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Abstract of this thesis entitled: 

VLSI Implementation of Discrete Cosine Transform 

Using a New Asynchronous Pipelined Architecture 

Submitted by LEE Chi-wai 

for the degree of Master of Philosophy in Electronic Engineering 

at The Chinese University of Hong Kong in June 2001 

This thesis presents two different asynchronous VLSI implementations of Discrete 

Cosine Transform (DCT). Although asynchronous design has potential advantages 

over the synchronous design, the handshaking overhead and the design difficulties 

limit the speed performance of asynchronous design. In order to break through the 

barrier, a new asynchronous pipelined architecture is described in this thesis. It 

relaxes the handshaking protocol and has a simpler architecture, the performance of 

asynchronous design is improved. Since the new architecture employs dynamic 

logic, a new technique called Refresh Control Circuit is also introduced to reduce the 

performance degradation associated with the traditional technique. 

The first DCT implementation is realized in a programmable DSP processor. This 

programmable processor makes use of asynchronous pipeline, dataflow architecture 

and parallelism, a reasonable but encouraging result of 22Mpixel/sec in DCT 

operation is obtained with a limited number of arithmetic units. 
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The second DCT implementation is performed on a dedicated 2D DCT/IDCT 

processor. It is a fully pipelined design and can operate at 76Mpixel/sec for 2D 

DCT/IDCT operation. It is capable of processing the high quality MPEG-2 and 

baseband HDTV signal in real-time, and is competitive to other synchronous designs 

even less arithmetic units are included in this processor. 

The results of the two implementations demonstrate the high performance of the new 

asynchronous pipelined architecture and the advantages of the asynchronous 

technique in system design. It also encourages further development in asynchronous 

design. 
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摘要 

本論文介紹了兩個可應用於離散餘弦變換（Discrete Cosine Transform)的異步 

(asynchronous)超大規模集成電路。雖然相對於同步設計(synchronous design)， 

異步設計（asynchronous d e s i g n )擁有潛在的優點，但因聯絡額外開銷 

(handshaking overhead)和設計上的困難而限制了異步設計的速度°爲了突破這 

個界限，本論文描述了一個新的異步管線式架構（asynchronous pipelined 

architecture)�它放寬了聯絡協定（handshaking protocol)及擁有更簡單的架構， 

令到異步設計的效能得以提升0因爲這個新的架構應用了動態邏輯（dynamic 

logic)，本論文亦提出了一個名叫更新控制電路（Refresh Control Circuit)的新技 

術。這技術能減少因使用傳統技術而導致的效能降格° • 

第一個離散餘弦變換設計是建於一個可程序數碼訊號處理器（programmable 

DSP processor)�這個可程序處理器應用了異步管線、數據流程架構（dataflow 

architecture)及並聯（parallelism) ’在執行離散餘弦變換時能夠在一秒中計算二 

十二萬素象。在有限的運算部件條件下，這是一個合理而且有鼓勵性的結果。 

第二個離散餘弦變換設計是一個專用的二維離散餘弦變換處理器°這處理器是 

完全管線式設計及能夠在二維離散餘弦變換運作中達到每秒七十六萬素象的運 

算速度。這結果顯示這處理器能夠實時處理高質素的MPEG-2及高淸晰度電視 
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(High Definition Television)訊號。即使這處理器是使用了比較少的運算部件， 

但在性能上仍可和其他同步設計競爭。 

由這兩個設計所得出的結果可看出新的異步管線式架構的高效能表現及異步技 

術在系統設計上的好處。另外這結果亦對將來異步設計的發展起鼓舞作用0 
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Chapter 1 - Introduction  

Chapter 1 

Introduction 

1.1 Synchronous Design 

Synchronous design is the most popular digital circuit design technique today in the 

VLSI world. In a synchronous circuit, global clock is used to synchronize and 

trigger all the operations. As the technology of VLSI grows towards higher speed, 

smaller feature size and larger chip size, the performance of synchronous circuit is 

limited due to its global clock approach. 

The main reason of the limitation is the clock skew problem [1][2]. Clock skew is 

the difference in the arrival time of clock signal at different parts of the circuit. As 

the chip size gets larger, it is difficult to manage the global clock signal to arrive at 

different parts of the design at the same time. Also, as the clock speed becomes 

higher, the global clock period becomes shorter and thus the transition time needs to 

be shorter comparing with the clock period. However, the transition time can only 

be reduced to a limited extent. As a result, the operating speed is forced to slow 

down so as to accommodate the problem. 

In addition, frequency of the global clock is also restricted by the slowest part of the 

whole design. The period between two consecutive active clock edges must be long 
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Chapter I - Introduction  

enough for all computations to be completed before latching the result. As a result, 

the clock period is determined by the slowest stage such that every stage is given 

enough time to fully process a data, thus yielding a worst-case performance. 

It is believed that by eliminating the restrictions, a design can reach a higher level of 

performance, and this is the motivation of the development of asynchronous circuit. 

1.2 Asynchronous Design 

The main difference between the synchronous and asynchronous design is the use of 

the global clock and the local handshake signals. In asynchronous design, operations 

on a functional unit are controlled by the communications between neighbouring 

units. When there is an event occurred on the communication wire, an operation will 

be started or stopped by the triggering of the event. 

Since the global clock signal is removed, there is no clock skew problem existed in 

the asynchronous design. Also, without the restriction of the global clock signal, 

different parts in an asynchronous circuit can operate at their own intrinsic speeds 

and thus the average-case performance can be achieved rather than worst-case 

performance in the synchronous circuit. Therefore, the problems of the synchronous 

design can be eliminated and higher speed can be achieved in asynchronous design. 

In addition, asynchronous design offers other potential advantages such as low power 

consumption, automatic adoption to physical properties, high modularity and less 

electromagnetic emission, these make the asynchronous design attractive. 
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Chapter 1 - Introduction  

Despite of all the potential advantages motivating the development of asynchronous 

circuit, it has yet to achieve widespread use. This is because asynchronous circuit 

suffers from several problems as well. 

The major problem of the asynchronous circuit is hazards [1]. In the synchronous 

design, hazards can be easily removed by adding more registers or slowering the 

clock rate. However, designers of the asynchronous circuit must remove all hazards 

to prevent incorrect operation. At the same time, there are little supports from CAD 

tools, design automation and optimization of the asynchronous design has still not 

been fully achieved. As a result, extra attention and extensive simulations are 

required and thus the development cost is increased. 

Furthermore, an additional handshake circuitry is required in asynchronous design in 

order to handle the communication signals. This circuitry is usually complex and 

leads to a larger area in asynchronous design. Also asynchronous circuit generally 

requires extra time for handshaking protocol and thus an operation requires more 

time to be completed due to the communication overhead. As a result, the expected 

average-case performance is not fully realized. These two reasons cause an 

asynchronous circuit running at a speed even slower than the synchronous circuit. 

Due to the maturity in synchronous design methodologies and the difficulties of 

asynchronous design as mentioned above, designers still prefer synchronous design 

in most of their system development today. 
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Chapter I - Introduction  

1.3 Discrete Cosine Transform 

The Discrete Cosine Transform (DCT), proposed by Ahmed et. al. in 1974 [3]，and 

its inverse (IDCT) have become an important tool for image and video signal 

processing applications due to their adoption in standards such as CCITT H.261 [4 

for video telephony and teleconference, JPEG (Joint Photographic Experts Group) 

:5]for colored still image transmission and MPEG (Moving Picture Experts Group) 

[6] for moving pictures on the storage media. The advantages of DCT are that its 

performance closes to the optimal Karhunen-Loeve transform (KTL) for highly 

correlated signals and the existence of the fast algorithms [7] [8] [9] which reduce the 

number of operations. 

