
VLSI Implementation of Discrete Cosine Transform

Using a New Asynchronous Pipelined Architecture

LEE Chi-wai

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Electronic Engineering

© The Chinese University of Hong Kong

February 2002

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s)

intending to use a part or whole of the materials in the thesis in a proposed publication must

seek copyright release from the Dean of the Graduate School.

A / 统 系 馆 書 圖

g(1 1 l i 13] | |

UNIVERSITY y p j

Abstract of this thesis entitled:

VLSI Implementation of Discrete Cosine Transform

Using a New Asynchronous Pipelined Architecture

Submitted by LEE Chi-wai

for the degree of Master of Philosophy in Electronic Engineering

at The Chinese University of Hong Kong in June 2001

This thesis presents two different asynchronous VLSI implementations of Discrete

Cosine Transform (DCT). Although asynchronous design has potential advantages

over the synchronous design, the handshaking overhead and the design difficulties

limit the speed performance of asynchronous design. In order to break through the

barrier, a new asynchronous pipelined architecture is described in this thesis. It

relaxes the handshaking protocol and has a simpler architecture, the performance of

asynchronous design is improved. Since the new architecture employs dynamic

logic, a new technique called Refresh Control Circuit is also introduced to reduce the

performance degradation associated with the traditional technique.

The first DCT implementation is realized in a programmable DSP processor. This

programmable processor makes use of asynchronous pipeline, dataflow architecture

and parallelism, a reasonable but encouraging result of 22Mpixel/sec in DCT

operation is obtained with a limited number of arithmetic units.

i

The second DCT implementation is performed on a dedicated 2D DCT/IDCT

processor. It is a fully pipelined design and can operate at 76Mpixel/sec for 2D

DCT/IDCT operation. It is capable of processing the high quality MPEG-2 and

baseband HDTV signal in real-time, and is competitive to other synchronous designs

even less arithmetic units are included in this processor.

The results of the two implementations demonstrate the high performance of the new

asynchronous pipelined architecture and the advantages of the asynchronous

technique in system design. It also encourages further development in asynchronous

design.

a

摘要

本論文介紹了兩個可應用於離散餘弦變換（Discrete Cosine Transform)的異步

(asynchronous)超大規模集成電路。雖然相對於同步設計(synchronous design)，

異步設計（asynchronous d e s i g n)擁有潛在的優點，但因聯絡額外開銷

(handshaking overhead)和設計上的困難而限制了異步設計的速度°爲了突破這

個界限，本論文描述了一個新的異步管線式架構（asynchronous pipelined

architecture)�它放寬了聯絡協定（handshaking protocol)及擁有更簡單的架構，

令到異步設計的效能得以提升0因爲這個新的架構應用了動態邏輯（dynamic

logic)，本論文亦提出了一個名叫更新控制電路（Refresh Control Circuit)的新技

術。這技術能減少因使用傳統技術而導致的效能降格° •

第一個離散餘弦變換設計是建於一個可程序數碼訊號處理器（programmable

DSP processor)�這個可程序處理器應用了異步管線、數據流程架構（dataflow

architecture)及並聯（parallelism) ’在執行離散餘弦變換時能夠在一秒中計算二

十二萬素象。在有限的運算部件條件下，這是一個合理而且有鼓勵性的結果。

第二個離散餘弦變換設計是一個專用的二維離散餘弦變換處理器°這處理器是

完全管線式設計及能夠在二維離散餘弦變換運作中達到每秒七十六萬素象的運

算速度。這結果顯示這處理器能夠實時處理高質素的MPEG-2及高淸晰度電視

iii

(High Definition Television)訊號。即使這處理器是使用了比較少的運算部件，

但在性能上仍可和其他同步設計競爭。

由這兩個設計所得出的結果可看出新的異步管線式架構的高效能表現及異步技

術在系統設計上的好處。另外這結果亦對將來異步設計的發展起鼓舞作用0

iv

Acknowledgements

I would like to express my deepest gratitude to various individuals who provided me

with sincere assistance in this research.

First of all, I would like to thank my supervisor, Prof. Oliver, C.S. Choy, for his

invaluable guidance, advice, and support during the course of this research work.

Notwithstanding his busy schedule, he has worked with me throughout the lengthy

and demanding project, providing me continuous comments, patience, supervision,

and encouragement. Without his endless help and assistance, this thesis would never

have been possible. I would also like to express my gratitude to Prof. C.F. Chan who

has given me insightful suggestions during my research work. In addition, a special

expression of thanks goes to the research assistant, Mr. Jan Butas, for their kind

assistance during my study.

Thanks are also due to my colleagues Mr. Cheng Wan Chi, Mr. Hon Kwok Wai, Mr.

Leung Lai Kan, Miss Mak Wing Sum, Mr. Siu Pui Lam and Mr. Tang Tin Yau, the

laboratory technician Mr. Yeung Wing Yee, and who have always been my sources

of fun and encouragement.

I would also like to thank my close friend, Miss Vivian Tsoi, for her kind assistance

and concern throughout the process of this study. Her constant encouragement and

V

everlasting patience and support were my strength, motivation, and inspiration all

along. With her cordially support, I could exert my best effort on this study.

At last, I would also like to express my truly gratitude to my parents and my sisters

for their understanding and devoted love throughout my whole course of studies.

Without their concerns and support, I would not finish my study successfully. I am

once again indebted to all of these people.

Lee Chi Wai

June 2001

vi

Table of Contents

Abstract of this thesis entitled: i
_ iii
Acknowledgements v
Table of Contents vii
List of Tables x
List of Figures xi

Chapter 1

Introduction 1
1.1 Synchronous Design 1
1.2 Asynchronous Design 2
1.3 Discrete Cosine Transform 4
1.4 Motivation 5
1.5 Organization of the Thesis 6

Chapter 2

Asynchronous Design Methodology 7
2.1 Overview 7
2.2 Background 8
2.3 Past Designs 10
2.4 Micropipeline 12
2.5 New Asynchronous Architecture 15

Chapter 3

DCT/IDCT Processor Design Methodology 24
3.1 Overview 24
3.2 Hardware Architecture 25
3.3 DCT Algorithm 26
3.4 Used Architecture and DCT Algorithm 30

3.4.1 Implementation on Programmable DSP Processor 31
3.4.2 Implementation on Dedicated Processor 33

vii

Chapter 4

New Techniques for Operating Dynamic Logic in Low Frequency 36
4.1 Overview 36
4.2 Background 37
4.3 Traditional Technique 39
4.4 New Technique - Refresh Control Circuit 40

4.4.1 Principle 41
4.4.2 Voltage Sensor 42
4.4.3 Ring Oscillator 43
4.4.4 Counter, Latch and Comparator : 46
4.4.5 Recalibrate Circuit 47
4.4.6 Operation Monitoring Circuit 48
4.4.7 Overall Circuit 48

Chapter 5

DCT Implementation on Programmable DSP Processor 51
5.1 Overview 51
5.2 Processor Architecture 52

5.2.1 Arithmetic Unit 53
5.2.2 Switching Network 56
5.2.3 FIFO Memory 59
5.2.4 Instruction Memory 60

5.3 Programming 62
5.4 DCT Implementation 63

Chapter 6

DCT Implementation on Dedicated DCT Processor 66
6.1 Overview 66
6.2 DCT Chip Architecture 67

6.2.1 ID DCT Core 68
6.2.1.1 Core Architecture 74
6.2.1.2 Flow of Operation 76
6.2.1.3 Data Replicator 79
6.2.1.4 DCT Coefficients Memory 80

6.2.2 Combination of IDCT to 1D DCT core 82
6.2.3 Accuracy 85

6.3 Transpose Memory 87
6.3.1 Architecture 89
6.3.2 Address Generator 91
6.3.3 RAM Block 94

via

Chapter 7

Results and Discussions 97
7.1 Overview 97
7.2 Refresh Control Circuit 97

7.2.1 Implementation Results and Performance 97
7.2.2 Discussion... 湖

7.3 Programmable DSP Processor 102
7.3.1 Implementation Results and Performance 102
7.3.2 Discussion 104

7.4 ID DCT/IDCT Core 107
7.4.1 Simulation Results 107
7.4.2 Measurement Results 109
7.4.3 Discussion 113

7.5 Transpose Memory 122
7.5.1 Simulated Results 122
7.5.2 Measurement Results 123
7.5.3 Discussion 126

Chapter 8

Conclusions 130

Appendix 133
Operations of switches in DCT implementation of programmable DSP processor

133
C Program for evaluating the error in DCT/IDCT core 135
Pin Assignments of the Programmable DSP Processor Chip 142
Pin Assignments of the ID DCT/IDCT Core Chip 144
Pin Assignments of the Transpose Memory Chip 147
Chip microphotograph of the ID DCT/IDCT core 150
Chip Microphotograph of the Transpose Memory 151
Measured Waveforms of ID DCT/IDCT Chip 152
Measured Waveforms of Transpose Memory Chip 156
Schematics of Refresh Control Circuit 158
Schematics of Programmable DSP Processor 164
Schematics of ID DCT/IDCT Core 180
Schematics of Transpose Memory 187

References 191

Design Libraries - CD-ROM 197

ix

List of Tables

Table 5.1 - Instructions of switch 58

Table 6.1 — Data rate at different stages of the ID DCT core 79

Table 6.2 - Bit length in different parts of the 2D DCT/IDCT processor 85

Table 6.3 — Accuracy of the 2D DCT/IDCT processor 86

Table 6.4 - Four different operation modes of the unified ID DCT/IDCT core 87

Table 7.1 - Transistor count on different units of Refresh Control Circuit 98

Table 7.2 - Current drawn by the each parts of the Refresh Control Circuit 99

Table 7.3 - Performance of multipliers by different techniques 100

Table 7.4 - Bit length information of the 9-bit programmable DSP processor ……102

Table 7.5 — Performance comparison of different ID DCT implementations 103

Table 7.6 - Performance comparison of 2D DCT implementation on different

programmable processors 106

Table 7.7 — Performance of different processing units on the ID DCT/IDCT core 107

Table 7.8 - Input data, measured result and calculated result of the DCT row

operation 111

Table 7.9 - Performance comparison of different 2D DCT implementations 113

Table 7.10 — Simulation results of power consumption of different operation units in

the ID DCT/IDCT core 118

Table 7.11 - Comparison of power consumption on DCVSL and single-rail adder 120

Table 7.12 - Performance of different units in the transpose memory 122

•X

List of Figures

Figure 2.1 - Communications between sender and receiver in an asynchronous

circuit ，

Figure 2.2 — Timing diagram of (a)two-phase, (b)four-phase handshaking protocol. 8

Figure 2.3 - (a) connections in asynchronous circuit, (b) operation in asynchronous

circuit 9

Figure 2.4 — (a) symbol of C-element, (b) dynamic C-element and (c) static C-

element 11

Figure 2.5 - Basic control FIFO sequence in Micropipeline structure 13

Figure 2.6 - Micropipeline with computation 14

Figure 2.7 - Domino Logic 16

Figure 2.8 - Asynchronous architecture by using dynamic logic 17

Figure 2.9 - (a) new handshake cell, (b) timing diagram of a pipeline stage 18

Figure 2 .10- (a) new asynchronous pipeline connection, (b) flow of operations in the

new asynchronous pipeline 20

Figure 2.11 - Differential Cascode Voltage Switch Logic (DCVSL) 21

Figure 2.12 - Completion signal generated from the DCVSL 22

Figure 2.13 - (a) modified handshake cell, (b)modified handshake cell and basic

FIFO cell in DCVSL structure, (c) connection of the asynchronous pipeline... 23

Figure 3 . 1 - 8 x 8 image block 27

Figure 3 . 2 - 2 D DCT of 8x8 image block 27

Figure 3.3 - 2D DCT by row-and-column decomposition method 29

Figure 3 . 4 - 2 D DCT by direct method 30

Figure 3.5 — Signal flow diagram of the Jeong's ID DCT fast algorithm 33

Figure 4.1 - (a) 3-input NAND dynamic logic, (b) voltage in the floating node of the

dynamic logic 57

Figure 4.2 — Addition of the pull-up path in (a)dynamic logic, (b)domino logic ……39

Figure 4.3 - Techniques of overcome the charge redistribution problem 40

Figure 4.4 - Modified structure of the (a)dynamic logic, (b)domino logic 41

Figure 4.5 - Proposed refresh structure for (a)dynamic logic, (b)domino logic 42

xi

Figure 4.6 — Voltage sensor, (a)differential amplifier as the first stage with reference

voltage generator, (b)two-stage sense amplifiers as the second stage 43

Figure 4.7 - Ring oscillator 43

Figure 4.8 - Charging and discharge current in the inverter chain 44

Figure 4.9 — Ring oscillator with delay elements 45

Figure 4 .10-Delay element, transmission gate with Schmitt trigger 45

Figure 4.11 - (a) a voltage controlled inverter, (b) part of the voltage controlled ring

oscillator 45

Figure 4 .12-Block diagram of the Refresh Control Circuit 48

Figure 4.13 — Timing diagram of the Refresh Control Circuit 49

Figure 5.1 - Dataflow architecture of the programmable DSP processor 52

Figure 5.2 — Product Full Adder (PFA) of the multiplier 53

Figure 5.3 - The 8x8 multiplier core 54

Figure 5 . 4 - Input buffer of multiplier 55

Figure 5.5 - (a)2-to-2 programmable switch and its six modes of connection,

(b)block diagram of the internal structure of switch, (c)CMOS structure of basic

multiplier cell of the MUX 1 57

Figure 5.6 - 8-to-8 switching network 58

Figure 5.7 - Structure of FIFO memory 59

Figure 5.8 - Instruction memory, (a) block diagram of the instruction memory, (b)

the structure of cyclic FIFO, (c) structure of the instruction decoding network 61

Figure 5 . 9 - Flow diagram of the first stage of DCT implementation 63

Figure 5.10 - Flow diagram of the second stage of DCT implementation 63

Figure 5.11 - Flow diagram of the third stage of DCT implementation 64

Figure 5.12 ~ Flow diagram of the forth stage of DCT implementation 64

Figure 6.1 - Dataflow diagram in 2D DCT by row-and-column decomposition

method 67

Figure 6.2 - Block diagram of 2D DCT processor 68

Figure 6.3 — Block diagram of the ID DCT core 69

Figure 6.4 — Structure of the 8-bit BLC adder 70

Figure 6.5 - Modified input buffer for 2 complement input 72

Figure 6.6 — Multiplier core of 2 complement multiplier 73

Figure 6.1 - Architecture of ID DCT core 75

xii

Figure 6.8 — (a) block diagram parallel-to-serial shift register in synchronous design,

(b) block diagram of data replicator 79

Figure 6.9 - (a) normal basic FIFO cell, (b) modified basic FIFO cell, (c) basic

DCVSL structure of pre-storing data 81

Figure 6.10 - DCT coefficients memory in upper path 82

Figure 6.11 - Block diagram of the IDCT 83

Figure 6.12-Overall architecture of the ID DCT/IDCT processor 84

Figure 6.13 - Modification of memory cell of pre-storing different data in DCT and

IDCT 84

Figure 6.14 — Bit length in different parts of the 2D DCT/IDCT processor 86

Figure 6 . 1 5 - Unified structure of ID DCT/IDCT core 87

Figure 6.16 - Write order of the transpose memory 88

Figure 6 .17-Read order of (a) DCT operation, (b) IDCT operation 89

Figure 6.18 - Block diagram of transpose memory 90

Figure 6.19 - New structure of the transpose memory 90

Figure 6.20 - Write address generator 92

Figure 6.21 — Operation of the transpose memory 93

Figure 6.22 - Block diagram of the RAM block 94

Figure 6.23 — (a) SRAM basic cell, (b) monitor cell, (c) monitor cell in a bit column

of SRAM 95

Figure 7.1 - Simulation result of ring oscillator 98

Figure 7.2 — Simulation result of the Refresh Control Circuit 98

Figure 7.3 — Output signals of different multipliers 100

Figure 7.4 — Simulation result of the programmable DSP processor 102

Figure 7.5 — Timing diagram of the DCT operation 103

Figure 7.6 — Layout of the 9-bit programmable DSP processor 104

Figure 7.7 - Simulation result of the DCT coefficients memory 108

Figure 7.8 - Layout of the ID DCT/IDCT core processor 109

Figure 7.9 — (a) input waveform of the DCT/IDCT core, (b) measured output

waveform of the DCT/IDCT core in DCT row operation 110

Figure 7.10 - (a) construction of the Done signal, (b) timing diagram of the Input

Request, Acknowledgement and Done signal.. 111

xiii

Figure 7.11 - (a) measured waveforms of the Output Request (lower) and

Acknowledgement (upper) signal, (b) zoomed waveforms which shows the

average throughput is 76MHz 112

Figure 7.12 - (a) carry generation in domino logic, (b) carry generation in static logic

117

Figure 7.13 - Simulation result of the write and read operation 122

Figure 7.14 - Layout of the transpose memory 123

Figure 7.15 - (a) input waveform of the transpose memory, (b) measured output

waveform of transpose memory in DCT operation mode 124

Figure 7.16 - (a) measured waveforms of the Output Request (upper) and

Acknowledgement (lower) signal, (b) zoomed waveforms which shows the

average throughput is lOOMHz 126

Figure 7.17 — Done signals generated from the 32x15bit RAM block 127

xiv

Chapter 1 - Introduction

Chapter 1

Introduction

1.1 Synchronous Design

Synchronous design is the most popular digital circuit design technique today in the

VLSI world. In a synchronous circuit, global clock is used to synchronize and

trigger all the operations. As the technology of VLSI grows towards higher speed,

smaller feature size and larger chip size, the performance of synchronous circuit is

limited due to its global clock approach.

The main reason of the limitation is the clock skew problem [1][2]. Clock skew is

the difference in the arrival time of clock signal at different parts of the circuit. As

the chip size gets larger, it is difficult to manage the global clock signal to arrive at

different parts of the design at the same time. Also, as the clock speed becomes

higher, the global clock period becomes shorter and thus the transition time needs to

be shorter comparing with the clock period. However, the transition time can only

be reduced to a limited extent. As a result, the operating speed is forced to slow

down so as to accommodate the problem.

In addition, frequency of the global clock is also restricted by the slowest part of the

whole design. The period between two consecutive active clock edges must be long

Page 1

Chapter I - Introduction

enough for all computations to be completed before latching the result. As a result,

the clock period is determined by the slowest stage such that every stage is given

enough time to fully process a data, thus yielding a worst-case performance.

It is believed that by eliminating the restrictions, a design can reach a higher level of

performance, and this is the motivation of the development of asynchronous circuit.

1.2 Asynchronous Design

The main difference between the synchronous and asynchronous design is the use of

the global clock and the local handshake signals. In asynchronous design, operations

on a functional unit are controlled by the communications between neighbouring

units. When there is an event occurred on the communication wire, an operation will

be started or stopped by the triggering of the event.

Since the global clock signal is removed, there is no clock skew problem existed in

the asynchronous design. Also, without the restriction of the global clock signal,

different parts in an asynchronous circuit can operate at their own intrinsic speeds

and thus the average-case performance can be achieved rather than worst-case

performance in the synchronous circuit. Therefore, the problems of the synchronous

design can be eliminated and higher speed can be achieved in asynchronous design.

In addition, asynchronous design offers other potential advantages such as low power

consumption, automatic adoption to physical properties, high modularity and less

electromagnetic emission, these make the asynchronous design attractive.

Page 2

Chapter 1 - Introduction

Despite of all the potential advantages motivating the development of asynchronous

circuit, it has yet to achieve widespread use. This is because asynchronous circuit

suffers from several problems as well.

The major problem of the asynchronous circuit is hazards [1]. In the synchronous

design, hazards can be easily removed by adding more registers or slowering the

clock rate. However, designers of the asynchronous circuit must remove all hazards

to prevent incorrect operation. At the same time, there are little supports from CAD

tools, design automation and optimization of the asynchronous design has still not

been fully achieved. As a result, extra attention and extensive simulations are

required and thus the development cost is increased.

Furthermore, an additional handshake circuitry is required in asynchronous design in

order to handle the communication signals. This circuitry is usually complex and

leads to a larger area in asynchronous design. Also asynchronous circuit generally

requires extra time for handshaking protocol and thus an operation requires more

time to be completed due to the communication overhead. As a result, the expected

average-case performance is not fully realized. These two reasons cause an

asynchronous circuit running at a speed even slower than the synchronous circuit.

Due to the maturity in synchronous design methodologies and the difficulties of

asynchronous design as mentioned above, designers still prefer synchronous design

in most of their system development today.

Pages

Chapter I - Introduction

1.3 Discrete Cosine Transform

The Discrete Cosine Transform (DCT), proposed by Ahmed et. al. in 1974 [3]，and

its inverse (IDCT) have become an important tool for image and video signal

processing applications due to their adoption in standards such as CCITT H.261 [4

for video telephony and teleconference, JPEG (Joint Photographic Experts Group)

:5]for colored still image transmission and MPEG (Moving Picture Experts Group)

[6] for moving pictures on the storage media. The advantages of DCT are that its

performance closes to the optimal Karhunen-Loeve transform (KTL) for highly

correlated signals and the existence of the fast algorithms [7] [8] [9] which reduce the

number of operations.

The role of DCT is providing a data compression on the picture while a reasonable

quality can still be maintained. It helps to reduce memory size and transmission

bandwidth in the image and video applications. DCT basically involve additions and

multiplications. The operation of ID N-point DCT and IDCT can be described by

following equations,

^ 1 , � S (2 i + l)n;r
DCT ： Y^ = —c(n)2^X.C0S- -Equation l . l

2 i=o 27V
I f i , � y (2 / + l > ; r

IDCT ： X. = —2^ c(n)Y^ cos -Equation 1.2

where i, n =0,1， ’N -1
c(0) = l/y[2=l foriitO

In recent year, the increasing demand of high image and video quality signal, such as

MPEG-2 and High Definition Television (HDTV), requires higher and higher

computation in signal processing. To meet with the real-time computation

Page 4

Chapter 1 - Introduction

requirement, a processor which rapidly computes DCT has become a key component

in image compression VLSI.

1.4 Motivation

up to now, most of the past asynchronous circuits are not good in performance in

terms of speed. Together with the difficulties discussed in the previous section, it

discourages the development of asynchronous design. However, there are methods

exist so that full performance potential of the asynchronous design can be realized.

The worse speed performance of the asynchronous circuit is mainly due to the

complicated handshaking circuitry and slow communication protocol. It is believed

that by developing a new asynchronous architecture having simpler handshaking

circuitry, more aggressive handshaking protocol and together with a careful circuit

arrangement, the hazard can be removed and a competitive asynchronous design can

be obtained. This is the motivation of this project.

DCT is chosen for the realization of a new asynchronous architecture. This is

because digital signal processing (DSP) algorithm is suitable to be implemented by

asynchronous technique as the process is data-dependent that fits the style of the

asynchronous design. Among various DSP algorithms, DCT is a widely used

algorithm in many image and video applications and high throughput is required. It

helps to demonstrate the practicality of the new asynchronous architecture and the

fulfillment of the requirement of image and video applications today.

Page 5

Chapter 1 - Introduction

1.5 Organization of the Thesis

This thesis is organized into eight chapters. The first chapter describes the

background of the asynchronous design, Discrete Cosine Transform, and the

motivation of this project. The second chapter introduces the basic operation and

past methodologies in the asynchronous circuit design, and the new asynchronous

pipelined architecture is presented at the end of this chapter. In chapter 3, various

methods and algorithms of DCT implementation and two different approaches of the

asynchronous implementation of DCT processor are described. Since dynamic logic

is employed in the new asynchronous pipelined architecture, a new technique of

operating dynamic logic in low frequency is presented in chapter 4. Chapter 5

describes the detailed architecture of the programmable DSP asynchronous

processor, and the DCT implementation is given as well. Chapter 6 presents another

implementation of DCT on a dedicated DCT processor. The architecture and flow of

operations on the processor, and the design of the transpose memory are all provided.

In chapter 7, all the implementation results and performance of the designs proposed

in this thesis are given. Based on the results, the performance comparisons,

discussions and suggestions are also provided in the same chapter. Finally,

conclusion of the thesis is given in the last chapter.

Page 6

Chapter 2 - Asynchronous Design Methodology

Chapter 2

Asynchronous Design Methodology
•

2.1 Overview

The operation of an asynchronous circuit is not based on the global clock signal,

which is used in the synchronous circuit, but on its local handshake signals. The

handshake signals are the controlling signals in the communication between the

sender and receiver. For most of asynchronous circuits, they usually make use of

similar handshaking protocol involving requests and acknowledgements.

祁 knowledgement

Sender , Receiver

data ^ ^

Figure 2.1 - Communications between sender and receiver in an asynchronous circuit

Figure 2.1 shows a basic communication interface in asynchronous circuit. This kind

of communication style is called the bundled data approach [1][10]. In this

approach, the interface between sender and receiver consists of a bundle of data

which carries information (using one wire for each bit) and two control wires. When

the data from the sender side is ready, a transition will occur on the request wire to

inform the receiver, and acknowledgement wire from the receiver to the sender

Page 7

Chapter 2 - Asynchronous Design Methodology

carries a transition when the data has been processed. Also the data will be

maintained constantly during the receiver's active phase preventing wrong operation.

There are many types of handshaking protocol and different kinds of circuit for

implementing this asynchronous communication interface. In this chapter, a brief

introduction to different handshaking protocols will be given. In addition, some of

the past designs and the micropipeline structure will be introduced. At last, the new

asynchronous architecture will be presented.

2.2 Background

dataJD < valid d a t a ~ ^ < valid d a t a ~ ^ <

�e s t V / J � �I V

acknowledgement A x
out /

(a)

datajD ^ valid data ^ < valid data ^ <

acknowledgement L ^ / ^ ^ \ \ Z ^ Z / \
out � \ / \

(b)
Figure 2.2 - Timing diagram of (a)two-phase, (b)four-phase handshaking protocol

There are 2 classes of handshaking protocol, one is the two-phase and the other is the

four-phase [1][10][11] and their timing diagram is shown in Figure 2.2. Two-phase

handshaking protocol means that any transition in the handshake signal represents an

event occurred. Different from the two-phase, the four-phase handshaking protocol

is a level-triggered protocol. The occurrence of an event is represented by an active

Pages

I

Chapter 2 - Asynchronous Design Methodology

level, and the return to non-active level is required after the event has been finished.

In general, the two-phase handshaking protocol has better performance than the four-

phase one as it makes use of all transitions of the signal to represent an event, it leads

to a faster communication rate.

Compared to the synchronous circuit, the request and acknowledgement signals are

additional signals. As a result an extra control circuit is required in asynchronous

design so as to handle these two signals, and usually this circuit is called handshake

control circuit or handshake cell.

Handshake Handshake -- ^^ _ ^ Cell request 一 cell ~ •

control / control I

Stage X x XX 阳0门丨的「 Stage
N-2 N+1

\ Functional ；^ \ Functional \
——/ Block ^ / Block ——/

Stage N-1 Stage N
I (a) I

I ack I
Handshake Handshake 丨 Handshake 吻 Handshake ' Handshake Handshake

Cell 一 Cell ； Cell Cell | — ^ Cell Cell

I ^ ^ I ^ ^
Functional ~ ； F u n c t i o n a l ！ Functional Functional Functional Functional

Block ~ B l o c k I Block Block Block Block

Stage N-1 Stage N] Stage N-1 Stage N | Stage N-1 Stage N

Time = 0 丨 Time = 1 ' Time = 2

(b)
Figure 2.3 - (a) connections in asynchronous circuit, (b) operation in asynchronous circuit

Figure 2.3(a) shows the basic connection in asynchronous design using the

handshake cell. In this connection, the operations depend totally on the handshake

signals, and that can be explained with the help of Figure 2.3(b). Initially when the

operation of functional block in stage N-1 is completed, the output data will be

passed to the functional block in stage N. At the same time, the handshake cell in

Page 9

I

Chapter 2 - Asynchronous Design Methodology

Stage N-1 will detect the completion of computation and generate a request signal for

stage N. This request signal is used to indicate that the operation of stage N-1 is

completed, and the output data of stage N-1 is held and ready for the stage N to

process. Starting from this moment, stage N-1 needs to hold the output data until

stage N finishes the computation.

The handshake cell in stage N detects the request signal from the previous stage，and

then allows the functional block in stage N to process the data. After the

computation is completed, the handshake cell in stage N will generate two signals.

The first one is the acknowledgement signal which is used to inform stage N-1 that

the data has been processed. As a result, stage N-1 becomes idle and wait for the

data from stage N-2 for the next operation. The second signal is the request signal to

the stage N+1 for further processing of data.

This communication interface and protocol exist between all the stages and its

neighbouring stages in the asynchronous circuit. Since all the operations are

controlled by the handshake signals, the performance of the handshake cell becomes

the main factor of determining the speed of the asynchronous circuit.

2.3 Past Designs

The design of the handshake cell and the use of the handshaking protocol are

important as they determine the throughput and latency of the whole asynchronous

system. For the handshake cell, an accurate detection of the completion of the

operation and a quick generation of the request signal are the most important issues

as they are used to guarantee the circuit operating correctly and quickly. If the

Page 10

I

Chapter 2 — Asynchronous Design Methodology

request signal is generated before the functional block finishes its computation

process or before data is valid, hazard will occur as incorrect data will be latched by

the next stage and incorrect result will be obtained. If the request signal is generated

a long time after the end of computation, it is secure to have a correct output but the

whole circuit will be slowed down. However, to generate the request signal just in

time while maintaining simple structure is really a difficult task. By using a suitable

handshake cell, the complexity of the handshaking protocol can be reduced and thus,

the communication time can be reduced too. As a result, the speed and performance

of the whole circuit can be enhanced.

In the past decades, there were many kinds of handshake cell developed

[12] [13] [14] [15]. And the most famous and commonly used one is the C-element.

C-element is firstly introduced by D.E. Muller in 1956 [16]. It is a rendezvous

element, or an event-driven element. Figure 2.4 shows the symbol and 2 different

CMOS structures of the C-element.

T T J J
A C A C A-C B-cJ

—^L B ^ — j r pcji

T b T b ^ I
C 办 A— B -

1 a _ _ i 1 _ _

(a) (b) (c)
Figure 2.4 - (a) symbol of C-element, (b) dynamic C-element and (c) static C-element

The operation of the C-element is that, when both inputs are the same, then the data

will be copied to the output, else the previous output will be maintained. Therefore,

Page 11

•

Chapter 2 - Asynchronous Design Methodology

the output will only be toggled when there are events occurred at the both inputs of

the C-element.

C-element is usually incorporated in the two-phase handshaking protocol with the

bundled data approach. In applying the C-element in the asynchronous circuit, the

input A and B are served as the inputs of request or completion signal from previous

stage and acknowledgement signal from next stage. The output C has 3 functions.

The first one is to control the operation of the function block. The second one is

acted as the acknowledgement signal which is sent back to the previous stage, and

the last one is acted as the request signal sending to the next stage. A more detailed

operation of C-element in asynchronous circuit will be discussed in the next part.

2.4 Micropipeline

No matter synchronous or asynchronous design, pipeline is an important

methodology to improve the performance of a circuit or system. The principle of the

pipeline is to divide a single operation into several sub-operations, and allows them

to operate simultaneously [10]. For the asynchronous circuit, pipeline can be done

by breaking down the complex functional block into several simpler functional

blocks, and each of them is governed by a dedicated handshake cell. The widely

known pipeline methodology in asynchronous circuit is micropipeline.

Micropipeline was introduced in Ivan Sutherlands' Turing Award lecture [10:

primarily as an asynchronous alternative to synchronous elastic pipelines. From the

definition by Ivan, micropipeline means a simple form of event-driven elastic

pipeline with or without internal processing.

Page 12

•

Chapter 2 - Asynchronous Design Methodology

The basic operation of the micropipeline can be explained by the control first-in-

first-out (FIFO) sequence structure as shown in Figure 2.5. The control FIFO

sequence is operated in two-phase handshaking protocol. Assuming that all the wires

are initially set at zero, when there is a transition in the request input, then output of

the first C-element will be changed from zero to one. This transition will be sent out

of the control sequence as an acknowledgement signal, and also will be propagated

to the input of the second C-element. Since the input is toggled, same situation will

occur in the second C-element, as well as the third C-element. As a result, the

request signal passes through all the C-elements in series, and emerges on request

out.

req in ~ ack in

input output
side side

ack out < i) o • req out

Figure 2.5 - Basic control FIFO sequence in Micropipeline structure

However, when there is another request signal coming from the request input, this

new request signal may not be emerged on the request out this time. This is because

the control FIFO sequence may still not received the acknowledgement from the

output side, as a result no transition has been made in the acknowledgement input

terminal and thus the output of the third C-element cannot be toggled. However, this

phenomenon is normal as no transition on acknowledgement input means that the

output side, or the recipient side, still has not processed the previous request, the new

request should not pass to it before the previous event is completed.

Page 13

•

Chapter 2 - Asynchronous Design Methodology

Figure 2.6 shows the block diagram of the Sutherland's micropipeline system. The

connections are actually similar to the previous FIFO sequence, but a storage element

and a logic block are included in each stage. The storage element used is called

Capture and Pass latch (CP latch), which is an event-controlled storage element. The

inputs C and F are responsible for controlling the capture and pass function, and the

outputs Cd and Pd are just simply the delayed version of the inputs C and F

respectively. In this micropipeline structure, when there is a transition occurred in

the request input, data will be captured and stored in the CP latch. However, the

stored data will not be passed out from the output of the CP latch until there a

transition occurs at input F. If the CP latch in the next stage has captured the

previous data, the phase of acknowledgement signal will be changed and passed back

to the first CP latch. Then the first CP latch will pass the stored data to the logic

block to perform the logic operation. This operation will be repeated when the next

request signal arrives. The delay element is used to delay the arrival of the request

(capture) signal to the next stage so as to ensure the logic operation have been

completed, therefore it needs to be the worst-case delay of the corresponding logic

block.

I 1
req in I j " • req out

I T I
I i I I I r n —
I r c ^ I [Cd P i

J _ K CP K rk CP K K
Latch Logic Latch — ^ ^ Logic

I Cd P I C Pd
I I T T
I I 丄

ack out (I (^ ^ ^ ^ e l a y ^ L ack in

. I
one pipeline stage

Figure 2.6 - Micropipeline with computation

Page 14

i

Chapter 2 - Asynchronous Design Methodology

There are several benefits of using the micropipeline structure. First, the architecture

is simple and effective, it is easy to implement and a good throughput can be easily

achieved. Also, the latches moderate the flow of data through the pipeline and can

be used to filter out hazards. Thus, any logic structure can be used in the logic

blocks, including the straightforward structures used in synchronous designs. At last,

micropipeline is automatically elastic [10], data can be sent to and received from a

micropipeline at arbitrary times.

Although micropipeline is a powerful implementation strategy which elegantly

implements elastic pipelines, it delivers worst-case performance in each stage by

adding delay elements to the control path to match with the worst-case computation

time of the corresponding function block. Besides from this, the circuit of its CP

latch is rather complicated, and delays are added on the capture and pass signal to

make sure the data has been latched. Therefore the performance is degraded.

2.5 New Asynchronous Architecture

As previously discussed, although Micropipeline is a powerful arid widely used

methodology in the asynchronous circuit design, it still has some areas for

improvement.

The first improvement from the micropipeline is the use of dynamic logic, and in our

design, domino logic [18] is used. Domino logic is one of the logic types in the

dynamic logic family, and its basic structure is shown in Figure 2.7. The logical

function of the domino logic is characterized by the nMOS logic block. There are

two phases for the operation of the domino logic, one is the Precharge phase and the

Page 15

•

Chapter 2 — Asynchronous Design Methodology

other is the Evaluation phase. When the clock signal is low, then the domino logic is

in the Precharge phase. At this moment the output must be low as a pull-up path is

connected to the floating node. When the clock signal is high, then it is in the

Evaluation phase and the output depends on the input data. If the input data creates a

pull-down path in the nMOS tree, then the floating node will be discharged and the

output will go high. Otherwise the output will be kept in low.

c
,, � o Output

Input 一 " ^ nMOS
Data ——logic block

clock

Figure 2.7 - Domino Logic

The advantage of the dynamic logic is that it has lower processing delays and more

compact in size in comparison to conventional CMOS data-paths. Due to these,

many asynchronous circuits [11] [19] [20] [21] [23] [25] also adopted the dynamic logic

in their micropipeline design. However most of them have not utilized all the

functions of dynamic logic. One of the interesting properties of the dynamic logic is

its ability of temporary storage [17] [19]. Dynamic Logic is actually a combination

of the logic and storage elements, the output data can be held even though the input

data have been changed under some conditions. As a result, the complex CP latch in

the micropipeline can be omitted if the dynamic logic (domino logic in our case) is

used. This implementation of dynamic logic in asynchronous circuit has been proven

by Renaudin et. al. [17], and its pipeline structure is shown in Figure 2.8. In this

architecture, the completion detection is no longer relied on the worst-case delay, it is

Page 16

•

Chapter 2 - Asynchronous Design Methodology

done by a dedicated circuit. It monitors the output of the logic block and provides a

faster and accurate response when the output is ready. Although dynamic logic

brings benefits for the asynchronous circuit, it introduces other problems of charge

leakage and charge redistribution. These problems limit the dynamic logic to have a

minimum operating frequency from preventing the logic error. As a result, extra

attention must be paid in using dynamic logic. A further discussion on this problem

and some possible solutions will be given in chapter 4.

a c k o u t < \ y \ y V a c k in

r eq in ~ ^ ^ ^ • r eq ou t

Completion C o m p l e t i o n C o m p l e t i o n
* Detection * Detection * Detection
elk Circuit Clk Circuit Circuit

_ ^ _ _ _ _ _ — _ _ _ ^ ~
Dynamic Dynamic Dynamic

Logic Logic Logic
K Block K Block U N Block [\

I d a t a in ^ ^ da t a ou t

Figure 2.8 - Asynchronous architecture by using dynamic logic

Besides from the dynamic logic, another improvement is on the handshaking

protocol and handshake cell. Referring to the previous implementation shown in

Figure 2.8, a very restrictive handshaking protocol is used to guarantee secure

operation of the asynchronous pipeline. For a certain stage in this pipeline

architecture, a new operation, either precharge or evaluate, can only be carried out

when both the previous and next stage finished their current operation. This strict

protocol limits the performance of the handshake signal.

In the new asynchronous architecture, some improvements on the protocol have been

made. First a current stage is allowed to go into the Evaluation phase when the next

stage goes into the Precharge phase, i.e. no need to wait for the precharge

Page 17

•

Chapter 2 - Asynchronous Design Methodology

confirmation from the Precharge phase. Second, a current stage is allowed to finish

the Precharge phase even the previous stage is still in Evaluation phase. This

introduces a flexible "Enable" period between the Precharge and Evaluation period.

In order to carry out this new handshaking protocol, a new handshake cell is used

and it is shown in Figure 2.9(a).

VDD c <D c
B 2' ~

r ese t ^ ™ ^ g
… … … ‘ 1 , 考 ， 2 , 1 , 1 ,

">..V“… 丨111丨 工 丨 0_ 丨 U J 丨 山 I

D—I 14~ ^ ^ —̂—

^ r A -i'…-7T
\ ai I I I ！ ； i

^ ^ ~ 1 / 1 1 I

J H \ ！ I r
i ‘ ‘ n \ / ~ I I

GND 丨丨 丨 I 丨 i
(a) (b)

Figure 2.9 - (a) new handshake cell, (b) timing diagram of a pipeline stage

The new handshake cell is also in domino style. Compared with the classical

architecture, this handshake cell is faster due to its simplicity, low input capacitance

from the request and using simple transistor in pull-up. In this new structure, the

handshake cell and the domino logic cell will enter the Precharge phase and

Evaluation phase respectively at the same time. As a result, the handshake cell can

be seen as a logic element of the pipeline stage and the throughput of the system can

be minimized [30]. The handshake cell can be easily modified to receive more than

one request signal by connecting more nMOS transistors in series in the nMOS tree,

which is similar to the dynamic AND structure. The difference in speed will be more

significant in logically joining handshake signals as the classical C-element with

many inputs is very slow.

Page 18

•

Chapter 2 - Asynchronous Design Methodology

One of the disadvantages of this handshake cell is the requirement of the four-phase

handshaking protocol which requires longer communication time. However, this

four-phase fits the operation of dynamic logic as the non-active phase can be used for

the precharge of the dynamic logic.

Based on the new handshake cell, the operation of this new asynchronous pipeline

architecture can be divided into 4 phases: Evaluation, Hold, Precharge and Enable.

The timing diagram is shown in Figure 2.9(b). In the Evaluation phase, the current

stage processes the data, which is valid at the input. After the current stage has

finished its process, it will enter the Hold phase. In this phase, the input data may

become invalid but the output should be held for the process in the next stage. After

that, the stage will enter the Precharge phase, and will enter the Enable phase

afterwards. In this phase, the stage is waiting for the valid data appearing at the

input. This phase can be omitted when the valid input data has already appeared

during the Precharge phase. Since all the handshake cells and logic cells should be

precharged first during the power up, a NOR gate will be used, as shown in Figure

2.9(a), in the handshake cell. In this configuration, one of NOR gate inputs connects

to the Reset signal thus that the all the cells in previous stage can be precharged

initially.

Figure 2.10 shows the connection and the flow of the pipeline operations of this new

asynchronous architecture. When data arrives, the current stage will enter the

Evaluation phase to process the data. Afterward, it will enter the Hold phase to hold

the data for the next pipeline stage to process. At this moment, it will send a request

signal to the following stage and acknowledgement signal to the previous stage.

Page 19

Chapter 2 - Asynchronous Design Methodology

After the following stage has processed the data, the current stage enters the

Precharge phase. And at last it will enter the Enable phase to wait for a new data

from the previous stage.

one pipleine stage
1

ack out ‘ I ackin
Handshake ‘ * Handshake I Handshake 、、、、、

. > cell > cell :.： I > cell - 如

req in | | _ _ _ _ J I req out产

elk elk I elk

Domino I Domino 丨 Domino

. . . r \ Logic BIcok ！ K Logic BIcok | K Logic BIcok K
I data in^) | i data ouQ

stage N-1 I stage N I stage N+1

I J

(a)
O) T- 0) CM <U CO ① 寸 <D If)
=<U .= 0) ；= <U = <D ：^ � <U O) 0)0) (DCT <U D) 0) D)
.9- S .9-B .9- iS .9- iS .9-3
Q_ w CL w CLW Q_ « CLW

彳ao Lao Lao Lao Lao Lao
ri • ri ^ ri • _d_> ri •

—K — \ — \ — \ — \ — \
dat4 与 与 兮 勞 d ^

âo Lao Lao Lao Lac Lao
ri ^ ri » ri » ri ^ ri » ri »

- A —\ ^ —\ —\ - A
dat^ da t , dat , dat , dat^ da t , ao acknowledgement out

âo lao Lao Lao Lao Lao '•‘ request in
ri »

—K - - A - A —\ - A —\
dat^ . ： : ̂ 与 与 与 d ^

Lao I Lao Lao LaoJ Lao

I _ J i > - J 1 > -CU • Evaluation

； — \ - A - A —\ - A - A
dat4 da^ 弯 d ^ d ^ d ^ • Hold

,ao Lao Lao Lao Lao Lao _ Precharge

ri » _iL» -cL̂ _iL> ri ^
— \ — \ ^ — \ - A — \
dat^ dat^ dat^ dat^ dat^ dat ,

,ao LaoJ Lao [< 扣 Lao

• —K
dat̂ dat̂ d ^ d ^ d ^ d ^

(b)
Figure 2.10 - (a) new asynchronous pipeline connection, (b) flow of operat ions in the new

asynchronous pipeline

Page 20

Chapter 2 - Asynchronous Design Methodology

The use of Differential Cascode Voltage Switch Logic (DCVSL) [24], a type of

domino logic, can also improve the speed of the circuit. Figure 2.11 shows the basic

structure of a DCVSL cell. Its operation is similar to that of the domino logic. In the

Precharge phase, both of the true and complementary outputs will be kept at low.

When in the Evaluation phase, the computation is enabled. Due to the

complementary structure of the nMOS logic blocks in DCVSL, one and only one of

the outputs will go high.

VDD VDD

_ clock J 3 ^——C
true output ^ ^ ~ complementary

^ n J ” “ ^put

V V
GND GND

Figure 2.11 - Differential Cascode Voltage Switch Logic (DCVSL)

There are benefits of using DCVSL in asynchronous logic. First, it is based on the

structure of the domino logic and thus it has the benefits of domino logic, namely,

are fast computation time and storage property. Second, the DCVSL provides dual

rail coded data which provides a very reliable completion signal by simply OR-ing

both the outputs as shown in Figure 2.12. Due to these, DCVSL is an attractive way

to implement asynchronous operation functions [26] [28] [29] and has been used in

many asynchronous designs [17] [22] [26] [27:.

Page 21

Chapter 2 - Asynchronous Design Methodology

completion signal

A
in+ • • out .

DCVSL
in- • — • out-

compleme 门 tary complementary
inputs outputs

Figure 2.12 - Completion signal generated from the DCVSL

Although this way to generate completion signal is very simple, one gate delay is still

added after the completion. In fact, the completion of the computation can be

detected directly without the OR gate by modifying the handshake cell. Figure

2.13(a) shows the modified CMOS structure of the new handshake cell. In this new

structure, the true and complementary outputs from the DCVSL block can be directly

connected to the handshake cell for the completion detection. As a result, the OR

gate and the request signal can be eliminated, and the completion detection matches

closely the original computation time of the DCVSL block, and thus the average case

performance can be achieved. Figure 2.13(b) shows an example of the single bit

basic FIFO cell with the modified handshake cell and Figure 2.13(c) shows the new

connection of the asynchronous pipeline by using the new handshake cell.

