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Abstract 

The abstract of the thesis entitled: 

A Survey on Numerical Methods for Unconstrained Optimization Problems 

submitted by CHUNG Shun Shing 

for the degree of Master of Philosophy 

at The Chinese University of Hong Kong in August 2002 

Optimization methods, or methods for computing the minimum of a function 

of several variables, are very important in the 21st century. They can be applied 

to solve problems from many practical applications, and they can provide the nu-

merical analysts wi th a tool tackling a wide range of non-linear problems. There 

is a vast literature devoted to the development of optimization methods in recent 

years. 

This thesis has two main objectives: the first is to give a comprehensive and 

detailed survey on the current numerical methods available for unconstrained --

optimization; and the second is to provide the reader wi th a framework to help 

him follow future developments. Optimization is essentially a practical tool, prin-

cipally used by non-mathematicians; in contrast, most research publications in 

optimization seems to be written in a style that is only intelligible to mathemati-

cians. This thesis attempts to bridge the gap. Litt le mathematical knowledge is 

assumed on the part of the reader. The first two chapters outline the background 

and basic theory necessary to understand the subsequent chapters; and the re-

maining chapters introduce some existing optimization methods: steepest descent 

method, Newton's method, conjugate gradient method, Quasi-Newton methods, 

and the like, which the reader would be familiar with. Finally, the advantages 

and limitations of each method are discussed. 
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摘 要 

香港中文大學碩士論文摘要 

論文題目：無約束最優化問題的數值方法 

鍾信成 二零零二年八月 

最優化是一門應用相當廣泛的學科，它討論決策問題的最佳選擇之特性，構造尋求 

最佳解的計算方法，研究這些計算方法的理論性質及實際計算表現。隨著計算機的 

高速發展和優化計算方法的進步，規模越來越大的優化問題得以解決。因為最優化 

問題廣泛見於經濟計劃、工程設計、生產管理、交通運輸、國防等重要領域，它已 

受到各國政府部門、科研機構和產業部門的高度重視。 — 

再者，最優化理論與方法也是一門應用很強的學科。它研究某些數學上定義的問題 

的最優解，即對於給出的實際問題，從眾多的方案中選出最優方案。 

本篇論文全面地、系統地介紹了最優化理論與方法，詳細論述了無約束最優化的最 

優性條件、求解方法以及各類求解方法的特點，包括其優點和限制。 

本篇論文首兩章介紹最優化理論與方法之背景和一些數學基礎；而在餘下的章節中 

，會深入介紹一些現存的無約束最優化求解方法，包括：最速下降法、牛頓法、共 

輕梯度法、擬牛頓法等方法，並會探討它們的收斂性，給出全局收斂性和局部收斂 

性的結果。 
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Chapter 1 

Introduction 

“The optimist proclaims that we live in the best of all possible worlds; and the 

pessimist fears this true.” 

. J. B. Cabell 

1.1 Background and Historical Development 

The fundamental problem of optimization is to arrive at the best possible deci- 一 

sion in any given set of circumstances. Of course, many situations arise where 

the 'best' is unattainable for one reason or another; sometimes what is 'best' for 

one person is 'worst' for another; more often we are not at all sure what is meant 

by 'best'. Therefore, the first step in a mathematical optimization problem is to 

choose some quantity, typically a function of several variables, to be maximized or 

minimized, subject possibly to one or more constraints. The commonest types of 

constraints are equalities and inequalities which must be satisfied by the variables 

of the problem, but many other types of constraint are possible, for example, a 

solution in integers may be required. 

1 
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The next step is to choose a mathematical method to solve the optimization 

problem. Such methods are usually called optimization techniques, or algorithms. 

According to [120]，[76] and [47], the choice of algorithm is by no means ob-

vious, for the theory and practice of optimization has developed rapidly since 

the advent of electronic computers in 1945. I t came of age as a subject in the 

mathematical curriculum in the 1950，s, when the well-established methods of the 

differential calculus and the calculus of variations were combined wi th the highly 

successful new techniques of mathematical programming which were being de-

veloped at that time. The programmers, i t was-said, had joined forces wi th the 

hillclimbers. 

The optimization problems that have been posed and solved in recent years 

have tended to become more and more elaborate, not to say abstract. Perhaps the 

most outstanding example of the rapid development of optimization techniques 

occurred wi th the introduction of dynamic programming by Bellman in 1957 and 

of the maximum principle by Pontryagin in 1958. These techniques were designed 

to solve th^problem of the optimal control of dynamical systems. Both dynamic 

programming and the maximum principle are closely related to the calculus of 

variations, and hence to each other. 

The simply-stated problem of maximizing or minimizing a given function of 

several variables has attracted the attention of many mathematicians over the 

past twenty-five years or so. The direct search methods of solution, which involve 

function evaluations and comparisons only, are usually simpler, though less ac-

curate for the same computational effort, than the indirect or gradient methods, 

which require values of the function and its derivatives. Both types of method 
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are st i l l undergoing development, w i th the major emphasis being on the search 

for efficient and reliable algorithms to deal wi th general non-linear functions. 

For the sake of simplicity, and following the historical development of the 

subject, most of the theory of the gradient methods in this thesis is restricted 

to the case of quadratic functions. The theory for non-quadratic functions is 

considerably more difficult and is the subject of the current research. However, 

the algorithms based on quadratic theory are usually successful when applied to 

non-quadratic functions. 

1.2 Practical Problems 

Many different types of practical problem wi l l be considered as illustrations of the 

different optimization techniques. Some of these wi l l be described in the following 

to indicate the types of problem that have been solved by these methods. Most 

of the problems in this section can be found in [120] and [37]. 

1.2.1 Statistics [120 

The frequency function of a population is completely determined once its param-

eters are known. For example, the binomial distribution is completely determined 

the parameters n, which is the number of independent trials of an experiment, 

and p, which is the probability of success in a single trial. An important problem 

in statistics is to estimate the population parameters, given a random sample 

drawn from the population. I f the form of the frequency function is assumed, 

then values for its parameters may be determined by forming the likelihood func-

tion, which gives the probability that the given sample came from a population 
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wi th the assumed frequency function. Hence, the likelihood function is a function 

of the unknown parameters. The values of the parameters are now estimated by 

maximizing the likelihood function w i th respect to these parameters, subject to 

any constraints that may be present. The resulting opt imal values the parame-

ters are known as maximum likelihood estimates. The method may be applied 

to functions of discrete or continuous variables. 

1.2.2 Aerodynamics [120: 

There are many optimization problems concerned wi th the design, performance 

and flying qualities of aircraft. The aircraft designer must minimize the struc-

tural weight, subject to the structure having sufficient strength and stiffness to 

carry the critical design loads safely. The cruising altitude should be chosen so as 

to minimize fuel consumption; i t often happens that a steady climb is more eco-

nomical than flight at constant altitude. Aircraft are designed for many different 

purpose, and in particular cases, i t may be important to the following problems: 

(i) minimize the take-off run; 

(ii) maximum the rate of climb; -

(ii i) maximize the ceiling; 

(iv) maximize the endurance; 

(V) minimize the wave drag in supersonic flight. 

A l l these problems are subject to various constraints which, in certain cases, may 

be so severe that no optimization problem remains. 
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1.2.3 Factory Allocation Problem [37" 

The manager of a factory manufacturing different items of equipment, each wi th 

a different profit margin, employs in his factory a certain number of men, and 

possesses between the different manufactured items so as to make most profit, 

and also how to arrange the processes inside the factory so that the production 

proceeds smoothly and no predictable hold-up occurs, giving rise to an unneces-

sary loss in profits. He is also probably interested to know whether i t would be 

worth his while to employ more men and the other equipment. 

1.2.4 Parameter Problem [37 

A physical experiment involving the measurement of an independent and several 

dependent variables is carried out a large number of times. The relationship 

between these variables is known theoretically, but involves several unknown pa-

rameters. Those values of the parameters for which the theoretical relationship 

between the variables is as close as possible to the experimental results are to be 

found. 

1.2.5 Chemical Engineering [120 

The manager of a chemical plant has to decide on his major objective in running 

the plant. Should he maximize output? Is this consistent wi th maximizing profit? 

To answer these questions requires the solution of at least two optimization prob-

lems. The answer to the second question may be 'No，，for lower output could 

mean better quality output, greater efficiency and more variable by-products. 
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1.2.6 Operational Research [120 

The application of opt imizat ion techniques to industr ia l and commercial prob-

lems forms part of the subject of operational research. The fundamental problem 

of stock control is to choose a stock level and a stock replacement pol icy which 

maximize overall profi t . The usual assumptions are that losses are incurred i f 

either too much or too l i t t le stock is kept. The demand may be known exactly 

or its frequency funct ion may be assumed. A related problem is that of renewing 

obsolescent machinery while maintaining max imum efficiency. 

1.2.7 Economics [120 

How many new power stations should be bui l t in Hong Kong or mainland China 

between now and the year 2020? How many of them should be atomic power 

stations? These questions lead to very complicated opt imizat ion problems; i t is 

not at all clear which quantities should be maximized or minimized, and i t is 

even less clear what constraints should be imposed. Nevertheless, problems of 一 

this kind obviously need careful study before the crucial decisions are taken. 

1.3 Mathematical Models for Optimization Prob-

lems 

The first essential step in any optimization problem is to decide on the physical 

variable that is to be optimized, that is, the entity that is to attain its 'least' 

or 'greatest' value at the solution of the problem. This concept wi l l differ in the 

various applications and could be either monetary cost, t ime taken，fuel used, 
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discomforts created, error between achievement and target, or some other func-

tion. Having decided on this function, which wi l l in general be called the cost 

function, i t must then be expressed in terms of the variables of the variables of 

the problems. These variables can be formed into a vector 工 G M〜which defines 

the space in which the problem is posed. 

Suppose we wish to minimize a real-valued cost function / , where / ： M^ 股， 

of n variables. 

Definition. A local minimizer of f -.W is a point x* such that 

/ ( ? ) < m (1.1) 

for all X near x*. 

I t is standard to express this problem as 

m m / ( x ) (1.2) 

or to say that we seek to solve the problem min / . The understanding is that 

(1.1) means that we seek a local minimizer. We wi l l refer to f as the cost function 

and to f{x*) as the minimum or minimum value. I f a local minimizer x* exists, 

we say a minimum is attained at x*. 

We say that the problem (1.2) is unconstrained optimization problem since 

we impose no conditions on the independent variables x and assume that f is 

defined for all x eW. 

The local minimization problem is different and much easier than the global 

minimization problem in which a global minimizer, a point x* e W such that 

綱 < m (1.3) 
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for all X is sought. 

The constrained optimization problem is to minimize function f over a set 

D CW. Therefore, a local minimizer is an x* e D such that 

/(工*) < f i x ) (1.4) 

for all X G D near x*. Similar to (1.2), we express this as 

想 /⑷ （1.5) 

or say that we seek to solve the problem mmo f . A global minimizer is a point 

X* E D such that 

制 < m (1.6) 

for all X e D. For more details about constrained optimization and pointers to 

software, please refer to the books [48]，[57], [85] and [78]. 

1.4 Unconstrained Optimization Techniques 

This thesis is concerned wi th unconstrained optimization, that is, with minimizing 

(or maximizing) a function, say f { x ) , where / : 肥 R, which is not subject 

to any constraints. The function may be one of continuous variables or discrete 

variables, or a mixture of the two. 

1.4.1 Direct Method - Differential Calculus 

We wil l start by considering the unconstrained optimization of functions of con-

tinuous variables. Now, you may well imagine that all these problems can be 
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solved using the differential calculus. To minimize a function f of n variables, 

say / ( x i , X n ) , we simply have to satisfy the n simultaneous equations: 

^ ( x i , ...,Xn) = 0, for j 二 l , . . . ’ n . (1.7) 

The calculus approach is useful if the equations can be solved directly, for 

example, i f they are all linear. I t is also useful i f i t enables the dimension of the 

problem to be reduced. Let us consider the following example [11]: 

Let / be a quadratic function in Xi for fixed values of the other variables. 

Then, we can write 

= ..•，2̂71) + Pi ...，工n)工 1 + 5^2(^2, ...,Xn)x\.— 

So, this implies that 

二 (工2, + 2^2(2:2, ...,Xn)Xi. 

Note that i f 仍 < 0 for any values of X 2 , X n , then we can make the function f 

arbitrari ly large and negative by making Xi large enough. Also, if 仍二 0 while 

gi • 0，then we can make f again arbitrari ly large--and negative. Otherwise, we 

can find that 

mmf(x) 二 工2，••"：̂ ^n) — - ； -
4仍(工2，…，工n) 

We can now have an optimization problem in only n - 1 variables. When this is 

solved, we can derive the corresponding value of Xi from the following formula: 
— 1̂(3:2, ...,Xn) 

2^2(2:2,…，工n) 

However, the differential calculus method just provides the equations, but 

does not provide a method for solving such equations if they have no exploitable 

special structure. On the other hand, if the functions f j ( x ) are all real-valued, 

for all j — 1 , n , we can solve the equations: 

綱 二 0 
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by minimizing the sum of the squares of the residuals defined by 

n 

脉 斜 (1-8) 
J = 1 

We have apparently gone ful l circle: to minimize the function / ( x ) , we need 

to solve a set of equations which may be solved by minimizing another function. 

The question arises whether either of these transformations is of any value. 

1.4.2 Iterative Methods 

I f the direct methods fail, we may use iterative methods. These are particularly 

convenient w i th a computer, because once a single iteration has been performed, 

we need very l i t t le extra programming to do an arbitrar i ly large number of iter-

ations. 

Iterative methods are often useful for solving simultaneous equations once， 

they have been transformed into a minimization problem such as the equations 

(1.8). Unfortunately, they are not so useful for solving the calculus equations 

(1.7), pr imari ly because stationary points are not necessarily minima and we 

may iterate towards a saddle point, or even a maximum. 

I t is better to iterate directly on the function f and use a "valley-descending" 

method. "Valley-descending" means finding a minimum of a function f { x ) using 

the following strategy [11]: 

(1) Given an ini t ial guess, say XQ G 

(2) For A: 二 0 ， 1 , t a k e a trai l solution, say Xk] 

(3) Find a direction from this trai l solution in which f { x ) decreases; 
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⑷ Find a point Xk^i in this direction such that /(xj^+i) < / ( x ^ ) ; 

(5) Repeat the process from this new tr ia l solution. 

I f the function f { x ) is to be maximized, the corresponding strategy where we 

require f { xk+ i ) to be greater than f { x k ) can be called "hi l l -c l imbing". Such a 

strategy can easily be implemented on a computer. However, when using itera-

tive methods on a computer, we must beware of methods that work well on some 

problems, but go into endless loops or just fail on others. 

1.5 Main Objectives of the Thesis 

There has been an immense amount of work in the past on numerical methods 

for unconstrained optimization of functions of n variables where n > 1. Most 

of this has been concerned with finding local optima of functions that are twice-

different iable, so it wi l l be concentrated on this. 

Most people might reasonably hope that the work in this area has led to at 

least one method which is effective for all problems of this type, but unfortunately, 

i t wi l l never be possible, since the choice of method must depend on the answers 

to the following questions [11]: 

(1) How easy is i t to calculate function values? 

(2) Can we easily calculate the gradient vector at any trial solution; in other 

words, can we easily calculate all first derivatives? 

(3) Can we easily calculate the Hessian matrix at any tr ial solution; in other 

words, can we easily calculate all second derivatives? 



Chapter 1: Introduction 12 

(4) Can we afford to store an n x n matr ix representing the true or estimated 

Hessian, or alternatively, its inverse? 

(5) Is the Hessian matr ix sparse, that is, are many of its elements zero? I f so, 

should we take advantage of this fact? 

(6) Does the problem have any special features that we should exploit to make 

the solution easier to find? 

Since there are no easy answers to such questions industry and commerce wi l l 

always require specialized help to solve practical problems of this nature. The 

choice of method to solve each problem is likely to be better i f the strengths and 

weaknesses of the more successful existing methods are understood. 

In this thesis, I wi l l discuss four existing methods which make use of quite 

different techniques and have different advantages and l imitations. The first, 

steepest descent method, which is discussed in Chapter 3，requires only the calcu-

lat ion of the first derivatives and the computation is simple. But the convergence 

is usually very slow. The second, Newton's method, requires the calculation of the 

second derivatives and can be modified to incorporate line searches to improve 

I t s reliability, but i t costs a large volume of computation. So, I wi l l discuss some 

other cheaper iterative methods using the second derivative in Chapter 4. 

Two other methods calculate only the first，not the second derivatives, but 

nevertheless converge in a finite number of steps when the function f is quadratic. 

The first of these, known as the conjugate gradient method, which is a main type 

of the multi-step methods (see Chapter 5)，has the advantage for large scale prob-

lems that i t does not require the storage of any large nxn matrices. The other 

method, known as a quasi-Newton method (see Chapter 6)，builds up an explicit 

approximation to the Hessian matr ix and is generally more effective than conju-
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gate gradients when the computer has sufficient storage. 



Chapter 2 

Basic Concepts in Optimizations 

of Smooth Functions 

The primary goal of this chapter is to give the general theoretical background 

necessary to understand the remaining chapters. Also, a few topics of general 

nature are discussed. —— 

2.1 Notation 

In this thesis, following the convention [75], vectors are to be understood as 

column vectors. The vector x* wi l l denote a solution, oo a potential solution, 

{^k}k>o the sequence of iterates. We wi l l refer to xq as the init ial iterate, rro is 

sometimes t imidly called the init ial guess. We wi l l denote the zth component of a 

vector X by {x)i and the zth component of Xk by ⑷ ” we wil l rarely need to refer 

to individual components of vectors. We wi l l let 差 denote the partial derivative 

of f wi th respect to {x)i. e = x - x* wi l l denote the error, e几二：r几一x* the error 

14 
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in the n th iterate, and B{r) the ball of radius r about x* 

B{T) 二 {x : ||x — x*\\ < r ] . 

For X EW", we let V / ( x ) G I T denote the gradient of / , 

、 (Of d f \ T 
• / ⑷ 二 F ’ . . . ， 厂 ， V^i dXnJ 

when i t exists.-

We let V ^ / denote the Hessian of / : 

when i t exists. Note that V ^ / is the Jacobian of • / . However, V ^ / has more 

structure than a Jacobian for a general non-linear function. I f f is twice contin-

uously differentiable, then the Hessian is symmetric, that is, : 

for all 2, j 二 1，..., n, by equality of mixed part ial derivatives [106 . 

In this thesis, we wi l l consistently use the Euclidean norm 

n 

k l l = A X ] ⑷ ? • 
\ i=l 

When we refer to a matr ix norm, we wi l l mean the matr ix norm induced by the 

Euclidean norm 

A = max . 
X 

In optimization definiteness or semi-definiteness of the Hessian plays an im-

portant role in the necessary and sufficient conditions for optimali ty and in our 

choice of algorithms throughout this thesis. 

D e f i n i t i o n . An n x n matrix A is positive semi-definite if x^Ax > 0 far all 

X G A is positive definite if x^Ax > 0 for all x , x ^ {). If A has both 

positive and negative eigenvalues, we say A is indefinite. 
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We wi l l use two forms of the fundamental theorem of calculus [75], one for 

the function-gradient pair and one for the gradient-Hessian. 

T h e o r e m 2 .1 Let f be twice continuously differentiable in a neighborhood of a 

line segment between points x*,x — x* + e eW； then 

f i x ) = f i x * ) + [ \ f { x * - h t e ) e d t (2.1) 

Jo 

and 

V / ( x ) = V / ( x * ) + r + te)edt. (2.2) 
Jo 

A direct consequence of Theorem 2.1 is the following form of Taylor's Theo-

rem, we wi l l use throughout this thesis. 

T h e o r e m 2 .2 Let f he twice continuously differentiable in a neighborhood of a 

point X* eW. Then，for eeV and ||e|| sufficiently small 

f [工 * + e) = f ( x * ) + V f { x * f e + + o( | |e |p) . (2.3) 

2.2 Different Types of Minimizer 

Although any function f { x ) must have a least value, the value is not necessarily 

finite. I t could even be that f { x ) does not take its least value in W. A simple 

example of this is when f { x ) is a linear function other than a constant. What 

most people are interested in when presented wi th the minimization problem is 

a solution x* of a character and this leads us to the following definitions [86]: 

Definition. A point x* is said to be a strong local mimmizer of f ( x ) if f { x ) is 

defined on a 5-neighbourhood of x* and there exists an E, where < E < 5, such 
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that 

/ ( ? ) < m , (2.4) 

for all points such that 0 < — < e. 

Definition. Let f ( x ) be defined on a 5-neighbourhood of x*. The function f { x ) 

said to have a weak local minimizer at x* if x* is not a strong local minimum, 

but there exists an e, where < 6 < 6, such that 

/ � < m , (2.5) 

for all points such that 0 < \\x* - x\\ < e. 

Definition. A point x* is said to be a global minimizer of a function f [ x ) if 

f i x * ) < f i x ) . V:reR。. （2.6) 

For an arbitrary function, there is no guarantee that such an x* exists since 

f { x ) may take its least value at a l imit as ||x|| -> co. 

The figure 2.1 illustrates the different types of minima. 

When it is not necessary to distinguish between a strong and weak local min-

imum only the term local minimum wil l be used. 
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Strong local 
I minimum 

\ / / \ Weak local / \ / 
\ j / \ minimum \ Global / 

1 1 1 1 ^ X 
0 

Figure 2.1: A function f [ x ) of single variable. 

2.3 Necessary and Sufficient Conditions for Op-

timality 
Nothing constructive can be said about the behavior of f { x ) at x* unless f { x ) 

has certain continuity properties. 

Consider the following example wi th a discontinuous function [86]. In partic-

ular, one such that 

l i m [ f { x * ) - f{x* + 
Q—>-0 

where d is an arbitrary unit vector, and a is a scalar. 

An example of such a function is illustrated in Figure 2.2. The function is 
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4 0 

2 • 

J 

•；c 
0 2 

Figure 2.2: An example wi th a discontinuous function f { x ) . 

that: 
( 

4 ， i f a: 2, 
m 二 < 

2 ， i f x - 2. 
\ 

I t is unlikely that an algorithm which is efficient on well-behaved functions 

would find the minimum at = 2. Consequently, algorithms are designed to find 

local minima of only a specific class of functions. Usually, an algorithm wil l utilize 

properties of the class of functions to be minimized. Most algorithms described 

in this thesis assume that 

f { x ) e for all 2； G M". (2.7) 

Now, let f be twice continuously differentiable. We wil l use Taylor's theorem 

in a simple way to show that the gradient of f vanishes at a local minimizer 

and the Hessian matrix of f is positive semi-definite. These are the necessary 

conditions for optimality [75 . 
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The necessary conditions relate (1.2) to a non-linear equation and allow one 

to use fast algorithms for non-linear equations [35], [74] and [89] to compute 

minimizers. A critical first step in the design of an algorithm for a new optimiza-

t ion problem is the formulation of necessary conditions. Of course, the gradient 

vanishes also at a maximum, therefore the ut i l i ty of the nonlinear equations for-

mulation must be restricted to a neighborhood of a minimizer. 

T h e o r e m 2 .3 Let f be twice continuously differentiable and let x* be a local 

minimizer of f . Then， 

• / ⑷ 二 0. (2.8) 

Moreover, is positive semi-definite. 

Proof: Let u G be given. By Taylor's Theorem, it states that for all real 

scalar t sufficiently small 

f 

f{x* + tu) 二 f i x ' ' ) + tVf(:C*)Tu + + o{t"). 

Since x* is a local minimizer, then we must have for t sufficiently small, 

and 

• f i X Y u + + o⑴ > 0 (2.9) 

for all t sufficiently small and all u e MP. So, if we set 亡=0 and u 二 - V f { x ' ) , 

we obtain 

工。"2 二 0. 

