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Abstract 

In this thesis, we focus on a map-based decision-support system dealing with 
routing and delivery planning in Hong Kong. The system provides a digital map-
based interface, data-management and algorithms for delivery planning. 

Delivery planning is a difficult problem in Hong Kong. High variation of 
the traffic conditions makes actual vehicle-travel-time hard to predict. Because of 
this, in this thesis, we propose one time-varying and one stochastic model to 
handle delivery planning in Hong Kong. The first one is the Time-varying 
Constrained Shortest Path (TCSP) and the second one is the Vehicle Routing 
Problem with Time Windows and Stochastic Travel Time (VRPTWST). 

TCSP differs from traditional shortest path in that the transit duration of 
an arc in the network is a flinction of time. This adjustment can reflect the traffic 
condition at particular point of time and take this factor into consideration in 
evaluating the shortest path. One exact and one heuristic algorithm are proposed 
to solve the shortest path problem in a 2-level network. 

VRPTWST is another model considered in the thesis. It is similar to the 
deterministic Vehicle Routing Problem with Time Window (VRPTW). The only 
difference is that the travel time between two nodes is a stochastic variable in 
VRPTWST. A two-stage stochastic recourse model and an exact branch-and-cut 
algorithm are proposed to solve the problem. Furthermore, some side-heuristics 
are suggested to improve the efficiency of the algorithm. 
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At the end of the thesis, some implementation issues of our system are 
discussed. A study is made on some commercial computerized vehicle routing 
software in the market. 

< 
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摘要 

本篇論文集中硏究一套決策支援系統（decision-support s y s t e m )，此系統專 

門處理一些與香港有關的路徑找尋及運送計劃問題（routing & delivery 
planning problem)，此系統提供電子地圖介面、資料庫管理及一系列對運送 

計劃問題的計算解決方法。 

運送計劃問題於香港是一個難以解決的問題。高度變化的路面交通 

情況令到真正的行車時間難以推算，因此在本文中，我們將提出一隨時間 

變化（time-varying)及一隨機性(stochastic)的模型用以處理與香港有關的運 

送計劃問題。它們分別是：一）隨時間變化及有限制性的最短路徑問題 

(Time-varying Constrained Shortest Path Problem - TCSP)及二）有時限 1 生、 

隨機性行車時間的車輛路徑問題（V e h i c l e Routing Problem with Time 
Windows and Stochastic Travel Times - V R P T W S T ) � 

隨時間變化及有限制性的最短路徑問題(TCSP)與一般最短路徑問題 

是不相同的°其分別於在一個網絡裹，前者通過兩節點之間所需的時間 

(transit duration)是一個與時間相關的涵數（a function of time) ’而後者所需 

的時間卻是一個實數（a fixed value)�這個改動能夠將當時的路面交通情況 

從涵數中反映出來’從而將這因素考慮在計算最短路徑當中。我們將提出 

—-準確的算法（an exact algorithm)及一啓發性算法（a heuristic algorithm)去 

計算在一個兩層網絡裹的隨時間變化及有限制性的最短路徑問題。 

有時限性、隨機性行車時間的車輛路徑問題（VRPTWST)是另一個 

在本文中硏究的問題°在這問題中，兩節點之間的行車時間是一個隨機變 
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數（stochastic variable)而非一個實數。一個兩階段隨機求助模型(two-stage 

stochastic recourse model)及一個準確的支切算法（branch-and-cut algorithm) 
將被提出去解決這問題0再者，我們更進一步建議一些輔助啓發算法（side 

heuristics)去改善原有算法的效率。 

在本文尾部，我們將討論該系統的開發過程以及簡單探討一些在市 

面發售的車輛路徑計劃的軟件。 
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Chapter 1 

Introduction 

1.1 Motivation 
Transportation plays a very important role in the economy of many developed 
countries. From the statistics of Hong Kong Special Administrative Region, 
(HKSAR) China in 2000, transportation activities account for 21.6% of the 
HKSAR Gross Domestic Product (GDP), which is equivalent to more than 200 
billion Hong Kong dollars. Also, the contribution of transportation to the GDP 
has been increasing at a very high rate. Furthermore, the values listed here do not 
include the transportation activities of other service sectors. For example, 
manufacturers or retailers also require inbound and outbound logistics to support 
their daily operations even though these costs are not directly reflected in the 
proportion of transportation in the GDP. As commercial activities become global, 
logistics and transportation management cannot be neglected by any company in 
order to provide world-class service. The economic importance of transportation 
has motivated both private companies and academic researchers to use operation 
research and management science techniques to improve the efficiency of the 
transportation systems. 

Various modes of transportation exist: including air, rail, ship and motor 
vehicles. The research on transportation has investigated different issues in each 
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mode. For air and rail, the focus is on the efficiency of the schedule of crews [41 
and landing/dispatching control [6, 7，40, 65, 71]. Comprehensive surveys 
include [2] for airline crew scheduling and [17] for train routing and scheduling. 
For ships and motor vehicles, the focus is on a common problem - the efficient 
use of a fleet of vehicles that must make a number of stops to pick up orders 
and/or deliver passengers or products. This kind of problem is referred as Vehicle 
Routing Problem (VRP). There are a huge amount of literature addressing 
different issues of this kind of problems and numerous well-demonstrated 
algorithms have been proposed to solve such problems. Interested readers may 
refer to the surveys [3, 10, 30]. 

In this thesis, only the land transportation will be discussed. More 
specifically, we focus on a map-based decision support system for land 
distribution and delivery planning in Hong Kong. As mentioned before, 
transportation related activities account for a significant amount of the GDP in 
Hong Kong. Moreover, the future growth is also predicted be considerable as the 
People's Republic of China enter the World Trade Organization (WTO) in 
January 2002. More amounts of goods/commodities will be exported from the 
Pearl River Delta of China through Hong Kong's container terminals，further 
emphasizing the economic importance of logistics management. Another 
motivation of developing this system and investigating the delivery planning in 
Hong Kong is the transportation difficulties in Hong Kong. The high variation of 
traffic conditions between the peak/non-peak hours in the region creates a lot of 
deviations to the delivery planning. In the following few lines, we try to highlight 
some of the distribution difficulties in Hong Kong and mention some the decision 
support tools used in our system. 
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Hong Kong is one of the busiest cities in the world. The total number of 
vehicles registered up to December 2000 was 517 thousand. Since the physical 
area of Hong Kong is only 1,098 square kilometers ( W ) , it means that there are 
more than 450 vehicles per unit km^. The large number of vehicles leads to 
serious traffic congestion during the working and non-working hours. The 
congestion makes the actual vehicle-travel-time highly variable and difficult to 
predict. Usually, drivers or dispatchers are unable to adhere to the pre-assigned 
delivery routes due to traffic congestion problems. And eventually, this would 
lead to deviation from the original delivery plans and generate overtime costs or 
lower service levels due to late delivery. Traditional routing and scheduling 
techniques usually consider static situations. Such techniques may not be 
sufficient/suitable for the dynamic traffic environment like Hong Kong. 
Therefore, in our system, we considered another version of the routing and 
distribution planning such that the transit duration of a road segment is 
stochastic/time-dependent. This amendment to the general vehicle routing model 
is to take the variations of the traffic conditions into consideration. More 
precisely, two delivery planning models are considered. The first one is the 
Time-varying Constrained Shortest Path (TSCP) problem. The second one is the 
Vehicle Routing Problem with Time Window and Stochastic Travel Times 
(VRPTWST) problem. A literature review and the description of these two 
problems will be given in the next section. 

1.2 Literature Review 
Despite the dynamic nature of transportation networks, the majority of literature 
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on shortest path evaluation and vehicle routing problem has mainly concentrated 
on static problems. But as the dynamic information begins to play a more 
important role in decision-making problem, the focus of research has switched to 
dynamic and stochastic models in recent decades. Therefore, in this section, we 
classify problems into three types: Deterministic (static), stochastic (probabilistic) 
and dynamic (time-varying). In the following sub-sections, we will review the 
relevant research that has been reported in the literature about the two problems 
of the three different types. More detailed review will also be given in the section 
of introductory section in each chapter when we start to study the two problems. 

1.2.1 Shortest Path Problem 
A shortest path problem is stated as follows: Given a networkN = (V,A, c), where 
Vis the vertex set, A is the arc set, and c(x,y) is the transit cost for traversing the 
縦（X,力 G A, the problem is to find the cheapest path starting from a source 
vertex s to a sink vertex d. The shortest path problems that have been studied in 
the literature can be classified into three classes. The first class of problems 
consider static version that all the parameters all deterministic. The second class 
of problems are stochastic in that the transit cost/duration for traversing an arc is 
random. The last class of problems consider dynamic version such that the transit 
cost/duration for traversing an arc is a function varying over time. 

(1) Static problems 
Shortest path problems were widely studied in the last half-century. Dijsktra [24] 
used a label setting approach to solve a single-source shortest path problem with 
nonnegative transit cost. Bellman [8] solved the same problem with negative 
transit cost by identifying negative cycles. Afterwards, many literatures follow 
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Dijsktra's idea and propose algorithms with improved time complexity [33, 36, 
37]. Computational evaluations of these algorithms have been reported in [1, 14, 
43, 78]. 

(2) Stochastic problems 
The shortest path problem in stochastic, stationary networks is not as common as 
the previous static version. In this version, some of the parameters, such as transit 
cost or duration of the arc, follow a probability distribution (but not varying over 
time). Several papers have addressed the problem of this type. Frank [32] derived 
a closed form solution for the minimum travel time path through a stochastic, 
time-invariant network. A number of other works address similar problems [19, 
47, 57] with different probability distributions of the transit cost/duration, and to 
determine the least expected time paths by setting the arc cost/time to its expected 
value and solving its equivalent deterministic problem. Moreover, more works 
presents algorithms for determining optimal paths in stochastic, time-invariant 
networks where the objectives are represented by utility function of various forms 
[28, 70]. 

(3) Dynamic problems 
The dynamic shortest path problem is also called the time-varying shortest path 
problem. In this type of problem, the arc transit cost/duration is a deterministic 
flmction (discrete or continuous) of time so that the values vary with time. Cooke 
and Halsey [16] consider a discrete model in which the transit duration b{x,少，t) 
varies as a function of the departure time t at vertex x, where waiting at vertex is 
not allowed. Similar problems are addressed by Orda and Rom [63]. Cai, Kloks 
and Wong [12] considering the relaxation the waiting at the vertex be arbitrary or 
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bounded by a given value. Sha [69] extends the algorithm to solve the ^-shortest 
path problem. 

Other research addresses shortest path problems in Stochastic, Time-varying 
(STV) networks. The arc cost/duration of these networks is a stochastic variable 
varying over time. Therefore, in STV, one cannot simply use the approach 
described in the stochastic version and solve the deterministic problem, see [59, 
60]. 

1.2.2 Vehicle Routing Problem with Time Windows 
Vehicle Routing Problem with Time Windows (VRPTW) is a generalized model of 
Vehicle Routing Problem (VRP). The VRPTW can be described as follows: Given 
a network G = {Vo, A), where Vo is the set ofvertices and A is the set of arcs. The 
same single depot is denoted by vertex 0 and vertex n+\, which represent the 
starting and the ending point of the routes respectively. Vertex 1, ...，n denote the 
vertices to be served and V= Fq \ {0, n+\}. For each arc (i,j) e A, i 关 j, there is 

associated transit cost Cy and transit duration A set of vehicles K is located 
m the depot, and each of them possesses a limited capacity Q, k e K. At each 
曹 fex i € V, it requires service within a specific time window [a,, Z?,]. If service 
画t be made during the time window, it is referred as “hard” time window 
version. In contrast, if service can be made earlier or later than the time window, 
incurring penalty costs, it is referred to “soft” time-window version. The problem 
is to find a set of feasible vehicle-routes, originating and terminating at the single 
depot, with minimum traveling costs and penalty costs {if any). 

VRP and its variant problems have a lot of real-life applications. Therefore, 
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it arouses many interests of many researchers to study the problem. We divide the 
research reported in the literatures related to VRP into three categories: Static, 
stochastic and dynamic. The following sub-sections will review the problems of 
each kind. 

(1) On the static problems 
The static formulation is the most common model for the VRPTW. All the 
parameters in the formulation are deterministic. A lot of optimization-based and 
heuristic algorithms are proposed to solve the problem. They are generally 
divided into the following five classes: 
• Branch-and-bound approaches [22, 23, 74] 
• Cutting plane approaches [18, 29, 38, 46] 
• Column generation approaches [52, 56] 
• Heuristics and route improvement approaches [15, 31, 35, 51, 55, 62] 
_ Metaheuristics approaches [34, 64, 66，76] 

(2) On the stochastic problems 
When some of the parameters of the VRP are random, the problem is referred as 
Stochastic Vehicle Routing Problem (SVRP). One extension considers the 
demand at each vertex to be random. The problem is to find a set of prior routes 
and restocking policies (if any) with minimum expected costs. Restocking policy 
here means the location/stock-level for the vehicle returning to the depot for 
replenishment. Two frameworks are considered, namely, chance-constrained [50] 
and recourse [5，9, 25, 26, 27, 48]. 

Another extension investigates the problem that the transit duration between 
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any two vertices to be random. The problem is to find minimum expected travel 
costs without violating the duration limit of each route. Reported works of VRP 
with stochastic travel times are sparse. Only one paper [49] deals with this 
problem. Other related works include traveling salesman problem with 
probabilistic travel times [44, 53, 72；. 

(3) On the dynamic problems 
Dynamic vehicle routing models focus on a single snap-shot of data. These 

models may be used in real-time to solve dynamic problems, or to develop 
vehicle schedules over the course of the day using data that is (assumed) known 
in advance. Deterministic dynamic vehicle routing problems arise in two settings: 
time-dependent demands, and time-dependent travel times. 

Time-dependent demands appear generally when demand must be satisfied 
subject to specific time constraints. One case of this kind problem is the 
Inventory Routing Problem (IRP), where the determination of customer demands 
is based on the need to maintain customer inventories. A customer may require a 

r delivery no later than day t and the service provider might decide to deliver 
earlier than day t if the cost is lower. The problem is to assign customers and 
deliveries to both days and vehicle routes. Related works include [41, 68]. 

The second class of problems considers time-dependent travel times. The 
only work that deals explicitly with vehicle routing and time-dependent travel 
time is [58]. In this paper, it assumes each link has a fixed travel time that is a 
function of the time a vehicle departs from the head of the link. The objective 
function is to minimize the total time required to complete all deliveries. A 
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nearest-neighbor tour construction heuristic is proposed. 

1.3 Thesis Outline 
The objective of this thesis is to conduct a study of routing and delivery 

planning in Hong Kong. We have developed a map-based decision support 
system dealing with this problem. This system provides map-based interface for 
the users to search, to update the company records such as customers, products, 
inventory and warehouses information. 

At the same time, the system provides decision-support tools for route 
finding and delivery planning. Because of the highly varying traffic condition in 
Hong Kong, deterministic mathematical models and optimization techniques may 
not be sufficient to provide a good solution to the problem. Therefore, we have ‘ 
proposed one time-dependent and one stochastic model, named as Time-varying 
Constrained Shortest Path at a 2-level Network (TCSP2N) and Vehicle Routing 
Problem with Time Windows and Stochastic Travel Times (VRPTWST), and 
developed corresponding solution algorithms to each of them. These algorithms 
are also incorporated into the system so as to provide solutions to the problem 
with the consideration of the traffic conditions. 

We outline the content of this thesis as follows: In Chapter 2, the TCSPL2N 
together with two algorithms will be addressed. In Chapter 3, we will discuss 
about the formulation of the VRPTWST and propose an exact branch-and-cut 
algorithm to solve the problem. Afterwards, several techniques are considered to 
improve the solution times of the general algorithm. Some of the system features 
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and its implementation will be reported in Chapter 4. In Chapter 5, a brief survey 
on the commercial delivery planning software application will be given. 
Concluding remarks and further work will be discussed in Chapter 6. 
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Chapter 2 
Time-Varying Shortest Path Problem 
with Constraints in a 2-Level 
Transportation Road Network 

2.1 Introduction 
Transportation network is highly dynamic. The transit time of a vehicle over 

a road segment varies over time due to traffic congestion or accidents. Therefore, 
using traditional shortest path model with fixed parameters may not be sufficient 
to represent the dynamic issues of transportation road network. Optimal routes 
solved by the traditional shortest path problem may not be the best solution under 
dynamic conditions. Because of this, in this chapter, we try to formulate the 
shortest path problem in a transportation road network as the Time-Varying 
Constrained Shortest Path Problem (TCSP). 

The TCSP problem was first studied by Cai, Kloks and Wong [12]. In the 
model, they consider a set of vertices and arcs, with transit time and cost of each 
arc as a function of the time that the traversal begins at that arc. Moreover, 
postponement (i.e. waiting) of departure at a vertex may be allowed. The 
objective is to find the path with the least possible cost, with suitable waiting time 
at each node, subject to the constraint that the total traversal time of the path is at 
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most a given positive integer T. Three exact pseudo-polynomial algorithms are 
proposed for solving 3 different waiting scenarios, namely waiting at any vertex 
is forbidden, waiting at any vertex is arbitrarily allowed, and waiting at a vertex x 
is limited to an upper bound Ux. 

The TSCP problem is a good foundation to model the shortest path problem 
in a transportation road network since it possesses the feature of varying transit 
time of each arc depending on the beginning time of the starting vertex of that arc. 
In this chapter, we try to extend the TSCP problem, with some transformations, to 
our 2-level road network. One exact algorithm and one heuristic algorithm will be 
presented. 

We organize the reminder of this chapter as follows: In Section 2.2, some 
basic concepts and the problem formulation of the TSCP will be provided. In 
Section 2.3, the algorithm of solving the TSCP with arbitrary waiting time will be 
outlined. In Section 2.4, we will extend the TSCP to a 2-level network. Two 
algorithms for the 2-level problem will be described in Section 2.5. Concluding 
remarks will be given in Section 2.6. 

