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ABSTRACT 

This dissertation presents a complete and efficient algorithm for 

frictionless/frictional form-closure grasp synthesis on 3-D objects represented by 

discrete points. The algorithm combines a local search process with a recursive 

decomposition of the problem into sub-problems when the local search encounters 

a local minimum. First, an initial grasp is selected randomly in the given point set. 

The ray-shooting based check algorithm is employed to test the form-closure 

property of the grasp. If the selected grasp does not satisfy form-closure, the local , 

search procedure is executed iteratively in the direction of reducing the distance 

between the centroid of the convex hull corresponding to the grasp and the origin 

of the wrench space until a form-closure grasp is found or a local minimum is 

encountered. When a local minimum is encountered, the algorithm decomposes 

the problem into a few sub-problems in subsets of the points according to 

existence conditions of form-closure grasps. A search tree whose root represents 

the original problem is empolyed to perform the searching process. The sub-

problems are represented as children of the root node and the same procedure is 

recursively applied to a child selected based on a heuristics until a form-closure 

grasp is obtained. The algorithm can be revised to obtain a local optimal form-

closure grasp and ensure kinematic feasibility of robot fingers. The proposed 

algorithm is implemented and its efficiency is illustrated by numerical examples. 
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摘要 

本論文提供一個完整及高效率的規則系統，在一個由不連續點所組成的無摩 

擦或有摩擦的三維物件上，搜尋機械人多指手形封閉抓握。這規則系統結合 

一個局部搜尋程序及一個遞歸問題分解程序；每當局部搜尋程序遇到一個局 

部極小値，這個遞歸問題分解程序便會將原問題分解爲多個子問題。首先’ 

在已給予的不連續點中隨機選取一個初始抓握。我們利用一個以射線投射原 

理爲基礎的驗算規則系統來測試抓握的形封閉性能。如已選取之抓握不符合 

形封閉，局部搜尋程序會反覆地執行’以縮短抓握對應的凸殼距心及力組空 • 

間的原點之間的距離，直至得到一形封閉抓握或遇到一個局部極小値。若遇 

到一個局部極小値時’規則系統會基於現時的存在條件將原問題分解爲多個 

的子問題’以限定於不同子集上的點來合成抓握0如此，我們可得出一搜索 

樹形圖°原問題是樹形圖的根’子問題便是其子枝°規則系統會以一智能指 

數來決定先選取那個子問題，而同樣的程序便會遞歸地應用於被選取之子問 

題上，直至得到一形封閉抓握爲止°本論文亦提及如何將規則系統修訂爲獲 

取最優形封閉抓握，以及確保機械人多指手的運動學可行性。我們以電腦程 

式仿真這規則系統，並以多個數値例子闡明其效能。 
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LIST OF VARIABLES 

G a grasp 
n number of fingers per grasp 
m number of sides of polyhedral convex cone in 

approximating friction cone 
fip number of primitive contact wrenches per grasp 
Q set of surface points of grasped object 
N number of points in set Q 
n position vectors w.r.t. object's coordinate frame with 

origin at the center of mass 
m surface normal at point r, 
fi grasp forces of finger i 
Ti moment corresponds to grasp forces / 
w,. primitive contact wrench of finger i in frictionless case 

mj primitive contact wrench corresponds to ;-th side of 
polyhedral friction cone of finger i in frictional case 

W wrench matrix of a grasp 
Wext external wrench 
jLL friction coefficient 

friction cone angle 

Sij 7-th edge vector of polyhedral convex cone of grasp 
force fi 

H(W) convex hull of W 
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Chapter 1. Introduction j 

Chapter 1 
Introduction 
Form-closure is a fundamental property in multifingered robotic grasps and 

fixture layout design of workpieces. Under a form-closure grasp, any external 

wrench applied on the grasped object can be balanced by grasp forces of the robot ‘ 

hand. This dissertation proposes an approach to compute form-closure grasps on 

3-D objects represented by discrete points. 

Much research effort has been directed to testing form-closure property, which is 

known as the forward problem, of a given grasp. Salisbury and Roth [Salisbury82] 

have shown that a necessary and sufficient condition for form-closure is that the 

primitive contact wrenches resulted by contact forces at the contact points 

positively span the entire wrench space. This condition is further proven to be 

equivalent to that the origin of the wrench space lies strictly inside the convex hull 

of the primitive contact wrenches [Mishra87], [Montana91], [Murray94]. Nguyen 

[Nguyen86] proposed a simple test algorithm for 2-finger form-closure grasps. 

Trinkle [Trinkle92] provided a formulation of quantitative test for detecting form-

closure grasp as a linear programming problem. In [Liu99], Liu has developed a 

qualitative test algorithm of form-closure grasps by transforming the problem to a 

ray-shooting problem of a convex hull. This qualitative test algorithm is employed 
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in this work to check the form-closure property of the candidate grasps. 

Another important issue concerning grasp stability is the sufficient and necessary 

conditions for the number of fingers needed to achieve form-closure grasp. 

Reulaux [Reulaux76] has shown that in frictionless case at least 4 and 7 fingers 

are required to achieve 2-D and 3-D form-closure grasps, respectively. Mishra et 

al. [MishraST] found that 6 (resp. 12) fingers are sufficient for 2-D (resp. 3-D) 

frictionless form-closure grasps. Markenscoff et al [Markenscoff90] further 

tightened the results by proving that 4 and 7 fingers are sufficient to achieve 2-D 

and 3-D form-closure grasps, respectively. When Coulomb friction is taken into 

account, 2 and 3 fingers are, respectively, sufficient in 2-D and 3-D cases. 

This dissertation deals with the problem of grasp synthesis, which is also an 

important research aspect. Grasp synthesis is known as the reverse problem of 

form-closure. It concerns the problem of placing contacts on an object with given 

geometry to prevent object motions. Much works have been directed in tackling 

polyhedral/polygonal objects. Mishra, Schwartz and Sharir [Mishra87] have 

presented an algorithm for computing positive grips for polyhedral/polygonal 

objects in time linear to the number of faces/sides. In [Nguyen88], Nguyen 

presented a geometric approach to find maximal contact regions where two 

“ fingers can be positioned independently while maintaining a stable grip on a 

polygon. Liu [LiuOO] has provided an algorithm for calculating planar form-

closure grasps of n fingers on polygonal objects based on a new sufficient and 

necessary condition for form-closure. Ponce et al. [Ponce95] presented an 

approach in computing 3-finger stable grasps on planar polygonal objects with a 
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projective algorithm based on linear programming and variable elimination 

among linear constraints. In [Ponce97] they further extended their approach to 3-

D 4-finger grasps. Wang [WangOO] has presented an algorithm for optimal design 

for 3-D fixture synthesis in a point-set domain. We have recently developed 

algorithms [LamOl] for computing form-closure grasps on 3-D curved objects by 

iteratively moving the convex hull of the primitive contact wrenches towards the 

origin of the wrench space. This algorithm is known as the local search algorithm 

in this dissertation. However, the algorithm is not complete as the local search 

occasionally traps at a local minimum. In [Lam02], we revise the local search 

algorithm and provide a complete algorithm of frictionless grasp synthesis using a 

divide-and-conquer technique. This algorithm and its extension to frictional 

grasps are described in dissertation. 

The contributions of this dissertation lie in three aspects: 

First，we formulate the problem of form-closure synthesis as a local discrete 

search problem. We provide a performance index which efficiently leads the 

centroid of the convex hull corresponds to the grasp move towards the origin of 

the wrench space, i.e. enhancing the form-closure property of the grasp. 

, Second, we provide a complete algorithm to search for a form-closure grasp, i.e. 

the algorithm is always possible to locate a form-closure grasp (if exists) from a 

given set of points. To the best of our knowledge, this is the first complete 

algorithm that heuristically searches for a form-closure grasp in a discrete domain. 