The role of DCT is providing a data compression on the picture while a reasonable 

quality can still be maintained. It helps to reduce memory size and transmission 

bandwidth in the image and video applications. DCT basically involve additions and 

multiplications. The operation of ID N-point DCT and IDCT can be described by 

following equations, 

^ 1 , � S (2 i + l )n;r 
DCT ： Y^ = —c(n)2^X.C0S- -Equation l . l 

2 i=o 27V 
I f i , � y (2 / + l > ; r 

IDCT ： X. = —2^ c(n)Y^ cos -Equation 1.2 

where i, n =0,1， ’N -1 
c(0) = l/y[2=l foriitO 

In recent year, the increasing demand of high image and video quality signal, such as 

MPEG-2 and High Definition Television (HDTV), requires higher and higher 

computation in signal processing. To meet with the real-time computation 
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Chapter 1 - Introduction  

requirement, a processor which rapidly computes DCT has become a key component 

in image compression VLSI. 

1.4 Motivation 

up to now, most of the past asynchronous circuits are not good in performance in 

terms of speed. Together with the difficulties discussed in the previous section, it 

discourages the development of asynchronous design. However, there are methods 

exist so that full performance potential of the asynchronous design can be realized. 

The worse speed performance of the asynchronous circuit is mainly due to the 

complicated handshaking circuitry and slow communication protocol. It is believed 

that by developing a new asynchronous architecture having simpler handshaking 

circuitry, more aggressive handshaking protocol and together with a careful circuit 

arrangement, the hazard can be removed and a competitive asynchronous design can 

be obtained. This is the motivation of this project. 

DCT is chosen for the realization of a new asynchronous architecture. This is 

because digital signal processing (DSP) algorithm is suitable to be implemented by 

asynchronous technique as the process is data-dependent that fits the style of the 

asynchronous design. Among various DSP algorithms, DCT is a widely used 

algorithm in many image and video applications and high throughput is required. It 

helps to demonstrate the practicality of the new asynchronous architecture and the 

fulfillment of the requirement of image and video applications today. 
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Chapter 1 - Introduction  

1.5 Organization of the Thesis 

This thesis is organized into eight chapters. The first chapter describes the 

background of the asynchronous design, Discrete Cosine Transform, and the 

motivation of this project. The second chapter introduces the basic operation and 

past methodologies in the asynchronous circuit design, and the new asynchronous 

pipelined architecture is presented at the end of this chapter. In chapter 3, various 

methods and algorithms of DCT implementation and two different approaches of the 

asynchronous implementation of DCT processor are described. Since dynamic logic 

is employed in the new asynchronous pipelined architecture, a new technique of 

operating dynamic logic in low frequency is presented in chapter 4. Chapter 5 

describes the detailed architecture of the programmable DSP asynchronous 

processor, and the DCT implementation is given as well. Chapter 6 presents another 

implementation of DCT on a dedicated DCT processor. The architecture and flow of 

operations on the processor, and the design of the transpose memory are all provided. 

In chapter 7, all the implementation results and performance of the designs proposed 

in this thesis are given. Based on the results, the performance comparisons, 

discussions and suggestions are also provided in the same chapter. Finally, 

conclusion of the thesis is given in the last chapter. 
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Chapter 2 

Asynchronous Design Methodology 
• 

2.1 Overview 

The operation of an asynchronous circuit is not based on the global clock signal, 

which is used in the synchronous circuit, but on its local handshake signals. The 

handshake signals are the controlling signals in the communication between the 

sender and receiver. For most of asynchronous circuits, they usually make use of 

similar handshaking protocol involving requests and acknowledgements. 

祁 knowledgement 

Sender , Receiver 

data ^ ^ 

Figure 2.1 - Communications between sender and receiver in an asynchronous circuit 

Figure 2.1 shows a basic communication interface in asynchronous circuit. This kind 

of communication style is called the bundled data approach [1][10]. In this 

approach, the interface between sender and receiver consists of a bundle of data 

which carries information (using one wire for each bit) and two control wires. When 

the data from the sender side is ready, a transition will occur on the request wire to 

inform the receiver, and acknowledgement wire from the receiver to the sender 
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Chapter 2 - Asynchronous Design Methodology  

carries a transition when the data has been processed. Also the data will be 

maintained constantly during the receiver's active phase preventing wrong operation. 

There are many types of handshaking protocol and different kinds of circuit for 

implementing this asynchronous communication interface. In this chapter, a brief 

introduction to different handshaking protocols will be given. In addition, some of 

the past designs and the micropipeline structure will be introduced. At last, the new 

asynchronous architecture will be presented. 

2.2 Background 

dataJD < valid d a t a ~ ^ < valid d a t a ~ ^ < 

�e s t V / J � �I V 

acknowledgement A x 
out / 

( a ) 

datajD ^ valid data ^ < valid data ^ < 

acknowledgement L ^ / ^ ^ \ \ Z ^ Z / \ 
out � \ / \  

( b ) 
Figure 2.2 - Timing diagram of (a)two-phase, (b)four-phase handshaking protocol 

There are 2 classes of handshaking protocol, one is the two-phase and the other is the 

four-phase [1][10][11] and their timing diagram is shown in Figure 2.2. Two-phase 

handshaking protocol means that any transition in the handshake signal represents an 

event occurred. Different from the two-phase, the four-phase handshaking protocol 

is a level-triggered protocol. The occurrence of an event is represented by an active 
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Chapter 2 - Asynchronous Design Methodology  

level, and the return to non-active level is required after the event has been finished. 

In general, the two-phase handshaking protocol has better performance than the four-

phase one as it makes use of all transitions of the signal to represent an event, it leads 

to a faster communication rate. 

Compared to the synchronous circuit, the request and acknowledgement signals are 

additional signals. As a result an extra control circuit is required in asynchronous 

design so as to handle these two signals, and usually this circuit is called handshake 

control circuit or handshake cell. 

Handshake Handshake -- ^^ _ ^ Cell request 一 cell ~ • 

control / control I 

Stage X x XX 阳0门丨的「 Stage 
N-2 N+1 

\ Functional ；^ \ Functional \ 
——/ Block ^ / Block ——/ 

Stage N-1 Stage N 
I ( a ) I 

I ack I 
Handshake Handshake 丨 Handshake 吻 Handshake ' Handshake Handshake 

Cell 一 Cell ； Cell Cell | — ^ Cell Cell 

I ^ ^ I ^ ^ 
Functional ~ ； F u n c t i o n a l ！ Functional Functional Functional Functional 

Block ~ B l o c k I Block Block Block Block 

Stage N-1 Stage N ] Stage N-1 Stage N | Stage N-1 Stage N 

Time = 0 丨 Time = 1 ' Time = 2 

( b ) 
Figure 2.3 - (a) connections in asynchronous circuit, (b) operation in asynchronous circuit 

Figure 2.3(a) shows the basic connection in asynchronous design using the 

handshake cell. In this connection, the operations depend totally on the handshake 

signals, and that can be explained with the help of Figure 2.3(b). Initially when the 

operation of functional block in stage N-1 is completed, the output data will be 

passed to the functional block in stage N. At the same time, the handshake cell in 
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Stage N-1 will detect the completion of computation and generate a request signal for 

stage N. This request signal is used to indicate that the operation of stage N-1 is 

completed, and the output data of stage N-1 is held and ready for the stage N to 

process. Starting from this moment, stage N-1 needs to hold the output data until 

stage N finishes the computation. 

