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Abstract 

Conventional inductive learning methods cannot handle fuzzy information and 

noisy data. Several algorithms were developed in recent years to learn concept 

descriptions in fuzzy logic. These systems use a fuzzy propositional attribute-

value language for describing entities and classification rules. The simplicity of 

this formalism allows such systems to deal with large volumes of data; however, 

it becomes inefficient when faced with complex objects and concepts. On the 

other hand, learning algorithms accepting descriptions of complex, structured 

entities and generating classification rules expressed in first-order logic were 

developed. 

This thesis describes a novel learning system, code named FFOl, that 

learns both fuzzy and first-order logic concepts from data. FFOl builds on 

the ideas from both fuzzy set theory and first-order logic. Object relationships 

are described using fuzzy relations based on which FFOl generates classifica-

tion rules expressed in a special form of fuzzy first-order logic. The proposed 

learning system is an expansion to the FOIL system, which is notable in learn-

ing non-fuzzy first order logical concepts. The thesis first describes the fuzzy 

first-order logic language used in FFOl, it includes the discussions of different 

literal forms and the fuzzyification of continuous variables. Then, we outline 

the system architecture. We there details the input data format, the Horn-

clause formation loop, the preprocessing and the postprocessing procedures. 

We start the research on the comparison of fuzzy sets. In particular, a novel 

learning algorithm, code named FF99 is developed to learn zeroth-order fuzzy 
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concepts. Some interesting observations are obtained when two fuzzy sets are 

compared through a method called the error function. The observations are 

summarized to be the nodal characteristics of fuzzy set comparisons. The 

nodal characteristics are then quantified by the continuous information theory 

to become a heuristics to guide the search of literals in FF99. The whole 

FF99 acts as one of the options of the learning algorithms in FFOl, but it 

works only if we are learning zeroth-order fuzzy concepts. 

In order to fully utilized the representation language in FFOl, we continue 

to explore other methods that enable us to learn fuzzy first-order concepts. 

FF99 fails in first-order learning because every literal is evaluated globally. 

A partial evaluation method of literals is needed to distinguish the samples 

into the "covered" and the "uncovered" set. The distinction enables us to 

prune the covered samples in the next step of learning. We will show that 

an effective pruning is crucial in first-order learning. FFOl first employ the 

a-covering as the partial evaluation method. Then we enhance it into a new 

adaptive a-covering method. 

We test FF99 with several databases from UCI Machine Learning Reposi-

tory. For instances, in the Iris classification experiment, FF99 gets an average 

accuracy of 97%. It also achieves classification accuracy of 88% in the Credit 

Approval experiment, which is higher than that got from C4.5. FFOl also 

works fine in relational databases as mentioned in FOIL. Finally, we construct 

some examples to demonstrate the unique fuzzy first-order learning power of 

our system. 

In conclusion, FFOl induces fuzzy linguistic concepts that are comprehen-

sive to human beings. Also, it provides a satisfactory way to handle fuzzy 

relational data. The learning algorithm is robust and efficient. Finally, the 

experiment results have shown that the novel learning system is suitable for 

learning knowledge in fuzzy first-order logic from both continuous and discrete 

variables, and is also very tolerant to noisy data. 
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傳統的歸納學習不能處理模糊及混亂資料。近年來，有多個演算法被發展去學習 

模糊邏輯的槪念。這些系統使用模糊命題邏輯來形容個身及分類規則。這個簡單 

的方法容許它們處理大數量的資料。另一方面，有一些學習演算法可以接受複 

雜，結構法的個體來產生一階邏輯的分類規則。 

但是，從來沒有一個學習系統可以使用模糊一階邏輯來形容槪念。本論文發展了 

一個系統，名叫FF01，來學習模糊一階邏輯。在發展FF01之前，我們先發展 

了一個名爲FF99的系統，用來學習零階的模糊槪念。當我們試用一個名爲錯 

誤函數的方法來比較兩個模糊集，我們獲得一些有趣的觀察。這些觀察被總結爲 

模糊集比較的節點特徵。使用連續信息理論去量化這些節點特徵後會得出一個啓 

發以用來弓丨導FF99對字面的搜尋。 

爲了盡量利用FF01豐富的知識代表，我們繼續去發掘其他有效的方法。當中最 

重要就是如何把布爾的覆蓋方法模糊化。我們嘗試了三個方法：a覆蓋，調整性 

a覆蓋和或然率覆蓋。使用這些方法容許我們處理一階邏輯的大量資料並且保持 

高度的學習精確率。 

我們使用了多個數據隻來測試FF99及FF01的精確度，結果証明它們比C4.5更 

準確。同時，它能獲得與FOIL —樣的一階邏輯結果。我們再弓丨入了一個美國職 

業籃球的數據隻來驗證FF01，實驗証明它在現實的資料發掘也能派上用場。 

總括來說，FF01是一個有效及穩健的學習系統，它能夠處理零階及一階的資料， ’ 

加上對模糊邏輯的支持，它是一套創新及實用的學習系統。 
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Chapter 1 Introduction 2 

Machine learning has long been one of the main research areas in arti-

ficial intelligence. Some successful learning systems have been developed in 

past few decades. They differentiate between each other mainly on the knowl-

edge representations adopted and different learning algorithms are designed 

for that particular representation language. For example, the well-known ID3 

algorithm induces classification models in form of decision trees, while the 

back-propagation learning algorithm is especially designed for multi-layer neu-

ral network models. However, among the existing learning methods, none of 

them are capable to induce fuzzy and relational concepts at the same time. 

That motivates us to start our research. 

1.1 Problem Definition 

The goal of this thesis is to achieve the following statements: 

Powerful representation language: We are seeking a representation lan-

guage that enables us to express inexact and relational concepts at the 

same time. 

Effective learning algorithm: The learning algorithm used by our system 

should be tractable in order to handle large volume of data. This concern 

is especially importance when we try to induce concepts from relation 

data, in which the rate of growth of tuples is fierce. 

Compatible to existing induction tasks: FFOl should be able to induce 

concepts from existing well-known dataset. Also, it should be capable to 

handle the induction tasks tackled by some benchmark learning systems, 

e.g. C4.5 and FOIL. 
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1.2 Contributions 

After setting our goals, we seek the solutions. They will be discussed in detail 

in the following chapters. Here we summarize the main contributions of this 

thesis: 

Fuzzy first-order logic learning system: FFOl is a new learning system 

to use the fuzzy first-order logic language to represent and learn fuzzy 

concepts. The novel use of this language enables us to induce and de-

scribe fuzzy relational concepts. The thesis will show that the language 

acts as a superset of some other conventional logical languages, e.g. the 

zeroth-order fuzzy logic and the crisp first-order logic language. Thus, 

our system is backward compatible to existing induction tasks, e.g. the 

simple but large-volume attribute-value induction tasks, or the complex 

and abstract relational induction tasks. Moreover, the language allows 

us to handle a new area of induction problems. 

Automatic generation of fuzzy concepts: Users may specify the fuzzy con-

cepts artificially, or, more naturally, users could specify the continuous 

data in a simple attribute-value manner. The system will automatically 

generates fuzzy literals based on the distribution of the input data. And 

fine tuning of the fuzzy sets will be done in the postprocessing stage, 

in order to ensure that the fuzzy literals are best describing the target 

relation. 

Extension to FOIL: FFOl also acts as an extension to the FOIL system. 

FFOl is capable to read the input data in FOIL'S format (*.d). By 

enriching the original input data format of FOIL, FFOl allows the user 

to define fuzzy relations in input. Our system also supports some of the 

opinions available in FOIL, for example, we could limit the system to 

exclude negated literals. The whole FFOl system is a complete software 
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package. 

New fuzzy set comparison method: We discover that under some assump-

tions, the subtraction of the membership functions of two fuzzy sets will 

result in some interesting observations. We summarized the observations 

as the nodal characteristics of fuzzy set comparisons. A sub-system called 

FF99 makes use of the nodal characteristics to search for literals in the 

construction of zeroth-order fuzzy concepts. 

Enhanced covering method: The conventional covering method in machine 

learning is very effective in pruning the search space. However, the 

method only works for Boolean data. We will enhance the simple a-

covering method, which is the simplest method to allow fuzzy covering. 

The enhanced method is called the adaptive a-covering method, which 

is shown to be very robust and could be applied in any fuzzy induction 

systems. 

1.3 Thesis Outline 

We start our story by reviewing some relevant literatures in Chapter 2. The 

review involves several areas in computer science, in particular, we will give 

a overview of different methods in representing inexact knowledge. As FFOl 

is a machine learning system, we will then review different paradigms of ma-

chine learning. After that, we highlight some of the learning systems that are 

directly related to our system. Finally, we give a section of the mathematical 

background of fuzzy logic, which will be often referenced by later chapters. We 

start to describe our system in Chapter 3. The usefulness and the unique-

ness of the fuzzy first-order logic will be presented. We will also discuss the 

treatment of continuous variables and the literal forms supported by FFOl. 

The next section outline the system architecture of FFOl, which includes the 
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enriched input data format of FOIL, the Horn-clause formation loop, the pre-

processing and the postprocessing stages. Chapter 4 details the sub-system 

FF99, which learns fuzzy zeroth-order concepts. We will first review some 

existing closeness measures between fuzzy sets. Then we introduce the error 

function and the observations on the shape of it. The nodal characteristics will 

then be discussed in details. Next, we quantify the nodal characteristics by 

the continuous information theory in order to form a COST heuristics. The 

heuristics is shown to be very effective through the illustration of an example. 

In Chapter 5，we first discuss the importance of covering in machine learning 

and the difficulties in applying the covering concept in fuzzy systems. The 

a-covering method is adopted to be the primitive solution. Then, we continue 

to develop a more robust adaptive a-covering method based on the a-covering 

method. But these two methods are still not enough, we go on to develop a 

probabilistic-covering method. Finally, we will show in Chapter 6 that our 

system is functionally more advanced than existing learning systems. It is il-

lustrated by the comparing the experiments that are already tested by C4.5 

and FOIL. Also, we would demonstrate some experiments that could be han-

dled by our system but not our learning systems. Finally, we will summarize 

and discuss the whole system and some suggestions on possible improvements 

of our system will be given in Chapter 7. 
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As our research involves several areas in coniputcr sd(m( : (�ar(，going to 

review some of the related issues. First, we give an overview of how could wv 

represent inexact knowledge. Then, we turn to discuss different paradigms of 

machine learning. Particularly, we will highlight some of the related learning 

algorithms. Finally, a brief reference on the notation and convention of fuzzy 

logic will be given. 

2.1 Representing Inexact Knowledge 

Inexact information is natural in human thinking and reasoning. This kind of 

inexact information should be formulated so that it can processed and inferred 

by machines. This section gives an overview of the nature of inexact knowl-

edge and several approaches to formulate inexact knowledge into machine-

understandable form. 

2.1.1 Nature of Inexact Knowledge 

Inexact knowledge normally refers to the information that contains uncertainty 

or imprecision. 

Uncertainty occurs when one is not absolutely certain about a fact or a 

proposition. It arises mainly because of the incompleteness and incorrectness 

of information. For example, in a medical diagnosis system: 

"John has a fever" 一 uncertain fact 

" i f John has a fever then he has a flu" 一 uncertain proposition 

On the other hand, imprecision occurs when the information contains terms 

with vague meaning. And almost every adjectives and adverbs in natural 

languages, that which is used by ordinary people on a daily basis, represent 

information with vague meaning. 

For example, in the sentence: 
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"John has a slight fever" 一 the adjective 'slight' is vague in natural and 

we call this sentence contains imprecise information. 

2.1.2 Probability Based Reasoning 

As discussed in Section 2.1.1. Uncertain knowledge is typical in the medical 

domain, as well as most other judgement domains: laws, business, design, 

automobile repair, and so on. The agent's knowledge can at best provide only 

a degree of belief in the relevant sentences. One main tool for dealing with 

degrees of belief is probability theory, which assigns a numerical degree of belief 

between 0 to 1 to sentences. Probability provides a way of summarizing the 

uncertainty that comes from our laziness and ignorance. And the probability, 

that an agent assigns to a proposition depends on the percepts that is has 

received, is called evidence. 

Basic Probability Theory 

It is normal to use a small set of axioms that constrain the probability assign-

ments that an agent can make to a set of propositions. There are three most 

importance axioms: 

1. All probabilities are between 0 and 1. 

0 < P{A) < 1 (2.1) 

2. Necessarily true (i.e. valid) propositions have probability 1, and neces-

sarily false (i.e. unsatisfiable) propositions have probability 0. 

PiTrue) = 1 P [False) = 0 (2.2) 

3. The probability of a disjunction is given by 

P{A V B) 二 P(.4) + P{B) - A B) (2.3) 
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A and B are called random variables which are propositions including equal-

ities. The first two axioms serve to define the probability scale. Altogether 

with the third axiom, we can derive all other properties of probabilities. 

One of the most important results of the probability theory is Bayes，theo-

rem. Bayes' results provide a way of computing the probability of a hypothesis 

following from a particular piece of evidence, given only the probabilities with 

which the evidence follows from actual causes (hypothesis). Bayes' theorem 

states: 

• � = ( 2 . 4 ) 

Where: 

P{A) and P{B) are the unconditional or prior probabilities that the 

proposition A and B is true respectively. 

P{A\B) and P{B\A) are the conditional or posterior probabilities. 

P{A\B) is read as "the probability of A given that all we know is B.,, Vice 

versa. 

On the surface, Bayes' rules in (2.4) does not seem very useful. It requires 

three terms — a posterior probability and two prior probabilities 一 just to 

compute one posterior probability. However, Bayes' rule is very useful in prac-

tice because there are many cases where we do have good probability estimates 

for these three numbers and need to compute the fourth. As in the medical 

diagnosis task, we often have posterior probabilities on causal relationships 

and want to derive a diagnosis. 

There are two main assumptions for the use of (2.4): 1. All P(A)^ P[B) 

and P{A\B) are known. 2. P{A\B) is independent of the changes in P{A) 

and P{B). Actually, these two assumptions, especially the second one, are 

difficult to satisfy. In general, and especially in areas such as medicine, such 

assumption of independence cannot be justified. However, if these assumptions 

are met, Bayesian approaches offer the benefit of a mathematically well founded 
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and statistically correct handling of uncertainty. 

Bayesian Network 

A Bayesian network, which is the same as belief network, probabilis-

tic network, causal network and knowledge map, is a data structure used 

to represent the dependence between random variables and to give a concise 

specification of the joint probability distribution. A Bayesian network is a 

graph in which the following holds: 

1. A set of random variables makes up the nodes of the network. 

2. A set of directed links or arrows connects pairs of nodes. The intuitive 

meaning of an arrow from node X to node Y is that X has a direct 

influence on Y. 

3. Each node has a conditional probability table that quantifies the effects 

that the parents have on the node. The parents of a node are all those 

nodes that have arrows pointing to it. 

4. The graph has no directed cycles (it is a directed, acyclic graph, or DAG) 

The use of Bayesian network has shown up in several areas of AI research, 

including pattern recognition and classification problems. The first expert 

system using Bayesian networks was CONVINCE [1]. More recent related 

system includes the PATHFINDER system for pathology analysis [2 . 

Bayesian network helps us to capture uncertain knowledge in a natural and 

efficient way. Unfortunately, it cannot handle imprecise information. Also, 

many system domains do not meet the assumptions of Bayes' rule and must 

reply on more heuristic approaches. 
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2.1.3 Certainty Factor Algebra 

The problems in the application of Bayes' rule led researchers to search for 

other measures of “confidence”. Probably the most important alternative ap-

proach was the Certainty Factor Algebra. Certainty factors were invented 

for use in the medical expert system M Y C I N [3], which was intended both as 

an engineering solution and as a model of human judgement under uncertainty. 

Certainty theory is based on a number of observations. The most impor-

tant one is that, in traditional probability theory the sum of confidence for a 

proposition and confidence against the same proposition must add to 1. How-

ever, it is often the case that an expert might have confidence 0.8 (say) that 

a proposition is true and have no feeling about it being not true. The case is 

best described by the measure of belief [MB) and measure of disbelief 

(MD): 

either : 1 > MB(H) > 0 while MD[H) 二 0 

or : 1 > MD[H) > 0 while MD{H) 二（） 

The two measures constrain each other in that a given piece of evidence is ei-

ther for or against a particular hypothesis ( / / ) . This is an import ant difference 

between certainty theory and probability theory. Once the link betwcH î mea-

sures of belief and disbelief has been established, thov may bo ti(�d together 

again with the certainty factor calculation: 

CF{H) 二 MB[H) — MD[U) (2.5) 

As the certainty factor [CF) appmachrs 1, th(�rvidrmM�is strongrr for a 

hypothesis; as C F approaches —1, tlio rvi(l(�n(.r against the hypothesis gets 

stronger; and a C F aroiiiul 0 indicaios that litth^ cvidciicc exists fithcr for or 

against the hypothesis. 

The certainty theory can he formally applied in rule-hasrjl systnrns. Iii 

which each premise can bo associated with a CF. When wc logically combino 
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two premises by 八（logical and) or V (logical or) operations, the CF of the 

premises are combined to produce a CF for the overall premise in the following 

manner: 

For premises P I and P2, 

CF(P1 A P2) = rnMCF�Pl), CF{P2)) 

V P2) 二 ma:r(CF(PVj,CF(P2yj 

The combined CF of the premises is then multiplied by the CF of the ruletogettheCF 

of the conclusion of the rule. For instance: 

P I ( f iF = 0.6) 

P2 {CF 二 0.4) 

P3 {CF = 0.2) 

i f (PI A P2�V P3 then R {CF 二 0.7) 

Then we get the conclusion: 

R {CF = 0.28 二 0.7 X max{inin{0.6, 0.4), 0.2)) 

Now suppose another rule fire the same conclusion R with CF 二 0.3, the two 

C F are combined to give an overall estimate of the certainty following the 

calculations: 
/ 

CTi + CFo - (CFi X CFo) : CF] and CF? arc +ve 

CF = CFi + CF‘2 + (CFi X CF2) : CP] and CF: are -ve (2.G) 

�1-"二1(：;/‘〒丨’「。厂2丨) • Otherwise 
Finally, the combined certainty of /? is iiicroased: 

CF = 0.3 + 0.28 — (0.3 x 0.28) 二 0.490 

The certainty factor approach is criticized, as it is not as rigorously founclofl 

as ill formally probability theory. However, it does not reciuire a large voluiiin 

of statistical data and could be used in many domain areas. So. it is widclv 

adapted in many expert systems. 
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2.1.4 Fuzzy Logic 

The classical Boolean Logic is short in accurate modeling of real life prob-

lems, as it cannot handle imprecision and uncertainty information. Early in 

1920, Lukasiewicz, who was an Ireland mathematician, developed the Three-

valved Propositional Calculus and worked on Many-valued Logics. 

Consequently, many mathematics theories were developed fro the tolerance 

of imprecision and uncertainty in the past few decades. 

The basic idea of many-valued logic has been explored to some extent by 

a number of mathematicians in the past century, but the real breakthrough 

was made by Prof. Lotfi Zadeh. In 1965, he published a paper of the theory 

of Fuzzy Sets [4]. Unlike the certainty algebra or the Bayesian network, 

which require knowledge to be represented in specific forms (production rules 

or network, respectively), fuzzy set theory is an extension of the original set 

theory. So that, fuzzy set theory can be used in a large variety of applications. 

Our system, FF99, cites fuzzy set theory in knowledge representation. A more 

complete review of related elements in fuzzy logic is given in Section 2.4. 

2.2 Machine Learning Paradigms 

Machine learning (ML) is important for practical applications of artificial in-

telligence. Traditionally, it is used to tackle the "knowledge engineering bottle-

neck" ,which is the major obstacle to the widespread use of expert systems [5 . 

And now, machine learning is applied in more domains such as data mining 

and control systems. This subsection generally discusses the nature and differ-

ence between various machine learning paradigms, particularly the way they 

capture the knowledge and the way they search through the solution space. 
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2.2.1 Classifications 

Any machine learning method belongs to either the class of supervised learn-

ing or the class of unsupervised learning. The reliance of training instances 

of known classification defines the task of supervised learning. While unsuper-

vised learning addresses how an intelligent agent can acquire useful knowledge 

in the absence of artificially classified training data. Regression, category for-

mation, and conceptual clustering are fundamental problems in unsupervised 

learning. 

Supervised learning systems can be categorized into knowledge-based 

system or non know ledge-based system. The former approach models 

learning as the acquisition of explicitly represented domain knowledge. Based 

on its experience, the learner constructs or modifies expressions in a formal 

language, such as propositional logic, and retains this knowledge for future 

use. In contrast, learning in Bayesian network or neural network do not acquire 

knowledge (the learned information) in a symbolic language. 

Among the supervised learning methods, some of them study learning with 

an emphasis on inductive inference and other are primarily interested in de-

ductive inference. Using inductive inference, general conclusions are drawn 

on the basis of some particular examples. On the other hand, in deductive 

inference, the conclusions follow necessarily from the axioms according to spec-

ified rules of inference. Generally, inductive inference relies on large number 

of examples to define the essential properties of a general concept. Algorithms 

that generalize on the basis of patterns in training data are referred to as 

similarity-hased. In contrast to similarity-based methods, explanation-

based methods use prior knowledge of the domain to guide generalization. 

The explanation-based learning (EBL) makes use of deductive inference. It 

uses an explicitly represented domain theory to construct an explanation the 

training examples; in which the explanation usually proves that the training 
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examples follows the theory logically. By generalizing from the explanation 

of the instances, rather than from the instances themselves, EBL organizes 

training data into a systemic and coherent structure. Mitchell [6] developed 

Explanation-Based Generalization algorithm, while DeJong and Mooney [7 

developed a variation of EBL in 1986. 

2.2.2 Neural Networks and Gradient Descent 

We know that a brain can perform a complex task 一 recognize a face, for 

example 一 in less than a second. We also know that a serial computer requires 

ten (or even thousand) times of operation to perform the same task. Altogether 

with other advantages of brain such as fault tolerance and the highly adaptive 

learning ability, computer scientists were motivated to imitate the brain using 

computers. Neural network is such a mathematical model of the operation of 

brain. 

Basic Concepts 

A neural network is composed of a number of nodes, connected by links, 

in which the nodes and links model the neurons and nerve fibers in brain 

respectively. Each link has a numeric weight associated with it. Weights 

are the primary means of long term storage in neural networks, and learning 

usually takes place by updating the weights. Some of the units are connected to 

the external environment, and can be designated as input or output nodes. 

The weighted are modified so as to try to optimize the performance of the whole 

input/output blackbox as in Fig. 2.1. Each node has a set of input links from 

other nodes, a set of output links to other nodes, a current activation level, 

and a means of computing the activation level at the next cycle. Fig. 2.2 

shows a typical node. Each node performs a simple computation: it receives 

signals from its input links and computes a new activation level that it sends 
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links 、 、、广 ~ ^ 

INPUTS ^ ^ C Z J i r OUTPUTS 

input nodes hidden nodes output nodes 

Figure 2.1: Neural network as a blackbox of inputs/outputs mapping 

along each of its output links. The computation involves two components. 

First is the input function that computes the weighted sum of the node's input 

values. Second is the activation function, g, that transforms the weighted 

sum into the output activation value, â , in next cycle: 

X CH (2.7) 
j 

activation level of node j 
^ activation level of 
''Inode / in next cycle 

( Input I Activation \ 
^ Function j Function I ^ ^ 

input links j J ^^^^^ 
I output links 

node i 

Figure 2.2: A node consists of an input function and an activation function 

Note that the input function is linear while the activation function is normally 

non-linear. Some basic choices of the activation function are the step function 

and the sigmoid function. 
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Learning Mechanisms 

There are a variety of kinds of network structure, each of which results in 

very different computational properties. The main distinction to be made is 

between feed-forward and recurrent networks. 

A feed-forward network is a direct acyclic graph (DAG) and usually it is 

arranged in layers. In a layered feed-forward network, each node is linked only 

to nodes in the next layer, none in another layers. Because of the lack of cyclic 

network path, the activation from the previous time step plays no part in the 

computation. Hence, a feed-forward network simply computes a function of 

the input values that depends on the weight settings一it has no internal states 

(short term memory) other than the weights themselves. 

Obviously, the brain cannot be a feed-forward network, else we would have 

no short-term memory. In other words, the brain is a "recurrent network". 

Because the activation is somehow fed back to the units that caused it, recur-

rent networks have internal state stored in the activation levels of the nodes. 

It results in a less orderly computation compared with that of feed-forward 

network. Unfortunately, recurrent network can become unstable, or oscillate; 

given some input value, it can take a long time to compute a stable output 

and learning is made more difficult. 

Layered feed-forward networks were first studied in the late 1950s under 

the name perceptrons. Perceptron is a very simple neural network with one 

input layer, one output layer and no hidden layers. This makes the learning 

problem much simpler, but it also limit what kind of function it can represent. 

The publication of Perceptrons [8] marked the end of the era of early neu-

ral network research, as it proved that a perceptron algorithm can learn any 

linearly separable function, given enough training examples. Unfortunately, 

the book also proved that a perceptron cannot learn non-linearly separable 

function. 



Chapter 2 Literature Revicu) 18 

Neural networks with one or more layers of hidden units are called multi-

layer networks. A multilayer network, which has one (sufficiently large) layer 

of hidden units, is able to represent any continuous function (linear or non-

linear) of inputs; it is even able to represent discontinuous functions if it has 

two sufficiently large hidden layers. 

By using the perceptron learning rule, the weights in a perceptron can 

be modified to fit any linearly separable data. While the multilayer feed-

forward network uses the back-propagation learning algorithm to fit the 

data. The back-propagation learning algorithm was first invented in 1969, but 

was not popularized until 1986 [9]. In the terminology of machine learning, 

both learning algorithm are performing gradient descent in weight spaces. 