The other complete algorithm is the combinatory approach which combines all 
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possible points in the point set and checks exhaustively form-closure property of 
all the combinations. 

Third, the proposed algorithm can be widely used in manipulating curved objects 
whereas most existing form-closure synthesis algorithms deal with 
polygonal/polyhedral objects only. Besides, the proposed algorithm can take 
kinematic constraints of robotic fingers into account, which greatly enhances its 
practicability. 

This dissertation consists of six chapters. In Chapter 2，we provide some 

mathematical preliminaries of form-closure grasps and the problem definition of 

this dissertation. In Chapter 3’ we describe the qualitative test developed by Liu 

[Liu99] which is employed extensively in this work for checking the form-closure 

property of the candidate grasps. Then, we describe a local search algorithm for 

finding a form-closure grasp. The local search algorithm has been presented in 

[LamOl]. The local search utilizes a quantitative measure developed from the 

qualitative test algorithm to estimate the grasp selection. We also introduce the 

feature of kinematic feasibility check for the algorithm. As long as the inverse 

kinematic model of the robotic hand is built, the algorithm can discard any 

candidate grasp with grip points not reachable by the corresponding finger. 

‘ Chapter 4 describes a divide-and-conquer strategy which solves the local 

minimum problem and makes our algorithm complete. The detailed processes of 

problem decomposition for frictionless grasps and frictional grasps are described. 

In Chapter 5, the implementation of the proposed algorithm is described. A 

number of numerical examples are shown to demonstrate the effectiveness of the 
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algorithm. As the algorithm is applicable for both frictionless and frictional grasps, 

examples in both kinds of contact models are given. We also provided examples 

of kinematic feasibility assurance in the later part of Chapter 5. The concluding 

remarks are given in Chapter 6. 
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Chapter 2 
Mathematical Preliminaries and Problem 
Definition 
In this chapter, the discrete approach of grasp synthesis is discussed and the 

assumptions made in the algorithms to be proposed are given. We also provide the ‘ 

preliminary materials concerning the grasp models and form-closure property of 

robotic grasps. Two kinds of contact models, namely frictionless point contact 

and frictional point contact, used in this work are studied. The definitions of 

form-closure based on the two contact models are to be given. The problem 

definition is then provided in the later part of this chapter. 

This dissertation aims at locating a number of contact locations on an object with 

given geometry to prevent all motions of the object by applying forces through the 

contacts. The property of such kind of grasps or fixtures in resisting object 

motions is known as form-closure. The analysis of form-closure is intrinsically 

geometric and it does not consider the kinematics of the robot hand. The detailed 

definitions of form-closure grasps will be given in section 2.3 and 2.4. Now, let's 

study the grasp synthesis in point set domain. 
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2.1 Grasp Synthesis in Discrete Domain 
In a typical grasp or fixture synthesis problem, continuous surfaces of the grasped 

body are often assumed to be available for contacts. However, the nonlinear 

constraints imposed by curved objects are always not manageable for algorithms 

tackling continuous surface with optimization approaches. For that reason, most 

research works have been done on grasping or fixturing polyhedral objects. 

Moreover, the functional or manufacturing requirements of the part may 

sometimes impose a point set constraint on the problem. In some situations, the 

robot fingers or fixture elements are allowed to contact with the object only at a 

set of discrete point locations instead of continuous surface of locations. Besides, 

for objects defined by mesh points instead of continuous surfaces in their CAD 

models, investigations in continuous approach are sometimes not achievable. 

Turbine airfoils are good examples of 3-D workpieces with complex geometry. 

Fig. 2.1 shows a turbine airfoil model provided by author in [WangOl]. The 

geometric shape of airfoil is primarily defined by its aerodynamics. However, the 

geometric representation in a CAD system is usually approximated by parametric 

surfaces such as B-splines. Only a dense set of points of the surfaces are defined 

exactly as calculated in the aerodynamic analysis. In order to minimize the effects 

of the geometric approximation, the airfoil is required to be fixtured or grasped at 

‘ some of these precise surface locations in its manufacture and inspection. 

Therefore, the point-set constraint is imposed by the practical conditions related to 
the functional and/or manufacturing requirements. 
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f 1 C •••:••••• ••� 

I 、 口 ：怒錢 
囊 0.5、 .....々 •：.、 M r 

• N 0�。：......•••-iii^ 
^ H - � . 5 �6 .::::� 

_ -1�c^-::::::;:， 
i ^ V   
；Ml' 、匕 

-0 6 -0 4 -0 2 u y 
X 

Fig. 2.1. An airfoil model with 1546 surface points. 

Objects in point set domain are also easy to prepare for those originally defined 

with parametric equations. Fig 2.2 shows an example of object model generated 

by revolving a spline about a fixed axis with variable radius. The object is 

discretized into 5130 surface points by varying the two parameters involved. 

- ？ 爾 _ _ • ： 峰 

X 

Fig. 2.2. A curved object defined with parametric equations being discretized into 
*� 5130 contact points. 

The main advantage of tackling grasp objects in discrete domain lies in two 

aspects. First, objects with arbitrary geometry can be handled, as long as the 

object's surface points can be precisely defined, where the computational 

complexity is not influenced by the complexity of the object geometry. Second, 
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the kinematic constraints of robot fingers can be considered during the fingertip 

placement, which enhance the practicality of the algorithm. We will see in the 

next chapter that kinematic constraint check has been implemented in this work. 

2.2 Assumptions 
There are two assumptions made throughout this work to allow precise analysis, 
which are: 

1) All contacts are point-to-point hard contacts. 

2) A collection of points (w.r.t. the object frame with origin at the center of 

mass) representing the exterior surface of the object are available and they 

are the candidate contact locations. The corresponding surface normal of 

each of these points is well-defined and obtainable. 

As stated in the second assumption, the point set should contain surface point 

vectors and surface normal vectors both w.r.t. the object's center of mass. This 

turns out to assume that the center of mass of the manipulated object is given or 

obtainable. 

Besides, there is predefined condition for the point set. Each candidate contact is 

connected with four neighboring points, which also belong to the point set and are 

‘ geometrically near to the corresponding point. This provides a connective relation 

between adjacent points and this allows local motions of fingers. The number of 

neighboring points is fixed to be four because it is suitable in representing forward 

and backward motions on the 2-D surface. If the grasped object is originally 

defined in parametric equations, the connective relation between adjacent points 
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can be defined according to the parameters. If the object is obtained from CAD 

models, the connective relation between adjacent points can be defined according 

to mesh data. In Chapter 3，the local search algorithm, which probes for form-

closure grasp based on local motions of fingers, will be introduced. 

Form-closure property concerns the capability of the grasp to completely 

constrain the motions of the grasped object through the contacts. The combination 

of force and moment at a contact is called wrench. In [Trinkle92], Trinkle has 

given a definition of form-closure: a fixed set of contacts on a rigid body is said to 

exhibit form-closure if the body's equilibrium is maintained despite the 

application of any possible externally applied wrench. The following two sections 

study the conditions of frictionless and frictional form-closure. 

2.3 Frictionless Form-Closure Grasp 
A frictionless point contact is obtained when there is no friction between the 

fingertip and the object. Frictionless contacts almost never occur in a practical 

situation, but they are useful when the friction between the finger and the object is 

low or unknown. Since a frictionless contact cannot exert forces except in the 

normal direction, modeling a contact as frictionless insures that we do not rely on 

frictional forces when we manipulate the object. 

