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摘要 

如 果 能 掌 握 股 市 的 走 勢 ， 這 肯 定 能 幫 助 預 測 股 市 。 股 票 價 格 除 了 受 其 他 股 票 影 

響 外 ， 也 會 因 本 地 及 外 國 的 政 治 及 經 濟 事 件 而 波 動 ° 本 論 文 旨 在 探 討 股 市 走 勢 

與 過 去 事 件 的 關 係 ° 除 了 從 公 眾 資 源 £ 集 過 去 的 經 濟 數 據 ， 我 們 建 立 了 從 本 地 

中 文 經 濟 新 聞 中 辨 認 及 抽 取 當 日 發 生 的 事 件 的 系 統 ， 然 後 根 據 所 得 的 事 件 及 股 

票價格，再找尋股市模式。 

從中文報章抽取信息之前，首要任務是把中文文本的連續字串切分成詞的序 

歹 i j ， 即 自 動 分 詞 ° 已 切 分 的 文 本 的 其 中 一 項 用 途 便 是 自 動 摘 文 ° 我 們 建 立 自 動 

摘 文 系 統 ， 利 用 遺 傳 算 法 抽 取 符 合 選 擇 機 制 的 重 要 句 子 作 為 摘 要 。 此 系 統 基 於 

句子的關鍵字出現次數，在文本的位置，以及與其他句子的相似度及距離等因 

素，決定摘要句子。 

我 們 把 新 聞 事 件 及 股 票 價 格 互 相 匹 配 ， 然 後 採 集 常 見 股 市 及 經 濟 事 件 的 模 

式 ， 藉 此 了 解 經 濟 事 件 對 股 市 的 影 響 。 為 了 能 更 有 效 規 劃 此 問 題 ， 我 們 提 出 頻 

. 繁情節的新定義。這個新定義沒有”頻繁情節的子情節必定也是頻繁情節”的特 

性。我們提出新的採集頻繁情節的方法，並應用於由報章所抽取的事件建立的 

資料庫，找出頻繁情節。實驗證明此方法能有效採集頻繁情節及可應付大型資 

料庫。 

我們也讓用戶設定對採集期望結杲的限制，以加強採集系統。此採集方式只 

要求输入要採集最頻繁情節的數量，免除因決定最小支持度的煩惱。我們也提 

出了方法，實驗顯示這兩個方法也能有效採集頻繁情節。 
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Abstract 

It is useful if we could predict and formulate the stock market trends. Apart from 

the inter-influence among stocks themselves, stock prices are affected by local and 

overseas political and economic events. We are interested in the discovery of factors 

related to stock movements from past data. For the past stock prices, they can be 

obtained from open sources directly. In order to get the events happening each day, 

we have built a system to extract events from the financial news of local Chinese 

newspapers. The events extracted and the stock prices databases are then analyzed 

to find patterns of the stock market. 

To extract information from the Chinese newspapers, the news articles are first 

segmented into words. After segmentation, information can be extracted from the 

Chinese text, such as in text summarization. A summarizer is built to get the most im-

portant sentences from the financial news by using genetic algorithm, which searches 

sentences to satisfy a set of heuristic rules and sentences satisfying the rules as a sum-

mary are extracted. In addition to the frequencies of keywords and the locations of 

sentences, the proximities and distances between summary sentences are considered 

in determining the summary sentences. 

To understand better the relationship between some financial events and the actual 

stock market, the news are matched against stock price databases for the mining of 
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frequent temporal patterns from the stock market and financial news events. We 

propose a new definition of frequent episodes which can better formulate our problem. 

This new definition does not have the property that the subset of a frequent episode 

must be frequent. We propose a new mining method for this problem which we show 

by experiment to be highly efficient and scalable. We applied our method to a real 

dataset collected from local financial news. We show that the method is effective in 

discovering interesting financial patterns. 

We enhance the system by allowing users to set constraints on the expected results. 

The first enhancement is mining the TV-most frequent episodes, in which only N is 

specified instead of the support threshold. This avoids the difficult situation for a 

novice user to choose a suitable support threshold. To further facilitate users to 

get episodes containing the desired events, we also propose the method of mining 

frequent episodes with event constraints. With enhancements, we can also discover 

those episodes with low supports. Experiments results show that the performance of 

the methods is efficient. 
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Chapter 1 

Introduction 

Information extraction (IE) is the analysis of unrestricted text to extract certain 

specific information. It differs from information retrieval (IR), the traditional tech-

nique of processing text information. While IE gets the facts out of documents, IR 

searches and gets the sets of relevant documents. 

When the target information is related to Hong Kong's local issues, we have to 

deal with Chinese documents in order to get more information. The web, a virtual 

library which is rich in up-to-date information, provides a convenient way to access 

documents. 

Information extraction becomes more important in recent years. The main goal of 

information extraction is to produces databases with extracted facts, which are then 

further analysed using data mining techniques to discover meaningful patterns and 

trends. 

There are many areas in data mining, one of which is frequent pattern mining. 

Frequent pattern, which is a kind of association rules, is a set of frequent items, the 

number of appearances of which is above a pre-assigned threshold. Frequent pattern 

mining plays a significant role in mining episodes, sequential pattern, association and 

correlation. 
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1.1. PROBLEM DEFINITION 2 

1,1 Problem Definition 

With the rapid development of the web, there are uncountable and wide ranges of 

documents available. However, users may spent a lot of time to browse every docu-

ment retrieved even though a powerful search engine is used. At the same time, we 

are interested in the relationship between the financial events and the actual stock 

market. We extract the relevant information from the Chinese news documents on 

web, then further analyses the information with data mining techniques. 

In the first part, we notice there are many documents available on the web and 

it is inefficient to obtain the target documents from the list of documents retrieved. 

Since there have been rather considerable amount of research on summarization in 

English documents, we propose a method to automatically generate summaries for 

Chinese documents. The summaries provide precise and brief descriptions for users 

to facilitate reading. 

In the second part, we attempt to discover the frequent financial episodes, which 

is a set of financial events appearing close together and their frequencies meet the 

support threshold. We extract events from the financial news of local Chinese news-

papers and insert the events to the event database. We propose a new method to 

mine the frequent episodes, which can be referred for prediction. It would be more 

user-friendly to specify the number of the most frequent episodes to be mined. We 

introduce a method to mine the iV-most frequent episodes. In reality, user always 

want to obtain the episodes including specific events. We describe a method to mine 

the frequent episode with event constraints. 

We believe that the frequency distribution in database affects the setting of thresh-

old and the number of most frequent episodes to be mined {N) in order to obtain the 

desired episodes. The three methods proposed are able to cope with different types 

of database and satisfy the needs of users. 



1.2. THESIS ORGANIZATION 3 

1.2 Thesis Organization 

There are six chapters following this introduction chapter. The first two chapters 

involves information extraction, while the following three chapters discuss the data 

mining methods to discover the knowledge from the information extracted. 

Chapter 2 presents a method which applies genetic algorithm to automatically 

generate a summary for the Chinese new document obtained from web. Chapter 

3 proposes a method to extract events from the Chinese financial newspapers. We 

construct an event database containing the events and the record of the previous 

stock movements which is obtained directly from open source. 

Chapter 4 gives a survey on mining frequent pattern. It also presents two methods 

to discover the frequent episodes from the event database built in Chapter 2. In 

Chapter 5, we improve the methods in Chapter 4 to provide a more practical way 

that mines the TV-most frequent episodes. Chapter 6 imposes more restrictions on the 

results and proposes a method to mine the frequent episodes with event constraints. 

Finally we draw a conclusion in Chapter 7. 



Chapter 2 

Chinese Text Summarization Using 

Genetic Algorithm 

Genetic algorithm has been widely used in different domains to search for the optimal 

solution. In this chapter, a new method applying genetic algorithms on summarizing 

the Chinese text is proposed. The summarizer gets the most important sentences 

from the financial news determined by a genetic algorithm, which searches sentences 

to satisfy a set of heuristic rules and extract the sentences satisfying the rules as a 

summary. In addition to the frequencies of keywords and the locations of sentences, 

the proximities and distances between sentences are considered in determining the 

summary sentences. In result evaluations, the extracted summaries are compared 

with the sentences selected by human judges. The Chinese texts in evaluation are 

columns obtained from web newspapers because of their well-organized structures. 

2.1 Introduction 

With the growth of the internet, there are increasing number of documents in the 

electronic library. The free, direct and convenient source attracts users to access 

electronic documents. Although search engines can now effectively retrieve relevant 

documents, when a long list of relevant documents is found, it is impossible to read 

4 



2,1. INTRODUCTION 5 

every document to determine if the documents are the desired items for a reader. 

Thus an abstract or a summary for documents is needed to provide a quick reference 

in an electronic text collection. However, not every document includes an abstract 

or summary and it is also time consuming to write a summary for each document. 

Hence automatic text summarization, which generates summary instantly when a 

new document is inserted into the text collection, can greatly improve the efficiency. 

It is not an easy task for computer to generate a summary without natural lan-

guage understanding. An author composing a summary needs a period of related 

training and instructions. In general, there are three steps to generate a summary. 

First, the whole passage is read once. Next all important phrases and sentences are 

selected. Finally the selected phrases are connected together with suitable connecting 

words to form a summary. This process involves human understanding and analysis 

of the document as well as grammar knowledge. It also needs selection of core sen-

tences and phrases from the documents, discarding the trivial sentences and editing 

the final key sentences to generate a coherent summary. Thus it is hard to simulate 

this complicated summarization process and the human learning model for computers 

to produce a short and precise summary. 

There have been many researches on the English summarization, whereas little 

have been done on the Chinese text summarization. When we are interested to 

find the local information, we may have to access the Chinese documents for more 

comprehensive information. Thus it is useful to built a system for summarizing 

Chinese documents. 

Genetic algorithm is applied to find the optimal results in search space which is a 

text in the summarization system. Genetic algorithm is an adaptive search technique 

based on nature evolutionary selection. The solution is encoded into a set of param-

eters and represented as a chromosome, which contains genes for the parameters of a 

possible solution. Each combination of the parameters has its own unique fitness to 

measure the quality of the chromosome. The first generation of population of a group 

of chromosomes is generated randomly. To improve the quality of the population, the 



2.2. RELATED WORK 6 

current generation reproduces the new population with genetic operators, including 

crossover, mutation and selection, which provide different ways to exchange genes be-

tween the old generation chromosomes. The parents are randomly selected according 

to the probability proportional to the fitness of the chromosome to perform repro-

duction. So the fittest strings can survive up to the last generation and have greater 

chance to reproduce children. The chromosomes are kept evolving from generation to 

generation until the termination criteria are met. The termination criteria can either 

be fixed as the maximum number of iterations or the fitness of the chromosomes has 

converged to a certain level. The fittest chromosome survived in the last iteration is 

the optimal solution in the search space. 

The rest of this chapter is organized as follows. Section 2.2 discusses the related 

works in text summarization. Section 2.3 introduces the modeling of the genetic 

algorithm in the system. Section 2.4 explains the details of the Chinese text sum-

marization process. Section 2.5 shows the experimental results. Section 2.6 and 2.7 

discuss the limitations and draws a conclusion respectively. 

2.2 Related Work 

There have been many researches on summarization, most of which, however, focus 

on the English text summarization. The common approaches are word frequency, 

discourse (structure) analysis and machine learning. In using word frequency, the 

words appearing in the documents the most are considered the most important. The 

importance of the word is the weight of the word. The weight usually includes cue 

words or phrase (such as "in conclusion"), frequencies of keywords, the keywords' 

locations and their proximities. The total weights of the words in the sentences are 

then calculated and ranked. Since it is inaccurate to count word frequency only, 

variations and combinations with other methods are derived to obtain a summary 

with higher quality, although its computation time is short. 

The approach of counting word frequency is commonly used in sentence selec-
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tion and paragraph selection, which identify the sentences or paragraphs scoring the 

highest marks in ranking [1, 2, 3, 4]. The important sentences are then extracted 

and concatenated to form a summary. For sentence selection, concatenating the sen-

tences selected without further analysis may lead to the mismatch of pronominal 

references, making the summary imprecise. For example, the key sentences contain-

ing the anaphoric references, such as "these", "those" and "that", and the pronoun, 

such as "he", "she" and "it" are extracted as summary while the sentences intro-

ducing the objects' names are not selected. Without including the source names, 

reader cannot know what exactly the objects are referred to. Thus the text should 

be traced backward from the selected sentences containing the anaphoric references 

and pronouns to obtain the source names. 

A similar method to sentence selection is paragraph selection [2], in which a text 

relationship map is used to relate the paragraphs to each other. A text relationship 

map is a graph in which nodes are paragraphs and the links between nodes are 

to connect the paragraphs with threshold similarity. The paragraphs similarity is 

calculated by using IR method and is the number of overlapping terms between two 

paragraphs. The term weights depend on the number of terms in that documents 

and the collection of documents. 

To select summary paragraphs from the document, the highly brushy node, which 

has many links connecting it to other nodes, has to be found. The paragraph rep-

resented by this node is a good overview paragraph and is suitable to be a part of 

summary because it has many overlapping term with other paragraphs. To provide 

more coherent extract, the depth-first path, segmented bushy path and augmented 

segmented bushy path are constructed. Depth-first path is built from the first node 

or a highly bushy node to the next most similar node. Segmented bushy path is to 

include the special topic which is represented as the nodes well connected to each 

other, but poorly connected to other nodes. Augmented segmented bushy path is to 

select the introductory paragraph from every segment. 

Paragraph extraction has eliminated the problem of pronominal references and 
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coherence in sentence extraction. Since a whole paragraph is extracted in paragraph 

selection, the integrity and coherence of the resulting summary is better than that 

generated by sentence extraction. However unimportant sentences are also included in 

the summary while the important sentences in other paragraphs cannot be extracted 

because the overall rankings of the paragraphs are not high. If the number of trivial 

sentences are large, this makes the summary not concise enough. In addition, the 

approach may not be appropriate for a short text with only several paragraphs. The 

length of the summary may still be too long compared with that of the original text, 

because at least one or two paragraphs are extracted. The resulting summary cannot 

be brief if the paragraphs in the text are long. The precision will be low in this case. 

Hence the performance of paragraph selection is suitable for summarizing long texts, 

such as books. 

Another method to determine the important sentences is using within-sentence 

clustering techniques [5]. The summary sentences are those sentences having greatest 

cluster weight. A cluster is a sequence of consecutive words in a sentence the beginning 

and the end of which are keywords where the distance between the two keywords in 

the sequence of words should be fewer than a threshold. The cluster weight is the 

total weight of all significant words within a cluster divided by the total number 

of words included in the cluster. A sentence may contain more than one clusters. 

The maximum weight of clusters is the weight of the sentence. Apart from treating 

frequent words as keywords, frequent words will also be treated as important word 

when the words are not found in the dictionary which implies the words are rare. 

However the extraction does not emphasize "highlight" and "italic" words. 

For such long passages as electronic books, Thematic Hierarchy Detection [6] can 

be used for text summarization by discourse analysis. The algorithm generates a 

about one-page summary to facilitate reader to understand the text content without 

browsing the whole book. It is based on the decomposition of text into thematic 

textual units of about one paragraph. The algorithm consists of three stages. In 

the first stage, it detects the thematic hierarchy of a source text to decompose the 
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text into an appropriate number of textual units of approximately the same size. In 

the second stage, it adjusts each boundary between these textual units to identify a 

boundary sentence, indicating where a topic corresponding to a textual unit probably 

starts. A leading sentence that probably indicates the contents of subsequent parts 

in the same textual unit is then extracted. In the last stage, it generates a structured 

summary of these sentences, thereby providing an outline of the thematic hierarchy 

of the source text. 

This one-page summary generation algorithm only extracts the sentences in the 

leading part of every topic. It does not address problems due to a lack of textual 

coherence and readability which always exist in sentence extraction algorithm. To 

improve readability, the algorithm divides every one-page summary into several parts, 

each of which consists of a heading-like sentence followed by some parameters. 

Alternate approach applying genetic algorithm is used for extracting keyphrases. 

GenEx algorithm [7] is a hybrid of the Genitor steady-state genetic algorithm and 

the Extractor parameterized keyphrase extraction algorithm. The Extractor reads an 

input text and produces a keyphrase list. The parameters in the Extractor determine 

the processing of the input text. Then GenEx adjusts the parameters in Extractor 

to improve the extraction results. 

Text summarization can be treated as a task of data mining. From the view of data 

mining, the text is the raw data while the summary is the undiscovered knowledge in 

the data. The approach of data mining of keyphrase extraction has been implemented 

in the past. Unsupervised learning was used to find two-word keyphrase [8] with 

Adaptive Resonance Theory (ART) neural network. But this approach produce a 

long list of phrases with low precision and the number of words of keyphrase cannot 

be varied. Baynesian Approach [9] has also been used to implement a keyphrase 

extraction as a supervised learning problem. 
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2.3 Genetic Algorithm Approach 

In this summarization method a group of sentences are searched and extracted as the 

summary. From the analysis of articles and summaries written manually [10], the 

summary length is almost independent of the document length and it is around 85-90 

words, or about five sentences. Although English text corpus is used in the statistical 

analysis, similar situation can be considered in Chinese summary. For a text with 

number of words less than a threshold, say 1500, 20% of the total number of sentences 

in the text are extracted as summary. But in some Chinese texts, the sentences are 

so long that some sentences consist of several clauses separated by many commas. 

If the number of words in a document exceeds an upper limit, say 1500 characters 

defined as a parameter in the system, a maximum of seven sentences will be selected. 

For a long document, there are many combinations of the sentences to form a 

summary. In this case, genetic algorithm, which is a greedy search to find the near 

optimal solution in the search space, is better than exhaustive search to reduce search-

ing time. With the use of genetic algorithm, the relationships between the extracted 

sentences can still be considered. Thus the quality of sentences extracted will not be 

lower than that of sentences the extracted from exhaustive search while the searching 

time of the genetic algorithm is lower than that of exhaustive search. 

In the system, the definition of a sentence is a group of words ending with a full 

s t o p ( " � ” ) , a question mark(" ？ ") or an exclamation mark(" ！ "). In other words 

a sentence is the smallest group of words with complete structure and can be easily 

identified by finding the ending punctuation marks. Since the structure of a sentence 

is complete, it is used as an extraction unit for summarization in the system to 

minimize the needs to edit the final resulting summary. All it is required to do after 

selecting sentences is to change the anaphoric references in the concatenated summary 

to proper nouns. Although keyphrase extraction can make the summary more precise 

and short, the process of combining the phrases together involves grammar analysis 

and natural language processing. It is not an easy task and is out of scope of this 
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work. Thus sentence selection is used in the system for its simple implementation 

while giving satisfactory results. 

The genes in a chromosome are the sentence numbers. In preprocessing, each 

sentence is given a unique identification number as sentence id. Since a chromosome 

indicates the sentences to be extracted as summary, the genes in a chromosome cannot 

be duplicated. The length of the chromosome is the number of sentences in summary, 

which is calculated as 20% of total number of sentences in the short original text. So 

if there are 15 sentences in a document, the summary length will be 15 x 20% = 3 

sentences. A chromosome of another example of a text with 35 sentences is shown 

as Figure 2.1. The genes representing a sentence id in Figure 2.1 are 0, 5, 8, 15, 30 

and 34. Each gene is unique within the chromosome and it is not allowed to have a 

chromosome with repeated genes like 0, 5, 8,.15, 30 and 30. The genes are sorted in 

ascending order to facilitate implementation. 

5 I 8 I 15 I 30 I 34 

Figure 2.1: A sample chromosome with six genes which are the sentence ids. 

2.3.1 Fitness Function 

A fitness function is formulated to evaluate the quality of the summary formed by the 

group of sentences of a chromosome. The fitness function is based on the number of 

keywords within the sentences, the lengths of sentences, the positions of sentences, the 

distances and the similarities between sentences. A set of heuristic rules is applied to 

calculate the fitness of chromosome. The fitness function expressed in mathematical 

form is as follows: 
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. ^ / ( # of keywords + # of proximities)^ 
r ooTlGSS — / I “ “ 

V total words 
2=0 

\ 

-\-wiF{xi) + W2G{xi) + wsH{xi) — W4Sim{xi, xj) 

(2.1) 

where Wi,W2, w^ and W4 are the weights, and 

! 1 if X is the sentence in the first paragraph 

0 otherwise 

{ 1 if X is the first/last sentence in the paragraph 

0 otherwise 
f 

1 if X is the sentence in the same paragraph 
R[x)= 

0 otherwise v 

# of words matched in x # of words matched in y 
• �工 , 们 — t o t a l # of words in x total # of words in y 

(2.2) 

The score of the fitness function is proportional to the number of keywords in the 

sentences and inversely proportional to the length of sentences. Since according to a 

statistic 70% of the summaries contain the first sentence of the text [10], an additional 

score will be added if the sentence in the chromosome is the first sentence in the text or 

it is the first or last sentence in the paragraph. However, the fitness will be penalized 

if the sentences in chromosomes have similar words and proximities. Another case 

the fitness score will be reduced is when the distance between the sentences are close 

together, say in the same paragraph. Since one paragraph usually has one main 

point, the sentences in a paragraph have similar content. The explanation of the 

fitness function will also be mentioned in Section 2.4. 
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The number of keywords and proximities in sentences are the most significant 

factors in computing fitness, so the weights of other factors, Wi,W2, and W3, are less 

than W4. 

Figure 2.2 is the flowchart of the genetic algorithm in the system. At the beginning 

of the GA, the initial population is randomly created. An individual is randomly 

selected based on its fitness and performs one of the genetic operations according to 

the probabilities of reproduction, crossover and mutation. The fitness of the child 

produced is then evaluated. The process of the individual reproduction is repeated 

again until the number of children reaches the population size specified in the system. 

When the number of children is equal to the population size，a new generation is 

produced. The whole process is completed when the number of generations equals 

the given generation size. 

Randomly create a population 

V* — 
Randomly select an individual based on fitness 

> r 

Perform generic operator based on probability 

> f 

Calculate the fitness of child 

、1 

number of children ^ 
"""̂ -̂--̂ P̂opulation Size specified?̂ .̂.̂ --''''''̂  

^̂ .̂ -"-""Number of generations = ^ 
""̂ ------.....̂ neratioii Size specified?,.,,,--''''''''̂  

> r 

� E n d ) 

Figure 2.2: The flowchart of genetic algorithm of the system. 
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2.3.2 Genetic operators 

Three genetic operators are used for reproduction in the system, which are crossover, 

mutation and selection. Crossover is to exchange the parts of genes between two 

chromosomes. The points where the chromosomes break and the number of break 

points of chromosomes are randomly determined. Since the numbers in chromosome 

should be unique, a new number has to be regenerated randomly if the numbers in 

chromosome are repeated after performing crossover. Figure 2.3 shows two chromo-

somes performing crossover. Because the two genes are repeated in the Child 1 after 

crossover, mutation is performed in one of the duplicated genes to generate a new 

unique gene to replace to the old one. 

Cutting point 

Chromosome 1 | 0 | 5 | 8 15 | 30 | 3 � 

Chromosome 2 | 9 | 10 | 15 28 | 29 | SO— 

Exchange genes 
N , 

V 

Child 1 I 9 I 10 I 15 I 15 I 30 I 34 

Child 2 I 0 I 5 I 8 I 28 I 29 I 30-

Perform mutation to remove duplicates 
V 

Child 1 I 9 I 10 I 15 I 18 I 30 I 34" 

Child 2 I 0 I 5 I 8 I 28 I 29 I 30 — 

Figure 2.3: The process of crossover. 

Mutation is another genetic operator which changes genes in a chromosome. The 

genes in a chromosome and the number of genes to be mutated are selected randomly. 

Similar to the crossover, if the genes in a chromosome are repeated after mutation, 
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the genes have to be re-mutated until all the genes in the chromosome are different 

and the child is different from its parent. The mutation process is shown in Figure 

2.4. In selecting chromosomes for performing reproduction, crossover and mutation, 

only the fittest 60% of the chromosomes in the population will be chosen for keeping 

the quality of the next generation above a certain level. The fitter the chromosome 

is, the higher probability it will be selected. 

Chromosome | 0 | 5 | 8 | 15 | 30 | 3 � 

Perform mutation 
V 

Child I 9 I 10 I 15 I 15 I 30 I 34" 

Perform mutation to remove duplicates 
s , 

V 

Child I 9 I 10 I 15 I 17 I 30 I 34-

Figure 2.4: The process of mutation. 

Elitism is also applied in the genetic algorithm. Elitism is to keep the chromosomes 

with highest fitness in the population to the next generation in order to prevent the 

best individual from being lost in the next generation and to prevent the highest 

fitness in the population from decreasing with generations. In our system, the best 

1% of the population is kept. 

2.4 Implementation Details 

Before doing text summarization with the genetic algorithm, the text should be pre-

processed. The system architecture is shown in Figure 2.5. 

Since the input text is in Chinese and there are no spaces separating the Chinese 

words like that in English, this makes the analysis of the Chinese sentences difficult. 

A Chinese text segmentator is built to insert delimiters between words. For example, 
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Preprocessing 

Chinese Text Text Segmentation 

\ Z � � � - —— 

Stopword Filter 

Keyword List (number of 
sentences, location of 

sentences, etc) 

Genetic Algorilhm • Summary 

Figure 2.5: The system architecture of the Chinese text summarization. 

I U l — — ！ — — 1 
Knowledge Inference User 一 ^ User 

Base ^ Engine Interface 

Expert System Shell 

Lexicon 

Figure 2.6: System Architecture of expert system. 

if group = pure .numeral 

and group = special一quantity 

and word/group = pure .numeral 

and word = special-quantity 

and word/group = pure-numeral 

Figure 2.7: A sample rule in word segmentation expert system. 



2.4. IMPLEMENTATION DETAILS 33 

the text segmentator inserts delimiters into the sentence ”今天天氣才艮好” to produce 

a segmented sentence，，今天天氣很好”，where the phase ” 今天”，，，天氣” and ”很好 

” are separated by space. The Chinese text segmentator in our system is a rule-based 

expert system with the structure as shown in Figure 2.6. Forward Maximum Match is 

used to match the maximum length of words, from left to right, with the vocabularies 

in the dictionaries. A knowledge base contains all the segmentation rules for special 

cases so that the segmentator can segment the text generically according to the rules. 

A sample rule is shown in Figure 2.7. The rule specifies the condition the system 

should insert a space to separate the words. In the sample rule shown, it groups the 

words consisting of pure numeral, special quantity, pure numeral, special quantity and 

pure numeral in order together, such as，，百分之一點五五”，where，，百”,”一”，”五 

五” are pure numerals while ”分之” and，，點” are special quantities. The number in 

the consequent part of the rule specifies the location the space should be inserted in. 

