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Abstract of this thesis entitled:

VLSI Implementation of Discrete Cosine Transform

Using a New Asynchronous Pipelined Architecture

Submitted by LEE Chi-wali
for the degree of Master of Philosophy in Electronic Engineering

at The Chinese University of Hong Kong in June 2001

This thesis presents two different asynchronous VLSI implementations of Discrete
Cosine Transform (DCT). Although asynchronous design has potential advantages
over the synchronous design, the handshaking overhead and the design difficulties
limit the speed performance of asynchronous design. In order to break through the
barrier, a new asynchronous pipelined architecture is described in this thesis. It
relaxes the handshaking protocol and has a simpler architecture, the performance of
asynchronous design is improved. Since the new architecture employs dynamic
logic, a new technique called Refresh Control Circuit is also introduced to reduce the

performance degradation associated with the traditional technique.

The first DCT implementation is realized in a programmable DSP processor. This
programmable processor makes use of asynchronous pipeline, dataflow architecture
and parallelism, a reasonable but encouraging result of 22Mpixel/sec in DCT

operation is obtained with a limited number of arithmetic units.



The second DCT implementation is performed on a dedicated 2D DCT/IDCT
processor. It is a fully pipelined design and can operate at 76Mpixel/sec for 2D
DCT/IDCT operation. It is capable of processing the high quality MPEG-2 and
baseband HDTYV signal in real-time, and is competitive to other synchronous designs

even less arithmetic units are included in this processor.

The results of the two implementations demonstrate the high performance of the new
asynchronous pipelined architecture and the advantages of the asynchronous

technique in system design. It also encourages further development in asynchronous

design.
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Chapter 1 - Introduction

Chapter 1

Introduction

1.1 Synchronous Design

Synchronous design is the most popular digital circuit design technique today in the
VLSI world. In a synchronous circuit, global clock is used to synchronize and
trigger all the operations. As the technology of VLSI grows towards higher speed,
smaller feature size and larger chip size, the performance of synchronous circuit is

limited due to its global clock approach.

The main reason of the limitation is the clock skew problem [1][2]. Clock skew is
the difference in the arrival time of clock signal at different parts of the circuit. As
the chip size gets larger, it is difficult to manage the global clock signal to arrive at
different parts of the design at the same time. Also, as the clock speed becomes
higher, the global clock period becomes shorter and thus the transition time needs to
be shorter comparing with the clock period. However, the transition time can only
be reduced to a limited extent. As a result, the operating speed is forced to slow

down so as to accommodate the problem.

In addition, frequency of the global clock is also restricted by the slowest part of the

whole design. The period between two consecutive active clock edges must be long
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Chapter | - Introduction
enough for all computations to be completed before latching the result. As a result,

the clock period is determined by the slowest stage such that every stage is given

enough time to fully process a data, thus yielding a worst-case performance.

It is believed that by eliminating the restrictions, a design can reach a higher level of

performance, and this is the motivation of the development of asynchronous circuit.

1.2 Asynchronous Design

The main difference between the synchronous and asynchronous design is the use of
the global clock and the local handshake signals. In asynchronous design, operations
on a functional unit are controlled by the communications between neighbouring
units. When there is an event occurred on the communication wire, an operation will

be started or stopped by the triggering of the event.

Since the global clock signal is removed, there is no clock skew problem existed in
the asynchronous design. Also, without the restriction of the global clock signal,
different parts in an asynchronous circuit can operate at their own intrinsic speeds
and thus the average-case performance can be achieved rather than worst-case
performance in the synchronous circuit. Therefore, the problems of the synchronous
design can be eliminated and higher speed can be achieved in asynchronous design.
In addition, asynchronous design offers other potential advantages such as low power
consumption, automatic adoption to physical properties, high modularity and less

electromagnetic emission, these make the asynchronous design attractive.
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Chapter 1 - Introduction

Despite of all the potential advantages motivating the development of asynchronous
circuit, it has yet to achieve widespread use. This is because asynchronous circuit

suffers from several problems as well.

The major problem of the asynchronous circuit is hazards [1]. In the synchronous
design, hazards can be easily removed by adding more registers or slowering the
clock rate. However, designers of the asynchronous circuit must remove all hazards
to prevent incorrect operation. At the same time, there are little supports from CAD
tools, design automation and optimization of the asynchronous design has still not
been fully achieved. As a result, extra attention and extensive simulations are

required and thus the development cost is increased.

Furthermore, an additional handshake circuitry is required in asynchronous design in
order to handle the communication signals. This circuitry is usually complex and
leads to a larger area in asynchronous design. Also asynchronous circuit generally
requires extra time for handshaking protocol and thus an operation requires more
time to be completed due to the communication overhead. As a result, the expected
average-case performance is not fully realized. These two reasons cause an

asynchronous circuit running at a speed even slower than the synchronous circuit.

Due to the maturity in synchronous design methodologies and the difficulties of

asynchronous design as mentioned above, designers still prefer synchronous design

in most of their system development today.
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Chapter | - Introduction

1.3 Discrete Cosine Transform

The Discrete Cosine Transform (DCT), proposed by Ahmed et. al. in 1974 [3], and
its inverse (IDCT) have become an important tool for image and video signal
processing applications due to their adoption in standards such as CCITT H.261 [4
for video telephony and teleconference, JPEG (Joint Photographic Experts Group)
:5]for colored still image transmission and MPEG (Moving Picture Experts Group)
[6] for moving pictures on the storage media. The advantages of DCT are that its
performance closes to the optimal Karhunen-Loeve transform (KTL) for highly

correlated signals and the existence of the fast algorithms [7][8] [9] which reduce the

number of operations.

The role of DCT is providing a data compression on the picture while a reasonable
quality can still be maintained. It helps to reduce memory size and transmission
bandwidth in the image and video applications. DCT basically involve additions and

multiplications. The operation of ID N-point DCT and IDCT can be described by

following equations,

N 1, 0 S (2i + )n;r
DCT : YA = —¢(n)2"X.COS- -Equation 1.1
2 i=0 2N
I fi [y 2/ + I>;r
IDCT : X. = —2" ¢(n)Y" cos -Equation 1.2

where i,n=0,1 > ’'N-1
c(0) =l/y[2=l foriitO

In recent year, the increasing demand of high image and video quality signal, such as
MPEG-2 and High Definition Television (HDTV), requires higher and higher

computation in signal processing. To meet with the real-time computation
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Chapter 1 - Introduction

requirement, a processor which rapidly computes DCT has become a key component

in image compression VLSI.

1.4 Motivation

up to now, most of the past asynchronous circuits are not good in performance in
terms of speed. Together with the difficulties discussed in the previous section, it
discourages the development of asynchronous design. However, there are methods
exist so that full performance potential of the asynchronous design can be realized.
The worse speed performance of the asynchronous circuit is mainly due to the
complicated handshaking circuitry and slow communication protocol. It is believed
that by developing a new asynchronous architecture having simpler handshaking
circuitry, more aggressive handshaking protocol and together with a careful circuit
arrangement, the hazard can be removed and a competitive asynchronous design can

be obtained. This is the motivation of this project.

DCT is chosen for the realization of a new asynchronous architecture. This is
because digital signal processing (DSP) algorithm is suitable to be implemented by
asynchronous technique as the process is data-dependent that fits the style of the
asynchronous design. Among various DSP algorithms, DCT is a widely used
algorithm in many image and video applications and high throughput is required. It
helps to demonstrate the practicality of the new asynchronous architecture and the

fulfillment of the requirement of image and video applications today.
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1.5 Organization of the Thesis

This thesis is organized into eight chapters. The first chapter describes the
background of the asynchronous design, Discrete Cosine Transform, and the
motivation of this project. The second chapter introduces the basic operation and
past methodologies in the asynchronous circuit design, and the new asynchronous
pipelined architecture is presented at the end of this chapter. In chapter 3, various
methods and algorithms of DCT implementation and two different approaches of the
asynchronous implementation of DCT processor are described. Since dynamic logic
is employed in the new asynchronous pipelined architecture, a new technique of
operating dynamic logic in low frequency is presented in chapter 4. Chapter 5
describes the detailed architecture of the programmable DSP asynchronous
processor, and the DCT implementation is given as well. Chapter 6 presents another
implementation of DCT on a dedicated DCT processor. The architecture and flow of
operations on the processor, and the design of the transpose memory are all provided.
In chapter 7, all the implementation results and performance of the designs proposed
in this thesis are given. Based on the results, the performance comparisons,
discussions and suggestions are also provided in the same chapter. Finally,

conclusion of the thesis is given in the last chapter.
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Chapter 2

Asynchronous Design Methodology

2.1 Overview

The operation of an asynchronous circuit is not based on the global clock signal,
which is used in the synchronous circuit, but on its local handshake signals. The
handshake signals are the controlling signals in the communication between the
sender and receiver. For most of asynchronous circuits, they usually make use of

similar handshaking protocol involving requests and acknowledgements.

1B knowledgement

Sender , Receiver

data nA

Figure 2.1 - Communications between sender and receiver in an asynchronous circuit

Figure 2.1 shows a basic communication interface in asynchronous circuit. This kind
of communication style is called the bundled data approach [1][10]. In this
approach, the interface between sender and receiver consists of a bundle of data
which carries information (using one wire for each bit) and two control wires. When
the data from the sender side is ready, a transition will occur on the request wire to

inform the receiver, and acknowledgement wire from the receiver to the sender
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Chapter 2 - Asynchronous Design Methodology

carries a transition when the data has been processed. Also the data will be

maintained constantly during the receiver's active phase preventing wrong operation.

There are many types of handshaking protocol and different kinds of circuit for
implementing this asynchronous communication interface. In this chapter, a brief
introduction to different handshaking protocols will be given. In addition, some of
the past designs and the micropipeline structure will be introduced. At last, the new

asynchronous architecture will be presented.

2.2 Background

dataJD < validdata~*" < validdata~~" <
st Vv / J N 1 \Y
acknowledgement A X
out /
(a)
datajD A valid data ~ < valid data * <
acknowledgement Lr/nn \ \ znrz] \
out 0 \ / \

(b)
Figure 2.2 - Timing diagram of (a)two-phase, (b)four-phase handshaking protocol

There are 2 classes of handshaking protocol, one is the two-phase and the other is the
four-phase [1][10][11] and their timing diagram is shown in Figure 2.2. Two-phase
handshaking protocol means that any transition in the handshake signal represents an
event occurred. Different from the two-phase, the four-phase handshaking protocol

is a level-triggered protocol. The occurrence of an event is represented by an active
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Chapter 2 - Asynchronous Design Methodology

level, and the return to non-active level is required after the event has been finished.
In general, the two-phase handshaking protocol has better performance than the four-
phase one as it makes use of all transitions of the signal to represent an event, it leads

to a faster communication rate.

Compared to the synchronous circuit, the request and acknowledgement signals are
additional signals. As a result an extra control circuit is required in asynchronous
design so as to handle these two signals, and usually this circuit is called handshake

control circuit or handshake cell.

A & request — Hagiee "

control / control /
S&%e XX XX [pEY Sla%e
\  Functional SN\ Ruciodl \
— Blok / Bok  —/
I (a) |
Handshake Handshake | Handshake 7] Handshake ! Handshake Handshake
Cell — Cell H Cell Cell | — " Cell Cell
| /\ /\ | /\ /\
Functional ~ : Functional ! Functional Functional Functional Functional
Block ~ B I o ¢ k | Block Block Block Block
Stage N-1 Stage N ] Stage N-1 Stage N Stage N-1 Stage N
Time=0 ] Time=1 ' Time =2

Figure 2.3 - (a) connections in asynchronous circuit, (b) operation in asynchronous circuit

Figure 2.3(a) shows the basic connection in asynchronous design using the
handshake cell. In this connection, the operations depend totally on the handshake
signals, and that can be explained with the help of Figure 2.3(b). Initially when the
operation of functional block in stage N-1 is completed, the output data will be

passed to the functional block in stage N. At the same time, the handshake cell in
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Chapter 2 - Asynchronous Design Methodology

Stage N-1 will detect the completion of computation and generate a request signal for
stage N. This request signal is used to indicate that the operation of stage N-1 is
completed, and the output data of stage N-1 is held and ready for the stage N to
process. Starting from this moment, stage N-1 needs to hold the output data until

stage N finishes the computation.

The handshake cell in stage N detects the request signal from the previous stage > and
then allows the functional block in stage N to process the data. After the
computation is completed, the handshake cell in stage N will generate two signals.
The first one is the acknowledgement signal which is used to inform stage N-1 that
the data has been processed. As a result, stage N-1 becomes idle and wait for the
data from stage N-2 for the next operation. The second signal is the request signal to

the stage N+1 for further processing of data.

This communication interface and protocol exist between all the stages and its
neighbouring stages in the asynchronous circuit. Since all the operations are
controlled by the handshake signals, the performance of the handshake cell becomes

the main factor of determining the speed of the asynchronous circuit.

2.3 Past Designs

The design of the handshake cell and the use of the handshaking protocol are
important as they determine the throughput and latency of the whole asynchronous
system.  For the handshake cell, an accurate detection of the completion of the
operation and a quick generation of the request signal are the most important issues

as they are used to guarantee the circuit operating correctly and quickly. If the
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request signal is generated before the functional block finishes its computation
process or before data is valid, hazard will occur as incorrect data will be latched by
the next stage and incorrect result will be obtained. If the request signal is generated
a long time after the end of computation, it is secure to have a correct output but the
whole circuit will be slowed down. However, to generate the request signal just in
time while maintaining simple structure is really a difficult task. By using a suitable
handshake cell, the complexity of the handshaking protocol can be reduced and thus,
the communication time can be reduced too. As a result, the speed and performance

of the whole circuit can be enhanced.

In the past decades, there were many Kkinds of handshake cell developed
[12][13][14][15]. And the most famous and commonly used one is the C-element.
C-element is firstly introduced by D.E. Muller in 1956 [16]. It is a rendezvous
element, or an event-driven element. Figure 2.4 shows the symbol and 2 different

CMOS structures of the C-element.

A C A C A-C B-cJ
—ANL B A — jr nGji
T b T b A |
c 7]\ A— B-
1 a I 1

(a) (b) (c)

Figure 2.4 - (a) symbol of C-element, (b) dynamic C-element and (c) static C-element

The operation of the C-element is that, when both inputs are the same, then the data

will be copied to the output, else the previous output will be maintained. Therefore,
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the output will only be toggled when there are events occurred at the both inputs of

the C-element.

C-element is usually incorporated in the two-phase handshaking protocol with the
bundled data approach. In applying the C-element in the asynchronous circuit, the
input A and B are served as the inputs of request or completion signal from previous
stage and acknowledgement signal from next stage. The output C has 3 functions.
The first one is to control the operation of the function block. The second one is
acted as the acknowledgement signal which is sent back to the previous stage, and
the last one is acted as the request signal sending to the next stage. A more detailed

operation of C-element in asynchronous circuit will be discussed in the next part.

2.4 Micropipeline

No matter synchronous or asynchronous design, pipeline is an important
methodology to improve the performance of a circuit or system. The principle of the
pipeline is to divide a single operation into several sub-operations, and allows them
to operate simultaneously [10]. For the asynchronous circuit, pipeline can be done
by breaking down the complex functional block into several simpler functional
blocks, and each of them is governed by a dedicated handshake cell. The widely

known pipeline methodology in asynchronous circuit is micropipeline.

Micropipeline was introduced in Ivan Sutherlands' Turing Award lecture [10:
primarily as an asynchronous alternative to synchronous elastic pipelines. From the
definition by Ivan, micropipeline means a simple form of event-driven elastic

pipeline with or without internal processing.
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The basic operation of the micropipeline can be explained by the control first-in-
first-out (FIFO) sequence structure as shown in Figure 2.5. The control FIFO
sequence is operated in two-phase handshaking protocol. Assuming that all the wires
are initially set at zero, when there is a transition in the request input, then output of
the first C-element will be changed from zero to one. This transition will be sent out
of the control sequence as an acknowledgement signal, and also will be propagated
to the input of the second C-element. Since the input is toggled, same situation will
occur in the second C-element, as well as the third C-element. As a result, the
request signal passes through all the C-elements in series, and emerges on request

out.

reg ~ aki

input output

side side
akout< i) 0 e req out

Figure 2.5 - Basic control FIFO sequence in Micropipeline structure

However, when there is another request signal coming from the request input, this
new request signal may not be emerged on the request out this time. This is because
the control FIFO sequence may still not received the acknowledgement from the
output side, as a result no transition has been made in the acknowledgement input
terminal and thus the output of the third C-element cannot be toggled. However, this
phenomenon is normal as no transition on acknowledgement input means that the
output side, or the recipient side, still has not processed the previous request, the new

request should not pass to it before the previous event is completed.
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Figure 2.6 shows the block diagram of the Sutherland's micropipeline system. The
connections are actually similar to the previous FIFO sequence, but a storage element
and a logic block are included in each stage. The storage element used is called
Capture and Pass latch (CP latch), which is an event-controlled storage element. The
inputs C and F are responsible for controlling the capture and pass function, and the
outputs Cd and Pd are just simply the delayed version of the inputs C and F
respectively. In this micropipeline structure, when there is a transition occurred in
the request input, data will be captured and stored in the CP latch. However, the
stored data will not be passed out from the output of the CP latch until there a
transition occurs at input F. If the CP latch in the next stage has captured the
previous data, the phase of acknowledgement signal will be changed and passed back
to the first CP latch. Then the first CP latch will pass the stored data to the logic
block to perform the logic operation. This operation will be repeated when the next
request signal arrives. The delay element is used to delay the arrival of the request
(capture) signal to the next stage so as to ensure the logic operation have been
completed, therefore it needs to be the worst-case delay of the corresponding logic

block.

I 1
reg in I J ! * req out
I T I
I R I I rn —
I rc | [Cd Pi
] K CP K k CP K K
Laich Lagic Lach — ~ "~ Logc
I a P I C H
I | T T
| | [
ack out (I (" "~"elay”™ L ack in
one pipeline stage

Figure 2.6 - Micropipeline with computation
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There are several benefits of using the micropipeline structure. First, the architecture
is simple and effective, it is easy to implement and a good throughput can be easily
achieved. Also, the latches moderate the flow of data through the pipeline and can
be used to filter out hazards. Thus, any logic structure can be used in the logic
blocks, including the straightforward structures used in synchronous designs. At last,
micropipeline is automatically elastic [10], data can be sent to and received from a

micropipeline at arbitrary times.

Although micropipeline is a powerful implementation strategy which elegantly
implements elastic pipelines, it delivers worst-case performance in each stage by
adding delay elements to the control path to match with the worst-case computation
time of the corresponding function block. Besides from this, the circuit of its CP
latch is rather complicated, and delays are added on the capture and pass signal to

make sure the data has been latched. Therefore the performance is degraded.

2.5 New Asynchronous Architecture

As previously discussed, although Micropipeline is a powerful arid widely used
methodology in the asynchronous circuit design, it still has some areas for

improvement.

The first improvement from the micropipeline is the use of dynamic logic, and in our
design, domino logic [18] is used. Domino logic is one of the logic types in the
dynamic logic family, and its basic structure is shown in Figure 2.7. The logical
function of the domino logic is characterized by the nMOS logic block. There are

two phases for the operation of the domino logic, one is the Precharge phase and the
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other is the Evaluation phase. When the clock signal is low, then the domino logic is
in the Precharge phase. At this moment the output must be low as a pull-up path is
connected to the floating node. When the clock signal is high, then it is in the
Evaluation phase and the output depends on the input data. If the input data creates a
pull-down path in the nMOS tree, then the floating node will be discharged and the

output will go high. Otherwise the output will be kept in low.

C
o Output
Input — "~ nMOS
Data logic block
clock

Figure 2.7 - Domino Logic

The advantage of the dynamic logic is that it has lower processing delays and more
compact in size in comparison to conventional CMOS data-paths. Due to these,
many asynchronous circuits [11][19] [20] [21] [23] [25] also adopted the dynamic logic
in their micropipeline design. However most of them have not utilized all the
functions of dynamic logic. One of the interesting properties of the dynamic logic is
its ability of temporary storage [17][19]. Dynamic Logic is actually a combination
of the logic and storage elements, the output data can be held even though the input
data have been changed under some conditions. As a result, the complex CP latch in
the micropipeline can be omitted if the dynamic logic (domino logic in our case) is
used. This implementation of dynamic logic in asynchronous circuit has been proven
by Renaudin et. al. [17], and its pipeline structure is shown in Figure 2.8. In this
architecture, the completion detection is no longer relied on the worst-case delay, it is
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done by a dedicated circuit. It monitors the output of the logic block and provides a
faster and accurate response when the output is ready. Although dynamic logic
brings benefits for the asynchronous circuit, it introduces other problems of charge
leakage and charge redistribution. These problems limit the dynamic logic to have a
minimum operating frequency from preventing the logic error. As a result, extra
attention must be paid in using dynamic logic. A further discussion on this problem

and some possible solutions will be given in chapter 4.

ack out < W y W y v ack in

req in ~ n ” ~ . req out

Completion CompletionCompletion
* Detection * Detection * Detection
elk Circuit Clk Circuit Circuit
N _ N o
Dynamic Dynamic Dynamic
Logic Logic Logic
K Block K Block U N Block [\

| data in ~ ~ data out

Figure 2.8 - Asynchronous architecture by using dynamic logic

Besides from the dynamic logic, another improvement is on the handshaking
protocol and handshake cell. Referring to the previous implementation shown in
Figure 2.8, a very restrictive handshaking protocol is used to guarantee secure
operation of the asynchronous pipeline. For a certain stage in this pipeline
architecture, a new operation, either precharge or evaluate, can only be carried out
when both the previous and next stage finished their current operation. This strict

protocol limits the performance of the handshake signal.

In the new asynchronous architecture, some improvements on the protocol have been
made. First a current stage is allowed to go into the Evaluation phase when the next

stage goes into the Precharge phase, i.e. no need to wait for the precharge
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confirmation from the Precharge phase. Second, a current stage is allowed to finish
the Precharge phase even the previous stage is still in Evaluation phase. This
introduces a flexible "Enable™ period between the Precharge and Evaluation period.