It is known that seven frictionless contacts are necessary [Mishra87] to hold a 3-D 

object in form-closure and sufficient [Markenscoff90] for a 3-D object without 

rotational symmetries. In this work, the number of fingers n to grasp objects with 

frictionless contacts is fixed to be seven (n = 7). Suppose seven hard fingers are to 
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grasp a 3-D rigid body without rotational symmetries in the absence of friction at 

the contact points. Denote a grasp by G = ( r, }, i = 1, 2，..., 7, where r, denotes 

the position vector of the i-\h grasp point w.r.t. the object coordinate frame 

origined at the center of mass. 

To hold the object and balance any external forces and torques, each finger must 

apply to the object a force fi called grasp force. In the absence of friction, grasp 

forces fi are in the normal directions of surface of the object at the contact points. 

The force and moment Z}, corresponding to grasp force fi, applied at the center of 

mass of the object is given by 

/ _r \ / /• \ / \ \fAJ 打丨 I 
U J U - X / J (2.1) 

V J Y w,. 

where is the surface normal vector at the i-th contact point and Oi is a non-

negative constant representing the magnitude of the grasp force. The combination 

Wi of the f o r c e / and moment Zj is called wrench. 

The essential requirement for form-closure is the total restraint of the grasped 

. object, where the contact forces are sufficient to balance any external forces. 

Therefore, 

DEFINITION 1： FRICTIONLESS FORM-CLOSURE GRASP 

w=(wj, W2, Wy) E jg the wretich matrix of a 7-finger frictionless grasp. 
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For any external wrench Wext e R�appl ied at the object, if it is always possible to 

find an a e iC with a i > 0 such that 

评 仅 + = 0 ， (2.2) 

the grasp is said to be form-closure. 

2.4 Frictional Form-Closure Grasp 

A frictional point contact model is used when friction exists between the fingertip 

and the object. In this work, the frictional model is referred as the Coulomb ‘ 

friction model. It is known that three fingers are sufficient to hold an object in 3-D 

frictional cases. Suppose that n>3 hard fingers are to grasp a rigid object in a 3-D 

workspace. Denote a grasp by G = { n }, i = 1, 2, n, where r, denotes the 

position vector of the i-ih grasp point w.r.t. the object coordinate frame origined at 

the center of mass. Assume that the Coulomb friction with friction coefficient ju 

exists at the contact points. To ensure non-slipping at the contact point, the grasp 

force fi must satisfy 

(2.3) 
. where (fc, fiy’ fu) denotes x, y and z components of the grasp force fi w.r.t. the 

object coordination frame. 

The nonlinear constraints in (2.3) geometrically define a cone caWtd friction cone. 

The angle of the cone with respect to the normal is given by 
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( 9 " = t a n - V . (2.4) 

• ‘ Z 

^ / H M 广：丨 / 

\ /pnction Cone \ V 

Object Surface \ / / Y \ / \ X \ / Object Surface I \ Robotic Finger side view 

Fig. 2.3. Geometric interpretation of friction cone. • 

Table 2.1 lists a number of friction coefficients for common materials. Typical 

values of ju are less than 1, and hence the friction cone angle is typically less 

than 45. 

Steel on steel 0.58 Wood on wood 0.25 - 0.5 

Polyethylene on steel 0.3 - 0.35 Wood on metals 0.2 - 0.6 

Polyethylene on self 0.5 Wood on leather 0.3 - 0.4 

Rubber on solids 1-4 Leather on metal 0.6 

Table. 2.1. Static friction coefficients for some common materials 
,� (Source: CRC Handbook of Chemistry and Physics) 
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Object Surface \ \ \ / Y 

I Robotic Finger 

Fig. 2.4. Linearization of friction cone by a polyhedral convex cone. 

In the present of friction, forces can be exerted in any direction that is within the , 

friction cone for the contact. To simplify the problem, the friction cone is 

linearized by a polyhedral convex cone with m sides (Fig 2.1). Under this 

approximation, the grasp force/i can be represented as 

m 
f i = T A � , (2.5) 

.H 

where Sij represents the 7-th edge vector of the polyhedral convex cone for the 

grasp force fi. Coefficients /lij are nonnegative constants. The force and torque, 

corresponding to the grasp force fi, applied at the center of mass of the object is 

given by 

/ f \ ( f \ 
w,.= 人 ( 2 . 6 ) 

U J U - x / J 
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Substituting (2.5) into (2.6) derives 

m 

〒！>,；/"" (2.7) M 

where 

f〜.） 

u , = � . (2.8) f] X 5,, 
V ‘ ‘ “ 

The vectors Uij is normalized as follows: 

1 
v,. = (2.9) "•ij 

The term ||w,)|| denotes the La norm of vector M,). Vectors w,) are called primitive 

contact wrenches. The norms of the primitive contact wrenches w,) are equal to 

one. Let 

�I k y II- (2.10) 

The net wrench applied at the object by the n fingers is 
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n m 

川 、 (=1 j=\ 

where Wand fzare given by 

^ = ( W i i , W i 2，".,W i „> r"，W „ l , W „2，".，W „ ^ ) ’ 

仅=(仅11，仅 12，-..，汉im,"�仅"1，汉”2，."，仅 

is a 6 X /im wrench matrix and its column vectors are the primitive contact 

wrenches. For convenience, w, with a single subscript i is used, instead of w,)，to 

denote the i-th column vector of grasp matrix W, and Oi is used to represent the i-

th component of vector a. Let rip = nm be the number of the primitive contact 

wrenches of a grasp. 

DEFINITION 2： FRICTIONAL FORM-CLOSURE GRASP 

Suppose that an ^z-finger frictional grasp is given. If any external wrench Wgxt̂  

applied at the object can be balanced by the grasp forces / of the fingers, the grasp 

is said to be form-closure. 

， According to the definition of frictional form-closure grasp and the linear 

approximation of friction cone, we obviously have the following proposition. 
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PROPOSITION 1： 

Assume that m segments are used to approximate each friction cone. For any 

external wrench Wgxt applied at the object, if it is always possible to find an a with 

Oij > 0 such that 

W a + = 0 , (2.13) 

the grasp is form-closure. 

2.5 Problem Statement ‘ 
Denote the point set containing the N permissible surface points r,- = (jc,, ；y,’ z,)^, i = 

1 , 2， N , of the object by Q. Surface points r, are the position vectors w.r.t. the 

object coordinate frame with origin at the center of mass. Denote the surface 

normal at contact point r, by Then, we have the following problem definition: 

PROBLEM 1： 

Given a set Q of surface points and their corresponding surface normals 

representing a 3-D object of arbitrary geometry, find a n-finger form-closure grasp 

in the point set Q. 

V 
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Chapter 3 
A Qualitative Test Algorithm and a Local 
Search Algorithm 
In this chapter, a qualitative test algorithm for checking form-closure grasps is 

reviewed. The test algorithm plays an important role in the form-closure grasp ‘ 

searching algorithms developed in my work. Then, a local search algorithm will 

be proposed for finding form-closure grasps. In the last section, the issue of 

kinematic feasibility of robot fingers will be discussed. 

3.1 Qualitative Test Algorithm 
An inevitable step in the grasp planning algorithms is qualitative test of a form-

closure grasp. The qualitative test algorithm developed by Liu [Liu99] is 

employed. The testing algorithm works on the basis of a ray-shooting process, 

which is formulated as a linear programming problem based on the duality 

between convex hulls and convex polytopes. It can be applied to both frictionless 

and frictional grasps as it does not use the special properties of 

frictionless/frictional grasps. The idea of the test algorithm is briefed below and 

the details can be referred to [Liu99]. 
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As discussed before, [Salisbury82] have proved that a necessary and sufficient 

condition for form-closure is that the primitive contact wrenches resulted by 

contact forces at the contact points positively span the entire wrench space. This 

condition is equivalent to that the origin of the wrench space lies strictly inside the 

convex hull of the primitive contact [Mishra87], [Montana91], [MuiTay94]. This 

condition gives rise to the following theorem: 

THEOREM 1: 

Suppose that an w-finger grasp is given. Denote the convex hull of the contact 

wrenches w, by H{W). Assume that point P is an interior point of H(W). The ray 

from point P to the origin O of the wrench space R^ intersects H(W) in a point Q 

only. A form-closure grasp is equivalent to that the distance WPQW between points 

P and Q is strictly larger than the distance IIPOII between points P and O. 