Gradient Descent 

Gradient descent and hill-climbing are in the class of iterative improve-

ment algorithms. The general idea is to start the searching with a complete 

configuration and to make modifications to improve its quality in each iter-

ation. In contrast with the common search algorithms for a chess playing 

problem, an iterative improvement algorithm does not maintain a search tree. 

It is particularly suitable for the problem having the property that the state 

description itself contains all the information needed for a solution; and the 

path by which the solution is reached is irrelevant, e.g. the 8-QUEENS problem. 

Gradient descent (or, alternatively, hill-climbing if the evaluation function 

is viewed as a quality rather than a cost) is simply a loot that continually 

moves in the direction of decreasing cost. The algorithm does not maintain a 

search tree, so the data structure need only record the state and its evaluation. 

Two main components involved in a gradient descent are: 

1. A cost function defined on the space of states. 

2. A gradient estimation function. 
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Figure 2.3: The cost function of a gradient descent 

Backpropagation is a perfect example of the gradient descent. In the case, 

the gradient is on the error surface in the weight space: the surface that 

describes the error on each examples as a function of all the weights in the 

neural network. The key importance of backpropagation is that: it provides a 

way of dividing the calculation of the gradient among the nodes, so the change 

in each weight can be calculated by the corresponding node (by a partial 

derivative), using only local information. 

Pros and Cons 

To conclude, we first point out the pros of using neural networks: 

• Neural networks (multilayer) are capable to represent any continuous 

function and Boolean function, given enough layers and nodes. In par-

ticular, to represent all Boolean functions of n inputs, 2^/n hidden units 

are needed. 
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• They are an attributed-based representation and are well-suited for con-

tinuous inputs and outputs, unlike most decision trees. 

• In general, they are effective in learning a "acceptable" solution. If there 

are m training examples and w weights, each epoch only takes 0{mw) 

time; despite that the worst-case number of epochs can be exponential 

in n, the number of inputs. 

• They provide a good generalization from the training data. 

• They are essentially doing nonlinear regression, so they are very tolerant 

of noise in the input data. 

However, neural networks using backpropagation inherit the weakness of gra-

dient descent. As in Fig. 2.3, we see the gradient descent policy has three 

well-known drawbacks [10]: 

• Local minima: it is a valley, e.g. A or C, that is higher than the global 

minima, i.e. the lowest valley D, in the whole state space. Once the 

algorithm reach the local minima, it is trapped even though the solution 

may be far away from satisfactory. 

• Plateau: it is an area of the state space where the cost function is 

basically flat, e.g. B. The search may conduct a random walk here. 

• Valley: it may have steeply sloping sides, so that the search reaches the 

bottom easily, but the bottom may slope only very gently toward the 

foot. The search may result in oscillations. 

Moreover, all neural networks suffer the common problems: 

• They do not have the expressive power of general logical representations, 

e.g. rule-based systems and decision trees. With decision trees and other 

logical representations, the result can be interpreted by human beings; 

while it is possible with neural networks. 
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• Neural networks are essentially black boxes and lack transparency. Even 

if the network gives good experiment results and predicts new cases well, 

many users will still be dissatisfied because they will have no idea why a 

given output value is reasonable. 

• Designing a "good" or "perfect" topology for a neural network is still 

under research. 

• Neural networks have no means to provide the degree of certainty in their 

output values. 

• Because of the lack of transparence, it is hard to improve the performance 

of neural networks by prior knowledge, 

2.3 Related Learning Systems 

This section reviews two kinds of learning systems which are related in this re-

search, namely relational concept learning and learning of fuzzy concepts. This 

is no existing method available in literature to combine the learning of rela-

tional and fuzzy concepts, the possible difficulties will be discussed in Section 

5.2. 

2.3.1 Relational Concept Learning 

Since the late 1980s, there had been increasing interest in systems which induce 

first order logic programs from examples. However, many difficulties need to be 

overcome. By that time, many well-known algorithm failed to discover correct 

logical descriptions for large classes of interesting predicates, due either to the 

intractability of search or overly strong limitations applied to the hypothesis 

space. Quinlan's FOIL [11] and Muggleton's G O L E M [12] were the first two 

successful algorithms to get around the problem. 
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The main difference between those systems is that FOIL employs induc-

tive inference while G O L E M makes use of deductive inference (please read 

Section 2.2.1). Particularly, G O L E M avoids searching by using the relative 

least general generalization; the search of logic program is replaced by the pro-

cess of constructing a unique clause which covers a set of examples relative to 

given background knowledge. 

However, this setting can be hardly modified to learn fuzzy logic pro-

gram. On the other hand, FOIL guides the hill-climbing search by using 

an information-based heuristic, which will be replaced by other heuristics for 

inducing fuzzy logic programs. So that, here we give an overview of FOIL and 

its development. 

Overview of the original FOIL 

In a nutshell, the original FOIL [11] is a system for learning function-free Horn 

clause definitions of a relation in terms of itself and other relations. 

f o i l ' s input consists of information about the relations, one of which (the 

target relation) is to be defined by a Horn clause program. For each relation 

it is given a set of tuples of constants that belongs to the relation. For the 

target relation it might also be given tuples that are known not to belong 

to the relation; alternatively, the closed world assumption may be invoked to 

state that no tuples, other that those specified, belong to the target relation. 

Tuples known to be in the target relation will be referred to as © tuples and 

those not in the relation as 0 tuples. The learning task is then to find a set 

of clauses for the target relation that accounts for all the � tuples while not 

covering any of the © tuples. 

The basic approach used by FOIL is an AQ-like covering algorithm [13]. It 

starts with a training set containing all © and © tuples, constructs a function-

free Horn clause to 'explain' some of the © tuples, removes the covered � 

tuples from the training set, and continues with the search for the next clause. 
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When clauses covering all the 0 tuples have been found, they are reviewed to 

eliminate any redundant clauses and reordered so that any recursive clauses 

come after the non-recursive base cases. 

Perfect definitions that exactly match the data are not always possible, 

particularly in real-world situations where incorrect values and missing tuples 

are to be expected. To get around this problem, FOIL uses encoding-length 

heuristics to limit the complexity of clauses and programs. The final clauses 

may cover most (rather than all) of the 0 tuples while covering few (rather 

than none) of the © tuples. 

FOCL and the Development of FOIL 

Pazzani and Kibler developed FOCL [14] to extend the original FOIL in 

a variety of ways. Each of these extensions affects only how FOCL selects 

literals to test while extending a (possibly empty) clause under construction. 

The following extensions allow FOCL to use domain knowledge to guide the 

learning process: 

1. Using theoretical constants to limit the search space. 

2. Using intensionally defined predicates (i.e., predicated defined by a rule 

instead of a collection of examples) in a manner similar to the exten-

sionally defined predicates in FOIL. A collection of intensionally defined 

predicates is identical to the domain theory of EBL. 

3. Accepting input as a partial, possibly incorrect rule that is an initial 

approximation of the predicate to be learned. 

The report in [15] summarized the development of FOIL from 1989 up to 

1993. FOIL borrowed the idea of determinate terms and variable depth 

from G O L E M to enhance pruning. The improved FOIL also accepted further 

literal forms, in such a way that a theory constant can appear explicitly in 
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a definition (as in FOCL) and a numeric variable is allowed. The aug-

mentation of FOIL to handle data with continuous variables and data with 

missing values enables it to be applied to a wider range of problems, including 

conventional attribute-value classification problem, which is described in [16'. 

The latest implementation of FOIL (version 6.4), which was published in 

1996, basically includes all the features proposed by the several successor of the 

original FOIL. This version is always available at the URL: http://www.cse.unsw.edu.au/ quin-

lan/foil6.sh . 

2.3.2 Learning of Fuzzy Concepts 

The induction of fuzzy modules from a set of input-output examples (a zeroth 

order dataset) has been widely discussed. The methods differentiate in the way 

they represent the knowledge and most importantly, the way they learn. There 

is no authoritative paper in this field, probably because the fuzzy set theory 

is not defined that clearly compared with the classical set theory; there are 

always alternatives in the fuzzification process, in the composition of degree 

of memberships, in the interpretation of fuzzy inference, etc. And the systems 

are normally problem-specific, yet are not general learning algorithms. Here I 

highlight some of the representative fuzzy learning methods. 

Use of Linguistic Quantifiers 

An approach to inductive learning under imprecision and errors is proposed in 

17]. It is the first inductive learning system to apply the concepts of "linguistic 

quantifiers" (please refer to Section 2.4.5) and "fuzzy covering". For the 

latter concept, the system assume that the classification into the positive and 

negative examples is to a degree (of positiveness and negativeness) between 0 

and 1. The algorithm use a linear procedure to generate a "typoid", which 

represents the conjunction of selectors that would produce the "most positive" 

http://www.cse.unsw.edu.au/
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output. It iteratively pick up the selectors in the typoid to generate a most 

appropriate clause. The paper claims that the algorithm is in general very 

effective and efficient in practice. 

However, the grade of positiveness and negativeness of each example should 

be given explicitly beforehand. This shortcoming restricts the system to use 

practical dataset, where no degree of positiveness or negativeness will be given. 

Anyway, the generalization of the covering concept is highly related to our 

research and we will discuss it in deep in Chapter 5. 

Modification of A Q 

The F A Q R algorithm [18] induce fuzzy linguistic rules to solve the parallel 

loop scheduling problem. It generalizes the A Q algorithm [13], which performs 

a heuristic search through the hypothesis space to determine the descriptions 

that account for all positive instances and no negative instances (almostly). 

A Q processes the training instances in stages; each stage generates a single 

rule, and then removes the instances it covers from the training set. The step is 

repeated until enough rules have been found to cover (almost) all the instance 

of the chosen class. Note that AQ is also the underlying concept for the FOIL 

algorithm. 

FILSMR [19] use a similar algorithm with FAQR. But it uses the "a-

covering" concept, i.e. a predefined significant level a (say, 0.5), is used to 

determine an example is a-covered or not. This approach is simple yet in 

some sense it is a still a crisp classification system. 

FAQR generalizes the "covering" concept in AQ to the "fuzzy covering" 

concept as in [17]. FAQR claims that it performs more accurately than other 

crisp learning algorithms through the iris experiment. 
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Information-theoretic Approach 

20] generates a very specific rule for each example. Then it generates the rule 

set by produce fuzzy sets to conclude the variable content across the rules. It 

is in fact an adaptive fuzzification process. In the pruning stage, the system 

evaluates each rule by the J-measure [21]. The method is successfully applied 

to a vehicle control system experiment. 

Other Approaches 

Some of the other approaches include induction of fuzzy decision-trees instead 

of fuzzy ruleset. And some other non-inductive learning methods are also 

proposed, e.g. the use of belief-network, neural network or genetic algorithm, 

which are out of our scope of interest. 

2.4 Fuzzy Logic 

Fuzzy logic, or interchangeably referred to as fuzzy set theory, had it's formal 

start in 1965 when Lotfi Zadeh published his innovating paper "Fuzzy Sets" [4 . 

Since then it has been infiltrating in almost all branches of pure and applied 

mathematics that are set theory-based, and resulted in a vast number of real 

applications crossing over a broad range of domains and disciplines [22]. An 

extensive survey in fuzzy systems is given in [23 . 

In this section, we will introduce the basic concepts of fuzzy logic that are of 

interest or relevance to the discussions of successive sections. Specificially, Sec-

tion 2.4.1 describes the definition of fuzzy sets. Section 2.4.2 and Section 

2.4.3 discuss some of the related notations and operations. While in Section 

2.4.4, fuzzy relations are introduced. Finally, Section 2.4.5 describes the 

fuzzy first-order logic and the development of fuzzy Prolog. 
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2.4.1 Fuzzy Set 

A fuzzy set is a generalization of an ordinary (non-fuzzy) set. Formally, let 

U be the universe of discourse, a fuzzy set F on [/ is characterized by 

a membership function fip • U [0,1]，which associates each element 

u ^U with a number /j.f{u) representing the grade of membership of u in F. 

Symbolically, 

^ - j (2.8) 
u 

or 

F = IJ^F{u)/u\u G U (2.9) 

As in (2.8), fipiu) = 0 means non-membership, fipiu) = 1 means full mem-

bership, while 0 < fiF{u) < 1 means partial membership. In general, a fuzzy 

set is assumed to be imbedded in a nonfuzzy universe of discourse, which may 

be any collection of objects, concepts (discrete), or mathematical constructs 

(discrete or continuous). One of the main contributions of fuzzy logic is a 

methodology for computing with words and no other methodology serves this 

purpose [?], i.e. fuzzy sets can represent the semantics of linguistic terms. In 

such cases, the fuzzy sets are referred as linguistic variables, which are applied 

in the modeling of concepts. 

In the example shown in Fig. 2.4, Age (0 to 90) is the universe of discourse 

of the three fuzzy sets (or the three linguistic variables): Young, Middle—aged 

and Old. For instance, at the age 25, /HYoung购 ~ 0.84 > JĴ Middle.aged(25) ^ 

0.17, which is interpreted as "People of age 25 are more likely considered to be 

young rather than to be middle-aged". 

To simply the representation of finite fuzzy subsets, the notation "+" can 

be extended to play the role of union rather than the arithmetic sum. That 

is, a finite fuzzy set F oiU = {ui,..., Un} is expressed as the linear form 

F = / i l M + . . . + fln/Un (2.10) 
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Figure 2.4: Universe of discourse and fuzzy sets or 

n 

F 二 YlMjui (2.11) 
i=l 

where /i ,̂ z = 1 , . . . n, is the grade of membership of Ui in F. The notation “/’， 

is the separator symbol for disambiguation in case that the Ui are numbers. 

Note that any ordinary set, which does not support the concept of partial 

membership, is just a special case of fuzzy sets. In such a way, fuzzy set theory 

extends the ordinary set theory, and the operations on fuzzy sets should be 

consistent with the corresponding operations on ordinary sets. The following 

sub-sections list the notations and operations of fuzzy sets which are related 

to FF99. 
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2.4.2 Basic Notations in Fuzzy Logic 

Let U be an ordinary set and A be a fuzzy set on U with the membership 

function j iA'-U [0,1], then: 

• The set of the elements that have non-zero degrees of membership in A 

is called the support of A, denoted by supp{A): 

supp(A) = {lA I ti e and /2A(u) = 1} (2.12) 

• The set of the elements whose degrees of membership in A are greater 

(at least equal to) a, where 0 < a < 1 (0 < a < 1), is called the strong 

(weak) a-level-set of A, denoted by Aa+{Aa): 

= {^x I e [7 a n d LLA(U) > a } , 
(2.13) 

Ac — {u \ u e U and /j.A{u) < o }̂ 

• The height of a fuzzy set A on U is defined as: 

height{A) = sup IIA{U) (2.14) 
ueu 

• The plinth of a fuzzy set A on U is defined as: 

plinth{A) = inf IIA{U) (2.15) 
ueu 

2.4.3 Basic Operations on Fuzzy Sets 

Zadeh's original extension of the classical set union, intersection and comple-

mentation are based Morgon on soft algebra. Let A and B be fuzzy sets on 

the same universe U with the membership functions /i^ and /i^ respectively, 

then 
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Intersection:义 U B is the fuzzy set respresenting the intersection of A and 

B with the membership function: 

^UEU , FLAUB(U) = /M(U) t /LLB(U) (2.16) 

where t : [0,1] x [0,1] — [0,1] is the so-called t-norm defined as, for 

each a, b,c,de [0,1]: 

1. a t 1 = a 

2. a t b = b t a 

3. atb>ctdifa>c,b>d 

4. atbtc = at{btc)=^{atb)tc 

Some examples of t-norms are: a f\\) 二 min(a,b), which is the most 

commonly used, ab, and 1 - (1 A ((1 - a)P + (1 — 6广)i"，p > 1. 

The intersection operation represents the logical AND of the concepts 

modeled by the corresponding fuzzy sets. 

Union: Au B is the fuzzy set representing the union of A and B with the 

membership function: 

y u e U , fMuB(u) = fiA{u) s (2.17) 

where s : [0,1] x [0,1] -> [0，1] is the so-called s-norm (t-conorm) 

defined as, for each a, 6，c, c? G [0,1]: 

1. a s 0 = a 

2. a s b = b s a 

3. asb>csdifa>c,b>d 

4. asbsc = as{bsc) = {asb)sc 
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Some examples of s-norms are: aW b = max {a, 6), which the the most 

commonly used, a + 6 - and 1 A (a^ + � 1 . 

The union operation represents the logical OR of the concepts modeled 

by the corresponding fuzzy sets. 

Complementation: A is the fuzzy set respresenting the complementation of 

A with the membership function: 

W e t / , = 1 - fiA{u) (2.18) 

The complementation operation represents the logical NOT of the concept 

modeled by the fuzzy set. 

2.4.4 Fuzzy Relations, Projection and Cylindrical Ex-

tension 

Fuzzy Relations 

According to the original definition in [4]: If U is the Cartesian product of 

n universes of discourse Uu . . . , Un, then an n-ary fuzzy relation, R, in U 

is a fuzzy subset of U. As in (2.8)，R may be expressed as the union of its 

constituent singletons / / " ( " i , . . .，?“,）/("i,.. ., i.o., 

^ - J " / { " I ’ .. • ， . •., "n) (2.19) 
U\ X …XUN 

where is the membership function of R. 

A binary fuzzy relation is th(�most frccjiiontly used fuzzy relation. 

Common examples of biimiy fuzzy rolat ioii indudrs: much_greater_than, ami 

close—to. For example, if Ti = L'o = ( — o c ) . tho rrlation close—to may be 

defined by 

i^close.to = J 
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We can visualize close一to by plotting the two-dimensional membership func-

tion in Fig. 2.5. 

V̂w . . . . 

U2 0 0 u1 

Figure 2.5: 3D Visualization of /̂ ciose to(以i,以2) 

Some operations on fuzzy relations are just the trivial extensions of the 

corresponding operations on fuzzy sets. Such operations include union, inter-

section and complementation as mentioned in Section 2.4.3. However, there 

are some operations, e.g. projection and cylindrical extension, are defined 

solely on fuzzy relations but not on fuzzy sets. They will be discussed as they 

are closely related to the research of this thesis. 

Projection 

If R is an n-ary fuzzy relation in x .. • x 队，then its projection (also called 

shadow or marginal fuzzy restriction) on Ui^ x …x 仏& is a k-sny fuzzy 
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Ul 
1 I 2 I 3 I 4 

1 0.8 1.0— 
U2 2 T " ~ Q X Q " W 

3 ~0 0 

4 I 0 I 0 I 0 I 0 

Table 2.1: Binary fuzzy relation R 

relation Rg in U which is defined by 

^ g - J ( V "咖,….，〜))/(、...,叫 J (2.20) 
Ui�…xUij^ 

where q is the index sequence ( i i , . . . , u(q�= (Ui” ...,u“)； is the com-

plement of q\ and •以(…）is the supremum of …，Un) over the u,s which 

are in u � , i . e . 

l̂ Rqî Ui” …，UiJ = sup flR{uu...,Un) (2.21) 

J. = 1，…，/c 

To illustrate the situation, if = = 1 + 2 + 3 + 4 and the binary fuzzy 

relation R is defined by the Table 2.1. Then the corresponding projection of 

R onto Ul and U2 are namely Ri and R2： 

Ri = 0.0/1 + 0.9/2 + 0.8/3 + 1.0/4 

and 

R2 = 1.0/1 + 0.9/2 + 0.3/3 + 0.0/4 

Cylindrical Extension 

It is clear that distinct fuzzy relations in Ui x - - • x Un can have identical 

projections on x • • • x Uî . However, given a fuzzy relation in t/” x . . . x 

Uik, there exists a unique largest relation Rq in Ui x • - • x Un whose projection 
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I • 
1 I 2 3 I 4" 

I 1 I 0.9 0.8 1.0 
U2 2 " F 0.9 0.8 LQ~ 

4 I 0 I 0.9 I 0.8 I l.Q-

Table 2.2: Cylindrical extension of Ri 

Ul 

1 2 3 I 4~ 
I 1 1.0 1.0 1.0 

U2 2 
一 3 0.3 "0.3 0.3 " o X 

4 I 0 I 0 I 0 I 0— 

Table 2.3: Cylindrical extension of R) 

on t/ii X . •. X Uik is Rq. In consequence of (2.21), the membership function of 

Rq is given by 

巧 X … x Un) = i iRq队 X … X [ / J (2.22) 

In (2.22), Rq is referred 

as the cylindrical extension of Rq, with Rg consti-

tuting the base of Rq. 

Following the previous example of R as described in Table 2.1, the cylin-

drical extensions of the Ri and R2 are as Table 2.2 and Table 2.3 respectively. 

2.4.5 Fuzzy First Order Logic and Fuzzy Prolog 

In this section, we examine fuzzy first-order logic and fuzzy Prolog. Respec-

tively, we first discuss the properties of the classical first-order logic and Prolog, 

then we step forward to combine fuzzy logic with them. 
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Fuzzy First-Order Logic 

In propositional logic, symbols represent the whole propositions (facts); 

for example, A might have the interpretation "the wumpus is dead." which 

may or may not be a true proposition. Proposition symbols can be combined 

be combined using Boolean connectives to generate sentences with more 

complex meanings. Such a logic makes very little commitment to how things 

are represented,so it is not surprising that it does not give us much mileage as 

a representation language. 

First-order logic commits to the representation of worlds in terms of objects 

and predicates on objects, which are the properties of objects or relations 

between objects. It uses connectvies and quantifiers, which allow sentences 

to be written about everything in the universe at once. First-order logic is able 

to capture a good deal of what we know about the world, and has studied for 

about a hundred years. 

To make the difference less abstract, we illustrate it the following sentences: 

1. Mary is the mother of Peter. 

2. John is the father of Peter. 

3. IF Mary is the mother of Peter AND John is the father of Peter 

THEN John is the husband of Mary. 

In propositional logic, sentence 1 and 2 are called the atomic sentence, which 

could be evaluated to be True or False. While sentence 3 is called the rule, 

which is one type of complex sentence. And that's all: what we could only 

do is to evaluate the truth value of the atomic sentences and use propositional 

inference (in specific, by Modus Ponens) to get the truth value of the rule. 

On the other hand, in first-order logic, we identify "mother", "father" and 

"husband" as relations, while "Mary", "John" and "Peter" are called the 

constants. Sentences 1 and 2 form two predicates, while sentence 3 uses 
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Sentence AtomicSentence | ComplexSentence 

AtomicSentence True | False 
I Mary is the mother of Peter 
I John is the father of Peter 
I John is the husband of Mary | ... 

ComplexSentence (Sentence) 
I Sentence Connective Sentence 
I - > Sentence (NOT) 

Connective 八 � A m � | V {OR) | {EQUIVALENT) | �{IMPLY) 

Table 2.4: A BNF grammer of sentences in prepositional logic 

connectives to link up the predicates. They are re-written in first-order logic 

language as : 

1. mother(Mary,Peter) 

2. father(John,Peter) 

3. mother(Mary,Peter)八 father(John,Peter) husband(John,Mary) 

As you can see, first-order logic interprets a proposition in the depth of relations 

and the connection between relations. More importantly, for what first-order 

logic superior to prepositional logic, is the use of variables and quantifiers 

enabling us to generalize the concept as: 

V A,B,C mother(A,B) A father(C,B) husband(C,A) 

To summerize, Table 2.4 and Table 2.5 gives the syntax of the two languages 

in BNF (Backus-Naur Form). 

Fuzzy first-order logic enriches first-order logic based on fuzzy logic, which 

can have degrees of truth in a sentence, so that a fact need not to be absolutely 

true or false. However, there is no formal syntax of fuzzy first-order logic 

as it is highly application oriented. For example, different implementation 
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Sentence AtomicSentence 
I Sentence Connective Sentence 
I Quantifier Variable, ... Sentence 
I - n Sentence (NOT) 
\ (Sentence) 

AtomicSentence Predicate (Term, ... ) \ Term=Term 

Term Constant | Variable 

Connective A {AND) | V {OR) | 分 { E Q U I V A L E N T ) | {IMPLY) 

Quantifier V (UNIVERSAL) | 3 (EXISTENTIAL) 

Constant John | Mary | Peter | ... 

Variable | 則（7 | ... 

Predicate mother | father | husband | ... 

Table 2.5: A BNF grammer of sentences in first-order logic 
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of fuzzy Prolog (will be discussed in Section 2.4.5) may accept sentences 

in different syntax of fuzzy first-order logic. As well in inductive learning 

systems, which usually define their own acceptable syntax of fuzzy first-order 

logic. In this thesis, we would define our syntax in Section 3.1. The following 

enhancements of conventional first-order logic are available in the literature of 

fuzzy first-order logic: 

Predicate Fuzzy Predicate : In first-order logic, a predicate symbol ref-

eres to a particular relation in the model. For example, the mother 

symbol might refer to the relation of motherhood, mother is a binary 

predicate symbol, and accordingly motherhood is a relation that holds 

(or fails to hold) between pairs of objects. In any given model, the rela-

tion is defined by the set of tuples of objects that satisfy it. A tuple is 

a collection of objects arranged in a fixed order, e.g. 

mother = {{Mary, Peter), {Susan, Sam)} 

Thus, formally speaking, mother refers to this set of tuples under the 

interpretation we have chosen. On the other way, in fuzzy first-order 

logic, the degree of membership of the particular collection of objects is 

attached in the tuple. One might define the underlying fuzzy relation as 

the form in (2.19), or in form of a set of extended tuples. For example, 

the binary fuzzy predicate f r iend might be defined as: 

f r i end = 0.9/{Thomas, Boho) + ^.2/{Mary, Susan) 

or 

f r i end = {{Thomas, Boho, 0.9), {Mary, Susan, 0.2)} 

In this example, we would get /^friend{Thomas, Boho) 二 0.9 and 

M f r i e n d ( M a r y , Susan) = 0.2 . For the tuples that are not specified in 
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the fuzzy relation set, they might be treated as unknown or with a zero 

degree of truth, depends if the close world assumption is applied or not. 