In order to carry out this new handshaking protocol, a new handshake cell is used

and it is shown in Figure 2.9(a).

\[D C O C

B 2 ~

> .V D_| : v iﬂ_l[ ’I I\[ OZ, /\l U }JAI_Il[H
N r A -1 =TT

At T 1 /1 11
JH \ | I ¢

| “'n \ [~1 |

QD B [ R

(a) (b)

Figure 2.9 - (a) new handshake cell, (b) timing diagram of a pipeline stage

The new handshake cell is also in domino style. Compared with the classical
architecture, this handshake cell is faster due to its simplicity, low input capacitance
from the request and using simple transistor in pull-up.  In this new structure, the
handshake cell and the domino logic cell will enter the Precharge phase and
Evaluation phase respectively at the same time. As a result, the handshake cell can
be seen as a logic element of the pipeline stage and the throughput of the system can
be minimized [30]. The handshake cell can be easily modified to receive more than
one request signal by connecting more nMOS transistors in series in the nMOS tree,
which is similar to the dynamic AND structure. The difference in speed will be more
significant in logically joining handshake signals as the classical C-element with

many inputs is very slow.
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One of the disadvantages of this handshake cell is the requirement of the four-phase
handshaking protocol which requires longer communication time. However, this
four-phase fits the operation of dynamic logic as the non-active phase can be used for

the precharge of the dynamic logic.

Based on the new handshake cell, the operation of this new asynchronous pipeline
architecture can be divided into 4 phases: Evaluation, Hold, Precharge and Enable.
The timing diagram is shown in Figure 2.9(b). In the Evaluation phase, the current
stage processes the data, which is valid at the input. After the current stage has
finished its process, it will enter the Hold phase. In this phase, the input data may
become invalid but the output should be held for the process in the next stage. After
that, the stage will enter the Precharge phase, and will enter the Enable phase
afterwards. In this phase, the stage is waiting for the valid data appearing at the
input. This phase can be omitted when the valid input data has already appeared
during the Precharge phase. Since all the handshake cells and logic cells should be
precharged first during the power up, a NOR gate will be used, as shown in Figure
2.9(a), in the handshake cell. In this configuration, one of NOR gate inputs connects
to the Reset signal thus that the all the cells in previous stage can be precharged

initially.

Figure 2.10 shows the connection and the flow of the pipeline operations of this new
asynchronous architecture. When data arrives, the current stage will enter the
Evaluation phase to process the data. Afterward, it will enter the Hold phase to hold
the data for the next pipeline stage to process. At this moment, it will send a request

signal to the following stage and acknowledgement signal to the previous stage.
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After the following stage has processed the data, the current stage enters the

Precharge phase.

from the previous stage.

one pipleine stage

And at last it will enter the Enable phase to wait for a new data
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Figure 2.10 - (a) new asynchronous pipeline connection, (b) flow of operations in the new
asynchronous pipeline
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The use of Differential Cascode Voltage Switch Logic (DCVSL) [24], a type of
domino logic, can also improve the speed of the circuit. Figure 2.11 shows the basic
structure of a DCVSL cell. Its operation is similar to that of the domino logic. In the
Precharge phase, both of the true and complementary outputs will be kept at low.
When in the Evaluation phase, the computation is enabled. Due to the
complementary structure of the nMOS logic blocks in DCVSL, one and only one of

the outputs will go high.

VDD VDD
3 cjQck d
true output NN ~ complementary
/\ nJ 7 13 /\put
\ \
GND GND

Figure 2.11 - Differential Cascode Voltage Switch Logic (DCVSL)

There are benefits of using DCVSL in asynchronous logic. First, it is based on the
structure of the domino logic and thus it has the benefits of domino logic, namely,
are fast computation time and storage property. Second, the DCVSL provides dual
rail coded data which provides a very reliable completion signal by simply OR-ing
both the outputs as shown in Figure 2.12. Due to these, DCVSL is an attractive way
to implement asynchronous operation functions [26] [28][29] and has been used in

many asynchronous designs [17][22] [26] [27:.
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completion signal

in+ . e out.
DCVSL
in- . — e out-
compleme|Jtary complementary
inputs outputs

Figure 2.12 - Completion signal generated from the DCVSL

Although this way to generate completion signal is very simple, one gate delay is still
added after the completion. In fact, the completion of the computation can be
detected directly without the OR gate by modifying the handshake cell. Figure
2.13(a) shows the modified CMOS structure of the new handshake cell. In this new
structure, the true and complementary outputs from the DCVSL block can be directly
connected to the handshake cell for the completion detection. As a result, the OR
gate and the request signal can be eliminated, and the completion detection matches
closely the original computation time of the DCVSL block, and thus the average case
performance can be achieved. Figure 2.13(b) shows an example of the single bit
basic FIFO cell with the modified handshake cell and Figure 2.13(c) shows the new

connection of the asynchronous pipeline by using the new handshake cell.
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Figure 2.13 - (a) modified handshake cell, (b)modified handshake cell and basic FIFO cell in

DCVSL structure, (c) connection of the asynchronous pipeline

The use of DCVSL will improve the speed as the communication protocol is simpler,

but the trade-off is the size penalty incurred by DCVSL. Moreover, dual-rail data

requires large routing area in the physical layout as the bus width is doubled.

Therefore within the processing units, DCVSL is used in order to maximize the

performance. On the other hand,

in each connection between all the processing

units, where they may be separated quite far away in the physical layout, a dual-to-

single or single-to-dual rail conversion interface is inserted so as to reduce the

routing area by using single-rail data.
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Chapter 3

DCT/IDCT Processor Design Methodology

3.1 Overview

Most digital signal processing (DSP) algorithms involve many mathematical
operations which require high computational resources. There is no exception for the
Discrete Cosine Transform (DCT) [3]. Although there are arithmetic units within the
general purpose micro-processor or micro-controller, they are not specifically
designed for the pure mathematical operations. As a result, the implementation of
DSP algorithm on them may not be efficient and has poor performance. Due to this,
it motivates the development of the DSP chip, and the DCT chip in this thesis.

There are many hardware architectures to implement the DCT algorithm, such as
using a programmable DSP processor, or dedicated ASIC. At the same time, there
are many kinds of DCT algorithms, some of them focus on reducing the number of
operations, some of them allow more regular architecture of VLSI implementation.
Careful analysis on these is required in order to find out a most suitable combination
for the DCT implementation in asynchronous circuit.

The advantage of using asynchronous technique to implement the DCT or other DSP
processors is its average case performance. There are many functional blocks in the

design, and their computational time rpayeduffer from each other a lot. The global
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clock frequency in synchronous circuits is governed by the worst case delay in the
whole system whereas each functional block in asynchronous circuits by its own

operation speed. As a result the computation time of an asynchronous DSP chip may

be shorter than the synchronous one.

In this chapter, different hardware architectures and DCT algorithms will be

considered and compared.

3.2 Hardware Architecture

Different from the general purpose micro-processor or micro-controller, DSP
processor has traditionally been optimized to compute different arithmetic
operations, such as the convolution, recursive filtering and fast transform operations
that typically characterize most signal processing algorithms. They are used in many
application areas such as communications, speech and video/image processing. As
mentioned in the previous part, DSP processor can be either programmable or of a

dedicated nature.

Programmable DSP processor has the advantages in the flexibility and design time
for different algorithms as it allows the implementation of a variety of DSP
algorithms.  Besides from arithmetic units, extra memory and control units are
required in order to store the application programme and control the operations of
data. The performance of the DSP algorithm is not only depended on the hardware,
but also depended on the application programme. Therefore the application

programme should be optimized for utilizing the hardware in the processor.
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On the other hand, the dedicated ASIC is hardwired to perform a specific algorithm,
and usually no extra control or programme is required. Once it is designed, the
performance of the dedicated ASIC is fixed. Although the flexibility of the
dedicated ASIC can be considered to be zero, this approach is expected to perform
better than the programmable approach as the DSP algorithm is optimized in

hardware level, and also it is more efficient in terms of area and speed.

3.3 DCT Algorithm

The main application of the DCT is in the video or image compression. For most of
the image and video applications, the whole image will not be processed with DCT
directly as it will require a lot of computations. In contrast, the image will be divided
into several regular blocks for processing. The block size is usually eight pixels or
sixteen pixels in both of x and y direction, as shown in Figure 3.1. The reason to
have a block size of 8x8 or 16x16 is that they have been found to provide sufficient
details and localized activities of the picture to enable reasonable adaptive processing
of the image [31]. And for most of the current DCT applications such as H.261 [4],
JPEG [4] and MPEG [6], the block size of 8x8 have been recommended. Therefore
the effort of hardware development has been concentrated on an 8x8 two-

dimensional (2D) DCT.
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Figure 3.1 - 8 x 8 image block

In general, the iVxTVpoint of 2D DCT is given by Equation 3.1 -

= — c 0 S ———————CO0S 0 - Equation 3.1
R fj=0 m=0 L s L 3t

where m'n-Kl=0->1" 'N-]

c(0)=1/4" =1fori #A

Since for the video or image application, the block size is 8x8, i.e. N=2A, Therefore

Equation 3.1 becomes
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Figure 3.2 - 2D DCT of 8x8 image block
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Figure 3.2 shows the 8x8 2D DCT of an image block. If the 8x8 2D DCT is directly

implemented from Equation 3.2 - totally 4096 ()7 ) multiplications and 4032 (8"x8x7)
additions are required to calculate all the 64 DCT outputs. This number of arithmetic
operations is extremely high, especially for the number of multiplication as it
requires higher computational resources. It is not possible to perform the 2D
transform in real-time applications even for a dedicated DSP processor. Fortunately,
there are many kinds of fast 2D DCT algorithm to reduce the number of operations,

and thus makes the real-time 2D DCT implementation possible.

There are two main types of fast algorithm for VLSI implementation of 2D DCT.
The first type is the row-and-column decomposition method which is shown in
Figure 3.3. This method separates the 2D DCT into two one-dimensional (ID) DCT
operations based on the symmetry and regularity of the 2D DCT structure. The first
ID transforms are applied on the data row-wise, which is called the row operation.
Afterwards, next ID transforms are applied on the intermediate results of the row
operation column-wise, and this is called the column operation. The reordering of
the results of row operation into column order can be done by a transpose memory.
In this way, a complex NxN 2D DCT can be decomposed into 2N ID DCT operation
and the number of multiplications is reduced from A™ to 2NxN”. As a result, the
computational requirement is greatly reduced. A better result can be achieved by
further applying the fast ID DCT algorithm [7][8][9] in the row and column
operations. Since the row-and-column decomposition method requires two ID DCT
processors and the implementation is straight forward, this method has been chosen

by many other developers [32][33][34][35].
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Figure 3.3 — 2D DCT by row-and-column decomposition method

The second type of the fast 2D DCT algorithm is called the direct method. This
method directly uses the 2D DCT algorithm to compute 2D DCT. There are many
proposed fast 2D algorithms to handle this [36][37][38]. They explore the
trigonometry equality of 2D DCT such that the NxN 2D DCT can be decomposed
into N ID DCT plus some extra additions as shown in Figure 3.4, and thus the
number of multiplications can be reduced to NxIsF. Similar to the row-and-column
decomposition method, the number of operations can be further reduced by applying

fast ID DCT algorithm on the ID DCT processor design.
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Figure 3.4 - 2D DCT by direct method

By comparing the two approaches, the 2D direct method is more superior than the
row-and-column decomposition method. This is because it involves much less
multiplication which directly leads to better performance. Furthermore it does not
require the transpose memory. However, most of these fast 2D direct algorithms
require very complex data path in the adder/subtractor network of the pre- and post-
processors which cause difficulty in the VLSI implementation [37][39]. Besides the
complex routing overhead, it also introduces a large handshaking overhead in
asynchronous implementation. On the other hand, although the row-and-column
decomposition requires more arithmetic operations, it requires only two ID DCT
processors saving a lot of hardware. Also the data path in a ID DCT is simpler and
regular which leads to an easier hardware implementation, and this favours the
asynchronous implementation. Due to these reasons, the row-and-column
decomposition is chosen for the implementation of the 2D DCT in asynchronous

circuit.

3.4 Used Architecture and DCT Algorithm

In this thesis, two different implementations of the DCT will be shown. As

previously discussed, the row-and-column decomposition is more suitable for the
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implementation of the 2D DCT using asynchronous technology. Therefore the
following parts and chapters will be focused on the design and the implementation of
the ID DCT algorithm. For the two implementations of the ID DCT, one is
constructed based on a programmable DSP processor, and the other one is

implemented as a dedicated one. The implementation of the transpose memory will

be discussed in chapter 6.

3.4.1 Implementation on Programmable DSP Processor

Recalling from Equation 1.1, the 8-point DCT is given by the following equation

X, cos —_~~ - Equation 3.3

~yJ [a a a a a a al rno"
Y, D E F G -D -E -F -G X,
Yn B C -C -B B C -C -B X,
y~ 1 E -G -D -F -E G D F X,
Y, A -A -A A A -A -A A NX, ' Equation3.4
Y, F —-D G E -F D -G -E X,
Y, C -B B -C C -B B -C X,
Y, LG —F E -b — G F - E D Lx,

where A =cos(n/4), B =cos(n/8) C :sin(J71/8),7D = cos(n/16)’
E =cos(3n/16), F =sin(3n/16), G —sin(n/16)
Since the programmable DSP processor has fixed number of arithmetic units, the
lesser number of operations, the shorter the computational time and thus the higher
performance of the DCT implementation. Therefore a fast algorithm with smaller
number of operations should be chosen for the implementation on the programmable

DSP processor.
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There are many kinds of fast algorithm aided to reduce the total number of
operations. The most well know ones are the Lee's [7] and Hou's [8] algorithms.
They both reduce the DCT operations to have 12 multiplications and 29 additions.
The number of arithmetic operations is greatly reduced from the original 64 (Jf)
multiplications and 56 {8x1) additions. However, these two algorithms were not
chosen for the implementation of DCT in this processor because the accuracy of the

DCT algorithm should also be considered.

The main error of the DCT comes from the truncation after the multiplications as the
bit length of the data is increased after each multiplication. A truncation must be
taken in order to match the width of data bus. As truncation on a data makes it differ
from its actual value, if a data in the processor is multiplied several times
continuously, it resultant value could be greatly differed from its exact value.
Therefore, a fast algorithm with less multiplication stages on a data path should be

chosen.

By comparing several fast algorithms, the one proposed by the Jeong et. al. [40] is
chosen, and its signal flow diagram is shown in Figure 3.5. This fast algorithm
requires 14 multiplications and 29 additions, and requires only a maximum of 2
multiplications in each data path. Therefore it can provide a better accuracy than

Lee's or Hou's algorithms in a fixed width system.
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Figure 3.5 - Signal flow diagram of the Jeong's ID DCT fast algorithm

The detailed architecture of this programmable DSP processor and the

implementation of the ID DCT will be discussed in chapter 5.

3.4.2 Implementation on Dedicated Processor

For the dedicated implementation of the 1D DCT, the fast algorithms mentioned in
the previous part are not suitable. This is because most of the fast algorithms have
similar data flow as shown in Figure 3.5. The data flow of such fast algorithm is
usually quite complex in the last stage. This makes the asynchronous
implementation a disadvantage as a large handshake overhead will be introduced,
and a degradation in the performance of the processor will be resulted. The solution
to overcome this problem is to use dedicated multipliers and adders for each
multiplication and addition. However this costs a lot of silicon area and thus is not

practical.
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For the asynchronous circuit, the dataflow should be as simple as possible.

This

helps to reduce the handshaking overhead and hence the performance can be

enhanced. Therefore a semi-direct method is used in this dedicated DCT processor.

This semi-direct method is obtained by decomposing the 8x8 matrix multiplication

into two 4x4 matrix multiplications. As a result, Equation 3.3 can be decomposed

into 2 equations as shown in Equation 3.5 and Equation 3.6.

Yq a Ja. A
Y»._ \B C - B
Y, A -A -A A
YA C B B —C

>1] D E F G
YA\ E
Y 3 F D G E
Y, G

Xq + X7
Xi +X6
X2+X5
X3+X4

10 X0-X7

X, -iCg

— Equation3.5

_ Equation3.6

and similarly the IDCT can be decomposed into Equation 3.7 and Equation 3.8.

[A B A C1 [V
X, A C -A -B %
X, =2 A -C - A B *Y,
Jjc3 A B A < K
— I _ u
jied [A B A C1[Y
xx 1 A C -A B yA
X A -C A B Y,

A B A —C Y,

N

[D
1 E

2 F -

G

E
—G
D

F
-D
G
E

G1

-F Y,

E *Y _ Equatioii3.7
-D ,

—“+ L =

G1
—F Y-,

E Y ‘ Equation 3.8
-D Y,

This method has been used in many other DCT implementations [32][33]. There are

several advantages for this semi-direct method. First the number of multiplications

and additions are reduced to half of the original number.

Second, it involves one

multiplication only in each data path and thus it requires less numbers of bits to
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represent the data. Furthermore, the dataflow is simple, which is multiply-and-add,
this favours the asynchronous implementation. Finally the structure of the DCT and
IDCT are similar, it is easier to implement the DCT and IDCT on the same hardware

by this method.

Based on the above reason, a ID DCT core processor is constructed by using this
semi-direct method, and is used in the dedicated 2D DCT processor. This processor
is capable of handling DCT and IDCT, and can be cascaded to perform the 2D DCT.
The detailed architecture and the implementation of the DCT algorithm will be

discussed in chapter 6.
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Chapter 4

New Techniques for Operating Dynamic Logic in Low

Frequency

4.1 Overview

Dynamic logic has some advantages over the static logic, they include higher speed
and more compact in size. Moreover, it is suitable for used in the asynchronous
circuit design as mentioned in chapter 2. However, dynamic logic is not widely used
as it suffers from two main problems which are the racing problem [41], and the
charge redistribution and leakage problem [41][42][43]. The racing problem can be
avoided by a proper arrangement of the logic cell. However, the charge
redistribution and leakage problem cannot be simply overcome as it is caused by its
internal structure. This problem causes the dynamic logic to have a bad noise margin

and a lower bound of operating frequency.

In this chapter, the problem of the charge redistribution and leakage problem, and its
traditional solution will be discussed. Afterwards, a new technique to overcome this

problem will be introduced.
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4.2 Background
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(a) (b)
Figure 4.1 — (@) 3-input NAND dynamic logic, (b) voltage in the floating node of the dynamic
logic

The output value of a dynamic logic depends on the charges stored in the floating
node. By considering a 3-input NAND dynamic logic shown in Figure 4.1(a), during
the Precharge phase, the output of the dynamic logic will be kept at high as the
pMOS transistor is turned on and current is flowed from VDD to the floating node.
During the Evaluation phase, unless all the nMOS transistors are turned on such that
a pull-down path is created, the charges kept in the parasitic capacitor C[] wt the
floating node will hold the output at high. Otherwise, the output will become low as

all the stored charges in the floating node flow out through the pull-down path.

There are several advantages of the dynamic logic over the static logic. First the
dynamic logic is more compact as the complementary pMOS transistor tree is
replaced by only one pMOS transistor. Also the operation can be run faster as the
output only needs to be selectively discharged during the Evaluation phase, and the

charging speed is faster as there is only one pMOS transistor. An additional
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advantage for the asynchronous circuit is its temporary storage of data due to charges

stored at the parasitic capacitor.

However, the dynamic logic is suffering from the charge redistribution and leakage
problem. As mentioned previously, the output of the dynamic logic depends on the
charges stored at the floating node. Theoretically if the pull-down path does not
exist, the output should be kept at logic high during the Evaluation phase. In
practice, the output voltage will be dropping continuously with time as shown in
Figure 4.1(b). This problem is caused by the charge redistribution and charge

leakage.

The charge redistribution problem can be explained by Figure 4.1(a). Suppose that
during the Evaluation phase, the nMOS transistors M| and M2 are turned on while
M3 is turned off, there is no pull-down path to the ground and the output should keep
high. However, since M| and M2 are turned on two more capacitors Cl and C2 are
introduced and they will share the charges stored in the floating node. This is called
charge redistribution. As a result, voltage at the output drops and degrades the noise
margin in the dynamic logic. If Cl and C2 are large and large amount of charges is
flown out from the floating node to Cl and C2, the voltage at the floating node may

be dropped below the switching threshold of the next stage and causes a logic error.

Furthermore, the charges will also be leaked out from the parasitic capacitor due to
the leakage current [45][47]. If the time of the Evaluation phase is sufficient long,
the diminishing charge will even induce a logic error at the output. Therefore the

duration of the Evaluation phase should be short in order to prevent the logic error
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from occurring at the output. This limits the dynamic logic from operating in low

frequency.

4.3 Traditional Technique

J 3 J 1D
— r A A f
~ ty S
y ouT M ouT
nMOS nMOS
logic block logic block
CLK CLK

(a) (b)
Figure 4.2 - Addition of the pull-up path in (a)dynamic logic, (b)domino logic

The traditional method [42][43] used to overcome the charge redistribution and
charge leakage problem is adding an additional small pull-up pMOS at the floating
node. Figure 4.2 shows the traditional method used in the basic dynamic logic and
domino logic. This additional pull-up pMQOS directly solves both of the problems as
it allows a current flow to the floating node during the Evaluation phase, and thus the
charges stored in the parasitic capacitor can be maintained, or refilled. Due to its

simplicity, this method is commonly used in most of the dynamic logic.

However, this method has a drawback of speed degradation. During the Evaluation
phase, if a pull-down path is created by the nMOS logic block, the discharging
current will be needed to fight against the charging current created from the
additional pMOS, and thus a overall discharging current is decreased and the
evaluation time is increased. Although a smaller charging current can be obtained by
smaller pMOS transistor, but the transistor size is limited to the technology used and
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can only be reduced to a certain extent. Sometimes in poor design, the discharging
current may even weaker than the charging current. In this case, the logic block will
not be operated correctly and cause an error. These problems are caused by the

limited or no control of the charging current from the additional pMOS.

4.4 New Technique — Refresh Control Circuit

Regarding the charge redistribution, there are several techniques [42] to overcome
this problem, and some of them are shown in Figure 4.3. Also in practical design,
the dynamic logic with a large nMOS logic block is always avoided as it has a poor
performance due to the weak discharge current. In this case, the logic cell will
usually be broken into two, or more simpler logic cells which have less transistors in
the nMOS logic block. By using these techniques, the charge redistribution problem
can be minimized. Therefore the charge leakage problem will only be dealt with in

the new technique.

C C AT
Qr — QT <\ <j |
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__IP 1P I 1
07 K 07

Figure 4.3 - Techniques of overcome the charge redistribution problem

In order to solve the charge leakage problem, the introduction of the pull-up path at
the floating node seems to be necessary. However, the continuous flow of the

current from VDD to floating node via the additional pull-up path causes the speed
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degradation. If the amount of current via the pull-up path is controlled, the speed

degradation will be minimized. This is the aim of the new technique.