The handshake cell in stage N detects the request signal from the previous stage，and 

then allows the functional block in stage N to process the data. After the 

computation is completed, the handshake cell in stage N will generate two signals. 

The first one is the acknowledgement signal which is used to inform stage N-1 that 

the data has been processed. As a result, stage N-1 becomes idle and wait for the 

data from stage N-2 for the next operation. The second signal is the request signal to 

the stage N+1 for further processing of data. 

This communication interface and protocol exist between all the stages and its 

neighbouring stages in the asynchronous circuit. Since all the operations are 

controlled by the handshake signals, the performance of the handshake cell becomes 

the main factor of determining the speed of the asynchronous circuit. 

2.3 Past Designs 

The design of the handshake cell and the use of the handshaking protocol are 

important as they determine the throughput and latency of the whole asynchronous 

system. For the handshake cell, an accurate detection of the completion of the 

operation and a quick generation of the request signal are the most important issues 

as they are used to guarantee the circuit operating correctly and quickly. If the 
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request signal is generated before the functional block finishes its computation 

process or before data is valid, hazard will occur as incorrect data will be latched by 

the next stage and incorrect result will be obtained. If the request signal is generated 

a long time after the end of computation, it is secure to have a correct output but the 

whole circuit will be slowed down. However, to generate the request signal just in 

time while maintaining simple structure is really a difficult task. By using a suitable 

handshake cell, the complexity of the handshaking protocol can be reduced and thus, 

the communication time can be reduced too. As a result, the speed and performance 

of the whole circuit can be enhanced. 

In the past decades, there were many kinds of handshake cell developed 

[12] [13] [14] [15]. And the most famous and commonly used one is the C-element. 

C-element is firstly introduced by D.E. Muller in 1956 [16]. It is a rendezvous 

element, or an event-driven element. Figure 2.4 shows the symbol and 2 different 

CMOS structures of the C-element. 

T T J J 
A C A C A-C B-cJ 

—^L B ^ — j r pcji 

T b T b ^ I 
C 办 A— B -

1 a _ _ i 1 _ _ 

( a ) ( b ) ( c ) 
Figure 2.4 - (a) symbol of C-element, (b) dynamic C-element and (c) static C-element 

The operation of the C-element is that, when both inputs are the same, then the data 

will be copied to the output, else the previous output will be maintained. Therefore, 
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the output will only be toggled when there are events occurred at the both inputs of 

the C-element. 

C-element is usually incorporated in the two-phase handshaking protocol with the 

bundled data approach. In applying the C-element in the asynchronous circuit, the 

input A and B are served as the inputs of request or completion signal from previous 

stage and acknowledgement signal from next stage. The output C has 3 functions. 

The first one is to control the operation of the function block. The second one is 

acted as the acknowledgement signal which is sent back to the previous stage, and 

the last one is acted as the request signal sending to the next stage. A more detailed 

operation of C-element in asynchronous circuit will be discussed in the next part. 

2.4 Micropipeline 

No matter synchronous or asynchronous design, pipeline is an important 

methodology to improve the performance of a circuit or system. The principle of the 

pipeline is to divide a single operation into several sub-operations, and allows them 

to operate simultaneously [10]. For the asynchronous circuit, pipeline can be done 

by breaking down the complex functional block into several simpler functional 

blocks, and each of them is governed by a dedicated handshake cell. The widely 

known pipeline methodology in asynchronous circuit is micropipeline. 

Micropipeline was introduced in Ivan Sutherlands' Turing Award lecture [10: 

primarily as an asynchronous alternative to synchronous elastic pipelines. From the 

definition by Ivan, micropipeline means a simple form of event-driven elastic 

pipeline with or without internal processing. 
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The basic operation of the micropipeline can be explained by the control first-in-

first-out (FIFO) sequence structure as shown in Figure 2.5. The control FIFO 

sequence is operated in two-phase handshaking protocol. Assuming that all the wires 

are initially set at zero, when there is a transition in the request input, then output of 

the first C-element will be changed from zero to one. This transition will be sent out 

of the control sequence as an acknowledgement signal, and also will be propagated 

to the input of the second C-element. Since the input is toggled, same situation will 

occur in the second C-element, as well as the third C-element. As a result, the 

request signal passes through all the C-elements in series, and emerges on request 

out. 

req in ~ ack in 

input output 
side side 

ack out < i) o • req out 

Figure 2.5 - Basic control FIFO sequence in Micropipeline structure 

However, when there is another request signal coming from the request input, this 

new request signal may not be emerged on the request out this time. This is because 

the control FIFO sequence may still not received the acknowledgement from the 

output side, as a result no transition has been made in the acknowledgement input 

terminal and thus the output of the third C-element cannot be toggled. However, this 

phenomenon is normal as no transition on acknowledgement input means that the 

output side, or the recipient side, still has not processed the previous request, the new 

request should not pass to it before the previous event is completed. 
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Figure 2.6 shows the block diagram of the Sutherland's micropipeline system. The 

connections are actually similar to the previous FIFO sequence, but a storage element 

and a logic block are included in each stage. The storage element used is called 

Capture and Pass latch (CP latch), which is an event-controlled storage element. The 

inputs C and F are responsible for controlling the capture and pass function, and the 

outputs Cd and Pd are just simply the delayed version of the inputs C and F 

respectively. In this micropipeline structure, when there is a transition occurred in 

the request input, data will be captured and stored in the CP latch. However, the 

stored data will not be passed out from the output of the CP latch until there a 

transition occurs at input F. If the CP latch in the next stage has captured the 

previous data, the phase of acknowledgement signal will be changed and passed back 

to the first CP latch. Then the first CP latch will pass the stored data to the logic 

block to perform the logic operation. This operation will be repeated when the next 

request signal arrives. The delay element is used to delay the arrival of the request 

(capture) signal to the next stage so as to ensure the logic operation have been 

completed, therefore it needs to be the worst-case delay of the corresponding logic 

block. 

I 1 
req in I j " • req out 

I T I 
I i I I I r n — 
I r c ^ I [Cd P i 

J _ K CP K rk CP K K 
Latch Logic Latch — ^ ^ Logic 

I Cd P I C Pd 
I I T T 
I I 丄 

ack out (I ( ^ ^ ^ ^ e l a y ^ L ack in 

. I 
one pipeline stage 

Figure 2.6 - Micropipeline with computation 
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There are several benefits of using the micropipeline structure. First, the architecture 

is simple and effective, it is easy to implement and a good throughput can be easily 

achieved. Also, the latches moderate the flow of data through the pipeline and can 

be used to filter out hazards. Thus, any logic structure can be used in the logic 

blocks, including the straightforward structures used in synchronous designs. At last, 

micropipeline is automatically elastic [10], data can be sent to and received from a 

micropipeline at arbitrary times. 