In the sample rule, the space is inserted after five objects in the antecedent and the 

segmentation result becomes，‘百分之一點五五，，.The segmentation expert system 

breaks down the sentences according to the rules in knowledge base. The rules will 

be checked only when no words are matched with the vocabularies in the dictionaries 

during Forward Maximum Match. Forward chaining is used in the system to find an 

appropriate rule in the knowledge base. In our system, each rule in the knowledge 

base will be checked in sequential order until a rule is satisfied. Thus only one rule 

will be fired. 

It is not important even if the word segmentator cannot be 100% accurate, because 

the main aim of the text preprocessing is to identify keywords. The accuracy of 

the text segmentator will not affect the summary results greatly. In our system, 

those words missing in the dictionaries and cannot being processed with the rules in 

the knowledge base will be combined together and separated as single characters by 

delimiters. If words which should be grouped together but are mistakenly separated 

by delimiters because of its absence in the dictionary, the event extraction system 

would still work because the words in this case are not important words or special 
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words. For example, the segmented sentence of，，特區成立慶典在即” is，，特區成立 

慶典在即”，where ” 特區” is not found in the dictionaries. 

The accuracy of the segmentation module in our system is 97%. The main defect 

of the segmentation results is due to the absence of words in the dictionaries or un-

known words, especially the idioms. Because there are an infinite number of Chinese 

words and idioms as well as those phases which are created by authors themselves, it 

is impossible to include all the words in the dictionaries. However this kind of seg-

mentation error results in additional single words in counting the number of words, 

thus making the evaluation of the fitness of solution in GA imprecise. The original fit-

ness function is number of keywords / sentence length instead of {number of keywords 

2)/ sentence length as in the current version. The square of the number of keywords 

can amplify the effect of the existence of keywords, especially when there are many 

keywords in a sentence. For fairness, the fitness should be inversely proportional to 

the sentence length to ensure that the results do not show bias towards the short 

sentences and are more accurate. 

In the next stage, the keywords are identified. All the stopwords are first filtered 

out from the segmented text. Stopwords are the words which appear frequently in 

texts and cannot differentiate the importance and uniqueness of sentence, such as 的 

,我，是 . W e mainly rely on the stopword lexicon to identify the stopwords. Similar 

to the problem in segmentation, some words cannot be identified as stopwords if the 

words do not exist in the lexicon. Since most of the stopwords are morpheme, which 

are single-character words, if the length of the words is one Chinese characters, the 

words will be treated as stopwords. This measure prevents the stopwords from being 

wrongly identified as keywords. 

The frequency of other words are counted and the words exceeding the threshold 

frequency will be treated as keywords. To improve the accuracy, the proximity of the 

words is also considered in counting the words frequency. If the meanings of words 

are similar with each other, i.e. they are synonyms, their frequencies are summed up 

together to get the total frequency. All those words above the frequency threshold 
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are the keywords. Other properties of the text, such as number of paragraph, total 

number of sentences, number of sentences in paragraphs and number of words in the 

sentences are obtained in this stage. 

Finally GA makes use of the keywords and the useful information obtained from 

text preprocessing to generate a summary. 

2.5 Experimental results 

The control parameters of the genetic algorithm of our system are shown in Table 

2.1. The system is written in C + + and the experiment was performed under Sun 

Ultra 5/270 with 256MB ram in Solaris 2.6 Platform. 

Population Size 100 
Probability of Crossover 0.5 
Probability of Mutation —0.2 

Percentage of Elitism 0.01 
Number of GA iterations 100 

Table 2.1: The control parameters of the GA. 

Figure 2.8 shows the maximum fitness among the population of each generation 

of three texts in the experiment. Text 1 and 2 are shown in the Appendix A 

while text 3 is shown in the Figure 2.9. The characteristics of the three texts are 

listed in Table 2.2. Because the number of summary sentences of the text 1 is more 

than others, its fitness score is highest among three texts. As shown in Figure 2.8, 

the fitness of the population is increasing exponentially with generation. This shows 

the fitness of each generation is evolved and reaches the optimal results after several 

generations. In general, the more sentences the text contains, the more number of 

generations it needs to obtain the optimal results. Because the search space of the 

long text is larger, it needs more generations to evolve to get the optimal results. In 

Figure 2.8, text 1 finds the optimal solution after about 15 generations while text 2 
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and text 3 find the optimal solution in less than 10 generations. 

Text 1 Text 2 Text 3 
Number of sentences 37 26 15 

Number of words 660 463 541 
Number of characters 1558 1126 9 2 2 一 

Number of summary sentences 7 5 3 
Execution time (sec) 127.69 54.36 39.35 

Table 2.2: Main characteristics of three texts in Figure 2.8. 

18( 1 1 1 1 1 1 1 1 I z z r 
— T e x t 3 

\r———— .I I I I I I I I 1 1 
0 20 40 60 80 100 120 140 160 180 200 

Generation 

Figure 2.8: Fitness of the summary sentences of three texts over 100 generations. 

Although genetic algorithm is a stochastic system, the summarization results gen-

erated each time are almost the same. The searched results of 9 out of 10 runs are 

the same optimal solution, while the remaining one is the sub-optimal solution. Ta-

ble 2.2 also shows the execution time of each text. The execution time is counted 

by taking the average time of running the system for three times. The time can be 

much shorter if the number of generation is smaller because, as seen in Figure 2.8, 

the optimal solutions are already found well before 100 generations. So the number 

of generations can be adjusted according to the number of sentences in the text to 

improve the efficiency. 
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It is difficult to evaluate the summary results because it is subjective to determine 

which sentences have to be chosen for summary. To evaluate the results accurately 

and fairly, in an ideal case, the abstract written by the author can be compared 

with the generated summary. But there seems to be very few texts consisting of the 

abstract in the Chinese publications, so this method cannot be used. 

To evaluate the system, an evaluation method similar to the "ideal" summary 

based on evaluation method [11] is applied. The summaries obtained by the genetic 

algorithm are evaluated with the "ideal" summaries created by a group of human 

subjects and the summaries generated by the Microsoft Summarizer (in Word2000). 

The documents used in the experiment are columns obtained from the web news-

papers. Columns are used instead of news in the evaluation, because it is easy to 

collect them from the web and the structure of it is suitable for summarization. It 

is found that the first paragraph of the news is already a summary. The structure 

of the news is that the more important the ideas are, the earlier they appear in the 

news article. So it is meaningless to extract summary from the news articles. We 

have five human subjects to select the summary sentences. The human subjects are 

graduate students in the Department of Computer Science and Engineering at the 

Chinese University of Hong Kong. 

In this evaluation, 40 columns are collected mainly from three local newspapers, 

which are Oriental Daily News, Apple Daily and Ming Pao Daily. The average num-

ber of sentences is 18 and the average number of words is 567. A word means Chinese 

characters grouped together after text segmentation. The properties of the collec-

tion of columns for evaluation are shown in detail in Table 2.3. Each human subject 

produces a summary for each column. The five summaries generated by five human 

subjects are then compared with that generated by our system and Microsoft Sum-

marizer. In this evaluation, the sentences voted by the majority, that is at least three 

out of five human subjects, are considered as the correct results. 

As in the information retrieval, precision and recall are used to measure the quality 

of the summary. The distribution of the selection results among human subjects is 
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Max number of sentences 37 
Min number of sentences 8 

Average number of sentences 18 
Min number of words 332 
Max number of words 855 

Average number of words 567 
Min number of characters 720 
Max number of characters 1558 

Average number of characters 1021 

Table 2.3: Statistic of properties of documents collected for evaluation. 

measured by its deviation from the majority. The agreement deviation is defined as 

follows: 

Number of deviations 二 # of mismatch with the majority opinion 

Total number of agreements 二 # of human subjects x # of summary sentences 
# of deviations m 

Agreement deviation = ^ , , ^ — x lUU/o 
° Total # 01 agreements 

(2.3) 

In the above formula, the majority opinion is at least three out of five subjects 

agreeing with the sentence to be summary. The agreement deviation among the five 

human subjects for 40 columns is shown in Table 2.4. 

Average Deviation Maximum Deviation Minimum Deviation 
22% 35% 12% 

Table 2.4: Agreement deviation among five human objects for 40 columns. 

The length of the texts affects the agreement greatly, because the more sentences 

there are, the more diverse the range of choices is. But the range of selection results 

is usually rather concentrated, because some sentences are obvious to be summary 
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sentences, such as the last sentence of the text, which draws conclusions, and the first 

several sentences in the whole text which introduce the background. 

Genetic Algorithm Microsoft Summarizer 
Precision Recall Precision Recall 

一68% 70% 34% 38% 

Table 2.5: Evaluation results of two summarization systems. 

The precision and recall results of summaries generated by GA and Microsoft 

Summarizer is shown in Table 2.5. Since the genetic algorithm is a stochastic system, 

the average precision and recall results are taken by running the system for three 

times. Because the Microsoft Summarizer counts the number of summary words 

in summarizing text, the length of the abstract is finely tuned each time in setting 

the percentage abstract length of the whole text to match the number of summary 

sentences of the corresponding text in our system and human subjects. 

The evaluation results show that the summary generated by the genetic algorithm 

is better than that of Microsoft Summarizer. Because the extraction of sentence 

depends highly on the density of keywords and proximities in sentences in our system, 

if the important sentences have not satisfied the requirement, it will be disqualified 

as a summary sentence. Figure 2.9 shows one of the columns in evaluation. The 

first sentence in the text is selected instead of the second sentence by our system, it 

is because the length of the first sentence is shorter than the second sentence, the 

density of keywords in the first sentence is high. 

Some authors may write a very long sentence containing several clauses and several 

commas. The sentence may be sometimes as long as about 200 Chinese characters. 

If long sentences are extracted as the summary sentences, it may make the summary 

too long and not compact enough. In such case, human may extract the key phases 

or clauses from the suitable sentences, recombining the points to form a summary. 

But it is difficult for computer to identify the complete phases and clauses and regen-

erate a complete sentence by combining the phases and clauses together, because one 
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needs to solve the co-reference and anaphora problems and involves natural language 

understanding. Thus the sentence extraction is the preliminary step for generating 

good summary. 

2.6 Limitations and Future Work 

There is still a room for improvement in the quality of resulting summary. For the 

Chinese text, the sentences are always too long，the conditions of which is seldom 

appearing in English. A good sentence should has a suitable length, say 1 to 3 phrases 

or clauses. However in some news articles, it is common to find that sentences contains 

much more phrases and clauses. If the long sentences are selected, the summary 

will be long and is not precise enough. So sentence selection fails to obtain a good 

summary in this case. However, as mentioned before, identifying the suitable clauses 

and reconnect the clauses and keyphrase to form a summary require grammar rules 

and part of speech tagging, and even natural language understanding. This involves 

another topic of research. 

Although some sentences are too long for summary sentences, sentence refinement 

can trim the sentence to make the summary more concise. Because some sentences are 

too long and not the whole sentences contains the main points, if the whole sentences 

are extracted for summary, the summary will not be concise enough. In this case the 

clusters of extracted sentences containing the main ideas have to be identified and the 

irrelevant parts are discarded. Then the clusters of the sentence have to be reinserted 

the particular words, such as connecting words, to make the summary coherent. 

Sentence compression is required to combine several sentences with similar mean-

ing into a single sentence to reduce repetition. For example, there are three sentences, 

，，I have an apple.", "You have an apple." and "John has an apple.". They can be 

combined to form a single sentence as "You, John and I each has an apple.". But 

this technique also requires nature language understanding. 
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特區政府最新在醒釀一項不知所謂的政策，名為「博物館公司化」。康樂文化事務 

署轄下十三間公共博物館，準備以一兩間為試點，公開「招標」，由私營機構管理0 

特 區 政 府 誕 生 三 年 零 九 個 月 以 來 ， 不 但 在 民 生 政 策 的 制 訂 執 行 出 現 「 差 不 

多先生」的粗疏，在文化精神層次的戰略層面，更是一無所知，認知一片空 

白。博物館如何可以「公司化」交由商人投標經營？請這個愚庸政府曄大眼睛 

看一看世界：沒有一個國家的主要博物館，不是由政府管理，也沒有一個國 

家 的 主 要 博 物 餘 帳 面 不 雇 f 損 。 但 博 物 餘 為 甚 麼 即 使 i f 損 也 要 由 政 府 經 營 ？ 

因為博物館是民族的榮耀、國家的尊嚴、聲威的確立、旅遊的熱點，博物館本身即 

使收取門票，不能填補博物铭本身的開支，但一座名博物餘為城市國家的招牌，會 

帶來巨大的無形收益。 

世界博物餘之王的大英博物餘，不收門票，自由參觀，铭内有埃及、希臘、遠東、非 

洲等世界文物珍藏，維修經營的成本是天文數字。但世界遊客慕名而來，大英博物 

餘沒有收入，但博物館周圍的咖啡座、旅餘、書店、餐廳，長年門庭若市；遊客遊 

大英博物館，也會遊附近的徐敦塔和杜莎夫人:fei^像院，觀賞歌劇，品嘗佳餚美食， 

整個大倫敦的旅遊業為之生色生輝。巴黎的羅浮宮、紐約的現代藝術博物餘、馬德 

里的帕拉多博物餘，這些都是環球旅遊業的珍珠，展示的是人類文明的塊寶，本來 

就屬於公民所有，而且是公民權益和福利不可分割的部分，政府由公民民主選出， 

政府來管理這批財產，天經地義。 

特區的博物館，不論規模内容,與國際名都的名博物馆相比，當然只屬小兒科，而且 

投資者不僅文化、不識藝術，把一座博物館投標來經營。只會在「廣東十八世紀文 

人緣畫展」的場地出售日本漫畫；在「香港百年藝術展」的廊餘出售本港連環圖與 

刀劍玩具；舉辦「電影欣賞會」，亦定必以商業收入為重，加映四級成人電影°請 

問，這是不是所謂「文化委員會」的原意？這是不是所謂康樂文化事務署的目的？特 

區政府的高官，每值國際級的音樂大師來特區演出，由康樂文化事務署的官僚來巴 

結權貴， I I斷十多行座位，向高官送贈免費票，讓他們在場外的記者攝影機前炼耀 

華衣美服，在場内觀眾席間打睹睡「釣魚」，藉以自高身價，裝扮「文化」排場。 

博物餘公司化，就是繼「版權修訂法」之後，這個滿嘴文化而又毫無文化的庸俗政 

府的又一劣作酸行° 

Figure 2.9: One of the columns in the evaluation. The bold sentences are the majority 
opinion of human subjects. The italic sentences are summary sentences chosen by 
our system, while the underline sentences are summary sentences chosen by Microsoft 
Summarizer in 20% length. 
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特區 
政府 
博物館 
文化 
經營 
世界 
國家 

Figure 2.10: Keyword list of the text in Figure 2.9. The keywords are to identify the 
summary sentences. 

2.7 Conclusion 

A new application of genetic algorithm on text summarization and the new heuristic 

rules determining the fitness of chromosome are proposed. In this algorithm, the 

relationship between the sentences, such as the similarity and distance between two 

sentences, are also considered in determining the summary sentences. But the quality 

of the text greatly affects the results. Some writers produce very long sentences, which 

although is a key sentence, the long length make the sentence less likely to appear 

in the summary. To produce a good summary, sentences extraction is just the first 

step of the high quality text summarization. For future work, the It is better to keep 

the summary concise by sentence combination and refinement to generate a readable 

summary. 



Chapter 3 

Event Extraction from Chinese 

Financial News 

Information extraction (IE) is the natural language text analysis to locate and extract 

the specified items in text. It transforms unstructured texts into a structured text 

database for further research. In IE, machine learning is generally used to provide 

an automatic results generation. However it requires considerable time to construct 

and is not suitable for medium IE system. This chapter describes a word-matching 

method to discover the desired items from the Chinese texts. It uses a set of relevant 

words to match the target items. To increase the accuracy, we have also assigned a set 

of irrelevant words to filter out the noise results. We applied the system on discovering 

events mentioned in the Chinese financial news articles, a task that can be treated 

as text classification. The extracted events then form an event database, which then 

can be used in data mining to obtain frequent episodes for stock movement analysis 

and stock prediction. From experiment, the results show that it is comparable to the 

other IE systems built with machine learning. The result is also published in [12 . 

27 
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3.1 Introduction 

Information extraction (IE) is the natural language texts matching with the prede-

fined patterns or templates, which, once matched, extracts the desired key items 

from the original text. The extracted items are stored into databases for subsequent 

processing, such as data mining, to discover the knowledge from databases� 

Many researchers have applied machine learning methods on IE [13, 14, 15, 16 . 

They learn and generate rule bases from the texts and then extract information ac-

cording to the rules obtained. Even though the machine learners intend only to 

shallow understand the text, because it is difficult and still impossible to fully under-

stand the natural language text, the IE systems applied with machine learning are 

complicated and it is time-consuming to construct. 

The IE learning system RAPIER [14] uses relational learning, such as inductive 

logic programming, to build rules. Given a text database and filled templates, it 

matches the pattern of words around the slot-filler and the filler itself. A string of 

words matching with the given pattern is then extracted as a rule. Finally all the 

rules obtained are then compressed and generalized to produce the best rules to insert 

into the rule base. 

SRV [13] is another system using a top-down (general to specific) relational algo-

rithm for information extraction. It is to find the best solution of continuous words 

in HTML to fill a slot in a template. SRV uses a set of token-oriented features to 

map token to discrete values and another token. The system then learns rules from 

positive and negative examples. 

17] presents a hierarchical classifiers in text categorization for classifying the doc-

uments into different categories, some of which are divided into additional hierarchies. 

It uses a kind of learning method to select vocabularies and tune parameters from 

the training documents. While building the categorizer, the levels of categories are 

also determined. 

Although machine learning provides automatic operations from learning and gen-
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erating rules to extracting target items directly from text, most of these learning 

methods are supervised learning which also involves manual preparation that labels 

the target results with each training text document. But for the smaller IE systems, 

system construction time is one of the main concern in deciding the implementation 

method. Considering the similar amount of human effort needed in labeling the doc-

uments for machine learning, we derived a simple method for small or medium IE 

system. 

In this chapter, we present a method which matches a pattern of words to find the 

desired items in the Chinese text. We have applied the method on event extraction 

from the Chinese financial news. Event extraction can be viewed as text classification. 

In event extraction each news article, if an event is referred in it, is extracted at least 

one event whereas in text classification each document is assigned a suitable category. 

The events obtained from the continuous days of news articles are saved in an event 

database which, along with the databases containing the stocks of the listed companies 

and market index, are analyzed using data mining technique to discover the frequent 

episodes. The mined frequent episodes can then be used for stock prediction. 

3.2 Method 

3.2.1 Data Set Preparation 

Given a collection of news articles, a small set of articles (5%) is selected randomly 

as a training sets, which are then browsed manually to determine the event features. 

First a group of target event types is chosen. The training articles are browsed and 

a set of words associated with each event type is selected as positive words to 

differentiate the event types. We have also identified a set of negative words to 

filter out the noise of unwanted events in the results. The positive and negative 

words will be described in detail in the following subsections. 
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3.2.2 Positive Word 

Positive words are the words relevant to the event types and frequently appear in 

articles when the articles are mentioning the corresponding events. Each event type 

has its own set of positive words. The synonyms are also in the positive word list, 

where synonyms, in this paper, also include those words which are similar in concept. 

Event C p m ^ 

Level 1 C j a / M q ^ 

Level 2 

Figure 3.1: A tree diagram showing the relation of event, positive words and syn-
onyms. 

The relation between event, positive words and synonyms is shown in Figure 3.1. 

The tree shows the partial conditions for extracting the event “好消息 ”（good news 

from company). The tree functions like a decision tree. The tree root is an event for 

extraction and all words under the root node are the positive words for the event. 

The words at level 2 under the same child root node are the synonyms. When at least 

one of the synonyms exist, their parent node at level 1 will become True. Thus the 

condition of the node at level 1 to be True if it has synonyms is OR. For example, 

，，業績，，(company results) and ”純利，，(net profit) in Figure 3.1 are the synonyms, 

and their parent node，，業績/純利” will be true if either ” 業绩” or ”純利” exist. 

Level 1 consists of all the positive words required to exist such that the event can 

be extracted from the articles. In other words, the nodes at level 1 is under AND 

condition in order to make the root event True. For instance, in Figure 3.1 the word 

，，上升” (rise) should also coexist with one of the synonyms '，業、缋/、会屯矛J，，to extract 

the event. 

When there are more than one groups of positive words for a single event type, 
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another tree is formed. The tree in Figure 3.2 represents the other condition for 

extracting the same event that ,，特別股息，，（special dividends) and ”派發” (issue) 

must exist simultaneously. 

Event C S i j ^ 

Level 1 

Figure 3.2: The second group of positive words for the event of "good news from 
company". 

Thus the overall condition combined two trees for extracting the event “好消息” 

(good news from company) is ( (業绩 or 純利）and 上升）or (特別股息 and 派發). 

3.2.3 Negative Word 

In some cases, even though all the positive words for an event are in the news article, 

certain words, known as negative words, once appear, the event associated is disqual-

ified and will not be extracted. For instance, extracting events by matching only the 

positive words will also obtain those old events which have happened long time ago 

when the events are referred. Thus we have also chosen the words which appear with 

the re-mentioned events while do not appear with the fresh events. The negative 

words are mainly the words indicating the past events, such as "on Monday", "last 

week", etc. 

3.2.4 Window 

The target items we are going to extract are the events mentioned in the news articles. 

But the financial news articles usually only mention the events only in one or two 

clauses instead of throughout the whole articles. Thus we limit the length of words 

which should satisfy the conditions for extracting events to reduce the noise in the 

results. 
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The length of words is defined as a window. The actual window size in an article 

can be varied and depends on the type of document source. The unit of window size 

can be a word, a clause or a sentence. 

With the use of window, the maximum distance among positive words and neg-

ative words is bounded by the window size, which increases the probability that the 

words are closely related that they are referring to the same event. And our aim in 

event extraction is to find the specific events associated with the corresponding bag 

of words. Thus the system does not need to recognize and check the orders of positive 

words and negative words in windows and the parts-of-speech of words. 

3.2.5 Event Extraction 

If there is no negative word within a window of words, the text in the window can 

determine the event types it mentions. In any tree representing the condition of 

extracting an event, when all positive words at level 1 are found and at least one 

word of each group of synonyms at level 2 is found, the event can be extracted from 

the news article. And more than one events from one article may be extracted. 

The scheme of event extraction is independent of the frequencies of positive words 

that a positive word is counted once even if it appears more than once in a window. 

The scheme is different from that of topic categorization, in which the topic score 

depends on the frequencies of words. In topic categorization, the keywords are dis-

persed throughout the whole text, thus the topic is determined by the total frequency 

of all keywords for each category. However, in event extraction, the event is always 

mentioned in only one of the sentences in the first paragraph. The area of appearance 

of an event in the text is small, and we do not consider. The frequencies of positive 

words. In contrast, the coexistence of the positive words for an event is a signifi-

cant factor in event extraction. Hence we treat all the duplicated positive words as 

appearing once when determining the event types. 
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3.3 System Overview 

Our target is to build up an event database which stores the specific events happened 

within a certain period of time. The whole process is illustrated in Figure 3.3. The 

two other databases, which store (1) the stock prices of the selected listed companies 

in Hong Kong and (2) the background data, which is believed to have significant 

impact on the stocks of the listed companies, such as Hang Heng Index and Dow 

Jones Index, are also obtained directly from the open source. The three databases 

are analyzed with data mining to obtain frequent episode. The preprocessing method 

of preparing the event database, that is the steps in the gray rectangle in Figure 3.3, 

is discussed in Section 3.4, while the process of building up the stock database is 

described in Section 3.5. In Chapter 4, the data mining method of discovering the 

frequent episodes with the databases built will be introduced. 

Parser Segmentation — > Engine Event ^ L̂  ‘ Databaŝ  , 

’ . : . — — — — � . T . — I ’ 
一 Data Mining — > | 

companies in • 
HK “ ^ 

Background Data 
e.g. Hang Seng Index, 

'̂ -...̂ w Jones Indgx,̂  

Figure 3.3: System overview for the whole process. 

3.4 Implementation 

To obtain the events, we have built a web spider to collect financial news from four 

local Chinese newspapers, which are Apple Daily News, Ming Pao Daily, Sing Tao 

Daily and Hong Kong Daily News from 1 September 1999 to 29 September 2001. 

The HTML corpus is passed through a parser to skip the HTML tags. For Chinese 
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documents, there are no word boundaries separating word from word like that in 

English. It is necessary to perform word segmentation to insert delimiters. We 

have built a segmentator that uses dictionaries and segmentation rules. The events 

associated are then extracted the Chinese news articles by matching words for each 

day of articles. 

3.4.1 Event Type and Positive Word 

From financial application viewpoints, we have identified 11 event types that are con-

sidered important. These events can appear in the local stock market, the government 

or overseas. Table 3.1 shows the 11 event types and the corresponding partial lists of 

positive words. The first four events are related to Hong Kong government and stock 

market while the events 5 and 6 are the US's" decision in the change of the interest 

rate. The remaining events are the issues of the companies the stock of which we 

are interested. For each event, we have found a group of positive words by human 

judgment. One article may be classified into more than one event if it contains the 

positive words of the events and satisfies the conditions. 