4.4.1 Principle

The idea of the new technique comes from the refresh technique used in Dynamic
Random Access Memory (DRAM) [44][45]. The core circuit of the new technique
is called the Refresh Control Circuit (RCC), and it is used to monitor the voltage of
the floating node in the dynamic logic. When the floating node voltage meets the
pre-determined minimum voltage, or Vref, a pull-up path at the floating node is
created for each dynamic logic in order to refill the charges in it. This process is
called Refresh. Since the pull-up path is not present all the time, this technique
causes less speed degradation compared with the traditional methods. Furthermore it
is self-timed and self-operating. It does not need extra control from user. Figure 4.4

shows the modified structure of the dynamic and domino logics.

1 L-1 Refresh )
C D (controlled J |
., DO C — Refresh
n H by RCC) 1L n k——" (controlled
chargng ~ | by RCC)
ouT I'chaw™
‘ ~0uT
nMOS
logic block nMOS
logic block
CLK
(a) (b)

Figure 4.4 - Modified structure of the (a)dynamic logic, (b)domino logic
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4.4.2 Voltage Sensor

First, in order to detect the voltage of the floating node and compare it with Vref, a
voltage sensor is used. In the system, not all the logic is connected to the voltage
sensor. Only a dummy circuit modeling with the worst dynamic logic structure in
terms of leakage is used to represent all the logic cells in the circuit and it is

connected to the voltage sensor as shown in Figure 4.5.

- ] R r i "l q
1~1 1~1 1~1 0 iRefresh Signal
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| 1 1 Vol’tag/\e Sensor Wﬂ [ogic Wock | .
J -fc-n n ~ J__
Qui: I CLK In yoef Signal
* Dummy * Dummy
Dynamic Cell : Dynamic Cell :
(a) (b)

Figure 4.5 —Proposed refresh structure for (a)dynamic logic, (b)domino logic

The voltage sensor consists of 2 stages, the first stage is the differential amplifier and
the second stage is the two-stage sense amplifier. Their structures are shown in
Figure 4.6. The first stage, the differential amplifier, is used to compare the voltage
of the floating node with Vref, and to amplify their difference. The inputs of the
second stage, the two-stage sense amplifier, are connected to the outputs of the first
stage to provide a more accurate comparison. If the voltage in the floating node
becomes smaller than Vref, the second stage will generate the refresh request signal to

indicate to the dynamic logic that refresh is needed.
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Figure 4.6 - Voltage sensor, (a)differential amplifier as the first stage with reference voltage
generator, (b)two-stage sense amplifiers as the second stage

The two-stage voltage sensor can provide a good detection. However, it consumes a
lot of power as there is a current always flowing from VDD to GND, it should be
prevented from operating all the time. As the sense amplifiers are only used to
determine the time for refresh, a timer can be used to record the time required for
refresh in the first refresh process. Afterwards, the sense amplifier can be turned off
and the signal from the timer can be used to indicate a time for refresh. In practice,

the combination of a ring oscillator, a counter and latch can form a timer.

4.4.3 Ring Oscillator

Ring oscillator is constructed by connecting an odd number of inverters with a

feedback, which is shown in Figure 4.7.

-j /1 O0O[>0~~[>0][>0-1J0

Figure 4.7 - Ring oscillator
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For a ring oscillator, its period (or frequency) is controlled by the size and number of
inverters. The size of the inverter means the width-to-length (W/L) ratio of the
pMOS and nMQOS in the inverter. In general, the smaller the W/L ratio, the longer
the period can be obtained. This is because the charging and discharging current, as
shown in Figure 4.8, are smaller in small pMOS and nMOS, and thus it requires
longer time to charge or discharge the input capacitor of the next inverter.
Furthermore, the more the inverters used, the longer the period can be made in the

oscillator as a longer delay is created in the feedback path.

hs -,
l‘/\/\m |
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»

Figure 4.8 — Charging and discharge current in the inverter chain

Normally, the time for a logic error occurring at the floating node due to charge
leakage should be in the order of milli-second (10" second) [47]. If aten-bit counter
is used to count the refresh time, the ring oscillator will need to have a period in the
order of micro-second (10" second). However, the period of an ordinary oscillator is
very short (several nano-second, 10" second) even when the smallest inverters are
used. The increase in the number of inverters can increase the period, but it is not
practical. It is because the difference between the delay of an inverter and the
required period is too large, it may require thousands of inverters so as to achieve the
required oscillating period and this makes the oscillator very large. Also, the large
amount of inverter causes a large amount of power consumption. Rather than

inverter, delay elements are used. It is added between each inverter and creates
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larger delay in the feedback path. Figure 4.9 shows the ring oscillator with the delay

elements.

>—De|ay—A><A Delay — D e | a vy — D e | a vy — D e | a vy ~ W

Element Element ~  Element ~  Element ~ Element /

Figure 4.9 - Ring oscillator with delay elements

There are many types of delay elements. The common one is a transmission gate but
it cannot achieve a long delay. By referring to the comparison done by Mahapatra et.
al. [46], the transmission gate with Schmitt trigger [46] is chosen as the delay
element in the ring oscillator as it produces longer delay. The CMOS structure of the

transmission gate with Schmitt trigger is shown in Figure 4.10
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Figure 4.10 - Delay element, transmission gate with Schmitt trigger
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Figure 4.11 - (a) a voltage controlled inverter, (b) part of the voltage controlled ring oscillator
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In order to further increase the delay, the minimization of the charging and
discharging currents (Figure 4.8) are required. As mentioned previously in this
section, the smaller the current, the longer the charging/discharging time and thus a
longer period can be achieved. The minimization of current can be done by adding
small transistors in the VDD and GND paths, which is shown in Figure 4.11(a). By
providing the control voltage near to the threshold to the added transistors, the
charging and discharge currents can be adjusted to a very small value as both
currents are limited by the added transistors. The method of providing the controlled
voltage is shown in Figure 4.11(b). As a result, a frequency of 38.5 KHz (period of

26us) is achieved in this ring oscillator.

4.4.4 Counter, Latch and Comparator

Counter is connected to the ring oscillator in order to record its number of period.
As mentioned before, the time for a logic error occurring at the floating node due to
charge leakage is in the order of milli-seconds. Therefore, the dynamic logic should
be refreshed every several or tens of milli-seconds. This constrain indicates that the

timer should be able to record the time in the order of milli-seconds.

As the ring oscillator is constructed at 38.5KHz > a ten-bit counter is enough the for
recording the time as
Recordable Time = Clock Period x 2%z ofBitofGdr . Equation 4.1
=26usx2io
=26usx 1024
=26.6 ms

The latch is used to record the number of clock period required to carry out the

refresh process for the first time. The input of the latch is connected to the output of
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the counter. When the first refresh is required, the refresh request signal from the
voltage sensor will trigger the latch and causes the latch to record the value of the
counter. This value is meaningful as it indicates the number of clock period required
to have a refresh. Afterwards, the voltage sensor can be turned off, and the refresh
process is controlled by the comparator. The comparator is used to compare the
output values of the counter and latch all the time. When their values are the same,
this means that the dynamic logic reaches the time to carry out the refresh process,

the comparator will send out a signal to request a refresh.

4.45 Recalibrate Circuit

The amount of leakage current is highly related to the temperature [44]. The higher
the temperature, the larger the leakage current flows out from the floating node. As a
result, the time required to carry out a refresh process is varied with the temperature.
In the real world, the temperature of the chip may vary with time, therefore the
circuit should have a recalibrate function such that the refresh time is recalculated

after certain time.

The recalibrate circuit is actually a five-bit counter. It counts the number of refresh
processes has been taken and controls the ON and OFF of the voltage sensor.
Initially the refresh counter starts counting from zero, and the voltage sensor is
enabled. After the first refresh took place, the refresh counter is incremented to one
and the voltage sensor is disable afterward. After 2~ -1 refresh processes, the
refresh counter counts back to zero and the voltage sensor is enabled again. As a
result the latch will record a new counter's value by the trigger of the refresh request

signal from the voltage sensor and thus the recalibration can be made.
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4.4.6 Operation Monitoring Circuit

When the actual system is operating, i.e. there is a transition of the clock signal
synchronous circuit or there is a request signal in asynchronous circuit, the voltage
sensor is not required to detect the floating node voltage as the charge in the floating
node will be retained during the normal Precharge phase. Under this situation, the
voltage sensor is not necessary to be turned on and thus power can be saved.
Therefore the operation monitoring circuit helps to detect when the system is

operating, and it will disable the voltage sensor and reset the counter if necessary.

4.4.7 Overall Circuit

By combining all the necessary units, the Refresh Control Circuit is formed as shown

in Figure 4.12.
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Figure 4.12 — Block diagram of the Refresh Control Circuit
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Figure 4.13 - Timing diagram of the Refresh Control Circuit

The timing diagram of the operation of the Refresh Control Circuit is shown in
Figure 4.13. Initially the voltage sensor is enabled and the voltage of the floating
node of the dummy dynamic logic cell decreases with time. When the voltage meets
the pre-defined minimum level, the voltage sensor generates the refresh request
immediately. This signal will first trigger the latch to record the value of the counter.
Also the refresh request signal will be passed out to reset the counter, increment the

refresh counter and refresh the dummy dynamic cell and the actual circuit.

Due to the increment in the refresh counter, the voltage sensor is disabled. However,
the timer is now enabled and is able to generate the refresh signal by comparing the
value of the counter and latch. It continues until the refresh counter returns to zero,
then a recalibration is required and the voltage sensor is enabled again. The whole

process will then be repeated afterwards.

The performance of the Refresh Control Circuit will be shown in chapter 7. Also,

multipliers are constructed to test and compare the performance of this new
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technique with the traditional technique. The result will be shown in chapter 7 as

well.

As the Refresh Control Circuit is still in the schematic level design, this technique is

not applied on the implementation of programmable DSP processor and dedicated

DCT/IDCT processor.
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Chapter 5

DCT Implementation on Programmable DSP

Processor

5.1 Overview

As the number of transistors is increasing, it becomes attractive to build design
system in asynchronous style as it has benefits of no clock skew, lower power
consumption and low electromagnetic noise. Several asynchronous processors have
been built [11][48][49][50], and the AMULETS [50] has been used commercially.
This indicates that asynchronous designs are plausible alternative to synchronous

designs.

In this chapter, a pipelined dataflow [10][51] micro-coded DSP asynchronous
processor will be discussed. The architecture of this DSP processor was developed
by our research group, and | have made some modifications, and | am responsible for
the DCT implementation and layout generation of the whole processor. The
programming technique and the implementation of DCT will also be given at the end

of this chapter.
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5.2 Processor Architecture

The design of this DSP processor follows the dataflow architecture. In other word,
this is a data-driven system.  The dataflow architecture naturally fits the
asynchronous design. The combined architecture allows the data to be sent into the
system continuously without external control or clock, and the presence of data

triggers the operation of the asynchronous system automatically.

In order to realize the pipelined dataflow architecture in an asynchronous system, a
pipelined processor is developed. The target of this processor is to implement some
simple DSP operations such as Infinite Impulsive Response (IIR) filter, Fast Fourier
Transform (FFT) and DCT, where addition, subtraction and multiplication with

constant are required.
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Figure 5.1 - Dataflow architecture of the programmable DSP processor
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The architecture of the processor with the necessary functional blocks is shown in
Figure 5.1. The processor includes an adder, a subtracter, a multiplier, two FIFO
memories, a switching network, and an instruction memory. It the following

sections, each part of the processor will be discussed.

5.2.1 Arithmetic Unit

In this processor, the adder, subtracter and multiplier are all pipelined and are
designed in DCVSL structure in order to maximize the performance. Multiplier is
based on the bit-parallel architecture. In this architecture, the multiplier core can be
built by an array of a Product Full Adder (PFA), which is shown in Figure 5.2. Each

PFA carries out four functions, which are given by

Aout = Ain - Equation 5.1
Bout = Bin - Equation 5.2
Pout = (Ain < Bin) Q (Pin Q Cin) - Equation 5.3
Cout =Ain .Bin <« Cin + Pin ¢ (Ain <Bin + Cin) - Equation 5.4
Pin  iBin
2 CA !
e § .
. 5
Ain ~——¢ 4 Cin
Product
: % Full Adder
: Bout M -+ Aout
. : pr"
Y I T
Cout : Pout

t ;
Figure 5.2 - Product Full Adder (PFA) of the multiplier

All the signals in the PFA have their own handshake signals, except B shares the
handshake signal of P as they propagate to the same direction. The overall structure

of the multiplier core is shown in Figure 5.3.
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In Figure 5.3, A and B are the inputs while P is the product of A and B. The number
behind the inputs and output represent the bit position, where bitO is the least
significant bit (LSB). Since the data format of this processor is a 1-bit sign bit with
8-bit magnitude, the sign bit of the final product is just the XOR result of the two
inputs' sign bit. As a result, buffers are added in the multiplier core so that the sign
bits of both inputs are shifted to the right-bottom block to perform the XOR

operation, and the sign bit of the final product can be obtained.

Unlike the synchronous version, the asynchronous bit-parallel multiplier requires
different bits of the inputs arriving at different time. This is because within the
multiplier core the next PFA can only start operation when the results, C and P, of
the previous PFAs are ready. In the current architecture, (AO, B7) will be calculated
first, the next operation will be started at (AO, B6) and (Al, B7), and so on. Due to

this requirement, a ladder-shape input buffers are used at two inputs in order to
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schedule the arrival time of different bits. The structure of the input buffer is shown

in Figure 5.4.
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Figure 5.4 - Input buffer of multiplier

Similarly, different bits of the output P come out at different time, and bitO will come
out first in this configuration. As a result, a ladder-shape output buffer is also

required at the output side.

The adder is based on the Carry Look-ahead (CLA) architecture [52][53]. This
architecture provides a faster computation time by reconstructing the Sum and Carry
of the addition by 2 new values, which are Propagate P and Generate G. The new

formulae are given as the followings,

Gi = Ai * Bi - Equation 5.5
Pi = Ai QBi - Equation 5.6
Ci= Gi + Pi-Cii - Equation 5.7
Si = Ci.i QPi - Equation 5.8
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By computing several Ps and Gs in parallel, the Sum and Carry of several bit
locations can be obtained simultaneously. As a result, the addition can be carried out

in a faster way.

In this processor, the subtracter is actually another Carry Look-ahead adder with an

inversed input as A-B=A+(-B).

5.2.2 Switching Network

In some designs, data transfer is done via a common data bus. However, it is
difficult to be implemented in an asynchronous dataflow system as large
handshaking overhead and long delay will be introduced. For example, there is a
common data bus shared by one receiver and three transmitters. When the data
exists in the data bus, the handshake cell in the receiver is required to communicate
with all the three transmitters in order to know which the source is. The time
required must be longer than a normal handshaking time in the pipeline stage. If the
number of the receivers and transmitters is increased, the time required for

handshaking will be increased exponentially and a longer delay will happen.

Instead of using common data bus, a multi-stage switching network is used to
connect the different units. There are several advantages for using multi-stage
switching network in an asynchronous system.  Firstly, the network allows
parallelism. In other words, data from different inputs can be sent to different
outputs simultaneously. Secondly, the network is pipelined resulting in higher data

transfer rate via the network. Lastly, the switching network distributes the
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handshake signals to the corresponding destination only and thus the large handshake

overhead is avoided.

The basic component of the multi-stage switching network is a two-to-two
programmable switch cell. It can perform six modes of connection according to a 3-

bit instruction. The structure and the modes of connection are shown in Figure

5.5(a).
~ Six modes of
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Figure 5.5 - (a)2-to-2 programmable switch and its six modes of connection, (b)block diagram of
the internal structure of switch, (¢c)CMOS structure of basic multiplier cell of the MUX 1

The design of the switch cell follows the dataflow architecture. It uses the same
communication protocol and handshake cell as the one presented in the previous
chapter. The switch is basically built up by an instruction decoder and two two-to-
one multiplexers. During operation, the instruction decoder receives and decodes the

instructions from the instruction memory. It translates the 3-bit instruction into a six-

Page 57



Chapter 5- DCT Implementation on Programmable DSP Processor

bit decoded word, which is shown in Table 5.1 - and then passes it to the two
multiplexers. Each bit of the decoded word corresponds to one mode of connection.
It helps to have a simpler design of multuplexer cell for faster operation. The
multiplexer is built in the form of sum-of-product structure and domino style, which
as shown in Figure 5.5(c). It receives the decoded instruction and detects the
presence of the input data. Once the corresponding input data has been ready, the

data is copied to the output of the multiplexer, and thus the transmission of data can

be done.

Instruction Function / Connection Mode  Decoded Word (CODL

000 - inQ”outO/modeO 000001
001 inl->outQ / mode 1 000010
010 inO->outl / mode 2 000100
011 inl“outl / mode 3 001000
110 In0O~>out0&outl/mode4 010000
111 Inl~"outO&outl/mode5 100000

Table 5.1 - Instructions of switch

FIFO1 outl *TZI  eirn JfT—— ADD inl
ADD out——{*K A Thv ~ ¥ « SUBInl
FIFO1 out2 fTTly . FIFO1
INPUT ~ ~ - 1« ML
ML oit——@© - Ay H 41— OUTPUT
FIFO2 out? e F/Ne b, ~N FFR2
SUB out oITK MATAN— —@ ADIN2
FIF2 outl <] o] \§ —\ 9B i2

Figure 5.6 — 8-to0-8 switching network

In this programmable DSP processor, the switching network is a matrix of 3x4
switch cells allowing eight-to-eight connections, as shown in Figure 5.6. The
position of the inputs and outputs is tuned and optimized to allow maximal

concurrency and efficient resources assignment.
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5.2.3 FIFO Memory

There are two FIFO memories within the processor, which are responsible for
temporary data storage during the operation. The structure of the FIFO memory is
shown in Figure 5.7. It is organized in four short FIFO sets (FIFO A to D, each
stores 4 data) and one long FIFO set (FIFO E, stores 16 data). Demultiplexers,
which have similar structure as the switch, are placed at the input and output of the

FIFO memory for controlling the data flow to/out from the corresponding FIFO set.

L : byaion "DEMUX — ]
TN 6 H AR NAB>t s f-tj~ [ AAAACTT |

"KriForAjuU™ i"nj RS TRV INR PV
FIFO 0UT2 HCE \i Data IN [ 672~ AJA-PIN-A |

Figure 5.7 — Structure of FIFO memory

The basic building unit of the FIFO set cell is the basic FIFO cell, which is shown in
Figure 2.13(b) in chapter 2. The basic FIFO cell captures the input data in the
Evaluation phase and retains it in the Hold phase. A parallel connection of n FIFO
memory cells to a handshake cell can form a single n-bit FIFO memory stage. If
several FIFO pipeline stages are cascaded, a FIFO set will be formed. The input data
will queue and be held inside the FIFO set until the switching network is ready for

accepting the data from the FIFO block.

The input of the FIFO memory is connected to a three-stage demultiplexing network.
Inside the FIFO memory, the instruction and data are first merged to be a single data
which is in the form of [instruction] + [data]. When it arrives at the input of the

demultiplexer, the most significant bit (MSB) of the instruction will be extracted and
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acts as the controlling signal for switching, and the rest of the bits will pass through
the demultiplexers.  This combination of instruction and data reduces the
handshaking overhead in the demultiplexer and thus a faster transfer speed can be
achieved inside the demultiplexing network.  Also, the use of three-stage
demultiplexing network prevents the fan-out and the large handshaking overhead
problems occurred in a single one-to-five switch. Also the data can be transferred to
the long FIFO set in shorter latency such that the data in long FIFO set can be reused
in shorter time. The four-to-one mulitplexer is used at the output of the FIFO block.

Its structure is similar to that of the switch cell, which is shown in the previous part.

5.2.4 Instruction Memory

The inclusion of the instructions allows the processor to be programmable and to
perform different operations. In this processor, the instruction is used to control the
connections of the switches and multiplexers in the switching network and FIFO
memories, and also used for the multiplicand for the multiplier. The instructions are

all stored in the instruction memory.
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Figure 5.8 - Instruction memory, (a) block diagram of the instruction memory, (b) the structure
of cyclic FIFO, (c) structure of the instruction decoding network

There are two mains parts in the instruction memory which are the instruction
decoding network and the cyclic FIFOs, as shown in Figure 5.8(a). An instruction is
in the format of [address] + [data]. After receiving the instruction, the instruction
decoding network, as shown in Figure 5.8(c), decodes the address by demultiplexing,
which is similar to the demultiplexing network in the FIFO memory, and sends the

data to the corresponding FIFO or the multiplier.

The FIFO in here has a cyclic feature, which is shown in Figure 5.8(b). Besides from
sending to the corresponding destination, the outputted instruction is fed back to the
FIFO as well. This feature permits the instructions to be recycled and thus the
application can be run repeatedly without further programming. During

programming, the switch at the input is connected to the instruction decoding
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network for collecting the instructions, and then it will be switched to another end for

recycling the instructions.

5.3 Programming

In this dataflow processor, programming is just the organization of the flow of data.
In other words > the switches are programmed to perform a connection from one unit
to another unit. For example, there are 2 inputs A and B. In order to perform an
addition of A and B in this processor, 2 cycles are required to send the inputs to the

adder and a third cycle is needed to send the adder's output to the processor's output.

Step 1 : A (from input)  Adder Inputl,
Step 2 : B (from input) —Adder Input 2
Step 3 : Adder Output Output

In the actual programming, the following switches are required to be programmed as

follows,

Forstep 1: sw2 mode 1, sw6 mode 0, sw9  mode 1,
For step 2 :  sw2 mode 3, sw8 mode 2 > swJ2 mode 0,
For step 3: swl mode 3 > sw7 mode 0 > swll —> mode 0

Therefore, an addition requires 3 cycles. However, for example, if the two inputs are
sent from the internal FIFO memories 1 and 2, only 2 cycles are required for an
addition as no switch is shared between both the input paths (referred to the
switching network in Figure 5.6). Therefore the data from FIFO memories 1 and 2
can be sent to adder input1 and input2 respectively within the same cycle. Similarly,
data can be sent to different arithmetic units or FIFO memories in the same cycle
provided that their paths do not share the same switch. Programming which can fully

utilize the parallelism of the switching network maximizes the concurrency of the
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arithmetic operations and thus the greatest performance of the processor can be

achieved.

5.4 DCT Implementation

As mentioned in chapter 3, the implementation of DCT in the processor is based on
the algorithm proposed by Jeong et. al. [40]. The DCT programme can be divided

into four stages, which is in shown from Figure 5.9 to Figure 5.12.