2.2 Problem Formulation of TCSP 
The formulation of the TSCP in a single level transportation road network is 
described as follows: Given a directed graph G =(厂，A), where V is the set of 
vertices and A is the set of the arcs. Let b{pc, y, u) and y’ u) be the transit time 
and the travel cost of the arc (x, y) e A respectively, which are functions of the 
beginning time u at the starting vertex x. Moreover, define w{x, u) be the waiting 
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cost at the vertex x from time uXou+\, T>u>Q. We assume that b(x, y, u), c(x, y, 
u) are positive for all (x, y) e A. In this problem, we let « = m and u is 
indexed as 0, 1，…r. 

Definition 2.1 A waiting time ct(x) at a vertex x is a nonnegative integer, and Ux 
> 0 is its upper bound. 

Definition 2.2 Define P = (s 二 xi, d = Xr) be a path from s to d. Let o/Xi), i -
1，…，r’ be the waiting times at vertices xj, ...，x. Let 

t(Xj ) = co{x^) and 
T(X. ) = co(x,) ) + , X, )) for i = 1,…，r, 

where / 二 1’ …，r，is defined as the departure time at vertex Xt along P. 

Definition 2.2 is the relation of the departure time of the vertex along the path. 
With this relation, a dynamic programming updating approach is proposed by Cai, 
Kolks & Wong [12]. One of the algorithms with arbitrary waiting time at any 
vertex will be outlined to give a fundamental idea in developing algorithms in a 
2-level network. 

2.3 Arbitrary Time 
In this section, we examine the problem when there is no constraint imposed 

on the waiting time of each vertex. Assume b(x, y, u) is positive. Let t) be 
the cost of the cheapest path from a vertex s to another vertex y of time at most t, 
where waiting time at any vertex is not restricted. This problem is referred as 
Time-Varying Constrained Shortest Path with Arbitrary Waiting Time 
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(TCSP-AWT). 

We use the following recursive relation to compute t). Note that the 
optimal waiting times of each vertex can be obtained implicitly by the recursive 
computations. 
Lemma 2.1 dA{s, t) = 0 for all t and dA(y, 0 ) = � for ally * s. For t> 0 andy ^ 
s, we have 

d^0,0= min^^{y , t -1) + w{yj-1), min ^̂  min {d. 

� {x\{x,y)eA)\u\u+b{x,y,u)M} ‘ 

The proof of Lemma 2.1 is in [12]. 

Definition 2.3 For every arc (x, y) e A andfor 广二 0，…’ T，let 
； = /^A y^ 0+c{x, y, u)}. 

We adopt the convention that = oo whenev er {u\ u + b{x, y, u) = t} = 
0. 

The result follows directly from Lemma 2.1. 

Corollary 2.1 
^ A 0 , 0 = m i n k o , f — 1) + w{y,t\ min y^(x,yj) \ . 

� {x\(x,y)€A} ) 

With Lemma 2.1, we describe a dynamic programming algorithm to solve 
TCSP-AWT. From Corollary 2.1, if we update djiy, t\ we have to 
know /A ( X , y, t) for all {x, y) e A. Given t and (x, y), /a O,少，0 could be evaluated 
by enumerating 0 < u < T to find those satisfying u + b(x,少，u), according to 
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Definition 2.2. However, this would require a worst-case running time 0{T) for 
every L Therefore, [12] suggests to first sort the values oiu + b(x, y, u) for all u = 
1,2, ... r and all arcs (x，y) e A, before computing the recursive relation of t) 
given in Lemma 2.1. 

Algorithm 2.1 
Begin 

Initialize dj (s, t) = 0 and \fx * sdA (x, 0)= oo fort = 0, T 
Sort all values u + b (x, y, u)foru= 1 ,…,Tand for all arcs (x, y) e J 
For t = 0, rdo 

For every arc (x, y) e ^ do 7 ^ (x, y, t) := 00 
For all arcs (x, y) e A and all u such that u + b(x,y,u) = t do 

Ta t) := min {r t), dA (x, w) + c u)} 
For every vertex y do 

^A (y, t) ：二 mm{dA ( y j - l ) + w(y, t), min、乂,y询 y a 0，y, t)} 
End 

Theorem 2,1 The TCSP-AWT problem with positive transit times can be 
optimally solved in 0(T(n + m)). 

Detailed proof of Theorem 2.1 is given in [12]. However, it is easy to trace 
out from Algorithm 2.1. 

Algorithm 2.1 computes the shortest length djOc, T) of the shortest path from 
a origin vertex ^ to x within a given time limit T. In order to identify the waiting 
time at each vertex along the path, we can use a standard backtracking procedure 
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of dynamic programming. Let the shortest path be P* = = 

then the waiting times of each vertex can be obtained from the departure times of 

the vertices. For example, if T{X]) and r(x') are the optimal departure times 

at the two vertices x] and x*�,then the optimal waiting time at the vertex x* is 

w,(x;) = T(XJ) - T(x*)-b(x%Xj,T{x*)). 

In [12], there are 2 more algorithms solving the scenarios when the waiting time 
is restricted as 0 or bounded by a positive value. Because the similarity of these 
algorithms to Algorithm 2.1, we are not going to discuss them in detail. In next 
section, we try to extend the TCSP at a single level network to a 2-level network 
using the idea given in this section. 

2.4 TCSP at 2-level Network 
Multi-level network is widely used in daily life. The use of multi-level network to 
replace a single-level complicated network can decrease the computational effort 
in solving network optimization problem. By dividing a single-level network, 
with a huge number of vertices and arcs, into a number of smaller and simpler 
sub-networks, the complexity of computation at each sub-network can be 
reduced. 

Examples of multi-level network include delivery systems, transportations, 
telecommunications and computer networks. For instance, in United Parcel 
Service (UPS), operations are broken down into many levels. From the start of 
the pickup process, parcels are collected by vans or motorcycles and centralized 
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at some shuttle points. Then, bigger trucks are used to collect the parcels from 
different shuttle points and send to a handling hub. All parcels from the region 
will be concentrated and deliver through airplanes. Similar network appears in 
the supply chain model that a plant delivers goods to some warehouses. Then, the 
warehouses send the goods to the distribution centers located at different regions. 

In this section, we try to model the transportation road network in Hong 
Kong into 2 levels, namely the Main Road Level (MRL) and the Sub-Street Level 
(SSL). We propose one exact algorithm and one heuristic algorithm to find the 
TCSP, starting from an origin vertex at any levels and arriving at a destination 
vertex at any levels within a given time limit T. Also, we only consider the 
scenario that waiting time at any vertex is arbitrary. 

2.4.1 Problem Formulation of TCSP at 2-level Network 
Consider G, 二 (Vj,為)，/ = 0, 1,…，i：, as i： + 1 directed graphs, with Vj be the set 
of vertices and Aj be the set of arcs of G/ respectively. In our model, Go is defined 
as the Main Road Layer (MRL) and G/, / = 1, K, are defined as the Sub-Street 
Level (SSL). ；‘ 

Each graph in the SSL is connected with MRL with directed arcs. Define Rt, 
/ = 1, AT, be a set of directed arcs (x, y) connecting from any node x g Vi, i = 
1, ..., to any node y e Vq. Also, define R�be the set of the directed arcs (y',x') 
connecting from any node 少，e Vq to any node x e Vi u . . .u Vk. Figure 3.1 
shows the layout of the network. 
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Main Road Level (MRL) 為） 

v \ 
• II I- 二/ .n, fr •'mii'； III If̂  .ji.i.ijj_. ..I.... •"ill fr- • "^^MT X 

Gi=(厂1，為） Sub street Layer (SSL) 
Figure 2.1 Layout of 2-layer network 

Let b(pc, y, u) be the transit time needed to traverse an arc (x, y) G At, i = 0, 
1, K and c(x，y, u) be the cost to traverse the arc. Both of the b(x, y, u) and c(x, 
y, u) are functions of the departure time u at the starting vertex x, where u g [0, 
7], T> 0 is a given integer, which is the maximum time that is allowed to traverse 
a whole path. Moreover, let w(x, u) be the waiting cost at the vertex x from time u 
— I to u, u > 1 .Also, let fipc, y, u) be the scaling factor to the transit time 
depending on time u, d(x, y) and ^(x, y) be the length and the average traversal 
speed of the arc (x, y) e A“ We assume that b(x, y, u) is positive, y, u), d(x,.y) 
and s(x, y) are nonnegative and fix, y,u)> I. Throughout this section, we let rii = 
Vi\, Mi =\Ei\ and n for all / = 0, K. 

For implementation, c(x, y, u) and b{pc,少，u) are defined as follows: 

The cost of a path in our problem is defined as a linear combination of the 
travel distance cost and travel time cost. As the cost of a vehicle route, it is 
reasonable to assume that some operating costs are distance related, say fuel and 
maintenance cost. And some costs are time related such as the salary of drivers. 
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Thus, we define the transit cost of an arc in the following manner: 
c(x, y,u)rd (x, + b(x, y,u)xCj. (2.1) 

where Cd is the travel cost per unit of distance and Ct the travel cost per unit of 
time. That means the cost of traversing an arc is a weighted sum of the distance 
travelled and the time spent on that arc. With this formulation, the shortest path 
problem can also be stated as the cheapest path problem in the sense that the total 
cost of traversing the path is minimized. We would use the terms "shortest path" 
and "cheapest path" interchangeably throughout this chapter. 

The other issue of our problem is how to model the time-varying factor in 
the road network. In a road network, the variation of the transit time is due to the 
different number of vehicles using the road during different intervals of time. Or, 
accident occurs at some of the road segments at a particular point of time so that 
these road segments are blocked or congested. Moreover, geographical location 
may also affect the transit time of the road segment. It is obviously that the road 
segments in the urban area are usually more congested than those in the rural area. 
Because different pieces of road segment at different points of time may have 
different transit times, we try to introduce a scaling factor to fix, y, u) to measure ‘ - < 
the degree of congestion of an arc (x, y) at the time t. In our formulation,/x, y, u) 
is a step function of time u. It is because we assume that u is discrete and the 
traffic condition does not change during the time interval that is represented by 
the time index u. It is a reasonable assumption if the length of time represented 
by a single index is short, which is in the sense that the traffic condition is 
unlikely to change explicitly during this short period of time. Then, the transit 
time of an arc (x, y) with departure beginning at time u is defined as follow: 

Kx, y, u)= f(x, y, u) x d(x’ y) / s(x, y) (2.2) 
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If/x,少，u) equals to 1, that means the road segment (x, y) is in normal condition 
such that the transit time is just the length divided by the average speed. I f / x , y, 
u) is larger, that means the arc is more congested and thus the transit time will 
become larger. 

Moreover, to simplify the complexity of our problem, each graph in the SSL 
is not directly connected to another. That means finding a path between 2 
different graphs at the SSL, the path must pass through the MRL by traversing 
those arcs in Ri，i = 0, K. Also, arcs in Rj, i = Q,…，K, perform as dummy arcs 
connecting MRL and SSL. Since zero transit time would lead to more 
complicated computations (see [12] for details), we would let d(x，少）=0 and b(x, 
y, u) = 1, f o r a l l (X y) e 兄,i = 0,…，K. 

This 2-level network is to model the transportation road network in Hong 
Kong, named as 2-level Transportation Road Network (2LTRN). In a real 
transportation road network, districts are connected by highways, expresses or 
tunnels. These road segments correspond to those arcs in the MRL. Inside each 
district, there are many streets or small avenues, which correspond to the arcs in 
each graph in the SSL. Vertices in the network represent the junctions of the road 
segments. 

2.5 Algorithms for Solving TCSP in a 2-level Network 
The objective of the Time-Varying Constrained Shortest Path Problem in a 

2-Level Network (TCSP2N) is to find a minimum cost path from an origin vertex 
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S at any level to a destination vertex d at any level. The cost, as defined in 
Equation 2.1, is a weighted sum of the travelling costs in terms of distances and 
times, and the waiting costs at each vertex along the path. 

2.5.1 Exact Algorithm 
If we ignore the level concept in our model, the TCSP2N can also be 

considered as a TCSP at a single network given in Section 2.2, which is to find 
the cheapest path, in a single-level time-varying network, from an origin vertex at 
time zero and arrive to a destination before a given time limit T. 

With suitable transformation, our 2-level network can be modeled as one 
entire directed graph G = (V,E) with V= Vq u ...u Vk and A =AoKj ...u^j^u 

Ro u . . .u Rk. Then, we can let n' =V\ = > n and m' = A = 

饥'+ 二厂'• Then, we can apply Algorithm 2.1 to the transformed network 

for arbitrary waiting time. For the time complexity of the transformation, by . 
adding new arcs and vertices to the distance matrix and order table, we need 0(n， 

+ m') steps. Combine this with Theorem 2.1, we come up with the following 
theorem: 

Theorem 2.2 The TCSP2N with arbitrary waiting time at each vertex and 
positive transit times of each arcs can be optimally solved in 0(7\n，+ m，)). 

However, recall the assumption of 2-level network that each graph in the SSL 
is not directly connected each other. Then, TCSP2N with arbitrary waiting time 
can be divided into 5 possible scenarios: 
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1. from any vertices at the MRL to any other vertices at the MRL, referred as 
MRL — MRL， 

2. from any vertices at one of graphs in the SSL to any other vertices at the same 
graph in the SSL, referred as same SSL -> same SSL, 

3. from any vertices at the MRL to any vertices at one of the SSL, referred as 
MRL — SSL, 

4. from any vertices at one of the of graphs in the SSL to any vertices at the 
MRL, referred as SSL -> MRL, and 

5. from any vertices at one of the graphs in the SSL to any vertices at another 
graph in the SSL, referred as diff. SSL diff. SSL. 

By breaking down the TCSP2N into several sub-problems, we then do not 
require to expand the entire network. By this way, we only need to expand the 
related graphs in the SSL and the MRL. 

Definition 2.4 If the source vertex s of the TCSP2N is from one of the graphs in 
the SSL, say Gk= (Vk, Ak), then denote Gk=Gs = (Vs, As) and Rk = Rs. Also, we 
^cive ns = ms = \As\, rs = and s e Vs. Gs is called as the source graph 
(SG). 

Definition 2.5 If the destination vertex d of the TSCP2N is from one of the graphs 
the SSL, say Gi= (V!, Ai), then denote Gi = Gd = (Vd, Ad) and we have no = \VdI 

^D = \Ad\ and d e Vd. Gd is called as the destination graph (DG). 

Definition 2.6 I/Gd is the destination graph and is one of the graph in the SSL, 
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define Rd = {(x, ;；) e I 少 e Vd} with \Rd\ =厂/> 

Using the idea of expanding 2-level network into a single graph, we can 
apply Algorithm 2.1 to the expansions of the 5 scenarios. 

For MRL -> MRL and same SSL -> same SSL, expansion is not required 
and Algorithm 2.1 can be directly applied with time complexity 0(T(no + mo)) 
and 0(T(nk + ntk)), for A: = 1, ..., A; respectively. 

For MRL -> SSL, combine Go, Gd and Rd together and apply the algorithm 
with time complexity 0(T(no + mo + 厂/))). Similarly, for SSL — MRL, 
combine Go, Gs and together. Then, the complexity is 0{T{nQ + ns+ mo + rns-^ 
rs)y 

At last, for diff. SSL --> diff. SSL, we need to combine Go, Gd, Rd, Gs and 
together so that the time complexity of the algorithm is 0{T(nQ + ns+ no + mo 

t 

Theorem 2.3 The TCSP-2TRNproblem with suitable expansion can be optimally 
solved in 0{T{no + ns+ ud^ + ms+ mD + rs + vd)). 

2.5.2 Heuristic Algorithm 
In this section, a solution heuristic will be suggested for the TCSP-2N�The 

idea of the heuristic is to divide the whole problem into the three subproblems, 
and solve each subproblem independently. But before presenting the idea of the 
heuristic, we need to make the following assumptions. 
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Assumption 2.1 The number of vertices and arcs of the MRL are much greater 
than that of all graphs in the SSL, that is uq » rij and mo » nii, for all 
K. 

Assumption 2.2 The physical area covered by the MRL is much greater than that 
in all graphs in the SSL, that is for all i = ... K,we have 

In the following analysis, we only consider the worst case, which is diff. 
SSL diff. SSL, as further consideration. Then, the problem becomes to find the 
path with minimum cost from a source vertex e Vsto a destination vertex y e Vd 
starting from time zero with a given time limit T. 

Definition 2.7 If Gs is the source graph and s E Vg is the source vertex, let Tsbe 
the time required to traverse a path from s to qs e Vs such that (qs, xs) e Rs and 

e Vq. qs is named as Destination of the Source Graph (D-SG). 

Definition 2.8 If Go is the destination graph andy e Vd is the destination vertex, 
let Td be the time required to traverse a path from go e Vd toy such that {xd, qo) 
e Rd and xd e Vq. qo is named as Origin of the Destination Graph (0-DG). 

Definition 2.9 For xs and xoas defined in Definition 3.4 and 2.5 respectively，let 
To be time required to traverse the path from xsto xoin the MRL xsand x^are 
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named as O-MRL and D-MRL respectively. 

One characteristic of our model is that the size of the MRL is much larger 
than that of all graphs in the SSL. The size here is in term of physical area 
covered by the graph. From Assumption 3.1 and 3.2, if one would like to find a 
path from one graph in the SSL to another graph in the SSL through MRL, we 
can claim that it is more likely to spend more time in the MRL than the two 
graphs in the SSL. It is a sensible assumption that the MRL covers the area of 
whole Hong Kong and each graph in the SSL only covers a small region. 