Page 22

Chapter 2 - Asynchronous Design Methodology

I Modified - VDD' —
] H a n d s h a k e Cell ~ I

voo 1
I n . r I

bh i 4 i
rJ rJ ； I
r ~~ r.~~5L i,…… V ：

d力 力 L ‘--] :-:—:•:::::::::::::;:�-- -：
^ ^ i I

r � " n n
V in_pi , in n
GND ； ^ ^ r^ ： -

i DCVSL V V ； [Structure GND GND 丨
(a) — ("b)

one pipleine stage r ‘
ack out I . ！ ack in

Hdndshake •̂̂ “̂、欲渊拟。热"̂似湖抓吻胁•̂找 Hsndshske ‘ •̂、“似：；体狱微 Hsndshdks 、、、、、、、、、、、、

— J) cell I I r — {) cell I r — ^ cell ：

i I I
i I I
i I I

elk脅臂從� I elk 丨 elk
Domino • Domino 丨 Domino

I I K ^ Logic BIcok 丨 I I \ Logic BIcok I I I K , Logic BIcok K
I data in > i) I) data out >

1 [/ 1 l /
stage N-1 I stage N I stage N+1

- - - ‘

Figure 2.13 - (a) modified handshake cell, (b)modified handshake cell and basic FIFO cell in
DCVSL structure, (c) connection of the asynchronous pipeline

The use of DCVSL will improve the speed as the communication protocol is simpler,

but the trade-off is the size penalty incurred by DCVSL. Moreover, dual-rail data

requires large routing area in the physical layout as the bus width is doubled.

Therefore within the processing units, DCVSL is used in order to maximize the

performance. On the other hand, in each connection between all the processing

units, where they may be separated quite far away in the physical layout, a dual-to-

single or single-to-dual rail conversion interface is inserted so as to reduce the

routing area by using single-rail data.

Page 23

Chapter 3 一 DCT/IDCT Processor Design Methodology

Chapter 3

DCT/IDCT Processor Design Methodology

3.1 Overview

Most digital signal processing (DSP) algorithms involve many mathematical

operations which require high computational resources. There is no exception for the

Discrete Cosine Transform (DCT) [3]. Although there are arithmetic units within the

general purpose micro-processor or micro-controller, they are not specifically

designed for the pure mathematical operations. As a result, the implementation of

DSP algorithm on them may not be efficient and has poor performance. Due to this,

it motivates the development of the DSP chip, and the DCT chip in this thesis.

There are many hardware architectures to implement the DCT algorithm, such as

using a programmable DSP processor, or dedicated ASIC. At the same time, there

are many kinds of DCT algorithms, some of them focus on reducing the number of

operations, some of them allow more regular architecture of VLSI implementation.

Careful analysis on these is required in order to find out a most suitable combination

for the DCT implementation in asynchronous circuit.

The advantage of using asynchronous technique to implement the DCT or other DSP

processors is its average case performance. There are many functional blocks in the

design, and their computational time may differ from each other a lot. The global Page 24

Chapter 3 — DCT/IDCT Processor Design Methodology

clock frequency in synchronous circuits is governed by the worst case delay in the

whole system whereas each functional block in asynchronous circuits by its own

operation speed. As a result the computation time of an asynchronous DSP chip may

be shorter than the synchronous one.

In this chapter, different hardware architectures and DCT algorithms will be

considered and compared.

3.2 Hardware Architecture

Different from the general purpose micro-processor or micro-controller, DSP

processor has traditionally been optimized to compute different arithmetic

operations, such as the convolution, recursive filtering and fast transform operations

that typically characterize most signal processing algorithms. They are used in many

application areas such as communications, speech and video/image processing. As

mentioned in the previous part, DSP processor can be either programmable or of a

dedicated nature.

Programmable DSP processor has the advantages in the flexibility and design time

for different algorithms as it allows the implementation of a variety of DSP

algorithms. Besides from arithmetic units, extra memory and control units are

required in order to store the application programme and control the operations of

data. The performance of the DSP algorithm is not only depended on the hardware,

but also depended on the application programme. Therefore the application

programme should be optimized for utilizing the hardware in the processor.

Page 25

Chapter 3 - DCT/IDCT Processor Design Methodology

On the other hand, the dedicated ASIC is hardwired to perform a specific algorithm,

and usually no extra control or programme is required. Once it is designed, the

performance of the dedicated ASIC is fixed. Although the flexibility of the

dedicated ASIC can be considered to be zero, this approach is expected to perform

better than the programmable approach as the DSP algorithm is optimized in

hardware level, and also it is more efficient in terms of area and speed.

3.3 DCT Algorithm

The main application of the DCT is in the video or image compression. For most of

the image and video applications, the whole image will not be processed with DCT

directly as it will require a lot of computations. In contrast, the image will be divided

into several regular blocks for processing. The block size is usually eight pixels or

sixteen pixels in both of x and y direction, as shown in Figure 3.1. The reason to

have a block size of 8x8 or 16x16 is that they have been found to provide sufficient

details and localized activities of the picture to enable reasonable adaptive processing

of the image [31]. And for most of the current DCT applications such as H.261 [4],

JPEG [4] and MPEG [6], the block size of 8x8 have been recommended. Therefore

the effort of hardware development has been concentrated on an 8x8 two-

dimensional (2D) DCT.

Page 26

Chapter 3 - DCT/IDCT Processor Design Methodology

Picture

_ 丨 丨 1 I I I pixel 2
一 一 一 厂 一 一 厂 一 一 r 一 一 厂 一 一 r 一 r 一 一 pixel i ^ ^ .

I I I I I I \ \ one block
— I — 1 — 1 — 1 — 1 — 1 r I r~

1 1 1 1—-1 1 z' '"
-

I I 丨 I I I B
——I——1——1——r--r--f----""" I

I I I I I I 00
� � � � - � � � . pixel 64

\ � �� I I I I I I I —
Figure 3.1 - 8 x 8 image block

In general, the iVxTVpoint of 2D DCT is given by Equation 3.1，

= — c o s —————cos � - Equation 3.1
丄、 fj=0 m=0 L 斗 J L 斗 _

where m’n，k’l = 0，1’ ’N -1

c(0) = 1/4^ = 1 fori 字0

Since for the video or image application, the block size is 8x8, i.e. N=込,Therefore

Equation 3.1 becomes

COS COS - ^ - Equation 3.2
4 «=0 m=0 L 丄6 � L _

where m’n，k，l = 0，1’ ，7

C(0) = 1/-42=1 fori^O

Original Image Data DCT result

A I '； I I I I I 8x8 f III I I
- i —— 2D DCT J ,乙

-L — T^ 4- ——
m - i 7 乙 > k J ^ 乙

- — ~ / - — •

^ — _1 1 / ^—_1
^10 ^11 丫 10 丫 11

Xq2 YQO 丫01 丫02

Q • ！ •
Figure 3.2 - 2D DCT of 8x8 image block

Page 27

Chapter 3 - DCT/IDCT Processor Design Methodology

Figure 3.2 shows the 8x8 2D DCT of an image block. If the 8x8 2D DCT is directly

implemented from Equation 3.2，totally 4096 (炉 ） m u l t i p l i c a t i o n s and 4032 (8^x8x7)

additions are required to calculate all the 64 DCT outputs. This number of arithmetic

operations is extremely high, especially for the number of multiplication as it

requires higher computational resources. It is not possible to perform the 2D

transform in real-time applications even for a dedicated DSP processor. Fortunately,

there are many kinds of fast 2D DCT algorithm to reduce the number of operations,

and thus makes the real-time 2D DCT implementation possible.

There are two main types of fast algorithm for VLSI implementation of 2D DCT.

The first type is the row-and-column decomposition method which is shown in

Figure 3.3. This method separates the 2D DCT into two one-dimensional (ID) DCT

operations based on the symmetry and regularity of the 2D DCT structure. The first

ID transforms are applied on the data row-wise, which is called the row operation.

Afterwards, next ID transforms are applied on the intermediate results of the row

operation column-wise, and this is called the column operation. The reordering of

the results of row operation into column order can be done by a transpose memory.

In this way, a complex NxN 2D DCT can be decomposed into 2N ID DCT operation

and the number of multiplications is reduced from A^ to 2NxN^. As a result, the

computational requirement is greatly reduced. A better result can be achieved by

further applying the fast ID DCT algorithm [7][8][9] in the row and column

operations. Since the row-and-column decomposition method requires two ID DCT

processors and the implementation is straight forward, this method has been chosen

by many other developers [32][33][34][35].

Page 28

Chapter 3 - DCT/IDCT Processor Design Methodology

Input Data �ead in Tranpose Memory
I I I I I • W I I I I I I I

j ! I j 丨 M > row _ ! j • j j j j
~i~！~~！~i~i\— ‘ order - J | ~ ~ j ~ i ~ | ~ k -

{ I I I I I W w { I I I

11:11 1 ~ r — • \ 1-D DCT ^ \ I I I I 11 I
i ! . j j j ! • / Processor ——/ ~ I I ！ |
I I ‘ M I I — Z 1 — I i I I I I T
I I • I I M - > - > M ： M TT"
! j . I I j ! I • Row Operation “ H j | j j j | ~

8 x 8 block I I I I I I I I
read in

1 column ^
order ^

^ 1 - D DCT / I — — <
Processor <

<
Co umn Operation <

二 = = = : = = = 2D DCT
result

Figure 3.3 — 2D DCT by row-and-column decomposition method

The second type of the fast 2D DCT algorithm is called the direct method. This

method directly uses the 2D DCT algorithm to compute 2D DCT. There are many

proposed fast 2D algorithms to handle this [3 6] [3 7] [3 8]. They explore the

trigonometry equality of 2D DCT such that the NxN 2D DCT can be decomposed

into N ID DCT plus some extra additions as shown in Figure 3.4, and thus the

number of multiplications can be reduced to NxlsF. Similar to the row-and-column

decomposition method, the number of operations can be further reduced by applying

fast ID DCT algorithm on the ID DCT processor design.

Page 29

Chapter 3 - DCT/IDCT Processor Design Methodology

)re-processor post-processor

[=|> I 1D DCT Processor | c=J>

[=；> I 1DDCT P r o c i i i ^

fe I 1D DCT Processor | ^

i t ^ I 1D DCT Processor [^ | | \

Data input； = ^ ^ DCT outpub

n / c=MlDDCTPro^iii5n^ | 签 — — 1 ^

< I 1DDCT Processor | <

I 1D DCT Processor |

I 1DDCT ProceiioFI

Figure 3.4 - 2D DCT by direct method

By comparing the two approaches, the 2D direct method is more superior than the

row-and-column decomposition method. This is because it involves much less

multiplication which directly leads to better performance. Furthermore it does not

require the transpose memory. However, most of these fast 2D direct algorithms

require very complex data path in the adder/subtractor network of the pre- and post-

processors which cause difficulty in the VLSI implementation [37] [39]. Besides the

complex routing overhead, it also introduces a large handshaking overhead in

asynchronous implementation. On the other hand, although the row-and-column

decomposition requires more arithmetic operations, it requires only two ID DCT

processors saving a lot of hardware. Also the data path in a ID DCT is simpler and

regular which leads to an easier hardware implementation, and this favours the

asynchronous implementation. Due to these reasons, the row-and-column

decomposition is chosen for the implementation of the 2D DCT in asynchronous

circuit.

3.4 Used Architecture and DCT Algorithm

In this thesis, two different implementations of the DCT will be shown. As

previously discussed, the row-and-column decomposition is more suitable for the

Page 30

Chapter 3 - DCT/IDCT Processor Design Methodology

implementation of the 2D DCT using asynchronous technology. Therefore the

following parts and chapters will be focused on the design and the implementation of

the ID DCT algorithm. For the two implementations of the ID DCT, one is

constructed based on a programmable DSP processor, and the other one is

implemented as a dedicated one. The implementation of the transpose memory will

be discussed in chapter 6.

3.4.1 Implementation on Programmable DSP Processor

Recalling from Equation 1.1, the 8-point DCT is given by the following equation

X, c o s — ~ ~ - Equation 3.3
丄 i=0 丄O

and its matrix representation is shown as follows

~yJ [a a a a a a a a1 r^o"

Y, D E F G -D -E -F -G x,

Y^ B C -C -B B C -C -B x,

Y^ _l E -G -D -F -E G D F x,
Y, A -A -A A A -A -A A ^ x, ' Equation3.4

Y, F —D G E -F D -G -E x,

Y, C -B B -C C -B B -C x,

Y, G —F E —D — G F - E D x,
• 」 L 」 L 一

where A = cos(n/4), B = cos(n/8)’ C = sin(71/8), D = cos(n/16)’
E = cos(3 n/16), F = sin(3n/16), G 二 sin(n/16)

Since the programmable DSP processor has fixed number of arithmetic units, the

lesser number of operations, the shorter the computational time and thus the higher

performance of the DCT implementation. Therefore a fast algorithm with smaller

number of operations should be chosen for the implementation on the programmable

DSP processor.

Page 31

Chapter 3 一 DCT/IDCT Processor Design Methodology

There are many kinds of fast algorithm aided to reduce the total number of

operations. The most well know ones are the Lee's [7] and Hou's [8] algorithms.

They both reduce the DCT operations to have 12 multiplications and 29 additions.

The number of arithmetic operations is greatly reduced from the original 64 (炉）

multiplications and 56 {8x1) additions. However, these two algorithms were not

chosen for the implementation of DCT in this processor because the accuracy of the

DCT algorithm should also be considered.

The main error of the DCT comes from the truncation after the multiplications as the

bit length of the data is increased after each multiplication. A truncation must be

taken in order to match the width of data bus. As truncation on a data makes it differ

from its actual value, if a data in the processor is multiplied several times

continuously, it resultant value could be greatly differed from its exact value.

Therefore, a fast algorithm with less multiplication stages on a data path should be

chosen.

By comparing several fast algorithms, the one proposed by the Jeong et. al. [40] is

chosen, and its signal flow diagram is shown in Figure 3.5. This fast algorithm

requires 14 multiplications and 29 additions, and requires only a maximum of 2

multiplications in each data path. Therefore it can provide a better accuracy than

Lee's or Hou's algorithms in a fixed width system.

Page 32

Chapter 3 - DCT/IDCT Processor Design Methodology

Xi O v A® © ^Y,

X3 V X X ^ ©

X2 y O O ^ Z © ^Y,

/ X X V ——®——

X4 Z Z _ _ (g ^ Y i
CO=COS(67I/16)/COS(27I/16), CI=1/COS(27I/16)， C2=COS(47I/16)/COS(27T/16),

C3=L/^Y C4=COS(47I/16), C5=COS(27T/16),

C^COS(27J/16)/2COS(57I/16), C7=COS(27I/16)/2COS(37I/16), C8=cos(27i/16)/2cos(l7i/16),
C9=COS(27I/16)/2COS(77I/16),

Figure 3.5 - Signal flow diagram of the Jeong's ID DCT fast algorithm

The detailed architecture of this programmable DSP processor and the

implementation of the ID DCT will be discussed in chapter 5.

3.4.2 Implementation on Dedicated Processor

For the dedicated implementation of the 1D DCT, the fast algorithms mentioned in

the previous part are not suitable. This is because most of the fast algorithms have

similar data flow as shown in Figure 3.5. The data flow of such fast algorithm is

usually quite complex in the last stage. This makes the asynchronous

implementation a disadvantage as a large handshake overhead will be introduced,

and a degradation in the performance of the processor will be resulted. The solution

to overcome this problem is to use dedicated multipliers and adders for each

multiplication and addition. However this costs a lot of silicon area and thus is not

practical.

Page 33

Chapter 3 - DCT/IDCT Processor Design Methodology

For the asynchronous circuit, the dataflow should be as simple as possible. This

helps to reduce the handshaking overhead and hence the performance can be

enhanced. Therefore a semi-direct method is used in this dedicated DCT processor.

This semi-direct method is obtained by decomposing the 8x8 matrix multiplication

into two 4x4 matrix multiplications. As a result, Equation 3.3 can be decomposed

into 2 equations as shown in Equation 3.5 and Equation 3.6.

Yq a J4. A Xq + X7

Y^ _ \ B C -C -B Xi +X6

Y, A -A -A A ‘ X2+X5 一 Equation3.5

Y^ C -B B —C X3+X4

>1] \D E F G]�X0-X7一

Y^ _ \ E -G -D -F X, -jCg

Y广 3 F -D G E • _ Equation3.6

Y, G -F E -D X, -X,

and similarly the IDCT can be decomposed into Equation 3.7 and Equation 3.8.

[A B A C 1 [YJ [D E F G 1
X, A C -A -B Y^ 1 E —G -D -F Y,
X, =2 A -C - A B * Y, ^ 2 F - D G E * Y, _ Equatioii3.7

JC3 A -B A -C K G —F E -D Y,
— —J J I _ u 」 L —I L. '—

'jcJ [A B A C 1 [YJ [D E F G 1
x^ _l A C -A -B Y^ I E -G -D —F Y-,
X, A -C - A B " Y, ~2 F -D G E • Y, “ Equation 3.8

A -B A —C Y, G -F E -D Y,

This method has been used in many other DCT implementations [32] [33]. There are

several advantages for this semi-direct method. First the number of multiplications

and additions are reduced to half of the original number. Second, it involves one

multiplication only in each data path and thus it requires less numbers of bits to

Page 34

A

Chapter 3 - DCT/IDCT Processor Design Methodology

represent the data. Furthermore, the dataflow is simple, which is multiply-and-add,

this favours the asynchronous implementation. Finally the structure of the DCT and

IDCT are similar, it is easier to implement the DCT and IDCT on the same hardware

by this method.

Based on the above reason, a ID DCT core processor is constructed by using this

semi-direct method, and is used in the dedicated 2D DCT processor. This processor

is capable of handling DCT and IDCT, and can be cascaded to perform the 2D DCT.

The detailed architecture and the implementation of the DCT algorithm will be

discussed in chapter 6.

Page 35

Chapter 4 — New Techniques for Operating Dynamic Logic in Low Frequency

Chapter 4

New Techniques for Operating Dynamic Logic in Low

Frequency

4.1 Overview

Dynamic logic has some advantages over the static logic, they include higher speed

and more compact in size. Moreover, it is suitable for used in the asynchronous

circuit design as mentioned in chapter 2. However, dynamic logic is not widely used

as it suffers from two main problems which are the racing problem [41], and the

charge redistribution and leakage problem [41] [42] [43]. The racing problem can be

avoided by a proper arrangement of the logic cell. However, the charge

redistribution and leakage problem cannot be simply overcome as it is caused by its

internal structure. This problem causes the dynamic logic to have a bad noise margin

and a lower bound of operating frequency.

In this chapter, the problem of the charge redistribution and leakage problem, and its

traditional solution will be discussed. Afterwards, a new technique to overcome this

problem will be introduced.

Page 36

Chapter 4 - New Techniques for Operating Dynamic Logic in Low Frequency

4.2 Background

^ floating node

\ I__ Z precharge 丨 evaluation

— f - OUT < phase , P h ^ w
i V I ^
'leakage ..…L„.. ^ ^ •

- Mi 去 C�u« I
P " i elk

- 〒 ：
^ • I

�r ^ —i— \
- M 3 …:…- I \

L-, - � � ” . I \ floating node

CLK 厂 i • … . C - I
1 — ^

‘―] 丨 Time

(a) (b)
Figure 4.1 一（a) 3-input NAND dynamic logic, (b) voltage in the floating node of the dynamic

logic

The output value of a dynamic logic depends on the charges stored in the floating

node. By considering a 3-input NAND dynamic logic shown in Figure 4.1(a), during

the Precharge phase, the output of the dynamic logic will be kept at high as the

pMOS transistor is turned on and current is flowed from VDD to the floating node.

During the Evaluation phase, unless all the nMOS transistors are turned on such that

a pull-down path is created, the charges kept in the parasitic capacitor C�ut at the

floating node will hold the output at high. Otherwise, the output will become low as

all the stored charges in the floating node flow out through the pull-down path.

There are several advantages of the dynamic logic over the static logic. First the

dynamic logic is more compact as the complementary pMOS transistor tree is

replaced by only one pMOS transistor. Also the operation can be run faster as the

output only needs to be selectively discharged during the Evaluation phase, and the

charging speed is faster as there is only one pMOS transistor. An additional

Page 37

Chapter 4 - New Techniques for Operating Dynamic Logic in Low Frequency

advantage for the asynchronous circuit is its temporary storage of data due to charges

stored at the parasitic capacitor.

However, the dynamic logic is suffering from the charge redistribution and leakage

problem. As mentioned previously, the output of the dynamic logic depends on the

charges stored at the floating node. Theoretically if the pull-down path does not

exist, the output should be kept at logic high during the Evaluation phase. In

practice, the output voltage will be dropping continuously with time as shown in

Figure 4.1(b). This problem is caused by the charge redistribution and charge

leakage.

The charge redistribution problem can be explained by Figure 4.1(a). Suppose that

during the Evaluation phase, the nMOS transistors Ml and M2 are turned on while

M3 is turned off, there is no pull-down path to the ground and the output should keep

high. However, since Ml and M2 are turned on two more capacitors CI and C2 are

introduced and they will share the charges stored in the floating node. This is called

charge redistribution. As a result, voltage at the output drops and degrades the noise

margin in the dynamic logic. If CI and C2 are large and large amount of charges is

flown out from the floating node to CI and C2, the voltage at the floating node may

be dropped below the switching threshold of the next stage and causes a logic error.

Furthermore, the charges will also be leaked out from the parasitic capacitor due to

the leakage current [45] [47]. If the time of the Evaluation phase is sufficient long,

the diminishing charge will even induce a logic error at the output. Therefore the

duration of the Evaluation phase should be short in order to prevent the logic error

Page 38

Chapter 4 - New Techniques for Operating Dynamic Logic in Low Frequency

from occurring at the output. This limits the dynamic logic from operating in low

frequency.

4.3 Traditional Technique

J 3 J]|D
— ‘ r ^ ——^ 厂

^ 'charging ‘―| ，. "̂a'PS
y OUT M OUT

nMOS nMOS

logic block logic block

——

CLK CLK I

(a) (b)
Figure 4.2 - Addition of the pull-up path in (a)dynamic logic, (b)domino logic

The traditional method [42] [43] used to overcome the charge redistribution and

charge leakage problem is adding an additional small pull-up pMOS at the floating

node. Figure 4.2 shows the traditional method used in the basic dynamic logic and

domino logic. This additional pull-up pMOS directly solves both of the problems as

it allows a current flow to the floating node during the Evaluation phase, and thus the

charges stored in the parasitic capacitor can be maintained, or refilled. Due to its

simplicity, this method is commonly used in most of the dynamic logic.

However, this method has a drawback of speed degradation. During the Evaluation

phase, if a pull-down path is created by the nMOS logic block, the discharging

current will be needed to fight against the charging current created from the

additional pMOS, and thus a overall discharging current is decreased and the

evaluation time is increased. Although a smaller charging current can be obtained by

smaller pMOS transistor, but the transistor size is limited to the technology used and

Page 39

Chapter 4 - New Techniques for Operating Dynamic Logic in Low Frequency

can only be reduced to a certain extent. Sometimes in poor design, the discharging

current may even weaker than the charging current. In this case, the logic block will

not be operated correctly and cause an error. These problems are caused by the

limited or no control of the charging current from the additional pMOS.

4.4 New Technique 一 Refresh Control Circuit

Regarding the charge redistribution, there are several techniques [42] to overcome

this problem, and some of them are shown in Figure 4.3. Also in practical design,

the dynamic logic with a large nMOS logic block is always avoided as it has a poor

performance due to the weak discharge current. In this case, the logic cell will

usually be broken into two, or more simpler logic cells which have less transistors in

the nMOS logic block. By using these techniques, the charge redistribution problem

can be minimized. Therefore the charge leakage problem will only be dealt with in

the new technique.

c C AOUT
OUT r̂X)— OUT |-<| \ |-<j I

� - V - H L If ^

F 力 ^ ^ ^ 。R r̂ r̂
b > h P . H ?

_ _ I P _ I P i 1
CLK CLK CLK

Figure 4.3 - Techniques of overcome the charge redistribution problem

In order to solve the charge leakage problem, the introduction of the pull-up path at

the floating node seems to be necessary. However, the continuous flow of the

current from VDD to floating node via the additional pull-up path causes the speed

Page 40

Chapter 4 一 New Techniques for Operating Dynamic Logic in Low Frequency

degradation. If the amount of current via the pull-up path is controlled, the speed

degradation will be minimized. This is the aim of the new technique.

4.4.1 Principle

The idea of the new technique comes from the refresh technique used in Dynamic

Random Access Memory (DRAM) [44] [45]. The core circuit of the new technique

is called the Refresh Control Circuit (RCC), and it is used to monitor the voltage of

the floating node in the dynamic logic. When the floating node voltage meets the

pre-determined minimum voltage, or Vref, a pull-up path at the floating node is

created for each dynamic logic in order to refill the charges in it. This process is

called Refresh. Since the pull-up path is not present all the time, this technique

causes less speed degradation compared with the traditional methods. Furthermore it

is self-timed and self-operating. It does not need extra control from user. Figure 4.4

shows the modified structure of the dynamic and domino logics.

1—1 L-1 Refresh)
C D (controlled J I …

. „ D �� C ‘―I Refresh
n H by RCC) 1 L n k — — ^ (controlled

'charging ~ | by RCC)

‘ OUT I'chaw™

‘ ~ O U T

nMOS
logic block nMOS

logic block

• CLK I

(a) (b)
Figure 4.4 - Modified structure of the (a)dynamic logic, (b)domino logic

Page 41

Chapter 4 - New Techniques for Operating Dynamic Logic in Low Frequency

4.4.2 Voltage Sensor

First, in order to detect the voltage of the floating node and compare it with Vref, a

voltage sensor is used. In the system, not all the logic is connected to the voltage

sensor. Only a dummy circuit modeling with the worst dynamic logic structure in

terms of leakage is used to represent all the logic cells in the circuit and it is

connected to the voltage sensor as shown in Figure 4.5.

-] — r i "1 q
I ~ I I ~ I I ~ I 0 iRefresh Signal

I — — C D ~ 1 Refresh Signal I C

j — 广 T 丨 OUT n J p ^ 1 1
I ^ 1 I 1 • f ii——OUT

nMOS j I j I
logic block ^ nMOS

, , ^ Refresh^ 丨ogic Wock I 1 1 Voltage Sensor 二训浏• I •

J - fc -^ ^ ~ J___‘她一
Cuj： I I CLK I \ y�ef Signal

去 Dummy 去 Dummy
Dynamic Cell ： Dynamic Cell ：

(a) (b)
Figure 4.5 一 Proposed refresh structure for (a)dynamic logic, (b)domino logic

The voltage sensor consists of 2 stages, the first stage is the differential amplifier and

the second stage is the two-stage sense amplifier. Their structures are shown in

Figure 4.6. The first stage, the differential amplifier, is used to compare the voltage

of the floating node with Vref, and to amplify their difference. The inputs of the

second stage, the two-stage sense amplifier, are connected to the outputs of the first

stage to provide a more accurate comparison. If the voltage in the floating node

becomes smaller than Vref, the second stage will generate the refresh request signal to

indicate to the dynamic logic that refresh is needed.

Page 42

Chapter 4 - New Techniques for Operating Dynamic Logic in Low Frequency

I Vin1 I
I L I (from VoutJ ”| L

d _ _ d _ _
I—C I C r—C I C

j_ I j ^ (from Vout^^^
I Vln2 I

^ I IP* Zj ZJ l-̂

i—c L V胁料 pJ

L ^ 二 H _ . _ _ r ^ � r r
__) I ^ enable

^ p i ——
enable | CH *

Refresh Request ^^ 丨
Signal I cT (

(a) (b)
Figure 4.6 - Voltage sensor, (a)differential amplifier as the first stage with reference voltage

generator, (b)two-stage sense amplifiers as the second stage

The two-stage voltage sensor can provide a good detection. However, it consumes a

lot of power as there is a current always flowing from VDD to GND, it should be

prevented from operating all the time. As the sense amplifiers are only used to

determine the time for refresh, a timer can be used to record the time required for

refresh in the first refresh process. Afterwards, the sense amplifier can be turned off

and the signal from the timer can be used to indicate a time for refresh. In practice,

the combination of a ring oscillator, a counter and latch can form a timer.

4.4.3 Ring Oscillator

Ring oscillator is constructed by connecting an odd number of inverters with a

feedback, which is shown in Figure 4.7.

- j / O [> o ~ ~ [> o [> o - J O

Figure 4.7 - Ring oscillator

Page 43

Chapter 4 - New Techniques for Operating Dynamic Logic in Low Frequency

For a ring oscillator, its period (or frequency) is controlled by the size and number of

inverters. The size of the inverter means the width-to-length (W/L) ratio of the

pMOS and nMOS in the inverter. In general, the smaller the W/L ratio, the longer

the period can be obtained. This is because the charging and discharging current, as

shown in Figure 4.8, are smaller in small pMOS and nMOS, and thus it requires

longer time to charge or discharge the input capacitor of the next inverter.

Furthermore, the more the inverters used, the longer the period can be made in the

oscillator as a longer delay is created in the feedback path.

hS -,
\ I
^^ 'charge |

» I .,………
/ 'discharge 丨 丨 i

L / I I—…I i
_ / : : J i_

Figure 4.8 — Charging and discharge current in the inverter chain

Normally, the time for a logic error occurring at the floating node due to charge

leakage should be in the order of milli-second (10' second) [47]. If a ten-bit counter

is used to count the refresh time, the ring oscillator will need to have a period in the

order of micro-second (10'^ second). However, the period of an ordinary oscillator is

very short (several nano-second, 10"̂ second) even when the smallest inverters are

used. The increase in the number of inverters can increase the period, but it is not

practical. It is because the difference between the delay of an inverter and the

required period is too large, it may require thousands of inverters so as to achieve the

required oscillating period and this makes the oscillator very large. Also, the large

amount of inverter causes a large amount of power consumption. Rather than

inverter, delay elements are used. It is added between each inverter and creates

Page 44

Chapter 4 - New Techniques for Operating Dynamic Logic in Low Frequency

larger delay in the feedback path. Figure 4.9 shows the ring oscillator with the delay

elements.

>— D e l a y — ^ X ^ Delay — D e l a y — D e l a y — D e l a y ~ \

Element Element ~ Element ~ Element ~ Element /

Figure 4.9 - Ring oscillator with delay elements

There are many types of delay elements. The common one is a transmission gate but

it cannot achieve a long delay. By referring to the comparison done by Mahapatra et.

al. [46], the transmission gate with Schmitt trigger [46] is chosen as the delay

element in the ring oscillator as it produces longer delay. The CMOS structure of the

transmission gate with Schmitt trigger is shown in Figure 4.10

令 _ _ _ _

o H n H
I I [-<= ^ r ^

IN ~ I I ~ ~ I I ~ ~ OUT

^ - T 1 ^ ‘ 1 P ” ‘ ‘ ― o
n _ r M r h i u r

—^ 去 去 去
Figure 4.10 - Delay element, transmission gate with Schmitt trigger

VcontrC. C pC Lc L^

jH I JP
广 \ c o n t r o l 广 广

r ^ \ . r ^ r ^
I \ 'charge I TG With I

“ t——r—— R c o n u o , � f - Schmitt — i
__ H 广 , « ^ _ r^ Trigger ^̂̂ ^̂̂ j-J

_ I / , I_Ycflrtnl- _ _ _

n n n i l i
V

control"

1 1

(a) (b)
Figure 4.11 - (a) a voltage controlled inverter, (b) part of the voltage controlled ring oscillator

Page 45

Chapter 4 - New Techniques for Operating Dynamic Logic in Low Frequency

In order to further increase the delay, the minimization of the charging and

discharging currents (Figure 4.8) are required. As mentioned previously in this

section, the smaller the current, the longer the charging/discharging time and thus a

longer period can be achieved. The minimization of current can be done by adding

small transistors in the VDD and GND paths, which is shown in Figure 4.11(a). By

providing the control voltage near to the threshold to the added transistors, the

charging and discharge currents can be adjusted to a very small value as both

currents are limited by the added transistors. The method of providing the controlled

voltage is shown in Figure 4.11(b). As a result, a frequency of 38.5 KHz (period of

26us) is achieved in this ring oscillator.

4.4.4 Counter, Latch and Comparator

Counter is connected to the ring oscillator in order to record its number of period.

As mentioned before, the time for a logic error occurring at the floating node due to

charge leakage is in the order of milli-seconds. Therefore, the dynamic logic should

be refreshed every several or tens of milli-seconds. This constrain indicates that the

timer should be able to record the time in the order of milli-seconds.

As the ring oscillator is constructed at 38.5KHz，a ten-bit counter is enough the for

recording the time as

Recordable Time = Clock Period x 2驗�ofBitofCo她r . Equation 4.1
=26usx2io
=26usx 1024
=26.6 ms

The latch is used to record the number of clock period required to carry out the

refresh process for the first time. The input of the latch is connected to the output of

Page 46

Chapter 4 一 New Techniques for Operating Dynamic Logic in Low Frequency

the counter. When the first refresh is required, the refresh request signal from the

voltage sensor will trigger the latch and causes the latch to record the value of the

counter. This value is meaningful as it indicates the number of clock period required

to have a refresh. Afterwards, the voltage sensor can be turned off, and the refresh

process is controlled by the comparator. The comparator is used to compare the

output values of the counter and latch all the time. When their values are the same,

this means that the dynamic logic reaches the time to carry out the refresh process,

the comparator will send out a signal to request a refresh.

4.4.5 Recalibrate Circuit

The amount of leakage current is highly related to the temperature [44]. The higher

the temperature, the larger the leakage current flows out from the floating node. As a

result, the time required to carry out a refresh process is varied with the temperature.

In the real world, the temperature of the chip may vary with time, therefore the

circuit should have a recalibrate function such that the refresh time is recalculated

after certain time.

The recalibrate circuit is actually a five-bit counter. It counts the number of refresh

processes has been taken and controls the ON and OFF of the voltage sensor.

Initially the refresh counter starts counting from zero, and the voltage sensor is

enabled. After the first refresh took place, the refresh counter is incremented to one

and the voltage sensor is disable afterward. After 2 ^ - 1 refresh processes, the

refresh counter counts back to zero and the voltage sensor is enabled again. As a

result the latch will record a new counter's value by the trigger of the refresh request

signal from the voltage sensor and thus the recalibration can be made.

Page 47

Chapter 4 - New Techniques for Operating Dynamic Logic in Low Frequency

4.4.6 Operation Monitoring Circuit

When the actual system is operating, i.e. there is a transition of the clock signal

synchronous circuit or there is a request signal in asynchronous circuit, the voltage

sensor is not required to detect the floating node voltage as the charge in the floating

node will be retained during the normal Precharge phase. Under this situation, the

voltage sensor is not necessary to be turned on and thus power can be saved.

Therefore the operation monitoring circuit helps to detect when the system is

operating, and it will disable the voltage sensor and reset the counter if necessary.

4.4.7 Overall Circuit

By combining all the necessary units, the Refresh Control Circuit is formed as shown

in Figure 4.12.

I Timer I
I 1\ I
I data out) i

I n 1/ I
Counter , .]

I ； (10 bits) Latch j

I OcsiStor n n j N Z X I data out / l̂aich {——
'. (2 5 US) / L K / 广 \ 1

I _ _ I

I Matched ,

/ O ^ I 丨 Refresh
S r ^ Request

Refresh Signal ^ . Refresh Signal | | | Signal

to Actual Circuit 嘱 |
w Dummy Internal
^ Dynamic Cell Node Voltage Voltage

1 Sensor
(2-stage

Operation Monitoring | | Sense
Circuit I Amplifier)

I T I Enable /
I I Disabe

“ Enable /

Refresh Counter Disabe

(5 bit)

Figure 4.12 — Block diagram of the Refresh Control Circuit

Page 48

Chapter 4 - New Techniques for Operating Dynamic Logic in Low Frequency

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn:-.'-::::-...:::nnnnnnnnnnnnnnnnnnnnnnnnnnnnnf
Ring Oscillator

川 UUUUUU 圓圓圓 UUUUUUUUUUUUUUUUUlJUl::::-::::::.:ljUUUUUUUUUUUUUUUUUUlJUUUUUUlJUUIJ
Voltage at V k k K |V k I V K 、

floating node ^ ^ ^ ^

Refresh request signal
by Voltage Sensor

, , “ _ 5N

Voltage Sensor 0汗

Latch < Period 1 X Period 2

Refresh request signal
by Comparator

Recalibrate
signal

Figure 4.13 - Timing diagram of the Refresh Control Circuit

The timing diagram of the operation of the Refresh Control Circuit is shown in

Figure 4.13. Initially the voltage sensor is enabled and the voltage of the floating

node of the dummy dynamic logic cell decreases with time. When the voltage meets

the pre-defined minimum level, the voltage sensor generates the refresh request

immediately. This signal will first trigger the latch to record the value of the counter.

Also the refresh request signal will be passed out to reset the counter, increment the

refresh counter and refresh the dummy dynamic cell and the actual circuit.

Due to the increment in the refresh counter, the voltage sensor is disabled. However,

the timer is now enabled and is able to generate the refresh signal by comparing the

value of the counter and latch. It continues until the refresh counter returns to zero,

then a recalibration is required and the voltage sensor is enabled again. The whole

process will then be repeated afterwards.

The performance of the Refresh Control Circuit will be shown in chapter 7. Also,

multipliers are constructed to test and compare the performance of this new

Page 49

Chapter 4 - New Techniques for Operating Dynamic Logic in Low Frequency

technique with the traditional technique. The result will be shown in chapter 7 as

well.

As the Refresh Control Circuit is still in the schematic level design, this technique is

not applied on the implementation of programmable DSP processor and dedicated

DCT/IDCT processor.

Page 50

Chapter 5 - DCT Implementation on Programmable DSP Processor

Chapter 5

DCT Implementation on Programmable DSP

Processor

5.1 Overview

As the number of transistors is increasing, it becomes attractive to build design

system in asynchronous style as it has benefits of no clock skew, lower power

consumption and low electromagnetic noise. Several asynchronous processors have

been built [11][48][49][50], and the AMULETS [50] has been used commercially.

This indicates that asynchronous designs are plausible alternative to synchronous

designs.

In this chapter, a pipelined dataflow [10] [51] micro-coded DSP asynchronous

processor will be discussed. The architecture of this DSP processor was developed

by our research group, and I have made some modifications, and I am responsible for

the DCT implementation and layout generation of the whole processor. The

programming technique and the implementation of DCT will also be given at the end

of this chapter.

Page 51

Chapter 5 — DCT Implementation on Programmable DSP Processor

5.2 Processor Architecture

The design of this DSP processor follows the dataflow architecture. In other word,

this is a data-driven system. The dataflow architecture naturally fits the

asynchronous design. The combined architecture allows the data to be sent into the

system continuously without external control or clock, and the presence of data

triggers the operation of the asynchronous system automatically.

In order to realize the pipelined dataflow architecture in an asynchronous system, a

pipelined processor is developed. The target of this processor is to implement some

simple DSP operations such as Infinite Impulsive Response (IIR) filter, Fast Fourier

Transform (FFT) and DCT, where addition, subtraction and multiplication with

constant are required.

• ‘ Instruction
F i r o I I Input

Memory 1 ^ | N

零 I Instruction
^ I , p Memory

Memory 2 I |

I r i I Data
L - ^ I Output

Data Input ； Switching ！ >
K Network ^

T p 霸

"m̂ < I

r a ^ < ^

�s u b ^

Figure 5.1 - Dataflow architecture of the programmable DSP processor

Page 52

Chapter 5 - DCT Implementation on Programmable DSP Processor

The architecture of the processor with the necessary functional blocks is shown in

Figure 5.1. The processor includes an adder, a subtracter, a multiplier, two FIFO

memories, a switching network, and an instruction memory. It the following

sections, each part of the processor will be discussed.

5.2.1 Arithmetic Unit

In this processor, the adder, subtracter and multiplier are all pipelined and are

designed in DCVSL structure in order to maximize the performance. Multiplier is

based on the bit-parallel architecture. In this architecture, the multiplier core can be

built by an array of a Product Full Adder (PFA)，which is shown in Figure 5.2. Each

PFA carries out four functions, which are given by

Aout = Ain - Equation 5.1
Bout = Bin - Equation 5.2

Pout = (Ain • Bin) Q (Pin Q Cin) - Equation 5.3
Cout = Ain .Bin • Cin + Pin • (Ain •Bin + Cin) - Equation 5.4

Pin iBin
.鑫 ‘ A ！

. ； .

• 5 •
• 5 • •

• • ‘
Ain ~——• 4 Cin

Product
: ,%s. Full Adder
：Bout M - • Aout
： ：p r "

Y I T I
Cout ； Pout

t ,
Figure 5.2 - Product Full Adder (PFA) of the multiplier

All the signals in the PFA have their own handshake signals, except B shares the

handshake signal of P as they propagate to the same direction. The overall structure

of the multiplier core is shown in Figure 5.3.

Page 53

Chapter 5 - DCT Implementation on Programmable DSP Processor

B7 B6 B5 B4 B3 B2 B1 BO «

^ ^ I I I I

„ PI

日 r - n
“ � � � , � � � � � � I 日uffer

Adder Network
sign out

^ ^ J ^ ^ ； ； r _
P15 P14 P13 P12 P11 P10 P9 P8

Figure 5.3 - The 8x8 multiplier core

In Figure 5.3, A and B are the inputs while P is the product of A and B. The number

behind the inputs and output represent the bit position, where bitO is the least

significant bit (LSB). Since the data format of this processor is a 1-bit sign bit with

8-bit magnitude, the sign bit of the final product is just the XOR result of the two

inputs' sign bit. As a result, buffers are added in the multiplier core so that the sign

bits of both inputs are shifted to the right-bottom block to perform the XOR

operation, and the sign bit of the final product can be obtained.

Unlike the synchronous version, the asynchronous bit-parallel multiplier requires

different bits of the inputs arriving at different time. This is because within the

multiplier core the next PFA can only start operation when the results, C and P, of

the previous PFAs are ready. In the current architecture, (AO, B7) will be calculated

first, the next operation will be started at (AO, B6) and (Al, B7), and so on. Due to

this requirement, a ladder-shape input buffers are used at two inputs in order to

Page 54

Chapter 5 - DCT Implementation on Programmable DSP Processor

schedule the arrival time of different bits. The structure of the input buffer is shown

in Figure 5.4.

ack̂aO ack_a1 ack_a2 ack_a3 ack_a4 ack̂ aS ack_a6 ack_a7

h ^ ？ ；i 5 ！； J i；

� \
Buffer 賣賣 I

aO Cell r •

‘) “ II ；
Buffer Buffer I f

a1 Cell 丨 • • •丨 Cell f » ^
Buffer Buffer Buffer I c a2 — • Cell I • Cell I Cell f fc S

^ n z ^ ~ ~ ri ' t.
Buffer "̂：、、 Buffer 勢、〜 Buffer •�—) Buffer 礎、、 2 a3 Cell I • Cell • Cell Cell r p w

I 1 O
Buffer 令、 Buffer 命气 Buffer •他 Buffer ! • � � � � Buffer ；3 a4 •[Cell 丨 • I Cell • Cell • Cell ! Cell r • ®
Buffer Buffer 曰uffec Buffer 4 � � ^ Buffer |务、、 Buffer 昏专 a5 — • Cell �• Cell �• Cell 1 fc Cell _ C e l l , L Cell f k

^ — ^ ^ — n ^
Buffer Buffer、？-•、、 Buffer <#-��-n Buffer 日 u f f s r 如、 Buffer #-=«� Buffe a6 Cell I L Cell | C e l l | ,1 •I Cell | Cell | n Cell |j-L»| Cell | f »
Buffer Buffer 卜 H Buffer |•仲 Buffer 卜务、、| Buffer | 和 � B u f f e r Buffe | Buffer 卜等

a 7 • Cell I 一 Cell j » Cell 1 » Cell _ i U ^ Cell , fc Cell ^ fc Cell Cell j

^ z z T T z z： — — n ^ —
gg Buffer Buffer ,~~' Buffer Buffer •、-』 Buffer •"•、 Buffer Buffer Buffer 卜参*

(Sign bit) H Cell H Cell • ! Cell Cell — Cell Cell Cell •] Cell j - ^

Figure 5.4 - Input buffer of multiplier

Similarly, different bits of the output P come out at different time, and bitO will come

out first in this configuration. As a result, a ladder-shape output buffer is also

required at the output side.

The adder is based on the Carry Look-ahead (CLA) architecture [52] [53]. This

architecture provides a faster computation time by reconstructing the Sum and Carry

of the addition by 2 new values, which are Propagate P and Generate G. The new

formulae are given as the followings,

Gi = Ai • Bi - Equation 5.5
Pi = Ai QBi - Equation 5.6

Ci = Gi + Pi • Ci.i - Equation 5.7
Si = Ci.i QPi - Equation 5.8

Page 55

Chapter 5 - DCT Implementation on Programmable DSP Processor

By computing several Ps and Gs in parallel, the Sum and Carry of several bit

locations can be obtained simultaneously. As a result, the addition can be carried out

in a faster way.

In this processor, the subtracter is actually another Carry Look-ahead adder with an

inversed input as A-B=A+(-B).

5.2.2 Switching Network

In some designs, data transfer is done via a common data bus. However, it is

difficult to be implemented in an asynchronous dataflow system as large

handshaking overhead and long delay will be introduced. For example, there is a

common data bus shared by one receiver and three transmitters. When the data

exists in the data bus, the handshake cell in the receiver is required to communicate

with all the three transmitters in order to know which the source is. The time

required must be longer than a normal handshaking time in the pipeline stage. If the

number of the receivers and transmitters is increased, the time required for

handshaking will be increased exponentially and a longer delay will happen.