Although micropipeline is a powerful implementation strategy which elegantly 

implements elastic pipelines, it delivers worst-case performance in each stage by 

adding delay elements to the control path to match with the worst-case computation 

time of the corresponding function block. Besides from this, the circuit of its CP 

latch is rather complicated, and delays are added on the capture and pass signal to 

make sure the data has been latched. Therefore the performance is degraded. 

2.5 New Asynchronous Architecture 

As previously discussed, although Micropipeline is a powerful arid widely used 

methodology in the asynchronous circuit design, it still has some areas for 

improvement. 

The first improvement from the micropipeline is the use of dynamic logic, and in our 

design, domino logic [18] is used. Domino logic is one of the logic types in the 

dynamic logic family, and its basic structure is shown in Figure 2.7. The logical 

function of the domino logic is characterized by the nMOS logic block. There are 

two phases for the operation of the domino logic, one is the Precharge phase and the 
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other is the Evaluation phase. When the clock signal is low, then the domino logic is 

in the Precharge phase. At this moment the output must be low as a pull-up path is 

connected to the floating node. When the clock signal is high, then it is in the 

Evaluation phase and the output depends on the input data. If the input data creates a 

pull-down path in the nMOS tree, then the floating node will be discharged and the 

output will go high. Otherwise the output will be kept in low. 

c 
,, � o Output 

Input 一 " ^ nMOS 
Data ——logic block 

clock  

Figure 2.7 - Domino Logic 

The advantage of the dynamic logic is that it has lower processing delays and more 

compact in size in comparison to conventional CMOS data-paths. Due to these, 

many asynchronous circuits [11] [19] [20] [21] [23] [25] also adopted the dynamic logic 

in their micropipeline design. However most of them have not utilized all the 

functions of dynamic logic. One of the interesting properties of the dynamic logic is 

its ability of temporary storage [17] [19]. Dynamic Logic is actually a combination 

of the logic and storage elements, the output data can be held even though the input 

data have been changed under some conditions. As a result, the complex CP latch in 

the micropipeline can be omitted if the dynamic logic (domino logic in our case) is 

used. This implementation of dynamic logic in asynchronous circuit has been proven 

by Renaudin et. al. [17], and its pipeline structure is shown in Figure 2.8. In this 

architecture, the completion detection is no longer relied on the worst-case delay, it is 
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done by a dedicated circuit. It monitors the output of the logic block and provides a 

faster and accurate response when the output is ready. Although dynamic logic 

brings benefits for the asynchronous circuit, it introduces other problems of charge 

leakage and charge redistribution. These problems limit the dynamic logic to have a 

minimum operating frequency from preventing the logic error. As a result, extra 

attention must be paid in using dynamic logic. A further discussion on this problem 

and some possible solutions will be given in chapter 4. 

a c k o u t < \ y \ y V a c k in 

r eq in ~ ^ ^ ^ • r eq ou t 

Completion C o m p l e t i o n C o m p l e t i o n 
* Detection * Detection * Detection 
elk Circuit Clk Circuit Circuit 

_ ^ _ _ _ _ _ — _ _ _ ^ ~ 
Dynamic Dynamic Dynamic 

Logic Logic Logic 
K Block K Block U N Block [ \ 

I d a t a in ^ ^ da t a ou t 

Figure 2.8 - Asynchronous architecture by using dynamic logic 

Besides from the dynamic logic, another improvement is on the handshaking 

protocol and handshake cell. Referring to the previous implementation shown in 

Figure 2.8, a very restrictive handshaking protocol is used to guarantee secure 

operation of the asynchronous pipeline. For a certain stage in this pipeline 

architecture, a new operation, either precharge or evaluate, can only be carried out 

when both the previous and next stage finished their current operation. This strict 

protocol limits the performance of the handshake signal. 

In the new asynchronous architecture, some improvements on the protocol have been 

made. First a current stage is allowed to go into the Evaluation phase when the next 

stage goes into the Precharge phase, i.e. no need to wait for the precharge 
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confirmation from the Precharge phase. Second, a current stage is allowed to finish 

the Precharge phase even the previous stage is still in Evaluation phase. This 

introduces a flexible "Enable" period between the Precharge and Evaluation period. 

In order to carry out this new handshaking protocol, a new handshake cell is used 

and it is shown in Figure 2.9(a). 

VDD c <D c 
B 2' ~ 

r ese t ^ ™ ^ g 
… … … ‘ 1 , 考 ， 2 , 1 , 1 , 

">..V“… 丨111丨 工 丨 0_ 丨 U J 丨 山 I 

D—I 14~ ^ ^ —̂— 

^ r A -i'…-7T 
\ ai I I I ！ ； i 

^ ^ ~ 1 / 1 1 I 

J H \ ！ I r 
i ‘ ‘ n \ / ~ I I 

GND 丨丨 丨 I 丨 i 
( a ) ( b ) 

Figure 2.9 - (a) new handshake cell, (b) timing diagram of a pipeline stage 

The new handshake cell is also in domino style. Compared with the classical 

architecture, this handshake cell is faster due to its simplicity, low input capacitance 

from the request and using simple transistor in pull-up. In this new structure, the 

handshake cell and the domino logic cell will enter the Precharge phase and 

Evaluation phase respectively at the same time. As a result, the handshake cell can 

be seen as a logic element of the pipeline stage and the throughput of the system can 

be minimized [30]. The handshake cell can be easily modified to receive more than 

one request signal by connecting more nMOS transistors in series in the nMOS tree, 

which is similar to the dynamic AND structure. The difference in speed will be more 

significant in logically joining handshake signals as the classical C-element with 

many inputs is very slow. 
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One of the disadvantages of this handshake cell is the requirement of the four-phase 

handshaking protocol which requires longer communication time. However, this 

four-phase fits the operation of dynamic logic as the non-active phase can be used for 

the precharge of the dynamic logic. 

Based on the new handshake cell, the operation of this new asynchronous pipeline 

architecture can be divided into 4 phases: Evaluation, Hold, Precharge and Enable. 

The timing diagram is shown in Figure 2.9(b). In the Evaluation phase, the current 

stage processes the data, which is valid at the input. After the current stage has 

finished its process, it will enter the Hold phase. In this phase, the input data may 

become invalid but the output should be held for the process in the next stage. After 

that, the stage will enter the Precharge phase, and will enter the Enable phase 

afterwards. In this phase, the stage is waiting for the valid data appearing at the 

input. This phase can be omitted when the valid input data has already appeared 

during the Precharge phase. Since all the handshake cells and logic cells should be 

precharged first during the power up, a NOR gate will be used, as shown in Figure 

2.9(a), in the handshake cell. In this configuration, one of NOR gate inputs connects 

to the Reset signal thus that the all the cells in previous stage can be precharged 

initially. 