Al B1 C1 D1 E1l A2 B2 c2 D2 E2 d dd dd b sub b (1 1 mul
1 2 0 1 2 o] ff o
O
X\ \\ K i XY ®)
BEciiiiiiriiriiiiiiin =i = e, H1
]
0oz K IIIIIriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin AAAMAATA( AN S

Figure 5.9 - Flow diagram of the first stage of DCT implementation

In Al B1 Ccl D1 El A2 B2 c2 D2 E2 add add sub sub sub 18 | mul mul

Figure 5.10 - Flow diagram of the second stage of DCT implementation
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Figure 5.11 - Flow diagram of the third stage of DCT implementation
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Figure 5.12 — Flow diagram of the forth stage of DCT implementation
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The flow diagrams show the data flow in the DCT algorithm. In the flow diagram,
/« means the input, A, B, C, D and E mean the FIFO sets in the two FIFO memories.
add 1, add 2 and add O are referring to the input 1, input 2 and the output of the
adder respectively. Subtracter and multiplier also have the similar representations.
Due to the parallelism and concurrency of the switching network, two or more data
are always controlled to transfer simultaneously in order to increase the throughput
of the switching network, and thus more operations can be carried out by the
arithmetic units and the performance can be increased. Also in order to avoid data

queuing, it is necessary to send the data to FIFO memories for temporarily storage in

sometime.

The detailed steps of this programme (includes the instructions of each switches) are

shown in appendices, and the performance of the DCT implementation is given in

the chapter 7.
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Chapter 6

DCT Implementation on Dedicated DCT Processor

6.1 Overview

As the demand of the high quality signal, the computation requirement of the video
and image applications nowadays becomes higher and higher. For the application of
the discrete cosine transform such as the MPEG2 (640x480, 30 fps, 4:2:0, 13.82
Mpixel/sec) or High Definition Television (HDTV) (74.23MHz in luminance signal
for baseband HDTV), a very high processing rate of a 2D DCT/IDCT design is
required. Although the processing power of a general purpose processor is high, it is
still difficult to provide a real-time processing on these signals. On the other hand,
dedicated processor for specific application can provide an effective solution. It
always provides a cost effective and higher performance solution for these
applications. By further applying the asynchronous pipelined architecture on these
designs, a higher performance may be achieved.

In this chapter, a dedicated 8x8 2D DCT/IDCT asynchronous processor is
introduced. The processor has a fully pipelined in the architecture, and provides a
very high transform rate which is capable of real-time processing on high quality
signal. The architecture of the 2D DCT/IDCT processor will be introduced at the

beginning. Since the architecture is lraggosen the row-and-column decomposition
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method, the design of the ID DCT core and the transpose memory will be given

afterwards.

6.2 DCT Chip Architecture

As discussed in chapter 3, the 2D DCT design is based on the row-and-column
decomposition method which provides a simpler implementation and is more
suitable for the asynchronous architecture. Figure 6.1 shows the dataflow in the 2D
DCT by using the row-and-column decomposition method. In the row operation, ID
DCTs are applied on each row of data, and then the results are stored in the transpose
memory row-wise immediately. For the column operation, the ID DCTs are applied
on the data stored in the transpose memory in column-wise, and the resultant values

of the column operation are the 2D DCT result.
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Figure 6.1 - Dataflow diagram in 2D Dg{;l'gg)é{ow-and-column decomposition method
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From the dataflow diagram, it is shown that it requires eight DCT operations in both
of the row and column operations. It means there are totally 16 DCT operations in
the whole 2D DCT operation. However in the physical realization of the row-and-
column decomposition method, it is not necessary to use 16 independent ID DCT
cores to perform the row and column operations. This is because the data is entering
the processor serially. A single ID DCT core can be shared for the eight ID DCTs
by each operation. As a result, only one ID DCT core is required in row and column
operation, and the block diagram of the 2D DCT architecture is shown in Figure 6.2.

Since the architecture of both the ID DCT core can be the same, it saves the time of

designing.
data (pxel) \ 1DDCT \ Transpose \ 1DDCT K 2DDCT
input Core Memory A Core A output

Figure 6.2 — Block diagram of 2D DCT processor

The detailed architecture of the 1D DCT core will be discussed in next section of this
chapter. For the transpose memory, it is built by an ordinary Static Random Access
Memory (SRAM) with an address generator to control the write and read processes.

The detailed architecture of the transpose memory will be discussed in section 6.3.

6.2.1 1D DCT Core

The implementation of the ID DCT core is based on Equation 3.5 and Equation 3.6
shown in chapter 3. By dividing the equations into two parts, Equation 6.1 to

Equation 6.3 can be obtained.
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Figure 6.3 - Block diagram of the ID DCT core

Figure 6.3 shows the basic architecture of the ID DCT core [32][33][34], which is
constructed by a pre-processor and a multiplier-accumulator. The pre-processor is
responsible for the operation described by Equation 6.1. It collects the input data
and performs the addition and subtraction, according Equation 6.1. Since only

simple addition and subtraction are required, the pre-processor includes an adder and

subtracter.

In this processor, the Binary Look-ahead Carry (BLC) adder [30][54] is used.
Compared to the Carry Look-ahead (CLA) adder, each processing block of the BLC
adder handle two sets of Propagate and Generate only. This simplifies the operation

within the basic block and thus the speed can be increased. However, the drawback
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is the silicon area and longer latency. A 8-bit version of the BLC is shown in Figure

6.4
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Figure 6.4 — Structure of the 8-bit BLC adder

The second part of the ID DCT core is the multiplier-accumulator. It is responsible
for the matrix multiplication described by Equation 6.2 and Equation 6.3. The
matrix multiplication can be done by multiply-and-add. It receives the output from
the pre-processor and performs 16 multiplications with the DCT coefficients, and
then adds the results according to the order. As a result, the multiplier-accumulator

is constructed by multipliers and adders.

Besides from directly using the multipliers and adders, distributed arithmetic (DA)
[55] method is used to implement the multiplier-accumulator in some designs
[32] [33]. The principle of the DA is to use a Read Only Memory (ROM) based look-

up table (LUT) to replace the multiplier. Since the DCT coefficients are fixed, the
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result of the multiplication can be pre-calculated and stored in the ROM. In this way,
the input data acts as an address to read the data which is stored in the ROM. Since
the ROM based LUT can be built very compactly, the advantage of DA is saving
silicon area as a general dedicated multiplier is avoided. However, the DA does not
fit the style of the asynchronous architecture, and the read operation on ROM cannot
be pipelined. As a result, a general pipelined multiplier based on the bit-parallel

algorithm is used in this ID DCT core as it can be pipelined and run very fast, but the

trade-off is the size.

Basically the architecture of this bit-parallel multiplier is the same as the one used in
the programmable processor, which has been described in Chapter 5. However, it
cannot be used directly in this DCT core. This is because the bit-parallel architecture
is primary designed for the multiplication of two unsigned value, but it is two
complement data format in the DCT core. As a result, a conversion of a two
complement data into a unsigned value with a sign bit is required. This conversion is
done in the input buffer, and the converted output can be used in the multiplier core.
The mechanism of conversion can be illustrated in the following example. For a 9-

bit data having a the binary representation of 111110101, the conversion can be done

by

Original 2-complement binary value 111110 10 O
Step 1 : Inversion 00001011
Step 2 : add 1 to the result + 1

00001100

The resultant binary number shows a decimal value of 12, so the original value
represents a value of -12.
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In this implementation, the conversion is divided into 2 stages. The first stage is the
step 1, which will invert the input bit if the input data is a negative value. This can
be done by the XOR gates which XOR all the data bits with the sign bit. The second
stage is the step 2 which can be performed by an adder. As the conversion is handled
at the input buffer part, a ripple adder is used as it fits the ladder structure of the input

buffer. Figure 6.5 shows the modified input buffer used in the 2-complement

multiplier.
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Figure 6.5 - Modified input buffer for 2 complement input

A similar conversion is required at the output as the unsigned product result is
required to be converted back to a two complement data format. The conversion is
merged into the output buffer and its structure is similar to the input buffer shown in
Figure 6.5. For the conversion at output, the sign bit of the result must be ready at

the same time as the bitO in order to perform the conversion at once. Therefore the
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sign bits path in the multiplier core is modified in order to calculate the output sign
bit first. The resultant structure of the multiplier core is shown in Figure 6.6.

Together with the modified input and output buffers, a two complement bit-parallel

multiplier is formed.
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Figure 6.6 ElgMultl:l)gller core of 2 complement multiplier

For the accumulator part, some of the design uses an adder with an output feedback
to perform the accumulation of the multiplier's outputs. However, this structure is
very slow as the second addition cannot be performed until the previous addition is
finished and fed back to the input. Also, it wastes the pipeline architecture as only
one addition can be carried out at anytime. Therefore several BLC adders are used in

this design in order to achieve a better performance.
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6.2.1.1 Core Architecture

For the asynchronous architecture, simpler and direct dataflow allows easier
implementation and better performance as it reduces the handshaking overhead and
fits the asynchronous pipeline architecture. In order to develop a simple dataflow,

Equation 6.2 is further decomposed to Equation 6.4,

>ol O .. Ty Ty o1
1AO021C 711 -cr 1l1=hr1
n =2 ~ .LZoJ+S -a ¢ [12J+3 ] - Equation 6.4
m C —B B -C
L J L - J = - L. J
Let
= - n - -n - -
A g oy rA
JoA 1 C v - C \' B
MN=2 7 [z,]U,=- °[z]lanci U,=- noo-fe] - Equation 6.5
o -B B -C
— [ LJ L O
re _
then, Y~
Y~ =201+123 - Equation 6.6
n.
w/zere U[=Uo+IJ\ and U, =U,+U, - Equation 6.7

Similarly for Equation 6.3, let

di rel rrl rg*
1E 1 -6 r 1 I -D r 1-F r
A A=- [Zsi G [ZgJ, and he[Z,\ _ Equation 6.8
_gJ [-fJ LEJ [-D
1 M
then - Y,
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Based on Equation 6.1 and Equation 6.4 to Equation 6.10, the architecture of the ID
DCT core is formed as shown in Figure 6.7. It is a fiilly pipelined design and the
datapath is simple and in single direction without any feedback. In this architecture,
the pre-processor is constructed by one adder and subtracter, the multiplier-

accumulator consists of two general purpose multipliers and three adders.
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Figure 6.7 - Architecture of ID DCT core

It should be noticed that only two multipliers are used in this design. In order to
achieve a high performance, some other designs require parallel input of data or
require four or more multipliers or LUTs [32][34]. In this way, several
multiplications can be processed in parallel such that a higher throughput can be
achieved. Another reason is that they are synchronous designs, they need to maintain
a constant data rate throughout the datapath. Otherwise, some clock cycles may be
wasted for waiting the input data. However it is not necessary in this design as it is
based on an asynchronous architecture. Different units in the asynchronous design
can operate at different rates as their operations based only on the local handshake

signals rather than the global clock signal. Also, the asynchronous pipelined
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architecture is applied on the design of the multipliers such that the multiplier can be
run very fast. As a result, the multipliers can be adjusted to run faster than the other
units - then a similar or better performance can still be achieved by this design even
less multipliers are used. Furthermore, it does not require parallel input of data as the
operation will only be started when all the inputs are ready, no operation (no power

is consumed) will occur while waiting the input data.

6.2.1.2 Flow of Operation

The dataflow of the ID DCT core can be explained by Equation 6.1 and Equation 6.4

to Equation 6.10. Figure 6.7 can be divided into four stages.

Stage 1:

Stage 1 is the operation of the pre-processor, represented by Equation 6.1. Firstly it
receives the input data in the order [xO, x7, xI, x6, x2, x5, x3 > x4], and then the one-
to-two demultiplexer will send the data to inputl and input2 of the adder and
subtracter alternatively, that means the odd-th input data will be sent to input 1 of the
adder and subtracter, and the even-th input data will be sent to the lower path input 2
of the adder and subtracter. As a result, the output sequence of the adder 1 is
[X0+x7, xI+x6, x2+x5, x3+x4] or [Zq, Zi, Z2, Z3] (refer to Equation 6.1) and the
output sequence of the subtracter is [x0-x7, xI-x6, x2-x5, x3-x4] or [Z4, Z5, Ze, ZT]

(refer to Equation 6.1)

Since the addition and subtraction can only be carried out when both inputs are

ready, the output rate of the adder and subtracter is half of the input data rate.
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Stage 2:

The multiplications with DCT coefficients are performed at stage 2. At this stage,
data is split into two paths, which are the upper and lower path. Both of the paths are
totally identical, and the upper path is responsible for Equation 6.5 while the lower

path is responsible for Equation 6.8.

By considering Equation 6.5, there are totally sixteen multiplications, in which each
input data needs to multiply with four different DCT coefficients. Therefore, a data
replicator is used to duplicate the input data four times and then send to the
multiplier. Therefore, the output sequence of the data replicator at the upper path is
[Zo, Zo > Zo, Zo, Zi, Zi, Zi, Zi, Z2, Z2, 22 > 22, Z3, Z3, Z3, Z3]. Similarly, the output
sequence of the data replicator at the lower path is [Z4, Z4, Z4 > Z4, 75 > Z5, Z5, Z5, Ze,

26 726, 7Zs, Z7, Z1, ZT7 > ZT].

The DCT coefficients are stored in the DCT coefficients memory, and they are
arranged and sent out to the multipliers in the sequence of [A, B, A, C, A, C, -A, -B,
A, -C, -A, C, A, -B, A, -C] in the upper path and [D, E, F, G, E, -G, -D, -F, F, -D, G,
E, G, -F > E, -D] in the lower path. As a result, Equation 6.5 and Equation 6.8 can be
performed and the output sequence of the multiplier 1is [iV, Ui" iV] while the
output sequence of multiplier 2 is [U/, Us", Ue", iV]. The output data rate of each
multiplier is two times of the input data rate as the data replicator increases the

output data rate of the first stage by four times.
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Stage 3:

The output of the multiplier will go through the one-to-two demultiplexer at stage 3.
Its operation is similar to that of stage 1, but the outputs of the demultiplexer are
alternating every 4 times in order to perform the addition shown in Equation 6.7 and
Equation 6.10. For example in the upper path, Uo*and iV will connect to the first
input of the adder 2, U, and Us" will connect to the second input of adder 2.
Therefore the output sequence of adder 2 is [Uoi\ U23l and that of adder 3 is [Loi"
L23l. For the output data rate, it is reduced to be the same as the input data rate.
This is because an addition can only be performed when both inputs are ready, it is

reduced to half of the output data rate of the multipliers.

Stage 4:

Stage 4 is responsible for performing Equation 6.6 and Equation 6.9. Originally two
adders are required for each equation. However, data rate after stage 3 is halved, a
single adder can be shared by both equations.  Therefore a two-to-two switch is
inserted at the beginning of this stage. It is used to collect data from upper and lower
paths and distribute them to adder 3. Finally the output sequence of stage 4 is [Yo,

Yi, Y2,Y3, Y4, Y5, Y6, YT7].

In this stage, the output data rate can be maintained at the input data rate as it
combined the data from the upper and lower paths. As a result, the final output of

the ID DCT core has the same data rate as the input.

Table 6.1 shows the summary of data rate at different stages of the 1D DCT core. It

shows that the critical part of the design is in stage 2, where the multiplications are
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performed. As a result the throughput of the whole design is limited to the half of

on Dedicated DCT Processor

the speed of the multiplications in stage 2.

Stage 1 Stage 2 Stage 3 Stage 4
Input Input data rate 12X Input data 2 x Input data Input data rate
Output 12 X Input data 2 x Input data Input datarate Input data rate
rate rate

Table 6.1 — Data rate at different stages of the ID DCT core

6.2.1.3 Data Replicator

The purpose of the data replicator is used to keep a single operand for the multiplier

to perform four multiplications. In synchronous design, a latch can be used to hold a

data for four clock cycles. However, it is not possible in asynchronous design as data

will be lost after used due to the Precharge phase of the domino logic. A simple way

which uses a buffer with a feedback output can perform a cyclic function and the

data can be reused. However, the resultant speed is slow and the pipeline

architecture is destroyed due to the feedback. As a result, a dedicated circuit is

constructed in order to duplicate a single data four times,

multiplications on a single data can be done.

data

MUX —, MUX —,

(a)
Figure 6.8 - (a) block diagram

H buffer | . J
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MUX H buffer |—

MUX —,

(b)
parallel-to-serial shift register in synchronous design, (b) block
diagram of data replicator
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The idea of the data replicator is similar to that of the parallel-to-serial shift register
in synchronous design, which is shown in Figure 6.8(a). However, it is not suitable
to implement the parallel-to-serial shift register in asynchronous design. The first
reason is that flip-flop does not fit the style of the new asynchronous architecture.

Also the single stage parallel-to-serial structure requires more difficult control.

In the data replicator, which the shown in Figure 6.8(b), multiplexers are used
instead of flip-flops and the structure is divided into two stages. Since the
multiplexers can only handle one of the two inputs every time, buffers are also
included for temporarily storage purpose. In this structure, data in the four input
paths will quickly be transferred to the next stage by the multiplexers or stored in the
buffers, and then the next data can be inputted. However, it is necessary to ensure
that all data must be sent out in the single stage parallel-to-serial shift register before
next data comes in. Therefore, the control of the data replicator is simpler and has

less overhead, and thus allows faster duplication on data.

6.2.1.4 DCT Coefficients Memory

As mentioned in the previous section about the distributed arithmetic, ROM is not
suitable to be used in asynchronous design. In order to pre-store the DCT
coefficients for the multiplication, a new logic cell is used, which is shown in Figure

6.9(b).
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Figure 6.9 - (a) normal basic FIFO cell, (b) modified basic FIFO cell, (c) basic DCVSL structure
of pre-storing data

The main difference between the new cell and the normal basic FIFO cell, which is
shown in Figure 6.9(a), is the addition of transistors M| and M2. Initially when the
system is being resetted, the reset signal is high and the acknowledgement signal
becomes low. For the normal basic FIFO cell, it enters the Precharge phase and the
output becomes logic low. After the reset has finished, it will go into the Enable
phase and wait for the input data. Since charge is still kept at the floating node, the

output of the normal basic FIFO cell is still kept low.

However for the modified basic FIFO cell, although the acknowledgement input is
low, it is not in the Precharge phase as transistor Ml is turned off and M2 is turned
on by the delayed reset signal. As a consequence, a pull-down path is created and
the output is kept in high. When reset is finished, the next stage will go to the Enable
phase but the output of the modified basic FIFO cell is still kept high due to the
delayed reset signal. As a result, this high output, which presents having a data of
logic one, requests the next stage to receive the data. As a result, a data of logic one
can be sent out. Owing to this feature, the modified basic FIFO cell can be treated as
a memory cell of either pre-storing logic high or low, as shown in Figure 6.9(c). By

connecting N memory cells in parallel with a handshake cell, it forms a single FIFO
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Stage in which a N-bit data is pre-stored. The DCT coefficients memory is
constructed from these FIFO stages with pre-stored DCT coefficients according to

the required sequence listed in section 6.2.1.2. An example of the DCT coefficients

memory in the upper path is shown in Figure 6.10.
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Figure 6.10 - DCT coefficients memory in upper path

When the delayed reset signal becomes zero, then transistor M| is always turned on
while M2 is always turned off. As a result, the modified basic FIFO can be treated as
a normal basic FIFO cell Therefore by applying the cyclic feature in this DCT
coefficients memory as shown in Figure 6.10 - the DCT coefficients can be recycled

and can be used repeatedly.

6.2.2 Combination of IDCT to 1D DCT core

Similar to the ID DCT, the ID IDCT can also be implemented by similar
architecture. Referring to Equation 3.7 and Equation 3.8, they can be divided into

two stages as the following equations,

X | B A 01 pg\ my I'DE F GI__]

g - C A and —1351-G -D-FY,

5, A . B *Yl S ME-D G E *1V, ‘ Equation 6.11
A-BA-CY, S, G-F E -DK
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-~ Tp r |

_1 r
+'J4 S -SA
= Mj4Ss and

X — X o= A-RE -Equation 6.12
Sk+AL Ul k-v

Referring to Equation 6.11 and Equation 6.12 > the operations of the ID IDCT are
similar to that of ID DCT, but different in order. The ID IDCT first requires a
matrix multiplication, and then followed by addition and subtraction. Therefore for
IDCT, the pre-processor is eliminated while a post-processor is added after the
multiplier-accumulator, which is shown in Figure 6.11. This post-processor is
responsible for the operation according to Equation 6.12, and it consists of an adder

and subtracter which is the similar as the pre-processor.

1D IDCT CORE I

|I - 6 I|
Data (pixel) , [ A . fl —\ 1 "~ K DCT
119 I A 1 -v~ | »~ A output

| D o |
| Q. |

Figure 6.11- Block diagram of the IDCT

By comparing Equation 6.11 to Equation 6.2 and Equation 6.3, their structures are
the same and thus both the multiplier-accumulators can share on the same hardware.
Therefore, the ID IDCT can also be performed on the ID DCT core by adding a
post-processor at the end of the original ID DCT core. Switches are also inserted
inside the core so as to select the path for performing DCT or IDCT. As a result, the

overall architecture of the ID DCT/IDCT processor is shown in Figure 6.12
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Figure 6.12 - Overall architecture of the ID DCT/IDCT processor

One more modification is made on the DCT coefficients memory. The DCT
coefficients of DCT and IDCT are different in the upper path as the matrix
multiplications are different, which is shown in Equation 6.2 and Equation 6.11.
Therefore the content of the DCT coefficient memory needs to be changed when
performing IDCT. As the pre-storage of the modified basic FIFO cell only depends
on the delayed reset signal, it is not necessary to use an additional DCT coefficients
memory to store the additional IDCT coefficient. The change of the DCT
coefficients can be done by adding some logic gates to control the presence of
delayed reset signal in the memory cell, which is shown in Figure 6.13. As a result,

the pre-storing data can be changed for DCT and IDCT.

~dct reset reset dct/idct

Y vy y Y

| \Y 1 | 1r 1
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| ! L J :
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"is pre-stored in IDCT T is pre—stored in IDCT

Figure 6.13 - Modlflcatlon of memory cell of pre-storing different data in DCT and IDCT

Page 84



Chapter 6 - DCT Implementation on Dedicated DCT Processor

In performing the IDCT, the order of the input and output sequence is changed too.
The input sequence of the IDCT is [Yo, Yi, Y2, Y3 Y4, Y5, ¥5, Y7] and the output

sequence is [xo, X7, Xi, X6, X2, X5, X3 X4.