Instead of using common data bus, a multi-stage switching network is used to

connect the different units. There are several advantages for using multi-stage

switching network in an asynchronous system. Firstly, the network allows

parallelism. In other words, data from different inputs can be sent to different

outputs simultaneously. Secondly, the network is pipelined resulting in higher data

transfer rate via the network. Lastly, the switching network distributes the

Page 56

Chapter 5 - DCT Implementation on Programmable DSP Processor

handshake signals to the corresponding destination only and thus the large handshake

overhead is avoided.

The basic component of the multi-stage switching network is a two-to-two

programmable switch cell. It can perform six modes of connection according to a 3-

bit instruction. The structure and the modes of connection are shown in Figure

5.5(a).

~ Six modes of
% connection
一 - > 一 - > v

-I ,、+ \ 今
± m o d e 0 mode 1 mode 2

inO outO
• ^ ~ ~ • ~ I I ~ I I

i n j _ J “ _ — — • > - • � • • "•乙
^ ^ m o ^ 3 mWe 4 mode 5

(a)
g L decoded

instruction ^ '-6 "2 ii^tmction 厂

— 1 < k

——i 丨 I >D~~ out

dataO w I , L/
• � outO 1 1

I ^ •
• h b h ^ b b i ^ 乏 codO - C0d4 - cod1 — cod5 -

X dataO- data1 -

— — ^ CNj 0Ut1 \
^ ^

d a t a ^ ^ ^ J • I

(b) (c)
Figure 5.5 - (a)2-to-2 programmable switch and its six modes of connection, (b)block diagram of

the internal structure of switch, (c)CMOS structure of basic multiplier cell of the MUX 1

The design of the switch cell follows the dataflow architecture. It uses the same

communication protocol and handshake cell as the one presented in the previous

chapter. The switch is basically built up by an instruction decoder and two two-to-

one multiplexers. During operation, the instruction decoder receives and decodes the

instructions from the instruction memory. It translates the 3-bit instruction into a six-

Page 57

Chapter 5 - DCT Implementation on Programmable DSP Processor

bit decoded word, which is shown in Table 5.1，and then passes it to the two

multiplexers. Each bit of the decoded word corresponds to one mode of connection.

It helps to have a simpler design of multuplexer cell for faster operation. The

multiplexer is built in the form of sum-of-product structure and domino style, which

as shown in Figure 5.5(c). It receives the decoded instruction and detects the

presence of the input data. Once the corresponding input data has been ready, the

data is copied to the output of the multiplexer, and thus the transmission of data can

be done.

Instruction Function / Connection Mode Decoded Word (COD�

000 - inQ^outO/modeO 000001
001 inl->outQ / mode 1 000010
010 inO->outl / mode 2 000100
011 i n l ^ o u t l / mode 3 001000
110 In0~>out0&outl/mode4 010000
111 Inl~^outO&outl/mode5 100000

Table 5.1 - Instructions of switch

FIF01 out1 ——•TZI •irn •[Tl——• ADD in1
ADD out——{^K A �h v ^ 赛 • SUBinI

FIF01 out2 ——•fTTI y ——• FIF01
INPUT ~ ~ • ！ • MUL in1

MUL out ——• CO - ^ y H •j"̂ "]——• OUTPUT

FIF02 out2 ——•上八•上、~~^ FIF02
SUB out ——•ITK M ^ T ^ ^ — — • ADD in2

^ J T—

FIF02 out1 •饥 •山 \ § ——\ SUB in2
Figure 5.6 — 8-to-8 switching network

In this programmable DSP processor, the switching network is a matrix of 3x4

switch cells allowing eight-to-eight connections, as shown in Figure 5.6. The

position of the inputs and outputs is tuned and optimized to allow maximal

concurrency and efficient resources assignment.

Page 58

Chapter 5 - DCT Implementation on Programmable DSP Processor

5.2.3 FIFO Memory

There are two FIFO memories within the processor, which are responsible for

temporary data storage during the operation. The structure of the FIFO memory is

shown in Figure 5.7. It is organized in four short FIFO sets (FIFO A to D, each

stores 4 data) and one long FIFO set (FIFO E, stores 16 data). Demultiplexers,

which have similar structure as the switch, are placed at the input and output of the

FIFO memory for controlling the data flow to/out from the corresponding FIFO set.

I I
丄 , b̂ ration"̂ DEMUX 一]

FIFO 0UT1 < J = I ！ I
N 6 H FIFOC N-r§>-t- s f-tj~ I ^ ^ ^ ^��� r厂 r |

" k r i F o ^ j U ^ i " n j ’ <̂ =1::::/、、)：：<)4=1̂ I
FIFO 0UT2 FIFOE \i Data IN 〔 6 ^ 2 ^ ^J^-IJ^-^ |

Figure 5.7 一 Structure of FIFO memory

The basic building unit of the FIFO set cell is the basic FIFO cell, which is shown in

Figure 2.13(b) in chapter 2. The basic FIFO cell captures the input data in the

Evaluation phase and retains it in the Hold phase. A parallel connection of n FIFO

memory cells to a handshake cell can form a single n-bit FIFO memory stage. If

several FIFO pipeline stages are cascaded, a FIFO set will be formed. The input data

will queue and be held inside the FIFO set until the switching network is ready for

accepting the data from the FIFO block.

The input of the FIFO memory is connected to a three-stage demultiplexing network.

Inside the FIFO memory, the instruction and data are first merged to be a single data

which is in the form of [instruction] + [data]. When it arrives at the input of the

demultiplexer, the most significant bit (MSB) of the instruction will be extracted and

Page 59

Chapter 5 - DCT Implementation on Programmable DSP Processor

acts as the controlling signal for switching, and the rest of the bits will pass through

the demultiplexers. This combination of instruction and data reduces the

handshaking overhead in the demultiplexer and thus a faster transfer speed can be

achieved inside the demultiplexing network. Also, the use of three-stage

demultiplexing network prevents the fan-out and the large handshaking overhead

problems occurred in a single one-to-five switch. Also the data can be transferred to

the long FIFO set in shorter latency such that the data in long FIFO set can be reused

in shorter time. The four-to-one mulitplexer is used at the output of the FIFO block.

Its structure is similar to that of the switch cell, which is shown in the previous part.

5.2.4 Instruction Memory

The inclusion of the instructions allows the processor to be programmable and to

perform different operations. In this processor, the instruction is used to control the

connections of the switches and multiplexers in the switching network and FIFO

memories, and also used for the multiplicand for the multiplier. The instructions are

all stored in the instruction memory.

Page 60

Chapter 5 一 DCT Implementation on Programmable DSP Processor

Cyclic FIFO

^ "1 • to multiplier
o) , , control from user

—— • — — • to switch 1

. 8 Ji I ^ to switch 2 Instruction from

Instrunction_k ^ ; ~ ~ I to switch 2 decoding network .M：
from user ^ § ： i ^

z : K picn \ instruction to switches /

g ： ,_K ^ 阳 II~^ datatomultipier
- i [p l ^

I • to switch n I I
(a) (b)

I • p,cMi > to Mulitplier
— _ x ^ ^ J L J Z ^ ^ 一 _

^ ^ , 1 DEMUX ^ ^ to switch2

扎 J n| K DEMUX ~ V ^ DEMUX 1?
\r~DEMUX ~ = l]
‘ — ĵl

<l J J DEMUX ^
[LIa demux ^

i r^ f l ： DEMUX ^
(一 OpeiitioFof'DEÎ X � J ^ demux ^
I I 4 J __DEMUX ？

I 仁 DEMUX ^ ^ ~ C DEMUX ZZDC
I j — I
I ,dfN-1:0vj -4--V-/ V-Kj \ I J~~[！ DEMUX ^
I I M DE瞧
^ 乂 I L j demux ^ ^ to switch16

(C)
Figure 5.8 - Instruction memory, (a) block diagram of the instruction memory, (b) the structure

of cyclic FIFO, (c) structure of the instruction decoding network

There are two mains parts in the instruction memory which are the instruction

decoding network and the cyclic FIFOs, as shown in Figure 5.8(a). An instruction is

in the format of [address] + [data]. After receiving the instruction, the instruction

decoding network, as shown in Figure 5.8(c), decodes the address by demultiplexing,

which is similar to the demultiplexing network in the FIFO memory, and sends the

data to the corresponding FIFO or the multiplier.

The FIFO in here has a cyclic feature, which is shown in Figure 5.8(b). Besides from

sending to the corresponding destination, the outputted instruction is fed back to the

FIFO as well. This feature permits the instructions to be recycled and thus the

application can be run repeatedly without further programming. During

programming, the switch at the input is connected to the instruction decoding

Page 61

Chapter 5 - DCT Implementation on Programmable DSP Processor

network for collecting the instructions, and then it will be switched to another end for

recycling the instructions.

5.3 Programming

In this dataflow processor, programming is just the organization of the flow of data.

In other words，the switches are programmed to perform a connection from one unit

to another unit. For example, there are 2 inputs A and B. In order to perform an

addition of A and B in this processor, 2 cycles are required to send the inputs to the

adder and a third cycle is needed to send the adder's output to the processor's output.

Step 1 : A (from input) Adder Input 1,
Step 2 : B (from input) —Adder Input 2
Step 3 : Adder Output Output

In the actual programming, the following switches are required to be programmed as

follows,

For step 1 : sw2 mode 1, sw6 mode 0, sw9 mode 1,
For step 2 : sw2 mode 3, sw8 mode 2，swJ2 mode 0,
For step 3 : swl mode 3，sw7 mode 0，swll —> mode 0

Therefore, an addition requires 3 cycles. However, for example, if the two inputs are

sent from the internal FIFO memories 1 and 2, only 2 cycles are required for an

addition as no switch is shared between both the input paths (referred to the

switching network in Figure 5.6). Therefore the data from FIFO memories 1 and 2

can be sent to adder input 1 and input2 respectively within the same cycle. Similarly,

data can be sent to different arithmetic units or FIFO memories in the same cycle

provided that their paths do not share the same switch. Programming which can fully

utilize the parallelism of the switching network maximizes the concurrency of the

Page 62

Chapter 5 - DCT Implementation on Programmable DSP Processor

arithmetic operations and thus the greatest performance of the processor can be

achieved.

5.4 DCT Implementation

As mentioned in chapter 3, the implementation of DCT in the processor is based on

the algorithm proposed by Jeong et. al. [40]. The DCT programme can be divided

into four stages, which is in shown from Figure 5.9 to Figure 5.12.

In A 1 B1 C1 D1 E1 A 2 B2 C 2 D 2 E 2 a^d add add sub sub sub 巾 ⑴ ！ 謂 1 mul
1 2 0 1 2 O coeff O

�
Xi \ \ \ K i 乂 ⑤

繁::::::::::::::::::::::=::::::::=知

i
/ / \

� Z _ K ::::::::::::::::::::::::::::::::::::二::::::::::^(^^^^^"^(^^^~^^

Figure 5.9 - Flow diagram of the first stage of DCT implementation

In A1 B1 C I D1 E l A 2 B2 C 2 D 2 E 2 add add sub sub sub ⑴^丨丨 mul mul
1 2 O 1 2 O coeff O

. ® \

Figure 5.10 - Flow diagram of the second stage of DCT implementation

Page 63

Chapter 5 - DCT Implementation on Programmable DSP Processor

In A1 B1 C1 D1 E1 A2 B2 C2 D2 E2 臼如 add add sub sub sub mul mul
1 2 O 1 2 O coeff O

....... •.....•..©-©©N

.© t^

/ \ (£ w

…(S)---...._....... Z太
><...... \雜 6

.........

" A

®
Figure 5.11 - Flow diagram of the third stage of DCT implementation

In A1 B1 C1 D1 E1 A2 日 2 C2 D2 E2 add add sub sub sub mul mul
1 2 0 1 2 O coeff O

® • " . ‘ ‘ ®

M, © ^ Y� 霸
© ^ Y, // / \:/

© -Y. /.:;< ； \ / X®'®^©
© -Y, \ I

i w/ /：

lf, If
© v @ (@ .

�

、：...

Figure 5.12 — Flow diagram of the forth stage of DCT implementation

Page 64

Chapter 5 - DCT Implementation on Programmable DSP Processor

The flow diagrams show the data flow in the DCT algorithm. In the flow diagram,

/« means the input, A, B, C, D and E mean the FIFO sets in the two FIFO memories.

add 1, add 2 and add O are referring to the input 1, input 2 and the output of the

adder respectively. Subtracter and multiplier also have the similar representations.

Due to the parallelism and concurrency of the switching network, two or more data

are always controlled to transfer simultaneously in order to increase the throughput

of the switching network, and thus more operations can be carried out by the

arithmetic units and the performance can be increased. Also in order to avoid data

queuing, it is necessary to send the data to FIFO memories for temporarily storage in

sometime.

The detailed steps of this programme (includes the instructions of each switches) are

shown in appendices, and the performance of the DCT implementation is given in

the chapter 7.

Page 65

Chapter 6 - DCT Implementation on Dedicated DCT Processor

Chapter 6

DCT Implementation on Dedicated DCT Processor

6.1 Overview

As the demand of the high quality signal, the computation requirement of the video

and image applications nowadays becomes higher and higher. For the application of

the discrete cosine transform such as the MPEG2 (640x480, 30 fps, 4:2:0, 13.82

Mpixel/sec) or High Definition Television (HDTV) (74.23MHz in luminance signal

for baseband HDTV), a very high processing rate of a 2D DCT/IDCT design is

required. Although the processing power of a general purpose processor is high, it is

still difficult to provide a real-time processing on these signals. On the other hand,

dedicated processor for specific application can provide an effective solution. It

always provides a cost effective and higher performance solution for these

applications. By further applying the asynchronous pipelined architecture on these

designs, a higher performance may be achieved.

In this chapter, a dedicated 8x8 2D DCT/IDCT asynchronous processor is

introduced. The processor has a fully pipelined in the architecture, and provides a

very high transform rate which is capable of real-time processing on high quality

signal. The architecture of the 2D DCT/IDCT processor will be introduced at the

beginning. Since the architecture is based on the row-and-column decomposition Page 66

Chapter 6 - DCT Implementation on Dedicated DCT Processor

method, the design of the ID DCT core and the transpose memory will be given

afterwards.

6.2 DCT Chip Architecture

As discussed in chapter 3, the 2D DCT design is based on the row-and-column

decomposition method which provides a simpler implementation and is more

suitable for the asynchronous architecture. Figure 6.1 shows the dataflow in the 2D

DCT by using the row-and-column decomposition method. In the row operation, ID

DCTs are applied on each row of data, and then the results are stored in the transpose

memory row-wise immediately. For the column operation, the ID DCTs are applied

on the data stored in the transpose memory in column-wise, and the resultant values

of the column operation are the 2D DCT result.

� . ,P N X row Data in Original Data t ''
operation _ Transpose Memory

X70 j…十…I…十-|X77| — 1DDCT — ||丁7�| --•|---十---卜-十--十-卜；

5 = = = = 二 — 1DDCT^ l ^ o l Z Z Z Z Z Z Z

^ Z—工一iddct~> 二 工
^ Z 工 一 i d d c t ~ > |Gl==Z= =工
^ / 工 一 1DDCT— = = = 工

T 一1DDCT—>

ri[二二二二 ；一 i d d c t —{涵二二二二二;;
I ̂ � 1 0̂2 0̂3 Xo4 XQ5 XQ4 | 1 D DCT ~ • | 丁卯 |丁oi 丁03 丁04 丁05 丁04 丁05 |

^ ^ ^ — ！ 1 ！——• —
I I I I I I I 0 „

a o D o o D a D ^ S i
a O O D O O D D O j C I
^ q q q q E ^ q ^ l 3
I I M 1 1 M § = t t t t t t t t

-1

IY70 Y77
I Y

I '60 I ^^ !
Y~i 7 r

I '50 y I

2D DCT | 5 L = = Z = = 工
result i g 厂 = 2 ! = = = ! "

| 5 t l Z = = = = 工
l^io^ 工
I Ypo r 01 Ypa YO3 Yo4 Ŷg Ŷ^ Ypg

Figure 6.1 - Dataflow diagram in 2D DCT by row-and-column decomposition method
Page 67

Chapter 6 - DCT Implementation on Dedicated DCT Processor

From the dataflow diagram, it is shown that it requires eight DCT operations in both

of the row and column operations. It means there are totally 16 DCT operations in

the whole 2D DCT operation. However in the physical realization of the row-and-

column decomposition method, it is not necessary to use 16 independent ID DCT

cores to perform the row and column operations. This is because the data is entering

the processor serially. A single ID DCT core can be shared for the eight ID DCTs

by each operation. As a result, only one ID DCT core is required in row and column

operation, and the block diagram of the 2D DCT architecture is shown in Figure 6.2.

Since the architecture of both the ID DCT core can be the same, it saves the time of

designing.

data (pxel) \ 1DDCT \ Transpose \ 1DDCT K 2D DCT
input Core Memory ^ Core ^ output

Figure 6.2 一 Block diagram of 2D DCT processor

The detailed architecture of the ID DCT core will be discussed in next section of this

chapter. For the transpose memory, it is built by an ordinary Static Random Access

Memory (SRAM) with an address generator to control the write and read processes.

The detailed architecture of the transpose memory will be discussed in section 6.3.

6.2.1 1D DCT Core

The implementation of the ID DCT core is based on Equation 3.5 and Equation 3.6

shown in chapter 3. By dividing the equations into two parts, Equation 6.1 to

Equation 6.3 can be obtained.

Page 68

Chapter 6 - DCT Implementation on Dedicated DCT Processor

- _ -| p -1 � n � -I
Zq X0+X7 Z4 Xq — X^

= and Z5 一 -Xg
“ Z 广 - Equation 6.1

一Z3J +X4J [Z7J [X3-X4一

X] [A A A A 1 � Z o _
Y^ B C -C -B Z,

Y, A -A -A A * Z, _ Equation6.2

Y, C -B B -C Z3

'¥,1 [D E F G 1 � Z /

Y,丄 E -G -D -F Z,

Y, F -D G E * Z, _ Equation 6.3

Y, G -F E -D Z,
— � ‘― � L , _

|1DDCT CORE I

I ^ ‘
I K § K tL 2 I \

Data (pixel) 8 ^ l \ f l ^ ^ p \ DCT
input h / I I / = I h / output

t ^ I 8
I ^ ^ I

Figure 6.3 - Block diagram of the ID DCT core

Figure 6.3 shows the basic architecture of the ID DCT core [32][33][34], which is

constructed by a pre-processor and a multiplier-accumulator. The pre-processor is

responsible for the operation described by Equation 6.1. It collects the input data

and performs the addition and subtraction, according Equation 6.1. Since only

simple addition and subtraction are required, the pre-processor includes an adder and

subtracter.

In this processor, the Binary Look-ahead Carry (BLC) adder [30] [54] is used.

Compared to the Carry Look-ahead (CLA) adder, each processing block of the BLC

adder handle two sets of Propagate and Generate only. This simplifies the operation

within the basic block and thus the speed can be increased. However, the drawback

Page 69

Chapter 6 - DCT Implementation on Dedicated DCT Processor

is the silicon area and longer latency. A 8-bit version of the BLC is shown in Figure

6.4

Cell _ ^ ^ ^ ~ < ； ; ^ ^ ^ ^

_ 1/ " f f id V y y ^ \ y y / y y \ V y / y / A

ai —•I PG uC ̂ blc h — i ^ ^ r i Uhh^
bi — • Cell f t Cell Adder _ _ • 酬 1

• J J ly y- y y (‘ f̂] \ y y y y y \ I
— H PG p i S f e i n U f W] n — A ® B

b2—• Cell _ U Cell _ ^ ^ Cell Adder _ • sum2 ^ —^ Cell -•A.B
« 1 I 1 I 1 y y , X .J I I 严 I

a3 —H PG hM±l blc i — B L C UfT^F
b3 — • Cell f T Cell Cell ^ . . — Z T ^ Adder _ • sum3

^ P 广參 BLC 卜
f """"T*****"***""*"̂*"*"*"**" “ “ ” “ Pn ^ Cell

a4 ~ • PG BLC — 4 — B L C BLC J ^ Half G „ • “ —
b4 ~ C e l l ^ Cell I — ^ l \ Cell Cell | — A d d e r _ _ ^ sum4

a5 ~ 叫 PG ^ BLC [— - — H BLC L - " BLC | U h Half y y a

b5 Cell a Cell — 引 Cell [- J = t | Cell Adder | _ • sum5 g t a ^ / "
data -•g/p^ig-^data

I Y / / / / / / / /

a6 “ • PG BLC h H ^ Z Z H t 日匕。--f—» BLC '- f> Half
b6 ~ • ! Cell ^ Cell Cell [_ ~ ~ C e l l _ _ A d d e r _ ^ sum6

a7 • PG ；̂ BLC blc 卜 B L C Half

b7 ~ C e l l Cell j - L Cell | Cell Adder _ ^ sum?

i t i Half
Adder ^ sums

Figure 6.4 一 Structure of the 8-bit BLC adder

The second part of the ID DCT core is the multiplier-accumulator. It is responsible

for the matrix multiplication described by Equation 6.2 and Equation 6.3. The

matrix multiplication can be done by multiply-and-add. It receives the output from

the pre-processor and performs 16 multiplications with the DCT coefficients, and

then adds the results according to the order. As a result, the multiplier-accumulator

is constructed by multipliers and adders.

Besides from directly using the multipliers and adders, distributed arithmetic (DA)

[55] method is used to implement the multiplier-accumulator in some designs

[32] [33]. The principle of the DA is to use a Read Only Memory (ROM) based look-

up table (LUT) to replace the multiplier. Since the DCT coefficients are fixed, the

Page 70

Chapter 6 - DCT Implementation on Dedicated DCT Processor

result of the multiplication can be pre-calculated and stored in the ROM. In this way,

the input data acts as an address to read the data which is stored in the ROM. Since

the ROM based LUT can be built very compactly, the advantage of DA is saving

silicon area as a general dedicated multiplier is avoided. However, the DA does not

fit the style of the asynchronous architecture, and the read operation on ROM cannot

be pipelined. As a result, a general pipelined multiplier based on the bit-parallel

algorithm is used in this ID DCT core as it can be pipelined and run very fast, but the

trade-off is the size.

Basically the architecture of this bit-parallel multiplier is the same as the one used in

the programmable processor, which has been described in Chapter 5. However, it

cannot be used directly in this DCT core. This is because the bit-parallel architecture

is primary designed for the multiplication of two unsigned value, but it is two

complement data format in the DCT core. As a result, a conversion of a two

complement data into a unsigned value with a sign bit is required. This conversion is

done in the input buffer, and the converted output can be used in the multiplier core.

The mechanism of conversion can be illustrated in the following example. For a 9-

bit data having a the binary representation of 111110101, the conversion can be done

by

Original 2-complement binary value 1 1 1 1 1 0 1 0 0

Step 1 : Inversion 0 0 0 0 1 0 1 1
Step 2 : add 1 to the result + 1

0 0 0 0 1 1 0 0

The resultant binary number shows a decimal value of 12, so the original value

represents a value of -12.

Page 71

Chapter 6 - DCT Implementation on Dedicated DCT Processor

In this implementation, the conversion is divided into 2 stages. The first stage is the

step 1, which will invert the input bit if the input data is a negative value. This can

be done by the XOR gates which XOR all the data bits with the sign bit. The second

stage is the step 2 which can be performed by an adder. As the conversion is handled

at the input buffer part, a ripple adder is used as it fits the ladder structure of the input

buffer. Figure 6.5 shows the modified input buffer used in the 2-complement

multiplier.

ack̂ aO ack̂ al ack̂ a2 ack_a3 ack̂ alO ack^al1 ack̂ a12 ack̂ a13

^ I h 1 \ ^ \ u\ i
^ I ^ I ^ l ! I

a14(sign) i n i| I Buffer Ĥ vriD KH _ „k-~i Buffer I I 姜
a1 ~ ^ Cell _ _ ^ XOR Full Cell _ d ^ “

Buffer N--I Buffer NM |<*™�W~|,~-� Buffer 目 ii 2 a2 ~ • Cell —Cell —^ XOR Full Cell —d ^ =
^ “ 芸 — 丨 丨 丨 =

Buffer ^-i Buffer Buffer 略― 碌 、 • _ 缚 、 B u f f e r 、•、‘ lu 】 <D a3 ~ • Cell —1-» Cell Cell —^ XOR FW — cell • ^

； ； ； i| ！ ：！ ： “ ： ： ； 0
实 笑 . $ ’ I » I S 5 • ^ J I ？ M 5 J3
？ 5 ‘ I I I M 专 M 主 5 • ^ M ^ W
多 专 专 ？、‘ 冬 > 5 • ii 5 • 5 5 • 5 5 • 5
5 玄 5 ？ 专 i 5 • S J • j ？ • U • 5
？ i « 5 5 5 ？ I ^ ：： I ‘： ；- I 5 ？ • 5 Buffer I务4 Buffer 卜™ Buffer kH Buffer kH Buffer 丨如 Buffer |善〜! 令™! I Buffer M IJ

alO Cell • Cell _ ^― • Cell _ C e l l _ C e l l _ ^ Cell ^ _ C e l l _ f ，

丨 ^^^ * " I i I t
Buffer • " i Buffer 4-H Buffer Buffer、、f、、i Buffer 4、、、、 Buffer 务 ^ Buffer 4-' a11 • Cell ^ Cell _ ^ Cell Cell _ C e l l ^ Cell _ / j j j �_ C e l l f .

I i • ？ Adder i 1 ^

I I i i 1 n
Buffer 略、、、4 Buffer Buffer 凑、一 Buffer Buffer ! •、 Buffer [•、、、、 L ĵ [•务Buffer K"養

a12 • Cell _ ^ Cell _ f U ^ Cell _ C e l l _ L ^ Cell 一 C e l l ^ ： ^ XOR ^ • Full ^ „ />

" T ！ I F ^ 轻 i p ^
i I j I 善 I I I I

Buffer Buffer 务、、、玲 Buffer •#、、、。 Buffer Buffer ‘、#、、、） Buffer 』 4似丄 Buffer U Buffer Mt̂

a13 • Cell ^ C«ll ^ Cell ^ Cell ^ Cell ^ Cell ^ ^ Cell ^ XOR Full Cell ^
I 1 I 1 I 1 I 1 I r I r 严 1 n ^ Adder " i “

— • data carry in — •
XOR iH'sign _ Full

data ~ • ~•data®sign data ~ • ~ • data •sign sum in ~ • ~ • sum out
• • • • • • • • Adder

sign ~^Y/y/y/^, ^ sign ~ ^ ®'9n —• carry out
Figure 6.5 - Modified input buffer for 2 complement input

A similar conversion is required at the output as the unsigned product result is

required to be converted back to a two complement data format. The conversion is

merged into the output buffer and its structure is similar to the input buffer shown in

Figure 6.5. For the conversion at output, the sign bit of the result must be ready at

the same time as the bitO in order to perform the conversion at once. Therefore the

Page 72

Chapter 6 - DCT Implementation on Dedicated DCT Processor

sign bits path in the multiplier core is modified in order to calculate the output sign

bit first. The resultant structure of the multiplier core is shown in Figure 6.6.

Together with the modified input and output buffers, a two complement bit-parallel

multiplier is formed.

B14 B13 B12 B2 B1 BO

A A A i I

sign一B —f��Y/ Vj/:::::……命 I “}'/}……本勢'X/ \二)/'/1, sign out

/ ！"“！ / ！： / ！！ / n ！ / h ！ / ；H

H I c y I CV 1 (：丨 I I P3 * - * - i - * t -• #
/ f} \ / ! / i / i / i / \ / / ^ y j - ^ y ^ y \

m m n i ' m m l j L ^ . .
Adder Networic ^

sign一out

^ ； .1 I ； r _
P31 P30 P29 P19 P18 P17

Figure 6.6 — Multiplier core of 2 complement multiplier
I

For the accumulator part, some of the design uses an adder with an output feedback

to perform the accumulation of the multiplier's outputs. However, this structure is

very slow as the second addition cannot be performed until the previous addition is

finished and fed back to the input. Also, it wastes the pipeline architecture as only

one addition can be carried out at anytime. Therefore several BLC adders are used in

this design in order to achieve a better performance.

Page 73

Chapter 6 - DCT Implementation on Dedicated DCT Processor

6.2.1.1 Core Architecture

For the asynchronous architecture, simpler and direct dataflow allows easier

implementation and better performance as it reduces the handshaking overhead and

fits the asynchronous pipeline architecture. In order to develop a simple dataflow,

Equation 6.2 is further decomposed to Equation 6.4,

>ol � … 「叫 「叫 � 1
一 1 万 � 7 1 1 C r71 1 一 C r 1 1 一万 r 1

n = 2 ^ .LZoJ+S - a •口2J+3 J - Equation 6.4

r^ C —B B - c
L J L - J L- -J L. _J

Let

I- r- n r- -n r- —,

A 「叫 「叫 r A
J ^ i C \ 一 C \ B

^0 = 2 ^ •[z,],U,=- •[z,],anci U,=- ^ - f e] - Equation 6.5

C -B B -C
— � L J L �

r。_
then, Y^

Ŷ =^01+^23 - Equation 6.6

n .

w/zere U 机=Uo+lJ\ and U,, =U,+U, - Equation 6.7

Similarly for Equation 6.3, let

' d i r £ 1 r F 1 r g “
1 E r 1 - G r 1 I -D r 1 - F r

^ A = - •[Zsi G •[ZgJ, and 五 • [Z , \ _ Equation 6.8

gJ [- f J | £ J [- D

1 � M
t h e n，Y , _

Ŷ =A)1+丄23 - Equation 6.9

where L̂ ^ = Î o + A 肌d L̂ s - Equation 6.10 Page 74

Chapter 6 - DCT Implementation on Dedicated DCT Processor

Based on Equation 6.1 and Equation 6.4 to Equation 6.10, the architecture of the ID

DCT core is formed as shown in Figure 6.7. It is a fiilly pipelined design and the

datapath is simple and in single direction without any feedback. In this architecture,

the pre-processor is constructed by one adder and subtracter, the multiplier-

accumulator consists of two general purpose multipliers and three adders.

I pre-processor i] i --7 muropIier-~~[
] 11 丨 ^ ^ ^ ^ I accumulator i
I] I [Coefficients ——• ^] [
I I I I Memory g _ ^ I I

i ^ i i i , >mum 1
I Add! I I I ^ ^ I . … … J \ I
I ^ <1 -H-> Replicater ——• ^ q ^ ^ ^ i \ |
I . (r J I 丨丨 口) ！ 1 ^ !

- U \ 4 \ / t ^ I i ^ - u M h _ � ^ 一 、 J K
？ > 1 > w ii

I ° ； ^ ! I I Data I L^"^ I
I Replicater — > T l 丨 I

] ••••/ J i l l (x4) 2 ~ • 、 丨 / I
I ^ ^ l i i 卜 MUI2 I f I
j 111 ^ ^ ^ " i .……•) I !

丨 I I Coefficients • ^^^ Q ^ ^ I I
j I I I M e m o r y 丨丨 I

j I M _ _ J 丨

^ stage 1 \ stage 2 \ stage 3 stage 4

Figure 6.7 - Architecture of ID DCT core

It should be noticed that only two multipliers are used in this design. In order to

achieve a high performance, some other designs require parallel input of data or

require four or more multipliers or LUTs [32] [34]. In this way, several

multiplications can be processed in parallel such that a higher throughput can be

achieved. Another reason is that they are synchronous designs, they need to maintain

a constant data rate throughout the datapath. Otherwise, some clock cycles may be

wasted for waiting the input data. However it is not necessary in this design as it is

based on an asynchronous architecture. Different units in the asynchronous design

can operate at different rates as their operations based only on the local handshake

signals rather than the global clock signal. Also, the asynchronous pipelined

Page 75

Chapter 6 - DCT Implementation on Dedicated DCT Processor

architecture is applied on the design of the multipliers such that the multiplier can be

run very fast. As a result, the multipliers can be adjusted to run faster than the other

units，then a similar or better performance can still be achieved by this design even

less multipliers are used. Furthermore, it does not require parallel input of data as the

operation will only be started when all the inputs are ready, no operation (no power

is consumed) will occur while waiting the input data.

6.2.1.2 Flow of Operation

The dataflow of the ID DCT core can be explained by Equation 6.1 and Equation 6.4

to Equation 6.10. Figure 6.7 can be divided into four stages.

Stage 1:

Stage 1 is the operation of the pre-processor, represented by Equation 6.1. Firstly it

receives the input data in the order [xO, x7, xl , x6, x2, x5, x3，x4], and then the one-

to-two demultiplexer will send the data to input 1 and input2 of the adder and

subtracter alternatively, that means the odd-th input data will be sent to input 1 of the

adder and subtracter, and the even-th input data will be sent to the lower path input 2

of the adder and subtracter. As a result, the output sequence of the adder 1 is

[x0+x7, xl+x6, x2+x5, x3+x4] or [Zq, Zi, Z2, Z3] (refer to Equation 6.1) and the

output sequence of the subtracter is [x0-x7, xl-x6, x2-x5, x3-x4] or [Z4, Z5, Ze, Z7]

(refer to Equation 6.1)

Since the addition and subtraction can only be carried out when both inputs are

ready, the output rate of the adder and subtracter is half of the input data rate.

Page 76

Chapter 6 - DCT Implementation on Dedicated DCT Processor

Stage 2:

The multiplications with DCT coefficients are performed at stage 2. At this stage,

data is split into two paths, which are the upper and lower path. Both of the paths are

totally identical, and the upper path is responsible for Equation 6.5 while the lower

path is responsible for Equation 6.8.

By considering Equation 6.5, there are totally sixteen multiplications, in which each

input data needs to multiply with four different DCT coefficients. Therefore, a data

replicator is used to duplicate the input data four times and then send to the

multiplier. Therefore, the output sequence of the data replicator at the upper path is

[Zo, Zo，Zo, Zo, Zi, Zi, Zi, Zi, Z2, Z2, Z2，Z2, Z3, Z3, Z3, Z3]. Similarly, the output

sequence of the data replicator at the lower path is [Z4, Z4, Z4，Z4, Z5，Z5, Z5, Z5, Ze,

Z6，Z6, Zs, Z7, Z7, Z7，Z7].

The DCT coefficients are stored in the DCT coefficients memory, and they are

arranged and sent out to the multipliers in the sequence of [A, B, A, C, A, C, -A, -B,

A, -C, -A, C, A, -B, A, -C] in the upper path and [D, E, F, G, E, -G, -D, -F, F, -D, G,

E, G, -F，E, -D] in the lower path. As a result, Equation 6.5 and Equation 6.8 can be

performed and the output sequence of the multiplier 1 is [iV, Ui ,̂ iV] while the

output sequence of multiplier 2 is [U/, Uŝ , Uê , iV]. The output data rate of each

multiplier is two times of the input data rate as the data replicator increases the

output data rate of the first stage by four times.

Page 77

Chapter 6 - DCT Implementation on Dedicated DCT Processor

Stage 3:

The output of the multiplier will go through the one-to-two demultiplexer at stage 3.

Its operation is similar to that of stage 1, but the outputs of the demultiplexer are

alternating every 4 times in order to perform the addition shown in Equation 6.7 and

Equation 6.10. For example in the upper path, Uô and i V will connect to the first

input of the adder 2, U , and Uŝ will connect to the second input of adder 2.

Therefore the output sequence of adder 2 is [Uoi\ U23I and that of adder 3 is [Loî ,

L23I. For the output data rate, it is reduced to be the same as the input data rate.

This is because an addition can only be performed when both inputs are ready, it is

reduced to half of the output data rate of the multipliers.

Stage 4:

Stage 4 is responsible for performing Equation 6.6 and Equation 6.9. Originally two

adders are required for each equation. However, data rate after stage 3 is halved, a

single adder can be shared by both equations. Therefore a two-to-two switch is

inserted at the beginning of this stage. It is used to collect data from upper and lower

paths and distribute them to adder 3. Finally the output sequence of stage 4 is [Yo,

Yi, Y2, Y3, Y4, Y5, Y6, Y7].

In this stage, the output data rate can be maintained at the input data rate as it

combined the data from the upper and lower paths. As a result, the final output of

the ID DCT core has the same data rate as the input.

Table 6.1 shows the summary of data rate at different stages of the ID DCT core. It

shows that the critical part of the design is in stage 2, where the multiplications are

Page 78

Chapter 6 一 DCT Implementation on Dedicated DCT Processor

performed. As a result the throughput of the whole design is limited to the half of

the speed of the multiplications in stage 2.

Stage 1 Stage 2 Stage 3 Stage 4
Input Input data rate 1/2 x Input data 2 x Input data Input data rate

^ ^

Output 1/2 X Input data 2 x Input data Input data rate Input data rate
rate rate

Table 6.1 一 Data rate at different stages of the ID DCT core

6.2.1.3 Data Replicator

The purpose of the data replicator is used to keep a single operand for the multiplier

to perform four multiplications. In synchronous design, a latch can be used to hold a

data for four clock cycles. However, it is not possible in asynchronous design as data

will be lost after used due to the Precharge phase of the domino logic. A simple way

which uses a buffer with a feedback output can perform a cyclic function and the

data can be reused. However, the resultant speed is slow and the pipeline

architecture is destroyed due to the feedback. As a result, a dedicated circuit is

constructed in order to duplicate a single data four times, and thus four

multiplications on a single data can be done.

O
data ， ‘ MUX

C ^ H buffer I • J
MUX —, MUX —, MUX —, »

^吻ut Muxl � T
FF FF FF FF

� > � > � > � > r v ^
_ , MUX H buffer |—

(a) (b)
Figure 6.8 - (a) block diagram parallel-to-serial shift register in synchronous design, (b) block

diagram of data replicator

Page 79

Chapter 6 - DCT Implementation on Dedicated DCT Processor

The idea of the data replicator is similar to that of the parallel-to-serial shift register

in synchronous design, which is shown in Figure 6.8(a). However, it is not suitable

to implement the parallel-to-serial shift register in asynchronous design. The first

reason is that flip-flop does not fit the style of the new asynchronous architecture.

Also the single stage parallel-to-serial structure requires more difficult control.

In the data replicator, which the shown in Figure 6.8(b), multiplexers are used

instead of flip-flops and the structure is divided into two stages. Since the

multiplexers can only handle one of the two inputs every time, buffers are also

included for temporarily storage purpose. In this structure, data in the four input

paths will quickly be transferred to the next stage by the multiplexers or stored in the

buffers, and then the next data can be inputted. However, it is necessary to ensure

that all data must be sent out in the single stage parallel-to-serial shift register before

next data comes in. Therefore, the control of the data replicator is simpler and has

less overhead, and thus allows faster duplication on data.

6.2.1.4 DCT Coefficients Memory

As mentioned in the previous section about the distributed arithmetic, ROM is not

suitable to be used in asynchronous design. In order to pre-store the DCT

coefficients for the multiplication, a new logic cell is used, which is shown in Figure

6.9(b).

Page 80

Chapter 6 - DCT Implementation on Dedicated DCT Processor

reset reset

T Y t
IU ai r - - - 4 - - I- -n

out D r— M1 > - | ； t t - ^ modified T j , … I
-P 0 < n . 「 n delayed basic FIFO normal basic J

out p reset ' I FIFO cell (
p ^ ~ • L signal | | — » out_p I out_p

V iq i|—L V ^ i i
_ _ V I normal basic I / " o d i ^ d ,

I I FIFO cell I I bas丨c^lFO ,

I I 4 — • out n I 丨丨 - I— • out n

• r L' “ - -
V V •1’is '0' is

pre-stored pre-stored

(a) (b) (c)
Figure 6.9 - (a) normal basic FIFO cell, (b) modified basic FIFO cell, (c) basic DCVSL structure

of pre-storing data

The main difference between the new cell and the normal basic FIFO cell, which is

shown in Figure 6.9(a), is the addition of transistors Ml and M2. Initially when the

system is being resetted, the reset signal is high and the acknowledgement signal

becomes low. For the normal basic FIFO cell, it enters the Precharge phase and the

output becomes logic low. After the reset has finished, it will go into the Enable

phase and wait for the input data. Since charge is still kept at the floating node, the

output of the normal basic FIFO cell is still kept low.

However for the modified basic FIFO cell, although the acknowledgement input is

low, it is not in the Precharge phase as transistor Ml is turned off and M2 is turned

on by the delayed reset signal. As a consequence, a pull-down path is created and

the output is kept in high. When reset is finished, the next stage will go to the Enable

phase but the output of the modified basic FIFO cell is still kept high due to the

delayed reset signal. As a result, this high output, which presents having a data of

logic one, requests the next stage to receive the data. As a result, a data of logic one

can be sent out. Owing to this feature, the modified basic FIFO cell can be treated as

a memory cell of either pre-storing logic high or low, as shown in Figure 6.9(c). By

connecting N memory cells in parallel with a handshake cell, it forms a single FIFO

Page 81

Chapter 6 - DCT Implementation on Dedicated DCT Processor

Stage in which a N-bit data is pre-stored. The DCT coefficients memory is

constructed from these FIFO stages with pre-stored DCT coefficients according to

the required sequence listed in section 6.2.1.2. An example of the DCT coefficients

memory in the upper path is shown in Figure 6.10.

j -1
I Handshake '
I Cell I

從 微 鄉 你 y 嫩 •渊 鄉 \ 轮 I

I FIFO stages built | |
j n r i by modified basic 1 I

I / FIFO cell f： < 4 < I
I 芒 Z c 芒 芒

[V I ® * .g .g ® .
| — ^ i I - U - I - U I ~ • I �t o multiplier

I O O O O I I I- h" 丨 I o • o o j
I Q Q Q Q ‘
I ^ zTzi. _ _ r r _ _ J

Figure 6.10 - DCT coefficients memory in upper path

When the delayed reset signal becomes zero, then transistor Ml is always turned on

while M2 is always turned off. As a result, the modified basic FIFO can be treated as

a normal basic FIFO cell Therefore by applying the cyclic feature in this DCT

coefficients memory as shown in Figure 6.10，the DCT coefficients can be recycled

and can be used repeatedly.

6.2.2 Combination of IDCT to 1D DCT core

Similar to the ID DCT, the ID IDCT can also be implemented by similar

architecture. Referring to Equation 3.7 and Equation 3.8, they can be divided into

two stages as the following equations,

X I p B ^ C 1 p q r ^ J I'D E F G]
•Si =丄乂 C -A -B Y^ and — 1 五-G -D -F Y,
S , A - C - A B * Y , S , ^ 2 F - D G E * Y , ‘ Equation 6.11

A -B A -C Y, S, G -F E -D K

Page 82

Chapter 6 - DCT Implementation on Dedicated DCT Processor

- ~ | 「 p -1 「 _ ! 「

+ 'J 4 Sq -S^
= ^ ^ i + S s and 一

X, 一 X ^ = A - 民 -Equation 6.12

3 �k + A � UJ k - v

Referring to Equation 6.11 and Equation 6.12，the operations of the ID IDCT are

similar to that of ID DCT, but different in order. The ID IDCT first requires a

matrix multiplication, and then followed by addition and subtraction. Therefore for

IDCT, the pre-processor is eliminated while a post-processor is added after the

multiplier-accumulator, which is shown in Figure 6.11. This post-processor is

responsible for the operation according to Equation 6.12, and it consists of an adder

and subtracter which is the similar as the pre-processor.

11D IDCT CORE I
I u . I
I I- O I

Data (pixel) , [A . f l — \ 1 ^ ^ K DCT
i叩Ut I ^ I 1 - V ^ I ^ ^ output

I CD o ！
I Q. I

Figure 6.11- Block diagram of the IDCT

By comparing Equation 6.11 to Equation 6.2 and Equation 6.3, their structures are

the same and thus both the multiplier-accumulators can share on the same hardware.

Therefore, the ID IDCT can also be performed on the ID DCT core by adding a

post-processor at the end of the original ID DCT core. Switches are also inserted

inside the core so as to select the path for performing DCT or IDCT. As a result, the

overall architecture of the ID DCT/IDCT processor is shown in Figure 6.12

Page 83

Chapter 6 一 DCT Implementation on Dedicated DCT Processor

I DCT I I — — I
. 广 >Add . Coefficient ~ • ^ ^ g
8 \ J \ Memory | | ~ • ^

k � 8 4 __m__ —— r
^ i i ^ ^ S H

\ / r—1 ； 7 \ .
/ g t — R印"cater — ^ S / — — _ \ ； 乂 / _ _ _

1 / L ^ L J ^ t ^
Figure 6.12 - Overall architecture of the ID DCT/IDCT processor

One more modification is made on the DCT coefficients memory. The DCT

coefficients of DCT and IDCT are different in the upper path as the matrix

multiplications are different, which is shown in Equation 6.2 and Equation 6.11.

Therefore the content of the DCT coefficient memory needs to be changed when

performing IDCT. As the pre-storage of the modified basic FIFO cell only depends

on the delayed reset signal, it is not necessary to use an additional DCT coefficients

memory to store the additional IDCT coefficient. The change of the DCT

coefficients can be done by adding some logic gates to control the presence of

delayed reset signal in the memory cell, which is shown in Figure 6.13. As a result,

the pre-storing data can be changed for DCT and IDCT.

^ d c t reset reset dct/idct

Y y y Y
I V 1 I 1 r 1

, modified 丨丨 modified 丨丨

I basic FIFO 丨丨 丨 basic FIFO | ；

I 坊 “ i - h ^ OUt_p 丨 糾 ^ out_p

M M
j modified | | modified •丨一

basic FIFO I I basic FIFO i

I out_n 丨 械 out n

I ！ L J “

'1' is pre-stored in DCT '0' is pre-stored in DCT

'0' is pre-stored in IDCT T is pre-stored in IDCT

Figure 6.13 - Modification of memory cell of pre-storing different data in DCT and IDCT

Page 84

Chapter 6 - DCT Implementation on Dedicated DCT Processor

In performing the IDCT, the order of the input and output sequence is changed too.