Assumption 2.3 For d i f f . SSL d i f f . SSL, the time required to traverse the path 
m the MRL, To is much greater than the time required to traverse the path in the 
source graph, Ts and the destination graph, To-

By Assumption 2.3，we know that the time required of traversing the. MRL 
dominates the others. Since the objective function is a linear combination of the 

/ v.. 

distance, time and the waiting times, that the cost is dominated by the path in 
MRL. Then, we can come up with our solution heuristic by solving the TCSP in 
the MRL from O-MRL to D-MRL first, and follow by solving the TSCP in the 
source graph (SG) and the destination graph (DG). 

Definition 2.10 Let Oq be a given proportion to the time limit T in order to 
traverse the path from O-MRL to D-MRL in the MRL Also, let as and aobe the 
gi^en proportion to the time limit T in order to traverse a path from s to D-SG 
and O-DG to y respectively such that 
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= 1，and 0 < as, a D « ao< I. 

In our algorithm, the TCSP is solved in the MRL first, named as the Middle 
Problem (MP). However in real situation, the path starts from the SG and goes to 
the MRL then. Certain values of time are kept for the path in SG and DG before 
solving the TCSP-TRN in the MRL. Therefore, our MP is the find the path with 
minimum cost starting from the node xs ( 0 - M R L ) to xd ( D - M R L ) , with time 
starting at asT and finishing before T{\-aD). Define dupipc, t) be the cost of the 
cheapest path from the starting vertex xs to another vertex jc g Fq of time at most t, 
t = ccsT, asT + 1, ..., T(l-aD) - 1, T(\-aD), where waiting at any vertex is not 
restricted. Then, the following recursive relation directly follows from Lemma 
2.1. 

Lemma 2.2 dMp(xs, 0 = 0 for all t = ocsT, asT + 1, Til-aj) - 1, T{\~aD) and 
dA{x, asT) = oo for all X Xs. For asT < t < T\\—ccd) andX 本 Xs, we have 

dj^p(x,t)= min^^p(x,^ -1) + w(x, t \ min min \d^p{x\u)-v c{x\x,u)]\ 
• •• » • 

Definition 2.11 For every arc {x ’, x) e Aq and for t = ccsT, 7(1-^^), let 

^u=b{x\x,u)=t] 

Letyj^p{x\x,t) = oo whenever {u\ u + b(x，’ x, u) = t} = 0. 

Definition 2.12 Let P； =(x； 

= Xj^)be the optimal path in the MRL 

Define t; and be the optimal departure time at the vertex xs and the optimal 
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arrival time to the vertex xd under the optimal path P^. 

For convenience, we regard the TCSP problem at the source graph and at the 
destination graph as Left Problem (LP) and Right Problem (RP) respectively. The 
LP is to find to the shortest path starting from the origin vertex s to qs (D-SG), 

with time starting at zero to ^ . Similarly, the RP is to find the shortest path 

starting from qo (0-SG) to the destination vertex d, with time starting from t; 
to T. 

Lemma 2.3 diAxs，f) = Q for all t = 0,..., t^ and diAx, 0) = oo far all x 本 xs. 

For Qi<t< tl and x * xs’ we have 

dj^p (x, t)= m ink^ (x, / -1) + w(x, t), min min +c{x\x,u)}\ 

Definition 2.13 For every arc (x，，x) e As and for t ^ let 

r讽 x,t)=“jji"卞乂乂，. 

LetyLP(x，,x,t) = oo whenever {u\ u + h{x \ x, u) = t} = 0. 

Lemma 2.4 “(xn, t) 二 0 for all t =t*D，…’ T and dRp(x,t*D�=� for all x ^ xd. 
For t*j^<t<T and x 本 xq, we have 

d^(x,t)= mm]d^(x,t -1) + w(x,t\ min min {d^{x\u) + c{x\x,u)}\ 
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Definition 2.14 For every arc {x\ x) e Ad andfor t =广:，...，7； let 

Letyj^(x\x,t) = oo whenever {u\ u + b(x，，x, u) = t}= 0. 

Algorithm 2.2 
Begin 

opt-cost '= oo 

For every arc {qs, xs) e Rs do 
For every arc (xd, qo) e Rd do 

Initialize dup fe, 0 = 0 and \f…’义…dup (x, f)= oo f o r / = ccsT, 

T{\-aD) 
Sort all values u + b(x,少，u) for u = asT+1，. • T ( l - a D ) for all arcs (x, 

For t = asT, ...,T(l-aD) do 
For every arc (x, y) e Aq do r mp (x, y, t) := oo 
For all arcs (x, y) e Aq and all u such that u + b (pc, y, u) = t do 

r MP {x, y, t) \= min { r mp (x, y, t), dMP (x, u) + c (x, y，u)} 
For every vertex y do 

dMP (y, 0 := min{^4rp - 1) + t), m i n(w)竭 j mp (x, y, 

0} 

( W ) = min, dMP fe, t) 
Set t*D be the optimal arrival time to xd 
Set t; be the optimal leaving time from xs 

Initialize diP 0, 0 = 0 and \ /叫 ^ l p fe ,) 二 � for f = 0,…，^ 
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Sort all values u b {x, y, u) fox u = 1, ..., t; for all arcs (x, y) e Es 

For t = 0, tl do 

For every arc (x, y) ^ As do y lp (x, y, t ) : = � 
For all arcs (x, y) g yi^and all u such that u + b {x,y,u) = t do 

r LP (x, y, t) := min { Y LP {X, Y, t), dipix, u) + c (x,少,u)} 

For every vertex y do 

DIP (y, t) := min{DLP (Y,t-l) + w(y, t), m i n ( w )竭 r LP (x,Y, f)} 

dip (qs, 0 = min t dip (qs, 0 

Initialize dRP (卯，0 = 0 and V"化奸^^�dnp (x, t) = oo for / = t:”..,T 

Sort all values u + b(x,y, u) for u = � + 1 , ..., Tfor all arcs (x，y) e ED 

¥ort= t*^, r d o 
For every arc (x, y) e Ad do r rp (x, y, t) := oo 
For all arcs (x, y) g AD and all u such that u + b (x, y,u) = t do 

r RP (X, y, 0 := min { RP (X, y, t\ dRp(x, u) + c (x, y, u)} 
For every vertex y do 

DRP (y, t) := min{ (y,t-\) + w(y, t\ min(x 力日五。r RP fe y, ,)} 

d*^{d,t)= min t dRP (d,f) 

If dip(Xd,0 + d*LP (qs,0+dlp(d,t)<= opt-cost Then 

opt-cost := d: (x^, t) + d; {q, ,t)+cC id, t) 

End 

Algorithm 2.2 gives a heuristic pseudo-polynomial time solution to the 
TSCP2N. The idea of Algorithm 2.2 is solving the MP first by giving 2 
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parameters as and ao. Then, we solve the TCSP of the MP from time t = ccsT to 

TXi-ao). After finding the optimal path of the MP, the arrival time t; and 

departure time t]̂  of D-MRL and 0-MRL can be identified. The algorithm 
follows by solving TCSP of the LP and RP with corresponding times and vertices 
in the source graph and the destination graph. 

Since the MP is the TCSP in the MRL, the numbers of nodes and arcs are no 
and mo respectively. The length of the time is T(l-as-aD). Therefore, the MP can 
be solved in 0((\-as-aD)T(no-^mo)). Similarly, the LP and RP can be solved in 
0(T(nsr^ms)) and 0{T{nD+mD)nD). Therefore, the complexity of Algorithm 2.2 is 
0{{\~a^aD)T{no+mo)) + 0{T{n^ms)) + 0{TnD{nD+mD)). 

2.6 Concluding Remarks 
In this chapter, we have considered an extension of the Time-varying Constrained 
Shortest Path from a single-level network to a 2-level network. We use the 
algorithm proposed by Cai, Kloks & Wong [11] at single-level network as a basic 
algorithm solving the TCSP in 2-levei network. The importance of our work is to 
reduce the time complexity when apply the original algorithm in a large and 
complicated network. By breaking down a one-layer network logically into 
2-level, we can ignore some of the unrelated vertices and arcs when the solving 
the problem, hence improving the solution time. A logical division of the 
transportation road network is presented. With the characteristics of this 2-level 
network model, a heuristic algorithm is proposed. 

To conclude, we address the applications of the TCSP calculation. The 
applications can be divided into two aspects. With real time information updating 
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of the scaling factor/x, y, u) according to the degree of congestion of the road 
segments, the TCSP can provide a good suggestion to the drivers of finding the 
path between two locations. With historical data, TCSP can still use as a 
backbone of the delivery problem in estimating the travel times between two 
locations at different times of a day. Since general delivery scheduling problem 
usually use a constant value to represent the travel time between two locations, it 
may not be sufficient to reflect the real situation of a one-day long delivery 
schedule. 
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Chapter 3 
Vehicle Routing Problem with Time 
Windows and Stochastic Travel Times 

3.1 Introduction 
Designing optimal delivery or collection routes, where vehicles originate from a 

single depot and visit a number of slops, is generally referred to as the Vehicle 

Routing Problem (VRP). When solving the V R P in real applications, it is 

c o m m o n practice to assume that the travel l imes along the arcs are known. This 

kind of problem is determinist ic, and many algori thms have been developed to 

deal with it. Such methods have been applied extensively in praclicc. 1 low ever, in 

many real-world applications, one or more parameters of VRP tend to be random. 

r�or example, the set of cuslomcrs to be served, I he ciislonicr demand, or ihc 

travel limes can be stochastic. These problems arc referred as Stochastic Vchiclc 

Routing Problem (SVRI)). In this chapter, we consider the SVRP where the travel 

t imes between two points arc stochastic, and also cach CUSIOIIKT requires scr\ icc 

within a specific time window. All other data is dclcrministic. This problem is 

ret erred as I 'chicle Routing Problem with Time Window s and Stochastic Travel 

Times (VRPTWST) . 

One of the practical applications of this problem is distribution planning of 
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logistic companies and supermarkets. Customers may require delivery during 
preferred time slots so that the planner needs to find a set of routes to satisfy each 
order within a particular time slot while minimizing the total operating costs. 
Another application is repairing team scheduling of telecommunication, 
electricity or town gas providers. Services are required at different times and an 
optimal-cost schedule can be obtained for each repairman. The stochastic travel 
time issue is significant if the traffic condition varies highly over time. This 
situation always appears in some busy cities such as Hong Kong, Shanghai, 
Singapore, New York or Paris. The variation in the travel times may lead to 
situations where some customers cannot receive service at their chosen times, and 
hence may generate losses to the company. Therefore, finding a delivery schedule 
while minimizing a combination of the travel costs and expected losses under 
stochastic travel conditions is useful in distribution planning in many cities with 
busy traffic. 

Related works of Vehicle routing problem with stochastic travel time are 
sparse. Laporte, Louveaux and Mecure [49] first proposed the formulation of 
finding the optimal vehicle routes of visiting several points, where the travel time : . 
between any 2 points is a stochastic variable. Three models are proposed. The 
first model is to find the vehicle routes with least operating cost while ensuring 
that the probability of the duration of a route exceeding a specific length, B, is not 
greater a given value a. This model is referred as the chance constrained model. 
The second and the third model are recourse models. The objective is to find the 
vehicle routes with least operating costs together with the expected penalty when 
the duration of the route is exceeding B. The difference between the second 
model and the third model is that the third model does not identify which vehicle 
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to serve which route. But it requires the assumption that all vehicles are 
homogenous. Our work mainly extends the second model and formulates a 
similar problem but with time-window requirement at each vertex. 

We organize the remainder of this chapter as follows. Section 3.2 will give 
the problem formulation. Section 3.3 will propose a general branch-and-cut 
algorithm. Some issues to improve to the solution time of the algorithm will be 
discussed in Section 3.4. Afterwards, a modified branch-and-cut algorithm will be 
introduced in Section 3.5. Computational comparisons and analysis will be given 
in Section 3.6. Finally, conclusion will be given in Section 3.7. 

4.2 Problem Formulation 
In this section, we will give the formulation of the problem. The formulation is an 
extension of Laporte, Louveaux and Mecure [49]. Consider a directed graph G = 
(Vo, A) where Vq is the set of nodes and A is the set of the arcs. Vertex 0 and 
vertex denote the same single depot representing the origin and the 
destination point of the routes respectively. Vertices 1, n denote the customers . 
to be visited. Also, V = Vq \ {0, n+\} and A = {(/, y): i * j, V/eRj{0}, 
V/'eFu{«+!}, i^j). Inside the depot, there is a set of vehicles available and 
denoted by K. 

For each arc (/,/) e A, there is an associated distance or travel cost Cy (may 
be different between vehicles), which may represent the cost of fuel and 
maintenance in practice. Also, a stochastic travel time ty is associated with A. 
This travel time is assumed to be a discrete random variable in our study. For 
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example, the state of traffic conditions can be peak, off-peak or accident, which 
may have different impacts on the travel times. 

For each vertex i G V, customer has demand A , and service must be made 
within a time window [at, bi]. Otherwise, a unit penalty cost p~ will be incurred 
per unit of time as the loss of the reputation or service level to the company. In 
contrast, if a vehicle k arrives earlier than the time window, it may need to wait 
until service can be provided. Therefore, in this case, a unit waiting cost p : will 
be paid for the parking fee of the vehicle or other costs to the driver. This kind of 
time window is referred to as soft time windows. Moreover, we assume that all 
vertices are restricted to be served by exactly one vehicle. 

There is a set of vehicles K located in the depot. For each vehicle k e K, a 
set-up cost fk is needed if it is used to serve any route. Moreover, it has a capacity 
limit Ck (assumed to be in the same unit measure as the demand), and also it ha台 

working duration [dk, Ck]. If the vehicle working exceeds the working duration, an 
overtime cost /众 per unit of time will be incurred. 

A three-index simple recourse model can be defined for the problem. The 
first stage problem is to decide the number of vehicles used and their routes. 
Travel time of the arcs can be realized afterwards. The second stage problem is to 
find the optimal arrival time at each vertex such that the total of waiting cost, late 
delivery penalty and overtime cost is minimized. Define 

fk = the fixed set-up cost for vehicle k; 
Ck = the capacity limit of vehicle k; 
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-_dk, ej^ = the normal working time of vehicle k\ 
= the overtime cost per unit of time of vehicle k ； 

P: = the waiting cost per unit of time of vehicle k\ 
Di = the demand of vertex i; 
[ai, bi\ = the time window of vertex i allowed to be served without penalty; 
p~ 二 unit penalty cost per unit of time for late delivery of vertex i; 
T.f^ = the service time of vertex i by vehicle k; 
Cijk = travel cost of vehicle k on the arc (/,/); 

the vector of the random variables corresponding to the state of traffic 
conditions; 
S = the support of ；̂ it is assumed to be finite; 

tfj^ = the travel time of vehicle k on arc (/，/) if the state is ^ ； 

Xijk = 1 if the arc {ij) is traversed by vehicle k and 0 otherwise; 
Zik = 1 if the node i is visited by vehicle k and 0 otherwise; 
Wk( ) = the total waiting cost of vehicle k if the state is ^ ； 

Sk{^) = the total late delivery penalty of vehicle k if the state is ̂； 

= the total overtime cost of vehicle k if the state is 
Aik(�)=the arrival time at vertex i if it is visited by vehicle k; 
w汝(f) = the waiting time at vertex i if it is visited by vehicle k and the arrival 
time is earlier than at, and the state is《； 

Si]^^) = the late delivery time at vertex i if it is visited by vehicle k and the arrival 
time is later than bi, and the state is ^ ； 

= the total overtime time of vehicle k and the state is ^ ； 

Pk= the path (0, h, 12, ..., Uu U,n+\) travelled by vehicle k; 
Also, define (iJ) oc i is strictly followed by j in the path Pk and \Pk\ is the 
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length of the path. 

The first stage problem becomes then 
( P 3 . 1 ) 

/ \ 

minS / . ZQk + ^^ijk^ijk 
’ keK keK{iJ)eA \keK keK keK ) 

subject to 

I I ^ V ) (3 .2) 
keK 

{ k e K U ^ V ^ m (3.3) y=i i^j 

T X攝 = Z , � (keK;ieVu{r2 + l}) (3 .4 ) 
i^J 

ilxy�f^Xjik=0 (keK'JeV) (3.5) 7=1 7=1 i^J i^J 

(k E K) (3.6) 
A:=l 

<15-1-1 (S^V,2^S\<n-l;keK) (3.7) 
iJeS 

f Y \ 
� - � � ； 诉 - I . P d + 2 > 0 (3.8) 

v^Pic 人 . J 
f \f \ 

^ ⑷ - 1 > 诉 — 1 + 2 > 0 (3.9) 

人('，•/)==户A- J 
f \ 

( � - 沾 ⑷ 2 X � I A I + 2 >0 (3.10) 
J 

^ {0,1} ( k e K ; ( U J ) e A ) (3.11) 

z汝 e{0,l} (keK;ieV,) (3.12) 
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� 2 0 ( k G K ; 4 e S ) (3.13) 
(/ceK;^EE) (3.14) 

y,(O>0 (/ceK;^eE) (3.15) 
The objective of this problem is to find a set of tours with minimum sum of the 
fixed cost, travel cost, and the expected waiting, overtime cost and late delivery 
penalty. Constraints (3.2) ensure each node is visited by exactly one vehicle. 
Constraints (3.3) to (3.5) are standard flow balance constraints. Constraints (3.6) 
are the capacity limit of each vehicle. Constraints (3.7) can eliminate any 
subtours that are not starting from and ending at the depot. Constraints (3.8) to 
(3.10), named as the second-stage constraints, are gradually added to the problem 
after solving the second stage problem. They will be discussed in next section. 
Constraints (3.8) to (3.10) combined with (3.13) to (3.15) reflect the lower bound 
of the waiting cost, late delivery penalty, and overtime cost and by the route 
served by vehicle k, which is denoted as Pk. 