6.2.3 Accuracy

According to the IEEE specification [56], the 2D IDCT should achieve certain
accuracy in order to prevent the quality degradation in the reconstructed signal after
the inverse transform. Therefore in this design, the bit length of the different parts

should be considered in order to achieve the specified accuracy.

By considering different combinations of the bit length of the DCT coefficient,
transpose memory and multiplier's output with the verification of the C program,
Table 6.2 shows the bit length of the different parts of the DCT/IDCT processor.
The architecture is shown in Figure 6.14. According to this result, truncations are

needed at the outputs of the multipliers and the ID DCT/IDCT core. Truncation on

the multiplier's output can be merged inside the multiplier as the last stage of the bit-
parallel multiplier is an adder, only a little modification is required. However for the
output of the DCT/IDCT core, a dedicated circuit for the truncation is added in order

to truncate and round up the result.

Bit length
Input —  9/12(DCT/IDCT)
Output 12/9(DCT/IDCT)
Multiplier's output in the row operation 19
Transpose Memory 15
Multiplier's output in the column operation 20

Table 6.2 - Bit length in different parts of the 2D DCT/IDCT processor

Page 85



Chapter 6 - DCT Implementation on Dedicated DCT Processor

~~1D DCT/IDCT core for row operation 1D DCT/IDCT core for column operation
15-bit DCT/IDCT 15-bit DCT/IDCT
Coefficient Coefficient
1 N
ryn I X
[ NI B NP il output
9-bit | 10-bit 1 _1 Memory 2 # 8 | 2 é — ~ A
6 £B Sw If =j g 3 X
(12-bit) A (12-bit)LI1_J(19-bit)tU  (15-bit) (15-bit) L - |(15-bit)] ~ |(20-bit)|%’| o (9-bit)

Figure 6.14 — Bit length in different parts of the 2D DCT/IDCT processor

Table 2 shows the IDCT error produced by using the architecture shown in Figure
6.12 with the bit length provided in Table 6.3. It shows that the precision meets the

IEEE specification.

Error Error Error
- Spec.  [-256, 2551 [-5, 51 [-300.3001
Maximum Pixel Error 1 1 j J
Overall Mean Error 0.0015 "~0.Q00777 ~~0.0Q0856 0.000675
Overall Mean Square Error 0.02 —0.009842 “ 0.009237 0.008331
Maximum Pixel Mean Error 0.015 1.004300 ~ 0.004400 0.004700
Maximum Pixel Mean Square Error 0.06 0.012300 0.012600 k010600

Table 6.3 — Accuracy of the 2D DCT/IDCT processor

In the VLSI implementation of the 2D DCT/IDCT processor, in order to reduce the
cost, the ID DCT/IDCT core and the transpose memory are separated into two chips.
The structure of the ID DCT/IDCT core for the row and column operation is unified
such that a single 1D DCT/IDCT core can be used for both operations, and the 2D
DCT can be done by cascading the ID DCT/IDCT core with the transpose memory,
and then connect to another ID DCT/IDCT core again. As a result the bit length is
further modified in the ID DCT/IDCT core as shown in Figure 6.15. In this new
configuration, the unified DCT/IDCT core can perform four different mode of
operation, which is listed in Table 6.4. The unused bits at the input are needed to fill

with zero while the unused output bits can be ignored.
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DCT/ Row/Column Number of IUsed Range of iNumber of IUsed Range of
IDCT Operation Input Bit  Input Data Bus Output Bit Output Data Bus

A 9 Datainr 14:61 15 Dataoutr 14:01
DCT Column 15 Datain[14:01 12 —Dataout[ 14:31
IDCT Row n Datain[14:31  |I5 ~Dataout[14:Q1
IDCT iColumn [15 |Datain(] 140 19 |Dataoutri4:61

Table 6.4 — Four different operation modes of the unified ID DCT/IDCT core
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Figure 6.15 - Unified structure of ID DCT/IDCT core

The result and performance of this ID DCT/IDCT core will be given in chapter 7.

6.3 Transpose Memory

The purpose of the Transpose Memory is to store the result of the row operation,
then re-order the data and send them out for the column operation. The name
"transpose"” means that the re-ordering is similar to the transpose of matrix, in which
the data in the rows and columns are exchanged. In order to be used in the 2D 8x8
DCT/IDCT operation, the transpose memory should be capable of storing 64 15-bit

data, and re-ordering the data for the column operation.

In order to fit the architecture of the ID DCT/IDCT core, the transpose memory is
required to have two different modes of operation. This is because the input and
output sequences are different in the DCT and IDCT operation in the proposed ID

DCT/IDCT core, which has been mentioned in section 6.2.1.2 and 6.2.2. The
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transpose memory should be able to rearrange the data in two different orders such

that the rearranged data sequence fits the corresponding operation.

To avoid changing both the write and read order at the same time, the write order of
the transpose memory in both operations are set to be the same. The output data of
the ist stage ID DCT/DCT core (row operation) is configured to be written into the

transpose memory in row-wise order, which is shown in Figure 6.16.

rCNICO = IOCONOO
c cccccecec
EEEEEETEE
0 0000 OGO OO

row 1 i 2 [3 im ing iM Qg
row 2 iPg iHo [iin,” In3inA" in"g
row 3 g

row 4

row 5

row 6 -

row 7 - - inssings

row 8 |[)G8[ [D] [I'®] [I4[~2[ 8"

Figure 6.16 - Write order of the transpose memory

As the write order is fixed, the read order of the data from transpose memory should
be altered according DCT or IDCT operation. No matter in which mode of
operations, the data are outputted in column-wise order from the transpose memory.

However, their orders are not the same as shown in Figure 6.17.
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Figure é?L)i — Read order of (a) DCT operation, (b) IDCT (gpe)ration

6.3.1 Architecture

Figure 6.18 shows the block diagram of the transpose memory. It consists of a
write/read address generator, two RAM blocks and two multiplexing networks.
Although it is only required to store 64 data, two 64x15-bit RAM blocks are used in
this design. This is because if a single 64x15-bit RAM is used, the second row
operation cannot be started immediately after the first row operation as data are still
stored inside the RAM for the column operation, data cannot be written into the
RAM until the column operation is completed. As a result row and column operation
cannot be carried out simultaneously and thus the performance is poor. If two RAM
blocks are used, the result of the second row operation can be written into the RAM
block 1, and the data stored in RAM blockO is used for the column operation. Since
the computation time of the row and column operation are the same, the roles of the

RAM blocks can be exchanged after the current row and column operation are
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completed. As aresult, both operations can be run simultaneously and the whole 2D

DCT/IDCT operations can be run non-stopping.

, \

K ~ " 64x15bit B
data > o __K RAM __K ~
K I > BlockO W I
| 1 WWwW
Write/Read k ~ ~ /
Address f ~ t
Generator i A =

Figure 6.18 - Block diagram of transpose memory

The multiplexing networks are built by multiplexers and demultiplexers. The first
multiplexing network is responsible for scheduling the flow of data and address to
the two RAM blocks, and thus the write and read operations of the two RAM blocks
can be controlled. The second multiplexing network is responsible for detecting and

collecting output data from RAM.

In order to ftirther improve the performance of the Transpose Memory, the

architecture of the RAM block is further modified as shown in Figure 6.19.
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Figure 6.19 - New structure of the transpose memory
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In this modification, an interleaving technique is used. The single 64x15bit RAM

blocks is replaced by two 32x15bit RAM block with a multiplexer and
demultiplexer. In write operation, the demultiplexer delivers the write address and
data to two 32x 15bit RAM blocks alternatively. As a result, the time allowed for the
write operation is doubled due to the interleaving policy, and thus the performance
requirement of the 32x15bit RAM block is relaxed. However, area is the trade off of

this modification.

6.3.2 Address Generator

The address generator is composed of two units, which are the write address
generator and the read address generator. Besides from generating address for the
write and read operations in the RAM blocks, they also control the switching of the

multiplexing networks.

Since 64 data can be stored in a RAM block, 6-bit RAM address is required as
26=64. The structure of the address generator is similar to the DCT coefficients
memory, it uses memory cell to pre-store the RAM address. Instead of directly
storing the 64 6-bit addresses, the address is split into 2 parts and pre-stored by two
cyclic FIFO memories. An example of the write address generator is shown in

Figure 6.20.
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Figure 6.20 - Write address generator

In this configuration, the number of data needed to be stored in the address generator
can be reduced and thus the area can be reduced too. Read address generator also
has the same architecture as the write address generator. However, the addresses
stored in the read address generator are different for the DCT and IDCT operation as
their input and output sequences are different, as described in section 6.2.2. The
change of the pre-stored addresses uses the same method as the one used in DCT

coefficients memory.

Figure 6.21 shows the operation of the transpose memory. Initially the row operation
is required to be carried out first, i.e. a write operation on the RAM is required. As a
result, the write address generator controls the multiplexer to send the write address
to RAM blockO. At the same time, it blocks the read address from entering RAM

blockO and switches the input data to RAM blockO, which is shown in Figure

6.21(a).
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Figure 6.21 - Operation of the transpose memory

After the first row operation is completed, the second row (write) operation and the
first column (read) operation are started at the same time. By changing the
controlling signal in the multiplexing network, the read and write addresses are
transmitted to RAM blockO and blockl respectively, and the output data can be
collected at the output side. This is shown in Figure 6.21(b). As a result, both row
operation and column operation can be run concurrently. After these two operations
are completed, the controlling signals are altered such that the flow of the addresses
is changed and the role of the RAM blocks is also changed, as shown in Figure
6.21(c). The controlling signals are altering after every row and column operations,
and thus the roles of the RAM blocks are alternating repeatedly. This allows the 2D

DCT/IDCT runs continuously and simultaneously without any user's control.
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6.3.3 RAM Block
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Figure 6.22 - Block diagram of the RAM block

The RAM Block is basically a SRAM. Its structure follows the traditional design
which consists of a column address decoder, a row address decoder and 2 SRAM
banks. Each RAM bank is capable of storing 16x15 bit data. The structure of the

RAM block is shown is shown in Figure 6.22.

There is one difficulty in using SRAM in asynchronous design, which is the
completion detection. It may have no problem in the read operation as the presence
of the data at the output representing the completion of the read operation. However,
there is no related signal representing the completion of the write operation. As a

result, additional circuits are required so as to detect the completion.

There are several methods to detect the completion in SRAM. One of the methods is
the use of delay element [57]. In this approach, it is assumed that the write operation
must be finished within a certain period of time. Therefore a delay element can be
used to delay the write request signal, and the delayed write request signal can be

acted as the completion signal. Although this method is simple, it provides a worst
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case performance. Another method is the use of current sensing technique
[57][57][59]. Since the current drawn will be decreased after the operation, the
completion can be known by sensing the current drawn from the power supply in
RAM block. However, this technique is difficult to implement and the result may
not be accurate. In our design, a monitor cell is used to detect the completion of the

write operation.

The structure of the monitor cell is shown in Figure 6.23(b). It is treated as an
additional SRAM basic cell and placed inside the bit column of the SRAM. By
comparing with the normal SRAM cell structure, which is shown in Figure 6.23(a),
the monitor cell is actually composed of two SRAM basic cells with two additional
pMOSs. The purpose of the additional pMOSs is forcing the two SRAM basic cells

to store complementary values when the monitor cell is not yet enabled.

enablej-J32 X
-~ | |
| p— I J monitor
data_p | I~ ~ | AN—edata_n
pi U i S RAMI
A A “ esic oall ~*
(a)
aek AN RAM
~r ‘basic call —’
>—| —C 33—
data ps—I“ |~ — ~ | H—dan ~l | |
hu~Ur = [ li
A A "_ d]'e |
Hf L — FRAM |
J—IZzLT — 177 | M basicodl |
AR R A A A
A A data p data n

(b) (c)
Figure 6.23 - (a) SRAM basic cell, (b) monitor cell, (¢c) monitor cell in a bit column of SRAM
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When there is a write operation, the monitor will be enabled and will perform the
write operation. Since the write operation causes both of the SRAM basic cells
inside the monitor cell to store the same value, either one of the values in the SRAM
basic cell will change and thus the change can be detected by the NOR gate. This
signal will be sent out to indicate the completion of the write operation. Due to
geometrical reason, the monitor cell is placed at the top of the bit column of the
SRAM, as shown in Figure 6.23(c), in order to prevent the monitor cell from being
written before the normal SRAM basic cell. Also due to the same reason, the
detection of completion is only required on bitO and bit14 of the SRAM banks as

their write operation is the slowest among all the bits.

The advantage of this method is that the monitor cell can be treated a normal SRAM
cell which is simply placed in the bit column, it will not cause a large modification in
the traditional architecture of RAM block design. Also it directly monitors the write
operation, and the completion signal is immediately generated after the write

operation is done. As a result, the average case performance can be achieved.

The result and performance of the transpose memory will be given in chapter 7.
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Transistor Count
Ring Oscillator

Timer - Counter A
Timer - Latch

Timer - Comparator 142
Acalibrate Circuit 124
Operation Monitoring Circuit 90
Voltage Sensor A
iTotal 917

Table 7.1 - Transistor count on different units of Refresh Control Circuit
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Figure 7.2 - Simulation result of the Refresh Control Clrcwt

Furthermore, the power consumptions of different parts are estimated from the
simulation result, which is shown in Table 7.2. The average current drawn by the
whole Refresh Control Circuit is about 15 uA when the voltage sensor is not
activated, and is about 3.6 mA when the voltage sensor is enabled. Since the voltage

sensor is not operating all the time, the percentage shown in Table 7.2 is not directly
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proportional to the average current, but is proportional to the current drawn through

the whole process.

Average current Percentage

Ring Oscillator 12.5053 uA~~ 10.06%
Timer - Counter 0.4901 uA— 0.39% —
Timer - Latch 0.6007 uA— 0.48%—
Timer - Comparator 0.2541 uA~~ 0.14%
Recalibrate Circuit 0.1685 uA 0.20%
Operation Monitoring Circuit 0.2662 uA 0.21%
Voltage Sensor* 3.5204 mA 88.5078%

~Average current of voltage sensor when it is enabled
Table 7.2 - Current drawn by the each parts of the Refresh Control Circuit

Figure 7.1 shows the simulation result of the ring oscillator. It shows that the ring
oscillator can oscillate with a period of around 26 us. Figure 7.2 shows the

simulation result of the Refresh Control Circuit and its function verified.

The purpose of developing the Refresh Control Circuit is to reduce the performance
degradation due to the pull-up path. In order to investigate the performance
improvement from the traditional technique, three multipliers were built so as to
provide a comparison. All the multipliers were built in the asynchronous pipeline
architecture and based on the bit-parallel algorithm. The first multiplier uses the
normal domino logic without any pull-up path. The second one uses the domino
logic which a pull-up path as shown in Figure 4.2(b). The last one is using the
technique of the Refresh Control Circuit, and its logic structure is shown in Figure

4.4(b).

Three multipliers were simulated by HSPICE under 5V supply voltage. Since they

all are asynchronous circuits, the simulations were done by sending inputs to the
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multipliers continuously, and their intrinsic throughputs and latencies are then

measured.
Throughput Latency —
Without pull-up path 2.8721 ns 18.7925 ns
With pull-up path(traditional)  3.0306 ns (+5.819%) 20.3573 ns (+8.326%)
Refresh Control Circuit |2.9090 ns (+1 *105%) 19.0668 ns (+1.459%)
Table 7.3 - Performance of multipliers by different techniques
» ~_ refresh control circuit technique
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Figure 7.3 — Output signals of different multipliers

Table 7.3 shows the throughput and latency of the three multipliers and Figure 7.3

shows the signal outputs from the different multipliers.

7.2.2 Discussion

From Table 7.1, it shows that the new proposed technique provides a better
performance than the traditional technique. It provides less than 2% performance
degradation compared with the multiplier using the ordinary domino logic, while the
traditional technique degrades the throughput by 5.8% and latency by 8.3%. It
indicates that the goal of the Refresh Control Circuit is achieved. It provides a self-

timed and reliable method for solving the problem of the charge leakage.
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Regarding the power consumption of the circuit, voltage sensor consumes near 90%
of the total power. This is because the differential amplifier and sense amplifiers
always allow current to flow through. Future work can be focused on minimizing the
power consumption of the voltage sensor by using other architectures which have
lower power consumption, or using other technique to detect the charge leakage on

the floating node of the dynamic logic.

Although all the discussion on the refresh control system is based on the dynamic or
domino logic and the comparison is done on the asynchronous circuits, it is not
restricted to be used this technique on this area only. Other logic types or circuits
which also encounter the charge leakage problem can employ the Refresh Control

Circuit technique. However, the method of sensing may need to be modified so as to

suit the application.

The disadvantage of this technique is the inclusion of the Refresh Control Circuit in
the design, and one or two more transistors are added on each logic cell. As a result
the area of the whole system will be increased and the compact property of the
dynamic logic is somewhat degraded. It is not suitable to apply the Refresh Control
Circuit technique on a compact system with which the area is concerned. However,

for a large system and the speed of the operations are concerned, this technique can

be employed.
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7.3 Programmable DSP Processor

7.3.1 Implementation Results and Performance

In chapter 5, it has shown the dataflow of ID DCT program onthe programmable
DSP asynchronous processor. It requires 50 steps for the processor to performthe
whole ID DCT operation. Since the size the processor is very large, it cannot be
simulated by HSPICE. On the other hand, all the basic cells were simulated in
HSPICE under different loading conditions, and the parameters were extracted to
construct a Verilog HDL model for each logic cells. The performance ofthe DCT
implementation is estimated by using the Verilog models to simulate a 9-bit version
of the proposed processor. Table 7.4 lists the bit length information of the 9-bit

processor.

External
Primary 10 of the programmable 9 bits
DSP processor

Instruction Input 10 bits
Internal Functional Units
"Adder 9 bits
"Abtractor ~9bits
Multiplier 9 bits (output is truncated to 9 bit”
FIFO Memory 9 bits

Table 7.4 - Bit length information of the 9-bit programmable DSP processor
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Figure 7.4 - Simulation result ofthe programmable DSP processor

From the simulation result, the latency between the 8 pixel inputs and the 8 outputs is
around 400ns. Since the processor is pipelined, the next DCT operation can be

started even the current one is still processing. As a result, the 8-point DCT
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throughput can reach 352ns, as shown in Figure 7.4. Also, the input frequency is
around 130MHz(7ns). Figure 7.5 shows the timing diagram of the DCT operation
and Table 7.5 shows the comparison of the ID DCT core performance with other

VLSI implementations.

)> time
i~e a H
in Processing | out i b A istoci operation
[ b * in Processing out 2nd DCT operation

a : latency ~Processing”

b : 8-point DCT throughput

in: 8 pxiel inputs oooooooog

out: 8 DCT outputs Ooododao-

Figure 7.5 - Timing diagram of the DCT operation
Operating
frequency Pixel throughput
Design Year Tech. Processing Unit (MH2z) (Mpixel/sec)
Cheng et. al. 2000 0.6u 9 MUL, 21 ADD TN TN
Hsiao et. al. 1999 0.6u 3 MUL, 5ADD 40 40
m
Jang et. al. [33] 1994 0.8u 4 MUL, 1 100 100
Accumulator, 1 pre-
and post processor

This DSP 0.6u 1MUL, 2 7 227*
processor |ADD/SUB

Note : [1] and [3] are 2D DCT chips which use ID DCT cores and transpose RAM to handle the 2D
transform by using the row-and-column decomposition method[8][9]. Normally, the critical path
exists in the ID DCT core as it consists of many arithmetic and control units. Therefore, the speeds
of the ID DCT cores are assumed to be the same as their 2D transform.
*Average result (352ns / 8 =44 ns/pixel, 1/44 ns = 22.7Mpixel/sec)

Table 7.5 - Performance comparison of different ID DCT implementations

The layout of the 9-bit version of the processor is shown in Figure 7.6. It has 153k
transistors and is designed by using standard cells based on AMS 3M IP 0.6u CMOS

technology. The core dimension is 4.7mm X 4.2mm.
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Figure 7.6 - Layout of the 9-bit programmable DSP processor

7.3.2 Discussion

By the comparison with other dedicated designs as shown in Table 7.5, a worse
throughput and latency obtained by the general purpose processor with only 3
arithmetic units is understandable as this is a tradeoff of the flexibility. As all the
internal arithmetic units are occupied for the current DCT operation, the next 8 pixels
can only be sent to the processor nearly at the end of the current operation. This is
the reason explaining the slowness of the 8-point DCT throughput. Moreover, there
are two main reasons for the large latency. First, the limited number of arithmetic
units causes more data queuing. Second, the results from the arithmetic units are
required to be fed back to the switching network for the next operation, while in
other VLSI implementations, the arithmetic units are directly connected to the next
arithmetic units of the following stage. Unfortunately, this cannot be avoided in a

general purpose processor. A better latency and throughput of the DCT operation
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can be achieved if two or more processors are cascaded serially » or more arithmetic
units are connected to the switching network. Both changes allow more operations
to process concurrently and reduce the data queuing problem. In addition, further

improvement can be made in the switch cell in order to reduce its latency.

On the other hand, the high input rate shows that this processor is capable of
operating over IOOMHz, and it is competitive with other VLSI designs. Also, this
frequency indicates the high throughput rate of the switching network. Furthermore,
an asynchronous-to-synchronous 10 conversion interface is included in this design
for the purposes of testing and measuring. If this interface is removed, the

performance of the processor can be further improved.

Due to the size of the FIFO memories, the 2D DCT cannot be implemented in this
processor. On the other hand, if the size of the FIFO memories is increased or an
additional memory unit is added, the 2D DCT can be implemented. Based on this
assumption, the performance of the 2D DCT implementation was estimated. By
using the row-and-column decomposition method, the 2D DCT can be decomposed
into sixteen ID DCT operations. Therefore, the computation time for 2D DCT

operation on this programmable DSP processor can be obtained by Equation 7.1.