Setting V f { x ' ) = 0. di\'iding by t and setting 力=0 in (2.9j. u.e have: 

> 0 
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for all u e E". • 

This condition V/(a:* ) 二 0 is called the first-order necessary condition and a 

point satisfying that condition is called a stationary point or a crit ical point. 

However, a stationary point need not be a minimizer. For example, the func-

t ion f{x)——工2”，where n > 2, satisfies the necessary conditions at x = 0, which 

is a maximizer of f . To obtain a minimizer, we must require that the second 

derivative be non-negative. This alone is not sufficient and only i f the second 

derivatives is str ict ly positive can we be completely certain. These are the suffi-

cient conditions for optimali ty [75 . 

T h e o r e m 2 .4 Let f be twice continuously differentiable in a neighborhood of x*. 

Assume that V / ( x * ) 二 0 and that is positive definite. Then, x* is a 

local minimizer of f . 

Proof: Let u eW such that uj^O. For sufficiently small t, we have: 

f i x * + tu) = f (X。+ tv f (:r。T u + 斤 J：(工、+ 0〔t2) 

Hence, i f A > 0 is the smallest eigenvalue of we have： 

/Or* + in) — / ( x * ) > 亡 + o(力2) > 0 

for t sufficiently small. Hence, x* is a local minimizer. • 

From the above two theorems, it follows that the Hessian matr ix G ：二 V ^ / 

of f must be at least positive semi-definite for x* to be a local minimizer and 

that for G positive definite, x* is a strong local minimizer. For the functions 

with higher continuous derivatives and G positive semi-definite, it is possible to 
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give addit ional conditions to distinguish between the different type of stationary 

points. Since i t is impract ical to verify these conditions computationally, I do not 

pursue the matter further. For details of these higher-order conditions, please 

refer to Gue and Thomas [64] for deeper discussions. 

2.4 Quadratic Functions 

I t is unlikely that a minimizat ion algori thm would be required to find the min-

imum of a quadratic function, since i t wi l l be shown that this is equivalent to 

solving a set of linear simultaneous algebraic equations, regarding of this, the 

behavior of an algorithm on a quadratic function is important in optimization. 

One reason for this is that i t is the simplest type of function that can be mini-

mized since all linear functions apart from f ( x ) 二constant are unbounded below. 

A more important reason is that the behavior of a minimizat ion algorithm on a 

quadratic function is indicative of its behavior in the neighbourhood of the solu-

t ion when f ( x ) e 

- Consider the following quadratic function: 

f { x ) 二 \x^Ax - iFx -f c, (2.10) 

where is an n x n matr ix, 6 is an n x 1 vector and c is a scalar. Both A and b 

have constant elements. 

Wi thout loss of generality, we may assume that A is symmetric because 

t ^ A x - f X. (2.11) 
V 2 / 

Then, i t is clear that 

G{x) ：= V V W = A 
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for all X. The symmetry of implies that 

g{x) := V/(2；) = Ax — b. 

From the necessary conditions for a minimum given in Theorem 2.3, it follows 

that 

Ar — 6 二 0. 

Although f { x ) may not posses a local minimum, it must posses a stationary 

point if b lies in the range of A. When A is non-singular, there is a unique 

stationary point. I f A is positive definite, then 

X* 二 A-16， 

is a strong local minimizer. I f A is positive semi-definite, then f { x ) has a weak 

local minimum if b lies in the range of A. 

When f { x ) has a weak local minimum say at x*, then 

y = X* + z, 

where z is any vector lying in the null space of .4, is also a weak local minimum. 

An important concept [86] when minimizing a quadratic function is that of 

conjugacy. I t can be shown that there exists an n x n matrix P of rank n such 

that 
PTAP 二 D, 

where D is a diagonal matrix. There are many such matrices, for example, the 

columns of P can be the eigenvectors of A. I f we make the transformation of 

variables 
X 二 Py, 
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then 

m = \yTDy — bTpy + c, 

so that f { y ) is a separable function of the variables (yi，...，yn). The min imum 

of a separable function can be found by minimiz ing wi th respect to the variables 

individually. This is identical to minimiz ing f { x ) along the vectors 

where pj is the jth column of P. The directions pi,p2, ••,Pn are called a conjugate 

set of directions. For more discussion, please refer to [74], [3]，[8] and [60 . 

On the other hand, i f A is indefinite, then the necessary conditions in Theorem 

2.3 imply that there wi l l be no local min imum [75]. But i t is st i l l important to 

understand some properties of quadratic problems wi th indefinite Hessian matr ix 

A when we design algorithms wi th in i t ia l iterates far from local minimizers. 

I f we have: 

u^Au < 0, 

for u e then we say that l i is a direction of negative curvature. I f t i is a 

direction of negative curvature, then f{x + tu) wi l l be decreased to - c o as t co. 

2.5 Convex Functions 

I t is not usually known or possible to determine whether a function is convex. 

Despite this, the convex functions and their properties are important in opti-

mization. The reason for this is that convergence of a minimization algorithm 

can often be proved for convex functions. Since the convex functions are so rare, 

this would not be particularly valuable were it not for the fact that many func-

tions are convex in the neighbourhood of a local minimum [86 . 
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v x — 
0 

Figure 2.3: A strictly convex function. 

Definition. A function f { x ) is said to be strictly convex if for any two points 

X, y G M^； we have: 

/ ( A x + (1 — X)y) < Xf{x) + (1 — X)勵, (2.12) 

for any 0 < A < 1. 

Definition. A function f { x ) is said to be convex if for any two points x,y , 

we have: 

/ (Ax + (1 - A)y) < Xf{x) + (1 - A) / (y) , (2.13) 

for any 0 < A < 1. 

The difference between a strictly convex function and a convex function is 

illustrated in Figures 2.3 and 2.4. 
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\ J 
0 

Figure 2.4: A convex function. 

I f j [ x ) G C^ and is strictly convex, then the Hessian matr ix G is positive 

semi-definite at every point in R". Furthermore, if f { x ) is a quadratic function 

and G is positive definite, then f { x ) is strictly convex. I f f [ x ) is a convex function 

and has a strong local minimum, then this is unique and is the global minimum. 

Should f { x ) have a weak local minimum and x* and y* are two such minima, 

then _ 

刺 二 姻 

and all the points on the line joining x* and y* are weak local minima. 

I t is important to have analytic criteria to evaluate whether a function is 

convex or not. Such criteria exist and are simplest for differentiable functions. 

They are based on the following properties ([128], [31], [110], [111], [127], [68]): 

T h e o r e m 2.5 Suppose f { x ) is a differentiable function in R". Then. f { x ) is a 
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convex function in W^ if and only if 

f { y ) > f { x ) + V f { x f { y - x ) (2.14) 

for allx,y e W. 

Proof: 

“Only if，part: Suppose f { x ) is a convex function. Then, for all 0 < A < 1，we 

have: 

f{Xy + { l - X ) x ) < Xf{y) + (1 - A ) / ( x ) 
f { x + X { y - x ) ) - f { x ) 

— ^ < f { y ) - f ( x ) . 

Let A 0, then 

V f { x f { y - x ) < f { y ) - f { x ) . 

“If，part: Suppose the statement (2.14) holds. Take any Xi,X2 G W and 0 < 

A < 1. Let 3； 二 A l l + (1 — X)x2 e R〜 then we have: 

/(工 2) > f { x ) + V f { x f { x 2 ~ x ) . 

So, 

Xf{x,) + { 1 - X ) f { x 2 ) > f i x ) + V f { x f [ X x , + (1 - A)x2 - x] 

二 f { X x , + { l - X ) x 2 ) . 

Hence, f { x ) is a convex function. • 

T h e o r e m 2.6 Suppose f { x ) is a twice continuously differentiable function in 

lET. Then, f { x ) is a convex function m E" if and only if the Hessian matrix 

G{x) •= V~f{x) IS at least positive semi-definite for all x eW. 
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Proof: 

“ 『 p a r t : Suppose the Hessian matr ix V"f(x) is at least positive semi-definite 

for all X G IT • By Mid-value Theorem, for any x, x e we have: 

/ ⑷ - M + —旬 + — x Y v ' f { x ) { x - x), 

where x ^ x + e{x - x), 9 e (0,1). Note that f e I T , then by assumption, we 

have: 

f { x ) > f { x ) + V f { x f { x - x ) . 

By Theorem 2.5, / is a convex function. 

“Only if , part: Suppose / is a convex function. Take any x G M.", we need to 

prove that ( f V ^ f { x ) d > 0 , \ / d e W . 

For any a such that |a| < J, where J > 0, then x + ad e I T . By Theorem 2.5, 

then 

f { x + a d ) > f { x ) + a V f { x f d . (2.15) 

Also, since f { x ) is twice continuously differentiable, then 

2 

/(无 + ad) 二 f [ x ) + a V f i x f d + + o{\\ad\\'). (2.16) 

From (2.15) and (2.16), we have: 一 . -

p c F v V � + > 0 

Dividing both sides by and let a -> 0, then 

cFV^f{x)d > 0. 

Hence, is at least positive semi-definite. • 
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2.6 Existence, Uniqueness and Stability of a Min-

imum 

The problems of existence, uniqueness and stability of a solution are an impor-

tant part of the mathematical theory for minimization problems. In particular, i t 

is very important for the problems of the unconstrained optimization. Following 

94]，we discuss these problems in this subsection. 

2.6.1 Existence of a Minimum 

The question of the existence of a minimum point is usually solved quite simply 

by means of the following theorem: 

T h e o r e m 2 . 7 Let f { x ) be a continuous function on EP and let the set Qa 二 

{x : f ( x ) < a}； for some a G M； be non-empty and hounded. Then, there exists 

a global minimum point of f [ x ) on E^. 

Proof: Let 

- f{xk) inf f { x ) < a. 

Then, Xk G Qa for sufficiently large k. Since f [ x ) is a continuous function, then 

the set Qa is closed. Therefore, the set Q^ is compact since it is closed and 

bounded. Hence, the sequence Xk has a l imit point x* e Qa- It follows from the 

continuity of f { x ) that 

/ ⑷ 、 炉 ， 

that is, 

X* 二 min f i x ) . 
XGS-J ^ ) 

Hence, there exists a global minimum x^ of f ( x ) . • 
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Note that the assumption of the boundedness of Qa is essential. In some spe-

cial cases, we can also prove the existence of a solution in the situations which is 

not covered by Theorem 2.7. 

2.6.2 Uniqueness of a Minimum 

Definition. We say that a minimum of a function f { x ) is locally unique if m 

some neighborhood of this minimum point, there are no other minimizers. 

Definition. We say that x* is a non-singular minimizer if at the oo*，the second-

order sufficient condition holds, that is, 

V / ( x * ) 二 0 and > 0. (2.17) 

T h e o r e m 2.8 A non-singular minimum is locally unique. 

Proof: By Taylor's Theorem, we have: 

v/(x) = + — x*) + o{x — X*). (2.18) 

Let A > 0 be the smallest eigenvalue of Since > 0, then 

\V^f{x*)x\\ > All^ll for all x. Hence, we have: 

IIV/WII = 

> 0 

for sufficiently small ||a: - Therefore, in some neighborhood of there are 

no stationary points of f { x ) . Hence, there are also no minimum points. • 
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For convex functions, the answer to the question of uniqueness of a minimum 

is easy to obtain. 

T h e o r e m 2 .9 A minimum of a strictly convex function is (globally) unique. 

Proof: The proof follows immediately from Theorems 2.6 and 2.8. • 

2.6.3 Stability of a Minimum 

In practical solution of optimization problems, one is continually faced wi th the 

following question. Suppose we have discovered a method for constructing a min-

imizing sequence. Does it converge to the solution? If, instead of the ini t ial 

minimization problem, can one assert that the solutions are close? Questions like 

these are the province of optimization theory and involve the notions of stability 

and correctness. We wi l l use the term "stability" for optimization problems and 

leave the term "correctness" for problems not involving optimization. 

Definition. Th^e local mimmum x* of f { x ) is called locally stable if every local 

minimizing sequence converges to it. That is，there is a 5 > {) such that f{xk)—> 

f { x * ) , llxfc — x^ll < 5, then we have: 

Xk — X*. 

T h e o r e m 2 .10 .4 local mimmum of a continuous function f { x ) is locally stable 

if it is locally unique. 
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Proof: Let x* be locally unique. Take an arbi trary local minimizing sequence 

工k) IÎ Â； - X*\\ < S, f{xk) / ( x * ) . By the compactness of a unit sphere in M几， 

one can take a convergent subsequence x̂：. — x, \\x - x*\\ < S. I t follows from 

the continuity of f { x ) that f { x ) = 二 / ( > * ) . Then, however, x = x* 

since x* is a locally unique min imum point. Since the same is true for any other 

sequence, the entire sequence Xk converges to x*. Hence, x* is locally stable. • 

T h e o r e m 2 .11 Let x* be a locally stable minimum of the continuous function 

f { x ) and let g{x) he a continuous function. Then, for sufficiently small e > 0, 

the function f { x ) + sg{x) has a local minimum x^ m a neighborhood of x* and 

Xs X* as £ 0. 

Therefore, the stabil i ty property implies that the minimum of the in i t ia l func-

t ion and that of the perturbed function are close. 

A non-singular minimum, as follows from Theorems 2.8 and 2.10，is locally 

stable. In this case, the result of Theorem 2,11 can be refined. 

Theorem 2 .12 Let x* he a non-singular minimum of f { x ) and let a function 

夕(T) be continuously differentiable in a neighborhood of x*. Then, for sufficiently 

small £ > 0, there exists a local minimum Xe of the function f { x ) + £g{x) in a 

neighborhood of x*, and 

xs^x^'-s [VVOr”] -1 • 夕 ⑷ + 

We can also consider the notion of the global stability of minimum points. 

This can just be done by replacing the word “local” by the word "global" in 

the definition. Namely, a global minimum is said to be globally stable if any 
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minimiz ing sequence converges to i t . In this case, we speak of global stabi l i ty of 

the minimizat ion problem. Repeating almost verbatim the proof of Theorem 2.10， 

we obtain that i f x* is the unique global min imum of the continuous function f { x ) 

and the set Q^ 二 [x : f { x ) < a} is nonempty and bounded for some a > f { x * ) , 

then X* is global stable. The requirement for the set Q^ to be bounded is essential， 

for example, for the function 

/ W = 工 e R， 

the global min imum x* = 0 is unique, but not globally stable, since the minimiz-

ing sequence Xk oo does not converge to x*. 

We can consider the following broader definition of stabi l i ty which does not 

include uniqueness of a minimum: 

Definition. The set X* of global minimum points of f { x ) is said to be weakly 

stable if all limit points of any minimizing sequence belong to X*. 

And we have the criterion for weak stabil ity is given as follows: 

Theorem 2.13 Suppose f { x ) is continuous and the set QQ = { x : f { x ) < a} is 

nonempty and bounded for some a > i n f f { x ) . Then, the set of minimum points 

of f { x ) is weakly stable. 

For more details for the general well-posed mathematical problems, please 

refer to Ivanov, Vasin and Tanana [71], and Tikhonov and Arsenin [116]. For 

optimization problems, please refer to Vasil'ev [118], Karmanov [73], Bank [4 

and Fiacco [40]. 
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2.7 Types of Convergence 

By a local convergence method, we mean one that requires that the in i t ia l iterate 

is close to a local minimizer x* at which the sufficient conditions hold. 

We begin wi th the standard taxonomy of convergence rates [35]，[74] and [89]; 

Definition. Let {xn} C W and x* eW. Then， 

(i)工n X* q-quadratically if x^ x* and there is K > 0 such that 

— \Xn+i -X*\\ < K\\Xn 

问 ^n — X* q-superhnearly with q-order a > lif x^ x* and there is K > Q 

such that 

- x*\\ < K\\xn — :r*『. 

(in) Xji X* q-super linearly if 

— l im " 工 T * " 二 0. 
几―OO XN — X*\ 

(iv) Xn X* q-lin early with q-fact or a G (0,1) if 

\XN+L — X*\\ < A\\XN — X*\ 

for n sufficiently large. 

Definition. An iterative method for computing x* is said to be locally (q-quadratically, 

q-superlinearly, q-linearly) convergent if the iterates converge to x* (q-quadratically, 

q-superlinearly, q-Unearly) given that the initial data for the iteration is suffi-

ciently good. 
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Note that a q-superlinearly convergent sequence is also q-l inearly convergent 

w i th q-factor a for any a > 0. A q-quadratically convergent sequence is q-

superlinearly convergent w i th q-order of 2. 

In some cases, the accuracy of the i teration can be improved by means that 

are external to the algorithm, say, by evaluation of the objective function and its 

gradient w i th increasing accuracy as the i teration progresses. In such cases, one 

has no guarantee that the accuracy of the i teration is monotonically increasing, 

but only that the accuracy of the results is improving at a rate determined by the 

improving accuracy in the function-gradient evaluations. The concept of r-type 

convergence captures this effect. 

Definition. Let {xn} C 肥 and X* G Then, {X^} converges to x* r-

(quadratically, super linearly, linearly) if there is a sequence {F^} C E converging 

q- (quadratically, super linearly, linearly) to 0 such that 

Moreover, we say that {x^} converges r-super linearly with r-order a > I if 

(fn —> 0 q-superlinearly with q-order a. 一 

2.8 Minimization of Functionals 

The function f { x ) such that in the following minimization problem: 

m m / ⑷， (2.19) 

is a particular example of a functional，that is, a transformation from some lin-

ear space A' into the space of real scalars. In (2.19)，the linear space X is R" 
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wi th distance, inner-product, and the like, suitably defined. The famil iar con-

cepts of differentiation, distance and inner-product can be defined on most linear 

spaces. Consequently, nearly all the algorithms described in this thesis can be 

extended, at least theoretically, to the minimizat ion of more general functionals, 

for example, to the following problem [86]: 

^mm { ⑷ ) = 义 / ( a ; ⑷ ， (2.20) 

where D - {x{t) : x{t) e W'-,x{0) 二 a，:r(l) 二 6}，W is the linear space of real 

valued absolutely continuous functions defined on [0,1]，and f { x { t ) , t) is some 

prescribed non-linear function of x{t) and t. 

Although the algorithms for minimizing the type of functional appearing in 

(2.20) are not discussed in this thesis, i t is important to realize that the relative 

merits of a particular implementation of an algorithm on a computer wi l l change 

when the type of functional changes. A good example of this is provided by the 

conjugate gradient methods (Chapter 5) which are much easier to adapt to solve ‘ 

(2.20) than the qiiasi-Newton methods (Chapter 6). 



Chapter 3 

Steepest Descent Method 

3.1 Background 

We begin the study of optimization problems with the classical problem of un-

constrained minimization of a smooth function: 

m i n / ( x ) , X e MP. 

We focus our attention on this problem not only because of its importance, but 

also because, due to its simplicity, it clearly exhibits the main features of the 

nature of optimization problems and theoretical foundations thereof. 

Let us consider the steepest descent method [21] first. The steepest descent 

method just uses the negative direction of its gradient to be the direction in the 

minimization problem. This method is not recommended for general use, but is 

included because of its simplicity and also because it helps to give some insight 

into the more sophisticated methods. In common with all gradient methods, the 

steepest descent method (ascent for maximizing problems) is iterative, proceed-

37 
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ing from an in i t ia l approximation xq for the minimizing point to successive points 

x i , X 2 , u n t i l some stopping condition is satisfied. 

Let us see the idea of this method. Let f ( x ) be the differentiable function in 

the neighborhood of ock, and gk — V/(xa：) + 0. By the Taylor expression: 

/(x) - /(x,) + xkfvfixk) + — x l̂l) (3.1) 

So, we know that i f we denote oc — ock 二 Cidk, then dk is the descent direction 

which satisfies d^Qk < 0. When a is fixed, i f the value of cf[gk is small, that 

means the value —d^gk is large, so the function decreases more rapidly. From the 

Cauchy-Schwartz inequality, -

dJgkX S ||<4||||办II (3.2) 

Hence, when dk 二 —gk, ^Qk is minimum [9]. So, —gk is called the descent 

direction. 

The iterative method is as follows: 

^k+l 二工k — OLkQk-

Algorithm 3.1 (Steepest Descent Method) 

Step 1: Given 工。G 0 < £ 《 1， / c : : 0. 

Step 2: Calculate dk 二 —gk，if Î a：!! < ；̂ then stop. 

Step 3: Find the steplength ak by the line search 

f{xk + akdk) 二 + a 4 )； 
a>0 

Step 4- Calculate x^+i 二：r̂： + ctkdk. 

Step 5: Set k :— k + I , then go hack to Step 2. 
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3.2 Line Search Method and the Armijo Rule 

We introduce some new concepts [75] so that our proof of convergence of Algo-

r i thm 3.1 wi l l also apply to a significantly more general class of algorithms. 

Definition. A vector D G is a descent direction for f at x if 

二 • 脑 <0. 
战 力二 0 

Clearly, the steepest descent direction d — —Vf{x) is a descent direction. A 

“l ine search algorithm searches for decrease in f in a descent direction, using the 

Armi jo rule for steplength control, unless V f { x ) 二 0. 

We wi l l consider descent directions based on quadratic models of f of the form 

m{x) ：二 f { x k ) + V f { x k V { x - Xk) + ^{x — XkfHk[x - ock), 

where Hk, which is sometimes called the model Hessian, is symmetric and positive 

definite. Let d 二 cc — Xk be such that m(x) is minimized. Hence, 

Vm(x) 二 • / ⑷ + 

and hence 

d = - H - ' V f ( x , ) (3.3) 

The steepest descent direction satisfies (3.3) with Hk 二 I. However, for some 

other methods, the direction may fail to be a descent direction if x is far from 

a minimizer since Hk 二 V̂ /Cia：) may not be symmetric and positive definite. 

Therefore, unlike the case for nonlinear equations, those methods are not gen-

erally good global method, even with line search, and they must be modified to 

make sure that the model Hessians are symmetric and positive definite (see [54], 
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57], [43] and [108]). 

To make the steepest descent method succeed, i t is important to choose the 

steplength a. Let us see the following example first [34]: 

Consider the function f { x ) = x^ w i th the in i t ia l guess :co 二 2. We choose 

4 = (-1)^+1, which is a descent direction of f . We also choose the steplength 

a；̂  = 2 + 3 . 2 - ( 叫 . T h e n , 

工 k = ^k-i + ak-idk-i 

= + + 

— • • • 

二：To + + … + (—1)] + 3[(—1)左 2—* + … + (—1)2—1] 

— + [ i - ( - i ) 1 - H ) J 
2 ‘ 

=(-1)^(1 + 2-^) 

Hence, we have f ( xk ) 二 (1 + 

Here are some results of the first few iterations: 

k 0 1 2 3 . . . 

X , 9 - 3 5 _ 9 
丄A: 乙 2 4 8 

f � 4 f f t 設 … 

dk - 1 1 - 1 1 ... 

Note that the minimizer of f is (0, 0). Although the sequence {f{xk)} is 
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象 
1_M-——>H—h——H * •x 
r ^ 1 0 1 2 

Figure 3.1: The sequence f (xn ) = x l is strictly decreasing, but does not converge 

to the minimizer (0,0). 
strictly decreasing, we observe that: 

l im f {xn) 二 1 and 
n—^oo 

— 1， i f n is even; 
一 l im Xn ~ < 
n—>•00 

—1， if n is odd. 
\ 

Therefore, this scheme does not converge to the minimizer since the decreasing 

in the values 
of f { xn ) is very small comparing wi th the steplength ak-

Now, we should find some rules for the steplength ak to overcome this problem. 

Let us see the iterative formula first: 

Xk+i =工k 一 o:kVf(xk) 

/(工fc 十 1) 二 f { x k ~ a k V f { x k ) ) 
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\ I 
\ I 
\ I 
W I 

~ ‘ \ ~ • O! 