The second stage problem is a simple recourse model. After solving the first 
stage problem, a set of routes can be obtained. We name this solution as the first 
stage solution. Then, the stochastic variables can be realized. With a given state 

and a first-stage solution (x, z), the second stage problem can be described as 
follows: 

(P3.2) 

？巧 1 1 〜 ⑷ + 从 - 〜 i ⑷ 

k=l /=1 /c=l subject to 
為 � = 4 . � + � + Tik + (k G K; (/, J) ^P,) (3.16) 
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⑷ > cii - 4,(^) (k GK;ieP,\{0,n + \}) (3.17) 

� � > 4 , � - b丨 (k e.K;iGP,\{0,n^\}) (3.18) 

少,� 2 A + U � - ( k e K ) (3.19) 

= ( k e K ) (3.20) 
(keK;ieV,) (3.21) 

； ; ( k e K ) (3.22) 
(kGK;ieV,) (3.23) 

The objective of the second stage problem is to determine the arrival time of each 
vertex such that the sum total waiting cost，late delivery penalty and overtime 
cost is minimized. Constraints (3.16) are the computations of the arrival time 
from one loading point i to another loading point j. Constraints (3.17) to (3.18) 
together with (3.21) to (3.23) provide the lowest bound of the waiting times, late 
delivery time and the overtime respectively. 

However, computing the optimal second stage solution can be replaced by a 
simple heuristic approach. For each of the route, we can trace the path starting 
from depot. Assume every vehicle starting at its earliest working time dk. Then, 
for each of the state ^ , the arrival time of each vertex will be the departure time 
of the previous vertex plus the travel time at that state. If the vehicle arrives 
earlier than the time window, waiting is required until the start of the service time. 
Conversely, if the vehicle arrives later than the time window, the vehicle will 
leave immediately after the service. By using this approach, the second stage 
problem can be transformed to a simple problem. The approach is outlined as 
follows: 

39 



Algorithm 3.1 
Begin 
For each ^ do 

Ao/c(< )̂: = dk for all A: G A' 
: = 0 for allk e Kand all i G VQ 

Siki^) : = 0 for allk e Kand all i e Vq 
= 0 for allk eK 

For each route Pk do 
Pk ： = (0, zi, /2, id,ri+\) 
For each node inPk\ {0, w+1} do 

Else if 4 then 

；V⑷：二 4 州“化、 

End i f 
End for 

⑷：=A^k � + �� + V � + 

If then 

调：二 

End if 
End for 
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End for 

After solving the second stage problem, the waiting cost, late penalty and 
overtime costs are obtained. Initially, the first stage problem does not include 
constraints (3.8) to (3.10) and so these costs are not taken into consideration. By 
imposing these constraints after every second stage problem, we can provide a 
lower bound of the stochastic costs to a particular first stage solution. Then, these 
costs can be included in the objective. Example 3.1 will describe how to add 
these constraints and compute such costs using Algorithm 3.1. 

Example 3.1 Consider after solving the first stage problem, the optimal path of a 
particular vehicle k is Pk = {0, 1, 3，5, 4，2, 6). Index 0 and 6 denote the depot. 
For a particular state ^，the travel times are realized and listed on the arcs. The 
time windows are also stated in the following figure. 

八3 = 1 0 0 , W 3 = 0 
[80,120] 

A , = 3 0 , w , = 2 0 
[ 5 0 , 7 0 ] O 3 .乂。 A 5 = 1 4 0 , S 5 = 1 0 0 

f 1 [ 2 0 , 4 0 ] 

A ! = 3 2 0 , / 2 V ) A , = 2 0 0 , W , = 3 0 
y = 2 0 p l ^ 4 ^ ^ [ 2 2 0 , 2 5 0 ] 
[ 0 , 3 0 0 ] ^ ^ _ 

8 0 � -[200,220] 
4 ^ = 2 4 0 , S 4 = 2 0 

By using Algorithm 3.1，the arrival time A, the waiting time w, the late delivery 
time s and the overtime y are computed and stated above. Assume 
cCk = PI = PT = 1, then the total waiting cost of this route at state ^ will be 
equal to 50, the late delivery penalty will be 120 and overtime cost will be 20. 

Then, three constraints of type (3.8), (3.9)，and (3.10) can be added to the 
first stage problem like follows: 
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(^) -500oi + Xi3 + X35 + X52 + X24 +X46 - 5 ) > 0 (3.8a) 

S k � - 1 2 0 0 o i + 1̂3 + X35 + 5̂2 + 2̂4 +^46-5) > 0 (3.9a) 

Yk(<?) - 20(Xoi + 1̂3 + 3̂5 + 5̂2 + 2̂4 + 4̂6 " 5) > 0 (3.1 Oa) 

From Example 4.1, the path Pk is valid when x̂ ^ 二;= X35 = X52 = Xĵ  
=X46 = 1 • Therefore, when one of these variables equals to 0, the lower bounds 
of the costs will become 0, as restricted by constraints (3.13) to (3.15). That 
means, these costs are not taken into the objective value unless this path is chosen. 
By iteratively solving the first stage and second stage problem, adding constraints 
(3.8), (3.9) and (3.10)，the optimal solution can be obtained. Using this idea, a 
branch-and-cut algorithm is proposed in next section. 

3.3 General Branch-and-cut Algorithm 
In this section, we briefly describe a general branch-and-cut algorithm for solving 
this problem. The algorithm can be outlined as follows: 

Algorithm 3.2 
Step 0, Initialization: Let Zopt be the cost of best known feasible solution. If 

no solution is known, set Zopt : 二 oo. Define the first problem as the relaxed 
problem containing constraints (3.2) to (3.6). Insert the current problem into a 
problem list. 
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Step 1. If the problem list is empty, print the best known solution and stop. 
Otherwise, select the problem from the list. 

Step 2. Solve the current problem and let Zcur be the values of its optimal 
solution. If Zcur > Zopt, fathom the current problem and go to Step 1. 

Step 3. If the current solution does not satisf), integrality constraints (3�11) 
and (3.12), create subproblems by branching on a fractional variable. Insert them 
into the problem list and go back to Step 1. 

Step 4. At an integer solution, check for the existence of subtours. If any 
subtours exist, introduce appropriate subtour elimination constraints (3.7) to the 
current problem and go to Step 2. 

Step 5. At a first stage solution, let z cur be the sum of the fixed costs, travel 
cost, and the expected waiting costs, penalties and overtime costs by using 
Algorithm 4.L Introduce suitable constraints (3.8), (3.9) and (3.10) to the current 
problem. Also, update Zopt = z • if z cur < � / and go to Step 2. 

LP: with constraints (3.2) to (3.6); 
Zopt 

: = � , �� If no integer solution 
^ ^ was found, set one 

If integer is found, \ fractional variable to 1 
eliminate any (^[T^TT^ and 0 and have 2 
subtour found by / \ subproblems 
adding constraints (^i^^te^^ : (̂ A ŷ soiuû  

If no subtour is f o u n d , — 謹 f e a s i b l e solution, 
compute z A d d fathom the 
constraints (8), (9) & problem. 

‘ A � ” ， . no s u b t o u t ^ 
(10). Update Zopr z ； 
i f z < -opr & o u i o ^ ^cur = objcctive valuc of current problem 

/ \ z 刚 = b e s t value up to that iteration 
� ^ 'cur 二 real cost of current solution 

Figure 3.1 Graphical Presentation of Algorithm 3.2 
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The convergence of this branch-and-cut algorithm is guaranteed by finite 
number of feasible first stage solutions. Also, the number of second stage 
constraints is finite. Therefore, this algorithm is exact and with potential 

Kn(n+\)+K{n+l) 

2 number of pivots in the branching tree. That means, in the worst 
case, the algorithm needs to examine all the potential pivots, and that would be a 
very large number, which is not computationally affordable. To avoid this to 
occur, a better branching and bounding rule may help to find the optimal or good 
solution earlier so that more branches can be fathomed in earlier iterations. 

3.4 Improvement to the Solution Time of the Algorithm 
Branch-and-bound algorithm is a typical technique in solving integer 
programming. By relaxing the integrality constraints of the integer variables and 
fixing one of them be either 0 or 1 iteratively, a tree can be built and the optimal 
solution can be eventually obtained. The bound of the tree is the lowest objective 
value (minimization) of the feasible solutions obtained so far. Any nodes of the 
tree with objective values higher than the bound can be fathomed away (taken out 
from consideration), since any solution along that branch cannot be optimal. 
Because of this reason, the height of the tree will depend on the selection of the 
branching variables and the bound obtained. Obviously, a tighter bound, if it is 
obtained earlier, can help to reduce the number of nodes in the tree, hence the 
time to get the optimal solution. However, in solving stochastic integer 
programming, a tight bound is very difficult to achieve because the real objective 
value (include the fixed and stochastic values) cannot be realized until the first 
stage solution is computed. This restriction leads to a relatively long solution time 
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since the fathoming process cannot be applied until a tight bound of the real 
objective value is obtained. Therefore, in this section, we present some methods 
to, firstly prefix some variables (Pre-fixing), secondly introduce more 
second-stage constraints than that in Section 3.2 (Directed Partial Path 
Inequalities), and lastly impose the expected waiting and penalty costs to the 
coefficients of the flow variables in the objective function (Exponential 
Smoothing), in order to reduce the solution time of the branch-and-cut algorithm. 

3.4.1 Pre-fixing 
Pre-fixing variable herein means to set some of the flow decision variables Xyk 
equal to 0, if they are unlikely equal to 1 in the optimal solution. This process can 
reduce the number of variables taken into consideration. As the solution time of 
the branch-and-cut algorithm is exponentially increasing to the number of the 
integer variables, reduction of the number of variables can assist to decrease the 
solution time obviously. 

In order to determine the unlikelihood of the flow decision variables 
equaling to 1 in the optimal solution, a minimum expected waiting-and-penalty 
cost matrix, Ok, is established to compute the minimum expected waiting cost or 
late penalty to each flow decision from node i to node j by vehicle k. Then we 
have the following definitions. 

Definition 3.1 Let two nodes be i and j, \fi, j ^ V, with their time windows bi\ 
and [ay, bj\ respectively. Define the minimum waiting time from node i to node j 
by vehicle k at state ^ be co^jj^ where 
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�ijk (^) = max{aj — (b丨 + ),0}. 

Definition 3.2 Let two nodes be i and j, •/，j e V, with their time windows [“/, bt 
and [Qp hj^ respectively. Define the minimum late arrival time from node i to node 

j by vehicle k at state ^ be y/^jj^ (^) where 

¥ijk ( 《 ） = + ) — bj ,0} 

Definition 3.3 Define (j)^^ be the minimum expected waiting costs and late 

penalty from node i to node j by vehicle k where 

and � 

It is easy to prove that for a pair of i and / of any vehicle k at any state ^ , 

either co啡(̂ ) > 0 or xj/..̂  > 0 but not both. Therefore, it is impossible to 

double count the minimum waiting cost and the minimum late 

penalty p~y/ijk{.^) in 小耿.After establishing the matrix Oy^for each vehicle k, 

we can set Xyk = 0 whenever (p..̂  is greater than a given threshold A. One 

meaning of the value of A is to demonstrate the acceptance level of the dec i s ion� 
maker to the deviation of the delivery to the time window. The larger of the value 

% -of A, the more accurate of the algorithm is. 

Another physical meaning of the pre-fixing technique is to reduce the 
chance of having unreasonable first stage solutions. Since the initial first stage 
problem does not consider any delivery time windows, the returned optimal 
solution will merely minimize the fixed and travel costs, which usually violates 
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the sequence of the time windows seriously. Therefore, by applying this 
technique, we can avoid to obtain first stage solution with late order followed by 

early order (i.e. Qi » Z?yand Xyk = 1) since ẑJ"." is already greater than A in this 

case. Hence, a better solution with lower bound can be obtained in earlier 
iterations. 

The effectiveness of the pre-fixing technique depends on the width of the 
time window. If the time window is generally wide for majority of the nodes, the 

possibility of fulfilling the time windows will be larger, that is •耿 = 0 for more 

Uj and k. Therefore, less number of variables are fixed in this case. The situation 
is completely reverse if the length of the time window is shorter in general. 
However, a problem with longer time window is "easier，’ to solve in the sense 
that less second stage constraints are generated and so the number of iterations in 
resolving the first stage problem is reduced. Thus, pre-fixing technique is useful 
when the length of the time window is relatively short comparing with the length 
of the planning horizon. 

3.4.2 Directed Partial Path Valid Inequalities : • 
The formulation of the VRPTWST can achieve optimality because the first stage 
problem is iteratively resolved as the expected waiting/late cost of each route 
(second stage constraints) is gradually included. The difficulty in solving the 
VRPTWST with soft time window is that the waiting/late cost cannot be realized 
until a complete route in a particular sequence is obtained. As a result, for each of 
the first stage solution, we can only add second stage constraints for a set of 
routes and each route is in a specific sequence. In this section, we will introduce 
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the idea of adding more second stage constraints other than the original set of 
constraints. 

Recalling Example 4.1, the optimal first stage solution is the route P^ = (0, 1, 
3, 5, 2, 4, 6) with waiting cost = 50, late penalty = 120 and overtime cost = 20. 
Suppose the fixed and travel cost of this route is 300. The total cost of this route 
will be 490. Then, constraints (3.8a) to (3.10a) will be added to the first stage 
problem. After resolving the augmented first stage problem, another optimal 
solution = (0，1，3, 5, 4, 2, 6) is obtained with fixed and travel cost equal to, 
say 320. Obviously, the optimal solution of the augmented problem will no 
longer be P^ because the objective value of solution P^ will be 490. Figure 3.2 
shows the difference between the solution paths of P a n d , . 

A3=100, W3=0 
[80,120] 

A,=30, w,=20 ^ O ^ X X [50,70] C y ^ ' ^ 3 \40 A5=140, S5=100 
尸 ^ [20,40] / 5 o 30 \ Ao-0, / \ ~=320，」o6 2 \3A,=200,W2=30 

y = 20 p h ' 4 [220,250] [0，300] L>» _ _ r V ^ ^ 80 ^ V 八3=100，W3=0 
[200,220] [80,120] 

A 4 = 2 4 0 , S 4 = 2 0 A , = 3 0 , W , = 2 0 

/» = ( 0 , 1 , 3 , 5 , 2 , 4 , 6 ) ; [50,70] 3 . ^ M O , 85=!00 
Fixed and travel cost = 300; ^ ^ 个 1 � 2 0 40] 

Waiting cost = 50; / ^ ‘ 
Late penalty = 120; 30 / " W 
Overtime cost = 20; / 60 / 

义 4 O � 0 6 70 A2=220’W2-^ 
y = 0 一 [220,250] [o，3oo] L ^ Q r ^ ^ 

[200,220] A4=200, 84=0 
P2 = (0，l,3, 5 , 4 , 2 , 6 ) ; 

Fixed and travel cost = 320; 
Waiting cost = 20; 

Late penalty = 100; 
Overtime cost = 0; 

Figure 3.2 Solution paths for P^ and F^ 

The difference between P^ and P^ in term of their sequences is only the 
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visiting order of the last two nodes, which are node 2 and node 4. From the 
values listed in the Figure 3.2, the total cost of is 440 that show an 
improvement. However, if we trace the path again and we can find that the most 
serious penalty occurs at node 5, which is at the middle (beginning) of the path. 
Suppose, in a larger case, there are more nodes to be visited after node 5. Adding 
merely constraints in type (3.8) and (3.9) can only include the waiting/late cost of 
one-and-only-one sequence of a route in each iteration. And hence, the first stage 
solutions in the following iterations may only swap the visiting orders of the 
nodes at the tail of the route. This circumstance may need a huge amount of 
iterations to come up with a solution so that all nodes' time windows are well 
satisfied. Although this situation may not happen frequently, it cannot be 
completely avoided. Thus, we introduce more second stage constraints to relieve 
the problem. 

One of the natures of the solution path is that the accumulated waiting/late 
cost up to a node does not depend on any subsequent nodes. That means, in 
Example 4.1, the accumulated late penalty after visiting node 5 is 100. Using 

丨 Algorithm 3.2, if a path follows the sequence (0, 1，3, 5), the late penalty must be 
100 after visiting node 5 no matter what is the path after that. This property also 
applies to the accumulated waiting cost. Using this idea, we can add several more 
second stage constraints like the following: 

Wk� -50 (Xoi + + X33 +X52 - 3 ) > 0 
^ k � - 5 0 ( X o i + + X35 + X52 +X24 - 4 ) > 0 
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— 100(Xoi + x,3 + X35 + X52 — 3 ) > 0 
SkOD - 120(Xoi + Xi3 + X35 + X52 +^24-4) > 0 

Instead of adding the second stage constraints of waiting/late costs of the entire 
path, the path now is decomposed in to many sub-paths and each of them start 
from the depot, follow the original path and end at one of the node. Therefore, 
these constraints are named as Directed Partial Path Valid Inequalities (DPPVI). 

Define SI be a sub-path of where the length of the sub-path is v, 0 < v < \Pk\-^. 

Also, Si = (O)and^f'"' = P,. For Example 4.1, Sl = (0,1,3) and Sl = (0,1,3,5). 