That is, if the close world assumption is not used, the tuples with zero 

degree of truth should be specified explicitly in the fuzzy relation set, or 

else they will be treated as unknown. 

Connective Fuzzy Connective : The Boolean connectives 八 and V are 

no longer valid in linking fuzzy predicates. Instead, the t-norm and s-

norm operators, as described in Section 2.4.3, are used respectively. 

Most of fuzzy logic are such that implication is Kleen-Diene's, i.e. if the 

antecedent is true to some degree of membership, the n the consequent 

is also true to that same degree. The consequent specifies a fuzzy set be 

assigned to the output. The implication function then modifies that fuzzy 

set to the degree specified by the antecedent. The most common ways 

to modify the output fuzzy set are truncation using the min function or 

scaling using the x function. In some fuzzy Prolog system, such as [24], 

use the Lukasiewicz implication operator defined as : 

a b = min(l — a + b,l) (2.23) 

The Boolean negation operator，is universally changed to be the fuzzy 

complementation as in Section 2.4.3. 

Connecting Fuzzy Predicates in Different Arity : As described before, 

fuzzy connectives are used in fuzzy first-order logic sentences. For some 

cases, that the arity of predicates to be connected are not the same, 

projection or extension have to be processed before the connectives 

are applied. Description of of the projection and the extension processes 

is in Section 2.4.4. For instance, the following sentence which contain 

three fuzzy predicates, all in different arity : 

pl(A,B)Ap2(B,C)=>p3(A,C) 
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Assume that the problem is to find the membership function of the fuzzy 

relation p3, given those from pi and p2，i.e. B) and 

C). First, we have to extend all fuzzy relation to the space {A x 

B) U {B X C) U (A X C) = Ax B X C. In such a way, we produce 

Then, use the min union connective to 

get the extension of fips{A,C): 

f^^iA B, C) 二 min(阳(A, B, C),"碎(A B, C)) 

Finally, the projection is processed to get : 

/ip3(A, C) = sup B, C) 
A,C 

Quantifier Linguistic Quantifier : Zadeh produced the calculus of lin-

guistically quantified propositions in [25]. A linguistically quanti-

fied proposition can be generally written as 

Q y's are F (2.24) 

where Q is a linguistic quantifier (e.g., "most"), Y = {y} is a set of 

objects (e.g., "experts"), and F is a property (e.g., "convinced"). Then 

the proposition represents "most experts are convinced". In Zadeh's 

approach the fuzzy linguistic quantifier Q is assumed to be fuzzy set in 

0,1]. For instance, Q = "most" may be given as 
f 

1 : >0.8 

/imost(ti) = 2 ^ - 0 . 6 : 0.3 < u < 0.8 (2.25) 

0 : < 0.3 

v. 

In some fuzzy first-order logic systems, the universal quantifier V is ex-

tended to the linguistic quantifier V to represent "most" or "almost all". 

For instance, the following sentence 
VX r i c h �今 business(X) 
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Language Ontological Commitment Epistemological Commitment 
(What exists in the world) (What an agent believes) 

Proposition logic Tacts — true/false/unknown 
First-order logic facts,objects,relations true/false/unknown 
Fuzzy logic facts degree of belief 0 . . . 1 / unknown 

i z z y first-order logic facts,objects,relations — degree of belief 0 . . . 1 / unknown 

Table 2.6: Formal logics and their ontological and epsitemological commit-
ments 

describes "most rich people are doing business". 

This linguistic quantifier is used in several fuzzy inductive learning sys-

tems in [17], [19] and [18 . 

Other : Some other fuzzy data mining systems may attached a certainty fac-

tor or a degree of truth in each of the rule to allow fuzziness. However, 

they may be not classified into formal fuzzy first-order logic systems, and 

we just mention them for completeness. 

Table 2.6 summarizes the comparison of different logic languages dis-

cussed. 

Fuzzy Prolog 

Prolog, a programming language based on the first order predicate calculus, 

has been widely used in artificial intelligence research. One of its shortcomings 

is the lack of a natural mechanism to deal with uncertainty. A possible solution 

to this problem is to base Prolog on fuzzy logic rather than on conventional 

two-valued logic. This leads to to a more general system, of which standard 

Prolog is a special case. And the development of fuzzy Prolog systems makes 

fuzzy first-order logic language be a practical language rather than a purely 

research topic. 

Hinde [26] was the first author to incorporate fuzzy expressions into the 
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Prolog language. The translation of English into horn clause format is de-

scribed and is used to illustrate the simplicity of representation using "variable 

functors". Apart from enabling imprecise facts and rules to be expressed, it 

proposes a natural method of controlling the search which makes the search 

tree admissible. 

The F P R O L O G system [27] is a fuzzy Prolog interpreter written in Lisp. 

It is one of the early well-known fuzzy Prolog system as it could be linked 

with the famous FRIL system [28] system developed at Bristol. The main 

novel feature of F P R O L O G is its ability to handle fuzzy facts and process the 

trutli values (the degrees of membership) to produce the overall truth value 

for each solution. When a query is evaluated, F P R O L O G sets an internal 

truth value to 'true'. Each time a fuzzy fact is used to solve a sub-goal, the 

associated truth value is compared to the current internal truth value, which 

is reset when appropriate. By default, the intersection operator is taken as the 

minimum of the two truth values, but the programmer is free to specify any 

combination operator. On backtracking, of course, the internal truth value 

must be restored to its previous value. 

Since that, various approaches of fuzzy Prolog were proposed, though there 

was no common interpretation for fuzzifying Prolog. In [29], from the user's 

side it considered what fuzzy Prolog have to be able to do and it proposed some 

approaches for fuzzifying Prolog which satisfy user's postulates. LBFP [24] is 

a fuzzy Prolog based on these proposals. However, a common interpretation 

of fuzzifying Prolog is still more or less a open research topic. 
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3.1 Knowledge Representation 

This section explains why we choose fuzzy first-order logic as our representation 

language. It also discusses numerous literal forms supported by our system in 

order to represent a large variety of concepts effectively. 

3.1.1 Fuzzy First-order Logic — A Powerful Language 

One major dimension along which to differentiate concept learning systems is 

the complexity of the input and output languages that they employ. At one 

extreme are learning systems that use a propositional attribute-value language 

for describing entities and classification rules. The simplicity of this formalism 

allows such systems to deal with large volumn of data and thus to exploit sta-

tistical properties of collections of examples and counter examples of a concept. 

However, this formalism is simple but limited. As discussed in Section 2.4.5， 

propositional logic gives no commitment in describing concepts in terms of ob-

jects and relations. An object must be specified by its values for a fixed set of 

attributes, and rules must be expressed as functions of these same attributes. 

To see why this presents a problem, consider a domain involving directional 

networks as the one in Fig. 3.1. A similar domain was demonstrated in 

Quinlan's FOIL paper [11] also. 

Figure 3.1: A small network illustrating the limitations of propositional de-
scriptions 

Suppose now we attempt to set down a collection of attributes which is 

sufficient to describe any network. Immediately, we would find that the task 
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is infeasible: as the number of nodes is unlimited and each node could be 

linked to an unlimited number of other nodes, thus the number of attributes 

should be unlimited and cannot be fixed. Even though the description task 

is simplified by restricting networks to a maximum of five nodes, with each 

node connected to at most two others, say. Any such network could then be 

represented in terms of the ten attributes 

attributes Ai, Bi : the nodes to which node 1 is linked 

attributes 召2 : the nodes to which node 2 is linked 

attributes ： the nodes to which node 5 is linked 

and perhaps using a zero to denote "not linked". Now, Fig. 3.1 is described 

by the possible attribute-value set in Table 3.1 

Attribute 
I I 成 I 召2 I 成 I B3 I 乂4 I I 成 " J ^ 

2 3 ~ 3 ~ ~ 0 ~ ~ 4 ~ ~ 0 5 ~ ~ 0 ~ ~ 3 ~ ~ F " 
""3 I 2 I 3 I 0 I 4 I "5 5 0 3 ^ 

Value 1 

| 3 | 2 | 0 | 3 | 0 | 4 | 0 | 5 | 0 | 3 

Table 3.1: The possible attribute-values to describe the network in Fig. 3.1 

The expression of this concept in the above representation is truly horrific. 

It is clear that such a propositional description language flounders when faced 

with complex objects and objects. On the other extreme, structural infor-

mation such as the network can be represented naturally as a collection of 

relations. A relation is associated with a A:-ary predicate and consists of set 

of A;-tuples of constants that satisfy that predicate. For instance, in the above 

network, the predicate linked_topi：, K)，denoting that node X is directly 

linked to node F, can be represented by the relation 

linked_to 二 { � 1 , 2), (1, 3〉，�2, 3),�3,4〉，�4，5),�5，3)} 
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This first-order formalism especially benefits in expressing more complex 

and general concept. Consider the predicate can_reach(X, F) , which denotes 

that node X is directly or indirectly linked to node F, is represented by the 

relation 

can - reach 二{� 1 , 2〉，�1,3� ,�1,4〉，�1，5〉，�2，3� ,�2,4� ,�2, 5〉， 

〈3，4〉,〈3, 5〉,〈4，5〉，〈4，3〉,〈5, 3〉,〈5，4〉} 

This extensional definition of can—reach is applicable to only the given 

network, yet from this relation and the relation linked—to given previously, 

one could write the general definition in first-order logic : 

VX, y, Z l inked_to(X, F) V ( l inked_to(X, Z) A can_reach(Z, Y)) 

can_reach(X, Y) 

which is valid for any network. 

We have demonstrated the power of the first-order language over the propo-

sitional language. Now, we would go one step further to allow fuzzyness in the 

relations, thus the fuzzy first-order logic is chosen to be the language to repre-

sent concepts in this thesis. Fuzzy logic is a superset of the traditional Boolean 

logic. It has a clear advantage over the Boolean logic of expressing human-

like concepts, which are vague in nature. For instance, in a domain involving 

the relationship between the age of people, the concepts much_older_than, 

middle-aged, etc, are all vague. Obviously, they are best described by fuzzy 

logic. Using the fuzzy first-order logic language, we could express them by the 

fuzzy relations (see Section 2 .4 .4 ) : 

much_older_than = { (1,10, 0.0), (1, 30, 0.0), (1, 50, 0.0), (1, 80, 0.0), 

〈10，1，0.5),〈10，30，0.0〉，〈10, 50, 0.0), (10, 80, 0.0), 

〈30，1,1.0),〈30，10, 0.9〉，〈30，50, 0.0〉，〈30, 80, 0.0〉， 

〈50,1，1.0), (50,10,1.0〉，〈50，30, 0.5), (50, 80，0.0), 

〈80，1,1.0),〈80，10,1.0),〈80，30,1.0), (80, 50, 0.9) } 
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middle-aged = { � 1 ’ 0.0〉，�10，0.0〉，�30，1.0〉，�50, 0.9〉，�80, 0 . 0 � } 

and the fuzzy concept "a middle-aged person" could be generally defined as 

VX 3Y, Z much_older_than(y, X)八 irmcli_older_tlian(X, Z) 

� middle_aged(X) 

For more details about the notation of fuzzy relation and the literature 

review on fuzzy logic, please refer to Section 2.4 

This thesis is to learn a concept description C in a special form of the 

fuzzy first-order logic language to describe a target concept T. The concept 

description C is defined as follows: 
( 

C ：一 1̂ 11，丄 12, . . . , Z/ini 

C ：一 丄21,丄22，. . •，丄2712 

< ： (3.1) 

^ ：― ^ml) 7̂712) • • • 5 Lmrim 

in which, each C : 一！^山】,•.., is an extended function-free Horn 

clause. It is interpreted as "if and and . . . and L饥，then C". Formally, 

a Horn clause has the form in first order logic language (see Section 2 .4 .5) : 

� Q (3.2) 

where the Pi and Q are nonnegated atoms. This form of sentence is special 

because it matches the premises of the Modus Ponens rule, which guarantees a 

polynomial-time inference procedure. However, not every knowledge base can 

be written as a collection of Horn clauses. 

As the learned concept description C is not expected to be connected to 

any inference engine, i.e. the fuzzy Prolog systems (see Section 2.4.5), we 

are free to extend the form of Horn clauses, e.g. to allow negated atoms. 

The L" are called the literals, or alternatively the selectors in some 

machine learning literatures. They are expressed in form of fuzzy predicates. 

We will examine all the literal forms in Section 3.1.2, 
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The collection of Horn clauses represents the disjunction of the conjunctions 

of selectors. The concept description C is defined by the membership function 

Mc : 

/^c = Mlu t H , , t . . . t /i丄ini 

s t /i丄22 t . . . t M 丄 ( 3 3) 
S •.. 

S llf t llf t . . . t /if 

where fii.. is the membership function of the projection or the extension of the 

literal Lij in order to match the arity of C. The basic definitions of projection 

and extension are located in Section 2.4.4. The symbol "t" and "s" are the 

t-norm and s-norm operators respectively, they are defined in Section 2.4.3. 

Throughout this thesis, the t-norm and s-norm operators are chosen to be the 

Zadeh's max and min operations respectively. The universal quantifier V is 

taken for granted and is omitted in C. While the projection operation would 

eliminate the existential quantifier, given that the existential variables do not 

appear in the left hand side of C (the consequent part). Note that not all 

sentences can be converted into Horn form. Fortunately, the Horn sentences 

are good enough to deal with most classification and data mining applications. 

To continue the illustration, the concept "middle-aged people" might now 

be expressed as 

middle一agedpO :— much_older_than(r, X ) , much_older_than(X, Z) 

3.1.2 Literal Forms 

We have developed and defined the following literal forms specially for our 

learning system. They are also the literal forms allowed in early version 

of FOIL. We follow the usual Prolog convention of starting variables with 

a capital letter, all other atoms being constants. Predicates are typeset in 

typewriter style. 
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• Fuzzy Predicate 

P04，巧，…，！^ , •••，％) 

where p is a fuzzy relation (where crisp relation is a special case) and the 

T̂ i's are variables.，p = p represents the negation of the fuzzy relation 

p, we have 

/2p = 1 — flp 

as defined already in (2.18). 

At least one of Vi must have occurred already in the clause. For instance, 

suppose we now have a clause 

then the predicate b(Z, W) is eligible to be appended to the right hand 

side of the clause as variable Z have occurred already, while the predicate 

d(Ty) is ineligible as the variable W have not occurred in the whole clause 

(including the left hand side and right hand side). 

• Comparison of Existing Variables 

K = 巧 ， / V̂i 

where Vi and Vj are existing variables (as just discussed before). This 

literature form acts as a constraint for the binding of constants into 

variables. Without these constraints, all constants are eligible to be 

bound to any variables in the same domain. 

• Theory Constant 

Certain constants can be identified as theory constants that can ap-

pear explicitly in a definition. Examples might include a constant [ 
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representing the null list in list-processing task, or the integers 0 and 1 

in tasks that involve the natural numbers. For such a theory constant c, 

the system wi l l also consider literals of the forms 

= c , / c 

where Vi is an existing variable of the appropriate type (domain). 

As an i l lustration, consider the task of learning a program for the rela-

tions of natural numbers. Consider the semantics of the predicates in 

Table 3.2 

d e d i c a t e Meaning 一 

greater_than(X, Y) X >Y 

Table 3.2: Predicates in a natural number reasoning task 

Now, wi th the introduction of the theory constant “0”，we could express 

the concept x Z > W x ^ ioi any Z • 0" by the clause 

greater_ than(X, F ) : - mult {W, Z, X), mult {W,0,Y),Z 

3.1.3 Continuous Variables 

This group of l iteral forms are more substantial. Relations encountered in real 

world are not l imited to discrete information but commonly include numeric 

fields as well. We could imagine simple relations such as 

height (X, H) 

which provides the (numeric) height H of each person X. The system includes 

the following literal types to deal wi th numeric values. 
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• Comparison of Numer ic Variables 

> Vj , < 巧 

where V； and Vj are existing numeric variables. Along w i th the compar-

ison of existing variables as discussed in Sec t ion 3.1.2, we could now 

have a fu l l range of restrictions on the binding of values into numeric 

variables, which includes the constraints =,7^, > , < . 

• Numer ic Constant 

Vi> k , Vi<k 

that allow an existing numeric variable Vi to be compared against a 

numeric constant, or a threshold k of the same type. Unlike the theory 

constants discussed in Sec t ion 3.1.2, which are explicit ly defined by the 

user in the database, the thresholds are automatically "discovered" by 

the system. 

I t might seem that tests on numeric variables would be difficult to for-

mulate, since they contain arbitrary thresholds. This is not so: the 

method for finding such thresholds can described very concisely. The 

previous algorithm for finding appropriate thresholds against which to 

compare the values of continuous attributes are found in Quinlan's C4.5 

30], and the same method is used in F O I L . The method is a linear 

search on the given numeric values in the training set. First, the train-

ing cases are sorted on the numeric domain A being considered. As there 

are only a finite number of these values, so let us denote them in order 

as {v i ,v2, •. •, Vm}- Any threshold value k lying between Vi and Vi^i wi l l 

have the same effect of dividing the cases into those value of the attr ibute 

^ lies in {外，V2,..., v i ) and whose those value is in {w终 1，灼+2，•.., Vm}-



Chapter 3 Knowledge Representation and Learning Algorithm 52 

Thus，there are only m-l possible splits on A, al l of which are examined 

one by one. 

A l though this method can be carried out in one pass when the cases have 

been sorted as above, i t is obviously expensive to examine all m — 1 such 

thresholds. So, here we propose a bisection search, rather than the linear 

search used in C4.5 and F O I L , to choose the opt imal threshold. To 

i l lustrate, let's consider the relations greater—than and mu l t as defined 

in Tab le 3.2. Suppose now we want to complete the program 

g r e a t e r _ t h a n ( X , 20) : — mul t (4, V,X),? 

by appending a suitable literal. The program represents the knowledge 

“4 mul t ip ly by any natural number greater 5 w i l l give a result greater 

than 20" • Given the sorted training domain as 

A = {0 ,4, 5，7,9,11，13,17,19, 20,21, 23, 25, 27,31，33,37} (3.4) 

We denote the positive example set as 0 and the negative example set 

as e . The bisection process is shown on F ig . 3.2. First, the mid-point 

in A w i l l be chosen to be the threshold to examine, i.e. k 二 19. I t results 

in two parti t ions by appending y > 19 or F < 19 to the clause. We 

see that both 0 and e examples exist in the F < 19 part i t ion while the 

> 19 part i t ion comprises © examples only. That implies that a smaller 

threshold should be chosen, thus the mid-point of the smaller half set of 

examples are going to be examined, i.e. k = 9. The process iterates 

unt i l an opt imal threshold is found to produce two partit ions, of which 

one contains only 0 examples and the other contains only 0 examples. 

Finally, the l i teral give raise to the pure ® set wi l l be appended to the 

clause. 
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® = {7,9,11,13’ 17’ 19’ 20,21，23，25’ 27，31，33, 37} 

e = {0,4,5} 

Y ^^X^y�fe 

© = {7’ 9’ 11，13’ 17’ 1 9 } ® = {20，21，23，25， 

e = {0,4,5} 27,31,33,37} 
— ^ e = {} 

k = 9 

Y < k y / ^ > A； 

“ e = 17 9厂 0= {11,13,17,19,20,21} 
© 1 ( 0 ^ 4 , 5 } — {23，25’ 27’ 31，33’ 37} © 二 {} 

k = 5 

① = “ ― ① = { 7 ’ 9,11，13,17，19,20} 

e ^ 10 4 5) {21,23,25,27,31,33,37} 
^ ‘ ^ e = {} 

Figure 3.2: A bisection procedure to choose the threshold k 

Following the bisection algorithm discussed above, we get the optimal 

threshold be A; = 5 and the literal F > 5 is appended to the clause to 

complete the program 

greater_ than(X, 20) : - mult(4, Y,X),Y > 5 

Note that this bisection search works only i f there exists a threshold to 

part i t ion the examples perfectly. We could easily see that the algorithm 

fails i f the © and 0 examples have no clear cut into two sides by a single 

threshold. Say, when the 0 examples are located in "center" as 
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_ _ 4 _ _ 5 7 ^ ^ ^ ^ 9 11 13 17 19 20 21 23 25 27 31 33 37 

e I e I e I e I ① e e e e e e e e e e e e 

would be a typical situation to founder the bisection algorithm. I t re-

Quires two thresholds for two literals, say, F > 7 and F < 25, to bound 

the e region. However, such situations are best described by a fuzzy-

ifing the numeric attr ibute into several fuzzy predicates, which wi l l be 

described in the coming section. Whenever the bisection method fails, all 

the remaining possible threshold values wi l l be examined and the opti-

mal one would be chosen. So, it 's always no bad to perform the bisection 

method first. I f i t successes, i t wi l l reduce the complexity from 0[m) 

to 0(log{m))- i f not, the complexity sti l l remains at 0{m) as the linear 

search does. 

The previous two literal forms are the extensions in later version of F O I L . 

These extensions permit bound numeric values to be used in conditions on 

the right-hand side of a clause. However, they fall a long way short of fuzzy 

facilities that allow inexact descriptions of numeric attributes. Our system 

use a more powerful representation language 一 the fuzzy first-order logic, 

obviously we wi l l provide some literal forms that do not exist in F O I L or 

other non-fuzzy first-order learning systems. The new literal forms wi l l be 

discussed as follows. 

• A u t o m a t i c Genera t i on o f Fuzzy Predicates A fuzzy predicate could 

be defined explicitly by the user by a fuzzy relation. On the other hand, 

the system wi l l automatically generate fuzzy predicates for any numeric 

attribute. Particularly, five fuzzy predicates wi l l be generated through 

the fuzzification of the numeric attribute by five trapezoidal membership 

functions respectively. A trapezoidal membership function depends on 
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four parameters as given by 

( 
0 : X < a 

X — a 
: a < X <h 

f{x]a,b,c,d) = (3.5) 

: c < X < d 
d- c 一 一 

0 : d<x 
\ 

where the parameters a and d locate the "feet" of the trapezoidal and 

the parameters b and c locate the "shoulders". A typical trapezoidal 

function is displayed on F ig . 3.3 w i th a = 1，6 = 4，c 二 6, t/ = 8. 

I I I — 1 1 1 1 1 1 1 

圓 
:a=1 “ ‘ d=8 
• • • ？ • « ‘ ‘ i 1 1 I I i I 

0 1 2 3 4 5 6 7 8 9 10 
X 

Figure 3.3: A typical trapezoidal function 

For a numeric attr ibute A, five predicates, namely very_small_A, small_A, 

mediuin_A, large一A and very一large一A, wi l l be generated. The usual rules 

of fuzzyification state that the when one fuzzy relation has a degree of 

membership being one, then those for the other fuzzy relations should 

be zero, say, /ismaii_A(工)二 1.0 and al l other jli(.)(x) 二 0.0. Moreover, the 

membership functions of adjacent fuzzy relation should intersect at 0.5， 

say, if "very_smaii_AO) = 0.5，then /ismaiLAO) = 0.5. By this way, the dis-

t r ibut ion of A would be partitioned into nine parts. To make an initial 
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9uess for the parameters of the trapezoidal functions, we evenly divide 

the distr ibut ion of A into nine partitions. That is, the 0% percentile 

point, the 100% percentile point and the n x 11.1%, n= 1 , 2 , . . . , 8 per-

centile points are chosen to be the parameters. To il lustrate, consider the 

numeric attr ibute A in (3.4), the values of the ten percentiles are calcu-

lated as in Tab le 3.3 then the numeric attr ibute A is fuzzyified into five 

Percentile 0 11.1 22.2 33.3 44.4 55.5 66.6 77.7 88.8 100 
Value I 0 I 4.4 I 7.5 11.3 17.1 19.9 22.6 26.4 32.2 37 

Table 3.3: The percentiles of A are chosen to be the parameters in the fuzzyi-
fication process 

fuzzy predicates, their corresponding membership functions are shown 

in Tab le 3.4 and are plotted in F ig . 3.4. We can see that the trape-

zoidal functions (they are not plotted in "typical trapezoidal shape" as 

the number of samples is small) ful l f i l l the constraints of fuzzyification. 

^ ^very -smal l_A(^ ) Msmall-A ( ^ ) /imedium_A { A ) / i l a rge -A (A) "very_large_A ( A ) 
0 1.00 ~ 0.00 0.00 - 0.00 0.00 一 
4 1.00 0.00 ~ 0.00 - 0.00 0.00 一 

5 0.81 0.19 0.00 — 0.00 0.00 一 

0.17 — 0 . 8 3 0.00 0.00 ~ ~ 0.00 
0.00 ~ 1.00 一 0.00 “ 0.00 0.00 一 

~n~ 0.00 _ 1.00 一 0.00 — 0.00 o ^ 
" T ^ 0.00 一0.71 0.29 0.00 ~ ~ 0.00 

17 0.00 0.02 一 0.98 ~ 0.00 0.00 ~ ~ 
" I F 0.00 _ 0.00 一 1.00 0.00 ^ 

0-00 一 0.00 一 0.98 0.02 
0.00 0.00 一 0.61 — 0.39 ^ 
0.00 ~ ~ 0.00 一 0.00 — 1.00 ^ 
0.00 _ 0.00 ~ ~ 0.00 — 1.00 ^ 

27 0.00 0.00 — 0.00 0.90 _ ^ 
0.00 一 0.00 一 0.00 0.21 ^ 
0.00 一 0.00 一 0.00 0.00 r ^ 

37 0.00 0.00 0.00 0.00 1.00 

Table 3.4: The five fuzzy predicates generated for A 
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"1 r- I — 1 1 1 —1 
1 卿y—s二 1-A small A medium—A large—A very_large_A 

、::MMJ 
, 1 L- 1 1 I I , 
O 5 10 15 20 25 30 35 

numeric attribute A 

Figure 3.4: The plots for Tab le 3.4 

The percentiles provide a set of adaptive parameters for the fuzzyification 

process. However, the set of parameters may not be the best description 

of some particular concepts. Thus, each fuzzy predicate wi l l undergo a 

fine tuning procedure after the concept description C is learned. The 

fine tuning acts as a postprocessing procedure in the whole algorithm 

flow, i t w i l l be discussed in detail in Sec t ion 3.2.2. 