2D DCT computation time — 8-point DCT throughput x 16 - Equation 7.1

=352ns X16
=5632 ns

Therefore, the average pixel throughput is

Average Pixel throughput = 2D DCT computation time
A number of pixel - Equation 7.2

—.5632ns +64
=11.3  Mpixel/sec
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Processing unit Clock IPixel throughput

Design Year Tech. (MHz) (M pixel/sec)

T1 C6201 [ 381 7 7 "2MUL, 6ALU 20~ 5663

upd77016 [611 1993 0.8u "H~C - >1 ALU ~ 2.6

V830 [62] 1995 / RISC with 1
MAC

Chang et. al. [381 2000 "g.6 TalLU 33 — 1.7

This DSP processor AN | MUL, 2 7 TI3
IADD/SUB

Table 7.6 - Performance comparison of 2D DCT implementation on different programmable

processors

Under the same condition of having limited resources for computing, the results
shown in Table 7.6 indicate that this programmable DSP asynchronous processor has
a good performance when compared with other general purpose processor designs.
This result shows the dataflow architecture and the use of switching network favour
the asynchronous processor design, and a competitive performance can be achieved.
Future development on this processor can be focused on the 2D DCT operation, or
other complex DSP algorithms. Although the estimated 2D DCT performance is
good, it still cannot meet the requirement of processing the MPEG=2 or HDTV signal

in real-time.

Obviously, this 9-bit processor will introduce a large error and cannot achieve a
reasonable accuracy in the DCT operation. A better accuracy can be obtained easily
by increasing the word length of the processor. Increase in word length on the
switching network and FIFO memory will not cause a performance degradation as
they just pass the data without processing. For the arithmetic units which are adder,
subtracter and multiplier, increase in the word length causes extra pipeline stages as
they are implemented by the carry-look-ahead and bit-parallel algorithm and
constructed in the asynchronous pipelined architecture. Thus the throughput will not

be affected but the latency will increase. As a result, the increase in word length will
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not directly affect the throughput of the processor, but the trade-off is the latency and

chip size.

7.4 ID DCT/IDCT Core

7.4.1 Simulation Results

Similar to the case of the programmable DSP processor, the whole 1D DCT/IDCT
core was failed to be simulated by the HSPICE due to the size problem. As a result,
the whole core was simulated by using the Verilog models and the correctness of the

operation on the core is verified.

In order to have a more accurate performance analysis on the processing units in the
ID DCT/IDCT core - all the processing units were simulated separately by HSPICE
under 5V supply voltage. Due to the limitation of processing power of workstation
and HSPICE, only the parasitic within the standard cells is considered while the
parasitic information of the routing is not included in the simulation. The simulated
performance of differentprocessing units are listed in Table 7.7.

Tested frequency Required frequency

(MHz) (MHz2)
15-bit adder 250 98 —
15-bit subtracter 250 98
16-bit data replicator 400* — 196
DCT coefficient memor}® 196.07** — 196
Multiplier 220*** 196
20-bit adder 250 96
21-bit adder 250 96
22-bit adder 250 96
22-bit subtracter 250 — 96
Truncation unit 250 %

* The output rate of the data replicator
** Self-generatedfrequency
*"MTransistor-level simulation only
Table 7.7 — Performance of different processing units on the ID DCT/IDCT core
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Figure 7.7 - Simulation result of the DCT coefficients memory

All the processing units, except the multiplier, data replicator and the DCT
coefficients memory, were simulated at 250MHz of the data input rate. This is
because according to the architecture of the ID DCT/IDCT core shown in Figure 6.9
in chapter 6 and discussed in section 6.2.1.2, the throughput of the ID DCT/IDCT
core is greatly depended on the speed of the multiplication as it is the bottleneck of
the whole operation. From the simulation results, the DCT coefficients memory only
generates the DCT coefficients at the maximum frequency of 196MHz, as shown in
Figure 7.7. As a result, the maximum rate of multiplication can only be 196MHz,
and thus all other units are only required to work equal to or less than 196MHz in
actual processing. To ensure the processing units can meet the requirement, a higher
frequency which is 250MHz is chosen to verify the their operations. For the
multiplier, it is found that it can work at 220MHz. However it is only the simulation
result in the transistor-level simulation in which the all parasitic information is not
taken into account. This is because the circuit is very large. The simulator HSPICE
and workstation were unable to handle the simulation if the parasitic information is
included. The rest of the simulation results show that other units are working
properly at or below 250MHz without error. Based on this simulation result, the
throughput of the whole ID DCT/IDCT core should be able to work at 98
Mpixel/sec, which is half of the multiplication rate.
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Figure 7.8 — Layout of the ID DCT/IDCT core processor

The layout of the unified ID DCT/IDCT processor is shown in Figure 7.8. It has
334k transistors and is designed using standard cells based on AMS 3M IP 0.6u

CMOS technology. The core dimension is 6. 8mm x 7. 5mm.

7.4,2 Measurement Results

The testing equipments of the DCT/IDCT core include the IMS XL-60 IC Tester, HP
Infinium Oscilloscope and HP E3631A Triple Output DC Power Supply. The
functionality of the chip was tested by IMS tester, and all the functions (row and

column operation, DCT and IDCT) were verified and the chip is working properly.
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Figure 7.9 shows part of the captured Input and Output waveforms of DCT row

operation. Table 7.8 shows part of the input, measured and calculated data sets.
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Figure 7.9 — (a) input waveform of the DCT/IDCT core, (b) measured output waveform of the
DCT/IDCT core in DCT row operation
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Input Data Set  Input Data((Re-ordered) |Measured Result

Set 5 255,255,255,255,255,255,2

Set 1 255,0,0,0,0,0,0,0

M2 400000600

Sets 1,2,3,4,56,7,8

Set 4 180,0,0,0,0,0,0,0
55,255

90.125, 125.0625,

117.8125, 106,
90.125 > 70.8125 »
48.8125 » 24.875
0-0-0-00-0-0-0
12.75, -6.4375

0 -0.6875,
0--0.1875 -
0--0.0625

63.75 » 88.4375,
83.3125 > 14.9375 >

63.75, 50.0625
24.517.5625
721.25, 0,

0,0

0,0,

Im

|Calculated result —
90.1561 - 125.0501 >

117.7946 » 106.0124 >
90.1561 » 70.8352,
48.771921 > 248740
00,060,000

12.7279, -6.4423,

0--0.6735,
0~ -0.2009,
0--0.0507

63.6396,88.2707,
83.1492, 74.8323,
63.639% > 50.0013 >
34.4415 > 17.5581
721.2489 - 0,

0,0,
00>

IM

Table 7.8 — Input data, measured result and calculated result of the DCT row operation

During the measurement, the actual Input Acknowledgement was not measured as

it s duration is short and causes difficulty in the measurement. Instead of Input

Acknowledgement, a signal Done was measured. The signal Done is created by a

toggle flipflop which input is the Input Acknowledgement. As a result, the signal

Done is toggled in every Input Acknowledgement and it makes the measurement

easier. Figure 7.10(a) shows the creation of the signal Done from the Input

Acknowledgement while Figure 7.10(b) shows the timing relationship of the Input

Acknowledgement and the signal Done.

Q
Toggle
Input V FF
ACK
(a)

10Jut 1
ack W

D o n e a

(b)

Figure 7.10 — (a) construction of the Done signal, (b) timing diagram of the Input Request,

Acknowledgement and Done signal

The measurement shows the maximum frequency (throughput) of the DCT/IDCT is

around 76MHz. Figure 7.11 shows the measured Output Request of the DCT/IDCT
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chip by the HP Infinium Oscilloscope. The average current of the DCT/IDCT core
chip is about 1. 43A under 5V power supply, so the average power consumption of
the chip is about 7. 15W. Table 7.9 shows the performance comparison of the 2D

DCT/IDCT processor with other VLST implementations.
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Figure 7.11 - (a) measured waveforms of the Output Request (lower) and Acknowledgement
(upper) signal, (b) zoomed waveforms which shows the average throughput is 76 MHz
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Clock Pixel throughput

Design Year Tech. Processing unit (MHz) (Mpixel/sec)
Cheng et. al. [351 2000 a6u 9 MUL, 21ADD 100 100

Kim et. al. [641 1999 / “80  26.6
Johnson et. al. 1998 1.2u 7 7

(63 ]

Janget. al. [33]11994 0.8u 8MUL(DA) » 2 T = W

accumulator, 2 pre— and
post processors

Uramoto et. al. 1992 0.8u0 8MUL and T T
[32] accumulators, 2 pre— and

POSt processors
This processorsk lo.6u 14 MUL, 14ADD/SUB V/ 176

*Transistor-level simulation result
**Asynchronous design
Table 7.9 - Performance comparison of different 2D DCT implementations

7.4.3 Discussion

From the measurement result and Table 7.9, they indicate that the performance of
this 2D DCT/IDCT processor is competitive to other designs. Since there were only
few dedicated DCT/IDCT processors developed in asynchronous way previously,
one of the recent asynchronous design which is developed by Johnson [63] is chosen
for the comparison as it has similar architecture and the best performance among the
others. By comparing with his asynchronous design, our design can run faster at
about 36.9%. However, it should be noted that a more advanced technology has
been used in our design, a certain portion of the superior performance may be caused
by the benefits gained in the advanced technology. Although a direct comparison
cannot be carried out, this comparison can be treated as a reference that this
processor, the latest asynchronous DCT/IDCT processor, has improved performance

and superior than previous asynchronous designs.
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In comparison with the other similar synchronous DCT/IDCT designs, this
DCT/IDCT processor has better performance than [64], while worse than [35], [33;
and [32]. Although the performance is not as good as that of these synchronous
designs, this processor has less operation units while a similar performance can still
be achieved. This is because the operation units in an asynchronous system are not
required to work on the same frequency. If a certain operation unit has better
performance than other units, it can be scheduled to perform more operations by
sending more input data to it. However, this cannot be done in synchronous design
as all units must work in the same global clock frequency. This result explores the
benefit of using the asynchronous architecture in system design as it can utilize every

operation units in the system, and thus the number of operation units can be reduced.

However, the measurement result shows a performance deviation from the
simulation result, where the difference is about 22%. This deviation is properly
caused by two factors which are the temperature and the multiplier. For the
environment setting in the HSPICE simulation, the temperature was set to be the
room temperature. However in the actual measurement, it was found that the ID
DCT/IDCT core chip was very hot during the operation, and thus the temperature
was much higher than room temperature. The increase in the temperature is due to
the fact of high power consumption of this DCT/IDCT processor chip. As the design
of current chip s package is not good for the heat dissipation, temperature cannot be
cooled down effectively even a heat sink was added on the top of the chip. This
causes a large amount of heat generated from the chip but cannot be dissipated, and
thus the performance degradation is as a result. By setting the temperature at 90

degree and re—simulating the DCT memory coefficient memory again, the new result
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shows that the maximum operating frequency is lowered to around 168MHz (such
the multiplication rate is 84MHz). In this case, the difference between the simulation
and measurement result is more reasonable. The rest of the difference may be due to
extra delay caused by the parasitic of the routing, which is not included in HSPICE
simulation, and the difference between the parameters of the HSPICE models and the

actual fabrication process.

Another possible reason of causing large performance deviation is the multiplier.
Since the all parasitic information was not taken into account in the HSPICE
simulation, the actual performance of the multiplier may be much lower than
220MHz if parasitic was considered as well. However, this cannot be verified by

neither the simulation nor measurement.

In order to improve the performance of the current design, the modification of the of
the DCT coefficient memory and the multiplier must be considered. The limiting
factor on the speed of the DCT coefficients memory is the output feedback path. The
DCT coefficients memory is not only required to transmit the output to the
multipliers, but also send the output to the input of the DCT coefficients memory
simultaneously. This split-path introduces a large handshaking overhead and thus its
performance is limited. The reducing of the handshaking overhead can be
investigated in future, and thus the performance of the DCT coefficient memory, as
well as the whole DCT processor can be improved. For the multiplier, the
performance can be improved by building a PFA as a single standard cell. The
current implementation uses several basic logic standard cells to build the PFA. This

causes a large parasitic in the auto—placement and auto—routing process. Since many
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identical PFAs are used in the multiplier core, building the PFA as a single standard
cell can minimize the parasitic due to the routing, and also the silicon area can be

saved as well since the PFA can be built more compactly in this way.

For further analyzing the practicality of the asynchronous design, a comparison can
be made on the asynchronous and synchronous implementations of this ID
DCT/IDCT core. In the synchronous implementation, the bottleneck should no
longer be the DCT coefficients memory but in the multiplier. This is because DCT
coefficients memory can be implemented easily in synchronous design by using
ROM or counters, both can be run very fast as not many computations are required.
In the multiplier, the critical path is inside the carry generation, which is given by

Equation 7. 3 (same as Equation 5. 4)

Cout = A* B« Cin + {Cin +A. B) - Equation 7.3

The implementation of the Equation 7.3 in domino logic is shown in Figure 7.12(a).
For the synchronous implementation, Equation 7.3 is modified to Equation 7.4 as the

inverting static CMOS logic provides a faster response than the non—inverting logic.

Cout = A*B*Cm +P. {Cin +

= Cin « 7« (Cin + A*B) - Equation 7.4

According to Equation 7.4, the synchronous implementation of the carry generation

is shown inFigure 7.12(b). From the information provided in the 0. 6u standard cell
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databook [65], the delay which is under 25, C and 5V supply voltage of each logic

cell is extracted for the performance estimation.

CLK -c
N o
Cin— —Cin ~ V  0.30ns
1 AJF HL A 0,3gns_

it ] KB :

B~h- /- | reset

AK-Jr - AN21 |
\L~ 0.29ns 2.48ns

(a) (b)

Figure 7.12 — (a) carry generation in domino logic, (b) carry generation in static logic

Operating Frequency =1/ (longest delay) - Equation 7.5

=1/(0.3 +0.3+ 2.48)ns

=1/3.08ns

=325 MHz
The result of Equation 7.5 shows that the synchronous multiplier could run at about
325 MHz. However, this estimation doesn’ t include the worst case temperature,
supply voltage and clock skew. Inpractical, amargin of 50% or more is required in
the global clock frequency when compared with its performance in typical condition
due to worst case performance assumption in synchronous design. Therefore, the
performance of the synchronous multiplier should be around 216MHz (for 50%
margin), which should be similar to that of the asynchronous performance in typical
condition. And in overall, as the synchronous multiplier is limited to 216MHz, the
synchronous implementation of the whole ID DCT/IDCT core may be able to run
faster than the asynchronous implementation described in this thesis, but the

difference may not be so great. This result indicates that asynchronous design is

practical and the performance can be similar to synchronous design.
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Although the performance of this processor is good, the tradeoffs are the area and
power. In order to maximize the performance, DCVSL structure is used inside all
the processing units. This causes nearly a double of size to perform the same logic
function as other designs. Also, all operation units within the ID DCT/IDCT core
are deeply pipelined, especially the bitparallel architecture of the multiplier. The
deeply pipeline structure decomposes all the complex functions into simple logics
with several stages. As a tradeoff of speed, this causes more area are required to
implement the design. Furthermore, the handshake cell in the asynchronous circuit

also causes an additional size overhead to the synchronous circuit.

For the power consumption, the measurement result shows that the average power
consumption of the dedicated DCT/IDCT processor is about 7. 15W under 5V supply
voltage, which is an extremely high value compared with other designs. In order to
verify the correctness of the power consumption, each of the functional units was
simulated separately by HSPICE under 5V supply voltage. The simulation results

are listed in Table 7. 10.

Used in Current Current
DCT/ Operating  Current  Drawn in  Drawn in
IDCT/ Frequency Drawn DCT IDCT
Both Number (MHz2) (mA) operation operation
15-bit adder DCT 1 76/2 9.32 — 9.32 0
15-bit subtracter DCT 1 76/2 9.85 9.85 0
16-bit data replicator Both 2 76x2 28.33 56.66 56.66
DCT coefficient memory"™  Both 2 “ o T76x2 125.83 251.66 251.66
Multiplier Both 2 76x2 —47800 ~"6.0Q 956.00
20-bit adder Both — 2 76 32.45 ~64.9Q 64.90
21-bit adder Both “ 1 76 "Nn.82 ~Kn 33.82
22-bit adder IDCT 1 76/2 ~18.04 "o~~ 18.04
22-bit subtracter — IDCT— 1 76/2 18.05 ~0 18.05
Truncation unit Both | 1 | 76 15.00 ~ 15.00 15.00
Total
Power 1397.21 1414.13

Table 7.10 — Simulation results of power consumption of different operation units in the 1D
DCT/IDCT core
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From the simulation results, the total power consumption of the ID DCT/IDCT core
is about 6. 986W (1397. 21mA x 5V) and 7. 071W (1414. 13mA x 5V) in the DCT and
IDCT operation respectively. This results show that the power consumption is
consistent in both the simulation and measurement result. Therefore the power

consumption in the measurement is correct.

The main reason of large power consumption is due to the use of DCVSL structure.
Since both the true and complement value are presented in the DCVSL structure,
either one of the true or complement logic block must be discharged in each
Evaluation phase. Therefore every logic functional block must consume power in
each Evaluation cycle, which causes a constant and high discharge current. However
in singlerail design, which uses the true logic block only, there is no discharge
current if the pull-down path is not conducted during the Evaluation phase (the
output kept at logic zero in the domino logic). Since the pull-down path is conducted
occasionally, a singlerail design consumes less power than the DCVSL design in
average when performing the same logic function. In order to verify this, a single—
rail 15-bit adder is constructed for the comparison. Both circuits are simulated by
HSPICE under 5V supply voltage. Three different input patterns which are random
number, all zeros and all ones patterns are fed into the inputs of the adder at a
frequency of 76MHz to investigate the current drawn in different conditions. The

simulation results are shown in Table 7. 11.

Average current  Average current  Average current
drawn at random drawn at all zeros drawn at all ones

input (mA) input (mA.) input (mA)
DCVSL adder 20. 69 20. 34 20. 59
Singlerail adder 19.58 4. 33 18.90 -

Table 7.11 - Comparison of power consumption on DCVSL and single-rail adder
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Although the power consumption of this dedicated DCT/IDCT power is high, if there

is no data input, this processor consumes less power than other designs as no
transition will be occurred in asynchronous design when there is no request of

operation.

Future work can be focused on reducing the power and size of the processor. As
mentioned before, DCVSL structure is the main reason of the high power
consumption of this design. In order to reduce the power consumption while not
affecting the current performance, singletail design or conventional asynchronous
structure should be used in the non—critical parts, such as the adders and subtracters.
This modification not only helps to reduce the power consumption, but also helps to
reduce the area required to implement the design. For the area, since around 30% of
the area is consumed by the multipliers, as shown inFigure 7.8 » minimizing the size
of the multiplier can greatly reduce the size of the whole design. This can be done
by using Booth coding [66] or common sub—expression elimination [67] to reduce the
complexity of the multiplier design, and thus its size can be reduced. Also, grouping
the PFA into a single standard cell, which has been mentioned before, can also
reduce the overall area too. Moreover, the adders and subtracters are not the limiting
factor of the performance of the processor, area—saved or power—saved algorithm, for
example ripple adder, can be used in the implementations of adder and subtracter

instead of the size—consuming fast BLC algorithm.
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From the result shown in Table 7. 11, it indicates that the power consumptions of the
DCVSL adder are nearly the same in three input patterns, while those of the single-
rail adder are depended on the input patterns. Also the singlerail adder consumes
not more than half of the power of DCVSL adder in any patterns. This result shows
that the DCVSL structure consumes more than a double of power when compared
with usual structure, and this causes our design to have an extremely high power

consumption.

This result also shows the disadvantage of the domino logic (or dynamic logic),
which is the high dynamic power consumption. Although the singlerail adder has
relatively low power consumption design than the DCVSL design, it consumes
higher power than the static logic. In the design which uses the static logic with latch
or flip—flop, the power consumption should be relatively low and nearly the same in
constant input patterns (@ll zeros and all ones patterns). This is because for a
constant input pattern, the output of the logic gate will not change and thus there is
no switching during the operation. Therefore it consumes very little or even no
dynamic power under this situation. However in the domino logic, the requirement
of the Precharge phase causes the output to be precharged to logic zero in every
Precharge phase. As a result, if a logic block has an output of logic one in
Evaluation phase, it will consume power in the Precharge phase. This explains that
even having a constant input pattern, the domino logic still has switching during
operation, and it causes a relatively high power dynamic power consumption

compared with using static logic and latch or flipflop in conventional architecture.

Page 137



Chapter 7 - Results and Discussions

7.5 Transpose Memory

7.5.1 Simulated Results

Due the size of the whole design, different units of the transpose memory were
simulated separately by HSPICE under 5V supply voltage in order to obtain the

estimated throughput.
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Figure 7.13 — Simulation result of the write and read operation

Tested Frequency (MHz)

Write address generator 276%
Read address generator 276%
Multiplexing network 276
32x16bit SRAM block 182.22/230.31 —

"ASelf-generatedfrequency
Table 7.12 - Performance of different units in the transpose memory

Since the interleaving technique is applied on the write operation, the performance of

the transpose memory is now limited by the read operation of the SRAM block. As a
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result, the minimum operating speed of the whole transpose memory should be

230MHz.

The layout of the transpose memory is shown in Figure 7. 14. It has 11 Ik transistors.
The SRAM Blocks are full custom designs and other parts are designed by using

standard cells based on AMS 3M IP0.6uCMOS technology. The core dimension is

3. 9mm x 4. 2mm.
MA - Mefflea ‘ wIH AT w:mwfa:r V
| = JE‘,
- A Y \‘
| |
n n s S S K
1 &2. Column address generator 3. Input buffer
4 & 5. Read address generator 6, 8 and 9. Multiplexing network
7. Output buffer 10 - 11’ 12’ 13. 32xI6hit SRAM block

Figure 7.14 - Layout of the transpose memory

7.5.2 Measurement Results

The testing equipments of the transpose memory include the IMS XL-60 IC Tester,
HP Infinium Oscilloscope and HP E3631A Triple Output DC Power Supply, which
are the same of those of the DCT/IDCT chip. The functionality of the transpose

memory chip was tested by IMS XL-60 IC tester, and all the functions (DCT and
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IDCT) were verified and the chip is working properly. Figure 7. 15 shows part of the

captured Input and Output waveforms of TRAM.
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Figure 7.15 - (a) input waveform of the transpose memory, (b) measured output waveform of
transpose memory in DCT operation mode
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Although the simulation result showed that the transpose memory could be operated
at 230MHz, there is no method to verify this. This is because that there is a
limitation of the IMS XL-60 IC Tester that test vectors can only be generated at a
maximum rate of I00MHz. As a result, the transpose memory can only be verified
that it is working properly at 100MHz input rate. However, the transpose memory is
supposed to be worked with the DCT/IDCT core chip which is operated at 76MHz
only. This result at least can prove that the transpose memory can work well with the
ID DCT/IDCT chips. Figure 7.16 shows the Output Request of the transpose
memory at 100MHz. The average current drawn of the transpose memory at
100MHz under 5V power supply is around 350mA, which means that the average

power consumption is about 1. 75W.
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Figure 7.16 - (a) measured waveforms of the Output Request (upper) and Acknowledgement
(lower) signal, (b) zoomed waveforms which shows the average throughput is IOOMHz

7.5.3 Discussion

From the result shown in Table 7.12 and by the help of the interleaving technique,
And from the

the transpose memory can be operated continuously at 230MHz.

measurement result, it indicates that the chip has no problem in operating at

100MHz. As a result, the read/write operation at 76MHz in the transpose memory

was fulfilled and thus the whole 2D DCT/IDCT processor can provide a throughput

at 76 Mpixel/sec.