Then, constraints (3.8) and (3.9) can be modified to the following general forms. 
/ \f � 

W.iS)- ! » ,“;） S: 1+2 >0 
、丨喊 J 

(l < v<\F, i-~l;kG K;<^GE) (3.8b) 
/ \/ \ 

r , � - ； ^ A � � ； ^ x 砍 - K I + 2 >0 

入(ij)沈S� J 
(1 < V <1 P J -l;k e K;^ e 5 ) (3.9b) 

By imposing the new set of constraints (3.8b) and (3.9b), the number of first 
stage solution is reduced. Its efficiency will be showed in Section 4.6. This 
technique is efficient in reducing the solution time when the fixed/travel cost 
contributes a small amount (relative to the waiting/late cost) to the total cost� 

3.4.3 Exponential Smoothing 
In the formulation of the SVRP presented in Section 3.2, the objective function of 
the first stage problem includes three items, which are fixed costs, travel costs 
and expected waiting/late/overtime costs. At the earlier iterations of the 
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branch-and-cut procedure, value of the last item equals to zero since only a few 
of second stage constraints are included (i.e. expected costs of a few number of 
routes are considered). Therefore, the first stage problem is trying to minimize the 
fixed and travel costs only (a type of geographical optimization) without 
considering any costs related to the time windows in the beginning iterations. 
Consequently, the first stage solutions obtained at the beginning usually violate 
the time windows of the nodes. The objective value of the early first stage 
solution generally has a low value of fixed/travel cost but extremely high value of 
waiting/late cost. This is again because the routes obtained do not follow the time 
window requirements. Due to this reason, the initial bounds from this formulation 
will not be tight, 

so slowing down the fathoming process. In this section, we try to modify the 
objective function so that partial value of the expected waiting/late cost is 
included in the coefficient of each flow variable. Since the expected waiting/late 
cost will be reflected in the last term of the objective function, this partial value 
must be reduced during the iterations so that this cost will not be double counted. 
This partial value is exponentially diminished during the solving iterations. 
Therefore, this technique is named as Exponential Smoothing. In the following 
paragraphs, we will discuss how to determine this partial value and how does the 
technique work. 

The first amendment of this modification is to add some value of the 
expected waiting/late cost to the coefficient (i.e. Cyk originally) of the flow 
variable {Xy]^. In the original formulation, Cyk is the travel cost from node i to 
node j by vehicle k and it is not time-dependent. That is, if we select to use 
vehicle k traveling from i to j, a cost Cyk must be incurred no matter when does 
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the vehicle leaves node i. However, it is not able to identify an exact value of the 
expected waiting/late cost adding to coefficient of Xyk, like Cyk, since such cost 
depends on whether if vehicle k travel from i to j can arrive within the delivery 
time window of node j. For this reason, we can only add the expected minimum 

waiting/late cost 小耿，defined in Definition 3.3, to the coefficient. Because 知 

is the expected minimum cost that must be incurred if vehicle k travels from node 
i to node j, adding this value to the coefficient will not overestimate the objective 
value. The objective function of the first stage becomes 

/ \ 
么Ok + 2 X � + 2 X � + 2 X � ( 3 - l a ) 

， k e K keK{i,j)eA \k&K keK keK y 

After the value 伞耿 is added to the coefficient of x"̂：, as the iterations go on, 

there is a chance to over count the expected waiting/late cost. The insertion of the 
second stage constraints will completely reflect the waiting/late cost of a route to 
the objective value. If the value 么众 still exists in the coefficient of x ^ the 

objective value will be exaggerated for that route. This may affect the fathoming 
process as the real objective value may be lower. Therefore, the contribution of 

(t>ijk to the objective function must be gradually decreased during the solving 

iterations process. 

In order to reduce the value 於狀 during the iterations, a multiplier a々众 

with updating is multiplied to Given a parameter 0<A<1, a updating 

scheme is outlined in Algorithm 3.3 as follow: 
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Algorithm 3.3 
Begin 
Given 0<；1<1; 

Initialize a"众:=1; 

For each first stage solution found do 
M Xijk = 1 in the first stage solution then 

End if 
End for 

The updating scheme stated in Algorithm 3.3 could reduce cXyk by a factor 

of X each time iixyk is found to be one in the first stage solution. This scheme is 
logic in the sense that the expected waiting/late cost of Xijk (a route with Xyk 二1) is 
reflected by the corresponding second stage constraints. By the way, a"众 can be 

decreased by a portion to reduce the chance of over counting. The choice of value 
of X will affect the quality of the solution. If X is close to one, the chance of 
double counting is larger and may lead to a solution with greater objective value. 
On the contrary, if A is chosen to be small, will approach zero in few 

iterations such that the performance tends to be the same as the original 
formulation. 

As the value of 知 is gradually decreased during the iterations，over 

counting the expected waiting/late cost cannot be completely avoided. Therefore, 
applying this method will no longer guarantee the optimality of the 
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branch-and-cut algorithm. However, in term of solution time, it generates a great 
improvement to the original algorithm that will be demonstrated in Section 4.6. 

3.4.4 Fast Fathoming 
In this section, we present one more technique to reduce the solution time of the 
algorithm. The idea of this technique is to apply the fathom process earlier than 
the original algorithm while guaranteeing the difference between the real optimal 
value and the optimal value using this technique is bounded by a given 
percentage. This technique is referred as Fast Fathoming and must be applied 
together with the Exponential Smoothing technique. 

In typical branch-and-bound process of a minimization problem, fathoming 
occurs when the objective value of the current subproblem, is greater than 
the best value, Zopt, obtained so far. (i.e. Zcur > Zopt)- If fathoming is now applied to 
any subproblems with (1+//) Zcur > where / j is a given value between 0 and 1, 
we have the following lemma. 

Lemma 3.1 During a branch-and-bound process of a minimization problem, if 
fathoming is applied to any subproblem with (1+//) Zcur > z_，where z is the 
objective value of the subproblem, z* is the best objective value obtained so far, 
and ju is a given value between 0 and 1, then the optimal value under this 
fathoming rule, denoted as Z^ must be smaller than (1+//) ZQ, where ZQ is the 
optimal value solution of fathoming rule with " = 0. 

Proof: Suppose / is the best objective value obtained so far. A node with 
objective value z will be fathomed away if (1+//) Zcur > Zopt- Since ẑ ur is the lower 
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bound value of the subtree under that node, all nodes of the subtree must have 
objective values greater than or equal to Zcur- Let the real optimal solutionis one 
of the nodes in this subtree, with objective value ZQ, and suppose the best solution 
value obtained under fast fathoming is Z^ = � T h e r e f o r e , we have, 

Zo ^ Zc训,or (1 + jU)Z, >(1 + j u ) � r 

and by definition, (1 + > 

(l + //)Zo � • 

The fast fathoming technique can be applied to our branch-and-cut 
algorithm. It would be more effective, if the value 於讲 is added to the objective 

function, because the objective values of solving these subproblems are closer to 
the real total costs. Since the objective function of the problem only reflects the 
fixed/travel costs and minimum expected waiting/late costs, the real cost of the 
solution is usually larger than the objective value (computed directly from the 
objective function). Thus, the difference between the real optimal value, ZQ, and 
the optimal value using this technique, Z“ , is usually much smaller than 

theoretical bound (i.e. Z � < Z" « (1 + / / )Z� ) . This special property will be 

demonstrated in the numerical results in Section 3.5. 

In our analysis, we try to apply this fast fathoming technique at two different 
stages. Recalling Algorithm 4.1, the first scenario is to apply fast fathoming with 
Ai at Step 1 of the algorithm, which is referred as the First-stage Fathoming, 
FF( //j). The second scenario is to apply fast fathoming with //之 at Step 5 if 
(1+ JLI2 )zcur > Zopt, which is referred as Second-stage Fathoming, SF( //之). 
Generally, jUj is chosen to be larger than //j because the Second-stage 
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Fathoming affects less number of nodes. In addition, fast fathoming can be used 
at both the first stage and the second stage with parameter jû  and //之 respectively. 
This is referred as Both-stage Fathoming, BF( /u^, ju^). 

3.4.5 Modified Branch-and-cut Algorithm 
In the previous sections, we introduce several techniques to improve the solution 
time of the original branch-and-cut algorithm. These techniques include 
Pre-fixing, Directed Partial Path Valid Inequalities, Exponential Smoothing and 
Fast Fathoming. After imposing these techniques to the branch-and-cut algorithm, 
the solution to the problem becomes a heuristic solution. In this section, the 
modified branch-and-cut algorithm with all 4 techniques included is outlined as 
follows. 

Algorithm 3.4 
Step 0. Initialization: Given the parameters A, //j and ju^. Set 汉“人：=1 and 

find the value for all i j and k. Set := 0 if 伞啡 > A. Let Zopt be the cost of 

best known feasible solution. If no solution is known, set Zopt： ^ oo. Define the 
first problem as tfie relaxed problem containing objective function (3.1a) and ‘ 
constraints (3.2) to (3.6). Insert the current problem into a problem list. 

Step 1. If the problem list is empty, print the best known solution and stop. 
Otherwise, select the problem from the list. 

Step 2. Solve the current problem and let Zcur be the value of its optimal 
solution. If (1 + n^Zcur > Zopt, fathom the current problem and go to Step 1 • 
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Step 3. If the current solution does not satisfy integrality constraints (3.11) 
and (3.12), create subproblems by branching on a fractional variable. Insert them 
into the problem list and go back to Step 1. 

Step 4. At an integer solution, check for the existence of subtours. If any 
subtours exist, introduce appropriate subtour elimination constraints (3.7) to the 
current problem and go to Step 2. 

Step 5. At a first stage solution, let z cm be the sum of the fixed costs, travel 
cost, and the expected waiting costs, penalties and overtime costs by using 

» 

Algorithm 4.1. If zcm > z柳 fathom the current solution only if + ju^) Zcur > 
Zopt and go to Stepl. Otherwise, introduce suitable constraints (3.8b), (3.9b) and 
(3.10) to the current problem. Update a " “ = a“� xyi according to Algorithm 
3.3. Also, update Zopt = z cur if z cur < Zopt and go to Step 2. 

3.5 Computational Analysis 
In this section, we are going to analyze the effect of each technique to the 
solution time and optimality. The analysis will be carried into two stages. The 
first stage will compare the effectiveness of each Pre-fixing, Decomposing and 
Exponential Smoothing technique on relatively small size problems. After the 
confirmation of the success of each technique, we will compare the performance 
of the algorithm with and without Fast Fathoming on larger size problems in the 
second stage analysis. 
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3.5.1 Performance of Pre-fixing, Directed Partial Path Valid 
Inequalities and Exponential Smoothing 

In this part, comparisons are made between the performance of original 
branch-and-cut algorithm and that when each technique, Pre-fixing, 
Decomposing and Exponential Smoothing, is added to the algorithm. Two 
scenarios: 1) = 6, A: = 2 and | H | = 3, and 2) n = 10, A: = 2 and | E \ = 3, are 
investigated. The statistics of 50 samples of the following aspects will be 
reported: 

• Optimal value 
• Solution CPU time 
• Number of iterations 
• Number of Pre-fixing variables (if any) 
• Number of nodes in branching-and-bound tree 
• Number of optimality cuts 
趣 Number of first stage solutions 

(1) ^ = 6, ^=2 and |S| = 3 , 
In the first scenario, there are 6 nodes to be served and 2 vehicles located at ai 
single depot. The locations of the 6 vertices are uniformed distributed in an area 
of 20 km X 20 km and the depot is located at the center of the area. There are 3 
traffic states, namely normal, congested and very congested, and each state has 
different impact on the travel speed in the area. Distance between nodes are 
assumed to be Euclidean. The length of the planning horizon is 4 hours. All 
parameters of the problem are summarized in Table 3.1. 
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Parameters Values 
Planning Horizon 0000-0240 (i.e. 4 hours) 
Area 20 km x 20 km 
Nodes 
-Demand, A Normal (800, 100) 
-Start of Time Window, â  Uniform (0000, 0240) 
-Length of Time Window, (bj- a,) Uniform (0.5hr, l.Ohr) 
-Late Penalty per minute, 厂 0.5 x D, / Mean Demand 
Vehicles 
-Capacity, Q Normal (3000, 1000) 
-Waiting Cost per minute, 0.05 
Traffic States 
-ProZ)(Nonnal) — 0.5 Speed: Uniform (45km/hr, 50k.m/hr) 
-/Vo6(Congested) = 0.4 Speed: Uniform (35km/hr, 45km/hr) 
-Prob(Very Congested) = 0.1 Speed: Uniform (30km/hr, 35km/hr) 
Table 3.1 Summary of the parameters of the sample problem when n = 6, k = 2 
and |H | = 3 

From the average values of the 100 sample runs, we can conclude that each of the 
3 techniques can help to reduce the solution time of the algorithm. In terms of 
optimality, Pre-fixing technique obviously depends on the size of the threshold A. 
In this analysis, we choose A = 400 and it can fix 14.87 variables on average, 
which is equivalent to 15.7% of binary variables. The average increase of the 
objective value is only 0.0 to 2.0 % but helping to reduce solution time by nearly 
50% on average. 

For adding Directed Partial Path Valid Inequalities, since it only add more 
constraints to reflect the waiting/late cost of more routes only. Therefore, it does 
not change the objective value (as expected). In terms of solution time, it only 
reduces relatively small amount comparing with other 2 techniques. This may be 
due to the reason that the linear program becomes more complicated to solve 
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Average Value of Original Pre-fixing DPPVI Exponential (r=PDE) 
Sample Size, ( r=0 ) (r=P) (r=D) Smoothing A= 400 
iV=100 A=400 (r=E) A = 0.7 

1 = 0.7 

Optimal Value (Zr) 2870.57 2906.94 2870.57 2877.44 2913.69 
CPU Time (sec) 260.38 144.85 208.12 40.66 30.51 
No. of Iterations 2395.05 1217.73 1566.00 360.82 213.76 
No. of Pre-fixing Var(s) - 14.86 - - 14.86 
No. of B&B Nodes 1658.43 850.46 940.57 298.58 156.49 
No. of Optimality Cut 624.89 304.97 419.95 91.29 53.85 
No. of V' Stage Solution 435.88 222.87 382.45 47.23 35.89 
* average utilization of vehicles = 0.74 
Table 3.2 Summary of the average values of statistics of the sample problem 
when n 二 6, k = 2 and | S | = 3 

Difference to the Original Pre-fixing DPPVI Exponential (r=PDE) 
Algorithm of Sample Size, (r=P) (r=D) Smoothing A= 400 
A^=100 A= 400 (r=E) /I = 0.7 

A = 0.7 

Optim^il Value (Zj) 
X (N ),S(N ) 0.01,0.04 0.00,0.00 0.00,0.03 0.01,0.05 

-^95% Confidence Interval ±0.01 ±0.00 ±0.00 ±0.01 
- ‘ % of optimal value obtained 0.78 1.00 0.87 0.78 
Solution Time (sec) 

.；. -A' (iV ), 5 (Â  ) -0.48,0.32 -0.10,0.47 -0.82,0.12 -0.86,0.10 
-95% Confidence Interval 士 0.05 土 0.08 士 0.02 土 0.02 
No. of Iterations 
-.V (A' ), (A' ) -0.52,0.28 -0.25,0.35 -0.83,0.11 一0.89,0.07 
No. of B&B Nodes 
-A' (A' ), 5 (A- ) -0.51,0.31 -0.34，0.34 -0.80,0.14 -0.88,0.08 
No. of Solution 
-A' ( A' ), S ( A- ) -0.53, 0.30 -0.02, 0.39 -0.89’ 0.10 -0.91, 0.08 
a. 7 _ 7 b “ j S'(A') A'(A') = …丄— Z � � , S(A') = STDEi�Zr.>>r>.�Z�o� X{N)± ^ ― ^ 

c percentage of samples that find the same optimal value of original algorithm 

Table 3.3 Summary of the difference between the original algorithm and the 
enhanced algorithms with different techniques added when k = 2, |三| = 3 

60 



after all directed partial path constraints are added. But in terms of the number of 
nodes of the branching tree, it does show an improvement. Exponential 
Smoothing is the most effective technique among the three. With X = 0.7, we 
observe that the solution time decreases dramatically by 80% on average with a 
resultant increases of the average objective value by less than 0.2%. 

If we use all the techniques at the same time, the average solution time drops 
to 30.51 seconds from 260.38 seconds when no technique is used. The average 
decrease is about 88%. The objective value only changes by 2% on average, 
which can be mainly explained the Pre-fixing technique. All related figures are 
summarized in Table 3.2 and Table 3.3. 

Up to this point of time, we are quite sure of the effectiveness of the 3 
techniques. Because the problem size in this scenario is still small, we try to do 
one more scenario with larger size to support our assertion. 

This scenario is similar to the first scenario. In this case, there are 10 nodes to be 
served. To satisfy the capacity of the vehicles, the mean of the demand is adjusted 
to 450 while keeping the capacity of vehicles constant. Other parameters are the 
same as stated in Table 4.1. Also, solving this problem size already takes very 
long time using the original branch-and-cut algorithm. For this reason，the 
solving process will terminate either up to 80,000 iterations or optimal solution is 
obtained. The sample size is 50 in this analysis. 

In this scenario, since the number of iterations is fixed, optimal values of 
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Average Value of Original Pre-fixing DPPVI Exponential (r=PDE) 
Sample Size, ( r=0 ) (r=P) (r=D) Smoothing 
iV=50 A= 400 (r=E) 

；I = 0.7 
Optimal Value (Zr) 3450.34 3276.53 3784.19 3223.82 3221.57 

of optimal 20% 53% 40% 93% 100% 
solution obtained 
Solution Time (sec) 7668.60 5683.20 12512.80 2095.00 932.80 
No. of Iterations 76958.53 53468.27 74415.67 14715.47 5426.87 
No. ofPre-fixingVar(s) - 42.58 - - 42.58 
No. ofB&B Nodes 52597.53 34528.13 48024.13 11299.40 3849.40 
No. of Optimality Cut 15754.27 15463.93 20264.33 4673.20 1589.73 
No. of 1st Stage Solution 11321.67 7456.93 13288.40 1611.40 844.60 
^percentage of samples that can terminate within 80,000 iterations 
*average utilization of vehicles = 0.72 
Table 3.4 Summary of the average values of statistics of the sample problem 
when n= I0,k = 2 and | E \ = 3 

Difference to the Original Pre-fixing DPPVI Exponential (T=PDE) 
Algorithm of Sample Size, (r=P) (r=D) Smoothing 
./V=50 A= 400 (r=E) 

A = 0.7 
Optimal Value (ZR) 
-X (N),S{N) 一 0.05，0.05 0.09,0.46 -0.06,0.05 -0.06,0.05 

-95% Confidence Interval ± 0.021 土（}.20 土 0.021 ± 0.21 
Solution CPU Time (sec) 
-X {N ),S(N) -0.26,0.39 0.65,0.37 -0.73,0.45 -0.88,0.22 
-95% Confidence Interval ±0.09 土 0.09 ±0.10 ±0.05 
No. of Iterations 
-X (N),S{N) -0.31,0.34 -0.02,0.20 -0.81，0.30 -0.93,0.11 

No. ofB&B Nodes 
-X{N),S{N) -0.35,0.36 -0.09,0.18 -0.79,0.34 -0.93,0.12 
No. of 1st Solution 
-X {N),SiN) -0.35, 0.34 0.19,0.27 -0.86，0.26 -0.86, 0.26 

Table 3.5 Summary of the difference between the original algorithm and the 
enhanced algorithms with different techniques added when n = 10, k = 2 and | S 
二 3 
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a majority of samples cannot be obtained by the original algorithm or algorithm 
with only one technique. But from the number of samples that can achieve 
optimality within limited iterations, we can conclude that the 3 techniques can 
help to reduce the solution time while maintaining near optimality. Also, we find 
that Exponential Smoothing is the most effective technique and Pre-fixing 
follows. 