• Fuzzy Comparison 

Vj 

where Vi and Vj are existing variables, and the threshold k are all in 

compatible numeric domains. These two l i teral forms have the similar 

semantics as the forms Vi = k and Vi 二 respectively. However, those 

two l i teral forms are representing crisp relations. Using a fuzzy com-

parison operator which means "approximately equals" or "almost the 

same”, we could now represent fuzzy relations. The actual implemen-

tat ion of the = operator is quite arbitrary. In our system, we keep on 

using the trapezoidal function as the fuzzyification process. The choice 
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of the parameters in the trapezoidal function is nevertheless more intu-

itive. Given a numeric domain A sorted ascending w i th no repeating 

value as {vi,V2,. • .,Vm}, and the threshold k equals the i-ih value, i.e. 

k = Vi. We simply define the trapezoidal function w i th Vi be the cen-

ter. Following the notation in (2.10), the trapezoidal fuzzy set for ^ is 

defined as: 

F 竺 = { 0 . 0 / 巧 + 0.0/̂；2 + . . . + 0.0/%—4 

+ 0.67/巧 _2 + 1 + l . {) /v i 

+1.0/約 _ i + l.O/i;终 1 + 0.67/約+2 + 0.33/約+3 

+ 0 . 0 / V h + . . . + 0.0/”肌 _1 + 0.0/”爪} (3.6) 

Note that the artif icially constructed membership function may not be 

in perfect trapezoidal shape because the degrees of membership are fixed 

by the order of the unique numbers, regardless of the actual value of the 

numbers. Consider the numeric domain A in (3.4), the fuzzy relation 

- 20 is represented as the membership function artif icially constructed 

in Fig. 3.5. 

~ I I I 1 1 1— 1 1 
V =20, |Li=1.00 

� .8- / \ -

。_4 - / \ -

/ \ _ 
‘ ‘ ‘ 1 I L. . 

o 5 10 15 X 20 25 30 35 

Figure 3.5: The membership function for the fuzzy relation X=20 
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For the search of the best threshold k, now we cannot the bisection 

method as in F i g . 3.2. Because the l i teral X ^ A; is a fuzzy relation, we 

could not directly classify each sample into the © or the 0 set. Al though 

the generalized covering concept is one of the main researches in this 

thesis, the concepts of fuzzy positive set 0 and fuzzy negative set G 

are not used in the search of the opt imal k, mainly for the simplicity 

in the implementation and the t ime saving issues. Thus, a linear scan 

is done through all the possible value of k. That is, for the numeric 

domain A = {vi,V2,..., Vm], m fuzzy predicates (in form of unary fuzzy 

relation), namely, I 二巧，叉=1；2，• •.，X 二 Um, wi l l be generated 

for the variable X being investigated. Each of the fuzzy predicates wi l l 

be evaluated through the heuristics in the learning algorithm, and they 

wi l l be compared w i th other forms of predicates in order to make a best 

choice of l i teral to add to the concept definition C. 

The final l i teral form, Vi = Vj, is somewhat the same wi th the form Vi = 

k. However, this form involves two variables, thus the fuzzy predicate 

is now equivalent to a binary fuzzy relation fuzzy_equal (y i , V^). The 

construction of this binary fuzzy relation is similar to that of the unary 

fuzzy relation in (3.6). I t 's best to use a table to present the binary fuzzy 

relation as in Tab le 3.5 

~ I • Vj 
M f u z z y . e q u a l ~ 1 •• • Vk-4 ^fc-3 ^fe-2 ^fc-1 Vk ^fe4-l Vk+2 卯本：̂  VI.MA . . . | 〜 

幻 1 1 I … I 0 I 0 I 0 I 0 I 0 I 0' 0 0 ~ 0 ~ 

•"fe-4 0 I ... I 1 1 0-67 0.33 I 0 I 0 I 0 Q 0 0~ f̂e-3 0 -•• 一 1 1 1 — 0.67 ‘ 0.33 0 0 0 O 0~ f̂c-2 0 ... 0.67 — 1 I 1 “ 0.67 一0.33 0 0 0 — g~ •"k—i 0 • •. 0.33 一 0.67 1 1 - 1 ~o:Wr 03 0 5 — 0~ Vi Vk 0 ••• 0 0.33 0.67 ' 1 _ J . ^ 0 ： ^ OS 0 二 o~ 
f̂e+1 0 ••• 0 0 0.33 ~03r- ~ i 0：̂  03 — — f̂e+2 0 … 0 0 0 ~OS~ 0.67— 1 I i 0~ ^̂fe+3 0 ••• 一 0 0 0 ~ 0 " 0.33 0̂67 1 i J — g~ f̂e+4 0 • • • 0 0 0 0 0 0.33 0.67 1 — 1 77； q~ 

〜 I 0 I … I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I . . . 

Table 3.5: The membership function constructed for the fuzzy relation Vi=Vj 
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Let's consider the numeric domain A in (3.4) again. The plot of the 

binary fuzzy relation becomes a 3-D visualization in F ig . 3.6. Again, 

the hi l l displayed is not in exact trapezoidal shape because we consider 

the order rather that the actual value of the entities in a numeric domain. 

編 
10 15 : . / 30 

Y 35 
Figure 3.6: The fuzzy relation Vi=Vj, Vj e A 

The propositional attribute-value formalism is simple but limited. The 

F O I L opened up a new machine learning area by the use of first-order logic 

formalism. Our system moves one important step forward to accept the ex-

pression of fuzzy as well as relational knowledge. Having specified a more 

powerful language in this section, the next step is to develop learning methods 

capable of exploiting it . 
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3.2 System Architecture 

3.2.1 Data Reading 

The system is code-named F F O l , meaning a fuzzyified F O I L that wr i t ten in 

year 2001. The script file "FFOl.m" is wr i t ten in the Mat lab 5.3 language. I t 

is invoked in the Mat lab environment by the command: 

FFOl ( ‘ option argument)， （ option argument)， .. •) 

As F F O l is considered as an extension of F O I L , i t maintains some of 

the options available in F O I L , and also adds some options especially for our 

system. The options and their meanings are listed in Tab le 3.6. Note that 

the options T O I L ' , 'FF99', 'AlphaCover' and 'SlopeCover' are handled w i th 

the preference : SlopeCover>AlphaCover>FF99>FOIL • So, the command 

F F 0 1 ( ' i apple.d，， 1 , , (vverb 2，， （FOIL 1，， 'AlphaCover 1 , ) invokes 

the system wi th no negated literals allowed, verbosity level equals 2 and using 

the a-covering learning algorithm to manipulate the input file 'apple.d'. 

As the system is learning a novel fuzzy first-order logic program, we define a 

new file format for data input. The file format is downward compatible to that 

of F O I L v6.4, i.e., i t is a extended F O I L input file format. So that, we could 

use the test data of F O I L directly and perform some comparisons between 

these two systems. The extensions mainly concern in defining fuzzy relations, 

in the aspect that F O I L and other first-order learning systems unable to do. 

The input file format consists of three main blocks, i t is defined in F ig . 3.7. 

a blank line 
^e f imt ions of relations [ 
a blank line 

J optional 

Figure 3.7: Block diagram of the input file format 

The details of each of the blocks are given as follows: 
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Types 

Each constant or variable in the system is conformed w i th a fype. A type is 

a domain that defines the universe of discourse for a particular collection of 

objects. For examples, the type "people" may contain the constants "John", 

“Peter，，，"Mary"，while the type "natural number" may contain the constants 

“0”，"1", "5", etc. The specification of types is also important in the bind-

ing of variables, say, the variable X is of type "people", then i t is eligible to 

bind "John" to X , while the binding of “1” to X is inappropriate. The sys-

tem accepts two kinds of type specifications, namely the discrete type and 

the continuous type. The former kind is suitable to describe nominal and 

ordinal measurements. And the latter kind is suitable for interval and ratio 

measurements. 

In our system, each discrete type specification consists of the type name 

followed by a colon, then a series of constants separated by commas and ter-

minated w i th a period. This may occupy several lines and the same constant 

can appear in may types. There are three kinds of discrete types: 

• N o m i n a l t ypes 一 type name preceded by ‘#， 

The constants in a nominal type are unordered. No assumptions are 

made about the quantitative difference between the constants. So, the 

user is free to put any order on the constants in this type. For example, 

the nominal type "sex" that contains the constants "M" and "F" may 

be specified by the line: 

#sex: M, F. 

• O r d i n a l types — type name preceded by '* ' 

The constants in a ordinal type indicate the order of categories, but not 

the quantitative distances between them. The constants are specified in 

ascending order. For instance, the clothing sizes may be specified by the 

ordinal type: 
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* s i z e : XS, S, M, L, XL. 

• Gene ra l d iscre te types — type name wi th nothing preceding 

They are possibly ordered types. Following the way in F O I L , we wi l l 

attempt to discover an ordering of the constants that may be useful 

for handling of recursive definitions. Although the discovery of natural 

ordering of constants is done before the learning of the concept definition, 

we handle the recursive definitions in the postprocessing time, so, this 

idea wi l l be discussed further in Sect ion 3.2.2. 

The system does not distinguish between interval types and ratio types. 

They are all called the continuous types. The categories of an interval 

measurement reflect exact measurement wi th standardized units, and the units 

are equally spaced. Thus, we could measure the precise difference between 

two categories. Ratio measurement has all of the characteristics of interval 

measurement plus an absolute zero point A t the point of absolute zero, i t may 

be said that there is none, or an absence, of whatever characteristics is being 

measured. Raios make sense only wi th ratio variables. Since our system does 

not provide the functionality of number calculations, we won't calculate the 

ratio between numbers. So that, although our system can identify a numeric 

constant, the constant is sti l l considered to be an atom, just as the same way 

as discrete constants. 

Each continuous type specification consists of the type name followed by 

continuous." on one line. The constants corresponding to a continuous 

type are the usual integers and real numbers. In fact, any string that can be 

converted to a float by C's atof() should work when specifying a value in a 

tuple. For instance, the type "age" may be specified by the line: 

age: cont inuous. 
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Constants 

A non-numeric constant consists of any string of characters w i th the exception 

that any occurence of certain delimiter characters must be prefixed by the 

escape character The delimiter characters are '( ' , ') ' , ‘,，, ‘., and ‘ ； A 

theory constant that can appear in a definition should be preceded by a 

For instance, the line 

*opair: *\(0,0\)， *\(1，1\)， \(2,3\), \(3,5\), \(4,4\), \(5，3\). 

defines a continuous type "ordered pair" that contains six constants. The first 

two theory constants are preceded by meaning that they could appear in 

the definition directly. Note that the parenthesis are required to be prefixed 

by as they are the delimiter characters. 

Two one-character constants have a special meaning and should not be 

used otherwise. They are listed in Table 3.7. 

The handling of those two special characters in Tab le 3.7 wi l l be in Sec-

t i on 3.2.2. 

Relations 

In F O I L , all relations are defined in terms of the set of positive tuples of 

constants for which the relation is true, and optionally the set of negative 

tuples of constants for which i t is false. Our system extends the definition of 

relations by fuzzy tuples of constants for which the relation is true to a degree 

from zero to one. I f only positive tuples and fuzzy tuples are given, all other 

constant tuples of the correct types are considered to be negative. I t is called 

the closed-world assumption. 

Each relation is defined by a header and one or two or three sets of con-

stant tuples. The header can be specified as follows : 

name(type, type, ... ， type) 

In the original F O I L input file format, one could optionally specify a set of 
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keys to l imi t the ways the relation may be used. This feature is dropped in our 

system for simplicity, however, for the compatibi l i ty w i th the original F O I L 

input file format, the user could st i l l specify a set of keys at the end of the 

relation head section, yet they are meaningless in our system. The header of 

all relations other than target relations begins wi th The argument types 

l imi t the ways the variables may be bound to constants of different domains. 

Following the header line are a series of lines containing constant tuples: 
positive tuple 

positive tuple 

5 

negative tuple 

negative tuple 

optional 
5 

fuzzy tuple 

fuzzy tuple 

Each positive tuple or negative tuple consists of constants separated by 

commas and must appear on a single line. Each fuzzy tuple consists of con-

stants separated by commas, and is trailed by the degree of membership of 

that tuple, which is a real number ranged between zero and one. The charac-

ter separates positive tuples from negative tuples, and negative tuples from 

fuzzy tuples, which are optional. Note that i f the user wants to specify some 

fuzzy tuples, he should specify at least one positive tuple and one negative 

tuple beforehand. The following input file example defines a continuous type 

"age" and a relation "much_older_than", which is a fuzzy relation. 
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age: continuous. 

much.older-theui(age, age) 
80,1 
80,20 
60,1 
60,20 
40,1 
20,1 

1,1 
1,20 
1,40 
1,60 
1,80 
20,20 
20,40 
20,60 
20,80 
40,40 
40,60 
40,80 
60,60 
60,80 
80,80 

80,40,0.8 
80,60,0.3 
60,40,0.2 
40,20,0.5 

Tests 

The optional test relations may be given to test the learned Horn clause defi-

nitions. The addit ion input consists of 

a blank line (indicating start of test relation specification) 

relation name 

test tuples 

relation name 

test tuples 

Each test tuple consists of a constant tuple followed by “： +，，if i t is total ly 

belongs to the relation, “： -，，if i t is total ly not belongs to the relation and 

“：Ui” i f i t is part ial ly belongs to the relation, where / i is a real number ranged 

between zero and one. 
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Reading of A t t r ibu te -Va lue Dataset 

Tradit ional first-order learning systems like F O I L and G O L E M are commonly 

demonstrated on abstract tasks such as learning recursive definitions of rela-

tions on lists of discrete constants. Such domains are markedly different from 

the real-world datasets successfully tackled by zeroth-order systems such as 

C4.5 [30], particularly when some attributes have continuous numeric values 

and when some attr ibute values are unknown. Quinlan addressed the problems 

in [16] by extending the original F O I L system to handle continuous numeric 

values and also missing values. The extensions are embedded in later versions 

of F O I L and in our system also. However, since most of the existing datasets 

in literature are designed for zeroth-order system, our system could not read 

the dataset directly. Among those attribute-value dataset, the C4.5 input file 

format becomes a standard. Fortunately, Mike Cameron-Jones wrote a pro-

gram "c4tofoil.c" for converting files from the common C4.5 "*.data" format 

to the F O I L "*.d" format. For the use and listing of the program, please refer 

to A p p e n d i x A . By the use of this uti l i ty, which could be compiled in many 

platforms, we can test our system through some well-known attribute-value 

datasets. And the results can then be compared to some zeroth-order learning 

systems. 

3.2.2 Preprocessing and Postprocessing 
Preprocessing 

We follow [31] to order the constants. The ordering is needed when learning 

recursive definitions. A recursive definition is a concept description that in-

volves the target relation. The most obvious recursive definition to prevent is 

the binary symmetric relation, for instance: 

close-to(X，Y) :-close_(Y,X) 

is clearly meaningless. 
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Also, we have to calculate the percentiles for each numeric attributes. The 

percentiles are useful in generating l i teral in the fuzzyification process. 

Postprocessing 

After the concept description is learned, we are going to refine i t . First, i f 

there is any l i teral that is generated automatically through fuzzyification, the 

parameters of the trapezoidal membership function wi l l be tuned. The tuning 

is done on the parameters a and d in (3.5) in a linear search manner. 

Finally，the concept description wi l l be polished by deleting each L in C. I f 

the deletion of that l i teral does not worsen the COST, i t w i l l be removed. The 

process iterates unt i l no l i teral could be deleted. This process is important as 

our system is performing a greedy search, which shortsighting is common. 
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Option Meaning “ 
i The input file name. I f i t is not specified, the system wi l l 

prompt the user to type in the input file name in run time. 
The path and file name follows the convention on that plat-
forms the Matlab running. 

n Negated literals are not considered. This may be useful in 
domains where negated literals wouldn't make sense, or i f the 
learned definitions must be formal Horn clauses. 

N This is similar to the option 'n', but permits negated equality 
literals in form of Vj + Vj and Vj c. 

nauto This option suppresses the automatic generation of l i teral 
forms for continuous attributes. 

vverb Set verbosity level [0,1,2,3 or 4; default: 1]. The program 
produces rather voluminous trace output controlled by this 
option. The default value of 1 gives a fair amount of detail; 0 
produces very l i t t le output; 3 gives a blow-by-blow account of 
what the system is doing; 4 gives details of tuples in training 
sets etc. 

Vvars Set the maximum number of variables that can be used during 
the search for a definition, [default: 52] 

mmaxt Set the maximum number of tuples [default: 100000]. I f the 
the default setting results in warnings that literals are being 
excluded due to the tuple limite, expanding the l imi t may be 
useful, but time-consuming. 

f o i l Use the F O I L learning algorithm if possible. This option 
suggests the system to apply the F O I L algorithm ij there is 
no fuzzy tuple specified in the dataset. I f there is any fuzzy 
tuple, this option is forbidden. 

FF99 Use the FF99 learning algorithm. This option forces the sys-
tem to apply the global literal evaluation discussed in Chap-
ter 4. 

AlphaCover Suggest the system to use a-covering algorithm. This option 
forces the system to apply one of the partial l iteral evaluation 
methods discussed in Chap te r 5. 

AdaptiveAlpha This is the default learning algorithm in F F O l . ~ T h i s op-
t ion ensures the system to adopt this learning method. The 
method wi l l be discussed in Chap te r 5. 

Table 3.6: F F O l options and their meanings 
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？ indicates a missing or unknown value 
A indicates an out-of-closed-world value 

Table 3.7: Special one-character constants 
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71 



Chapter 5 Partial Evaluation of Literals 72 

This chapter discusses several means of global evaluation of literals. A 

global evaluation of l i teral refers to the method that measures the effective-

ness of adding a particular l iteral Uj to the concept description C in (3.1). 

Nevertheless, a global evaluation does not investigate which elements in a l i t -

eral is contributing to the effectiveness of the whole literal. That is, a global 

evaluation of l i teral gives no hint of which examples are "covered" or not. This 

method is highly related to the closeness measures between fuzzy sets. So, we 

overview some of the existing closeness measures between fuzzy sets in Chap-

te r 4.1. Then, we start to develop our own global evaluation measures on the 

ground of the error function and the error distribution as discussed in Chap-

te r 4.2. Furthermore, we would quantify some interesting observations of the 

error distr ibution by the application of the continuous information theory in 

C h a p t e r 4.3. This is l iteral selection heuristics adopted in FF99 [32]. Fi-

nally, we show that our global evaluation method works fine in attribute-value 

datasets in C h a p t e r 4.5. 

4.1 Existing Closeness Measures between Fuzzy 
Sets 

The concept of equality (=) for ordinary (non-fuzzy) sets can be extended to 

account for the closeness ( ^ ) for fuzzy sets. This extension plays an important 

role in many "matching" problems where the degree of closeness between fuzzy 

sets A and B needs to be evaluated [22]. The analysis of closeness measures is 

especially important for FF99, which is a heuristic learning system depending 

solely on the closeness estimation between first-order fuzzy sets. The closeness 

measures tested and used in FF99 wi l l be discussed later, while this sub-section 

gives a survey of the currently well-known methods. 

Let F{U) be the set ot all fuzzy sets on U, then \/A, B e F(U), a closeness 

measure between A and B, denoted as a , is a mapping: F ( [ / ) x F(17) -> [0,1 . 
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As observed in many fuzzy extensions, the closeness measures may be defined 

in various ways: 

• The first approach is a straightforward extension on the notion of set 

inclusion (C). That is, two ordinary sets A and B are equal {A = B), i f 

and only li A C J5 and 5 C yl. Now consider A and B are fuzzy sets, we 

can extend the concept of inclusion wi th Lukasiewicz's fuzzy implication 

operators (L(a, b) = m m ( l , 1 - a + 6)) [33]. Thus, 

degree{A C B) = inf //^(x)) 
X 

Finally, the inclusion-based degree of 义 = B is defined as: 

{A B) = min{degree{A C B), degree{B C A)) 

=min(inf ^iB{x)),inf ^(//^(x), 
X X 

=inf min{L{iiA{x),iiB{x)), /is(x))) 
X 

=inf min{min{l, 1 - / /^(x) + fiB{x)),min{l, 1 - fiB{x) + 
OC • 

二 inf mm( l - /j.a{x) + fieix), 1 一 fisix) + 

=inf (1 - \fiA{x) - fiB{x)\) 
X 

• Another closeness measure is based on the commonality of fuzzy sets. I t 

is also referred to as the height of 门 B, denoted as w . 

^H {A, B) = sup min{fiA{x),fj.B)x)) 
X 

For F ig . 4.1, {A,B) = a-{-c and � ( / I , B) = b 

• The other class of closeness measures based on the concept of distance 

34]. For example, a family of distance measures can be summarized as 

the Minkowski-distance measure: 

/ l ^ \ 1/2 

X ) 
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譲 
X 

Figure 4.1: The inclusion-based and commonality-based closeness measure 

where 5 is a parameter. 

Generally, the distance-based closeness measure, denoted as ^ d , is a 

mapping F{U) x F{U) [0，1] such that: 
( A , B ) = l-d{A,B) 

He [34] summarized some of other closeness measures found in the liter-

ature. 

Notice that the three mentioned closeness measures satisfies w {A, B) G 

0 , 1 ] , 冗 { A , B) 二 w {B, A) and w {A, A) = 1 

• There are some closeness measure developed for other specific applica-

tions. For examples, the similarity and the affinity measures discussed 

in [35]. The measures are proven to be a useful tool to determine the 

similari ty between the fuzzy data in a fact base and the fuzzy patterns in 

the premise part of a rule. Thus, i t is especially useful in the consistency 

checking for fuzzy expert systems. 
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4.2 The Error Function and the Normalized 
Error Functions 

4.2.1 The Error Function 

The several closeness measures reviewed in Sect ion 4.1 gives different aspects 

of evaluating the similarity between two fuzzy sets. However, they are not good 

enough to be the global evaluation of literals in our learning system. Hence, 

we're going to develop our own closeness measure, the reasoning would be 

apparent later on. 

Remember that our goal is to learn a concept description C to describe the 

target concept T. We intuitively define the error function E to measure the 

difference of degree of membership of T and C as: 

E{X) ^ ^jir{X) - iic{X) (4.1) 

where fPr and f ic are the membership functions of the target concept and 

the concept description respectively. The notation E{X) means that the error 

function E is defined only on unary universe space. Thus, the learning method 

discussed in this whole chapter works only for attribute-value datasets but not 

first-order datasets. The calculation of E is straightforward, let us consider a 

unary space example to illustrate the calculation of E as in Table 4 .1. 

X 1 I 10 I 30 I 50 I 8Q~ 
" W 0.1 T o " " “ ^ 0 ： ^ 

l i c j X ) 1.0 0.2 |0.8 1.0 0.2 
E[X) -1.0 -0.1 0.2 -0.1 -0.2" 

Table 4.1: A simple example to illustrate the calculation of E 

I t is obvious that the error function always returns a real value in [ - 1 , 1 . 

We could easily measure the closeness between T and C by some quantitative 
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calculations on E. One of the most commonly used candidate is the mean 

square error, which is defined as follows: 

E 剛 ) 2 

MSE = X 阅 (4,2) 

The interpretation of the MSE measure is: MSE = 0 means that the 

concept description perfectly matches the target concept, where MSE = 1 

means that C and T are total ly different. We choose the MSE measure 

mainly because i t is simple and easy to implement, also i t is widely accepted 

and sign insensitive. I f we adopt the MSE to be the global evaluation method 

in our learning algorithm, we simply pick the l iteral to add to C that would 

give rise to the min imum MSE. And hopefully, we could develop a C that 

gives MSE 二 0 eventually. 

4.2.2 The Normalized Error Functions 

However, it 's not our only purpose to work out the error function in order to 

facilitate the calculation of MSE. As you can see, the MSE measure takes no 

special advantage over other closeness measures as discussed in Sect ion 4 .1. 

In fact, the calculation of the error function is the essential step before we 

can work out the normalized error functions. The error function gives us 

information about the quantitative difference between two fuzzy sets. While 

the normalized error functions enable us to analyze the shape of the error 

function. 

Before we work out the normalized error functions, we first "split" the error 

function E{X) into two functions, namely the positive error function Eq{X) 

and the negative error function Eq{X). They are defined as follows: 

p rin f E � : 五 P 0 � 0 
= , 、 (4.3) 

0 : F(X) < 0 

^ e ( ^ ) = (4.4) 
0 : E{X) > 0 乂 

\ 



Chapter 5 Partial Evaluation of Literals 77 

we can see that - Eq{X) = E{X). 