Figure 3.2: Permissible values of a under Armi jo rule 

By Taylor's expression, we have: 

二 / � - c ^ j V / � l | 2 + o(||V/�II) 
/ ( x . + i ) - f{xk) 二 —ĉfc||V/(:r』|2 + o ( | |V / (T』 | ) 

< - X a k \ \ V f { x k ) f , for some A G (0,1). 

Hence, we can fix this by requiring that the average rate of decreasing from 

f { xk ) to f { xk+ i ) be at least some prescribed fraction of the ini t ia l rate of decreas-

ing. 

That is, take A G (0,1)，choose ak from among those a > 0 which satisfies: 

N工k+i) — F{xk) < -Xak (3.4) 

The above rule is the so-called Armijo Rule ([2], [61]). 

In Figure 3.2，It is clearly to see that the range of the permissible values of a 

under Armi jo rule is much larger than the original ones. 
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3.3 Steplength Control with Polynomial Models 

The steplength reduction scheme for a in Algori thm 3.1 is too crude. I f a is too 

large, too many steplength reductions may be needed before a step is accepted. 

I f a is too small，the progress of the entire iteration may be retarded. Hence, we 

wi l l now address this problem in the following way: we wi l l construct polynomial 

models of f along the descent direction to predict an optimal factor by which to 

reduce the step ([30]，[35], [56]，[87], [57]). 

3.3.1 Quadratic Polynomial Model 一 

Having computed a descent direction d from XQ, one must decide on a steplength 

reduction scheme for iterations in which (3.4) fails for a 二 1. A common ap-

proach, wh ich is cal led steplength control with polynomial models (or cal led back-

tracking line-search framework), is to mode l 

？(a) = f{xo — aVf(xo)) 

by a quadratic polynomial. The data on hand init ial ly are: 

(i) ？(0) 二 / ⑷ 

(11) ？'(0) 二 •/(：!。— aVf(xo)) • (~Vf(xo))Uo 二 —"•/(工。)1|2 

(ill) ？(1) 二 f(xo - Vf(xo)) 

From the above data, we have the following two facts: 

1. m 二 -"•/(工o)i|2<o. 
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2. Since a = 1 does not satisfies (3.4), then 

^(1) = / ( 工 0 - 勢 0 ) ) 
= / ⑷ 

> / ( x o ) - A | | V / ( x o ) | p 

二 _ + 聊 . 

Hence, 

e ( l ) - e ( 0 ) > Ar(0) . (3,5) 

By (i) to (ii i), we can approximate by a quadratic polynomial model: 

p{a) = m + + (e( i ) - e(o) -

Since the leading coefficient of p(a) is 

e ( i ) - e ( o ) - m > A f ( o H ( o ) 

= ( A - i ) r ( o ) 

> 0 

for A G (0,1) and f ( 0 ) < 0. 

Hence, p is a concave upward function, which has a unique minimizer, denoted 

by ap, which can be computed by: 

We see that <f'(0) < 0 and ^(1)—《0) — <f'(0) > 0, then we have: 

Qp > 0. 

Now, we can take a^ as the new value of a to compute. 
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/(。） J k 
P(a) 

\ / slopes .Tip) V / 

Vyf 
N ‘ 

• a 
0 ^ 1 

Figure 3.3: Backtracking at the first iteration, using the quadratic model 

3.3.2 Safeguarding 

Note that the steplength a cannot be too large or too small. Hence, we require 

the following safeguarding [12]: 

I f a steplength ao has been rejected, that is (3.4) fail wi th a — ao, construct 

G [Plow： Phigh] (3.7) 

where 0 < Piow < Phigh < 1-

Hence, we have: 
( 

Plow , i f 以p ^ Plow 1 

〜 二 jcvp， a Plo^ < a, < ^Mgh. (’3-8) 

Phigh, i f CVp > Phigh-
\ 
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There are some advantages of using the safeguarding when the quadratic 

model p{a) is poor, they are: 

1. The steplength a+ is so small, that is 义 0，then i t makes the i terat ion 

stagnating. 

2. The steplength a+ is so large, that is a+。1， then it needs many steplength 

reductions to make Armi jo rule hold. 

3.3.3 Cubic Polynomial Model 

Now, we have the value of a+，we can compute Xi — x^ — a+Vf{xo) and f { x i ) . 

But also, we have to check whether the new value of the steplength a+ is satisfies 

(3.4) or not. That is, 

f ( x : ) - f ( x o ) < - A a + l l V f ( x o ) l l ' 

is valid or not. 

I f the first reduced value of a does not satisfy (3.4), we should have the 

additional reductions. 

Note that we now have four pieces of information about <f(a), they are: 

(i) e(0) 二 f (xo) 

(ii) C(0) = - I I V / M I I ' 

(i i i) <f(ao) 二 f ( ^o — c v o V / M ) 

( iv ) 二 - a+Vfixo)) 
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where < ao is the most recent value of a which fails to satisfy (3.4). These 

are sufficient data to approximate ^ w i th a cubic polynomial model [75]: 

q(a) = e(0) + <e,(0)a + Csa^ + 

To determine the values of C2 and d】,we use: 

g(ao) 二 ^(ao) 
< 

\ 

and (ii i) and (iv) to derive 

f 

C2c4 + d^al 二 e(彻）—？(0) — e(0)ao 
< 

C2al + 而 4 = e ( � + ) — ^(0) — f ' ( 0 ) a + 
v 

This gives the following system of linear equations: 

( \ ( \ ( \ 
Ĉo C2 — e ( a o ) - e ( 0 ) - f ( 0 ) a o 

、a2+ a l j 胸-e(0)—f(0)a+乂 

Note that the matr ix 
( \ 

2 

2 

is non-singular since 

/ \ 

det 二 a o a ^ ( a + — a。）+ 0. 

Hence, the cubic approximation model for ^ is: 

g(a) = (f(O) + cf (0)a + C2a2 + diC? 
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J k 
qicx) 

J / 
I I I I I I I fr 丨 • I I • • a 

0 ^ ^ 

Figure 3.4: q{Q) has a unique minimizer when > 0 

where i 
/ \ / \ 一1 / \ 

C2 _ ccl a n e K ) - e ( 0 ) - f ( 0 ) a o 

、d2) 4 j 彻 + ) — e(o) - f w � 

Here, q{a) must have a unique minimizer. Note that (J'(0) < 0 and < 

^(ao). Let us discuss this in the following two cases {34]: 

Case 1: When ^{a) is concave upward, where a+ < a < a。，the graph would 

like Figure 3.4. From Figure 3.4, it is clearly to see that q{a) has a unique mini-

mizer. 

Case 2: When <̂(q：) is concave downward, where a+ < a < a。，the graph 

would like Figure 3.5. From Figure 3.5，it is also clearly to see that q{a) has a 

unique minimizer. 
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iV) 
i k. 

I g � 

I 
！ • a 

0 ^ ^ 匆 

Figure 3.5: q(a) has a unique minimizer when (J〃 < 0 

From the above two cases, q(a) has a unique minimizer, dented by ag, which 

can be computed by the following formula [35]: 

-C2 + y/4 - 30^2^(0) 
〒 % ， 

where we have used the cubic model instead of the quadratic one, because it can 

more accurately model situations where f has negative curature, which are likely 

when Armi jo rule has failed for two positive values of a. 

3.3.4 General Line Search Strategy 

Note that the steplength a cannot be too large or too small. Hence, we require 

the following general line search strategy [75]: 

I f a steplength a。has been rejected, that is (3.4) fails wi th a = a。，construct 

cv- ^ l̂ iowO ô̂  3kighCxo] (3.9) 
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where 0 < Plow < high < 1. 

The choice P = Plow 二 3high is the simple rule in Algor i thm 3.1. 

Hence, we have: 

/ 

PlowOi+, if Oiq < PlowOi+, 

二 ) 〜 i f 3lowCi+ < Oiq < Phzgha+. (3.10) 

PhighOi+, i f aq > PhxghO +̂. 
\ 

Here, we use this general line search strategy instead of the exact line search, 

in which a is the exact minimum of / (xo + ac/), since the exact line search method 

has the following disadvantages: 

1. I t is more expensive. 

2. I t degrades the performance of the whole algorithm. 

Algorithm 3.2 (General Line Search Strategy) 

Step 1: Given XQ £ W, k 0 and k舰工 > 0. 

Step 2: Calculate f { x k ) and V f { x k ) . 

Step 3: Construct a symmetric and positive definite matrix H and solve (3.3) to 

obtain a descent direction d. 

Step 4' Beginning with a = 1, repeatedly reduce a using any strategy that satisfies 

(3.9) until (3-4) holds. 

Step 5: Calculate x^-^i 二 + Cikd^-
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Step 6: Set A; : 二 / j + 1. 

Step 7: If k < kmax, then go back to Step 2; otherwise, stop. 

Now, we have the value of a'^, we can compute 工i 二 工。 -a !^V/(xo) and 

f { x i ) . But again, we have to check if the new value of the steplength a+ satisfies 

(3.4) or not. That is, 

f { x i ) - f { x o ) < - X a ' J V f { x o ) \ \ ' 

is valid or not. 

I f a ' , does not satisfy the Armijo rule, and now we have the most two recent 

values of a, that is and 0/+，then we can repeat the whole process of the cubic 

polynomial model, to find a new value of a. Finally, repeat this process again 

and again unt i l the value of a satisfies (3.4). 

3.3.5 Algorithm of Steepest Descent Method 

In this part, we wi l l conclude the whole process of the steepest descent method 

— which has been discussed in the previous subsections. We summarize in the 

following algorithm ([113], [119]): 

Algorithm 3.3 (Steepest Descent Method) 

Step 0: Given the function f : D C MP' and the initial guess XQ G D. 

Step 1: The 1st iteration 

(i) Compute /(xq) and Vf{xo). 

( i i ) Set ao 二 1. 

( i i i ) Compute 二 工。—OiQVf{xo) and f { x i ) . 
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f i v j If Qo does not satisfy the Armijo rule，that is, 

f { x i ) - f { x o ) > - X a o \ \ V f { x o ) \ \ ' 

for some A G (0,1)； then use the following backtracking line-search 

framework: 

(1) le力《(a) 二 /(rro —aV/ (To) ) . 

(2) Compute 

“ 二 m 
广2⑵1)-側-酬• 

(3) Safeguarding 

( 

Plow 1 Qp ^ l^low ； 

知 = I if Plow < 0(p < Phigh， 

Phigh, if Oip > Phigh-

\ 

for some 0 < 伪卿 < Phigh <1. . 

(J,.) Compute Xi = xo — q;+V/(xo) and f { x i ) . 
(V) If a+ still does not satisfy the Armijo rule, that is, 

f i ^ i ) - f M > -Aa+| | / (xo) |P, 

then 

(1) Compute 

—C2 + 狀—3而<?'(0) 
〒 % ， 

where 

( \ ( 、 一 1 / \ 

C2 —卜吕 ^(ao) - e(0) — f(0)ao 
— • 
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(2) General line search strategy 

/ 

/5“a+, if aq < l5iowOt+, 

以+ 二 <|a。 if^i ow a+ < aq < PhzghOi^, 

订 aq > f^highOi+. 
\ 

for some 0 < Plow < ^high < 1. 

(3) Compute 工丄 二:To — a ' + V / ( : r o ) and f { x i ) . 

(vi) When 0；'+ still does not satisfy the Armijo rule，then we use the most 

two recent values of a，and repeat the process in (v) with a^ and ‘ 

repeated by these 2 most recent values of a. 

(vii) Repeat (v) until the value of a satisfies Armijo rule. 

Step 2: The 2nd iteration 

( i ) Compute f { x i ) and V f { x i ) . 

( i i ) Set ao 二 1. 

( i l l ) Compute X 2 ^ x i - aoV/(Xi) and / ⑷ . 

(iv) Do the backtracking line-search framework in Step 1 (w)，(v), (m) and 

(vii) again by considering the following function: 

aa) = f { x , - a V f { x i ) ) . 

(V) Finally, X2 Xi - a + V / ( x i ) , where a+ is the most recent value of a 

which satisfies the Armijo rule. 

In general, for k > 1, 

Step k: The kth iteration 

( i ) Compute f { x k - i ) and V f { x k - i ) . 
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( i i ) Set cvo 二 1. 

( l i t ) Compute Xk 二 — a^SJf[xk-v) and / ( x ^ ) . 

(iv) Do the backtracking line-search framework in Step 1 (iv), (v), (vi) and 

(vti) again by considering the following function: 

？ (a) = f { x k - i - a V f ( x k - i ) ) . 

(V) Finally，Xk 二 工 _ a+Vf{xk-i)； where a+ is the most recent value 

of a which satisfies the Armijo rule. 

3.4 Advantages of the Armijo Rule 

There are many sufficient decrease conditions. But we use the Armijo rule since 

this decrease condition can be satisfied in finite many steps. 

Let us see the following lemmas and theorem [75]: 

L e m m a 3 .1 Let H be symmetric and positive definite with smallest and largest 

eigenvalues 0 < A^ < A i . Then，for all z G W, 

A「1|W|2 < zTjI-iz < 

L e m m a 3 .2 Assume that • / is Lipschitz continuous with Lipschitz constant L. 

Let 入 e (0，1)； X e M"； and H be an symmetric and positive definite matrix. Let 

A n 〉 0 the smallest and A i > A^ the largest eigenvalues of H. Let d be given 

by (3.3). Assume that V f { x ) • 0. Then，(34) holds for any a such that 

。 〈 “ ( 3 川 
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L e m m a 3 . 3 Let • / be Lips chit z continuous with Lipschitz constant L. Let {x^} 

be the iteration given by Algorithm 3.2 with symmetric and positive definite ma-

trices Hk that satisfy 

K,{Hk) < R (3.12) 

for all k. Then, the steps 

Sk 二 Xk+i — Xk = Xk(h = -XkH:〜f 

satisfy 

2 伪 J (3.13) 
LE 

and at most 

m 二 log - A) )丨 log(仇2的） (3.14) 
\ LK J 

steplength reductions will he required. 

The convergence theorem for Algorithm 3.2 says that i f the condition num-

bers of the matrices H and the norms of the iterates remain bounded, then every 

l imit point of the iteration is a stationary point. Boundedness of the sequence 

of iterates implies that there wil l be l imit points, but there is no guarantee that 

there is a unique l imit point. 

T h e o r e m 3 .4 Let • / be Lipschitz continuous with Lipschitz constant L. .45-

sume that the matrices Hk are symmetric and positive definite as well as that 

there are R and ai such that i^{Hk) < ^； and \\Hk\\ < for all k. Then, either 

f [ x k ) is unbounded from below or 

l im V f { x k ) 二 0 (3.15) 
/c—>co 
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arzof hence any limit point of the sequence of iterates produced by Armijo rule m 

the Steepest Descent Method is a stationary point. 

/n particular, if f [ x k ) is hounded from below and 工 七 , x * is any convergent 

subsequence of {xk}； then V / ( x * ) = 0. 

Proof: By construction, f(xj^) is a decreasing sequence. Therefore, if / ( x ^ ) is 

bounded from below, then l im “eo f M 二 / * exists and 

- f(xk) = 0 (3.16) 

By (3.4) and Lemma 3.3，we have: 

— f i ^ k + i ) — f { x k ) < - > ^ a k V f { x k f H - ' V f { x k ) 

< 0. 

Hence, by (3.16), 

AQ; 

as ^ —00. This completes the proof. • 

The analysis of the Armijo rule is valid for other line search methods [35], [59], 

125] and [126]. The key points are that the sufficient decrease condition can be 

satisfied in finitely many steps and that the steplengths are bounded away from 

zero. 

3.5 Convergence Analysis 

Unfortunately, the methods based on the steepest descent do not enjoy good local 

convergence properties, even for very simple functions. This section discusses the 
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convergence, closely following Yuan-Sun [128]. Let us see the following lemmas 

first: 

L e m m a 3 . 5 Suppose ak > 0 is the solution of 

f{^k+i) = f{xk + akdk) = m i n f ( x k + adk). 
a〉0 

If for all a> 0, there exists M > 0 such that 

then we have: 

f { x k ) - f{xk + akdk) > ⑷ | | W 〈 4 ， - • / ⑷ 〉 ， 

where 

\\dk\\\\Vf{xk)\\ 

L e m m a 3 .6 Let (p{x) be a function which is twice differentiable on the closed 

interval [0，b] such that < 0. If x* e (0, b) is the minimizer of ip{x) in [0，h], 

then we have: 

. \ ~ (p乂0) 

where ip"{x) < M, for all x G [0，b . 

L e m m a 3 .7 Suppose f : D C W R is twice continuous differentiable. Then， 

for all x,d eW and for all a e R, we have: 

f、:i: + ad) = f、:L、+ aVf、ocfd + a " L (1 - [cFv'^f{x ^ adt)d] dt (3.18) 
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L e m m a 3.8 Suppose f { x ) is twice continuous differentiable at the minimizer x*. 

Also, for all y eW^, there exists s > 0 and M〉m > Q such that 

M\y\\' < y T 炉 m y < M\\yf (3.19) 

whenever ||x — x*|| < s. Then，we have: 

⑴ 

^rnl lx - < f { x ) — f{x*) < ^M\\x — (3.20) 

| |V/(x) | | > m \ \ x - x * \ \ (3.21) 

From the above lemmas, then we have the following theorem about the rate 

of convergence of the line search for the steplength ak [128]: 

T h e o r e m 3.9 Let (办)be the sequence generated by the line search for the steplength 

Oik, cmd Xk X* as k oo. Suppose f { x ) is twice continuous differentiable at 

X*. Also, for all y E BP, there exists £ > 0 and M > m > 0 such that 

m\\yf < < M\\yf (3.22) 

whenever \\x — < e. Then，{xk) converges to x* r-linearly. 

Proof: Let limA;^co ^k 二 工*，and assume that 

b i t (3.23) 

for /c — 0,1,.... Since - x*\\ < s, then there exists (5 > 0 such that 

l^:^； + (afc + 5)dk - x*\\ = llxfc-M — + ddkW < c. 
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Also, since < 0 and (/(O) 二 + a 4 ) 4 < M | | 4 | p , then from Lemma 

3.6，the minimizer ak of the function (p(a) = f [Xk + adk) in the interval [0, ak^S ' 

satisfies 

Denote 

P QK I 

• 知 = i m y (3 測 

such that Xk = Xk-h dkdk- Clearly, ||afA； - x*\\ < £. Using Lemma 3.7, we have: 

fi^k + o^kdk) — f { x k ) < f(xk + dkdk) — f { x k ) 

= ( ^ k o l d k + ak^ / (1 - t )d lG{xk + dkdk)dkdt 
Jo 

< (^k{-p)\\9k\\\\dk\\ + ]^Ma2^\\dkf 

< - A r f 
- 2M ^ 

< -T^rn'^ Xk- X* ^ 
— 2M 

<--(觉丨/⑷-/(?)]’ 

So, we have: 

- / ( x * ) < [ / ( x , ) - f[x^)\. (3.26) 

Denote 

(3.27) 

It is clear that B E (0,1). So, we have: 

n 务 八 工 。 < 沪[/(o；,—1) —/(T*)] 

< ... 
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Bv Lemma 3.8, we have: 
O / 

II工广 < I 陶 - / ( ? ) j 

< (3.28) 
1 

From (3.28), we can write 

！iA- - x ' i l < K e 、 (3.29) 

where f) < 1 and 

八‘二 丄 — /(丄 
V rn • 

In the stateinent (3.29). thori the socniericc? ( ‘ r " converges to ./•• r-liiiPaiiv. • 

Nov/. can hav(> die followinj^ tliforcms coiicei riinH； du、rate ()f (、onv<、r‘t̂ riir(、 

of tile sr.ee{)(\si (1 escpiit【ncrho(1 [ 1 2 8 ! ： 

T h e o r e m 3 .10 .S’f!尸/")‘、•" / / " ' function f ( s ) sati.^jir.s (ill as.siinipUojis m Tfinu.nn 

. y . I f tiw ^rqnencr (./•、） (jrnrnitrd hi; the str.rprst (Icscrnt inrlhod nmr”7.f”,s to 

.r*, thf 71 ronvt'njf's to .r' nt [rn.st r-linfarhi. 

Proof : I'sing Th,、()r<、m .5.9. tlu'ii uv haw rh!> rf.sulr, • 

\Mion V.、、(iiscus.s the L;»Mi»'r.il「丄、,‘ of rhc funcr iun> /(.厂丨.f he “川."”-…”!。. rat,•‘ 

<>t di’、,st，、，、|)i、t (i«'Si-t'!ir. “ .> .» ran hf al.so cl'.、rrih.. ； t h • ‘ f。li"v/!nj4 r}i…)n-rii: 

Theorem 3.11 L，、t ) h'’ :hr 、 ‘ 、 j ： , nitrd by Sh • i J ' S f j i t M'^tfuul 

and Ti, —‘ J* iis k —• X A^s-i-nr / ( i ) '.u w- di；•‘ nfhihlr at ？7 ” . u ; i i } ” " - } u ) i > d 

of I ‘ . V / ( . r ' = 0 iind V” / : r* :、尸《川？：，）' d' •::。’• /'/.' ” ’':“，.'.. 

/..r…：1 - / .r' 1 , 
. — ~ - • — 二 1 (• •) • J(J ： 

• r * ~ ' ' r' 
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and 

1. o y M — m 
hmsup/?^ < < 1, (3.31) 

where M and m satisfy 

0 < m < A^ < Ai < M , (3.32) 

Xn 二 K { V ^ f { x ) ) and Ai = Xi{V^f{x)) are the smallest and the largest eigenval-

ues of respectively. 

Proof: From Lemma 3.5，then 

- [ 制 - 綱 - [ / ( 工 ⑷ ) - 朋 ] = f i x , ) -

〉-i丨剛"2 

From (3.30)，we have: 

By assumption, when x satisfies - < S, the statement (3.32) holds, for 

some scalar M, m and J > 0. 

Now, assume that 

工k — 工 7 
d, 

Xk - x*\\ 

we have: 

Using the above two statements and (3,32)，we have: 

l im 丨丨•胸 l|2 二 

“ ⑴ / ⑷ - / M — 
> 2m. (3.34) 
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Hence, from (3.33) and (3.34)，we have: 

limsupA： < 1 - l im inf 「 " V " ^ ⑷ " ' 
“。0 — “ ⑴ 2 M [ / ( x , ) — f{x*)] 

m 
< 1 
一 M 

< 1. 

This completes the proof. • 



Chapter 4 

Iterative Methods Using Second 

Derivatives 

4.1 Background 

I f i t is given tRat f { x ) e C^ and that its Hessian matr ix H can be computed for 

any x, then there are some algorithms which can utilize this knowledge. These 

algorithms are nearly all variants of Newton's method. In this chapter, some 

better-known algorithms using the second derivative (or Hessian matrix H) are 

discussed. 

Usually, refer to Murray [86]，even if H is available, we could use one of 

the many algorithms for which this knowledge is not required. The reason for 

doing this is to alleviate the need to do the analytical differentiation and subse-

quent computer programming. The disadvantage can be partly answered by the 

availability of computer programs that wi l l perform analytical differentiation. Al-

though these programs may not produce an efficient code they are more reliable 

63 
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than programs based on differentiation by hand. The need for a computer pro-

gram to evaluate H is an additional feature which does not arise in algorithms 

which do not require H. To justify the use of a second derivative method, there 

must therefore be some advantages. One that can be appreciated immediately is 

that i t is nearly always possible to check whether x* satisfies both the necessary 

and sufficient conditions for a strong local minimum. The main hope is that 

second derivative methods wil l prove more reliable and take significantly fewer 

iterations than alternative methods, 

4.2 Newton's Method 

4.2.1 Basic Concepts 

In the steepest descent method, the notion of local linear approximation of the 

objective function f { x ) is basic. I f the function is twice difFerentiable, one may 

naturally try to use its quadratic approximation at a point x^, that is the function 

/ > ) 二 / ( 工 + x , f V f { x , ) + ^ (x — — X 丄 (4.1) 

In the steepest descent method, the next iteration x^+i is sought under the 

condition that the linear approximation be a minimum point under the additional 

constraints of being near to Xk- For a quadratic approximation one can try to 

impose no restrictions of this kind, since for V^f{xk) > 0, the function f { x ) at-

tains an unconstrained minimum. 