Figure 2.10 shows the connection and the flow of the pipeline operations of this new 

asynchronous architecture. When data arrives, the current stage will enter the 

Evaluation phase to process the data. Afterward, it will enter the Hold phase to hold 

the data for the next pipeline stage to process. At this moment, it will send a request 

signal to the following stage and acknowledgement signal to the previous stage. 
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After the following stage has processed the data, the current stage enters the 

Precharge phase. And at last it will enter the Enable phase to wait for a new data 

from the previous stage. 

one pipleine stage   
1 
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âo lao Lao Lao Lao Lao '•‘ request in 
ri » 

—K - - A - A —\ - A —\ 
dat^ . ： : ̂  与 与 与 d ^ 

Lao I Lao Lao LaoJ Lao  

I _ J i > - J 1 > -CU • Evaluation 

； — \ - A - A —\ - A - A 
dat4 da^ 弯 d ^ d ^ d ^ • Hold 

,ao Lao Lao Lao Lao Lao _ Precharge 

ri » _iL» -cL̂  _iL> ri ^  
— \ — \ ^ — \ - A — \ 
dat^ dat^ dat^ dat^ dat^ dat , 

,ao LaoJ Lao [< 扣 Lao 

• —K 
dat̂  dat̂  d ^ d ^ d ^ d ^ 

( b ) 
Figure 2.10 - (a) new asynchronous pipeline connection, (b) flow of operat ions in the new 

asynchronous pipeline 
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The use of Differential Cascode Voltage Switch Logic (DCVSL) [24], a type of 

domino logic, can also improve the speed of the circuit. Figure 2.11 shows the basic 

structure of a DCVSL cell. Its operation is similar to that of the domino logic. In the 

Precharge phase, both of the true and complementary outputs will be kept at low. 

When in the Evaluation phase, the computation is enabled. Due to the 

complementary structure of the nMOS logic blocks in DCVSL, one and only one of 

the outputs will go high. 

VDD VDD 

_ clock J 3 ^——C 
true output ^ ^ ~ complementary 

^ n J ” “ ^put 

V V 
GND GND 

Figure 2.11 - Differential Cascode Voltage Switch Logic (DCVSL) 

There are benefits of using DCVSL in asynchronous logic. First, it is based on the 

structure of the domino logic and thus it has the benefits of domino logic, namely, 

are fast computation time and storage property. Second, the DCVSL provides dual 

rail coded data which provides a very reliable completion signal by simply OR-ing 

both the outputs as shown in Figure 2.12. Due to these, DCVSL is an attractive way 

to implement asynchronous operation functions [26] [28] [29] and has been used in 

many asynchronous designs [17] [22] [26] [27:. 
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completion signal 

A 
in+ • • out . 

DCVSL 
in- • — • out-

compleme 门 tary complementary 
inputs outputs 

Figure 2.12 - Completion signal generated from the DCVSL 

Although this way to generate completion signal is very simple, one gate delay is still 

added after the completion. In fact, the completion of the computation can be 

detected directly without the OR gate by modifying the handshake cell. Figure 

2.13(a) shows the modified CMOS structure of the new handshake cell. In this new 

structure, the true and complementary outputs from the DCVSL block can be directly 

connected to the handshake cell for the completion detection. As a result, the OR 

gate and the request signal can be eliminated, and the completion detection matches 

closely the original computation time of the DCVSL block, and thus the average case 

performance can be achieved. Figure 2.13(b) shows an example of the single bit 

basic FIFO cell with the modified handshake cell and Figure 2.13(c) shows the new 

connection of the asynchronous pipeline by using the new handshake cell. 
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Figure 2.13 - (a) modified handshake cell, (b)modified handshake cell and basic FIFO cell in 
DCVSL structure, (c) connection of the asynchronous pipeline 

The use of DCVSL will improve the speed as the communication protocol is simpler, 

but the trade-off is the size penalty incurred by DCVSL. Moreover, dual-rail data 

requires large routing area in the physical layout as the bus width is doubled. 

Therefore within the processing units, DCVSL is used in order to maximize the 

performance. On the other hand, in each connection between all the processing 

units, where they may be separated quite far away in the physical layout, a dual-to-

single or single-to-dual rail conversion interface is inserted so as to reduce the 

routing area by using single-rail data. 
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Chapter 3 

DCT/IDCT Processor Design Methodology 

3.1 Overview 

Most digital signal processing (DSP) algorithms involve many mathematical 

operations which require high computational resources. There is no exception for the 

Discrete Cosine Transform (DCT) [3]. Although there are arithmetic units within the 

general purpose micro-processor or micro-controller, they are not specifically 

designed for the pure mathematical operations. As a result, the implementation of 

DSP algorithm on them may not be efficient and has poor performance. Due to this, 

it motivates the development of the DSP chip, and the DCT chip in this thesis. 

There are many hardware architectures to implement the DCT algorithm, such as 

using a programmable DSP processor, or dedicated ASIC. At the same time, there 

are many kinds of DCT algorithms, some of them focus on reducing the number of 

operations, some of them allow more regular architecture of VLSI implementation. 

Careful analysis on these is required in order to find out a most suitable combination 

for the DCT implementation in asynchronous circuit. 

The advantage of using asynchronous technique to implement the DCT or other DSP 

processors is its average case performance. There are many functional blocks in the 

design, and their computational time may differ from each other a lot. The global Page 24 
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clock frequency in synchronous circuits is governed by the worst case delay in the 

whole system whereas each functional block in asynchronous circuits by its own 

operation speed. As a result the computation time of an asynchronous DSP chip may 

be shorter than the synchronous one. 

In this chapter, different hardware architectures and DCT algorithms will be 

considered and compared. 

3.2 Hardware Architecture 

Different from the general purpose micro-processor or micro-controller, DSP 

processor has traditionally been optimized to compute different arithmetic 

operations, such as the convolution, recursive filtering and fast transform operations 

that typically characterize most signal processing algorithms. They are used in many 

application areas such as communications, speech and video/image processing. As 

mentioned in the previous part, DSP processor can be either programmable or of a 

dedicated nature. 

Programmable DSP processor has the advantages in the flexibility and design time 

for different algorithms as it allows the implementation of a variety of DSP 

algorithms. Besides from arithmetic units, extra memory and control units are 

required in order to store the application programme and control the operations of 

data. The performance of the DSP algorithm is not only depended on the hardware, 

but also depended on the application programme. Therefore the application 

programme should be optimized for utilizing the hardware in the processor. 
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On the other hand, the dedicated ASIC is hardwired to perform a specific algorithm, 

and usually no extra control or programme is required. Once it is designed, the 

performance of the dedicated ASIC is fixed. Although the flexibility of the 

dedicated ASIC can be considered to be zero, this approach is expected to perform 

better than the programmable approach as the DSP algorithm is optimized in 

hardware level, and also it is more efficient in terms of area and speed. 

3.3 DCT Algorithm 

The main application of the DCT is in the video or image compression. For most of 

the image and video applications, the whole image will not be processed with DCT 

directly as it will require a lot of computations. In contrast, the image will be divided 

into several regular blocks for processing. The block size is usually eight pixels or 

sixteen pixels in both of x and y direction, as shown in Figure 3.1. The reason to 

have a block size of 8x8 or 16x16 is that they have been found to provide sufficient 

details and localized activities of the picture to enable reasonable adaptive processing 

of the image [31]. And for most of the current DCT applications such as H.261 [4], 

JPEG [4] and MPEG [6], the block size of 8x8 have been recommended. Therefore 

the effort of hardware development has been concentrated on an 8x8 two-

dimensional (2D) DCT. 
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In general, the iVxTVpoint of 2D DCT is given by Equation 3.1， 

= — c o s —————cos � - Equation 3.1 
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where m’n，k’l = 0，1’ ’N -1 
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Since for the video or image application, the block size is 8x8, i.e. N=込,Therefore 

Equation 3.1 becomes 
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Figure 3.2 - 2D DCT of 8x8 image block 
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Figure 3.2 shows the 8x8 2D DCT of an image block. If the 8x8 2D DCT is directly 

implemented from Equation 3.2，totally 4096 ( 炉 ） m u l t i p l i c a t i o n s and 4032 (8^x8x7) 

additions are required to calculate all the 64 DCT outputs. This number of arithmetic 

operations is extremely high, especially for the number of multiplication as it 

requires higher computational resources. It is not possible to perform the 2D 

transform in real-time applications even for a dedicated DSP processor. Fortunately, 

there are many kinds of fast 2D DCT algorithm to reduce the number of operations, 

and thus makes the real-time 2D DCT implementation possible. 