Now we are ready to define the normalized error functions. A normalized 

positive (negative) error function {E'q{X')) is the scaled positive (neg-

ative) error function, which has an area equals 1. The normalizat ion take the 

fol lowing steps: 

1. Map the universe space X to X' such that X' ==[0 1]. For numeric type 

a linear scaling and shift ing is done. For ordinal type X ， w e assume 

a uni form space between each sample x eX, i.e. Xi — Xj = xj - Xk. And 

the whole ordinal type X is mapped into X' 二 [0 1] in a way that the 

largest x 1 and the smallest rr 0. The normalization does not work 

for nominal universe, in fact i t is one main restriction to apply the F F 9 9 

algorithm, the assumptions for F F 9 9 wi l l be discussed in Sec t ion 4.3. 

2. Calculate the area for the positive (negative) error function over the 

normalized space 

= ^ E^{X')dX' (4.5) 

and 

ae = j ) Ee、X'、dX丨 (4.6) 

3. Scale the positive (negative) error function to get a unit-area normalized 

positive (negative) error function 

- — 4 . 7 
a田 \ ‘ 

and 

Eq、X ) ——4.8 
fte 
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The above normalization procedure fails when Eq{X) 二 0 or Eq{X) = 0. 

In those cases, the area of the error functions would be zero and we could never 

normalize them to get unit area. They wi l l be treated as special cases. In fact, 

as we wi l l see later, = 0 or Eq{X) 二 0 means a part ial perfect match. 

Remember that we are using the normalized error functions to analyze the 

shape of the error functions. That's why we need to normalize the error fimc-

t ion such that the absolute value of errors does not affect our shape analysis. 

The reason of the unit-area normalization wi l l become apparent in next sec-

t ion when we t ry to quantify the shape of the errors. In F ig . 4.2, we could 

visualize the example error function in Tab le 4.1, also wi th its corresponding 

normalized error functions. 

1 . 

0 . 5 

- 0 . 5 / 

-1>( ‘ ‘ . 
2 0 4 0 6 0 8 0 

/ \ ： 

0 0 .2 0 . 4 0 . 6 0 .8 1 0 0 .2 0 .4 0 .6 0 8 1 
X, X’ 

Figure 4.2: The plots of E{X) in Table 4.1, also the generated and 
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4.3 The Nodal Characteristics and the Error 
Peaks 

4.3.1 The Nodal Characteristics 

In last section, we detailed the calculations of the error function E and the 

normalized error functions E'田 and E'q. From the error function, we could 

directly measure the closeness between the target relation T and the concept 

description C through MSE. The reader might wonder why we need to work 

out the normalized error functions (although it 's not very costly). In fact, we 

observed that the shape of the error function is highly related to the usefulness 

of a literal. We denote the observations by the nodal characteristics of 

literals and we claim that: 

“A useful l i teral is likely to produce nodal normalized error functions in a 

way that E'思(or E'q) has a large portion lies on the zero line and may has a few 

apparent peaks. While an improper literal is likely to produce random-shaped 

normalized error functions in a way that E'^ (or E'^) is peaked in the whole 

range of the universe." 

The nodal characteristics gives us insight to select a suitable l iteral from the 

shape of the normalized error functions they produce. Note that there are two 

important assumptions to fulf i l l in order to obtain the nodal characteristics: 

1. The target relation T can be described by a relatively simple C, say, 

no more than 3 clauses, and no more than 3 literals in each clauses. 

The more complex the concept description required, the more the nodal 

characteristics vanishes. 

2. The membership function of each literal involved is convex in shape. This 

implies that the literal should be defined over an universe of an ordered 

type (e.g. ordinal types and numeric types), so that we can talk about 

the "shape" of the membership function. For the literal defined over an 
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nominal universe, basically we cannot visualize the membership function 

as each element and its degree of membership is an unique case, wi th no 

relation or ordering wi th other elements. 

‘ ‘ r- 1 1 —I 1 1 1 1 1 , • . • 
‘ ‘ ‘ I I I I I 1 

_ _ 
0 10 20 30 40 = 60 70 80 90 100 0 to to to to M to to to to 100 

X X 
⑷ (b) 

Figure 4.3: (a) A convex membership function (b) A non-convex membership 
function 

Remember that for any continuous type, the system would automati-

cally generate five literals through the fuzzification process as discussed 

in Sect ion 3.1.2. These literals are all in trapezoidal shape and thus sat-

isfy this convex condition. Other candidates that satisfy this condition 

includes the literal form Vi ^ k and some user-specified relations. 

4.3.2 The Zero Error Line and the Error Peaks 

In last section, we claim the nodal characteristics that a useful literal 

would produce some apparent peaks in the normalized error functions. 

We called these peaks the error peaks. There are two types of error 

peaks, namely the positive error peak and the negative error peak. 

We also claim that a useful literal wi l l produce a long zero error line. 

We are going to explain how these characteristics form and what they 

imply. 
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The Zero Er ro r Line 

As defined, the error function E gives the difference of the degree of 

membership between each sample of T and C. Imagine that there is a 

certain port ion of samples have similar degree of membership in T and C, 

then we would get a certain port ion of error ê  = E { X I ) , XI E X w i th 

ei ~ 0. Furthermore, i f C perfectly describes T, we w i l l get E(X)= 

= Eq{X) = 0. We denote the port ion of E'{X) ^ 0 be the zero 

error line. The longer the zero error line, the more samples in C matches 

T. In other words, whenever we observe that a l i teral results in a long 

zero error line, we can conclude that there is a certain large port ion of 

samples in C is closely describing those in T. 

The Posit ive Er ror Peaks 

To i l lustrate the formation of the positive error peaks, we consider four 

literals L i , 2 = 1 . . . 4, of which their membership functions are plotted 

in F ig . 4.4. They are all defined on a continuous universe Ji： = [0 100 . 

Suppose we have the target concept T that is the disjunction of two 

literals. The membership function of T is visualized on F ig . 4.5. 

T : - L i 

T : - L2 

and we start w i th a nul l concept description, i.e. C \ - . Now we have 

to select the suitable l i teral to append to C. Let us denote the error 

function for l i teral L i be E i ( X ) , we have: 

Em = fJ^X) - fiL人X) 

= 飄 ⑷ ⑷ ） - f J ^ L 人 X � (4.9) 

(••• fiT = rnax{fiLi, fJ^L2)) 
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Ll L, 

g。 . 8 . \ . g。.8 / “ \ 

1」 0 . 6 . \ 一〜0.6 / 1 

0.4 \ 0 .4 . / 1 

V - J J L _ 
0 2 0 4 0 6 0 8 0 100 0 2 0 4 0 6 0 8 0 100 

X X 
L3 、 

R � . 8 _ \ 。8 f ~ • 
0.6 . \ 》0.6 / 
0.4 . \ • 0.4 . / 

0.2 \ . 0 . 2 . 
o[ ^ o| \ / 

0 20 40 60 80 100 0 20 40 60 80 100 

X X 

Figure 4.4: The membership functions of four literals 

we can see that Ex {X ) > 0 and 丑2(X) > 0，but we cannot make wi ld 

guess on the range of E-^IX) and E^(X) as L3 and L4 have no special 

relation w i th T. In F ig . 4.6, we can see that the zero error line consti-

tutes a large port ion in both E i and 丑2, yet we cannot see that in E3 

and E4. We can also observe that E i and E) are much more neat and 

t idy compared to 馬 and E^. 

Now we pick two literals, say E i and E4 to analysis their normalized error 

functions as plotted in F ig . 4.7. Let us consider their corresponding 

normalized error functions be 肌,五E'^^ and E'^^ respectively. We 

can see an apparent tal l (relatively) peak in 肌,yet is not found in 

^04 or We call i t be the positive error peak, meaning that an 

apparent peak located in E'^. More importantly, L i does not produce 

the normalized negative error function as EI{X) > 0. I t implies that the 

learning of current clause is completed and we could start learning a new 
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I “ I I I 1 1 1 1 1 
1 -

/ X： \ _ 
^̂  w / \ (X) 0.8 - / \ 2 _ 

LLU 
‘ ‘ ‘ 1 1 1 1 I I 

0 10 20 30 40 50 60 70 80 90 100 

X 

Figure 4.5: A target concept defined by the disjunction of two literals 

clause. 

In conclusion, the shape of the 田 gives us hints about the usefulness 

of a literal. I f a l iteral produces some neat and t iny positive error peaks 

and some long zero error peaks, we may consider adding i t to the current 

clause. Particularly, i f the literal produces only the positive normalized 

error function but not the negative one, we can conclude that adding this 

l i teral would terminate the learning of current clause. And the number 

of positive error peaks is very probably equal to the number of clauses 

needed to discover. 
The Negative Error Peaks 

The formation of negative error peaks is analogous to that of positive 

error peaks. However, this time they come from the incomplete descrip-

t ion wi th in the current clause to learn. To illustrate, consider the simple 

example that T is a single clause, which is a conjunction of two literals. 

The membership function of T is visualized on F ig . 4.8 

T ： —Li, L2 
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i [ ‘ ‘ ‘ ‘ i [ ‘ ‘ ‘ ‘ ： 

山 iiT 0 

- 0 . 5 - 0 . 5 

-1 i . • . -1 [ . . . . . 
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X X 

I : L J 
0 2 0 4 0 6 0 8 0 100 0 2 0 4 0 6 0 8 0 100 

X X 

Figure 4.6: The error functions for appending the literals to C 

Again, we start wi th a null concept description C : - and we are going 

to select a l iteral to append to C. The corresponding error function in 

selecting literal L i is denoted as E i {X ) , we have: 

Er{X) 二 iMrW - 礼 W 

= - (4.10) 

( • • • " r 二 mm(/ iLi ’ /^L2)) 

this time we can see that 五i(A,) < 0 and 五2(X) < 0, but we cannot 

make such bound on E^[X) and E^{X) as L3 and L4 have no special 

relation wi th T. We skip some detailed steps and directly look at the 

normalized error function for L i and L4 in F ig . 4.9. Since B i ( X ) < 0, 

there is no normalized positive error function. The shape of Eq^ is much 

more neat than E^^. Also, E^^ has a greater portion belongs to the zero 

error line compared with 五 
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8 I 
A z positive error peak 

6 . A ^ 
^ zero error lines / \ 
^ \ / 1 No normalized negative error function 

1 f。rEi(X) 

0 0 . 2 0 . 4 0 . 6 0 . 8 1 
X, 

，:：n。n r 
0 丨 ——- 0 \ I 
I Q 0 . 2 0 . 4 0 . 6 0 . 8 1 0 . 2 0 . 4 0 . 6 0 . 8 1 

X' X’ 

Figure 4.7: The normalized error functions for L i and L4 

This example demonstrates that when there is no more clause needed, 

i.e. the current clause is the final clause to learn, i t is likely to get a error 

function that results in no normalization positive error function. And its 

normalization negative error function should contain some distinct peaks. 

The peaks are so called the negative error peaks, meaning that they 

locate in E'q. The number of negative error peaks possibly represents the 

number of literals need to learn in order to complete the whole concept 

description. 

4.4 Quantifying the Nodal Characteristics 

In last section, the nodal characteristics of literals tell us that the shape of the 

normalized error functions. The problem is: how do we quantify the shape of 

the functions? It 's easy for human beings to distinguish a neat peak from a 
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Figure 4.8: A target concept defined by the conjunction of two literals 

mess. But the shape analysis of functions is a complex research topic in com-

puter science. Moreover, we give no constraints on the shape of the normalized 

error functions, say, we don't know the number of turning points, we don't 

know i f i t could be expressed by the combination of some known kernel func-

tions or not. Bascially, what we know are only E'{X') > 0, f^ E'(^X,)dX, = 1 

and E ' {x i ) = 运 [0 1]. Thus, we need a general shape quantification 

method for any E'{X) that satisfies the above two conditions. We choose the 

well-known information theory as our tools. 

4.4.1 Information Theory 

Shannon presented a mathematical foundation of the information theory in 

his pioneer paper "A mathematical theory of communication" in 1948 [36 . 

Shannon introduced the concepts of entropy and mutual information from 

the viewpoint of communication reliability. Entropy is defined as a measure of 

"uncertainty" or "randomness" of a random phenomenon. Suppose that some 

information about a random variable is received, then a quantity of uncertainty 

is reduced, and this reduction in uncertainty can be regarded as the quantity 

of transmitted information, which is called the mutual information. 
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Figure 4.9: The normalized error functions for L i and L4 

The entropy i f of a random variable of discrete distribution is defined as: 

H { R ) ^ - Y . P { n ) x \ o g , P { n ) (4.11) 
TiER 

where is a random variable wi th the distribution: 

Probabil ity(i? = n) = P{n) ； ^ P ⑷ = 1 (4.12) 
TiER 

and the quantity — logs P<Ji) is the information received after R 二 n oc-

curred. 

The notation of discrete entropy can be extended to handle continuous 

random variables [37]. Now consider to be a continuous random variable 

and / ( r ) is the density function. A density function is defined by: 

Probability(ra <r <n)= / f{r)dr (4.13) 
J ra 

and a density function has the properties: / ( r ) > 0 and f f{r) = 1. 
R 
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The continuous entropy [CE) of a continuous random variable is then 

defined as: 

KR) = - J f{r) X log, f{r)dr (4.14) 
R 

i t is also referred as the differential entropy. 

The interpretation of the discrete entropy and the continuous entropy is 

very similar. However, there are important differences: 

1. The discrete entropy measures the uncertainty in an absolute way. How-

ever, a continuous entropy does not work as a measure of uncertainty by 

its value. By the way, the difference h{Ri) - h{R2) of entropies indicates 

the difference of the uncertainties of R i and R:. That is, the continuous 

entropy measure the uncertainty in a relative way. 

2. We cannot estimate the continuous information gain after receiving a 

single signal. The calculation involves the integration over a spectrum 

of signals. 

3. In discrete case, the entropy represents the lower bound of average coding 

length in bits. In contrast, the continuous entropy is not related to the 

coding length. 

Although the value of a continuous entropy has less meaning than that of 

a discrete entropy, the continuous entropy measurement is sti l l very useful in 

comparing the uncertainty of different continuous distributions. 

4.4.2 Applying the Information Theory 

The continuous entropy has been proven to be very effective in characteriz-

ing the shape of density functions. In fact, i t works well for any function 

that satisfies the condition F{x) > 0 and J ^ ^ F { x ) d x = 1. We can see that 

the normalized error functions satisfy the conditions, thus they are the can-

didates to apply the continuous entropy measure. In fact, i t is the reason 
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why we have to split E { X ) into E^{X) and E q { X ) , and then execute the 

normalizat ion procedures. According to the nodal characteristics, a "suitable" 

l i teral produces "neat" normalized error functions; in contrast, an "unrelated" 

l i teral produces "mess" (relatively) normalized error functions. These obser-

vations could be quantified in terms of the randomness of the normalized error 

functions. Remember that now we treat the normalized error functions to 

be density functions, so the "randomness" of the normalized error functions 

should be considered in context of probabil i ty density. 

We denote the continuous entropy measures on E'^ and E'^ be CE扮 and 

CEq respectively. They are defined as: 

CE^A E'^{x)dx (4.15) 

and 

C E e ^ 「 W d x (4.16) 
J 0 

We wi l l soon see that the a neat error function wi l l gives a smaller CE 

than that of a mess error function. 

4.4.3 Upper and Lower Bounds of CE 

As we are using the CE to quantify the shape of error functions, we need to 

know the bounds of this measurement. Wi thout the bounds, we don't know i f 

i t is good or not when getting a large CE, also we have no idea of what does 

the value of CE represent. 
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Upper Bound 

The largest value of CE occurs i f E'{x) is a uniform function, i.e. E'{x) = 1 

(as /。i E'{x)dx = 1). So, the upper bound of CE is: 

CE = - f f{x)\og,f{x)dx 
Jo 

= - 1 log2 Idx 
Jo 

= 0 (4.17) 

We can prove the upper bound mathematically; consider two density functions 

f{x) and g{x), both defined on x e [0,1], we have: 

1 fl Q(X) 
< I ^ l 賊 } - 工(-.-InXKX-l VX>0) 

= - 腳 ⑴ 

= 9 { x ) d x - J f{x)dx) = 0 

n(x) 

•丄 / W l o g 2 J ^ d x < 0 (4.18) 

where the equality holds only i f f{x) 二 々 (x) Va; G [0,1]. Next, we expand: 

log2 < 0 
Jo /w 

L 似 + Jq f{x) log2 g{x)dx < 0 

今-[/W log^ f{x)dx < - f fix) log^ g(x)dx 
Jo 

(by put t ing g{x) = 1) - / / ( x ) log? f{x)dx < - f f{x) log? Idx 
Jo Jo 

- / fix) log2 f{x)dx < 0 

. . .maximum CE = 0 (4.19) 

Thus, CE is always less than or equal to 0. The situation occurs i f the 

normalized error function is a white spectrum. Note that the put t ing of g{x)= 
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1 in (4.19) is the only way to get a constant upper bound (not as a function 

of f{x)). The white spectrum is shown in F i g . 4.10, which is an extreme case 

of a untidy, peaked error function such that there is a "peak" on every point. 

1.4 I -1 , • 
I I I I 1 1 

1.2 - _ 

1 - I 

0.8 -

s 
Cu 

0.6 - _ 

0.4 -

0.2 - _ 

O 0.2 0.4 0 .6 0.6 1 1.2 X 

Figure 4.10: A white spectrum returns the maximum CE 

L o w e r B o u n d 

Theoretically, the lower bound of CE occurs i f and only i f f{x) = 5{x - xq), 

where S is the Dirac delta function (or the unit impulse function) such that 

JZo 啦 — 二 1 and (5(rr) = 0 Vrr 0, and Xq is some constant in [0,1]: 

CE = - f{x) log, f{x)dx 
Jo 

—— d{x - Xq) log2 S{x - Xo)dx 
Jo 

=-log2^(xo - Xo) 

二 - log2(^(0) 

= — ⑴ (4.20) 

However, the situation is different in real numerical computation. In prac-

tice, we cannot define an impulse function, which has infinite height and unlim-

ited small width. Also, we the trapezoidal summation method to implement 

the integration. So, the impulse function is actually a zero function wi th a 
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particular point of finite height. Suppose there are TV + 1 samples located 

uni formly over [0,1], such that there are N segments, each w i th w id th 1/7V. 

The numerical impulse function is plotted as a triangle as in F i g . 4.11. We 

can that the numerical lower bound oiCE is: 

- f = log, + log, 
i=0 

= + f M log2 f(xo)) - ^(/M log2 f(xo) + 0) 

=-^iVlog^iV (•.• f(xo) = N) 

minimum CE = 一 log? N (4.21) 

(a) (b) 
E - ( x ) E - ( x ) “ 

. n 
ô X Xq-I/N ><O XQ+I/N X 

Figure 4.11: (a) The theoretical impulse function (b) The numerical impulse 
function 

Our system l imits the lower bound of CE to be —20，i.e. we support a 

maximum number of samples up to TV = = 10^ The l imi t of N is sufficient 

for most practical applications. 

Remember that now we treat the normalized error function as if i t is a 

density function. In probability theory, an impulse density function gives us 

the most information (the smallest CE), as we know there is only one point 

containing the signal. On the other hand, a white spectrum density gives 

us the least information (the largest CE) because every signal has the same 

probability. When we apply the continuous information theory in FF99, a 
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t idy and neat normalized error function is likely to produce a small CE while 

a messy one is l ikely to produce a large CE. 

4.4.4 The Whole Heuristics of FF99 

For literals in F F 9 9 , there are three scores: MSE, CE④ and CEQ. We have to 

combine them to get a single heuristics for the final decision of l i teral selection. 

We know that a perfect l i teral gives MSE 二 0 and an improper l i teral w i l l 

give MSE tends to 1. This implies a cost heuristics in the range [0,1]. In 

order to implement the CE scores easily, we would map the range of CE f rom 

—20，0] to [0,1] also. The formula of the mapping is as: 

log2(20 + l ) ( 4 .圳 

where the mapping is done in a non-linear fashion in order to suppress the 

difference in CE of an impulse-like error function and that of a messy error 

function. 

Then, the three scores are combined linearly to get a single cost in FF99 : 

COST = 腿 + ? “ ⑶ “ (4.23) 

where the final COST has the range in [0,1'. 

Remember that i f the positive (negative) error function equals the constant 

0，we cannot get the normalized positive (negative) error function, and in 

tu rn we cannot evaluate CE扮{CEQ). In that cases, we would have special 

treatments, i.e. we would directly set CE'^ = 0 {CE'q = 0) to skip the 

evaluation of CE. The setting of CE' = 0 implies that i t is the most ideal 

situation, which there is no error at all. The whole l i teral selection process is 

summarized in the block diagram in F ig . 4.12. 
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Begin 

Pick up a l iteral L i 
i 

Form a new C by appending LJ to the end of the current clause 
I 

Calcuate the error function E{X) 一 (4.1) 
Z 

Split E{X) into E^{X) and E^jX) — (4.3),(4.4) ^ 
~ J I Calculate MSE — (4.2) j - , 

^ r ^ ^ 
Normalize E@{X) to get 一 (4.7) \ 

Normalize EQ{X) to get E'Q{X') — (4.8) 

^ r 
Evaluate CE场—(4.15) Evaluate CEQ 一 (4.16) 

I r • • 广 I • 
Map CE扮 to CE'^ — (4.22) Map CEQ to CE'Q — (4.22) 

Evaluate COST — (4.23) 

(End) 

Figure 4.12: Literal selection in FF99 

4.5 An Example 

In this section, we are going to use an example to illustrate the effectiveness 

of the heuristics in FF99. In particular, we test the system by 10 literals 

Li, L2,..., LIQ and we artificially construct the target relation T as: 

T ：一 1/1,1/2,13 

T ： — 1/4,1/5 

We start the learning from a null concept description C. Following the 
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procedures in F ig . 4.12, we pick up each literal Li, construct a new C and 

feed i t to evaluate the corresponding COST. The results are shown in Tab le 

4.2. The min imum MSE, CE丨勒 and CE'Q are highlighted w i th b o l d fonts. 

C : -

Li L2 Ls L4 L5 LQ LJ Lg Lg LIQ 
MSE.120 .102 . 1 4 5 J f f . 2 0 8 .142 .323 .450 .264 .509 
CE'^ .602 .602 .602 .646 .646 .681 .751 0 .738 .420 
CE'e .634 .651 .628 .544 .580 .587 .594 .896 .549 .898 

~COST .452 .452 .459 .439 .478 .470 .556 .449 .517 .609 

Table 4.2: 1st iteration 

I/4 gets the least COST, so i t is appended to C. In the 2nd iteration, we 

exclude L4 since i t exists in the current clause already. 

C 一 Z/4 

Li L2 I/3 I/4 L5 LQ LJ Lg LQ Liq 
MSE.177 .177 . 1 7 7 / . 1 1 2 .139 . 1 7 7 7 m l 7 7 
CE'份.751 .751 .751 / .646 .681 .751 .646 .751 .646 
CE'q 0 0 0 / 0 .536 0 .544 0 .544 

—COST .309 .309 .309 / .253 .452 .309 .439 .309 .439 

Table 4.3: 2nd iteration 

This time, L5 is chosen. Following the nodal characteristics in Sect ion 

4.3.2, we see that L5 gets the least COST, at the same time, i t gets CE'Q = 0, 

which implies that the learning of the current clause should be terminated and 

we should start a new clause. 
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C ：一 Z/4, L5 

C : -

L2 L3 L4 L5 LQ LJ Lg Lg Lio 
MSB.055 .038 .080 .127 .208 .127 .258 .450 .199 .509 
CE'^ 0 0 0 .646 .646 .646 .646 0 .630 .420 
CE'^ .634 .651 .628 .544 .580 .587 .594 .896 .549 .898 

~COST .230 . 2 2 9 .236 .439 .478 .454 .499 .449 .459 .609 

Table 4.4: 3rd iteration 

In the 3rd iteration in Tab le 4.4, we see that 丄2 results in the least COST, 

also wi th a zero CE'场 and a non-zero CE'^. According the nodal characteristics, 

i t implies that the current clause should be the final clause to learn and i t sti l l 

need some literals to be completed. A similar situation occurs in the 4th 

iteration in Tab le 4.5. This time L3 is selected. 

C ： — Z/4, L5 

c ： 一 L2 

L2 L^ L4 L5 LQ LJ LS Lg LIQ 
M S B M 6 7 . 0 1 1 .112 .112 .112 .112 .038 .099 .039 
CE'^ 0 / 0 .646 .646 .646 .646 0 .630 .420 
CE'只.606 / .479 0 0 0 0 .651 .248 .640 

一CO ST .207 / .164 .253 .253 .253 .253 .229 .326 .336 

Table 4.5: 4th iteration 

C ：一 L^, L5 

C ： — -^2? -^3 
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Li L2 L3 L4 I/5 1/6 L^ Ls 1/9 LIQ 
M S E 0 7 7 . 1 1 2 .112 .112 .112 .011 .099 .015 
CE'^ 0 / / .646 .646 .646 .646 0 .630 .420 
CE'只 0 / / 0 0 0 0 .479 0 .479 

COST I 0 / / .253 .253 .253 .253 .164 .243 .305— 

Table 4.6: 5th iteration 

In the 5th iteration, we finally achieve the situation MSE = CE'④二 

CE'Q = {), which implies a perfect match and the learning of the whole concept 

description is terminated. The result is the following C, which is equivalent to 

T. 