Considering the RAM block alone, its performance is restricted by the write

operation. The poor speed of the write operation is due to the slow detection of the

completion of write operation. Although the monitor cells are used to provide a fast
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detection of completion of the write operation, overhead exists on collecting all the

done signals from different monitor cells.

2 done signals is generated
from each 15bit word column

b t _ _ 4 ANIA A
1 1 | g | g
2 R D = | 3
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A V Fif

Columi7] Decoder &
Data Buffer

Figure 7.17 - Done signals generated from the 32x15bit RAM block

Figure 7.17 shows the done signals generated from the monitor cells in a 32x15bit
RAM block. It is required to handle a total of 8 done signals and thus the overhead is
introduced. If the detection method can be improved, a better performance in the

write operation can be achieved.

Although the goal of the transpose memory is achieved in this implementation, it has
limitations and the design still can be further improved. In the current architecture,
an interleaving technique is used so as to achieve a higher operating speed in the
transpose memory. However, the actual speed requirement of the 2D DCT/IDCT is
now limited by the ID DCT/IDCT core, which is 76 MHz, the transpose memory is
not necessary to be run at such a high frequency. Therefore, the interleaving
technique is not necessary and can be removed from the transpose memory. In this

case, the maximum operating speed of the transpose memory will be lowered to
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about 182MHz but is still capable of handling the 2D DCT/IDCT operation. In this

way, the area of the additional multiplexers and demultiplexers can be saved.

In order to realize the whole 2D DCT/IDCT processor design in asynchronous
pipeline architecture, the address generator and the multiplexing networks are all
built according to the methodology introduced in chapter 2. The simulation shows
that they can be operated in a very high frequency. However, they are not required
to work at such high frequency as the operation is limited to 76MHz, and thus the
benefit the asynchronous pipeline architecture cannot be gained in this
implementation. On the other hand, the address generator and the multiplexing
networks consume over 50% of the whole design, it causes the transpose memory to
be not cost effective. Therefore other approaches should be applied to the design of

transpose memory.

First for the address generator and the multiplexing network, the conventional
micropipeline structure can be used. As latch is used in the micropipeline, a counter
can be easily implemented and can be used to replace the area—consuming address
generator. Also, as the multiplexing network is not the critical unit regarding the
performance of the transpose memory, DCVSL structure is not necessary to be used.
As a result, the area of the transpose memory can be largely reduced. Also the
removal of DCVSL structure can help to reduce the power consumption which have

been discussed in section 7.4.3, the discussion part of ID DCT/DCT core.

Another possible approach is the replacement of the RAM block with an array of

shift registers, or storage elements. Since the sequences of the DCT and IDCT are
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fixed, the flow of the data in the transpose memory can be pre—determined.
Therefore hardwired connections with some multiplexers on the array of shift
registers may be able to perform the same function of the RAM blocks. Also it can

eliminate the address generator and multiplexing, thus the area can be reduced.

Therefore future improvement or development of the transpose memory can be based

on the above suggestions, then a more cost effective implementation can be

achieved.
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Chapter 8

Conclusions

In this thesis, several asynchronous methodologies have been discussed, and a new
asynchronous pipelined architecture is then presented. This new architecture uses a
novel, simple but fast handshake cell which adopts a more relaxed handshaking
protocol than in the traditional architecture. Furthermore, this new architecture
employs the DCVSL structure in logic design, and thus the complex latch can be
removed and the completion can be directly detected by the handshake cell. With the
new asynchronous pipelined architecture, the circuit developed has a simpler
architecture and has higher performance than the traditional methodologies. The
performance of the new asynchronous pipelined architecture has been proven by the

programmable DSP processor and the dedicated DCT processor

Since the dynamic logic is used in the new asynchronous pipelined architecture, a
new technique called Refresh Control circuit is introduced in this thesis to solve the
charge leakage problem. The new technique is a self—timed, self—calibrated and self-
operating circuit, it monitors the charge leakage in the dynamic logic and controls the
refresh process effectively in order to reduce the pull-up current. From the result, it
is shown that this technique causes less performance degradation than the traditional
technique, it is suitable to apply to a large system which requires a high performance.

Moreover, the Refresh Control circuit uses a general purpose monitoring scheme and
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thus it can be applied to other circuits which also encounter the charge leakage

problem.

Based on the new asynchronous pipelined architecture, a programmable DSP
processor and a dedicated 2D DCT/IDCT processor have been constructed.
Although the performance of the DCT implemented in the programmable processor
isnot as good as other dedicated designs, it still has a reasonable performance of
22. Mpixel/sec with a small number of operation units. And the impressive result
shown in the estimation of 2D DCT operation demonstrates the advantages of the
combination of asynchronous pipeline and dataflow architecture in circuit design,
and the use of switching network and parallelism in the processor architecture. This
result encourages the further development of the processor and the use of the

asynchronous pipelined architecture.

Finally, the development of the dedicated 2D DCT/IDCT processor is shown in the
thesis. This processor is fully pipelined and the throughput is 76Mpxiel/sec, which is
competitive with other high performance synchronous designs when considering the
number of operation units used. Also, this dedicated 2D DCT/IDCT processor fully
satisfies the IEEE specification and is capable of real—time processing on the MPEG—
2, or even the more computational demanding HDTV signals. The result indicates
that the asynchronous design with the new pipelined architecture can perform as
good as other synchronous designs, and the proposed DCT/IDCT architecture is
suitable for the asynchronous implementation. Furthermore the benefit of the

asynchronous approach in system design has been demonstrated, in which operation
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units can be fully utilized and the number of operation units can be reduced in the

whole system.

Both of the results of the programmable DSP processor and the dedicated
DCT/IDCT processor imply the high performance of the new asynchronous
pipelined architecture. In other words, the use of the new asynchronous pipelined
architecture favours the asynchronous approach in system implementation, especially

for the DSP applications.

However, it is found that there are area and power penalties in these designs. The
use of the DCVSL structure not only causes a large increase in the silicon area, but
also causes a high dynamic power consumption. Also, the inappropriate
architectures used in different operation units cause unnecessary area overhead and
cause the whole design to be inefficient in term of area. Designers should consider
different approaches in the implementation of different operation units ina system in
order to minimize the penalties, and further development of the new asynchronous

pipelined architecture can be focused in these two areas.
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Appendix

Operations of switches in DCT implementation of programmable DSP

processor

Note:

Switch 1 to 12 are located at the switching networking, their instructions can be
referred to Table 5. 1. Switch 13 and 14 represents the input demultiplexing networks
of the FIFO memory 1 and 2 respectively, while Switch 15 and 16 represents the
four—to—one multiplexers of FIFO memory 1 and 2 respectively. For switch 13 to 16
the register name means the FIFO set that the demultiplexing networks and four—to—
one multiplexers connecting to.

Switches ~|l

# In HI I 1121314151617 1I819j 101 I 121 13114“Coef(hlp]1 Qnai]m
) gt
1 X0 111 101 171 ipt X0 Ail, Sil
2 X7 3 2 7 input X7->Ai2, Si2
3 X1 1 0 7 input X1 -> Ail, Sil
4 X6 3 2 7 — input X6->Ai2, Si2
5 X3 1 g 7
6 X4 3 2 7 input X4->Ai2, Si2
7 X2 1 0 7 ¢ input X2-> Ail, Sil
8 X5 3 2 70" NN input X5->Ai2, Si2  ~
9 1 6 0 3 1 ~6 3 3 ANTI Ao(KO)-> Ail, Sil,
So(K4) ->regA2, Muli
10 1 2 0 1 6 3 Ao(KI)->Ail,Sil,
So(K5) -> regB2
11 3 2 2 1 3 ~~6 n Ao(K2) -> Ai2, Si2,
So(K6) -> regC2
12 3 2 2 1 3 6 n Ao(K3) -> Ai2, Si2,
So(K7) -> regC2
_13 n 1 1 1 RegA2(K4) -> Ail
14 B2 3 7 3 1 B2 RegB2(L5) -> RegB2, Ai2
g 3 7 Bl cO So(L2) -> RegBI, Muli
16 6 1 3 3 A2 co So(L3) -> RegA2, Muli
17 C2 3 1 1 0 1 0 D2 RegC2(K®6) -> Ail,
Ao(LO) -> RegD2
18 C2 3 7 1 0 0 1 0 1 D2 RegAl(K7) -> Ail, Ai2,
Ao(LI) -> RegD2
19 B2 3 3 1 RegB2(K5) -> Ai2
20 D2 1 1 7 RegD2(L0)->Ail,Sil
D2 3 3 7 RegD2(LIl) -> Ai2, Si2
22 1 2 6 n CO Ao(L5) -> RegAl, Muli
23 7 2 0 2 2 B2 co ~~ Ao(L6) -> RegB2, Muli
24 1 2 2 non cz2 ~n Ao(L7) -> Muli
25 1 5 2 n oA Ao(MO) -> Muli
26 g 3 0 Cl Mo(cl*Z4)->RegCl
27 A2 0 3 1 3 2 3 RegA2(L3) -> Si2, &
Mo(cO*LO) -> Sil
28 BI 0 2 0 3 0 ~0 RegBI(L2)-> Ail,
Mo(cO*L3) -> Ai2
29 B2 0 3 1 3 2 3 RegB2(L6) -> Si2,
Mo(cO*L5) -> Sil
30 Al 0 2 0 3 e 0 RegAl(L5)->Ail,
Mo(cO*L6) -> Ai2
31 0 3 3 “C4 So(MI)->Muli
32 g 3 3 C5 So(M2) -> Muli
33 0 3 3 non HeT Ao(M3) -> Muli
34 Cl 0 2 0 3 6 ~6 RegCI(M4)-> Ail, Sil,
Mo(M7) -> Ai2, Si2
35 2 3 I — So(M5) -> Ai2, Si2
36 3 2 ~6~ — Ao(M6) -> Ai2, Si2
37 0 1 7 . non So(M4-MT7)-> Ail, Sil
38 1 g 6 — Ao(M4+M7) -> Ail, Sil
39 10 1 13 1 13 1 Irni So[(M4-MT7)-M5] -> Mi |
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DO
D1
D2
D3

D4~

D5

D~

D7

Ao_-M7)+M51-> Mi
Ao[(M4+MT7)+K6] -> Mi —
So[(M4+M7)-K6] -> Mi
Mo(c3*M0) - > Out
Mo(c4*Ml)->0Out
Mo(c5*M2) - > Out
Mo(c5*M3) - > Out
Mo(c6*[(M4-MT7)-M5])
->0ut
Mo(c7»[(M4-M7)+M5])"
->0ut
Mo(c8*[(M4+M7)+M6])
->0ut
Mo(c9*[(M4+MT7)-M6])
-> Out



Appendix

C Program for evaluating the error in DCT/IDCT core

Generation of data set

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

double pi

double onedctresult[8] :
double twodctresult[64]
union hexcontent {

long half[2]:
double full;

)

//Define Function 2-D DCT

void twodct(long twoinput[])
int iU, v,
double input8x8[81[81];
double temp ;
for (i=0; i<=7; i++)
{ for (j=0; j<=7; j++)

input8x8[i] [jl=twoinput [8*i+j]:

}

//Direct 2D
for (u=0; u<=7; U++)
{ for (v=0;v<=7; V++)

{

temp = 0;
for {i=0; i<=7; i++)
{ for (j=0: j<=7;: |j++)
temp +=
input8x8[i] [jl*xcos ( (2*i+l)*~u=xpi/16)*xcos((2*j+1)*xv*pi/16):
temp = 0.25+tempx*((u==0)/pow(2,

0.5)+(u!=0))*({v==0)/pow(2, 0.5)+(v!=0));
if (temp > 2047)
temp = 2047;
if (temp < -2048)

temp = -2048;
twodctresult[u*x8+v] = temp:
//Define Function Inverse 2-D DCT
void twoidct(long twoinput[])
int i,i,u,v;
double input8x8[81[81]:
double temp ;
for (i=0; i<=7; i++)
{ for (j=0: j<=7; j++)
input8x8I[i] [jl=twoinput[8*i+j]:
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input8x8[ul [v]

scos((2xi+
0.5)+(u!=0))*((v==0)/powl(2,

}

//Direct
for (i=0;
{ for

2D
i<=7; i++)

(j=0; j<=7; j++)

temp = 0
for (u=0;
{ for

temp +=
[)xu*xpi/16)*xcos((2*j+1)*v*pi/l6)={(u=
0.5)+(v!=0));

}
temp = 0.25xtemp ;
if (temp > 255)

temp = 255;
if (temp < -2586)

temp = -256;
//twodctresult[i=8+j] =
twodctresult[i=8+j] =

u<=7;
(v=0;

U++)
V<=7

V++)

=0)/pow(2,

0.25*temp ;

temp ;

long randnum(L, H)
long L,H;
{
static long randx = 1:; "long is 32 bits=*/
static double z= (double) OxVFiffffff;
long [
double X "double is 64 bits=*/
randx = (randx*1103515245)+12345 ;

}

I{ong roundup(double
double
long

}
rgain()

long
int
int
long
char
//char

char

char

//double

union hexcontent
FILE

long

i = randx & OxVffffffe;
X = {(double)i)/z;

X = Xx(L+H+1);

i o= X

return(j-L) ;

testnumber)

reminder
result
result = testnumber:
reminder = testnumber - result:
if (reminder >= 0.5)
result += 1;
else if (reminder <= -0.5)
result 13
return result;
L, H:
result [64];
kk, 11, m, n;
idctcoeff [64];

filename[]="dataOOQO.dat" ;
odct—file[]="0odctOO.dat" ;
idct:file[]="idctOO.dat" ;
fdct:file[]1="fdctOO.dat" ;
temp
upperbound ;
*result_id, =xdct_id2,
pi=atan(l)=*4;

upperbound.half[0]=0x00000001 ;
upperbound.half[1]=0x40aff000 :
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printf("Please enter the Lower Bound....Wn");

scanf("%d", &L):

printf("Please enter the Upper Bound...An");

scanf("%d", &H):

for (m=0; m<=9; m++)

{ filename[4] = filenamel[4] + m;
"odct—file [4] = odct_file [4] + m;
idct_file[4] = idct_file [4] + m;
fdct_file[4] = fdct"file[4] + m;

f{or (n=0; n<=9; n++)

filename[5] = filename[5] + n;
//odct_file[5] = odct_file[5] + n;
idct_file[5] = idct—file[5] + n;
fdct_file[5] = fdct=file[5] + n;
result—id = fopen(filename, "w") s
"det—id = fopen(odct_file, "w');
dct—id2 = fopen(idct—file, "w') s
dct_id3 = fopen(fdct_file, "w") s

f{or"(11=0: 11<=99; 11++)

for (kk=0; kk<=63; kk++)
{ result[kk] = randnum{L,
H);
fprintf(result id,
"%ldWn", result[kk]) : —

twodct(result) ;
f{or (kk=0; kk<=63; kk++)

//fprintf(dct—id,
"%20.151fWn", twodctresult[kk]) : —

idctcoeffl[kk]l=roundup(twodctresult[kk]) :
fprintf(dct_id2, "%dWn",

idctcoeff[kk]) : _

é:fS:; Kk++)
//fprintf(dct—id3,

"%20.151fWwn", twodctresult[kk]) : —

idctcoeff[kk]=roundup(twodctresult[kk]) ;
fprintf(dct_id3, "%dWn",

idctcoeff[kk]) } —
}
fclose(result_id) ;
//fclose(dct_id) ;
fclose(dct_id2) ;
fclose(dct_id3) ;
filename[5]='0";
"odct—file [56]="0¢;
idct_file[5]1="0"":
fdct_file[5]=+0";

filename[4] ='0 ';
]:‘0-;

//odct_file [4
idct—file[4]=-0":
fdct:file [4]=+0":

} -

return 0
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Testing of DCT/IDCT architecture
I

ITI This is program is used to generate a Inverse DCT result

II from Forward DCT coefficients.

//

II The input files “idctXX.dat” contain 12-bit DCT coeffiecients
II The output files ’nfdctXX.dat” contain 9-bit reconstrcuted

I1 pixel values.

I

#incliide <stdio.h>
#include <stdlib.h>
#include <math. h>

long trunvalue[7] :
long mul__product [4] [8]:
long dctresult—i[8];

double dctresult-f[8];

void mul_coeff(int bit_length)

double value[7] ;
int i
long roundup ;

value[Ol=cos(atan(l)) ;
value[l]l=cos(atan(1)/2) ;
value[2]=sin(atan(1)/2)
value[3]=cos(atan(1)/4) ;
value[4]=cos(3*atan(l)/4);
value[5]=sin(3*%atan(l)/4) ;
value[6]=sin(atan(1)/4) ;

%or (i=0; i<=6 ; i++)

trunvalue[i] = valuel[il*pow(2,28) ;

//Round up

roundup = (trunvaluel[i]l >> (28 - bit—length)) &
0x00000001 ; -

//create the coeff. at given bit length

trunvaluel[i] = (trunvaluel[i] >> (28 - bit-length
+ 1)) + roundup;

}

void mul-matrix(long inputl[4], long input2[4], int coeff_length, int trun—length)

long matrixl [4] [4], inatri;x:2 [4] [4], roundup
int i, j

//Form the coeff. Matrix
matrix1[0] [0l=trunvalue [0];
matrixl [0] [1]=trunvalue [1];
matrixl [0] [2]=trunvalue [0];
matrixl [0] [3]=trunvalue [2]:
matrixl[1][0]=trunvalue[0]
matrix1[1] [1]=trunvaluel[2];
matrix1[1] [2]=-1%trunvalue [0] : matrixl [1] [3]
1*trunvalue [1];
matrixl [2] [0]=trunvalue [0] ; matrixl [2] [1]
l*trunvalue[2] ;
matrix1[2][2]=-1%trunvalue[0] ;
matrixl [2] [3]=trunvalue [1];
matrixl [3] [0]=trunvalue [0] ; matrixl [3] [1]
l*trunvalue[l] ;
matrixl [3] [2]=trunvalue [0] : matrixl [3] [3]=-
1*trunvalue [2];

matrix2 [0] [0] =trunvalue [3]:
matrix2 [0] [1]=trunvalue [4]:

matrix2[0][2] "trunvalue[5] ;
matrix2[0][3]=trunvaluel6] ;
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l*trunvalue [6];
l*trunvalue [5];

l*trunvalue [3]:

matrix2 [1] [0]=trunvalue [4] : matrix2[1] [1]=-
matrix2[1] [2]=-1%trunvalue [3] : matrix2 [1] [3]=-
matrix2 [2] [0] =trunvalue [5] ; matrix2 [2] [1]=-

matrix2[2][2]=trunvalue[6] ;

matrix2[2] [3]=trunvaluel[4] ;

lxtrunvalue [5]:

1xtrunvalue[3] :

input 1 [i] :

input2 [i];

matrix2 [3] [0]=trunvalue [6] ; matrix2 [3] [1]
matrix2 [3] [2] =trunvalue [4] ; matrix2 [3] [3]
//Matrix Multiplcation
ﬁor (i=0; i<=3:;i++)
for (j=0; j<=3; j++)
mul_product[j] [il=matrix1[jl[%]-

mul_product[jl[4+il=matrix2[j][i]

}

//Truncation .
Qpr 190;1<=3;1i+)

for (j=0;3i<=T7;j++)
if (trun_length —= 0)

mul_j)roduct [i] [ j] = (mul_product [i] [j] >> trun—1length);

%lse

roundup = (mul_product[i][j]l >

(trun_length-1)) & 0x00000001 :

mul "product [i] [jl= (mul_product[i] [j] >> trun_length) + roundup:

)

void onedct(long

long

int

long
stage42 [4];
long

long

mul_trun_length)

)

}

input: [8], int input_length, int coeff-length, int mul-trun—length,
%nt final—;length, int

second)

half 1 [4], half2 [4];
i
stage31[4] , stage32[4] , stage33 [4], stage34 [4], stage4l [4],

result [8], reduce_length, roundup:;
temp ;

//First Stage

for (i=0;i<=3;i++)

(
half 1 [i]=input[2 *i]:
half2 [il-input[(R*i)+1] ;

//Second Stage
mul_macrix(half 1, half2, coeff_length,

qor (i=0; i<=3 ; i++)

stage3l [i] =nul_product (i) [0] —nul_product: [i] (1) ;
stage32 [i]l=nul_produc:: : i] [2] +nul_product [i] [3]:
stage33 [i] —nul_produc:: [i]l ¢ l+rnul_produGt: [i] [5]:
stage34 [i] =nul_product [i] [6] +nul_produc- : [i] [7]:
stagedl[i]=stage31[i] +stagel2 “T

| s:aged?2 [ij=st:aae33 ii] +stage3-; :] ;

//Third Stage
Eor (1=0;i<=3it-+)
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result[i] = stage4l[il+stage42[i] ;
} result[7-i] = stage4l [i]l-stage42[i];

//Round up and Truncation

reduce—length = input—length+tcoeff_length-
mul_trun_length+2-final_length-second-3 -

%or (i=0;i<=7;i++)

roundup = (result[i] >> (reduce—length-1)) &

0x00000001;
temp = (result[i] >> reduce—length)+ roundup;
if (second == 1)
{ if (((temp & 0x80000000) == 0x00000000)
&& ( (temp S 0x00000100) == 0x00000100))
temp = 255 ;
if (((temp & 0x80000000) == 0x80000000)
&& ( (temp & 0x00000100) == 0x00000000))
temp = -256;
dctresult—il[i] = temp:

dctresult:f[i]l=
detresult_i [i] /pow (2, final—length—input—length-"" + l+second) ;
; _ .