3.4.2 Company Name 

Apart from the positive words, company names are to be identified for the events 7 to 

11 in Table 3.1 which describes different issues of company. We have selected 14 main 

listed companies from various sectors, such as Banking, Property, Technology and 

Telecommunication. The stocks of these companies are active in Hong Kong stock 

market and their news are always reported in the articles. The companies selected 

are listed in Table 3.2. The abbreviations of the company names, such as，，長實” 

(CK Holdings) and，，新地，，（SHK) of，，長江實業，，（Cheung Kong Holdings) and，，新 

鴻基地產” (Sung Hung Kai Properties) respectively, are also identified. 
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Event No. Event Positive words 
1 I I政府公布財政赤字 政 府 財 務 財 政 赤 字 

Government announces deficit Government, Finance, Financial, Deficit 
~2 發表施政報告 施 政 報 告 特 首 報 告 

Report released Policy address, Chief Executive, Report 
"3 新基金上市 基 金 推 出 面 世 上 市 

New fund released Fund, Release, Debut, Listing 
~4 政府賣地 政 府 成 績 賣 地 

Government land auction Government, Result, Land sell 
"5 美 國 不 加 息 / 維 持 利 息 不 變 ^ 不 加 息 不 變 利 息 美 國 

US interest rate unchanged Not increase interest rate, Constant, Interest 
rate, US 

"6 美國加息 加 息 美 國 

US interest rate rises interest rate rises, US 
~7 美國減息 減 息 美 國 

US interest rate falls Interest rate falls, US 
"8 W M W M 

Takeover Takeover 
"9 mwwi 興 建 簽 約 合 作 發 展 計 劃 投 資 合 併 

New plan from company Build, Sign contract, Corporate, Develop, 
Plan, Invest, Merge 

"To WWE 裁 員 業 績 下 跌 純 利 下 跌 

Bad news from company Lay off, Results down, Profit down 
H WW& 派 股 業 績 上 升 純 利 上 升 投 資 4 f 損 減 

Good news from company Issue dividends, Results up, Profit up, In-
vestment loss decrease 

Table 3.1: 11 events and the corresponding partial list of positive words. 
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Stock Number Stock Name 
001 - Cheung Kong Holdings 長江實業 — 

002 “ CLP Holdings 中華電力 — 

003 “ HK fc China Gas 中華煤氣 

005 “ HSBC Holdings 匯豐控股 — 

006 _ HK Electric 港燈集團 — 

008 一 HK Telecom 香港電訊 

008 P C C W 電訊盈科 

Oil Hang Seng Bank 怪生銀行 

013 — Hutchison 和記黃埔 

014 Henderson Land 希慎興業 

016 SHK Properties 新鴻基地產 

762 _ China Unicom 中國聯通 

941 — China Mobile / China Telecom 中國移動 / 中國電信 

1186 Pacific Century CyberWorks Limited 盈科數碼動力 

Table 3.2: Stocks the issues related to which will be extracted. 

3.4.3 Negative Word 

Since the news events may be mentioned not only on the day or on the following day 

the events has happened, but after a few days or a week. For example, weekly columns 

concluding the movements of stock market usually refer to the big news happened 

several days ago. If only the positive words are identified, the “ re-mentioned" events 

will be misidentified as happening one day before the article's publication date and 

events with wrong dates will be produced. We have also selected a set of words that 

exist in the articles mentioning the old news but that do not exist in articles reporting 

the fresh news. These words are the negative words and part of which are listed in 

Table 3.3. The negative words are mainly the temporal words expressing the past or 

future events (e.g. Group 1 to 6 in Table 3.3), and the words showing expectation, 

fear or uncertainty (e.g. Group 7 to 10 in Table 3.3). 
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Group Negative words 
1 I 周一（Monday),周二（Tuesday),周三（Wednesday)... 
2 —月（January), 二月（February),三月（March)... 
3 一 上周�Lastweek)，下周（Next week)，本周（This week) 
4 上月 (Las t month),下月（Next month),月底（The end of month)" 
5 上年 (Las t year),下年（Next year) 一 

6 一 未來 iln the future),前夕（Eve)，即將（Soon) 
一 T 憧憬丨Hope),或（Probably) 一 

8" 預期丨Expect),相信（Believe)料將（Expect),預料（Expect) 
~ ~ 9 對 於 丨 F o r ) , 促 （ U r g e ) _ 

10 恐（Fear),陰影（Under the shadow of. . . ) 

Table 3.3: Examples of negative words which must not exist within a window. 

3.4.4 Event Extraction 

In event extraction, every window size of words are scanned to find the event types. 

In implementation, we have set the window size to 1 to 3 clauses, where a clause is 

defined as a part of a sentence separated by punctuation marks, such as comma and 

full-stop. We use a 'clause' as a unit of window size instead of a 'sentence' because a 

clause is smaller than a sentence and gives more precise results. A sentence usually 

comprises multiple phases and clauses, and the rate of matching the unrelated positive 

words and company names will be increased if the window size is set to a sentence. 

In scanning news articles, the current window is overlapped with the following 

window. For example, for the window size set to 3 clauses, the first window contains 

clause 1，2 and 3, the second window contains clause 2, 3 and 4, and so forth, where 

clause X, X e [1,4] represents the clause is the x-th. clause in the news article, e.g. 

clause 1 is the first clause in the article. 

When the following conditions are all satisfied in the same window, the events 

associated by the positive words will be extracted. 

1. There is no negative word; 

2, All positive words at level 1 of any tree, which represents the event and its 
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Date Event 
1/9/99 A 

"1/9/99 G8 
179 /99 J5 一 

" ^ 9 / 9 9 C — 
"V9 /99 H6 

Figure 3.4: The structure of the event database. The numbers following the characters 
in the second column represent the company ids. 

associated words, are found and at least one word of each group of synonyms 

at level 2 is found; 

3. If the event is a company event, the corresponding company name should also 

exist. 

When an event is found, the date of the event, the event symbol and a company-id, 

if necessary, will be inserted into the event database. The event symbol is a unique 

symbol assigned to each event in Table 3.1 whereas the company-id is a unique integer 

assigned to each company in Table 3.2. Finally the extracted events are inserted into 

event database as shown in Figure 3.4. 

3.5 Stock Database 

In this section, we introduce the method of building up the stock database, which 

records the movements of the selected stocks in a certain period of time. First the 

stock movements are defined. 
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3.5.1 Stock Movements 

The value of a stock at time t is denoted as T(t), where t is measured in days. The 

average price of a stock is taken from the closing prices over the previous five days 

and is denoted as Average{stock4)rice). We define up, down and flat to describe 

the movements of stock price as follows: 

A stock is defined as up if the percentage difference of the values of the stock at 

time ti and t2 is greater than a threshold. For example [T{t2)—T{ti)]/Average{stockjprice) > 

1.5%, where t ] � h . 

A stock is defined as down if the percentage difference of the values of the stock at 

time ti and t) is lower than a threshold. For example [T{ti)—T{t2)]/Average{stockjprice) > 

1.5%, where 力2 > h-

A stock is defined as flat, ie. neither up nor down, if the absolute percentage 

difference of the value of the stock changes from time ti to 力2 is less than a threshold. 

For example, |T(t2) — T{ti)\ /Average{stock-price) < 1.5%, where 力 2 � h . 

3.5.2 Implementation 

In contrast to the event database obtained from newspapers, the historical financial 

data of stock prices are found from Datastream International Electronic Database. 

We have retrieved Dow Jones industrial average, Nasdaq Composite Index, Hang Seng 

Index Future, Hang Seng Index and prices of the 12 companies listed in Table 3.2 for 

the past three years. In addition, we have recorded the dates of Hong Kong public 

holidays. 

3.5.3 Stock Database Transformation 

The data collected from Datastream are the closing values of each trading day as in 

Figure 3.5. Since our goal is to find out what events results in the changes of prices, 

the numeric expression of stock prices cannot give us the clear idea of the movement 

of the stock. The stock price is therefore transformed to the symbols to indicate the 
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Date Stock Price 
Company A Company M 

1 7 9 / 9 9 62 85.9 
~ ^ 9 / 9 9 62.5 87.0 

64.67 85.1 — 
• • • • 
• • • • 
• • • • 
• • • • 

Figure 3.5: The original stock database. 

Date Stock Price 
Company A Company M 

1 7 9 / 9 9 - 7 -

2/9/99 Flat Up 
3/9/99 Down Down — 

• • • • 
魯 • • • 

• 嚳 _ « 

• • • • 

Figure 3.6: The transformed stock database. 

overall movements of that day as shown in Figure 3.6. For example, the closing price 

of Company A on 2 Sept 1999 is transformed to 'Flat' since the difference of the prices 

on 1 Sept and 2 Sept is less than 1.5% and if the average price of Company stock A 

is taken as 61.5. 

After building up all databases, the databases are analyzed to discover frequent 

patterns. 

3,6 Performance Evaluation 

3.6.1 Performance measures 

The final discovered frequent episodes will be meaningful and useful if the given 

databases for mining are accurate. Thus it is necessary to make sure the events ex-
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tracted from the newspapers are correct that they are same with the events extracted 

manually. To measure the accuracy of the event database, we evaluate the perfor-

mance of event extraction using information retrieval (IR) performance metrics of 

precision, recall and F-measure defined as follows: 

_ Events found and correct , � 
Precision = — ； (o.l) 

Total events found 
^ „ Events found and correct , … � 
Recall = — [6.2) 

Total events correct 

where ,Events found and correct, are the events found by the event extractor matching 

with that found manually for the same articles, ‘ Total events found, is the total 

number of events found by events extractor and ‘ Total events correct' is the total 

number of events found manually in the training set. 

F-measure is the harmonic mean of precision and recall. 

2 * Precision * Recall ( � 
F - measure =—-——— — (o.3j 

Precision + Recall 

where the precision and recall are given as equal weight. 

3.6.2 Evaluation 

We have randomly selected 600 news articles from the news collection, from which 

about 100 articles refer events. The 600 new articles are divided into training set 

(60%) and validation set (40%). The training set is the news articles we go through 

manually to obtain the positive words and negative words which then used to extract 

events from the validation set. 

The financial news collection includes columns of critical essay and education for 

investors and other articles which may repeat mentioning events happened a number 

of days ago in the stock market. In order to filter out the undesired re-mentioned 

events from the final results, apart from using negative words, we limit the area in the 

news articles for event extractor to find the events. In the news reporting articles the 

main points are stated first whereas the details come behind. Thus the main events 
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Method No. Area of news article searched 
1 Headline 
2 Headline with the first sentence 
3 Headline with the first two sentences 
4 Headline with the first three sentences 
5 Whole article 

Table 3.4: Five areas of news articles searched in the experiment. 

we are going to extract are always located in the headlines and/or the first several 

sentences because the events we concern are important and have impact on the stock 

market. We have set five searching areas as shown in Table 3.4. Each searching area 

is assigned a number as listed in the first column of Table 3.4 for identification in the 

graphs of experimental results. The window and the words scanned will be within 

the searching area only. We have also set three window sizes: (1) 1 clause, (2) 2 

clauses and (3) 3 clauses, to investigate the effect of window sizes on the accuracy. 

The performance of precision, recall and F-measure, for each searching area with 

each window size are evaluated and shown in Figure 3.7, Figure 3.8 and Figure 3.9 

respectively. The method numbers on the x-axis of graphs represent the corresponding 

method shown in Table 3.4. 

100 j— 1 1 1 1 
window size = 1 ~ i ~ window size = 2 —x---

8 0 - _ 

广 ^ ^ 
•i 
Q_ 

40 - -

2 0 - -

0 I ‘ ‘ > ‘ 

0 1 2 3 4 5 
Method No. Figure 3.7: Precision with training set. 
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100 I 1 1 1 1 window size = 1 —t~ window size = 2 .--x---

8 0 - -

X 

二 4�_ ‘ 

2 0 - -

0 I 1 1 ^ ‘ 
0 1 2 3 4 5 

Method No. 

Figure 3.8: Recall with training set. 

The performance of precision and F-meas.ure in Figure 3.7 and Figure 3.9 gets 

lower with the increasing searching area in the texts. When larger area is covered 

in searching events from articles, the probability of the article extracted an event 

is increased. Thus ,total events found' in precision is increased with the searching 

area. However the increasing number of events found does not mean the number 

of correct events found are also increased. It is because the structure of the news 

articles is that the headline and the first paragraph of the news-reporting articles 

state the key ideas, while the remaining parts of the article state the details and the 

trivial matters. Although searching the larger area gets the events that are missed 

when searching the smaller area, the increased searching area also implies increasing 

the chance of retrieving the incorrect events and reducing the accuracy. Incorrect 

events are usually extracted when the news article is not a news-reporting article 

but a column or an investors' education instead. Such articles always mention the 

events happening before and makes the system over-extract the events. However since 

there is no column name and no obvious keyword which can differentiate the types of 

financial news, the non-news-reporting articles cannot be filtered out. So in the case 

of searching the whole articles, the events extracted are always those events happened 

long time ago or those events the author expect/fear to happen. Thus ,Event found 
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100 I 1 1 1 1 window size = 1 ~ i ~ window size = 2 ——x---

8 0 - -
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Figure 3.9: F-measure with training set. 

and correct' in calculating precision is increased slowly relative to , total events correct, 

with increasing searching area, leading to the gradual fall of final precision. 

In the performance of recall in Figure 3.8, we can clearly see how the searching area 

affects the number of correct events extracted. The shallow increasing curve shows 

the increasing searching area only slightly improves the performance. Comparing to 

the precision curve in Figure 3.7, the slope of the recall curve is obviously less steep. 

It shows the 'miss rate' of extracting event is greater than the 'hit rate' when the 

searching area is increased. 

It is logical that the overall performance of window size set to 2 clauses is better 

than 1 clause and 3 clauses of window sizes. It is because some clauses are so short that 

they cannot contain all the positive words. When extracting the events concerning 

company issues, the company names and the associated positive words usually situate 

at different clauses. With a larger window size, more positive words and the company 

names can be included even if they are not in the same clause. But the window size 

should be bounded for limiting the maximum distance among the positive words and 

company names to ensure that all the words matched are closely related. 

The performance of extracting individual events is also evaluated. Table 3.5 shows 

the performance in extracting the four main events: (1) US interest rate raise, (2) 
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Event Type Precision Recall F-Measure 
" u s interest rate raise 73.5% 69.4%— 69.8% 
" u s interest rate unchange 75.5% 7Q.5%~ 68.1% 

Company releasing new plan 80.3% 75.2% 78.6% 
Good news from company 81.3% 77.2% 79.4% 

Table 3.5: The performance of the individual events. 

US interest rate unchange, (3) company releasing new plans and (4) good news from 

company. The experiment is conducted with the searching area and window size 

set to “ headline with the first sentence" and 2 clauses respectively. Among the four 

selected events, the first two events about US interest rate are the most popular 

events in the collection. But large proportion of the events referred are not the new 

events we desired. With the wide range of word expression in Chinese, it is difficult to 

cover all the possible expressions implying the undesired items. So the performance 

in extracting the event types of 'US interest rate' is lower than the other events. 

3.7 Conclusion 

We proposed a method to extract events from Chinese news articles. It uses word-

matching method to recognize the associated events and extract the events if all the 

required conditions are satisfied. From experiment, we found that the performance is 

satisfactory. 



Chapter 4 

Mining Frequent Episodes 

It is expected that stock prices can be affected by the local and overseas political and 

economic events. To understand better the relationship between the financial events 

and the actual stock market, the news are matched against stock prices databases 

for the mining of frequent temporal patterns from the stock markets and financial 

news events. We propose a new definition of frequent episodes which can better 

formulate our problem. This new definition does not have the property that the 

subset of a frequent episode must be frequent. We propose a new mining method for 

this problem which we show by experiment to be highly efficient and scalable. We 

applied our method on a real dataset collected from local financial news. We show 

that the method is effective in discovering interesting financial patterns. 

4.1 Introduction 

In stock market, the share prices can be influenced by many factors, ranging from 

news releases of companies and local politics to news of superpower economy. We call 

these incidences events. We assume that each event is of a certain event type and 

each event has a time of occurrence, typically given by the date that the event occurs 

or it is reported. Each “event" therefore corresponds to a time point. We expect 

that events like "the Hong Kong government announcing deficit" and “Washington 
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deciding to increase the interest rate"，may lead to fluctuation in the Hong Kong stock 

prices wi th in a short t ime. When a number of events occur wi th in a short period of 

time, we assume that they possibly have some relationship. Such a period of t ime can 

be determined by the application experts and i t is called a window, usually l imited 

to a few days. Roughly speaking, a set of events that occur wi th in a window is called 

an episode instance. The set of event types in the instance is called an episode. 

For example, we may have the following statement in a financial report: “Telecom-

munications stocks pushed the Hang Seng Index 2% higher following the Star T V - H K 

Telecom and Orange-Mannesmann deals". This can be an example for an episode, in 

which all the four events, “ telecommunication stocks rise", “ Hang Seng Index surges" 

and the two deals of，，Star T V - H K Telecom" and “ Orange-Mannesmann", all hap-

pened wi th in a period of 3 days. I f there are. many instances of the same episode 

i t is called a frequent episode. We are interested to find frequent episodes related to 

stock movements. The stock movement need not be the last event occurring in the 

episode instance, because the movement of stocks may be caused by the investors' 

expectation that something would happen on the following days. For example, we can 

have a news report saying "Hong Kong shares slid yesterday in a market burdened 

by the fear of possible United States interest rates rises tomorrow". Therefore we do 

not assume an ordering of the events in an episode. 

From the frequent episode, we may discover the factors for the fluctuation of stock 

prices. We are interested in a special type of episodes that we call stock-episode, i t 

can be wri t ten as " (e i , 62, ... e^ {t days))", where the ei，62,…e几 are event types 

and at least one of the events should be the event of stock fluctuation. An instance 

for this stock-episode is an instance where the events of the event types ei, ... e几 

appear in a window time of t days. Since we are only concerned wi th stock-episodes, 

we shall simply refer to stock-episodes as episodes. 
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4.1.1 Definitions 

Let E — {丑1,丑2，…，Em} be a set of event types. Assume that we have a database 

that records events for days 1 to n. We call this an event database, we can represent 

this as DB —< Di, D),Dn > , where Di is for day i, and Di = {en, 

where e^j e E { j e [1, A:]), This means that the events that happen on day i have 

event types en, 6^2, eik. Each D i is called a day- record . The day records D i in the 

database are consecutive and arranged in chronological order, where D i is one day 

before A + i for all n - 1 > z > 1. P = {epi, 6^2, ••., where epi e E {i e [1, 6])，is 

an episode i f P has at least two elements and at least one Cpj is a stock event type. 

We assume that a w i n d o w size is given which is x days, this is used to indicate a 

consecutive sequence of x days. We are interested in events that occurs wi th in a short 

period as defined by a window. I f the database consists of m days and the window 

size is X days, there are (m) windows in the database: The first window contains 

exactly days The z-th window contains D“ A + i , •••，with up to x days. 

The second last window contains Dm—i, Dm, and the last window contains only Dm-

In some previous work such as [18], the frequency of an episode is defined as the 

number of windows which contain events in the episode. For our application, we 

notice some problem wi th this definition: suppose we have a window size of x, i f an 

episode occurs in a single day i, then for windows which starts from day i — x + 1 to 

window starting from i, they all contain the episode, so the frequency of the episode 

wi l l be X. However, the episode actually has occurred only once. Therefore we propose 

a different definition for the frequency of an episode. 

Definition 1 Given a window size of x days for DB, and an episode P, an episode 

ins tance of P is an occurrence of all the event types in P w i th in a window W and 

where the record of the first day of the window W contains at least one of the event 

types in P. Each window can be counted at most once as an episode instance for a 

given episode. 

The frequency of an event is the number of occurrences of the event in the 
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database. The s u p p o r t or the f requency of an episode is the number of instances 

for the episode. Therefore, the frequency of an episode P is the number of windows 

W^ such that W contains all the event types in P and the first day of W contains at 

least one of the event types in P. An episode is a f requen t episode i f its frequency 

is greater than or equal to a given m i n i m u m s u p p o r t t h resho ld . • 

Problem definition: Our problem is to find all the frequent episodes given an event 

database and the parameters of window size and minimum support threshold. 

Note that the frequency of an episode is typically not equal to the number of 

windows that contain the episode, because if the same episode instance is contained 

in more than one windows, we only count the instance once. Suppose Di 二 {e}， 

D2 = {a, 6}, A = {a，6}, A t = {/}，i^5 = {e} , and given a window size of 3, then 

there are two instances of the episode {a, 6}, although 3 different windows contain 

the set {a, b}. 

Let us call the number of occurrences of an event type a in DB the database 

f requency of a. Let us call the number of windows that contain an event type a be 

the w i n d o w f requency of a. The window frequency of a is typically greater than 

the frequency of a since the same occurrence of a is contained in mult iple windows. 

We have the following property. 

Property 1 For any episode that contains an event a， i ts frequency must be equal 

to or less than the window frequency of a. That is, the upper l imi t of the frequency 

of an episode containing a is the window frequency of a. 

Lemma 1 For a frequent episode, a subset of that episode may not be frequent. 

Proof: We prove by giving a counter example to the hypothesis that all subsets of 

a frequent episode are frequent. Suppose we have a database wi th 7 days, the records 

Dx to Di are: {6}, {a, c}, {6}, {d}, {6}, {c, a}, [d], respectively. I f the threshold is 3 

and the window size is 3 days, then < abc > has 3 occurrences and is a frequent 

episode, while < ac > , which is a subset of < abc〉，has only 2 occurrences and is 

not a frequent episode. • 
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4.2 Related Work 

The min ing of frequent temporal patterns has been considered for sales records, fi-

nancial data, weather forecast, and other applications. The definitions of the patterns 

vary in different applications. In general an episode is a number of events occurring 

w i th in a specific short period of t ime. The restriction of the ordering of events in an 

episode depends on the applications. Previous related research includes discovering 

sequential patterns [19], frequent "episodes" [18, 20, 21], temporal patterns [22] and 

frequent patterns [23, 24]. In [18, 20], an episode, defined as the "par t ia l ly ordered" 

events appearing close together, is different f rom our definit ion of stock-episode. Some 

related work focus on stock movement [25]，but we would like to relate financial events 

w i th stock movement. 

19] provides the most classic Apriori-gen algori thm on mining the sequential pat-

terns w i th point-based event. The main idea of Apr ior i is to find the A:-length se-

quences f rom the (/c-l)-length of sequences and each set of i tem of which must have 

the min imum support. A sequence is a list of set of items in the order of t ime. The 

algori thm first finds all the set of items in the database w i th min imum support. The 

set of items found become a set of 1-length large sequence and generates the candi-

date sequence w i th the length of 2. Candidate /c-sequence is the concatenation of any 

two large (A;-l) sequences w i th the same first {k-2) sets of items. Thus the candidate 

A;-sequence contains the large (k-l) sequences. The candidate 2-sequence are counted 

w i th support in the database and those candidate sequences which exceed the mini-

mum support are the large 2-sequences. The large-sequences w i th the length of 2，3, 

4 ... are continuously generated by the corresponding length of candidate sequences 

unt i l no candidate sequences w i th min imum support are found. The resulting sequen-

t ia l pattern is the large sequences in all lengths w i th the min imum support and are 

not contained in any other sequences. 

The Apr ior i approach improves the performance by removing the candidates the 

support of which is below the threshold. However i t requires mult iple scans of 
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database and thus increases the cost when the database is large. I t first scans the 

database to determine the set of items w i th min imum support. Then for each itera-

t ion of generating large sequences, the database is scanned again to count the support 

of candidates. 

The Apr io r i a lgor i thm is only suitable for finding the general patterns or behavior 

of a group of subjects. I t is different when we want to discover the inter-relationship 

between events or sale transaction, the happening t ime and order of which should 

be taken into consideration. [18] finds the frequent series and parallel episodes in a 

sequence of point-based events. A n episode is a part ial ly ordered of events occurring 

close together. A n episode X is a subepisode of another episode V i f al l events in X 

are also contained in Y and the order of events in X is the same w i th that in Y. The 

frequency of an episode is the number of windows containing the episode. Note that 

this definit ion is different f rom ours, since i t allows the same episode instance to be 

counted mult ip le times when mult iple windows happen to contain the instance. For 

example i f a tax deduction and a company A stock rise occur in 2 consecutive days, 

and the window size is 4, then 3 different windows wi l l contain the two events and 

the episode w i l l be counted 3 times. However, there is actually only one instance of 

the episode, therefore we t ry to avoid this duplicated counting in our definit ion and 

in our algorithm. 

.18] applies the main idea of Apr ior i [19] to find the A:-length frequent episodes 

from the (k — l ) - length frequent episodes. This is based on the property that any 

sub-episode of a frequent episode is also frequent, and that our definit ion does not 

guarantee. A t the beginning, all episodes containing only one event are identified 

and the frequencies of the episodes are counted. The episode frequency is defined as 

the proport ion of windows containing the episodes, where the window is the given 

wid th of the t ime in the event sequence. The episodes w i th the frequency threshold 

then become frequent episodes w i th one event. The single-event frequent episodes 

are then used to generate the two-event candidate episodes. Similar to Apr ior i , the 

frequencies of the two-event candidate episodes are counted and those episodes wi th 
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frequency threshold are the two-event frequent episodes. The process is reiterated to 

produce the frequent episodes w i th the larger numbers of events unt i l the there are 

no candidate episode generated. 

To generate candidate serial or parallel episodes of (A;+l) events, the collection of 

frequent serial of parallel episodes of k events are sorted in lexicographically order. 

Each event type is denoted as a letter. I f the episodes have the same first (^-1) events, 

they are located consecutively. The candidate episodes are the all combinations of the 

two parent episodes which are the consecutive episodes sharing the first {k-1) events. 

Thus a candidate episode is composed of the first (A:-l) events of one of its parent 

episodes and the last events of its two parents. The candidate episode is then checked 

whether their subepisodes are frequent episodes. The candidate wi l l be filtered out i f 

their any of subepisodes are not frequent. 

The frequencies of the episodes are counted after candidate episodes generation. 

To identify an episode, a t ime window is used to scan the event sequence before 

the start of the sequence and stops when the sequence is ended and the window is 

empty. When counting the number of serial or parallel episodes, the frequency of the 

episodes is increased by the number of windows the whole episode occurring in, when 

the number of events of the episode in the windows begins to reduce. 

When we deal w i th the events which last for a period of time, we may consider 

the starting t ime and ending t ime of the events as well as their temporal relations, 

such as overlap and during. [22] discovers more different kinds of temporal pattern. 

In addition to the series and parallel events, the temporal patterns like " the duration 

of event A overlaps that of event B” and “ event X and event Y start at the same 

time but X ends first and F 's finishing time meets the starting t ime of event Z " . 

I t used the approach similar to the Apriori-gen approach and the process is splited 

into two phases, which are “ candidate generation" and “ large A:-item generation". 

The method starts w i th the large 1-item set in which the number of an event in the 

database is larger than the threshold. I t generates A;-candidate and large /c-items from 

the large (A:-l)-items and candidate A;-items respectively. The /c-items means the k 
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events w i t h a part icular temporal pattern in each pass. Thus，，A overlaps B” and ” A 

before B” are the two different 2-items. The generation of candidate and large items 

are reiterated un t i l there are no large /c-items found in the pass. 

I n the candidate generation, i t also finds i f the sub-pattern to be concatenated to 

form the A;-candidate is the frequent pattern. That is, the i tem to be added should has 

the temporal relat ion w i t h at least one event in the previous large items. I t removes 

the redundant candidates to increase the efficiency. In generating large k-items, i t first 

counts the support of each candidate. The end-time of large {k — l ) - i tems and large 

1- i tem are compared to decide i f the temporal pattern is supported in the patterns 

f rom large {k - l ) - i tems and large 1-item. The large A:-items are produced f rom that 

sequences w i t h m in imum support. 