C ： — Z/4, Z/5 

c ：一 Li 

One may just i fy the usefulness of this example as there are only 10 literals to 

select and 5 of them are involved in T. However, this example actually shows 

that the heuristics is very effective in constructing the correct C through a 

greedy search. Remember there is no backtracking in a greedy search, and 

the COST heuristics is to ultimate guide to search for the correct literals. In 

the sense of probability, i f we were constructing C by a random search, the 

probability of constructing a correct C (which is equivalent to T) is: 

2 1 3 2 1 
Probability (correct C) = 一 x - x — x - x - x 2 

八 ) 10 9 10 9 8 

= 0 . 0 0 0 3 7 

which is small enough to show that the correct construction of C is not trivial. 

Note that throughout the construction of C, none of the scores: MSE, 

CE'^ or CE'Q could singly guide the search. In most of the cases, the "relevant" 

literals would give smaller MSE in comparing to those "irrelevant" literals. 
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However, we see that the difference of MSE may be too small and i t is too 

risky to select a l i teral merely by its MSE. By the complementation of CE's, 

i t is more safety to have a complete COST heuristics and the reasoning was 

detailed in Sec t ion 4.3 already. This example also demonstrated that the 

nodal characteristics take effects even when T is a disjunction of conjunction 

of literals (in the i l lustration of the nodal characteristics in Sec t ion 4.3.2, T 

is either a single conjunction or a single disjunction). 

For simplicity, the example is wri t ten in a separate M A T L A B script in 

A p p e n d i x B. I t runs on M A T L A B Version 5.3.1 on a 128MB Sun Ul t ra 

5/270 machine. The sample size is 10000, average running time is 11.2 seconds 

(average of 10 executions), including the plott ing and saving of data. 

In conclusion, this chapter discussed a novel method in comparing two 

fuzzy sets. This method is shown to be effective in guiding a greedy search of 

the concept description. 
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This chapter describes the extension of the tradit ional covering method 

which is aimed at inducing concepts both in Boolean and fuzzy domains. First， 

we would review and analyze the importance of the original covering method 

in inductive learning systems. Then, the di伍culties in applying this method 

for inducing fuzzy concepts are presented. In order to overcome the difficulties, 

we redefine the covering concept in a sense of set membership agreements. The 

following sections describes in detail the steps and calculations. 

5.1 Importance of Covering in Inductive Learn-

ing 

There has been considerable research on the task of inductive learning : 

given a training set of objects whose classes are known, find a presentation for 

predicting the class of an unseen object as a function of its attr ibute values. 

Many of those learning algorithms use one the two approaches, namely the 

divide-and-conquer method and the covering method. 

5.1.1 The Divide-and-conquer Method 

This method is mainly applied in system which represents the concept learned 

in form of decision tree. Classical examples include Hunt's CLS [38] and 

Quinlan's IDS [39]. This method is summarized as follows: 

• I f all objects in the training set in the current node belong to a single 

class, this node is a leaf labeled wi th that class. 

• Else, 

- se lec t a literal to test the training set (based on some heuristics); 
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-divide the t ra in ing set into subsets, each corresponding to one of the 

mutual ly exclusive outcomes of the test, and hence create a node 

(the son of the current node) for each of the subsets; 

一 recursively apply the procedures to each node unt i l i t is conquered, 

i.e. al l objects in the training set are labeled by the descending 

leaves of the current node. 

To demonstrate the divide-and-conquer method and the decision tree rep-

resentation, consider a simple Boolean domain in Table 5.1 which consists of 

twelve objects only. The decision tree is shown in F ig . 5.1. 

Universe | = {1，2,...，12} 
Target Concept — T 〔 X = {3,4, 5,6，7, 9，10，11，12} 

Li teral 1 —L工 X 二 {1, 2,3,4，5，6, 7} 
Li teral 2 L2 d X 二 {3,4, 5，6，7, 8 ,9} 
Li teral 3 | L3 C X = {9,10，11，12} 

Table 5.1: Data for demonstrating inductive learning 

5.1.2 The Covering Method 

For other induction algorithms, that represent classification knowledge as a 

disjunction of conjunctions of conditions, employ the covering method. No-

table examples of those algorithms are the A Q family from Michalski [13] and 

F O I L from Quinlan [11]. This method is summerized as follows: 

• I f all objects in the training set in the current conjunction belong to a 

single class, this conjunction is completed. Then remove all objects that 

satisfy this conjunction and start a new conjunction. 

• Else 
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r r + = ： {3,4,5,6,7,9,10,11,12} 

r r _ = {1,2,8} 
xeLs? 

Y e s / \ N o 
T r + = {9,10,11,12} Tr+ = {3,4,5,6,7} 

rr一 Tr- = {1,2,8} 

eT X e Li? 

Y e s / \ N o 
rr+ = {3,4,5,6,7} Tr+=0 

7>—={1，2} Tr- = { 8 } 

CC G ? ^ X ^T 
Y e s / \ N o 

rr+ = {3,4’5’6,7} T r + = 0 

Tr-=(D TV—={1,2} 
^ x eT ^ x ^T 

Figure 5.1: The divide-and-conquer method 

—select a l iteral and append i t to the current conjunction (based on 

some heuristics); 

-prune those objects in the current training set which do not satisfy 

the newly-appended literal; 

• Repeat the procedures unti l all objects are covered, i.e. they are satisfied 

by at least one of the conjunctions. 

Again, we use the data in Table 5.1 to demonstrate how the covering 

method works, the result is shown in Table 5.2. 

5.1.3 Effective Pruning in Both Methods 

The main difference between the two methods is the way they represent the 

inducted concept. In particular, the divide-and-conquer method naturally in-

duces a decision tree, while the covering method induces a set of rules or 
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X eT IF X e Ll AND x E L2 
init. step step 1. step 2. 
Tr = X+U X- Tr = X+UX- Tr = X+U0 

= {3,4,5,6,7,9,10,11,12} = {3,4,5,6,7} = {3,4,5,6,7} 
L = {1，2’8} X-={1,2} 

OR 

X eT IF X e Ls 
step 3: step 4. 
{3,4,5,6,7} are covered already 
Tr = X+UX- Tr = X+U0 

= {9,10,11,12} = {9,10,11,12} 
{1,2,8} 

Table 5.2: The covering method 

Horn-clauses. Although the steps for converting between a decision tree and 

a rule-set are well-published (e.g. Quinlan's C4.5 [30]), i t is just obvious to 

employ the covering method to induce rule-based concepts, or vice versa. So, 

our system, which induces a set of fuzzy Horn-clauses, is going to apply the 

concept of covering method. 

However, both methods share the same core idea : i t keeps on pruning the 

training set in successive induction steps. The divide-and-conquer keeps on 

dividing the current training set, while the covering method keeps on removing 

the objects that is not covered. This idea is obviously important i f we want to 

induce concepts from a large dataset. Moreover, an efficient pruning method 

is crucial in first-order concept learning, because the main problem of most 

first-order systems is the curse of dimensionality. Notably, F O I L , which is 

the first efficient first-order learning algorithm, successfully apply the covering 

method to prune the multi-dimensional training set. 
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5.2 Fuzzification of FOIL 

After reviewing the importance of pruning in inductive learning, we now discuss 

the possibilities in incorporating fuzzy ideas into the pruning methods. This 

section gives the reason why we want to fuzzify F O I L [11]. I t also includes 

what we have to consider, what we want to achieve and what we have to 

sacrifice in the system fuzzification process. 

5.2.1 Analysis of FOIL 

We have discussed the development of F O I L in Sec t ion 2.3.1, now we go 

further to analyze the success and uniqueness of i t . The analysis begins w i th 

the sketch of the algori thm as follows: 

1. Init ial ize a nul l clause as "C :—" 

(a) 0 c — positive tuples in the target relation 

0 c — negative tuples in the target relation 

(b) Calculate information as 1 。 = — where | 0 | is 

the number of tuples in O 

2. For each l i teral L 

(a) Append L to the right-hand side of C to form C 

(b) ©L — positive tuples of L 

(c) V S l G e c ^ e c 

(d) V S l ^ ©c ^ e c 

(e) Count N as the number of ⑤'。account for unique tuple in © ^ 

(f) Calculate information as I c = -log2(|①丨,?_̂ 丨'丄~|) 

(g) Calculate gain as = TV x (/。— I c ) 
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3. Select the l i teral L w i th the greatest gain G 

(a) I f the greatest G > 0 

-Upda te C by C' 

- I f the updated C contains no negative tuple, goto Step 4 

- G o t o Step 2 

(b) Else (greatest G < 0) 

- I f C is a null clause, terminate the whole learning 

-Goto Step 4 

4. Complete the learning of the current clause 

(a) Start learning from a null clause as in Step 1 

(b) However, the set is pruned by the 0 tuples in all previously 

completed clauses 

(c) I f 0 c = 0, terminate the whole learning 

(d) Goto Step 2 

F O I L is proven to be very efficient and accurate in learning Boolean first-

order concepts. By analyzing the above algorithm, we found that the success 

of F O I L comes from the following reasons: 

E f f i c iency The covering technique is highly embedded in the algorithm. In 

particular, the specification process in Step 2c keeps on reducing the size 

of (unique) positive tuples throughout the induction of the current clause. 

We can see that for each literal L, we need only to consider its positive 

tuples, namely ① i n the generation of from ①c. I t results in 

© c I < I ① c I, i f they are in the same variable orderings. Step 4b, on the 

other hand, keeps on removing the covering positive tuples in successive 

clauses. These covering techniques provide the foundation of a successful 

first-order induction algorithm; as i t wi l l be shown by examples, the 
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number of tuples grows in an exponential manner when new variables 

are introduced. Wi thout such pruning, the first-order induction task is 

by nature an intractable problem; i t could not be solved (in reasonable 

time) even we consider relations among several tens objects only. 

A c c u r a c y The information estimation in Step 2 f is a good heuristics for 

l i teral selection, in the sense that i t could be applied in a wide variety 

of literals. As long as we can classify the training samples into 0 and 

B sets, the information heuristics is applicable, no matter what arity 

is the literal, no matter what types are the variables in. Since Quin-

lan's IDS [39], these information gain settings have long been applied 

in many induction systems which produces high classification rates. Of 

course, computer sciencist like to use i t because i t gets a solid theoretical 

foundation from Shannon's information theory [36]. Also, many arith-

metic operations are allowed on i t . Remember that an information is 

the negative logarithmic of a probability, however, i t has no semantics of 

"dividing a probability from another" or "a negative probabil i ty". The 

information setting allows more arithmetic operations, such as mult ipl i-

cation, division, etc., and i t gives more flexibility to design the heuristics. 

I n t e g r i t y Efficiency and accuracy do not guarantee a successful system, unless 

both of them could be integrated seamlessly. The beauty of F O I L is 

that the system uses a partial evaluation method (the information gain 

heuristics) during a pruning process. In contrast to FF99, which always 

evaluates a literal globally (all tuples needed to be considered), F O I L 

evaluates some selected tuples from a literal. More importantly, once we 

select the tuples, we need not to go back and consider the unselected 

tuples again. The integrity of the efficient pruning techniques and the 

accurate evaluation method emerges the best first-order induction system 

in literature. 
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5.2.2 Requirements on System Fuzzification 

Before we explore the ways to fuzzify F O I L , we step back to review two 

requirements to ful f i l l in fuzzifying any Boolean system, namely: 

C o m p a t i b i l i t y The fuzzified system should behave in exactly the same way as 

the Boolean system i f all the degree of memberships are 1 or 0. Usually, i t 

is done by replacing the Boolean set operations (e.g. union and intersec-

t ion) by t -norm operations (as discussed in Sec t ion 2.4.3). Functions, 

on the other hand, are quite different for Boolean sets and fuzzy sets. 

The functions involving Boolean sets usually works on the size of posi-

tive or negative samples; however, the functions for fuzzy sets operates 

on the degree of memberships, not the SIZE. I f a fuzzified system fulfills 

this compatibi l i ty criterion, at least i t would guarantee correct results i f 

binary data are fed in. 

C o n t i n u i t y Wi thout the loss of generality, the continuity criterion is formu-

lated as: For any function f : x a, where a is a real scalar and x is a 

fuzzy number w i th fî： being its degree of membership, i f / ( x i ) > /(X2) 

(/(工 1) < f (工2)) for some > / /们 ( ^ x i < MX2), then f(xi) > f{xj) 

( / ( 而 ) < > f{xj)) for all fjL^^ < i^xj [fJ^xi < /J^xj)- The simplest valid 

example is f{x) = fi^. This criterion is simple, nevertheless, i t pre-

serves one important property of fuzzy set : the degree of belonging 

is continuously spread wi th no discrete boundaries. I t also guarantees 

that samples of different degree of memberships yield different result, i.e. 

/(工a) / / /ixfe- Many system fuzzification methods fail in this 

criterion when they t ry to t r im several Boolean sets off the fuzzy set. By 

that way, f{xa) = f � even i f + (J^xb but Xa and x^ are put into the 

same Boolean set. 

Note that the former requirement is necessary while the latter is not, i.e., 

many fuzzified systems (a fuzzified system refers to a Boolean system that is 
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extended to allow fuzziness) do not ful f i l l the continuity condit ion. F A Q R [18], 

which part i t ions the t ra in ing samples into "soft positive set" and "soft negative 

set，，； disregards the differences of class memberships among the samples in the 

same part i t ion. Put i t simple, any algori thm that part i t ions the samples is 

v io lat ing the continuity requirement to some extend, although the construction 

of part i t ions usually depends on the class memberships. On the other hand, 

the fuzzy C-means algori thm ( F C M ) [40] does satisfy both requirements; the 

class memberships are always involved in each i terat ion and a l i t t le change in 

one class membership distorts the original results. 

As discussed in Sec t i on 5.2.1, the success of F O I L is nothing fortuitous. 

On top of that , we go further to specify the goals we want to achieve in 

fuzzifying F O I L . 

K n o w l e d g e R e p r e s e n t a t i o n Our system should provide more possible ways 

in representing knowledge, in comparison w i th F O I L , through the intro-

duction of new l i teral forms. Of course, those "advanced" l i teral forms 

should make advantages of fuzzy logic — to avoid crisp classification 

boundaries and to allow the use of linguistic terms. The details of those 

l i teral forms are already discussed in Sec t ion 3.1. 

Speed The problem of first-order induction is nothing special but suffering se-

rious speed consideration. In fact, only two systems in l iterature, namely 

F O I L and G O L E M [12], are capable to induce first-order concepts in 

reasonable time. W i t h the introduction of fuzzy relations, the original 

settings of F O I L or G O L E M are no longer valid, and a l i t t le change 

in the original algorithm may lead to a big difference in running time. 

Therefore, one should seriously monitor the speed of the modified system. 
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5.2.3 Possible Ways in Fuzzifing FOIL 

Ini t ia l ly, we t ry to develop F F 9 9 (please refer to C h a p t e r 4), which is a 

completely new system, to induce fuzzy first-order concepts. Instead of ap-

plying the discrete information theory as in F O I L , F F 9 9 makes use of the 

continuous one. Unfortunately, we failed somehow: the heuristics described in 

F ig . 4.12 impl ic i t ly requires all the variables being defined on ordered uni-

verse, i.e., F F 9 9 could not handle nominal data, which is very common in 

relational database. Also, i t is a GLOBAL evaluation method — all samples 

have to be considered all the way through the algorithm — that is not accept-

able in first-order learning. I t leads us to step back and t ry to fuzzify F O I L 

instead of developing a wholly new system, though FF99 proves to be a novel 

method in zeroth-order fuzzy induction. 

In the first sight, we tr ied to enhance the information measure for Boolean 

set to allow fuzziness. The Boolean information measure for a clause, /。，is 

the negative logarithmic of the proportion of the number of positive tuples to 

the number of all tuples: 

0 
/ c = - l o g 2 ( — ) (5.1) 

Note that this measure impl ic i t ly partit ions the samples into two crisp sets : 

the positive set (©) and the negative set (©). I f we want to follow the continuity 

criterion stated in Sec t ion 5.2.2, we have to explore a measure which does 

not require any partit ioning. The extension, replaces the part i t ion size by 

the summation of class memberships: 

/ 卜 (5.2) 

where is the class membership for the z-th sample and N is the total 

number of samples in the clause. 

The case is more complex for the information measure of l i teral selection. 

Refer to Step 2 in the F O I L algorithm discussed in Sect ion 5.2.1, one need 
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to select the positive tuples from a l iteral and perform a set intersection wi th 

the positive tuples of the clause. Those sets of positive tuples, © l and ©c, no 

longer exist in this extension because we are avoiding any crisp partit ioning. 

Instead of performing crisp set intersection, we express the information of a 

particular l i teral L by the mult ipl ication of class memberships: 

/。, — - l o g 2 ( 一 ) (5.3) 

where and f i c i f ) are the class membership of the z-th sample of the l i teral 

and the current clause respectively. 

Both extensions ((5.2) and (5.3)) perfectly fulf i l l the compatibi l i ty and 

continuity issues as discussed in Sect ion 5.2.2. First, the l imits of 1。and 

I'c agree : a purely positive set (all /i's = 1) gives /〇 二 = 0; a purely 

negative set (all /i's = 0) gives Iq = I'^ = oo. Also, by designing a function 

f{I') = -I', we see that fi > f? i f /xi(a) > fi2{ci), fii{i) = P2OO V i ^ a. I t 

implies every change in one class membership corresponds to a change in the 

extended information measure, i.e., all class memberships are responsible for 

the final results. 

The replacement of crisp set operations by class membership arithmetics is 

not a fresh idea. Several systems, e.g. F U Z Z Y VERSION SPACE [41], applied 

this idea and successfully induce fuzzy concepts on top of the classic VERSION 

SPACE algorithm. Yet, all these systems are zeroth-order learner. We can 

see the reason behind from (5.3) which "select" the "positive" samples by 

class membership multipl ication 一 i t implies a big problem : no pruning ！ 

Remember that in the original information measure, we need not to consider 

the samples in the negative set, and the number of (unique) positive samples 

is getting smaller in successive learning. Finally, we found that the extension 

of Boolean information measure is, although correct theoretically, not practical 

for first-order induction. 
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We soon conclude that the continuity criterion contradicts the speed con-

sideration. A trade-off always stays between them : the more you consider 

every bi t of class membership, the more samples you have to process; the more 

you part i t ion and prune the samples, the more class memberships you omit. 

We made the choice: speed. So, our system would maintain the same par-

t i t ion and pruning mechanism in F O I L . At the same time, the construction 

of part i t ion should be sensitive to l i t t le changes in class memberships. The 

two proposed methods, namely a-covering and probabilistic-covering, differ in 

the way they construct the 0 and 0 partitions. The flow of F O I L are kept 

intact in these two algorithms, which wi l l be discussed in the coming sections, 

hence guarantees the speed in first-order learning for both fuzzy and Boolean 

concepts. 

5.3 The a Covering Method 

For Boolean systems, we could simply define a "positive" sample as the target 

tuple that has degree of membership of one, where a "negative" sample as 

the sample having zero degree of membership. However, the situation is more 

complex in fuzzy system as a class membership lying between zero and one 

is allowed. Imagine a sample wi th = 0.5, can we immediately classified 

i t as "positive" or "negative" ？ The answer is no. Recall that a sample is 

"covered" means that both the target and the training sample are positive, i.e. 

Mr = 1, Mc = 1； where a sample is "uncovered" means that i t has a positive 

target sample yet a negative training sample, i.e. / i r = 1, /^c : 0. So that, we 

first have to classify a fuzzy sample as "positive" or "negative" before we can 

determine the learning be "covered" or not. 
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5.3.1 Construction of Partitions by a-cut 

The simplest solution to the above problem is to set a pre-defined threshold a 

to classify each sample. That is, the (target or training) samples are partit ioned 

into two crisp sets : the "pos i t ive"(① )and the "negative" ( e ) sets: 

Vx G X , ij.{x) > a a; G e , fj,{x) < a x e Q (5.4) 

or i t can be rewritten into the form of a-level set as in (2.13): 

® = (5.5) 

This method has been applied in many fuzzy inductive systems, for exam-

ple, F I L S M R [19] sets a = 0.5 to learn modular rules. A sample is said to 

be a-covered i f both the target and the training samples are positive (with 

respect to a). Consider the i l lustration in Table 5.3, we could pick out the 

a-covered samples very quickly. 

Mt 0.0 0.3 0.4 0.5 0.7 0.7 0.9 0.9 1.0 
/ ic 0.0 0.1 0.1 O . r 0.4 0.6 ~0J~ 0.7 1.0 

a-covered ？ \ / V \ / V 

Table 5.3: a-covering wi th a = 0.5 

Following the application of a-part i t ioning method, we could then apply 

the F O I L algorithm as usual, which guarantees a fast induction. Of course, 

once the fuzzy set is partitioned into the crisp © and © sets, the class mem-

berships are omitted. The high induction speed is achieved at the expense of 

the sensitivity of class memberships. 

5.3.2 Adaptive-a Covering 

The original a-covering method takes several advantages: i t is simple, fast 

and compatible to Boolean logic. However, a fixed setting of a may not be the 
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optimal choice for all situations. As our system does not restrict the way how is 

the data collected, the data of a fuzzy relation may be collected through some 

questionnaires. In that situation, the fuzzy relation may be heavily biased, say, 

most of the samples have zero memberships. So, our system offers a better 

way to determine a in run-time: we use a K-means clustering algorithm to 

classify the samples into the "positive" or the "negative" set. We set the 

in i t ia l class centers to be Ci = 0.25 and C2 = 0.75, and after running the K -

means iterations, we would get a optimal set of c'l and 62 to "separate" the 

samples. Finally the adaptive a is determined by: 

c ' l + 62 M 

a = - Y - (5-6) 

Note that a is determined separately for the target samples and the training 

samples, so we would get ajr and ac- Following the previous example in Table 

5.3, we work out a r = 0.56 and ac = 0.39 by the K-means algorithm. A new 

covering result is shown in Tab le 5.4. We see that f ix is biased towards 1.0, 

IJic is biased towards 0.0; in that way 0.5 is relatively not large enough for i^t 

to be positive and 0.4 is relatively large enough for f ic to be positive. The 

difference of the original a-covering and our adaptive a-covering is shown in 

the fourth and f i f th pairs. We would see that the result of adaptive a-covering 

is more robust and as its name, more adaptive. 

/ i r 0.0 0.3 0.4 0.5 0.7 0.7 0.9 0.9 i X 
jJLc 0-0 0.1 0.1 —0.5 0.4 0.1 0.7 1.0 

a-covered ？ A/ >/ \ / 

Table 5.4: Adaptive a-covering wi th ax = 0.56, ac — 0.39 

Table 5.3 and Table 5.4 show one vi tal conceptual difference between 

the two methods, though only the fourth and f i f th pairs changed. In fact, 

the fixed-a-covering method makes no difference in giving a Boolean dataset 

between specifying a fuzzy dataset. We can see that a sample wi th / i = 0.1 or 
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M = 0-4 performs just the same as a Boolean negative sample (provided that 

the fixed-a = 0.5). On the contrary, the class membership of each sample is 

effective in adjusting the adaptive-a. Adding adaptiveness in the simple fixed-

a method makes i t becomes a "nearly real fuzzy system" (we would elaborate 

on this point in next section). Obviously, it 's st i l l problematic to part i t ion the 

samples merely by their class memberships, we would t ry to cope wi th this 

problem in next section. 

After the data is read from input, we perform the a-cut part i t ioning which 

results in two crisp sets ( 0 and 0 ) for each relation. In case of adaptive 

a-cutt ing, the "optimal" a is estimated for each literal form after all literals 

forms are generated (please refer to Sect ion 3,2.2). 

The user has a choice between the a covering and the adaptive-a covering 

methods. The former one could be chosen by specifying a particular a, or the 

latter method wi l l be used by default. 

5.4 The Probabistic Covering Method 

The fixed-a covering provides the simplest means to part i t ion the fuzzy samples 

into the crisp © and © sets, in order to adapt the efficient F O I L main flow; the 

adaptive-a method makes one step forward in relating the part i t ion boundaries 

wi th the class memberships. Notwithstanding, they both suffer one serious 

problem conceptually: they tend to ignore the cases of low class memberships. 

One may argue that we should ignore those cases without questions, however, 

consider a strange case as follows: given 3 literals (L。，Li, L2), learn the concept 

description for Lq. The correct answer should be: 

Lo(X) ： - Li(X) 

Lo(X) ： - L2(X) (5.7) 
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This problem seems to be too simple to allow any fault, nevertheless, consider 

the special arrangement in Tab le 5.5, surprisingly, the a-covering methods 

could never learn the perfect description as in (5.7). 

i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 0 | 1 1 -
/ILO(0 0.8 0 .7 " " G ^ 0.6 0 .3 

0.8 ~Q?r 0.6 0.6 "O.Q 0.0 0.0 0.0 "OO" 0.0 
0.0 0 .0 0 .0 0 .0 0 .0 0 .3 0 .3 0 .2 0 .2 0 .1 

Table 5.5: A case to demonstrate the inadequacy of a-covering 

We can see that L! perfectly describes the higher class membership samples 

( i = 1 — 5 ) , while L2 is in charge of the lower membership cases ( i = 6 —> 11); 

the disjunction of these two literals is exactly equal to Lq. We t ry to formulate 

the observations in the a-covering methods stated in Sec t ion 5.3, we choose 

the fixed-a to be 0.5 and the adaptive-a's are estimated as Ql。二 0.46, OfL!= 

0.37 and 〜 = 0 . 5 9 . The result is amazing : L2 covers none of the target 

samples from whatever a covering methods ！ 

L I : i = | 1 丨 2 | 3 | 4 丨 5 | 6 | 7 | 8 | 9 | 1 0 丨 1 1 
fixed-a-covered ？ \ l J 
adaptive-a-covered ? \ / \ / V \ / V 
L2 ： | 1 | 2 | 3 | 4 | 5 | 6 丨 7 丨 8 | 9 | 1 0 丨 1 1 
fixed-a-covered ？ 

adaptive-a-covered ？ 

Table 5.6: Use of a-covering methods 

From the viewpoint of the first-order induction algorithm, Lq and Li are 

equivalent as shown inTable 5.6. ； Li is considered as "perfectly covering" 

the target (as i t has already "covered" all the " 0 " samples in target), thus, 

the learning wi l l be terminated as: 

Lo(X) ： - Li(X) (5.8) 
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Unfortunately, this imperfect result is likely to give high scores by using 

whatever part ia l evaluation method. Unless we use a global evaluation method, 

which compares the result and the target in a sample-by-sample manner, to 

discover the small amount of error, we don't know that (5.8) could st i l l be 

improved. In spite of the mentioned deficiency, any global evaluation should 

be prohibited during the induction process (please refer to Sec t i on 5.1.3 for 

reasons). A l l these concerns lead us to a probabilistic covering approach. 

