

Figure 2.1: A deterministic manufacturing system with two machines in tandem 

finished product as X2(t). A positive surplus means inventory and a negative 

surplus means shortage. The rate of demand d facing the system is assumed to 

be a constant. 

Let bi and 62 denote the sizes of the internal buffer and the external buffer, 

respectively. Then, if the buffers are full, we can not put any more in there. 

Therefore, the state constraint that 0 < Xi{t) < 6! and X2{t) < 62 for all t > 0 

must be satisfied. Let S = [0,6i] x ( — 00,62] C R^ denote the (state) constraint 

domain. Then the system can be written as follows: 
‘ 

Xl{t) = Wi{t) 一 W2{t), 3:i(O) Xi 
< ， X = [xi,x2) G S, (2.1) 

X2{t) = W2{i) 一 d, a:2(0) â 2 
\ 

where the input rate to each of the machines is subject to the capacity of the 
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respective machine, namely, 

0 < w,(t) < a,, t > 0 , i = l , 2 . (2.2) 

Here and elsewhere we use boldface letters to stand for vectors (e.g., x = (x1,x2), 

w 二（w;i,tt*2), etc.). 

Now we can define the set of admissible controls w(.) = (w;1(.),w;2(.)) as 

follows. 

Definition 2.1. A control (policy) w(.) = (iOi(-), W2(')) is admissible with respect 

to the initial state value x = {x1,x2) G S if (i) w(t) is measurable in t, (ii) 

0 < Wi{t) < CLi for t > 0 and i = 1,2, and (iii) the corresponding state 

x ( t ) 二（a:1(f),:r2OO) e S for all t > 0. (2.3) 

Definition 2.2. A function w = w(x) : S ~^ R^ is an admissible feedback control 

(policy) if for any given initial x = {x1,x2) G S, equations 

‘ 

Xi{t) = w;i(x(t)) 一 W2{x{t)), Xi(0) 二 Xi 
^ 5 

X2{t) = w;2(x(t)) - d, X2{O) = X2 

have a unique solution x ( - )， a n d w(x(.)) is admissible with respect to x. 
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Our problem is to find an admissible control w(. ) that minimizes the cost 

function 

J(x , w ( . ) ) = 厂 e-ptG[x(t),w[t))dt, (2.4) 
Jo 

where C(x, w) is the runnning cost of having surplus x and production rate w and 

p > 0 is the discount rate. To make it more precisely, considering the continuous 

compounding (discount) interest rate p > 0, the present-value for unit-cost at 

time t is e_ " . Therefore, the right hand side of (2.4) is the total sum of present 

values of the runnning costs over the long-run time horizon. 

For a feedback control w, on the other hand, we shall write the cost J(x, w(x( . ) ) ) 

simply as J (x ,w ) , where x(.) is the corresponding trajectory under w with the 

initial state x. 

We use ^ ( x ) to denote the set of admissible controls with respect to the initial 

state X G S, and i;(x) to denote the minimal cost, i.e., 

v M = inf J(x ,w(- ) ) . (2.5) 
w ( . ) e ^ x ) 
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We use P to denote our deterministic control problem, i.e., 
f 

minimize J (x ,w( - ) ) = /o^"e"^^G(x(t),w(t))c^t 
( 

Xi{t) = w;i(Z) - W2{t), Xi(0) 二 Xi, 

V : subject to x2(O = w2{t) - d, x2(O) = X2, 

w(.) G i ( x ) 

value function t>(x) 二 infw(.)eJ(x) J(x, w(-)). 
� 

In order to formulate the stochastic production planning problems, we have 

to review the finite state Markov chain. 

2.2 Markov Chain 

Let k(') = {k(t) : t > 0} denote a stochastic process defined on a standard 

probability space (H, jF, P) with values in M = {ki, • • • , k^}. Then k(-) = {k ( t ) : 

t > 0} is a Markov chain if 

P{k{t + 5) 二 k\k{r) : r < s) = P(k(t + s) = k|k(s)), (2.6) 

for all s,t > 0 and ki G M. We shall also write k{-) as k{t),t > 0, or simply k{t) 

if there is no confusion. 

Equation (2.6) may be interpreted as stating that, for a Markov chain, the 
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conditional distribution of any future state k(t^s), given the past states k(r),r < 

s and the present state k{s), is independent of the past states and depends only 

on the present state. This is called the Markovian property. Let us assume 

that the transition probability P[k[t + s) = kj\k{s) = k) is stationary, i.e., it is 

independent of 5. This allows us to introduce the notation Pij{t) = P(k{t + s)= 

kj\k{s) = ki). The value Pij{-) represents the probability that the process will, 

when in state ki, next make a transition into state kj. Then, 
( 

P^,(t) > Q,k,k] e M 

j : ] : ^ > l , k e M 
< 

p^i][t + s) = jyuPu[s)Pi^),t,s > Q,k,kj e M 

(The Chapman-Kolmogorov relation). 
V 

Let P{t) denote the n x n matrix {Pij{t)) of stationary transition probabilities. 

We shall refer to P{t) as the transition matrix of Markov chain k{-). We postulate 

that 

l imP(0 = In, t^o \ ‘ 

where 1^ denotes the n x n identity matrix. 

Let Q denote an n x n matrix such that Q = ( ¾ ) with qij > 0 for j + i and 

q-- = -J2j^qij. Consider a finite state Markov chain A:(-) governed by Q (cf. 

I 
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Eithier and Kurtz [12]), i.e., 

W ( - ) ( 0 = E % ' W ) - # ' ) ) , 
ji"i 

for any function 小 on M. The matrix Q is called the infinitesimal generator (or 

simply generator) of k{-). 

The transition matrix P(t) is determined uniquely by the generator Q accord-

ing to the following differential equation (cf. Karlin and Taylor [31]): 

P(t) = P(t)Q = QP(t),P(Q) = In. 

Thus, 

l i n w ^ 4 ^ , i f j = z 
Qij = 

lim,^o+ ^ , i f j V ^ " 
\ 

can be interpreted as the transition rate from state ki to state kj when i + j , and 

as the (negative of the ) transition rate out of state ki when j = i. 

An n X n matrix Q is said to be (strongly) irreducible, or simply irreducible, 

if the equations 
n 

vQ ^ 0 and Y , u , = 1 (2.7) 
i=i 

have a unique solution v — ("i, • • •, "n) and v > 0. 
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Remark 2.1. An n x n matrix Q is said to be weakly irreducible, if the equations 

n 

i/Q = 0 and Y y i = 1 (2.8) 
Z = 1 

have a unique solution v 二 ( " i , . . •,“几）and v > 0 . 

The solution v to equations (2.7) will be termed an equilibrium distribution. 

2.3 Problem Formulation: Stochastic Produc-

tion Planning 

In this thesis, we formulate the stochastic production planning for manufacturing 

system with two machines in tandem as shown in Fig. 2.2. The machines are 

unreliable, and they may breakdown at random times. When they are down, they 

will be brought to a repairer for repairing. The repairing time is also random. 

Each machine has a finite number of states, resulting in a finite state machine 

capacity process denoted by k(e,t) = {ki{e, t), k2[e, t)), defined on a standard 

probability space (0,JF, P), with values in M = {k^, • • •, k^} for some given 

integer p > 1, where k̂  二 (¾, k2) with kj denoting the capacity of the i-th 

machine in state j , j — 1,2, • • • ,p and i = 1,2, and z is a parameter. The 

precise meaning of e will be given later on. The rate of demand d facing the 
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^1 ^2 

" " " ^ Mi ~ ^ < ^ ^ " " ^ o ^ 

ki(e,t) A;2(M) 

Figure 2.2: A stochastic manufacturing system with two machines in tandem 

system is assumed to be a constant. We use ui(t) and U2(t) (controls in this 

problem) to denote the input production rates to the first and the second machine, 

respectively. As in Section 2.1, we denote the inventory level ofthe internal buffer 

as xi(t) and the surplus level of the external buffer as X2(t). 

We also use bi and 62 to denote the sizes of the internal buffer and the ex-

ternal buffer, respectively, and S = [0, bi] x (—00, 62] C B? to denote the (state) 

I constraint domain. Then the system can be written as follows: 

• 
Xi{t) = Ui{t) 一 U2(t), Xi{0) = Xi 

， X = {x1,x2) e S, (2.9) 

x2{t) — u2{f) 一 d, â 2(0) = X2 

where the input rate to each of the machines is subject to the capacity of the 
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respective machine, namely, 

0 < u,(t) < k,(e,t), for all t > 0’ i = 1,2. (2.10) 

Remark 2.2. We did not impose a lower bound on the external buffer as it 

would not be realistic. In fact, if the surplus level reached the lower bound (if we 

did impose one) and M2 is brokendown, then the controller could do nothing to 

prevent the violation of the lower bound constraint. 

Remark 2.3. In this thesis, the capacity process k{e,t) = k(|) G M is assumed 

to be a finite state Markov chain, where k(t) is a given Markov chain with an 

irreducible generator Q = (%•) independent of £ and min,j{|g,j| : Qij + 0} = 1. 

Then, k(s,t) has the generator Q^ 二 e~^Q. 

Here, we use the normalized generator Q = (%•) (i.e., mmij{\qij\ : qij + 0 } = 

1) in order to uniquely give e. In other words, z is a small parameter representing 

the reciprocal of the fluctuation rate of the machines' capacities. 

We use x(t) = (xi(t), X2{t)) and u{t) = {ui{t), U2{t)) to denote the state 

and the control processes of the problem, respectively. We define now the set of 

admissible controls u(.). 

Definition 2.3. We say that a control u(-) = (wi(.),w2(.)) is admissible with 

respect to the initial state x = {x1^x2) G S if: (i) u(.) is adapted to T^ 二 
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cr{k(e,s) : 0 < 5 < t} , the o--algebra generated by the machine capacity process 

up to time t, (ii) 0 < Ui{t) < k(e,t) for t > 0 and % 二 1,2，and (iii) the 

corresponding state 

x(t) = (a;1(t),x2(t)) G S for all t > 0. (2.11) 

In words, a production plan is admissible if (i) it depends only on the past 

realizations of the random capacity process, (ii) the input rates are nonnegative 

and satisfy the production capacity constraints at any time, and (iii) the corre-

sponding inventory level in the internal buffer dose not fall below zero or exceed 

the buffer size, and the surplus level does not exceed the external buffer size. 

Definition 2.4. We say that a function u = S x M ^ R^ is an admissible 

feedback control if (i) for any given initial x = (xi, X2) G S, the following equation 

has a unique solution x(-): 
‘ 

ii{t) = ui(x(t), k(£, t)) - W2(x(t),k(e, t)), xi{0) = xi 
< 5 

x2{t) = W2(x(t), k{e, t)) — d, a:2(O) = X2 

and (ii) u(x(.) ,k(e, •)) is admissible with respect to x. 

The production planning problem is to find an admissible control u(.) that 
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minimizes the cost function: 

J^(x, k, u(.)) = E r e-''G{^{t), u[t))dt, (2.12) 
0̂ 

where E denotes the expectation, G(x, u) is the runnning cost of having surplus 

X and production rate u, k = {h,k2) is the initial value of k{e,t), and p > 0 is 

the given discount rate. 

Let ^^(x, k) denote the set of admissible controls with respect to x(0) 二 x G 

S, k(e,0) = k, and v^(x, k), the value function, denote the minimal expected 

cost, i.e., 

v'(x,k) = inf J "(x ,k ,u( . ) ) . (2.13) 
u(-)G^^(x,k) 

We use P^ to denote our control problem, i.e., 
‘ 

minimize J^(x,k,u(-)) = Efo^e-^'G(x(t),u(t))dt ‘ 

ii(t) 二 ui(t) - u2(t), xi(0) = xi, 

V ' : subject to i ^ { i ) ^ u 2 { t ) - d , x2{O) = X2, (2.14) 

u(-) G ̂ "(x,k), xGS' 
V 

value function i;^(x, k) 二 infu(.)ej"x,k) ? ( x , k, u(-)). 
\ 

Example 2.1. A manufacturing company is contemplating the acquisition of 

a transfer line to make desktop widgets. The making of widgets is a two-step 

I 
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process. It requires rough drilling and finished reaming. This system is a two-

machine flowshop. Machine 1 is a rough drilling machine, and Machine 2 is a 

final reaming machine. The internal buffer stores the drilled widgets, and the 

external buffer stores the final reamed widgets. These two machines are subject 

to breakdown and repair randomly. The drilling machine has a mean time of 

40 working hours before failure and a mean time of 2 hours for repairing. The 

reaming machine has a mean time of 50 working hours and a mean time of 2 

hours for repairing. Therefore, this is a stochastic two-machine flowshop. 

Example 2.2. A canned food factory has two workshops: the first one is to 

process the food and the second one is to can the food. This system can also 

be regarded as a two-machine flowshop. Machine 1 is the first workshop, and 

Machine 2 is the second workshop. (Note, here the machines are not physical 

ones; rather, they are workshops performing different kinds of jobs). The internal 

buffer is a cold storage which is used to store the processed food. The external 
I 

buffer is a warehouse which is used to store the canned food. 

Before solving the problem V^, we have to review some relevant results which 

will be used later on. 

i 
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2.4 Some Lemmas 

In this section, we consider a Markov chain k(s,t) ,t > 0, with generator Q^ 二 

£-iQ, where 5 is a small parameter, Q = {qij) is a matrix such that qij > 0 if 

j + i, qu = - J2j^i %•, and minij{|% | : q^j + 0} 二 1. Moreover, Q is irreducible. 

Let V — ("1，•.., iŷ ) > 0 denote the equilibrium distribution of Q. 

Now we state the following lemmas concerning the asymptotic property of the 

Markov chain k(e, t) for small e which will be used later on. 

Lemma 2.1. There exist positive constants C and K such that for sufficiently 

small 6, 

lP{k{e,t) = k̂ ") — u'\ < C{e + e - K f � f o r all t > 0, j = 1，2,.. • ,p. 

Proof . See [42] for the proof. • , 

L e m m a 2.2. There exists a positive constant C such that for sufficiently small 

e and for any bounded deterministic measurable process (3(.)， 

E\ /'(x{k(e,.)=k.} - iy^ms)dsl' < Cs(l + t'), 
J 0 

for all t > 0，j = 1,2,. •. ,p. 
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Proof. The proof can be found in [47]. • 

Lemma 2.3. For any S G (0, |)； there exist positive constants C and K such that 

for any bounded deterministic measurable process /?(•)； 

P(| r ( X { k ( e , ^ 0 - " " ) 则 " — > 一 / 2 ’ < C7(e—A�-i(i+” + e - " i , i + 0 - 3 ) , 
J 0 

for all t > 0，j = 1,2,...，p, and sufficiently small e. 

Proof. See [45] for the proof. • 

Corollary 2.1. Let r be a bounded J^^ — stopping time with r < a, almost surely. 

Then 

P{\ /T(X{k(e,#}-"”“⑷圳 > 内 < 印 - ' � � — 1 + e-K^(i+a)-3), 
J 0 

for all t > 0, j 二 l , 2 , . . . , p . 

Proof. See [50] for the proof. • 



Chapter 3 

Open-Loop Production Planning 

in Stochastic Flowshops 

3.1 Introduction 

This chapter is concerned with open-loop production planning in manufacturing 
i 

systems with two tandem unreliable machines. Since the sizes of both internal and 

external buffers are practically finite, the problem is one with state constraints. 

Using hierarchical control approach, Lehoczky et al. [33] studied a production 

planning problem for a system consisting of parallel identical machines. Sethi, 

Zhang, and Zhou [47] applied a probabilistic approach to construct a limiting 

problem which is different in form to that of [33], which enabled them to prove 

26 
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the conjecture made by Gershwin [18] and Lehoczky et al. [33] for the special 

case of separable convex production and inventory costs. 

Note that in [33, 47], the control problems in manufacturing systems with 

tandem machines, in which state constraints are inherent, are not addressed. 

Furthermore, the method of construction of asymptotic optimal controls devel-

oped there may yield inadmissible controls when applied to systems with state 

constraints. To overcome the difficulty, Sethi, Zhang, and Zhou [45] developed a 

method of “lifting” and "modification" to construct admissible asymptotic opti-

mal production policies for an A^-machine flowshop from a near-optimal policy for 

the corresponding limiting problem. Nevertheless, they assumed that the sizes 

of internal and external buffers are infinite. Recently, Sethi, Zhang, and Zhou 

46] augmented the method of lifting and modification by another special tech-

nique called "squeezing" in order to construct asymptotic optimal controls for a 

two-machine flowshop with only the internal buffer being upper bounded. Prac-
I 

tically, however, the managers of manufacturing firms must also take the upper 

bound of the external buffer (such as warehouses) into consideration, especially 

in the situation of scarce space and/or high rent. The purpose of this chapter 

is to study hierarchical production planning for two-machine flowshops with both 

internal and external bufFers being of finite size. One of the major difficulties in 

this case is proving the Lipschitz continuity of the value functions for both the 
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original problem and the limiting problem, which plays an essential role in the 

hierarchical analysis. It should be noted that in [45, 46], the constructive proof of 

the Lipschitz property needs only to take care of the constraints on internal buffer 

without worrying about the external buffer. The proof does not go through in our 

case. To handle the problem, we shall in this chapter introduce and prove some 

weak-Lipschitz property, which is weaker than Lipschitz continuity but sufficient , 
t, !• 

for subsequent analysis. ^ 

Another major difficulty is in constructing asymptotic optimal controls and 

obtaining error estimates. Owing to the upper bound constraints on both buffers, 

the lifting, squeezing and modification method in [46] does no longer work. The 

reason is that lifting and squeezing the internal buffer will violate the upper bound 

constraint on the external buffer. In this chapter, a “constraint domain approxi-

mation" method is developed to overcome the difficulty. The basic idea behind it 

is: We approximate the (state) constraint domain by a subset of it whose bound-
< 

ary is distinct from but close enough to that of the original constraint domain. 

Then we consider two situations: (i) For any initial point in this subset, we con-

struct a control as in [47] from a near-optimal control of the limiting problem. The 

constructed control may violate the state constraints but the average cumulative 

duration in which the violation takes place is very small since the initial point 

is sufficiently away from the boundary of the constraint domain. Therefore, we 
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can slightly modify this control to be an admissible one. (ii) For any initial point 

in the band outside this approximating subset, we can use the weak-Lipschitz 

property to construct an admissible control. That the final constructed controls 

in both situations are asymptotic optimal for the original problem can be shown 

from the facts that the amount of modification is small and the value functions are 

weak-Lipschitz. As in [45, 46], the order of the error estimate of the constructed , 
,I 

asymptotic controls is 6^^^~^ for any S > 0. : 

The plan of the chapter is as follows. In the next section, we derive the 

limiting problem from the stochastic production planning problem formulated 

in Chapter 2 with a separable inventory and production cost. Section 3.3 is 

devoted to the proof of the weak-Lipschitz continuity of the value functions. In 

Section 4.4, we introduce a subset approximating the state constraint domain. In 
I 

Section 3.5 and Section 3.6, we describe the methods of constructing asymptotic 

optimal open-loop controls and prove the asymptotic optimality for the original 
I 

problem for cases where the initial state is in and out ofthe approximating subset, 

respectively. Finally, Section 3.7 concludes the chapter. 

3.2 Limiting Problem 

In this chapter, we consider the stochastic production planning problem formu-

lated in Section 2.3 with the running cost function G(x, u) being a separate cost 
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function, i.e., 

G(x,u) = " (x) + c(u), (3.1) 

where /i(x) is the inventory/backlog cost, c(u) is the production cost. 

We make the following assumptions on the functions h and c and the random 

process k(e, t) throughout this chapter. 

Assumption 3.1. h and c are convex functions. For all x ,x ' G S and u,u', 

there exist constants Co and K � > 1 such that 

0 < / i ( x ) < C o ( l + |x|̂ ô), 

"(X) - "(x')| < Co(l + | x | K � + |x'|K�)|x — x'|, and 

|c(u)-c(uO| < Co|u-uq. 

Assumption 3.2. Let M = {k^, . . •, k^} for some given integer p > 1, where 

k^ 二 (k{, kl) with kj denoting the capacity of the z-th machine in state j , j 二 

1 , 2 , . . . ,p and i = 1,2. For each e > 0, the capacity process k(e, t) 二 k(|) G M is 

a finite state Markov chain, where k(t) is a given Markov chain with an irreducible 

generator Q 二 (%•) independent of e and m.inij{\qij\ : qij + 0} = 1. Then, k(e, i) 

has the generator Q^ — e~^Q. 