Let us take a minimum point of f { x ) as the new approximation [94]: 

min f ( x ) 
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Then, we have: 

工fc+i = X k - [ V V O r , ) ] - 1 \ / f { x k ) . (4.2) 

Another approach [94] to arrive at this method is that the minimum point 

must be a solution of the system of n equations with n variables: 

V / ( x ) 二 0. (4.3) 

One of the basic methods for solving this system is Newton's method, which 

consists in linearizing the equations at a point Xk and solving the linearized sys-

tem. This linearized system in the given case has the form 

• / ⑷ + V V ⑷ . ( x — X,) = 0, (4.4) 

whose solution Xk+i is again given by (4.2). 

Algorithm 4.1 (Newton's Method) — 

Step 1: Given Xq G 肥 and k ：二 0. 

Step 2: Calculate V f { x k ) and -

Step 3: Calculate x ^ = Xk - [V^fixk)]'^ •/(工a：). 

Step 4： Set k k + then go back to Step 2. 

4.2.2 Convergence Analysis of Newton's Method 

With refer to [89], we have the following convergence theorems of Newton's 

method: 

T h e o r e m 4 .1 Assume that f { x ) is twice differentmble，V^f(x) satisfies a Lvps-

chitz condition with constant L, and f { x ) is strongly convex with constant I, and 
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the following condition holds: 

q = J i l | V / ( x o ) | | < 1, (4.5) 

Then, the method (4.2) converges to the global minimum point x* with the quadratic 

rate: 

* ^ 2/ cyk 
< - g - • (4.6) 

Proof: Since satisfies the Lipschitz condition with constant L on [x, x+y], 

that is: 

— |VVM - VVWII < L\\u-v\\, u,ve [x,x-+-y], 

t hen \\Vf{x + y ) - V f { x ) - V ' f { x ) y \ \ < 

where 

工二工k, and y = - [ V ^ f ( x k ) ] - ' V f ( x k ) . 

Then, x -j- y = Xk+i and • 

I I W ( 工 “ 1 ) 1 1 < f l l [ v V ⑷ ] - 〜 / ⑷ l | 2 

< ⑷ i n i v / ⑷ i | 2 . 

Since f ( x ) is strongly convex with constant it is equivalent to the condition 

V ' f ( x ) > I I , for a l l X, 

||V/(a;)|| > l \ \ x - x * \ \ . 

Then, 

[ • 2 / ⑷ ] — 丄“/ and < 

that is, 

l | V / ( 工 “ 1 ) 1 1 < ^丨•制 " 2 . 
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Iterating the above inequality, then we have: 

9/2 / r \ 
I 剛 II < 1 ( 研 _ " ) 

二 . (4.7) 

Since for ||V/(xa;)|| > Ĥa： Applying this statement to (4.7), then we have: 

* . 2 / 2̂： 
^k-x < j-q^， 

which completes the proof. • 

Now, we show that all the conditions of the theorem are essential and it is 

generally impossible to strengthen its assertion. Clearly, the existence of a second 

derivative is required in the formulation of the method, and the strong convexity 

condition ensures the existence of [•2/(:r左)]—i. When we drop the Lipschitz 

condition on the weaker requirements for smoothness may diminish the 

covergence rate of the method. For example [94]，let f { x ) 二 x e R. Then, 

for x 〉 0，V / ( x ) = | x署，V V W - f x i . Note that does not satisfy 

the Lipschitz condition. The method takes the form, where the init ial condition 

xo > 0 

4 - 1 5 1 — 

1 

That is, Xk : ( ! )、o and the method converges to 工* 二 0 with the rate 

of geometric progression, rather than quadratically. Finally, it is impossible to 

assert that the method converges for just any initial approximation, which is not 

satisfying (4.5). Suppose the problem consists in minimizing the one-dimensional 

function a derivative of which is shown in Figure 4.1. This function is twice dif-

ferentiable, strongly convex, V"f{x) satisfies a Lipschitz condition and x* 二 0. 

However, if one starts the iterative process from any point xq with \xo\ > 1, then 
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^f y=f'(x) 

疋1二太：} 二 .••』— X / |X2 = X4=...- ‘ 

Figure 4.1: Divergence of Newton's method, 

the method does not converge: 三 1，for all k > 1. 

The conditions of Theorem 4.1 can be somewhat relaxed only in one instance: 

the local conditions in place of the global ones on f { x ) . 

T h e o r e m 4 .2 Assume f { x ) is twice differentiable in a neigborhood D of a non-

singular minimum point x\ and V'^f{x) satisfies a Lips chit z condition on D. 

Then, there exists an £ > Q such that for \\xo - x*\\ < e，the method (4.2) con-

verges to X* quadratically. 

For the quadratic function f { x ) 二 ！:r了Ar — x^b with A is positive definite, 

Newton's method converges in only one step, that is, x： 二 工* for any XQ e 

IR". This is obvious since the approximating function f { x ) coincides with f { x ) . 

The closer f [ x ) is to being quadratic, the faster Newton's method converges. 

Moreover, if the value of the Lipschitz constant L is smaller, then the domain of 
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convergence defined by (4.5) is larger, and the convergence rate defined by the 

quantity q is also faster. 

4.2.3 Newton's Method with Steplength 

We should note that, i f the init ial guess Xq is too far away from the minimizer x*, 

then Gk ：二 V^fl^cck) may not be positive definite. Therefore, Newton's direction 

may not be the descent direction, so it may not converge. Hence, taking the 

steplength a^ = 1 is not always suitable. We should use the line search method 

for the Newton's method to determine the steplength a^. But it should be em-

phasized that, only when the steplength a大 converges to 1, the convergence rate 

of Newton's method can be quadratic. 

Now, the iterative formula for the Newton's methods becomes [128]: 

^k+i 二 工k + o^kdk, (4.8) 

4 = - ( ⑷ - i V / ⑷ （4.9) 

where a^ is the steplength found by the line search. 

Algorithm 4.2 (Newton's Method with line search) 

Step 1: Given xq G M " , e > 0 and k ：二 0. 

Step 2: Calculate g 二 • / ( : r ) and G = 

Step 3: If V f { x k ) > e, then go to Step 4； otherwise, stop. 

Step 4' Solve the linear system for the Newton's direction dk: 

Gkd 二 —gk. 

Step 5: Conduct the line search, find a^ which satisfies 

fi^k + o^kdk) = minf{xk + adk). 
a>0 

Step 6: Calculate x^+i — Xk — O-kdk-

Step 7: Set k k + 1, then go hack to Step 3. 
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4.2.4 Convergence Analysis of Newton's Method with Step-

length 

In this subsection, we follow [128] to show that Newton's method with line search 

converges globally. 

T h e o r e m 4 .3 Let f -^R be twice differentiable on the convex set D c W . 

Suppose for all Xq G D, there exists a constant m > 0 such that f { x ) satisfies 

> m\\uf,\/u G ]r，T e (4.10) 

—ere L{x^) = { x \ f { x ) < f { x o ) } . Then, by the exact linear line search, the it~ 

肌true point {x^} produced by the Newton's method with steplength satisfies the 

following conditions: 

(1) I f { x k } is a finite sequence, then = 0 for some k. 

⑵ If {^k} IS a infinite sequence, then {xk} must converge to a unique mini-

mizer X*. — 

Proof: First, from (4.10)，w^know that the function f ( x ) is strictly convex in 

I T . So, the stationary point of f ( x ) should be the minimizer, which is unique. 

By assumption, note that the set L(xo) is bounded, closed and convex. Since 

is strictly decreasing, so we know that (x^) C L(xo), and (x^) is bounded. 

Then，there exists a l imit point 无 G L(xo) such that Xk — x. Also note that 

f (工k) is strictly decreasing and bounded below，then f{xk) — f { x ) . Therefore, 

by Theorem 3.4，we have 办 g { x ) = 0. Again, since the stationary point is 

unique，then the sequence {xk) must converge to x. • 
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Similarly, i f the linear line search satisfies 

f i ^ k ) - f i ^ k + akdk) > f i \ \gk \ \ \os^dk, -gk) , (4.11) 

where ^ is a constant independent of k. Then, the convergence sti l l holds. 

T h e o r e m 4 .4 Let f -^R be twice differentmble on the convex set D C M^. 

Suppose for all XQ G D, there exists a constant m > 0 such that f { x ) satisfies 

U-iO) on the setL{xo). Then，under the condition (4.11) of the linear line search， 

the iterative point {x^：} which is produced by Newton's method satisfies 

一 ^Hm | |V / (x , ) | | (4.12) 

anc? {xk} converges to the unique minimizer of f { x ) . 

Proof: Since f { x ) satisfies (4.10)，then f { x ) is uniformly convex on the set 

L(工0). From (4.11), we know that f { x ) is strictly decreasing, so the sequence 

i^k) is bounded. Hence，there exists a constant M > 0 such that , 

< M (4.13) 

for all k. By the iterative formula of Newton's method, (4.10) and (4.13)，we 

have: 

cos(4, - g k ) = 花gk 
ck 9k 

I I V V ⑷ 、 l l l k l l 
二 � v V f a K 
^ m 

- M - _ 

Hence, we have: 

⑴ CO 2 

⑴ 〉 X ] 一 > Y . ^ ' ^ W d k f - (4.15) 
A： 二 0 k=0 
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Then, we can have the statement (4.12). Note that f { x ) is strictly convex, so 

there is just one stationary point, and from (4.12), the sequence {xk) converges 

to the unique minimizer x* of f { x ) . • 

4.3 Greenstadt's Method 

I t is possible that Gk := is indefinite or singular. To improve the above 

direction of search, Greenstadt [62] suggested the following variant of the New-

ton's method: 

Let {Xk)j be the jth eigenvalue of Gk and {vk)j be its corresponding eigenvector 

such that {vkf j (yk) j = 1. 

Now, we define a n x n matrix Gk as 

n 

仏：二 E丨 (A…⑷加)『. (4.16) 
j=i . 

The direction of search in the kth iteration of Newton's method is replaced by 

工k 二 Xk-i — (4.17) 

This is stil l inadequate definition of the direction of search since Gk could be 

singular. To avoid this difficulty, we define Gk as follows: 

n 

Gk (4.18) 

where 

P] 二 max{|(AA:)^|,(5}. 

The 
positive scalar 8 is machine dependent. I f a machine has a t bit word 

length, then the usual choice for 5 is 

“ 2 - 臺 . 
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The matr ix Gk is positive definite so this variant of Newton's method is a 

descent algorithm under the norm 

|y||2 二 

I t follows from the definition of Gk that 

n 

( ⑶ 二 1 > 广 ( 外 W外)『，— (4.19) 

户 1 

consequently the direction vector dk f {xk ) can be calculated in only a 

further 0{v?) operations once the {\k)j and (yk)j are known. The method is sat-

isfactory although the amount of work necessary to compute the eigenvalues and 

eigenvectors is high. This leads us to suggest the following scheme that avoids 

unnecessary calculation of the eigenvalues and eigenvectors. 

Now, if Gk is positive definite, then the only work necessary to determine dk 

is to solve the equations 

一 Gkdk 二 - V / O r , ) . (4.20) 

The most effective way of doing this is to factorize Gk, suggested by Wilkinson 

121]. By using the method of Cholesky, we have 

Gk = LDLT, (4.21) 

where L a lower-triangular matrix with unit-diagonal elements and D is a diag-

onal matrix. This method requires ^n^ + O(n^) multiplications compared with 

a conservation estimate of multiplications for the eigenvector analysis. If 

Gk is not positive definite, then this wil l be revealed in the factorization by the 

occurrence of a non-positive diagonal in D. 

Algorithm 4.3 (Greenstadt's Method) 
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Step 1: Given XQ G M^ and A: 0. 

Step 2: Calculate gk 二 •/(^^a；) and Gk = V^ / (x a： ) . 

Step 3: Find the eigenvalues and its corresponding eigenvectors 

{vkTj=i,肌th {vk)J{vk)j 二 1； of the matrix Gk. 

Step 4： Find Gk 二 /^jOa；))(叫)where = max{|(/\A：)几 

for some (5 > 0 . 

Step 5: Calculate Xk+i 二 Xk — f { x k ) . 

Step 6: Set k :二 k + 1， then go back to Step 2. 

4.4 Marquardt-Levenberg Method 

This method is an adaption of the Marquardt-Levenberg algorithm for the solu-

tion of non-linear least-squares problems ([79], [81], [84], [122]). In this method, 

the direction of search is given by 

dk 二 -、Gk)-'gk, (4.22) 

where 

Gk 二 + 隨 , (4.23) 

and ,3k is a non-negative scalar and Qk is some specified matrix which is at least 

positive semi-definite. There are some suggestions for the matrix Qk, for example: 

(i) Qk = / , the unit matrix; 

(ii) Qî  — Dk, the diagonal matrix whose elements are the absolute value of the 

diagonal elements of Gk. 
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The scalar â ； is taken to be unity while is choscii such that /(./;人’.卜！）< /(./；；,; 

and the matrix G^ is a positive-definite matrix. This【nethod generates the de-

scent method under the norm 

IvW" = y Gky. 

There is a disadvantage of this method. Since a suitable fj^ is not known initially, 

so for each estimation of pk, a new set of linear system of equations must be 

solved in order to determine the corresponding dk. 

But when solving the non-linear least-squares problem by this method using 

Qk 二 I, there is a suggested method to avoid this difficulty [6]: 

Let Xj be the jth. eigenvalue of the matrix Gk and v] be its corresponding 

eigenvector, where v j v j = 1. Then, 

( ⑷ - 1 二 『， (4.24) 

and -
n 

一、财、TM]偏-Svf. (4.25) 

Hence, once if the eigenvalues X] and the eigenvectors Vj are known, then each 

of the trial, the directions d^ can be determined in 0[v?) operations. 

The mathematicians examine some relative amounts of work required for solv-

ing sets of linear systems of equations and computing eigenvalues, shows that this 

scheme would only be worthwhile if 20 or more trial ,5a；'s were required. Each 

trial Pk has an associated function evaluation, the test of a satisfactory pk being 

that this function value is less than the current lowest function value. If the 

algorithm required 20 function evaluations per iteration, it would be judged very 
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unsatisfactory. A further disadvantage is that storage of the eigenvectors requires 

twice number of locations as that required for the Cholesky factors. 

Algorithm 4.4 (Marquardt-Levenberg Method) 

Step 1: Given XQ G R^ and /c :二 0. 

Step 2: Calculate gk = V f { x k ) and Gk = 

Step 3: Find the eigenvalues (A念)^二1 and its corresponding eigenvectors 

{yk)]=i^ with {vk)J{vk)j = 1，of the matrix Gk. 

Step 4： Determine the value of ^k such that f ( x k ) < f { x k - i ) and the 

matrix Gk '•— Gk + jSjJ is positive definite. 

Step 5: Find {G,)-' = 叫 ) , ( M 『 . 

Step 6： Calculate Xk+i = Xk — f{xk)• 

Step 7: Set k k then go hack to Step 2. 

4.5 Fiacco and McComick Method 

Follow from [86], we recall that if / I is an n x n symmetric and positive-definite 

matrix, it can be factorized in the following form: 

A 二 LDLT, (4.26) 

where L is a lower triangular matrix with unit diagonal elements and Z) is a 

diagonal matrix whose diagonal elements are all positive. 

This factorization (4.26) is called Cholesky factorization of A and the matrices 

I) ^^^ factors of « The elements of L and D are unique, and 

they can be determined either column by column or row by row from comparing 
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the elements in (4.26). Suppose the first A; - 1 columns of L and D have been 

determined, then the A;th columns can be determined from the following: 

Let l i j and a。denote the { i j ) t h . element of L and A respectively. Let d],j 

be the jth diagonal element of D. Comparing the {k,k)th. element in (4.26)，we 

have: 

k 

j y 必 二 " “ 、 ( 4 . 2 7 ) 
i=i 

Hence, we have: 

k-l 

dk,k = cik,k — Y y i， ^ , i - (4.28) 
2 = 1 

By comparing the A;th column of A, we have: 

k 

二 Hk , (4.29) 
i二 1 

for j 二 k + 1 ’ …，n. Then, we have: 

kk 二 。 • ^ ’ 广 宇 " 絲 〜 (4.30) 

for j 二 A: + 1,…，n. 

I t may happen that the value of d、k is very small, but it follows from the 

relationship (4.27) that this does not result in a large element in LD、expect 

possibly when A has a large diagonal element. The numerical stability of this 

factorization method is a direct result of the priori bounds on the elements of 

LD‘2 given by (4.27). I f A is not positive definite matrix, then the factorization 

(4.26) does not exist. I f there is such a factorization, then at least one of the 

elements of D is negative, and (4.27) can no longer be uesd to give the priori 

bounds on the elements of LD^ . 
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The method of Fiacco and McCormick is given as follows ([43], [41], [42]): 

at the kth iteration, we factorize the Hessian matrix Gk' 

Gk = L k D k L l (4.31) 

I f the diagonal elements of Dk are all positive, then the direction of search dk can 

be determined by the Newton's method, that is: 

dk 二 H G k T ' g k . (4.32) 

Now, we have the Cholesky factorization of Gk, then: 

— (Gk)-' = {LkDkLj)-' 

where 

Dk 二（1/式》ILi. 

On the other hand，if some diagonal elements of Dk are zero or negative, we 

should find some other methods to obtain the direction of search dk. But it will 

involve the use of Lk and Dk, and it cannot be relied upon [121]. So, dk may now 

be an arbitrary descent direction in no way related to Gk-

Algorithm 4.5 (Fiacco and McCormick Method) 

Step 1: Given xq G E"^ and k •.— 0. 

Step 2: Calculate gk 二 and Gk 二 

Step 3: If Gk IS positive definite, then factorize into Gk 二 L^D^L^• 

Step 4- Calculate x^+i 二 a:^： — Wf{xk). 

Step 5: Set /c /c + 1， then go back to Step 2. 
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4.6 Matthews and Davies Method 

This method is almost the same as the method of Fiacco and McCormick in 

Section 4.5, but this time we factorize the matr ix Gk in the ^th iteration into the 

following form: 

Gk 二 LkUk, (4.33) 

where Lk is a lower triangular matrix wi th unit diagonal elements and Uk is an 

upper triangular matrix. 

Matthews and Davies, who described this method in 1969 [82] and slightly 

modified this in 1971 [83]，suggested that the above factorization should be per-

formed by Gaussian elimination. This method is similar to Cholesky factoriza-

tion, but twice as long and uses twice the storage. I t is clear from assumptions 

that they make about the factorization that in their implementation of Gaussian 

elimination, they pivot down the diagonal. I f Gk is positive definite, then the 

matrix Lk is the same to that given by Cholesky factorization and 

Uk = DkLl. 

In the process of Gaussian elimination, there is some more arrangements in 一 

the diagonal elements of Uk as the following: 

if 购，z > 0; 

叫’！二 [ ， i f ^ v - 0 ; 

-y^，!, i f Ui,飞 < 0 . 

\ 

This does not affect the process if Gk is positive definite since all the diagonal 

elements of Uk must be positive. On the other hand, if Gk is not positive definite， 

then it does not guarantee that the elements in Uk and Lk become very large in 



Chapter 4: Iterative Methods Using Second Derivatives 80 

the above modifications. Hence, this consequences are identical to the method of 

Fiacco and McCormick. 

Algorithm 4.6 (Matthews and Davies Method) 

Step 1: Given XQ G M几 and k 0. 

Step 2: Calculate gk : V f { x k ) and Gk —炉 . 

Step 3: Factorize Gk into Gk 二 Lklh. 

Step 4： If the diagonal elements of Uk, that is Ui,i • 0, then set Ui,i 二 

otherwise, set Ui,i = 1. 

Step 5: Calculate Xk+i = Xk — •/(工a；). 

Step 6: Set k k then go back to Step 2. 

4.7 Numerically Stable Modified Newton's Method 

In the above two factorization methods to factorize Gk, when we solve the equa-

tion — _ 

贴 二 - • / ⑷ ， 

for the direction of search (4，it seems that they are both numerically unstable. 

So, we should find a modified method which is numerically stable for the iterative 

process. We now follow [86] to present some results in this aspect. 

Recall that a matrix A can be factorized into the form 

A 二 LDLT. (4.34) 
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I f A is positive definite, we can also have the factorization [60], [114]: 

A = LLT, (4.35) 

where Z is a lower triangular matrix. The relationship between L and L is 

L 二 LD、 

Note that the factorization (4.34) is preferred to (4.35) since it avoids the need 

to form the square roots of the elements of D. In the modifications to the fac-

torization process in this section, the square roots occur irrespective of which 

factorization is used. Hence, we use the factorization (4.35) since this simplifies 

the description. 

Let l i j and a、) denote the (z, j ) t h element of L and A respectively. Comparing 

the {k, k)th element in (4.35)，we have: 

k 

YJU 二 叫 , ( 4 - 3 6 ) 

Hence, we have: 

_ / \ ^ 

kk 二 - 1 . (4-37) 

V / 

By comparing the A;th column of A, we have: 

k 
二 Hk , (4.38) 

i二 1 

for j — k n. Then, we have: 

hk - 〜 广 兮 气 (4.39) 

for j = A; + 1,..., n. 
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Hence, in the algorithm, when we find the direction of search, i t is equivalent 

to solve the equation: 

LkL ldk = (4.40) 

where Lk is a lower triangular matrix. 

The matrix Lk is determined by applying the Cholesky's method to the matrix 

Gk- The resulting factorization is not necessarily the same as Gk, but some of the 

other matrix, say Gk- The deviations from Cholesky's method occur when tests 

carried out during the process of factorizing Gk indicate that Gk is not positive 

definite. The main objective of the above changes is to make sure that Gk differs — 

from Gk in some minimum way, but Gk is positive definite. 

Suppose the modified factorization procedure is applied to a symmetric but 

indefinite matrix A, whose smallest eigenvalue is A. Let the resulting factor be 

L. The prerequisite for A to differ from LIF in some minimum way is for the 

following quantity: 

MMLLA — LLT . 
L I 

This quantity is a continuous function of A, whiuh is equal to 0 when A 二 0. In 

fact, i t is not easy to achieve this since there is a need to bound the condition 

number of Gk in order to avoid the numerical difficulties in the evaluation of dk. 

Hence, in this modification 

iGyfc — Gk\ 

tends uniformly to 0 as A tends to S, where 5 > 0 is a small scalar to the word 

length of the computer employed. 

There is a very important property lost when the matrix is not positive def-

inite or very close to singular in the Cholesky's factorization. This property is 
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that the priori bound on the elements of the lower triangular matrix L given by 

(4.36). In the modification, this property is not required since the procedure acts 

directly to l imit the size of the elements. I t is clear from (4.39) that the elements 

of the off-diagonal from the matrix L can be always reduced, if they were too 

large, by increasing the diagonal element of L. 

I f the factorization is performed row by row, then it is not possible to bound 

the change necessary in the jth diagonal element in order to bound the remaining 

elements in the jth row. I t wi l l be shown that it is possible to bound the change 

in the diagonal elements if the factorization is performed column by column. 

To simplify the description of this modification, the superfix k wi l l be tem-

porarily dropped. Consider the i th column of L. Given the first i — 1 columns of 

L, we can determine the zth column and that -

\lr,s\<P. (4.41) 

一_ where r = 2 , n , s = 1 , r — 1 and for some fixed scalar /3 > 0. 