)

m{ain()

int input [8] [8]:

int inputfile [64] ;

long temp[8] ;

long result [8] [8]:

double result_f[8][8];

int input—-length, coeff_length, mul—-trun—-length,
final-length; -
int i, j, kk, 11, m, n, test;

char idct_file[]="idct00. dat” :

char fdct:file[]="nfdct00.dat” ;

FILE ¥idct_id, *fdct-id;

coeff-length = 15;
mul—coeff(coeff-length) ;

for (@=0: m<=9; m++)
{ idct_file[4] = idct_file[4] + m;
fdct:file[5] = fdct=file[5] + m;

for (m=0; n<=9; n++)
{ idet_file [6] = idct-file[5] + n;
fdct file[6] = fdet file[6] + n:

idet—id = fopen(idet_file, “r”);
fdct—-id = fopen(fdect_file, ”"w”);
//Read 100times, 64 element in each time
for (kk=0;kk<=99;kk++)
{ for (11=0;11<=63;11++)
fscanf(idet—-id, “%d¥n”,
&inputfile[11]); -

//Reorder the input vector into
8x8 matrix

ﬁor (i=0;i<=T;i++)

for (j=0;3j<=7; j++)
input [i]1[j]=
inputfile [i*8+j] ;

}

input—-length = 12;
thul_trun—length = 7;
final_length = 15

&or (i=0, i<=7,-i++)
for (§j=0; j<=T7; j++)
temp [jl=
input [j] [il;
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onedct (temp,
input—1length, coeff—-length, mul—trun—length, final—Ilength, 0);

Eor (j=0; j<=T7; j++)

result [j] [il=
detresult_il[j];

result_f [jl [il=
detresult_f[j] _
if
(abs(dctresult—il[j]) >= pow(2, final—length-1)-1)
- {

printf ("Excess Limit, x=%d, %08x¥n”, dctresult—-i[j], dctresult_il[j])

scanf ("%d”, Sctest);

}

input_length = 15;
mul_trun—length = 9;
final_length = 9;

Eor (i=0;i<=T;i++)

for (j=0: j<=7: j++)
temp [jl=
result [i] [j]:

onedct (temp,
input-length, coeff—-length, mul_trun_length, final—length, 1);

Eor (3=0; <=7 j++)
result [i] [j]=
detresult-i[j] ;
- }

}

ﬁor (i=0;i<=T;i++)

for (j=0: j<=T; j++)
fprintf (fdet_id,

”%d¥n”, result [i] [j1)

fclose(idet—id) ;
fclose(fdet:id) :

idet—file[5] = -0 ;
) fdet"file[6] = +0';
idet_filel[4] = ’0 ;
fdet—file[5] = ’0-;

}

return (;
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Pin Assignments of the Programmable DSP Processor Chip

P i
Number

(13 2 7
28
29

30

-31
32
33

34
35
36
37
“38
39
40
41

out buf in< (>

”"t buf in<1)
“VDD
GND

out buf in<2>

lout_buf in<3> |

OUT Outputmode 0 : Output data bitO
OUT Output mode O : Output data bitl
IN
IN
OUT Output mode 0 : Output data bit2
OUT [Output mode O : Output data bit3
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n | IN/ |
Pin Name ouT Description
request IN  Input data request signal
VDD IN~
GND IN
s IN  Input data start signal
in reset IN  Input data buffer reset signal
empty OUT Input data buffer empty signal
done OUT Input data acknowledgement signal
VDD "IN
. GND IN .
instr—done IN  Instruction acknowledgement signal
instr rq OUT Instruction request signal
— instr<O> “ IN  “struction bitO
instr<1> IN  Instruction bitl
VDD 7”7 “IN
GND IN
instr<2> IN  Instruction bit2
instr<3> IN  Instruction bit3
instr<4> IN  Instruction bit4
VDD IN
GND IN
instr<d> IN  Instruction bith
instr<6> IN  Instruction bit6
instr<?> IN fostruction bit?
— instr<® ¢ IN  Instruction bitS
— 1instr<9> _  IN fostruction bit9
VDD “IN
GND - IN
cmplt clr instr  IN  Clear the instruction input buffer
mode IN  Switch of the cyclic FIFO in instruction memory.
O=cyclic, l=receive instruction from user
get_output IN  Output mode 1 : Get the output handshaking
signal
VDD IN
GND IN
open cmplp IN  Output mode 1 : Get the output handshaking
signal
out full “ 0UT O ut mode O : Output buffer full signal
out ready OUT Outputmode 0O : Output request signal
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— 42
43
44
45
-46
—-47
48
49
o0
ol

-52
-53
o4
“55
- 06
o7
_ 58
—59
-60
61
62
63
64
65
“66
67
-638

out buf in<4> OUT
out buf in<6> OUT
out buf in<6> OUT
out buf in<7>—-0UT

VD-D T N~

GND
o buf in<8—-0UT
cmplt out OUT
cmplt out d OUT

Output mode O :
Output mode O :
Output mode O :
0 ut mode O :

” ”

Ou ut mode O :

Output data bit4
Output data bitb
Output data bit6
Output data bit?

119 I
Output data bitS

N —

Output mode 1 : Output request signal

Output mode 1 :

cmplt out + 4
selection : mode

0 for data

verification, mode 1 for speed measurement

N

IN  Outputmode O : Output acknowledgement signal

out_sel IN  Output mode
VvV D D I
G N D N7 ¢
out—aki
—aO>  “IN It databit0
—inl<1> _ IN i " tdatabitl
— inl<2> IN  Input data bit2
—ak3> — IN 1t databit3
VDD T m
GND TINT
reset IN  Global reset signal
— inl<4> IN  Input data bit4
—ank5S> “IN to tdata bith
— inl<6> IN  “put data bit6
inl<7> IN  Input data bit?
VDD —-IN
GND - IN
in<8> IN  [input data bitS
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Pin Assignments of the ID DCT/IDCT Core Chip

@ o @ ® © ® ® ® ® N
@ e @@ @ @ 0@ @ @ @ @ @ M
° @ PO@Q@ @@ .
@ @ @ @ K
®® @@ ;5
© ® © ® @ ® H
e @ e Bottom View @ (J) G
0 ® © @ @ @ F
o 0 @ ® E
0© ExtP @ ® ]
® o O @ e ® @ o ¢
o 0 ® ® @ ® ® ® ® ® @ ® ® B
e e @ e @ @ @ @ @ @ @ @ A
1 2 3 4 5 6 7 8 9 10 11 12 13
N N\ n
Number PinName In/Out Description
I —\A D - IN -
-2 GND IN .
3 - In<b> IN  Input data bith
4 In<4> IN  Input data bitd
5 — In<3> IN " ut databit3
6 In<2> IN  Input data bit2
7 VDD TINT
8 GND TINT
9 In<1> IN  Input data bitl
10 - 1In<O> IN " ut databitO
11 VDD IN
12 GND “TIN .
13 testb OUT Testing signal fromDCT coefficients memory 2
14 tests OUT Testing signal fromdata replicator 2
15 test 10 OUT Testing signal frommultiplier 2
-16 VDD IN -
-17 GND IN™
18 testl4 OUT Testing signal from22bit subtractor
19 —testis —0OUT Testing signal from 22bit adder
_ 2 O V D D V4 “m _
-21 GND IN -
22 output—rq OUT | Output mode 0 : Output request signal
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23 Ckin IN  Output mode O : Output acknowledgement signal
24 —-VDD — IN
25 GND IN~

Out<14> ~OUT Outputmode 0 : Output data bitl4
27  "ut<13> TOUT Outputmode 0 : Output data bitl3
__28_"0OuK12> TOUT Outputmode 0 : Output databitl?2

29 VDD I N «
30 GND INTT -
-31 Out<l1> Output mode 0 : Output data bitl 1
"Qut<10> “70UT Outputmode 0 : Output data bitl0
33 T70ut<9> “70UT Outputmode O : Output data bit9
34 VDD I N -
-35 GND IN -
36 Out<8> —=0UT Outputmode O : Output data bitS
-37  TT0ut<7> TOUT Outputmode 0 : Output data bit?
38 Out<6>, OUT Outputmode O : Output data bit6
-39 VDD - 1IN
-40 GND -IN
41 TT0ut<5> OUT Outputmode Q : Output data bith
“42 Out<4> ~—=0UT Outputmode 0 : Output data bit4
43 Out<3> —=0UT Outputmode O : OQutput data bit3
“44  "70ut<2> —=0UT Outputmode O : Output data bit2
-45 VDD ) ) I N «
-46 GND INT -
47 T0ut<l> —0UT Outputmode O : Output data bitl
48 = 0ut<0» OUT “tput mode 0 : Output data bitO
49 open cmplp IN  Outputmode 1 : Get the output handshaking signal
50 out sel IN  Output mode selection : mode O for data
verification, mode 1 for speed measurement
-51 VDD TIN
-52 GND TINT
53 test 17 OUT Testing signal from truncation unit
54 —  testl6 OUT Testing signal from DCT/IDCT switch5
55 test 13 OUT Testing signal 21 bit adder
-56 VDD IN .
-57 GND IN

58 complt out OUT Outputmode 1 : Output request signal
59 cmplt out d OUT Outputmode 1 : cmplt out + 4
60 VDD INT

-61 GND IN™
62 get—out IN  Output mode 1 : Get the output handshaking signal
“63 test12 —0QUT Testing signal from 2Qbit adder 2
64 test] 1 OUT Testing signal from 2Qbit adder 1
65 VDD INTT
-66 GND “IN .
67 test9 OUT Testing signal frommultiplier 1
68 test? OUT Testing signal fromdata replicator 1
69 testb OUT |Testing signal fromDCT coefficients memory 1
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70
— 71
72
-73
74
-75
76
7
78

80
-81
“82
83
84
85
86
-87
- 88
-89
-90
-91
-92
-93
-94
-95
96
- 97
-938
“99
100

VDD

GND
block2
Idct
VDD
GND
Reset
Start
test4

test3
VDD
GND
test2
testl
Done
input—rq
— M
GND
“In<14>
In<13>
In<12>
VDD
GND
In<11>
In<10>
In<9>
— M
GND
In<&>
In<7>
In<6>

T N
e
IN  Set for the column operation
I IN  for IDCT operation
-IN
NI
— IN  Reset
IN  Input data start signal
OUT Testing signal from 15bit subtractor
Testing signal from 15bit adder
N«
SNt
“OUT Testing signal from 1-to2 MU X 1
OUT Testing signal frominput buffer
OUT Input data acknowledgement signal
IN  Input data request signal
- 1IN
IN™
— IN  Input data bitl4
IN” ™ Input data bitl3
77 “INInput data bit 12
N
N
“7IN  Input data bitll
"IN  Input data bit 10
IN  Input data bit9
- IN
~INC
"IN  Input data bitS
— IN  Input data bit?
IN  [input data bit6
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Pin Assignments of the Transpose Memory Chip

Pin

Number

1

2

10
11
_ 12
“13
14
15
16
L7
- 18
-19
20

©co @ 0 @0 e 0 @ @ o L

PROO@@@QRRR@@@ K
® Q@@ @ @

@ J
® © ® ® H
® ® ® o @ o G
© 00 ©00 =&
0© @@ D
0 © @@® @@c

© @ @ @ @ @ @ B

A@@@@@@@@@@A

Pin Name
testl

test2

test3
VDD
GND
testd

testh

testb
idct
data—rq
VDD
GND

—A<O>

I<1>
1<2>
I<3>
1<4>
VDD
GND
I<56>

In/Out
oOUT

OUT

OUT
TIN

IN~

OUT
OUT

OUT
- IN
IN
TIN
IN
IN

- IN
- IN

IN
IN
~ “]:N
TIN
IN

Description
Testing signal for LSB generator in write address
generator
Testing signal for MSB generator in write address
generator
Testing signal for in write address generator

Testing signal for LSB generator in read address
generator

Testing signal for MSB generator in read address
generator

Testing signal for in read address generator

Set for the IDCT operation

Input data request signal

Input data bitO

Input data bitl

Input data bit2

Input data bit3 -
Input data bit4

11Input data bitb
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[13

13

(19

[13

-21 I<6> IN  [Input data bit6
-22 <7 INInput databit?
— 23 1<8> "IN Input data bitS
-24 1<9> “TINT T Input data bit9
-25 VDD IN -
-26 GND -IN
-27 1<10> "INInput databitlQ
-28 I<11> Input data bitll
-29 1<12> IN— Input data bit 12
-30 I<13> “ 7 W Input data bit 13
-31 1<14> IN"" Input data bitl4
-32 VDD TTINT
33 —-GND -IN
34 Start IN  Input data start signal
35 Done OUT Input data acknowledgement signal
36 tests OUT Testing signal from input multiplexing network
37 test9 OUT Testing signal from input multiplexing network
38 test 10 OUT Testing signal from input multiplexing network
-39 VDD INT
-40 GND IN -
41 testl 1 OUT Testing signal from input multiplexing network
42 test? OUT Testing signal from input data buffer
43 testl 5 OUT Testing signal from input multiplexing network
44 testl 6 OUT Testing signal from input multiplexing network
“45 —testl? —0UT Testing signalfromR AM blockO
46 VDD m
47 —-GND —-IN
48 testl2 OUT Testing signal from input multiplexing network
49 test 13 OUT Testing signal frominput multiplexing network
-50 —testl4 —0OUT Testing signal fromRAM blockl
51 testis TOoUT

52 “Tataout<14> OUT “tputmode O : Output data bitl4
-53 VDD IN
-54 GND IN™
55 “bataout<13>~ OUT Output mode O : Output data bitl3
56 “"ataout<12> OUT Outputmode O : Output data bitl2
57 “Pataoukl1) OUT ~tputmode O : Output data bitl 1
58  “Tataout<1Q> OUT ~tput mode O : Output data bitl0
59 “Tataout<9> OUT Outputmode O : Output data bit9
“60 VDD “TIN
61 GND IN
62  “Dataout<8>" OUT Outputmode 0 : Output data bitS
63  Dataout<7> OUT Output mode 0 : Output data bit?
64 Dataout<6> OUT Outputmode O : Output data bit6
65  Dataout<5>” OUT Outputmode O : Output data bith
66 Dataout<4> OUT Output mode O : Output data bit4
67 VDD R
“68 GND I IN 1
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-69
70
71
72
73

-74

=75
76
7
78

79
80
-81
-82
83
84

Dataout<3> OUT [Output mode O : Output data bit3
Tataout<2> —0OUT Outputmode 0 : Output data bit2
Dataout<1> “OUT Outputmode 0 : Output data bitl
DataoutO0 ~OUT Outputmode 0 : Output data bitO
dataout rq OUT Outputmode 0 : Output data request signal
VDD IN -

GND IN
Ckin IN  Outputmode 0 : Output acknowledgement signal
Reset — IN  Reset

output—sd IN  Output mode selection : mode 0 for data

verification, mode 1 for speed measurement
coplt—out—d  OUT Outputmode 1 : cmplt out + 4
cmplt out OUT Outputmode 1 : Output request signal
VDD TINT -
GND IN -
open—cmplp IN  Outputmode 1 : Get the output handshaking signal
get—output IN  [Output mode 1 : Get the output handshaking signal
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Appendix

Measured Waveforms of ID DCT/IDCT Chip

Waveforms of DCT row operation
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Waveforms of DCT column operation
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Waveforms of IDCT row operation

T i m i n s Diagrams - ims
£»» S”creens  Sttfe—Screens  flptkms  atilltles Herp j
| 1 20.0Qn3 o
A o/ * Coee - 4 B R LV ~ ~ L e ++ o

ARAAA A A\

-
>
>

dinOl > SWAAAA/ W MWW AR ARAT AA T i

A AR P AR

dinos a/wwvn :
dinos > r\ r\r\ r\ /~aaaaaa/WV>"WVVN i
aa a a

gitios = —=2-A ﬁ: ﬂ.hﬂj\r\r\ aaaaaaaa

. A AAAA/WAAIWAAA A A
dyai N A Ai\ \ A <
e A RARARXAGIAA R :

A :

ZVVVVVVY/XTVX_ _AA

1) /¥ /N> Ty

do04 A/N/WVWN

\
do08 Y JYry j¥rYj¥ryjy Y

dol0 AAAAAAA/N fX/XTJ ¥
doll AANAAAA/VN W

/" WywwN f\jﬂr \

0 rq IVAIXAIWX w
i clcin '"AVVVVVVWWWVWVWYVX ;

20.0Qns

OO s t oo g s T H OBE R K M

#®
m
i

Zf — ; -~ : ” ‘ tirnliig Diagramsims

toul o Sflquenco 80
| 20.0Qns 228

; SError

S E
dinoo /v, 7V, A r A A H
i AL \f’(‘amg\}\fr\\mgj&f}\ IEY T e A AV A A e o e

din03 /[ wov w \ aa w

din04 IVVV\AAAAAAAA] /\A /VWWXA/WW
dinos r\l’\l’\l’\l\j\l’\ a/wwwwwwwwval/wwyvXxaa/
din06 YAAAAAA/ -/ WY

dino7 W/WA WA WA A

i ¥ _/N

dinl0 W W N norn
dinll Y/VVVVXA_/XA/>

4B WAM A AA
Tq LW R

-HEITTITUTITITITIIT O T MATall HUT1 I I 104 1 &fi]

r\ NI\ AR a/\ /\ Arnn

- rSiV Al }\ AR ATARAA A} e KT\

A A /

s

r\f

.do03

~

; JN_r\ A A /N/\NIN/N JU NN A A /\/\/a\

00S N UM AVA /N A 0 A A UL AA T U
do06 J: AAAIXZVAAIVIAA_y\A__A/\ A\ A/\ A\ A

Hdo07 AAA/WAA/W’W/W A/W AA/WAAAA A A A A /W
::do08 ZVXZXIWVV\_ r\\_fl\\Al\Al\ A/IVW\I N A ,:\/\ Qr(s\

o MAAANMA FRIOBARAR A AMA A AN AAAAA A AA?\ AA A
” DOLL TV W W W W IN/WV UL YWANPVANAWANANY A A A AA

(008 AAAAA\R\ ﬁﬁﬁ \f\, ARSI M)(*"* " ‘”7( %17\ ’37\ é

dol4 Jﬂj j \ /'Qr K

esiii\ SOV RN SR RATO ARSIV ARV AAY

Page 154



Appendix

Waveforms
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Measured Waveforms of Transpose Memory Chip

Waveforms of DCT operation mode
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Appendix

Schematic of asynchronous bit-parallel multiplier
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Appendix

Schematics of Programmable DSP Processor

Schematic of programmable DSP processor
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Appendix

Schematic of switch network
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Appendix

Schematic

of multiplexer cell used in switch cell
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Appendix

Schematic FIFO memory
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Appendix

Schematic of Instruction

Memory (instruction decoding network and cyclic FIFOs)

= fioM |
R ErE
— m = fioM [ i
[ A2 | ~ -~
[+= I~ ‘“——A—f—=-3b —n
- ( BAB | A
I BRI e % 7T
f« F0iSSS. [ zxci—fifo2413p
1= r vl
~ = L, o~
I rH rM 1
i —X— fifo2430 ~
o ~ L A8 | e
rn s rM a. —r 1
1Sri 1 L = - =
7 M e 1 -
— I —
i o243 e
~ I I ~ fon? | °
1 il | U | OO L]
-Bf © I“_?'v u i _,#nj': f:f024;§
"J&CSL. , — 1 | 0
JLsiSL ”I'A ntowi | o~
nfo24 3b — »
le |1 MRVE « "
Il pl pf P — P .
~ " . .
m 1 M 177 5tLj1 - A f] 86 —
JSosl. T ol -
111 | o X e
(I A fifo2413b —
A I A
P’\’\ f =] -pl-i M~ % —
_ 2Pa_ c,_‘:t"> , =i N
=S, tAhL‘{ ||1| hIHL." kD R
, ! i'nu'—' o -
1 lI ?==m— fJfoZAiSb A
| oA
_ 1122 AN iR 4o
F—1 [ fio™Vis | ~
* S T D s b 1
~ I raSLH-A f02413b — y —
I W 1 A
rh-1
i raait- fifo24._3b — »i.e

Page 169



Appendix

Schematic of cyclic FIFO
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Appendix

Schematic of Product Full Adder (PFA) in multiplier core

ac Cc
00™" aclo 0™VS—c-

TTTTTTTTTTIT

46
©:100.71

I

14
~ | 112 11 ~
dat ot gc k inl
. ~
hk c: -
ap
o.n
p_p
. on
i, b-P cBaif
. fob_n
fpe_p
fpc.n
! SHIFT_A
ck m |
P Shift h —
==in_p oulLp I
mn out n
SHIFT_B
0=7.66,
& >HI
H Shift []
np o atp~e~ -
[==] |: N
5P H I
C,
——fab_p p_p —
fab_n
N fpe_p
« ~ fpcn
I ] c:257f
PN
“ow
M) G ~-HI
a@B r
_ fobp p.n ~
fob_n
fpc_p
fpc_n
CARRY_P
nrt W
carry [I
«~ ap cany . si£2J2&
T b-P
o cp
p-p
CARRY.N
ck no|

e carry L

an corry ) - iise22f
+——b_n
cn
p_n
| |
FAB P
& mH |
- AB C
a_p fab_| (3)
—int ] T
FAB_N
ck mi |
J A+B [Z
ap foon ——
on
’_bJQ
® bn
FPC,P

FPC.N
: DA
}/_’j/_p . cind
p A r
~ c.p fpc.n —_—
c_n
* (819

Page 171

* Taop
A 00N

s
b

po_p

i"po.n

~co_p

co_n

fobo.p

“ob, _n

~ foap

A fpco.n



Appendix
Schematic of handshake cell hM (calling h4in) used in FPA
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Appendix

Schematic of the shift cell (calling cll)
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Appendix

Schematic of  stage Product (true value) generation cell PP
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Appendix

Schematic of Carry (true value) generation cell CARRY —P
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Appendix

Schematic of r™ stage Product (true value) generation cell FAB_P (A AND B)
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Appendix

Schematic of r™ stage Product generation (true value) cell FPC
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Appendix

Schematics of 1D DCT/IDCT Core

Schematic of ID DCT/IDCT core
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Appendix

Schematic of memory pipeline stages in DCT coefficient memory
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Appendix

Schematic of modified basic FIFO cell
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Appendix

Schematics of Transpose Memory

Schematic of transpose memory
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Appendix

Schematic of 32x15bit RAM block
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Appendix

Schematic of monitor cell
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Design Libraries -~ CD-ROM

The CD contains the design libraries of the Refresh Control Circuit, programmable
DSP processor, dedicated DCT/IDCT process and other necessary libraries. All the

libraries are designed in the AMS CMOS CUP 0.6u 3M1P technology using the

Cadence 4. 4. 1.
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