R e m a r k 3.1. Assumption 3.2 means that k(e,t) = k(|) is a fast changing 

process as e is sufficiently small. 
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Intuitively, as the rates of the machine breakdown and repair approach infinity, 

the problem V^ as formulated in Section 2.3, which is termed the original problem, 

can be approximated by a simpler problem called the limiting problem, in which 

the stochastic machine capacity process k{e,t) is replaced by its average value 

(cf. [45，46, 47, 48]). 

Let u — (z/i, • • •, iy^) > 0 denote the equilibrium distribution of Q. Note that -, 

by Assumption 3.2, i/ is the only positive solution of uQ = 0 and X ] “ " ) = 1. 丨 

To define the limiting problem, we consider the following class of deterministic 

controls. 

Definition 3.1. For x G S, let ^ ( x ) denote the set of the following deterministic 

measurable controls 

U(.) = (ui(.),.. •, u T ) ) =純 . ) ,说 ) ) , • • •, K( . ) , 4 ) ) ) 

. . '( 
such that 0 < uj{t) < kj for all t > 0, i = 1,2 and j = 1,2, • • • ,p, and the 

corresponding solutions x(.) = (xi(-), 2^2('))�f the following system 

ii{t) = ZU ^'u{{t)-j:%,^^ui{t), x,{0)=x,, 
< (3.2) 
^ i2{t) = ZU ^'ui{t) - d, X2{O) = X2 

satisfy x(t) E S for all t > 0. 
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Note that the control U(.) is defined on an enlarged control space. Each of 

its component vector u^{t) == (!/{⑴，！^⑴）represents an admissible control when 

the machine state is k^ 二 (kj, k2). 

The objective of this problem is to choose a control U(-) G ^ (x ) , that mini-

mizes 
p 

J(x, U(.)) = r e- ' ' [h(x(t) ) + ^ iy'c(u''(t))]dt. (3.3) , 
"0 j=i 丨' 

; j 

We use P to denote the above problem, and will regard this as our limiting 

problem. 
‘ 

minimize J(x, U(.)) = / � � e - " [ " ( x ( f ) ) + E?=i iy'c[u^{t))]dt 

x,{t) = E;i * m - n=i 〜軌 î(0) = î, 
V : subject to x2{t) 二 E?=i 1^'u2{i) — d, X2(O) = a;2, 

U(.) G ^ (x ) , x G 5 
\ 

value function t>(x) 二 infu(.)GJ(x) J(x, U(-)). 丨 

Example 3.1. Consider a 2-machine flowshop in which the original problem is 
, 

minimize J^(x,k,u(-)) = ES^e-^-^'[xi{t)^-2\x2[t)\]dt , 
^ ' • . i i ( t )3=Ui(t ) -U2(t ) , X,{0) = 1, 

subject to < 
i2{t) = u2{t)-O.5, X2{O) = 1. 

w 乂 

i 
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We assume that the system has 4 machines states: (1,1), (1,0), (0,1), and (0,0), 

where the state (1,0) signifies that the first machine is working and the second 

one is down, etc. We assume further that the breakdown rate and the repair rate 

are both 50 per year for each machine. This means that both up and down times 

of each machine have an average duration of 点 year (approximately one week). 

The associated generator Q of the capacity process is ‘ 

/ \ / \ 
-100 50 50 0 - 2 1 1 0 

50 -100 0 50 1 1 - 2 0 1 
Qc = 二 0 2 • 

50 0 -100 50 1 0 - 2 1 , 

0 50 50 -100 0 1 1 - 2 
\ / \ / 

Thus, the small parameter associated with the problem is z — 0.02. The corre-

sponding equilibrium distribution v = (0.25, 0.25, 0.25, 0.25). According to Defi-

nition 3.1, the controls for the limiting problem take the form 

u ( . ) = ( ( ^ 4 ( . ) X ( . ) ) > ? ( . ) , A . ) ) > ? ( . ) , ^ ^ M . ) ) , ( t 4 ( . ) , 4 - ) ) ) , 

With 

0 < u{{t), ul{t), ul{t), ul{t) < 1’ ul{t) = ul{t) = u{{t) = ul{t) = 0. 
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Therefore, the limiting problem P is 
‘ 

minimize J (x ,U( - ) ) = i T e-^-''[xi{t) + 2\x2{t)\]dt 
y 

V ： Xi{t) = 0.25(z/j:(O + uj(t)) 一 0.25(ul(t) + u|(t)), xi(0) = 1， 

subject to < 
i2(t) = 0.25(ul(t) + u|(t)) - 0 .5 , x2(O) = 1. 

\ \ 

The above P is a deterministic problem. — 

3.3 Weak-Lipschitz Continuity 

The Lipschitz continuity of the value functions of both the original and limit-

ing problems, which played a critical role in proving the asymptotic optimality 

of hierarchical controls in the preceding research [45, 46, 48], does not follow 

automatically in tandem machine systems due to the state constraints. It was 

proved by some rather specific approaches in [45, 46, 48]. These approaches fail, 
ri 

however, for the present case where there are upper bounds on the buffers. On 

the other hand, some Holder estimates of the value functions were obtained for 

deterministic problem with state constraints (cf. [54, 9]), but it is not clear how 

to adapt the method to stochastic case. To overcome the difficulty, we do not 

insist on deriving Lipschitz continuity in this chapter; instead, we develop what 

we call weak-Lipschitz property which is weaker than Lipschitz but is sufficient 
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for serving the purpose of deriving asymptotic optimality later on. 

Theorem 3.1. There exists a constant C (independent of e) such that for all 

X 二 (a:^i,a:2) G S, X' = (x1 ,x2) G S, the following weak-Lipschitz properties hold: 

(i) I f x ' 2 < X2, then 

v % x ' , k ) - v ' { ^ , k ) < C^(l + |x|Ko + | x f o ) | x - x ' 
to.Ni 

and i;(xO - ^(x) < C{1 + |x|Ko + |x'|^o)|x - x'|. 

(ii) I f x ' 2 < X2, x[ > xi and \x[ — Xi| > |x'2 — X2|; then 

v%^\ k) - ^;^(x, k) > - C ( 1 + |x|Ko + | x f o ) | x - x'| 

and ^;(x')-^>-CXl + |x|Ko + |x,|Ko)|x-x'. 

(iii) If x'2 < X2, x\ < Xi and Xi > \x[ — a;i| + |x2 — ^2|; then 

i;^(x',k) - v'{^,k) > - C { l + |x|Ko + |x'|Ko)|x — X' 
,t 

and v(x') - v(x) > - C { 1 + |x|Ko + |x'|^o)|x - x ' . 

Proof. We only show the first inequalities in (i),(ii) and (iii) respectively, the 

second being similar and, in fact, simpler. 

(i) For any rj > 0, let u(-) G ^^(x, k) be an "-optimal control, i.e., 

^^(x,k)>J^(x,k,u(.))-r/. 
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Note that u(.) g ^^(x^k) in general. We are to construct a control u'(.) G 

^^(x ' ,k) such that 

|x(t ) -x ' ( t )| < 3 | x - x ' | , (3.4) 

where x(.) and x'(.) are the state trajectories with initial states x and x' and the 

controls u(.) and u'(.), respectively. 
r' 

In what follows, we divide into two cases to carry out the analysis according 

to the positions of the initial Xi and x[. 

Case 1. x[ < xi and x'2 < x2. Let t^ > 0 be the stopping time given by the 

following: 
1 

t* := inf{t > 0 : f'[{kl{s) - ui{s)) + u2{s)]ds > |xi — x[\}. 
Jo 

We define a new control u'(.): 

‘ , 

(的(仏0)， i f t < t * 
u'(t) = K(t),^/^(t)) = <̂  . 

{u,{t),u2{t)), ift>^s 

It is not difficult to show from the definition of g and u'(.) that x'(t) G S and 
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(3.4) holds. Thus u,(.) G X"(x ' ,k) . Moreover, 

”狀 k ) — t;^(x, k ) < /狀 k , U ' ( . ) ) - J ^ ( x , k , U( . ) ) + TJ 

< E � e _ 1 M x , ( 0 ) - Mx(Z))| + |c(u'(t)) - c ( u ( 0 ) p + " . 
(3.5) 

Note that by Assumption 3.1 along with the fact that 
ĥ ki 

|k .» 

Wl{t)-U2{t)l < Ci, \u2{t)-z\ < Cu 

K{t)-u',{t)l<Ci, \u',{t)-z\<Cu 

for some constant Ci, we have 
i 

]h{^'{t)) — Mx(t))| < Co(l + |x'(0|Ko + |x(t)|K�)|x'(” - x(t)|, 

|x'(t)| < C i ( l + |x'i + t), and |x(^)| < C i ( l + |x| + t). 

It follows therefore that '' 

E r e-''lh{^'{t)) — h{^{t))ldt < C2{l + |x|Ko + |x'|Ko)|x - x'|, (3.6) 
Jo 

for some constant C2. 
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Furthermore, since u\t) = u(t) for t > t^, we have 

E J ^ e-P'lc{u'{t)) - c{u{t))ldt < CoEfo' e—’u'00 — u{t)\dt 

< CoEfo'[\kl{t) — i/i(Z)| + \u2[t)\]dt 
(3.7) 

=Co\xi - x\ 

< Co|x-x ' . 
，、(<! 

Combining (3.5), (3.6), and (3.7), we obtain 

t ;^(x ' ,k) -^^(x ,k) < C3(l + |x|Ko + |x'|Ko)|x-x'| + " , (3.8) 
I 

where C3 > 0 is a constant independent of rj. 

Case 2. x[ > Xi and X2 ^ ^2- Let t^ > 0 be the stopping time given by the 

following: 

tl := 'mf{t > 0 : / Ui{s)ds > \xi — Xj|}. 
Jo 

I 

We define a new control u^(-): 

, 
(0,u2(t)), i{t<ti 

n'[t) = {u'^{t),u'^{t))= . 

‘ [u^{t),u2{t)), 'iit>tl 

By an argument similar to that in Case 1, it is not difficult to show that u^(-) G 

^^(x^k) and (3.8) holds. 
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Since 77 is arbitrary, we conclude from (3.8) that 

^^(x',k) - ^;^(x,k) < C3{l + |x|K�+ |x'|KQ)|x-x'|. (3.9) 

(ii) For any r] > 0, let u'(.) G ^^(x', k) be an "-optimal control. Let t̂  > 0 be 

the stopping time given by the following: 
n ;U 
^ I 

rt 
tl := inf{t > 0 : / u'2[s)ds > \xi - x[\}. 

Jo 

We define a new control u(.): 
I 

‘ 

(wi(”，0), if t < tl 
U(t) = (Wi(Z),U2(^= . 

K(OX2CO), 'iit>t% 

We want to show that u(.) G ^^(x, k) and (3.4) holds. 
；/ 
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Under the conditions that X2 < X2, x[ > Xi, and \x[ - Xi\ > lx^ — Z2I’ we have 

f o r t < tl : xi{t) = xi + /0 u'As)ds > 0 , 

. xi{t) = x[{t) + {xi - x[) + /0' u'^{s)ds < x[{t) < 61, 

X2{t) = X2 - /0 dds < 62, 

xi — x\ < xi{t) — x[{t) < 0, and 
tt 1,1 

Xl - x[ < X2{t) - X2{t) < X2 - x'2] 

t* 

for t > t* : xi{t) = x[{t) + (a::i — x[) + /o^ U2i^)ds = x[{t), hence 

0 < Xi(t) < 61, and 
^* 

X2{t)=幼）+ {X2 — X'2) - /0' U'2{s)ds ‘ 

二 以力） + |工2 — ?2丨 一 k l _ $i l S ^2(O ^ i>2. 

Thus {x1{t)^x2{t)) G S and (3.4) holds. Moreover, we can easily show as in (i) 

that 

t ; ^ k ) - t;^(x,k) > -C(l + |x|Ko + |x'|Ko)|x-X'|. (3.10) , 

(iii) We choose an auxiliary initial state x = (x1,x2), where Xi = Xi — (|j;'i — 

ii| + 1̂ 2 — 2̂|) = ^1 — {^2 — x'2) and X2 — X2' It is easy to see by the assumptions 

that (xi, ^2) G S. 

To proceed, we first consider the difference of the two value functions with the 

initial states {x[,x'2) and (^1,^2), respectively. Because Xi < x\, X2 > x'2, and 
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^1 — x[\ = \x2 — x^, we obtain by (ii) that 

^;^(x',k)-i;^(x,k) > -C{1 + |^|K�+ |x'|Ko)|^-X'| 
� ) � ) - (3.11) 

> -C4{l + |x|Ko + |x'|Ko)|x — X'. 

Now we consider the difference of the two value functions with the initial 

states {x1^x2) and (^i, X2), respectively. Since X2 =冗2，we have by (i) f 
m 
卜 

W'!. 

v'(^,k) - i;^(x,k) > -C{l + |x|Ko + |x| ô)|x — x| 
_ (3.12) 
> - C 5 ( l + |x|Ko + |x'|Ko)|x - X ' . 

< 

Thus, by adding (3.11) and (3.12) up, we obtain 

v%^\ k) - v%^, k) > -C{1 + |x|K�+ |x'|Ko)|x — x'| (3.13) 

for some constant C. The proof is now complete. • 
.,•' 

3.4 Constraint Domain Approximation 

In this section, we shall introduce an appropriate subset Se of the state constraint 

domain S, with the distance between the boundaries of S^ and S being of order 

y/2-5. Here 8 is any given constant satisfying 0 < 8 < |. Consequently, Se 

approximates S from inside as £ approaches 0. 
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Let b := 2(6i +62 ) /min{61 ,62} and Se ：= [he^'^-^M- &" '—^ x ( - 0 0 , ¾ -

6e"24] . The following lemma is very important in the sequel, which says that 

starting from any point in Sê  there are near-optimal controls with error order 

gi/2-5 for both original and limiting problems so that the corresponding state 

trajectories will never reach the boundary of S and, what is more, the difference 

between the trajectories and the boundary is of order e ” ) - � r"! 
. . :i:j 

For convenience in exposition in the rest of the thesis, we use the convention i 

that the phrase "sufficiently small e" stands for “£ G (0,6o] for some £• > 0". 

Lemma 3.1. There exists a constant C (independent ofe) such that for any 
_ — ) 

X G Se, there is u(-) G ^^(x, k) (resp. U(.) G ^ ( x ) J satisfying 

(l) J^(x , k, u(.)) - z;^(x, k) < C{1 + |x|Ko + i)e"2-<^ 

(resp. J(x,tJ(-)) - v(x) < C{l + |x|Ko+i)£i/2-5, 

(ii) £"24 < x,{t) < W — e ” “ and X2{t) < 62 — 2e^'^-^ 

(resp. £1/2-<^ < xi{t) < 61 - £1/2-<^ and x2{t) < 62 — 2 e ” “ ) 
\ 

for sufficiently smalle, where {xi{-)^x2{-)) (resp. (^i(-), ^2(-))) is the state tra-

jectory of the original problem (resp. the limiting problem) with initial state x 

and the control u(-) (resp. U(-)J. 

Proof. We only prove the result in terms of the original problem, the other being 

similar. 
Take a = 1 - (2ei /2 -^ /min{6i ,h} . We have | < a < 1 for sufficiently small 
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6. Set yi = Xi/a, y2 = x2/a. Since 

abi = 6i-(26i5^/ '-^)/min{6i,62} > 61-[26:"2-<^(61+62)]/min{61,62} = b � b e ” [ \ 

we obtain 

0 < yi = xi|a < (61 一 6e;i/2-^/a < 61. 
卜丨 

By the same reason, y2 < � ’ which implies y = (y1,y2) G S. Hence, there exists 

u(-) G ^^(y,k) such that 

J l y , k , { i ( . ) ) - ^ ; # , k ) S e " 2 - 5 . (3.14) ‘ 

Let t3 > 0 be defined as follows: 

tl = mi{t > 0 : f\kl{s) — ui{s) + u2{s))ds > a_V/2-^}. 
Jo 

::i 

By using this tJ, we define a control process u(Z) = {ui{t), U2{t)): 

t 

(A:f(t/a),0), ifO < t < atl 
u ( t ) = (U1(t),U2(t))= . 

(ui(t/a), U2(i/ci)), if t > at^ 
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It is easy to check that 

f ' |u(t) — ^t)\dt < Ce{l + t � e ” “ . (3.15) 
Jo 

Let x(.) = (xi(-), ^2(-)) denote the trajectory of the problem V^ under u(.) 

with initial state x(0) = x, and let y{t) = (yi(.),y2(.)) be the trajectory under 
r 

' t 
i , r . 

u(-) with initial state y(0) = y. Then, :, 

for t < at^ : xi{t) > xi > £ i " - � 

t* for t > atl : xi{t) = ayi{t/a) + a /o^[(^i(^) _ ^1(<5)) + u2{s)]ds 
\ 

= ayi("a) + 6 " 2 - � " 2 - � 

since yi{t/a) > 0. So xi{t) > e”�-& for all t > 0. Similarly, for t > 0， 

广 
xi{t) < ayi{t/a) + a /0' [{kl{s) - Ui{s)) + U2{s)]ds 

< (1 - 2 e i / “ / m i n { 6 i ’ � } ) � + £ " “ < b, - s : " " , ' 

and 

X2{t) < ay2{t/a) + a / o m i n { " a , 0 [ - i ( 4 & 

< (1 - 2 s " 2 - V m i n { 6 i , h } ) & < 62 - 2 e ” “ , 

since yi{t|a) < hi and y2[t|0) < h. 

\ Consequently, (ii) of the theorem is proved. To show (i), note that for t > 0 
I 
i 

I 
j 

i 
j 

1 
. j 

:i j 
j 
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and sufficiently small £, we have 

xi(t) - yi{t)l < |iTi — yi| + |a/o">i(a^s) — u2{as)]ds - /o1^ii(s) — M-^)]^-^ 

t* 

< xi{l - a)/a + a /0 [̂(M(<5) _ tu(^)) + U2{s)]ds 

+ (1 - a) /0 \ui{s) — W2(̂ )|ĉ 5 + a j f a |w1(5) - U2{s)\ds 

< xi(l - a)/a + aa-ie"24 + C7(l — a)t + C7a{t/a — t) 
广’ I 

< C8(|x| + f ) £ " “ ：丨 

Similarly, |x2(O — y2(OI < Ĉ 9(|x| + t � s ” � T h u s , 

|x(t) - y(t)| < Cio(|x| + t � e ” “ . (3.16) ‘ 

By virtue of (3.15) and (3.16), we have 

J^(x, k, u(.)) - r � y , k, u(-)) < Cii( l + |x|Ko+i)e"2-5. (3.17) 
< 1 

On the other hand, since x^ < y2, \̂ < yi, and 

xi — yi \ + |â2 - y2| = [xi + x2)[l - a)/a < (¾ + b2){l - a)|a 

= be'/^-^/a<x,/a = y,, 
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we can apply Theorem 3.1 (iii) to get 

i^^(y, k) - v'(x, k) < C(1 + |x|^ + |y|Ko)|x-y| 二 C12(l + 聞尺。+!)^!"-;. (3.18) 

Therefore, by (3.14), (3.17) and (3.18)，we obtain 

j ' ( x , k, u(.)) - ” 1 x , k) < [J^(x, k, u(.)) - J^(y, k, u(-))] + [ j ' (y , k, u(.)) : � 

-i;^(y,k)] + [^^(y,k)-^;^(x,k)] ‘ 

< Ci i ( l + |x|Ko + l ) s " 2 - � l / 2 4 

+ C12(l + |x|Ko + l)6;l/2-5 
( 

二 C(l + |x|K�+ l)£l/2-5. • 

Based on the above proof, an algorithm can be given for computing a control 

U(-) G ^ ( x ) for the limiting problem satisfying (i) and (ii) of Lemma 3.1 with 

respect to initial x G Se. 
ii 

Algorithm 3.1. 

Input { x , £，̂, d,bi, 62}. 

Set a :二 1 — 2ei/2_V min{61,62}, y := x / a . 