Define 
‘ i-i 、 

K = max I S, - X I 巧，」* (4-42) 
I r=l , 

and 

. G • — T. J. 
Ij 二 〜 — 〜 ( 4 . 4 3 ) 

k 

where j 二 i + 1 , n and (5 > 0 is some small scalar dependent on the word-

length of the computer being employed. A suitable choice of this parameter on a 

computer with a t bit word-length is 

5 二 2-、 
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Let 

9 二 max : j 二 i + 1 ， n | . 

If ^ < then 

h = i], (4.44) 

for j 二 i, otherwise, ii 9〉p, then 

h = J (4.45) 

and 

。 - 譬 ， (4.46) 

where j 二 i + 1，…，n. 

I t is clear that no matter which definitions is used, we have: 

< /5， ’ 

where j = 2 + 1 , n . 

Now, we show that all diagonal elements of L are bounded. First, by (4.42), 

we have: 

/ \ 2 
h < l ^ v l + E ^ T r 

\ r 二1 ) 
f 1-1 \ i 

V r=l / 

which implies 

k < + -r 5. (4.47) 
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Also, from the statement (4.43), we have: 

li^l 化 ^ ^ ^ ^ ， (4.48) 
h 

where 

二 m a x {|G^i，j| : J•二 i + 1，…，n}. 

Note that if ^ < from (4.44), we have = then from the inequality 

(4.47)，li^i is bounded. 

Also，if 9 > from (4.45) and (4.48), we have: 

’ 2 p ， 

which implies 

h < I + - 1)^- (4.49) 

This completes the proof of all diagonal elements of L are bounded. 

There are two criterions for the choice of the parameter p. First, the value 

of 13 should be large enough so that G is sufficiently positive definite for G — G. 

Also, we wish to minimize the bound (4.49) for all i. 

Now, from (4.36)，if 

> m 严 { | G y } ：二 7， 

then the first criterion is satisfied. Also，the bound on the diagonal elements wil l 

be minimized if 

7 
where 

I 
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Hence, the parameter (3 is defined to be the following: 

r 1 
max <72, ( - j \ . (4.50) 

、 y 

Therefore, from (4.49) and (5.17), we have: 

5 < h < 2n/5, (4.51) 

for i 二 1,…，n. 

I t is important to realize that the definition of the elements of the off-diagonal 

matrix given by (4.46) is identical to that which would have resulted if the diago-

nal elements had been given by (4.45) in applying Cholesky's factorization. The 

lower triangular matrix obtained by this procedure is therefore identical to that 

which would have been obtained by applying Cholesky's method to the matrix 

G 二 G + D, (4.52) 

where D is a diagonal matrix. 

Clearly, the elements of D are bounded. Then, from (4.52), the 2th element 

of D, say is given by: 

i 

头 = E 。 - G v . (4.53) 
j=i 

Note that if 
_ / _ \ ^ 

二 Gi，i - X ] k] ， 

V j=i J 
then 

d, 二 0. 

The number of operations taken by the procedure is + O(n^) and the 

additional storage required for the matrix G can be negligible since L can be 
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overwritten on G. 

Now, let us consider again the kth iteration. Note that the direction of search 

in the kth iteration is found by solving the following linear equation: 

LkLUk 二 -•/⑷， 

and the next iterative point x^^i is given by: 

^k+l 二工A: + c^kdk-

Since Gk is positive definite, then dk is the descent direction direction under 

the norm 

There is another procedure to avoid the need to determine the direction of 

search d^. We define d^ to be the descent direction under the norm 

IM丨2 二 I/{LK + XL){L, + XLFY, (4.54) 

where L is a specified lower triangular matrix and A is a non-negative scalar 

chosen so that 

f i^k- r i ) < 7 ⑷ . （4.55) 

There are some possible choices of the lower tr iangular matr ix L, for example: 

( I ) /，the identity nuitrix: 

(-)乙I：—I. the lower Cnangular matrix in the Cholesky,s factorization of 6\-_i in 

the (k — l ) th iteration; 

(3) Dk, the diagonal matrix in the Cholesky's facrorization of in rhe ( t h 

iteration; 

(4) D . the diagonal matrix whose ；th diagonal elenifnr is /二. 
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When we choose L = in ⑶，there are two disadvantages about this. 

First, the search direction dk may turn to the previous ones. So, it may not be 

the descent direction under the norm (4.54). Also, when we compute the A:th iter-

ation, it needs to store an additional lower triangular matrix at the previous 

iteration. But the other three choices of L should work and satisfy the condition 

(4.55) if the value of A is chosen large enough. The above procedure is similar 

to the Marquardt-Levenberg method in Section 4.4，but this has some additional 

advantages. First, we can avoid the need to repeatedly solve a system of linear 

equations. Second, it uses less storage for the other additional matrices. Further, 

i t enables a better choice to be made of the weighting matrix. 

Algorithm 4.7 (Numerically Stable Modified Newton's Method [86]) 

Step 1: Given xq G and k :— 0. 

Step 2: Calculate gk 二 and Gk — 

Step 3: Factorize Gk into Gk — L^Ll. 

Step 4' Find the values of j = m a x 文 a n d 《 二 max、 j { |G i ’ j . | } . 

1 1 
- Step 5: Find the value of (3 = max{72, ^ 

Step 6: From the ith column of L, find k — max{(5, - ⑶ 全 } 

and L 二 G『Z〒\i、，ri:i，r，j^or some 6 > 0. 

J H 

Step 7; Find 9 = m a x { | f j | : j • 二 i + 1 ， n } . 

Step 8: From Step 5 and 1, if 9 < p，then set Ij^i — ij，for j 二 z , n ; 

— ^ r — o r. 
otherwise, set li，i 二 and /么乂 =宁，for j 二 i + l,."，72. 

{ , - - \ /_ a、 t〕 I 

+ XL)、Lk + XLj > V f [ X k ) , 

for some lower triangular matrix L and A > 0 satisfies f{xk+i) < f{xk)-
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Step 10: Set k k + 1, then go back to Step 2. 

4.8 The Role of the Second Derivative Methods 

This section follows [86] to discuss some roles of some second derivative methods. 

There is an important advantage for using the second derivative methods. They 

are able to distinguish between most of the saddle points and the local minimiz-

ers. The exceptions are those saddle points where the Hessian matrix has negative 

eigenvalues, but if the eigenvalues are so close to zero, the computer is unable 

to distinguish them from positive eigenvalues. Even in these circumstances, it is 

very unlikely that the procedures described would converge to such a point. 

On the other hand, the line search in a second derivative method does not 

play such a critical role as a line search does in most first derivative methods. In 

the methods that requires a linear search a step that merely reduces the function 

wil l suffice. However, another feature for the second derivative method is that 

the init ial predicted step to a minimum along a search direction is much more 一 

accurate than that given by first derivative methods. These two features result in 

the number of function evaluations per iteration being smaller for second deriva-

tive methods. 

A question still to be answered is when should a second derivative method be 

used. This will depend on the following factors, most of which are unknown: 

(1) Ti 二 the time{s) to evaluate / ; 

(2) T2 = the time(s) to evaluate g ~ • / ; 

(3) T3 二 the time(s) to evaluate G = VV； 
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(4) T4 = the time(s) to execute one step of the algorithm knowing the function 

and its derivatives. 

The ratio r of the total times to minimize a function compared wi th a first 

derivative method is given by: 

T 二 仰Ts + 712̂ 3 (Ti + T3) + 713了4 ^ 

where T5 is the time(s) to execute one step of a first derivative method given the 

function and gradient. Define: 

(1) ri i = the frequency the Hessian matrix is evaluated; 

(2) 712 = the average number of functions evaluations per iteration for second 

derivative method; 

(3) ris : the number of iterations taken by second derivative method; 

(4) 724 = the average number of function evaluations per iteration for first 

derivative method; 

(5) 715—= the number of iterations taken by first derivative method. 

— As the algorithms have been described ri i = 1. I f the init ial estimation to 

the solution is poor, then the expected savings in a reduced number of iterations 

may not be very high. To overcome this problem, the Hessian matrix G need 

not be evaluated at each iteration. The frequency of evaluation can be related 

to the lack of progress using the old Hessian matrix and the size of the gradient. 

I f the method in Section 4.7 is used and compared with a rank 2 quasi-Newton's 

algorithm 
〜 1 几3 — 几 

T^ 6 • “ 18' 
when n is large. So, for n < 20, then we have: 
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I f we assume that 
1 

ns 3' 

then we have: 
^ ^ n i T 3 + n 2 ( T i + T 2 ) + T 3 
"^〜3几4(1\+了2) + 37^5 • 

Comparing with the first derivative method, we should use the second deriva-

tive method if 

r < 1， 

that is: 

< — [(3^4 — 712)(T\ + T2) + 3T5 — T4]. (4.57) 
几1 

Assume rii 二 !，n? 二 3，几4 : 6 and n 二 60. Then, the execution times cancel 

and (4.57) becomes: 

了3 < 4 5 ( T i + T 2 ) . 

Obviously, this is a very rough guide. But it does indicate that if second deriva-

tives are available, they almost certainly should be used expect when their compu-

tation time is extremely large compared with that for the function and gradient. 



Chapter 5 

Multi-step Methods 

In the pervious two chapters, we have considered two algorithms that are concep-

tually the simplest: the steepest descent method and Newton's method. There 

are many other methods for solving the unconstrained minimization problems 

of differentiable functions f { x ) . We wi l l describe the most interesting ones，ei-

ther theoretically or computationally. In this chapter, we wi l l specialize to the 

following problem: — 

min f ( x ) , 

where / : R is a differentiable function. -

In Chapter 3，we have discussed in detail the steepest descent method as 

following: 

=工k — CXkVfiXk). (5.1) 

Also in Chapter 4, we discussed Newton's method: 

二 ta： - (5.2) 

Although the above two methods are simple and have some advantages, they 

have some drawbacks: 

92 
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Method Advantages Disadvantages 

Steepest Descent L Global convergence 1. Slow convergence 

2. Relaxed conditions on f ( x ) 2. Necessary choice of a 

3. Computational simplicity 

Newton Rapid convergence 1. Local convergence 

2. Rigid conditions on f ( x ) 

3. Large volume of computation 

From the above table, the positive and negative features of each method are 

complementary. Our ideal thinking is to develop a new method combining the 

best features, eschewing the disadvantages. Although such an ideal solution does 

not exist, we wil l describe now some possible steps toward it. 

5.1 Background 

In the steepest descent method and Newton's method，at each step the informa-

tion obtained in the previous iterations is not used at all. I t is natural to try to 

take into account the pre-history of the process in order to improve the conver-

gence. The main idea of the methods in which the new approximation depends 

on the s preceding ones: 

^ k + i 二 … ， ( 5 . 3 ) 

which are called 5-step methods. The steepest descent method and Newton's 

method are one-step methods. Following [80] and [39]，we will consider some 
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multi-step methods, where s > 1. 

5.2 Heavy Ball Method 

One of the simplest multi-step methods is the two-step heavy-ball method [92]： 

ook+i 二工k — 0!Vf(xk) + ,6(xk 一 Xk-i), (5.4) 

where a > 0 and > 0 are parameters. I t is clear that when = 0, the method 

in (5.4) is the original the steepest descent method. 

Why the method in (5.4) is called heavy ball method? It comes from the 

following physical analogy. The motion of a body (or the "heavy ball") in a 

potential field under the force of friction (or viscosity) is described by the following 

second order ordinary differential equation: 

(foo n 、 cb / 、 
一 舊 - P i , (5-5) 

where x 二 工⑴ is the function of the motion of the heavy ball at the Time t. 

Clearly, because of energy loss caused by the friction, the body finally reaches a 

minimum point of the potential function f { x ) . Hence, the heavy ball solves the 

corresponding minimization problem. If we consider the difference analog of the 

equation (5.5)，then we have the iterative method (5.4). 

Let us consider the term 3{xk —工jt-i). This term is called inertia, which is 

introduced into the iterative process may increase the rate of convergence. From 

Figure 5.1，we can see that the motion of the steepest descent method is like 

"zigzag" shape, but the Heavy Ball method has a smoother trajectory along the 

"bottom of the gully”. 
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~ ~ ~ ~ Heavy Ball method 

一 ” • 一 - Steepest Descirt rretkd 

Figure 5.1: The comparison between the Heavy Ball Method and Steepest De-

scent Method 

Let us see the following lemma first [94]: 

L e m m a 5.1 Let x* be a fixed point of 

一 - ^k+i = 9{xk), (5.6) 

where g is some mapping from 肥 into M" and differentiable function. Let the 

spectral radius of the Jacobian g'{x*) satisfy the condition p ：二 m a x i < i < „ \Xi\ < 1， 

where Xi, for i 二 1 , n are the eigenvalues of g'{x*). Then, the process (5.1) 

converges locally linearly to x* and for every 0 < e < I — p, we can find a 5 > 0 

and a constant c such that for all k > 0 

丨丨工广2：*|| < c(p + 仏 (5.7) 

for ll^o — x*\\ < 6. 
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The above heuristic considerations are strengthened by the following theorem 

92]: 

T h e o r e m 5.2 Let x* be a non-singular minimizer of the function f [ x ) , where 

f -^R. Suppose 

0 < / 3 < l , 

n 2(1 ^ 
0 < a < -^-―~~and 

Ij 
II < < LL 

Then, we can find an e > 0 such that for any initial points Xq and Xi, where 

XQ, Xi G 肥；w i t h \\xo —X*|| < £ and ||XI — < s, the method in (5.4) converges 

to the minimizer x* with the rate of geometric progression: 

- “ 州 … ” ， (5.8) 

where 0 < ^ < 1 and 0 < 5 < I — q. Moreover, the quantity q is minimal and 

equal to 

, V L - V I ( 、 

q 二 7 i 7 7 r (5.9) 

for 

a* = 7= p~’ and 

p 二 . 
\VL^Vl J 

Proof: {Sketch) 

Here, we cannot apply the procedures for the convergence in this case since they 

are designed for one-step processes. However, we can increase the dimension of 

the space which allows us to reduce the multi-step process to a one-step process. 
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Introduce the 2n-dimensional vector Zk 二 {x^-x*, Xk-i-x*}. Then, the iterative 

process (5.4) can be wri t ten in the form 

Zk+i = Azk + o{zk), (5.10) 

where the 2n x 2n-square matrix A has the form 

(1 + P)I - aB —pi 
， B = (5.11) 

I 0 

Let ^ = Ai < A2 < ... < — L be the eigenvalue of the matrix B. Then, the 

eigenvalues Pj, j — 1 , 2 n , of the matrix A coincide with the eigenvalues of 

2 X 2-matrix of the form 

1 + - aA, 

1 0 

Therefore, they are the roots of the equation 

P 2 - P ( l + / ^ - aX,) + 0 = 0, (5.12) 

for i = 1，…，n. One can show that if 

0 < / < Ai < L, 

0 < / 3 < 1, 

0 < a < ？ I L M , 
Ju 

then IpI < 1, where p is any root of the equation (5.12). 

Now we use Lemma 5.1 to show that the local covergence of iterative processes 

of the form (5.10)，which will allow us to obtain an estimate of (5.8). Calculating 

min max p,-， a’0 l<j<2n J 
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yields the optimal values of a * ,广 and the corresponding q* given in this theorem. 

Let us compare now the rate of convergence in the one-step and two-step 

methods for an optimal choice of parameters. In both cases, we have the geometric 

rate of convergence, but the progression ratio for the one-step method is equal to 

L — L 

二 l T 7 ' 

whereas for the one-step method, it is equal to 

— V l - V I 

For large values of the condition number / i 二 f 

2 1 2 
仍 二 1 — — ， 仍 二 1 — ~ 

Hence, to be e = 2.71828... times closer to a solution, the one-step method takes 

roughly f iterations, and the two-step method roughly f iterations. In other 

words, for ill-posed problems the heavy-ball method yields a roughly # f o l d 

payoff against the gradient method. For large jj, this difference is quite large. From 

the computational viewpoint, the method (5.4) is only slightly more complex than 

the one-step method. Of course, a choice of optimal values for a and p in (5.4) 

is not simple: we cannot directly use the formulas (5.9), since the bounds of the 

spectrum of (the numbers I and L) are usually unknown. • 

Algorithm 5.1 (Heavy Ball Method) 

Step 1: Given Xq G E " and k ：二 0. 

Step 2: Calculate •/(工。）-

Step 3: Calculate 二：r。一 a V / 0。 )， f o r some a > 0. 

Step 4： A: :二 A: + 1 and calculate V f { x k ) . 
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Step 5: Calculate Xk+i 二 Xk — a V f { x k ) + — Xk-i), 

for some parameters a > 0 and ^ > 0. 

Step 6: Go back to Step 4-

5.3 Conjugate Gradient Method 

5.3.1 Some Types of Conjugate Gradient Method 

Let us examine another variant of the two-step method — the conjugate gradient 

method [65]. The conjugate-gradient method which currently plays a significant — 

role in the theory and practice of optimization, emerged in 1952 in works of 

Hestenes and Stiefel [66] as a technique for solving systems of linear equations 

wi th positive definite matrix. 

In the conjugate gradient method, there are two parameters to be determined, 

which are solved by the following two-dimensional optimizatioiLproblem [94]: 

Xfc+i = Xk- akVf{xk) + 从ock — ^k-i), (5.13) 

with 

{^A；, A} = minf(xk+i) 
a,P 

二 min/(:rA； - aA:V/(;rA：) + — ta；—1)). (5.14) 
a,/3 

I f the function f { x ) is a quadratic function, that is 

f{x) 二 — (5.15) 

where ^ is an n x n positive definite matrix, then this problem can be solved 
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explicitly by the following formulae ([52], [104]): 

‘ — g l A g , • diAd, - {diAg.y， ^ 

and 

n 二 hkf glAgk 
〜 — g l A g , • diAd, - {d^Ag^Y ‘ ^ ^ 

where 

gk 二 "^f〔00k) 二 Aook — b, (5.18) 

and 

ck 二 Xk — Xk-i. (5.19) 

One might expect that the relationship between methods (5.13) and(5.14) 

is similar to the steepest descent method. I t is even less possible that a two 

step variant of the steepest descent method (5.13) and (5.14) may provide a sub-

stantially faster convergence then the heavy ball method. This is not the case, 

—- however, in the quadratic case, method (5.13) and (5.14) with a special choice of 

d is finite, that is, it yields an exact minimum of the quadratic function in (5.15) 

in a finite number of iterations. 

Let Xq be an arbitrary initial guess, and let Xi be the first iterative point 

obtained by the steepest descent method: 

q 2 

- T i 二 x o - 了 。 ( 5 . 2 0 ) 

where 

go 二 Vfi^xo) 二 Ato - b. (5.21) 

Wi th the above notations and following [94], we have the following lemma: 
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L e m m a 5 .3 The gradients go, gi, ... in each method of (5.13), (5.18) and (5.21), 

are pairwise orthogonal. That is， 

< 仍 二 0 (5.22) 

for all i < k. 

Proof: We use induction on k. Let g'^g-^ 二 0, where 0 < z < A;, for A: > 2, 

and gi 关 Q, t = 0 , k . The orthogonality of go, 91,92 follows directly from the 

definition of the method. Mult iplying (5.13) on the left by A yields 

gk+i = 9k- OikAgk + I3k[gk — Qk-i)-

I t follows from gi / 0 for i < A; that ak • 0. Hence, Agk is a linear combination 

of Qk+i, Qk and and similarly “4队 z < /j, is a linear combination of 仍+1， 

Qi-i, and by induction, gjAg^^ == 0, |2 - > 1, i < A:, ; < k. Therefore, 

gJOk+i 二 9[ {9k — OikAgk + Pkigk — 9k-i)) 二 0 

for i 二 0，..., k 一 2. I t follows directly from the equations (5.13), (5.18) and (5.19) 

that 

gldk+i 二 0， 

rp 
dk Qk+i 二 0. 

Finally, from (5.13), replacing A; by A; — 1, we have dk = + A - i ^ k - i -

Applying this relation successively, we obtain that dk is a linear combination of 

po, gk-i, and gk-i has the coefficient —â r—i 0. Hence, it follows from 

d^Qk+i = 0 ， 二 0，2 S /c — 2，that = 0. Thus, for all i < k, one 

wil l have g[gk+i = 0. • 

If Qk vanishes, then x^ is a minimum point of f { x ) . But note that in it 

cannot contain more than n non-zero orthogonal vectors. Hence, gk = 0 for some 

k < n. Therefore, we have the following theorem [94]: 
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T h e o r e m 5 .4 The method (5.13)，(5.18) and (5.21) yields a minimum point of 

the quadratic function 

f { x ) = ^x^Ax - x^h 

in no more than n iterations. 

There is an important fact [94] for the above lemma and theorem. That is, i f 

L is a subspace of R几 and / ( x ) is a convex differentiable function, then 

J V f { x * ) 二 0, for a l l a G L 

i f and only i f x* is a minimizer of f { x ) on L. Hence, this fact and Lemma 5.3 im-

ply that Xk is a minimizer of the quadratic function f { x ) on the subspace passing 

through Xo and generated by 如，" i，Qk-i-

The conjugate gradient method is better than the methods mentioned before 

since the other methods may have the unexpected result. We seek the minimum 

value of k for the times in succession on 2-dimensional subspaces and find it on 

the entire /c-dimensional subspace. This is an important feature of this method 

and thus making its finiteness clear. 

The directions dk in the conjugate gradient method satisfy the following rela-

tion: 

d jAd, 二 0， (5.23) 

for all i / j . 

In fact, 

Hence, we have: 

Ad, 二 — 二 gi - gi_i. 
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On the other hand, since dk is a linear combination of the vectors go,gk—i， 

that is: 
k-l 

4 二 刚， (5-24) 

for some jj^j G R. Hence, for i < k, from Lemma 5.3, we have: 
f k - i Y 

dlAdk 二 f Mj仍 • {9x - Qi-i) = 0. 
Vj-o / 

The vectors di connected by (5.23) are called conjugate, or >i-orthogonal. This 

can be explained the name of this methods, that is, the conjugate linear combi-

nations of successive gradients are constructed. 

We can observed that the arbitrary conjugate directions Si, for i 二 1 , n , 

then sjAsi = 0，for all i ^ j . I t allows us to solve the following system of linear 

equations easily: 

A r 二 b, (5.25) 

where A is a positive definite matrix. 

In fact, we wil l seek the solution in the form of x — c^i^i- Substituting it 

into (5.25), computing the scalar product with 5,-, and using the /1-orthgonality, 

we have [104]: 

oTk 

This solution can be given a recursive form: we take an arbitrary Xq and 

construct Xk 二 工 + i，where ak are given by (5.26). Then, Xn 二 is the 

solution of (5.25). Since the values of ak in (5.26) can be determined in different 

ways, that is: 

dk 二 m i n / ( : r A ; - i + aSk), 
Ct 
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we can see that the fact that we know the systems of conjugate directions makes 

it possible to find the minimizer of the quadratic function by means of n one-

dimensional minimizations. This is an important result and it will be used re-

peatedly in what follows in constructing other minimization methods. In the 

conjugate gradient method, the conjugate directions are not chosen as the above 

but it is constructed from the recurrence formulae. 

When the conjugate gradient method in (5.13) and (5.14) is applied to a 

non-quadratic functions, we can have the following theorem [94]: 

Theorem 5.5 Let f { x ) be a continuously differentiable function and x* be a non-

singular minimum point o f f ( x ) . Suppose the set {x : f { x ) < /(xq)} is bounded. 

For any XQ, Xi G E"； then the method in (5.13) and (5.14) satisfy the following 

properties: 

(I) V f { x k ) 0 as k oo; 

( i i ) The convergence Xk —> x* with the rate of geometric progression, that is, 

< c{5){q + 5f - (5.27) 

where 0 < ^ < 1 and 0 < 5 < 1 — q. 