26] discovers frequent sequential patterns by using a tree structure. The sequential 

pattern i t finds is the series of events in the order of t ime and can be represented as 

A B ^ C, where A, B and C are events and come f rom the same domain, and 

which means A happens one day before B and C happens one day after B in which A, 

B and C last for one day. The algori thm applies a trie, a n-ary tree w i th n branches 

to find the frequent sequential patterns. A node in the tr ie represents an event. The 

events in the same level happen in the same day. And the events at a A;-level node 

happen one day before the events at (/c+l)-level. Thus the root event is the earliest 

event in the trie. For each event type, a tr ie w i th that event type as root is bui l t . 

The events are attached to level 1 of tries i f the events happen one day after the root 

event. After bui ld ing a 1-depth tries, the support of each 2-event pattern in every 

trie, that is a path in tr ie consisting of 2 events, is counted that the fraction of the 

number of occurrences of the patterns to the tota l number of days in the database. 

For those patterns the support of which are less than threshold, they are pruned. 

The tries continuous to grow to more levels by attaching events nodes the patterns of 

which should appear in the database and by pruning the patterns less than support. 

The tries stop to grow when the event patterns in tries ful ly represent the events in 

database or the tries meet a day of breaks of events, that is the day nothing happens 
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or all the events in that day are already contained in the tries. The frequent sequential 

patterns are the deepest paths and all the sub-paths from root to all levels in all the 

resulting tries. 

There are many l imitat ions in the algorithm. [26] considers a break of events 

in the sequence of days as a break of sequential pattern. In many applications, the 

events before and after the break may be associated, hence some interesting sequential 

patterns may not be found. The algorithm also fails to find the more complicated 

sequential patterns. I t restricts the events in sequential patterns which should occur 

one by one and each event should last for one day only. Thus i t cannot find the 

patterns in which some events may be lasting for more than one days or in which 

an event A happens two days after an event B. The cost of the algorithm is quite 

high. For each phase of attaching a new level, of branches to the existing tries, the 

database should be scanned once to find what the following events should attach to. 

The number of times of scanning the database is determined by the longest number 

of days of events without break. 

Most of the algorithms introduced in the above are based on Apr ior i Algor i thm 

19]. However the Apr ior i approach scans the databases repeatedly and the cost 

increases considerably w i th the size of the databases. [23] provides a fast alternative 

to find the frequent pattern w i th a frequent pattern tree (FP-tree), which is a kind of 

prefix tree. The FP-tree is applied in transaction database, in which each transaction 

contains a set of items. A node in the FP-tree is a frequent i tem wi th the number of 

occurrences in the database no less than the support. A path of tree represents one 

or more than one transactions. FP-tree takes advantage of the structure of prefix tree 

that makes the tree compact by keeping the most frequent items near the top of the 

tree so that the frequent i tem nodes can be shared wi th a number of transactions. 

Thus the depth the item is located in is usually inversely proportional to its frequency 

in the database. Each node of FP-tree consists ofcount which records the total number 

of transactions containing the corresponding item in all the path(s) l inking the node. 

For each item type in the tree, there exists a pointer, called head of node-link, in a 
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header table to l ink all its same item types in the tree together to speed up searching in 

discovering sequential patterns. The items in the header table are arranged according 

to the i tem frequency in database. Thus the most frequent i tem is located at the top 

of the header table. 

To bui ld the FP-tree, i t first scans the database. The frequency of each i tem is 

calculated to determine the number of transactions each i tem type appears in the 

database. The i tem types are then sorted in descending order of their frequencies 

and are formed a list of frequent items. The database is then scanned again. For 

each transaction in database, the items are sorted according to the order in the list of 

frequent items. The “ nuW root of FP-tree is created. Next the first i tem of the item-

sorted transaction is compared to the FP-tree's child nodes. I f the root of FP-tree 

has a child of that item, the count of that node wi l l be increased by one. When the 

child node of the i tem is not found, a new child is created and its count is initialized 

to one. The remaining items in the transaction wi l l be attached to that new child 

in the decreasing order of frequency wi th the most frequent i tem attaching first and 

the least frequent last. For the case of the first i tem in the transaction shares the 

existing child node of root, the second item of the transaction is then checked i f i t 

exists in the child nodes of the first i tem node in the FP-tree. The count of the child 

node of second i tem wi l l be incremented by one i f the node exists. Similarly, i f the 

second i tem is not included in the child nodes of the first i tem in FP-tree, a child 

node wi th the second i tem type is created and its count is set to one. The new node 

and nodes of the remaining items in the transaction concatenate the prefix node in 

the descending order of frequency. The process is repeated for the remaining items 

in the transaction and for each transaction in database. 

After building up the FP-tree, frequent patterns can be obtained from the tree. 

First all transactions containing a specified frequent i tem are found. By starting from 

the end of the header table for an item a w i th the minimum frequency, the l ink of that 

item header is traced and all the paths its node connecting in the FP-tree are found. 

The paths are then derived to prefix path of that item. Prefix path is the path before 
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the i tem a. For example, for the path of < / : 3 , p:3, m:2, a :2〉， the prefix path of a is 

< / : 2 , p:2, m:2>, where the counts in the prefix path are the same w i th that of i tem 

a, because the count are based on the frequency of the i tem appearing w i th i tem a. 

A FP-tree is then generated by all the prefix paths and the tree is called a conditional 

FP-tree of ” a” • The frequent patterns are all the combinations of the items in the 

path for a single path conditional FP-tree and can be w i th different number of items. 

From experiments, i t is shown that FP-tree involves a much shorter execution 

t ime than its previous works. I t is efficient in mining frequent patterns, and i t needs 

only two scans of the database. The first scan is to count the frequencies of items 

whereas the second scan is to bui ld the paths in FP-tree. Since the access of the 

database is the major performance cost, the reduction of scanning the database can 

greatly decreases the running time of the algorithm. The compact structure of the 

FP-tree makes the tree more possible to be placed in memory instead of in disk thus 

further increasing the efficiency. However, the FP-tree is not designed for temporal 

pattern mining. There is some related work in applying the technique to mine frequent 

subsequences in given sequences [27], but the problem is quite different from ours. 

In fact, our definition of frequent episodes does not give rise to the subset closure 

property util ized in many previous methods. Therefore i t is not obvious how the 

problem can be solved efficiently. In this chapter we show that i t is possible to apply 

some of the successful ideas in the FP-tree and derive an efficient mechanism for the 

mining of frequent episodes. 

4.3 Double-Part Event Tree for the database 

The method we proposed to mine the frequent episode has some similarity to that 

in [23]. We use a tree structure to represent the sets of event types w i th paths and 

nodes. The process is comprised of two phrases: (1) Tree construction and (2) Mining 

frequent episodes. Before describing the details of the two phases, the tree structure 

wi l l be introduced first. Two different tree structures are designed and the two trees 
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have their own advantages either in implementation or performance. Except the tree 

structure, the overall mining processes wi th two trees are similar. 

We propose a tree structure for storing the event database which we call the 

double-part event tree (DE-tree). I t has some similarity to the FP-tree. The root 

of the event tree is a nul l node. Each node is labeled by an event type. Each node 

also contains a count, and a binary bit, which indicates the node type. 

Before the DE-tree is bui l t , we first gather the window frequencies and the fre-

quencies of each event type in the database DB. We sort the event types by descending 

frequencies and identify the frequent event types when their window frequencies are 

no less than the support threshold. Next we consider the windows in the database. 

For each window, 

1. Find the set F of event types in the first day, and the set R of event types in 

the remaining days. F and R are each sorted in descending database frequency 

order. 

2. Then the sorted list from F and that from R are concatenated into one list 

and inserted into the DE-tree. One tree node corresponds to each event type 

in each of F and and R. I f an event type is from F, the binary bi t in the tree 

node is 0, if the event type is from R, the binary bit in the tree node is 1. 

Windows wi th similar event types may share the same prefix path in the tree, 

w i th accumulated count. Hence a path may correspond to mult iple windows. I f 

a new tree node is entered into the tree, the count is initialized to 1. When an 

event type is inserted into an existing node, the count in the node is incremented 

by 1. 

The levels of the event types depend on the frequencies in database because the 

DE-tree is a prefix tree in which the levels of event nodes are determined from the 

frequencies in paths. Since the paths of tree are divided into two parts, where the first 

part contains the event types in the first day of window, the levels of the event types 
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follow the descending order of the frequencies in the first part of the path, which is 

also the event types' frequencies in database. 

On the other hand, the window frequency is to ident i fy the frequent events for 

constructing tree. Since when we choose the event types to be included in the tree, 

the event types are l ikely to be members of the frequent episodes. So as long as the 

event types appear in windows, the event types can be parts of the frequent episodes. 

For the details of ident i fy ing the frequent episodes, please refer to Section 4.4. 

In the DE-tree, each path f rom the root node to a leaf node is called a w i n d o w 

p a t h , or s imply a path, when no ambiguity can arise. The DE-tree differs f rom the 

FP-tree in that each window path of the tree is divided into two parts. There is a 

cut point in the path so that the nodes above the cut point nearer to the root node 

form the first part , this part stores the event types in the first days of windows that 

are entered into the path. This is called the firstdays p a r t of the path. The second 

part of the path stores the event types in the remaining days of windows inserted 

into the path. This is called the r e m a i n i n g d a y s p a r t of the path. For the nodes in 

the firstdays part the binary b i t is 0，for the remainingdays part the binary b i t is 1， 

hence the binary b i t indicates the location of the event type in the window. 

There is a header table that contains the event types sorted in descending order 

of their frequencies. Each entry in the header table is the header of a l inked list of al l 

the nodes in the DE-tree labeled w i th the same event type as the header entry. Each 

t ime a tree node x is created w i th a label of event type e, the node x is added to the 

l inked list f rom the header table at entry e. The l inked list therefore has a mixture 

of nodes w i t h binary bits of 0 or 1. 

The advantage of the DE-tree structure is that windows w i t h common frequent 

event types can likely share the same prefix nodes in the DE-tree. In each of the 

firstdays part and the remainingdays part, the more frequent the event is, the higher 

level the event node is in so as to increase the chance of reusing the existing nodes. 

Before bui ld ing the tree, we can do some pruning based on event type frequencies. 

Those event types w i th a window frequencies less than the m in imum support threshold 
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are excluded from the tree because the event types wi l l not appear in the frequent 

episodes w i th the reason stated in Property 1. Once an event type is excluded, i t w i l l 

be ignored whenever i t appears in a window. This helps us to reduce the size of tree 

and reduce the chance of including non-frequent episodes. 

Strategy 1 We remove those events w i th the window frequencies less than the min-

imum support threshold before constructing the tree, 

To facil itate our counting of episode frequencies, we have the following strategy: 

Strategy 2 In counting the windows for the frequency of an episode, each window 

can be counted at most once. I f an event type appears in the first day and also in the 

remaining days of a window simultaneously, the effect on the counting is the same as 

i f the event type appears only in the first day. Therefore, for such a window, only the 

occurrence of the event type in the first day wi l l be kept and that in the remaining 

part of the window is/are removed. 

Example 1: Given an event database as shown in Figure 4.1(a), suppose the 

window size is set to 2 days and the minimum support is set to 5, the event database 

is first scanned to sum up the frequencies of each event type in the database and also 

the window frequencies, which are < a : 4, 6 : 5, c : 3, c/ : 3, m : 2, x : 3, y : 2,2: : 2 > 

and < a : 6,6 : 7, c : : 6 , m : 4 ,x : 5,2/ ： 4,2; : 3 > , respectively. Thus the 

frequent event types are a, b, c, d, x since their window frequencies are at least the 

minimum support. The frequent event types are sorted in the descending order of 

their database frequencies and the ordered frequent event types are < b, a, c, d, x >. 

The events in the two parts of window wi l l contain these frequent events only and be 

sorted according to this order. 

Next a null root node is created. The event database is then scanned for the second 

time to read the event types in every 2 days for inserting the windows' event types 

into the tree. Keeping only the frequent event types and excluding the duplicate 

event types, the first window can be represented by < (b, a, c), (d, x ) 〉 ， i n which 
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Day Events Window No. Days included Event-set pairs 
1 a,b,c 1 ^ < {b,a,c), (d,x) > 
2 y,m,b,d,x 2 ^ < d, x), {a,c) > 
3 a,c 3 3 ,4 < ( a , c ) , ( 6 ) > — 

a,b 4 4,5 < {b,a), id) > 
5 z,m,y,d 5 ^ < {d), {b, c,x) > 
6 h,x,c 6 6,7 ^Ib, c,x),{a,d)^ 
7 d,a,b 7 一 7,8 < {b,a,d), lx) >~~ 
8 I a/，;̂  I 8 I 8 I < ix),{(l)) > 

(a) (b) 

Figure 4.1: An event database and the corresponding windows. 

the first round brackets consists of the event types in the first day of window while 

the second round brackets consists of the event types in the remaining days of the 

window (the second day of the window in this example). Both event lists are sorted 

in decreasing window frequency order. We call < (b, a, c), (d, x) > the event-set 

pa i r representation for the window. A first new path is bui l t for the first window 

< (6 : 1, c : 1, a : 1), (ĝ  : 1, x : 1) > , w i th all counts init ialized to one. The nodes 

are created in the sorted order and the types of the nodes b,c and a are set to 0 

while that of nodes d and x are set to 1. A new header table is created in which 

the event types sorted in descending order of frequencies < 6, a, c, d, x〉 . Each node 

is connected to the corresponding entry in the header table. The tree inserted the 

path of the first window is shown in Figure 4.2. The event types in each window are 

shown in Figure 4.1(b). The first column of the Figure 4.1(b) represents the order of 

reading the window. The second column shows the days covered by the corresponding 

window. The last column shows the sorted event types in windows after removing 

the unfrequent event types and duplicate events. 

The window is shifted one day lower and one more day of event types in the 

database are read to get the second window. The event types are sorted and the 

second window is < (b, d, cc), (a, c)〉 . Since the tree root has a child node of event 

type b, the path of the second window can share the existing b node. The count of 

the b node is incremented by one. The new nodes are linked to the existing nodes 
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Header Table 
event head of link 广 、 

type C null ) 

b .—— 
a -.-.-._.、 
c 、.、、 . 

. � . � . � . �� � � � . � � � -

\ � x ^ ^ 

Figure 4.2: The tree after being inserted the first window < (6, a, c), {d,x)〉. The 
content of nodes are represented as “ event name:count:type". 

w i th the same event types. The tree after inserting the path for the second window 

is shown in Figure 4.3(a). Each tree node has a label of the form E : C : B where E 

is an event type, C is the count, and B is the binary bit. In this figure, the dotted 

lines indicates the linked list originating from items in the header table to all nodes 

in the tree w i th the same event type. 

Header Table 
event head of link . 、 Header Table 
tvDe ( null ) event head of link 广 、 

、 丄 乂 type C 

： - = ：：：：—---— 
d、.：、、、\\ 二 、 \ . . . - 、 - . -

(a) Tree wi th two windows (b) Tree wi th three windows 

Figure 4.3: The trees after inserting the first two windows and the th i rd window 

< (a, c)，(6) > respectively. 

The events in the fourth day of database are read, selected and sorted to obtain 
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the th i rd window, < (a, c), (b)〉• A new path < (a : l , c : 1), (&：!)> is created as 

shown in Figure 4.3(b) for the whole window because there is no child node a under 

the nul l root node. 

The remaining windows are inserted to the tree in the similar way. The rough 

structure of the final tree constructed is shown in Figure 4.4. (Note that some dotted 

lines are missing in the figure for clarity.) 

Header Table 
event head of ( ^ 
type link 

a ：：： 〜 

S 、、、、、、、、. ^ ^ ^ ^ 

命®、.、.、、 

Figure 4.4: The final tree constructed in Example 1. 

4.3.1 Complexity of tree construction 

The DE-tree construction method scans the database twice in the whole process. The 

first scan is to accumulate the total frequencies in the database and in the windows, 

finding the frequent event types. The second scan is to read the window information 

to build or update the paths in the tree. The cost of constructing the tree is 0(nm), 

where n is the number of windows which is also equal to {number of days recorded in 

database), and m is the maximum number of event types in a window. The cost of 

inserting a path is 〇(p), where p is the number of frequent events in a window. 

The size of the DE-tree is bounded by the size of the database, but is typically 

much smaller because of sharing of frequent prefix sub-paths. In the worst-case, each 

window is represented by a unique path in tree. The number of paths is bounded 
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by the number of windows in the database. The height of tree is determined by the 

number of frequent event types in windows. The longest path corresponds to the 

greatest number of frequent event types in a window. 

4.4 Mining Frequent Episodes with the DE-tree 

Our mining process is a recursive procedure applied to each of the linked list kept 

at the header table. Let the event types at the header table be h^, h i , . • 丄 丑 ， i n the 

top-down ordering of the table. We start from the event type h n at the bot tom of 

the header table and traverse up the header table. We have the following objective 

in this recursive process: 

Objective A: Our aim is that when we have finished the processing of the linked 

list for hi, we should have mined all the frequent episodes that contain event types 

hi, hi+i, •••, hff. 

Suppose we are processing the linked list for event type hi. { h i } is called a base 

event set in this step. We can examine all the paths including the event type hi 

from the DE-tree by following the linked list. Let us call the set of these paths Pi. 

These paths wi l l help us to find the frequencies of episodes containing event type hi. 

We have the following objective: 

Objective B: From the paths in Pi, we should find all frequent episodes that 

contain hi but not any of / i j+i, hn-

The reason why we do not want to include h i^ i , ... hn is that frequent episodes 

containing any of /i^+i, ..., hn have been processed in earlier iterations. Let us call 

the set of all frequent episodes in DB that contain hi but not any of /i^+i, ... hn, the 

set X i . 

We break up the Objective B into two smaller objectives: 

Objective Bl : From the paths in Pi, we would like to find all frequent episodes 

in Xi of the form {a} U {hi}, where a is a single event type. 

Objective B2: From the paths in Pi, we would like to form a database of paths 
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DB' which can help us to find the set Si of all frequent episodes in Xi that contains 

hi and at least two other event types. DB丨 is a conditional database which does 

not contain {hi} such that if we concatenate each conditional frequent episode in DB' 

with hi, the resulting episodes will be the set we want. 

W i t h DB' we shall bui ld a conditional DE-tree T' w i th its header table in a similar 

way as the first DE-tree. Therefore, we can repeat the mining process recursively to 

get all the conditional frequent episodes in T'. 

Now we consider how we can get the set of paths Pi, and from there obtain a set 

of conditional paths Q in order to achieve Objectives B1 and B2. Natural ly we 

examine the linked list for hi, and locate all paths that contain hi. Let us call the 

event types / i^+i,…“丑 invalid and the other event types in the header table valid. 

A node labeled w i th an invalid (valid) event type is invalid (valid). Suppose we arrive 

at a node x in the linked list, there are two possibilities 

1. I f the node x (wi th event type hi) is at the firstdays part (the binary bit is 

0), we first visit all the ancestor nodes of x and include all the nodes in our 

conditional path prefix, we perform a depth-first search to visit all the sub-

paths in the sub-tree rooted under event node x, each such path has a potential 

to form a conditional path. Only valid nodes are used to form paths in Pi. Note 

that the nodes in the firstdays part of the path below event x w i l l be invalid 

and hence ignored. 

2. I f the node x (wi th event type hi) is in the remainingdays part, we simply 

traverse up the path and ignore the subtree under this node. This is because 

all the nodes below x wi l l be invalid. Invalid nodes may appear above x and 

they are also ignored. 

For example, when we process the left most < d : 1 : 1 > node in the tree in Figure 

4•毛 we traverse up the tree, include all nodes except for < x : 1 : 0 >, since it is 

invalid. When we process the left most < c : 1 : 0 > node in the tree in Figure 44, 

we traverse up to node < 6 : 5 : 0 〉 ， a n d then we do a depth first search. We ignore 
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the nodes < a; : 1 : 0 > below it, and include < a\l\l> hut not < d : 1 : 1〉 . Note 

that the downward traversal can be stopped when the current node has no child node 

or we have reached an invalid node. 

Consider a path p that we have traversed in the above. We effectively do a few 

things for p: 

• Step (1): Remove invalid event types, namely, Jy+i, ...hn-

• Step (2): Adjust counts of nodes above hi in the path to be equal to that of 

hi 

• Step (3): I f hi is in the firstdays part, then move all event types in the remain-

ingdays part to the firstdays part 

• Step (4): Remove hi from the path. 

The resulting path is a conditional path for hi. After we have finished wi th all 

nodes in the linked list for hi, we have the complete set of conditional paths Ci for 

hi. 

We shall now explain the four steps above for the path processing. The reason for 

Step (1) is quite obvious. We shall remove hi (Step 4) in the path since we want to 

form a conditional database wi th all episodes impl ic i t ly containing hi. For Step (2), 

we want the resulting path to reflect the number of occurrences of the event types 

together w i th hi. Next we explain Step (3) in the above, where we move all events in 

the remainingdays part to the firstdays part. This can help to achieve both Objective 

B1 and B2. 

For Objective B l , we need to find frequent episodes wi th hi plus one other element 

from the paths. The reason for step (3) is that hi wi l l be removed from the paths, 

however, impl ic i t ly i t is included in all episodes to be discovered. For a window W 

to be counted once for a set bU hi, W must contain bU hi and at least one element in 

bU hi should appear in the first day of W. Therefore either (1)6 appears in the first 

day, or (2) hi appears in the first day. I f (2) is true, we move b to the first day, then 
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after hi is removed in Step (4), we can simply use the count of b,s in the first days of 

windows to count the occurrences of 6 U hi. 

Step (3) helps in Objective B2 as follows: suppose window W contains hi in p in 

the first day, and the remaining days of W contains event types Ew Therefore hi 

combined w i th elements in E w can be counted for episodes containing hi. Since we 

shall remove hi, when we later consider W, we may not count W for those combina-

tions of hi w i th elements in E w since such no event type in hi or E w wi l l appear in 

the first day. I f we move E w to the firstday part, we can be sure that these wi l l be 

counted as well. 

The set Ci forms our conditional database DB'. I t helps us to achieve both 

Objectives B1 and B2. For Objective B2, we first determine those event types in DB' 

wi th a window frequencies which satisfies the min imum threshold requirement. 

This can help us to prune some event types when constructing the conditional event 

tree T'. The window frequency of e is the sum of the counts of nodes in Ci w i th a 

label of e. 

For Objective B l , we need to find the single event types which when combined 

wi th hi w i l l form a frequent episode. For locating these event types we use the first-

part frequency for event types. The first-part frequency of an event type e in the 

set of conditional paths Q is the sum of the counts in the nodes w i th label e in Q 

that are in the first days part. 

4.4.1 Conditional Event Trees 

In the previous subsection, we describe how we can form a conditional database DB丨 

with a base event set a = {hi}, and a conditional DE-tree T' can be bui l t from 

DB: In the header table for T', the event types are sorted in descending order of the 

window frequencies in DB'. Event types in the conditional paths in DB' are then 

sorted in the same order at both the firstdays part and the remainingdays part before 

they are inserted into T'. 
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We apply the mining process recursively on this DE-tree T'. T丨 has its own header 

table and we can repeat the linked list processing w i th each entry in the header table. 

When we bui ld another conditional DE-tree T" for a certain header h'j for the 

event base set is updated as h'j U a. This means that frequent episodes uncovered 

from T" are to be concatenated w i th h'j U a as the resulting frequent episodes. 

4.4.2 Single Path Conditional Event Tree 

Strategy 3 When a conditional DE-tree contains only a single path, the frequent 

episodes can be generated directly by forming the set Si of all possible subsets of the 

event types in the firstdays part of path, and then the set S2 of all possible subsets of 

the event types in the remainingdays part. Any element of Si is a possible frequent 

episode. The union of any element of and any element of S2 is also a possible 

frequent episode. And the frequency of such a episode is the min imum among the 

event types in episode. 

Rationale By the way we construct a conditional DE-tree, i f a path contains 

event types in the remainingdays part, those event types corresponds to windows 

which contains some episode e wi th hi in the remainingdays part. For such windows 

to be counted for the episode e, there must be some event type in e that occur in the 

in the firstdays part. Therefore when we form an episode wi th an element in S2 we 

must combine w i th some elements in 

4.4.3 Complexity of Mining Frequent Episodes with DE-Tree 

The complexity of the mining frequent episode depends on the number of paths 

and the depth of tree. I t is NP-hard because mining association rules is a NP-hard 

problem. When the window size is 1, i t is a special case that the problem becomes 

mining frequent patterns wi th FP-tree where the pattern corresponds to an episodes 

whose all events appear in the same day. The DE-tree has the same structure wi th 

the FP-tree except that the node types of all event nodes are 0 and are tr ivial. 
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4.4.4 An Example 

Example 2: We il lustrate the mining process w i th the event database in Example 

1. Let us call the header table in Figure 4.4 HT. Start ing from the event type x at 

the bot tom of HT, we examine all the paths that contain x by following the links of 

the event type from the header table. , 

Let us represent a path in the tree by < (ei : Ci, 62 ： C 2 , e ^ ： c^), (e^ ： ..., e'q : 

e'̂ ) > , where e ,̂ e;. are event types, Ci, c'j are their respective counts, ê  are event types 

in the firstdays part, and e'j are from the remainingdays part. For the bot tom element 

of HT, X, six paths are visited: < (d : 1), (6 : 1, c : 1, x : 1)〉，< (6 : 5, c : 1, x : 1), (a : 

l,d : 1) > , < (6 ： 5,a : 3,c : l),{d : : 1) >,< {b : : 3,d : : 1)〉， 

< (6 : : : l ) , ( a : l , c : 1) > and < {x : 1), ( )〉 . Since the counts of some 

events are not the actual event frequency in the path, the count have to be adjusted 

before counting the total frequency of each event type in the event " x " path. The 

"real" count is the count of the event type " x " because the event type must appear 

w i th event type x simultaneously. Thus the paths become < {d : 1), {b : l,c : l,x : 

1 ) 〉 , < {b : l , c : l,x : l ) , ( a : l,d: 1 ) 〉 , < (b : l,a : l，c : l),(d : l,x : 1) >,< (b: 

l,a: l,d: 1), (x:l) > and <(b:l,d:l,x: 1), (a:l,c:l) >• 

Conditional paths and conditional DE-tree: Next we can form the con-

dit ional paths for x. i f the firstdays part of a path contains event type x, all 

the event types in the remainingdays part can be moved to the first part. Then 

the event type x in the paths can be eliminated. The conditional paths for x are 

< (d: l),(b:l,c:l) >,< (b:l,c:l,a:l,d:l),((P) >,<(b: l,a:l,c:l),(d:l) > 

, < ( b : l , a : l , d : l ) , ( ( / > ) > , < ( b : l , d : l , a : l , c : 1)，⑷ > . 