Let U(-) 二（{ii(.)r.,{iT)) = ( ( ^ . ) , ^ ( . ) ) r . . ， K ( . ) , ^ ( . ) ) ) G � ( y ) be 

any near-optimal control for V. 
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Set 

t： ：= M{t > 0 : J^{ZU 州1 — n=i 趣、+ TU ^ ' ^ m ) d s > a - V / “ } . 
( 

(M,0), if 0 < i < ai\ 
u^(t) = {u{{t),ui{t)) := ，for j = 1,. • • ,p. 

{ul{t/a),ui{t/a)), 'ift> atl 
< 

Output 0(-) = (ai(.),...,li1.)). r 

广、 

Remark 3.2. Compared with the original stochastic problem, it is much easier to 
A 

get the near-optimal control U(.) in Algorithm 3.1 for the deterministic problem 

V. As shown in the next chapter, in some cases, even the optimal control for V can 
» 

A 

be explicitly obtained. Here we do not give algorithms for computing U(.) as they 

may differ from cases to cases depending on the specific forms of cost functions. 

It should be emphasized here that the idea of hierarchical controls is to reduce the 

extremely difficult problem into relatively easier problems. Therefore, the focus 

of this chapter will be on how to realize such reductions. 
:-i' 

3.5 Asymptotic Analysis: Initial States in Ŝ  

In this section, we will state and prove the results regarding the asymptotic 

behavior of the problem V^ with any initial state x G Se = [h£^/^~\ bi - 6e"2-q x 

( - o o , 62 — 6e"2-q c S for any given 0 < 6 < \. 
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The following theorem, whose proof will be deferred to the end of this section, 

says that the value function v^ of V^ converges to the value function v of P with 

the convergence rate e"2-5 £•�any given 0 < S < |. 

Theorem 3.2. For any 0 < 8 < 全,there exists a positive constant C such that 

for all X G Se and sufficiently small e, we have 

M-' 

|t;̂ (x, k) - ”(x)| < C(1 + |x|K�+iy/2-<^ (3.19) 

This theorem implies, in particular, that linie_^o ^^(x, k) = ^;(x) for all k and . 

for each x G Se. 

Next, for a given x G Se and k(e, 0) = k, we describe the flow of constructing 

an asymptotic optimal control u^(-) G ^^(x, k) of the original problem V^ begin-

ning with the near-optimal control tJ(-) G ^ ( x ) given by Algorithm 3.1 for the 
_ -J 

limiting problem V. 

Construction of Asymptotic Optimal Controls for Initial 

x G 5 , 

For any 0 < S < |, let x G Se be a fixed initial state and let U ( - ) = 

( i i i ( . ) , . . . , iF( . ) ) G ^ ( x ) where u^(t) 二 (wj(t), u{{t)) be the near-optimal con-

trol for P constructed by Algorithm 3.1. We use 5t{t) = {xi{t), X2{t)) to denote 
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the state of (3.2) under the control U(-) and the initial state x(0) = x = (x1,x2). 

On account of Lemma 3.1, it holds that e^|24 < ^^(^) < hi — e ” ” and 

x2{t) < 62 — 2ei/2-"^ We will use this control tJ(.) to construct a near-optimal 

control for the original problem. 

Let 

u ( ^ ) =(知⑴’如⑴）= E ^ . i X { k ( . , o = k o ( ^ i ( 0 . ^ ( 0 ) (3 20) n 

=Ej=lX{k(e,t)=k^>U^(0, ;j 

and let y(.) = (y1(.),y2(.)) be the corresponding trajectory defined as 

f 

yi{t) = a:i + /o(w1(5) — u2{s))ds , 
< 

y2{i) = a:2 + /0(w2(5) — d)ds. 
\ 

It can be seen easily that u(-) satisfies control constraints (2.10). However, y(Z) 

does not necessarily satisfy (2.11), i.e., y{t) may not be in S for some t > 0. 

To obtain an admissible control for P% we need to modify u(-) so that the state 
•tj 

trajectory stays in S. This is done as follows. 

We set 

B := {t G [0, oc)|yi(t) < 0} U {t G [0, oo)|yi(0 > 61} U {t G [0, 00)|2/2(O > ^ } -

(3.21) 
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Define 
‘ 

{u^[i)M[^% 'xii^B^ 
u%t) = {ul{t),um)'-={ , (3.22) 

(0,0), iit e B 
V 

which clearly satisfies the control constraints (2.10). Let x^(-) denote the trajec-

tory under such u^(-) with initial value x^(0) = x. Then，it will be shown later 

that x^(t) G S for all t > 0, which implies that the constructed control u^(-) is 
丨丨： 

admissible. 

The following theorem stipulates that u^(-) is asymptotically optimal for the 

original problem with the rate of error estimate to be of order 已工“-<̂ . 

Theorem 3.3. For any 0 < S < | and x € Se, let U(-) G ^ ( x ) be the output of ‘ 

Algorithm 3.1. Then, for the control u^(-) G ^^(x,k) constructed in (3.20)-(3.22) 

above, we have 

|J^(x, k, u T ) ) - ^^(x, k)| < C{l + |x|Ko+i)e"2-< ,̂ (3.23) 
/1 

for some constants C and sufficiently small e. 

To summarize, we can now give an algorithm for constructing one such asymp-

totic optimal policy u^(-) for initial state x G Se-

Algorithm 3.2. 

Input {x , £, S^ c/,6i, 62}. 

Get tJ(.) = (uH- ) r " ,u^ ( - ) ) where u^(t) = {u{{t),ui{t)) by performing A1-
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gorithm 3.1 for initial x. 

Set 

u ( 0 = (化⑴，如⑴）：=E?=iX{k(e ’_ko(W(z )，g(0) 

=J2%iX{k{e,t)=:kJ]^^{t)-

yi{t) := xi + /o(w1(5) - u2{s))ds, 

_l_ 「_丨 

y2{t) ：= 2：2 + Io{u2{s) 一 d)ds. ：；„| 
：丨.,《 

Bi : = { t G [ 0 , o o ) | y i ( t ) < 0 } , ‘ 

B2 : = { t G [ 0 , o o ) | y i ( t ) > 6 i } , 

Bs := {t G [O,oc)|y2(t) > 62}, 
\ 

B := Bi U B2 U B3. 
‘ 

(u i ( t ) , ^ (0 ) , ifteB^ 
u^{t) = {ul{t),ul{t)):= < . 

(0,0), 'iit e B 
\ 

Output u^{'). 

In the following, we shall prove Theorems 3.2 and 3.3 along with required •‘ 

auxiliary lemma. 

L e m m a 3.2. For any given S > 0 and any given x G Se, let U(-) G ^ ( x ) be the 

output of Algorithm 3.1. Then for the control u^(-) constructed in (3.20)-(3.22), 

it holds that u^(-) G ^^(x,k), and 

J^(x,k,u^(-)) - v{^) < C{1 + |x|K�+i)£i/24, (3.24) 
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for some positive constant C and sufficiently small e. 

Proo f . WithU(-) specified in the lemma, we define x(-), (y(-),u(-)), (x^(-),u^(-)), 

and Bi, B2, B � B as before and B4 := Bi U B2 = {t > 0\yi{t) < 0 or yi{t) > 61}, 

^5 := Bl n B3 = {t > 0|0 < yi{t) < bi and y2{t) > � } . First, we are to show 

that x^(t) G S for all t > 0. To this end, we define two auxiliary trajectories 

(xj(-),x2(-)) and (xJ(-), 3^2(-)) as follows: f‘-. 
,i 

• / 
0, if t e Bi 0, if t G Bi 

bi, if t e B2 bu if t e B2 
x\{t) := , xl{t)：= ， 

yi{t), iiteB' yi(t), lfteB^ , 

0, if t G B^ 61, if t G ^5 
< \ 

< 

62, ift e Bs 
X2{t):= < . 

y2(0, iHeBi ‘ 
\ 

It should be noted that these trajectories may not correspond to any control 

policy. However, it is clear that 0 < x}(t) < 6i,0 < x^(t) < bi and x2(t) < 62 for 

all t > 0. We now want to show that x\{t) < xl(t) < xl{t) and xl{t) < X2{t) for 

all t > 0. 

For the open set B5, there exist countable open intervals (a(-，6-), i = 1,2, • • •, 



Chapter 3. Open-Loop Production Planning in Stochastic Flowshops 53 

such that Bs = U i K , K ) . For a.ei G {0,a[) and j = 1,2, we have 

X{{t) = (ui(t) - Mt))XB^ = iMt) 一 Ut))XB^ 二 " ！ ⑴ 一 ^ m = ^K0, (3.25) 

thus x{{t) = xl{t) for t e [0,a'i]. For t G (a^,^), we have 

广 

x\{t) = 0 < xl{t) = x\[a[) < 6i = xl{t). (3.26) 丨丨 

‘i 

For a.e.t G (6'1,a'2), once again we have x{{t) — x\{t) for j 二 1,2 as with (3.25). 

Therefore it follows from (3.26) that 
\ 

xl{t) < xl{t) < xl{t), for t G [6; ,4] . (3.27) 

By induction, it is easy to see that x{{t) < x{{t) < xl{t) for all t > 0. Similarly, 

for a.e.t G [0, 00), 
.1' 

x2{t) > Mt)XB- 一 d > U2[t)xB- - d = ul{t) - d = xl{t), 

thus x2{t) > xl[t) for all t > 0. We have now proved that x^(t) = {xl{t), xl{t)) G 

S for all t > 0 and, therefore, u^(-) G ^^(x,k). 

Next, we will show that the discounted cost of (x(-), U(-))? (y(.),^U.)), and 
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(x^(-),u^(-)) over the infinite horizon are close to each other. First of all, it is 

easy to verify that 

丑| f^(U(s) - u{s))dsl < Ci3 E,'.1 E\/o^(x{k(s,.)=kO - i^')dsl 

< Ci4VTT^£2, (by Lemma 2.2), 

therefore r 
|丨. i!'.'. 
1,, 

^|x(t) - y{t)l < C i 5 > / l + t % i (3.28) -

We next estimate E fo^ e "^>" ( t ) - u(t)ldt. Since u'(t) = u(t) on B' = {t G 

0, oo)|0 < yi(t) < bi and y2(t) < 62}, we have ’ 

^fo^ e-''lu^(t) - u(t)ldt = E�e-^^X{.,(t)<o)u{,,W>^i>u{y2(t)>6,)|u^(0 " u(t)\dt 

< Ef,^e-^'x{y,it)<o}\u%t)-u(t)\dt 

^Ef,^e-^'X{yUt)>hjy(i)-midt 

+ E i T e - ^ { y 2 ( 0 > M | u f ) - ^ i ( , ) M f . 

< Ci6[/cT e-^'P(yi(t) < 0)dt + fo^ e _ ^ ( y i ( Z ) > h)dt 

+ I0^e-^'P{y2{t)>h)dt]. 

Noting that e^/^"^ < xi{t) < 61 - e^/^"^ and X2{t) < 62 — 2e”“ for t > 0, we 

i 
I 

1 I 
I 

I 

I 
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have 

P{yi{t) < 0) < P{x^{t) — y,{t) > 6 " “ ） < P{l^t) — yi(t)| > £"2-勺， 

P{yi{t) > 5i) < P(m(t) — Xi{t) > £ " “ ） < P{\x,{t) — yi(t)| > £"2 -勺， 

and r 
! : 
I V 

PMt) > b2) < P(Mt) - x,{t) > 2s'/'-') < P{lx2{t) - y2(OI > 2£"2-勺. 

According to the definitions of (xi(t), ^2(^)) and (yi(t), y2{t)), we have � 

P{\x,{t)-y,{t)\ > el/2-勺=P{\ f i>{k(e，^kO^)( — ̂ W + ^WMd > 已"2-勺， 
"0 j=l 

and 

,» 

P{lx2{t) 一 y2{t)l > 2e"“）= P(| /'i(X{kM)=kO - iy'){-ui{s))dsl > 2e""). 
JO j = l 

Therefore, we can apply Lemma2.3 with f3{t) = -u{{t) + u{{t) and f3{t) = -u{{t), 

respectively, to conclude that 

E r e-'']u%t) - u{t)\dt < Ci76"2] . (3.29) 
Jo 
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Observe also that 

|x^( t ) -y ( t )|<Ci8 f\u%s)-u{s)\ds. 
Jo 

Thus, 

EJ,^e-^'l^%t) - y{t)ldt < C^sEf^e-^'f^lu%s) — u{s)\dsdt � 1 ,i 
I 

=-C,sEp-'e-^'f^lu%s) — u{s)\ds\lz^ 二 

i-Cisp-'E / � � e-^']u%t) — u{t)ldt (3.30) 

=Ci8p-^EJ^ e-P']u%t) - u{t)ldt 
\ 

< CuC,sp-'e'/'-'. 

On the other hand, we can write 

J^(x, k, U^(.)) - ”(X) < J%X, k, u^(-)) — J(x, tj(-)) + C{1 + |x|K�+l)£l/2-<^ 

< E / � � e-p'[h{^'{t)) - h{^{t))]dt 丨 

+ ^ r e-''[c(u^(t)) — TU i^'<u'mdt 

+ C(1 + |x|K�+ l)£l/2-5, 
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where U(t) = {u\t),.. . ， ! ^ ⑴ ) . I t follows by (3.28) that 

E f ^ e-''[h{^%t)) - h{5c{t))]dt 

< C19(l + |x|Ko)E/o" e"''(l + ,Ko)|x$) - 5c{t)]dt 

< C19(l + |x|K�) /- e-"(l + t̂ )̂[E\x%t) — y(t)| 
^E\y{i)-^[i)\\di 

pî .(.i 

< C20(l + |x|K�) / - e-pf(l + t^^)[^|x^(t) - y(^)| " 

+v^TT72si](/t 

< C21(l + |x|Ko)/- e-"(l + po+i)[Elxf) - y(t)| + Êl̂-̂\di 
< C22(l + |x|K�)/o� e-^'^'[E|x%t) — y{t)l + e^^^-^]dt , 

< G 3 ( l + |x|Ko)6"2-5, 

where the last inequality is obtained in a way similar to (3.30). 

To complete the proof of the lemma, it remains to show that 

. . , • . 
p 

E r e-''[c{u%t)) -f^u^c{u'{t))]dt < CWe"2-5. 
Jo j=l 
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By recalling (3.29), the convexity of c as well as Lemma 2.2, we have 

Efo^ e - ’ ( u ， ) ） — E?=i i^^c(uHtWt 

= E / � � e-^'[{c{u%t)) — c{u{t))) + {c{u{t)) — E “ u^c{u^it))]dt 

< C25{E fo^ e-^>^(t) - u(t)|dt + £1/2-«^) 

< C24s'^'-^. • 
r"'| :'丨 
I i 
I I I 

Proof of Theorem 3.2. Lemma 3.2 implies that i;^(x,k) — v{^) < C{l + 

x|Ko+i)gi/2-5 To prove the theorem, it suffices to show the opposite inequality 

v'{x, k) - • ) > -C{1 + |x|Ko)ei/2-<^ (3.31) ‘ 

holds for all x G Se. 

To this end, it suffices to prove that for all x G Se and u(-) G ^^(x, k) obtained 

by Lemma 3.1, there exists U(-) G ^ ( x ) such that 
>_ 

J^(x,k,u(-)) — J(x,U(- ) ) > -C{l + |x|K�)£i/2-<^ (3.32) 

Let x(t) = (xi(t), x2(t)) denote the state under u(.) with initial state x(0) = x. 

By Lemma 3.1, we know that 
! 

e"2-<^ < Xi(t) < 61 - £"2-5 and X2(t) < b2 — 2£"24，for all t > 0. 

j 
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For each j = 1,2,. •., p, let 

u'{t) = E[u{t)lk{e,t) = k^'] := {ului). 

Define U(t) = (u^(t), • • •, u^(t)) and let x(t) denote the state trajectory under 

U(-) of V. We need to prove that U(-) G ^ (x ) . Actually, it suffices to show that 
r' 

. |i-
0 < xi{t) < bi and X2{t) < 62 for sufficiently small e. For this purpose, we first ‘ 

observe that 

Eu{t) = TU ^X{k(e,t)=k.}^!''(^) 
， 

= T U " " • ^ “ � + E^.i " V ( k ( M ) = y)-… 

= [ ; 1 " 娜 + 0 ( 6 + 6-凡、-1”， 

where the last equality is due to Lemma 2.1. Therefore, 

{x,{t) - Ex,{t)l 二 I f[j2i^'{u{{s) - ui{s)) — E(u,(s) — U2{s))]ds\ < C2ee, _‘ 
^° J=1 

and 
ft p . . 

1^2(̂ ) — Ex2{t)l = I / [J2i^'ui{s)) — Eu2{s)]ds\ < CWe. 
"0 J = 1 

1 

j 

I 
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It follows that for sufficiently small £, 

Xi{t) > Ex,{t) — C26^ > e ” “ — C26e > 0, 

Xi(i) < Fxi(t) + C26^ < bi — 6^/2-5 + C2Qe < 61, and 

x2{t) < Ex2{t) + C27e < 62 - 2e"2-5 + C27e < b2. 

Thus, U(-) G ^ ( x ) for sufficiently small e. Moreover, � 
[.:•' 
I .' 

l^{t)-Ex{t)l < C2se-

By the convexity of h and c, we have “ 

Eh{^{t)) > h(Ex(t)) 

= / i ( x ( t ) ) + [h{E^{t)) — h(x(t))] 

> h(x(t)) - C29(l + |x|K�)(l + po)|^X(Z) — x(t)| 

> h(x(t)) — C28C29(l + |x|Ko)(l + # � ) £ , _ 

and 

Ec{u{t)) = ^E?=lX{k(e,0=k.}^Wu(t))|k(£,t) 二 k̂ '] 

= Y U P[Ke.t) = y)E[c{umk{e,t) = k^] 

> E ^ = i P ( k ( M ) = k * ( 0 ) 

> E ? = i " " < a " ( 0 ) - C 3 � ( e + e- ' “—i” . 



Chapter 3. Open-Loop Production Planning in Stochastic Flowshops 61 

Thus, 

J^(x,k,u( . ) ) > i T e - ， 剛 + E “ iy^c{u^mdt _ ^si(l + |x|^°)5 

= J ( X , t J ( . ) ) - G l ( l + |x|Ko)e. 
(3.33) 

Therefore, (3.31) follows and the proof is concluded . • 

• 「 

Proof of Theorem 3.3. By Theorem 3.2 and Lemma 3.2, we obtain .:. 
I .' 

j 
1 

0 < J^(x ,k ,u^( - ) ) -^^(x ,k) 

< ( ? ( x , k, u^(.)) - • ) ) + (̂ Kx) - ^̂ (̂x, k)) 

< C( l + |x|Ko+i)£i/2-5.a ‘ 

3.6 Asymptotic Analysis: Initial States in S \ Ŝ  

In this section, we continue our asymptotic analysis for the original problem V^ 

with any initial state x G S \ Se. We shall show that Theorem 3.2 also holds for 
,1 

all X G S \ Se. First we state and prove the following lemma. 

Lemma 3.3. For any x G 5' \ Se，there exists an x' G Se such that 

|t;̂ (x, k) 一 v � x � k ) | < C(1 + |x|K�+i)£i/2-«5 (3.34) 

|i;(x) - ^(x')| < C(1 + |x|Ko+i)5"2-5 (3.35) 

I 
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0 h2 

\ 

Figure 3.1: The partition of the state constraint domain 

for some positive constant C (independent ofe) and sufficiently small e. 

Proof. We only show the first inequality, the second being similar. We divide 

the band S \ Se into four parts (as shown in Fig. 3.1): 
II 

5 \ 5 e = {[0,6£1/2—勺 X ( - 0 0 , ¾ - be ' / ' - ' ] } 

U{[0,61 - 3 6 e " 2 ] ) X (62 - h e ” “ , 62]} 

U{[6i - 36ei/2-<^6i) x (¾ — he^/^-^h^]} 
i 

U{(6i — b e ” “ , 61] X (-00,62 - he^'^-^]} 

:二 6 V U & U & U & , 

I 
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and then discuss four cases. 

Case 1. X = (x1,x2) G Si. 

We choose x' = [x^.x'^) G Se, where x\ = he”2_\ x'2 — X2. By Theorem 3.1 

(i), the above (3.34) holds. 

Case 2, x = (xi, xq) G S2. 

We choose x, = {x\, x'2) G Se, where x[ = Xi + |x2 _ x'̂ l + he^f^~\ x'̂  — 厂 
,1 
i,.. 

62 - h e ” 2 - � B y Theorem 3.1 (i) and (ii), the above (3.34) holds. 1 

Case 3. X = (xi, X2) G S3. 