The conjugate gradient method can be given yet another form. Consider the 

following iterative process [24]: 

T^t+i ^ Xk-{- akdk, (5.28) 

where 

ĉ k 二 m i n A ： + 0 ( 4 )， 
a>0 

4 = —gk + Pkdk-i, 

A 二 " ^ ^ ^， f o r ^ > 1 , 

and j3o 二 0. 
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with 

Qk = 

The above method is applied to non-quadratic problems and expressed heuris-

tic divinations on the method's efficiency [51]. Then, we have the following lemma 

[26]: 

L e m m a 5 .6 For the quadratic function (5.15), using the method (5.13), (5.26), 

(5.17), (5.20) and the other method (5.28) with the same initial guess xq； then 

the sequence of points Xk are the same, for A; > 1. 

The proof of convergence is given by Daniel [26 . 

Since the vectors dk in (5.28) and the vectors in (5.19) differ only by (nonzero) 

scalar factors, while the vectors gk in (5.28) and (5.19) coincide, the process (5.28) 

possesses the same properties as (5.13) and (5.19)，the vectors di are conjugate 

—- and the gradients gi are mutually orthogonal. Lemma 5.6 and Theorem 5.4 imply 

that the method (5.28) yields a minimizer of the quadratic function (5.25) in 肥 

- i n the number of iterations not larger than n. For the non-quadratic problems, 

the method (5.28) is simpler than the method (5.13) and (5.14) since it requires 

solution only of a one-dimensional auxiliary minimization problem, rather than 

a two-dimensional problem. But it is easy to see that in the non-quadratic case, 

the finiteness property of this method is lost and this method (5.28) turns into 

an infinite two-step iterative method. 

For the non-quadratic problems, the conjugate gradient method is usually 

applied in a rather different form, where a restart procedure is introduced; at 

intervals of time, the step is not made by the method (5.28), but as at the initial 
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point, that is, according to the gradient. I t is most natural to make the restart 

in terms of the number of iterations equal to the dimension of the space [105]: 

Xk+i = Xk + akdk, (5.29) 

where 

ak = minfixk + adk), 
a>0 

dk 二 -9k + Pkdk-i, 
f 

0, for A; — 0, n, 2n, 
Pk 二 < 

、 ^ f ^ ， f o r A # 0 ， n ， 2 n , . . . ， 

with 

9k = • / ( 工 A:). 

This conjugate gradient method with restart possesses has the following global 

convergence property [94]: 

Theorem 5.7 Let f { x ) be continuously differentiable and the set {x : f { x ) < / { X Q ) } 

be bounded. Then，the method (5.29) has the global convergence property, that is, 

V f { x k ) 0, as A: oo. 

In the following Theorem, it turns out that this method converges with the 

quadratic rate in a neighborhood of the minimizer of f { x ) . 

T h e o r e m 5.8 Let x* be a non-singular minimizer of f { x ) and let satisfy 

a Lipschitz condition in a condition in a neighborhood ofx*. Then，for the method 

(5.29)，in a neighborhood of x*, one has the estimate 

11 工(m+i)n 一 工 < 一 (5.30) 

for some constant c. 
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From the above Theorem, in other words, with respect to the rate of conver-

gence, the n steps of the conjugate gradient method are equivalent to one step of 

Newton's method. 

There are more computational schemes for the conjugate gradient method 

for the non-quadratic problems. We now discussed one of these schemes, which 

requires the solution of a two-dimensional minimization problem at each step. 

The other schemes, which are similar to the method (5.28), usually include only 

one-dimensional auxiliary problems, but they differ from (5.28), in the rule for 

choosing the values of Pk. The following scheme is an example for this [23]: 

Xk+i = ook-^ akdk, (5.31) 

where 

Oik 二 mmf{xk + cidk), 
a>0 

dk 二 -Qk + Pkdk-i, 

o {9k — gk-ifgk r 7 \ 1 
Pk 二 一 ) ， for k > l , 

and Pq = 0. 

with — 

9k = • 制 . 

The above computational scheme was proposed in [91] and [93]. Similar to 

(5.28), a variant with restart or without restart is also possible. For the quadratic 

function, the sequences Xk generated by the methods (5.28) and (5.31) are also 

the same. 

Moreover, some scientists show that by the numerical computations, for the 

non-quadratic problems, the method in (5.31) usually gives a slightly faster con-
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vergence. 

Finally, we refer to [65] for the detailed investigation of the properties of the 

conjugate gradient method and of modifications of i t , as well as a comparison of 

varied computational schemes. 

5.3.2 Convergence Analysis of Conjugate Gradient Method 

Here, following [26]，we discuss the convergence with the rate of geometric pro-

gression for the case for the quadratic problem. Let ^ be an n x n matrix which 

satisfies 

II <A< LI, (5.32) 

where 0 < / < L are constants. 

Let f { x ) be the corresponding quadratic function on 肥，that is, 

f { x ) 二 ‘ T A t — b^x + c， (5.33) 

for b e R^ and c is a scalar. 

Then, in the kth iteration, Xk can be represented in the following form: 

xk-x* = Pk{A){xo — X*) , 

where Pk{A) is a matrix polynomial of degree k of the form: 

Pk{A) 二 / + aikA + ... + dkkAk, 

Note that in the A:th iteration of the conjugate gradient method, the iterative 

point Xk is the minimizer of f [ x ) on the subspace which is passing through Xq 
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and generated by g o , g k - i - Then, the polynomial Pk[X) satisfies the following 

condition: 

2 { f { x , ) 一 f i x * ) ) 二 (Xo — — x * ) 

where is an arbitrary polynomial of degree k wi th the init ial condition 

二 1. 

Hence, we have: 

II工…II < 1 
< ⑷ llll 工 。 — 一 

— I 

< —xq — X* max R^(X). (5.34) 
— I 1<X<L 

For the choice for the polynomial R{X) of degree /c, we wish to have the least 

deviation from 0 on [/, L] and with the init ial condition R{(}) = 1. For such a 

polynomial, we have: 
T (L+l-2X\ 

m = 二：丨、’‘ 闲 

where Tk[x) is the Chebyshev polynomjal 
( 

\ [{X + — 1 广 + (X - , if|j:| > 1； 

n{x) 二 “ (5.36) 

cos (A: arccos x), if|.r| < I. 
\ 

Then，we have: 

rV) / \ \ T 一。f L 卞 l \ ') . 
max R-(\) 二 J\ --——-max r,： x 

1 < \ < L 、 \ L - I J i x : < l 、 

一 ‘ [ L - I J 

二 Mq、(广” 

< 4 (产 . 
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where q = 縛 

Hence, we have: 

\00k < 2 丁 q^\\xo - x * | | . (5.37) 
V ^ / 

From the above result； for k < n, the conjugate gradient method used to 

minimize a quadratic function, one can guarantee a convergence with the rate of 

geometric progression wi th ratio 

V l - V I 1 。厂 
g 二 — 

where ^ = y. 

From the above result, we can see that the conjugate gradient method is the 

same as the heavy ball method for the choice of its parameters. Versus the latter 

method, in the conjugate gradient method, the choice of parameters presents no 

problem. They are determined automatically, although they involve additional 

computations for solving the one-dimensional minimization problem. 

It is obvious that in the conjugate gradient method, the vector Xk is a min-

imizer of the quadratic function j [ x ) on the subspace generated by the first k 

gradients. I t then follows that no method using only gradients of the function can 

converge more rapidly. In other words, the conjugate gradient method is optimal 

with respect to its rate of convergence in the class of the first order methods. The 

result obtained above implies that for the large scale problems with the quadratic 

functions / ( x ) satisfying the condition (5.32)，for all first order methods one can-

not expect convergence of a higher rate than the rate of geometric progression 

with ratio q — Naturally, a higher rate of convergence can neither be 

attained in the broader class of strongly convex functions with constant I, which 

the gradient satisfies a Lipschitz condition with the Lipschitz constant L. In The-

orem 5.8, the quadratic convergence occurs only when the number of iterations 
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is significantly greater than the dimension of the space. 

Finally, we refer to [22] and [25] for the detailed investigation of the general 

convergence estimate for the conjugate gradient method. For more discussions 

on pre-conditioners and their construction, we refer to [3]，[8], [60] and [74 . 

5.4 Methods of Variable Metric and Methods of 

Conjugate Directions 

Let us see how the choice of the metric affects the form and the properties of the 

gradient method ([103], [55] and [27]) . Suppose that in the space W in addition 

to the init ial product {x, y) a scalar product defined by a matrix A, which is 

positive definite, is given by: 

= y ^ A x . (5.38) 

In this case, the matrix A defines a new metric in IR几： — 

||:r 一 y\\l 二 (:r — yfA(x - y). — (5.39) 

Let us write the gradient of a differentiable function f { x ) in the new metric: 

f{x-\-y) 二 /W + /v/(x)+o(||2/||) 

- / ( 工 九 4 - i V / ( : r ) + o(|M|) 

=/(工）+ (a，y)i+o(||y||i) 

where 

a 二 
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By definition, the vector a is the gradient of f { x ) in space wi th scalar product 

(5.38). Therefore, 

• i / W 二 / I - 〜 / ⑷ . (5.40) 

In the new metric, the gradient method assumes the form 

^k-ri =工k — a k V i f ( x ) 

二 xa： - ⑷ (5.41) 

and differs from the original gradient method by the presence of the matrix ‘4—、 

In order words, the gradient method is not invariant with respect to the choice 

of matric of the space. It is reasonable to choose the metric such as to increase 

the rate of convergence. For the quadratic function 

f ( x ) 二 、 ： J B 工 — 

= ( 5 . 4 2 ) 

the convergence rate of (5.41) is determined by the progression ratio 

？二（L- / ) (L + /)， 

where L and I are the largest and the smallest eigenvalues of respectively. 

If the matrix is closer to the unit matrix / , then the value of q becomes 

smaller. The best way is to choose .4 = B, since B 二 I、then q — 0, that 

is, if one defines the matric with the matrix B, then the gradient method will 
‘ o 

yield an accurate solution in one step with a、三 1. This is not surprising, for 

/ ( . r) 二 ^{x. x)[ .r)i. that is. the level lines of the function / ( x ) are spheres 

and the condition lui in her ” is equal to one. 

For a non-quadratic function, follows from [49]. the method 

•r.v^i 二 工k — (.5.43) 
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where Hk is positive definite, can be viewed as the gradient method in the fol-

lowing metric: 

= (5.44) 

and Hk 二 [•2/(2：』-1 is the optimal choice of the metric. In other words, the 

Quasi-Newton methods (see Chapter 6) can be treated as gradient methods in 

which a new metric is chosen on each step as close to the best one as possible. 

For this reason, the term "methods of a variable metric" is often synonymous to 

that of quasi-Newton methods. 

This interpretation is also useful as a heuristic construction of new variants of 

quasi-Newton methods. For example, one can obtain a new metric by extending 

the space in the direction of the last gradient, or in the direction of the difference 

of two consecutive gradients, and the like. 

The another approach to constructing efficient first-order methods involves the 

notion of conjugate directions. As was observed in Section 5.3，the knowledge of 

the set of conjugate directions do,..., dn- i ' 

djAd^ 二 0， for i + j , (5.45) 

makes it possible to find the minimum of a quadratic function f { x ) 二 ^x^Ax—x^h 

in n one-dimensional minimizations: 

Xk+I = + ĉ kdk (5.46) 

where 

c^k = mmf(xk + adk). 

a 

Then, Xn 二 X* = 石，for any initial condition XQ G M^ . One of the methods for 

constructing conjugate directions was used in the conjugate gradient method [49]: 
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the sequentially computed gradients were subjected to the /l-orthogonalization. 

Other methods are quite possible as well. 

Let d i , d k , k < n — 1 be conjugate vectors that have been constructed, 

(i^Ad^ 二 Q, for i ^ j , (5.47) 

for i > 0 and j < k. Let Xk be the corresponding points in the method (5.46). 

The next vector dk+i must satisfy the relation: 

{Ad iydk+ i — 0， for i 二 0，…，k. 

Since 
7 工 i+1 — 

di = ， 

and 

爛 二 • 彻 + 0 - • / ⑷ 

二 m 

OLi， 

this is equivalent to the condition 

二 0, for 2 二 1，…，A;. (5.48) 

Therefore, the new conjugate direction dyt+i must satisfy the orthogonality con-

ditions (5.48). Orthogonalization of any linearly independent vectors gives us 

varied sets of conjugate directions. 

Similarly, for the non-quadratic function, we have the same process as follows: 

^k+i 二：r̂ fc + akdk, 

dk 二 min/(a:fc + CVC4), (5.49) 

y^dk+i 二 0， for 2 = A;, 
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Usually, dk+i is sought here in the form 

4 + L = -Hk+i'^fixk+i), 

Hk+i = H ^ - h A H , , (5.50) 

and the matrix H^ is stored instead of the vectors ？ z = 1，..” k. The methods 

thus assume the same form as the quasi-Nevvton methods as follows (see Chapter 

6): 

^k+i =Xk~ akHkVf{xk). 

The only difference is that it is not necessarily Hk — in some vari-

ants of the method, for example, the quadratic function,we have H^ == 0. That 

is why in these methods one must use a restart procedure. 

We wi l l next write an algorithm for one of the simplest methods of this class 

49]: 

^k+i = Xk + akdk, 

o^k 二 min/(ZA + a4)， 
a>0 

4 二 - i W ⑷ ， 

Vk = •/(工k+_i) - V f ( x , ) , (5.51) 
rr _ ^ ffkVkiykfBk , I 1 o 
^k+1 — J^k 7 ~ ， tor A： -f 1 ^ n, 2n,..., 

HQ 二 Hr^ 二 H2n 二…=1. 

I t turns out that for a quadratic function in method (5.51) the vectors 4 are 

conjugate directions, Bk is positive or semi-positive definite for all k < n, and 

Bn = 0. For the non-quadratic functions, the local convergence of methods of 

this class in a neighborhood of a nonsingular minimum point has been proved. 
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5.5 Other Approaches for Constructing the First-

order Methods 

Regardless the variety of first-order algorithms the idea behind them was the same 

for all of them, that is, to use a quadratic approximation of the function near the 

minimum. As a rule, these algorithms are finite for quadratic functions and in the 

general case, they are more efficient i f their function is closer to being quadratic. 

But the quadratic model can be regarded to be natural only in a neighborhood of 

the extremum; far from the extremum the behavior of the objective function may 

be somewhat different. Hence, for all of the methods, it is clearly not advisable 

to apply an optimization strategy even at the init ial stages of the search. 

Instead, i t is advantageous to use models of functions other than quadratic. It 

seems natural to make an attempt to construct polynomial models using higher 

derivatives: the next terms of the Taylor series. This has been tried before 

-however without good results. First, a direct computation of higher deriva-

tives in multi-dimensional problems is usually too cumbersome and requires large 

memory. Furthermore, to reconstruct them from lower derivatives one needs to 

compute them at too large number of points. Secondly’—auxiliary problems of 

minimizing polynomial functions cannot, with rare exception, be solved in the 

analytic form. 

A simple and important class of models includes those based on the approx-

imation of a homogeneous function [72], The function f ( x ) , x e ST, is called 

homogeneous with respect to x* with the exponential 7 > 0 if 

/ (T* + A(x 一 JT)) 一 躺 = y ^ i f i x ) — / ( x * ) ) (5.52) 

for all X e W and A > 0. 
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From (5.52), i f we take A = 1 + where ^ -> 0, then we have: 

f { x + e { x - x * ) ) - f { x n = { l + e y { f { x ) - f { x n ) , 

- f i x * ) ) = 6 { x - x * f V f { x ) + o i s ) ^ 

Let ^ 0, then this yields an important relation for the differentiable homoge-

neous function as follows: 

/ ⑷ - 制 二 ( “ 狗 ⑷ (5.53) 

The point X* is not necessarily a minimi i i i i point of f {x). However, i f f (x) 

attains a minimum，^hen x* is a global minimum point of f { x ) . Indeed, let 

= / * 二 m in / ( : r ) . Then, V / ( f ) 二 0. Substituting x for x into (5.53)，we 

get f{x*) = f { x ) 二 /*，that is, x* is a global minimum point. 

Using (5.53), one can find the minimum point x* through computation of f { x ) 

and V / ( x ) at a finite number of points. Indeed, i f 7 is known, then taking n + 1 

points Xq, Xn, yields the following system: 

if ⑷ — + 二 xJVfix,), (5.54) 

for i = 0,:..,rz，which is linear in the n + 1 variables x* and a，where a = 

By eliminating a, we obtain n linear equations to determine x* £ R" :̂ 

— V / ( xo ) ) = — 4 V / ( x o ) - 7 ( / (而）— / K ) ) , (5.55) 

for i — 1,n. But if 7 is known, then one can take n + 2 points xq, Xn+i, and 

determine the n + 1 variables 7，x* from the linear system (5.55) in which n + 1 

equations have to be taken. 

A similar approach can be applied to minimize functions of general form, as 

in the secant method (in next chapter). Indeed，let the approximations Xq, 
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where k > n, have been constructed. Taking the last n + 1 among them (or n + 2 

if 7 is known), we solve the following system with respect to x, a, 7 or x, a: 

x ^ V f i x ^ ) - a + 7 / ⑷ 二 工 f • / ⑷ ， (5.56) 

where i 二 k,k — …,and for Xk+i, we take the solution x. For 7 二 2，we get a 

method similar to the secant method, but not exactly the same - unlike the secant 

method, the method obtained uses both •/(：^文)and the values of the function 

fi^t)-

Such a process should be modified using the same techniques as for the secant 

method, for example, eliminating the degeneration of points Xk by adding new 

points which are linearly independent of the preceding points; or adjusting the 

step size. A comparison of the actual value of f {xk+ i ) with the predicted value 

(equal to is also useful to verify the assumption concerning the proximity of 

the function to being homogeneous. In solving systems of linear equations in 

successive iterations. 

To minimize homogeneous functions or functions close to being homogeneous, 

some other methods can be used, for example, in the gradient method one uses — 

special techniques for choosing the step size. Let the function f { x ) satisfy the 

condition (5.53)，with the / * 二 and 7 being known. We consider the 

following gradient method: 

工 糾 = 工 广 广 / : ) • 制 . (5.57) 

The step 

‘ ― | | V / ⑷ " 2 

is chosen such that the equality f (xk) - / * - (工广工…广彻。 i s satisfied for 
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^k+i = Xk - aA;V/(xA；). Then, 

+ - I 工 " I I • 胸 ||2 (工* ” V 制 + | |V/(x,) | |2 

— ‘ II•制"2 
implying that if | |V/(:r)| | is bounded on the set {x : ||x — x*|| < ||xo — then 

f {xk ) / * . I t is not hard to see that this result sti l l holds if in (5.53) equality 

is replaced by the following inequality: 

M - R < ( … ？ 〜 側 (5,58) 

A somewhat different class, versus the homogeneous one, is given by the for-

mula: 

/ ⑷ = n 稱 ， 

where 二 ：̂̂了/!：?： — x^b, (5.59) 

Li 

with A is positive definite and F : E R is a monotone function on [0*, oo), 

where (f)* 二 (/)(x*). Obviously, x* is a minimum point of f { x ) . 

I f F and (j) are given in the explicit form, a simpler problem of minimizing (j){x) 

can be solved instead of the problem of minimizing f [ x ) . In general, however, 

the information on the problem is not sufficient. Then, the following variant of 

the conjugate-gradient method can be used [72]: 

^k+i = Xk + akdk 

Oik 二 min/O^t + af4)， (5.60) 
a>0 

dk 二 -•/⑷+A4—1， 

Po = 0. 
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Note that the method (5.60) generates the same sequence of points as the conjugate-

gradient method does for minimization of i t is therefore finite. 

The quantity 
二 斷 ) ） 

—得(工Li)) 

in the formula for j5k can be estimated approximately via approximation of the 

F[z) by a quadratic or a power function. In that case, the method (5.60) can be 

used to minimize functions that do not necessarily have the form (5.59). 

Finally, we conclude this section by the following convergence property related 

to the above algoithm [72]: 

T h e o r e m 5 .9 Let f { x ) be a twice continuously differentiable function defined 

on and let f [ x ) oo as \\x\\ — oo. Furthermore, let f { x ) have a unique 

stationary point x* which is also its unique minimizer. Then, the algorithm (5.60) 

generates a monotone decreasing sequence { f { x k ) } - Also, the sequence {xk} is 

hounded. 
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Quasi-Newton Methods 

We begin by recalling the simplest form of Newton's method in Chapter 4. The 

minimization problem is as follows: 

m i n / ( x ) , (6.1) 

where / : E"̂  R is a differentiable function. 

When we use Newton's method, the iterative formula in the /cth iteration 

becomes: — -

^k+i =工 k - c^fc gk, (6.2) 

where Xk is the A;th approximation to the solution, gk and Gk denote the first and 

second derivatives of f { x ) evaluated at xj, respectively, and ak is the steplength 

of the A:th iteration. 

I f /(工)is known to be convex, then any stationary value of f { x ) is a minimum, 

and Gk is either positive definite or semi-definite. Therefore, it can provide the 

values of the first and second derivatives of / ( x ) , which can be computed for any 

121 
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given X G E〜and it never becomes singular. So, Newton's method may be used 

to determine a minimum. The advantages of the Newton's method are [86]: 

(1) If Newton's method works at all, then it works extremely well; 

(2) The convergence is rapid and in general is ultimately quadratic; 

(3) I f a sufficiently good init ial estimate of the solution can be determined, it 

is probably the best available method. 

6.1 Disadvantages of Newton's Method 

Although Newton's method has many advantages in computation, i t is not with-

out its disadvantages and now we consider three of these in particular. 

Refer to [86], perhaps the most serious charge levelled against this form of 

the method is that it often fails to converge to a solution from a poor initial 

estimate. The successive iterates change in an apparently quite random fashion 

and not infrequently a value of Xk is computed that leads to some kind of failure, 

for example, the taking of a square root of a negative number, when evaluating 

V7(a:). To overcome this problem we normally choose the parameter ak so that 

in some sense x^+i may be said to be a better approximation to the solution of 

the problem than Xk. If, for instance, we are concerned with minimizing f { x ) , 

we may choose a a： SO that f {xk+ i ) < f {xk) . A choice of this nature requires for 

its implementation that some form of iteration or search procedure be carried 

out. I t follows from the formula (6.2) that this search is along a straight line in 

n-dimensional Euclidean space and hence this part of any optimization procedure 

is known as the "line search". If it is necessary to choose ak to minimize f { x ) as 

a function of a, then we can say that an "exact line search" is required. However, 

the details choice of this scaling factor does not affect the basic philosophy behind 



Chapter 6: Quasi-Newton Methods 123 

the quasi-Newton methods and we wi l l discuss it no further at this stage. We 

return to i t later in connection wi th some particular algorithms. 

The second disadvantage of Newton's method is the difficulty of evaluating 

G(x) i f V / ( x ) is a complicated function of x. In many industrial problems, i t 

is virtually impossible to obtain the elements of G(x) as explicit expressions and 

even if it were possible i t would, for some problems, be an extremely laborious 

and time-consuming operation. In these circumstances, we are condemned to 

using some approximation B to G{x), and the formula (6.2) then becomes: 

X K + I 二工K - ( ^ K [ B { X K ) ] ~ ^ V / O A ； ) . ( 6 . 3 ) 

One method of obtaining B{xk) is by the use of forward differences, computed 

its 2th column using the equation: 

R “ 、 。 " f a + he,) - g{xk) , 、 
B[Xk)ei =： , (6.4) 

fi 

where g{x) 二 V f [工),and ê  is the i t h column of the unit matrix of order n and h 

is a suitably small scalar. However, this is an expensive use of machine time since 

in order to evaluate G{x) in this somewhat simple-minded fashion, it is necessary 

to compute the vector function V/(3；), n + 1 times. Since one value of V f [ x ) 

needs to be calculated anyway (in order to compute Xk+i using the formula (6.3))，— 

this implies n additional evaluations of V f { x ) . 