The input sequence of the IDCT is [Yo, Yi, Y2, Y3，Y4, Y5, ¥5, Y7] and the output

sequence is [xo, X7, xi, X6, X2, X5, X3，X4:.

6.2.3 Accuracy

According to the IEEE specification [56], the 2D IDCT should achieve certain

accuracy in order to prevent the quality degradation in the reconstructed signal after

the inverse transform. Therefore in this design, the bit length of the different parts

should be considered in order to achieve the specified accuracy.

By considering different combinations of the bit length of the DCT coefficient,

transpose memory and multiplier's output with the verification of the C program,

Table 6.2 shows the bit length of the different parts of the DCT/IDCT processor.

The architecture is shown in Figure 6.14. According to this result, truncations are

needed at the outputs of the multipliers and the ID DCT/IDCT core. Truncation on
I

the multiplier's output can be merged inside the multiplier as the last stage of the bit-

parallel multiplier is an adder, only a little modification is required. However for the

output of the DCT/IDCT core, a dedicated circuit for the truncation is added in order

to truncate and round up the result.

Bit length
Input 一 9/12(DCT/IDCT)
Output 12/9(DCT/IDCT)
Multiplier's output in the row operation 19
Transpose Memory 15
Multiplier's output in the column operation 20

Table 6.2 - Bit length in different parts of the 2D DCT/IDCT processor

Page 85

Chapter 6 - DCT Implementation on Dedicated DCT Processor

~ ~ 1 D DCT/IDCT core for row operation 1D DCT/IDCT core for column operation
15-bit DCT/IDCT 15-bit DCT/IDCT

Coefficient Coefficient

r y n i ^ X
i 一 l i J i i Ĵ â̂ ip̂ L̂ i l i l output

9-bit I 10-bit I I Memory 2 # 8 | 2 | — ~ ^ ^
6 £ B Sw If =j g 3 XS

(12-bit) ^ (12 -b i t) L l _ J (19 -b i t) t U (15-bit)' (15-bit) L ^ |(15-bit)| ^ |(20-bit)|窝 I 叫 (9 - b i t)

Figure 6.14 一 Bit length in different parts of the 2D DCT/IDCT processor

Table 2 shows the IDCT error produced by using the architecture shown in Figure

6.12 with the bit length provided in Table 6.3. It shows that the precision meets the

IEEE specification.

Error Error Error
- Spec. [-256, 2551 [-5, 51 [-300.3001

Maximum Pixel Error 1 1 j J
Overall Mean Error 0.0015 "~0.Q00777 ~~0.0Q0856 0.000675
Overall Mean Square Error 0.02 —0.009842 “ 0.009237 0.008331
Maximum Pixel Mean Error 0.015 1 .004300 ~ 0.004400 0.004700
Maximum Pixel Mean Square Error 0.06 0.012300 0.012600 飞010600

Table 6.3 — Accuracy of the 2D DCT/IDCT processor

In the VLSI implementation of the 2D DCT/IDCT processor, in order to reduce the

cost, the ID DCT/IDCT core and the transpose memory are separated into two chips.

The structure of the ID DCT/IDCT core for the row and column operation is unified

such that a single ID DCT/IDCT core can be used for both operations, and the 2D

DCT can be done by cascading the ID DCT/IDCT core with the transpose memory,

and then connect to another ID DCT/IDCT core again. As a result the bit length is

further modified in the ID DCT/IDCT core as shown in Figure 6.15. In this new

configuration, the unified DCT/IDCT core can perform four different mode of

operation, which is listed in Table 6.4. The unused bits at the input are needed to fill

with zero while the unused output bits can be ignored.

Page 86

Chapter 6 — DCT Implementation on Dedicated DCT Processor

DCT / Row/Column Number of lUsed Range of iNumber of lUsed Range of
IDCT Operation Input Bit Input Data Bus Output Bit Output Data Bus

^ 9 Datainr 14:61 15 Dataoutr 14:01
DCT Column 15 Datain[14:01 12 —Dataout[14:31
IDCT Row n Datain[14:31 |l5 ~Dataout[14:Q1
IDCT iColumn |l5 |Datain�14:01 19 |Dataoutri4:61

Table 6.4 一 Four different operation modes of the unified ID DCT/IDCT core

I L ^ ^ ^ l ^ 爾 DCT I I 1
r V r>Add \ CotmcLnt. ~ » % J \
S \ J \ M«mory1 | 5 _ ^

- v i t X < ra ——
•啊 r Y ^ (k d I t J . " ^ V - i ^ p s ^ ^ 衝

K “ 、 :薬丨 P output

吟 i i k — 一 ^ i ^ l l ^ k P ： ^ 11-^4
•？ E / ISbJIDCT i ~ » J Q S ? 2 b l t _
r g / Cotfflclinti ~ * ^ X ^ ^ \ r Sub

I / 、义

Figure 6.15 - Unified structure of ID DCT/IDCT core

The result and performance of this ID DCT/IDCT core will be given in chapter 7.

6.3 Transpose Memory

The purpose of the Transpose Memory is to store the result of the row operation,

then re-order the data and send them out for the column operation. The name

"transpose" means that the re-ordering is similar to the transpose of matrix, in which

the data in the rows and columns are exchanged. In order to be used in the 2D 8x8

DCT/IDCT operation, the transpose memory should be capable of storing 64 15-bit

data, and re-ordering the data for the column operation.

In order to fit the architecture of the ID DCT/IDCT core, the transpose memory is

required to have two different modes of operation. This is because the input and

output sequences are different in the DCT and IDCT operation in the proposed ID

DCT/IDCT core, which has been mentioned in section 6.2.1.2 and 6.2.2. The

Page 87

Chapter 6 - DCT Implementation on Dedicated DCT Processor

transpose memory should be able to rearrange the data in two different orders such

that the rearranged data sequence fits the corresponding operation.

To avoid changing both the write and read order at the same time, the write order of

the transpose memory in both operations are set to be the same. The output data of

the ist stage ID DCT/DCT core (row operation) is configured to be written into the

transpose memory in row-wise order, which is shown in Figure 6.16.

rCNICO 寸 l O C O N O O
c c c c c c c c
E E E E E E E E
o o o o o o o o

O O O O O O O O

row 1 irii 丨门2 丨门3 in̂ ing in̂ iOg
row 2 iPg iHio �i n , ^ in,3 in,̂ in̂ g
row 3 in̂ g
row 4
row 5

row 6 -

row 7 - - inssings

row 8 |丨》157卜58丨丨门59丨丨门60丨丨门61|丨〜2|丨门63|丨‘
Figure 6.16 - Write order of the transpose memory

As the write order is fixed, the read order of the data from transpose memory should

be altered according DCT or IDCT operation. No matter in which mode of

operations, the data are outputted in column-wise order from the transpose memory.

However, their orders are not the same as shown in Figure 6.17.

Page 88

Chapter 6 - DCT Implementation on Dedicated DCT Processor

1st M^Mg^M^M,, M51 MeJiyi^JMsJ 1st [M,JM,JM3JM,,[Msi|MejM,jM3,"

3rd 2nd J ^ g g i ^ l ^ i ^ l ^ i ^

5th 3rd E E ④

7th 4th ^ ^ ^ ^ ^ ^ ^ ^

8th l y i ^ i y i ^ i y i ^ j y i ^ i ^ l ^ j ^ l ^ 5th

6th l ^ i ^ j y i ^ l ^ j y i ^ i y i ^ i y i ^ i y i ^ 6th ^ ^ ^ ^ ^ ^ ^ ^

4th j y j ^ j ^ j y i ^ i y i ^ i y i ^ i y j ^ l ^ i y i ^ 7th

2nd |̂ 18卜少38�|m |m |m |mJ 8th |mJiyQlVlssk'^^s^bWs^s
T T T T T T T T t T T T T T T T

i ；

M 1 3 — M 1 7 — M 1 8 — M 1 1 — 之—M14—M13—M12—M11 —
(a) (b)

Figure 6.17 一 Read order of (a) DCT operation, (b) IDCT operation

6.3.1 Architecture

Figure 6.18 shows the block diagram of the transpose memory. It consists of a

write/read address generator, two RAM blocks and two multiplexing networks.

Although it is only required to store 64 data, two 64x15-bit RAM blocks are used in

this design. This is because if a single 64x15-bit RAM is used, the second row

operation cannot be started immediately after the first row operation as data are still

stored inside the RAM for the column operation, data cannot be written into the

RAM until the column operation is completed. As a result row and column operation

cannot be carried out simultaneously and thus the performance is poor. If two RAM

blocks are used, the result of the second row operation can be written into the RAM

block 1, and the data stored in RAM blockO is used for the column operation. Since

the computation time of the row and column operation are the same, the roles of the

RAM blocks can be exchanged after the current row and column operation are

Page 89

Chapter 6 - DCT Implementation on Dedicated DCT Processor

completed. As a result, both operations can be run simultaneously and the whole 2D

DCT/IDCT operations can be run non-stopping.

, \|
K ^ ——^ 64x15bit 乂

data 〉 o _ _ K RAM _ _ K ^
K I > BlockO \ I

I 1 W \
Write/Read k ^ ^ /

Address f ^ t

Generator i ^ 言

Figure 6.18 - Block diagram of transpose memory

The multiplexing networks are built by multiplexers and demultiplexers. The first

multiplexing network is responsible for scheduling the flow of data and address to

the two RAM blocks, and thus the write and read operations of the two RAM blocks

can be controlled. The second multiplexing network is responsible for detecting and

collecting output data from RAM.

In order to ftirther improve the performance of the Transpose Memory, the

architecture of the RAM block is further modified as shown in Figure 6.19.

____RAjyi_^qckO

K — — N 32x15bit 丨

Z I S 32X15bit ^ j — l / I K

I ^ I I
Write/Read k 1. N ~ ^ 32x15bit | -|

Address " W r ^ ^ § ^ RAM b x ' _ _ f \ f

Generator E ^ ^ ' X " ^ 〕 |) |

^ 1 / 1 g 32x15bit ^ I

Z I ^ RAM H I
‘ ^ M Bibckl ‘

Figure 6.19 - New structure of the transpose memory

Page 90

Chapter 6 - DCT Implementation on Dedicated DCT Processor

In this modification, an interleaving technique is used. The single 64x15bit RAM

blocks is replaced by two 32x15bit RAM block with a multiplexer and

demultiplexer. In write operation, the demultiplexer delivers the write address and

data to two 32x 15bit RAM blocks alternatively. As a result, the time allowed for the

write operation is doubled due to the interleaving policy, and thus the performance

requirement of the 32x15bit RAM block is relaxed. However, area is the trade off of

this modification.

6.3.2 Address Generator

The address generator is composed of two units, which are the write address

generator and the read address generator. Besides from generating address for the

write and read operations in the RAM blocks, they also control the switching of the

multiplexing networks.

Since 64 data can be stored in a RAM block, 6-bit RAM address is required as

26=64. The structure of the address generator is similar to the DCT coefficients

memory, it uses memory cell to pre-store the RAM address. Instead of directly

storing the 64 6-bit addresses, the address is split into 2 parts and pre-stored by two

cyclic FIFO memories. An example of the write address generator is shown in

Figure 6.20.

Page 91

Chapter 6 - DCT Implementation on Dedicated DCT Processor

address MSB 丨 LSB
0 000 I oW
1 — 0 0 0 I 0 0 1

2 "OOO ； 010 JriB— K
3 000 丨 011 kI p i ^ U q ^ 3-bit _ | \ 6-bit
4 [j V l 三 5 — g — — — [> >
5 000 I 101 I ！ ^ /
6 - 000 1 110 丨 M I 1 ^
1 000 I 111 MSB t

_ ？ _ 001 i 000 . ' " n “ n ~ n F rn ~rn~ ̂ , Data ；
9 001 I 001 l — N E - - - § > o > o > § > 8 > b z ^ Replicator Z z L

I 丨 I I I 丨 I _
I I I
I I I
I I I I I I

62 111 I 110
63 111 丨 111一

Figure 6.20 - Write address generator

In this configuration, the number of data needed to be stored in the address generator

can be reduced and thus the area can be reduced too. Read address generator also

has the same architecture as the write address generator. However, the addresses

stored in the read address generator are different for the DCT and IDCT operation as

their input and output sequences are different, as described in section 6.2.2. The

change of the pre-stored addresses uses the same method as the one used in DCT

coefficients memory.

Figure 6.21 shows the operation of the transpose memory. Initially the row operation

is required to be carried out first, i.e. a write operation on the RAM is required. As a

result, the write address generator controls the multiplexer to send the write address

to RAM blockO. At the same time, it blocks the read address from entering RAM

blockO and switches the input data to RAM blockO, which is shown in Figure

6.21(a).

Page 92

Chapter 6 - DCT Implementation on Dedicated DCT Processor

r Fin
一 脉 ^ 、，Data^ ^ ^̂ D

O UJ …”
“ “ Wirtino on BlockO ^ „ 〜，

iHu nn Reading on BlockO

^ ,丨•。―1| Writing on Blockl
Wite Address 、 | ^ >< MxISbit … . J , ~

Generaotr | | —^ Wrte Address | § ^ ^ 64x15bit
^ ^ ： 旧 ^^"^"^^"^Ll^ilJj^ .口

0?~ ~ ？丨 丨、、 Blockl

^ ^ ^ X _ _ r ‘ ‘ _
(a) (b)

‘ r^
Data 3 秘狐、

Q I
I Writing on BlockO

-op- a j Reading on Blockl X ^ __
J~~ r ^ ~ ——•.'.s =)"••~>.

VWte Address I g ^ § _ 64x1 Sbit Q 、、- 、、 ^
_Generaotr I S s ** RAM L ^ L__l ‘ BIcokO

’ X \ u • u •

Read Address | | § . 64x1 Sbit � + ~^ ~
Generator S . 5 ^ RAM | i 个 D、~• ~> T ^ Blockl ‘�•“ “ “ • “

I I
(c)

Figure 6.21 - Operation of the transpose memory

After the first row operation is completed, the second row (write) operation and the

first column (read) operation are started at the same time. By changing the

controlling signal in the multiplexing network, the read and write addresses are

transmitted to RAM blockO and blockl respectively, and the output data can be

collected at the output side. This is shown in Figure 6.21(b). As a result, both row

operation and column operation can be run concurrently. After these two operations

are completed, the controlling signals are altered such that the flow of the addresses

is changed and the role of the RAM blocks is also changed, as shown in Figure

6.21(c). The controlling signals are altering after every row and column operations,

and thus the roles of the RAM blocks are alternating repeatedly. This allows the 2D

DCT/IDCT runs continuously and simultaneously without any user's control.

Page 93

Chapter 6 - DCT Implementation on Dedicated DCT Processor

6.3.3 RAM Block

0 — N undecoded
� … " o ^ address SRAM /L_ g _N SRAM
BankO Nr Q ^ Bank1 ^zzzzh undecoded

1 row address
a：

— N row

w y 吞 ^ 一
Column Decoder & H r N。？广门

Data Buffer ^ ^ address
^ — data

address ^^Mdaia

Figure 6.22 - Block diagram of the RAM block

The RAM Block is basically a SRAM. Its structure follows the traditional design

which consists of a column address decoder, a row address decoder and 2 SRAM

banks. Each RAM bank is capable of storing 16x15 bit data. The structure of the

RAM block is shown is shown in Figure 6.22.

There is one difficulty in using SRAM in asynchronous design, which is the

completion detection. It may have no problem in the read operation as the presence

of the data at the output representing the completion of the read operation. However,

there is no related signal representing the completion of the write operation. As a

result, additional circuits are required so as to detect the completion.

There are several methods to detect the completion in SRAM. One of the methods is

the use of delay element [57]. In this approach, it is assumed that the write operation

must be finished within a certain period of time. Therefore a delay element can be

used to delay the write request signal, and the delayed write request signal can be

acted as the completion signal. Although this method is simple, it provides a worst

Page 94

Chapter 6 - DCT Implementation on Dedicated DCT Processor

case performance. Another method is the use of current sensing technique

[57][57][59]. Since the current drawn will be decreased after the operation, the

completion can be known by sensing the current drawn from the power supply in

RAM block. However, this technique is difficult to implement and the result may

not be accurate. In our design, a monitor cell is used to detect the completion of the

write operation.

The structure of the monitor cell is shown in Figure 6.23(b). It is treated as an

additional SRAM basic cell and placed inside the bit column of the SRAM. By

comparing with the normal SRAM cell structure, which is shown in Figure 6.23(a),

the monitor cell is actually composed of two SRAM basic cells with two additional

pMOSs. The purpose of the additional pMOSs is forcing the two SRAM basic cells

to store complementary values when the monitor cell is not yet enabled.

e n a b l e j - J Z X - .

^ I I I
I p~~| I _J_ monitor

data_p I I ~ I； ‘ ~ I ^—•data_n

p i U i S R A M I

^ ^ “ basic cell ~‘‘
(a)

enable ^ ^ SRAM ,
~r ‘bas ic cell 一’

>-| |—C 3——

data_p«|——I“_厂 一 ^ 厂 I~I——pdata_n ^̂丨 I I
h U ~ U r = 丨 li
^ ^ "- done ！

H f 丄 ,一 SRAM I ,
_J—lZzLT — 1 门 丨 M basic cell 厂

^ f f i f ^ 个 个
^ ^ data_p data_n

(b) (c)
Figure 6.23 - (a) SRAM basic cell, (b) monitor cell, (c) monitor cell in a bit column of SRAM

Page 95

Chapter 6 - DCT Implementation on Dedicated DCT Processor

When there is a write operation, the monitor will be enabled and will perform the

write operation. Since the write operation causes both of the SRAM basic cells

inside the monitor cell to store the same value, either one of the values in the SRAM

basic cell will change and thus the change can be detected by the NOR gate. This

signal will be sent out to indicate the completion of the write operation. Due to

geometrical reason, the monitor cell is placed at the top of the bit column of the

SRAM, as shown in Figure 6.23(c), in order to prevent the monitor cell from being

written before the normal SRAM basic cell. Also due to the same reason, the

detection of completion is only required on bitO and bit 14 of the SRAM banks as

their write operation is the slowest among all the bits.

The advantage of this method is that the monitor cell can be treated a normal SRAM

cell which is simply placed in the bit column, it will not cause a large modification in

the traditional architecture of RAM block design. Also it directly monitors the write

operation, and the completion signal is immediately generated after the write

operation is done. As a result, the average case performance can be achieved.

The result and performance of the transpose memory will be given in chapter 7.

Page 96

, Chapter 7 - Results and Discussions

Chapter 7

Results and Discussions

7.1 Overview

In ihis cKaplcr, ihc iniplcnicnuiiion results and pcr“�rmancc of ihc designs, uhicfi

h i i v f b e e n d c s c r i b c d i n c h a p l c r 4 lo u i l l K r pio\uk\i H. lscJ o n t h e r c s u l l s

o b l a i n c d . d i s c u s s i o n u i l l be g i v e n i n c a c h d e s i g n I h e r e s u l t s a n d J i n c u s s h u i s v s i l l h e

prcscnlcd in the onJcr o\ the Kclrcsh (\)iiirol Circuit, priigrannnahlc I)SI' priKcsMU.

11)丨)(*1 I DC I ci>rc and lr.iii.spH»sc rncnu>r\

7.2 Refresh Control Circuit

7.2.1 Implementation Results and Porformanco

I h e K c t r c s h t \ » n l r u l (* i r c u u i s d e s i g n e d o n t h e A M S 1 1 ' o f n i (M c » s

tcchnoU»g\ I able ， i shows ！he transistor c«njn! on dj!!cfcnt untfv of ihc Rclrc^h

(\ > n l r o l C i r c u i t

B � i h c HSPK'f simulaUini ur紅k?�V supph “�!:.i，’c j? is�ho�”i，h.t: the

I r c v j i i c n c) o f i h c n r v g o w i l L i ' u > : is a K u i " 1 % « . h u h n i n f i ^ ^ i ^ r c ” 1

Mso Ihc lurKfion ol ！he Refresh I ‘ (is .cn:lcJ m :hc ”?nui‘n« n .'.hah

i s s h v n v T i i n I i g u r c ' :

Chapter 7 - Results and Discussions

Transistor Count
Ring Oscillator
Timer - Counter ^
Timer - Latch
Timer - Comparator 142
^cal ibrate Circuit 124
Operation Monitoring Circuit 90
Voltage Sensor ^
iTotal 917

Table 7.1 - Transistor count on different units of Refresh Control Circuit

1li「厂—ili丨「+_+_� I I li 1！---l-̂ -i-,1""“i
r I i [! [[[I [[jf ‘ ’ I ‘ ‘ ‘ Ctrreot X.fi.TE DŜDS i i i

呈趕 I j ~j j I j T _ _ I I ij I I ""[~i I 1—cirrairlvTBnmTirenltt i h 1
= • I I I • I I I I I I || I I I I I I I j [j
S I I I I I ！ I I I j [, [j ！ I j I I I I I I
B s _ f T 厂_r r T TT__r t ri r t--I-i 1 r _ r | | | -}•--rl r I • I I ！I ! I I I ！ !! ！ ！ I I ！ I I I 厂

a ！ A I I ！ I I I I I I I I I I 1 ！ I I I
！ ! ~ ！ ~ ~ ！ ！ i ！ " " “ ！ ！ j i - H 1 I “ “ ！ ^ ― _ I _ , _ i _ J

• • I I I I I I I I
I • I • I • I • I • I ' I • I • I • I • I • I • I • I • I • I • I • I .Bi> 冊 SSo 31k> aEl> 4Dt» 4El> EDu EGl> 6\ia fiGl> TDl> 7Gl> BDu BEl> BDu »Bl> IIKM>

Tin» (li» (TMC)
Figure 7.1 - Simulation result of ring oscillator

= ‘ ！ [I I 1 I , ,

S ^ — CL" 1 Kc- 1 l^i-l f t 4- 1；
» g ^ ^ ‘…—t- J "I-— .|r-»— J. 1 , … �I ’�---_
B ‘ 1 j j 1 i. 4. i.
5 » J | - — f - V Q i t a q p a t f l n a t i n f | n r > r i p . _ _ . ! __ I [[

= , I 丨 丨 丨 � � [I
« ^ L L L L L 1 I I

f 8 _ « . :^^:m|rpJr§?Ji_sjjaQ?!_a§p4^At¥Jjpjji_y_qi_t^§i_€#[i:s]|[�::::
in. A I I I I I] T "“
> " V I I I • 丨 丨 ‘ 1 i I I I I
= _ ‘ j j ^ I ! _ _

i I ^ 工 二 : 〒 二 ： 〒 二]
I ^ ~"ISfDK^XC®"*?î TPJii\ypA^ j " l i ； t t

「 丨 • * ‘ “ ‘ I I _•__•__••}•__」—•垂
= I ！ , ！ , ！ ！ ！ ！ ！ ！
« . ！ ！ L _ _ _ L L 1 L_ I I
I J !. 取 a _ t i 卯 軸 § _ § e n s o k " ON/OFFI
I • n r 1 ！ ！ 「 I ！ ！ ！

• I I I i i i {
I‘I—‘‘"‘‘"““I~~‘―“‘“―‘‘I‘“―‘"““‘‘I‘~~‘‘“‘1”‘~~‘~~‘I~I~1~I~~I~I~(1~I~I~i~I~1~I~rI

» !1> ai» 4l> El> fiU 7i>
Figure 7.2 - Simulation result of the Refresh Control Circuit

Furthermore, the power consumptions of different parts are estimated from the

simulation result, which is shown in Table 7.2. The average current drawn by the

whole Refresh Control Circuit is about 15 uA when the voltage sensor is not

activated, and is about 3.6 mA when the voltage sensor is enabled. Since the voltage

sensor is not operating all the time, the percentage shown in Table 7.2 is not directly

Page 98

Chapter 7 - Results and Discussions

proportional to the average current, but is proportional to the current drawn through

the whole process.

Average current Percentage
Ring Oscillator 12.5053 uA~~ 10.06%
Timer - Counter 0.4901 u A一 0 . 3 9 %一

Timer - Latch 0.6007 u A一 0 . 4 8 % —
Timer - Comparator 0.2541 uA~~ 0.14%
Recalibrate Circuit 0.1685 uA 0.20%
Operation Monitoring Circuit 0.2662 uA 0.21%
Voltage Sensor* 3.5204 mA 88.5078%
^Average current of voltage sensor when it is enabled

Table 7.2 - Current drawn by the each parts of the Refresh Control Circuit

Figure 7.1 shows the simulation result of the ring oscillator. It shows that the ring

oscillator can oscillate with a period of around 26 us. Figure 7.2 shows the

simulation result of the Refresh Control Circuit and its function verified.

The purpose of developing the Refresh Control Circuit is to reduce the performance

degradation due to the pull-up path. In order to investigate the performance

improvement from the traditional technique, three multipliers were built so as to

provide a comparison. All the multipliers were built in the asynchronous pipeline

architecture and based on the bit-parallel algorithm. The first multiplier uses the

normal domino logic without any pull-up path. The second one uses the domino

logic which a pull-up path as shown in Figure 4.2(b). The last one is using the

technique of the Refresh Control Circuit, and its logic structure is shown in Figure

4.4(b).

Three multipliers were simulated by HSPICE under 5V supply voltage. Since they

all are asynchronous circuits, the simulations were done by sending inputs to the

Page 99

Chapter 7 - Results and Discussions

multipliers continuously, and their intrinsic throughputs and latencies are then

measured.

Throughput Latency —
Without pull-up path 2.8721 ns 18.7925 ns
With pull-up path(traditional) 3.0306 ns (+5.819%) 20.3573 ns (+8.326%)
Refresh Control Circuit |2.9090 ns (+1 • 105%) 19.0668 ns (+1.459%)

Table 7.3 - Performance of multipliers by different techniques

„ refresh control circuit technique
•(̂ ^̂ •ft̂ sM.r̂ o ̂：:、=̂、->;、：；- ；•、、、、、、、、、;、、、、、- • • 二 … �� -� � �� - � r� -� - ��---..-s -s�,； --；、、、、 < ^ i < ^ 、 、

•[I j j y ^ ^ - � r p r j ^ r \ f T p 广
s ‘ wifdufpun-up p w " r j " " i '1 V'with"p'jir-jpi ̂ i t f r r—y •|--厂-_ -十-卞…
I • I r \ (traditionallme : •
I 1---本 [• [! �] _ i
i i f I , f卜 i — t 了-——�•J"----

I j I I [^ • I I •
•̂各 —1,1 \ IJ \ J L / / 一

I ‘ ‘ ‘ ‘ ‘—I—‘—‘—‘—‘—‘—‘—i—-1—I—I—I—I—1—I—1—I—I—I—
EEn fiDn

Timo (tn) (TIME) ®"""
Figure 7.3 一 Output signals of different multipliers

Table 7.3 shows the throughput and latency of the three multipliers and Figure 7.3

shows the signal outputs from the different multipliers.

7.2.2 Discussion

From Table 7.1, it shows that the new proposed technique provides a better

performance than the traditional technique. It provides less than 2% performance

degradation compared with the multiplier using the ordinary domino logic, while the

traditional technique degrades the throughput by 5.8% and latency by 8.3%. It

indicates that the goal of the Refresh Control Circuit is achieved. It provides a self-

timed and reliable method for solving the problem of the charge leakage.

Page 100

Chapter 7 - Results and Discussions

Regarding the power consumption of the circuit, voltage sensor consumes near 90%

of the total power. This is because the differential amplifier and sense amplifiers

always allow current to flow through. Future work can be focused on minimizing the

power consumption of the voltage sensor by using other architectures which have

lower power consumption, or using other technique to detect the charge leakage on

the floating node of the dynamic logic.

Although all the discussion on the refresh control system is based on the dynamic or

domino logic and the comparison is done on the asynchronous circuits, it is not

restricted to be used this technique on this area only. Other logic types or circuits

which also encounter the charge leakage problem can employ the Refresh Control

Circuit technique. However, the method of sensing may need to be modified so as to

suit the application.

The disadvantage of this technique is the inclusion of the Refresh Control Circuit in

the design, and one or two more transistors are added on each logic cell. As a result

the area of the whole system will be increased and the compact property of the

dynamic logic is somewhat degraded. It is not suitable to apply the Refresh Control

Circuit technique on a compact system with which the area is concerned. However,

for a large system and the speed of the operations are concerned, this technique can

be employed.

Page 101

, Chapter 7 - Results and Discussions

7.3 Programmable DSP Processor

7.3.1 Implementation Results and Performance

In chapter 5, it has shown the dataflow of ID DCT program on the programmable

DSP asynchronous processor. It requires 50 steps for the processor to perform the

whole ID DCT operation. Since the size the processor is very large, it cannot be

simulated by HSPICE. On the other hand, all the basic cells were simulated in

HSPICE under different loading conditions, and the parameters were extracted to

construct a Verilog HDL model for each logic cells. The performance of the DCT

implementation is estimated by using the Verilog models to simulate a 9-bit version

of the proposed processor. Table 7.4 lists the bit length information of the 9-bit

processor.

External
Primary 10 of the programmable 9 bits
DSP processor
Instruction Input 10 bits
Internal Functional Units

"Adder 9 bits
"^btractor ~9bits
Multiplier 9 bits (output is truncated to 9 b i t ^
FIFO Memory 9 bits

Table 7.4 - Bit length information of the 9-bit programmable DSP processor

j inn 门 I in nn I ！ 1 门 门 门 inn 门 i j
�utputao'i pyyy iipiiy i 352ns 1 iJiiiii UIIJII i

-n n n n inn ‘ ‘ innn! nnnn
ou t pu t rq I: l U U U I I I JU U I j I J i

i r r n T T T T t r r T f Y : ； Y Y f y f Y f y

ou t p u t in '： 000 • 1 • it 000 % s I! i 000 : a u iooo u a si jooo
！ " L W w W J j j ^ k ^ x / x j ' 1 i U J J v U v U _ I i w U J J w U w l j

100ns J
•iiBinii 卞 二 I -L - - J ；

丨 ">">»!> 丨"eoD I H W C 丨坊�|> i w i o p

Figure 7.4 - Simulation result of the programmable DSP processor

From the simulation result, the latency between the 8 pixel inputs and the 8 outputs is

around 400ns. Since the processor is pipelined, the next DCT operation can be

started even the current one is still processing. As a result, the 8-point DCT
Page 102

Chapter 7 - Results and Discussions

throughput can reach 352ns, as shown in Figure 7.4. Also, the input frequency is

around 130MHz(7ns). Figure 7.5 shows the timing diagram of the DCT operation

and Table 7.5 shows the comparison of the ID DCT core performance with other

VLSI implementations.

) > time
i~•——a H

in Processing | out i b ^ i s t o c i operation

i b • in Processing out 2nd DCT operation

a : latency ~ P r o c e s s i n g ”
b : 8-point DCT throughput
in: 8 pxiel inputs ��������

out: 8 DCT outputs � � � � -
Figure 7.5 - Timing diagram of the DCT operation

Operating
frequency Pixel throughput

Design Year Tech. Processing Unit (MHz) (Mpixel/sec)
Cheng et. al. 2000 0.6u 9 MUL, 21 ADD T ^ T ^

Hsiao et. al. 1999 0.6u 3 MUL, 5 ADD 40 40
m
Jang et. al. [33] 1994 0.8u 4 MUL, 1 100 100

Accumulator, 1 pre-
and post processor

This DSP 0.6u 1 MUL, 2 7 2Z7*
processor | ADD/SUB
Note : [1] and [3] are 2D DCT chips which use ID DCT cores and transpose RAM to handle the 2D
transform by using the row-and-column decomposition method[8][9]. Normally, the critical path
exists in the ID DCT core as it consists of many arithmetic and control units. Therefore, the speeds
of the ID DCT cores are assumed to be the same as their 2D transform.
*Average result (352ns / 8 = 44 ns/pixel, 1/44 ns = 22.7Mpixel/sec)

Table 7.5 - Performance comparison of different ID DCT implementations

The layout of the 9-bit version of the processor is shown in Figure 7.6. It has 153k

transistors and is designed by using standard cells based on AMS 3M IP 0.6u CMOS

technology. The core dimension is 4.7mm x 4.2mm.

Page 103

Chapter 7 - Results and Discussions

i i l (,- I®Jl

：：ijj jiiji 丽inijijii丨丽|||丽_| ""*"""丨”丨

IfllB
IJLJ _lllll

1. Instruction Memory 2. FIFO Memory 1 3. Adder 4. FIFO Memory 2
5. Multiplier 6. Subtractor 7. Switching Network

Figure 7.6 - Layout of the 9-bit programmable DSP processor

7.3.2 Discussion

By the comparison with other dedicated designs as shown in Table 7.5, a worse

throughput and latency obtained by the general purpose processor with only 3

arithmetic units is understandable as this is a tradeoff of the flexibility. As all the

internal arithmetic units are occupied for the current DCT operation, the next 8 pixels

can only be sent to the processor nearly at the end of the current operation. This is

the reason explaining the slowness of the 8-point DCT throughput. Moreover, there

are two main reasons for the large latency. First, the limited number of arithmetic

units causes more data queuing. Second, the results from the arithmetic units are

required to be fed back to the switching network for the next operation, while in

other VLSI implementations, the arithmetic units are directly connected to the next

arithmetic units of the following stage. Unfortunately, this cannot be avoided in a

general purpose processor. A better latency and throughput of the DCT operation

Page 104

Chapter 7 - Results and Discussions

can be achieved if two or more processors are cascaded serially，or more arithmetic

units are connected to the switching network. Both changes allow more operations

to process concurrently and reduce the data queuing problem. In addition, further

improvement can be made in the switch cell in order to reduce its latency.

On the other hand, the high input rate shows that this processor is capable of

operating over lOOMHz, and it is competitive with other VLSI designs. Also, this

frequency indicates the high throughput rate of the switching network. Furthermore,

an asynchronous-to-synchronous 10 conversion interface is included in this design

for the purposes of testing and measuring. If this interface is removed, the

performance of the processor can be further improved.

Due to the size of the FIFO memories, the 2D DCT cannot be implemented in this

processor. On the other hand, if the size of the FIFO memories is increased or an

additional memory unit is added, the 2D DCT can be implemented. Based on this

assumption, the performance of the 2D DCT implementation was estimated. By

using the row-and-column decomposition method, the 2D DCT can be decomposed

into sixteen ID DCT operations. Therefore, the computation time for 2D DCT

operation on this programmable DSP processor can be obtained by Equation 7.1.

2D DCT computation time 二 8-point DCT throughput x 16 - Equation 7.1

=352ns X16
=5632 ns

Therefore, the average pixel throughput is

Average Pixel throughput = 2D DCT computation time
^ number of pixel - Equation 7.2

二 5632ns +64
=11.3 Mpixel/sec

Page 105

Chapter 7 - Results and Discussions

Processing unit Clock I Pixel throughput
Design Year Tech. (MHz) (M pixel/sec)
TI C6201「381 7 7 "2 MUL, 6 ALU 2 0 ^ 56.63
u p d 7 7 0 1 6 [611 1993 0 . 8 u " H ^ C ， 1 A L U ^ 2 . 6
V830 [62] 1995 / RISC with 1

MAC
Chang et. al. [381 2000 "q.6 T a L U 33 一 1.7
This DSP processor ^ 1 MUL, 2 7 T l 3

I ADD/SUB
Table 7.6 - Performance comparison of 2D DCT implementation on different programmable

processors

Under the same condition of having limited resources for computing, the results

shown in Table 7.6 indicate that this programmable DSP asynchronous processor has

a good performance when compared with other general purpose processor designs.

This result shows the dataflow architecture and the use of switching network favour

the asynchronous processor design, and a competitive performance can be achieved.

Future development on this processor can be focused on the 2D DCT operation, or

other complex DSP algorithms. Although the estimated 2D DCT performance is

good, it still cannot meet the requirement of processing the MPEG=2 or HDTV signal

in real-time.

Obviously, this 9-bit processor will introduce a large error and cannot achieve a

reasonable accuracy in the DCT operation. A better accuracy can be obtained easily

by increasing the word length of the processor. Increase in word length on the

switching network and FIFO memory will not cause a performance degradation as

they just pass the data without processing. For the arithmetic units which are adder,

subtracter and multiplier, increase in the word length causes extra pipeline stages as

they are implemented by the carry-look-ahead and bit-parallel algorithm and

constructed in the asynchronous pipelined architecture. Thus the throughput will not

be affected but the latency will increase. As a result, the increase in word length will

Page 106

Chapter 7 - Results and Discussions

not directly affect the throughput of the processor, but the trade-off is the latency and

chip size.

7.4 ID DCT/IDCT Core

7.4.1 Simulation Results

Similar to the case of the programmable DSP processor, the whole ID DCT/IDCT

core was failed to be simulated by the HSPICE due to the size problem. As a result,

the whole core was simulated by using the Verilog models and the correctness of the

operation on the core is verified.

In order to have a more accurate performance analysis on the processing units in the

ID DCT/IDCT core，all the processing units were simulated separately by HSPICE

under 5V supply voltage. Due to the limitation of processing power of workstation

and HSPICE, only the parasitic within the standard cells is considered while the

parasitic information of the routing is not included in the simulation. The simulated

performance of different processing units are listed in Table 7.7.

Tested frequency Required frequency
(MHz) (MHz)

15-bit adder 250 98 一
15-bit subtracter 250 98
16-bit data replicator 400* — 196
DCT coefficient memor}^ 196.07** 一 196
Multiplier 220*** 196
20-bit adder 250 96
21-bit adder 250 96
22-bit adder 250 96
22-bit subtracter 250 一 96
Truncation unit 250 %
* The output rate of the data replicator
** Self-generated frequency
*"^^Transistor-level simulation only

Table 7.7 — Performance of different processing units on the ID DCT/IDCT core

Page 107

Chapter 7 - Results and Discussions

output request signal

I i 口 口 丨 礙 辭 f 顆 趙 齒 齒 ： 辯 ： 律 彳 ： 驻 : : l

r • j | i — — j : — — i — — i : — — | : - - 4 : - q - 4 - - | — — ~ i - - f 4 — 丄 一

芸 I ! — - 令 - - - { • “ • 寸 • " 十 - - - 卜 - - 卞 - - 卞 - " | - - " { - - 厂 卜 一 t - f ~ | - - - | - - " j F - } ” - -
“• ‘ • • • ‘ • ‘ ‘ ‘ ‘ I ‘ I ‘ I ‘ I ‘ I • I ‘ I ‘ I ‘ I ‘ I • I • I • I ‘ I ‘ I • I • I .En ^ SBl> SD-ni am Aan 4Ei> EDi> EEtH GDn »t» 7Df> TEr» Ban BEr» EM}n Hl> poan

Tiitw (•!>) (TM E) '"̂ Bni
Figure 7.7 - Simulation result of the DCT coefficients memory

All the processing units, except the multiplier, data replicator and the DCT

coefficients memory, were simulated at 250MHz of the data input rate. This is

because according to the architecture of the ID DCT/IDCT core shown in Figure 6.9

in chapter 6 and discussed in section 6.2.1.2, the throughput of the ID DCT/IDCT

core is greatly depended on the speed of the multiplication as it is the bottleneck of

the whole operation. From the simulation results, the DCT coefficients memory only

generates the DCT coefficients at the maximum frequency of 196MHz, as shown in

Figure 7.7. As a result, the maximum rate of multiplication can only be 196MHz,

and thus all other units are only required to work equal to or less than 196MHz in

actual processing. To ensure the processing units can meet the requirement, a higher

frequency which is 250MHz is chosen to verify the their operations. For the

multiplier, it is found that it can work at 220MHz. However it is only the simulation

result in the transistor-level simulation in which the all parasitic information is not

taken into account. This is because the circuit is very large. The simulator HSPICE

and workstation were unable to handle the simulation if the parasitic information is

included. The rest of the simulation results show that other units are working

properly at or below 250MHz without error. Based on this simulation result, the

throughput of the whole ID DCT/IDCT core should be able to work at 98

Mpixel/sec, which is half of the multiplication rate.

Page 108

Chapter 7 - Results and Discussions

•M] P i ^ B i 11 iii Ij 丨 w ^ M M K ^ ^ ^ B ^ m v M

寒 i S f f f i P f ^ B l

P I ^ ^ I•？ w n。、 r 动 mi iiilfi ii^Piiia

i (| _ _ J j _ i p l i _ _
i _ i M _ l i _ i i i i i _ _

1. Input buffer and DCT/IDCT switch2 2. ISbit adder 3. Data Replicator 1
4 & 15. 15xl6bit Multiplierl 5, 6 & 7, DCT Coefficients Memoryl
8. l'to-2 DEMUXl 9.15bit subtractor
10’ 11 & 13. DCT Coefficients Memoryl 12. Data Replicator 2 14 & 16. 15xl6bit Multiplier2
17. l-to-2 DEMUX4 18.20bit adder2 19. l-to-2 DEMUX3
20. DCT/IDCT switch4& 5 21 & 28. 2-to-to switch 22. 22bit adderl
23. 22bit adder 24. 22hit subtractor
25. l-to-2 DEMUX5 & 2-to-l MUX 26 Truncation unit and output buffer
27. 21hit adder

Figure 7.8 一 Layout of the ID DCT/IDCT core processor

The layout of the unified ID DCT/IDCT processor is shown in Figure 7.8. It has

334k transistors and is designed using standard cells based on A M S 3 M IP 0.6u

C M O S technology. The core dimension is 6.8mm x 7.5mm.

7.4,2 Measurement Results

The testing equipments of the DCT/IDCT core include the IMS XL-60 IC Tester, HP

Infinium Oscilloscope and HP E3631A Triple Output D C Power Supply. The

functionality of the chip was tested by IMS tester, and all the functions (row and

column operation, D C T and IDCT) were verified and the chip is working properly.

Page 109

Chapter 7 - Results and Discussions

Figure 7.9 shows part of the captured Input and Output waveforms of D C T row

operation. Table 7.8 shows part of the input, measured and calculated data sets.

j
."=-'.._ „ __ _ Timing Diagrams - Ims

file £rtH Screens Sub-Screcn« Options utilities 世Ip |

- T o t a l 0 Sa<iuane» 0

I 1 aO.OObns -.v： 0
众:；&、.•“、..‘.>:.•:“.:，..‘+ • •,.‘， • + • + + • ^ ,：

：Error * * *
i看idct V
丨『。1 ； —
i 1̂ 01 ： ：

I _din02 ^ ^VVWVN r\r\ r\r\ aa r\r
din03 : — ^ r \ r \ j \ r \ ^ v w n 八 a a a i :din04 V — r\r\J\r\ :

i r f j ^ n ? ‘ ^ — — ^ — — r s j ^ a r ^ j \ j \ j \ f \ f \ r \ j \ r \ r \ r \ a a a a ；：

、把 H ^ ^ 'WWWVWA_AA i;
s ^ ^ a / w v a / \ a a a a a a /x

‘ ^ f^ ' W W W W W ^ W X
、器 ^ ^ r\ AAAAAAAAA/\ a /\ " i：
、 ⑶ J ‘ ^ r\ A / \ / \ / W \ 八 A A A A 八 八 ：：

、 溫 ^ ^ a a a a a a a / w n a a ——
3二i ^ A r\f\r\f\j\f\fsj_j\ r\j\ =
<iinl4 X 八 ：：

B ^
-：二 r\r\ r_r ：

二 — ^wv. r
二 — A/N r s A _ r

:：二 r\ r\/_r
/ w w w v A

二 r\ a r \

:doU ' W V W N

<1013 ； M

— A / W W W W W W W W W ::

V — — A / W W W W W V W V W W X 丨：

20.Ottos

• -「- . ' I I • “ ... ‘ ‘ 一 — 一 一 ~ ~ ~ 一 ~ - — ~ ~ — 一 一一 样 供

Start System} Stop System)

^ — - ”
‘ — _ _ Timlns Diagrams - ims

file U\U Screens Sub-Screens Options Utilities Help |
‘

total 0 S«qu«nce 80

I 1 、 20.0Qns 228
C……… * … … … + … … … 个 … … … + + • ^ + 、 + +

Error
idct

：IcoL i

dinoi r\/\f\j\j\r\ rsj\ f\f\ a/n r\r\ r\j\ r\r\ r\r\ f\r\ r\r\ 八八 八八 八八 八 a aa 八, din02 r\r\f\r\ r\r\r\r\ r\j\r\r\ r\r\r\f\ r\r\r\r\ r\j\j\j\ r\j\r\j\ r\r\j\r\
r \ j \ j \ f \ r \ r \ r \ j \ r \ f \ r \ r \ a a a a a a a a / v w w x a a r \ r \ j \ f

/ V W \ A / W W W W W > A / \ A / W \ A / W W :
，想 、 … … ^ w w w w w w w w w w w w v w
din06 VVN/VVVVN^VVXA/N
din07 \ / \ / \ / \ / \ / \ / \ A 八 ；;
din08 v a a a a a a / \ a a i
din09 \ a a a a a a a a a ~
d i n l O \ A A A / \ / \ / \ A ；

d i n l l \ / \ / \ / \ / \ / \ y \ / \ / \ / \ ；:
dinl2 W W V - V \ AA
d i n l 3 \ A / \ A A A A / \

dini4 A AA m m m m m ^ z z m z n ^ ；
done 丨
dooo r\f\ r\r\ r_r\r__r\r\r\/\ r\ 八 八 i
dooi R\ R\ R\ I_J_R\ ^
do02 A l\f\r\ r\ r \ r \ a a a a a a a a a a 八 八 a a
do03 r\ r\j\r\ r\r\ a / \ a / \ / \ /\ 八 a a r\ a a a a a ；
do04 r\j\ r_r_rs„r\r_八 八八 r\ /\ r\ 八 /\ a doos r\ f\r\j\ r_r\^^ A J\ 八 八 f_ doos r\r\ A r\ r_r\r\r\ a 八八八 八/>八 a :
do07 r \ _ a a a a / \ a a
do08 r\j\r\r_r\r\ r\r_r\a.aaa a a 八 八 八 / > ^ a
do09 r\j\r\ r\ r_r_r_r\r\ njxrs A A A 八 ^

doio ^ w w v N r\ a 八 a
doll r_ r\ 八 i\ A
d o l 2 A FK

doi3 r\ a a a
dol4 A 八

o rq f\r\r\i\r\r\r\r\r\j\r\j\i\r\f\j\f\r\j\r\j\r\r\j\j\f\/\r\r\j\j\/\r\j\r\i\/\j\r\j\j\j\r\r\r\r\r\j\r\/\r\j\r\r\r\i\j\f\j\f
i ckin /^/VWWWWWWVWWWWWVWWWWXA/XA/WWXAAA/VXA/WWA/VWWX
I ĥvp ： 20.00kis

"" • ‘ — — ” • ——.. - - — - — - - • . . • ••• - . - ~ ••一 •

Start System I StopSystemj

Figure 7.9 - (a) input waveform of the DCT/IDCT core, (b) measured output waveform of the
DCT/IDCT core in DCT row operation

Page 110

Chapter 7 - Results and Discussions

Input Data Set Input Data((Re-ordered) | Measured Result | Calculated result —
Set 1 255,0,0,0,0,0,0,0 90.125, 125.0625, 90.1561，125.0501，

117.8125, 106, 117.7946，106.0124，
90.125，70.8125， 90.1561，70.8352,
48.8125，24.875 48.7921，248740

M 2 0,0,0,0,0,0,0,0 0，0，0，0,0，0，0，0 0̂ 0,0,0,0,0,0
Sets 1,2,3,4,5,6,7,8 12.75, -6.4375 12.7279, -6.4423,

0，-0.6875, 0，-0.6735,
0，-0.1875， 0，-0.2009,
0，-0.0625 0，-0.0507

Set 4 180,0,0,0,0,0,0,0 63.75，88.4375, 63.6396,88.2707,
83.3125，74.9375， 83.1492, 74.8323,
63.75, 50.0625， 63.6396，50.0013，
24.5，17.5625 34.4415，17.5581

Set 5 255,255,255,255,255,255,2 721.25, 0, 721.2489，0,
55,255 0,0， 0,0,

0,0, 0,0，
1 m 1 M

Table 7.8 — Input data, measured result and calculated result of the DCT row operation

During the measurement, the actual Input Acknowledgement was not measured as

it's duration is short and causes difficulty in the measurement. Instead of Input

Acknowledgement, a signal Done was measured. The signal Done is created by a

toggle flip-flop which input is the Input Acknowledgement. As a result, the signal

Done is toggled in every Input Acknowledgement and it makes the measurement

easier. Figure 7.10(a) shows the creation of the signal Done from the Input

Acknowledgement while Figure 7.10(b) shows the timing relationship of the Input

Acknowledgement and the signal Done.