“ rav PO “ 

\ • / H m ray / 'O 

. (a) (b) 
Fig. 3.1. (a) A form-closure grasp and (b) a non-form-closure grasp. 

The proof of this theorem can be found in [Liu99]. This theorem is illustrated in 

Fig. 3.1. In Fig. 3.1(a), the origin O is on the segment PQ and hence the grasp is 

form-closure. In Fig. 3.1(b), the origin O does not lie on segment PQ and thus the 
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grasp is not a form-closure grasp. It should be emphasized that one interior point 

P is sufficient to check whether the origin O is inside the convex hull. The point P 

cannot lie on the boundary of H(W) because the check requires the origin located 

strictly inside the convex hull. As shown in Fig. 3.2，the origin is not strictly 

contained by H(W) even if WPQW is strictly larger than IIPOII when point P and the 

origin O are on the same facet. 

Z \mv W ^ ‘. 
Fig. 3.2. The point P cannot be on the boundary of H(W). 

It is obvious that a strictly positive combination of the contact wrenches must be 

an interior point of the convex hull H(W). Therefore, we can choose point P as the 

centroid of the rip points (jip is the number of contact wrenches, Hp = n = 1 in 

frictionless case and rip = nm in frictional case): 

I-
J "p 

P = — ^ v y , . (3.1) 
〜，=i 

To locate the intersection point Q of H(W) with the ray from the interior point P to 

the origin O of the wrench space R^, we first detect the facet E of H{W) 
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intersected by the ray PO, and then calculate the intersection of the facet with the 

ray PO . The problem of detecting the facet is closely related to the ray-shooting 

problem of a convex hull defined as follows: 

DEFINITION 3: RAY-SHOOTING PROBLEM 

Let M be a given set of points in R^. Assume that the convex hull H(M) contains 

the origin. Given a ray emanating from the origin, find the facet of H(M) 

intersected by this ray. 

It is well known in Computational Geometry that the ray-shooting problem can be 

transformed to a linear programming problem based on the duality between 

convex hull and convex polytope. Note that a ray-shooting problem assumes that 

the convex hull contains the origin. By applying a coordinate translation -P of on 

points in R�we readily change the origin point to point P, which lies exactly 

inside the convex hull. After the coordinate translation, the convex hull H(W) is 

dual to the convex polytope 

( w , - P f a:<1 / = 1’2’…，〜. （3.2) 

Denote the direction vector of the ray PO by t. Based on the duality between 

convex hull and convex polytope, the ray-shooting problem is equivalent to a 

problem of maximizing the objective function: 

z = t''x (3.3) 
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subject to the constraints in (3.2). Suppose that the optimal solution of the linear 

programming problem is e According to the duality, the facet E 

of H(W) intersected by the ray PO is 

+ 已2 又2 +... + = 1. (3.4) 

Then, the intersection point Q of H(W) with the ray PO is the intersection of the 

hyperplane defined by (3.4) with the ray PO. 

S U M M A R Y O F T H E Q U A L I T A T I V E T E S T A L G O R I T H M ‘ 

Step J: Calculate all the primitive contact wrenches vv,. 

Step 2: Use (3.1) to calculate an interior point P of the convex hull H(W). 

Step 3: By the linear programming, calculate the optimal point 5 = (e,，，•..，) 

that maximizes function z in (3.3) subject to the constraints in (3.2). The 

hyperplane ê x̂  + •.. + = 1 corresponding to the optimal point 

e is the facet E of H(W) intersected by the ray PO. 

Step 4: Calculate the intersection Q of the ray PO with the hyperplane 

+6^X2 + = 1 . The point Q is the intersection of H(W) with 

the ray PO. 

‘ Step 5: If the distance WPQW is larger than the distance IIPOII, the grasp is form-

closure; otherwise, it is not. 

Step 6: The algorithm ends. 

This chapter presents an efficient local search algorithm which heuristically 
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searches for a form-closure grasp on 3-D objects represented by discrete points. 

The algorithm has been presented in [MiuOl] and employed in [Miu02]. The local 

search starts from a random selection of an initial grasp. The algorithm searches 

for a form-closure grasp in the direction of reducing the distance between the 

convex hull of the primitive wrenches and the origin of the wrench space. The key 

idea here is to move the convex hull gradually closer and closer to the origin of 

the wrench space (Fig 3.3). 

old convex hull H(W) 

飾 . 
new convex hull H(W') ‘ X\ __K 

II 尸0||>||P'0|| o 

Fig. 3.3. The local search moves the centroid of the convex hull 
closer to the origin of the wrench space. 

3.2 Local Search Algorithm 
Here, a method is proposed to acquire the motion of the grasping positions to 

search for a form-closure grasp. As mentioned in Chapter 2, each of the given 

points in set Q is connected with four neighboring points. Therefore, at every 

grasping position r, G four possible directions of motions are defined by the 

four adjacent points of f . e Q, i = 1,2，..., n is the finger index, /= 1，2，3, 4 is 

the index of the four adjacent points. To simplify the problem, it assumes that at 

an iteration only one finger can be moved to its neighboring position. 
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Consequently, for a grasp with n contacts there are totally 4n candidate grasps 

CG. E where CG,, = (ry, rz, ..., n.i，C,，厂'+1，…，at an iteration. 

Observed from the qualitative test, it is desirable to move the convex hull H(W) 

towards the origin O of the wrench space R^ until the origin O completely lies 

inside the convex hull. Therefore, the distance II尸Oil is considered as the heuristics. 

One may notice that the heuristics IIPOII employed in the local search algorithm 

can be replaced by the distance difference WPOW-WPQW. The use of IIP(9II-IIP(2II as 

the heuristics gives a similar but different meaning to the algorithm as IIPOII does. ' 

The distance difference IIPOII-IIP0II can be used to measure how far is a grasp 

from being form-closure. Both approaches have been implemented [MiuOl], 

[Miu02] and they both give desirable results. Therefore, either IIPOII and WPOW-

WPQW can be employed as the heuristics in the local search. 

A candidate grasp that has the minimum value of distance IIPOII among all the 4n 

candidate grasps should be adopted as the new grasp. Denote IIPOII obtained in the 

众-th Iteration with IIPO ÎI. If the minimum value of the distance IIPOII is not strictly 

smaller than IIPO ÎI, it means none of the possible next motions can enhance the 

form-closure property. In this case, a local minimum exists in the heuristics 

function IIPOII and the search should be terminated. A form-closure grasp is 

obtained if it is possible to perform the search iteratively until IIPOII < WPQW. The 

local search algorithm is described in detail as follows: 
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SUMMARY OF THE LOCAL SEARCH ALGORITHM 

Step 1: k = 1; arbitrarily choose an initial grasp G^ = { n }, for i = 1，2，...’《， 

where all n e Q. Calculate the primitive contact wrenches vv,. 

Step 2: Check whether G^ is form-closure using the qualitative test algorithm; if so, 

return G^ 

Step 3: For each of the grasping position n, locate the four adjacent positions € 

n , for / = 1, 2, 3, 4; generate all the 4n combinations of candidate grasps 

C G , , 
'I 

Step 4: For each candidate grasp CG丨丨,calculate the corresponding \\PO{ CG“ )ll. 