A sophisticated approach has been adopted by Brown and Conte [13]，which 

reduces the amount of additional labour by about half, but even in this case there 

is a very considerable penalty at each iteration. A further weakness of the for-

ward difference approach is the essentially empirical choice of h. In the absence 

of rounding error h should be reduced to zero as the solution is approached [107], 

but when rounding error is present, as it invariably is, h should in principle be 

chosen to minimize the sum of rounding and truncation errors. In practice, it is 
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usually chosen arbitrari ly in the range 10"^ to 10"^. Perhaps we should empha-

size here though that these disadvantages are not sufficient to condemn methods 

of this type out of hand. I t may well be possible that the total number of itera-

tions using them is sufficiently small to make them competitive, and the evidence 

suggests that the more difficult the problem is, the more likely this reduction in 

the number of iterations becomes. 

Another way of overcoming the difficulty of computing G{x) is to evaluate 

an approximation to it numerically only at every m iterations, where m is some 

positive integer. The problem here lies in knowing how to choose m, and even if 

the best choice of m is made the method may sti l l be inferior to methods of the 

quasi-Newton type. For these reasons, this idea is hardly ever implemented today. 

The third disadvantage of Newton's method is the necessity of solving a set of 

linear system equations at each iteration. This is perhaps the least of the three 

disadvantages that we have recorded, but it does take both extra time and extra . 

programming, although these undesirable features are perhaps not so important 

now that we have very fast computers with large core stores. 

6.2 General Idea of Quasi-Newton Method 

6.2.1 Quasi-Newton Methods 

We now look rather more closely at another way of overcoming the second disad-

vantage of Newton's method, and present the idea which provides the underlying 

motivation for the Quasi-Newton methods. Follow [128], we let, B be some ap-

proximation to G{x) and let us compute x^+i using the formula (6.3). We now 
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consider methods which enable us to obtain better approximations to G{x) with-

out any additional function evaluations. To expose the underlying idea behind 

these methods, we consider f { x ) to be the function minimizat ion defined by 

f { x ) 二 ^工了如 一 b^x + c, (6.5) 

where A is a constant matr ix which is symmetric and positive definite, 6 is a 

constant vector and c is a scalar. Since in this case，V/(x) — Ax - b, we can 

identify V / (a; ) and the equation V / ( t ) 二 0, which requires the gradient to be 

the null vector, becomes the condition for a stationary value of f { x ) . 

Now, we consider the equation 

V / ( x ) = A t —6 二 0. (6.6) 

I t is clear that the second derivative of f { x ) defined in this way is simply A, so 

that i f Sk and y^ are defined by 

Sk = Xk+i - Xk, (6.7) 

Vk = - V f i x k ) , (6.8) 

then G{x) satisfies the equation 

G{xk)sk = Vk- (6.9) 

Since B{xk) is some approximation to Gk, we would like i t also to satisfy 

equation (6.9)，but since we cannot compute V f { x k + i ) and hence 说，until we 

have determined B{xk), this is clearly impossible. We can require that the next 

approximation to G{x), namely B(Xk+i), satisfies 

B(xk+i)sk = yk, (6.10) 

so that B(xk+i) has at least one property of G(xk). In the case where the func-

tions V f ( x ) are non-linear so that G(x) is not constant, and the equation (6.9) 
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ceases to be valid, the same sort of considerations apply. In the equation (6.9), 

G{xk) may be replaced by G(xk), where G{xk) is a matrix whose zth row is the 2th 

row of Gî ook + SkGi), for some Oi satisfying 0 < 氏 < 1, so that G{xk) approximates 

G{xk) to an accuracy which depends both on ||<5』and the non-linearity of f { x ) . 

The quasi-Newton equation in this case forces B{xk+i) to assume one property 

of G{xk). Since for non-linear systems G{x) and G{x) are not constant, this en-

sures that the approximation B reflects changes in G{x) and G{x) and the hope 

is that this wi l l assist in obtaining rapid convergence. The equation (6.10), the 

quasi-Newton equation, is the equation underlying all the algorithms discussed 

later. Since it does not define Bk+i uniquely, it applies to a class of methods 

where the properties of the individual methods vary with the particular choice of — 

B{xk+i) . The methods that we discuss have common properties other than that 

of satisfying the quasi-Newton equation, and we now turn our attention to these. 

Clearly, if B{xk) is a reasonably good approximation to G{xk)j then it is 

advantageous that B{xk+i) should retain as far as possible the desirable properties 

of B{xk). This suggests that B{xk+i) is formed from B{xk) by adding a correction 

term Ck so that 

= (6.11) 

and that some criteria, for example, the requirement that the quasi-Newton equa-

tion be satisfied，be selected in order to more precisely determine Ck- The criteria 

that we consider here for specifying Ck, are: 

(1) Ck to be a rank-1 matrix; 

(2) Ck to be a rank-2 matrix; 

(3) Ck to be a matrix of minimum norm. 

The single-rank corrections have been considered by, among others, Broyden [15]， 

Davidon [28], Murtagh and Sargent [88] and Pearson [90], double-rank corrections 
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by Broyden [17], Davidon [29], Flectcher and Powell [50], Fletcher [46], Powell 

99], and Pearson [90], and minimum-norm corrections by Goldfard [58], and 

Greenstadt [63]. Since the majority of minimum-norm corrections are in fact 

either rank-1 or rank-2 corrections, we wi l l not consider them specifically from 

the minimum-norm point of view. We do remark that the fact that the same 

algorithm may be derived by applying apparently unrelated criteria does inspire 

a certain amount of confidence in its use. 

We have chosen here to explain the quasi-Newton methods by relating them 

to Newton's method, and this is representative of their historical development. 

But it is readily seen that any sequence of vectors ock, no matter how it is gen-

erated, and the associated sequence of functions V f { x k ) may be used, from the 

equations (6.7) to (6.11), to construct approximations to the second derivative 

of f { x ) . Moreover, this may be done in the case where V / is an m-vector，x 

is an n-vector, where m + n、that is in the case where the second derivative 

of f is rectangular. This case is of practical importance when solving the over- • 

determined least-squares problem, where m > n, or in minimizing a function 

subject to equality constraints, where m < n. In both these cases matrix updates 

more commonly associated with Newton's method have been used to obtain es-

timates of the second derivative of f , and examples of this usage are considered 

later. 

This approach has been particularly successful for least squares problems. 

Here, the basic iteration is the Gauss-Newton one, where： 

二:Tk— (G(x,fG(x,))~' G ( X k f V f ⑷ . (6.12) 

The second derivative has more rows than columns, that is, m > n, but even 

so approximately satisfies the equation (6.9). If the second derivative is either 

difficult or expensive to evaluate, then as before it may be replaced in the equa-
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tion (6.12) by an approximation B(xk); and as before B(xk+i) may be made to 

satisfy the quasi-Newton equation. 

We have not yet suggested how the disadvantages of solving a set of linear 

system of equations at each step may be overcome and for some problems, par-

ticularly over-determined least-squares problems, no way has yet been found of 

avoiding this. In the case where the second derivative of / , that is G(x), is square 

and non-singular, as well as where Newton's iteration is used a technique has been 

devised to replace the solving of equations by a matrix-vector multiplication. This 

technique is based upon the observation that i f a matrix is modified by adding a 

correction of rank r , then its inverse may also be modified by adding a correction 

of rank r. Therefore, instead of storing and modifying an approximation B(xk) 

to G{x), it is sufficient to store and modify an approximation to the inverse of 

G(x). I f this is denoted by Hk, then the equation (6.3) becomes: 

Xk+i 二:Tk — akHkVf{xk), (6.13) 

and we have the most common form of the iteration. Despite the successes 

achieved by algorithms of this kind over the lest decade, development is stil l pro-

ceeding. I f Hk is symmetric and positive definite so that Hk — L I / for some lower 

triangular matrix L, Gil l and Murray [53] have suggested storing and modifying 

the triangular factor L. This approach seems to give the most useful improve-

ments if •2/(工）is itself obtain using finite differences. 

Algorithm 6.1 (General Qusai-Newton Methods) 

Step 1: Given the initial conditions XQ G 肥，B { X Q ) G and :二 0. 

Step 2: Calculate gk 二 •/(ir^：)-

Step 3: If ll^fcll < ^； then stop; otherwise, solve the equation B{xk)d — —gk 
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to have the direction dk. 

Step 4- Along the direction dk, find the steplength > 0 such that 

；Tfc+i = XA； + akdk. 

Step 5: Rectify B{xk) to have B{xk+i)； which is satisfied B{xk+i)sk 二 i j k , 

where Sk 二 Xk+i — Xk and ijk = V f { x k + i ) — •/(工a；). 

Step 6: Set k k + 1, then go back to Step 2. 

6.2.2 Convergence of Quasi-Newton Methods 

Now, we know that Quasi-Newton methods are based on the idea of reconstruct-

ing a quadratic approximation of a function from values of its gradients at a 

number of points. Those methods thereby combine the merits of the gradient 

method, that is，there is no calculation of the matrix of second derivatives or 

Hessian matrix, and those of Newton's method having rapid convergence as a 

result of quadratic approximation. 

Let us note some general convergence properties of Quasi-Newton methods 

94； ‘ — 

L e m m a 6 .1 Let f { x ) > f { x * ) , let f { x ) be differentiable, let V / ( x ) satisfy a 

Lipschitz condition and let 

ml <Hk< MI, m > 0. (6.14) 

Then, in the method (6.13) with a^ 三 a，where a > 0 is sufficiently small, one 

has V f { x k ) 0. 

L e m m a 6 .2 Let x* be a nonsingular minimizer of f { x ) , let f { x ) be twice con-
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tinuously differentiable in a neighborhood of x* and let 

(6.15) 

Then, the method (6.13) with a^；三 1 converges locally to x* faster than any 

geometric progression. 

Therefore, for any uniformly positive definite H^ in the method (6.13) pos-

sesses global convergence, and under the condition (6.15)，it converges in a neigh-

borhood of the minimizer with super-linear rate. 

T h e o r e m 6 . 3 For any Xq； Hq is positive definite，the method (6.7), (6.8) and 

(6.13) with any of the update formula for Hk and 

(y-k = min/O/c + adk) 
a 

for the quadratic function f { x ) — ^x'^Ax — x^b + c is finite. That is, 

^jx — X — A, b • 

Furthermore, one can show that regardless the differences between the updat-

ing formulae for Hk, the sequences Xk generated by each variant of the method 

coincide for a quadratic function f ( x ) . 

For non-quadratic functions f ( x ) , the Quasi-Newton methods in the form 

given above are usable, but they are no longer finite. Therefore, for k > n, one 

can either continue the computation by the same formulae, or begin a restart 

procedure, that is, replacing Hk by Hq every n iterations. 

Currently a super-linear or quadratic rate of convergence has been proved 

for many variants of Quasi-Newton methods in a neighborhood of a nonsingular 

minimizer. 
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6.3 Properties of Quasi-Newton Methods 

In this part, follow from [86], we wi l l consider the desirable and undesirable fea-

tures of minimization algorithms and attempt to relate them to specific properties 

possessed by individual quasi-Newton methods. We begin by discussing briefly 

these features that we would take into consideration when seeking an algorithm 

to solve a given problem. 

Perhaps the most important requirement is that the algorithm should not 

converge to an incorrect solution. A particular example of this would be con-

vergence to a saddle-point instead of a minimum, but since this defect is not 

peculiar to quasi-Newton methods we consider it no further. Another feature to 

be avoided at all costs is premature or false convergence, and here it is possible 

that certain properties of the quasi-Newton methods could give rise to failure. 

I t sometimes occurs that the matrix H becomes singular or nearly so, and the 

resulting steplength, ||s||, becomes in consequence negligible. I f one terminated 

the iteration by testing ||<s|| alone, then one could have false convergence, but 

this may be prevented by testing also || V / | | , the norm of the gradient of / . The 

quantity of interest is the norm of the error, but this can only be estimated. Let 

T* be the solution of the solution of tKe system of linear equations so that 

• / M 二 0, (6.16) 

and make the assumption that in the neighbourhood of x*, V / ( x ) is essentially 

linear, satisfying the equation (6.6). Define the vector error e by 

e = ^ x - x \ (6.17) 

Then, the equations (6.6) and (6.16) yield 

- b = 0. (6.18) 
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So, for a good approximation in the neighourhood of x*, then 

V / ( x ) = Ae, (6.19) 

where A 二 Assume that A is non-singular and define the matrix E by: 

E = B-A, (6.20) 

where B is the current approximation to A. If H is defined to be it follows 

from the equations (6.19) and (6.20) that 

e = { I - H E y ' H . (6.21) 

Hence, if ||丑五|| < 1, then we have: 

H V f 
IMI < r i T ^ - (6.22) 

Therefore, since ||丑|| and || V / | | can be evaluated, if we suspect that \\HE\\《1, 

then we can estimate an upper bound for the norm ||e||. In order to use this 

device with some measure of confidence, we would require that, once a good ap-

proximation to had been achieved, it would not be spoiled by subsequent 

iterations. We would hope at least that ||五|| would not increase as the iteration 

_ proceeded and we would indeed prefer it to be reduced. Whether or not an al-

gorithm possesses, this property of matrix error norm reduction when it is used 

to minimize the quadratic functions may be readily established theoretically. It 

is a property that influences both the convergence and stability properties of an 

algorithm and is then a critical property to consider when attempting any assess-

ment of merit. 

Another property that we require of algorithms is that they should not fail 

catastrophically when updating the matrix H. Some algorithms have this prop-

erty at all stages of the process and some at no stage. Some algorithms hope to 
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avoid this failure since all divisors used in implementing the update are known 

in theory to be non-zero, and this type of failure hardly ever occurs. Even in 

those algorithms for which a zero division is theoretically possible, its occurrence 

is infrequent. A more usual cause of failure in the quasi-Newton algorithms is a 

tendency for the algorithm to get stuck at a certain stage of the process, when 

changes in the current approximation to the solution become negligibly small. 

This behavior has been observed with many such algorithms ([5], [90], [17]) and 

is nearly always associated with the occurrence of a singular H . To see why a 

singular value of H should cause this behavior, we consider a general matrix up-

dating formula which includes the most commonly used formulae as special cases. 

For every algorithm discussed later, since 

Sk 二 -akllkVf(xk), (6.23) 

write Hk+i as 

Hm = H氣 (6.24) 

where Mk is a matrix specific to a particular update. Then, by induction, we —-

have: 

Hk+r 二 HkMkMk+i—Mk+r—i, for r > 1, — 

so that since 

Sk+r = -ak+rHk+r^f{Xk+r), 

二 —Hk”, for r > 1, (6.25) 

where 

V 二 AK+RMKMK+L…MK+R—IVK工K)• 

Suppose that Hk is singular, then for some vector q, we have: 

q^H, 二 0. 
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I t follows immediately form the equation (6.25) that q^Sk+r 二 0，for r > 1, so 

that once a particular Hk becomes singular subsequent steps are orthogonal to 

some fixed vector and hence are restricted to lie in a subspace of 肥 . I n general, 

the solution does not lie in this subspace. But if it lies in this subspace, it wi l l be 

completely unattained subsequent to the occurrence of a singular H. Although 

this or similar behavior has been observed in all the algorithms considered here 

some algorithms are more prone to this failing than others, it has general been 

overcome in practice by resetting H to be the unit matrix after every 2n iterations 

90]. Another possibility is the use of the normal update after taking a step Sk 

other than that given by the equation (6.13) [17. 

If those algorithms exist that avoid all the pitfalls described above one might 

then think in terms of obtaining more rapid convergence. Since Newton's method 

converges rapidly near the solution one might require an algorithm to resemble 

Newton's method as closely as possible, and this might lead to the requirement 

that the matrix error norms \\Ek\\, where Ek 二 B(:Ck) — ]，defined by the equa-

tion (6.20)，decrease in some way when minimizing a quadratic function. This 

property generalizes in the case of non-quadratic functions to the property of 

"bound deterioration" [32]. If we define E^ by 

where x* is the solution to which the algorithm is converging, then for algorithms 

possessing the property of bounded deterioration some norm of Ek increases after 

a number of steps by an amount not exceeding some constant times the sum of 

the steplengths. Then, if ||五o|| is sufficiently small and XQ is sufficiently close 

to X*, the amount of deterioration in the accuracy of the approximation to the 

second derivative of f during the course of iteration wil l be insufficient to prevent 

convergence. Therefore, if the property of bounded deterioration can be estab-

lished for an algorithm when applied to a class of problems, the construction of 
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a local convergence proof is a formality. 

Another property that might lead to rapid convergence overall is the prop-

erty of minimizing a quadratic function in at most n steps. The desirability or 

otherwise of this property of the quadratic termination and the analogous prop-

erties for solving general non-linear systems and constrained optimization prob-

lems, for example, linear termination, quadratic/linear termination, has not been 

fully established, and a certain amount of uncertainty sti l l remains. Fletcher 

writes [45]: "These examples, and many others, suggest that the property of 

quadratic/linear termination is a desirable attribute to be aimed at when design-

ing methods for non-linear programming", but we have, on the other hand, “The 

property of quadratic termination, whose relevance for general functions has al-

ways been questionable" [46]. The present author believes that the property of 

quadratic/linear termination is important provided that i t is not achieved at the 

expense of stability, although he acknowledges that the evidence for this belief is 

stronger in the case of algorithms designed to solve general non-linear simultane-

ous equations than it is in the case of algorithms for function minimization. 

Another feature that affects the overall speed of an algorithm is the amount 

of work required during each iteration. I f ak is taken to be unity in equations 

(6.3) and (6.13), then the amount of work is minimal. On the other hand, if it 

is necessary to minimize f ( x ) , then the computing cost of each iteration wil l be 

quite high since an inner iteration is needed at every step of the main iteration 

in order to compute ak- I f this inner iteration has to be carried out at all, it 

should clearly be carried out as efficiently as possible. However, a necessary 

feature for an efficient line search is the requirement that the vector - HkVf {xk ) 

always points in the "downhill" (or "uphill") direction so that it is known before 

the search commences whether a positive (or negative) value of a a： wil l give the 
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required minimum. This knowledge may then be used in init iat ing the search for 

the minimum and may well contribute in the subsequent choice of search strategy. 

We show now, therefore, that if Hk is positive definite and Xk^-i is given by the 

equation (6.13) then, for the value of ak sufficiently small and positive, we have 

< /(工fc), for all k. 

Let p be an arbitrary vector and a a scalar. Then, since 

f{xk + ap) = f i x , ) + a / V / ⑷ + 0(a2)， （6.26) 

if we assume that la| is sufficiently small so that terms in may be ignored, and 

we can always find such an a provided that f is continuous in a neighbourhood 

of Xk- Then, on substituting —HiSf、0Ck) for p and appealing to the equations 

(6.13) and (6.26)，we have: 

f{xk+i) - f i ^ k ) 二 -akfi^^kVHkfixk). 

Therefore, if Hk is positive definite, a positive value of ak wil l result in a reduction 

of f i x ) whenever it is small, so that, provided f { x ) is continuous, a minimum 

of f { x ) wi l l occur for a positive value of a 7 I f we choose ak = 1 for all k, there 

is no guarantee in general that the process defined by the equation (6.13) and 

the relevant updating formulae wil l converge at all so that the additional work 

involved in minimizing f { x ) may be regarding as a premium to be paid in order 

to improve reliability. Recent tendencies, however, in Fletcher [46], have been to 

choose a value of ak that merely reduces f { x ) despite the fact that this results 

in sacrificing the property of quadratic termination which relies, for many algo-

rithms, upon exact minimization. 

This last strategy illustrates the compromises forced upon the numerical an-

alyst. No single algorithm embraces the properties of stability, quadratic termi-

nation and non-iterative determination of a. A choice therefore has to be made 
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and the overall performance of the algorithms studied. In this way we hope to 

establish which properties give rise to stable, rapidly converging algorithms so 

that we can devise future algorithms specifically wi th the idea of possessing these 

particular properties. 

6.4 Some Particular Algorithms for Quasi-Newton 

Methods 

In this part, we wi l l consider particular algorithms for minimizing functions in 

the light of the discussion of the previous three sections. We wil l be principally 

concerned with properties such as quadratic termination, bounded deterioration 

and stability and wi l l endeavour to relate these properties to the observed per-

formance of the algorithms under discussion. We deliberately refrain from a 

detailed discussion of algorithms for solving non-linear simultaneous equations 

and constrained optimization problems. In general, we are content to give such 

algorithms only a brief mention unless they have been used in the context of 

unconstrained optimization or unless they form the basis of more sophisticated 

minimization algorithms. 

6.4.1 Single-Rank Algorithms 

Algorithm 1: Broyden's Algorithm [15 

This algorithm was intended for the solution of general sets of non-linear equa-

tions, but it apparently performs remarkably well when used to minimize func-

tions [67]. The reason for its inclusion in this survey though is since its relation-
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ship to algorithms that have been developed specifically to solve minimization 

problems. The update of the approximate second derivative B{xk) is given by 

T 

Bk+1 二 B k ( 6 . 2 7 ) 

where 

Sk 二 x/c+i - Â；, and 
Vk 二 V / O h i ) - •/⑷， 

which is given by (6.7) and (6.8). So, if B is square and non-singular, it follows 

from the Sherman-Morrison formula that ‘ 

oTu 

Hk+i = H , - — -s,) (6.28) 

It may be readily verified from the equations (6.20) and (6.27) that 

= e J I ( 6 . 2 9 ) V 4 SKJ 

so, for the quadratic functions, the error matrix Ek decreases monotonically. The 

method is one of bounded deterioration and may be shown to be locally conver-

gent for ak — I [32]. The algorithm is stable provided that Bk approximates 

the second derivative Gk sufficiently well [18], but if the approximation is poor， 

then the algorithm is unstable and its performance suffers in consequence. It 

is necessary to provide this algorithm with a starting procedure to ensure that 

the initial approximation is tolerably accurate. The algorithm does not enjoy 

the property of quadratic termination even when used for function minimization 

with exact line searches and a^ is usually chosen to reduce ||/|| [15], or is set to 

be equal to unity [18]. The approximation H is not symmetric and neither is 

H + HT necessarily positive definite so, if line searches are used, this fact must 

be recognized by the line-search routine. 
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In practice, i f the algorithm is in the region of local convergence with ak = 1, 

then it performs very well, convergence being usually super-linear. Broyden [18 

showed that if f and e are given by the equations (6.6) and (6.17), â； 二 1, for 

all k and ||£'o|| < 1，then we have: 

( c y 
le^ll < I — I ||eo||) (6.30) 

\r2 J 

where 
_ 11五 oil 

1 — II丑o||L2， 

for II . II and || . denote the Euclidean norm and the L2 norm respectively. 

A similar rate of convergence is observed for non-linear problems near the 

solution. 

Algorithm 2: The Secant Algorithm ([7], [123]) 

This is the oldest of all the quasi-Newton methods, and which is another method 

that is not restricted to the minimization of functions, but may be used to solve 

a general set of non-linear equations. The updating equation is: 

_ 二 B r {B,Sk — Vk) " 1 ^ ， （6.31) 
Qk BkSk 

where qk is given by 

qlVj =0， for k - n ^ l < j < k - l . (6.32) 

Hence, if B is square and non-singular, 

qT 
Hk+i 二 Hk - [HkVk — Sk) - j ^ . 

% yk 

Since Qk is only defined by the above equations if at least n — 1 steps have taken 

place a starting procedure is needed (For example, Barnes [7]). 
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The algorithm as described has the property of linear termination since it 

follows from the equations (6.31) and (6.32)，after some manipulation, that 

Bk+iSj 二 y” for k - n + 1 < j < k. (6.33) 

Therefore, B^^i is determined uniquely by the previous n steps so that for 

linear functions, the approximation B becomes equal to the exact matr ix G after 

n steps. A further Newton step then gives the exact solution, and we have ter-

mination after n + 1 steps. 