The probabilistics covering approach refers to part i t ioning samples into the 

0 and © by chance. Of course, the probabil i ty should be dependent on the 

class memberships. The way we suggest is: the probabil i ty of a sample to be 

classified as "+ve" is equal to the square-root of its class memberships, i.e. 

④ ） = V A ^ M (5.9) 

P{x G e ) = 1 - V A ^ (5.10) 

By this way, the probabil i ty of a sample x, which has class membership 

/ i c (^ ) on the concept description and y^r ⑷ on the target, to be considered 

"covered" is: 

P[x is covered) = X/a^CM x V W ⑷ (5.11) 

There are some important properties behind (5.11) (here we denote P{x is covered) 

by P W ) ： 

1. I f either f ic or (jLt equals 0, equals 0. I t is consistent w i th Boolean 

cases. 

2. I f //c = A r̂ = 1, = 1. I t is also consistent w i th Boolean cases. 

3. I f i^c = I^T = M, = M- I t means that any sample w i th non-zero class 

membership is possibly covering the target, and the possibility is linearly 

proportional to its class membership. 
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In implementation, a list of random number (in range of [0,1]) is generated 

and squared. The list is considered as the probabil i ty in (5.10), and i t is 

compared w i th the class memberships to get the 0 set. The following steps 

are as usual as Boolean cases. 

i 丨 1 | 2 | 3 | 4 丨 5 丨 6 | 7 | 8 丨 9 | 1 0 | 1 1 

工i e ① l 。 T " 7 7 7 7 V 
工i e s l , ？ A/ 7 

e ① La ? I I I I I V I I 

Table 5.7: A successful example of using the probabilistic covering method 

Consider again the case which a-covering fails, the probabilistic covering 

approach provides the chance to get the perfect solution. One of the possibly 

is shown on Tab le 5.7: at least one of Xi, i e [6,11] is classified as "+ve" in 

both Lo and L2, at the same time at least one of Xi, i G [1, 5] is "+ve" in LQ 

and Li. This kind of cases wi l l force the system to consider both Li and L2 in 

the clause, as the system tries to cover all the "positive" cases. In fact, the 

chance to get a perfect solution of this particular problem by the probabilistic 

approach is: 

P(perfect solution) = (1 - (1 - 0.3) x (1 - 0.3) x (1 - 0.2) x (1 - 0.2) x (1 - 0.1)) 

x ( l - (1 - 0.9) X (1 — 0.8) X (1 - 0.7) X (1 - 0.6) x (1 - 0.6)) 

= 0 . 7 1 8 X 0.999 

= 0 . 7 1 7 

which shows that the probabilistic approach is very likely to get the perfect 

solution as in (5.7). But this appealing probability is not common because 

there is so l i t t le choices of literals in this example. 

The probabilistic approach offers the chance to cover low class membership 

samples, at the time i t may omit some high class membership samples. I f some 
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" important" samples are omitted, the system cannot distinguish between the 

useful and the irrelevant literals, which results in long and incorrect solutions. 

In practical usage, the a-covering approaches should be applied first. I f 

the result is not satisfactory, carry out the probabilistic covering for several 

times to see i f any better solution exists. The probabilistic approach shares the 

same belief of genetic algorithm : i f the unique solution from a deterministic 

algorithm does not work, gets a pool of solutions and hopefully the optimal 

one is out there. We would understand more about the performance of these 

two covering approaches in C h a p t e r 6. 
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This chapter demonstrates F F O l on several types of learning tasks. The 

results are compared against existing learning algorithms. We wi l l discuss the 

system at the end of this chapter. 

6.1 Experimental Results 

6.1.1 Iris Plant Database 

Fisher created this well-known attribute-value dataset. The dataset contains 

3 classes of 50 instances each, where each class refers to a type of iris plant, 

namely setosa, versicolor and virginica. One class is linearly separable from 

the other two; the latter are not linearly separable from each other. Each in-

stance is described by 4 numeric attributes, namely the sepal length (si), sepal 

width (sw), petal length (pi) and petal width(pw). The dataset is originally 

designed for zeroth-order learning systems, however, w i th the help of the con-

version ut i l i ty A p p e n d i x A , i t is able to formulate each class as a relation 

wi th arity of 4, and each attr ibute acts as a variable of the relation. We wi l l 

compare the results get from F O I L and F F O l by doing 10 experiments, each 

wi th a 50-50 training-testing ratio. 

First, we see the results of F O I L : 9 of the 10 experiments get the following 

results: 

se tosa (s l , sw ,p l , pw) : — p i < 1.9 

v e r s i c o l o r ( s i , s w , p i , p w ) : - p i > 1.9 

v i r g i n i c a ( s i , s w , p i , p w ) : - pw > 1.6 

v i r g i n i c a ( s i , sw,p l ,pw) :— p i > 4.9 
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The results of F O I L is similar, however, the expression is different: 

setosaCsl，sw，pl,pw) : — very_small(pi)(1.0,1.0,1.7,2.40) 

versicolor(si,sw,pl,pw) : -，very—small(pi)(1.0,1.0,1.7,2.4) 

virginica(si,sw,pl,pw) : - very_big(pw)(1.4,1.6,2.5,2.5) 

virginicaCsl,sw,pl,pw) :— very_big(pl)(4.5,5.1,6.9,6.9) 

where the 4 numbers following the literals represent the parameters of the 

trapezoidal membership function as defined in (3.5). 

Clearly, the results of F F O l is more readable and comprehensive than 

that of F O I L because we have no common sense on the exact value of some 

attributes. Do you know a sepal of length 1.9cm is long or not? I t shows one 

great advantage of fuzzy expressions: i t is closely related to human language. 

Note that we are using the FF99 algorithm to learn this result, as all data 

are numeric, and the problem is zeroth-order. To analyze the classification ac-

curacy, we compare i t against C4.5, F O I L and another fuzzy learning system 

F A Q R [18]. The results are shown in Table 6.1. 

— C4.5 F O I L F A Q R f W F 
"Setosa "TOQ% 100% “ 100% TOQ% 
"Versicolor " 9 5 ^ 95% "97% 
"Virginica 95% 95% 97% 97%— 

Table 6.1: Classification accuracy of iris classes 

We find that the our system and F A Q R achieve higher accuracy compared 

to C4.5 and F O I L . I t demonstrates another main advantage of fuzzy learning 

systems: they prevent sharp classification boundaries, which are not avoid-

able in crisp learning systems. A fuzzy boundary always allows more robust 

classification, plus higher accuracy can be achieved. 
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6.1.2 Kinship Relational Domain 

I n t r oduc t i on 

Hinton developed this relational database, which consists of 24 unique names 

in two families (they have equivalent structures). Hinton used one unique 

output unit for each person and was interested in predicting the following 

relations: wife, husband, mother, father, daughter, son, sister, brother, aunt, 

uncle, niece, and nephew. Hinton used 104 input-output vector pairs (from a 

space of 12x24=288 possible pairs). The prediction task is as follows: given a 

name and a relation, have the outputs be on for only those individuals (among 

the 24) that satisfy the relation. The outputs for all other individuals should 

be off. 

Clearly, using a neural network representation is not natural to define the 

kinship concepts. Quinlan repeat the learning task using F O I L . He gets this 

kind of Horn-clause results: 

brother(X,Y) :-father(Z,X), son(Y，Z) 

brother(X,Y) :-mother(Z,X), son(Y，Z) 

where the predicate P (A，B) is read as "A is the P of B". Our system represents 

that concepts as the same way as F O I L does. 

From the result comparison in [11], Hinton used 100 vectors as input and 

4 for testing, his results on two passes yielded 7 correct responses out of 8. 

His network of 36 input units, 3 layers of hidden units, and 24 output units 

used 500 sweeps of the training set during training. While Quinlan repeated 

the experiment 20 times (rather than Hinton's 2 times). F O I L was correct 

78 out of 80 times on the test cases. The capped Table 6.2 summarize the 

classification results. 

This summary seems to be too brief for us to test out our system, though 

we adapt the F O I L algorithm as the core flow in FFOl . More than that, we 
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System mnton，s F O I L 
Accuracy 7/8 (87.5%) 78/80 (97.5%)" 

Table 6.2: Classification accuracy of kinship domain on existing systems 

are using this kinship domain to analyze several important aspects of FFO l : 

they are accuracy, complexity and implementation. After carrying out a com-

prehensive set of experiments, we find that our implementation of the F O I L 

algorithm is not exactly the same as the one wri t ten by Quinlan. By varying 

the number of individuals n from 24 down to 12, we get 13 sets of experiments 

(which depending on n); each experiment is done for 5 times to get average 

running time, yielding a total of 65 sets of experiments. We implement our 

system by Mat lab scripts (for details, please visit www. mathworks . com); the 

experiments are carried out on a Sun Ultra 5/400 machine wi th 512MB of 

memory. 

A c c u r a c y 

First we look at the accuracy of F F O l numerically. In Boolean classification 

tasks, four cases of classification are possible: true-positive T+ (both the target 

and classification are true), true-negative T~ (both the target and classification 

are false), false-positive (classification is true but the target is false), false-

negative F— (classification is false but the target is true). Unlike attribute-

value classification systems, which concerns on accuracy separately on the 

training sets and the testing (unseen) sets, testing sets are seldomly employed 

in first-order learning systems, since the number of cases are so large enough 

and we always need to omit most training samples (by appropriate pruning) 

throughout the loopings. F O I L measures the accuracy by considering merely 

the true classification cases, as shown in (6.1): 

# = IT+ITIF+I X 鹏 （6.1) 
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where \X\ is the size of the set X. 

As the number of cases of false classification, as well as false target, are 

numerous, i t is t ime consuming to consider all the false cases in the accuracy 

calculation. However, since we are working out specifying the t ra in ing set by 

the positive samples only (please refer to Sec t ion 5.2.1 for details), i t 's possi-

ble that for a concept description perfectly covers the positive target samples 

yet some false classification samples are positive target too, i.e. A + = 100% 

but F~ / 0. In other words, the negative classification samples are acting as 

the "unseen" samples as in attribute-value systems. Desprite i t is computa-

t ional ly expensive, we st i l l carry out the test on all samples, just to include all 

possible test cases. The complete accuracy measure is stated as in (6.2): 

^ 二 |T+| + |F+| + | T - | + | F - | X 100% (6.2) 

The results of F F O l running on different n are summarized in Tab le 6.3. 

Note that since F F O l is deterministic for Boolean data, all the 5 experiments 

run for the same n yield the same set of results. 

- n 12 13 I 14 I 15 I 16 
9 1 % ( i ) ~ 9 2 % ( | ) ~ ~ 9 3 % ( f ) ' ~ 95%(器） 8 8 % ( i ) ~ " 

^ ? ^ o 。 ％ ( i i ) i o o % ( i i ) i 。 。 % ( i i ) i o o % ( l i ) i Q Q % ( i f r 
n 17 18 19 I 20 I 21 

I 8 8 % ( f ) ~ ~ 9 8 % ( i ) 8 2 % ( i ) 91% (器 )一 

• % ( • ) i o o % ( i i ) • % ( • ) i Q o % ( i i r 
“ n 22 23 I 24 I Total 
I — 94%(證 93%(懷）. 91.8%(諧） 

Table 6.3: F F O l classification accuracies on different n 

We can see that the overall accuracy fluctuates when n changes, but there is 

no correlation between the fluctuation and the changes in n. Since the original 

experiment is designed by the description of 2 complete family trees, which 
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consists of 24 people, when we remove several members in the family trees, 

some "kinship links" might be broken. I t makes the system being impossible 

to induce perfect solutions (so that the accuracy fluctuates), and i t takes more 

t ime to learn a lengthy (the best possible) solution (so that we would see the 

running t ime fluctuates also). According to the A accuracy readings in Tab le 

6.3, i t shows that F- bares only a very small amount of the total negative 

classification cases, that's why the A accuracy is seldomly reported in other 

systems. Go back to the usual accuracy measure, A+, F F O l performs very 

well on average by yielding a 91.8% correctness. Unfortunately, i t could never 

achieve 100% accuracy even n = 24. We would leave this issue behind to be 

discussed in the "implementation" part. 

C o m p l e x i t y 

n I 12 I 13 I 14 I 15 I 16 I 17 
F F O l ( s ^ 50.1 55.5 51.1— 57.9 64.2 93.6 
F O I L (sec) 0.22 0.20 0.22 0.26 0.28 0.30 0 . 4 ^ 

n I 19 I 20 I 21 I 22 I 23 I 24 
F F O l ( s ^ 107.5 —132.9 128.厂 133.1 "139.5 127.1 
F O I L (sec) 0.40 0.54 0.50 0.52 0.56 0.46 一 

Table 6.4: Running time on F O I L and F F O l on the kinship domain 

From F ig . 6.1, we see that the dependence of 力 on n are pretty much 

the same in F O I L and FFOl . But the fact is, F O I L runs much faster than 

FFO l , before we explain the reasons accounting for the difference in speed, 

a complexity analysis is performed: Assumed that the running time t is a 

function of the number of individuals n in the form : 

t(n) = a + 没 + e几 ( 6 . 3 ) 

where a, (5 and 9 are the constants to estimate, and e^ is the error between the 

model and the actual reading. Using model in (6.3), we clain the complexity 
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Figure 6.1: Average running time t vs. number of individuals n 

of this kind system be O(n^). The technical problem is how we estimate the 

parameters. By subtracting t by e, and taking logarithmic from both sides, 

we get a linear model with log/? being the intercept and 0 being the slope; 

this model could be easily solved by least square error. However, the whole 

estimation depends heavily on the choice of a. More precisely, for each a, we 

would get a optimal set of {/? 9} and that set of parameters give rise to a set 

of e^j's. 

RMSE{a) = y S ^ Z where N is the number of different n (6.4) 

By formulating a square-root mean-square error value as in (6.4), we expect a 

concave (U-shape) error function to minimize. As there is no analytical RMSE 

guaranteed, we used a numerical bisection method to locate the optimal a, 

with respect to a minimum RMSE. The real data in Fig. 6.2 is supporting 

our assumptions, as concave RMSE functions are observed from both sets of 
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experiments. The opt imal parameter sets are hence estimated and recorded in 

Tab le 6.5. 

FF01 FOIL 
14.51 1 1 1 0 .0652 1 1 

14 .505 - Q -

\ 0 .0651 - -
14.5 - \ -

\ \ 
14.495 \ \ 

\ 0 .065 - \ -

14 .49 \ - \ 

g 14 .485 - \ - g 0 .0649 - \ -
14.48 - \ / - \ Q 

14 475 \ / 0 .0648 - \ / -

14.47- \ / - 。 ― \ / -

一 V - V 
1 4 .46 ‘ ‘ 1 0 .0646 ‘ “ 1 

O 10 20 30 40 O.I 0 .15 0.2 
« oc 

Figure 6.2: RMSE as a concave function of a 

I a I f3 I 6> I RMS~W~ 
F F O l 0.56 T W 14.5 
F O I L 0.157 0.0035 1.60 0 . 0 6 4 ^ 

Table 6.5: Opt imal parameters estimated by minimizing RMSE 

Insprite of the big difference in a, jS and RMSE, the 6 from both systems 

are basically the same. However, the results make us comfortable to claim 

that F F O l runs in in this domain. F ig . 6.3 shows how the suggested 

running-time model describes the actual data. Note that, without suitable 

pruning and the use of the covering method, the complexity should be O(n^) 

(assuming all other factors kept constant)，where V is the number of different 

variables allowed simultaneously. For example, our system allows up to 5 

variables, which implies a O(n^) complexity ！ In fact, before constructing 
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FFOl , we tried to globally evaluate each literal and it spent days to explore 

the correct solutions. We would further discuss the difference in a , jS and the 

running time between FFOl and FOIL in Section 6.2.1. 

1801 , , , 

model Z 
1 6 0 - Q actual / _ 

1 4 0 - Z O -

y/O O 
/ o 〇 

120 - Z -

/ o 
- 1 0 0 - X -

/ o 
8 0 - -

〇o 
60- Z O O -

O O 

4 0 - ^ ^ ^ ^ ^ -

20' -J 1 1 1 
0 5 1 0 15 2 0 2 5 

n 

Figure 6.3: The actual running time and the expected running time from model 

Implementat ion 

The last two categories of analysis shows that there are some essential differ-

ences in the implementation of FFOl and FOIL. 

First of all, FFOl could never learn the "correct" (by common sense in 

family relations) definitions of two relations, namely Nephew and Niece. We 

found that the basic FOIL algorithm, as described in Section 5.2.1, is not 

capable of inducing those relations. There are two main reasons: 

1. The gain heuristics G is not as simple as stated in Section 5.2.1. In fact, 

for different literal forms, e.g. for those which introduce new variables, 
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G is mult ipl ied by some bias. Unlike the basic gain heuristics, which has 

solid foundation in information theory, the bias are purely experimental 

A n optimal set of bias requires a large set of experiments and a lengthy 

fine-tuning process. 

2. This point is more important: a greedy search is hardly perfect in all 

situations. The latest implementation of F O I L , the one we test, allows 

a l imited backtracking to "guarantee" the best solutions. Whenever i t 

checks that a concept description that is too "lengthy" and is "not likely" 

to get the perfect covering, i t backtracks to select some alternatives. The 

problem is how could we determine what is "lengthy" and "not l ikely": 

i t also requires a fine-tuning. 

Second, despite the complexities are similar, the actual running time of 

F F O l is much longer that of F O I L . Reminded that F F O l is running on a 

Mat l ab interpreted environment, while F O I L is a compiled, highly optimized 

C executable. Nevertheless, we sti l l see room for speed improvement, the pos-

sibilities would be discussed in Sect ion 6.2.1. 

In conclusion, this experiment domain shows that F F O l performs well in 

inducing Boolean first-order concepts. Thus we are confident in building on 

top of this basic F O I L algorithm to induce fuzzy first-order concepts. 

6.1.3 The Fuzzy Relation Domain 

We construct this artificial domain to test F F O l on the induction of fuzzy 

first-order concepts. This domain consists of 8 fuzzy relations, some are unary 

and some are binary, defining on a discrete type comprising up to 26 entities. 

The task is to induce the definition of Ry and Rs, which are perfectly defined 

as : 

R7(X，Y) : - R I ( X , Y ) , R 3 ( Y ’ X ) (6 .5 ) 
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R8(X) : - R3(X,Y),R2(Y) (6.6) 

The literals R4, R5 and Re are acted as "noise" as they are irrelevant to the two 

targets. (6.5) tests i f F F O l could learn definition in correct variable order-

ings and (6.6) tests the performance on fuzzy variable projection (see Sec t ion 

2.4.4). Also, the three fuzzy methods (fixed-a (fa), adaptive-a (aa), proba-

bilistic (p)) w i l l be compared and evaluated. 

First, we have to formulate a evaluation method to quantify the solutions, 

as the accuracy measures described in Sect ion 6.1.2 are only valid for Boolean 

cases. In particular, the quantities T+, T~, F + and F— have to be fuzzified. 

Following the rules of fuzzification in Sect ion 5.2.2, we propose the following 

measurements: 

= (6.7) 
i 

T- 二 (6.8) 

i 

庐 = X l / i r ⑷ ( 6 . 9 ) 
i 

『 - = ( 6 . 1 0 ) 
i 

where â c ⑷ and / i r ⑷ are the class membership of the z-th sample of the 

concept description and the target respectively, and • refers to the fuzzified 

version of • . 

As shown in Sect ion 6.1.2, the A measurement shows l i t t le information, 

so we ignore i t in this experiment and concentrate in fuzzifying the mea-

surement, which is denoted as A: 

~ T+ 
A = ^ X 100% (6.11) 

T+l + \F+\ � ) 

We adjust the size of the type, n, from 16 to 26. For each n, we carry 

out the fixed-a (fa) approach once, the adaptive-a (aa) approach once, and 

the probabilistic approach for 10 times. The overall accuracies (over the two 
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concept definitions) are reported in Tab le 6.6 and are plotted in F ig . 6.4. 

The best (worst) performance of the 10 probabilistic experiments are denoted 

as max Ap {min Ap). 

一n I 16 I 17 I 18 I 19 I 20 I 21 
如 - ^ m W 8 7

% ( 盟 ） 8 8 % ( ^ ) _ 87%(|M) 
A^a 83%(祟）74%( iM) 7 9 % ( i M ) 7 9 % ( i M ) 7 9 % ( i H ) 8 7 % ( i M ) 

匪 Ap 7 2 % ( i i ) 7 0 % ( ^ ) 7 5 % ( ^ ) 7 0 % ( i | ) 7 7 % ( # | ) 7 5 % ( f M ) 
max A, 81%(湿）81%(湿）84%(||) 78%(||) 87%(||) 81%(||) 
一n I 22 I 23 I 24 I 25 I 26 I Total 

^aa 87%( iM) 87%(|M) 87%( iM) 7 9 % ( i 4 ) 8 2 . 3 % ( i H ) 
觀 Ap 7 4 % ( t | ) 7 7 % ( i 4 ) 76%(! |4) 78%(!M) 75 .1%( |§ | ) 
MAX A , 8 6 % ( M ) 8 3 % ( | | ) 8 5 % ( | | ) 8 2 % ( | | ) 8 2 % ( | | ) 8 2 . 9 % ( | | | ) 

Table 6.6: Accuracies of different methods in F F O l on different n 

The accuracy obtained is decent: an average of 87% correctness is achieved 

by the fixed-a approach. Suprisingly, the adaptive a method is always inferior 

to the fixed a method. I t really violates our expectation and the result is 

unknown yet. Consider the normal solutions get by the fixed-o;: 

R7(X，Y) ：— RI(X,Y),R3(Y，X) (6.12) 

R8(X) : - R3(X，Y) (6.13) 

in which (6.12) matches (6.5), but (6.13) does not match (6.6). Moreover, by 

using whatever a methods, (6.6) is never achieved. I t shows the deficiency 

of the a-covering methods as discussed in Section 5.4. Despite that the 

probabilistic approach always performs worse in term of overall accuracies, 

i t does successfully induce the correct solution as in (6.6) in some occasions. 

But don't expect that the probabilistic approach could induce both definitions 

correctly at the same time, the opportunity is endlessly vast. However, i t 
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Figure 6.4: Accuracy of different methods 

demonstrates that the probabilistic approach is an alternative to seek a better 

solution i f the deterministic methods do not work. 

Next, we look at the running time of this experiment set as reported in 

Table 6.7. By observing F ig . 6.5, we see that the most accurate method 

spends the least time. And i t is very encouraging to use only 15.4 sec in the 

n — 26 case. However, we must go further to analysis its complexity. 

— n I 16 I 17 I 18 I 19 I 20 I 21 I 22 I 23 I 24 I 25 I 26 
TFA 4.3 “ 4 .8 5.5 6.1 6.9 7.9 9.0 “ 10.3 11.7" 13.6 15.4 
tag 8.5 11.5 11.6 13.4 10.5 7.8 8.9 “ 10.1 11.5" 13.3 85.2 

min tp 12.3 16.9 iTX 10.8 22.2 23.3 “ 27.5 2 5 . 0 4 0 6 3 ? 7 ~ 
tp 27.3 2 5 . 0 22.1 29.3 37.8 53.7 53.0 50.8 68.0 122.2 131.4 

Table 6.7: Running time on different methods in F F O l domain 
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Figure 6.5: Running time of different methods t vs. number of individuals n 

Following the same procedures as described in Sect ion 6.1.2, we find that 

(6.14) fits the actual running time very well as shown in F ig . 6.6. 

T = 1.94+ 1.11 X 1 0 — 4 X 7 1 3 . 5 9 (6.14) 

Unlike that in the kinship experiment, F F O l has a much higher complexity, 

几3.59), instead of The reason accounts for the grow is that whenever 

the system could not learn a perfect definition, i t spends much more time in 

constructing a much bigger (more, longer clauses) solution. We would suggest 

ways to cut down the complexity in Sect ion 6.2.1. 

Among the suggested fuzzy covering methods, fixed-a seems to be the best. 

The probabilistic approach gives the opportunity to get a perfect solution if 

other methods fail. The overall accuracy and the speed of the fuzzy first-order 

induction task in satisfactory. 
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Figure 6.6: The actual running time and the expected running time from model 

6.1.4 Age Group Domain 

The previous two experiments show that our system is compatible to existing 

learning tasks, no matter they are attribute-value based or relational. Now, we 

step forward to learn concepts from fuzzy data. This artificially constructed 

domain consists of the age of 20 people and the degree of membership of the 

fuzzy relations: middle—aged，much—older一than, young and old. If we directly 

run FFOl , we get the definition of middle_aged as: 

middle-aged(X) :-medium(X)(10,30,48,60) 

where medium(X) is automatically generated for the numeric universe X (which 

means the age in this experiment). However, this concept is quite useless: 

we repeat the experiment by suppressing the automatic generation of literals 
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(please refer to Tab le 3.6), we get a more meaning result: 

middle-aged (X) : -much_older_than (Y，X), much_older_than (X，Z) 

which is read as “someone is middle-aged i f he is much older than some guy 

and another guy is much older than h im" . This t ime, the concept can be 

applied universely on all situations. 