Step 5: Find the candidate grasp CG* with the minimum value of IIPOII. If 

\\PO{CG*)\\ is not strictly smaller than \\P0\ report that local minimum is 

encountered; return G^. Otherwise, k = k+ 1; update G^ = CG*, w/(CG*), 

IIPO ÎI = go back to Step 2. 
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� S T A R T ) 

I [ 
1； select an initial G…=CG\ with 4 

grasp G' randomly min./value 

Jr ，r 

k = k+\ 

No No ‘ 

I u  
Locate 4 adjacent Report local minimum 
positions for each n. encountered 

I ^  
C a l c u l a t e / ( C G \ ) = f END (with n o � 
\\P0{ CG'i, )ll for all CG� ^so lu t ion found) J 

J ^ E N D (with s o l u t i o n � 
G^ found) J 

Fig. 3.4. The block diagram of the local search algorithm 
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The above algorithm can be revised to obtain a local optimal grasp. It can be done 

by discarding the termination instruction in Step 2. Then, the iteration process will 

end only when WPOW is not strictly decreasing. 

Note that the local search terminates under two situations: when a form-closure 

grasp is obtained in Step 2 or when a local minimum is encountered in Step 5. In 

case a local minimum is encountered, the algorithm needs to select another initial 

grasp and start the local search again. The existence of local minima in the 

performance index IIPOII depends on the object's geometry. The probability of 

encountering a local minimum increases with the complexity of the object's 

geometry, while, in normal situations, a convex object is free from local minima. 

Random re-selection of initial grasp is not a good way to solve the local minimum 

problem, as it does not guarantee a solution. In the next chapter, a divide-and-

conquer strategy is provided to divide the problem into sub-problems with less 

points so as to overcome the local minimum problem and at the same time to 

improve the computational efficiency. 

3.3 Grasp planning under kinematic constraints 
An important feature of the proposed algorithm is that it ensures kinematic 

feasibility of robot fingers. As long as the inverse kinematic model of each finger 

is developed, the algorithm can discard any candidate grasp with one or more 

candidate grip point not reachable by the corresponding finger. 

In ordinary study of form-closure, kinematic constraints are not taken into 

consideration. The analysis of form-closure is intrinsically geometric, in so far as 



Chapter 3. A Qualitative Test Algorithm and a Local Search Algorithm 28 

it does not consider the kinematics of the grasping mechanism or the magnitude of 

contact forces. Most literatures regards the kinematic analysis of grippers or 

robotic fingers belongs to the area of force-closure. 

In this dissertation, the only kinematic concern is the reachability of the robotic 

fingers. When the local search algorithm makes decision on the grasp choice, it is 

important to ensure that the selected candidate grasp is feasible for the robot hand. 

The problem of developing the inverse kinematic model of a given hand has been 

extensively investigated. As long as the inverse kinematic model is built, we can 

acquire the set of joint angles corresponds to any grasp. For any candidate grasp 

that incurs joint angles beyond the joint limits, we can properly discard that 

candidate grasp. 
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Chapter 4 
A Divide-and-Conquer Technique 
To cope with the local minimum problem, a divide-and-conquer strategy is 

employed to divide the problem in the original point set Q into sub-problems in 

subsets. The division is based on an important observation that the primitive 

contact wrenches corresponding to the contact points must not all lie on one side 

of any hyperplane passing through O to achieve a form-closure grasp. Having 

this observation, we can drastically reduce the number of eligible candidate grasps 

by neglecting those grasps with all the wrenches on one side of a specific 

hyperplane called separating hyperplane. The determination of the separating 

hyperplane will be discussed in the first section of this chapter. The problem 

division process is different for frictionless and frictional models due to the 

difference in the properties of the primitive contact wrenches of the two cases. 

Therefore, the divide-and-conquer technique for frictionless and frictional grasps 

will be discussed separately in Sections 4.2 and 4.3. 

4.1 Determining a Separating Hyperplane 
As discussed before, a separating hyperplane in the wrench space R^ should be 

obtained when a local minimum of ||P(9|| is encountered during the local search 

process. The selected separating hyperplane should be easily obtainable and able 
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to lead the algorithm to escape from the local minimum. 

Recall, in the qualitative test, that the hyperplane defined in (3.17) is the facet E of 

H(W) intersected by the ray PO. Here, a hyperplane Y that contains the origin of 

the wrench space and is parallel to the facet E obtained in the local minimum 

iteration is selected as the separating hyperplane (Fig 4.1): 

+ = 0 . (4.1) 

t Separating hyperplane F Q / 
/ \ Facet Ev / 

/ � , N / . 
Convex Hull in a local / (^v 6 
minimum iteration ^ / ^ 
Fig. 4.1. Separating hyperplane Y defined in wrench space R^ 

parallel to facet E. 

As facet E is readily obtainable from the qualitative test algorithm, no extra 

computational effort has to be made in yielding separating hyperplane Y. Besides, 

hyperplane Y can lead the algorithm to a new initial grasp that avoids the local 

minimum just encountered. 

The separating hyperplane divides the wrench space into two half-spaces, which 

are denoted by Y"^ and Y~ ’ respectively. Y^ is the half-space: 
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e^Xj + ； and Y~ denotes the half-space: 

ejXj + < 0 . 

4.2 Divide-and-Conquer in Frictionless Case 
In frictionless contact model, forces can be only exerted in the normal direction of 

the contact point. Therefore, each contact point corresponds to one primitive 

contact wrench only. The original point set Q is divided into two subsets 

according to which side of the separating hyperplane that the corresponding 

primitive contact wrench located. As shown in Fig 4.2，the separating hyperplane ‘ 

Y divides the original point set into two subsets: 

^ ( V ) = {rj EQIW^G y-J = l,2,-",N} ’ 

A 
Separating hyperplane Y 

， z � � � , 7 

‘ 

• • ： • 炉 

y • • ： points in subset Q(y+) 
Z “ • ： points ill subset Q(y ) 

Fig. 4.2. Separating hyperplane Fdivides point set Q into subsets Q(Y^) and 
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Since in a form-closure grasp the seven points should not all belong to subset 

or subset points of form-closure grasps must be selected from 

both of these subsets. This gives rise to a division of the problem in the original 

set into problems in the subsets based on existence conditions of form-closure 

grasps. Six problems in the subsets need to be considered, which are grasps 

consisting of 

• one grasp point from subset and six grasp points from subset 

• two grasp points from subset ^2(7") and five grasp points from subset 

聊+)， 

• three grasp points from subset and four grasp points from subset 

靴+)， 

• four grasp points from subset and three grasp points from subset 

哪+)， 

• five grasp points from subset and two grasp points from subset 

• six grasp points from subset ^ ( F " ) and one grasp point from subset 

V 

The sub-problems obtained are represented as child nodes of the search tree 

whose root represents the problem in the original set (Fig 4.3). The (i,j) in the 

node denotes that i a n d ; grasp points must be selected from subsets and 

Q(F^) , respectively, in order to obtain a form-closure grasp in the corresponding 
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subsets of points. 

Original Problem 

(1,6) (2,5) (3,4) (4,3) (5,2) (6,1) 

Fig. 4.3. The search tree generated by decomposition of the problems for 7-finger 
frictionless grasps. 

From the six child nodes, one of them is selected and the local search of a form-

closure grasp is carried out within the subset of points of the selected child node. 

When a new local minimum is encountered, a new separating hyperplane defined 

in the same way is employed to further divide the subset into three or four subsets. 

Based on the existence condition, a new set of sub-problems are generated and 

represented as child nodes of the node selected. This process is performed 

recursively until a form-closure grasp is found or all the nodes have been explored. 

It should be noted that no child will be generated for a node if none of the 

combination of the subsets divided by the separating hyperplane satisfies the 

existence condition of form-closure grasps. 