3.5.2 Performance of Fast Fathoming 
After investigating the performance of the first 3 techniques in a smaller size of 
problem, we are sure that they can help to reduce the solution time significantly 
while maintaining a good solution. In this part, we will show the effectiveness of 
the Fast Fathoming technique. As mentioned in previous, Fast Fathoming 
technique must be applied together with Exponential Smoothing technique. 
Therefore, the comparison will be made between the algorithm with PDE only 
and the algorithm with PDE and Fast Fathoming. Different fathoming techniques 
including the Fast-stage Fathoming, Second-stage Fathoming and Both-stages 
Fathoming will be demonstrated. We will consider 2 scenarios: \) n= k = 2 
and | S | = 3 and 2)/? =15,免二 2 and [ S | - 3 . 

( 1 ) " = 10,免=2 and 问=3 
In this scenario, the parameters setting are the same as the previous scenario. 3 
fast fathoming techniques are examined: 

• First-stage fathoming with 0.10, denoted as FF(0.1) 
• Second-stage fathoming with //！ = 0.10, denoted as SF(0.1) 
• Both-stages fathoming with = 0.05 and ju^^ 0.10, denoted as BF(0.05, 
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0.1) 

Average Value of Sample (7NPDE) First-stage Second-stage Both-stages 
Size, N =50 Fathoming Fathoming Fathoming 

r=PDE+FF(0.10) r=PDE+SF(0.10) r=PDE+ 
BF(0.05,0.10) 

Optimal Value (Zr) 3589.51 3618.57 3590.43 3606.63 
Solution CPU Time (sec) 1736.14 887.00 1219.98 1168.66 
No. of Iterations 9322.29 5043.64 6529.94 5757.20 
No. of Pre-fixing Variables 42.58 42.58 42.58 42.58 
No. of B&B Nodes 6239.22 3214.16 4497.76 3884.72 
No. of Optimality Cut 2336.47 1032.22 973.78 1032.22 
No. of 1st Stage Solution 1575.84 851.71 1219.30 1001.22 
*average utilization of vehicles = 0.72 
Table 3.6 Summary of the average values of statistics of the sample problem 
when 10. A: = 2 and IH = 3 

Difference to the Original First-stage Cut Second-stage Cut Both-stages Cut 
Algorithm of Sample Size, r=PDE+FC(0.10) r=PDE+SC(0.10) r=PDE+ 
iV = 50 J8C((K05�0.10) 

, Optimal Value (ZT) ： 

- X i N ) , S ( N ) 0.009，0.014 0.000,0.001 0.005,0.012 
-95% Confidence Interval 土 0.003 士 0.000 土 0,003 
- % of solutions equal to the 56% 96% 68% 
solutions obtained by PDE 
-Max difference to PDE 0.058 0.006 0.054 
Solution Time (sec) 
-X {N),SiN) -0.66,0.16 -0 .30,0 .18 -0,46,0.22 
-95% Confidence Interval ±0.04 ±0.04 ±0.05 
No. of Iterations 
- X ( N ) , S ( N ) -0.48,0.81 一 0.29，0.13 -0.47,0.16 

No. of Nodes 
-X(N),S(N) -0.59,0.17 -0.25,0.15 -0.44,0.14 
No. of 1st Solution 

-0.74, 0.16 -0.22, 0.10 -0.55, 0.16 
Table 3.7 Summary of the difference between the PDE algorithm and enhanced 
algorithms with different fast fathoming techniques added when n=10,k = 2 and 
| S | =3 
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From the figures obtained, we find that First-stage fathoming with PDE reduces 
the time most significantly. On average, it can reduce 66% of solution time 
compared with the algorithm with PDE only. Since First-stage fathoming is 
applied at the earlier stage of the iterative process, the quality of solution 
obtained is poorer than the other two fathoming techniques. The optimal value 
obtained is increased by 0.9% on average compared with the algorithm with PDE 
only. 

The second-stage fathoming maintains good optimality since it is applied 
later in the solution iterations. Only 4% of the samples are different from the 
optimal value of PDE algorithm and these generate insignificant difference on the 
average optimal value. It can reduce 30% of solution time on average. The result 
obtained by both-stages fathoming is in between FF and SF. The optimal value is 
increased by 0.5% on average and the solution time is reduced by 46%. It can be 
explained by the fact that the first fathoming parameter (//！ 二0.05) is only half of 
that in the first-stage fathoming (//j=0.10). Average values and comparisons are 
summarized in Table 3.8 and Table 3.9. 

(2) 15，k =2 and |S| = 3 � 
In this scenario, the number of delivery points is increased to 15. The average 
demand of each point is adjusted to 300 units. The length of the planning horizon 
is increased to 21,600 seconds (6 hours). Since the algorithm takes quite long 
time for some samples to finish, the solution process will terminate up to 240,000 
iterations or optimal solution is obtained. The results obtained in this scenario 
agree with the conclusion drawn in the last section. Because First-stage 
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fathoming is applied at the early step of the iterative process, there will be a 
Average Value of Sample (r=PDE) First-stage Second-stage Both-stages 
Size, Fathoming Fathoming Fathoming 
TV =50 r=PDE+FF(0.10) r=PDE+SF(0.10) r=PDE+ 

BF(0.05,0.10) 
Optimal Value (Zr) 4524.38 4548.38 4529.69 4532.56 
Solution Time (sec) 9004.62 2864.36 5456.72 3857.64 
No. of Iterations 49514.74 14824.77 30239.77 21147.18 
No. of Pre-fixing Variables 130.05 130.05 130.05 130.05 
No. of B&B Nodes 36447.00 9939.82 22844.49 15419.92 
No. of Optimality Cut 14916.31 486.05 5410.08 1456.87 
No. of 1st Stage Solution 5262.10 1035.26 3607 82 1920.59 
^average utilization of vehicles = 0.71 
Table 3.8 Summary of the average values of statistics of the sample problem 
when n = 15, k = 2 and | S | = 3 

Difference to the Original First-stage Cut Second-stage Cut Both-stages Cut 
Algorithm of Sample Size, r=PDE+FC(0.10) J=PDE+SC(0.10) r=PDE+ 
iV=50 BC(0.05,0.10) 

Optimal Value (ZR) 
- X ( N ) , S ( N ) 0.005,0.011 0.001,0.006 0.002,0.006 
-95% Confidence Interval ±0.003 土 0.001 ±0.001 
- % of solutions equal to the 0.66 0.94 0.82 
solutions obtained by PDE 

'『、 .， 

-Max difference to PDE 0.04 0.05 0.03 
Solution CPU Time (sec) 
-X (N),S(N) -0.69,0.26 -0.37,0.19 -0.54,0.32 
-95% Confidence Interval 土 0.06 士 0.04 士 0.07 
No. of Iterations 
-X (N),S(N) -0.72,0.23 -0.37,0.16 -0.59,0.21 
No. of B&B Nodes 
-k�N \ S (^N� -0.73,0.20 -0.34,0.14 -0.58,0.18 
No. of 1st Stage Solution 
-X {N),S{N) -0.81,0.26 -0.31,0.16 -0.68, 0.14 
Table 3.9 Summary of the difference between the PDE algorithm and enhanced 
algorithms with different fast fathoming techniques added when n = 15, and 
| S | =3 
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larger chance to fathom the optimal solution. However, the deviation from the 
optimal value obtained by the PDE algorithm is only 0.5% on average and 5% of 
maximum, As a contrast, second-stage fathoming is applied after obtaining the 
first stage solution. Therefore, it only generates 0.1% difference to the optimal 
value of the PDE algorithm. However, it can reduce approximately 30% of 
solution time. It is because no second stage constraints are added and resolved to 
the fathomed problem. And, it is the main reason for the reduction of the solution 
time. 

3.5.3 Summary of Computational Results 
From the simulation of one scenario of the problem, we demonstrate that each 
technique can contribute different improvements to the solution time while 
maintaining the solution close to optimal (within 1% on average). However, 
solving one scenario is not enough to solve the effectiveness of the techniques 
since the complexity of solving vehicle routing problem with soft time window is 
highly dependent on the problem structure. Problems with longer average length 
of time window or lower waiting/late cost are relatively easy to solve. Also, the 
utilization of the vehicles (overall demand/overall capacity) also affects the 
solution time. A high utilization problem is relatively easier to solve than the low 
one since the number of combinations of the assignments of orders to vehicles are 
less. Therefore, we can only conclude that these techniques are effective under 
this scenario. Further analysis should be on different scenario settings to explore 
the effect of different values of waiting/late cost, lengths of time window, and 
utilization of vehicle. 
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Another issue is the parameters setting of different techniques. In our 
analysis, we did not show the relationship between the values of the parameters 
to the solution times and optimality. With further analyses, we can choose a 
suitable parameter setting on different problem structure such that the algorithm 
can effectively solve the problem. 

3.6 Concluding Remarks 
To summarize, in this chapter, we describe a vehicle routing problem with time 
window where the travel time between any delivery points is a discrete stochastic 
variable. We first model the problem as a 2-stage stochastic integer programming 
with recourse and propose a branch-and-cut algorithm to solve the problem. 
Computational results show that this algorithm is not capable enough to solve 
larger size of problem because of long solution time. Then, we try to introduce � 
some side heuristics to incorporate to the original algorithm. Computational 
results show that each of these heuristics can help to reduce solution effectively 
while keeping the solution very close to optimality. 
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Chapter 4 

System Features and Implementation 
4.1 Introduction 
The development and application of Information Technology (IT) has been 
explosive in recent decades. More businesses start to use information technology 
tools to smooth their daily operations. With the use of the IT tools, companies can 
not merely save their operating costs by reducing paper works and human 
resources, but can also create value to the customers by providing better service 
level. Many IT tools used in business are decision-support tools. By combining 
some optimization, data minding or artificial intelligence techniques with the 
information, decision-support tools can be built to facilitate business decisions 
making. Because of the trend of globalization of the commercial environment, 
companies nowadays face customers and suppliers from all around the world. 
Business decisions now involve a lot of data and information. Evaluating 
different solutions in order to make the “best，’ decision is no longer effectively 
handled by human beings. Therefore, decision-support tools cannot be ignored in 
any worldwide company in the century. Examples of the application of 
decision-support tool include 1) using the Enterprise Recourse Planning (ERP) 
System for inventory control and demand forecasting. 2) using Geographical 
Information System (GIS) for sales analysis and delivery planning. 
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In this chapter, we describe a map-based decision-support system, known as 
Vehicle Assignment and Navigation System (VANS), to facilitate the routing and 
delivery planning decision in Hong Kong. This system consists of a map-based 
interface to let users visualize the geographical information through a map. 
Moreover, the system can support several decision-support tools including 
shortest path finding, time-dependent cheapest path finding, vehicles scheduling 
and sequencing using real physical distance, etc.. 

Content of the reminder of this chapter is outlined as follows: In Section 4.2, 
we briefly describe some specially features in the system including the interface 
and data management. The decision support tools are described in Section 4.3 and 
the system implementation is stated in Section 4.4. We will conclude by 
discussing some further developments of the system. 

4.2 System Features 
In this section, we focus on some special features of VANS categorized into the 

i 

following two aspects: 
• Map-based interface and network model 
_ Database management and query 

4.2.1 Map-based Interface and Network Model 
VANS provides a map-based interface for the users to identify the geographical 
information to support the decision, data input and analysis. The concept of using 
digital maps as information representation and analysis started from 30 years ago. 
At the beginning, research on GIS is to answer the questions how to assemble, 
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store, manipulate and display the geographical referenced information by a 
computer-based system. The difference between a GIS map and a paper map is a 
GIS map combine many layers of information that can be selected and displayed 
under the user preference. The new trend of GIS research is to make use of GIS 
on some decision supports such as location selection and route finding [11, 45, 
54]. We implemented this concept and use a map-based interface in VANS. 

(1) Map Structure 
The maps provided in VANS are divided into 2 levels as described in Section 2.4. 
One map of whole Hong Kong with 891 nodes and 1938 road segments is shown. 
Another map concerns with the street level information. In this map, building 
information is shown together with the road information. User can select the 
•‘combo box" at the top of the map to choose different districts to display. Figure 
4.1 shows the 2 maps in the system. ‘ 
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T«>«r�，，r�， . Ch«n t^Mirc狭大明 FA6196 55Tnjck Î Ĵ Ĵ UJ!̂ *®̂ **̂  了 et 2123 2222 FC4271 5.5Truck ？ĤSS f狄 2122 "22 HA2579Van 2333 3577 tmcivm®* J£56fiSVan 

Figure 4.1 Map-based interface of VANS 

(2) Point-and-click location indicator 
In the map-based interface, users can click on the map to show the referenced 
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information such as coordinates, area, length and height of a geographical object. 
At the same time, when the cursor moves around the map, the name of the 
geographical object will be displayed at the top of the corresponding maps. On 
the other way round, a series of "combo boxes" is provided at the top of the maps 
to let user to search for the position of the geographical object using their names 
in both English or Chinese. The corresponding item will be highlighted on the 
map. 

(3) Network Model 
VANS uses a graph containing nodes and arcs to represent the underlying road 
network. Each point on the map representing the conjunction of the road 
segments corresponds to a node of the graph. Each link between two points that is 
the road segment corresponds to an arc of the graph. In the network model, we 
also consider the direction of the traffic corresponding to the road segment. For 
instance, a two-way road is represented by two parallel arcs in opposite direction. 

(4) Bilingual Geographical Information 
Geographical information in VANS, including names of the streets, buildings and 
districts, can be visualized in both English and Chinese. Having bilingual 
geographical information built into logistic-support software, the delivery 
schedule can be reported in either Chinese or English in order to help drivers 
easily to understand the address of the delivery points. This feature is especially 
critical in Hong Kong's bilingual culture. Since a lot of English names of roads or 
buildings are only the pronunciations of the Cantonese names, this practice leads 
to a lot of mislocation of the places. Therefore, Chinese address can really help 
the drivers with minimal English standard to do the delivery quickly and 
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accurately. 

4.2.2 Database Management and Query 
There are two main data sources of VANS. One is the map-related data and 
another is the company-related data. They will be discussed individually as 
following. 

(1) Map-related Data 
A relational database is used to represent the map data in VANS. In our network 
model, each district is represented by an individual graph. Therefore, each district 
is given a unique ID. A main table is established to store the information of all the 
districts including the main graph of Hong Kong. Under the main table, each 
district is represented by a collection of tables. These tables include the 
information of the vertices (junctions of the road segments), arcs (road segments) 
and buildings, etc., located in that district. By changing the pointer to different 
districts, VANS can retrieve the information about the selected district. This 
design can facilitate the network model used in TCSP2N calculation. Up to this 
point of time, VANS does not allow users to update or amend the map-related 
data. Users can only enquire the geographical information from the map-based 
interface. 

(2) Company-related Data 
Company-related data, which includes customers, orders, vehicles, depots, 
products and inventory information, is available in VANS. Users can choose to 
establish the company database directly in VANS or use an Electronic Data 
Interchange (EDI) link to import data to VANS from an external source. 
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There is a necessary connection between the company database and map 
data in order to provide the visualization of company information of the map. In 
the map database, building is identified a unique ID and is assigned to a node for 
network calculation. However, in company database, address information is 
usually represented by a piece of string. This makes the address cannot be 
identified in the map database. Because of this reason, VANS provides a function 
that allows users to add the customer information through the map-based 
interface. Users only need to point and click on the building and the road segment 
of the digital map, the address of a new customer can be automatically generated. 
At the same time, the building ID and the corresponding node ID of the customer 
are stored. This function helps to solve the difficultly in transferring the "word 
address” to the “system address”. Figure 4.2 shows the interface of this function. 
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For the products, inventory and orders database, VANS also provides 
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functions for users to update and add the information. For a delivery system, 
order handling is an important function. As this result, an interface is available for 
entering the information of a purchase order. This interface connects with 
products and customers database. By giving the information of the customer such 
as customer ID, names or telephone number, the system automatically returns the 
location, address and related information on the screen. Users can also choose the 
ordered items stated in the purchase order through product name or ID. By 
simply typing the quantity of the item ordered, delivery date and time，a 

commercial invoice can be generated. Also, the weight, volume and amount of 
the order are also automatically calculated. Since delivery planning requires the 
consideration of the weight and volume of the goods, this information is essential 
for route evaluation. Figure 4.3 shows the order-adding interface. 
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As a delivery planning support system, VANS offers two major decision-support 
tools, namely route finding, and delivery planning and scheduling to facilitate 
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daily delivery operation. The following subsections will discuss these 
components one by one. 

4.3.1 Routing Finding 
Route finding is a function to suggest a suitable path from one point to another. 
The evaluation of the path can be based on distance, time or a combination of 
both. Up to this point of time, users can find the deterministic shortest path and 
the time-varying shortest path, as described in Chapter 2, to do the evaluation. 