There are two main types of fast algorithm for VLSI implementation of 2D DCT. 

The first type is the row-and-column decomposition method which is shown in 

Figure 3.3. This method separates the 2D DCT into two one-dimensional (ID) DCT 

operations based on the symmetry and regularity of the 2D DCT structure. The first 

ID transforms are applied on the data row-wise, which is called the row operation. 

Afterwards, next ID transforms are applied on the intermediate results of the row 

operation column-wise, and this is called the column operation. The reordering of 

the results of row operation into column order can be done by a transpose memory. 

In this way, a complex NxN 2D DCT can be decomposed into 2N ID DCT operation 

and the number of multiplications is reduced from A^ to 2NxN^. As a result, the 

computational requirement is greatly reduced. A better result can be achieved by 

further applying the fast ID DCT algorithm [7][8][9] in the row and column 

operations. Since the row-and-column decomposition method requires two ID DCT 

processors and the implementation is straight forward, this method has been chosen 

by many other developers [32][33][34][35]. 
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Figure 3.3 — 2D DCT by row-and-column decomposition method 

The second type of the fast 2D DCT algorithm is called the direct method. This 

method directly uses the 2D DCT algorithm to compute 2D DCT. There are many 

proposed fast 2D algorithms to handle this [3 6] [3 7] [3 8]. They explore the 

trigonometry equality of 2D DCT such that the NxN 2D DCT can be decomposed 

into N ID DCT plus some extra additions as shown in Figure 3.4, and thus the 

number of multiplications can be reduced to NxlsF. Similar to the row-and-column 

decomposition method, the number of operations can be further reduced by applying 

fast ID DCT algorithm on the ID DCT processor design. 
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Figure 3.4 - 2D DCT by direct method 

By comparing the two approaches, the 2D direct method is more superior than the 

row-and-column decomposition method. This is because it involves much less 

multiplication which directly leads to better performance. Furthermore it does not 

require the transpose memory. However, most of these fast 2D direct algorithms 

require very complex data path in the adder/subtractor network of the pre- and post-

processors which cause difficulty in the VLSI implementation [37] [39]. Besides the 

complex routing overhead, it also introduces a large handshaking overhead in 

asynchronous implementation. On the other hand, although the row-and-column 

decomposition requires more arithmetic operations, it requires only two ID DCT 

processors saving a lot of hardware. Also the data path in a ID DCT is simpler and 

regular which leads to an easier hardware implementation, and this favours the 

asynchronous implementation. Due to these reasons, the row-and-column 

decomposition is chosen for the implementation of the 2D DCT in asynchronous 

circuit. 

3.4 Used Architecture and DCT Algorithm 

In this thesis, two different implementations of the DCT will be shown. As 

previously discussed, the row-and-column decomposition is more suitable for the 
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implementation of the 2D DCT using asynchronous technology. Therefore the 

following parts and chapters will be focused on the design and the implementation of 

the ID DCT algorithm. For the two implementations of the ID DCT, one is 

constructed based on a programmable DSP processor, and the other one is 

implemented as a dedicated one. The implementation of the transpose memory will 

be discussed in chapter 6. 

3.4.1 Implementation on Programmable DSP Processor 

Recalling from Equation 1.1, the 8-point DCT is given by the following equation 

X, c o s — ~ ~ - Equation 3.3 
丄 i=0 丄O 

and its matrix representation is shown as follows 

~yJ [a a a a a a a a1 r^o" 

Y, D E F G -D -E -F -G x, 

Y^ B C -C -B B C -C -B x, 

Y^ _l E -G -D -F -E G D F x, 
Y, A -A -A A A -A -A A ^ x, ' Equation3.4 

Y, F —D G E -F D -G -E x, 

Y, C -B B -C C -B B -C x, 

Y, G —F E —D — G F - E D x, 
• 」 L 」 L 一 

where A = cos(n/4), B = cos(n/8)’ C = sin(71/8), D = cos(n/16)’ 
E = cos(3 n/16), F = sin(3n/16), G 二 sin(n/16) 

Since the programmable DSP processor has fixed number of arithmetic units, the 

lesser number of operations, the shorter the computational time and thus the higher 

performance of the DCT implementation. Therefore a fast algorithm with smaller 

number of operations should be chosen for the implementation on the programmable 

DSP processor. 
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There are many kinds of fast algorithm aided to reduce the total number of 

operations. The most well know ones are the Lee's [7] and Hou's [8] algorithms. 

They both reduce the DCT operations to have 12 multiplications and 29 additions. 

The number of arithmetic operations is greatly reduced from the original 64 (炉） 

multiplications and 56 {8x1) additions. However, these two algorithms were not 

chosen for the implementation of DCT in this processor because the accuracy of the 

DCT algorithm should also be considered. 

The main error of the DCT comes from the truncation after the multiplications as the 

bit length of the data is increased after each multiplication. A truncation must be 

taken in order to match the width of data bus. As truncation on a data makes it differ 

from its actual value, if a data in the processor is multiplied several times 

continuously, it resultant value could be greatly differed from its exact value. 

Therefore, a fast algorithm with less multiplication stages on a data path should be 

chosen. 

By comparing several fast algorithms, the one proposed by the Jeong et. al. [40] is 

chosen, and its signal flow diagram is shown in Figure 3.5. This fast algorithm 

requires 14 multiplications and 29 additions, and requires only a maximum of 2 

multiplications in each data path. Therefore it can provide a better accuracy than 

Lee's or Hou's algorithms in a fixed width system. 

Page 32 



Chapter 3 - DCT/IDCT Processor Design Methodology  

Xi O v A® © ^Y, 

X3 V X X ^ © 

X2 y O O ^ Z © ^Y, 

/ X X V ——®—— 

X4 Z Z _ _ ( g ^ Y i 
CO=COS(67I/16)/COS(27I/16), CI=1/COS(27I/16)， C2=COS(47I/16)/COS(27T/16), 

C3=L/^Y C4=COS(47I/16), C5=COS(27T/16), 

C^COS(27J/16)/2COS(57I/16), C7=COS(27I/16)/2COS(37I/16), C8=cos(27i/16)/2cos(l7i/16), 
C9=COS(27I/16)/2COS(77I/16), 

Figure 3.5 - Signal flow diagram of the Jeong's ID DCT fast algorithm 

The detailed architecture of this programmable DSP processor and the 

implementation of the ID DCT will be discussed in chapter 5. 