To determine which child should be traversed first, a node with eligible contact 

points more evenly distributed over the point sets is considered as having a higher 

� chance to contain form-closure grasps. Therefore, a heuristic function h is defined 

as follows: 

r f ^ hi<a, a^--' â  >) = X ， (4.3) 1=1 v^ / 
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where is c the total number of subsets and a, is the number of points to be selected 

from subset A child node with a smaller h value will be traversed prior to the 

one with a larger h value. 

Note that not all nodes on the search tree will be traversed. As long as a form-

closure grasp is obtained, the algorithm will stop the search. If there does not exist 

any form-closure grasp in the given point sets, the algorithm will traverse all the 

nodes in the search tree and reports that no solution is obtained. 

Although the algorithm employs heuristics to guide the local search and selection , 

of the sub-problems, it is a complete one, i.e., it always finds a form-closure grasp 

or reports no solution after all the nodes in the search tree have been visited. To 

the best of our knowledge, this is the first complete algorithm that heuristically 

searches for a form-closure grasp in a discrete domain. The other complete 

algorithm is the combinatory approach which combines all possible points in the 

point set and checks exhaustively form-closure property of all the combinations. 

The computational complexity of the exhaustive search is 0 � N \ where N denotes 

the number of points in the point set. Compared to the exhaustive search 

algorithm, our algorithm is more efficient because a large number of candidates 

have been eliminated whenever a problem is decomposed into sub-problems by 

the separating hyperplane. For example, suppose that the separating hyperplane 

corresponding to the first local minimum divides the original point set into two 

subsets with equal number of points. If we carry out exhaustive search on the six 

problems in the sub-sets, the number of all possible grasps is equal to 6{NI2)\ 

which is much smaller than N \ Therefore, wherever a problem is decomposed at a 
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local minimum, the combinatory number will be reduced significantly. 

Furthermore, for each problem in a subset, the algorithm does not exhaustively 

check all possible combinations but employs the local search algorithm whose 

complexity is proportional to the number of the points in the subset. Therefore, 

the efficiency of the proposed algorithm can be concluded. However, a rigorous 

analysis on the computation complexity is difficult but necessary. 

4.3 Divide-and-Conquer in Frictional Case 
In frictional contact model, forces can be exerted in any direction within the 

friction cone. As stated in Chapter 2, the friction cone is linearized by a 

polyhedral convex cone with m sides. Therefore, each contact point corresponds 

to m primitive contact wrenches. As shown in Fig 4.4, the original point set Q. is 

divided into three subsets according to how the separating hyperplane cuts the 

collection of m primitive contact wrenches for a contact point. The three subsets 

are as follows: 

aiY') = {r.E^\w.^EY\i = l2,---,S,j = i,2,--,m}, (4.2) 

� denotes the subset containing contact points with polyhedral frictional 

cone located in both sides of the separating hyperplane. 
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- 麥 
Z • : points in subset o 1 1 1 , • : points ill subset Q f r ) Separating hyperplane 7 po^ts m subset 

Fig. 4.4. Separating hyperplane Y divides point set into subsets Q.(广)，) and 

Since in a form-closure grasp the n points should not all belong to subset Q(Y~) ‘ 

or subset ，points of form-closure grasps must be selected from the subset(s) 

as stated in any one of the following combinations: 

• Q(Y-), and Q(Y'), 

• Q(Y-) and only, 

• Q(Y-) and Q(Y' ) only, 

• and Q ( F ' ) only, and 

• only. 

Similarly, a number of existence conditions of form-closure grasps is defined to 

divide the problem in the original set into problems in the subsets. To illustrate the 

idea, let's consider a 3-finger frictional grasp. In such a case, eight problems in 

the subsets need to be considered, which are grasps consisting of 

• one grasp point from subset , one grasp point from subset 

and one grasp point from subset . 
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• two grasp points from subset ^2(7 ' ) and one grasp point from subset 

• one grasp point from subset Q.(Y~) and two grasp points from subset 

fiKy+)， 

• two grasp points from subset and one grasp point from subset 

邮 0 )， 

• one grasp point from subset and two grasp points from subset 

i^(ro)， 

• two grasp points from subset Q(F^) and one grasp point from subset ‘ 

印n， 

• one grasp point from subset 印广）and two grasp points from subset 

• all the three grasp points from subset 0 ,(7^) . 

The sub-problems obtained are represented as child nodes of the search tree 

whose root represents the problem in the original set (Fig. 4.5). The (i’j’k) in the 

node denotes that i, j and k grasp points must be selected from subsets 

and respectively, in order to obtain a form-closure grasp in the 

corresponding subsets of points. Following this fashion, the mechanism of 

generating the existence conditions and the division of original problem into sub-

problems for a general n-finger grasp can be done. 
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Original Problem 

一 一 - ： - -(1,1,1) (2,1,0) (1,2,0) (2,0,1) (1,0,2) (0,2,1) (0,1,2) (0,0,3) 
Fig. 4.5. The search tree generated by decomposition of the problems for 3-fmger 

frictional grasps. 

Then, most what have to be performed is just similar to the frictionless case. From 

all the child nodes, one of them is selected and the local search of a form-closure 

grasp is carried out within the subset of points of the selected child node. When a 

new local minimum is encountered, a new separating hyperplane defined in the 

same way is employed to further divide the subset into nine or less subsets. Based 

on the existence condition, a new set of sub-problems are generated and 

represented as child nodes of the node selected. This process is performed 

recursively until a form-closure grasp is found or all the nodes have been explored. 

It should be noted that no child will be generated for a node if none of the 

combination of the subsets divided by the separating hyperplane satisfies the 

existence condition of form-closure grasps. 

Again, a node with eligible contact points more evenly distributed over the point 

sets is considered as having a higher chance to contain form-closure grasps. 

Therefore, the heuristic function h in frictional case to determine which child 

� should be traversed first is defined as follows: 

r f n y 

…以r〉) = I ^ — ， (4.3) 

1=1 VC J 

where is c the total number of subsets and a, is the number of points to be selected 
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from subset Qi. A child node with a smaller h value will be traversed prior to the 

one with a larger h value. 
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Chapter 5 
Implementation and Examples 
The algorithms for frictionless and frictional form-closure grasp synthesis 

developed in this work are implemented with MatLab to verify their practicality. 

In this chapter, a number of simulation examples will be shown. In section 5.1, ‘ 

examples of frictionless grasps will be shown, whereas a 7-finger robotic hand is 

to grasp a number of 3-D objects. In section 5.2, examples of frictional grasps on 

varies objects will be shown. The friction cones are all linearized by polyhedral 

convex cone with 20 segments. The number of contacts is three to five. It should 

be noted that most simulations we have done do not contain any local minimum. 

The examples with local minimum are shown just for the purpose of illustrating 

the efficiency of the divide-and-conquer strategy in the algorithm. In the last 

section, examples of form-closure grasp synthesis with consideration of 

kinematics constraints will be given. 

5.1 Examples of Frictionless Grasps 
In this section, all contacts in the examples are assumed to be frictionless point 

contacts. Two different objects represented by point sets will be used and they are 

without rotational symmetries. Seven contact locations in yielding form-closure 

grasp are to be found in each example. 
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Example 1 

In the first example, the 3-D curved object shown in Chapter 2 is used (Fig. 5.1). 

The object is formed by revolving an equation about the z-axis whereas the radius 

of revolution varies. There are 5130 predetermined contact points. Fig. 5.2 shows 

the selected initial grasp, which is not form-closure. Then the algorithm performs 

the local search process to iteratively improve the grasp until a local minimum is 

encountered in the 43'''̂  iteration (Fig. 5.4). Then, the search tree for the problem is 

generated and the child (3,4) is adopted. A new initial grasp is selected based on 

the existence condition and the local search is carried out again. Finally, a form-

closure grasp (Fig. 5.3) is obtained. The total number of iterations involved is 84. 