For the deterministic shortest path, the system uses Dijsktra algorithm [24J 
for calculation. Real distance and travel direction of the road are considered. All 
parameters are assumed to be fixed in this case. Therefore, the best path obtained 
in this evaluation should be the same for any departure time of a day. For the 
time-varying shortest path, the system incorporates the algorithms described in 

‘ V • 

Chapter 2 for computation. The travel time of a road segment is a function of 
time beginning traversing that segment. Therefore, this calculation can take 
various travel times at different point of time of a day into consideration. 
Therefore, the best path between two points at different time of a day can be 
different in this calculation. 

r ^ ^ 1 

— — 」 赫 —� 
Non-Deak hour: 02000300 Peak hour: 1 TOO-1800 

76 



Figure 4.4 Time-varying shortest path at different time intervals 

Figure 4.4 demonstrates the difference of the best path between different time 
intervals of a day. In this case, the starting point and the ending point are 
Kowloon Cricket Club and the Hong Kong Space Museum in Tsim Sha Tsui 
respectively. When the departure time starts at non-peak time, say 0200 to 0300， 

the best path goes straight down the Nathan Road. However, if the same 
evaluation starts at peak time, say 1700-1800, the best path suggests using Austin 
Road and Canton Road. The distance travelled by the latter path is obviously 
longer but is still chosen by the system. This is because the traffic congestion at 
Nathan Road at peak hours. Therefore, the system suggests using a longer path 
since the cost function in the evaluation is a linear combination of the distance 
cost and time cost as described in Equation (2.1). 

After the computation of the shortest path, a route report is generated with 
full details of each road segments past through, including names, distances and 
travel times, in the travelling sequence of the path. 

The main application of the shortest path calculation is to guide the 
dispatcher to find out the best path. After unloading at one point, dispatcher can 
use route-finding function to obtain the best path going to the next unloading 
point. Using the time-varying shortest path, dispatcher can also understand the 
traffic conditions of the road network and choose the best path while satisfying 
the time window of the next order. 

4.3,2 Delivery Planning and Scheduling 
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In order to enhance the resource utilization while maintaining a reasonable 
service level to the customers, VANS provides a delivery-planning function that 
suggests ways to assign orders to vehicles and schedule the stopping sequence 
accordingly. After the users inputting all information of orders, vehicles and 
inventory, VANS will collect all the data and perform an optimization-based 
scheduling. A Clarke-Wright [15] saving heuristic algorithm is used for this 
function. The objective of the problem is to find a set of feasible routes with 
minimum operating costs while satisfying all orders' time windows. One of the 
features of the algorithm is that time-dependent travel time is used. This can 
avoid violation of orders' time windows caused by deviation of travel times of a 
day. The details of the algorithm are described in Appendix A. 

After running the algorithm, a set of delivery routes will be obtained. A 
delivery report is generated and it states the delivery routes of each depot. The 
delivery sequence, address and estimated arrival/departure time of each route. For 
each delivery point, the name of the items to be delivered, quantities and amounts 
are listed. This report helps the dispatchers to collect the goods in the warehouses 
and manage the time of delivery. 

In additional to the textual delivery route report, VANS also provide a nice 
feature to let the dispatchers to visualize the delivery sequence of the route. After 
obtaining the delivery schedule, user can choose any one of the routes and show 
it on the map step-by-step. Information of the current and next loading points, 
estimated arrival and departure time is displayed under the map. This feature can 
let the dispatcher understand the correct path between each unloading point and 
have a better image than reading merely the textual report. 
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ROUTE ID: TMDC-01 
WEIGHT CARRIED: 619 kg VOLUME CARRIED: 118 cm cube WORKING HOUR: 12£)9 - 12:38 VEHICLE: FD4985 TYPE: lOTruck WEIGHT CAPACITY: 10000 kg VOLUME CAPACITY: 15000 cm cube AVARLIABLE HOUR: 0 7 3 0 - 15:00 DISTANCE COST: $ 1 3 /km TIME COST: $ 0 ^ /min SET UP COST: $200 

1 ORDER ID: 007979TIME WINDOW: 12:14 - 14:06 CUSTOMER: 00111115 大明 Chan Tai Ming TEL: 2 1 2 3 2 2 2 2 ADR:尖沙阻天文保誠保^Dt廣 ARRIVAL TIME: 12:14 DEPARTURE TIME: 1 2 2 4 1 13 Packs $49_5 $644 .8 2 000256 水400至升 42 Bottles $25.6 $ 1 0 7 5 2 
2 ORDER ID: 002730TIME WINDOW: 1 1 2 1 - 13:11 ‘ ‘ CUSTOMER: 12588848 章孝炎 CHEUNG Hu Van TEL: 2510 2500 A D R : 尖 f c i n a 奇盛中 A R R I V A L TIME: 12:25 DEPARTURE TIME: 12:35 1 000256 U W H ^ y M O O ^ ^ 6 9 Bottles $25.6 $1766.4 2 002585 雀 巢 春 # 2 5 0 2 3 Cans $ 5 2 $119.6 3 125779 藍妹啤？S640丢升银装 66 Bottles $13.8 $910 .8 

DEPOT: TSTW T.S.T. Warehouse TEL: 2333 3575 
ROUTE ID: TSTW-01 
WEIGHT CARRIED: 4240 kg VOLUME CARRIED: 1165 cm cube WORKING HOUR: 10:06 - 17:56 VEHICLE: FC4271 TYPE: 5_5Truck WEIGHT CAPACITY: 5000 kg VOLUME CAPACITY: 7500 cm cube AVARLIABLE HOUR: 08:00 - 19:00 DISTANCE COST: S 1 2 /km TIME COST: $0 .5 /min SET UP COST: $150 

1 ORDER ID: 001105TIME WINDOW: 10:43 - 10-32 CUSTOMER: 19955544 何大一•生 Dr. Ho Tai One TEL: 7 8 9 3 9842 ADR:番港中文大舉范勿leiEff•舆 ARRIVAL TIME:上0:42 DEPARTURE TIME: 10:52 1 0 0 1 3 7 8 ^莉忌濂^^蛋« 1 5 0 0克 4 Boxs $13.9 $55.6 
2 ORDER ID:008889TIME WINDOW: 1 1 - ^ - 13KD2 ‘ CUSTOMER: 00121217 S E H j f i Lui Forth TEL: 2698 4141 
ADR:番港中文大iilfftS^fll ARRIVAL TIME: 12:52 DEPARTURE TIME: 13:02 

1 003369 USte?录茶355査升 67 Cans $6 $402 
3 ORDER ID: 009215TIME WINDOW: 13:54 - 14K)5 
niSTOMRR: 伴Y ; i m Hi Hanp TF.I.: ？ 7 Figure 4.5 Delivery report 

No » » 
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Figure 4.6 Animated route displaying function 
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4.4 System Implementation 
In this section, we briefly describe the implementation of VANS. VANS is a 
window-platform based system and written in Visual Basic. The GIS tools used 
are MapX and Maplnfo Professional, and the database is managed by Microsoft 
Access. We will give an introduction of each piece of software used and identify 
by the relationship between this software in building up the system. 

Visual Basic (VB) is a programming language and environment developed 
by Microsoft Corporation. VB can provide a user-friendly environment to 
develop the interface of the system. Its event-driven concept allows programmer 
to manage the events faced by the system, such as mouse click and drag, without 
difficulties. Also, The object-oriented philosophy of VB also helps us to easily 
develop the objects or classes, such as customers and vehicles, in the solving 
procedure. In addition, VB provides a fruitful library codes and applications so 
that programmer does not need to recreate some common-use applications. 

MapX is an active control GIS component developed by Maplnfo 
Corporation. After the installation of MapX, VB can call the routine in MapX to 
manage the map-related graphics and objects. These routines include various 
visualization of the map, and selection and enquiry the objects on the map. In 
VANS, compute must be installed with MapX first to support the management of 
the map-related objects. 

Maplnfo Professional is a piece of software developed for mapping and 
geographical analysis. It is also a product from Maplnfo Corporation. The 
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functions of Maplnfo Professional include visualization and analysis of 
geographical data. By transferring intensive and large amount of information into 
simple and easy-understanding tables, figure and graphics presentation, users can 
quickly figure out the problem and make the corresponding decisions. Also, it 
allows users to create their own maps with specified features and layers. In VANS, 
Maplnfo Professional is used for drawing, layout and design of the network 
structure of the maps and road networks. 

Microsoft Access is a database management system developed by Microsoft 
Corporation. In VANS, Access is used to manage the map-related data and 
company-related data. By connecting Access to VB, VANS can provide the data 
retrieval, updating and enquiring functions. 

VANS 

/ " \ / \ Input from users M^s display, ( i 
Decision-support tools V J Data management ^ 

省 Visual Basic 

Maps display, [ \ \ Update company 
Map management/ \ \ related Information 丨 

J Retrieve company- \ 
/ related Infoi^tion \ 

y ^ \ ^ ~ 
MapX information Access 

input 
I Create maps layout 
I and road networks 

Maplnfo Professional 

Figure 4.7 Relationships among the software used in VANS 
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4.5 Further Development 
This system is still on going and can have a lot of improvements. On the 
technical side, Global Positioning System (GPS) can be incorporated so that the 
locations of the vehicles can be reported simultaneously while dealing with 
real-time orders. Also, at this point of time, real-time and well-quantified traffic 
information is still lacking in Hong Kong. To improve this, we are going to 
investigate and analyze the images obtaining from the video camera installed in 
some of the main links in Hong Kong, and attempt to get some data from the 
images. For the information transferring between the dispatchers and the control 
center, some mobile devices, such as cellular phones or Personal Digital 
Assistance (PDA) through the wireless network, can be used to exchange the 
updated information. This information may include the time-varying shortest path 
evaluation, re-routing schedule with on-line orders, traffic information or 
dispatching information. On the service side, an internet-accessed enquiry system 
will be provided so that customers can have a full picture on the delivery 
information. 
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Chapter 5 

Vehicle Routing Software Survey 

5.1 Introduction 
The applications and features of Computerized Vehicle Routing Software (CVRS) 
have changed rapidly in recent decades. In the past, CVRS was a standalone 
application installed on an independent computerized machine solving static and 
simple fleet management problem including assigning stops to vehicles and 
sequencing them. The interface of the old CVRS was also monotonous as 
inputting and outputting were all text-based. The objective of applying CVRS 
that time was to reduce the travelling distance of the delivery process. Nowadays, 
CVRS is not merely a cost-reducing tool, but is also a strategic planning, 
customer-service improving and resources utilizing — and profit enhancing 
system. 

In this information technology era, CVRS is widely used in many industries 
such as manufacturing, food and beverage, service and repair, third-party 
logistics service providers, etc.. The application of CVRS is wide-spread and 
commercial companies cannot dispense with its use in order to remain 
competitive in the industry. Therefore, there are many CVRS providers in the 
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market. However, the questions of selecting a suitable commercial CVRS for 
different companies are not identical. It depends on the size, service provided and 
location of the company. In this chapter, we will first try to figure out and suggest 
some of the features that are considered essential in CVRS nowadays. Then, we 
will focus on some of the leading CVRS in the market and elaborate the 
relatively special characteristics of each product. Finally, we will conclude by 

J., 

addressing the future directions of the CVRS development and the CVRS 
products sold in Hong Kong. In our study, we focus on several of the most 
popular CVRS products: 1) ArcLogistics Route by ESRI, 2) ILOG Dispatcher by 
ILOQ 3) RoutePro Designer by CAPS Logistics, and 4) Paragron by Paragron 
Software Systems. Company information is provided in Appendix B. 

5.2 Essential Features in CVRS Nowadays 
CVRS today is versatile and has a lot of product-dependent features. A survey is 
conducted by OR/MS Today [39] recently on the features of 24 CVRS products 
in US. In this section, we will look into those features and their benefits to the 
delivery operations. The first part will focus on some common features that are 
usually available in current CVRS products. A comparison on the features 
between traditional products and current products is given. The second part will 
talk about some special features, which are not found in all products, but are 
critical to the smooth operation of the delivery process. 

5.2.1 Common Features 
The followings are the features we determine that must be possessed by a claimed 
CVRS application. 
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(1) Roadmap-based interface 
At the present time, CVRS products are generally supported by a roadmap-based 
interface. The details of the roadmaps provided in software are different. For 
example, in American and European markets, maps provided in leading software 
are detailed to the street level of each area. From the view of interface of these 
products, roadmaps only show the information of the road network of the region 
but without any buildings information. Some companies also provide constant 
updating of the roadmaps to their clients. Another important GIS capability is 
geocoding stops from addresses. This means that the system can understand the 
written address and automatically transform it to geocode of the digital map 
object. This is a convenient characteristic as mentioned in Chapter 4. 
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Figure 5.1 Interfaces of some CVRS software 
(2) Real distance calculation 
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Traditional CVRS commonly represents delivery stops by a 2 dimensional 
Euclidean space and use straight-line distance in calculating delivery schedule. 
The deviation of the real travel distance to the Euclidean distance can be very 
large if the road network behind is ignored. Nowadays, with the application of 
GIS, real travel distance between 2 delivery stops can be quickly and easily 
computed. Also, road traffic directions are also considered in GIS so that the 
calculation of the delivery scheduling can reduce errors. 

(3) System compatibility 
CVRS is no longer an independent software application in this era. As mentioned 
in the introduction, it can be a strategic planning or resources management 
system. Therefore, it must be compatible to other software used in the company, 
e.g. database system ERP system or Microsoft Office. Different companies may 
use different database to store the information. Since solving delivery schedule 
must retrieve the information (e.g., on vehicles, orders and customers) in order to 
facilitate the solution process, compatibility to the data source of a company is an 
important factor in selecting a suitable CVRS product. After obtaining the 
delivery schedule, CVRS can export the results to different formats such as 
Microsoft Word, Excel, Access or postscript. This can allow the users to visualize, 
amend or further analyze the delivery schedule not only on the CVRS installed 
machine, but on all general machines. 

(4) Results reporting 
In the past, CVRS can only give the solution report to the decision maker in 
textual format. In the report, a list of delivery stops will be given in the order of 
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delivery sequence. The style and format of the report are rigid and usually cannot 
be changed easily by the user. At this moment, major CVRS can report the 
delivery schedule in various ways. Textual report is the basic way to show the 
delivery details. Users can choose different perspectives to view the solution 
results. For example, it can be at the point of view of people at operational level 
(drivers, packers) or managerial level (distribution manager, sales representative). 
For drivers or packers, the information they needed is the details of the delivery 
schedule such as desired items or location of each delivery point, arrival time and 
departure time, and the driving direction. For the distribution managers, they may 
want to know the overall operating costs and resources utilization so that they can 
adjust the resources allocation according to the recent performance. 

Beside a static textual report, user 
I 

can also visualize the results on the 一一 “ I 
. 遞 I 

map as similarly described in Section “一 ^, 
Typiĉ j Delivery Expenses | 4.3.2. Drivers can understand the actual tS 

一 Z �� 
. . . . A \ driving direction from the roadmap. T— \ \ L / Ju， Summary of the driving scheduling can ^ ^ -乂眼 I ��~~^乂 I 

j I be summarized in a Gantt chart, which Lnrrrzir^rrrm ~ p 1 ,1 1 • • , • •, • , • Source: http: tdinnovations. com delivery, html 
shows the driving time, waiting time 
of each vehicle. On the other hand, some software allows performance analysis. 
By pulling data from the daily delivery schedules, tables and charts about vehicle, 
labor and diesel expenses, and capacity utilization are generated. These figures 
can help the decision maker understand the trend without difficulty, and this 
convenience cannot be found merely from the textual report. 
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(5) Interactivity 
Solution process in the old CVRS is a one-way process. User starts by giving the 
problem data, parameters and the system will solve to an "optimal" solution. 
During the process, user cannot amend anything until the end of the solution 
process. After the solution is obtained, user can only accept or reject the schedule. 
Adjustments can only be made manually but the adjusted schedule may not 
satisfy the problem feasibility. The only way is to re-run the solution process with 
updated adjustments but this may take a long time. Therefore, flexibility is quite 
low in the old CVRS. 

However, CVRS at this point of time allows users interactively change the 
delivery schedule. After the CVRS suggests a delivery schedule, user can modify 
the schedule according to the strategic need by just point-and-drag some objects 
on interface. For instance, users can interchange the delivery order of two 
delivery points, assign orders to other vehicles, or add/drop vehicles while 
keeping some routes unchanged. The system will show the updated costs, driver 
workload and feasibility of the new schedule. Therefore, users can select to 
adhere to the old plan or follow the new arrangement. Local re-optimization of 
part of the problem takes place if needed instead of resolving the whole problem. 
This feature can let the user change the schedule up to the last minute and 
enhance the flexibility of resources allocation because of the speedy justification 
of any new plan. This is also a critical factor in real-time schedule. 

(6) Types of schedule 

88 



Delivery planning is an intricate problem and the complexity of real situation 
problem is incredible. Therefore, CVRS actually cannot tackle all the delivery-
scheduling problems. In typical CVRS nowadays, it can handle 1) single phase 
fixed route planning, and 2) multi-period stochastic route planning. Route 
planning here means normal pickup and delivery planning. 

Single-phase fixed route planning is to handle some daily delivery 
operations or stable distribution over a longer period of time. It is a normal 
requirement that all CVRS can handle it. Multi-period route planning enables the 
user to plan schedules for more than one period where delivery frequencies vary 
between customers. The required amount of customers can also be a stochastic 
variable. One example is the replenishment of the soft drink selling machines. 
The system can balance the temporal and spatial factors can come up with an 
"optimal" schedule. 

All the features described above are common found in CVRS products 
nowadays. Table 5.1 summarizes the main difference between past software and 
咖rrent software. 