Accumulating the counts of each event type in the firstdays parts and the re-

mainingdays part of all paths, we obtain the window frequencies and the first-part 

frequencies, which are < 6 : 4, d : 4, a : 3, c : 3 > and < 6 : 5, d : 5, a : 3, c : 4 > . Thus 

the frequencies of 2-event episodes containing x are < hx : 4, t/x : 4, ax : 3,cx : 3 > , 

which are not frequent. Since the window frequencies of event types a and c are 
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less than threshold 5, we need not consider the episode containing xa and xc. We 

construct x's conditional tree w i th only two event types b, d as shown in Figure 4.5. 

Header Table 
event head of link 
type Q null j 

b 

Figure 4.5: rr's conditional tree. 

Recursive processing: We call the mining procedure recursively, passing along 

x's conditional DE-tree. The paths containing the event type at the bot tom of header 

table, d, are traversed: < (6 : 4), {d : 1) < {h : : 3), (0) >,<{d: 1), (6 : 1)〉• 

The counts in each path are adjusted and counted. The paths become <(6:1)，((/>) > 

, < (6 : 3), (0) > , < {b : 1), 0 ) > and are dx,s conditional paths. And the first-part 

frequency of b in dx's conditional paths < 6 : 5〉， t h u s the frequency of episode hdx 

is <bdx > , which is a frequent episode. Since dx,s conditional paths contain only 

one event type and cannot form the episode containing more number of combinations 

of event types, there is no need to call the mining procedure again. The only frequent 

episode containing event type cc, < hdx > , is obtained. 

Next element in HT\ Then we visit the paths of event type d, which is at the 

second bot tom of the header table, from the original complete tree. The paths are 

< (d : 1),(6 : l , c : : 1) > , < (6 ： 5,c : : l ) , ( a : : 1) > , < (6 : 5,a : 3,c : 

l),(d : : 1) > , < (6 ： 5, a : 2,d: l),(x : 1 ) 〉 , < (b : 5, oh l,x : 1), (a : l , c : 1) > . 

The event type x in the paths are ignored because all episodes containing event 

type X have been explored. The event types in the remainingdays part of the paths 

are then moved i f necessary and the frequencies of event types are counted. We 

obtain the window frequencies < a : 5, 6 : 6, c : 4 〉 a n d the first-part frequencies 

< a : 4, b : 6,c : 4 >. The frequent episode is deduced as < : 6 > . Then d,s 
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Event Paths visited Conditional paths {window frequency, 
Set first-part frequency, 

Frequent episodes} 
X <(d:l),(b:l,c:l,x:l)> < (d:l),(b:l,c:l) > { <b:5,d:5,a:3,c:4>, 

<(b:5,c:l,x:l),(a:l,d:l)> < (b : 1,d : 1,a :l,c :!),((/>) > < b : 4,d : 4,a : 3,c : 3 >, 
< (b:5,a:3,c:l),(d: l,x : 1) > < (b:l,a: l,c: 1), (d : 1) > <(/>>} 
< (b:5,a:3,d:l),(x:l) > < (a:l,b:l,d:l),((f>) > 
<(b:5,d:l,x:l),(a:l,c:l)> <(b:l,d:l,a: l,c :!),((/)) > 
<(x :!),((/>)> 
< (d:l),(b:l) > < {b ： 1),⑷〉 {<b:b >， 
< lb:4,d:S),{(t)) > <(&:3),0^)〉 <b:5>, 
< 1) > < (6: 1)’ ⑷ > < 他：5〉} 

~d < (d:l),(b:l,c:l,x:l) > < (6: l，c: 1)，⑷ > { <a:5,b:6,c:4>, 
<(b:5,c:l,x:l),(a:l,d:l)> < (b:l,c:l,a:l),((/}) > < a : 4,b : 6,c : 4 >, 
< (b:5,a:3,c:l,d:l),(x:l) > < (&:3，a:3，c: 1)’（0) > < bd : 6 >} 
< (b : 5,a: 3),(d:l) > < (b:l,a:l,c: 1),⑷ > 
<(b:5,a:3,d:l),(x:l)> 
< (b : 5, d : 1, X : 1), (a : 1, c : 1) > 

I (d: 1),(6： l , c : 1) > 〈 ⑷ , ( & : 1 ) 〉 { < a : 4 , 6 : 4 > , 
(a : l，c : 1)，(6:1)〉 < (a : M : 1 ) , ⑷ 〉 < a : : 4〉， 
(b : 5,c: l,x :l),(a:l,d:l) > < (b: l,a: 1),⑷〉 < (/> >} 
( b : 5 , a : 3 , c : l ) , ( d : l ) > < (b: l , a : 1),⑷ > 
(b:5,d:l,x:l),(a-l,c:l)> < (b: 1), (a : 1 ) 〉 

a < ( a : l , c : l ) , ( b : l ) > < 1),⑷ > { < & : 6〉， 
< ( 6 : 5 , c : l , a ^ : l ) , ( a : l ) > < (6 : 1)，⑷〉 〉， 
< ( & : 5 , a : 3 , c : l ) , ( 6 / : l ) > < (6 : 3), ((/))〉 < 6a : 6 > } 
< (6:5,a:3),(c/： 1) > < (fe： > 
< ( b : 5 , a : 3 , c ? : l ) , ( x : l ) > < (6 : 1 ) , ⑷ 〉 

< (b : 5,(i : : 1), (g : 1) > _ _ J _ ‘ 

Table 4.1: The summary of the mining process of Example 2. 

conditional tree is bui l t w i th event types a and b and mining procedure is called 

recursively, which does not result in frequent episodes. 

The th i rd element in HT is c. The paths of c are visited. The paths are < (d : 

1), (b : 1，c : 1) >,< (a : l,c : l),(b : 1) >,< (b : 5,c : l,x : 1), (a : l,d : 1) > , < 

(b : 5,a : 3,c : l),(d : 1) >,< (b : 5,d : l,x : l),(a : l,c : 1) >. Similarly the event 

type X and d are ignored from paths. The first-part frequency is < a : 3，6 : 4 〉 a n d 

the window frequency is < a : 4, & : 4 >.. There is no frequent episode generated and 

no recursive mining procedure call is needed because the window frequency and the 

first-part frequency of the two event types are below threshold. 
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Finally, the paths of event type a are visited: < (a: l,b: 1), (d : 1) >, < (b : 5, c : 

l,x : l)，（a : 1)〉，< (b : 5，a : 3，c : l)，(d : 1)〉，< (6 : 5, a : 3 , d : l ) , ( x : 1) > and 

< (b : 5, d : l , x : 1), (a : 1)〉• The first-part frequency and the window frequency 

are both < b : 6 > . The frequent episode is < ba : 6 > . Since there is only one event 

type, b, in a，s conditional paths, the mining process ends when we finish processing 

all the linked lists in HT. 

The mining process is i l lustrated in Table 4.1. Note: in this example, we can 

demonstrate that the subset of a frequent episode may not be frequent: bdx is a 

frequent episode, but bx and dx are not frequent. 口 

4.4.5 Completeness of finding frequent episodes 

Theorem 1 A l l the frequent episodes are discovered by the mining process and no 

infrequent episode is returned. 

Rationale Let the event types in the header table be e。, ei,...,en, in the top-down 

order of the table. First all the paths of e^ are explored and the frequency of episodes 

formed by the combinations between e几 and eo,ei，".,en—i are examined. Next the 

whole paths containing e„_ i are traversed and only the event e^ wi l l be ignored in 

the paths. Thus the frequencies of the episodes of the combinations between e^- i w i th 

eo, ei,..,en-i are examined. When we examine e '̂s paths, the events e^+i, ei+2...,e„，the 

episode of which we have examined before, are excluded, so as to eliminate redundant 

considerations while keeping the search of complete set of episodes. • 

4.5 Implementation of DE-Tree 

The steps of tree construction can be concluded wi th the pseudocode in Figure 4.6 

and 4.7. 

In the previous description in the mining process, we seem to indicate that con-

ditional paths are first recorded somewhere in each iteration. This can be a costly 
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Input: An event database DB, a minimum support 6 and window size w 
Output: A tree, Tree, storing DB 
Method: TreeConstruction(D5,0, w) 

Procedure TreeConstruction(J9B, 0, w) 
{ 

II First scan of DB 
count the frequency of each event type in the firstdays part 
count the frequency of each event type in DB 
For each event type in DB 

If window frequency > 0] Insert the event into frequent event list I 
Sort I in descending order according to the frequency of the first day 
Create a null root node 
/ / Second scan of DB 
For each window size of days of events 

For each event in the first day of window 
If the event is in I then insert into 11 

Sort the 11 in the order of I 
For each event in the remainingdays part 

If the event is in I but not in 11 then insert into 12 
Sort the 12 in the order of I 
If 11 is not null 

Concatenate 11 with 12 
UpdateTree(Tree,n,|/l| - 0,1) 

} 

Figure 4.6: DE-tree construction main program. 
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UpdateTree: To insert a window of n events, / I , into the tree, Tree w i th count c 
Input: The number of events in the firstdays part, nl 

The number of events inserted, i, which set to 0 init ial ly 

Procedure UpdateTree(no(ie, 11, n l , n, i, c) 
{ If {i == n) then return / / i f all events are added, then return 

If node is null / / For empty tree 
Create a child node of ll[0], new —node 
new-node.count 二 c; new-node.type = firstdays part; node = new .node 
Connect new-node to the link from header table 
UpdateTree(cMd, 11, nl, + 1, c) 

Else 
If the event and the type of one of children of node, child, are same with that of ll[i 

child.count-\-\-\ UpclateTree(c/ii/(i, / I , n l , n, i + l , c ) 
Else 

Create a child node of ll[i], new -node•，new —node.count = c 
If ( i < n l ) then new —node.type = firstdays part 
Else new —node.type — remainingdays part. 
Connect node with new-node.，Connect new—node to the link from header table 
UpdateTree(nei(；一node, / I , n l , n , ^ + 1, c) 

} 

Figure 4.7: DE-tree construction. 

approach. I n our implementat ion we do not keep the set of condit ional paths sepa-

rately. Instead, when we traverse a l inked list f rom a header table, we do i t twice. 

The first t ime is to collect the counts for both window frequencies and f irst-part fre-

quencies. The second pass is to identi fy the condit ional paths, remove the infrequent 

event types, and insert the result ing paths into a new condit ional DE-tree. 

Here we list the pseudocode for some of the impor tant min ing process. Af ter we 

have bu i l t the FP-tree T for a database, Mine{T, null) w i l l mine al l frequent episodes. 

I n Figure 4.8, the funct ion Combine All (Tree, a) generates all condit ional frequent 

episodes f rom a single path condit ional DE-tree and combines them w i t h the base a. 

In Figure 4.6 and 4.10, the funct ion UpdateTree{t, I, n�, n, i, c) takes a list of n 

events I and insert i t like a window into the condit ional tree t. The first tiq events in I 

are the firstdays part , and the increment of the counts of al l the events in I is equal to c. 

i is the number of events inserted to t. In the same figure, ChildPathSearch{x, a, t) 
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Method: To mine all frequent episodes which include a set of events a 
I n p u t : Tree (the tree constructed from an event database) and a 
O u t p u t : A l l frequent episodes 

visited list is a global data structure and is set null initially before the mining 
Procedure Mine(Tree, a) 
{ If Tree contains only single path 

CombineAII(Tree, a) 
else 

For each event b of the header table (start from the bottom) 
For each path containing event b 

If there is at least one event in the firstdays part 
For each node node above event b 

If the node.event does not appear in visited-list 
node.count + 二 b.count 

If node is in the firstdays part 
first-day frequency of node.event += b.count 

window frequency of node.event += b.count 
If b is in the firstdays part then CountChildFreq(6) 

For each event type r in the paths visited 
If r 's first-part frequency > threshold 

Generate frequent episode rUbUa with support = r's first-part frequency 
If window frequency > threshold 

Insert r into the frequent event list I 
If > 2 

II Construct (6 U a)'s conditional tree Tree only with the event types in I 
BuiltCondTree(Tree, bU a,l, condJree) 
M\ne{cond-tree, bU a) 

Insert b into visited-list 
} 

Figure 4.8: Min ing frequent episodes. 
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Procedure CountChildFreq(no(ie) 
{ For each child of node, child .node 

While child-node is in the firstdays part do CountCW\\dFreq{child-node) 
If child-node is not in the v is i ted- l i s t 

First day frequency of chi I djnode .event child-node, count 
Window frequency of child-node.event += child-node.count 
Cou ntCh i Id Freq {child-node) 

} 

Figure 4.9: Col lect ing al l frequencies of events in the remainingdays part by depth 
first search. 

buildCondTree: To construct a conditional tree, condJree 
Input: A tree, Tree, the paths of which containing an event x to be visited 

A list of sorted frequent events, I, relative to event x 

Procedure buildCondTree(Tree, x, I, condJree) 
{ for each path containing x 

if X is in the lower part of path 
for each ancestor node of x 

if a; is in / 
if the ancestor node is in upper part of path then insert x into pi 
else 

insert x into p2 
sort pi, p2 according to I 
concatenate pi with p2 
[JpdateTree{condJree,pl, \pl\ - \p2\, \pl\,0,x.count) 

else 
for each ancestor node of x 

if rr is in Z then insert x into pi 
PathBuilt = ChilclPathSearch(rr;, I, condJree) 
If {PathBuilt + X.count) 

sort pi according to l\ UpdateTree(cond_tree,pl, |pl|, x.count) 
} 

Figure 4.10: Condit ional tree construction. 
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takes a node a; in a tree and performs depth first search to find the nodes for frequent 

event types under x which are in the remainingdays part . Such event types must be 

in the event type l ist I. Nodes in such a traversed path are sorted according to the 

ordering in I and stored in a, which is then inserted into the condi t ional tree t as 

firstdays part (binary b i t = 0). 

ChildPathSearch: To search the frequent events in child paths of x and insert the path 
to a conditional tree 
Input: A list of valid frequent nodes below x, a,and a list of frequent event, I 

Procedure ChildPathSearch(x, a, I, condJree) 
{ If a; has no child node then return 0 

For each child node c of rr 
If c is in the remainingdays part 

If c is in I 
Concatenate c with a; path—built + = childPathSearch(c, a, condJree) 
If X.count — path-built > 0 

sort a in the order of UpdateTree(conoLtree, a, |a|, |a|, 0, c.count) 
path-built += c.count 

Else path-built + 二 childPathSearch(c, a, Z, coruLtree) 
Else path—built + = childPathSearch(c, a, I, cond-tree) 

Return path-built 
} 

Figure 4.11: The code for performing depth first search to find the frequent events 
under the root event and inserting the tree paths into the condit ional tree. 

4.6 Method 2: Node-List Event Tree 

The structure of the DE-tree has two main weaknesses. Since the tree path is divided 

into two parts to store the firstdays event types and the remainingdays event types 

separately, the nodes w i t h the same event type in the different parts of tree cannot 

be shared and i t cannot take the fu l l advantage of prefix tree, when the firstdays part 

is different even i f the remainingdays part are the same. The second disadvantage 

is the cost of depth-first search in the min ing process. Thus an alternate method of 

min ing frequent episode is proposed. 
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The second method also applies a tree to store windows of event types and mine 

the frequent episodes. I t is called a Node-List Event Tree(NE-tree). The root 

of the NE-tree is a nul l node. Each nodes consists of an event type and a count, 

the latter of which has different meaning from the count in the DE-tree. The basic 

structure of the path in the NE-tree is the same as the FP-tree in that the paths 

are not divided into upper and lower part to store the two parts of window. On the 

contrary, the event types in a whole window are stored in a path in descending order 

of their window frequencies regardless of the their positions in window. 

To indicate the positions of the event types in a window, a string of binary bits, 

called position bits, is stored in a window node, which is attached to the last node 

of the path representing the corresponding window. Each digit of the position bits 

indicates a type for an event type. The bit is 0 for the event type in the first day 

of window, whereas i t is 1 for the event type in the remaining days of window. The 

position bits are assigned according to the order of the event types in the path. Thus 

the most significant bi t (MSB) of the position bits indicates the position of the last 

event type in the path representing the window while the least significant bit (LSB) 

indicates the location of the top-most event type in the path. 

Each window node also contains a position count, which stores the number of 

paths having the same position bits. When there are more than one type of position 

bits, the window nodes containing the position bits are connected to form a single 

linked list. The window nodes are arranged in the descending order of the position 

bits patterns and a pattern wi th all zero bits wi l l be at the top. The window nodes 

are sorted because i t is more efficient insertion in the tree construction. The reason 

why zero position bits is at the top is given in Section 4.8.1. 

To facilitate the retrieval of the corresponding window nodes of the event nodes 

so that we need not perform depth-first search to get the window nodes, all window 

nodes belonging to the same event node are linked to form a doubly linked list. An 

event node contains a window pointer, which directs to its window nodes. For 

example, a simplified NE-tree is shown in Figure 4.12 in which the rounded rectangle 
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nodes are the window nodes and the capital letter denoted as a group of the position 

bits and the position count. Take the path < s,i,d,c�in Figure 4.12 as an example, 

i f only event type s in the first days of window and the count of path is 1, then the 

window node P is 1110:1. For clarity, the figure only shows the links between the last 

nodes of the paths and the window nodes and omits those links w i th the upper nodes. 

The event node, by default, points to the window node directly under the event node 

itself, such as nodes d, c and x. I f the event node has one or more child nodes that 

are event nodes, i t points to the window node of one of its nearest child node. For 

example, nodes i, s points to G, and b points to F. Each event node stores a count 

to indicate the number of consecutive window nodes, which counted from the right 

of the pointers, containing its position in window in the doubly linked list so that all 

the window node including the event type can be identified. For example, for node 

i : 7, i t points to G, in the doubly linked list of window node, G, P, A, F, E, H and 

D are nodes that contain window frequencies for the node i. Thus the count of i is 

7. When a path is a single path, like the rightmost path of the tree in Figure 4.12, 

all the window pointers of the event nodes points to the window nodes as shown in 

Figure 4.13(a). 

CjujO 

c ^ T ^ ^ c j p , ； 、 
c ^ c ^ C X 3 

^ ^ 史 

C O d D 

Figure 4.12: A simplified NE-tree. 
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(a) Rightmost path (b) Child Paths of s 

Figure 4.13: Another view of the window nodes in the lists for the tree in Figure 4.12. 

Figure 4.13(b) shows a doubly linked list of nodes which are relevant for the s 

node. The figure also illustrates that the count in the event node is also the number 

of window nodes under the event nodes, including the window node attached directly 

to the event node itself. Event node s has the count of 10 because there are 10 columns 

of window nodes under i t . Since only the top node of single linked list, such as A, B 

and R, appear in the doubly linked list, a column of single linked list is counted as 

one in calculating the count in the event node. 

4.6.1 Tree construction 

The construction process of path is the same as that in FP-tree. The steps of obtain-

ing event frequencies from database are similar to that in the DE-tree. Thus we wi l l 

emphasis explaining the creation of window nodes and doubly linked list. 

Example 3 Using the event database in Figure 4.1(a), we construct NE-tree wi th 

the same window size and threshold as that in Example 1 to see the difference. 

First the event database is scanned to obtain the total window frequency of each 

event types. The event types of each window are same as that in Example 1 and 

the window frequency is < a : 6, 6 : 7, c : 5, (i : 6, m : 4, x : 5, y : 4, 2： : 3 > . As 

before, those event types whose the window frequency below the threshold wi l l be 

removed. The event types wi th the threshold are sorted in the descending order of 
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window frequency as < b,a,d,c,oc >. The order depends on the window frequency 

instead of the database frequency because a path in NE-tree corresponds to a window 

in database. The event nodes in path of tree wi l l follow this order when constructing 

the tree. The sorted frequent event types of each window are shown in Table 4.2 to 

facilitate the explanation. The second last column of the table contains the sorted 

event types according to the window frequency, while the last column contains the 

position bits to indicate the corresponding event type position in the window. 

In the eighth window, no event type wi l l be inserted into tree because there is 

only one event type in the window and a single event type cannot form an episode. 

Window Days included Partit ioned Ordered Ordered Position 
No. included Frequent Events Frequent Events bits 

1 < (6 ,a , c), {d,x) > <b,a,d,c,x > 00101 
2 ^ < (6, (a, c) > < g, d,c,x> 01010 
^ 3，4 < (a,c), (b) > <b,a，c〉 1 0 0 

4 4,5 < (6,a), (d) > — <b,a,d> 001 
5 ^ < ⑷， (b , c, X) > < b,d,c,x〉 1011 

6 ^ ~< {a,d) > < c,x> 01100 
7 Ifi < (x) > <b,a,d,x > 0001 

8 I 8 I < l x ) , 0 > I < 〉 I - — 

Table 4.2: The frequent event types included in windows in Example 3. 

A null root node is created. The event database is scanned for the second time. 

The event types in the first two days are read, ie. < (a, 6, c), (y ,m, 6, d,x) > . The 

frequent event types in the two days are identified as < (a, 6，c), {d, x) > and sorted 

as < b, a, d, c, x > while recognizing the position of the event type. Since a, b, c are 

in the first day of window and d, x are in the other days of window, by mapping 0 to 

a, b, c and 1 to d,x in the sorted event types < b, a, d, c, x〉，the position bits of the 

first window is 10100. For the null root node which has no child node, a new path 

is of < (6 : 1), (a : 1), {d : 1), (c : 1), {x : 1) > is created for the first window. The 

numbers behind the colon and the event types in the path are the numbers of window 

nodes representing the event types in the doubly linked list. The last node of path, 
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X, is also attached a window node of 10100:1 for the event type posit ion information 

of the whole path. A header table w i th the sorted event type < 6, a, d,c,oc > is bui l t . 

The new nodes are pointed by the entries in the header table w i t h the same event 

types. The tree after being inserted the first path is as shown in Figure 4.14(a). 

Header Table 
Header Table event head of l ink〔 null ) 
event head of link ( null ) 鹏 丄 

^ ^ b — — — ^ 

^ : : : — • — 一 養 \ � . � 

.、.、.、 .、.、.、..^^I^^. \ \\ .、.、.、 工 、.、.、.:.i 

；.、.、、、 ^ z i r 
00101 :1 ) • ( 01010:1 ) 

(a) After inserting the first window (b) After inserting the first two windows 

Figure 4.14: The trees after being inserted the first and the first two windows. 

Then the th i rd day of event types are read to create the second window. After 

selecting and sorting the frequent event types in the window, the ordered frequent 

event types of the second window is < 6, a, d, c, x > w i th position bits 01010. Since 

all the event types of the second window are the same as that of the first window, i t 

shares all the nodes of the first window and add a new window node to x node. For 

efficiency, the new node is inserted in the head of the single linked list. The counts in 

the event nodes are st i l l 1, because there is one column of node in the doubly linked 

list. The tree after being added the second window is shown as Figure 4.14(b). 

The event types in the fourth day are read. The sorted frequent event types of the 

th i rd window are < b,a,c >, so the position bits are 001. Since there are common 

nodes b and a in the existing prefix path, the path of the th i rd window can be bui l t 

on i t . Node c is created w i th count init ialized by 1 and is concatenated to the node a. 

The window node w i th position bits 001 and position count 1 is created and pointed 
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by the event nodes b, a and c directly because the level of the new window node are 

at a higher level than the two existing window nodes. The counts of nodes b and 

a are incremented to 2 for two columns of window nodes in the doubly linked list 

containing their posit ion bits. The new window node connects to the head of existing 

window bi t nodes list such that all window nodes can be accessed by b and a easily. 

The tree storing the three windows is shown in Figure 4.15. 

Header Table 
event head of link (‘ null ) 
type 

b 
a I T \、. 
d s . 

( y )•--.>( odioi:i) 
(̂ 010:1 ) 

Figure 4.15: The tree after being inserted the three window. 

Then the remaining windows are inserted in a similar way. A header table is also 

created to facil itate tree traversal. The final tree w i th the header table is shown in 

Figure 4.16. Figure 4.17 provides a clear view about the relationship of the event 

nodes and window nodes. 
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Header Table 
event head of ( null ) 
type link 、_ .「— 乂 

b —.-—- - -

X \ \ 、 t ^ 〜 f e K ^ d l > . \ 

\ . \ , t 、 / 
z 

-
(00101:1 y 

• 

(̂ 10:1 ) 

(̂ 100:1 ) 

Figure 4.16: The tree after being inserted all windows. 

b:4 
d:1 

a:3 c:1 
c:1 d:3 x:1 x:1 
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(1011:1 100:1 0001:1 00101:1) 

(̂01010:1) 
T 

(01100:1 ) 

Figure 4.17: Another view of the doubly linked list of window nodes of tree in Figure 

4.16. 

4.6.2 Order of Position Bits 

In our implementation, the order of the position bits is reversed from that we proposed 

originally. We use a dynamic array of unsigned i n t ege r to store the position bits. 

Since one unsigned integer consists of 32 bits, i t can only record the position bits for 

the maximum 32 event types along the path. For a path containing x event types, 

we allocate an array of INT{{x + 32)/32) unsigned integers to store the position bits 

for all event types in the path. 

In the mining process, we traverse up the path to visit all the ancestor event types, 
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which leads us to know the levels of the event types in the path. I f the b i t of the top 

level event is the leftmost b i t of the posit ion bits as proposed in theory, we have to 

traverse down to collect the to ta l number of events along the path to know the exact 

digits of the event types. On the contrary, we can direct ly access the posi t ion bits i f 

the r ightmost b i t is the top level event type. 

4.7 Implementation of NE-tree construction 

The process of tree construct ion can be summarized in Figure 4.18, 4.19 and 4.20. 

M e t h o d : To construct a NE-tree, Tree, given a database DB 
I n p u t : A minimum support threshold 6 and a window size w 

Procedure TreeConstruct ion(D5,0, w) 
{ Count the window frequency of each event type 

Sort the event types in the descending order of the window frequency as I 
for each window size of days in DB 

Select all frequent event types in window 
Sort the list of event types according to / as 5 
Compose the position bits, b 
UpdateTree(no(ie, s, 6,1,0, |<s|) 

} 

Figure 4.18: NE-tree construction 

In the first scan of database, there is no need to accumulate the event type fre-

quency in database because i t is used to sort the event types in descending order for 

the upper part of tree in the DE-tree. However, in NE-tree, the orders of the event 

nodes in a path only depend on the frequency of the event nodes appearing in the 

paths of tree in order to make the tree compact. Thus we only have to calculate the 

window frequency. 