^s^JKL •“身fx 
�J r 扣 
Nfeî iBF" -10 • z 一 0 . � _ - 2 0 Z 二 -1° 

, 一:T-劝 
‘ X 

Fig. 5.1. A curved object with 5130 given candidate contact locations. 
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Fig. 5.2. Example 1: Initial grasp (non-form-closure). 
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Fig. 5.3. Example 1: Final grasp (form-closure). 
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Fig. 5.4. Example 1: The distance IIPOII encounters a local minimum at 43'''̂  iteration 
and the distance difference IIPOII - WPQW < 0 (form-closure obtained) at last. 
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Example 2 
The second example used the same object as Example 1. However, only 1066 

candidate locations are given. These candidate contact points are located on the 

gridded region as shown in Fig. 5.5. It is obvious that these candidate contact 

locations cannot form any form-closure grasp. This example shows the efficiency 

of the algorithm in discarding a large number of combination of grasps which 

must not be form-closure. Fig. 5.6 shows the initial contact positions on the object. 

The performance index IIPOII obtains its first local minimum value in the 48出 

iteration (Fig. 5.8). Then, the algorithm generates all the eligible child states and 

perform local search on each of them in a best-first order, namely (3,4), (4,3), , 

(2，5)，(5,2), (1,6) and (6,1). Finally, the algorithm finishes search on all the child 

states and reports that no solution found. The final grasp shown in Fig. 5.7 is non-

form-closure. 311 iterations are involved in total. This number is greatly smaller 

than 1066C7. 

1。、 v ：•；•.；•；••-•：..•-：•：•• , : . : : . . • : : . . : . . • . . : . . . . . 二 二 1 0 , •....•••.•:/'.:...:: ： ： ： •- ； 

" ^。、，優斷 : : :二 ~ 0 零 M , . 雜 

-:::：議露 難為 \\\1| --v • f ‘‘‘ f - 2 0 � ； M i i i •• •••.'••.'••/••/i -30 \ " , r 1 ' <v I-'.' ‘ .: ； = ： i ： •••v̂ ww \ ... ••： y 
丨”> > � � � " n n n r 一<--
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Fig. 5.5. The curved object with 1066 given points all located in the gridded region, which 
is impossible for yielding a form-closure grasp. 



Chapter 5. Implementation and Examples 44 

- 1 0 

声 V 

-20 A 总“::.:..:—::::.:::::;:.‘:站运為 
j V：： 

“\ 、‘ ， 乂 一 〜 一 」 ^ 
—• 

L � r——； ^ 一 ： ^ ‘ 
y 30 20 10 0 -10 -20 -30 

X 

Fig. 5.6. Example 2: Initial grasp (non-form-closure). 
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Fig. 5.7. Example 2: Final grasp (non-form-closure). 
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Fig. 5.8. Example 2: The distance IIFOII encounters local minima for six times and the 
distance difference IIPOII - WPQW > 0 (no form-closure obtained) at last. 
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Example 3 

The model used in both Examples 3 and 4 is an airfoil (Fig. 5.9) with 1546 

predetermined candidate locations and surface normals. The model has been 

shown in Chapter 2. 

• 1 〔 : : : • : • • 《 : : : • . 、 

“ 
.�sT® <1--…....::::..... I 。 ' 、 c : : ： ^ ? 、  

C ^ ^ 

��c：：：::: 二 

- � 5 � � • • � • � 

- 1 � 器 :S 5 : : � , 
•:•••••:: :� • 

( 一 •一…〜…、•••••丨 

。 接 
' ° 0 . 4 \ 0 . 4 

-0 6 -0 4 -0 2 “ y 
X 

Fig. 5.9. An airfoil model with 1546 surface points. 

In Example 3，the algorithm takes 68 iterations in total to obtain a form-closure 

grasp. The initial grasp shown in Fig. 5.10 is non-form-closure. After 62 iterations, 

the algorithm encounters a local minimum in the performance measure IIPOII. A 

separating hyperplane is defined to divide the candidate contact points into two 

subsets and the algorithm performs the local search process in the state (3,4) in the 

search tree. Then, a form-closure grasp (Fig. 5.11) is found after 6 more iterations. 

Fig. 5.12 plots the distance difference WPOW - llPgll and the distance IIPOII against 

the iteration number. 
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Fig. 5.10. Example 3: Initial grasp (non-form-closure). 
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Fig. 5.11. Example 3: Final grasp (form-closure). 
V 



Chapter 5. Implementation and Examples 47 

0.4 j 1 1 1 1 - 1 1  

0 ,3 -I ^ ^ t\ 

l � . 1 - / 
0 - ~ ^ . 

-0.1 I 1 1 1 1 1 -L- 
10 20 30 40 50 60 

iteration number 0-5 r 1 1 . 1 1 , 1 
0.4 _ 

广 ^ ^ 卜 = 0 . 2 -. X -
-

0 ' ‘ 1 1 I I ” I 

10 20 30 40 50 60 
iteration number 

Fig. 5.12. Example 3: The distance llfOII encounters a local minimum at 62"*̂  iteration 
and the distance difference WPOW - WPQW < 0 (form-closure obtained) at last. 
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Example 4 
The fourth example contains 171 iterations in total. In Fig. 5.13, seven initial 
contact locations are selected randomly. As the selected grasp is non-form-closure, 
the algorithm searches locally for a form-closure grasp. Two local minima are 
encountered in the 90出 and 126'^ iteration respectively. Finally, the algorithm 
finds a form-closure grasp (Fig. 5.14). Fig. 5.15 plots the distance difference IIPOII 
-WPQW and the distance WPOW against the iteration number. 
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-1- .•...••••••:..•..�, , L c ro.4 

.........•：餘 -06 -04 -o7T72'7r y 
X Fig. 5.13. Example 4: Initial grasp (non-form-closure). 
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Fig. 5.14. Example 4: Final grasp (form-closure). 
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Fig. 5.15. Example 4: The distance WPOW encounters two local minima and the 
distance difference IIPOII - WPQW < 0 (form-closure obtained) at last. 
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5.2 Examples of Frictional Grasps 
Three examples of frictional grasp with different number of fingers are shown in 
this section. In all these examples, the friction cones are linearized with 
polyhedral convex cone with 20 segments (i.e. m = 20). 

Example 5 

In this example, the algorithm is required to obtain a 4-finger form-closure grasp 

on the airfoil model in the present of friction. A friction coefficient ju = 0.2 exists 

between the object and each finger. The initial grasp upon random selection is 

non-form-closure (Fig. 5.16). The algorithm performs local search in obtaining , 

trajectories of finger motions in the direction to decrease UPON. In the 

iteration, a local minimum is encountered (Fig. 5.18). The search tree for the 

problem is generated and the child (1,1,2) is adopted. Then, a new grasp is 

selected based on the existence conditions of node (1,1,2). Finally, a form-closure 

grasp is obtained (Fig. 5.17) in the 71'' iteration. 
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。5 乙 
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-1 , ...•>::..... e  , 
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T 1 i ^ ‘ � 
y -0.4 -0.2 0 0.2 0.4 0.6 

X 

Fig. 5.16. Example 5: Initial grasp (non-form-closure). 
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Fig. 5.17. Example 5: Final grasp (form-closure). ‘ 
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Fig. 5.18. Example 5: The distance IIPOII encounters a local minimum at 62"" 
Iteration and the distance difference IIPOII - WPQW < 0 (form-closure obtained) at last. 
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Example 6 
It is known that three fingers are sufficient to grasp object in 3-D in the present of 

friction. In the sixth example, a 3-finger frictional form-closure grasp on the 

airfoil model is to be found. The friction coefficient ju is again fixed to be 0.2. The 

initial grasp upon random selection is non-form-closure (Fig. 5.19). The algorithm 

performs local search in obtaining trajectories of finger motions in the direction to 

decrease IIPOII. As shown in Fig. 5.19 the distance IIPOII decreases strictly and no 

local minimum is encountered in this example. Finally, a form-closure grasp is 

obtained (Fig. 5.17) after 43 iterations of computation. 
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Fig. 5.19. Example 6: Initial grasp (non-form-closure). 
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Fig. 5.20. Example 6: Trajectories of the three contact locations 

during the local search. 
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� Fig. 5.20. Example 6: Final grasp (form-closure). 
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Fig. 5.2L Example 6: The distance IIPOII strictly decreases throughout the process 
until the distance difference WPOW - WPQW < 0 (form-closure obtained) at last. 
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Example 7 

As stated in Chapter 4, the distance difference WPOW-WPQW can also be used as the 

performance index of the local search. The statement is examined in this example. 