The difficulty with the secant method lies in the probability, for non-linear 

problems, that n consecutive y's or n consecutive s's wi l l become linearly depen-

dent. This deprives it of the property of bounded deterioration and in practice 

makes it notoriously unstable. Attempts to reduce this instability are usually 

based on requiring the equation (6.33) to be satisfied not ioi k — n + 1 < j < k, — 

but for n values of j chosen with stability in mind. Instead of replacing the 

"oldest" s and y by the "newest" pair (as in the equation (6.33) requires), the 

"newest" pair of s and y replaces a pair chosen so that the replacement impairs 

stability by the smallest amount. Therefore, the strict linear termination property 

is sacrificed to improve stability. The secant algorithm, modified or unmodified 

one, may be used with 二 1 or with â； : 1 or with a a： chosen to reduce ||/||, 

but the method does not appear to be extensively used in either of these modes. 

As with the previous method its interest, in the present context, lies in the appli-

cation of its basic philosophy to algorithms more specifically orientated towards 

optimization. 

Algorithm 3: The McCormick-Pearson Algorithm [90 

This class of methods is a generalization of two methods given by Pearson [90], 

one of which he attributes to McCormick. It is a sub-class of the 3-parameter 
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family of Huang [69], for which 

Hk+i 二 Hk + PkSk{qi)k — Hkyk(q2)工, 

where 

{qi)k = c^^Sk + kiH^yk, 2 = 1 ,2 . 

Here, the scalar pk is arbitrary and the scalars c! and k̂  are also chosen arbi-

trarily, but subject to the requirement that (仏)【2A； 二 1, for i = 1, 2. I t follows 

immediately that Hk+iVk — SkPk so that if pk 二 1，then B^ must satisfy the 

equation (6.10). Huang showed that i f Xk+i is given by 

ook+i a k H j V f i x k ) — (6.34) 

for all k and if ak is always chosen to minimize f ( x ) , then all algorithms belonging 

to the class have the property of quadratic termination for any choice of the 

arbitrary parameters. Moreover, the steps Sk satisfy the equation 

srAsj. 二 0, j ^ k , (6.35) 

where A is the matrix defining the quadratic form given by the equation (6.5)，so 

that the methods generate conjugate directions and terminate, for the quadratic 

functions, after at most n and not n + 1 steps. “ 

The update for the McCormick-Pearson algorithm is given by 

H…二 Hk - ( 彻 * - 外 ） + 严 1， (6.36) 
WkVk Vk ̂ kVk J 

where jk is an arbitrary parameter which is zero for Pearson's and unity for Mc-

Cormick's algorithm. Pearson proved that the algorithms are stable when mini-

mizing a quadratic function, but he gave no proof of stability for general functions. 

I t is likely that both McCormick's and Pearson's versions are of bounded deteri-

oration and are locally convergent. The two versions were tested by Pearson [90], 
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and their performance was comparable with other methods. 

Algorithm 4: The Symmetric Algorithm [28' 

This algorithm, which has been investigated by Davidon [28] and Murtagh and 

Sargent [88], is the maverick not since it refuses to be categorized, but because it 

fits into so many categories. I t is a member of the McCormick-Pearson class, a 

degenerate member of the rank-2 single-parameter family and it has some of the 

features of the secant method. 

I t is the only single-rank method which preserves the symmetry of Bk, and 

- from this and the fact that Bk+i must satisfy the equation (6.10), it is readily 

deduced that 

(6.37) < Sk 

and 

H…= Ih」承 (6.38) 
n Vk 

where 

Uk 二 BkSk — yk, and 

Vk 二 Hkyk - Sk. 

The basic method is not of bounded deterioration and is notoriously unstable 

in its unmodified form. Davidon suggests various updating strategies and makes 

a choice after performing certain tests, and Murtagh and Sargent use a different 

reset strategy if a certain criterion is not satisfied. These devices enormously 

improve the reliability of the algorithm and good results iiave been obtained in 

both cases. 
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A possible explanation for the success of the symmetric algorithm may lie in 

the fact that exact line searches are not required in order to achieve quadratic 

termination. Indeed, as was pointed out by Wolfe [124], it is not even necessary 

to choose Xk+i by the equation (6.3) in order that in the quadratic case, the up-

date should in general give H to be the exact inverse of G after n steps. This is 

complete contrast wi th other algorithms of the McCormick-Pearson family and 

the rank-2 single-parameter family, and is more reminiscent of the secant method. 

This enables considerable economies to be made when carrying out line searches, 

and these have contributed materially to the observed success of the algorithm. 

Algorithm 5: Powell's Algorithm for Sums of Squares [96 

This method is one in which the objective function f ( x ) , which is given as a sum 

of squares, that is, 

f i x ) = g ( x f g ( x ) , (6.39) 

where 

夕 ： 『 ， 

and where it is assumed that G{x), the second derivative of / ( x ) , is not explicitly 

available. The method is essientially Newton's method, but using a modified -

secant update to obtain an approximation to G(x). Instead of requiring the 

approximate matrix B^+i to satisfy (6.10)，however, Powell requires that 

Bk+iSk 二 o l̂sybll， (6.40) 

where dk is a more sophisticated approximation to the directional derivatives 

along Sk at Xk+i than Since d^ is computed on the assumption that f { x ) is 

minimized along Sk exact line searches are required. In practice, the algorithm 

has performed successfully on a large number of problems, although it has been 

known to converge prematurely to a non-solution [99 . 
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Algoirthm 6: Powell's Hybrid Algorithm [100 

This algorithm is intended for solving the non-linear simultaneous equations 

V / ( x ) = 0 and it is not applicable to the general non-linear least squares prob-

lem. It is thus property outside the scope of the review, but since it uses a least-

squares approach we accord it a brief mention. I f we define f { x ) by g{x)'^g{x) 

with g : W and apply the steepest descent method to / ( x ) , our direction 

of search is along the direction where G{x) is the second derivative 

of f { x ) . If, on the other hand, we elect to t ry a Newton step to solve V / ( x ) = 0 

our direction of search is along f { x ) . Powell therefore suggests using 

a linear combination of these two directions as a search direction and since the 

second derivative matrix G is not assumed to be available, he approximates both 

G{x) and and generally updates these approximations by the equations 

(6.27) and (6.28). The final form of the algorithm embodies many checks and 

safeguards to ensure convergence and stability. 

6.4.2 Double-Rank Algorithms 

We now consider the double-rank algorithms. A l l of these are intended to be 

used only for the function minimization so that no disadvantages accrues from 

the symmetry of the approximation. Al l of them, in fact, may be generated by 

symmetrizing the appropriate rank-1 algorithm. 

Algorithm 1: Powell's Symmetric Algorithm [101 

This was the first algorithm to be obtained using a symmetrization technique, 

which Powell applied as follows. Let Bk be symmetric and obtain (应 i ) “ i by 
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using Broyden's formula 

T 
二 Bk — {BkSk — V k ) 冬 . (6.41) 

Sk Sk 

Since is not symmetric, Powell defines {Bi )k+i by 

= * + (或)二1) • (6.42) 

However, {Bi)k+i does not satisfy 

{Bi)k+iSk = yk, (6.43) 

so that {Bi)k+i is corrected using the equation (6.41) wi th B^ replaced by {Bi)k+i. 

The resulting matrix may then by symmetrized by an equation analogous to 

the equation (6.42) to give (B2)A;+i’ and the whole process repeated indefinitely. 

The sequence of matrices {Bi)k+i converges as z -> oo to the l imit Bk+i, where 

二 + i [(y. — + — — $ ⑷ 〜 — 丑 广 【 ， 
^k [S^ Sk) 

(6.44) 

and this gives a new updating formula for the approximation to the second deriva-

tive matrix G that both satisfies the equation (6.10) and is symmetric. In order 

to avoid the solution of the equations Hk, the inverse of Bk, is stored and updated 

by a double-rank formula derived from the equation (6.44). 

A feature of this method is the behaviour of the matrix error when the algo-

r i thm is applied to the quadratic function defined by the equation (6.5). If the 

matrix E^ is defined by the equation (6.20)，then for this algorithm, 

E m = PkEkP,, (6.45) 
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where 

i W - # 

Therefore, for the single-rank update in Algorithm 1 in the previous section, the 

matr ix error is post-multiplied by a projection matrix, whereas for the double-

rank variation the error is both post-multiplied and pre-multiplied by the same 

projection matrix. I t may be shown that [32] the update is of bounded deteri-

oration and is stable if Bk approximates sufficiently closely to Gk- Algorithms 

based on using this update with the equation (6.13) do not possess the property 

of the quadratic termination for any choice of ak so that there is no theoretical 

reason for using exact line searches. Indeed, there is evidence that [32] if f { x ) is 

minimized at each step, the update behaves rather badly. I f ak is chosen to be 

unity for all k, the performance of the update is comparable with that of Broyden 

in Algorithm 1 in the previous, and the expectation that it would prove superior 

due to a greater reduction of the norm of Ek at each stage has so far proved to 

be unfounded. In the algorithm proposed by Powell, as in Algorithm 6 in the 

previous section, there are many checks and safeguards incorporated to guaran-

tee stability and convergence, bu t as the algorithm is comparatively recent, there 

have as yet been few comparisons with other algorithms. 

Algorithm 2: The Single-Parameter Rank-2 Family Algorithm [16 

This family includes most of the better-known optimization algorithms, for ex-

ample, the Davidon-Fletcher-Powell (DFP) algorithm, as special cases. I t is that 

sub-class of Huang family [69], where the correction to Hk is symmetric and rank 

2，and where Hk+i is constrained to satisfy the equation 

Hk+iVk = Sk. (6.46) 

This is, since H 二 a re-expression of the equation (6.10). Since H^ is sym-

metric for all k, then the equation for Xk+i given by Pearson [90] and Huang 
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69], that is, the equation (6.34), reduces to the equation (6.13). Provided that 

Xk+i is always calculated using this equation, and that exact line searches are 

employed, the successive steps Sj are conjugate for the quadratic functions, and 

we have the quadratic termination for all algorithms included in the family. It has 

recently been shown that [20] certain members of the class enjoy the property of 

bounded deterioration and that if they are employed to minimize the quadratic 

functions with â； 二 1 for all k, the vector errors satisfy the equations similar 

to the equation (6.30). Moreover, if these algorithms are applied with A^ = 1 

to more general functions, local convergence proofs may be derived. The case 

when exact line searches are used has been analysed extensively by Powell ([97], 

- 98]), who proved that the DFP algorithm converges if the objective function 

f { x ) is convex, and converges super-linearly if f ( x ) is uniformly convex. That 

these proofs extend to nearly all algorithms of the Huang class follows from a 

remarkable theorem proved by Huang [69] for the case where f ( x ) is quadratic, 

postulated by Huang and Levy [70] for a general f ( x ) and proved for general 

f ( x ) by Dixon [36]. Dixon showed that the nearly all algorithms in the Huang 

class that satisfy the equation (6.46) wil l produce the identical sequence of x^ 

for any arbitrary function, given the identical init ial condition and the exact line 

searches. Therefore, it is only necessary to establish convergence for one algo-

r i thm to have demonstrated convergence for the class as a whole. 

The updating equation for the rank-2 family is: 

丑糾 二 H k - H 恕 Hk + + PkiHkVk — — (6.47) 
Vk HkVk si Vk 

where 
n vlHkVk 
廿k 二 〒 

SkVk 

and pk is arbitrary. It was shown by Broyden [17] that if Hk is positive-definite, 

then Hk+i is also positive definite for > 0 provided that an exact line search 
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has been carried out. This result was extended by Shanno, who proved that 

Hk+i is positive definite for pk > -Sk, where 4 is some positive number whose 

value depends upon Hk, Vk and Sk. Since these results require only that f { x ) and 

its gradient are continuous, they imply that algorithms of this family for which 

Pk >0 should be stable for all reasonable problems, since all divisors occurring in 

the equation (6.47) are theoretically positive. This prediction has in general been 

borne out in practice. The algorithm of Davidon [29] as modified by Fletcher and 

Powell [50], for which pjt 二 0 for all k, has been used extensively and in general 

has shown acceptable stability properties. A more recent update ([58], [46], [19], 

.109]) is obtained when pk is given by 

= (6-48) -
Vk Hm 

I t follows that Pk is positive if H^ is positive definite, and this algorithm is 

also generally stable although like the DFP algorithm, there have been instances 

where i t has failed to converge, probably due to Hk becoming singular. Various 

explanations have been offered for this departure from the theoretically predicted 

behaviour, and in particular Bard [5] pointed out that poor scaling could cause 

Hk to become singular. However, a recent work, by Abbott [1], would appear to 

indicate that a more probable cause of loss of positive definiteness is failure to 

perform an exact line search. He showed that if Pa： > 0 and Hk is positive definite 

a necessary and sufficient condition for Hk+i to be positive definite is that 

s h k > 0, (6.49) 

and demonstrated that commonly-used line-search procedures and termination 

criteria could cause inequality (6.49) to be violated when solving certain problems 

involving penalty functions. The importance of an exact line-search is underlined 

by Dixon's theorem. Different members of the class have given in practice widely 

different results for the same problem starting with the same initial conditions, 

but a series of very careful experiments by Huang and Levy [？0] showed that 
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these discrepancies disappear when sufficient care is taken in minimizing f ( x ) . 

We thus see that for members of the family in this algorithm not only are exact 

line searches necessary for the quadratic termination, but they are also desirable 

for stability. For this and other reasons, it is possible that algorithms similar 

to Algori thm 1 above might be increasingly used for unconstrained minimization 

problems. 

6.4.3 Other Applications 

We mention here very briefly some more recent algorithms that use quasi-Newton 

techniques. 

Application 1: Brown and Dennis Algorithm [14 

This method is suggested by Brown and Dennis, which is solving the non-linear 

least squares problem and seems particularly suited for the case where the min-

imum sum of squares is large. In this method, the components of the second 

derivative of f ( x ) = g(x)^g(x), where g : W 『，are approximated is identical 

in both cases the latter is preferred since storage is reduced due to the symmetry 

of the matrices concerned. 

Application 2: Dennis Algorithm [33 

This algorithm is used for solving the unconstrained optimization problem. It 

was first obtained by symmetrization, but instead of symmetrizing Broyden's up-

date given by the equation (6.27) and inverting the resulting formula to give the 

update for H, Dennis first inverted the equation (6.27) to give the equation (6.28) 

and symmetrized this. Since the operations of symmetrization and inversion do 
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not commute Dennis arrived at a new formula where the update is given by 

Hk+i 二 Hk — - r ^ [ v k s l H k + HkSkvl — HkSkPkslHk] (6.50) 
si HkVk 

where 

Vk 二 HkVk - Sk 

and 
二 ylvk 

^ slHkVk • 

Dennis found that the performance of this update with ak = I was comparable 

wi th Powell's symmetric algorithm in Method 1 of the previous section, and if 

exact line searches were carried out, it sti l l performed quite well whereas Powell's 

symmetric algorithm failed. As the experimental testing was severely limited, 

Dennis made no claims for the method other than that it merited further consid-

eration. 

Application 3: Constrained Minimization Problem [117 

Further applications of the quasi-Newton principle appear in connection with the 

constrained minimization problem. In minimizing f { x ) subject to the m(< n) 

equality constraints c{x) 二 0, the m + n equations to be solved are: 

J{x)^z = V / ( x ) (6.51) 

subject to 

c{x) 二 0, (6.52) 

where J{x) is the Jacobian matrix of c{x) and z is the vector (or order m) of 

Lagrangian multipliers. The Jacobian matrix of the system (6.51) and (6.52) is 

G JT (工） 

J . W 二 ， （6.53) 

J [ x ) 0 
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where G is a linear combination of the second derivative matrices of f { x ) and each 

individual constraint function, there is no reason in principle why the equations 

(6.51) and (6.52) could not be solved by any quasi-Newton method, but it is 

hoped that special purpose updates retaining the null part i t ion of Js{x) might 

exhibit superior convergence properties. Let 

Kk Ml 

Mk 0 

be the matrix which approximate to {Js)k{^)- Then, the equation (6.10) may be 

writ ten as: 

Kk+i M j + i Xk+i — Xk hk+i — hk 
— (6.54) 

A4+1 0 Zk+i — Zk Ck+i — Ck 
_ J L J L � 

where 

h[x)三 J { x f z - V f [ x ) , 

and an updating strategy chosen to ensure that this equation is satisfied. 

Both the methods discussed below assume that J[x) is explicitly available, 

though each method uses this information differently: 

Method 1: Kwakernaak and Strijbos Method [77 

Set Mk^ri — Jk+i. Then, we can obtain, from the equation (6.54), that: 

Kk+i{xk+i — Xk) = hk+i - hk - — Zk). (6.55) 

Now, 二 1 is then computed from using the equation (6.55) and the 

secant update, and the inverse of the Jacobian of the approximate system is then 
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obtained using the formula 

广 " I — 1 「 一 

K JT K—i — K-iJ^BJK—i K-〜JTB 
= , (6.56) 

J 0 BJK-i —B 
明 」 L -J 

where 

B - { J K - \ J ^ ) - \ 

Method 2: Broyden and Hart Method [19 

Use an approximation Mk to Jk when computing the Jacobian of the inverse of 

the approximate system. Expanding the equation (6.54), gives that: 

]Vlk+i[xk+i — Xk) 二 Ck+i — Ck (6.57) 

and 

Kk+i{xk+i — Xk) = hk+i - hk - — Zk) (6.58) 

and many combinations of update may now be used to compute Mk+i and Kk+i-

A typical, and quite effective one, is to obtain M^+i from the equation (6.57) 

using the Broyden algorithm in Method 1 in Section 6.4.1 to update and then to 

compute Kk+i using the equation (6.58) and the Powell's symmetric algorithm 

in Method 1 in Section 6.4.2 to update. Algebraic manipulation then yields a 

rank-2 updating formula for the approximate inverse system Jacobian. 

6.5 Conclusion 

Let us conclude the survey of quasi-Newton methods. We have attempted to 

assess the merits of the basic updates, used either in a "Newton" mode with the 

steplength a^ 二 1，that contribute to its observed performance. We have not 



Chapter 6: Quasi-Newton Methods 153 

attempted to perform a consumer analysis upon the subroutines or procedures 

in which the updates are used since we are concerned pr imar i ly w i th the update 

itself. We realize that the reputation of an update may well be due as much 

to an art fu l choice of checks, safeguards and program constants w i th which it is 

surrounded as to the properties inherent in the update itself, and are only too 

conscious that a good update may be enhanced, and a poor one disguised, by 

such devices. 

Quasi-Newton methods are widely used and have been extensively treated in 

the l iterature, due to the numerous advantages as we described earlier [94]: 

(1) A t each step, we need the computation of the gradient to update; 

(2) There is no inversion, nor solution of a system of linear equations; 

(3) The convergence is global; 

(4) The convergence rate in a neighborhood of the solution is high, often is a 

quadratic rate. 

On the other hand，yet they are inferior, i t needs to store and update an 

n X n-matrix Hk with significant computer-storage for large n is the greatest 

disadvantage. 



Chapter 7 

Choice of Methods in 

Optimization Problems 

7.1 Choice of Methods 

— In this chapter, we consider the question of the choice of methods, beginning 

wi th the case where it is possible to evaluate the derivatives ^ without undue 

difficulty or expense. 

The steepest descent method is not recommended for general use because of 

its poor convergence properties. Newton's method has much better convergence 

properties; it works particularly well if a close init ial estimate of the optimal point 

can be found. However, it may fail to converge from a poor init ial estimate of 

the optimal point. Also, the evaluation of the elements of the Hessian matrix, 

and the inversion of this matrix, may pose formidable computational problems. 

In the cases where it is difficult or impossible to evaluate the derivatives 乾, 

154 
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the DFP method can sti l l be used, wi th the derivatives approximated by differ-

ences. Alternatively, Powell's method may be used, although this method tends 

to lose its efficiency if the number of variables exceeds fifteen or so, since there 

is tendency for new directions of search to be chosen less often as the number of 

variables increases. The possibility of using a direct search method should not be 

overlooked. 

A very useful review paper by Fletcher [44] uses seven different test functions 

to compare three minimization algorithms that do not require the evaluation of 

derivatives, namely, the methods of Davies, Swann and Campay [115], Powell [95 

and Smith [112:. 

In 1970, Huang [69] introduced a large three-parameter family of rank 2 al-

gorithms with quadratic termination, which included as special cases the DFP 

algorithm. The relative merits of the last algorithm is put into perspective by 

a theorem proved by Huang for quadratic objective functions. He showed that, 

given the same init ial point and the same init ial search direction, together with 

exact linear searches, the same sequence of current points and search directions 

is generated by every member of his family of algorithms. 一 

Following some numerical experiments by Huang and Levy [70], the corre-

sponding results for non-quadratic objective functions were obtained by Dixon 

"38]. He showed that, under the above conditions, the sequence of current points 

and search directions generated by members of Huang's family depends on one 

parameter only. In particular, the DFP algorithm has the same value of this 

parameter, and so they produce identical sequences of current points and search 

directions. 
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These results suggest that for general purposes the DFP or some closely sim-

ilar algorithm should be used. Methods involving high-accuracy linear searches 

can be very time-consuming; hence Powell's method [102]，which does not require 

linear searches, should also be considered. 

I f f ( x ) is a sum of squares of functions, as is often the case in data-fitting 

problems or in the solution of systems of non-linear equations, then special meth-

ods are available, for example, the methods of Levenberg [79], Marquardt [81] and 

Powell [96]. These methods can be expected to converge faster than the general 

purpose methods considered in this thesis. They are derived from the "General-

ized Least Squares Method" which is described at the beginning of Powell's paper 

.96]. This is an extension of the original "Method of Least Squares" of Legendre 

and Gauss. Levenberg's and Marquardt's methods are similar, though they were 

discovered independently. They use the first derivatives of the objective function, 

while Powell's method requires function evaluations only. 

A discussion of some practical points in connection with the implementation 

of Levenberg's and similar methods is given by Beale [10]. Bard [6] compares 

the effidencies of the methods that require the evaluation of derivatives for the 

maximization of a sum of squares. Finally, Powell gave a comprehensive review 

of least squares algorithms in Chapter 3: "Problems Related to Unconstrained 

Optimization" [86 . 

In my opinion, when solving the optimization problem, if you wish to use the 

simplest method (just use calculate the first derivatives), then you can choose the 

steepest descent method. If you wish to have rapid convergence, then you can 

choose Newton's method (the rate is quadratic). Also, if you wish to have some 

methods which afford to store the Hessian matrices, then you can choose the other 
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second derivative methods, for example, Greenstadt's method, numerically stable 

modified Newton's method, and the like. That is because they afford to store and 

estimate the inverse of the Hessian matrices. If we solve the optimization problems 

for the quadratic functions, then you can use the conjugate gradient method since 

i t must be not more than n iterations. But in many practical applications, we wil l 

use the Quasi-Newton methods, for example, Secant method, DFP method, and 

the like. That is because the convergence is global and the rate is often quadratic. 

Also, i t requires the computation on the function values and the gradients of the 

function. 

7.2 Conclusion 

At the iterative point 二：ta：, the function f [ x ) increases most rapidly in the 

gradient direction V f { xk ) . Gradient methods for minimizing f { x ) often use a 

sequence of linear searches along mutually conjugate directions. The theory of 

gradient methods is highly developed in the case where the objective function 

f { x ) is quadratic in its arguments, but is less highly developed for more general 

functions f { x ) . However, the algorithms derived from 'quadratic，theory may 

be applied iteratively to non-quadratic objective functions. Some of these algo-

rithms, for example, DFP method, are among the most efficient general purpose 

optimization techniques available at the present time. Not all gradient methods 

require analytic expressions for the derivatives. The idea of conjugate directions, 

or which the most successful methods are based, may also be used when the 

derivatives cannot be evaluated directly. Powell's method is specifically designed 

to generate conjugate directions of search without the need to evaluate deriva-

tives; also, quasi-Newton methods with the derivatives replaced by differences 

have been used successfully. Special methods are available for the minimization 

of a sum of squares. 
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