Q Done I叩ut 1 \ I \ / \ /
Toggle ack W W W W

Input V FF
A C K D o n e � ^ • ^

(a) (b)
Figure 7.10 一 (a) construction of the Done signal, (b) timing diagram of the Input Request,

Acknowledgement and Done signal

The measurement shows the maximum frequency (throughput) of the DCT/IDCT is

around 76MHz. Figure 7.11 shows the measured Output Request of the DCT/IDCT

Page 111

Chapter 7 - Results and Discussions

chip by the HP Infinium Oscilloscope. The average current of the DCT/IDCT core

chip is about 1.43A under 5V power supply, so the average power consumption of

the chip is about 7.15W. Table 7.9 shows the performance comparison of the 2D

DCT/IDCT processor with other VLSI implementations.

Jfil Jy j U ii'i rfiTPiliTrfiiT}T|ir|TfT
|!S|llllillll|ll|i|| lijlllp

- — ‘ 丫 r ”〜f 、…；II J^I … I \ ^ 小，I
i : ： : •• ： 5

： ： ： i - ！ i ^ • • r • • •

； i ： • ； ！ ； • 1
： 丨 ： ： — ： ： ； ：

… i •-…各 i … 1 - 1 r V……Y .. .‘ , V ；• .. ： f • 4

； • . 二 ： • ： 1 ；

. • • • ！ I

l O S N JH||lOOns/div jjfti|436300ns Q p l ^ W

IBEPDHEHlKESm^HISSlBimiKmi^HKKSIffiHIHiSBiiPHI

— 7 a ') — — — — . 1 — — — — . — — — - — — — — - - .

： - - - -

i i 為M 二 i ：
： ： ： 丄 了 ： : i i

丨 ^ f . •..."•…I ^ . �- ^^ ^ rr-.-rg rrrr，"rumn_�rrr ‘M_m rrniir t P y

^ /\i /\ " ： n I /”/丨 /丨丨 n:丨/、/�A
WL' "'̂i I"" I j:.•…H.• 1 - I ——••jr \ …i. ••• T I ‘ . T t …i- - .v. •：•• ̂ -!……f- H……r. \ •• ;.-/-- --i -- ...h ••-々 …j …-一
了、’ I ！ i 1 / 1 / \ / 1 I 1 ；I| / 1 ：/ i / ； ！ i (：/ \ M
/ W : \ ； I i 、/ ：丨“I ^ M / h W M i ” J ：丨 / 1

： ‘ -f • ： ‘
？ , h . I T ： ： -

y • , '�— \j I • 仏 y V 勺

丨 ， i

^ 【 [g g ^ ft — ^ ft.

• s f M t i W I M B H M B M B I M H I I ^ M I ^ M I ^ ^ ^ ^ M

(b) ^ " 一

Figure 7.11 - (a) measured waveforms of the Output Request (lower) and Acknowledgement
(upper) signal, (b) zoomed waveforms which shows the average throughput is 76MHz

Page 112

Chapter 7 - Results and Discussions

Clock Pixel throughput
Design Year Tech. Processing unit (MHz) (Mpixel/sec)
Cheng et. al. [351 2000 a 6 u ~ 9 M U L , 21 A D D 100 100*
Kim et. al. [641 1999 / “ 80 26.6
Johnson et. al. 1998 1.2u 7 7
[63]**

Jang et. al. [3 3] 1 9 9 4 0.8u 8 MUL(DA)，2 T ^ W

accumulator, 2 pre- and
post processors

Uramoto et. al. 1992 0.8u 8 M U L and T ^ T ^
[32] accumulators, 2 pre- and

post processors
This processor** |o.6u 14 M U L , 14 ADD/SUB |/ 176
*Transistor-level simulation result
**Asynchronous design

Table 7.9 - Performance comparison of different 2D DCT implementations

7.4.3 Discussion

From the measurement result and Table 7.9, they indicate that the performance of

this 2D DCT/IDCT processor is competitive to other designs. Since there were only

few dedicated DCT/IDCT processors developed in asynchronous way previously,

one of the recent asynchronous design which is developed by Johnson [63] is chosen

for the comparison as it has similar architecture and the best performance among the

others. By comparing with his asynchronous design, our design can run faster at

about 36.9%. However, it should be noted that a more advanced technology has

been used in our design, a certain portion of the superior performance may be caused

by the benefits gained in the advanced technology. Although a direct comparison

cannot be carried out, this comparison can be treated as a reference that this

processor, the latest asynchronous DCT/IDCT processor, has improved performance

and superior than previous asynchronous designs.

Page 113

Chapter 7 - Results and Discussions

In comparison with the other similar synchronous DCT/IDCT designs, this

DCT/IDCT processor has better performance than [64], while worse than [35], [33；

and [32]. Although the performance is not as good as that of these synchronous

designs, this processor has less operation units while a similar performance can still

be achieved. This is because the operation units in an asynchronous system are not

required to work on the same frequency. If a certain operation unit has better

performance than other units, it can be scheduled to perform more operations by

sending more input data to it. However, this cannot be done in synchronous design

as all units must work in the same global clock frequency. This result explores the

benefit of using the asynchronous architecture in system design as it can utilize every

operation units in the system, and thus the number of operation units can be reduced.

However, the measurement result shows a performance deviation from the

simulation result, where the difference is about 22%. This deviation is properly

caused by two factors which are the temperature and the multiplier. For the

environment setting in the HSPICE simulation, the temperature was set to be the

room temperature. However in the actual measurement, it was found that the ID

DCT/IDCT core chip was very hot during the operation, and thus the temperature

was much higher than room temperature. The increase in the temperature is due to

the fact of high power consumption of this DCT/IDCT processor chip. As the design

of current chip's package is not good for the heat dissipation, temperature cannot be

cooled down effectively even a heat sink was added on the top of the chip. This

causes a large amount of heat generated from the chip but cannot be dissipated, and

thus the performance degradation is as a result. By setting the temperature at 90

degree and re-simulating the D C T memory coefficient memory again, the new result

Page 114

Chapter 7 - Results and Discussions

shows that the maximum operating frequency is lowered to around 168MHz (such

the multiplication rate is 84MHz). In this case, the difference between the simulation

and measurement result is more reasonable. The rest of the difference may be due to

extra delay caused by the parasitic of the routing, which is not included in HSPICE

simulation, and the difference between the parameters of the HSPICE models and the

actual fabrication process.

Another possible reason of causing large performance deviation is the multiplier.

Since the all parasitic information was not taken into account in the HSPICE

simulation, the actual performance of the multiplier may be much lower than

220MHz if parasitic was considered as well. However, this cannot be verified by

neither the simulation nor measurement.

In order to improve the performance of the current design, the modification of the of

the D C T coefficient memory and the multiplier must be considered. The limiting

factor on the speed of the D C T coefficients memory is the output feedback path. The

D C T coefficients memory is not only required to transmit the output to the

multipliers, but also send the output to the input of the D C T coefficients memory

simultaneously. This split-path introduces a large handshaking overhead and thus its

performance is limited. The reducing of the handshaking overhead can be

investigated in future, and thus the performance of the D C T coefficient memory, as

well as the whole D C T processor can be improved. For the multiplier, the

performance can be improved by building a PFA as a single standard cell. The

current implementation uses several basic logic standard cells to build the PFA. This

causes a large parasitic in the auto-placement and auto-routing process. Since many

Page 115

Chapter 7 - Results and Discussions

identical PFAs are used in the multiplier core, building the PFA as a single standard

cell can minimize the parasitic due to the routing, and also the silicon area can be

saved as well since the PFA can be built more compactly in this way.

For further analyzing the practicality of the asynchronous design, a comparison can

be made on the asynchronous and synchronous implementations of this ID

DCT/IDCT core. In the synchronous implementation, the bottleneck should no

longer be the D C T coefficients memory but in the multiplier. This is because D C T

coefficients memory can be implemented easily in synchronous design by using

R O M or counters, both can be run very fast as not many computations are required.

In the multiplier, the critical path is inside the carry generation, which is given by

Equation 7.3(same as Equation 5.4)

Cout = A* B • Cin + {Cin + A. B) - Equation 7.3

The implementation of the Equation 7.3 in domino logic is shown in Figure 7.12(a).

For the synchronous implementation, Equation 7.3 is modified to Equation 7.4 as the

inverting static C M O S logic provides a faster response than the non-inverting logic.

Cout = A*B*Cm + P. {Cin +

= Cin •尸 • (Cin + A*B) - Equation 7.4

According to Equation 7.4, the synchronous implementation of the carry generation

is shown in Figure 7.12(b). From the information provided in the 0.6u standard cell

Page 116

Chapter 7 - Results and Discussions

databook [65], the delay which is under 25。C and 5V supply voltage of each logic

cell is extracted for the performance estimation.

CLK - C

—̂—•~
Cin- -Cin ^ V 0.30ns

1 A J F H L A 0,3qns_

叫 t j 卜 B ^

B ~ h - 厂 I reset

CLK -J r 一 AN21_|
\ L ^ 0.29ns 2.48ns

(a) (b)
Figure 7.12 — (a) carry generation in domino logic, (b) carry generation in static logic

Operating Frequency = 1 / (longest delay) - Equation 7.5

=1 /(0.3 + 0.3 + 2.48)ns
=1/3.08ns
=325 MHz

The result of Equation 7.5 shows that the synchronous multiplier could run at about

325 MHz. However, this estimation doesn't include the worst case temperature,

supply voltage and clock skew. In practical, a margin of 50% or more is required in

the global clock frequency when compared with its performance in typical condition

due to worst case performance assumption in synchronous design. Therefore, the

performance of the synchronous multiplier should be around 216MHz (for 50%

margin), which should be similar to that of the asynchronous performance in typical

condition. And in overall, as the synchronous multiplier is limited to 216MHz, the

synchronous implementation of the whole ID DCT/IDCT core may be able to run

faster than the asynchronous implementation described in this thesis, but the

difference may not be so great. This result indicates that asynchronous design is

practical and the performance can be similar to synchronous design.

Page 117

Chapter 7 - Results and Discussions

Although the performance of this processor is good, the tradeoffs are the area and

power. In order to maximize the performance, D C V S L structure is used inside all

the processing units. This causes nearly a double of size to perform the same logic

function as other designs. Also, all operation units within the ID DCT/IDCT core

are deeply pipelined, especially the bit-parallel architecture of the multiplier. The

deeply pipeline structure decomposes all the complex functions into simple logics

with several stages. As a tradeoff of speed, this causes more area are required to

implement the design. Furthermore, the handshake cell in the asynchronous circuit

also causes an additional size overhead to the synchronous circuit.

For the power consumption, the measurement result shows that the average power

consumption of the dedicated DCT/IDCT processor is about 7.15W under 5V supply

voltage, which is an extremely high value compared with other designs. In order to

verify the correctness of the power consumption, each of the functional units was

simulated separately by HSPICE under 5V supply voltage. The simulation results

are listed in Table 7.10.

Used in Current Current
DCT / Operating Current Drawn in Drawn in
IDCT / Frequency Drawn DCT IDCT
Both Number (MHz) (mA) operation operation

15-bit adder DCT 1 76/2 9.32 — 9.32 0
15-bit subtracter DCT 1 76/2 9.85 9.85 0
16-bit data replicator Both 2 76x2 28.33 56.66 56.66
DCT coefficient memory" Both 2 “ 76x2 125.83 251.66 251.66
Multiplier Both 2 76x2 —478.00 ~^6.0Q 956.00
20-bit adder Both —— 2 76 32.45 ~64.9Q 64.90
21-bit adder Both “ 1 76 " ^ . 8 2 ~ K n 33.82
22-bit adder IDCT 1 76/2 ~l8.04 " o ~ ~ 18.04
22-bit subtracter — IDCT— 1 76/2 18.05 ~0 18.05
Truncation unit Both | 1 | 76 15.00 ~ 15.00 15.00

Total
Power 1397.21 1414.13

Table 7.10 一 Simulation results of power consumption of different operation units in the ID
DCT/IDCT core

Page 118

Chapter 7 - Results and Discussions

From the simulation results, the total power consumption of the ID DCT/IDCT core

is about 6.986W (1397.21mA x 5V) and 7.071W (1414.13mA x 5V) in the D C T and

IDCT operation respectively. This results show that the power consumption is

consistent in both the simulation and measurement result. Therefore the power

consumption in the measurement is correct.

The main reason of large power consumption is due to the use of D C V S L structure.

Since both the true and complement value are presented in the D C V S L structure,

either one of the true or complement logic block must be discharged in each

Evaluation phase. Therefore every logic functional block must consume power in

each Evaluation cycle, which causes a constant and high discharge current. However

in single-rail design, which uses the true logic block only, there is no discharge

current if the pull-down path is not conducted during the Evaluation phase (the

output kept at logic zero in the domino logic). Since the pull-down path is conducted

occasionally，a single-rail design consumes less power than the D C V S L design in

average when performing the same logic function. In order to verify this, a single-

rail 15-bit adder is constructed for the comparison. Both circuits are simulated by

HSPICE under 5V supply voltage. Three different input patterns which are random

number, all zeros and all ones patterns are fed into the inputs of the adder at a

frequency of 76MHz to investigate the current drawn in different conditions. The

simulation results are shown in Table 7.11.

Average current Average current Average current
drawn at random drawn at all zeros drawn at all ones
input (mA) input (mA.) input (mA)

D C V S L adder 20.69 20.34 20.59
Single-rail adder 19.58 +4.33 18.90 —

Table 7.11 - Comparison of power consumption on DCVSL and single-rail adder

Page 119

Chapter 7 - Results and Discussions

Although the power consumption of this dedicated DCT/IDCT power is high, if there

is no data input, this processor consumes less power than other designs as no

transition will be occurred in asynchronous design when there is no request of

operation.

Future work can be focused on reducing the power and size of the processor. As

mentioned before, D C V S L structure is the main reason of the high power

consumption of this design. In order to reduce the power consumption while not

affecting the current performance, single-rail design or conventional asynchronous

structure should be used in the non-critical parts, such as the adders and subtracters.

This modification not only helps to reduce the power consumption, but also helps to

reduce the area required to implement the design. For the area, since around 30% of

the area is consumed by the multipliers, as shown in Figure 7.8，minimizing the size

of the multiplier can greatly reduce the size of the whole design. This can be done

by using Booth coding [66] or common sub-expression elimination [67] to reduce the

complexity of the multiplier design, and thus its size can be reduced. Also，grouping

the PFA into a single standard cell, which has been mentioned before, can also

reduce the overall area too. Moreover, the adders and subtracters are not the limiting

factor of the performance of the processor, area-saved or power-saved algorithm, for

example ripple adder, can be used in the implementations of adder and subtracter

instead of the size-consuming fast BLC algorithm.

Page 136

Chapter 7 - Results and Discussions

From the result shown in Table 7.11, it indicates that the power consumptions of the

D C V S L adder are nearly the same in three input patterns, while those of the single-

rail adder are depended on the input patterns. Also the single-rail adder consumes

not more than half of the power of D C V S L adder in any patterns. This result shows

that the D C V S L structure consumes more than a double of power when compared

with usual structure, and this causes our design to have an extremely high power

consumption.

This result also shows the disadvantage of the domino logic (or dynamic logic),

which is the high dynamic power consumption. Although the single-rail adder has

relatively low power consumption design than the D C V S L design, it consumes

higher power than the static logic. In the design which uses the static logic with latch

or flip-flop, the power consumption should be relatively low and nearly the same in

constant input patterns (all zeros and all ones patterns). This is because for a

constant input pattern, the output of the logic gate will not change and thus there is

no switching during the operation. Therefore it consumes very little or even no

dynamic power under this situation. However in the domino logic, the requirement

of the Precharge phase causes the output to be precharged to logic zero in every

Precharge phase. As a result, if a logic block has an output of logic one in

Evaluation phase, it will consume power in the Precharge phase. This explains that

even having a constant input pattern, the domino logic still has switching during

operation, and it causes a relatively high power dynamic power consumption

compared with using static logic and latch or flip-flop in conventional architecture.

Page 137

Chapter 7 - Results and Discussions

7.5 Transpose Memory

7.5.1 Simulated Results

Due the size of the whole design, different units of the transpose memory were

simulated separately by HSPICE under 5V supply voltage in order to obtain the

estimated throughput.

* # 4ile naiDej /uger_vlgil/cwlee/cdg/cTip/giin/rain_read/hgpitieg/gc1

I a JS J —"S ! \ —-I -1 i —^ •- —I
-^ - -H r / \ i 1 f. 4 1
1 2 • read rg j ‘ j cw—ir’B[pfi4“ch IL \ I) ‘ I /
B - 卞 - - 了 ” 4 5i；̂：̂ - — T-k———^― 厂--]_ — 卜

> ^ -I ~~i- i J AaUnl̂ JLaĴ BAM̂ ^̂ jl j I j ,' L—'

e I j
I , : ―二了二 " V - i C T二…•/二： 7： ^ 1——>/' =： V 7 U L 1 F = n
I: ： ---------f--4
5。- d _ L ._L L-_L i__L _I j_/

• I ‘

r . • • “ “ 1 “ 1——~I 1 1 1 1 1 —|i

Read Operation 咖 • Tirrw (lr>) (Tm£)
. 、 … . . … 〜 一 … . 丫 ： 二 、 . ： “ . . ~ ，

i fl I—-r:^ 彩 二 ’ 二 • ； •；二:::r’4 ‘ — 1

I J • wrijte rq [• j ！ i 「—_
5 泛 4 ——i J 1� ^ — — ^ ^ V I •—
„ : j
I J ？1 \ / 1 ！ f 、\ ^ X
i，• -meabi 1 [厂 … T , f i r 1 " " "

i ‘ ： "1……十……1…---十……"1"…计……t-…—t——十——̂ 卜…
$ ty - .—1 ！ L J 丄 ！/ J L 丨 / I

j —
‘ Write Operation ^ ‘ ‘ ‘ 产 ‘ ~ ‘

Tim® (•») c t m c)
Figure 7.13 一 Simulation result of the write and read operation

Tested Frequency(MHz)
Write address generator 276*
Read address generator 276*
Multiplexing network 276
32x16bit S R A M block 182.22/230.31 一
"^Self-generatedfrequency

Table 7.12 - Performance of different units in the transpose memory

Since the interleaving technique is applied on the write operation, the performance of

the transpose memory is now limited by the read operation of the S R A M block. As a

Page 122

Chapter 7 - Results and Discussions

result, the minimum operating speed of the whole transpose memory should be

230MHz.

The layout of the transpose memory is shown in Figure 7.14. It has 11 Ik transistors.

The S R A M Blocks are full custom designs and other parts are designed by using

standard cells based on A M S 3 M IP 0.6u C M O S technology. The core dimension is

3.9mm x 4.2mm.

i f M B T l P i i
MJi •: .Mwafflaa ‘ ：!!<" Ill-l ..nl I'Llll̂ ir：：：̂̂ wJ a： V

!_國鳳

圖
n n s s s 滅

1 &2. Column address generator 3. Input buffer
4 & 5. Read address generator 6, 8 and 9. Multiplexing network
7. Output buffer 10，11’ 12’ 13. 32xl6bit SRAM block

Figure 7.14 - Layout of the transpose memory

7.5.2 Measurement Results

The testing equipments of the transpose memory include the IMS XL-60 IC Tester,

HP Infinium Oscilloscope and HP E3631A Triple Output D C Power Supply, which

are the same of those of the DCT/IDCT chip. The functionality of the transpose

memory chip was tested by IMS XL-60 IC tester, and all the functions (DCT and

Page 123

Chapter 7 - Results and Discussions

IDCT) were verified and the chip is working properly. Figure 7.15 shows part of the

captured Input and Output waveforms of T R A M .

•繁':、;....二:.、.、.......: > .y • T|mltt9..tHagrtUHS;~tms. . — ‘ “ ” ‘ ~ “ “ ‘ -

gitit Screens Sub-Screens Options jjtriltles Help !

Total 0 Sequtncs 0
1 20.0Qns 0

C . , , . • + + + 令 4. + + + .
..Error
idct V
恐 ^ / w v N r\r\f\f\ r\f\j<j\ ^ w v ^ ^ w w v i — /̂ /VVV\A/W\A/V\AAA/\ / V W W W W W W W W ::
Q̂g : — A A / W W W W V W W W W W W W W W W W ：

d07 s dOS : ；V： d09 : ^A dlO ; ^： dll :
SI ：

doOO doOl 丨
do02 H Z I I Z I ^ I ^ Z I I I I I ^ Z Z ^ ^ Z Z ^ ^ I ^ i do03 IIIIIZZ^ZIZIIIIZZIZIZ^IZIIZII^^ZII^ "—丨 do04 n z z m i i i z i i i i i z i i z z ^ i i i i ^ •— i do05 ZZZIIIZZIZIIIIIIIIZ^II^IZIIZ^III^ — i do06 ^ZZZZZZZZIIZIIIZZIII^^IIIZ^ — 一 i
do07 Z Z ^ Z Z I Z Z ^ Z I I I I I Z Z I ^ I I Z I ^ i
do08 m Z I I I I Z Z Z Z I ^ ^ I I I Z Z I I I I ^ — i do09 HHZIZIZIZIIZII^I^IIIII^^III^ 丨 dolo m z ^ z z i z z z z i z z z z i i i i ^ i i i z ^ — ；
doll Z Z ^ Z Z Z I Z ^ ^ Z I ^ ^ I I I ^ ^ I I I ^ ？ doi2 i m i l l l Z I I Z I ^ ^ Z ! ^ ^ ! ! ! ^ 丨 dol3 Z Z ^ ^ I I I I I ^ ^ I I I Z ^ I I I I ^ ； ‘dol4 -； ；s outrq ckin 、 ,丨

20.00ns
.Sta;̂ stem{ StoT̂ yTtemj —

‘ - I riming Diaorams - imY “ “ "‘

.r-r̂ TT'CTT••；•"•一;-〈• 了了• ：；C了：•二一广•、• ^ ^ ^ ~ 广 一•二 ^ �… •• I 丨• J 丨 I . . . , ‘

file Ertit Screens Sufai-Screens Options Utilities 世,p j
Total 0 Se(iiumc« 120

‘ 1 20.0Qns 276
(),/,:•»〜••、 + 少…t ‘ ……•‘ • ’• ,、•+•., ……‘ +‘ + •

：<；：Error ‘ * ‘ ‘ * “ ‘ * ‘ ‘ ‘ ‘ * *••'•'••• ：

idct ：
doo r \ r \ r \ r \ r \ r \ _ r \ \ doi \ r\j\ r\j\j\f\ f\r\ r\r\ r\r\ i\f\ aa AA A A 八八 A 八 AA A 八 A/\ AA AA i\r 丨
d02 n / x a a a a a / v n r\j\f\f\ r\r\j\r\ r\r\j\r\ r\r\f\j\ r\j\r\r\ r\r\r\r\ a a a a ： d04 WWWWVWWWXAAAAAAAAA /^/WWWWWWXAA i dOS \/W\AA/WV\A/\AA/WWWWWWW\AA/V\/W\A/VWN_____ ; d06 A/WWWWWWWVWWWVXA/WXAAAAA/WXAAAAA/VWWXAA/WA/WWWVW 丨 d07 /WAAAAAA/WWWWWVXA/WWNAAA/VXA/VAA/wwwwwwwxaa/wwwva/V ； a08 ^^/WWWWVWWWXAA/WWWN/WVXAA/WVA/WWWWWWXA/WWWA/WW 丨 d09 AyWWVWWWWWWWWWWXA/VWWWVXAA/WWN/WWWXAAAA/WXA/W 丨 dlO ^^AAAA/WWVWWWWVXA/WWWWWWXA/WVXA/WWVWWXAA/VV/^A/VW^^A/ 丨 dll f\ ^WWWVXAA/VWWWWWWN/WWWVAAAA/WWWWWWWWAAA/VW 丨 dl2 / " W W W W W V W W W W V W W W W W W W W W W W W W W W ^ ^ / W V N / W W ^ A / di3 /W\/wwvwww\/\AA/VVWW\A/WW\A/WW\AAA/VVW\/W\A/\AA/W\/\A/ww dl4 r^yWWWWWWWVWXAAA/WVNAAA/WXAA/WVWWWWXA/VXA/WV/VX/V/VA/X/V/V/ ：
jn-rq 讲 I ^ J J I I I I I I I
dona ” ：

doOO /XAAAA/WN /VWWWN r\J\J\J\J\J\/\f\ /VWX ！

doOl A / W W W W W W W N A / W \ A / W \ A A / V \ 丨
doO? — / W V V A / W V W X A / V W W W W X A / V W X / S ^ : do03 r\r\ r\r\ r\j\ r\r\ r\r\ r\j\ f\r\ r\ /\/\ r\r\ 八八 八八八八八 八八 八八 ^八
do04 a r \ r \ ^ ^ r \ r_r\r\»»r\ r_rsj\r\ r\a/\ 八 /\ 八八八 八 /\八 a a 八八 a 八八：
doos r\„r_r\^^r\a«««aar\r_r_r_r\r\ r \ ^ ^ 丨 do06
do07 Zl̂ ^̂ ZIIÎ IIIIZẐ ^̂ ZIIZIIIZIÎ ÎIIIIẐ IZIZZZIZẐ IIÎ ZIZZZZIÎ ZÎ n̂ ÎÎ Iirr̂ :
do09 I I Z I I I I I I ^ ~ ;
dolo z m z i m i ^ ^ — i doll z z z z z z z i m m ^
doi2 丨
dol3 ： doi4 ^̂ ^̂ ^̂ ẐHIIIIIIIÎ ^̂ ÎIIIIIZIIÎ ^̂ IZÎ ẐZIẐ ZZÎ ZZÎ ÎÎ ZÎ ÎIZIIZIIZZZÎ ÎI: outrq a / w v w w w w w w w w w v x a / w x a a a a / w v l a a a a a a a a a a a / w w w v w w x / " ^ ckin ^WVWWWWWWVXAAAAAAAAAAAAAAAAAAAAAAA/WWWWWWWWVXAA/

20.(Wtos
Start S^eml Stop System!

(b)
Figure 7.15 - (a) input waveform of the transpose memory, (b) measured output waveform of

transpose memory in DCT operation mode
Page 124

Chapter 7 - Results and Discussions

Although the simulation result showed that the transpose memory could be operated

at 230MHz, there is no method to verify this. This is because that there is a

limitation of the IMS XL-60 IC Tester that test vectors can only be generated at a

maximum rate of lOOMHz. As a result, the transpose memory can only be verified

that it is working properly at lOOMHz input rate. However, the transpose memory is

supposed to be worked with the DCT/IDCT core chip which is operated at 76MHz

only. This result at least can prove that the transpose memory can work well with the

ID DCT/IDCT chips. Figure 7.16 shows the Output Request of the transpose

memory at lOOMHz. The average current drawn of the transpose memory at

lOOMHz under 5V power supply is around 350mA, which means that the average

power consumption is about 1.75W.

TT-研 Tl''了.「)T了 T'ITflT I j r \ irr'ii i ‘ j r TiTrrv s ! j i - j n…r —「！了

圓 _ I
、’、.•香.�'�r..、个...•i'�..."r…..i..、'— 卜...令 ‘…i . .� -十...今..•小.,〜. .̂、.....；•.了...小...一 j….•.…：•.，...卜.‘....卜...卜、 . . i…• A..�..….一、....1….4-、，.；.…-：..妄.‘.•各、...卜,、...,、！

？ - ？ • ： ； • ： ！

“ ” 丨 … … 二 、 、 丨 I 1 々 “ ， 、 I ‘ h; ‘丨�；“ 、 ， ：

： 、 / 「 ' （ 、 ： ： 、 二 卞 。 … ； ’ ： I

, i , ^ ‘ ‘ i ^ I i 兔 I 基 ^ I j

： —— - (a) - . - 一 一

Page 125

Chapter 7 - Results and Discussions

J i \ •li…… I……丨 f…… |丨 i.......…1…...1�…...........i….,�..1................fi�,.,�.v.........…•…I S

'-、-p‘、1…p、'-\…Ij-1ji〜…I…ji-Y- j\-jt、. Y ,彳….�Y f 丨-\ . . j. I

\---j 4 j丨 'r \••... J -； ,,、„,、〜I； 〜 I；.,..、,、......J、jj....、.i. t. J.…..̂ j

； ； ； J + ； ； ； - 1

i i i ！ t i ； ‘ ？ j
；rt i ； ： 十 ； ； ； ： ！
i / \ ！ ； ； 卞、'卜 i ； \ ； i

'•'、' f" ' i 'C '..�…-二 h-4"…V ；•…--广"…........-,•...! � l„„C..,i.......-、.、„

A I i \ I / \ \ \ I / \ / I I = / \ ； I 'I i / \ i i \
I : / : J 1 ：至 � - i \ • ̂ \ i • i V :: � ； H ： V 气
\ I \ ; f \ ； I ； f \ t f I \ ： ^ \ = / i ； / \ ： i i (I ； / \ i (] ；! I ； ：‘ ！ 十 ji i) ； / ^ ； r f \ f \ •••(’ -‘

f…飞.....？—\...I—\....I—T...�'f-\fj…\.'�'.f-T….J-..\-f-.\
、/1 - 。丨 ^ - V -

： ： i - I ； • i

i 丨 L ； I 十曰k j I I i

Figure 7.16 - (a) measured waveforms of the Output Request (upper) and Acknowledgement
(lower) signal, (b) zoomed waveforms which shows the average throughput is lOOMHz

7.5.3 Discussion

From the result shown in Table 7.12 and by the help of the interleaving technique,

the transpose memory can be operated continuously at 230MHz. And from the

measurement result, it indicates that the chip has no problem in operating at

lOOMHz. As a result, the read/write operation at 76MHz in the transpose memory

was fulfilled and thus the whole 2D DCT/IDCT processor can provide a throughput

at 76 Mpixel/sec.

Considering the R A M block alone, its performance is restricted by the write

operation. The poor speed of the write operation is due to the slow detection of the

completion of write operation. Although the monitor cells are used to provide a fast

Page 126

Chapter 7 - Results and Discussions

detection of completion of the write operation, overhead exists on collecting all the

done signals from different monitor cells.

2 done signals is generated
from each 15bit word column

± _ _ t _ _ 个 个 I个 个

1 i I . g I g
2 丨 二 <D =J I 3
8 I 忌 8 8 丨 8
1 ‘ 1 <r S # 1 I •§
专 丨 多 ^ 多 丨 多

•S I S §： S ' 2

lo I lo m I m
I T~ T - I T -

| | 个 V f i f
Colum门 Decoder &

Data Buffer

Figure 7.17 - Done signals generated from the 3 2 x l 5 b i t R A M block

Figure 7.17 shows the done signals generated from the monitor cells in a 32x15bit

R A M block. It is required to handle a total of 8 done signals and thus the overhead is

introduced. If the detection method can be improved, a better performance in the

write operation can be achieved.

Although the goal of the transpose memory is achieved in this implementation, it has

limitations and the design still can be further improved. In the current architecture,

an interleaving technique is used so as to achieve a higher operating speed in the

transpose memory. However, the actual speed requirement of the 2D DCT/IDCT is

now limited by the ID DCT/IDCT core, which is 76 MHz, the transpose memory is

not necessary to be run at such a high frequency. Therefore, the interleaving

technique is not necessary and can be removed from the transpose memory. In this

case, the maximum operating speed of the transpose memory will be lowered to

Page 127

Chapter 7 - Results and Discussions

about 182MHz but is still capable of handling the 2D DCT/IDCT operation. In this

way, the area of the additional multiplexers and demultiplexers can be saved.

In order to realize the whole 2D DCT/IDCT processor design in asynchronous

pipeline architecture, the address generator and the multiplexing networks are all

built according to the methodology introduced in chapter 2. The simulation shows

that they can be operated in a very high frequency. However, they are not required

to work at such high frequency as the operation is limited to 76MHz, and thus the

benefit the asynchronous pipeline architecture cannot be gained in this

implementation. On the other hand, the address generator and the multiplexing

networks consume over 50% of the whole design, it causes the transpose memory to

be not cost effective. Therefore other approaches should be applied to the design of

transpose memory.

First for the address generator and the multiplexing network, the conventional

micropipeline structure can be used. As latch is used in the micropipeline, a counter

can be easily implemented and can be used to replace the area-consuming address

generator. Also, as the multiplexing network is not the critical unit regarding the

performance of the transpose memory, DCVSL structure is not necessary to be used.

As a result, the area of the transpose memory can be largely reduced. Also the

removal of DCVSL structure can help to reduce the power consumption which have

been discussed in section 7.4.3, the discussion part of ID DCT/DCT core.

Another possible approach is the replacement of the R A M block with an array of

shift registers, or storage elements. Since the sequences of the D C T and IDCT are

Page 128

Chapter 7 - Results and Discussions

fixed, the flow of the data in the transpose memory can be pre-determined.

Therefore hardwired connections with some multiplexers on the array of shift

registers may be able to perform the same function of the R A M blocks. Also it can

eliminate the address generator and multiplexing, thus the area can be reduced.

Therefore future improvement or development of the transpose memory can be based

on the above suggestions, then a more cost effective implementation can be

achieved.

Page 129

Chapter 8 - Conclusion

Chapter 8

Conclusions

In this thesis, several asynchronous methodologies have been discussed, and a new

asynchronous pipelined architecture is then presented. This new architecture uses a

novel, simple but fast handshake cell which adopts a more relaxed handshaking

protocol than in the traditional architecture. Furthermore, this new architecture

employs the D C V S L structure in logic design, and thus the complex latch can be

removed and the completion can be directly detected by the handshake cell. With the

new asynchronous pipelined architecture, the circuit developed has a simpler

architecture and has higher performance than the traditional methodologies. The

performance of the new asynchronous pipelined architecture has been proven by the

programmable DSP processor and the dedicated D C T processor

Since the dynamic logic is used in the new asynchronous pipelined architecture, a

new technique called Refresh Control circuit is introduced in this thesis to solve the

charge leakage problem. The new technique is a self-timed, self-calibrated and self-

operating circuit, it monitors the charge leakage in the dynamic logic and controls the

refresh process effectively in order to reduce the pull-up current. From the result, it

is shown that this technique causes less performance degradation than the traditional

technique, it is suitable to apply to a large system which requires a high performance.

Moreover, the Refresh Control circuit uses a general purpose monitoring scheme and

Page 130

Chapter 8 - Conclusion

thus it can be applied to other circuits which also encounter the charge leakage

problem.

Based on the new asynchronous pipelined architecture, a programmable DSP

processor and a dedicated 2D DCT/IDCT processor have been constructed.

Although the performance of the D C T implemented in the programmable processor

is not as good as other dedicated designs, it still has a reasonable performance of

22.7Mpixel/sec with a small number of operation units. And the impressive result

shown in the estimation of 2D D C T operation demonstrates the advantages of the

combination of asynchronous pipeline and dataflow architecture in circuit design,

and the use of switching network and parallelism in the processor architecture. This

result encourages the further development of the processor and the use of the

asynchronous pipelined architecture.

Finally, the development of the dedicated 2D DCT/IDCT processor is shown in the

thesis. This processor is fully pipelined and the throughput is 76Mpxiel/sec, which is

competitive with other high performance synchronous designs when considering the

number of operation units used. Also, this dedicated 2D DCT/IDCT processor fully

satisfies the IEEE specification and is capable of real-time processing on the MPEG-

2, or even the more computational demanding H D T V signals. The result indicates

that the asynchronous design with the new pipelined architecture can perform as

good as other synchronous designs，and the proposed DCT/IDCT architecture is

suitable for the asynchronous implementation. Furthermore the benefit of the

asynchronous approach in system design has been demonstrated, in which operation

Page 131

Chapter 8 - Conclusion

units can be fully utilized and the number of operation units can be reduced in the

whole system.

Both of the results of the programmable DSP processor and the dedicated

DCT/IDCT processor imply the high performance of the new asynchronous

pipelined architecture. In other words, the use of the new asynchronous pipelined

architecture favours the asynchronous approach in system implementation, especially

for the DSP applications.

However, it is found that there are area and power penalties in these designs. The

use of the D C V S L structure not only causes a large increase in the silicon area, but

also causes a high dynamic power consumption. Also, the inappropriate

architectures used in different operation units cause unnecessary area overhead and

cause the whole design to be inefficient in term of area. Designers should consider

different approaches in the implementation of different operation units in a system in

order to minimize the penalties, and further development of the new asynchronous

pipelined architecture can be focused in these two areas.

Page 132

Appendix

Appendix

Operations of switches in DCT implementation of programmable DSP

processor

Note:
Switch 1 to 12 are located at the switching networking, their instructions can be
referred to Table 5.1. Switch 13 and 14 represents the input demultiplexing networks
of the FIFO memory 1 and 2 respectively, while Switch 15 and 16 represents the
four-to-one multiplexers of FIFO memory 1 and 2 respectively. For switch 13 to 16，
the register name means the FIFO set that the demultiplexing networks and four-to-
one multiplexers connecting to.