3.4.2 Implementation on Dedicated Processor 

For the dedicated implementation of the 1D DCT, the fast algorithms mentioned in 

the previous part are not suitable. This is because most of the fast algorithms have 

similar data flow as shown in Figure 3.5. The data flow of such fast algorithm is 

usually quite complex in the last stage. This makes the asynchronous 

implementation a disadvantage as a large handshake overhead will be introduced, 

and a degradation in the performance of the processor will be resulted. The solution 

to overcome this problem is to use dedicated multipliers and adders for each 

multiplication and addition. However this costs a lot of silicon area and thus is not 

practical. 
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For the asynchronous circuit, the dataflow should be as simple as possible. This 

helps to reduce the handshaking overhead and hence the performance can be 

enhanced. Therefore a semi-direct method is used in this dedicated DCT processor. 

This semi-direct method is obtained by decomposing the 8x8 matrix multiplication 

into two 4x4 matrix multiplications. As a result, Equation 3.3 can be decomposed 

into 2 equations as shown in Equation 3.5 and Equation 3.6. 

Yq a J4. A Xq + X7 

Y^ _ \ B C -C -B Xi +X6 

Y, A -A -A A ‘ X2+X5 一 Equation3.5 

Y^ C -B B —C X3+X4 

>1] \D E F G ]�X0-X7一 

Y^ _ \ E -G -D -F X, -jCg 

Y广 3 F -D G E • _ Equation3.6 

Y, G -F E -D X, -X, 

and similarly the IDCT can be decomposed into Equation 3.7 and Equation 3.8. 

[A B A C 1 [YJ [D E F G 1 
X, A C -A -B Y^ 1 E —G -D -F Y, 
X, =2 A -C - A B * Y, ^ 2 F - D G E * Y, _ Equatioii3.7 

JC3 A -B A -C K G —F E -D Y, 
— —J J I _ u 」 L —I L. '— 

'jcJ [A B A C 1 [YJ [D E F G 1 
x^ _l A C -A -B Y^ I E -G -D —F Y-, 
X, A -C - A B " Y, ~2 F -D G E • Y, “ Equation 3.8 

A -B A —C Y, G -F E -D Y, 

This method has been used in many other DCT implementations [32] [33]. There are 

several advantages for this semi-direct method. First the number of multiplications 

and additions are reduced to half of the original number. Second, it involves one 

multiplication only in each data path and thus it requires less numbers of bits to 
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represent the data. Furthermore, the dataflow is simple, which is multiply-and-add, 

this favours the asynchronous implementation. Finally the structure of the DCT and 

IDCT are similar, it is easier to implement the DCT and IDCT on the same hardware 

by this method. 

Based on the above reason, a ID DCT core processor is constructed by using this 

semi-direct method, and is used in the dedicated 2D DCT processor. This processor 

is capable of handling DCT and IDCT, and can be cascaded to perform the 2D DCT. 

The detailed architecture and the implementation of the DCT algorithm will be 

discussed in chapter 6. 
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Chapter 4 

New Techniques for Operating Dynamic Logic in Low 

Frequency 

4.1 Overview 

Dynamic logic has some advantages over the static logic, they include higher speed 

and more compact in size. Moreover, it is suitable for used in the asynchronous 

circuit design as mentioned in chapter 2. However, dynamic logic is not widely used 

as it suffers from two main problems which are the racing problem [41], and the 

charge redistribution and leakage problem [41] [42] [43]. The racing problem can be 

avoided by a proper arrangement of the logic cell. However, the charge 

redistribution and leakage problem cannot be simply overcome as it is caused by its 

internal structure. This problem causes the dynamic logic to have a bad noise margin 

and a lower bound of operating frequency. 

In this chapter, the problem of the charge redistribution and leakage problem, and its 

traditional solution will be discussed. Afterwards, a new technique to overcome this 

problem will be introduced. 
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4.2 Background 
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Figure 4.1 一（a) 3-input NAND dynamic logic, (b) voltage in the floating node of the dynamic 

logic 

The output value of a dynamic logic depends on the charges stored in the floating 

node. By considering a 3-input NAND dynamic logic shown in Figure 4.1(a), during 

the Precharge phase, the output of the dynamic logic will be kept at high as the 

pMOS transistor is turned on and current is flowed from VDD to the floating node. 

During the Evaluation phase, unless all the nMOS transistors are turned on such that 

a pull-down path is created, the charges kept in the parasitic capacitor C�ut at the 

floating node will hold the output at high. Otherwise, the output will become low as 

all the stored charges in the floating node flow out through the pull-down path. 

There are several advantages of the dynamic logic over the static logic. First the 

dynamic logic is more compact as the complementary pMOS transistor tree is 

replaced by only one pMOS transistor. Also the operation can be run faster as the 

output only needs to be selectively discharged during the Evaluation phase, and the 

charging speed is faster as there is only one pMOS transistor. An additional 
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advantage for the asynchronous circuit is its temporary storage of data due to charges 

stored at the parasitic capacitor. 

However, the dynamic logic is suffering from the charge redistribution and leakage 

problem. As mentioned previously, the output of the dynamic logic depends on the 

charges stored at the floating node. Theoretically if the pull-down path does not 

exist, the output should be kept at logic high during the Evaluation phase. In 

practice, the output voltage will be dropping continuously with time as shown in 

Figure 4.1(b). This problem is caused by the charge redistribution and charge 

leakage. 

The charge redistribution problem can be explained by Figure 4.1(a). Suppose that 

during the Evaluation phase, the nMOS transistors Ml and M2 are turned on while 

M3 is turned off, there is no pull-down path to the ground and the output should keep 

high. However, since Ml and M2 are turned on two more capacitors CI and C2 are 

introduced and they will share the charges stored in the floating node. This is called 

charge redistribution. As a result, voltage at the output drops and degrades the noise 

margin in the dynamic logic. If CI and C2 are large and large amount of charges is 

flown out from the floating node to CI and C2, the voltage at the floating node may 

be dropped below the switching threshold of the next stage and causes a logic error. 

Furthermore, the charges will also be leaked out from the parasitic capacitor due to 

the leakage current [45] [47]. If the time of the Evaluation phase is sufficient long, 

the diminishing charge will even induce a logic error at the output. Therefore the 

duration of the Evaluation phase should be short in order to prevent the logic error 
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from occurring at the output. This limits the dynamic logic from operating in low 

frequency. 

4.3 Traditional Technique 

J 3 J ]|D  
— ‘ r ^ ——^ 厂 

^ 'charging ‘―| ，. "̂a'PS 
y OUT M OUT 

nMOS nMOS 

logic block logic block 

—— 

CLK CLK I 

(a) (b) 
Figure 4.2 - Addition of the pull-up path in (a)dynamic logic, (b)domino logic 

The traditional method [42] [43] used to overcome the charge redistribution and 

charge leakage problem is adding an additional small pull-up pMOS at the floating 

node. Figure 4.2 shows the traditional method used in the basic dynamic logic and 

domino logic. This additional pull-up pMOS directly solves both of the problems as 

it allows a current flow to the floating node during the Evaluation phase, and thus the 

charges stored in the parasitic capacitor can be maintained, or refilled. Due to its 

simplicity, this method is commonly used in most of the dynamic logic. 