We choose x' 二 {x[,x'^) G Se, where x； = b^ - 3be^/^-\ 4 = 62 - he”". By 
5 

Theorem 3.1 (i) and (iii), the above (3.34) holds. 

Case 4' X = (a：!, X2) G 5^ 

We choose x' = (j:'̂ , X2) G Se, where x\ = 61 — 6e"2_^ '̂2 = X2. By Theorem 

3.1 (i), the above (3.34) holds. • 
Theorem 3.4. For any 0 < S < ^, there exists positive constant C such that for 

<1 

all X G S and sufficiently small e, we have 

|^^(x,k) — u(x)| < C{l + |x|K�+i)si/2-«^ (3.36) 

Proof. We only need to show (3.36) for x G S \ Se. By Lemma 3.3, there exists 
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an X' G Se, such that (3.34) and (3.35) hold. Applying Theorem 3.2 to x ' G S,, 

we get 

i;"(x, k) - i;(x)| < |z;"(x, k) - u"(x', k)| + \v'{x', k) 一 ^;(x')| + |t;(x') — ̂ ;(x) 

< C ( l + |x|Ko + l)gl/2-5. • 

(3.37) 

I. "•'! 
,：[ 

Construction of Asymptotic Optimal Controls for Initial 

X G S \ 5 , 

For any given initial x G S \ Se, by Lemma 3.3, there exists an x ' G Se 
\ 

such that (3.34) holds. For such an x ' G Se, let the control u'(-) G ^^(x ' ,k ) be 

constructed in a fashion similar to (3.20)-(3.22), with x replaced by x : Then by 

Theorem 3.3, we have 

|J\x' ,k,u ' ( . ) ) - v%^\k)\ < C(1 + |x'|Ko+i)5"2-5, (3.38) 
I 

for some constants C and e small enough. 

In the following, we will first construct such x ' G Se according to the posi-

tions of X G S \ Se as in the proof of Lemma 3.3. Then we will use the con-

trol u'(.)=(々.），u'2(.)) ^ >^^(x', k) to construct an asymptotic optimal control 

u^(-) G >l^(x, k) for the original problem as in the proof of Theorem 3.1. 

i 1 
i 
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Case 1. X = (xi, X2) G S'l-

Let X' = ( x ; , 4 ) = (be"24,X2) G S:. Define u'{t): 

( 

剛,0), \ii<i\ 
u^{t) = {ui{t),um) = { ， 

( • ， • ) , lit>t; 

where tl > 0 is the stopping time given by [“ 
！ 

t； := 'mi{t > 0 : f\{kl{s) — u[{s)) + u'^{s)]ds > |xi — x[\}. 
Jo 

Case 2. x = {x1,X2) G S2. ‘ 

Let X' = ( x ; , 4 ) = (xi + |x2 — (62 — 6£1/2—勺| + h e ^ l ^ - \ h 2 — b e ” “ � G ^ . 

Define u'{t): 

<• 

KCO,o) , i f t < t * 
u^{t) = {ui{t),um) = { ， 

、 （ • ’ • ) , i f t > t ; ’ 

where tg > 0 is the stopping time given by 

tg := inf{t > 0 : / i4(s)oLs > \xi — a^il}. J 0 

Case 3. x 二 (xi, X2) G S^. 

Letx' = ( ? i , 4 ) = (6i-36e^/2-^52-6ei/2-^) G S�Further set x = {x1,x2) G 
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S, where Xi = x[ — {x2 — X2) > 0, x2 = X2. Then define u(t) as follows 

等 

K(^) ,0 ) , if t < ；̂! 
u(t) = ( l / i ( t ) ,u2(0)= ， 

剛 鼎 ) ， i f t > i \ 
\ 

where tj^ > 0 is the stopping time given by 

i!� , r 
rt I , 

t71 := M{t > 0 : / u'2(s)ds > |xi 一 x[\}. 
Jo 

Further, we define u^{t): 

fi , 
(0,hOO), ift<t;2 

u^{t) = {ul{t),ul{t)) = l , 
{u1{t),u2{t)), if t > t*ĵ  

\ 

where tj2 > 0 is the stopping time given by 

|-t ！ i,' 
tj2 ''= inf{t > 0 : / ui{s)ds > |xi — ^i|}. 

Jo 

Case 4- X = (x1,x2) G 84-

Let X' 二 ( ^ ; , 4 ) = (61 - 6£i/2-5，z2) G Se. Define u%t): 

f 

(OX2OO), i f^<^8 
u^{t) = {ui{t),um)-{ , 

剛 ， ！ ^ ⑴ ) ， i f t > Q 
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where tg > 0 be the stopping time given by the following: 

tl := inf{t > 0 : f u[{s)ds > \xi - x[\}. 
Jo 

Let x^(-) be the trajectory under u^(-) constructed above with initial x. Then 

by the proof of Theorem 3.1, u^(-) is admissible, and 

i 1 I 

J^(x,k,u^(-)) - oT(x%k,u'(.)) < C{1 + |x|Koy/2-<^ (3.39) 

The following theorem stipulates that u^(-) is asymptotically optimal for the 
场 

original problem with the error estimate being of order ê ^̂ ~̂ . 

Theorem 3.5. For any 0 < 5 < | and x G S\Se’ let the control u^(-) G ̂ ^(x, k) 

constructed as above. Then we have 

|J^(x, k, u^(-)) — V%^, k)| < C{1 + |x|Ko+i)s"2-<5, (3.40) 丨 

for some constants C and e small enough. 
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Proo f . By the above (3.34), (3.38) and (3.39), we obtain 

0 < J^(x, k, uT)) — ”£(x, k) < [J^(x, k, u^(-)) - J6(x�k, uX.))] 

+ [7 (x ' ’ k ,uX- ) ) — ”3(x',k)] 
(3.41) 

+ [ t ; " (x ' ,k ) -z ;1x ,k) : 

< C( l + |x|Ko + l)£l/2-<^ • 
r“山丨I 

H 
• i 

I 

The following is an algorithm for constructing asymptotic optimal policy for 

initial states in S \ Se. 

Algorithm 3.3 
？ 

Input {x, £, 5^ d, 6i, 62,6}. 

While 

X G Si Do Procedure 1 

X G S2 Do Procedure 2 

X G S3 Do Procedure 3 
',i 

X G S4 Do Procedure 4 

End. 

Output u^(-). 

Procedure 1 

Set X' = (x;,4) := (6e"2-5，〜. 

Get u'(-) = (^1(-),^2(')) by performing Algorithm 3.2 for initial x : 
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t； := mf{t > 0 : /0[(A;K5) — 4 ( s ) ) + W2(5)]^^ > k i — ̂ il}. 
‘ 

m{t),o), 'ift<ti 
u%t)=^{ui{t),um)-= • 

剛 乂 ⑷ ) ， i i t > t i 
\ 

Procedure 2 � 
丨丨 

!'• 

Set X' 二 ( x ; , 4 ) ：= {x, + |x2 — (b2 - 6£：1/2-勺| + 6^i/2-^ 62 — fei/2-勺. 

Get u'(-) = (w'1(.),w'2(.)) by performing Algorithm 3.2 for initial x'. 

tg := 'mf{t > 0 : /0,w'2(<s)0Ls > |a:i — x'̂ |}. 1 
‘ 

剛 , 0 ) , l i t < t l 
u ^ = ( ^ i 4 C 0 ) : = . 

剛 鼎 ) ， - i i t > t i 

I 

Procedure 3 

Set X' = K , 4 ) := (61 - 36£：1/2-<^ b2 - 6£"2-5). ：： 

X =(无1，X2) ：= {x[ - {X2 - X2)1 Z2). 

Get u'(.) = (wj(-), W2(O) by performing Algorithm 3.2 for initial x : 

tj^ := 'mi{t > 0 : /0 U2{^)ds > \xi — a/i|}. 
‘ 

K W , o ) , if t < t;, 
u{t) = {u,{t),u2{t))-= . 

� K ( t ) , ^ ( 0 ) , if t > t；! 

i 
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7̂2 := inf{t > 0 : /QW1(5)J5 > \xi — xi\}. 
( 

(0,1^2(0), i n < 0 2 
u ^ ( t ) - ( u 5 ( t ) , ^ ( t ) ) ：=< • 

(i^l(t),U2(t)), if i > ；̂2 
\ 

Procedure 4 

Set x ' = ( x ; , 4 ) := (5i 一 b e ” “ , x2). 

Get u'(.) = (^4(.),w'2(.)) by performing Algorithm 3.2 for initial x : [: 
i 

tl := inf{t > 0 : fou[(s)ds > |xi - x[\}. 
‘ 

(OX(t)), \ii<il 
u ^ = K W , ^ : = . , 

剛，鋼， ' l it>t; ‘ 

3.7 Concluding Remarks 

In this chapter, we have studied hierarchical open-loop planning for the stochastic 

two-machine flowshops with finite buffers. The methodology is based on the state 
,( 

constraint domain approximation and weak-Lipschitz property developed in this 

chapter. 

The controls, which may be more precisely called partially open-loop controls, 

are of theoretical importance in deriving one of the main results, namely Theorem 

3.4, which states how close to one another the original and the limiting problems 

are. While the asymptotic result derived in Theorem 3.4 is independent of the 
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type of controls under consideration, the construction method developed in this 

chapter does not extend to feedback controls. The difficulty lies in the fact that 

one cannot in general expect to have a near-optimal Lipschitz feedback control for 

the limiting problem. Thus it is not clear how to estimate the difference between 

the trajectories of the original and the limiting problems. 

Recently, Sethi and Zhou [50] have obtained near-optimal feedback controls � 
|丨 丨卜 _ •； 

for a two-machine under the assumption that both internal and external buffers 

are infinite. They use a probabilistic approach in estimating the error bound 

associated with these controls. Moreover, Samaratunga, Sethi, and Zhou [38 
( 

evaluate these policies in an extensive simulation study by comparing them to 

some existing heuristic policies such as Kanban policy and Two Boundary policy 

(see [59]). In Chapter 5, we will extend the method in [50] to the case of the 

finite internal and external buffers treated in this chapter. We should once again 

emphasize that Theorem 3.4 proved in this chapter is an important link in the 
‘ _ • 

process of carrying out the extension as stated in Chapter 5. 

Finally, we would like to mention that the material presented in this chapter 

are published in [14, 15 . 



Chapter 4 
r" 
r., 

!：;• 
i ‘ 

I — • I 

Feedback Production Planning in 

Deterministic Flowshops 
4.1 Introduction 

There has been a considerable amount of interest in the study of hierarchi-
ii 

cal controls in stochastic manufacturing systems, since Gershwin[18] proposed a 

frequency-based hierarchical framework similar to that of singular perturbations [37, 

5], and then developed on a rigorous basis by Lehoczky et al. [33], Sethi, Zhang, 

and Zhou [45，47, 48], and Fong and Zhou [14, 15:. 

Note that basically only open-loop controls were constructed in [14, 15, 45，47, 

48] which were shown to be asymptotic optimal. While asymptotically optimal, 

72 
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the constructed open-loop controls are not expected to perform well unless the 

rate of change in machine states is unrealistically large. What is required there-

fore is a construction of asymptotic optimal feedback controls. Such constructions 

had been available for single or parallel machine systems (cf. [33, 47]), in which 

no state constraints are present. In such systems, either the Lipschitz property 

of optimal control for the corresponding deterministic systems or the monotonic-

ity property of optimal control with respect to the state variables makes the 

proof of asymptotic optimality go through. Unfortunately, these properties are 

no longer available in the case of flowshops. To overcome the difficulty, Sethi and 

Zhou [49, 50] constructed asymptotic optimal feedback controls for stochastic 

two-machine flowshops based on the explicit characterization of optimal controls 

for the corresponding deterministic problem. Moreover, Samaratunga, Sethi and 

Zhou [38] made a computational investigation of such constructed controls and 

found them to perform very well in comparison to other existing methods in the 

literature (cf. [35, 41, 56, 59]). Nevertheless, they assumed that the size of the 

external buffer is infinite. Unfortunately, this assumption is hardly reasonable 

in real situations since external buffers usually represent warehouses or storages, 

whose limited capacities must be taken into consideration especially in the sit-

uation of scarce space and/or high rent. We will tackle the problem with finite 

external buffer. To do this, we have to first solve the limiting deterministic prob-

1 
t ) i 
i 
i 

I 

i 
！ 
i 
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lem in this chapter since the hierarchical planning is based on the solutions to the 

deterministic problem. In order to obtain an explicit optimal feedback control 

for the deterministic problem, we first construct one by intuition, then prove that 

I the corresponding cost of the constructed control satisfies the Hamilton-Jacobi-
1 

: Bellman (HJB) equation. The optimality would then follow if the HJB equation 

could admit a unique solution. However, since the HJB equation involves com- !. 
• 1 

plicated boundary conditions due to the presence of the state constraints, the | 

uniqueness of its solutions is not at all clear. Soner [54] and Cannarsa, Gozzi 

and Soner [9] studied the problem with general state constraints, but it is also 

not clear how to apply their results to the present case. To overcome this major 

difficulty, we do not insist on the uniqueness. Rather, we employ the idea of 

“constraint domain approximation" developed in the last chapter, to show that 

any cost function that satisfies the HJB only in the interior of the state constraint 

domain must be bounded above by the value function. This way we can obtain 

explicit optimal feedback controls rigourously for the corresponding deterministic 

problem. Based on it, we are able to construct suitable feedback controls for the 

stochastic problem and prove their asymptotic optimality in the next chapter. 

The plan of this chapter is as follows. In the next section we make some 

assumptions for the deterministic problem as formulated in Chapter 2. In Sections 

4.3, we solve explicitly the deterministic problem. Section 4.4 concludes the 
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chapter. 

4.2 Assumptions 

In order to study the optimal feedback production planning for the deterministic 

manufacturing system formulated in Section 2.1, we need to make the following 
r ' 

assumptions on the function G^(x,w) and the maximum production capacities ai \ 

and d2 throughout this chapter. 

Assumption 4.1. G^(x,w) = ciXi + c^x^ + c^x^. 

丄 — . I 

where ci,c^ and c^ are given nonnegative constants, x^ = max{j:, 0}, and x~ = 

max{-a:, 0}. 

Assumption 4.2. ai > a2 > d. 

In Assumption 4.1，ci, cJ, c^ are the unit holding costs of the inventory/shortage 

levels of the two bufFers, respectively. 

Assumption 4.2 implies that the system has enough capacity to meet the 

demand, and the second (downstream) machine is the bottleneck. 

We should note that the problem can also be solved without Assumption 4.2. 

However, the assumption is a sensible one in practice, since otherwise the shortage 

will increase to infinity in the long run. 
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i 
！ 
i 

4.3 Optimal Feedback Controls 

Let So be the interior of the state space 5', i.e., So = (0, 6i) x ( - o o , 62). Let dS be 

the boundary of S. As is well-known, if the value function v of the deterministic 

problem V (see (2.5)) is in C^(^) , then it solves the following HJB equation in 

So'. 

广 1 i i, 
丨‘ 

pv{yi) = info<^i<ai,0<ti;2<a2[(^l - W2)v^ {̂x.) + {W2 — c/)^(x)] + /l(x) 

=info<^̂ ；l<al,0<^<；2<a2 [̂ l̂̂ :̂n(x) + W2{v^^{:SL) - ”a:i(X))] - ^?¾(^) + h{x), 

for all X G S'o- ‘ 

(4.1) 

The uniqueness of solutions to (4.1) relies on some appropriate boundary 

conditions, which are nevertheless very hard to obtain due to the state constraints 

present. In this chapter, we do not insist on the uniqueness. Rather, we prove 

the following result which will be enough for serving our purpose later on. 

Theorem 4.1. If a given function J* defined on S satisfies 

(i) r e c\So), 

(ii) J* is continuous and is of polynomial growth on S, and 

(iii) J* satisfies the HJB equation (4.1) in So, 

then J*(x) < < x ) for all x G S. 
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To prove this theorem, we have to introduce the following lemma which says 

that starting from any point in 5'o, there are near-optimal controls for V so that 

the corresponding state trajectories will never reach the boundary of S. 

Lemma 4.1. For any x G 5'o and any rj satisfying 0 < rj < rjo = infx'ea5 |x — x^, 

there exist a constant C (independent ofrj) and a control w(-) = (w;i(-), W2{-)) G 
I -

^(x) such that 

(i) rj < Xi{t) < bi — T] and X2{t) < b2 — 2r/, 

" . z j J ( x , w ( . ) ) - t ; ( x ) q i + |x|)", 

where x(.) = (xi(-), 2^2(*)) ^̂  the state trajectory of the deterministic problem V 
1 

under w(.) with initial state x. 

Proof. This proof is similar to that of Lemma 3.1, with e"2_5 replaced by rj. • 

Proof of Theorem 4.1. First we will show that J*(x) < v(x), for all x G 5"o. 

Indeed, for sufficiently small 77 > 0, there is a control w(.) as specified in Lemma 
•I 

4.1. Since the corresponding state trajectory x(.) under w(.) lies in the interior 

So and J* satisfies the HJB equation in 5'o, we have by using Dynkin's formula 

e - " J * ( x ( T ) ) — J*(x) = / o T e - " [ l J * ( x ( , ) ) + (i^! 一 1^2)如(力)） 

^w,-d)J:^{^{t))]dt (4.2) 

> -I^e-^'h{^{t))dt 
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.! 

Letting T ~> 00 and noting that J* is of polynomial growth, we have 

J*(x) < 厂 e-''h(x(t))dt =^ J(x, w(.)). 
Jo 

Hence, by Lemma 4.1 (ii), we have 

t*-

J*(x) < i;(x) + C ( l + |x|)7y. 'I 

Letting rj ^ 0, we obtain J*(x) < ^;(x). 

Secondly, for any initial point x G dS, there is a sequence { x „ } � in 5'o, such 
I 

that x„ ~^ X as n ~> 00. For x„ G So^ we have had J*(x^) < t;(x^). Since J* 

is continuous on 5', we obtain J*(x) < i;(x) by letting n — 00. The theorem is 

proved. • 

Next we provide an explicit optimal solution of V. It is obtained in two 

subcases depending on the cost parameters. We show that in each case the cost 

function associated with the control satisfies the conditions of Theorem 4.1. This 

will establish the optimality of the controls. 

4.3.1 The Case ci < c\ 

We conjecture that the following feedback control is optimal for P. 
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f 

{d, d), xi = X2 = 0, 

(0,0), O < x , < h , O < x 2 < b 2 , 

w*(x) = (0, d), 0 < a;i < 61, ̂ 2 = 0, (4.3) 

(O,a2), 0 < xi < h1,x2 < 0, 

(tt2, «2), Xi — 0, X2 < 0. 
w “'. 

I 

This control is shown in Fig. 4.1 along with the corresponding movements of 

the state trajectories. For example, the control in the left quadrant interior is 

(0, a2) and the trajectory ABO is obtained by using control (O,a2) along AB and 

control (a2, «2) along BO. ‘ 

The intuition behind our conjecture is simply that (xi, X2) = (0,0) is the 

most desirable state of the system and the control policy should be such that 

the state trajectory will reach this state as quickly as possible and then stay 

there forever. More specifically, when {x1,x2) = (0,0), staying there with the 

use of control w* = (d, d) results in the minimum possible value of zero to the 

objective function of V. When 0 < xi < 6i,0 < X2 < 62, there is no need 

to produce anything since both Xi and X2 are in surplus situation. The control 

w* = (0, 0) decreases X2 and keeps Xi unchanged, which is desirable if ci < cJ. 

When 0 < Xi < b1,X2 = 0, it is clear that in view of ci < cJ, the cheapest way to 

get to (0,0) is w* = (0,c/). When 0 < xi < b1,x2 < 0, the control w* = (O,a2) is 

I 
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easily seen to be the fastest way to decrease Xi and increase X2 at the same time. 

Finally, when Xi = 0, X2 < 0, w* 二 («2，《2) is the fastest way to reduce shortage 

while maintaining the zero inventory in the exit buffer of Mi. 