Switches ~|l II I

In 15 I 16 II 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 j 10 I 11 I 12 II 13 I 14 Coef Outpll Operation I
f ut

1 XO I 1 I I 0 I I 7 I input X0-> Ail, Sil
2 X7 3 2 7 input X 7 - > A i 2 , Si2
3 XI 1 0 7 input XI -> A i l , Sil
4 X6 3 2 7 “ — input X 6 - > A i 2 , Si2
5 X3 1 g 7 inputX3->Ail，Sil
6 X 4 3 2 7 input X 4 - > A i 2 , Si2
7 X 2 1 0 7 ‘ input X 2 - > A i l , Sil
8 X5 3 2 7 “ ^ ^ input X 5 - > A i 2 , Si2 ~
9 1 6 0 3 1 ~ 6 3 3 A ^ T I A o (K O) - > A i l , S i l ,

So(K4) ->regA2, Muli
10 1 2 0 1 6 3 A o (K l) - > A i l , S i l，

So(K5) -> regB2
11 3 2 2 1 3 ~~6 ^ Ao(K2) -> Ai2, Si2, •

So(K6) -> regC2
12 3 2 2 1 3 6 ^ Ao(K3) -> Ai2, Si2,

So(K7) -> regC2
_13 ^ 1 1 1 RegA2(K4) -> Ai l

14 B2 3 7 3 1 B2 RegB2(L5) -> RegB2，Ai2
g 3 7 B l CO So(L2) -> RegBl , Muli

1 6 6 3 1 3 3 A2 CO So(L3) -> RegA2, Muli
17 C2 3 1 1 0 1 0 D2 RegC2(K6) -> A i l ,

Ao(LO) -> RegD2
18 C2 3 7 1 0 0 1 0 1 D2 RegAl(K7) -> A i l , Ai2,

Ao(Ll) -> RegD2
1 9 B2 3 3 1 RegB2(K5) -> Ai2
2 0 D 2 1 1 7 R e g D 2 (L 0) - > A i l , S i l

D2 3 3 7 RegD2(Ll) -> Ai2, Si2
2 2 1 2 6 ^ CO Ao(L5) -> RegAl , Muli
2 3 7 2 0 2 2 B2 CO ^ ^ Ao(L6) -> RegB2, Muli
2 4 1 2 2 ^ ^ C2 ^ ^ Ao(L7) -> Muli
2 5 1 5 2 ^ ^ Ao(MO) -> Muli
2 6 g 3 0 C I Mo(cl*Z4)->RegCl

27 A2 0 3 1 3 2 3 RegA2(L3) -> Si2, •“
Mo(cO*LO) -> Sil

28 B l 0 2 0 3 0 ~ 0 RegBl (L2) -> A i l ,
Mo(cO*L3) -> Ai2

29 B2 0 3 1 3 2 3 RegB2(L6) -> Si2,
Mo(cO*L5) -> Sil

30 A l 0 2 0 3 " O 0 R e g A l (L 5) - > A i l ,
Mo(cO*L6) -> Ai2

3 1 0 3 3 “ C4 S o (M l) - > M u l i
3 2 g 3 3 C5 So(M2) -> Muli
3 3 0 3 3 ^ ^ H c T Ao(M3) -> Muli
34 CI 0 2 0 3 6 ~ 6 RegCl(M4)-> Ai l , Si l ,

Mo(M7) -> Ai2, Si2
3 5 2 3 1 一 So(M5) -> Ai2, Si2
3 6 3 2 ~ 6 ~ — Ao(M6) -> Ai2, Si2
3 7 0 1 7 . ^ ^ So(M4-M7)-> Ai l , Sil
3 8 1 g 6 — Ao(M4+M7) -> Ai l , Sil
39 I 0 I I 3 I I 3 I I r ^ l So[(M4-M7)-M5] -> Mi ！

Page 133

Appendix

1 2 I 2 I C7 II A o _ - M 7) + M 5 1 - > Mi
_ i l I 2 2 C8 Ao[(M4+M7)+K6] -> Mi —

0 3 ” ~ 3 ~ C9 So[(M4+M7)-K6] -> Mi
_ 4 3 2 1 “ " ~ 0 ~ ^ ^ Z I I H Z DO Mo(c3*M0) - > Out
_ 4 4 2 1 “ “ ~ 0 ~ D1 M o (c 4 * M l) - > O u t

2 1 0— “ D2 Mo(c5*M2) - > Out
2 1 0 D3 - Mo(c5*M3) - > Out

47 2 1 0 D4~ Mo(c6*[(M4-M7)-M5])
- > O u t

48 2 i 0 D5 Mo(c7»[(M4-M7)+M5])“

- > O u t
49 2 ~ 0 D ^ Mo(c8*[(M4+M7)+M6])

- > O u t
50 2 0 D7 Mo(c9*[(M4+M7)-M6])

II II I il I I I I I I I I I I I II I II II II - > Out

Page 134

Appendix

C Program for evaluating the error in DCT/IDCT core

Generation of data set
i n c l u d e < s t d i o . h >

i n c l u d e < s t d l i b . h >

i n c l u d e < s t r i n g . h >

i n c l u d e < m a t h . h >

d o u b l e p i ；

d o u b l e o n e d c t r e s u l t [8] ；

d o u b l e t w o d c t r e s u l t [6 4] ；

u n i o n h e x c o n t e n t {

l o n g h a l f [2] ；

d o u b l e f u l l ；
}；

/ / D e f i n e F u n c t i o n 2-D DCT

v o i d t w o d c t (l o n g t w o i n p u t [])

{
i n t i , j , u , v ;

d o u b l e i n p u t 8 x 8 [8] [8] ；

d o u b l e temp；

f o r (i = 0 ; i < = 7； i + +)

{ f o r (j = 0； j < = 7； j + +)

{
i n p u t 8 x 8 [i] [j] = t w o i n p u t [8 * i + j] ；

}
}
/ / D i r e c t 2D

f o r (u=0； u<=7； U + +)
{ f o r (v=0；v<=7；V++)

{
t emp = 0；

f o r { i = 0； i < = 7； i + +)

{ f o r (j = 0； j < = 7； j + +)

{
t emp +=

i n p u t 8 x 8 [i] [j] * c o s ((2 * i + l) * u * p i / 1 6) * c o s ((2 * j + l) * v * p i / 1 6) ；

}
}
t emp = 0 . 2 5 * t e m p * ((u = = 0) / p o w (2 ,

0 . 5) + (u ! = 0)) * ({ v = = 0) / p o w (2 , 0 . 5) + (v ! = 0)) ;

i f (t emp > 2047)

t emp = 2 0 4 7 ;

i f (t emp < -2048)

t emp = - 2 0 4 8 ;

t w o d c t r e s u l t [u * 8 + v] = temp；

}
}

}

/ / D e f i n e F u n c t i o n I n v e r s e 2-D DCT

v o i d t w o i d c t (l o n g t w o i n p u t [])

{
i n t i , j , u , v ;

d o u b l e i n p u t 8 x 8 [8] [8] ；

d o u b l e temp；

f o r (i = 0； i < = 7； i + +)

{ f o r (j = 0； j < = 7； j + +)

{

i n p u t 8 x 8 [i] [j] = t w o i n p u t [8 * i + j] ；

Page 135

Appendix

}
}
/ / D i r e c t 2D

f o r (i = 0 ; i < = 7； i + +)

{ f o r (j = 0； j < = 7； j + +)

{
t emp = 0；

f o r (u=0； u<=7； U++)
{ f o r (v=0； v<=7； V++)

{
t emp +=

i n p u t 8 x 8 [u] [v] * c o s ((2 * i + l) * u * p i / 1 6) * c o s ((2 * j + l) * v * p i / l 6) * { (u = = 0) / p o w (2 ,

0 . 5) + (u ! = 0)) * ((v = = 0) / p o w (2 , 0 . 5) + (v ! = 0)) ;

}
}
t emp = 0 . 2 5 * t e m p；

i f (t emp > 255)

t emp = 2 55；

i f (t emp < -256)

t emp = -256；

/ / t w o d c t r e s u l t [i * 8 + j] = 0 . 2 5 * t e m p；

t w o d c t r e s u l t [i * 8 + j] = temp；

}
}

}

1 o n g r a n d n u m (L , H)
l o n g L , H ;
{

s t a t i c l o n g r a n d x = 1； " l o n g i s 32 b i t s * /

s t a t i c d o u b l e z= (d o u b l e) O x V f f f f f f f ；

l o n g i , j ;

d o u b l e X； " d o u b l e i s 64 b i t s * /

r a n d x = (r a n d x * 1 1 0 3 5 1 5 2 4 5) + 1 2 3 4 5；

i = r a n d x & O x V f f f f f f e ；

X = { (d o u b l e) i) / z ；

X = X * (L + H + 1)；

j = X；

r e t u r n (j - L) ；

}
l o n g r o u n d u p (d o u b l e t e s t n u m b e r)
{

d o u b l e r e m i n d e r ；

l o n g r e s u l t ；

r e s u l t = t e s t n u m b e r ；

r e m i n d e r = t e s t n u m b e r - r e s u l t ；

i f (r e m i n d e r >= 0 . 5)

r e s u l t += 1；

e l s e i f (r e m i n d e r <= - 0 . 5)

r e s u l t 1；

r e t u r n r e s u l t ；

}
m a i n ()
{

l o n g L , H；

i n t l o n g r e s u l t [64]；

i n t k k , 11 , m, n；
l o n g i d c t c o e f f [64]；

c h a r f i l e n a m e [] = " d a t a O O . d a t " ；

/ / c h a r o d c t — f i l e [] = " o d c t O O . d a t " ；

c h a r i d c t : f i l e [] = " i d c t O O . d a t " ；

c h a r f d c t : f i l e [] = " f d c t O O . d a t " ；

/ / d o u b l e temp；

u n i o n h e x c o n t e n t u p p e r b o u n d；

F I L E * r e s u l t _ i d , * d c t _ i d 2 , * d c t — i d 3 ; / / * d c t _ i d ,

p i = a t a n (1) * 4 ；

u p p e r b o u n d . h a l f [0] = 0 x 0 0 0 0 0 0 0 1 ；

u p p e r b o u n d . h a l f [1] = 0 x 4 0 a f f 0 0 0 ；

Page 136

Appendix

p r i n t f (" P l e a s e e n t e r t h e L o w e r B o u n d \ n ") ；

s c a n f (" % d " , &L)；

p r i n t f (" P l e a s e e n t e r t h e U p p e r B o u n d . . . A n ") ;

s c a n f (" % d " , &H)；

f o r (m=0； m<=9； m++)

{ f i l e n a m e [4] = f i l e n a m e [4] + m;

" o d c t — f i l e [4] = o d c t _ f i l e [4] + m;

i d c t _ f i l e [4] = i d c t _ f i l e [4] + m;

f d c t _ f i l e [4] = f d c t " f i l e [4] + m；

f o r (n=0； n < = 9 ; n + +)
{

f i l e n a m e [5] = f i l e n a m e [5] + n；

/ / o d c t _ f i l e [5] = o d c t _ f i l e [5] + n；

i d c t _ f i l e [5] = i d c t — f i l e [5] + n；

f d c t _ f i l e [5] = f d c t = f i l e [5] + n；

r e s u l t 一 i d = f o p e n (f i l e n a m e , " w ")；

" d c t — i d = f o p e n (o d c t _ f i l e , " w ") ;

d c t — i d 2 = f o p e n (i d c t — f i l e , " w ")；

d c t _ i d 3 = f o p e n (f d c t _ f i l e , " w ")；

f o r " (1 1 = 0 ； 11<=99； 1 1++)
{

f o r (k k=0； k k < = 6 3； k k + +)

{ r e s u l t [k k] = r a n d n u m { L ,
H) ;

f p r i n t f (r e s u l t i d ,
" % l d \ n " , r e s u l t [k k]) ； —

}
t w o d c t (r e s u l t) ；

f o r (k k=0； k k < = 6 3； k k + +)
{

/ / f p r i n t f (d c t — i d ,

" % 2 0 . 1 5 l f \ n " , t w o d c t r e s u l t [k k]) ； —

i d c t c o e f f [k k] = r o u n d u p (t w o d c t r e s u l t [k k]) ；

f p r i n t f (d c t _ i d 2 , "%d\n",

i d c t c o e f f [k k]) ； 一

}
t w o i d c t (i d c t c o e f f) ；
f o r (k k=0； k k < = 6 3； k k + +)
{

/ / f p r i n t f (d c t — i d 3 ,

" % 2 0 . 1 5 l f \ n " , t w o d c t r e s u l t [k k]) ； —

i d c t c o e f f [k k] = r o u n d u p (t w o d c t r e s u l t [k k]) ；

f p r i n t f (d c t _ i d 3 , "%d\n",

i d c t c o e f f [k k]) ； 一

}
}
f c l o s e (r e s u l t _ i d) ；

/ / f c l o s e (d c t _ i d) ；

f c l o s e (d c t _ i d 2) ；

f c l o s e (d c t _ i d 3) ；

f i l e n a m e [5] = ' 0 ' ；

" o d c t 一 f i l e [5] = ' 0 •；

i d c t _ f i l e [5] = ' 0 ' ；
f d c t _ f i l e [5] = • 0 ' ;

} 一
f i l e n a m e [4] = ' 0 '；

/ / o d c t _ f i l e [4] = ' 0 •；

i d c t 一 f i l e [4] = • 0 ' ；
f d c t : f i l e [4] = • 0 '；

} _

r e t u r n 0；

}

Page 137

Appendix

Testing of DCT/IDCT architecture
II
II This is program is used to generate a Inverse DCT result
II from Forward DCT coefficients .
//
II The input files "idctXX.dat" contain 12-bit DCT coeffiecients .
II The output files 'nfdctXX.dat" contain 9-bit reconstrcuted
II pixel values .
II

#incliide <stdio.h>
#include <stdlib.h>
#include <math.h>

long trunvalue[7]；
long mul__product [4] [8]；
long dctresult一i[8]；
double dctresult-f[8];

void mul_coeff(int bit_length)

double value[7]；
int i ；
long roundup；

value[0]=cos(atan (1))；
value[1]=cos(atan (1)/2)；
value[2]=sin(atan (1)/2)；
value[3]=cos(atan(1)/4)；
value[4]=cos(3*atan(1)/4);
value[5]=sin(3*atan(l)/4)；
value[6]=sin(atan (1)/4)；

for (i=0；i<=6；i++)
{

trunvalue[i] = value[i]*pow(2,28)；
//Round up
roundup = (trunvalue[i] >> (28 - bit—length)) &

0x00000001； -
//create the coeff. at given bit length
trunvalue[i] = (trunvalue[i] >> (28 - bit—length

+ 1)) + roundup；

}

}
void mul—matrix(long inputl[4], long input2[4], int coeff_length, int trun—length)

long matrixl [4] [4] , inatri;x:2 [4] [4], roundup；
int i, j ;

//Form the coeff. Matrix
matrixl[0] [0] =trunvalue [0]；

matrixl [0] [1] = trunvalue [1]；
matrixl [0] [2] = trunvalue [0]；

matrixl [0] [3] =trunvalue [2]；
matrixl[1][0]=trunvalue[0]；

matrixl[1] [1]=trunvalue[2]；
matrixl[1] [2]=-1*trunvalue [0] ； matrixl [1] [3]

l*trunvalue [1]；
matrixl [2] [0] = trunvalue [0] ； matrixl [2] [1]

1*trunvalue[2]；
matrixl[2][2]=-l*trunvalue[0]；

matrixl [2] [3] =trunvalue [1]；
matrixl [3] [0] = trunvalue [0] ； matrixl [3] [1]

1*trunvalue[1]；
matrixl [3] [2] =trunvalue [0] ； matrixl [3] [3]=-

1*trunvalue [2];

matrix2 [0] [0] = trunvalue [3]；
matrix2 [0] [1] = trunvalue [4]；

matrix2[0][2]^trunvalue[5]；
matrix2[0][3]=trunvalue[6]；

Page 138

Appendix

matrix2 [1] [0]=trunvalue [4] ； matrix2[1] [1]=-
l*trunvalue [6]；

matrix2[1] [2]=-l*trunvalue [3] ； matrix2 [1] [3]=-
l*trunvalue [5]；

matrix2 [2] [0] =trunvalue [5] ； matrix2 [2] [1]=-
l*trunvalue [3]；

matrix2[2][2]=trunvalue[6]；
matrix2[2][3]=trunvalue[4]；

matrix2 [3] [0]=trunvalue [6] ； matrix2 [3] [1]
l*trunvalue [5]；

matrix2 [3] [2] =trunvalue [4] ； matrix2 [3] [3]
l*trunvalue[3]；

//Matrix Multiplcation
for (i = 0 ； i< = 3；i + +)
{

for (j=0；j<=3；j++)
{

mul_product[j] [i] = m a t r i x l [j] [幻 •
input 1 [i]；

mul_product[j][4+i]=matrix2[j][i] •
input2 [i]；

}
}
//Truncation
for (i=0;i<=3;i++) {

for (j=0;j<=7;j++)

if (trun_length 二= 0)

mul_j)roduct [i] [j] = (mul_product [i] [j] >> trun 一 length);

else
{

roundup = (mul_product[i][j] >>
(trun_length-l)) & 0x00000001；

mul ̂ product [i] [j] = (mul_product[i] [j] >> trun_length) + roundup；
} 一

}

)
void onedct(long input: [8] , int input_length, int coeff—length, int mul—trun—length,
int final一length, int second)
{ “

long half 1 [4] , half2 [4]；
int i ；
long stage31[4] , stage32[4] , stage33 [4] , stage34 [4] , stage41 [4],
stage42 [4]；
long result [8] , reduce_length, roundup；
long temp；

//First Stage

for (i=0;i<=3;i++)

(
half 1 [i]=input[2 * i]；
half2 [i]-input[(2*i)+1】；

} ‘

//Second Stage
mul_macrix(half 1, half2, coeff_length,

mul_trun_length)；

for (i = 0 ； i< = 3 ； i + +)
{

stage31 [i] =nul_product (i) [0】-nul_product: [i] (1)；
stage32 [i] =nul_produc:: ： i] [2] +nul_product [i] [3]；
stage33 [i】二nul_produc:: [i] [4] • r n u l _ p r o d u G t : [i] [5]；
stage34 [i】=nul_product [i】[6】+nul_produc-： [i] [7]；
stage41[i]=stage31[i】+stage32 "T
s:age42 [ij =st:aae33 ii] + stage3-； :i】；

} ‘

//Third Stage
for (i = 0;i< = 3;i-t- +)
{

Page 139

Appendix

result[i] = stage41[i]+stage42[i]；
} result[7-i] = stage41 [i]-stage42[i]；

//Round up and Truncation
reduce—length = input—length+coeff_length-

mul_trun_length+2-final_length-second- 3 ； — _

for (i=0;i<=7;i++)
{

roundup = (result[i] >> (reduce—length-1)) &
0x00000001; -

temp = (result[i] >> reduce一length)+ roundup；
if (second == 1)

{ if (((temp & 0x80000000) == 0x00000000)
&& ((temp Sc 0x00000100) == 0x00000100))

temp = 255；
if (((temp & 0x80000000) == 0x80000000)

&& ((temp 5c 0x00000100) == 0x00000000))

temp = -256；

}
dctresult一i[i] = temp；
d c t r e s u l t : f [i] =

dctresult_i [i] /pow (2, final一length-input一length-~^ + l+second)；
) “ 一 } “

main()
{

int input [8] [8]；
int inputfile [64]；
long temp[8]；
long result [8] [8]；
double result_f[8][8]；
int input-length, coeff_length, mul—trun—length,
final—length; —
int i, j, kk, 11, m, n, test;
char idct_file[]="idctOO.dat"；
char fdct:file[]="nfdctOO.dat"；
FILE *idct_id, *fdct—id;

coeff-length = 15;
mul一coeff(coeff—length)；

for (m=0； m<=9； m++)

{ idct_file[4] = idct_file[4] + m；
fdct:file[5] = fdct=file[5] + m；

for (n=0； n<=9； n++)

{ idct_file [5] = idct—file[5] + n;
fdct~file[6] = fdct~file[6] + n；

idct一id = fopen(idct_file, "r")；
fdct—id = fopen(fdct_file, "w");
//Read lOOtimes, 64 element in each time
for (kk=0;kk<=99;kk++)
{ for (11=0;11<=63;11++)

fscanf(idct—id, "%d\n",
&inputfile[11]); —

//Reorder the input vector into
8x8 matrix

for (i=0;i<=7;i++)
{

for (j = 0;j< = 7；j++)
input [i][j] =

inputfile [i*8+j]；

}
input—length = 12;
tnul_t run—length = 7;
final_length = 15；

for (i=0,i< = 7,-i + +)
{

for (j=0； j< = 7； j+ +)
temp [j] =

input [j] [i];

Page 140

Appendix

onedct(temp,
input一length, coeff—length, mul一trun一length, final一length, 0)；

for (j=0；j<=7；j++)
{

result [j] [i] =
dctresult_i[j]；

result_f [j] [i] =
dctresult_f[j]； —

if
(abs(dctresult—i[j]) >= pow(2, final一length-1)-1)

一 {

printf("Excess Limit, x=%d, %08x\n", dctresult—i[j], dctresult_i[j])；

scanf ("%d", Sctest);

}
}

}
input_length = 15;
mul_trun一length = 9;
final_length = 9；

for (i=0;i<=7;i++)
{

for (j=0；j<=7；j++)
temp [j] =

result [i] [j]；

onedct(temp,
input-length, coeff—length, mul_trun_length, final一length, 1)；

for (j=0；j< = 7；j+ +)
{

result [i] [j] =
dctresult-i[j]；

一 }

}
for (i=0;i<=7;i++)
{

for (j=0；j<=7；j++)
fprintf(fdct_id,

"%d\n", result [i] [j]) ； _

}
}
fclose(idct—id)；
fclose(fdct:id)；
idct一file[5] = •0'；
fdct~file[6] = •0'；

} “

idct_file[4] = '0'；
fdct一file[5] = '0•；

} 一

return 0；

}

Page 141

Appendix

Pin Assignments of the Programmable DSP Processor Chip

P i n I IN/ I
Number Pin Name OUT Description

I request IN Input data request signal
— 2 V D D I N ~
— 3 G N D IN

4 s ^ IN Input data start signal
5 in reset IN Input data buffer reset signal
6 empty O U T Input data buffer empty signal
7 done O U T Input data acknowledgement signal

— 8 V D D ~ I N _
9 一 G N D IN 一

1 0 instr—done IN Instruction acknowledgement signal
I I instr rq O U T Instruction request signal
12 一 instr<0> “ IN ^struction bitO
1 3 instr<l> IN Instruction bitl

— 1 4 V D D ""“IN “
_ 15 G N D IN _

16 instr<2> IN Instruction bit2
17 instr<3> IN Instruction bit3
1 8 instr<4> IN Instruction bit4

一 19 V D D IN “
_ 20 G N D IN _

2 1 instr<5> IN Instruction bit5
2 2 instr<6> IN Instruction bit6
23 instr<7> IN fostruction bit?
24 — instr<8> “ IN Instruction bitS
25 — instr<9> _ IN fostruction bit9

一 26 V D D ~ I N “
“27 G N D — IN

28 cmplt clr instr IN Clear the instruction input buffer
29 mode IN Switch of the cyclic FIFO in instruction memory.

0=cyclic, l=receive instruction from user
30 get_output IN Output mode 1 : Get the output handshaking

signal
— 3 1 V D D IN “

32 一 G N D IN
33 open cmplp IN Output mode 1 : Get the output handshaking

signal
34 out full “ O U T O ^ u t mode 0 : Output buffer full signal
3 5 out ready O U T Output mode 0 : Output request signal
36 out buf in<(> O U T Output mode 0 : Output data bitO
37 "^t buf in<l〉OUT Output mode 0 : Output data bitl

“38 “ V D D IN 一

_ 39 G N D IN 一

40 out buf in<2> O U T Output mode 0 : Output data bit2
41 |out_buf in<3>| O U T [Output mode 0 : Output data bit3

Page 142

Appendix

一 42 out buf in<4> O U T Output mode 0 : Output data bit4
43 out buf in<5> O U T Output mode 0 : Output data bit5
44 out buf in<6> O U T Output mode 0 : Output data bit6
45 out buf in<7> — O U T O ^ u t mode 0 : Output data bit?

— 4 6 _VD—D IN~~
— 4 7 G N D " " “ I N —

48 o^buf in<8> — O U T Ou^ut mode 0 : Output data bitS
49 cmplt out O U T Output mode 1 : Output request signal
50 cmplt out d O U T Output mode 1 : cmplt out + 4

51 out_sel IN Output mode selection : mode 0 for data
verification, mode 1 for speed measurement

— 5 2 V D D I N -
— 5 3 G N D IN""“

54 out—aki IN Output mode 0 : Output acknowledgement signal

“55 一inl<0> “ IN I ^ t data bitO
一 56 — i n l < l > _ IN i^tdata bitl

57 一 inl<2> IN Input data bit2
_ 58 一inl<3> 一 IN I ^ t data bit3
—59 V D D ~ ~ m ~ “
— 6 0 G N D ~ I N ~ “

61 reset IN Global reset signal
62 — inl<4> IN Input data bit4

_ 63 一inl<5> “ IN to^tdata bit5
64 — inl<6> IN ^put data bit6
6 5 inl<7> IN Input data bit?

“66 V D D — I N 一

67 一 G N D — IN
- 6 8 in<8> IN [input data bitS

Page 143

Appendix

Pin Assignments of the ID DCT/IDCT Core Chip

@ © @ ® © ® ® ® ® N

@ @ @ @ @ @ 0 @ @ @ @ @ @ M

© @ ®@@ @@ L

@ ® @ @ K

®® @@ J

© ® © ® @ ® H

® @ ® Bottom View @ (J) G

0 ® © @ @ @ F

© 0 @ ® E

0 © Ext. P. ® ® D

① © 〇 @ ® ® @ © c

© O ® ® @ ® ® ® ® ® @ ® ® B

^ ^ ® ® @ ® @ @ @ @ @ @ @ @ A

1 2 3 4 5 6 7 8 9 10 11 12 13

^ ^ n
Number Pin Name In / Out Description

I 一VDD — I N —

— 2 G N D IN 一

3 — In<5> IN Input data bit5
4 In<4> IN Input data bit4
5 — In<3> IN ^ u t data bit3
6 In<2> IN Input data bit2
7 V D D ~ I N ~
8 G N D ~ I N ~
9 In<l> IN Input data bitl
10 — ln<0> IN ^ u t data bitO
II V D D IN

一 12 G N D ~~IN 一

1 3 test6 O U T Testing signal from D C T coefficients memory 2
1 4 tests O U T Testing signal from data replicator 2
1 5 test 10 O U T Testing signal from multiplier 2

- 1 6 V D D IN —
— 1 7 G N D I N ~

1 8 testl4 O U T Testing signal from 22bit subtractor
19 —testis — O U T Testing signal from 22bit adder

- 2 0 V D D ""“IN —
- 2 1 G N D IN —

22 output—rq O U T | Output mode 0 : Output request signal

Page 144

Appendix

2 3 Ckin IN Output mode 0 : Output acknowledgement signal
24 — V D D 一 IN

一 25 G N D I N ~
Out<14> ~ O U T Output mode 0 : Output data bitl4

_ _ 2 7 _ _ ^ u t < 1 3 > ~ O U T Output mode 0 : Output data bitl3
_ _ 2 8 _ ^ O u K 1 2 > ~ 0U T ~ Output mode 0 : Output data bitl2 _

29 V D D ~ ~ I N “
30 G N D IN~~ -

— 3 1 Out<ll> Output mode 0 : Output data bitl 1 —
^Qut<10> "~OUT Output mode 0 : Output data bitlO

33 ~~Out<9> "~OUT Output mode 0 : Output data bit9
34 V D D I N -

— 3 5 G N D IN —
36 Out<8> — O U T Output mode 0 : Output data bitS

— 3 7 ~~Out<7> ~ O U T Output mode 0 : Output data bit?
3 8 Out<6> O U T Output mode 0 : Output data bit6

— 3 9 V D D — I N
— 4 0 G N D — I N

41 ~~Out<5> O U T Output mode Q : Output data bit5

“42 Out<4> — O U T Output mode 0 : Output data bit4
43 Out<3> — O U T Output mode 0 : Output data bit3

“44 ^^Out<2> — O U T Output mode 0 : Output data bit2
— 4 5 V D D ^ ^ I N “
— 4 6 G N D I N ~ -

47 ~ O u t < l > — O U T Output mode 0 : Output data bitl
48 — 0ut<0> O U T ^tput mode 0 : Output data bitO
49 open cmplp IN Output mode 1 : Get the output handshaking signal
50 out sel IN Output mode selection : mode 0 for data

verification, mode 1 for speed measurement
— 5 1 V D D ~ I N 一

— 5 2 G N D ~ I N ~
5 3 test 17 O U T Testing signal from truncation unit
54 — testl6 O U T Testing signal from DCT/IDCT switch 5
5 5 test 13 O U T Testing signal 21 bit adder

— 5 6 V D D IN 一

— 5 7 G N D IN
58 complt out O U T Output mode 1 : Output request signal
59 cmplt out d O U T Output mode 1 : cmplt out + 4
60 V D D I N ~

— 6 1 G N D I N ~
62 get—out IN Output mode 1 : Get the output handshaking signal

“63 testl2 — O U T Testing signal from 2Qbit adder 2
6 4 testl 1 O U T Testing signal from 2Qbit adder 1
65 V D D IN~~

- 6 6 G N D ~ I N 一

6 7 test9 O U T Testing signal from multiplier 1
6 8 test? O U T Testing signal from data replicator 1
69 test5 O U T |Testing signal from D C T coefficients memory 1

Page 145

Appendix

~ 7 0 V D D IN

一 71 G N D ""“IN~~ —
72 block2 IN Set for the column operation

— 7 3 Idct IN for IDCT operation
74 V D D — I N

— 7 5 G N D ~~IN~~ _
76 Reset — IN Reset
7 7 Start IN Input data start signal
7 8 test4 O U T Testing signal from 15bit subtractor

test3 Testing signal from 15bit adder “
80 V D D IN""“ -

— 8 1 G N D ~ I N ~ ~ “
“82 test2 ~ O U T Testing signal from l-to-2 M U X 1

8 3 testl O U T Testing signal from input buffer
8 4 Done O U T Input data acknowledgement signal
8 5 input—rq IN Input data request signal
86 一VDD — I N —

— 8 7 G N D I N ~ “
— 8 8 ~In<14> — IN Input data bitl4
— 8 9 In<13> IN"”~ Input data bitl3 “
— 9 0 In<12> ""“INInput data bit 12 “
— 9 1 V D D ~ ~ I N ~
— 9 2 G N D ~~IN~~
— 9 3 In<ll> ~~IN Input data bitll 一
— 9 4 In<10> ~ I N Input data bit 10
— 9 5 In<9> IN Input data bit9 一

96 一VDD — I N —

一 97 G N D ~ I N ~
— 9 8 In<8> ~ I N Input data bitS 一
“99 In<7> — IN Input data bit?

100 In<6> IN [input data bit6

Page 146

Appendix

Pin Assignments of the Transpose Memory Chip

© © @ 0 @ 0 ® 0 @ @ © L

®@@@@®®®@@@ K
® @ @@@ @ @ J

® © ® ® H

® ® ® © @ © G

® ® © Bottom V i ew @ @ @ F

© 0 © © 0 © E

0 © @ @ D

0 © @@® @@c
© 0 @ @ © @ @ @ @ @ @ B

^@@@@@@@@@@ A
1 2 3 4 5 6 7 8 9 10 11

Pin
Number Pin Name In/Out Description

1 testl O U T Testing signal for LSB generator in write address
generator

2 test2 O U T Testing signal for M S B generator in write address
generator

3 test3 O U T Testing signal for in write address generator
- 4 V D D ~ I N 一

— 5 G N D I N ~
6 test4 O U T Testing signal for LSB generator in read address

generator
7 test5 O U T Testing signal for M S B generator in read address

generator
8 test6 O U T Testing signal for in read address generator
9 — idct - IN Set for the IDCT operation
1 0 data—rq IN Input data request signal

_ 11 V D D ~ I N
_ 12 G N D IN
“13 一1<0> IN Input data bitO

14 I<1> - IN Input data bitl
15 — I<2> - IN Input data bit2
16 I<3> IN Input data bit3 —
1 7 I<4> IN Input data bit4

一 18 V D D ~"“IN
— 1 9 G N D ~ I N

20 I<5> IN llnput data bit5

Page 147

Appendix

— 2 1 I<6> IN [Input data bit6

— 2 2 I<7> I N I n p u t data bit? _
一 23 I<8> ~ I N ~ ~ Input data bitS _
— 2 4 I<9> ~~IN~~ Input data bit9 —
— 2 5 V D D IN —
— 2 6 G N D — I N
— 2 7 I<10> ~ I N I n p u t data bitlQ —
— 2 8 I<11> Input data bitll “
— 2 9 I<12> IN — Input data bit 12
— 3 0 I<13> ~ ~ W ~ Input data bit 13 “
— 3 1 I<14> IN~~ Input data bitl4 “
— 3 2 V D D ^ ^ I N ~ “

33 — G N D — I N —
3 4 Start IN Input data start signal
3 5 Done O U T Input data acknowledgement signal
3 6 tests O U T Testing signal from input multiplexing network
3 7 test9 O U T Testing signal from input multiplexing network
3 8 test 10 O U T Testing signal from input multiplexing network

— 3 9 V D D I N ~ -
— 4 0 G N D IN —

4 1 testl 1 O U T Testing signal from input multiplexing network
4 2 test? O U T Testing signal from input data buffer
4 3 testl 5 O U T Testing signal from input multiplexing network
4 4 testl 6 O U T Testing signal from input multiplexing network

“45 —testl? — O U T Testing signal from R A M blockO
46 V D D m ~ “
47 — G N D — I N —
4 8 testl2 O U T Testing signal from input multiplexing network
4 9 test 13 O U T Testing signal from input multiplexing network

- 5 0 —testl4 — O U T Testing signal from R A M blockl
51 testis ~ O U T -
52 "^ataout<14> O U T ^tput mode 0 : Output data bitl4

— 5 3 V D D IN
— 5 4 G N D I N ~

55 "bataout<13>~ O U T Output mode 0 : Output data bitl3 —
56 "^ataout<12> O U T Output mode 0 : Output data bitl2
57 "PataouKl 1 〉 O U T ^tput mode 0 : Output data bitl 1
58 "^ataout<lQ> O U T ^tput mode 0 : Output data bitlO
59 "^ataout<9> O U T Output mode 0 : Output data bit9

“60 V D D ~~IN 一

61 G N D IN
62 ~Dataout<8>~ O U T Output mode 0 : Output data bitS
63 ~Dataout<7> O U T Output mode 0 : Output data bit?
64 Dataout<6> O U T Output mode 0 : Output data bit6
65 ~Dataout<5>~ O U T Output mode 0 : Output data bit5
66 Dataout<4> O U T Output mode 0 : Output data bit4
67 V D D ~ ^ ~

“68 G N D I IN I —

Page 148

Appendix

— 6 9 Dataout<3> O U T [Output mode 0 : Output data bit3
70 下ataout<2> — O U T Output mode 0 : Output data bit2
71 Dataout<l> ~ O U T Output mode 0 : Output data bitl
72 DataoutO ~ O U T Output mode 0 : Output data bitO
73 dataout rq O U T Output mode 0 : Output data request signal

— 7 4 V D D IN —
— 7 5 G N D IN 一

7 6 Ckin IN Output mode 0 : Output acknowledgement signal
77 Reset 一 IN Reset
78 output—sd IN Output mode selection : mode 0 for data

verification, mode 1 for speed measurement
79 cmplt一out—d O U T Output mode 1 : cmplt out + 4

80 cmplt out O U T Output mode 1 : Output request signal
— 8 1 V D D ~ I N ~ -
— 8 2 G N D IN —

83 open—cmplp IN Output mode 1 : Get the output handshaking signal
84 get—output IN [Output mode 1 : Get the output handshaking signal

Page 149

.a

 (
i
f

漏
s
a
g
a
^
l
^
^
^
^
^
^
^

I

:

:
:
:
藥

叩

h

却

c

l
n
^
l
l
l
l
B
H
l
a
 H
g
o
l
H
I
i
p
l
l
B
I
I
B
d
g
i
B
I
B
B
^
I
O
I
U
B
i
l
p
l
J

—
.
^
a
i
^

、

h

却

c

Appendix

Measured Waveforms of ID DCT/IDCT Chip

Waveforms of DCT row operation
！：) • TfwIwg&laBrwffly'lwy ’ ̂ ‘"‘

微於欺.. . . .

• I 1 ZO.OQns 0

：^̂ Error … - . . … ” … ’ • • ‘ ； dct \ ：？)col 、 ；
i 聰巧? ^ ^̂^ i
； ^ r\r\r\j\r\r\ AA /\A AA A/V A,：

i > r\ r\r\r\f\ r\j\r\r\ :
i ^ — A A A A /\A A A A A / \ A :

！巧 ^ r\ ^ r\j\j\f :
；dinos > AAAA 八八八 :din06 N r\ r\ r\r\ r\ ^\A/VWWWW__/V\/\/\ 丨
；din07 N A /VWN /\AAA/\/\/\AA/\ r\r\ i
；din08 > A r\ /\/\/\r\ /\/\ r\/\ r\ f\/\/\ f\/\ f\ /\ r. |
： a i n 0 9 > f\ r\ f\r\r\/\r\r\r\f\/\r\r\ a a ； i dinio \ r\ A ^WVWWWN r\ A i i dinll N r\ r\ AAAAAAAAAA AAA ；
； N A A A A A A A A A A A A ； 1 N r\ r\r\r\r\f\r\r\/\ 八 八 a ；
；done ^—/ ；
i doOO A A AA A r
\ doOi r\ A A i I do02 r\ r\j\r\ r\ r i i doO? r\ r\j\r\ r\j_ ；
:do04 /\i\ A r \ i doos A A 八/\ r \ \ do06 — r\r\ A A r \
I do07 r\r\r\r\ r\ r\j_r \
\ ao08 A A A A A A A , ； i r\J\J\ A f \ doio r\j\r\r\j\r\ r_r \ \ doll A r \ \ dol2 rv r \ ! dol3 A r \ \ dol4 ； r\ r
\ 0 rq /W\/̂ ÂAAAAAA/V\AAAAAA/ :

i 丨 cJcin 、 ^WWNyVWWWWWWVX ；
.. 20.0Qns

Start Sy&tem| Stop Systemf

H. , 二 - , Timing Ptagrams - \ms

：tmfmî't
i.丨丨：丨.:•.“.「....： Total 0 Sequence 50

‘ I 1 20.00ns 228
‘ ……冷……二 •………•………•………•… 丄…"…令 .•………+ …“…………寺…

.Error ‘idct ： coL ；

',dinOO r\r\f\i\r_r_r_r_r_r_r_r_f_a_a__a_r_a_r___i_a_a_/v 八 八 八 八 八 八 " 八 八 , ：

；dinOl r\f\J\J\r\f\ A/N l\r\ aa r\r\ r\J\ 八a aa a/\ AA aa /\A aa /\a 八八 A / i rdin02 r\r\i\r\ f\f\rsf\ f\r\r\j\ f\r\f\r\ f\j\i\r\ rsj\j\r\ r\j\r\r\ r\r\j\r\ /din03 r\I\J\J\ ^VWWWN /"WXAAAA/N r\r\r\r\r\r\r\r\ r\r\r\r \ 'din04 r\A/N_f\ T^A/WVAAA/WWVWA /XA/VVXA/VVVW : dinOS /WWWN ^WVVA/WWWWVV^V/WWWV/^AAA/ 丨 dinOS \/\/\/\/\/\/\/\ /\f\/\r\ ：

‘din07 \/\r\/\/\r\/\ / \ a i 'din08 \AA/VVV\—A— ； ''din09 \AAAAAAA—A/\ i dinlO WW\A/> (\ A ；
dinll \AA/\A AA /\AA

: d i n l 2 \ A A A A A A A i

(1—3 WWN_r\ A/N i
n r a i doOO r\r\ r\r\ A r\ A A /\A/\ A A r\ r\j\ : doOl A A A r_r_r\ A a A 八；

do02 r\ / w a r\ r_f_/w\aa/n r\ a a a a a a i 'do03 A AAA r\r\ A AA AA AA AA A /\A A A A ；
'doCI4 f\r\ r_r_r_a/\ r\ a / \ a /\ r\ r\ 八 A /V- I
do OS /\ r\r\j\ A._ w f\r\ f\/\/\r\/\ 八八 八八 ；
doos (\r\ a a r\r__r\j\ r\ a a a a a a a a a : do07 rsj\AA r\ r\r_r_r_r\r\r_f\r\ r\r\r\ /\a a /v.:

,do08 r\r\j\-j\—j\r\ r\ aa a : do09 r\r\r\ r\ _r_r\j\ !\r\r\ A A A A ： '.dolO AAAAA/N A 八 A ：
doll r_r\ r_r\ r\ r\ r\ /v :
jdoi2 r_r_r_r\ r\ doi3 r\ A A /\ ；

i ： dol4 r\ r\ r\ f\ /\ (\ f_ ： ；io rq A/WVWWWWWWXAA/WXA/VWN/XA/VWWVAA/WWWWVA/VA/WWWWW : ；ickin /\/WWW\/\/\/WVVV\/W\A/WWW\/V\A/WWWW\/W\/WW\AA/WW\/W\/W\ :

20.0Qns

jtart Systemj Stop Systemj

Page 152

Appendix

Waveforms of DCT column operation
r 过，'.：>. ,I. ""《I A:, ,"' ̂ f.； :、 II I I:..':.. (Tlmlna Dlagrami -• Itns 、…. ’..‘，’.. ‘ ：“

凝 ToUl 0 Saqu«nc« 0

I I 20.0Qn9 0 C……… 、，• • • ； 4 • • • ..,+•,..,‘，，、•,“.，，，"•�，，�’•,"

；Error
.^idct N
丨 ĉol >
為，巧 >
、 ， > a / v x a a / n r \ r \ a a a a a a a ,
'DIN02 N r\ r\j\f\r\ AA/\A A/\A A

V r\r\j\j\ nywvvwN
din04 N r\ r\j\r\j
d i n O S > A A A A A A A din06 N r\ A _ A / V _ y \ i\/\r\f\f\r\r\/\r\i\r\ r\r\f\r\
din07 n r\ r\r\j\/\ _ / w \ / \ a / w \ / w _ / v \
dinOS >— r\ r\ f\r\r\/\ /\/\/\r\ r\r\ f \ f \ i\ /\ /\ ^
dx i l 09 V r\ A A . / \ A A A A A / \ A / \ A A A

dinlo > r \ r\ a a a a a a a / \ a a / \ a
d i n l l N A A A A A A A A A A A A A A / \

d i n l 2 > — A A A / \ A / \ A A A A / \ A

dlixl3 > A A A / V A A A A A A A 八八
dinl4 � / \ / \ a

in_rq _^j^^JJIJI^I^ 一 10^^_14_1144_|_|_|«山4444_|_||_|_|_誦4_山_圓_||_|_|_|_|_14_||4_||_1_14 JJ444UUJJJ_IJJ_
doOO A r\ r\ r doOl r\ r\ f\ do02 r\r\„/wv> r\ r
>do03 f\ A A A a a
do04 A/\ r\ r
doOS f\ r\r\j\ r \
do06 a . a 八 八 / ： do07 r\j\u\r\ r\ r\j_r
;do08 A A A A A A 八 r
do09 a a a a r :
： dolo r\f\r\f\f\r\ r\ r
：doll A r ：

：doi2 r\ r
：dol3 A r .dol4 a r

0 r q ^ V V W W W V X A A A A A A A A A /

丨 ckin V A / W W W W V W W W W W ：

20.0(ki3

'"XJ ' 7 , . Tlmitig Diagraats -* Ims

totaut 0 Sequence 80
1 20.0Qns 228

C *��.，.+ + + + + • + • + • …

Error
idct
•<coL ：

dinoo r\r\r\r\r_r_r_r_r_r_r\r\a__r_r__r_f_r_r__r_r_r_r_f_r_r__
dinOl r\f\r\r\r\r\ r\j\ f\J\ r\j\ r\r\ f\f\ a a r\r\ /\r\ r\f\ a a a a f\r\ A八 r\r \ din02 r\r\i\r\ r\f\j\j\ r\f\f\r\ rsj\f\r\ r\i\r\r\ a/vv\ r\f\f\r\ aaaa 丨

',din03 r\r\r\r\ r\r\i\f\nj\/\r\ / v w w v x a r\j\r\j\r\j\r\r\ r\j\r\r
' ' d i n 0 4 A A A / V W \ A A A / W \ A A / \ / ^ V A / W V W W W '.dinos rsj\r\r\r\f\r\ i\r\j\r\r\i\i\r\/\j\i\r\j\j\/\r\r\r\r\j\j\r\j\f\j\i\j\r /dinOG WWVW_
,din07 \i\r\f\i\i\i\ r\r\ ： ;din08 WVVWWN_r\r\ ； d̂in09 \f\r\r\r\f\j\j\^j\r\
. d i n l O W W W N r \ „ r \ ：
^'dinll V W V W V « A / V \ :
dinl2 \ A A A / \ A A A ；

' 'dira3 \ / \ a a / \ r\ r \ f \ ；

Srq ixiiiiita^ltmiipoxiimpiiixipiiiiiiiiiiixiiiiiiimmmmmpnrammnpiimixi：:
；d o n e ；
；,doOO r_a r\ r\ r\j\ r \ r \ f \ f \ f \ r\f\r\r\ a /\ a a a a 丨
；她01 r\ r\ a / v \ a - _ y \ / n r\ a a a 八 a a a a a a a a a ；
、do02 八 R\ R\R\/\/\ R\ a a a a a a a a a a a a
do03 /\ A A A A A A A A A A A A ；
？do04 r\f\ /\ A. /\ A i\/\r\ f\f\ r\ r\j\r\ :

；经doOS A r\r\r\ r___A r_r\J\r\J\r\ f\f\r\/\ /\ \
\ »do06 I\r\ A A A A /\ Ps r\i\f\r\r\

'^do07 /\A r\r\ a _ j \ j \ _ r \ A r\ j_ r\r\ A A /\ A ''do08 A/v_w_A/\ r_A r\ r^j\r\—r\r\—r\r\
'do09 A/\/\ A A A /\ A r\r\r\ r\/\J\^J\

；udoiq f \ r \ j \ r j \ r \ a a a a a a a ： -doll r\ 丨
i idoi2 :
I idoi3 r_r_A A ;
':doi4 r \ _ r \ r \ i ；。rq /VWWWVXAAA/W/VA/WWWWWWV/WWWWWWWWWWWWWXANyW : ；|clcin ^ W W X A A / W W W W V / W W W W W W W A / W W W W W W W W W W W W W W X ；
1

20.0Qns

』St^ Systcmj Stop Systemf

Page 153

Appendix

Waveforms of IDCT row operation
‘ T i m i n s Diagrams - ims

. • • , • , • • , • . „ „ , • , ,, . „ . 二 ..了 — ...- :
£ » » S^creens Sttfe-Screens flptkms a t i l l t l es Herp j

IfotaX 0 0
I 1 20.0Qn3 0

；议 0 / * ‘ •+‘ • ‘4 ,,••*,•‘，•‘，>.*•/,, ^ ^ . ’，.，*+ + + +,’， ，

；这Error
； j 专 i d c t * ；

coL > i

dinoo > r\f\r\f\r_r_A_r_r___\
dinOl > ^\AAAA/\ r\r\ A A A A A A A , i

> A A A A / N FMMMS R\R\J\J\ ： din03 > r\f\j\f\ r\j\j\r\j\/\j\r\ :
d i n 0 4 、 A A /\ A r\ ^ V W ；

dinos � a / w w v n :
dinos > r\ r\r\ r\ / ^ a a a a a a / W V > ^ W V V N i
din07 > a a a a / \ _ a a a a a a a a a a a a ； din08 > —A r\.^r\j\r\r\ :
d i n 0 9 、 A f\ A A A A / \ A A / \ A A A A A :

d i n i o N A A A A A A A A / \ A A A A A ；

dinll A r\ /̂ AAAAAAA/W-AA/N ： dinl2 > A ^WVWWN_A r\f\ ：
dinl3 > A Z V V V V V V \ / X _ V X _ _ A A ：

done ^ / \ _ 丨

doOO r\ :
doOl r\J\f -do02 /\/WWW> \
do03 A A :
do04 A / N / W V W N
do05
do06 ： r
do07 r \
do08 r\j\r\j\r\j\r\j\ \
do09 r\ r \ r \
dolO A A A A A A A / N fX/XTJ \
doll A A A A A A / V N ^ W ：
dol2 / W ；
doi3 /^wvwwN r\j\r \
dol4 r\j\j \

：O rq / V A / X A / W X A A / W W W W W
i clcin � ' ^ V V V V V V W W W V W V W V X ；

20.0Qns

产 鄉 对 s t o g s ^ 画 驟 添 骤 爾 . : 彌 爾 攀 : 釋 ： 顯 ；

Z f — ； ^ ： “ ‘ t l rn l i ig D i a g r a m s i m s ‘

t o u l 0 Sflquenco 80

I 20.0Qns 228
；K C … • … • … … … ‘ … … … + … … … • … … … " I S … … • … … … • … … … … … … • … … … • …
；SError
； 终 i d c t ； ；̂col ：

dinoo A/v\/\/v-.7V_A_»A A r\ A _ A A _ A _ ；
dinoi r\j\r\j\r\r\ r\r\ r\r\ r\r\ a / n r\r\ r\r\ r\r\ r\r\ r\f\ a / \ / \ / \ / \ a / \ a a a a ,
din02 r\r\r\r\ a a a a a a a a a a a a r\r\j\r\ i\r\r\r\ r\r\r\j\ r\r\/\r\
din03 r\j\/\r\ f\f\r\r\r\f\r\j\ / w v w v w a a a a / w v n r\r\r\r
din04 / \ A / V V \ A A A A A A A A / \ / \ A / V W W X A / W W
dinos r\r\r\r\i\j\r\ a / w w w w w w w w v a / w w v x a a /
din06 \ A A A A A A / ^ ^ - / W \ / \
d i n 0 7 \ / \ A / \ A / \ A A A

din08 y \ _ / N din09 \AAAAAA/>̂ W\
dinlO W W W N r\ r\
dinll \ / V V V V X A _ / X A / >
d i r x l 2 \ / \ A A / \ A A A dinl3 \AAA/\ A /\A
^q IU14-l-IUI4XiUi4-l •睡• •匪• • • •面 I I I I 11 I I I I I I 11 II 114一l_IUUI_ia_ll_l—l_IULI_l_IUI_l_IUUUI一l_IUI_i_l_aJUiJJU
done

hdooo r\ r\J\r\ r\f\r\ i\r\/\r\ a a / \ / \ r\r\r\r\
；doOl r\J\r\r\r\ r\r\r\ r\ AAA A /\AA AAAA do02 AA/WWW - rsj\ A/W 八 AA A AA A AA A 八 r\f
'：•.do03 A A a r\r\ r\r\/\f\r\ a / \ a
i； do 04 A A / W V W N J \ _ r \ A A / \ / \ / \ / \ 八 r \ r \ A 八/\ 八八八
-doOS r \ 八八A/V八A八八/\ / \ A 八 A A 八八 A A 八 八
do06 上 A A A / X Z \ A A / V \ A A _ y \ A _ _ A / \ A / \ A / \ A / \ A