This example uses a spherical object and five contact locations on the object 

surface are to be found. The friction coefficient // is defined to be 0.3. In Fig. 5.22， 

as all the contact points of the initial grasp are located at the lower part of the 

sphere, the contacts cannot resist forces acting upwards and so the grasp is not 

form-closure, even in the present of friction. After performing the local search for 

23 iterations, a form-closure grasp shown Fig. 5.23 is obtained. As shown in Fig. 

5.24, llPOII-IIPgll decreases strictly throughout the search, i.e. no local minimum 

is found during the search. 
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• ‘ > • • • • • • • • ‘ • • » • • 

/ • • • • • • • • • • • • . • » • . . � • • • • • • » . • • .1 
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； 
• • • • . • , 

.... ： ： ：； •.•..-...‘...:、 ...... 

1 � s c ^ 
X 50 50 y Fig. 5.22. Example 7: Initial grasp (non-form-closure) on a spherical object. 
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Fig. 5.23. Example 7: Final grasp (form-closure). . 

. , ,~—— 
0.03 - . 

2 0.02 - . 

I 0 ,01 -

0 
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Fig. 5.24. Example 7: Distance IIPOII - IIP0, instead of IIFOII, used as the 
performance index in local search, form-closure yielded after 23 iterations. 

The local search algorithm can be revised to obtain a local optimal grasp. It is 

done by neglecting the termination instruction of Step 2 of the local search 

algorithm. Then, the iteration process will end only when IIPOII is not strictly 

� decreasing. Fig. 5.24 shows the trajectories of the five contact locations from the 

initial grasp to a final grasp that is a local optimal form-closure grasp. We can see 

that the final grasp obtained by the revised algorithm holds the sphere much more 

stable than the original final grasp does. Fig. 5.25 shows the convergence 

behavior of IIP0II-IIP(2II. 



Chapter 5. Implementation and Examples 57 

,T. ........... 

5� . M l ^ i f e . 
- I � •• ••‘•••* •• 

••:••.•••••、•••• 人 • • • • . . • . ‘ . . . . • • ‘ 
卞............••：： ：。.".•.... • . . • • • ‘ • • • » • 

‘• • • 
- • • • • • • • • • • • • • • • ‘ 

N 乂 ：：： ： ： ： ： ： ： ： ： ： ： ：：：？ 
： ： ： ： • ： ： • ： ： ： ： ： ::•• 

• • • • • • • ‘ • • 

入..： ： ： ： ： ： ： ： ： ：/ .、---.--广 

、 糊 代 / 

-50 -50 X ‘ y 

Fig. 5.25. Revised algorithm for Example 7: local optimal grasp obtained. 
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Fig. 5.26. Revised algorithm for Example 7: form-closure yielded after 77 iterations. 
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5.3 Examples of Grasps under Kinematic Constraints 
In this section, two examples will be used to demonstrate the capability of the 

algorithm in computing form-closure grasps when kinematic constraints are taken 

into consideration. The robotic hand model used in the simulations is a Yaskawa 

H — which contains five 3-DOF fingers. Each finger has links I, = 22.75mm, k = 

43.00mm’ h = 51.25mm and I4 = 50.35mm. The joint limits are defined to be 0, e 

[-风 m rad, e. G [-m, Tdl] rad, 0, 6 [Sm, 0] rad. Fig. 5.27 shows the 

geometric shape of the reachable workspace of each finger. The inverse kinematic 

model is developed, which calculates the joint angles of the five fingers from a 

given set of grasp points. Therefore, for any candidate grasp that incurs joint ‘ 

angles beyond the joint limits, we can properly discard that candidate grasp. 

For each of the two examples, the friction coefficient jj is defined to be 0.3. The 

hand palm frame IH is of the same orientation as the object frame 10 with a pure 
translation in - 1 direction. 

Fig. 5.27. Geometric shape of the reachable workspace of each finger. 
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Example 8 

Fig. 5.28(a) shows the object of light bulb shape used in this example. A 

kinematically feasible initial grasp, which is non-form-closure, is chosen 

randomly on the object. Fig. 5.28(b) shows the configuration of the 5-finger robot 

hand. The algorithm searches for form-closure grasp and, at the same time, check 

for the kinematic feasibility of each of the candidate contact locations. Fig. 5.29 

shows the form-closure grasp obtained in the end and the corresponding finger 

configurations. 
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Fig. 5.28. Example 8: Initial grasp (non-form-closure) 

(a) contact locations and (b) configuration of robot hand. 
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Fig. 5.29. Example 8: Final grasp (form-closure) 

(a) contact locations and (b) configuration of robot hand. 
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Example 9 

This is another example showing the capability of the algorithm in computing 

form-closure grasp under kinematic constraints. Fig. 5.30 shows the initial grasp 

and its finger configurations and Fig. 5.31 shows the final grasp obtained. 
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Fig. 5.30. Example 9: Initial grasp (non-form-closure) 

� contact locations and (b) configuration of robot hand. 
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Fig. 5.31. Example 9: Final grasp (form-closure) 

(a) contact locations and (b) configuration of robot hand. 
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Chapter 6 
Conclusions 
In this dissertation, we address the problem of form-closure grasp synthesis in 

point set domain. A simple and efficient algorithm for locally searching a form-

closure grasp is developed. The algorithm starts with a randomized initial grasp ‘ 

and searches for trajectories of fingertip positions to enhance form-closure. We 

have introduced a quantitative index to measure a grasp how far a grasp is from 

being closure. The heuristic measure effectively leads the convex hull / / fWj of 

the primitive contact wrenches to move toward the origin of the wrench space . 

The proposed algorithm is applicable for both frictionless and frictional models 

with any number of contacts. The algorithm can handle objects with arbitrary 

geometry while the complexity of the object does not influent the computational 

time of the local search. It also ensures the kinematic feasibility of robotic fingers. 

The algorithm can be widely used in grasp planning of multifingered robot hands 

and fixture layout design of workpieces with arbitrary geometry. 

We propose a complete and efficient heuristic algorithm for searching for a form-

closure grasp in a discrete point set. The complete algorithm solves the local 

minimum problem incurred by the local search and it always guarantees a solution 

as long as it exists. We have defined a separating plane to divide the point set into 
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subsets. Based on an important observation of form-closure condition in the 

wrench space, the original problem is decomposed into sub-problems while the 

problem size is reduced significantly. To the best of our knowledge, no other 

complete algorithm, except for an algorithm which exhaustively tests form-

closure property of possible combinations, is available for such a problem. 

We have implemented the algorithm and examined its performance with 
simulation study. Nine numerical examples are given in Chapter 6 to demonstrate 
the results of the algorithm in tackling frictionless and frictional grasps and 
kinematic check. 

There are some possible future extensions of this work. One important extension 

is the derivate of the complexity of the search algorithm in terms of the best, the 

average, and the worst scenarios. Another possible future work is the 

generalization of the work to other contact models such as soft-finger, line, and 

planar contacts. 
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