Since w* is explicitly given, it is easy to compute the corresponding cost 

function J*(x) = J (x , w*) given below: 

‘ ^ ( e - " ^ ^ — 1) + t i ^ ( e - ^ — 1) + 二 4 � 

i f O < x i < 6 i , 0 < : T 2 < 5 2 ; 

£L|2(e-3 _ 1) + H l f e | Z ^ ( e ^ — 1) + £1^1Z££^ 
T*/ X p2 V ) p2 V ) P ‘ , � 

J {x1,x2) = (4.4) 
i f O < a : i < 6 i , X 2 < 0 , f ^ < ^ ; 

^ ( e - ^ ^ - 1) + M ^ n M ( e ^ — 1) + £ i £ i ^ ， 

� i f O < : r i < 6 i , X 2 < 0 , f ^ > ^ . 

One can easily check that J* G C ^ ( ^ ) and J* is continuous on S. Moreover, 
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3̂ 1 
l\ 

b ^ 

^ ^ ‘ I 
\ w* = (0,(i) 

\ z " 
w* = (O,a2) \ < V 

\ w * - ( 0 , 0 ) 

\ ^ r = {d,d) 

_ \ ® w^-'' 
^ ^ ^ 0：2 

w* = (a2,a2) 0 二 ( 0 , 0 ) b, 

Figure 4.1: Optimal control and state movements when ci < c } 
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we can calculate that when 0 < Xi < 6i,0 < X2 < 62, 

J:,{xux2) = ^ ( l - e - ' ^ ) > 0 , 

4*.(^1,^2) = t ^ - ^ ( l - e -^^) + 字(1 — e - ^ " ) , 

J:,{^ux2) - J;,(^i,X2) 二 — 1 — e -宁 ) > 0. 

Hence, 

info<t^i<ai,o<^;2<a2[(^i - w;2)J*1(x) + (w2 — d)J*^(x)] + h(x) 

=info<w,<a,,0<W2<a2 K^.*i(x) + W^2(J;2(X)—《!（X))] — dJ^^(x) + h(x) 

c,d/ _P(^1+^2) � (c+-ci)d/ _££2 1 � , I + 

= � ( e d - 1) + � 2 p ” (e d - l ) + c1.T1+4a:2 

= / o J * ( x ) , when 0 < xi < bi,0 < x2 < b2. 

The same equality can be derived also in the region 0 < Xi < h1̂ X2 < 0. This 

means that J* satisfies the HJB equation (4.1) in So. By Theorem 4.1, we have 

J* < V. This implies J* = v since v is the minimum cost. Therefore, we have 

proved the following result. 

Theorem 4.2. w* constructed in (4-3) is an optimal feedback control for the 

deterministic problem V with Ci < cJ. 
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4.3.2 The Case ci > c} 

In this case, we conjecture the optimal control to be identical to that in the case 

Ci < C2 except in the region Xi > 0, X2 > 0, where it is more desirable to reduce 

Xi as quickly as possible. When 0 < Xi < b1,X2 二 〜，the control w* 二 (0, d) is 

the fastest way to reduce surplus, i.e., decreases xi and keeps X2 二 b�unchanged, 

if ci > cJ. Thus, 

�d, d), xi — X2 — 0, 

(0,0), a ; 1 = O , O < X 2 < 6 2 , 

w*(x) = (a2,a2), x1 = O,:r2<O, (4.5) 

( O , a 2 ) , 0 < x i < b 1 , x 2 < b2, 

(0,cO, 0 < â i < b1,x2 = 62; 

see Fig. 4.2. 

The corresponding cost function J*(x) = J(x,w*) is as follows: “ 
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Xl 
A 

h 

^ ^ X : 

\ \ w* = (0,rf) 

\ \ . . . . . . . . . .、 

\ W* = (O,a2) \ 
\ ^ ' ' w* = ( 0 , a 2 ) ^ X 

w* = (O,a2) \ \ 

\ \ | 
\ w* = (cM) \ ‘ 

\ 丄 X V, 
^ ^ 1 ^ 工2 

w* = (a2,a2) O = (0,0) w* = (0，0) 62 

Figure 4.2: Optimal control and state movements when Ci > c } 
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JrOri，x,) = i ^ ^ ( e - ^ — 1) + ^ { e - ^ — 1) + ^ ^ ^ , 

if 0 < xi < 6 1 , O < x 2 < 6 2 , x 2 + ^ x 1 < 6 2 ； 

2̂ 

j ; ( x , , x , ) = ( 1 一 ) ( 6 - 鮮 — 1 ) + i ^ ( e - ^ ^ ^ ^ ^ ^ 一 1) 

+ £ ^ ^ ( e - ^ ^ ^ _ l ) + £i^i±£i^, 

i f O < xi < 61,0 < X2 < b2,x2 + ^ x , > W, 

JS{x1.x2) = 7 ( e _ i - 1) + ^ ^ i ^ ( e ^ - 1) + a ^ i ^ , 

J*(a;1,a;2) = ifO < xi < h1,x2 < O,x2 + ^ x i < 0; 

J : ( . 1 , . 2 ) = | ^ ( e - ^ - 1) + i ^ i l ^ i ^ ( e ^ — 1) 

[(ci-4)a2 (^^-^ _ 1) + c1x1-c-x2 

i f O < Xi < h,X2 < 0,0 < 工2 + ^ X , < 62； ‘ 

J;{XUX,) = ( C 2 + + C 2 : ” ( $ _ 1) + ( C l - 4 ; ( W ) ( r ^ ^ — 1) 

+ i 2 l ^ ( e - * i + r y _ 1) + ^ ( ^ - £ 1 ¾ ^ — 1) + 二2� , 

if 0 < a:i < b1,x2 < O,x2̂ x̂1 > 62. 
‘ (4.6) 
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^1 l\ 

h 

. ^ \ Jt 

' 2 \ - F 4 力 

\ ( a2h n>| 

X ^ ^ a 2 - d ^ ^ ) 

> < 

Jl ^ V 

^ > 工 
O = (0,0) 62 

Figure 4.3: Switching manifolds for cost functions with different initial state 

Let 

ri = {(a;1,:c2)|O < j：! < 61,0 < X2 < b2,x2 + ^ X i = 62}, . 

r2 = {{xuX2)\0 < Xi < buX2 < 0,X2 + ^ X i = 62}, 

r3 = { ( ^ l , ^ 2 ) | 0 < X i < ^ , : . 2 = 0}, 

r4 = {{xuX2)lf^,<X,<b,,X2 = 0}, 

r5 = {(a:i,a:2)|O < J：! < b1,X2 < O,X2 + ^ X i 二 0}, 

as shown in Fig. 4.3. 
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R e m a r k 4.1. If ^ < ^ ^ , then the set {(x1,x2)|O < xi < b1,x2 < O,x2 + 

^^^^1 > ^2} is empty, in which case the switching l i n e � 2 and the function J^ 

do not exist. 

It is easy to see that J* is continuous on S. In fact, J* is also continuously 
• 

differentiable in So, although not as easily seen as in the previous cases. Moreover, ' 

the continuous differentiability of J* along the switching curve 1\_, z = 1, 2, 3,4, 5, 

is not at all obvious. Let us now show this for the switching curve Fi for example. 

We define the following regions: 

I： 0 < x i < b 1 , O < X 2 <b2,x2 + ^ x 1 <62, 
2̂ 

11: 0 < Xi < 61,0 < â 2 < b2,X2 + ^ ^ X i > h2. 
2̂ 

Then, for any x° = (j;?, x^) G Fi, 
,* 

lim 巧(X) 二 - i [ ( c i — c~)e~^ + cJe^^ 'd。) _ c \ 
xei，x—xO dxi p “ 2 丄」 

On the other hand, 

1. dJ)*(x) ” , 一 、 - ^ I +。(工?+4) 
limxeii,x^xO - ^ ^ 二 —7[(ci - c2 )e «2 + cJe d - ci 

1. 9J*(x) =limxei，x—xo - ^ . 
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Similarly, we have 

l im 婴 = 」 [ 4 6 华 - 4 ] , 
x6l,x^x0 0X2 p 

and 

1. aj,̂ (x) 1" — � - # 丄 + (̂-?+-2) ( — � - ' 4 - +1 ‘ 
limxGii,x^xO -^^ = -^i(ci — C2 )e "2 + cJe a - (ci — q }e «2 — cJ 

u + 口(工?+工3) +1 
= - - p [ c U ‘ - 4 . 

y ajf(x) 
=limxGi,x^xO " a ^ . 

So J* is continuously differentiable along r [ Similarly, we can show that J* 

is continuously differentiable elsewhere in So- With similar calculations, we can 

prove that J* satisfies the HJB equation and, therefore, we have also proved the 

following theorem in view of Theorem 4.1. 

Theorem 4.3. w* constructed in (4.5) is an optimal feedback control for the 

deterministic problem V with Ci > cJ. 

4.4 Concluding Remarks 

In this chapter, we have obtained explicitly optimal feedback production policies 

for a dynamic deterministic two-machine flowshop that minimize discounted costs 

of inventories and shortages over an infinite horizon. The optimal control problem 
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involves a state constraint as the inventory in the buffer between the two machines 

must remain nonnegative and both buffer sizes are finite. Optimal policies involve 

both bang-bang and singular controls. 

In the next chapter, we shall use the results obtained in this chapter to 

construct feedback controls that are asymptotically optimal for stochastic two-

machine flowshops with unreliable machines. 

• 



Chapter 5 

Feedback Production Planning in 

Stochastic Flowshops 

5.1 Introduction 

In the previous chapter, we explicitly obtained the optimal feedback control for 
,1. 

dynamic deterministic two-machine flowshops. In this chapter, we investigate the 

feedback controls for stochastic two-machine flowshops with machines subject to 

random breakdowns and repairs. Since the sizes of both internal and external 

buffers are practically finite, the problem is one with state constraints. As the 

problem is extremely difficult to solve, it can be approximated by a deterministic 

problem in which the stochastic machines' capacities are replaced by their average 

90 
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capacities when the rates of machine failures and repairs become large. Further-

more, based on the explicit characterization of optimal controls for deterministic 

problem in Chapter 4, suitable feedback controls for the stochastic flowshops are 

analytically constructed, which are proved to be asymptotically optimal with re-

spect to the rate of change in machine states. It should be pointed out that we 

will make a computational investigation of such constructed controls in the next 

chapter in comparison to other existing methods in the literature [59, 41 . 

The plan of this chapter is as follows. In the next section we derive the 

corresponding deterministic (limiting) problem from the stochastic problem of 

the two-machine flowshops formulated in Chapter 2 with linear inventory/backlog 

cost. In Sections 5.3, we construct asymptotic optimal feedback controls for the 

original stochastic problem. Section 5.4 concludes the chapter. 

5.2 Original and Limiting Problems 
>• 

In this chapter, we consider a dynamic stochastic flowshop consisting of two 

unreliable machines, Mi and M), in which each machine is assumed to have two 

states: up and down. We assume that the first and the second machines have 

maximum production capacities mi and m2, respectively. Therefore, the system 

has four machines capacity states: k^ = (mi, ni2) corresponds to both machines 

up, k2 二 ( m i , 0 ) to Ml up and M2 down, k^ =—: (O ,m2) to Mi down and M2 up, 
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and k4 = (0,0) to both machines down. Let M = {k^k^,k^,k^}. 

Here, we consider the running cost function G'(x, u) as the one in the last 

chapter, i.e., 

C(x, u) = ciXi + C2X2 + C2X2' (5.1) 

For a feedback control u，we shall write the cost J^(x, k, u(x(-), k(s:, •))) as 

simply J^(x, k, u), where x(-) is the corresponding trajectory under u with the 

initial state x and the initial machine state k. 

We use ^^(x) to denote the set of admissible controls with respect to the 

initial state x G S and the initial machine state k, and t;^(x, k) to denote the 

value function, i.e., 

^;s(x,k)= inf , ( x , k , u ( . ) ) . (5.2) 
u(-)eMx) 

We make the following assumptions throughout this chapter: 
•I ‘ 

Assumption 5.1. The capacity process k(e:, t) G M. is a finite state Markov 

chain with generator Q^ = e~^Q, where Q = (%•) is a 4 x 4 matrix with qij > 0 if 

j + i and qu = — J2j^i qij. Moreover, Q is irreducible and is taken to be the one 

that satisfies 

— { | % l : %• • 0} = 1. u 
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Let V — ("i,z/2, "3, " 4 ) � 0 , the only positive solution of 

4 
i/Q = 0 and ^ i/̂  — 1, 

j=i 

denote the equilibrium distribution of Q. 

Assumption 5.2. ai > a-2 > d, where a = (ai, a2) denotes the average maximum 

capacities of Mi and M2 respectively, i.e., ai 二 (“工 +z/^)mi and a2 = (î ^ +z/^)m2. 

Remark 5.1. Assumption 5.1 means that k(s ,t ) 二 k(|) is a fast changing 

process as e is sufficiently small. 

R e m a r k 5.2. It is usual in the literature to assume, as in Assumption 5.2, that 

on average the first machine has at least the same capacity as the second. This 

is also the case that is encountered frequently in practice so as to avoid excessive 

starvation of the second machine. 

Similar to Chapter 3, we employ the hierarchical production planning to solve 
ii 

this feedback control problem. To define the limiting problem, we consider the 

following class of deterministic controls. 

Definition 5.1. For x G S, let ^ ( x ) denote the set of the deterministic measur-

able controls 

u(.) 二（ui(o, • • •, u Y ) ) = ((u}(.), i4(0), • • •, K ( - ) , ^2(O)) 
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such that 0 < ui{t) < k{ for t > 0, i 二 1,2 and j = 1,2,3,4, and that the 

corresponding solutions x(.) of the following system 
( 

Mt) = E � = i " V i ( 0 — E l = i " ^ ) , ^i(o) = :ri, 
< (5.3) 
^ i2(t) = EU ^'^2(O - ^, x2(O)=x2. 

satisfy x(t) G S for all t > 0. . 

We can now specify the limiting problem as 
‘ 

minimize J(x, U(.)) = J ^ e-f''h{x{t))dt 
^ 

ii{t) = E,=1 ^'ui{t) — E,ti "2(t), ^i(0)=工1, 

卞 : subject to i2(O = E�=1 ^'ui{t) — d, X2(0) 二 X2, 

U(.) G ^(x) 
\ 

value function t;(x) = infu(.)^^(x) ^(x, U(-)). 
、 

Let . 
4 4 

wi{t) = J 2 ^ ' < { t ) a n d w2{t) = j y � ^ . ( 5 .4 ) 
j=i j=i 

Then the limiting problem V can be rewritten as 
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‘ 

minimize J(x, w(.)) = J^ e-''h{x{t))dt 
( 

Xi{t) = Wi{t) 一 W2{t), Xi(0) 二 a:;i, 

^ ” subject to i2{t) = w 2 { t ) - d , X2(O) = X2, 

w(.) G 如） 

value function i;(x) = inf"w(.)g^) J(x,w(.)), 
V 

where w4(x), x E S', can also be considered, with an abuse of notation,to be the 

set of the deterministic measurable controls w(*) = (wi(-),w2(-)) with 

0 < w i ( t ) < a i , 0 < w2(t) < a2, 

and with the corresponding solution x(.) of the state equation appearing in P 

satisfying x(t) G S for all t > 0. 
<• 

It is standard to show that the value functions v^ and v are continuous and 

convex in x. 

Theorem 3.4 says that the problem P is indeed a limiting problem in the sense 

that the value function v^ of V^ converges to the value function v of V. Moreover, 

it gives the corresponding convergence rate. Note that the proof of it does not 

involve using any feedback controls. 
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Next, we define what are asymptotic optimal feedback controls and give some 

estimates related to the behaviour of the process k(s, t) for small e. 

Definition 5.2. An admissible feedback control u^ is asymptotic optimal if 

lim|J"(x,k,u^)-i ;^(x,k)|=:0 

for all (x’k). Moreover, if there exist positive constants C(x) and 7 such that 

|J^(x,k,u^)-^"(x,k)| < C{^)e\ 

then C(x)s^ is called an asymptotic error bound and 7 is called the rate of con-

vergence. 

The purpose of this chapter is to construct asymptotic optimal controls for our 

original problem V^. The construction will begin with the explicit optimal con-
•« 

trols for the limiting deterministic problem P, which had been solved in Chapter 

4. 
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5.3 Asymptotic Optimal Feedback Controls for 

V' 

In this section, we construct a feedback control for V^ along with some discussions 

for its asymptotic optimality. The main idea is to use a control for the original 

stochastic problem V^ that has the same form as an optimal feedback control for 

the limiting deterministic problem P which is obtained in Chapter 4, and then 

to show that the two trajectories of V^ and V under their respective controls are 

very close to each other on average. 

5.3.1 The Case ci < c} 

The optimal control w* for the limiting problem P when Ci < cJ is presented in 

(4.3). Clearly, this control is not feasible for the stochastic problem V^ when one 

or both of the machines are broken down. Since our purpose here is to construct 
,a 

an asymptotic optimal control for V^ beginning with w*, we first rewrite w*(x) 

as w*(x) 二 r*(x, a), where 
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‘ 

(min{A;i,A;2 7 < }̂, min{A;i, k2̂  c/}), xi = X2 = 0, 

(0,0), 0 < xi < 61,0 < ^2 < 62, 

r*(x, k) = (0，min{A;2, d}), 0 < xi < b1,x2 = 0, (5.5) 

(O,A;2), 0 < xi < b1,x2 < 0, 

(min{A;i, k2}, min{A:i, k2}), Xi — 0, X2 < 0. 
V 

However, one can easily see that u*(x, k) = r*(x, k) is not asymptotic optimal 

for the original problem T^, when the unit shortage cost c^ is strictly positive. 

This is because when the trajectory under this control reaches (0, X2), X2 < 0, it 

moves along the line Xi — 0 at a different average rate than the rate in V with 

w*(x). In other words, there is a significant loss of capacity on behalf of M2 

during the movement along Xi — 0, X2 < 0, whenever Mi is under repair. This 

is a consequence of the requirement that Xi{t) is not to become negative. To 
' • 

mitigate the effect of the capacity loss phenomenon, we try to reduce the time 

spent on the boundary Xi = 0. 

To this end, we introduce a small region {x|0 < Xi < ei,X2 < 0} as a 

neighbourhood of Xi = 0, X2 < 0, where the policy is such that there is a tendency 

for the state trajectory to go away from Xi = 0 and toward Xi = e^, while still 

staying in the neighbourhood. This tendency is in a marked contrast from the 
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feedback policy r*(x,k), which brings the trajectory down to xi 二 0 as quickly 

as possible. 

Let us therefore introduce the following function: 

(0,¾), i f x G r ; , 

(min{A:1,A;2}, fe), if X G r,2, 

(k1,k2), i f x G ^ , 

(A;1,min{A;1,A:2}), if X G r4, 

r'(x,k) = (ki,min{ki,k2,d}), i f x e T g , (5.6) 

(k1,min{k2,d}), if X G Fg, 

(min{A:1,A;2, d}̂  min{A;2,<^}), if X G r^, 

(O,min{A:2,c/}), i fxGr^ , 

(0,0), i f x G r ; . 
V 

where, as shown in Fig. 5.1, 
.« 

i 
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^1 l\ 
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^ r'7 = (eKo) 
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/ ' 4 ^ 

i > X2 

r( = (o,o) � . 

Figure 5.1: Switching manifolds for hierarchical control when Ci < c^ 
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ri = {(xi,x2)|6:3 < â i < b1,x2 < 0}, 

r'2 = {(X1,X2)|X1 二 £�X2 < 0}， 

r ; = {(^1, X2)\0 < xi < e^,X2 < 0}, 

r^ = {{xi,x2)\xi = 0, X2 < 0}, 

r'5 二 {{xi,x2)\xi = 0,X2 = 0}, 

^ 6 = { ( a : i , X 2 ) | 0 < X i < £ 3 ^ X 2 二 0 } , 

r'7 = {(x1,x2)|x1 = 6^,x2 = 0}, 

r'8 = {(^1,^2)1^3 < xi < b1,x2 = 0}, 

Fg = {(a:i,X2)|O < Xi < 61,0 < X2 < 62}. 

In connection with these regions, F'-, z = 1,3,9, are called interiors, and the 

remaining ones are called boundaries. 

It is interesting to point out that the line Xi 二 e^X2 < 0 in defining (5.6) 
' • 

is a manifold introduced to reduce capacity losses on M2 along Xi = 0, X2 < 0. 

Moreover, setting a policy u(x, k) 二 r^(x, k) implies that the full machine Mi 

capacity be used below the manifold Xi = e^^X2 < 0. 