Time 
Features of CVRS up to 1990's 2000，s 
Interface text roadmaps based 
Distance used in calculation Euclidean real travel distance 
System compatibility standalone database, ERP connected 
Results Reports Text only text, maps, graphics, tables 
Interactivity One-way interactive, real-time 
Types of scheduling single phase, fixed multi-period, stochastic 
Table 5.1 Summary of the feature differences between CVRS of different eras 
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5.2.2 Advanced Features 
After understanding the common features of today's CVRS, we will look into 
some special features that are thought to be essential in CVRS in this moment or 
in the future but are not generally found in CVRS products. These features are 
not only "user-friendly" but also enhance the quality of the delivery solution and 
also improve the smoothness of the delivery process. 

(1) Real time vehicles position tracking 
The application of the Global Positing System (GPS) enables the real time 
tracking of the vehicle position. Thorough the wireless communication network 
such as Global System for Mobile (GSM), the GPS signal can be transferred to 
the control panel to display the position of the vehicles. With the use of this 
feature, users can know sudden events such as accidents and revise the planning 
accordingly. Another function is that an early estimation can be made from the 
performance of the routes and highlights any possible missing of time window. 
Readjustment of the remaining part of the route can be made by the users' insight 
or suggested by the system. 

Beside the operational advantages, the historical data of the vehicle positions 
can reflect the performance of the drivers to preventing cheating. More than this, 
the data can be used as a basic estimation of the travel times of some roads so that 
a time-dependent travel time of the road network can be used in future delivery 
planning. In our analysis, ArcLogistics Route, RoutePro and Paragron possess 
this function. 
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(2) Incorporating real time traffic information 
A few of the CVRS applications provide real time traffic information updating to 
the road database. None of our investigated products provide this function. 
However, this function is quite important in route planning in some regions with 
highly varying traffic such as Hong Kong. The first use is that dynamic further 
planning with a day can use the updated traffic information. Also, re-routing of 
vehicles on the roads can be decided and sent to the drivers thorough some 
mobile devices to reduce the chance of vehicles trapped in traffic congestion. 
This function can be combined together with GPS signal (if available) to achieve 
a better decision of the amended route. The success of this function depends on 
whether this real time traffic information is available in the planning region. 
Cities that have Intelligent Transportation System (ITS) can provide this 
information comprehensively and speedily. However, a city without this 
information actually cannot make use of this feature to facility the planning 
feature. 

(3) Travel speeds difference depending on time-of-day 
Travel speed of a road segment is not identical throughout the day. Therefore, in 
an advanced planning situation, it is better to use different travel speeds, known 
as time-dependent travel time, to represent an actual, or close to actual, traffic 
condition of a road segment at different points in time. Only RoutePro and 
Paragron have this feature. The advantage of having this feature is that make a 
more accurate planning can be done. In this setting, the time window is more 
accurately satisfied because the travel time between two locations depends on 
when the traveling takes place. Therefore, the service level can be improved. The 
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disadvantage of this setting is that the delivery problem with time-dependent 
travel speeds is more complicated to solve than the version with fixed travel 
speed. The solution time will be longer and this may make the system unable to 
react quickly to adjustment. Also, the data of the time-dependent travel speed is 
difficult obtain in some the regions that make the calculation impossible. 
Moreover, there is a huge amount of data of travel speeds for all road segments at 
all time intervals of a day. This leads to the problem of data storage and retrieval 
in an efficient way. 

(4) Strategic planning 
Historical delivery data of a company is truitful information for strategic 
planning for the future operations. From this data, the customer distribution and 
orders pattern can be identified. It can help management to decide on the 
structure of the distribution network as follows: 

• Opening and locating a facility such as warehouse and factory 
• Allocating inventory within warehouses 
• Distributing stock from factories to warehouse 
• Increasing or decreasing fleet and crew 
In the past, in making the above decisions, management needs to collect a 

lot of data for analysis. The computation is also difficult to implement because of 
the extensive amount of data. With the use of CVRS, users can collect the 
required data easily. Different decision-support tools can be incorporated into the 
system to perform analysis other than routing. Since delivery cost highly depends 
on the structure of the distribution network, these decision-support tools are 
valuable to reduce the overall supply chain costs. 
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(5) Modeling and algorithmic capability of delivery planning 
The delivery planning problems given by industry are much harder to solve than 
academic problems. The real problems are more complicated and involve much 
more constraints and objectives. General commercial CVRS products can only 
handle typical problems with single depot with multiple routes. In the following 
few lines, we describe some special models that are not commonly handled by 
commercial CVRS. 

If a company operates multiple distribution centers (DCs), it may be 
beneficial to create routes with product originating from more than one depot. 
That means one delivery order can be sourced by one vehicle passing thorough 
different DCs. In this model, it needs to consider the inventory level different 
products at different distribution centers. The vehicle needs to collect all the 
required items before arriving to the customers. This also further complicates the 
problem. Moreover, in multiple DCs situation, the allocation and delivery of 
inventory between different DCs are another problem to solve. Not many CVRS 
products can deal with these situations. 

Some other constraints are on the driver side. First, the system should be 
able to match drivers to vehicles according to the licenses they have. Second, 
lunch hours must be reserved for the drivers. Also, working time of drivers must 
conform to the regulations of Department Of Transportation and/or Department 
of Labour. In some countries, drivers must take a rest of a short period time after 
a specific length of working time. Besides, the workload of drivers should be 

93 



balanced to avoid unfairness. Not many systems can handle these additional 
constraints. 

Lastly, order splitting is usually prohibited in commercial CVRS that are 
generally available. But order splitting in some cases can reduce the number of 
vehicles used and increase the utilization of all vehicles. Unfortunately, orders 
splitting may generate difficulty to the receivers such that it may lower customer 
satisfication. How to balance the cost and the service level is the core of the 
problem. Also，splitting the orders in a logical way is impossible to be handled by 
many CVRS systems. Users must specify their own way to do this. Since 
different companies have their own strategy on this, it is difficult to generalize the 
model of order splitting. Therefore, not many CVRS products can deal with this. 

Table 5.2 summaries the features provided by the investigated products. 
Features ArcLogistics ILOG Route Pro Paragron^ 

Route^ Dispatchsr^ Designer^ 
Map-based interface y y y y 
Real distance y y y y 
calculation 
Real time vehicle y - y y 
tracking 
Incorporating real time - -
traffic information 
Different travel speeds - y 
of a day 
Strategic planning tools ERP version is - Multi- Facility selection, 

available compartments, distribution between 
zone creator, warehouses and 

load balancing factories 
Source: 'OR/MS Today, Feb 2002, 'http-.//paragon-software.co.uk 
Table 5.2 Features on investigated CVRS products 
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5.3 Concluding Remarks 
The features described in Section 5.2 are all underdeveloped in current 
commercial CVRS products. As the computing power is continuously increasing, 
CVRS can handle more complicated and realistic industrial problem. But still, 
different companies have their own constraints and delivery model. Because of 
this reason, it is not able to have a single generalized CVRS product to serve all 
the situations. Different products may have different strengths. For example, 
ArcLogistics Route is strong at GIS interface while ILOG Dispatcher is capable 
in algorithm design and solution quality. Thus, choosing a CVRS product is 
dependent on the company needs and strategies. 

Because of the above reasons, CVRS providers start to divide the whole 
delivery planning system into several small objects (modules) and let developers 
access and amend them. Developers can base on the original modules and add 
constraints or features that they needed. This becomes the new direction of the 
CVRS products. 

Major CVRS providers are located in Europe and America. In Hong Kong, 
using CVRS in delivery planning is only in an early-developing stage. There are 
only some small software companies and ArcLogistics Route providing this kind 
of product custom-tailored to Hong Kong base; that is, the products are installed 
with Hong Kong road maps and in Chinese. Most of these products provide very 
elementary functions and nearly none of them provides the advanced features 
such as real time vehicle tracking and time-dependent travel time. These features 
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are critical as the traffic condition in Hong Kong seriously varies over time. The 
difficulties of adding these advanced features to CVRS in Hong Kong are the 
lack of such information and the incompleteness and inaccuracy of the GPS 
signal. 

In this chapter, we describe some basic features and advanced features of 
several commercial CVRS products. These features are important to provide 
users a complete and clear picture of the delivery problem. 
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Chapter 6 

Summary and Further Work 
In this thesis, we consider a map-based decision-support system to handle routing 
and delivery planning problem in Hong Kong. Inside the system, two special 
decision-support components are designed for the traffic environment in Hong 
Kong. 

The first one is a path finding tool to find out the cheapest path at a 
transportation road network. The reason of modeling this problem as a 
Time-varying Constrained Shortest Path Problem (TCSP) is that the time-varying 
issue of the network is similar to the traffic condition of the road network. Using 
this tool, we can find a path from one point to another point in the network so that 
the combination of travel time and distance is minimized. We then extended the 
original model to our 2-level road network in the system and propose one exact 
and one heuristic algorithm to solve the problem. The time complexity of the 
original algorithm is 0{T{n + m)), where n and m are the number of vertices and 
arcs of the graph, and T e Z+ is the maximum time allowed to traverse the path. 

The problem solved in the system is to find out a path starting from a point 
of time, say ti, and ending before another point of time h. Since T is an integer in 
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this model, we need to divide the time interval from ti to t: into T equal segments. 
The size of 7 then becomes a critical factor of the solution time and quality. First, 
if T is too large, the solution time must be longer since the time complexity is 
depending on T. In contrast, if T is too small, the travel time function b(pc, y, u) 
may not reflect the correct transit duration at time u since u now is representing a 
long period of time. The accuracy of the path may be influenced. Therefore, the 
choice of the size T is needed to further analyze. Because of busy and varying 
traffic condition in Hong Kong, further work can be on the modeling of expected 
shortest path at a time-varying and stochastic network. 

The second model proposed in this thesis is the Vehicle Routing Problem 
with Time Window and Stochastic Travel Time (VRPTWST) for delivery 
planning in Hong Kong. The reason of choosing this model is again that the 
travel time is difficult to predict because of busy traffic condition. By modeling 
the travel time between two locations as a discrete stochastic variable, the travel 
time can be represented by multiple values with different probability. The 
objective of this problem is to minimize the total operating cost, and total 
expected waiting cost and late penalty. We proposed an exact branch-and-cut 
algorithm to solve the problem. Based on this algorithm, a set of heuristics is 
proposed to improve the efficiency of algorithm. Computational results show that 
each heuristic can help to reduce the solution time and keep the solution close to 
optimality. 

The solution time of the improved algorithm is still long so that it can only 
handle a moderate sized problem. Because of this reason, suitable assignments of 
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orders to vehicles must be made prior to routing problem. The idea is to separate 
a large problem (many orders and many vehicles) into several smaller pieces of 
routing problem (moderate number of orders and few vehicles). This approach is 
very common in solving larger size vehicle routing problem. The application of 
VRPTWST can be used for fixed route planning in the sense that the delivery 
pattern will be stable for a relatively long period. Therefore，a longer time can be 
used to solve the problem. Also, minimizing the expected waiting/late cost is 
reasonable in a long run case. 

The use of VRPTWST is still not sufficient to reflect the complete picture of 
the traffic condition of whole day. Travel time during the whole day is not 
identical. Further work can model the travel time between two locations as a 
time-dependent stochastic variable. That means the probability distribution of the 
travel time changes over time. This model is further complicated and it is not 
expected to be solved by branch-and-cut algorithm efficiently. Other approaches 
such as column generation may be a good approach as we can generate 
potentially good routes rather than examining all of the possible routes. 

For the decision-support system VANS, it now provides a map-based 
interface, data management and several decision-support tools such as 
time-varying constrained shortest path and delivery planning. The features 
provided in VANS are very elementary compared with the commercial products 
available in the market. The future direction of VANS is in two aspects. First, it 
will extend the features provided so that it is close to commercial products. 
Second, it will focus on the special characteristic of delivery in Hong Kong. The 
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decision support tools provided in VANS must consider the traffic condition, 
either static or dynamic, of the road network. The solution time should be fast 
enough to support speedy delivery and on-line adjustment. Moreover, in order to 
provide time-dependent decision making, we must have the time-dependent 
travel time data of road network. However, this data is still not available in Hong 
Kong. One approach can use the Global Positioning System (GPS) to identify the 
travel speed of vehicles on different road segments. By collecting enough data, 
the average travel speed at different time of different roads can be figured out. 

To conclude, this thesis described a decision-support system that is specially 
designed for the delivery planning in Hong Kong. Besides, two mathematical 
models are proposed to solve the routing and delivery planning in Hong Kong, 
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Appendix A 

Saving Algorithms used in the System 
In the decision support system, a saving heuristic algorithm is used to solve the 
vehicle routing problem. This algorithm considers multiple depots and 
time-dependent travel times. The general concept of this algorithm is to assign 
each order to the closet depot and iteratively insert one feasible order to a route 
which generate maximum saving. In this model, waiting is allowed but late 
delivery is not accepted. A general picture of the overall algorithm is outlined as 
follow: 

] r 
Collection all data of orders, 

vehicles and depot 
2 r 

Assign each order to the 
closet depot 

Y 
Saving algorithm 

Y 
Terminate 

Figure A�1 Overall picture of the saving heuristics algorithm 
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The core of the algorithm is modified Clark-Wright saving algorithm. Its 
idea is to insert an order to existing route or create new route by combining two 
orders. In both cases, the objective is to maximize the cost saved. If no orders can 
be inserted into any route due to the capacity constraints of vehicle, the algorithm 
will try to rearrange existing vehicles. It is done by suspending vehicles which 
have carried a weight up to a threshold, say 80%, of its capacity. Suppose a 
vehicle carried 85% of weight to its capacity and its route starts at t\ and ends at 
h and the working time of this vehicle is to to td. Then, two dummy vehicles can 
be created in the follow ways: 

1. Starts at t�and ends at t\. 
2. Starts at t: and ends at td-

Then, there will be two new vehicles created. The saving algorithms can be run 
again until no changed can be found in both orders fulfillment and vehicles 
arrangement. Figures A.2 and A.3 described the flow of the algorithm. 

Yes ^ ^ ^ ^ ^ ^ ^ ^ No 
A 

i 、. 丁 I * 1 

Refyĵĵ  - Insert order(s) to route 
1 r 

Yes ^ ^ ^ ^ ^ 
No 

I Rearrange vehicles 

Return 
Figure A.2 Procedures of the saving algorithm 
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order t o r ^ ^ ^ ^ 

� A n y existing routes?^ t - X ' Any unused v e h i c l e ^ — 

Yes ” Yes 
Choose an unsolved order to * 
insert to the beginning or the Choose two unsolved orders 

ending to any one existing to combine such that the 
route such that the saving is saving is maximized and 
maximized and capacity is capacity is satisfied? 

satisfied 

No S u c c e s s ? ^ R e t u r n 
Success? ^ ^ ^ ^ 

Yes ^ Update the route and order 
Update the route and order information 

information 
—j 1 r 
1 r Return 

Return 

Figure A�3 Procedures of the insert order(s) to route 
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Appendix B 

Background Information of Vehicle 
Routing Software Company 

TM I. ArcLogistics Route 
ArcLogistics Route was a product from Environmental Systems Research 
Institute, Inc. (ESRI) introduced in 1999. ESRl was founded in 1969 and its 
current headquarter is located at Redlands, California. The early mission focused 
on the principles of organizing and analyzing geographic information. During the 
1980s ESRI devoted its resources to developing and applying a core set of 
application tools that could be applied in a computer environment to create a 
geographic information system. This is what is known today as geographic 
information system (GIS) technology. In 1981, ESRI launched its first 
commercial GIS software called Arclnfo. It combined computer display 
geographic features, such as points, lines, and polygons, with a database 
management tool for assigning attributes to these features. Originally designed to 
run on minicomputers, Arclnfo offered the first modern GIS. As the technology 
shifted to UNIX and later to the Windows operating systems, ESRI evolved 
software tools thai took advantage of these new platforms. This shift enabled 
users of ESRI software to apply the principles of distributed processing and data 
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management. Nowadays, ESRI is the worldwide leading GIS software company. 
Its product includes Arc View, MapObject and ArcIMS, etc.. Currently, ESRI is 
affording to develop applications using GIS such as Logistics Management. 
Source: http://www. esrl com 

II. ILOG Dispatcher 
ILOG Dispatcher is product from ILOQ Inc. ILOG was founded in 1987 to 
develop and market optimization and visualization software as reusable 
components of unmatched power and flexibility. ILOG products are used by 
thousands of developers and tens of thousands of end users in 
telecommunications, manufacturing, transportation, defense, and other industries. 
ILOG components have been continually updated to reflect insights gained from 
over a decade of close collaboration with the world's leading software creators. 
Its products include ILOG Solver, ILOG CPLEX for optimization, ILOG 
Scheduler for scheduling task, ILOG Dispatcher for d i s p a t c h i n g applicatioi�. At 
the same time, it provides solutions to business include e-commerce, finance and 
transportation. 
Source: http://www. Hog. com 

/ •" 

III. RoutePro Designer 
RoutePro Designer is a software application provided by CAPS Logistics, Inc. 
CAPS Logistics was incorporated in 1979 and started by providing logistics 
consulting service and developing custom solutions. In 1989, it started to develop 
software applications to the optimization models of supply chain systems. In 

TM 1997, it released three software applications - Supply Chain Designer , 
TM TM TranPro and RoutePro solving different supply chain problems. 
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Source: http："www. caps. com 

IV. Paragron 
Paragron provides a series of vehicle routing and scheduling systems. It is a 
product launched by Paragron Software Systems pic in United Kingdom. Paragon 
Software Systems pic specialises in the development and support of vehicle 
routing and scheduling systems, and has a reputation for providing solutions for 
strategic and operational use that achieve benefits in a real-world environment 
across a wide range of sectors. The Paragon system continues to maintain a 60% 
share of the UK market as a result of its reputation in the industry, and is 
favoured for its flexibility, ease of use and the comprehensive support provided to 
its users. Its products include Fleet Controller for vehicle tracking, Fixed Route 
Manager for designing typical fixed route operation, and Fastnet Distribution 
Network Planning System for strategic modeling of distribution network, etc. 

• ‘ 

Source: http://www.pamgwn-software.co. uk 
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