This experiment demonstrates that F F O l is able to learn both fuzzy and 

first-order concepts. I t opens a new area of machine learning tasks. We can see 

its numerous potential applications, for example, data mining of questionnaire 

results, structural image understanding, etc. 

6.1.5 The NBA Domain 

From of the official site of the Nat ion Basketball Association (NBA) , www. nba. com, 

we collect the data for this domain to analyze the relative performance between 

players and terms. The data are recorded into three spreadsheets: one for the 

career statistics for individual player (denoted as SI) , the other two for the 

results of 55 games, including the statistics of the game (denoted as S2) and 

the performance of the starters (denoted as S3). 

Since the raw data spreadsheets are presented in a attribute-value (zeroth-

order) manner, we have to transform them into relational format. First of all, 

we have to set the types where the relations defined on. In this dataset, all the 

attributes are describing the performance of a player, a team, or a particular 

player on a particular team. Therefore, we set two types, namely "player" 

and "team", which are discrete and disordered. The "player" type contains 61 

entities while there are 12 different "team" type values. 

First we consider SI, there are 16 numeric attributes as listed in Tab le 

6.8. Note that the fields from MIN to PTS are the averages of those attributes, 

for example, PTS 二 9.1 means that a player owns a career average of 9.1 points 

per game. 
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Name Meaning Name Meaning || Name Meaning 
_H height in inch W weight in lbs AGE age 
EXP year played G game played MIN minutes 
FGP field-goal percentage 3PP 3-pointer FGP FTP free-throw percentage 
AST assists ~S1： steals BLK blocks 
TO turn-overs PF personal fouls REB rebounds 
PTS " j o in t s 

Table 6.8: Name of numeric fields and their meaning in SI 

Since F F O l offers the functionality to fuzzify numeric attributes into lin-

guistic terms (fuzzy unary relations), the attributes in SI need no special 

treatments. For example, from the PTS field, F F O l would automatically gener-

ates 5 predicates, namely very_large_PTS to very_small_PTS, by the method 

discussed in Sect ion 3.1.3. The predicates generated are unary relations 

defining on the type "player", for instance, some instances of the predicate 

"very_large_PTS" are shown in Tab le 6.9. Although one might prefer the 

name high-SCorer to very_large_PTS, we can just accept this tradeoff be-

tween predicate naming and automatic predicate generation. 

player J O R D A N C A R T E R S P R E W E L L M O U R N I N G H A M I L T O N 

"7^very_large_PTS (player) |[ 1.0 0.9 0.1 0.1 0.0 

Table 6.9: Some instances of very_large_PTS(player) 

In comparison wi th SI, we could get more information from S2. First of 

all, we gather the statistics for each team, calculate the average numbers over 

the games, and then the difference between the average and each individual 

game is calculated. A l l these calculated fields are considered are fed into the 

system as unary relations. The statistics for players (S3) are processed in the 

same way. 

After gathering these vast amount of information, F F O l "discovers" several 
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interesting information, for example: 

very_small_PTS(X) :-matchup(X,Y), very_large_H(Y) 

which means "a player would score few if he matchups wi th a very tal l guy". 

While the clause : 

very一large_FGP(X) :-sametermCX,Y), very_large_AST(Y) 

which means "a player would obtain very high field-goal percentage if one of 

his teammate dishes many". Also : 

very_large_PTS(X) : -very_large_REB(X), very_large_FGP(X) 

reads as "a team gets very high scores i f i t rebounds well and shoots accu-

rately" . 

Note that not the results are as results as the above ones. In fact, many 

results are nonsense, mainly due to the small amount of data. Also, the "good" 

solution are usually not obtained by deterministic methods, but by the prob-

abilistic approach, and it require human intervention to pick up the "useful" 

solution out from the pool of possible solutions. 

6.2 Future Development Directions 

This section discuss a few possible improvements on our system to solve the 

problems we encountered in previous sections. 

6.2.1 Speed Improvement 

In Sect ion 6.1.2，we found that FFO l spends long in initialization (as shown 

in a large a). I t is simple and easy to maintain to define all the literals in 

the initialization stage, however, it's time consuming. A better method is to 

generate a literal once it's needed, and save it for later use. The difference of 
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P comes from the lack of use of "determinate literals" [11]. This idea could be 

incorporated in our system to further prune the search space. 

In Sect ion 6.1.3, we know that the speed slows down whenever perfect 

solution is not achieved. To avoid this, we have to keep track of the number of 

clauses learned and the length of the current clause, i f the concept definition 

tends to grow wi th no "significant" improvement, i t should be stopped and 

backtracked. The issue to concern is how we determine which we should stop 

and backtrack. 

Obviously, plott ing our code from Matlab to C would greatly increase the 

speed. However, as Matlab facilities us to develop a potential-user interface, 

we don't see the necessity of plott ing as long as the running time is acceptable. 

6.2.2 Accuracy Improvement 

By now, once we could not get the perfect solution, we go for the probabilistic 

approach. However, once we effectively use the backtracking techniques, we 

may not need to do so. 

Moreover, the current implementation of the probabilistic approach is too 

simple: i t has no memory among each running of the probabilistic method. I f 

we could keep track of the partitions in each run, we may know that which 

samples should really be covered or not. W i th that knowledge, we could further 

adjust the opportunity of which a sample is picked up. This idea is similar to 

genetic algorithm, which "remembers" the good solution and at the same time 

allows the possibility to t ry a better solution. 

6.2.3 Others 

Generalizing slightly, we can identify te following features that wi l l be required 

by any robust system for learning fuzzy logic programs: 

User inter face: As shown in Sect ion 6.1.5，to use FFO l in real-life requires 
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a large amount of human intervention. Not including the basic data entry 

process, we have to analysis, process each process and create some useful 

relations. The more we need to do this, the less useful is our system in 

automatic data mining. So, a friendly user-interface is needed to help 

the user to create the relational dataset from attribute-value data. 

Extended treatment of numeric fields: Not many first-order systems seem 

to have addressed the issue of using continuous-valued information. FFOl 

already extended the use of numeric fields by several new literal forms. 

Remember that F O I L ' S use of numeric fields is limited to threshold-

ing and comparisons of known values rather than computing new values. 

Since many practical Prolog programs involve computation, learning sys-

tems that are intended to generate these programs must somehow come 

to grips with computational clauses. 

Treatment of recursive definitions: We currently follow [31] to handle re-

cursive relations (the concept description involving the target relation). 

However, the theory behind the paper cannot be applied in fuzzy sys-

tems. Particularly, we cannot order the fuzzy constants as stated in the 

paper. Thus, a new treatment of recursive relations is needed. 

In conclusion, throughout these experiment sets, we have shown that FFOl 

is capable to due with a wide variety of induction problems, from Boolean 

attribute-value data to fuzzy first-order concepts. We have also performed 

detailed analysis on the accuracy and the complexity of FOIL, both of them 

are shown to be satisfactory. 
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Conclusion 

140 
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This thesis shows that the fuzzy first-order logic is a powerful representation 

language. With the definition of several new literal forms, FFOl is capable 

on a diverse range of learning tasks, which include the conventional attribute-

value classification problems, the crisp relational concept learning problem 

and the robust, comprehensive manipulation of numeric attributes. And the 

system has high potential on real world tasks that, while currently lacking the 

structure necessitating a fuzzy first-order learner, may acquire such structure 

in future. 

We solve the problem by first introducing a set of literal forms to describe 

fuzzy relational concepts and the forms are shown to be very powerful in 

representing human-like knowledge. The next step is to explore the ways to 

induce concepts on such literal forms. We have developed FF99, though it 

could not fulfill our goal completely, it acts as an alternative: It is a novel fuzzy 

zeroth-order learning system and the nodal characteristics we have discovered 

are worth discussing. 

To achieve our objective, we try to fuzzify FOIL. We first analysis the 

uniqueness and reasons of success of it, then we explore the ways to fuzzify it. 

After formulating the constraints, we have developed the a-covering method, 

which is then improved to the adaptive-a-covering method. The method is 

good, yet still fails sometimes. Thus we propose a probabilistic covering ap-

proach to improve the situation. 

Experimental results have shown that FFOl is generally accurate and ro-

bust; the complexity would be kept in 0(in}-^) if perfect solution could be 

found. Finally, we have proposed some ways to further improve FFOl. 
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C4.5 to FOIL File Format 

Conversion 
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Mike Cameron-Jones wrote a program named 'c4tofoil.c' to convert files 

from the standard C4.5 input format (*.data, *.names and *.test) to a form 

that can be used by F O I L (*.d). Our system, F F O l , can also read the *.d 

input format. To use this ut i l i ty, we only need to modify the *.names file to 

specify the type names to be used in our system. The ut i l i ty is embedded in 

the F O I L package. 

To il lustrate, we include a credit approval domain dataset in C4.5 format. 

The dataset contains three files: 'crx.names，，'crx.data' and 'crx.test'. They are 

part ial ly listed as follows. Note that type names are appended in 'crx.names'. 

'crx.names' contains the description of classes and attributes: 

+, -. I classes 

Al: b, a. I type: A 
A2: continuous. Itype: B 
A3: continuous. Itype: B 
A4: u, y, 1, t . I type: C 
A5: g, p, gg. I type: D 
A6: c, d, cc, i , j , k, m, r, q, w, x, e, aa, f f . Itype: E 
A7: V, h, bb, j , n, z, dd, f f , o. |type: E 
A8: continuous. I type: B 
A9: t , f . I type: F 
AlO: t , f . I type: F 
All: continuous. I type: B 
A12: t , f . I type: F 
A13: g, p, s. I type: G 
A14: continuous. Itype: H 
A15: continuous. I type: H 

'crx.data' contains the training data : 

b , 3 0 . 8 3 , 0 , u , g , w , v , 1 . 2 5 , t , t , 0 1 , f , g , 0 0 2 0 2 , 0 , + 
a , 5 8 . 6 7 , 4 . 4 6 , u , g , q , h , 3 . 0 4 , t , t , 0 6 , f , g , 0 0 0 4 3 , 5 6 0 , + 
a , 2 4 . 5 0 , 0 . 5 , u , g , q , h , 1 . 5 , t , f , 0 , f , g , 0 0 2 8 0 , 8 2 4 , + 
b , 2 7 . 8 3 , 1 . 5 4 , u , g , w , v , 3 . 7 5 , t , t , 0 5 , t , g ’ 0 0 1 0 0 , 3 , + 
b , 2 0 . 1 7 , 5 . 6 2 5 , u , g , w , v , 1 . 7 1 , t , f , 0 , f , 3 , 0 0 1 2 0 , 0 , + 
b , 3 2 . 0 8 , 4 , u , g , m , v , 2 . 5 , t , f , 0 , t , g , 0 0 3 6 0 , 0 , + 
b , 3 3 . 1 7 , 1 . 0 4 , u , g , r , h , 6 . 5 . t , f , 0 , t , g , 0 0 1 6 4 , 3 1 2 8 5 , + 
a , 2 2 . 9 2 , 1 1 . 5 8 5 , u , g , c c , v , 0 . 0 4 , t , f , 0 , f , g , 0 0 0 8 0 , 1 3 4 9 , + 
b , 5 4 . 4 2 , 0 . 5 , y , p , k , h , 3 . 9 6 , t , f , 0 , f , g . 0 0 1 8 0 , 3 1 4 , + 
b , 4 2 . 5 0 , 4 . 9 1 5 , y , p , w , v , 3 . 1 6 5 , t , f , 0 , t , g , 0 0 0 5 2 , 1 4 4 2 , + 
b , 2 2 . 0 8 , 0 . 8 3 , u , g , c , h , 2 . 1 6 5 , f , f , 0 , t , g , 0 0 1 2 8 , 0 , + 
b , 2 9 . 9 2 , 1 . 8 3 5 , u , g , c , h , 4 . 3 3 5 , t , f , 0 , f , g , 0 0 2 6 0 , 2 0 0 , + 
a ’ 3 8 . 2 5 , 6 , u , g , k , v , l , t , f , 0 , t , g , 0 0 0 0 0 , 0 , + 

'crx.test' contains the testing data : 

a , 4 7 . 2 5 , 0 . 7 5 , u , g , q , h , 2 . 7 5 , t , t , 0 1 , f , g . 0 0 3 3 3 , 8 9 2 , + 
b , 2 4 . 1 7 , 0 . 8 7 5 , u , g , q , v , 4 . 6 2 5 , t . t , 0 2 , t . g , 0 0 5 2 0 , 2 0 0 0 , + 
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b , 3 9 . 2 5 , 9 . 5 , u , g , i n , v , 6 . 5 , t , t , 1 4 , f , g , 00240,4607,+ 
a , 2 0 . 5 0 , 1 1 . 8 3 5 , u , g , c , h , 6 , t , f , 0 , f , g , 0 0 3 4 0 , 0 , + 

The ut i l i ty converts the files into the F O I L and F F O l compatible ‘crx.d， 

as follows: 

*Ab, *Aa. 
B: con t i nuous . 
#C: *Cu, *Cy, • C I , C t . 
#D: *Dg, *Dp, *Dgg. 
#E: *Ec, *Ed, *Ecc , *Ei, * E j , *Ek, *Em, • E r , *Eq, •Ew, *Ex, *Ee, *Eaa, * E f f , *Ev, *Eh, *Ebb, *En, *Ez, *Edd, *Eo 
#F: * F t , • F f . 
#G: •Gg, *Gp, •Gs. 
H: con t i nuous . 

i s _ + ( A , B , B , C , D , E , E , B , F , F , B , F , G , H , H ) 
A b , 3 0 . 8 3 , 0 . C u , D g , E w , E v , 1 . 2 5 , F t , F t , 0 1 , F f , G g , 0 0 2 0 2 , 0 
A a , 5 8 . 6 7 , 4 . 4 6 , C u , D g , E q , E h , 3 . 0 4 , F t , F t , 0 6 , F f , G g , 0 0 0 4 3 , 5 6 0 
A a , 2 4 . 5 0 , 0 . 5 , C u , D g , E q , E h , 1 . 5 , F t , F f , 0 , F f , G g , 0 0 2 8 0 , 8 2 4 
A b , 2 7 . 8 3 , 1 . 5 4 , C u , D g , E w , E v , 3 . 7 5 , F t , F t , 0 5 , F t , G g , 0 0 1 0 0 , 3 
A b , 2 0 . 1 7 , 5 . 6 2 5 , C u , D g , E w , E v , 1 . 7 1 , F t , F f , 0 , F f , G s , 0 0 1 2 0 , 0 
A b , 3 2 . 0 8 , 4 , C u , D g , E m , E v , 2 . 5 , F t , F f , 0 , F t , G g , 0 0 3 6 0 , 0 
A b , 3 3 . 1 7 , 1 . 0 4 , C u , D g . E r , E h , 6 . 5 , F t , F f , 0 , F t , G g , 0 0 1 6 4 , 3 1 2 8 5 

A a ’ 3 3 . 6 7 , 0 . 3 7 5 , C u , D g , E c c , E v , 0 . 3 7 5 , F f , F f , 0 , F f , G g , 0 0 3 0 0 , 4 4 
A b , 4 8 . 5 8 , 0 . 2 0 5 , C y , D p , E k , E v , 0 . 2 5 , F t , F t , l l , F f , G g , 0 0 3 8 0 , 2 7 3 2 
9 

A b , 3 2 . 3 3 , 7 . 5 , C u , D g , E e , E b b , 1 . 5 8 5 , F t , F f , 0 , F t , G s , 0 0 4 2 0 , 0 
A b , 3 4 . 8 3 , 4 , C u , D g , E d , E b b , 1 2 . 5 , F t , F f , 0 , F t，G g , ? , 0 

A b , 1 8 . 8 3 , 3 . 5 4 , C y , D p , E f f , E f f , 0 , F f , F f , 0 , F t , G g , 0 0 1 8 0 , 1 
？ , 4 5 . 3 3 , 1 , C u , D g , E q , E v , 0 . 1 2 5 , F f , F f , 0 , F t , G g , 0 0 2 6 3 , 0 

i s _ + 
A a , 4 7 . 2 5 , 0 . 7 5 , C u , D g , E q , E h , 2 . 7 5 , F t , F t , 0 1 , F f , G g , 0 0 3 3 3 , 8 9 2 : + 
A b , 2 4 . 1 7 , 0 . 8 7 5 , C u , D g , E q , E v , 4 . 6 2 5 , F t , F t , 0 2 , F t , G g , 0 0 5 2 0 , 2 0 0 0 : + 

A b , 1 7 . 9 2 , 0 . 2 0 5 , C u , D g , E a a , E v , 0 . 0 4 , F f , F f , 0 , F f , G g , 0 0 2 8 0 , 7 5 0 : -
Ab ,35 .00 ,3 .375 ,Cu.Dg,Ec ,Eh ,8 .29 ,F f ,F f .O .F t .Gg .OOOOO.Oi -

Note that 'crx.d' contains three main blocks as discussed in Sect ion 3.2.1. 

The blocks specify the types, the training relations and the test cases all in 

one file. 
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The following M A T L A B script FF99exam.m contains the example in Sec-

t i o n 4.5. I t includes the definitions of literals and the whole learning loop. 

m y , r / . m y . 7 . y . 7 . r / / / x m m r / / / . r / . r / , 7 , 7 . 7 , n 

7. FF99exain.m — FF99 example 
7. 
f u n c t i o n FF99exam 
c l e a r a l l 
c l c 
t i c 

•/• d e f i n e the l i t e r a l s and the sample space 
X = 1:10000; 
L { 1 } = p i m f ( X , [6000 6500 8500 9 5 0 0 ] ) ; 
L { 2 } = pimfCX, [6500 7000 9000 9 8 0 0 ] ) ; 
L-C3} = 0 . 7 * p i m f ( X , [5000 5500 9200 9900 ] ) ; 
L-C4> = p imf (X, [1000 2000 2500 3500 ] ) ; 
L { 5 } = p i m f ( X , [0 3800 4000 4 3 0 0 ] ) ; 

L-C6} = p i m f ( X , [500 2300 2500 2900 ] ) ; 
L{7> = p i m f ( X , [4000 4800 5800 6 2 0 0 ] ) ; 
L{8> = 1-Lm； 
L-C9} = p i m f ( X , [5300 5900 6600 7200 ] ) ; 
L-CIO} = 1-L-C9}; 

T = m a x ( m i n ( L { 4 } , L { 5 } ) , m i n ( m i n ( L { l > , L { 2 } ) ,L-C3})) ; % the t a r g e t r e l a t i o n 
C = [ ] ; 7, the concept d e s c r i p t i o n 
N = 10; 

f i g u r e ( 1 )； 

h o l d on; 
f o r i = l : N , 

plot(X,L{i}’，：））； 

end 
p l o t ( X , T . ' r ' )； 

•/• main l e a r n i n g loop 
currC = 1； 

cu r rL = 1; 
n = 1； 

C-CcurrC} = • ； 

wh i l e 1, 
f o r i = l : N , 

i f i sempty (C{cur rC} ) | isempty( f ind(C-CcurrC} == i ) ) , 
% fo rm a new C and and a new E 
muC = z e r o s ( s i z e ( X ) ) ; 
f o r c = l : c u r r C - l , 

muCcurr = ones(s ize(X) )； 

f o r 1 = l : l e n g t h ( C { c » , 
muCcurr = min(muCcurr,L-CC-Cc}(l)>)； 

end 
muC = max(muC, muCcurr)； 

end 
muCcurr = o n e s ( s i z e ( X ) ) ; 
f o r 1 = l : l eng th (C-Ccur rC} ) , 

muCcurr = m in (muCcu r r , L {C {cu r rC } ( l ) } )； 

end 
muCcurr = min (muCcurr , L { i } ) ； 7, append the cu r ren t l i t e r a l 
muC = max(muC, muCcurr)； 
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E = T - muC; 
[Enormpos, Enommeg, Xnorm, MSE( i ) , c e p o s ( i ) , c e n e g ( i ) , c o s t ( i ) ] = FF99(E,X)； 

e lse 
c o s t ( i ) = 1; •/• exclude the e x i s t i n g l i t e r a l 

end 
end 

save( [ 'FF99examdat ' s p r i n t f ( “/ .d' , n ) ] , 'MSE' , ' c e p o s ' , 'ceneg' , ' c o s t ' )； 

m i n i = f i n d ( c o s t == m in ( cos t ) )； 

C { c u r r C } ( c u r r L ) = m i n i ; 
n = n + 1 ； 

i f c o s t ( m i n i ) == 0, 
b reak ; •/• t e rm ina te the whole l e a r n i n g 

end 

i f ceneg(min i ) == 0,7, t e rm ina te the cu r ren t c lause 
currC = currC + 1; 
cu r rL = 1； 

C - C c u r r C } = [ ] ; 
e l se 

cu r rL = cu r rL + 1； 

end 
end 

7. d i s p l a y r e s u l t s 
f o r c = 1 : cu r rC , 

t x t = 'C : - ‘ ； 

f o r 1 = l : l e n g t h ( C { c } ) , 
t x t = [ t x t s p r i n t f ( '7.d, , , C - [ c } ( l ) ) ]； 

end 
d i s p ( t x t ) ; 

end 

toe 

FF99exam.m calls the routines supplied by the M A T L A B Fuzzy Logic Tool-

box. Also, it invokes the function in F F 9 9 . M , which is th(、jM-oceduros to 

evaluate a literal according to the error function supplied. 

7. The h e u r i s t i c s used i n FF99 
7. 
7. i n p u t : E. X 
'/. E = a vec to r of e r r o r s ( the e r r o r f u n c t i o n ) 
'/. X = a vec to r being the un iverse f o r E; i f X= [ ] , a un i fo rm un iverse over [0 1] i s assumed 
7. i t should be sor ted ascending i n advance 

'/. ou tpu t : [Enormpos, Enommeg, Xnorm, MSE, cepos, ceneg, cos t ] 
'/• Enormpos = the normal ized p o s i t i v e e r r o r f u n c t i o n (= [ ] i f does not e x i s t ) 
'/• Enommeg = the normal ized negat ive e r r o r f u n c t i o n (= • i f does not e x i s t ) 
7t Xnorm = the norml ized universe ( a l l sor ted) 
7t MSE = mean square e r r o r 
•/• cepos = cont inuous entropy of the normal ized p o s i t i v e e r r o r f u n c t i o n (= 0 i f does not e x i s t ) 
•/• ceneg = cont inuous entropy of the normal ized negat ive e r ro r f u n c t i o n (= 0 i f does not e x i s t ) 
'f' both cepos and ceneg axe norr^al ized to [0 1] (0 f o r the best <=> impulse) 
7. cost = (MSE+cepos + ceneg)/3 

f u n c t i o n [Enormpos, Enormneg, Xnora, MSE, cepos, ceneg. cos t ] : FF99(E,X) 
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•/. MSE 

MSE = mean(E.~2)； 

7. N o r m a l i z a t i o n 

i f i sempty(X) , ' / . X=C] , s u i t a b l e f o r o r d i n a l un i ve r se 
Xnorm = 0 : l / ( l e n g t h ( E ) - l ) : 1 ; 

e l s e 
Xnorm = ( X - X ( l ) ) / ( X ( e n d ) - X ( l ) ) ; •/• map t o [0 1] 

end 
Epos = z e r o s ( s i z e ( E ) )； 

I = f i n d ( E > 0 ) ; 
i f i s e m p t y ( I ) , 

Enonnpos = [ ] ； 

e l s e 
Epos ( I ) = E ( I ) ; 
a rea = t rapz(Xnorm,Epos)； 

Enonnpos = Epos / a rea ; 
end 
Eneg = z e r o s ( s i z e ( E ) ) ; 
I = f i n d ( E < 0 ) ; 
i f i s e m p t y ( I ) , 

Enormneg = [ ] ； 

e l se 
Eneg ( I ) = - E d ) ; 
a rea = t rapz(Xnorm,Eneg)； 

Enormneg = Eneg / a rea ; 
end 

•/• Cont inuous en t ropy e s t i m a t i o n 
•/• lower bound of CE set t o - 2 0 , which suppor ts 2~20 samples 
7. 
i f ise i i ip ty(Enormpos), 

cepos = 0; 
e l se 

i n fo ( f i nd (Eno rmpos==0 ) ) = 0; 
I = f ind(Enonnpos)； 

i n f o ( I ) = E n o n n p o s ( I ) . * l o g 2 ( E n o r m p o s ( I ) ) ; 
cepos = t rapz(Xnorm, - i n f o )； 

y. n o r m a l i z a t i o n f rom [ - 2 0 0] t o [0 1] 
cepos = 1 - cepos； 

cepos = l og (cepos ) / log (21) ； •/• 21 comes f rom 20 + 1 

cepos = 1 - cepos； 

end 
i f isempty(Enormneg), 

ceneg = 0; 
e lse 

i n fo ( f i nd (Enormneg==0) ) = 0; 
I = f ind(Enornmeg)； 

i n f o ( I ) = Enormnegd) . * log2(Enormneg( I ) )； 

ceneg = t rapz(Xnorm, - i n f o )； 

y. n o r m a l i z a t i o n f rom [ -20 0] t o [0 1] 
ceneg = 1 - ceneg; 
ceneg = log(ceneg) / log (21) ； 7. 21 comes f rom 20 + 1 

ceneg = 1 - ceneg; 
end 

cost = (MSE+cepos+ceneg) / 3; 

re tu rn； 
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