We have now constructed the function which we will use after. As we shall see 

shortly, setting k = a in r^(x, k) would provide us with a near-optimal control for 

V. Furthermore, u^(x, k) = r^(x, k) would yield an asymptotic optimal feedback 
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control for V\ since its cost is understandably, and also provably, not too far 

from the cost of the near-optimal control r^(x, a) in V. We begin with defining 

the control 

w^(x) = K ( x ) , ^ ( x ) ) = r^(x,a) (5.7) 

for V] see Fig. 5.2. Note that w;‘(x) 二 w;;(x) in the entire state space. Moreover, 

i f i (x) = wl{x)^ except when 0 < xi < e^,X2 < 0. In this region of exception, 

the control policy has the tendency to go toward (e:3,0). This policy, while not 

— . , 1 optimal, is nearly optimal for V for sufficiently small e, since \x\ — x\ < £3. More 

specifically, we have the following lemma which is clear by the above observations. 

Lemma 5.1. There is a positive constant C such that 

J(x,w^) 一 ”(x)| 二 |J(x,w^) - J(x,w*)| < CeK 

.t 

Note that in Definition 5.1 and (5.4) there are two alternative ways to de-

fine the class of admissible controls for the limiting problem. Control w^(x) 

constructed above can be equivalently written as 
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xi 
A 

6. w\r(o ,o) 

...w^ = (0,t/) 
d^. 

\ ^ ^ ( 0 ’ � 2 ) 

< 

w^ = (0,0) 

w .̂ = (a2,a2) 
^ > <- - • - w^ = � d , d) 

^^^^^^ = {al,a2) 八 

r - - w ^ K " ) . 
z ,, 

f ^ ^ ^ ^ : r 2 
w^ = (ai, a2) 0 = (0, 0) — = (0,0) b2 

Figure 5.2: Near-optimal control w^ for P and trajectory movements when Ci < 
r+ C2 
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U^(x) = ( K ( x ) , t4(x)), ( < x ) , t^2(x)), (u?(x), t/i(x)), (ut(x), l4(X))) 
( 

((O ,m2),(O,O),(O ,m2),(O,O)), i f x G r ; , 

( ( ^ ^ m 2 , m2), ( ^ ^ m 2 , 0 ) , (0, m2), (0,0)), if x G r^, 

((m1 ,m2), (mi ,0), (0, m2), (0,0)), if X G r^, 

( (mi, m2), (mi ,0) , (0, m2), (0, 0)), if x G r；, 
(5.8) 

= < ( (mi ， 4^) ’ (mi ， 0) , (0 , + ) ， ( 0 ,0 ) ) ， i f x G ^ , 

((mi, 4 ^ ) , (mi,0), ( 0，击 ) , ( 0 , 0 ) ) , if x G ^ , 

( (击， 4 ^ ) , ( 4 ^ , 0 ) , (0,4^)，(0, o)), if X G r„ 

((0,击),(0,0)，(0，击),(0,0)), if X G n, 

‘ ( (0 ,0 ) , (0 ,0 ) , (0 ,0 ) , (0 ,0 ) ) , i f x e n . 

According to Lemma 5.1, the policy U^(x) is asymptotic optimal for V as z goes 

to zero. 
.，• 

In view of Lemma 5.1 and Theorem 3.4, a control for V � , whose associated 

expected cost is close to J (x , U^) = J (x , w^) would be asymptotic optimal. An 

obvious candidate is 

u^(x, k) = (< (x , k), i^(x, k)) = r^(x, k). (5.9) 

I 
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" ^ ( x , k) k = ki k 二 k ' k 二 k3 k = k4 
" ^ T ^ T T " (0,m2) —(0,0) ( 0 , 爪 2 厂 ( 0 , 0 ) 

X G V'2 (min{mi ,m2) ,m2) ( 0 , 0 )⑴，爪？厂（0 , 0 ) 
X G r^ (m1,m2) (mi,Q) (O,m2) (0,0) 

^ G r； (m1,min{m1,m2}) (mi,Q) ~(0 ,0) (0,0) 
x e r ' 5 {mud) (mi,Q) (0’0厂（0,0) 

“ X G r^ {mi,d) (mi,Q) (0,^) “ (0,0) 
~^G T'j {d, d) 一 （0,0) ~~(0,̂ ) (0,Q)~ 
] G r ^ {0,d) (Q,Q) {0,d) (0,0) 

x G U (0，0) (0,0) (0,0) (0,0)— 

Table 5.1: Tabular representation of u^(x, k) when Ci < cJ 

The candidate control is represented in a tabular form in Table 5.1 for convenience 

in exposition. Each component of u^(x, k) in the table represents the control 

policy under the corresponding machine state and initial state. 

We can also depict the state trajectory movements in Fig. 5.3 under each of 

the four machine states. In view of (5.8)，(5.9) and Theorem 3.4, it is easy to see 

that the average movement of the state trajectory in Fig. 5.3 at each point of 

the state space coincides with the movement of the state trajectory of V shown . 

in Fig. 5.2 under the policy (5.7) or (5.8). 

With this observation, we can expect the following main result of the chapter 

to hold. 
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^1 
A . 

bj_ 
< 

_ _ Y ' 

^ V 一 r̂  
\i 

< 

p/ Fg 
2 mi > 77l2 . . 1 . 

“ K � ^ r'7 = ( e M ) 
, � � m i < rri2 �‘ 

乂3yfTTli > ni2 
^ ^ ^ 1 = 爪 2 么 \ 

^ ^ni < rri2 6 
\i 

\ ， 〉 爪 2 /、 ！ 

<c~~"^Z~> < \ < > ^2 

r ; rr1,<m2 r'5 = (o,o) 62 . 

Figure 5.3: Directions of trajectory movements under different machine states 
when ci < cJ 
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Theorem 5.1. There exists a positive constant C such that 

|7(x,k,u6(x,k)) - J(x,U^(x)))| < CeK (5.10) 

for sufficiently small e. 

The main idea of the proof of the theorem is to show that the trajectory x(.) 

of the original problem and the trajectory y(-) of the limiting problem (under 

u^(x, k) and U^(x), respectively) are very close to each other in the average 

sense, if they start from the same initial state. It is very important to note that 

u^(x, k̂ ) coincides with u^(y), the i-th component of U^(y), if x and y are in one 

of the same interiors of F'̂ , F ,̂ or Fg. 

Before we prove the theorem, we need to prove some preliminary results. First 

of all, we obtain a bound on the rate at which the first components of x(.) and 

y(.) diverge over time. Specifically, we consider 
' • 



Chapter 3. Open-Loop Production Planning in Stochastic Flowshops 108 

i _ - y ^ 

=2{x,{t)-y,{t)){i,{t)-y,{t)) 

= 2 ( x i C 0 - yi(t))[K(x(t),k(e,t)) - ^(x(t),k(5,t))) 

- E t i iy\u\{y{t))-ul{ym] 

=2{x,{t) — yi{t)){Zt=i X{k(e,t)=k^>[(^5(x(0,k0 - u{{y{t))) 

-K2(x(t) ,kO — ^Uy(0))] + Eti(x{k(e,0^k0 - ^ ' M { y ( t ) ) - ^ 2 { y m } ' 
(5.11) 

Define 

A^"(x,y) = (xi — y i ) [ K ( x , k‘) - < ( y ) ) — K ( x , k^ — ^(y ) ) ] , z = 1,2,3，4. 

In the following, we want to show that 丨 
1 

E f A^'(x(s), y{s)) < Ke^l + t), 1 - 1,2,3,4, (5.12) • 
Jo 

for some constant / l ; see Theorem 4.2 and Remark 4.2 in Sethi and Zhang [42 . 

To this end, let us first introduce several useful lemmas. 

Lemma 5.2. For i = 1,2, 3,4，we have 

(a)^{^ ,y) = 0,for (x,y) G T； x T；; 
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(h) A^x,y) < 0, for (x,y) G [F； x (P^ U P',)] U [(r'2 U 巧)x P；]; 

{cJ A^'(x,y) < 0, forxe {(〜，工2)|工1 > 0,^2 < 0} ,y G F^j； 

(d) A^x,y) < KeK for x ,yG {(x1,x2)|O < xi < el}. 

Proo f , (a) Since T[ is an interior in which wJ(x, k') = w;(y) for i — 1,2,3,4 and 

j — 1,2, we have A'(x,y) = 0 on T[ x T[ by definition. 

(b) This can be proved by direct calculation in each case. For example, when 

X G r ' i , y G r'2, w e h a v e 

Xl — yi > 0, and 

(u5(x,ki) - ui(y)) - (n5(x, ki) — ui(y)) = (0 — ̂ ^ m ^ ) - — - m,) < 0, 

which gives A^(x,y) < 0. 

(c) This can also be shown by direct calculation. 
. 1 

(d) If both X and y are in the e-strip {(a:1,X2)|O < xi < £3}, then |xi — yi\ < 

1 9 ‘ 

£3. The desired result is then easily seen, since all the controls constructed are “ 

bounded (independent of e). • 

Lemma 5.3. Let x(-) be the trajectory of V^ under u^(x, k)̂  and y(-) be the 

trajectory ofP under U^(x)^ both starting from the same initial x G Fg. Then 

~ _ 丄 

Xi[t) > yi(t), for t e [ 0，^ ^ ^ ] . (5.13) 
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Proof. Let us pick up a sample point to. Suppose during the time interval [0, r) , 

the machine state is in {k^, k^}, and then switch to be in {k^, k^} (r could be zero) 

at T. Then obviously (5.13) holds for t G [0,r]. Note that for any t G [r, ； ^ ] , 

we have 

Xi{t) — xi — {t — r)m2 > xi — td — yi(t), 

and the equality holds only at t — to 三 : 二 . 

Here to is nothing but the time of x(.) hitting Fg under the assumption that 

the machine state does not switch to {k^, k^} in [r, to). Now let us assume that 

the machine state changes to {k^, k^} at time 0 < t�and stays there until time r'. 

By the same argument as above, it is easy to check that xi{t) > yi{t) for t > 0. 

This situation continues until t = � � , t h e time of y(-) reaching the threshold 

r ; • 
1 7. 

I 
Lemma 5.4. Let x(.) be the trajectory of V^ under u^(x, k) with initial Sc G 

>• I 

T[ U Fg； and y(-) be the trajectory of V under U^(x) with initial y G Fg. If 

X — 5H 2 Ce^, then 

xi{t) > Mt) - C - ^ e ^ for t G [0, ^ ^ ^ ] . (5.14) 
TTl2 — cL a 
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Proof. Define 

( 

[x,^y,-{m,-d)i\ 0 < t < ^ 
^[i)^[x',{i),x',{t))= 

(Z. (i V2-X2 \ Z. (+ y2-X2 \\ 十 > V2-X2 
‘ i^U^ — ^^j'^2i^ — ru2-d)h ^ ^ m2-d, 

y ' { t ) = 誦 , 删 = ( y i ( 0 — yi + 全1,删. 

Then x'(0) = y'(0) = (^1,^2) G Fg. We can therefore apply Lemma 5.3 to obtain 

训 二 ^;(t + | 3 ) > y ; ( ^ + ^ ) 

= y i ( t + l 3 ) - y i + ^i = y i W - ^ | ^ - y i + ^i 

> Mt)-C^eK 

for t e [0, ^ i ^ ] . This proves the lemma. • 

Lemma 5.5. For i — 1，2，3,4， there exists a positive constant K such that the 

inequality (5.12) holds. 
•« 

Proof. We have to analyze various different cases depending on the position of 

the initial state x. 

Case L The initial state x G T[. 

In this case, both trajectories have the following important features: 

(i) The deterministic trajectory y(.) will either first hit F^ and then stay there 

forever, or first hit either r'2 or Fg and then go along one of these boundaries 
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towards F .̂ 

(ii) The stochastic trajectory x(.) will never go up inside F[, and once having 

e n t e r e d t h e " b o x " { ( . T 1 , X 2 ) | O < .Ti < e , X2 < 0 } , it wi l l n e v e r g o o u t o f it . 

Define by r^ and Ty, respectively, the stopping times of x(.) and y(-) liiiting 

the boundary r'2 U Vj U Fg. Note that Ty is deterministic. We now want to prove 

the following estimate: 

P{Ty - r, > £3) < Ce, (5.15) 

for some positive constant C. 

To show this, we only consider the case when y(.) hits Fg. The analyses for 

the other cases are the same. By Corollary 2.1, 

P(|x(7*y — y(r^)| > («2 - d ) e � r ^ < Ty) 

< P{\Io' Eto(x{k(e,o=ko - ^OK(y) — 4(y))"z| > 全(�2 - d)e^； 丁工 <、） 
f* 

^P{\ fo' Eto(X{k(e,)=k^} — ^O(^2(y) — d)dt\ > | ( a 2 — d y ^ - r , < Ty) 

< C(e-A�—1 + g-A'e-l/3(l+r,)-3^ < C£. 
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Hence, 

P{ry - r^ > £3) 

< P(|x(r,) 一 y(r,)| > (a? — d)e^;T, < Ty-x(r,) G r^ U 厂了） 

+P(|x(r^) -y(r^)| > yi(r^);r^ < ^y;x(r^) G r,2) 

< C£. 

This proves (5.15). 

To complete the proof of the theorem in Case I, we have to study three sub-

cases: 

Case L1. y(r^) G F,2. 

In this case, we note the following facts: 

(i) A^(x(t), y{t)) = 0, t < min{ra;, r^}, by virtue of Lemma 5.2 (a). 

(ii) If Ty < T ,̂ then for t > Ty, we have y(t) G T'^ U V^ and x(t) G Uĵ iT；-. : 

Hence, by Lemma 5.2 (b) and (c), we have 
,» 

y(x(t),y(t))<K6^2 = l,2,3,4. 

(iii) If Ty > r^, then as t > r^, y{t) G P； U 厂之 U T'j and x(t) G Uj=2^-- Again 
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by Lemma 5.2 (b) and (c), we have 

AXx(0,y(t))<A^5^z = l,2,3,4. 

For any 0 < t < Ty, we can now estimate 

Eil\\^{s),Y[s))ds 

=E{Sl \\i^[s),y{s))ds', Ty < r.) + E[S'^ \\^{s), y[s))ds', r, > r.) 

= E U l \ \ ^ { s ) , y { s ) ) d s - T y > T , ) 

< EUl\\^{s),y[s))ds-T, < Ty < T, + e^) + KP{Ty - T, > £全） 

二 ^(/min{i,r.} A�X(<S),y(«S))cLs; T, < Ty < T, + 6^) + KP{Ty - 丁工 > 6^) 

< Ke'^ + Ce. 

For any t > Ty, by (ii) and (iii) above, , 

EUl^\\^{s\y{s))ds) • 

二 五(/4 A^-(x(3), y{s))ds-Ty < r.) + E ( f ; y{^{s)Ms))ds; r, > 丁工) 

< Keh. 

Therefore, (5.12) follows in Case 1.1. 

Case L2. y(r^) G T'^. 

In this case, let us first estimate 
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P{\^{^y)-y{^y)\ > 咸、< Tx) 

< P(l fo' Eto(x{k(e,t).ko — ^0(<(y) — 4 ( y ) ) ^ > 全沟 

+ 尸(| i ? Eto(X{k(e,)=kO — ^O(^2(y)-")圳 > |^") 

< Ce. 
• '• '1 

I 
！ 

Furthermore, with 7 = 2rri2 — d and 7 二 2«2 一 d, we have 

^ ( | x ( r , ) — y ( r , ) | > (1 + 7 + _ T y > r . ) 

=P(|x(7"J - y{Ty)\ > ( 1 + 7 + 7)53； r^ < Ty < r^ + e^) + P{ry > r^ + e^) 

< P(|x(ry) - x(r^)| > 76 3;r^ < Ty < r̂  + es) 

+P(|x(r^) — y(r^)| > £^; r̂  < Ty < r̂  + £^) 

+P(|y(r^) - y(Ty)| > ^e^\T^ < Ty < 丁工 + e^) + Ce 

=P(|x(r^) - y(r^)| > S3;r^ < Ty < r̂  + £全）+ Ce 

< C'e. . 

Combining the above two estimates, we conclude that 

P ( | x ( T j - y ( r , ) | > (1 + 7 + _ < Ce. 

Observe the following facts: 
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(i) If for a sample point o;, |x(r^) — y(r^)| < (1 + 7 + 7)53, then by Lemma 

5.4’ 

. , x � … ( 1 + 7 + 7)¾ i ,厂 丄 y i ( ^ ^ ) - g ^ 
^i{t) > yi{t) ^ ^ 3 ^ ~ ~ " , t e h.^y + 2 j. 

Hence, 

A^x(t),y(t)) < I<eK t G [r,,r, + " ! ( 『 “ 广 ㊀ 】 . 

"'i 
(丁 . 1̂ . I 

(ii) When t > "“丁^) ^^ , y{t) G Tj. In this case, we have by Lemma 5.2 (c) 

that 

A^(x (0 ,y ( t ) )<0 . 

For any 0 < t < Ty, we have the following, similar to Case 1.1: 

E 厂 \\:>^{s),y{s))ds < Ke^ + Cs. 
Jo 

I 

I 

On the other hand, for any t > Ty, we obtain 
•丨 

Ff:^^(x(s),y(s))ds 

yi(Ty)-e3 . 
< Ef;^^A^x(s),y(s))ds 

i 
yi(Ty)-eS . 1 

二 丑(4 d y(x(s),y(s))ds; |x(r,) - y(r,)| < (1 + 7 + 7)5i) 

+ A ^ P ( | x ( r , ) - y ( r , ) | > ( l + 7 + 7)6i) 

< Ke^ + Ke. 
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This proves (5.12) in Case I.2. 

Case L3. y(r^) G F'̂ . 

In this case, (5.12) follows easily from Lemma 5.2 (c). 

Case II. The initial state x G Uj^2^i-

In this case, both x(.) and y(.) will never go out of the e—strip {(x1,x2)|0 < 

Xi < £3}. Therefore, (5.12) holds by Lemma 5.2 (d). 

Case III. The initial state x G Fg U Fg. 

If X G Fg, then initially both x(-) and y(.) will coincide until they hit Uf^gF'-. 

So we may assume that x G Pg. 
1 

By Lemma 5.3, if t < ^^~/^ , it holds that a:i(t) > yi{t)^ and therefore 

A^"(x(t),y(t)) < 0. When t > ^^’ y{t) G r;. In this case, X'(x(t),y(t)) < 0 as 

given by Lemma 5.2 (c). So (5.12) holds. • 

Let us now turn to the proof of the main result. ‘ 
I 

Proof of Theorem 5.1. By (5.11), (5.12), and Lemma 2.2, we obtain 
• 

E(xi(t) — m(t)f < 8K(1 + t)ei + |E(x,(t) — y ^ 

HE\/J Eti(x{k(.,).ko - ^0(^i(y(0) — ^2(y(O))^^P 

< 8A^(1 + t)el + '^E{x,{t) — y,{t)y + C{1 + t^)hi 

< C(l + t)ei + '^E{x,{t)-y,{t)y. 
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Thus, 

E\x,{t)-y^{t)\<C{l + t)h^. 

By a similar argument, we can get 

E\x2{t)-y2{t)\<C{l^t)h^. 

This concludes the proof. • 

Theorem 5.2. There exists a positive constant C such that 

|^(x, k, u^(x, k)) - v ' {x , k)| < CeK (5.16) 

Proof. This follows easily from Theorems 3.4，5.1 and Lemma 5.1. • 

5.3.2 The Case ci > 4 
暴I 

We write the optimal control obtained in (4.5) as w*(x) = r*(x,a), where 
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， 

(min{A:i,A;2,o?},min{A;i,A;2,o(}), x\ — X2 = 0， 

( 0 , 0 ) , 工 1 二 0 ’ 0 < 〜 仏 

r*(x, k) = (0’ k2), 0 < xi < 61,x2 < K (5.17) 

(0,min{A;2,o?}), 0 < xi < h1,X2 = ^ , 
i,. \ 

(min{A;1,A;2}, min{A;i, A:2}), ^i = 0, X2 < 0. 
� I 

Again we introduce a switching manifold slightly above the boundary Xi — 0, X2 < 

0 as in Section 5.3.1, and then define the following function: 

f 

(0,¾), if X G r/, 

(min{A;1,A;2}, ^ ) , if X G r《， 

{hM). i f x e r ; ' ， 丨 

I 

(k1,mm{k1,k2}), if X G n , 

r ' (x ,k ) = (k1,min{kuk2,d}), i f x G r'5', (5.18) • 

(k1,min{k2,d}), if X e r ^ 

(mm{A:1,A:2, d}, min{k2,d}), if X G P7, 

{O,mm{k2,d}), if X G Tl 

(0,0), if X G T'l 
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where, as shown in Fig. 5.4, 

r^ 二 {(a::i,X2)|e:^ < Xi < b1,X2 < 62} U {(X1,X2)|0 < Xi < £^ ,0 < X2 < 62}, 

r'2 = {{xi,x2)\xi = es,X2 < 0}, 

r'3' = {(a:1,x2)|O < Xi < e^X2 < 0}, 

r4 = {{xi,x2)\xi = 0,X2 < 0}, 

Fg 二 {{xi,X2){xi = 0,j;2 二 0}, 

r'6' 二 {{xi,X2)\0 < Xi < e^X2 = 0}, 

^7 = {[xi,X2)\xi = £3,^2 二 0}, 

Fg = {(a;1,a:2)|O < Xi < b1,x2 = M , 

rg = {(x1,j:2)k1 = 0,0 < X2 < 62}. 