The main idea of UpdateTree() is similar to that in DE-tree, except for handl ing 

the posit ion bits and the insertion of window nodes into l inked l ist. 

When a new event node is created, the path under i t should be a single path. Thus 
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UpdateTree: To insert a window of n event types I w i th position bits b and position 
count c into NE-tree 
I n p u t : Root of tree, node, the path wi l l be built under 

The number of event types inserted, i, which is set to 0 initially, 
O u t p u t : The head window node of the single linked list updated, win-node. 

Procedure UpdateTree(noc/e, I, b, c, i, n) 
{ 

If (i = n) II if all event types are added, then process the window bits 
CreateWindowNode(6, c, node) 

If node is null / / For empty tree 
Create a new child node of node, new-node with count = 1 
Connect new一node to node and the link from header table 
new -node.winptr 二 UpdateTree(nety—node, 6, c, z + 1, n) 

Else 
If one of children of node, child, is the same, as that of l[i 

win—node = UpdateTree(c/iz/(i, 1,6, c, i + 1, n) 
If a new single list is created in UpclateTree() returned 

If win-node is not yet inserted to the doubly linked list 
If child has no its own window node 

Insert win—node to the left of s[i].win', child points to win—node 
Else 

Insert winjnode to the right of s[i].win 
Else 

/ / re-position the window pointer of node 
If child.win points to the right of the winjnode 

child.win 二 winjnode 
chUd.count+~\~ 
Return win—node 

Else / / n o new single list created 
Return winjnode 

Else / / no existing child matched 
Create a new child node of child, new .node, with count 二 1 
Connect node with new-node and the link from header table 
win-node — UpdateTree(neit；.node, b,c，i + 1, n) 
new -node.winptr = winjnode 
Return winjnode 

} 

Figure 4.19: Tree path insertion for NE-tree. 
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CreateWindowNode: To create a window node by given a list of position bits b and 
the corresponding position counts c 
Input: The node to be concatenated wi th the window node, node. 
Output: A window node, win—node, and it is inserted into single linked list i f necessary 

Procedure CreateWindowNode(6, c, node) 
{ If node is newly created and has no window node OR 

node is an old node but has no window node directly under it 
Create and initialize the window node, win—node 
Return win—node 

Else 
II node has its window nodes directly under it 
Insert b into node.win single linked list 
Return win—node 

} 

Figure 4.20: Window nodes creation. 

the new nodes along the single path al l point to the new window node. However, when 

the paths share the existing chi ld nodes, the common chi ld nodes at the lowest level 

moves its posit ion pointer. A n d the new window node w i l l be inserted in the doubly 

l inked list to the left of the current window node that the shared event node is point ing 

to. Then al l the window pointers of the nodes at a higher level in the same path w i l l 

move to the new window node i f the window node they are point ing to is at a level 

lower than the new one. 

When a column of nodes is inserted to the doubly l inked l ist, the counts of the 

common event nodes w i l l be increased. 

4.7.1 Complexity of NE-Tree Construction 

Same as the DE-Tree, the whole tree construction process needs two scan. The first 

scan is to calculate the window frequency of event types and the second scan is to 

read and insert the window of event types into the tree. The cost of tree construction 

is same as DE-Tree and is 0(jim), where n is the number of windows and m is the 

to ta l number of event types in a window. The cost of inserting a path is 0(p) where 
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p is the number of frequent event types in the window. The main cost of inserting 

a window node into the doubly l ink list is 0{w), where w is the number of window 

nodes in the single l inked list when a window node is inserted for the same path. The 

height of tree is the maximum number of frequent event types among the windows. 

The maximum size of tree is the number of to ta l frequent event types in all windows. 

4.8 Mining Frequent Episodes with NE-tree 

The process of mining frequent episodes from a NE-tree is the same as that of mining 

from FP-tree, except that we have to follow the linked lists to get the position bits 

and process the bits when moving the event types from the remaining days of window 

to the first day. 

The posit ion bits w i l l be processed as follows. When mining paths containing an 

event type x, we follow the x's window pointer and trasverse from left to right to 

visit the columns of x's window nodes in the doubly linked list according to the x^s 

position count. I f x is at the level I, the position bi t of x is the l-th b i t of the position 

bits counted from left to r ight, where 0 < / < length of x's path. I f the position bi t 

of X is 0, i t means that x is in the first day of window and all event types in the 

remainingdays part of window can be moved to the firstday part. In other words, all 

the event types wi l l be in the first day of window after relocation. Thus the position 

bits can be reset to zero to indicate all event types are in the first day of window. On 

the contrary, i f the position bit of x is x is in the second part of window and the 

position bits remains unchanged. 

4.8.1 Conditional NE-Tree 

Similiar to the DE-tree, for the prefix paths of h, we insert those event types w i th their 

window frequencies no less than the support threshold into a conditional database 

DB', which is then sorted in descending order of window frequencies. A /I's condi-

t ional tree T' f rom DB' is constructed. The event types in HT' of T' follows the 
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order of event types in DB'. 

The min ing process is called recursively w i th the tree T' and a base event a = {h}. 

We repeat the min ing phase by following the links f rom header table and processing 

the posit ion bits. The frequent episodes formed for each event type h' in the T,,s 

header table are concatenated w i th the base events h' U a. 

In forming the new conditional tree, we re-compose the new posit ion bits from 

the condit ional path, which may be reset to zero i f the base event is in the first day 

of window. 

R e m a r k s : Zero posit ion bits becomes more common in the subsequent condi-

t ional trees. Therefore we sort the single linked list in ascending order of position 

bits and keep the zero position bits at the beginning of the list for faci l i tat ing us to 

update the posit ion count of zero position bits. 

4.8.2 Single Path Conditional NE-Tree 

When the tree has a single path, we can stop to bui l t conditional tree. Since a single 

path may contain different position bits and window nodes in different level of tree, we 

cannot generate all combinations of episodes for all event types in the path directly. 

On the contrary, we calculate the frequencies of episodes for each event type in the 

single path. 

However, when there is only one pattern of position bits for a prefix path of a base 

event, we can directly generate all combinations of episodes containing the base event 

according to the position bits. I f the only position bits is zero or all other prefix event 

types are in the first day of window, all combinations of episodes containing the base 

event can be formed since all of them satisfy the requirement. When the single prefix 

path of a base event contains only one position bits in which the base event is in the 

remaining days of window but there exist at least one event type of the prefix path 

in the first day of window, the resulting episodes are all the combinations containing 

the base events and at least one event type in the first day of window. 
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4.8.3 Complexity of Mining Frequent Episodes with NE-Tree 

Same as the DE-tree, the complexity of mining frequent episodes depends on the 

number of paths and the height of tree. I t is a NP-hard problem. 

4.8.4 An Example 

Example 4: We explain the mining process w i th the tree constructed in Example 

3. Start ing from the event type at the bot tom of the header table, we traverse all 

the prefix paths containing the event type x by following the links of x from the 

header table. After visit ing the ancestor event types for each rr's prefix path, the 

corresponding position bits in the single linked list are also obtained. Then three 

paths of a; are get: < 6, a, d, c,x >(00101:1,01010:1,01100:1)，< b,d,c,:r >(1011:1) 

and < 6, a, d,x >(0001:1). 

The window frequency and the first-part frequency of each ancestor event type 

are accumulated from the position bits. The f i f th bi t of each group of position bits 

is checked. I f the bi t is 0, the window frequencies and the first-part frequencies of all 

ancestor event types wi l l be incremented. When the bit is 1, the first-part frequency of 

an ancestor event type wi l l be accumulated by 1 only i f the position bi t of that event 

type is 0. The window frequencies of all ancestor event types are also increased by 1 

provided that all the bits before the position bits of x are not 1. For the first window 

node 00101 traversed for cc, the window frequencies and the first-part frequencies 

obtained ene < b : 1, a : 1, d : 1, c : 1 > and < 6 : 1，a : 1, d : 0, c : 1〉respectively. 

The remaining five position bits are checked in the similar way and the final window 

frequencies and the first-part frequencies are < b : 5, d : 5, a : 4, c : 4 > and < b : 4, d : 

4, a : 4, c : 2〉 . Since the first-part frequencies of all event types are lower than the 

support threshold, the 2-event episodes of event x < bx : 4, dx : 4, cx : 2, ax : 4 > are 

not frequent. 

Conditional paths and conditional NE-tree: Since only the window frequen-

cies of event types b and d meet the support threshold, we construct a x's conditional 
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tree w i th two event types b and d. A l l the prefix paths and the window nodes of event 

type X are trasversed again to compose the new position bits. The position bits of 

event types b and d are checked. The new position bits for the first column of the 

three window nodes are 01，00 and 01. The x's conditional tree constructed is shown 

in 4.21. 

Header Table 
event head of link 
type ( null ) 

00:3 ) 

( ⑴ ) 

( 1 0 1 ) 

Figure 4.21: The x's conditional tree. 

Recursive processing: The mining procedure is called recursively w i th passing 

the x's conditional tree. Since the tree contains a single path < 6 : 5, o? : 5 > (00 : 

3,01，10), we can generate all combinations containing at least two event types, that 

is <bdx : b > . The search for episodes consisting of event type x ends here. 

Next element in header table: The prefix paths and the window nodes of 

the second bot tom event type c are traversed: < b, a, d, c >(00110:1,01010:1,01100:1), 

< 6, a, c >(100:1) and < b,d,c >(1011:1). The fourth bit of position bits are checked 

for accumulating the window frequencies and the first-part frequencies as < 6 : 5，a : 

4, d : 4 〉 a n d < 6 : 4, a : 3, ti : 4 > . From the first-part frequencies, we can know 

that there is no frequent episode of event type c obtained. Since there is only one 

frequent event type b whose window frequency is no less than the support threshold, 

there is no need to construct c's conditional tree because we have already obtained 

the frequency of episode < b e � . Thus the generation of all episode containing event 

type c is terminated. 

The mining process for the other event types in header table is in the similar way. 
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The process is finished when there is only one event type b remaining unvisited in the 

header table. 

The min ing process can be concluded in Table 4.3. 

Event Paths visited {Window frequency, Frequent 
set First-day frequency} Episode 

^ X < 6 : 4，a : 3 , c h 3，c : 1 〉 { < 6 : 5 , d : 5 ,a : 4 ,c : 4 〉，小 

(00101:1,01010:1,01100:1) < 6 : 4, : 4, a : 4，c : 2〉 } 
< 6 : 4 , c f : l , c : 1 >(1011:1) 
< 6 : 4,a : : 3 >(0001:1) 

^ l i ^ < 6 : 1 >(00:3,01:1,10:1) { < 6 : 5 > , < 6 : 5 > } < bdx : 5 � 

c < 6 : 4,a : : 3,c : 1 > { < 6 : 5,a : 4,ch 4 > , • 
(00101:1,01010:1,01100:1) < 6 : 4, a : 3, ch 4〉 } 
< 6 : 4 , a : 3 > ( 1 0 0 : l ) 
< b : 4, d : 1 >(1011:1) 

d < 6 : 4,a : 3 > { < 6 : 6,a : 5 > , < bd : 6 > 
(001:1,0001:1,00101:1,01010:1,01100:1) < 6 : 6 , a : 4 > } 
< 6 : 4 >(1011:1) 

a < 6 : 4 〉 { < 6 : 6 > , < 6 : 6 > } < ba : 6 >^ 
(1011:1), (100:1),(001:1),(0001:1) 

(00101:1,01010:1,01100:1) 

Table 4.3: The summary of min ing process in Example 4. 

4.9 Performance evaluation 

To evaluate the performance of the two proposed methods, we conducted experiment 

on an Sun U l t ra 5_10 machine running SunOS 5.8 w i t h 512 M B Ma in Memory. The 

programs are wr i t ten in C. Bo th synthetic and real data sets are used. 

4.9.1 Synthetic data 

The synthetic data sets are generated f rom a modif ied version of the synthetic data 

generator in [28], which produces customer transactions for min ing sequential pat-

terns. In [28], a non-empty set of items is an itemset, whereas a set of ordered itemsets 

is a sequence and a set of transactions for a customer is a customer-sequence. The 
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original data generator gives a set of customer-sequences according to the realistic 

retai l ing environment that customer buys a set of items in at least one transaction. 

The original generator takes the parameters listed in Table 4.4. The number of 

transactions for a customer and the number of items in a transaction are in bell-

shaped normal distr ibutions w i th means as \C\ and |T| respectively and the small 

standard deviations. 

Parameter Description 
\D\ Number of Customers 
\C\ Average number of transactions per Customers 
|T| Average number of items per Transaction 

Average length of maximal potential ly large Sequences 
\T\ Average size of Itemsets in maximal potential ly large Itemset 
Ns Number of maximal potential ly large Sequences 
N j Number of maximal potential ly large Itemsets 
N Number of items 
c Correlation level 

Table 4.4: Parameter settings of the orignial synthetic data generator. 

A t the begining of the customer-sequences generation, i t prepares two tables, (1) 

N i potential ly large itemsets table and then (2) Ns potential ly large sequences table. 

Two tables are produced in a similar way. In generating potential ly large sequences, i t 

first determines the number of itemsets to be contained in the sequence using Poisson 

distr ibut ion w i th mean set to \S\. For the first sequence, all itemsets are selected 

randomly from the large itemsets table. But in the following sequences, part of the 

itemsets, the number of which is decided by an exponentially distr ibuted random 

variable w i th mean as the correction level, are selected from the previous sequences 

to take the common items between sequences. Each large sequence in the table is 

also assigned a weight obtained from an exponential distr ibut ion w i th unit mean, to 

give a biased sequence selection. The weights are normalized so that the sum of the 

weights for all the sequences in the table is 1. 

Next i t is ready to generate \D\ customer-sequences. For each customer-sequence, 
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i t first determines the number of transactions and the average size of each transaction 

w i th the Poisson distr ibutions given means as \C\ and |T| respectively, and then 

chooses a series of potential ly large sequences f rom the table. The large sequences 

in a customer-sequence are obtained randomly f rom the table of Ns large sequences 

according to the probabi l i ty assigned in the weights. 

In the actual usual case, a sequence is not complete that some items may be 

missed. The generator imitates the situation w i th a corruption level c, which is fixed 

and calculated f rom a normal distr ibution. When a uni formly distr ibuted random 

number between 0 and 1 is less than c, an i tem wi l l be removed from the sequence 

when inserting a transaction into a sequence. 

Our data generator is developed on the original one w i th the consideration of 

overlapping windows. 

In bui lding our data generator, the large itemset and the large sequence in the 

original data generator become a set of events in the same day and the frequent episode 

respectively. Project ing the customer-sequence into the event dataset in our case, we 

are to produce a dataset consisting a single customer w i th a number of transactions. 

The transactions for the only customer become days in the event dataset whereas 

the items become events. Similarly, a x days of window is a group of x consecutive 

transactions. Thus a frequent episode corresponds to a large sequence, whereas a 

frequent episode wi th in a single day corresponds to a large itemset. And we wi l l 

call the latter frequent eventset. Our data generator takes the nine main parameters 

listed in Table 4.5. 

We first produce the tables of frequent eventset and frequent episodes w i th the 

same method as the original one. 

Next we assign events to the days. For the first day, we select the events randomly. 

In the subsequent {W — 1) days of the first window, the events are selected according 

to the events in the previous days by following the method of generating items into 

the transactions for a customer. The correlation between events and the corruption 

of episodes are also considered and applied. Then the events in the last (W — 1) days 
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Parameter Description Values 
- | D | —Number of days I K , 2K, 3K" 

|T| Average number of events per day 10，20 
| / | Average size of frequent episodes 3, 5 
\E\ Average size of frequent eventset 1, 1.75 
L Number of frequent episodes 1000 
F Number of frequent eventset 5000 

- M Number of event types 100 - 1000 
W Window size 2 - 1 0 
c Correlation level 0.25 

Table 4.5: Parameter settings of the synthetic data generator. 

of the previous window is copied to a window buffer as the first {W - 1) days of the 

second window. The events in the last day of the second window are generated by 

referring the events in its first (W — 1) days, where the second window can be viewed 

as the second customer-sequence wi th W transactions. The events in the first (VF — 1) 

days of the second window are discarded and only the events in the last days of the 

window are inserted into the dataset as the {W + l ) - t h day's events. The remaining 

days of events are generated in the similar ways unt i l a dataset of \D\ days of events 

are produced. 

Relative Performance 

Four datasets w i th different parameter settings are shown in Table 4.6 are produced. 

We perform the experiments under different thresholds and window sizes w i th datasets 

D I and D2 while the datasets D2 to D4 are used to perforin the experiment under 

different number of days and event types. 

In our implementation, we used linked lists to keep the frequent episodes, one list 

for each episode size. Each of these lists is kept in an order of decreasing frequencies 

for a ranked display to the user at the end of the mining. We measure the run time 

as the total execution time of both CPU time and I / O time. The run time in the 

experiment are the total run time of tree construction and mining. The total run time 
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Dataset Name Dataset |T| | / | 
D1 T1Q.I3.M5Q0.D1K 10 ~ 3 H T 500 
D2 T2Q.I5.M1QQ0.D3K 20 ~ 5 W 1000 
D3 T20.I5.M1Q0.D2K 20 5 ~ W 200 
D4 T2Q.I5.M500.D2K | 20 | 5 | 2K | 500 " 

Table 4.6: Four datasets w i th different parameter settings used in the experiment. 

is approximately equal to the mining t ime because the bui lding t ime is not significant 

comparing to the mining time. Among the all experiments conducted, the maximum 

construction t ime is less than 2 minutes. Each data points in graphs are the mean 

t ime of the several runs of the experiment. 

The run t ime decreases w i th the support threshold as shown in Figure 4.22 (a). 

As the support threshold increases, less frequent events are found and included in the 

subsequent condit ional trees and much less t ime are required to find the frequent items 

in the smaller conditional trees. NE-tree performs better than DE-tree especially 

when the dataset is large. I t is because the paths of tree are longer when the threshold 

is smaller and much t ime are consumed in depth search to determine the actual counts 

of items in prefix path. Al though DE-tree needs considerable t ime in performing depth 

search, the difference of execution times of two trees are not large because NE-tree 

needs to check each set of position bits one by one to identify the positions of items 

in windows which is also t ime consuming. 
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Figure 4.22: Performance of synthetic datasets D1 and D2. 

Figure 4.22(b) shows the effect of different window sizes on the run time. The 

dataset D1 and D2 are used and the experiment run under threshold fixed to 20%. 

When the window size increases, the execution t ime increases because more items are 

included in window and paths of trees. The sizes of the in i t ia l tree and the conditional 

trees are larger. So the run t ime for D1 is much larger than that for D2 when the 

window size is greater than 8 days. 

To study the effect of the number of days in datasets on the execution time, the 

experiment on dataset D2 is conducted. The support threshold and the window size 

are set to 10% and 3 days respectively. The result in Figure 4.23(a) shows that the 

execution t ime increases linearly w i th the number of days. 
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Figure 4.23: Synthetic dataset D2 w i th window size 二 3 and threshold = 10%. 

The effect of the number of event types on the execution t ime is also investigated. 

The dataset D2 is used and the support threshold is set to 10% w i th a window size 

of 3 days. The result is shown in Figure 4.23(b). 

The curve does not rise as expected, but falls exponentially as the number of event 

types increases. Since the number of days and the number of event types per day 

are fixed, when the number of items is decreased, the distr ibut ion of event types are 

more concentrated and the frequencies of the event types are higher. Therefore less 

events are pruned when constructing the conditional trees and the run t ime is longer. 

The effect of different numbers of event types w i th various thresholds on the run 

t ime is also evaluated and represented in Figure 4.24. Two datasets, D3 and D4, 

which have different numbers of event types as 200 and 500 respectively, are used. 

The run times required for D3 are much more than D4 due to the higher frequencies 

of event types in D3. When the support threshold is less than 8, the run t ime for D3 

is too large (> 60000 seconds) and cannot be measured. 
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Figure 4.24: Synthetic datasets D3 and D4 w i th window size = 3. 

In usual case, the main memory required for the tree is approximately 40MB. For 

the extreme case that the program requires long t ime ( > 10000 seconds) to run, the 

size of the process in the memory is about 70MB. 

We also compare the difference between the size of FP-Tree [23] and that of the 

two event trees we proposed. Two datasets, D2 and D4, are used and the threshold is 

fixed to 1% and 2% respectively. For the FP-tree, we treat each event type as an i tem 

and a database record as a transaction. The frequency of an itemset is the number 

of records that contains the itemset. The sizes of trees are shown in Table 4.7. 

Tree Type Window Size Maximum Size 
(in days) | in D2 | in D4 

"FP-Tree - 320QK 2300K 
DE-Tree 2 6300K 44QQK 
D E - T r e e 3 16M 12M 

l ^E -T ree 2 650QK 45QQK 
NE-Tree 3 15M 12M 

Table 4.7: The sizes of trees for two datasets, D2 and D4, w i th thresholds fixed to 
1% and 2% respectively. 

The sizes of event trees are larger than the size of FP-Tree. I t is because a path in 

the event tree contain the events from more than one days, while in FP-Tree the path 
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contains the items f rom only one transaction. The paths in FP-Tree are shorter. So 

the subsequent condit ional trees are smaller and less condit ional trees are generated 

in FP-Tree. However the size difference is st i l l reasonable and acceptable. 

The max imum height of tree generated by the event tree are recorded and shown 

in Figure 4.8. The datasets D l and D2, which have 10 and 20 average events per 

days respectively, are used. 

Window Size (in days) 
2 I 4 I 6 I 8 I 9 I 10 

Max. Height in D l " 52 44 96 127 156 
Max. Height in D2 3 62 119 211 223 ^ 

Table 4.8: The maximum height of event tree for different window sizes on dataset 
D2. 

4.9.2 Real data 

The real data set is the news event extraction result f rom a internet repository of a 

number of local newspapers in Chapter 3. I t contains 121 event types and 757 days. 

The performance of two trees using the real dataset w i th different thresholds and 

window sizes are shown in Figure 4.25(a) and Figure 4.25(b). In Figure 4.25(a), 

the window size is set to 3 days. The execution t ime is rapidly decreased w i th the 

threshold above 15%. I t is because the supports of the half of the most frequent 

events are close together, when the threshold is below 17%, the pruning power in 

forming conditional trees is weak. 
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Figure 4.25: Performance of real dataset. 

The performance on varying the window sizes are shown in Figure 4.25(b) w i th the 

threshold equal to 20%. The execution time increases w i th the window size steeply. 

The run t ime wi th a window size of 5 days is too long (> 30000 seconds) and is 

not shown in graph. When the window size is large, the tree paths are longer and 

include more items. As the supports of the items are close together, the subsequent 

conditional trees nearly include all event types from the original trees and the sizes 

of conditional trees cannot not be reduced. Thus the mining t ime increases wi th the 

window size. 
Real Dataset Results Interpretation 

Since the frequency of the events obtained from newspapers are much less than the 

events of stock price movement, we have set the threshold to 10% to allow more 

episodes including the newspaper events to be mined. The mining results has 1618500 

episodes in total. Most of the frequent event types in the real data set are the events 

of stock price flat, so the frequent episodes mined are always contained the stock flat 

events. But i t is meaningless to have the episodes the events in which are all 'stock 

flat', e.g. " the stock of Hong Kong Electric and Dow Jones Index flat wi th in 3 days", 
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although which is the most frequent episode in the result mined. We have selected 

some interesting episodes mined w i th threshold set to 10% and window size set to 3 

days as shown in Table 4.9. Since we record the events as long as they are mentioned 

in the newspapers, even though the episodes happen once only, the supports of the 

events and their episodes may be more than once. So the support of the second last 

episode in Table 4.9 is 77, although PCCW buys H K Telecom once. We notice some 

relationship between Nasdaq and PCCW, a telecom stock. We see that Nasdaq may 

have l i t t le impact on SHK Properties (real estate), or HSBC (banking). Finally, the 

event of PCCW buys H K Telecom can be seen as a good news for Cheung Kong. 

"Episode Support 
Nasdaq downs, PCCW downs 151 
Cheung Kong ups, Nasdaq ups ； 129 
Cheung Kong Holdings ups, China Mobile Ups 128 

l ^asdaq ups, SHK Properties flats, HSBC flats 178 
Cheung Kong ups, SHK Properties flats, H K Electric flats 178 
China Mobile downs, Nasdaq downs, HK Electric flats 178 

-China Mobile downs, Heng Sang Index downs, HSBC flats 135 
—US increases interest rate, HSBC flats, Dow Jones flats 一 100 

PCCW buys HK Telecom, Cheung Kong ups 77 
Hutchison buys company, Cheung Kong downs 75 

Table 4.9: The frequent episodes selected from the results mined w i th threshold = 
15% and window size = 3 days. 

In the whole set of episodes mined, 56 episodes contain the newspaper events 

only and does not contain any stock events. However, in the episodes containing 

more than 2 events, they always contain the frequent 'stock flat' events appearing 

in the 2-event episodes. Because there is no constraint set in the mining process 

and the method proposed is for general use, the events in some episodes mined are 

seemed to be unrelated. For example, the episode of，SKH properties ups and Nasdaq 

downs wi th in three days" seems does not make sense, because the SKH properties 

and Nasdaq are in different field and SKH is less likely to be affected by Nasdaq. 
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As there are rather a lot episodes containing the stock flat events only, to i l lustrate 

the actual number of potential useful episodes which contains at least one non stock-

flat event, we calculate the number of interesting episodes which contains at least one 

non stock-flat events. Figure 4.26 illustrates the distributions of each size of the total 

episodes and the interesting episodes mined from the real dataset. I t shows that the 

proport ion of the interesting episodes is high in the total episodes mined. 
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Figure 4.26: Distr ibut ion of total episodes and interesting episodes mined from the 

real dataset. 

The maximum heights of the trees generated for the real dataset are also recorded 

and shown in Table 4.10. The experiment is conducted under various support thresh-

olds and window sizes. In the former case, the window size is set to 3 days, while in 

the later case the support threshold is set to 10%. 

Support Threshold (%) 5 I 10 I 15 I 20 I 25 
Max. Height | 47 [ 46 | 43 | 43 | 41 | 38 

Window Size (in days) [ 2 | 3 | 4 | 5 | 6 [ 7 ~ 
Max. Height | 36 | 46 | 52 | 55 | 57 | 58 

Table 4.10: The maximum height of event tree for different window sizes on dataset 
D2. 