Hdo07 A A A A A / \ A A / \ / \ / \ A / \ A A / \ A A A A A A A A /\

:;do08 Z V X Z X / W V V \ _ r\ / \ A / \ / \ _ A / V W \ / W \ f \ A f \ A A / \ A A
do09 r_f\J_f\r_AAAAAA/\/\ r\ r\ r\r\i\ A A A r\r\ A dolO /\AAAA/V\A 八 AAA AA /\ A/\/\/\ A A/\ AA AAA A A A/\ A A A

” DOLL ^ V W W W \ /V/WV 八八 Y\/\7\/\A/\/\/\ A A A A A A A A A A A

d o l 2 A A A A / \ A A / \ / \ A A / \ / \ A A A /\ /\ A / \ A A A A A doi3 r\r\r\r\r\j\f\j\ r\j\r\-j\r\ 八 /\/\ 八 八 a/\ a/\ a
dol4 r\f\f_r\r\ 八 r\r\r\ a a a a / \ a
0 rq / W W W W W W \ / \ y V \ / ^ / W V \ A / V \ A / \ / W \ / W \ A / V W W \ A A / \ / W \ / \ / \ / \ A ^ V / \ / \ / \ / \ A / \ / \ / \ / V c5iii\ A/WVWXAA/WWWWWWWVWWWWWWWWVX/VVA/WWWWVA/V/WW

Page 154

Appendix

Waveforms of IDCT row operation

^ ；J… _ ™ _ ""“̂ Timing DIafirams - ims …

f i le |il1t Screens Su挺一Screens Options 进" i t ios ” Help \

？
；I 、、、、- ：、物tail - 0 “

参、、 • … 1 - 20.0Qn3 .::..。,;： 0

、 C … … … . • … … • … … … 4 s * … … … • … … … • s … h … • … … … • … … … • « ‘ … … ， • • … … … • …

；杉Error 我 “‘• ‘
；idct > ： S

‘ ：
:dinOO > f\f\r\r\f\ f \ r \ r \ f \ f \ / \ r \ r \ r \ r \
-dinOl > r\l\r\r\r\J\ a a / \ / \ / \ a r\r \
� > r\ r\j\j\f\ r\j\r\r\ r\f\r\f\ ；

> — ： A A A A A A / \ / W W > 丨：
� d i n 0 4 > r \ a a a a i \ j \ j \ r \
^ dinos > r\r\r\j\j\r\f\ ?
din06 > r\ r\ A A A ^ \ A A A A A / V V V V \ - - A A A / N 穿
din07 > r\ a / \ a / \ a a / \ a / \ a / \ / \ a a a a ;；

、、din08 V r\ f\^j\r\r\j\ i：
din09 > r\ A AAAA /VVV\AAA_ y\/\ 妄
dinio V r\ r\ / \ a a / \ a a a / \ / \ a r\ A 穿
d in l l N A A— ^V\A/VA/\/VVV_/^VV\ ？
dinl2 > f\ AA/\AA A/\A A f\r\ ji

V R\ - A A A A A A A A A A A A 善

done ^ • \ _ I ：
dooo r \ r \ j \ r \ j \ j \ j \ j \ a a i；
doOl A A/\ A A A A A A A ,；;
do 02 A 5
do03 A A 笑
do04 a / W v y V W N \
doOS A / W W X A / S i；
do06 r ；:
do07 r \ do08 r\̂ r̂ \
do09 A r\r \ ‘dolo r\r\r\r\j\j\j\/\ r\r\f\r ;;
doll (\i\i\r\j\r\j\r\ A A / 香
,doi2 r\r\r \
dol3 A / V A A A / W N r\J\r \
do 14 r\r\j ；:
0 rq < ^ V V V V V V V \ A A A A A A A A / V \ A / ii

；clcin 、 ； / W W W W W W W W V W V 丨

aO.OQns

, 刑 ? y 绅 s t o p Systymj

「二 Timing Diagrams - ims

File tdk Screens Sub-Screeits Options UtiliUes Help ；

一 ‘ ；職Total • 0 Set̂ [U<mc» 90

I / I 20.00ns 228

‘ C“'”,…•>K 二……•….……* • + •….、…‘••̂… + +………•…

Error
idct ：
col 1：

''dinoo _ _ (\ — r \ _ r \ _ r \ _ 丨 ；
dinOl r\J\r\J\f\r\ 八/\ a / \ / \ / \ a / \ a a a a a a i\/\ I\f\ r\r\ i\r\ i\/\ / \ a a a i\r \
d i n 0 2 r\j\r\j\ r\f\j\r\ r\j\j\i\ /\/w\ r\j\r\r\ r\f\j\r\ f\r\f\r\ r\j\r\r\ :
din03 r\r\r\r\ / ^ A A A A A A A A / w w w n r\j\f\f\j\f\j\r\ A / W i：
din04 ^\A/V\A/VAAA/UV\AAA/\ ^ V W W W W W ii
dinOS A A A A A A A A A A A A A A A A / V V V V V V V V W V 《
din06 V \ A A A A A A _ - A A A / \ ::
din07 \t\r\r\r\r\r\ / \ a ji din08 \r\j\r\f\/\j\..u\—r\—r\ i；
'din09 W X A A A / V N _ r \ f \ ::
dinlO \i\r\r\r\r\i\ a a i：
din l l W W W U V X A / N i：
dinl2 V V V W W _ A A !：
dinia W W N _ r \ rsj\ i；

S iPilXipCtaQttanilXOXiXiXOXiXiXiXinilllimiXiXOrillXilXiXimilXQXilimmmiX (
done %
doOO A / W W W X A_A_f\J\J_AAAAAA/\/\ A / \ A A A/\/\ /\/\ 八 A A A f \

doOl A A A A / W \ A A/__r\J\f\ AAA/\/\ A/\ A. A A/\ A A r\ r\/\ r\ r\/\/\ r\ r\ r\ r\ /\r\ r \
do02 r\ -^XAA /VVVVVVVN A J\ AA AA/\ AA/\ r\r\ ；:
do03 A A A /\/\r\r\r\r\r\r\r\r\ /\ f\ /\/\r\ i\i\ /\r\/\i\ r\j\ A ii
do04 r\j\r\/\r\r\r\f\ r_a a/\/\/\aa/\aaa aa /\/\ r\ /\ /\ 八 八八 a >
DOOS A Y V W W V N A _ A A A/\/\/\/\ A A A A /\AAA/\/\/\A /\ 八 八 A ;

do06 r\ A / \ / \ A / \ / \ A A A A i\ r\r\r\ f\ A / \ r\ r\ A i:

do07 /\ A A A / \ A / \ A / \ / V A A / \ A A A / \ r\r\/\/\ A f\ {

do08 ^ W W W V X A — A A A / ^ ^ \ A A A A / W \ /\ A A A /\ \
do09 A A A _ r \ r \ _ A A A A / \ / \ / \ / \ A A / \ A A f\ A / \ A A 八丨：

、dolO A / W W W N a a a a a a a a a / \ / \ a / \ a a a a a a a / \ / \ i
doll ^ W W W V N r\fSJ_•/V/\y\/\AAA/\AA a . a a / \ a /\A J\ \
d o l 2 A A / \ /\/\ A. /\/\/\AA/\/\/\A/\ A /\ /\ r\j\ J\ \

do 13 / \ A A / W \ A A R\I\/\ a a a a a R\ a /v.；
dol4 r\J\/_r\f\ A A A-；

；0 rq ^ W W X A A y ^ A / W W W W W W X A A / W ^ / W W W V W W W W V W W W X A A / V W W W ;
；cKin A / W W W W V W W W W W W W W W W W W W W V W W W W W V W V / X / W X / W V ：；

20.00hQs ••

,Statft S^^temj Stop Systemj ‘

Page 155

Appendix

Measured Waveforms of Transpose Memory Chip

Waveforms of DCT operation mode
广 1) 次 W N \ …Timing MMRMS 厂厂“”，:厂

� �… \ 如 teftl 0 S«quence Q
；严.-:.、 、、、…、 1 20.0Qns 0

！ § C>*、,\。•}<»、、〖•• i »、••,、kOK • IliîOliilttiiiiiiillî̂^ ；
i ^Error

I iidct 、 ；

；终 ：；
�doo s _ / \ — A — r \ — r \ — r \ — A _ r \ _ r \ _ A _ r \ _ r \ _ r \ _ ； ；
卿 N f \ r \ / V N _ - A A A A r \ r \ r \ I \ /\A /\/\ A A r \ r \ r \ r \ A A /\A i \ r \ A A A A A , :

� 2 > f\i\r\r\—— (\r\r\r\ r\r\f\j\ r\j\r\j\ r\r\j\r\ r\j\j\r\ r\r\f\j\ /vww ^ d04 > AAAAAAAAAAAAAA/v\ r\j\j\j\j\/\r\r\r\j\i\r\/\i\f\r\j\r \
、dOS N ^V W W X A / W W W W X A A A / W W W W W W W 丨
:d06 N f\f ；
；<107 > r\r \
、d08 > f\f i
V d09 N f\r r dio N r\f \ dll > ^ ；:
dl2 > i\r ；:

• di3 N r\r\
dl4 > rsj\

—q UJJ-UJJJJIJJ-IUIJ-IIJUJ-IUUIJ-
doOO 营
doOl ;
do02 i：
do03 ^
do04 i：
doOS ii

AOOS ？
do07 ^
do08 娶
do09 ;；
d o l O ii

doll
'dol2 ：
dol3 ii
dol4 ；:

:«outrq i;
ckin 、 r i；

20. OQns •• I

Start Sŷemj Ston System) I

「二I Timing Diagrams - ims

Htk icreens Sub-Screens fiptlons ut i l i t ies Help《

Tdtal 0 Sequence 120
1 20.OQns 276

C - J ： X.' . ：丨丨丨::::(:::̂；(:丨:::::::::丨:丨:::::::::丨:::::::::::::丨:®::::；；̂̂: . ：：：：：：：：̂̂；：：：；>：：：>：：；：：：：：；；；：；：；：；：-；：：：>；；：：；；：；̂ ：>•；：：•：：：：：：：：：；：：：：：：；：；：：̂：.：；：：：：：；：；：-：>：0：：：：：：：：：：：：：<̂ fi
：1Error

i 钱idct ：丨

-doo _ r \ _ r \ _ a _ r \ _ a _ a _ r \ r \ _ _ a _ a _ r \ _ r \ _ a _ r \ _ r \ _ a _ a _ r \ _ r \ _ a _

doi \ i\r\ /\r\/\/\ r\r\ aa f\r\ i\i\ r\r\ r\r\ r\r\ r\j\ f\r\ aa aa a/\ aa a,丨：
d02 N ^WXAAAAA /̂AA/̂ /WVN ^̂ VWN A/W> ŴVN i： d04 WWWWWVA/VWWX/WWWN /Ŵ L/̂ AAAAAAAAAAAŷ ii
d05 W W W W X A A A A A / W W W X / W X A / W X A / V ^ V V A / ^ / ^ V A A A A / V A ；;
:d06 / W W W V A A / X A / V r v y V W V W W W V W W W W W W W W W V A / W W W X A / V W V A V / W W i： ,d07 r\j\f\r\/\i\r\r\r\j\r\r\r\f\j\j\r\j\r\r\r\i\r\i\/\r\r\j\/\j\i\/\f\r\j\r\f\j\r\f\f\r\f\j\j\j\i\r\j\j\r\j\r\r\/\r\f\f\j\r\r\j \ d08 A/\/WW\A/V/^VA/VWV\A/V\A/WWW\A/WWWWWW\A/WW\/\/WWWWWVW 丨； '-dlO A/NyVWWWWVVWXAAAAAAAAAAAA/WWVWWW^^A/VA/WWNL/VWWWWWW 1
"dll 丨 'di2 f\r\/\r\r\r\f\j\r\r\j\r\r\r\r\j\j\j\r\j\j\j\j\r\r\r\r\f\j\j\r\j\i\r\nj\r\r\j\r\j\r\r\j\j\j\r\f\i\r\r\r\j\r\j\f\j\r\j\f\/\r \ ‘di3 i\r\j\r\f\nj\{\r\r\r\j\r\r\j\j\i\r\r\i\i\r\r\r\j\r\r\r\r\r\i\f\j\r\r\j\j\j\r\f\j\j\r\j\r\j\i\r\j\r\j\r\j\r\j\r\j\r\j\r\j\f \
in.rq fflJ_B_UJUUUyjJ-IIJIUIlJI JJJJJ-iJJJÎ ^̂
done ~ \ U ~ \ J ~ \ J ~ \ 1 ~ V ^ T W ^ ^ ^ A / “ ~ ；

dooo r\i\r\f\i\j\f\r\ / w v w w n r\r\j\f\j\j\i\r\ f\j\r\f\\
doOl A/NL/XAA/VVVVVVVVVVN AA/WWWVX/VX i:
,do02 r\j\r\r\r\i\r\r\j\j\r\j\j\j\j\r\i\j\j\j\j\j\r\j\r\r\r\iK \
‘do03 A A A A A A A/\ /\/\ r\/\ /\ /\ A l\r\ A A /\A A A A A A A/\ A A ；
‘DO04 R_R\R_R\ R_R\R_R\ R_R\R_A A A A A A A/\ A A A/\ A A A i：

do06 i：
do07 ：；
.do08
do09 ：：
dolO
doll :
dol2 ：：
dol3 丨
dol4 ；： outrq /^/N/syVWVA/VWWWWWWWWWVAA/V/^VA/WVWW^AAAA/WWWVA/WWWX ckin / ^ V W W W W W W X A y V X / W W W W W W X / ^ / W W W W W W W X / W W W W W W W

20.0Qki9
i System] Stop S^temj

Page 156

^iuai^S db)s lujBisAsijre^

、-、？、•、丄、、〈:•、、•丄、、、、u.l l-：. 、\i、';、:\、丄、、:、i、、、、《义、、-、、二、： „��� ;�;s公 ii:''iLs'-'f , i

：/WWWWWWWWWWWWXA/VWWWVWWWWVWWWWWWVWW

i WWWWWWWWXA/WVWWWWWWWWWVWWWWWWWWWW bîno

^^^^^^^^^^^ — îm̂iiîmîẑiiiiiiiiiii 打叩 i GTop 丨 ———^―—^― STOP
XTop

i otop
： 60op i 80op i LOop i ——— 90op \j\f\j\j \yvw WW WW v/wv vyvw ww— so。？ i W KTSJ \J\I \J\J \J\J W \J\J \J\I \J\J W \J\J W \J\L \J\J W Wop
丨 V~\j“\j“\j”\j~\j“\j\j~\j\j~\j\j\j\j~\j~\j~\j~\j~\j~\j~\j~\j~\j~\j~\j~\j\j~\j~\j\j — eoop
i V/WVWWWWWWWWVWWWWWV 30op
i WV\AAAAA/ WWVWWVWWW WWWW TO 叩
i VWWWVWWWWWWWX/WWV ooop

i-riirriiiiriiirnrrriiiirrinriiirrrirrm̂ ^̂
i /\/\/\/WW\/W\/WWWWW\/\/W\/WW\/W\/\/\/\/W\A/\/\/\/WWW\/WW\/WW\>^ ^TP
i /VWWVWWWWWWWVWVWWVWWWWWVWWWWWWWWV/VWV eTP ；/wwwvwwwwwwwwwwwvwwwvwwwvwwwwwwwwv" sip
丨 /vwwwvwwwwwwwwwwwwwwwwwwwwwwwvw \J tip
i yWWVVW\/WVWWWW\/WVWWW\A/WWVWWWW\A/W\/VWW\/WW\^ OTP
:/vxaaaaa/wwvwwvwwwwvwwvwwwwwwwwwwwwwww 60p
i AA/WWWWWWWWWWWWWWVWWWWWWWWWVWWWWXAAy^ 80P
i /WWVW\A/WW\/\/W\/W\/W\/\/\/\/V\/V\/\/\/\/\/W\A/\/\A/V\/\/\/VWWW\/\AA/\/W\/ tOP i /wvww\/w\/\/\/vw\/www\/www\a/wvw\a/wwwwwwwww\/\/w— sop
i WWWVWWWWWWWWWWWWWVWWXAA SOP
； wwwwwwww v\a/\aaaaaaaaaaaaaaaa/yyyy\ wp
i ~y/vw \r\j\f\j v/vw \j\r\j\j v/wv \j\r\j\j \yvw wwww v zop :/v \j\j \j\j w w \j\i \j\j \j\j \r\j \j\i w \j\i \j\j \j\i \r\j \f\r\f\fa/v \ top. ；"V~\j~\j~\j~\j~V\j\j\j~\j~\j~\j\j~\j~\j\j\j~\j\j~sj~\j~\j~\j\j~\j~\j~\j~\r\j\j~\r~\r~~\ oop；；
； ôpi；

-f •+..» •‘..•«..-‘•.,•, .•«•.+ ,‘....•..+*...,+ .• •...‘.•••< + »••...••.••…..•-..••..’••‘.•••...•-..-••.…•‘..•.^
9LZ S"00 03 i I

OSTt熙：憩：0 • T：抑鄉珍憩：

r^ - suo„do sua«as •iff

^ jfmigjgiBjQ 6u(tM|j. “ fX"：

fiuoo.03

；J � UT^�

i: biĉno：

丨 [；[[；̂^̂[；[；[̂；[[；；̂^̂̂^̂̂ZIIÎ̂ẐZZIZIZIII 竹op;:：
丨 eiop
i nop
:i ÎZÎẐIZIIZẐẐIIIZZZIIẐIÎZÎ^̂ÎIẐIZÎIZÎZIZiẐIZIIZIIIIIIIZZZIZIZIZIIII 60op
丨 800p::；
丨 LOO?

I ̂Ẑ^̂ZZIZZIIIIIIZIIZIÎÎIZZZIIIIIIZIIIIIIIIIIIZIIIZIÎIẐÎZZÎ^̂Ẑ̂ZZIZIZZZ 90op
；；;^[；[[；[[；[；;[；[；；;;[；[；;[；；;^eoop ：； 30叩.：
； ooop ；

：：-rrrrinniirrrrrrinrii-ii-ririr«-|-rnm ^ b̂-ux
：/V � VXP ： \
；/V 、 eip:； i n � stp
：� � TTP i
..^ � otp

、 60P ：：/V � 80P
� iop

/v ^ 90p
/WVWWWWWWWWWWWWVWVW ^ SOP
/WWWWWWWWV ^̂^̂^̂^̂^̂^ WWXAAAAAAA/WW v 时p、
/\/ww v/wv syvw \j\f\j\j \j\r\f\j \j\r\j\i v/wv \f\j\f\i ^ 30"P 经 /VW \J\J \J\1 \J\I \J\l \J\1 \J\J \J\J \J\J \J\i \J\J \J\J \f\J \J\I \J\J \f\j V XOP-
~W~\J~\J\J~\J\J~\J“\J~\J\J~\J~\J~\J~\J\J\J\J\J\J\J~\J~\J\J\J\J~\J~\J\J\J~\J~\J~\J V OOP 衫

f JOJJ3

* ' • •丨 • •..��•«�‘*•«�，’••, •……�X•…….、，• ，、，•……，，•………•………0
0 BUOO 0Z t I
0溫丨:丨丨opuoTnb«s 0 .. 邀。 ..

- -—二r-:< —.….-‘�
dpoul uoiivuddo XDGI fo siuuqfdAVj^

xipu^ddy

g

？

t
n

I?

^
g

-
^

3
e
n

o
d

<
9

:0
>

p
e

rl
o

d
<

9
:2

>

^

m

？

dou
K9

:0>
 M

~a
^^

^M
^H

 jot
o<7

:0>
 q<

7:05

S
R

^

M

a

S

？
{•

/
|

X
Co
mA
er

La
tc
h

，

__
^^
__

经

gi

[R
in
g"

J

.
 ,

，

>C,
.
„

I
ope
rat
ion

g
q

t
 O
sc
il
la
to
r

.
j

I
I

>3

%
\
丄

J

I
p

“
•

r
、

c

ir
c

u
it

.

^
^

V
^

^
A

I

II
牙

«

T
？
 I

1
3

。

r
—

L
_

^
？

§
Co
mp
ar
at
or

JJ

Oi

S
I

5-

e
n
o

b
lt

—

•
1

^
^

^
r

r
^

I
'I

i
9

广

es
h_

d3

；
V

^

re
fr袖

一
 d
2

^
^

re
tre

sh
.d

l
ft

^
re

rre
sh

_c

^
^

g
.

m

:
•
。
丨

s

M

h
^

•
,v

^

^
V

fi
y

m
on

_f
lo

ot

•
，

•

m
on

_f
lo

al

T
s

d
u

m
m

y
m

on
_r

o
•

m

m
on

_r
o

t7>
s

ifi
?

广

1

n<
ftW

Lf
lo
ot

•
—

^
 n
or
m

oL
fto

ot

^
^

no
rm

oL
ro

•

^
no

rm
aL

ro

pu
U

up
_f

lo
at

—

—
•^

pu
llu

p.
flo

ot

D
if

fe
re

nt
ia

l
$e

ns
e

[
•

re
fr

es
h

pu
llu

p.
ro

•~

p
u

ll
u

p
.r

o
A

m
pl

if
ie

r
A

m
pl

if
ie

r
ril

•—

—
ri

l
te

st
.f

lo
ot

•

~
~

^
te

st
.f

lo
ot

,

一

vo
ut

.n
qd

e
.

,
^

^
rl2

 »

ri2

te
st

.r
o

~
.

—
^

te
st

.r
o

,
vo

ut
_n

od
<

—
•—

•—
,m

1
vo

ut

—
r

e
f

r
e

s
h

.
d

re
fr

es
h-

si
gn

al
«

1
—

*

i
1

vo
uL

re
 丨

—
•—

'
丨

 n2

vo
ut

.
—

•
en

ob
le

|

en
ob

le

14

do
ut

<4
i0

>
•

re
co

lib
rg

te
^n

5̂-
bi
t

^e
^^

C
o
u
n
t
e
r

\
r
e
c
o
li
b
 r
o
t
e

•
"么

5 ®

I

^
§

••

••

I
I

0
《

^
^

圣
 i

12

10

II
 v

dd
!

vd
d!

||

乏

nn
Hi

•
 v
dd
!

II

vd
dl
 •

•_
ga
dJ
_^

Ci

11
2

w
|t

ot
=5

.2
0u

 •

•
•

w
!o

t =
 5

.2
0u

S

v
d

d
!

II

1
-0

.6
0

U

^
^

1
=

0
.6

0
U

名

n
g

 =
 2

 •
bu

t_
re

f
vo

ut
_

n�
”en

g
=

 2

en
ab
le
 •

丨
*

"
"
"
^
i
A
O
u

f
^

1
=
0.
E0
U

II

2

ne
t2

9
'̂

ng
 =

 (,

••

^

^
[2
6々

V

(g

ne
t2
4

^
^
-
r
H
h
Wt
ot
t7
.6
0û

>
vo
ut
_r
ef
 ̂

O
今

^
vo
ut
_n
od
e

vo

^
1

=
0

.6
0

U

v_
re

f
ng

 —
 2

11

“

13

vo
u

t_
r^

 j
vj

|j
t_

n
o

d
e

v_
re
f

,
r

,,
 n

•
通

•
w

fe
.2

0
u

‘^
w

t
o

t
二

g
X

•

«
vi

n
—

n
od

e
%

l =

 0
.6

0u

丨
=

 0
.6

0u

^

11
1

ne
t 1

4"
 n

g
=

 2

ng
 =

 2
 "

ne
t 1

4
ne
t5
%J
 •

vH
Hi

II

f
“w

to
t

=
 3

.8
0u

 '

^
1

=
0

.6
0

U

[6

ne
t5

9T
 n

g=
1

n
et

1^

,̂
 T

en

nh
la

i
•_

nn
d.

ne
t5
9i

•
•
wV
ot
+2
.6
0u

r^

」
，
，

、
丨
=
0.
e0
u

go
dL

B
—

—
•_

yr
ir

ji
_

an

d!

ng
 =

 1

^

w
to

t =
 3

.8
0u

^

^

^

丨
=
0.
60
u

gn
d!

 T
 n

g=
1

^̂

i
r

1
丁

I

丁

攀
書

T
”

T
I

I
“

^
一

丨

r
^

！
^

O
.

-
g

n
e

m
f
i

n
e

ti
e

h

d
.f
f2

到
'

L
-

F
”

L
f

12

丨
 3

11
1

11
3

、

v
.
d
i
f
f
i

^
o
u
t
1

v
_
d
i
f
^

|
|
^
o
u
t
2

-
•
l
l
^
f
e
隱

i
^
s
t
r
f
s
H
h
^
'

叫

E

f
e

.
他

—
1

‘

‘
、

l
=
0
.
6
0
u

T
N
0
.
6
0
U

i
"
"
I

f
=
0
.
6
0
u

I:
 =

0
.
6
0
y

p
f
"

一
。

v
_
n
o
d
C
T

n
g
=
4

n
g
=
4

v
.
n
o
d
e
l

v
_
n
o
d
^

n
g
=
4

n
g
=
4

^
_
n
o
a
e
2

v.n
od

elY

I
v_n

od
e2

 ̂

^

14

I
m

f

T

^

e
 la

b
le

Q
1

n
o
d
e
l

|
L
n
o
d
e
2

〜

n
g
：

 1
 ‘

'
g
n
d
l

n
g
=
j
1

T
g
n
d
l

“
vd

d 一
丨
、

I

丨
丨

n
e
t
,
L
l
^
'
f
"

v
o
u
t
2
T

n
g
=
1

I
‘
‘

fl
3
6

I
vo

ut̂

vo
ut̂

vou

U
b-

J
_a

nd
!
•—

ILe
—

nn
d!

•n

ot

= T
4a

r̂
ot=

 1.40
U

I
"-
fc
 I
:
0
.
6
0
L
、

I
:

0
.
6
0
U

gn
d!

n

1
=

1
^n

dl
^

n
|=

1

vou
t1

i
'十

 î
dd

!
,,
咖

t2
__

^v

ou
t2

1=

0.
ea

u

n
n
3
l
T
p
ti
 •
飞0

I

f
咖
：
：
找
Ĵ

n
g
=
1

T
v
o
u
t
l

l32
-f

W
f

“

t =
 0,6

0u
 rf

-"
 l =

 0.6C
u

g-"

T

T

P
4
r

-
”
魂
^

厂

1

1

 -

I

I

I

1

1

I

h
i

I

I

I

I

 l

U

 M̂
ŷM̂

』’

t

t

t

t

t

1

L
掛
『
彳
1

i

^ 一I

L
掛
『
丨
」

J
。
掛
u
，
丨

 』
5

^

_

h
T

L
I

 一
二

T

 二

一

T
、
一

 t
 飞

T

r

存
M̂
r̂

Î

 i
p

 j
p

f
l
^
M
H

阶

1

1

1

卜

1

1

•z

c

s

o

呢

•n

•
加

I

^

.

 ̂w

c

^

•

•

•H
 Z
I
P

t

 =
&
u

1
:
丨

 x-
d
d
n
s

1
.

:
:
6
u
 I
,

 I
X
I
d
d
n
s

 t
=
E
>
u
「
x
l
d
d
n
s

r

^

 n
0

幻
.
以
=
1

^
 n
0
9
.
0

=

l

^
 "
0
9
.
v
t
o
』
s

•

•

3

0

山

I

L

^

I

I

o
d
 i
p
c
t
i
"

•

•

-̂t-

—
1

i
d
u

^

 ip̂

l̂r—
•

T
a
u

,

f
r

卜

 L
I

 9
U

「

q
L
I

I

1

m

_

!

!

e

^

卜

c

 ̂n
0
9
.
3

=
)
〇
『
实
•

L

3
0
山

d

=)
)
；
l
M

I

n
0
g
.
3

= p
j
M

L

I

,
 —

J
d
a
^

n

对
，

i
p
i
u
B
—
1

i
p
b
f
j
—
•

fl_
 i
p
b
6

—
•

n

n
6

f
c
L

^

^

 n
o
2
g

6
1

S
I

丄

^

7

I

1
4
1

^

1

c

！
!

 _——

I

c

1

O

w

•

E

^

 ̂l
=
6
u

卜
)
n
o
 l
=
E
>
u

 j
j
^
n
s
u

6

^
 n
®

 山
.
0

=

1 二
0

 山
.
0

=

1 二

 0
^
.
0

=

1
C,

 2
0

^
 n
g

=
 :
l

〇
}
M

I

n
g
H
W
I

I

n
g
"
】
o
)
M

I

I

-
 ⑴
」

1
6
,
「

^
 i
p
p
z
:

—
•

i
P
P
A
—
•

•

一

r
i
q

 i
p
p
T
^

—
•

)

d
 o
o

「

^

t
^
 *
L

 I
I
 O
J

f
j
^
?

恐

I
?

恐

I
P
C

^

,

^
！
^
,

^

9
1

h

o
 寸
一

》

S
_
L
«

^

c

！
!

^
 "
H

 -
m

n

A

h

o

I

c

4

-^

以

1
“
&
U

•
•
寸
2
3
c
 -
【
0
n
3
c

二

I

o

 n
g
N

U

I

。
g
=
』
。
i

I
 n
g

= p
)
M

^
 i
p
t
j
A

—
•

•

U
H
P

i
f
J
^
A
—
•

1

ĉ
-c
 i
p
t
T
T
^

—
•

•

J
.
J

^
 ̂l
l
p
k
-
d
d
n
s

 l
^
/
^
l
d
d
n
s

 l
^
x
l
d
d
n
s

 ̂

寸

 1
1

£
L
1

S

 二

•z

彻

^

1

A

r
m
l
A
 c
-
0

如

融

1

1

0

d
-
x
-
d
d
n
s

Appendix

Schematic of asynchronous bit-parallel multiplier

：9 0 ffl 0 S B B B

• ̂ f E [[^ ^ [I ^ [^ [:i dj^ij^J

] u y ijj q a jy ty^iS"

i

H H K H r f t f c t i f c ®

j |
^ ^ f f i

Page 163

Appendix

Schematics of Programmable DSP Processor

Schematic of programmable DSP processor

. -了n —：： ：

11 丨 「 : ^
— ^ ^ ^

llf • -MS-

I'-TTTTTi—Instrlnput Interface &:

• •"柳 =;=::三：三 Mf p「og「。mAr「。yS「1_24
：= ： ： '•？ffl•；

1 , iiiiiiiiliiiiiiiiiiiiiiiiiliiil
|l AffftV . I ——I . - — - - ~ ； ̂

IL ：細.， .II'
_ , In/Out & Switch Array “

‘ ._. I' — ： = ：- ：： ::::= t
‘ = =；；：；— 丨| — -Hi

丨丨丨 —==E ；̂ ：= = r
18

Cko — 礼 myltlA _

/ e cmpito —.cmplLmuttiA _
/ M ： _ n mult A < 8 : 0 >

[�<8:0> • J
lA J

I - ... ck-niultiP 寸 . y /

一…cmplUmuHiP ._ cm帅 § & /
I ou、_ltfP<8:a^ p<8:0y 二丨 \

… i n mul l iB<8:0>

I b<8:0> • ,J
^s. em III, ^cmplt_inultfB _ |

。：b Zsk-multiB 二 」

iTFI
M

Cko ~ c k _ < j c K J e r A J

/ « c—to 一. . cmplL9dderA

r o<8:0> 画 in_adderA<B:0> Z J

s. .
[- . _ c k , q d c j q r g _ ^ /
L _ • _cmplUq<30QrS cmplt， Z

out adderS<8̂ \
Q \
Q �
<

in Q d d e r B < 8 - 0 >

I b<8:0> • ,
cmpitd — gmplLo 州 rg 1

ckb 礼 柳 grB I I

rrr|

V Ck_5ubA j

Z s 一二，S叫 y。 1
/ n s u b A < 8 - 0 >
1 o<8:0> — ,

• ~ M S — — ㈨ I /
mpit-鄉;i__一 .S /

out„sub5<a-.0> • \

b < 8 : 0 > •遍8:0>

c,„pi„ <;mplt.3ubg
如 £k-SubS

Page 164

Appendix

Schematic of switch network

A A A A A A A A

• S . t g S s X s -Eg? i E® a? 5 CJ?
01 iU m 0 ih in Of
i - - • . - S j s s ; s S s s s fs s if s ti

j"' ""I ""I

^HH] piHifi p ™ h ™
— O r T o S r 9 _ 9 r * ~ DrToSr9_9 | ~ “ ~ 咖》DrToSr9一9 | ~ DrToSr9_9 ^ £ £ £ A A A A A A A A A A A

^ 2 S ^SS I I 2 2 3 S SS S3 SS

iLjlj^ lU j j^
J l J l I j i j i i h i i j l i ； 11 ill

I jii u Us u rftti-rtts iis u ?̂ 5

Hi If" m m m m

Il H 11 II 11 11 11 II
— s w i t c h — s w i t c h — —' sw i tch '"« swi tch

A A A A 1 A ^ A A A A ?众公 AA A A ^ £ A A A A A " S 众众
hU ill . nn iu - ill iU . iii m i llln fin III i llnltlnffl i f|nHfnlt ^ Ifln Ifnll

I f I ¥ I I I f f
V；-； RTn fUTi s-；-： : RsTn t；-： ^̂^ nrn
J 5 gJ 0' j V l J J J J J J S S J = = = = =' S -l s B P S I ：
' ' ' ' ' ' I j i l S S J Srlolr l I j S S i i i SrT-1,1 } H i S r l i v l J

Ill \ u f . u l \ Iff 5

W W 妮 • J — - 4 2 = ^
111 111

且 l i t i l l i l l ^ ilijit ^ i i : _ _
‘；A A CN A A 二 A A | | P * A A
•ISS^-JSS 12s ISS - m 122 ^ i s i '-LI "LX "tx S v̂ Svv Sv V 二 I： 2 2 二二 二二 2 2 二二 2 2

a 11 88 II 33 11 33 II
— s w i t c h — swi tch — swi tch — s w i t c h

ill _ pi =11 ill ill pi ill pi i ；iln tin III i H n I n̂ tll ‘ | n I n f 11 j II n I n f 1
“ “ jiL SS i t M if 1 1 I L

“ 3 5.T0II I ^ i i i I ^ H S 丄 , 罢 S享 ^ r i l I ^

m 1 iH 1 m s w .
w 妮— w

M A "S " A to A f~ 人

I f f F 二 二 ： 二 二 m = _ 1 " i

_- '4 [p 目 H 至 • 彳 丨 ”丨 一

�li^l! rii^il! 1 rpi^i ipi^i
== as3 i i aa =5 aa == a a

3 3 8 S IB 8 S 君 S S 8 MS i 2

— s w i t c h — s w i t c h —«> swi tch — s w i t c h
=ii .SS III =51 pi .is _

i lln I n til i lln I n rl j fl n I n t11 j tin In 11

III III 麗 III
^iiUjfiUj；；! 1 £ 1 u 1 i, u I i i

"H ni Ml M n^ hi ni m ni ni
‘~ SrToDr9_9_3 ^ ~ SrToDr9_9_3 ^ ~ SrToOr^_9_3 ^ ~ 5rToDrg_9_3

=5 5 9 9 S q 2 8 i i S 9 3 S 3 2 S z = S s»S 2 2 S = = 2 g 3 3 o 5 S

I i i U i m j - l i i f _ l l n i X i J l i i l S jllnH^n I 1 4 lUn Usn U
411 以 以 ill ill ill ^ ill ill ill il

m 111 111 m III ！It ！!i ！P ！p ！!l !p
、！ 'il ”】 ：錢

• • 5 m m * " " S • 『 *
Page 165

-
r
^

g
t

P
_
_
—
—

p
—
—
I

玲

ar
ko

ut
.c
o<

l ̂

ck
ou

t
J

ck
in
 —

•
S

：̂

g

H
ha

nd
rc
elll

 [-
‘

H
 ha

nO
od

~

^
co

dp

 r
r

n
d<

=c
p<

a>

r
n

^
^

‘‘

de
cp

<3
>'

"d

p
;

�

I
 ！

二
P】

-O

M

；
;

—
<iE

r：
 二

>

r
t

^

—
二

§

•
a

L
decp

<5̂
e>

In2p

<0>
_

^
c
o
d
p
<
2
:
0
>

^
H

M
l

V
^

^
~

•
c
o
d
p
<
2
:
0
>

o
d
e
c
p
<
5
:
0
>

^^
^m

^m

I
i
n
2
n
<
0
>

“
~

d
o
l
o
2
p
0

c
o
d
n
<
2
:
0
>

c
o
d
n
<
2
:
0
>

“
<
J
o
t
o
2
n
0

：̂

p

a
c
k
o
u
t
i

^
•

~
c
k
o
u
t

S
ck

in

~

•

J
u

n
d

^
a

la
l

H
d
c
c
p
<
0
>

,
„

~

‘‘

d«
cp

<2̂

c。
dp二

；
！

d»

cp
<4
>；

二

P
�

‘
‘

i
n
1
p
<
0
>
'

«
>
d
p
4

i
n
1
n
<
0
>
'

d
a
t
o
1
p
<
0
>

j

•
~

d
a
l
o
1
n
<
0
>

I
 I

•
c
k
o
u
t

I
c
k
i
n

•
^

oc
ki
-n
l

^
|J
0

1
•h

a
n
d
rc

e
U

l
H

<i

二
$

CO
..

^
r

I
^

c
S

—
I

:
二

二
二

二
：

二
^
!
^
二

X

p
-

i
Z

_
_

^

P

>

do
.o

,p
<a

:e
>

P
l>

u
ff
_
c
e
丨
丨

9

H

；
n
tp

<a
:0

>
m

d.

io
)p

<a
:a

>
do

ui
ip

<B
:0

>
m

m
m

^
^

^
^

^
^

^
^

'd
ot

ai
n<

a:
0>

；
邮
〉
如
。
必

ou

iip
<8

:0
>

i
n
1
n
<
8
:
0
>

•
H

H
M

H
^

^
•

H
^

H
^

M
d
o
t
o
1
n
<
8
:
0
>

.
o
u
t
l
n
<
B
;
0
>

•
•

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
i

n
.

n
<

a
:

0
>

o
u
t
.
n
<
B
:
e
>

^
^

^
^

^
^

^
^

^
^

^
^

^
^

^
o
u
t
1
n
<
8
;
0
>

in
2p

<8
:0

>
I

m
a^

m
tm

m

m

B
M

H
a

M
^^

^
^

do
ta

2p
<a

:0
>

I
1

J
n
2
n
<
8
:
0
>

I
I

B
^
^
^
^
B
i

_
^

d
o
l
o
2
n
<
8
:
0
>

Ifi

I

o
c
u
o
u
t
2

^
c
k
o
u
t

S
ck

in

—

•
.

|

_
I

,
I

d
e
c
p
<
1
>

』

I
^

1
！

de

cp
<3

g
�

d
p

M
B

I

^

丨

d
e
c
p
<
5
g

—

‘
‘

i
n
2
p
<
0
>
"

c
o
d
p
5

i
n
2
n
<
0
>

•
d
o
t
o
2
p
<
0
>

|
j

《
’

I

—
—

•
~

d
a
t
o
2
n
<
0
>

i

c
k
o
u
t

g
c
k
i
n

m
-
*
i
—
—
•

^
o
c
k
r
n
2

j
S

h
a

n
d

r
c

e
ll

l
H

de
cD

<7
>

c
k

•
~
I

d
o
t
o
2
p
<
0
>

|

；；

=
Z
Z
M

C。
d2

^
P

lln

-
-
d
e
c
p
<
|
>

二

X
1
8

I
c
k

I
~

'

•
y>

‘�

�
„

j
bu

ff_
cel

l9
rr

广

二

c
O
t
q
2
p
<
8
:
0
>

(
—
'

•
—

—
•

~
d
a
t
a
1
p
<
8
:
0
>

^
u
t
2
p
<
8
:
0
>

^
―

^

S
S

^
ln
_P
<a
.0
>

o
.
l
.
p
<
a
.
0
>

o
u
t
2
p
<
8
:
0
>

^
^

•
d
o
t
o
1
n
<
8
:
0
>

rv

•
^
u
t
2
n
<
8
:
0
>

ln
_n
<a
:0
>

o
u
t
_
n
<
a
:
0
>

o
u
t
2
n
<
8
-
0
>

^H
M

B
—

—
do

to
2p

<a
:0

>
I

[
^

d

o
to

2n
<

8:
0>

Appendix

Schematic of multiplexer cell used in switch cell

MP

ewM ^ cod0 ch • I 壩 ek

eodi • -•'• • t —• codi —

- I - I - • ^ 丨 •二
二二:s i • 一 - E〕
dato2|KSJ> ^ ― — — - - _ . • . 賊。 2

- • codB — • —
• • eodi T-

. og>lo«>
• • cDdS O oull —

3

- - ： ：
pv

~ codfl di •
eodi 严

. - • codS O owll •

•O

3

- - • 二 ; _
- • 一 丨 «»40 CK •

C041 严
• • " c o c U O o»iM<1>

• ^ ecM9 o euti — •
TJ
3

dotoln<l> E

- o a t a i ^ l ? . 丨 tfotol

M<a

pP

叫~ eodi —
• coda � n/ll • ‘

3

- - 迹 ^ ^ ^
•• — eodS <* •

.
T3
D

«etaln<3> E
k _ i n j r j

py
~ code <* —•—

_• — codi
'二 2 , ,

• ‘ co«9 O oul(

3

- - ^ ^ 二
• ••_ code ck • ~

~ 2 _ _ oultrxjd • ‘ cotfS � outi •- — 一 — -
T3
X
3

——E!^., 二^^^

tup

eoal

i ^ . 一-。,言 — ^ 一

- • codi ^

— ~ 二 2 . o»nn<4>
• codS O owl) •• • -

3
do(atn<4) E

-«tou>a>HU， 叙I。：
dalo2

— ek •—

"O
X
3

~ code <* ~ • —
. eodi —
-?— 3 , _ . ownn<5?
_ codS O chHI • _

"S

D

——irz^

MP
code <*

, • cosi

二 二 5 .. -
• «o«9 O owll •—

X
M(0lp<5> . E

- - ： i r r ^
CMS eh ~
cotfl ”
eo^ 5 _ ouKrKO

• codS � owl I • • ‘ -
•o
3

- g g j ^ — E
OTP

-m coca cfe ~ • —
- • ~ tMl

: 二 二
X

ctKfl ek m—
-m codi —
- *— 5 «,11.X7» • CMB � WftI 攀 •D

_ 二 •广 r — 他 1 ̂ ： ^ ^

117

CMS Ck m—
- • eodi 产

3 , _
-m eodB O oult 1 — ~ ^ •o

3

I 二. —

1-_譽--coda ek I
• eotfl ^

• 二 2 _ o..t,Kf>
“ • radS o Qw<1 • •

•o I

Page 167

Appendix

Schematic FIFO memory

^ h

i ；

p.~ 一 Or'oSrt!

I j ,, I .
I !l

J 1 g 了 tt

丄》:: ffl 11
J ^ 氣 M
iHVnftffffM ~ ,

Tm TTTTTTTrnT HK CO

I)

[i^p^^ ri^fiu^ = I
V V V V V V V

U il U li
寸 寸 寸 寸

幼 bf) be bo
_ r w " .細 ^ J … .明教 ^

^ ！H ^ U
2 2 SS SS 2 2

j n I Ml i n 】.! afn̂ pJfn
£ i S I S
5： \

j m i d !

Ji n U\\\ Jj n U\l\

T ^ M | |
s i I
J • ri \

日"wdiib̂
nH ！!