Now let us construct a control 

w"(x) 二 r^(x,a) (5.19) 
• 

for V\ see Fig. 5.5. Note that io^(x) = to*(x) when x G F,/. In other regions except 

r'/, the control policy has the tendency to go toward (e3",O). This policy, while 

— 2 not optimal, is nearly optimal for P for sufficiently small e, since |x̂  — x*| < £3. 

Similar as before, it is easy to show that Lemma 5.1 holds for this case. 

Using Definition 5.1 and (5.4), we can also equivalently write the above control 

w^(x) as follows: 
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3̂1 
A 

h 

i 

p// 

r'/ “ . 

、 
p// 

2 

^ <……-r'7, = (ci,o) 
I 

I 

p// ,, 

13 <• - rg . 

^ J ^ ^ X2 
n; i T = ( o , o ) r“’ 2̂ 

Figure 5.4: Switching manifolds for hierarchical control when Ci > c } 
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^1 
A 

^ 

'• _ ( 

< = ( 0 , " : 
X ^ ^ ( 0 , a 2 ) X ^ ; ^ ( 0 , a 2 ) � • • . • � 

w^ = (a2,a2) 
^ ^ <- - - -w^ = (d, d) 

\ w ^ = ( 0 , a 2 ) 

/ ^ w^ = {a1,a2) � \ 
<----W^(ttl,c/) , 

y ^ 八 . . . . • 

：̂  ^ ^ • L_^a:2 
w '̂ 二 (a1,a2) 0 = (0, 0) w^ = (0，0) b2 

Figure 5.5: Near-optimal control w^ for V and trajectory movements when Ci > 
r+ — 2̂ 
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U^(x) = ( K ( x ) , u i ( x ) ) , K(x )，ui(x) ) , (^^(x),^l(x)) , K ( x ) , i / ^ ( x ) ) ) 
， 

((O,m2),(O,O),(O,m2),(O,O)), i f x G T / , 

( ( ^ ^ m 2 , m2), ( ^ | m 2 , 0 ) , (0，m2), (0,0)), if x G r � ’ 

((mi, m2), (mi,0), (0, m2), (0,0))， if x G r ^ 
I ‘( 

((mi,m2), (mi,0), (0，m2), (0,0)), if x G T^ 
(5.20) 

= ^ ((叫，击),—1,0)，(0,4^), (0,0)), if X G rg, 

((mi, 4^)， ( m i , 0)，(0, 4 ^ ) , (0,0)), if x G。'， 

((击，击),(4^，0), (0,4^), (0，o)), if X G r《， 

( ( 0 , 击 ) , ( 0 , 0 ) , ( 0 , 击 ) ， ( 0 , 0 ) ) ， if X G r'‘, 

((0,0),(0,0),(0,0),(0,0)), i f x e r � . 
V 

Finally, we construct a control 

1 ‘ 

u"(x ,k) = r"(x ,k), (5.21) 

as specified in Table 5.2. 

Similarly, the u^(x, k) constructed above can be shown to be an asymptotic 

optimal feedback control for P^. 
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u^(x, k) k = ki k = k^ k = k^ k 二 F ~ 
"^TGTT" (0,m2) (0,0) (0,m2y" (0,0) 

X G r^ (min{mi,m2>,m2) (0,0) ~W^^ (0,0) 
x e r g (m1,m2) (mi,Q) ~ t o ^ ^ ^ (0,0) 

^ T ^ T f " (m1,min{m1,m2}) (mi,0) ( 0 , 0 ) _ (0,0) 
" ^ T ^ T " (mud) (mi,0)— (0,0) ~ J o W ~ 

x e r ; ' (mi,d) (mi,Q) (0，^ (0,0) 
T ^ T f " (d,d) (0,0) (0,d) (0,0) 
" ^ T e T f " (0,^) (Q,Q) ~ ( o ^ (0,0) 

X G ^ (o，o) (0,0) ( M ) (o，o) 

Table 5.2: Tabular representation of u^(x, k) when ci > c } 

5.4 Concluding Remarks 

In this chapter we have studied stochastic two-machine flowshops with both inter-

nal and external buffers of finite sizes. We approximated the original stochastic 

problem by a much easier deterministic problem, and then constructed asymp-

totic optimal feedback controls for the original problem based on the explicit 

optimal feedback control for the deterministic problem obtained in Chapter 4. 

We introduce a switching manifold (in the case when the average capacity of the 

first machine exceeds that of the second), whose purpose is to increase the inven-

tory in the internal buffer when it is too close to being empty. This reduced the 

amount of capacity loss. 

One of the main assumptions in this chapter is Assumption 5.2, i.e., the down-

stream machine is no faster than the upstream one. The opposite case is also very 
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interesting in both theory and practice. However, this case will cause great com-

plication even in deterministic situation [49 . 

Numerical evaluation of the constructed feedback controls will be conducted 

in next chapter to evaluate their performance. 

Finally, we mention that the results in Chapters 4 and 5 are presented in 

16, 17；. 

r 

I 



Chapter 6 

Computational Evaluation of 

Hierarchical Controls 

6.1 Introduction 

The purpose of this chapter is to make a computational evaluation of the hi-

erarchical controls by comparing them to the solutions obtained by some other 

heuristic approaches published in the literature. For this purpose, we select man-

ufacturing systems with two failure-prone machines in tandem with an objective 

of minimizing a convex, piecewise-linear cost of inventories/shortages discounted 

over an infinite horizon studied in the last chapter. This system is relatively 

simple for computational evaluation and is, at the same time, sufficiently rich for 

126 
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possible applications. This is because, such a system has an internal buffer which 

must contain nonnegative inventories and the sizes of both internal and exter-

nal buffers must be finite. The state constraint represents a typical complexity 

present in systems with machines in tandem. 

We shall compare the performance of our constructed control in the last chap-

ter, denoted as Hierarchical Control (HC) to a stochastic extension of Kanban 

Control (KC) developed in Sethi et al. [41] and Two Boundary Control (TBC) 

developed in van Ryzin, Lou and Gershwin [59] and Lou and Van Ryzin [35]. It 

turns out that TBC and KC can be shown also to be asymptotically optimal, 

under the conditions assumed in this chapter. 

All of these policies are specified in terms of a number of parameters. KC 

requires two parameters, which can be termed thresholds in the sense of Kimemia 

and Gershwin [32]. HC and TBC are defined in terms of two and three parameters, ‘ 
I 

respectively; strictly speaking, these cannot be called thresholds. Rather they 

are simplified turnpike policies, where a turnpike is an attractor for the optimal 

trajectories emanating from different initial states. 

We will show by an extensive numerically study that HC performs no worse 

than KC and TBC, although HC is the simplest policy among the three to con-

struct, understand, and implement. 

The plan of this chapter is as follows. In Section 6.2, we state the optimal 
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control problem for a two-machine flowshop and construct asymptotically optimal 

feedback controls obtained in the previous chapter, and define Kanban and Two 

Boundary Control Policies. Section 6.3 carries out the computational experiments 

for these control policies. In Section 6.4, we compare HC with KC and TBC. 

Finally, Section 6.5 concludes the chapter. 

‘I 

6.2 The Problem and Control Policies under Con-

sideration 

6.2.1 The Problem 

In this chapter, we consider the following original problem V^ and limiting prob-

lem V studied in the last chapter: 
I 

‘ 

minimize J^(x, k, u(-)) = E f^ e~^^(ciXi(t) + c^x^it) + C2X2(t))dt ( 

xi{t) 二 ui{t) - u2{t), xi(0) 二 xi, 

V ' ： subject to j i 2 ( O = W 2 ( 0 _ c / , a:2(0) = ^2, 

u(.) G ^^(x), 
\ 

value function ;̂̂ (x, k) = infu(.)eje(x) J^(x, k, u(-)), 
、 
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‘ 

minimize J(x ,w(- ) ) = J^ e- ' ' {c iXi{t) + c txt { t ) + c^X2{t))dt 

xi{t) = wi{t) - w2{t), xi{0) 二 xi, 

， : subject to x2{t) = w2{t) - d, x2(O) = X2, 

w(.) G 如 ) ， 
V 

value function i;(x) = inf"w(.)g^) J(x, w(-)). 

For convenience in exposition, we limit the cost coefficients in the objective 

functional and the random process k(£,t) to satisfy the following: 

Assumption 6.1. ci < c} and cf > 0. 

Assumption 6.2. The capacity process k(£,.) is a Markov chain over four states 

{(m1,m2), (mi, 0), (0, m2), (0, 0)} represented by the generator 

/ \ 
-2A A A 0 

jLi - (A + ju) 0 A 
Q^^e-'Q = 6-' , 

jji 0 -(A + /i) A 

乂 0 fi 11 - 2 f i � 

with m\ and m2 denoting machines' capacities of machines Mi and M2, respec-

tively, and with the repair rate e_i/i > 0 and the failure rate e~^X > 0 for each 

machine. Moreover, Q is irreducible and satisfies 
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min{^, A} = 1. 

Assumption 6.3. ai > a] > d, where «1 = ^ and a] = f ^ are the average 

capacities of machines Mi and M�,respectively. 

Remark 6.1. The equilibrium distribution u of the above Q is 

jJ? XjJi Xfj, 入2 

^ = ( I X T ^ ’ { X T 7 ^ , ^ X T ^ , I^VJ^^' 

Let us now define various control policies that we shall use for our computa-

tional experiments. 
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6.2.2 Hierarchical Control (HC) 

This is the control of type given in equations (5.6) and (5.9) with {£3,0} replaced 

by some { � ( £ ) , � ( £ ) } with � ( £ ) > 0 and 6>2(£) > 0, and defined as follows: 

( 

(0,¾), i f x G T i , 

(min{A:1,A;2}, k2), if X G r2, 

{k1,k2), if X G Ts, 

(A:1,min{A:1,A:2}), if X G r4, 

u//(x,k) = {kumm{kuk2,d}), i f x G Ts, (6.1) 

(A;i,min{A;2,^0), if x G Fe, 

(min{A;i,A;2,^^}, m1n{A:2, d}), if x G Fj, 

(0, min{A:2, d}), if X G Fs, 

(0,0), i fxGT9, 
k I 

where, as shown in Fig. 6.1, 
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â i 
k 

b_i 

Ti 
< ~ r s 

To � 9 
^ ~ < ~ rv = 剛 , _ 

Ts 

< ~ re 
V4 

^ . L ^ . 2 

0 r5 = (O,^2(e)) 2̂ 

Figure 6.1: Switching manifolds and turnpike point for HC 
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ri = {[xi,X2)\Oi{e) < a:i < h1,x2 < O2[e)}, 

r2 = {(x1,x2)|x1 = O1{e),x2 < O2{e)}, 

r3 = {(a:i,a:2)|O < Xi < Oi{e),X2 < 6^2(£)}, 

r4 = {{XI,X2)\XI == O,a:2 < 〜 ( £ ) } ， 

Fs = {{xi,X2)\xi = 0,a:2 二 〜⑷}， 

Fe = {(a:1,̂ 2)|O < xi < O1{e),x2 = O2{e)}, 

Fy = {{xi,X2)\xi = d1{e),X2 = O2{e)}, 

Fg = {{xi,X2)\Oi{e) < Xi < b1,x2 = O2{e)}, 

r9 = {(a:1,x2)|O < a:i < 61,6>2(e) < â 2 < ^ } , 

with (^i(e), ^2(^)) ~^ (0, 0) as £ ~> 0. We have shown in the last chapter that this 

control policy is asymptotically optimal. 

Next we define two other types of control policies for comparison purposes. 

6.2.3 Kanban Control (KC) 

Kanban control policy is a threshold type policy. It is defined as follows for some 

{O1{e),O2[e)] with 6>i(e) > 0 and 6>2(£) > 0. 
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‘ 

(0,¾), i f x e r ; , 

(min{A;i,A;2},^), if x G 厂2, 

[h,k2), if X G r^, 

(A;1,min{A:1,A:2}), if X G r ^ 

(A;1,min{A;1,A;2, d})^ if X G Fg, 
UiKx,k)=<^ (6.2) ] 

{k1,mm{k2,d}), if X G Fg, 

(min{A:i,A^,G?}，min{A:2,c/}), if x G Fj, 

(0, min{A;2, d}), if X G Pg, 

(0,0), i f x e n , 

(A:i,0), if X G r;o, 
、 

where, as shown in Fig. 6.2, 
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3̂1 
A 

^ 

n 
r; 

^ ~ r ; 

r； , 7 二 剛 , 嚇 £ ^ 

p/ p/ 1 3 1 10 

— r “ 

^ u . . 
0 r'5 = _ e ) ) ^2 

Figure 6.2: Switching manifolds and threshold values for KC 
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ri = {{xi,X2)\Ox{e) < xi < h1,x2 < O2{e)}, 

r'2 = {{Xi,X2)\Xi = O1[e),X2 < O2[e)}, 

r^ = {(x1,x2)|0 < xi < O1{e),x2 < O2{e)}, 

r4 = {(x1,x2)|x1 = 0,a:2 < O2{e)], 

r'5 = {{xi,X2)\xi = O,X2 = O2[e)}, 

r^ = {(x1,x2)|0 < xi < O1[e),x2 = O2{e)}, 

r^ 二 {(x1,x2)|a::1 = 6^(£),;r2 = O2{e)}, 

Fg = {[xi,X2){Oi{e) < ^1 < h1,x2 = O2{e)}, 

r̂ 9 = {{xi,x2)l0i{e) < xi < b1,O2{e) < ^2 < 62}, 

rio = {(3:1,̂ 2)|O < xi < 6>i(e)A(d < X2 < 62}. 

The Kanban control policy is an adaptation of Just-In-Time (JIT) method 

to our stochastic problem. Indeed Kanban policy reduces to conventional JIT 

when Oi{e) = ^2(s) = 0. But given unreliable machines, one can lower the cost by 

selecting nonnegative values for the threshold inventory levels Oi(e) and ^2(己).This 

is because positive inventory levels hedge against machine breakdowns. While the 

general idea seems to have been around, the formula (6.2) appears in Sethi et al. 

'41] for the first time. It should be noted that under Assumptions 6.1 - 6.3, KC 

is also asymptotically optimal. 
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We can state the following results. 

Theorem 6.1. Kanban control is asymptotically optimalfor ai > a2 and Ci < cJ, 

provided Oi[e) = C\e^ and ^2(s) = ^2^^ for some constants C\ > 0 and C2 > 0. 

Proof, see [50] for the proof. 

Remark 6.2. Sethi and Zhou [50] also proved that Kanban control is not a s y m p -

t o t i c a l l y o p t i m a l for a^ > « 2 a n d Ci > cJ e v e n if Oi{e) 二 C i £ 3 a n d O2{e) — C2S^ 

for some Ci > 0 and C2 > 0. 

6.2.4 Two-Boundary Control (TBC) 

The Two Boundary Control policy was proposed by van Ryzin, Lou and Gershwin 

59] and Lou and van Ryzin [35] as a heuristic approximation of the structure of 

the optimal switching manifolds. It is defined as follows for some {&(£), O2{e), ^ ( e ) } , 

with 0 < Oi{e) < O2,{e) and ^2(s) > 0, under an additional assumption that 

ni2 > 2d.. 
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, 
(0,¾), i f x e r ' / u n , 

(^1,¾), ifxer《， 

(A:1,min{A;1,A;2}), if X G r'4, 

{ k 1 , m m { k 1 , k 2 , d } ) , if X G r'5', 

(A ;1 ,min {A :2 ,<^}) , if X G Fg, 

(min{A;1,A;2, d}^ min{A:2, G?}), if X G r'7, 
UT(x ,k )= 

( O , m i n { A ; 2 , 4 ) , i f x G T'i, 

(0,0), i f x G U ' , 

(^i,o), i fxer ' /o , 

(min{A:i,o?}, mir1{A;2, h + {2d — k2)sgn{k1)}), if x G 17” 

{mm{h ,d ] ,0 ) , i f x G T'|̂ , 

(min{A;1,A;2}, h), if X G r'/3, 
(6.3) 

where sgn(A:i) = 1 if ki > 0, sgn(A;i) 二 0 if ki = 0, and as shown in Fig. 6.3, 
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3̂1 
A 

^ 

IT 
< ~ r g 

(j3(g),^1(g)+^2(g) — Os(e)) ^9 

rff ^J^Z^\r'2' 
11 ^ \ ^ ' — 剛 , 嚇 

r'3' ^ ^ _ F " 
p// __^. ^ ^ 1 12 

z ^ � \ _ _ . . . 
f ^ ^ 2 

0 r'5' = _ e ) ) ^ 

Figure 6.3: Switching manifolds and defining parameters for TBC 
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rr = { ( 〜 工 2 騰 ） < ^1 < buX2 < 〜⑷}， 

r�={(xi,x2)|6>i(^) < Xi < 6s{e), X2 < O2{e), Xi + ^2 > Oi{e) + O2{e)}, 

rg = {(xi, X2)\0 < xi < Os{e), X2 < 6>2(e), xi + x2 < � ( £ ) + O2{e)}, 

r: = {(x1,x2)|x1 = 0,x2 < ^2(e)}, 
Fs = {(x1,x2)|x1 二 0,a;2 = 秘 ) }， 

r'6' = {(x1,x2)|O < xi < ^i(e),X2 二 O2{e)}, 

r? = {{xux2)\x, = 9,{e),X2 = O2{e)}, 

T'i = {{xux2)]0i{e) < x^ < h1,x2 = O2{e)}, 

V'l = {(x1,x2)|O < j：! < 61,6>2(e) < 3̂ 2 < K ^1 + 工2 > Oi{e) + 6>2(e)}, 

l7o = { ( x i , X2)xx > 0 , e2{e) < â 2 < ^ , ^1 + 工2 < 0^[e) + 6>2(e)}, 

r'/i 二 {(:ri,X2)|^i(e) < 工1 < 0^{e),0,[e) + O2{e) 一 0^{e) < x^ < ^⑷， 

工 1 + $ 2 二 6 > 1 ( £ ) + 6>2(£)}, 

r;'2 = {(^1, X2)\xi > 0, a;2 < O2{e), Xi + 0：2 = 0^{e) + e2{e)), 

r'/3 = {{XUX2)\X, = 6̂ 3(̂ 0,̂  < 嫩 + 2̂(e) — 03(e)}. 

Remark 6.3. Samaratunga, Sethi and Zhou [38] merge the switching manifolds 

r^ and r'/3 into F̂ ^ and use Ur = (¾ ,¾) as the control policy. It should be noted 

that this control will not be admissible when machine Mi is down, machine M2 

is up, and Xi = 0. 
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If 没1(£),^(£),没3(£) ~> 0 as e ~^ 0, then TBC turns out to be asymptotically 

optimal under Assumptions 6.1 - 6.3 and m? > 2d [59, 35]. Note also that TBC 

is defined in Lou and van Ryzin [35] only under these assumptions. 

6.2.5 Similarities and Differences between HC, KC, and 

TBC 

Before commencing our computational experiments, let us pause for a moment to 

briefly examine differences and similarities for the policies under consideration. 

In each of these policies, the idea is to get fairly quickly to a desirable point in 

the state space and then stay close to it thereafter. This point can be called a 

turnpike or a hedging point] see Haurie and van Delft [26] for further details. How 

we choose this point in each of the three policies will be described shortly. The 

structural difference between the three polices is the ways to get to the turnpike. 