We have also recorded the maximum size of trees resided in memory when the 

process generates the 1618500 episodes, that is when the support threshold and the 
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window size are set to 10% and 3 days respectively. The maximum size of memory 

used is 100MB. 

4.10 Conclusion 

We consider the problem of mining frequent episodes for financial events. We propose 

a new definit ion of frequent episodes which differ f rom previous work and which 

amends a deficiency in earlier definition. The new definit ion does not render the nice 

property that all subsets of a frequent episode are also frequent. This means that 

apriori-l ike methods cannot be used. We have derived and described a new mining 

method based on a prefix tree structures which bears some similar i ty to the FP-

tree but w i th distinctive features to make i t work for our problem, and proposed a 

corresponding mining procedure. We have conducted experiments to evaluated the 

performance of the method. We have found that the performance of the proposed 

method is efficient and effective. 

On the other hand, although the performance of NE-tree on run t ime is slightly 

better than DE-tree, the single linked list in NE-tree storing the position bits is not 

systematic. In the worse case when all position bits exist, there wi l l be T number 

nodes in the list, where n is the number of events in path. Therefore the single linked 

list used to store the position bits may be changed to other k ind of data structure, 

such as tree, that can reduce the storage and avoid the considerable memory residence 

in the worst case. 



Chapter 5 

Mining A -̂most Interesting 

Episodes 

In the method introduced in Chapter 4, a threshold is given by users at the beginning 

to specify the min imum support of the frequent episodes to be mined. However, in 

many cases, we do not know the frequency distr ibution of event types in database 

and the opt imal threshold for obtaining the most suitable number of episodes. I f the 

threshold is set too low, the run time is long and a large number of resulting episodes 

is output that we have to waste t ime to select the desired frequent episodes. But 

when the threshold is set too high, there may be too few episodes mined. We usually 

have to tune the threshold to obtain the appropriate number of episodes. A better 

alternative to obtain the desired number of episodes is to specify the number of the 

most frequent episodes for all sizes of episodes to be mined, that is the " iV" in the 

problem of finding the iV-most interesting /c-episodes. I t is easier to decide N than 

the threshold to control the final number of resulting episodes. In this chapter, we 

propose a method applying the two tree structures discussed in Chapter 4 to find the 

iV-most interesting /c-episodes. 

104 
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5.1 Introduction 

In Chapter 4, when we mined episodes from the synthetic data, we have to choose 

a threshold first. But i t is usually difficult to decide a suitable threshold, because 

we do not know about the frequencies of event types in the database. In general, 

we t ry a large threshold in the beginning, which, however, results in no episodes or 

too few episodes mined. Then the smaller threshold is set but the execution t ime is 

long and too much episodes mined. In this case, we also have to search manually for 

our actual desired episodes from the results mined. To facilitate getting the desired 

number of results, the number of the top-most frequent episodes, rather than the 

support threshold, is specified. 

29] and [30] have proposed the methods for mining iV-most interesting itemsets. 

While the former, Itemset-Loop [29] , bases on the classic sequential pattern mining 

algorithm, Apr ior i generation [19] , the later, BOMO, bases on the FP-tree algorithm 

in [23:. 

Starting from the potential 1-itemset, Itemset-Loop [29] uses the /c-itemset mined 

to generate the candidate (A: + l)-itemset which in turn generates the potential (A; + l ) -

itemset. Itemset-Loop also adjusts the support threshold in each iteration of candi-

date A;-itemset. To avoid missing interesting itemset, the support of the N-th. potential 

[k + l)-itemset is checked. When the iV-th support of the sorted candidate {k + 1)-

itemset is less than that of the potential k-itemset, i t implies that some (A: + l)-itemset 

which containing the itemset are missed in the potential (A; + l)-itemset. I t loops back 

to find the new potential A;-itemset whose support meets the support of the 7V-th of 

candidate A:-itemset. The main idea of Itemset-Loop is good. But since the core of 

the method is the Apriori-gen, its performance is l imited due to the repetitive scan 

of database. 

BOMO [30] applies the FP-tree algorithm to mine the TV-most interesting item-

sets. I t assigns a threshold for each size of itemset. A l l threshold is set to zero 

initially. Once the N-th frequent itemset is found and its support is greater than the 
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current threshold of the size of itemset, the corresponding threshold is updated. The 

threshold for constructing subsequent conditional trees is the min imum value among 

the thresholds of all sizes of itemsets. 

To increase the efficiency, i t evaluates the in i t ia l thresholds after building the 

in i t ia l complete tree. I t transverses down the paths of the complete tree to the level 

which is equal to the maximum size of itemset the user target and records the supports 

of the i tem nodes in each level. The in i t ia l threshold for the /c-itemset is the TV-th 

support of the support list at the k-\eYe\ sorted in descending order. 

B〇M〇 has shown a satisfactory performance. Thus we have adopted BOM〇 to 

the two trees in the previous chapter to mine the TV-most interesting episodes. 

5.2 Method 

The method of mining TV-most interesting /c-episodes we proposed is a variation of 

the mining frequent episodes approaches wi th two trees in Chapter 4. The variation 

is based on [30] w i th some significant improvement to speed up the mining process. 

Here is the formal definition of the TV-most interesting /c-episodes: 

Definition The TV-most interesting /c-episodes is the top N episodes in the list 

of A:-episode sorted in descending order of support, where 2 < k < kmax and kmax is 

the maximum l imi t of episode size assigned by user to be mined. 

In the mining method proposed in Chapter 4, a support threshold is assigned to 

state the lower bound of support of the frequent episodes to be mined in each run-

ning time. The other purpose of the threshold is to recognize the frequent event types 

and their subsequent frequent episodes, removing the less frequent event types during 

the mining process. Thus the threshold can also reduce the size of conditional trees 

and shorten the mining time. 

On the contrary, in mining Almost interesting /c-episodes, only the number of top 
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episodes, N , is given, instead of the support threshold, to describe the target frequent 

episodes. Taking the advantages of support threshold for excluding those less frequent 

event types and reducing the mining time, we adopt the method proposed in Chapter 

4 by setting and varying the thresholds which are implied by the corresponding sup-

ports of the N-th. frequent k-episode. The detail of the methods is described as follows: 

Initial Threshold 

Because there is no threshold assigned init ial ly, we set all the thresholds to 1. The 

threshold is set to 1 instead of 0 because, in our definition, the frequent episodes 

are those episodes the supports of which are no less than the threshold. And i f the 

threshold is set to 0, i t may imply that even if the event type does not exist in the 

database, the event type can be included in the frequent episodes and the conditional 

trees. So i t would be more reasonable to set the ini t ia l threshold to 1. 

Individual and Dynamic Support Threshold 

Our task is to find the iV-most interesting episodes for each target episode size. Since 

the minimum support among the iV-most interesting episodes for each size of episodes 

may be different, each size of episode is assigned its own individual and dynamic sup-

port threshold, & where 2<i< kmax- The threshold has the same meaning wi th that 

in the approaches in Chapter 4, but the thresholds in this problem are continuously 

updated whereas the threshold is fixed in the previous problem. Each individual 

threshold is set to one initially. During the mining process when the support of a 

/c-episode is no less than the /c-episode is inserted into the final A;-episode result 

list in descending order of support. The individual thresholds <5； is upgraded to be 

the support of the N-th. most highest support among all the .^-episodes discovered so 

far i f the support of the N-th. most frequent 々-episodes is greater than the current 

threshold. 

Minimum Threshold 
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The individual threshold “ is only to determine the frequent /c-episodes. When de-

ciding frequent event types to generate conditional trees, another threshold is used. 

When selecting frequent event types for constructing conditional tree, the supports 

of the event types along all the prefix paths of the base event types are accumulated. 

The frequent event types are those event types whose supports meet the threshold 

•̂ min，where ^min IS the minimum threshold among the set of thresholds for the different 

sizes of episodes to be included in the next conditional tree. That is, for a a，s 

conditional tree, when determining ^rnin, for generating next {a U /5)'s conditional 

tree, 

^min 二 饥 M�min,�min + 1,…，J 

where 

jmin = Q； + 3 

j • 工 — \ a \ + [longest prefix path of + 1 

and where jmin < i < 3max, is the threshold for the z-episodes and “ is the 

threshold for selecting the event types in generating the conditional trees. When gen-

erating {a U /3)'s conditional tree from the a's conditional tree, the possible sizes 

of episodes that the new conditional tree can produce are between \a\ + 3 and 

+ |the longest prefix path of + 1. And the event types contained in the a's 

conditional tree can appear in any size of episodes. The frequencies of the event 

types should meet the thresholds of all the possible sizes of episodes that the tree can 

generated. Therefore the support threshold for selecting the event types to construct 

the conditional tree is the minimum threshold among the thresholds of all size for the 

possible episode can be generated as shown in equation 5.1. The values of jmin and 

j 康 vary wi th the conditional trees to be generated. 

5.2.1 Threshold Improvement 

Basically, we may set all thresholds & to 1 init ial ly and increase the threshold “ once 

the support of the iV-th A:-episode mined is greater than the current threshold But 
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the mining t ime needed is long and i t is not efficient especially when the size of con-

dit ional tree is large. Thus we propose an improvement to push the in i t ia l threshold, 

reducing the size of the in i t ia l conditional tree. The main idea of the improvement is 

to increase the threshold as high as possible before the start of the mining process. 

Top-down Scan of Header Table 

Since the more frequent an event type is, the higher the supports of its episodes are, 

we start f rom the second top event type in the header table to mine the more frequent 

episodes first. The episodes wi th high supports can push the thresholds up in the 

beginning of the mining process, less frequent event types wi l l be discarded and this 

wi l l reduce the subsequent conditional tree sizes. 

Evaluation of Initial Individual Threshold 

When we have finished mining episodes for a base event type e ,̂ where 0 < i < total 

number of event types in the ini t ia l complete tree and i is the position of the event 

type in the header table of the ini t ia l tree, the possible individual thresholds can be 

updated are Next we find the episodes associated wi th the event types 

e^+i, the range of size of which is 6+1, Cz+2- But since there is no {i + 2)-

episode mined, the individual threshold for {i + 2)-episode, is 1. Although we 

have tr ied to raise the thresholds, the minimum threshold ^rnin is st i l l 1 because 

is minimum and is 1. Hence in addition to improving the individual thresholds wi th 

top-down scan approach, we need to evaluate the ini t ia l thresholds. 

Since the support of a node x at level k implies the support of the A;-episode 

formed by the event type x and all its ancestor event types in the prefix path. Once 

we have bui l t the ini t ia l complete tree, we perform depth-first search to find and 

record the support of each node at the level wi th in the maximum size of episode user 

specified. Then the supports of the nodes at each level are sorted in descending order 

and the ini t ia l individual thresholds are the A^-th support of the event nodes at the 

corresponding level. 
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The evaluation method can be applied to both tree structures directly. For tree 

1，the nodes at the top levels of the tree are those event types in the first day of 

window. When we retrieve the first k events nodes as a /c-episodes, the episodes must 

be valid since the paths are inserted to the tree only i f at least one event type is in 

the first day of window. Therefore we can simply retrieve the support of k-level node 

to obtain the N-th. /c-episodes. 

On the contrary, we cannot apply the method on NE-tree directly. In NE-tree, 

the level the event type situated at is according to the window frequency regardless of 

the event type position in window. Using the method applied in DE-tree to evaluate 

the in i t ia l individual thresholds, we may also include those invalid episodes that no 

event type is in the first day of window and inaccurate results are produced. 

In calculating the episode frequency, we have to check if the current base event 

type or at least one of all its ancestor event types is in the first day of window. To 

facilitate the retrieval of the count of valid episode, each event node contains a ,valid 

episode count' similar to the count in node of DE-tree which stores the number of 

valid episodes containing the current event type and all its ancestor event types. The 

valid episode counts are inserted to the nodes during tree construction. For example, 

given three position bits for a single path, 1011, 00111 and 000, the valid episode 

counts of the nodes from top to down in order are 1, 1, 2, 2 and 1. 

Evaluation of the complete path 

The minimum threshold ^min is the smallest value among the individual thresholds 

& for different sizes of itemsets. However the smallest value usually is the support of 

the largest size of episode. I t is because the smaller episodes are usually the subsets 

of the larger episodes. Therefore, the minimum threshold is usually the support of 

the largest episode. 

For an event type ê  in 6,s conditional tree, where i is the position of ê  in the 

header table of b,s conditional tree, 0 < z < number of event types in b,s conditional 

tree and 6 is a set of base event types, a complete path of ê  is a prefix path which 
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contains ê  and al l e?s i ancestor event nodes. When accumulating the frequencies 

of all event types in the prefix paths of an event type ê  for constructing (e^ U 6)，s 

condit ional tree, i f e^'s longest prefix path is a complete path, the maximum size of 

episode, jmax, that the condit ional tree can generate is z + 1 + \b\. I t also implies that 

all subsequent m in imum thresholds ^rnin for constructing its subsequent conditional 

trees of ê  U 6 are the thresholds for the complete path i f al l ancestor event 

types are reserved. Thus the min imum thresholds ^rnin keeps the smallest support 

values ^i+i+\b\ in the subsequent mining of episodes containing the event types ê  and b 

.However the m in imum threshold for the maximum size of episodes is used to reserve 

the event types for the largest episode w i th size z + 1 + mined at the end of the 

mining process of the condit ional tree. Therefore the small m in imum threshold for 

the longest path is a bottleneck of increasing the min imum threshold in the mining 

process. 

Pre-insertion 

To improve the min imum threshold, we pre-insert the jmax-episode of the complete 

path, eo U ei U …U ei U 6，into the current TV-most jma^-episode result list i f its support 

is no less than the threshold。•工,which is the A^-th support of the A;-episode mined 

so far. The maximum size of the episodes the subsequent (e^ U 6)，s conditional tree 

generates wi l l be smaller than z + 1 + |6| and the imax-episode wi l l not be inserted 

to the result list again. In determining the min imum thresholds in the subsequent 

conditional trees, there is no need to consider the threshold of the episodes w i th the 

size of complete path, ( “ ^ Thus the maximum size of episodes, jmax the conditional 

path can produce is 

+ 3 < jmax < W + [complete-.path 

However in counting the tota l window frequencies of event types in tree, although 

the episode containing the complete path is inserted into the final result set, the 

frequencies of all the event types in the complete path are st i l l counted and considered 
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in constructing the next conditional tree because the path of event types consists of 

the sets of smaller sizes of episodes. 

We only pre-insert episodes of the complete path only. For the other smaller sizes 

of episodes, since there are more than one paths in tree containing the same episodes, 

i t is t ime consuming and is not cost effective to count the supports of the episodes. 

In identi fying the complete path of the current event type, the number of event 

nodes in the prefix path should be equal to the position of the event type in the 

header table. When applying the improvement method to NE-tree, the frequency of 

the event type e^'s complete path is the valid episode count of the last node of path, 

that is the count of the event type e ,̂ because the complete path is a unique path in 

tree. 

However in DE-tree, the prefix path for the complete path may not be unique. 

Since there may be some event types, e^, where k > i, under the current event node 

of ei in the first part of path separating the ancestor event types in the second part 

of paths, the frequency of the complete path is the tota l count of the all complete 

paths in the tree. 

5.2.2 Pseudocode 

The overall steps of mining the TV-most interesting /c-episodes is similar to that in the 

Chapter 4. The pseudocode of mining the TV-most interesting /c-episodes is shown in 

Figure 5.1 and 5.2. The codes are generalized to suit the two tree structures. 

5.3 Experimental Results 

We compare the performance of two trees mining TV-most frequent episodes wi th 

the two original trees proposed in Chapter 4 mining episodes w i th a given optimal 

threshold. The opt imal threshold assigned for comparing the performance of the 

corresponding iV-most trees is the minimum support among the supports of all sizes 

of AT-most frequent episodes mined by the TV-most trees. Since the average support 
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N-mostJFreq—Episode: To mine the AT-most frequent episodes. 
Input: The maximum size of episodes mined, max. 
Output: iV-most frequent /c-episodes, where 2 < k < max. 
Procedure N-most_Freq_Episode() 
{ Let cjmax be the max size of episodes in the current conditional tree 

C-max = 0； irnin = = = … = = 1 

Construct initial complete tree, tree, with ^min 
I I pre-evaluate the initial individual threshold, ^o, Ci? imax 
for each level I < max of tree 

for each child node e 
if e.count > 

insert e.count into supportJist[l 
update as N-th support in supportJist[l 

Mine( t ree, rm",仏 

} 

Figure 5.1: The main program for min ing iV-most frequent episodes. 

of an episode is inversely proport ional ly to its size, the opt imal threshold always is 

the support of the N-th /cmax-episodes. 

The experiment is conducted on an Sun U l t ra 5一 10 machine running SunOS 5.8 

w i t h 5 1 2 M B main memory. The programs are wr i t ten in C. The run t ime measured is 

the to ta l execution t ime of bo th CPU and I / O t ime. The run t ime in the experiment 

is the to ta l run t ime of tree construction and mining. Each data points in graphs 

are the mean t ime of the several runs of the experiments. Bo th synthetic and real 

datasets are used. 

5.3.1 Synthetic Data 

The synthetic data are generated f rom the synthetic data generator i in [19], which 

is modif ied to generate episodes w i th consideration of overlapping windows. For 

convenience of reference, the five main parameters taken in generating data and the 

two datasets used in experiment are listed in Figure 5.1 and Figure 5.2. 

We study the effect of N on the execution t ime by using different values of N f rom 

ipor detailed description of the modified data generator, please refer to Section 4.9. 
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Mine: To mine the iV-most interesting episode which include a set of event types b 
Input: Root of tree, tree and a list of required thresholds, 
Output: A frequent episode list, F 
Procedure Mine(tree, b,々&|+2,..., ^c.max) 
{ If tree contains single path only 

generate all combinations of episodes directly 
Else 

For each event type ê  in header table (from top to down) 
complete-path 二 0; C-maa: 二 0 

For each prefix path of ê  
Accumulate the total support of each event type in prefix path 
If the current path is an complete path 

complete-path 二 1; completepath-count + 二 e.count 
Else If (n > c-nnax) 

cjmax = |event types in the prefix path| + + 1 
If complete .path 二 = 1 and completePath—count > 

Pre-insert the episodes 6 U eo U ei... U ê  into F; Update 細 

For each event type, a, in prefix paths 
If {a.support > C|6!+2) 

Insert a U ê  U 6 into F ; Update 々 6|+2 
(min = …乂c—maaO 
For each event type, c, in prefix paths 

If {c.support > ^min) then insert c into freq event type list, E 
Construct 6U e '̂s conditional tree, treebusi with E 
If treebusi not null 

W\\ne{treebuei,e^,<^丨6|+3, •••，̂c.max) 
} 

Figure 5.2: The code for min ing iV-most frequent episodes. 

Parameter Description Values 

\D\ - Number of days — I K , 2K, 3K 
[T\ Average number of event types per day 10, 20 
|7| Average size of frequent episodes 3, 5 
| L | N u m b e r of frequent episodes 1000 
M Number of event types 100 - 1000 
W Window size 2 - 10 

Table 5.1: Parameter settings of the synthetic data generator. 
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Dataset Name Dataset |了| | / | | 
D1 TlQ. I3.M5QQ.Dl i r~ 10 3 _ I K 500 
D2 T2Q.I5.M1QQ0.D3K | 20 | 5 | 3K [ 1000 

Table 5.2: Two datasets wi th different parameter settings used in the experiment. 

5 to 25 w i th kmax and window size fixed to 5 and 3 respectively. The execution time 

for the two datasets are shown in Figure 5.3(a) and 5.3(b). The optimal thresholds 

used are from 1.5% to 1.8% for D1 and from 2% to 2.34% for D2 when N decreases 

from 25 to 5. 

25 ‘ ‘ ‘ N-most DE-Tree — i — ‘ ‘ ‘ N -mo^ DE-Tree — > — 
N-most NE-Tree - - - x — N-most NE-Tree — x - - -

DE-Tree with Optimal Threshold … Dg-；[；ree with Optimal Threshold … 
NE-Tree with Optimal Threshold - Q — NE-Tree with Optimal Threshold — a — 

110 -

2 0 - -

‘ i。o-
I 諷 f « ：二Z' 
i , 5 .-•••" 了二；；̂…™•； I i go . * " " - 一 -

I I : : z Z 一 Z 
^ - 8 0 -

5 , I I 60 1 1 ‘ 
0 5 10 IS 20 25 0 5 10 15 20 25 

N N 

(a) Dataset D1 (b) Dataset D2 

Figure 5.3: Run time for different values of N wi th kmax 二 5 and window size = 3. 

The run time increases wi th N because when N becomes larger, less frequent 

episodes are included in the resulting set of episodes. The minimum threshold, f^nax, 

is smaller as the N increases. 

The overall performance of the TV-most DE-tree is the best especially when N is 

small. Due to the pre-evaluation of ini t ial threshold and top-down scan of header 

table, the threshold improvements allow the largest possible thresholds used for each 

size of episode. On the other hand, in the original tree the optimal threshold, which 

is also the minimum threshold among the episodes mined in the results, is used in 
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the whole process. Hence the original tree run l i t t le b i t longer than the TV-most tree 

when N is small. 

However, the performance of TV-most NE-tree is less satisfactory than that of 

the iV-most DE-tree for the，valid episode count' in the TV-most NE-tree. When 

constructing the in i t ia l complete tree and the subsequent condit ional tree, each event 

node is given a val id episode count. The bits in each window nodes belonging to the 

ancestor nodes have to be checked for the existence of zero. So extra t ime is spent on 

checking the bits in bui ld ing condit ional trees. 

The performance of the original trees w i th opt imal threshold is better than that 

of the TV-most trees when N and the size of dataset are large, ie. when N > 15 and 

D2 is used. I t is because the trees w i th opt imal threshold has given a threshold which 

determines and removes the items the support of which less than the threshold and 

reduces the size of the in i t ia l tree. In addit ion, since the threshold given is the opt imal 

threshold, the trees constructed are the smallest required trees. On the contrary, in 

the methods for min ing iV-most episodes, the in i t ia l tree w i t h al l items regardless 

of their supports is bui l t . Therefore extra event types and extra condit ional trees 

are included, increasing the overhead. Also when the dataset is large, the cost of 

constructing the in i t ia l complete tree for the iV-most trees becomes significant. 

The performance of the methods w i th different kmax on the datasets D1 and D2 

is shown in Figure 5.4(a) and 5.4(b). N and the window size are set to 5 and 3 

respectively. The opt imal threshold used is f rom 0.5% to 5% for D1 and from 1.3% 

to 3.8% for D2. The run t ime for NE-tree w i th opt imal threshold is too large when 

kmax is larger than 10，and i t can not be measured. 
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(a) Dataset D I (b) Dataset D2 

Figure 5.4: Run t ime for different values of kmax w i t h TV 二 5 and window size 二 3. 

The run t ime increases w i t h kmax- Since the size of episode is inversely propor-

t ional to the support, the m in imum threshold of the iV-most trees is always equal 

to the N-th support of the /^maa^-episodes. The m in imum threshold and the opt imal 

threshold is gett ing smaller when kmax is large. 

We also investigate the effect of the different window sizes on the execution t ime. 

We have set the window size f rom 2 to 10 w i t h both N and kmax kept to 5. The 

results are shown in Figure 5.5(a) and 5.5(b). The opt imal thresholds for D I and D2 

are f rom 19.6% to 1% and f rom 1.74% to 21.87% respectively. The run t ime rises 

exponentially w i t h the window size. 
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Figure 5.5: Run t ime for different values of N w i th k蒙=5 and window size = 3. 

We also evaluate the effect of the different number of days, D , on the run time. 

Experiment on dataset D2 is conducted. The N, window size and k而 are set to 5, 

3 and 5 respectively. The optimal threshold is from 2.225% to 2.36%. The run time 

increases w i th the number of days linearly as shown in Figure 5.6(a). 
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Figure 5.6: Run time for dataset D2 wi th iV = 5, window size = 3 and kmax = 3. 

The performance of the methods under different number of event types are com-

pared and shown in Figure 5.6(b). The values of N, kmax and window size are set to 
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5, 5 and 3 respectively. The optimal threshold is from 2.34% to 35.1%. 

The run t ime increases w i th the number of event types, which is different from the 

decreasing run t ime for the original trees in Section 4.9. Since the value of N is given 

in A/'-most trees and the in i t ia l thresholds are deduced from N, the thresholds are 

dynamically adjusted for the dataset. Thus even though the frequencies of the smaller 

number of event types are higher, the higher in i t ia l thresholds are estimated. W i t h 

the smaller number of event types and higher thresholds, less run t ime is resulted. 

5.3.2 Real Data 

We also use the real dataset produced from the events extraction from newspapers in 

Chapter 3 to measure the performance on varies TV, kmax and window sizes as shown 

in Figure 5.7 to 5.9. 

0-9 I “ ‘ ‘ rJ-most DE-Tree — t — 
N-most NE-Tree —x---

DE-Tree with Optimal Threshold •-•*-•• 
NE-Tree with Optimal Threshold —o—• 

0.8 - _ 

0.7 - ^ ‘ “ 

I 0.6 _ • 
；§. 

® 

^。S,;...........z..--z. : 
* 

0.4 : “ 
一 () 

0.3 “ “―. -
I I I 

5 10 15 20 25 

N 

Figure 5.7: Run time for different values of N on real dataset w i th kmax 二 5 and 

window size 二 3. 
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Figure 5.8: Run t ime for different values of k 廳 on real dataset w i th iV = 5 and 

window size = 3. 
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Figure 5.9: Run t ime for different window sizes on real dataset w i th TV 二 5 and 

Jc — ^ ^max — 

The two TV-most trees perform better than the original trees w i th opt imal thresh-

old under large window sizes. Since in real dataset the large sizes of episodes are more 

frequent, and the opt imal threshold used in this case are the min imum support among 

the 2-episodes mined from the TV-most trees. The pruning power is less in building 

the subsequent conditional trees wi th the original trees wi th opt imal threshold. 
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5-4 Conclusion 

In this chapter, we have proposed a method to mine the TV-most interesting k-

episodes. Experiments show that the proposed method is comparable to the original 

trees introduced in Chapter 4 mining episodes w i th an opt imal threshold given. Al-

though the performance of the original trees are better than the iV-most tree under 

certain conditions, i t is due to the the opt imal thresholds, which are given by the 

mined result f rom iV-most tree. In addition, the TV-most trees provides a convenient 

way that the user just needs to specify the number of the most frequent /c-episodes 

desired, which is more practical and direct. Therefore, the method of mining TV-most 

frequent episodes has eliminated the diff iculty and the troublesome of adjusting the 

threshold in order to obtain the suitable number of episodes. 