— M

；flji ‘
nr-nTTT

SwU^i
J n Hi

S ！

. 3 i
pj i H

ift_n<W>

I
I k & i n li ii I . ~ rM SrTo0r4 U— rM SrToCW

I t I I t I

T ' l T
II s U I
ii! H 1

Page 168

Appendix

Schematic of Instruction Memory (instruction decoding network and cyclic FIFOs)

I -p-I—. fifoM I
I - I I- — I —

L-H^ fifo16l9b 哄雄 ,…

-• I L-o" , I ， ~~—丨 「丨」 二 fifoWl [j •

I fHoW2 I ~ -。~

丨•二 I ~ ‘ — — ^ — f — - 3 b ——^

—1 (fifoW3 丨 ^
I— r t . 1 • I I 州 . a u ^ tj •> —

I , J Mi 丨 I • • 1 — -mm a
f « i-giSSS. I zxcj—fifo24l3b ^

WjOJv I • •‘ • - • r ‘ -O-

工二 r fifow41

^ ^ I "r-H r̂ M̂ I
i ,——zgg— fifo24l3b ^

一 I ^ [fifoWS I ^

“ rn ；~rM a ,1 -r^ 1 ^ ~

^ ^ i S r i 1 丄 ： • 溶 二 =

•hT二 • fifoWe I -

^ — I ^ —
• i “ fIfo24l3b .：…

^ ~“ 广丨 I frfoW? I ^
I ；III , , I •�.丄..1 I • Ti •*»' b 一 c, �，•xw |1 , =d—̂― 5

I • • 1 i _ _ _ , rr"— f;fo24_3b •....
' . J & C S L . , — I 丨 0

.jLsiSL ntowa I "r̂ i ^̂
1 nfo24_3b 一 »

I •• , I m<M* • "

^ ^ I I p I p f JP 一 fitoW9 J • .

m ^ 1 M 1 "^jtLj 1 - ； ^ ； • ； f丨〖o24〖3b 二 ^
• , — _ , � a

.JSosl. fifoWia I "

"l_I_I I • x *> •
丨 , ^ fifo24l3b 『一

^ I fifoWII I ^
^ ^ •二 =] -pJ-i r f M ^ ~ % —

_ P _ c, I,ti^> , = i ^一 C
= ' S -‘•叫 1 ^^ flfo24-_3b »

I • I I hlHlil." • ‘“
t ^ . l I I ^

I . •叫• ^ *> _
I I —' D

I I ？=aa— fJfo24l3b

I fifoWM I ^

• I “^ ^

_ _ _ 1 IZZ ^^ fifo24_4b »

「-1 • [fifô yis I ^
* ‘ ：： “ “ “ j -J I _ _ . 广 1: - 1； � — �

： ^ I raSLH-^ fif024-13 b — y —

I fifoWis I ^

_ : r h — I ^ ^ ~
I i raait- fifo24._3b —, » i,. •

Page 169

Appendix

Schematic of cyclic FIFO

M
.5

fl

^ IN

"I
01

1
二

I 咖文CO
I

寸 b
c ^ csj is pg| I n 5 -f

sfl s ~ —f—"n

- 会 Pi
j T l r \ H r r L

rwri -J CO " CO ® "J •

iLnJ sUy Iĵ nll

i [1 T
s

W J A A tM "tJ
1 I i

[tyn m m
s,： r

sLjt|I §Lj-l|J 气
I I
• • 寸

eu)

I r CH
If 丁

ta
I

^ CO
I

寸
CV2
如 0； U A

寸。Is
CN < n « ^

—— I

i . H ^

n • j- M J n "i I

(4 * il

“ tl

Page 170

Appendix

Schematic of Product Full Adder (PFA) in multiplier core
a c c I

oo^^ acLo ô v̂S-c- W

TTTTTTTTTTTT
I 112 11J

cKout̂ Lkout g c k i n l ~ • m =
• hk c: — ~

I I • a_p
< I • o .n

1 , • ~ p_p

, I • p_n

；:。b-P c:t88.1f
II • fob_n

II • fpc_p

,h- • fpc.n
c:i，5. if I 1

SHIFT_A

ck m~i I

p Sh i f t h —讲 .
I ‘ • — — i n _ p o u L p ——•—— ^ ao_p

II • m_n out_n • ^ oo_n

SHIFT_B
0=7.66,

ck »H I

pH Shift 口
.1 in_p out_p ~ •~ ~ » b。_p

II • In_n out_n ——• ^ ^ ^ bo_n

MH
“ 胃[P ^ H I

一 ⑶ c；
II • — — f a b _ p p_p ——• ^ po_p

(I • fab_n

I 卜 • fpc_p

浙 11 • ~ fpc_n
I J c:257f

c : M 7 . . PN

— : = 二 ：： ““卜 P Ck ~ - H I

,一 a@B r
c.… • _ fob_p p.n ~ • i^po.n

I • fob_n

I I • fpc_p
I I • fpc_n

C A R R Y _ P
ck m~i \

• carry [I
I I • ~ a_p carry ——•——si£2J2£ ^co_p ,

II “ ~ b-P

11 o c_p
1 • p-p

C A R R Y . N

ck n 丨

• carry L
a_n corry) ~ • iiS&22f ^ co_n

,I • — — b _ n

I I • c_n
t I • p_n

c:9 4-.67< I I
c: 100.71

FAB P

Ck m-i I

• A.B C
I a_p fab_p • ⑶‘押 f o b o . p

一;Hf̂ —î：! I
F A B _ N

ck m-i I
J A+B [Z
a_p fob.n ——• … f̂ob。_n
o_n

I •——b_p
i • b_n

F P C , P

〜 ：-jP ^
“ " p " A@B r

I •——C_p fpc_p ——•—— ^ fpco_p
I I • c_n

I I ” P_P

I I • p_n

F P C . N

I I : -H|-p c；.̂—J

"p" A ^ r
I • ~ c . p f pc .n ——•—— ^ f pco .n

L • c _ n
• p_p

I • p_n

Page 171

Appendix

Schematic of handshake cell hM (calling h4in) used in FPA
-I—' (D 00 0) L

T
II

10

o u t ^ B ckout i ckin • ^ cl.In
0)

p h 4 1 n r
� _ p • — � _ p

� 一n ^ • a_n

P-P ^ “ b_p

p_n ^ • b—n
f � b — p ^ • c _ p

fab—n • c_n

fpc—p “ p—p

fpc_n • p_n

Schematic of the handshake cell h4in(called by hM)

"oj

Y

vdd

vdd vdd

ddi. I

1 — — W P I l I .̂P I

"-fc i=0.6u ^dd! ^tlril
= 3 vdd! r iL- n0 vdd! B| , rkin « _ m ckin

Upwa wtot=10u " i r T wtot = 5u " 1 “ ” ^
1 n6 l = 0.6u ^ I-0.6U f

！11 . . . • n5 -9=2 I n5| — : n0
v.tot=i"0u • J r *^ T WTT “ “ m r) ^ WNL2 ^

l=0.5u 1 n5 n0 p n0
c k o u t 广 ' . l o t i s - ^ i . 。-p • . . o t A - r f l • “ n • 。 - n

qnd' • ng = 2 ‘ ‘ ng = 2 " g n d ! T _ , r * * , _ 132

丨丨 丄— b-p • ^ ^ f e . S u wto.im •] " • b_n
2 W卜 L3 ‘ MNL4 “ '~ng= 1 “ n2

C-P • " • I 石 glg2.6u ‘ » t ��I • r n 邐 c_n
1=1 ^ ‘ ng3'l' " n3

3�卜 MNL6 3

P-P • " H 6 ! ， ％ t | j | 4 j l n • P-n
n4 ^ ngi'l * nA

M̂̂： I T gno
‘ . 9 两 a J Tk)n 1

ng= 1 y gnd!

1

Page 172

=

画
>

•
-
 -

B
i
o

n
0
L
=
】
o
:
l
M

u

—
—
—
—
 —
—
—
— 。s,f
 一

,

d
 L
o
d
l
A
I

5

=

=

i

I

—
寸

1

-
f

 _

d

们

d

幻
£

d

们
5
1

1

•

•

r
i
D

？

I
C
P
P
A

？

l
u
p
p
>

？

I
L
j
p
p
>

 n
0
7
)
o
)
M

1

^

i
>
—
•
—
—
p
^
n
s
u

.
i
p
—
M

i
_
>
-

•——fl̂
-̂
c
 c
=
e
>
u

 0
f
)
9
u

7

们

 2
i
o
)
M

一
〇
)
M
 n

们
=
)
〇
】
M

^

7

^
 n

幻
.
0
„
=
-

 n
0
9
.
0
、
-

 n
0

幻
.
0

 =

 1

^

^

^

e

^

e

^

f

e

^

0

二
。

^

A
—
i
•
&
 •
丄

s
u
s
u

(
—
i
&

•
丄
 I
9
2
P
U

〈
一
i
&

•

l
^
s
c

 -
E
f
p
u

f
u

t

 n

念
.
4
=
:
i
o
)
M
 n

瑟
.
們
 =)
〇
】
M

 /
I

”

J

c

0

讼

时

.

n
l
9
.
0
1

•

n
l
9
.
0
1

^

〈
—
i
i
5

•
丄
-
r
-
D

i

S
：
 g
v
&
U
T
i
p
u
£
>

 g
£
=
e
j
u

 i
p
u
E
i

 g
l
=
&
u

 i
l

 ̂-̂
H-o-s

.
b
o

1

=

=

 1
9
.
0
、
-
,

k
 f
>
u
6

 p
u
&
 p
u
b

^

^

^

^

 s
i

r
^

^

 /
\

责
 nS
U

—̂ŝ
—•——f̂
-o

 ̂

秘
 9

 .
0
”
=
l

%

”

g

 P
I

办
 =
.

e

I

Appendix

Schematic of the shift cell (calling cll)

10

^ ^ ck

• c I I L ‘
in—p • in out • out—p

ck •

• c l l [
in_n • in out • 〇ut—n

Schematic of the buffer cell Cll (signal rail)

vdd

5u 1 0 u “

0 . 6 u m p 0 . 6 u m p 1 1

v d d ! j _ _ 0 vdd!丨•

^ - J r l J / d d ! n0 - J [, , vdd !
C k ^ " V t o t ^ S u T “ w t o t = 1 0 u

^ 1 = 0 . 6 u ^ 1 = 0 . 6 u

2.监眾〒 1 n0 ^ out
0 . 6 u T m n l i k T b u T m n m

n0> I out i

• ^ L] _ _ • • _n(T丨 J n0 1 B qnd !
i n W ^ ^ • wTot = ： .6u J w!o t = 5 . 2 u

2 . 6 1 > ^ 1 = 0 . 6 u ^ 1 = 0 . 5 u

n 1 丄 +

rik • M and! gnd
J w(ot = 2 . 6 u J _

^ ！ = 0 . 5 u \

gnd ! T n g = 1

•

gnd

V

Page 174

Appendix

Schematic of stage Product (true value) generation cell PP

vdd

I I

‘ MP MP11
I yddlj vdd! _•

c\ ^ # ck • l l vdd! n0 a- l ^ vdd!
隱 ‘ ‘ • • wtot = 5u “ wtot=10u

^ 1=0.6u ^ 1 = 0.6u
n0 ng=1 T ng = 2

MPAN1 ** ^̂ f W P -P

'ddi II 丄MNll
ck .JC, vdd! ̂ i i ,

•广 ^ wtot = ̂ iJTT5 ^ nrn nO ., • qndl
1=0264 丄 n0 “ T wrot = 5.2u

r e t 17 ' ng=1r^ ^ ^ 1 = 0.6u

丨 - P W ^ ^ 丨 — n ― 丨 丁 〒 2
^ H 0 g 6 c j l = 0 . 8 u g # ^ 1

netIT"' ngd l ••

MN2 MN3
nel17|| 丨 |net17

fob-. ^^^^ I fab-P
^ I=f0q6d l = 0.Quq#'

nic 了 n ^ ' fiet52
MN1 MN4

n1 i I p e t 5 2

fpc_p ^^^^ F̂ St'iaveĉ iiM I ^ fpc—门
^ 1= 0q6d l = 0.eug 办

n l0 •• nj j=1 ng^ l •

21 f
c I MN

n10 i
” " f w?ot̂ =5.2u

^ l=0.6u
gnd! T ng = 2

gnd

"7

Schematic of stage Product (complement value) generation cell PN

vdd

MP MPIl
vddlj vrldil

^ A rk , I ri vdd! n0 -JQ vdd! C 丨、W '' ^ “ wtot = 5u T “ wtot=10u ^ 1 = 0.6u � 1 = 0.6u
n0 T ng= 1 b_n T ng = 2

MPAN1 t T T ^ P-门
？ Ln丄關

ck I, II vdd! ^ 1 I 1 " r* •卜,wtot=̂[JTl4 • IT̂n n0 1 - and! hi l=006ii 11 n0 “ T w!ot=5.2u net57" ng=lr' ^ — , "-jL 1 = 0.6u
LP » • ‘ l-n 一丨丁 ng = 2

^ 1= 0Q6d 1 = 0.Buĝ 1 net57 * ̂ ^ nĝ ' Viet57 J

MN2 MN5
net57|| ||iet57

fob_p W • f。b-n
^ I=f0q6d 1 = 0.e uq̂

nic"咖、 n與 net20
MN1 MN4

n1 ^ e t 2 0

fpc-p » h ^ ^ fpc-n

^ I=f0g6cl 1 = 0.5uĝ
n10 “ n 钩 • � 0

f
c I MN n10 i

rk mm m and]
• T w!ot=5 .2u ^ 1 = 0.5u
gnd! • • nq=2

gnd

Page 175

Appendix

Schematic of Carry (true value) generation cell CARRY一P

vdd

MP MPII
I Vflfl^ a ydfl"!

ck » ^ P wl̂ {？isu 游 10U
ng = 1 (orryT n g = 2

<,f carry
, M P A N 3 _ 1

,,vddl (o r r ^

i _ • iri vdd!广 « • r̂ • I [• � ^ vdd! • P L. ck n0 , J C gndl

^ ^ t：微 C-P t j l f 爐 h r C-P ？4 rkl^-'"
n1 ng = 1 n1 i f ^ n g = 1 n2 g n d l " n g = 2

I) , 1 T gnd

JM “Ml 工 V

。喻严丨嚇iH�-p

p-p m ̂ ̂ 'Irafĵ " ni0
n10 • n g = 2 T

6
"-i l=0.6u

gnd! T n g - 2

Schematic of Carry (complement value) generation cell CARRY_N
vdd

M P M P M
vdd! • I I

"^Hte-
n0 T ng=1 c orry 0 9 = 2

t Z— “ ^C�r7

T 117 g MN6 I n0 M ^̂ WPAN1 gndP' ng=2"

a _ n ^ n

c-n »

^̂ M̂Nl MN2 tge …7

b-n • ^ ' E ^ S H " « P-n

n10 ‘ ‘ n g - 2 T n10 & ng -2 ‘ n10

1 — — ^
“

gnd! T ng=2

ir

Page 176

Appendix

Schematic of r^ stage Product (true value) generation cell FAB_P (A AND B)

FAB

ck • 4 1 ck

J A.B r
a—p • A 丫 • — — ^ fab_p

b—p ^ • B

Schematic of 2-input AND gate

vdd

MP MP11
v d d ^ v d d ! j

广I. ̂ A rk , I fl vdd! n0 -J L1 vdd! CK ̂ ” ^ ^ “ wtot = 5u “ “ wtot=10u 、1 = 0.6u ^ 1 = 0.6u n0 T ng=1 Y T ng = 2 _
十 • 丫

C MN1 MNI1

n0_l ^ 丫 J
A A • • vfot = i ^ u "T w?o?==5.2u 、1 = 0.6u Tl 1 = 0.6u n1 ng= 1 gnd! ng = 2

c MN2 II
m I I ？ ,

cn gnd

B W ^ M & ^ u 去
^ 1 = 0.6u

n10 ng=l
tSJ
c MN

n*|l
ck • gnd! • J w!ot = 2.6u TL 1 = 0.6U gnd! 丁 ng= 1

gnd

Page 177

p
u
&

^

i
i

 ̂

n
9
.
0

=

l ̂

斤

ŷ

e

^

 ，

L
U

^

I

1

V

n
^
 二
山
•
0
=
5
.

 。
山
，
0

=

一

^

•g

 C
I
O

j

0

e
—
q

^
 z
u
l

I

 f
\
u

w

山
N
2

们
N
2

T

 ̂N
u

H

 L
=
&
u

o
n

^

-H.̂
c

L
U

双

T
»
 n
9
.
0

= -

^

「
一
9
.
0

=
|

«
J

0
3

州

L

n

h
m
m
u
=

b
i
l
,
-

^

仍

，
p

一
p
p
\

i
p
p
>

i

1
1

>
p

厂

i
p
p
>
=

^
〒
I

门
u
 L
U

 I

1
=
&
卜

I
 L
u

 =
i
p
p
、

它

§

I

^ d—
q

f
x

I
p
t
聽
r
 j

^
 j
-
。
丄

.̂ff

j

4
1
 d
l
。

^

寸

 Ns
 Z
N
2

 L
N
2

 ̂n
9
-
0
1

^

旧

n
c
.
s
l
o
j
s
 ̂

I

&

f
^
—
q一
J

 n

c
c
 ̂

 c
l
^
o
i

o

s

^
零

n
咖
.
0

=
1

»
J

n

 幻
.
0

=
1

I

如

i
j
l
沪
L
u
 厂

•

e

0

 ̂
i

—•

0
U
 -
p
p
>

0

 I

I

 -
u

^

^
 L
i
J

I

s

刀

对

 一_—

I

押

J

Appendix

Schematic of r^ stage Product generation (true value) cell FPC P (P XOR C)

vdd

MP MPll
vddhp v d d ! i

r-L ̂ m rk , I fl vdd! n0 vdd!
^ t̂ ^ ^ “ wtot=5u “ wtoi=10u

' - b 1=0.6u "ni 1 = 0 . 6 u
n0 ng = 1 f)C_p ng = 2

MPAN1 一 * *. • ^ i r fPC-P

vdd! II S MNI1
ck J , vdd!^ 1 , r *

•卜 1 wtot = ^7TT4 ^ M T I n0 , l _ and!

^ 1 = 005 l i 丄 n0 “ wtoi = 5.2u

ne t56" ng二 一 ， • l=0.6u
L P W ^ ^ - ^ ^ o ^ t ' i a v a ^ i ^ l r * 丨-n gnd! n g = 2

% 1= 0q6d 1 = 0.6 u q ^ I I
n e t 5 6 " 療 可 n ^ ^ ' riet56 ^

f \7

_ 2 MN3 I
nets 镇 ^ e t 5 6

C-P W " " " " " H f l f g ^ ^ i l l f r S c-n

n ‘港哼d I-
M m MN4

n1 , , I f et43

P-n W I P-P
^ 1: 0g6d 1 = 0.̂ ug尔

n10 •• n j j^T n g ^ •「nlO

S

匸 MN

n10 I I

！ w?ot^=5.2u
1 = 0,6u
ng = 2

g n d

Schematic of r^ stage Product generation (complement value) cell FPC P (P XNOR

C)

vdd

MP MPll
vHdi • vHH.i —

八丨 ^ A rl： _ I r i vdd! n0 H 1 vdd!
c k 歉 • , wtot = 5u • 卜 wtot=10u

^ 1 = 0.6u ^ 1 = 0.5u
n0 T ng=1 f)C_nT ng = 2

MPANl f — l^fpc—n

c "“ wtot = 5irn4 • lT3n n0 qndi
1 = 006il 1 n0 T wtot = 5.2u

net25" n g = l r ^ ^ • • 1 = 0.6u

LP W 丨-n gnd 丨 J ng = 2

MN2 MN3
net2^ ^et25

广 • � � • - » _ i | n d ! ——•��編 C_p

l40gSd l = 0.auĝ r
n 1 ^ e t 2 8

MN1 MN4
n i l ^ e t 2 8

P-n W ^ P-P
^ NOqSd 1 = 0 . 6 ug^

n l 0 •• ^ ^

21 •
^ I MN

n l 0 ^

rk • • gnd!
” T w!ot = 5.2u

^ 1 = 0.5u
gnd! T ng = 2

Page 179

Appendix

Schematics of ID DCT/IDCT Core

Schematic of ID DCT/IDCT core

a — ‘

幽

mi

i r ^

—-幽

f

m
T H

n
-s「！ 一!「！

— m — m'

fl J f l i
I t

-s � -s

p rt-

^ 一触

WE3"

m ——

-

Page 180

a

I

s
1
5

P

-
3

 j
i
^
 S
.
I
!

 ̂M

4

a

 _

J

...

I

•

I

 j
l
i
T
I

I

 sî

Ĵ

<
8

 j

 ̂

厂

•

 <
B
H

广

J
^
P
^
S
S
I

i

 r̂
i

I

 m
i

1

^

/

「

2

 -
上

^

1

o
o

I
-

,

I
-
-

 nil̂
^̂
^

T
n
i
n
^
f
f
l
M
M
^

.

I

p
f
t
^
i
 P
T
t
M

A
3
V
S
I

c

I

 f
c
s
-
V
S
J
.
^

 ̂̂̂
J

f
a

T
^
i

 ̂
^

i
-
—
I

y
l

『

一

 8s
{
i

一

y

 崎

1

1

.
3

i
l

_

i

 ̂
n

丨

哪

r
u
T
I

 L
^
^

丨

如

M
n

.
1

^

•
比

I

^

一

^

1
r

I
P

F
^

n
一

^

；

c
o
d
_
o
o
«

Ck
ou
t

s
ck
in

-
M
-
J
-

ck
叫
I

g
—

S；
-

^
a
n
d
rc

e
lll

s
Q

^

•
ha

nc
Tc

el
l

^

.-
Ti
n

I
r

•
—

戈

—
c
o

d
2

V

ln
_
x
p
<
0
>

J
‘

，

~

10

in
 >

n<
0>

'
d
ot

ol
p

C

ln
:y

p
<0
>:

二
。

^

CX
 —

^
|
i
n
.
y
n
<
0
>
；

？

卞

令
.

—

_
I—

^
~

~

dQ
to
2n

V

j

•
Sr
To
Dr
C

,
⑷

>
C0d
.rf
 m
—
—
^
~-
4-
pi
t

•
.
ai
^T
F：

!^
^
-1

S
c
o
d

^

•—

—
d

a
ta

d
o
to

n
 ~

•
‘ ‘

n

,1

II

g

【
39

丨
 3B

p
a

13
6

13
5

^

.1

-—
I
 ck
oul
 j
dd
T^
——
fi

~
•
—
cko
ut
 這

cki
n
 —
«

1—

~ê
ĵA
î
ou
L。

：

^
H

h
a
n
d
rc

e
ll2

 H

二
ha

nc
C
ce

lU
 [

“
S

in
_x

p<
0>

广

ou

tp
p<

a>
_

[~
r

^

r\

in
_x

p<
15

:0
>

m
m

^
^

^
^

m
^

m

>

In
 x

n
<
0
5
~

o
ut

nn
<
0>

:
“

'"
"P

^

in
_x

n<
15

:0
>
 ^

^
H

B
B

M
 ^

^
M

^
^

^
H

B
M

^

“
―

—
—

•—

i二
二

^

S

t
123

n
“

—
r
i
r

^^
T-
^^

这

L
^
o
ltl

p
le

xe
rie

-
J

0

丨

eo
dj

 I
 •

 ,
 •

>
 o

ut
 丨

^

^

cM
_n

 I
 -

 (
 -

>
 0

«1

b
i^

B
H

I w

m
m

a
^^

^m
 d

oi
ai<

i5:
eb

ut
<i
5:
0>

' m
m

m
m

m
m

m
^^

m
^^

^
^

•
i

^
H

B
H

^
H

 I
 ̂

^
^
H

B
H

i
do

loy
<
 15

:0>

iz

I
r

—
I

—

•
F

p
^

r
u

I
；

h

b

u
ff

_
c

e
ll

l6
 [

f
^

^
^

^
^

^
^

-
^
u
'iu

p
le

xe
rie

-

_
^

H

H

1

•
• •

>
Mt

^^

V

B
H

^
^

^
H

I

(jo
to
x<

l5:
eb

ut
<l
5:
0>

 i
H

H
B

H
Il

B
B

IH
H

H
I^

^
^
^
^
^
^
H

I5t
0>

ou
t_n

<
 15

:0>

ou
tn
<1

5:
0>

M

do

ta
y<

l5:
0>

O
Lt
nn

<1
5:
0>

^

i

]
122

K0

In
y.
oo

 ̂

•
C

k
o

u
t

S

ck
m

 ~
•

i

S
h
a
n
d
rc

e
ll2

‘
:一

二
>
i

•
•
J

—
n

in
_y

n<
15

:0
>

)
•
~

iV
i0
_n

I

f
—
•
~

in
1_
p

‘~
~

•~
 in

1_
n

I

I

,

—

,

 ̂

J

r

咖

P
I
^
J
—
•

—

•
—
r
i
l
i
l
l
d
E
J
I
 贝

 Q
Q
I

灿
o
-
_
a
E
M
_
—
•

M

1
,
1
 .:•.

•

，

a
i
v
i
t
i

一
I
g
r
s
i
n
^
"
!

<
0
:
l
r
l
>
o
l
D
P
-
s
g
q

1
 <
0
:
y
l
>
o
l
o
p
—
l
.
p

_

6
 ̂

^

"
f
f

I

M
„

_
—
—
L
—
J
 T
P

—
細

I

v

a

I

I

•—

P
 C
!

—•

1

J

0
0

！

I
N
r
y
 n
^

^

o

w

I

1

_

j

I

I

〈
『
二

i
v
g
i
j
n
i

 I
f
o

 j
j

 u
n
l
l

—•

•

已

A
?

 V
I

 ̂
I
M
^
I
^

 v
^

 T̂
n
 ̂n

•

 ̂̂
n̂
î

八

 g
:
H
>
o
<
g
:
H
V
P

•

L
^
 J
g
a
d
n

 S
O
J

•

w

1
1
4

T

f
「
寸
g
。
、

•

J

y
g
T
a
c
^
 ̂s

^

^

^

-

N
s
^

^

V

一

 .ŷ

.̂uTMr̂
 ̂T̂

—J

 T
J

—
—
M
^

§

^

c

-

」

•/•

_

_

c

、
M

I

 I
f

•
厂

p.
 H
*

 I
M
^

 T
^

 _s

^

界

u

 S
S
W
A
 s,

L

T

/

P

I

动

L
^
—
r
l
H
I

i
i

^

_

f
—
a

 _
*
n
N
l

a

S

-

1

I

^

r
 c

Q

^
 c

Appendix

Schematic of memory pipeline stages in DCT coefficient memory

A
—由

I
「二 IS I —f

I
- 二 想

1 I —«
I
—二难

I
I .
- •

I
I

I
I
I

Page 184

r
a

二

 ̂

j

 」

1

一

 ：
1
一

 -
一

1

一 I

一
 1
一

 ：一

」

P

P

^

n
-
T
f
j
「
1

J
h
l
_
 u
i
j

 d
l
^

 J
h
^

 J
s
^

J
h
^
 -
n
j
-
r
j

 n
r
^

 l
^
-
L
J
i

6

L
r
L
|
J
 L
r
L
|
J

 L
T
L
^

 l
t
l
^

 L
n
-
^

 ljh

 npH_

 L
T
L
j
J

 L
T
L
j
J

 L
T
L
^

^
 ̂
Y
J

T

二

T

T

二

T

,
T

 二

•

s

1

e

；§

i
j
l
^
 J
L

M

T
l
-
^

^
M
M
M
M
M
^
M
n
M
M
M
^
~
~
I

J

<
5

^

p
-
p

I

^

T
I

_!

-

-

M

-

I
-

^

—
h
"
"
!

L

I

i

 I
J
^

i

L

^

L
u

厂
L

-

^

-

?

二

-

^

—-
i

—
i
-

.

^

—•—̂

—
^

^

.

I
c

•

Y
Y

J

叫

叫

J

f

q

f
l
 f
i

i
—
L

—̂—i

i

i

i
—
—
i

!

5

7

•z
 c

•z

！

^

Appendix

Schematic of modified basic FIFO cell

</dd

MP

wtA 5 f—^ cKfn
vdd I nĝ =:Z

I I

MPd ,,, ？ I petal

g "V� i ™ J
l=0,6u ^ ng=2 n0

、> • M m
• MNn d SI 12

c 丨丨n0

.ioîlL t 如 • • gundl J UaBj
I I

gnd .

net A

MM 4�
I_netB

gndJ •fikin
l-0.6y I f �

ng=1 ‘ 'gndl
I I

gnd

Layout of modified basic FIFO cell

E I Z g M M « ： 參 議 Z H

i -玲
i ^^^^^謹：：^二• J

Page 186

Appendix

Schematics of Transpose Memory

Schematic of transpose memory

i
i ^

L Switch
Z-lo-1

, i H

「;|u~| r j l ^
！" ^

, ？ 巻 , Si

门 J p "1 p :丨门;1
J J ‘ m

n i r f i i r i l mm J ! I s I I _ mm • I—» tm • • • —t-補 * « “
,f i i“f ii ui i I i If

111 VI ；11 ij

Irjil r j i r ^ ^

I_ 一 »war' I 一 IkM̂ j-m-̂ 一 � - _
I i • • j

L |1 [j ^ " t K rj^

i
!_ Co l̂joller _]_ 赠

< I
「 i 「 = !

Ln I Ln
1 I j

Page 187

I
 ̂
^

内
>
c
>
n
£
n
o

^

•

A
®
"
V
5

U
K

_
—
A
w
.
^
v
a
l

A
s
v
s
l
a
o
 s
o
^

 A
s
^
n
v
a
l
-

 ̂
B
i

•

i
c
>
s
4
 A
S
V
J
—
—
•

-
 >

l
。
o

^
 r̂.

厂

寸

二

d

a

y

」

i

•

H
M
n
H
-
~
U
1
0
J
I
^
P
D
M
0
J
—
」
M
—
9
L
〇
E

u
l
p
l
^

•
—
—
u
l
n
o
 u
u
!
|
>

 —•
 •—

C
I
 cĉ
v

 —•

c
^
l
 _L

«

r
^

^

^

1
0
1
0

—

a
j
n
i
a

t

f

P

”.—•—

a
j

I

i

—

i
x

江

袖

r—

晰

-
3
3
V

 _L

|

J

|

s

§
5
-
u

’
>
p

 _

•

o
i

•

•

J

•

_

s

-

1

I

^

-

^

•

--.-

a
s
v
e
1
»
8

•

1

I

 o
o

•—

S
J
r
B
A
l
i

—
^
m
T
I

八

对

p

p

o

p

u

 —.

1

^

-
.
i

•

J
,

I

 1
i

•

^
 I

 n
^

 I

1
 I

1

e

5
0

i
 1
1

_
—
T
^
y
o

i

I
—

 —
 !

艰

I

J

I

-

_

1

^

I

M

•—

t
:

<
.
5

 —.

-

 <
0
:
5
8

^

_

i
-

_

_

!

；

,—.—

K
l
o
l

 二

d
L
^
r
p
f
^
D
l
o
o
l
J
M
—
r
o
o
j
!
)

I
-
 I
I

I

^

o

_

s

^
 ̂̂

.

r
i
。

^

‘

^
 p
i

T

b
o

^

r
i

—
—
—

^

1

4

Appendix

Schematic of 32x15bit RAM block

1

[-i iiL=-|

I I

E t

• ~ P 丨 KhOTBt • *

【 If , f • __ I •
i| « 」

K I j J |l aiHiii | = = = n

uD-u. - B. “ ‘

m I J
I ^ $ ^ fif* i !, I . A

… I … i t if
jtu 二 giu 二 二 gjTU�cnTLF“ 名《

H i E E E E M n •
- ^ I - • ' m ffl ffl ffl m o 11 \\ < < < < < < I - ‘

ST h h "A ^ I 5 I

si • I j ‘―1 ‘―I

— ！ !i| I

二 「 』 ‘ I
r W ~ i I s lî iKĵ rKji]

J 龙 J ^ =

2 L-gm n vj _n_L

T hTT ~ r r ' ' f r T T T
J m J f J M

H ^
fr t —
i|

%
1 ？ A A

, 11

Page 189

Appendix

Schematic of monitor cell

enable ^

o. Ai - 1 | ^ r y r f . i p h r f f i r Z V I it I I

d-p^ JT^ It - J c

‘# ^ 11 I M ^

I ^ laft_done

11 11 I ^ rf̂hLdone

： ：：

m 1； I
目 m ‘

Layout of monitor cell

隱器 _ H

震__

Page 190

References

References

1] S. Hauck, "Asynchronous Design Methodologies: An Overview", Proceedings
of the IEEE, Vol. 83, No. 1, page 69 - 93, January 1995

[2] K.D. Emerson, "Asynchronous Design - an Interesting Alternative", 10出
International Conference on VLSI Design, page 315-321, January 1997

；3] N. Ahmed, T. Natatajan and K.R. Rao, "Discrete Cosine Transform", IEEE
Transaction on Communications, Vol. 23, page 90 - 33，January 1974

[4] CCITT Recommendation H.261, 1990

[5] ISO/IEC JTCI/SC29/WG10. JPEG Committee Draft CD10918, 1991

[6] ISO/IEC JTCI/SC29AVG11. M P E G Committee Draft CDll 172，1991

[7] B.G. Lee, “A New Algorithm to Compute the Discrete Cosine Transform",
IEEE Transaction on Acoustics, Speech, and Signal Processing, Vol. 32，No. 6,
page 1243 - 1245，December 1984

[8] H.S. Hou, "A Fast Recursive Algorithm for Computing the Discrete Cosine
Transform", IEEE Transaction on Acoustics, Speech, and Signal Processing,
Vol. 35, No. 10, page 1445 - 1461, October 1987

[9] C. Loeffler, A. Ligtenberg and G.S. Moschytz, "Practical Fast 1-D D C T
Algorithms with 11 Multiplications", International Conference on Acoustics,
Speech, and Signal Processing, Vol. 2, page 988 - 991, 1989

[10] I.E. Sutherland, “Micropipelines”，Communications of the A C M , Vol. 32, No.
6, page 720 - 738, June 1989

[11] J.V. Woods, P. Day，S.B. Furber, J.D. Garside, N.C. Paver and S. Temple,
"AMULETl: An Asynchronous A R M Microprocessor", IEEE Transactions on
Computers, Vol. 46, No. 4，page 385 - 398，April 1997

[12] I.E. Williams, “Analyzing and Improving the Latency and Throughput
Performance of Self-Timed Pipelines and Rings，，，Proceedings of IEEE
International Symposium on Circuits and Symstems, page 665 - 668, 1992

Page 191

References

[13] I.E. Williams and M.A. Horowitz, "A Zero-Overhead Self-Timed 160ns 54b
C M O S Divider”，IEEE Journal of Solid-State Circuits, Vol. 26，No. 11，page
1651 - 1661, November 1991

[14] M . Singh and S.M. Nowick, "High-throughput Asynchronous Pipelines for
Fine-Gain Dynamic Datapaths”，Proceedings of International Symposium on
Advanced Research in Asynchronous Circuits and Systems, page 198 - 209,
2000

[15] G. Matsubara and N. Ide, “A Low Power Zero-Overhead Self-Timed Division
and Square Root Unit Combining a Single-Rail Static Circuit with a Dual-Rail
Dynamic circuit", Proceedings of International Symposium on Advanced
Research in Asynchronous Circuits and Systems, page 198 - 209, 1997

[16] D.E. Muller and W.C. Bartkey, “A Theory of Asynchronous Circuits", Report

75, Univerity of Illionis, USA, 1956

[17] M . Renaudin, B.E. Hassan and A. Guyot, “A New Asynchronous Pipeline
Scheme: Application to the Design of a Self-Timed Ring Divider", IEEE
Journal of Solid-State Circuits, Vol. 31, No. 7，page 1001 — 1013, July 1996

[18] R.H. Krambeck, CM. Lee and H.S. Law, "High-speed Compact Circuits with
CMOS”，IEEE Journal of Solid-State Circuits, Vol. 17, page 614-619, June

1982

[19] A.J. McAuley, "Dynamic Asynchronous Logic for High-Speed C M O S
Systems", IEEE Journal of Solid-State Circuits, Vol. 27, No. 3, page 382 - 388,
March 1992

[20] C. Famsworth, D.A. Edwards and S.S. Sikand，"Utilising Dynamic Logic for
Low Power Consumption in Asynchronous Circuits”，Proceedings of
International Symposium on Advanced Research in Asynchronous Circuits and
Systems, page 186 — 194, 1994

[21] H. Yoshizawa, K. Taniguchi and K. Nakashi, "An Implementation Technique of
Dynamic C M O S Circuit Applicable to Asynchronous/Synchronous Logic",
Proceedings of IEEE International Symposium on Circuits and Systems, Vol. 2,
page 145- 148, 1998

[22] J. Ahmed and S.G. Zaky, "Asynchronous Design in Dynamic CMOS", IEEE
Canadian Conference on Electrical and Computer Engineering, Vol. 2, page 528
-531, 1997

[23] G.N. Hoyer and C. Sechen，“A Locally-Clocked Dynamic Logic Serial/Parallel
Multiplier", IEEE Custom Integrated Circuits Conference, page 481 - 484，2000

Page 192

References

[24] C.H. Erdekyi, W.R. Griffin and R.D. Kilmoyer, "Cascode Voltage Switch Logic
Design", VLSI Design, page 78 - 86, October 1984

[25] S.B. Furber and J. Liu, "Dynamic Logic in Four-Phase Micropipelines",
Proceedings of International Symposium on Advanced Research in
Asynchronous Circuits and Systems, page 11-16，1996

[26] M . Renaudin and B.E. Hassan, "The Design of Fast Asynchronous Adder
Structures and Their Implementation Using D C V S Logic”，Proceedings of IEEE
International Symposium on Circuits and Systems, Vol. 4, page 291 - 294, 1994

[27] G.A. Ruiz and M.A. Manzano, "Compact 32-bit C M O S Adder in Multiple-
Output D C V S Logic for Self-Timed Circuits", lEE Proceedings of Circuits and
Devices Systems, Vol. 147, No. 3，page 183 - 188, June 2000

28] K.M. Chu and D.L. Pulfrey, "A Comparison of C M O S Techniques; Differential
Cascode Voltage Switch Logic versus Conventional Logic’，，IEEE Journal
Solid-State circuits, Vol. 22. No. 4，page 528 - 532, August 1987

[29] C D . Nielsen, "Evaluation of Function Blocks for Asynchronous Design",
E U R O D A C 1994，page 454 — 459, September 1994

[30] T.Y. Tang, C.S. Choy, J. Butas and C.F. Chan, ‘A A L U Design using a Novel
Asynchronous Pipeline Architecture", Proceedings of IEEE International
Symposium on Circuits and Systems, Sec. V, page 361 — 364, 2000

[31] K.R. Rao and P. Yip, “ Discrete cosine Transform: Algorithms, Advantages,
Applications", Academic Press, Inc, 1990

[32] S.L Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y. Yamashita, H. Terance
and M . Yoshimoto, "A 100-MHz 2-D Discrete Cosine Transform Core
Processor", IEEE Journal of Solid-State Circuits, Vol. 27, No. 4, page 492 —
499, April 1992

[33] Y.F. Jang, J.N. Kao，J.S. Yang and P.C. Huang, "A 0.8u 100-MHz 2-D D C T
Core Processor", IEEE Transactions on Consumer Electronics, Vol. 40, No. 3,
page 703-710, August 1994

[34] T. Kuroda, T. Fujita, S. Mita, T. Nagamatsu, S. Yoshioka, K. Suzuki, F. Sano，

M . Norishima, M . Murota, M . Kako, M . Kinugawa, M . Kakumu and T. Sakurai,
"A 0.9-V, 150-MHz, 10-mW, 4mm^, 2-D Discrete Cosine Transform Core
Processor with Variable Threshold-Voltage (VT) Scheme", IEEE Journal of
Solid-State Circuits, Vol. 31, No. 11，page 1770 - 1779, November 1996

[35] K.H. Cheng, C.S. Huang and C.P. Lin, "The Desi严 and Implementation of
DCT/IDCT Chip with Novel Architecture", Proceedings of IEEE International
Symposium on Circuits and systems, Sec. IV, page 741 - 744, 2000

Page 193

References

36] N.L Cho and S.U. Lee, “Fast Algorithm and Implementation of 2-D Discrete
Cosine Transform，，，IEEE Transaction on Circuits and Systems, Vol. 38, No. 3,
page 297-305, March 1991

[37] Y.P. Lee, T.H. Chen, L.G. Chen, M.J. Chen and C.W. Ku, “A Cost-Effective
Architecture for 8x8 Two-Dimensional DCT/IDCT Using Direct Method",
IEEE Transactions on Circuits and Systems for Video Technology, Vol. 7, No.
3, page 459-467, June 1997

[38] T.S. Chang, C.S. Kung and C.W. Jen, “A Simple Processor Core Design for
DCT/IDCT", IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 10，No. 3, page 439 — 447, April 2000

39] C.L. Wang and Y.T. Chang, "Highly Parallel VLSI Architectures for the 2-D
D C T and IDCT Computations", Proceedings of T E N C O N , vol. 1, page 295 —
299，1994

[40] Y. Jeong, I. Lee, T. Yun, G. Park and K.T. Park, "A Fast Algorithm Suitable for
D C T Implementation with Integer Multiplications，，，IEEE T E N C O N — Digital
Signal Processing Applications, Vol. 2，page 784 - 787，1996

•41] J.B. Kuo and C.S. Chiang, "Charge Sharing Problems in the Dynamic Logic
Circuits: BiCMOS versus C M O S and a 1.5 V BiCMOS Dynamic Logic Circuit
Free from Charge Sharing Problems”，IEEE Transaction on Circuits and
Systems -1: Fundamental Theory and Applications, Vol. 42, No. 11，page 974 -
977，November 1995

[42] J.A. Pretorius, A.S. Shubat and C.A. Salama, "Charge Redistribution and Noise
Margins in Domino C M O S Logic", IEEE Transaction on Circuits and Systems,
Vol. 33, No. 8，page 786 — 793, August 1986

[43] L.A. Knauth, "Dynamic CMOS”， Honors Project,
http ://www. Stanford. edu/~lknauth/academic/DynCMO S .html

[44] H.J. Song, “A Self-Off-Time Detector for Reducing Standby Current of
D R A M " , IEEE Journal of Solid-State Circuits, Vol. 32, No. 10, page 1535 -
1542, October 1997

[45] J. Nyathi and J.G. Delgado-Frias, "Self-timed Refreshing Approach for
Dynamic Memories", Proceedings of ASIC Conference, page 169 - 173，1998

[46] N.R. Mahapatra, S.V. Garimella and A. Tareen, "An Empirical and Analytical
Comparison of Delay Elements and a New Delay Element Design", Proceedings
of IEEE Computer Society Workshop on VLSI, page 81-86，2000

[47] R.J. Baker, H.W. Li and D.E. Boyce, "CMOS: Circuit Design, Layout, and
Simulation", IEEE Press, 1997

Page 194

References

；48] G.M. Jacobs and R.W. Brodersen, “A Fully Asynchronous Digital Signal
Processor Using Self-Timed Circuits", IEEE Journal of Solid-State Circuits,
Vol. 25, No. 6，page 1526 - 1537, December 1990

[49] T.M.Y. Meng, R.W. Brodersen and D.G. Messerschmitt, "Asynchronous
Design for Programmable Digital Signal Processors”，IEEE Transactions on
Signal Processing, Vol. 39，No. 4，page 939 - 952, April 1991

[50] S.B. Furber, D A . Edwards and J.D. Garside, "AMULET3: a 100 MIPS
Asynchronous Embedded Processor", Proceedings of International Conference
on Computer Design, page 329 - 334, 2000

•51] S.L. Lu and C.M. Chang, “Modelling of a Self Timed Dataflow Processor in
VHDL”，Proceedings of IEEE International ASIC Conference and Exhibit, page
228-231, September 1993

[52] LS. Hwang and A.L. Fisher, “Ultra Fast Compact 32-bit C M O S Adder in
Multiple-output domino Logic”，IEEE Journal of Solid-State Circuits, Vol. 24，
page 358-369, 1989

[53] Z. Wang, G.A. Jullien, W.C. Miller, J. Wang and S.S. Bizzan, “Fast Adders
Using Enhanced Multiple-Output Domino Logic", IEEE Journal of Solid-State
Circuits, Vol. 32, No. 2, page 206 - 214, February 1997

[54] S.M. Nowick, "Design of a Low-latency Asynchronous Adder Using
Speculative Completion", Proceedings of lEE Computers and Digital
Techniques, Part E，Vol. 143, No. 3, page 301 - 307，September 1996

[55] A. Peled, and B. Liu, “A New Hardware Realization of Digital Filters”，IEEE
Transaction Acoustic, Speech, Signal Processing, Vol. 22, page 456 — 462,
December 1974

[56] "IEEE Standard Specifications for the Implementations of 8x8 Inverse Discrete
Cosine Transform", IEEE Std 1180-1990, December 1990

[57] M.E. Dean, D.L. Dill and M. Horowiz, "Self-timed Logic Using Current-
Sensing Completion Detection", Proceedings of IEEE International Conference
on Computer Design: VLSI in Computers and Processors, page 187- 191, 1991

[58] T.C. Pang, "An ICT Image Processing Chip Based on Fast Computation
Algorithm and Self-timed Circuit Technique", MPhil Thesis, Department of
Electronic Engineering, The Chinese University of Hong Kong, 1997

[59] w.Y. Sit, "Asynchronous Memory Design", MPhil Thesis, Department of
Electronic Engineering, The Chinese University of Hong Kong, 1998

Page 195

References

[60] S.F. Hsiao, W.R. Shiue and J.M. Tseng, “A Cost-Efficient and Fully Pipelinable
Architecture for DCT/IDCT", IEEE Transactions on Consumer Electronics,
Vol. 43，No. 3，page 515-525, August 1999

[61] M . Yoshida, H. Ohtomo and I. Kuroda, “A New Generation 16-bit General
Purpose Programmable DSP and Its Video Rae Application", IEEE Workshop
on VLSI Signal Processing, page. 93-101, 1993

62] I. Kuroda, "Processor Architecture Driven Algorithm optimization for Fast 2-D
DCT', IEEE Workshop on VLSI Signal Processing, Vol. VIII, page 481 - 490,
1995

[63] D. Johnson, V. Akella and B. Stoot, "Micropipelined Asynchronous Discrete
Cosine Transform (DCT/IDCT) Processor", IEEE Transactions on Very Large
Scale Integration Systems, Vol. 6，No. 4，page 731 - 740, December 1998

[64] K. Kin and J.S. Koh, “An Area Efficient D C T Architecture for MPEG-2 Video
Encoder’，，IEEE Transactions on Consumer Electronics, Vol. 45, No. 1, page 62
—67，February 1999

'65] “0.6-Micron Standard Cell Databook”，Austria Mikro Systeme International,

1997

66] C.N. Lyu and D.W. Matula, "Reducing Binary Booth Recording", Symposium
on computer Arithmetic, page 50 - 57, July 1995

[67] M . Potkonjak, M.B. Srivastava and A.P. Chandrakasan, "Multiple Constant
Multiplications: Efficient and Versatile Framework and Algorithms for
Exploring Common Subexpression Elimination", IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 15, No 2,
February 1996.

Page 196

Design Libraries - CD-ROM

Design Libraries 一 CD-ROM

The C D contains the design libraries of the Refresh Control Circuit, programmable

DSP processor, dedicated DCT/IDCT process and other necessary libraries. All the

libraries are designed in the A M S C M O S CUP 0.6u 3M1P technology using the

Cadence 4.4.1.

Page 197

Design Libraries — CD-ROM

Design Libraries 一 CD-ROM

The C D contains the design libraries of the Refresh Control Circuit, programmable

DSP processor, dedicated DCT/IDCT process and other necessary libraries. All the

libraries are designed in the A M S C M O S CUP 0.6u 3M1P technology using the

Cadence 4.4.1.

/

Page 197

CUHK L i b r a r i e s

圓 • • i l l l l l
•03TSS7ED