The difference between HC and KC is that the switching manifold Xi = Oi[e) in 

KC is applicable in HC only in the region x2 < O2[e). Note that the manifold in 

HC arises from the consideration of avoiding the capacity loss incurred wherever 

^1 = 0. The presence of the manifold decreases the occupancy measure of Xi = 0. 

The manifold Xi = Oi[e) in KC, on the other hand, arises from the very local 

nature of a threshold type policy, which it is by definition. That is, whenever Xi{t) 

is below (above) the threshold 氏⑷，i — 1 or 2, the system must behave in a way 
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to increase (decrease) it. Because of this reason, even when X2{t) is large, machine 

Ml will produce when Xi{t) < Oi{t). Clearly, a hedge is not needed when we have 

a large positive surplus. Machine Mi in HC, on the other hand, will produce 

only when Xi{t) < 6'i(e), provided X2{t) < O2{e). It is clear that HC is not a 

threshold type policy; it is simply a two-parameter policy dictated from capacity 

loss considerations. TBC is also not of threshold type. It is a three parameter 

policy, whose first two parameters define the hedging points. An additional degree 

of freedom is needed in defining TBC to more closely approximate the optimal 

switching manifolds when both machines are up. It should be noted that even 

with the additional parameter O3{e)̂  TBC is not a generalization of HC. With 

^3(5) = Oi{e), it does, however, reduce to HC in all but the triangular region 

{x2 > O2{e)} n {0 < X,} n {xi + :r2 < Oi{e) + <92(e)}. 

6.3 Computational Results 

Now, we use problem series P of van Ryzin, Lou and Gershwin [59] as our test 

data. Data representing the problem series P is given in Table 6.1. The sizes of 

both internal and external buffers are 50 for all problems Pl-P4. We also assume 

that z — 10.0, in order to be compatible with van Ryzin et aL [59]. This problem 

series uses a discount rate of 10%, i.e., p = 0.1. 

Since HC, KC, or TBC are not optimal, one would like to imagine each of them 



Chapter 6. Computational Evaluation of Hierarchical Controls 143 

Problem Name A fi mi m2 d Ci+ c2+ C2 — 
P1 一 1.0 5.0— 2.0 2.0 “ 1.0 1.0 2.0 10.0 
P2 一 1.0 2.0 2.0 2.0 1.0 1.0 ~ Y ^ lQ.Q 
P3 1.0 1 .5 T F 2.0 T o 1.0 2.0 10.0 

一 P4 1.0 1.2 2.0 2.0 1.0 1.0 2.0 10.0 

Note: Both machines have identical parameters A, ^ and m. 
Table 6.1: Problem series P for the two-machine case 

to be optimal within a certain class of feedback policies. This is unfortunately 

not possible in the two-machine case with the discounted cost criterion, since we 

cannot obtain parameters of these policies in a way so that they are optimal for 

every given initial state. 

Recognizing the complication, in our empirical studies, we therefore apply 

two different criteria developed by Samaratunga, Sethi and Zhou [38] to obtain 

parameter values for HC, KC, and TBC for comparison purposes. The first 

criterion is to choose an initial state and find the minimum cost for each of the 

three policies beginning with that state. The parameter values that accomplish 

this will be known as the best such for the given initial state. The second criterion 

is to compute the costs of various policies defined by the best parameters for the 

initial state (0,0). 

We perform our simulations on a SUN-Station SPARCclassic with an event-

driven simulator designed by us specifically for flowshop production. Simulation 
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runs are all started where the machines are up and idle. 100 replications with 

different random seeds are used to estimate the sample means and 95% confidence 

intervals. 

We now describe the procedures used to compute Oi(e) for HC, KC, and 

TBC under the first criterion. For the HC policy as well as the KC policy, we 

carry out a two dimensional downhill simplex search to obtain the best values for 

(^i(s), ^2(̂ )̂)- Refer to Simmons [53] for an introduction to such numerical solu-

tion approaches. For TBC, we use a three dimensional downhill simplex method 

to search for the three parameters Oi(e), O2(e), and O3(e) starting with Oi(s) and 

没2(£) as those obtained for HC and Os(e) = Oi(e) + ^ (e ) . 

We compare HC with the other two policies, namely, KC, and TBC, as well as 

study their asymptotic behavior as e decreases. For this purpose we select Prob-

lem P1. Recall that the qualitative similarities and differences in these policies 

have already been discussed in Section 6.2. 

In Table 6.2, we select different initial states and use the first criterion to find 

the best parameter values for different initial states for each of HC, KC, and TBC; 

Table 6.3 provides the ratios of costs reported in Table 6.2. Table 6.4 uses the 

second criterion so that the parameter values used for all different initial states 

are the ones that appear in Table 6.2 in the row with the initial state (0,0). 

In Table 6.5, we obtain costs of HC for Problems Pl-P4 with e = 10,1, and 
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Initial Control Policy 
State HC KC TBC 

(xi, X2) Cost Parameters Cost Parameters Cost Parameters 
(0,50) - 801.34 1 . 0 0 , 1 . 0 0 ) 801.34 "X^O,1.00) 8 0 1 ^ (Q.00,1.00,0.Q0) 
(0,20) - 228.38 "72.51,1.52) ~~235.51 (0.0Q,3.Q0) 2 2 6 ^ (2.21,2.01,3.71) 
(0,10) - 74.20 "tl.0Q,0.5Q) 78.83 (Q.0Q,3.22) 7 3 ^ (2.36,1.76,4.38) 

(0,5) - 23.53 ~^.20,2.Q1) 一23.90 (2.29,1.81) 22^iT (2.58,1.55,4.72) 
(0,0) 11.80 (2.75,1.58) —11.80 (2.75,1.58) l l T f T (2.65,1.65,4.20) 

(0,-5) - 193.24 ~|2.1Q,1.00) ~ l93 .24 (2.1Q,l.QQ) 1 9 2 7 ^ (2.50,1.81,4.87) 
(0,-10) - 540.66 ~^.25,1.0Q) ~~540.66 (3.25,1.00) 539.08 (3.29,2.02,4.89) 
(0,-20) 1446.03 ~^.50,1.5Q) ^446.03 (2.50,1.50) 1 4 4 5 ^ (5.77,1.12,6.19) 
(20,20) 416.37 ~^.OQ,l.QO) 416.37 (0.75,2.50) 4 1 5 ^ (2.48,2.15,3.19) 
(10,10) 150.05 ~(3.22,1.61) 150.05 (3.22,1.60) 149.88 (2.23,2.22,2.24) 

(5,5) 43.95 (2.70,1.64) 43.95 (2.49,1.79) 43.36 (2.57,1.82,2.98) 
(5,-5) - 177.40 ~^.25,1.0Q) 177.40 (2.25,1.00) 176.45 (2.98,2.04,5.00) 

(10,-10) - 526.92 (2.25,0.54) "^26.92 (2.25,0.54) 5 2 6 ^ (2.0Q,1.0Q,2.Q0) 
(2Q,-20) 1470.13 (2.00,1.00j 1470.13 (2.00，1.00j 1470.13 (2.00,0.00,2.00j 

Note: Simulation relative error < ± 2%, Confidence level = 95%. Comparison is 
carried out for the same machine failure breakdown sample paths for all policies. 

Table 6.2: Comparison of control policies with Criteria I 

0.1. 

6.4 Comparison of HC with Other Polices 

In this section, we analyze these computational results and compare HC with KC 

and TBC. 

HC vs. T B C 

From Tables 6.2, 6.3 and 6.4, we see that the costs of HC and TBC are quite 
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Initial State Cost Ratio 
(ri rô  K ^ ~ ~ T M £ ~ 
l^i,^2j ^ Hc 

(0,50) 1.0000 1.0000 
(0,20) 1.0312 0.9934 
(0,10) 1.0624 0.9954 
(0,5) 1.0157 0.9524 

(Q,Q) 1.0000 np.9975 
(0,-5，1.0000 0.9971 

(Q,-lQ) l.QQQQ 0.9971 
(0,-2Q) l.QOQQ 0.9996 
(20,20) 1.0000 0.9981 
(10,10) 1.0000 "5.9989 

(5,5) 1.0000 0.9866 
(5,-57" 1.0000 "5.9946 

(lQ,-10) l.OQQO 0.9987 
(20,-20) l.QOQQ 1.0000 

Table 6.3: Cost ratios corresponding to Table 6.2 
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Initial Control Policy 
State Cost Cost Ratio 

(x1,x2) HC| KC| TBC 锅 | 撒 

(0,50) 801.44 826.51 801.44— 1.0313 1.0000 
(0,20) 228.73 247.73 227.3l" 1.0631 l 9 9 3 8 
(0,10) 77.72 ~~~^.11 75.58— 1.1080 l 9 7 2 5 

(0,5) — 25.20 25.49 24.01— 1.0115 "^9528 
(0,0) 11.80 —11.80 1 1 . ^ l.OQQQ 0.9975 

(0,-5) - 195.50 " T 9 5 . 5 0 195.67 1.0000 1.0009 
(Q,-lQ) —541.06 541.06 541.14 1.0000 X0QQ1 
(Q,-20) 1446.50 1446T^ 1446.94" 1.QQQ0 1.0003 
(20,20) — 416.85 ~I l6 .85 416.93 1.0000 1.0002 
(10,10) 151.53 " T 5 1 . 5 3 151.60— 1.0000 1.0005 

(5,5) - 44.21 44.21 44.07 1.0000 0.9968 
(5,-5) - 181.47 181.47 185.43 1.0000 1.0218 

(lQ,-10) 530.93 530.93 531.17 1.QQ00 1.0005 
(20,-2Q) 1472.83 1472.83 1477.32 1.0000 1.0030 

Note: Simulation relative error < 士 T k , Confidence level = 95%. Comparison is 
carried out for the same machine failure breakdown sample paths. Therefore, the 
relative comparison is free of statistical uncertainty. The constant thresholds are 
obtained from the (0,0) initial inventory row of Table 6.2. 

Table 6.4: Comparison of control policies with Criterion II 

Problem Control e lim 
Name Policy 10.0 1.0 0.1 e ~> 0 

P1 HC “ 61.62 l A l ^ 4.11 0 
P2 “ HC 294.68 27.31 19.89 ~ ~ 0 ~ ~ 
P3 HC 527.51 62.12 21.45 ~ ~ 0 ~ ~ 
P4 HC 725.23 85.28 30.25 0 

Note: Simulation relative error < 士 20/o, Confidence level = 95%. 

Table 6.5: Asymptotic behavior with respect to e of costs of HC with initial 
x = (0,0) and k = (0,2). 
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close to one another. A more detailed comparison reveals that sometimes HC is 

slightly better and sometimes it is the other way around. Both of these situations 

are theoretically possible. Of course, if initial X2 < O2 for HC (which covers the 

situation of X2 < 0), the trajectory under HC will stay in the region X2 < O2. In 

this case, as indicated in Section 6.2, TBC can duplicate the performance of HC 

by setting its Oi and O2 as those of HC and its 83 = Oi of HC. However, with three 

policy parameters to choose, provided the parameter search procedure is accurate, 

the cost of TBC cannot be larger than that of HC. One can see this in Table 6.2 

for {x1,x2) = (0,0), (0, - 5 ) , (0, - 10 ) , (0, - 20 ) , (5, - 5 ) , (10, - 1 0 ) and (20,-20). It 

is also important to point out that the best value of O2 for HC obtained in Table 

6.2 depends on the initial state {x1^x2). Therefore, the relative performance of 

HC and TBC cannot be decided a priori when X2 > 0. 

While costs of HC and TBC are not significantly different, it should be em-

phasized that HC is a much simpler policy than TBC is, with regard to the 

computation of policy parameters as well as to their implementation. When it 

comes to implementation, both HC and TBC are technically not difficult to imple-

ment. However, TBC given in (6.3) is quite complicated to understand especially 

along the 45�manifold in Fig. 6.3, whereas HC does not have this complication. 

Moreover, it should be noted as in Buzacott and Shantikumar [8] that the lack of 

understanding of a control policy by the operator may at times outweigh the ben-
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efits that could be obtained by implementing a more optimal complicated policy 

over a less optimal simpler policy. 

Finally, the construction of TBC in Section 6.2 requires an additional assump-

tion, rri2 > 2d, not needed for HC. Moreover, HC can be easily defined in cases 

when some of the assumptions made in this chapter do not hold , see Chapter 5. 

H C vs. K C 

Let us now compare HC and KC in detail. Of course, if the initial state is in 

a shortage situation {x2 < 0), then HC and KC must have identical costs. This 

can be easily seen in Table 6.2 or Table 6.4 when initial {x1,x2) = (0, -5), (0, 

-10), (0, -20), (5，-5), (10, -10) and (20, -20). 

On the other hand, if the initial surplus is positive, cost of HC is either the 

same as or slightly smaller than the cost of KC, as should be expected. This is 

because, KC being a threshold type policy, the system approaches Oi even when 

there is large positive surplus, implying higher inventory costs. In Tables 6.2, 6.3 

and 6.4, we can see this in rows with initial (a î, X2) 二 (0, 5), (0, 10), (0, 20), and 

(20, 20). Moreover, by the same argument the values of ^i for KC must not be 

larger than those for HC in Table 6.2. Indeed, in cases with large positive surplus, 

the value of Oi for KC must be smaller than that for HC. Furthermore, in these 

cases with positive surplus, the cost differences in Table 6.4 must be larger than 
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those in Table 6.2, since Table 6.4 uses hedging point parameters that are best 

for initial (xi, X2) = (0,0). These parameters are the same for HC and KC. Thus, 

the system with an initial surplus has higher inventories in the internal buffer 

with KC than with HC. 

We also note that if the surplus is very large, then KC in order to achieve 

lower inventory costs sets Oi = 0, with the consequence that its cost is the same 

as that for HC. For example, this happens when the initial (x1,x2) = (0,50); see 

Table 6.2. As should be expected, the difference in cost for initial (x1,x2) = (0,50) 

in Table 6.4 is quite large compared to the corresponding difference in Table 6.2. 

Asymptotic Behavior of HC 

Before summarizing the chapter in the next section, let us make some impor-

tant remarks regarding asymptotic optimality. The main intuition behind the 

asymptotic optimality of HC is that these policies try to keep the system away 

from Xi = 0 boundary, when X2 < 0, without letting Xi get too big. This is so 

because with ai > «2 assumed in the chapter, the optimal solution of the limiting 

problem V stays on Xi = 0, once it gets there. This is not the case, however, 

when «1 < «2 and we do not therefore know how to construct HC as summarized 

in Chapter 5. 

It is also clear from the above that asymptotic optimal controls are not unique. 
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Moreover, the theory provides only the order of the error bounds. Generally 

speaking, the higher the order,the faster the convergence, and the better the 

policy. The main benefit of the asymptotic analysis lies in the identification of 

the essential structural requirement for asymptotic optimality, as has been done 

in Section 6.2 for the problem under consideration. Beyond this, we must resort to 

computational experiments for further evaluation of different asymptotic optimal 

policies. 

In Table 6.5, we have carried out a computational asymptotic analysis as e 

decreases. Since the initial condition is assumed to be (0,0), the deterministic 

value function is zero, to which costs of HC will converge as z ~> 0. The results 

provide some idea about the rate at which HC are converging to the value 0 as 

e ^ 0. 

6.5 Concluding Remarks 

In this chapter, we have compared the performance of hierarchical control policies 

to some other existing control policies in the literature in the context of two-

machine flowshops with unreliable machines. 

We have shown that the hierarchical controls perform as well as or better 

than Kanban controls. There does not appear to be a significant difference in the 

costs of hierarchical controls and two-boundary controls. Moreover, hierarchical 
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controls are simpler to construct, to understand, and perhaps to implement than 

are two boundary controls. More importantly, however, the additional degree of 

freedom in defining TBC does not provide much of an advantage, and that two 

parameters defining HC are in most cases sufficient to construct effective policies 

in practice. 

Finally, we should emphasize that it is not difficult to construct hierarchical 

controls for larger systems. We have chosen to deal with a two-machine system 

because of simplicity in exposition. 



Chapter 7 

Conclusions and Future Research 

In this thesis, we have considered the cost-minimizing manufacturing systems with 

stochastic discrete events. In particular, the rates at which production machines 

break down and get repaired are much higher than the rate of discounting costs. 

The sizes of both internal and external buffers are finite. We have used the 

hierarchical control approach to study the open-loop and feedback production 

planning for the manufacturing systems. 

In what follows we briefly review the main results that have been obtained. In 

Chapter 3, we have dealt with the open-loop production planning for stochastic 

two-machine flowshops with finite buffers. The methodology is based on the 

state constraint domain approximation and weak-Lipschitz property developed in 

this chapter. A deterministic limiting problem in which the stochastic machines 

153 
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capacities are replaced by their mean capacities is introduced. We have then 

shown that the value function of the original problem is close enough to that 

of the limiting problem as the rate of change in machines' states approaches 

is very large. Moreover, open-loop production policies for the original problem 

have been explicitly constructed from optimal or near-optimal policies of the 

limiting problem in a way which guarantees their asymptotic optimality, and 

the error estimate for the constructed policies has been obtained. Algorithms of 

constructing these polices have been presented. 

The controls constructed in Chapter 3 are not feedback as they respond neither 

to the surplus nor to the inventory level except when the internal buffer is full or 

empty or the external bufFer is full. However, this kind of controls, which may 

be called partially open-loop controls, are of theoretical importance in deriving 

one of the main results, namely Theorem 3.4，which states how close to one 

another the original and the limiting problems are. With regards to practical 

implementation, however, both intuition and simulation suggest that feedback 

controls would perform better than our partially open-loop controls, especially 

when there is uncertainty present in the system. So in the rest of this thesis, we 

studied the feedback controls for the case of two-machine flowshop with linear 

inventory/shortage cost. 

As mentioned earlier, the hierarchical control approach approximates the orig-
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inal stochastic problem by a much easier deterministic problem. In Chapter 4, 

we have first obtained explicit optimal feedback controls for the deterministic 

problem on a rigourous basis. Based on it, we have then analytically constructed 

suitable feedback controls for the original stochastic problem and proved their 

asymptotic optimality in Chapter 5. 

The hierarchical planning approach is further evaluated computationally in 

Chapter 6, where the constructed policy is compared with other heuristic policies, 

Kanban control policy and two-boundary control policy, existing in the literature. 

We have shown that the hierarchical controls perform as well or better than Kan-

ban controls, and hierarchical controls are simpler to construct, to understand, 

and perhaps to implement than are two boundary controls. 

The remainder of this chapter is devoted to indicating some important open 

problems for my future research. 

It is first worth pointing out that unlike the previous methods that work specif-

ically for some special problems [45, 47, 48], the constraint domain approximation 

method is more general and may adapt to iY-machine tandem systems and even 

job shops as in Sethi and Zhou [42] with finite buffers to obtain near-optimal 

open-loop controls. 

Another interesting case is that the machines capacity process depends on 

the production rates. Soner [55] and Sethi and Zhang [43] studied this case 
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for unconstrained system, and obtained asymptotic results. It remains an open 

problem to handle the control-dependent capacity process with constraints on 

inventory processes. 

Note that in Chapters 4, 5，and 6, we considered the two-machine flowshop 

with linear inventory/backlog cost. It remains an outstanding open problem to 

investigate the production planning for the two-machine flowshop, or even general 

N-machine jobshop, with general inventory/backlog cost. 

It should also be noted that construction of asymptotic optimal feedback con-

trols for general dynamic stochastic flowshops and jobshops remains a wide open 

research area. We are able to treat simple two-machine flowshops, since we were 

able to explicitly solve the limiting problem. What one would like to have is a 

general methodology that can construct provably asymptotic optimal feedback 

controls, without requiring a detailed characterization of the optimal feedback 

controls of the limiting problems. It should be indicated that such a methodol-

ogy is available for open loop controls (see [45]). This methodology, which is based 

on the Lipschitz property of open loop controls, cannot be extended, however, to 

feedback controls that are not likely to be Lipschitz. 

Finally, we would like to mention that Zhou and Sethi [62] consider the aggre-

gate systems, which is a stochastic extension of the classical HMMS model [29], 

with nonlinear dynamics and non-separable cost. They use a maximum principle 
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approach in order to construct asymptotic optimal open-loop controls. It would 

be interesting to consider non-separable cost of surplus and production and obtain 

asymptotic optimal feedback controls. 
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