Chapter 6 

Mining Frequent Episodes with 

Event Constraints 

In the previous chapter, the method of mining iV-most interesting episodes is pre-

sented. Al though i t has eliminated the problem of deciding the min imum support 

threshold, the result mined st i l l may not be what we desire. In reality, we usually want 

to obtain those episodes w i th certain event types. In addition, the previous methods 

also fai l to get the episodes w i th low support in a reasonable time. In this chapter, we 

introduce a method of mining of TV-most interesting episode w i th event constraints. 

The experiment shows that the episodes w i th specified event types regardless of their 

support can be mined in an acceptable time. 

6.1 Introduction 

In mining TV-most interesting episodes, the event types in the mined episodes are 

usually also the frequent event types. However, in many cases, the frequencies of the 

event types are not uniform. For example, in the real dataset produced in Chapter 

3, the number of the newspaper event types is much less than the number of the 

stock event types. But the episodes related to the newspaper event types are our 

main target. When we are interested in the episodes associated w i th the less frequent 
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episodes, the TV-most method cannot find the episodes containing the event types 

unless larger values of N are set. But this trial-and-error way of finding the suitable 

N is not the objective of the TV-most method. Thus i t wi l l be more efficient to specify 

the event types that wi l l be desirable in the results. 

The similar problem of mining wi th event constraints, which is called item con-

straint in general, is studied in [31] and [30]. [31] proposes the support-constraint 

which applies to the Apriori-gen algorithm to mine the itemset under non-uniform 

minimum support. The support-constraint is the minimum support threshold that 

the itemset containing the specified item constraints should meet. The items is or-

dered so that the performance is optimized. 

30] proposes single FP-tree and double FP-tree approaches to discover interesting 

itemsets w i th i tem constraints. I t mines the itemset specified by the 'constraints and 

bins' under closed and open interpretation defined in [31]. For the single FP-tree, 

i t modifies its own TV-most tree which is based on the FP-tree [23] and adjusts the 

support thresholds by considering the 7V-th supports of all itemsets containing the 

item constraints. 

In the double FP-tree, i t uses a FP-tree to store the set of constraints to reduce 

the cost of memory size and the run time on matching the itemset w i th constraint. 

The method we propose to mine the frequent episodes wi th event constraints is 

based on the single FP-tree in [30] wi th some modifications. 

6.2 Method 

We introduce a method of mining Almost interesting episodes wi th event constraints. 

An event constraint, C, is a set of events that should appear in each of the episodes 

mined in final results. 

The episodes in the final results consists of: 

1. Ni-most interesting 於-episode with event constraints: For each given 

event constraint, Q , wi th Ni, 0 < i < number of constraints, the Ni most 



6.2. METHOD 124 

frequent /c-episodes, 2 < k < kmax, containing Ci w i l l be mined. 

2. iV-most interesting /c-episodes: For each size of episode < A;讓工，the top N 

frequent episodes from the set of episodes, excluding the episodes containing 

any E “ wi l l be mined. 

For example, given 2 event constraints, Co 二 {Government announces deficit， 

Hang Seng Index ups}, Ci 二 {Government announces deficit, Hang Seng Index 

downs}, Nq = Ni 二 2, N = 1 and k而=3，the possible episodes in final results are 

shown in Table 6.1. 

Event k Possible Episodes Mined 

Constraint 

Co 2 1. Government announces deficit, Hang Seng Index ups 

3 1. Government announces deficit, Hang Seng Index ups, China Mobile ups 

2. Government announces deficit, Hang Seng Index ups, HSBC ups 

Ci 2 1. Government announces deficit, Hang Seng Index downs 

3 1. Government announces deficit, Hang Seng Index downs, HK & China Gas flats 

2. Government announces deficit, Hang Seng Index downs, Hang Seng Bank ups 

- 2 1. Land auction, Cheung Kong ups 
3 1. US interest rate increases, Hang Seng Index ups, Dow Jones ups 

Table 6.1: The possible episodes in the final results. 

Slightly different from [30], we also include the iV-most interesting /c-episodes for 

completeness of results. Since if the results only contains the Ni-most interesting 

A;-episode wi th event constraints, we cannot know the iV-most interesting A:-episodes, 

which also gives the important episodes. Although we can use the pure TV-most event 

trees, the iV-most interesting A>episodes obtained from this method are excluded those 

sets of event types in constraints and may be different from the results from the pure 

iV-most event trees. 
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We now describe a method developed from the event trees in Chapter 5. A t the 

beginning, an in i t ia l complete tree is bui l t w i th threshold set to 1. In mining phase, 

apart f rom the original individual support thresholds, “ for each size, k, of episodes, 

each event constraint, Q , is assigned to its own set of support threshold, 6ik for each 

size, k, of episodes. The individual support thresholds, Qik, is equal to the TV^-th 

highest support of the corresponding A:-episodes for Q currently mined. Similarly, 

the individual th resho ld ,仏 is the 7V-th highest support of A;-episodes, which do not 

contain any set of event types in the constraints, mined so far. 

Thus when determining if an A:-episode, e, is frequent and can be inserted into the 

result episode list, the support of e is checked and compared. The support threshold 

compared for e is as follows: 
f 

Oik i f e contains all events in Ci 
Support threshold compared wi th 

I “ otherwise 

I f the support meets the corresponding individual support threshold, e is added 

to the corresponding result list and the individual threshold is updated. 

The minimum threshold ^rnin that used to select the event types for constructing 

the next conditional event tree is 

Cmin 二 min(8iU possible & and Oik) 

where |base events | -h 3 < k < |base events | + | longest prefix path| and where 

longest prefix path| is smaller than the number of ancestor event types in the header 

table. 

The techniques for threshold improvement, which are top-down header table scan 

and pre-insertion of episodes, introduced in the previous chapter are also applied. 

6.3 Experimental Results 

We measure the performance of the method applied to the two event trees. The 

experiment is conducted on an Sun Ultra 5_10 machine running SunOS 5.8 wi th 
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512MB Main Memory. The programs are wr i t ten in C. Both synthetic and real 

datasets are used. 

6.3.1 Synthetic Data 

The synthetic data are generated by the modified synthetic data generator^ from [19 • 

Two datasets, D I and D2, w i th the parameter settings listed in Table 6.2 are used. 

Dataset Name Dataset | / | \M\ 
m T10.I3.M500.D1K 10 ~ I K 
D2 T2Q.I5.M1QQQ.D3K | 20 | 5 | 3K | 1000 

Table 6.2: Two datasets w i th different parameter settings used in the experiment. 

The event constraints for the synthetic datasets are created randomly. The number 

of event types in the constraints varies from 1 to 5. The tota l number of constraints 

of D I and D2 are 158 and 341 respectively. The sum of the numbers of event types 

in all constraints are equal to the number of event types in the dataset that the event 

types are unique in all constraints created. 

The N i for each constraint Ci is determined by the equation 

a ^ 

where Sij is the support of the event type e) in Ci and a is the factor of the average 

number of episodes to be taken as the top Ni interesting episodes containing event 

constraints. The properties of the constraints generated are summarized in Table 6.3. 

Except Ni, a and the maximum number of event types in constraints, all properties 

are randomly determined. 

We evaluate the performance on various numbers of constraints by randomly 

choosing 10% - 100% of the whole set of constraints. The run t ime of the two event 

ipor detailed description of the modified data generator, please refer to Section 4.9. 
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Dataset No. of Max M in Avg Max M in Avg a 
Constraints Size Size Size N N N 

D1 — 158 1 3 24 ~ T ~ 9 " o T " 
D2 341 I 5 I 1 I 3 I 17 I 1 I 7 I OTT 

Table 6.3: The properties of the constraints created for two datasets. 

trees are shown in Figure 6.1(a). Both N and k^ax are set to 5 and the window size 

is 3 days. The execution t ime increases wi th the number of constraints. As more 

constraints are set, more t ime is spent on checking and matching the episodes wi th 

the event types in the constraints. The minimum thresholds are also lower because 

more thresholds for constraint are included in calculating the minimum threshold. 

The sizes of the conditional event trees are larger and more time needed for mining. 
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Figure 6.1: Run time for synthetic datasets D1 and D2 wi th window size = 3 and 

kmax ~ 5. 

The performance on various values of N is also investigated and shown in Figure 

6.1(b). The N and Ni for all constraints Q are the same value. 10% of the total 

constraints are used, kmax and window size are 5 and 3 days respectively. I t shows 
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the execution t ime rises w i th N. As N increases, the thresholds are smaller. The 

execution t ime is larger for less events pruned in forming conditional event trees. 

We also studied the effect of performance on different kmax which is shown in 

6.2(a). The N and window size are kept to 5 and 3 days respectively. 10% of the 

total constraints are used. The execution time increases exponentially w i th kmax- The 

run t ime for the two event trees on D2 when k 豪 is above 6 exceeds 18000 seconds 

which is too large to be measured. 
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wi th window size 二 3 w i th N — 5 

Figure 6.2: Run time for synthetic datasets D1 and D2 wi th 10% of the total con-

straints and N 二 b. 

The performance on the various window sizes is also tested and is shown in Figure 

6.2(b). 10% of the whole set of constraints are selected, and both N and kmax are set 

to 5. The run time increases exponentially wi th the window size. When the window 

size is 6 days, the run time for the two event trees using D2 are greater than 16800 

seconds and cannot be measured. 

The average sizes of the two event trees residing in memory are less than 100MB. 

In the extreme case, when the run time is long, the size wi l l reach 200MB. In general, 

i t occupies more memory space than the methods in the previous two chapters. I t 
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is because the thresholds are smaller and more event types are reserved. Also, extra 

memory storage for the /c-episode results for each constraint has to be allocated. 

6.3.2 Real Data 

The real dataset used is the event database generated from Chapter 3. Similar to the 

synthetic data, we create a set of constraints randomly. W i t h the maximum size of 

constraint and a as 5 and 0.1 respectively, total 41 event constraints are generated. 

The min imum size of constraint is 1. The values of N range from 1 to 50 and its 

average is 18. 

The performance of two event trees on different numbers of constraints is shown 

in Figure 6.3. Both N and k醒 are set to 5，while the window size is set to 3 days. 

The execution t ime rises wi th the number of constraints. 
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Figure 6.3: Run time for real dataset for different numbers of constraints wi th TV = 5, 

window size = 3 and kmax 二 5. 

We also studied the effect under various N, k蒙 and window sizes, the perfor-

mance of which is shown in Figure 6.4 to 6.5 respectively. 20% of the whole set of 

constraints are selected, wi th both N and kmax as 5 and window size as 3 days by 

default. 
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Figure 6.4: Run t ime for real dataset wi th 20% of the total constraints and window 
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Figure 6.5: Run time for real dataset for different window sizes wi th 20% of the total 

constraints, N 二 5 and kmax 二 5. 

Episodes mined 

In this section, we set the constraints manually by specifying the event types we are 

interested and investigate the episodes associated. 

We focus on the event types of news release. By setting kmax to 4 and the window 



6.4. CONCLUSION 147 

size to 3 days, the episodes mined is listed in Table 6.4. 

# o f 
Event Constraint Additional Events in Episode Support Episodes 

Mined 
Hang Seng Index ups - 11 3 

Government China Mobile ups — 13 
announces deficit Hang Seng Index downs 2 

HK k China Gas flats 18 
Hang Seng Index ups - 10 30 

Report CLP Holding downs 8 
released Hang Seng Index downs _- 2 

Cheung Kong downs 10 
‘ “ ~ Cheung Kong ups 26 25 

Land auction SHK Properties ups 25 
Cheung Kong ups, Hutchison ups 26 

New Plan from China Unicom China Unicom ups 3 2 
PCCW flats 2 

Bad news from China Mobile China Unicom ups | 3 15 
PCCW ups I 2 I 

Cheung Kong buys land with low price Cheung Kong ups — 2 26 
Cheung Kong flats 5 

Table 6.4: The episodes mined for the constraints of news events. 

6.4 Conclusion 

In this chapter, a method of mining the iV-most frequent A:-episodes w i th event con-

straints is introduced. I t complements the methods in the previous two chapters that 

episodes associated w i th the specific event types can be mined even i f their supports 

are low, wi thout setting a low threshold and over-generating a long list of episodes. 

There is some room for improvement for the performance of the mining method 

proposed. One possible solution is to construct the conditional trees of the specific 

event types for each constraint to reduce the matching cost in bui lding the conditional 

trees. Thus in mining the TV-most interesting episodes, higher support thresholds can 

be archived because there is no need to consider the thresholds of event constraints. 

Since the tree structures are not designed for retrieving the episodes containing the 
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specific event types, the trees can be modified to suit the application. For example, the 

double FP-tree in [30], which has the basic structure as original FP-tree, is proposed to 

mine the itemset w i t h i tem constraint. Its experimental results shows the performance 

outperform the original FP-tree. 

However, the run t ime is st i l l acceptable for a non-real-time system. The method 

is also useful for the convenience i t brings. 



Chapter 7 

Conclusion 

Information extraction is the process of unrestricted text into a systematic data and 

is considered as the prel iminary step for preparing data for further analysis. We 

implemented the IE systems and performed the subsequent data analysis w i th data 

mining techniques. We applied the IE system and data mining to discover the frequent 

episodes in the stock market. 

In the first part, we bui l t an automatic summarization system for Chinese doc-

uments. I t extracts the necessary sentences from the Chinese financial news wi th 

genetic algorithm. I t considers the frequencies of keywords and the locations of sen-

tences, the proximities and distances between summary sentences in forming the 

summary. 

On the other hand, we discovered the frequent episodes involving stock movement 

and news releases from stock companies. We constructed a real database w i th the 

news events extracted from the Chinese financial newspapers. We used two new min-

ing methods to discover the frequent episodes w i th a given threshold, which are based 

on two corresponding tree structures. Although the methods show the effectiveness 

on performance, they need a pre-assigned threshold which impose a diff iculty for user 

who has l i t t le knowledge about the database. We enhanced the system and proposed 

a method which mines the frequent episodes w i th the number of the most frequent 

episodes assigned rather the support threshold. We also introduced the method of 
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mining w i t h event constraints which provides a direct way to obtain the user-specific 

episodes. We can also discover those episodes w i th small supports w i th the event 

constraint method. 

W i t h the three effective methods, we can efficiently handle the task of mining 

frequent episodes under databases w i th different frequencies distr ibut ion and different 

user requirements. In the future, the mined frequent episodes can be analysed for 

stock prediction. 



Appendix A 

Test Cases 

Here we show text 1 and text 2 used in the experiment in Chapter 2. The sentences 

selected as the summary sentences are shown in i tal ic. 

A. l Text 1 

香港醫療架構從來是黑箱作業，近期的「手機醫生」事件，活兰兰就是醫醫相 

衛的例子。 

厂 手 機 醫 兰 」 董 繞 明 ， 在 為 病 人 進 行 切 除 大 腸 息 肉 手 術 期 間 ， 兩 次 使 用 免 提 

裝置傾談電話’手術後當晚，病人大腸爆裂，需再進行緊急手術。個案經醫委 

會 龄 訊 後 ， 裁 定 病 人 事 後 的 併 發 症 與 醫 生 的 傾 談 手 機 行 為 沒 有 關 係 ， 而 厂 手 機 

醫 兰 J 亦 被 裁 定 沒 有 行 為 失 當 。 醫 委 會 的 裁 決 大 抵 憑 藉 兩 個 理 由 ： 醫 生 在 手 術 

進 行 中 講 話 並 非 不 尋 常 ； 該 醫 生 亦 非 刻 意 在 手 術 期 間 談 電 話 。 

醫 委 會 的 判 詞 含 糊 不 清 ， 大 有 玩 弄 文 字 之 嫌 。 判 詞 指 「 醫 生 在 手 術 進 行 中 講 

話並非不尋常」，然而，該醫生並非在手術中談話那麼簡單，而是在手術期严曰？ 

使 用 手 提 雹 話 談 話 。 純 粹 談 話 和 傾 談 手 機 根 本 不 可 混 為 一 談 ， 兩 者 性 質 不 同 ， 

談 話 者 的 注 意 力 也 不 同 。 醫 生 在 手 術 期 間 需 要 和 其 他 醫 護 人 員 合 作 ， 期 間 當 然 

少 不 免 有 交 談 的 機 會 ， 例 如 向 護 士 要 求 幫 助 、 更 換 手 術 用 具 等 ， 或 與 其 他 醫 護 

人 員 交 換 意 見 ， 以 求 達 至 更 準 確 精 密 的 手 術 。 然 而 ， 在 手 術 期 間 使 用 手 提 電 話 

卻 不 可 同 一 而 喻 。 首 先 ， 手 術 房 中 有 各 種 醫 療 儀 器 ， 使 用 手 提 時 放 出 的 電 波 、 
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輕 射 ， 手 機 會 影 響 醫 療 儀 器 的 正 常 運 作 ° 所 有 公 立 • 院 都 有 張 貼 海 報 ， 提 薩 市 

民 在 病 房 附 近 必 須 關 掉 手 提 ， 醫 生 帶 手 機 進 手 術 室 ， 明 顯 是 知 法 犯 法 。 

傾 談 電 話 時 ， 人 的 注 意 力 很 自 然 地 會 轉 移 向 電 話 的 另 一 端 ， 分 散 對 眼 前 事 物 

的 注 意 力 ° 巴 士 公 司 禁 止 員 工 行 車 時 和 乘 客 談 話 ， 也 是 同 一 道 理 ° 在 道 路 上 ， 

巴 士 司 機 掌 握 著 車 上 眾 多 乘 客 的 生 命 安 全 ， 自 然 不 可 輕 率 行 事 ° 同 樣 道 理 ， 在 

手 術 室 中 ， 醫 生 手 握 手 術 刀 ， 握 病 人 的 生 死 存 亡 於 一 線 ， 醫 生 更 須 聚 精 會 神 ， 

心 無 旁 騖 。 在 手 術 期 間 傾 談 電 話 ， 非 但 是 對 病 人 的 不 尊 重 ， 同 時 亦 是 對 自 己 身 

分的不尊重，更削弱病人對醫生的信任。 

醫委會認為，厂手機醫生」出於一時大意，忘記在進入手術室前關掉手提， 

接聽電話是源於無奈，當他聽了電話後，已盡快中止談話，這次事件純粹是無 

心 之 关 。 事 實 真 的 如 此 嗎 ？ 「 手 機 • 生 」 當 時 是 使 用 免 提 裝 置 傾 談 電 話 ， 換 句 

話 說 ， 除 了 一 時 大 意 放 進 口 袋 裏 的 手 提 t 話 ， 醫 生 的 耳 洞 裏 還 塞 著 迷 你 聽 筒 ， 

這 樣 礙 眼 又 不 舒 服 的 裝 置 ’ 說 是 出 於 大 意 ， 可 信 性 有 多 少 ？ 手 機 響 了 ， 醫 生 大 

可 選 擇 立 即 關 閉 電 話 ， 他 有 拒 絕 接 聽 的 可 能 ， 但 他 沒 有 做 到 ° 該 醫 生 在 手 術 期 

間 ， 一 共 聽 了 兩 次 電 話 ， 若 是 他 是 在 無 奈 下 接 聽 了 第 一 次 電 話 ， 那 麼 第 一 次 談 

話 結 束 後 ， 為 甚 麼 他 沒 有 關 閉 電 話 ， 而 是 一 錯 再 錯 地 接 聽 了 第 二 次 電 話 ？ 若 說 

一 次 過 失 是 無 心 之 失 ， 那 麼 第 二 次 錯 t 吳 無 論 如 何 也 不 能 算 是 無 心 之 失 了 。 最 可 

恨 的 是 ， 該 醫 生 竟 然 在 電 話 大 談 汽 車 買 賣 事 宜 ， 完 全 與 手 術 無 關 ， 談 話 時 間 更 

長 達 十 多 分 鐘 。 這 樣 缺 德 的 「 無 心 之 失 」 ， 難 為 醫 委 會 還 可 以 處 處 維 護 ， 顛 例 

是 非 來 包 容 ， 不 愧 為 「 公 平 公 正 」 的 醫 務 委 員 會 。 

香港的醫療體系從來是醫醫相衛，歷來醫療失語的新聞不絕於耳，但何曾聽 

聞過醫委會對失误醫生有重大懲罰？香港醫生，九成出自港大醫學院，師兄弟 

從 來 是 站 在 同 一 線 ， 互 相 偏 袒 護 短 。 醫 生 失 娱 ， 醫 院 首 先 出 來 播 駕 ’ 封 鎖 一 切 

資料、保密一切紀錄。同行醫生拒絕做註人，拒絕作供’沒有人註、物註，所有 

起 訴 都 難 於 成 功 ， 既 得 利 益 者 壟 斷 一 切 監 察 機 制 ， 包 庇 護 短 ， 醫 委 會 本 身 不 過 

是徒然具名的幌子。 

「手機醫生」事件暴露出香港醫療監察機制的不健全，港府應盡快解散現有 

的 醫 委 會 ’ 將 之 重 組 ， 加 重 非 業 內 代 表 的 比 例 ， 並 注 重 委 員 會 的 客 觀 性 ， 在 委 

任 各 委 員 時 ， 著 重 各 人 的 公 信 力 、 品 格 、 誠 信 ， 重 拾 公 眾 對 醫 委 會 的 信 任 。 同 
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時 ， 由 政 府 撥 出 公 带 ， 成 立 專 責 調 查 委 員 會 ， 聘 請 外 國 專 家 對 失 娱 醫 生 做 出 全 

面 調 查 ， 杜 絕 業 內 醫 醫 相 衛 ， 包 庇 偏 私 。 若 証 實 醫 生 專 業 失 當 ， 致 令 病 人 蒙 受 

不 必 要 的 損 失 ， 可 向 之 追 究 刑 事 責 任 。 港 府 亦 可 開 放 市 場 ， 批 准 國 内 專 家 級 醫 

生 來 港 執 業 ° 香 港 醫 生 面 對 來 港 國 內 醫 務 專 才 的 統 爭 ， 自 然 有 魔 大 動 力 推 動 自 

己 提 昇 水 準 ， 提 高 服 務 水 平 。 

「 手 機 醫 生 」 的 缺 德 行 為 不 容 醫 委 會 彻 詞 狡 辯 ， 港 府 應 及 早 改 組 醫 委 會 ， 重 

拾 公 眾 對 醫 學 界 的 信 任 。 

A.2 Text 2 

銀 行 界 將 於 七 月 正 式 取 消 ' 利 率 協 議 。 此 舉 不 僅 對 銀 行 業 經 營 環 境 造 成 影 響 ， 對 

銀行貴工、存戶及整體經濟亦會帶來影響。從宏觀經濟來看，取消利率協議會 

加 強 銀 行 間 的 互 相 親 爭 ， 催 化 經 濟 轉 型 ， 更 會 擴 闊 市 民 的 收 入 差 距 ， 因 而 加 劇 

本 港 的 貧 富 懸 殊 問 題 。 

取消利率協議，銀行經營模式改變，银行員工f當其衝。利率協議取浦後， 

預 期 利 息 差 距 將 會 收 窄 到 一 至 兩 個 百 分 點 ， 從 事 傳 統 資 款 及 存 款 業 務 的 邊 際 利 

潤 會 大 大 下 降 ， 銀 行 會 推 廣 各 式 各 樣 的 投 資 產 品 ， 來 提 升 自 己 的 邊 際 利 满 。 因 

此，傳統的分行業務會由電子理財取代，而大部分的分行會改為投資理財中心， 

基 層 職 員 將 要 充 當 推 鎖 投 資 產 品 的 財 務 顧 問 ° 

為 配 合 發 展 投 資 理 財 的 銀 行 服 務 ， 銀 行 需 要 聘 請 更 多 高 學 歷 人 士 ， 這 是 香 港 

轉 向 知 識 型 經 濟 的 必 然 道 路 。 可 是 ’ 現 在 的 基 層 員 工 ， 尤 其 是 中 年 員 工 ， 是 否 

有 足 夠 的 知 識 和 能 力 擔 任 理 財 顧 問 一 職 實 屬 疑 問 。 雖 然 銀 行 願 意 增 撥 資 源 ， 加 

強 培 訓 ， 但 大 部 分 受 影 響 員 工 在 短 期 培 訓 後 ， 未 必 能 夠 適 應 全 新 的 知 識 型 工 作 

岗 位 。 在 預 定 時 間 內 未 能 適 應 新 工 作 者 ， 將 會 難 逃 被 撤 職 的 厄 運 ， 而 他 們 的 工 

作 崗 位 ， 將 會 由 七 月 開 始 输 入 的 内 地 財 經 專 才 所 取 代 。 

箭U亍業在業務經營模式改變下，自然不能完全吸納這批受影響的基層員工， 

如果從事銀行多年的基層員工，沒有其他工作經驗或技能，成功轉到其他行業 

的可能性將會很低，這批員工只會論為長期失業大軍的一員，苴接推高本港的 

失業率。 
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從表面看來，在利息分層制度下，小存戶所損失的只是少量利息收入，不過 

在銀行業大量推出投資產品下，擁有資產者更加容易賺取較高的投資回報。相 

反，小存戶不僅只能賺取比以前更低的利息，而且亦沒有其他資產可作投資用 

途，加上銀行業傾向對小額存戶收取服務費用’縱使費用只是數十元的小數目， 

但對於低下階層的生活質素，已經構成很大的影響，所以取消利率協議後，令 

貧者愈貧，富者愈富，社會的貧富收入差距擴大，有礙整體的經濟穩定。 

銀行電子化影響低下層銀行業務日趨電子化，現在有不少上了年紀的公公婆 

婆不懂得如何操作自動櫃員機，加上在自動櫃員機提款的人比用自動櫃員機存 

款的人多出數倍’大多數人慣用櫃位服務來處理存款。所以小額存戶不一定能 

夠適應自動櫃員機的銀行服務形式。如果將來的銀行業務由網上理財取代自動 

櫃員機，受影響的人數將會大幅提升。 

就以新加坡為例，該國計劃於 〇 八年開始推行電子貨帶，取代傳統的紙帶和 

硬 帶 ， 以 期 成 為 亞 太 地 區 的 高 科 技 中 心 ° 若 香 港 的 發 展 方 向 與 新 加 坡 相 同 ， 在 

不久的將來市民便要懂得在網上提款，和懂得透過已裝置聰明晶片的手機、手 

提電腦、腕表等來處理「過數」。在電子貨帶普及化的未來，很多不懂得運用 

互聯網的人士，會失去使用傳統銀行提款和存款服務的能力，估計低學歷和低 

技術的基層人士所受的影響會最大 ° 
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