However, this method has a drawback of speed degradation. During the Evaluation 

phase, if a pull-down path is created by the nMOS logic block, the discharging 

current will be needed to fight against the charging current created from the 

additional pMOS, and thus a overall discharging current is decreased and the 

evaluation time is increased. Although a smaller charging current can be obtained by 

smaller pMOS transistor, but the transistor size is limited to the technology used and 
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can only be reduced to a certain extent. Sometimes in poor design, the discharging 

current may even weaker than the charging current. In this case, the logic block will 

not be operated correctly and cause an error. These problems are caused by the 

limited or no control of the charging current from the additional pMOS. 

4.4 New Technique 一 Refresh Control Circuit 

Regarding the charge redistribution, there are several techniques [42] to overcome 

this problem, and some of them are shown in Figure 4.3. Also in practical design, 

the dynamic logic with a large nMOS logic block is always avoided as it has a poor 

performance due to the weak discharge current. In this case, the logic cell will 

usually be broken into two, or more simpler logic cells which have less transistors in 

the nMOS logic block. By using these techniques, the charge redistribution problem 

can be minimized. Therefore the charge leakage problem will only be dealt with in 

the new technique. 

c C AOUT 
OUT r̂X)— OUT |-<| \ |-<j I 

� - V - H L If ^ 

F 力 ^ ^ ^ 。R r̂ r̂ 
b > h P . H ? 

_ _ I P _ I P i 1 
CLK CLK CLK  

Figure 4.3 - Techniques of overcome the charge redistribution problem 

In order to solve the charge leakage problem, the introduction of the pull-up path at 

the floating node seems to be necessary. However, the continuous flow of the 

current from VDD to floating node via the additional pull-up path causes the speed 
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degradation. If the amount of current via the pull-up path is controlled, the speed 

degradation will be minimized. This is the aim of the new technique. 

4.4.1 Principle 

The idea of the new technique comes from the refresh technique used in Dynamic 

Random Access Memory (DRAM) [44] [45]. The core circuit of the new technique 

is called the Refresh Control Circuit (RCC), and it is used to monitor the voltage of 

the floating node in the dynamic logic. When the floating node voltage meets the 

pre-determined minimum voltage, or Vref, a pull-up path at the floating node is 

created for each dynamic logic in order to refill the charges in it. This process is 

called Refresh. Since the pull-up path is not present all the time, this technique 

causes less speed degradation compared with the traditional methods. Furthermore it 

is self-timed and self-operating. It does not need extra control from user. Figure 4.4 

shows the modified structure of the dynamic and domino logics. 

1—1 L-1 Refresh ) 
C D (controlled J I … 

. „ D �� C ‘―I Refresh 
n H by RCC) 1 L n k — — ^ (controlled 

'charging ~ | by RCC) 

‘ OUT I'chaw™ 

‘ ~ O U T 

nMOS 
logic block nMOS 

logic block 

• CLK I 

(a) (b) 
Figure 4.4 - Modified structure of the (a)dynamic logic, (b)domino logic 
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4.4.2 Voltage Sensor 

First, in order to detect the voltage of the floating node and compare it with Vref, a 

voltage sensor is used. In the system, not all the logic is connected to the voltage 

sensor. Only a dummy circuit modeling with the worst dynamic logic structure in 

terms of leakage is used to represent all the logic cells in the circuit and it is 

connected to the voltage sensor as shown in Figure 4.5. 

- ] — r i "1 q 
I ~ I I ~ I I ~ I 0 iRefresh Signal 

I — — C D ~ 1 Refresh Signal I C 

j — 广 T 丨 OUT n J p ^ 1 1 
I ^ 1 I 1 • f ii——OUT 

nMOS j I j I 
logic block ^ nMOS 

, , ^ Refresh^ 丨ogic Wock I 1 1 Voltage Sensor 二训浏• I • 

J - fc -^ ^ ~ J___‘她一 
Cuj： I I CLK I \ y�ef Signal 

去 Dummy 去 Dummy 
Dynamic Cell ： Dynamic Cell ： 

( a ) ( b ) 
Figure 4.5 一 Proposed refresh structure for (a)dynamic logic, (b)domino logic 

The voltage sensor consists of 2 stages, the first stage is the differential amplifier and 

the second stage is the two-stage sense amplifier. Their structures are shown in 

Figure 4.6. The first stage, the differential amplifier, is used to compare the voltage 

of the floating node with Vref, and to amplify their difference. The inputs of the 

second stage, the two-stage sense amplifier, are connected to the outputs of the first 

stage to provide a more accurate comparison. If the voltage in the floating node 

becomes smaller than Vref, the second stage will generate the refresh request signal to 

indicate to the dynamic logic that refresh is needed. 
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Figure 4.6 - Voltage sensor, (a)differential amplifier as the first stage with reference voltage 

generator, (b)two-stage sense amplifiers as the second stage 

The two-stage voltage sensor can provide a good detection. However, it consumes a 

lot of power as there is a current always flowing from VDD to GND, it should be 

prevented from operating all the time. As the sense amplifiers are only used to 

determine the time for refresh, a timer can be used to record the time required for 

refresh in the first refresh process. Afterwards, the sense amplifier can be turned off 

and the signal from the timer can be used to indicate a time for refresh. In practice, 

the combination of a ring oscillator, a counter and latch can form a timer. 

4.4.3 Ring Oscillator 

Ring oscillator is constructed by connecting an odd number of inverters with a 

feedback, which is shown in Figure 4.7. 

- j / O [ > o ~ ~ [ > o [ > o - J O 

Figure 4.7 - Ring oscillator 
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For a ring oscillator, its period (or frequency) is controlled by the size and number of 

inverters. The size of the inverter means the width-to-length (W/L) ratio of the 

pMOS and nMOS in the inverter. In general, the smaller the W/L ratio, the longer 

the period can be obtained. This is because the charging and discharging current, as 

shown in Figure 4.8, are smaller in small pMOS and nMOS, and thus it requires 

longer time to charge or discharge the input capacitor of the next inverter. 

Furthermore, the more the inverters used, the longer the period can be made in the 

oscillator as a longer delay is created in the feedback path. 

hS -, 
\ I 
^^ 'charge | 

» I .,……… 
/ 'discharge 丨 丨 i 

L / I I—…I i 
_ / : : J i_ 

Figure 4.8 — Charging and discharge current in the inverter chain 

Normally, the time for a logic error occurring at the floating node due to charge 

leakage should be in the order of milli-second (10' second) [47]. If a ten-bit counter 

is used to count the refresh time, the ring oscillator will need to have a period in the 

order of micro-second (10'^ second). However, the period of an ordinary oscillator is 

very short (several nano-second, 10"̂  second) even when the smallest inverters are 

used. The increase in the number of inverters can increase the period, but it is not 

practical. It is because the difference between the delay of an inverter and the 

required period is too large, it may require thousands of inverters so as to achieve the 

required oscillating period and this makes the oscillator very large. Also, the large 

amount of inverter causes a large amount of power consumption. Rather than 

inverter, delay elements are used. It is added between each inverter and creates 
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larger delay in the feedback path. Figure 4.9 shows the ring oscillator with the delay 

elements. 

>— D e l a y — ^ X ^ Delay — D e l a y — D e l a y — D e l a y ~ \ 

Element Element ~ Element ~ Element ~ Element / 

Figure 4.9 - Ring oscillator with delay elements 

There are many types of delay elements. The common one is a transmission gate but 

it cannot achieve a long delay. By referring to the comparison done by Mahapatra et. 

al. [46], the transmission gate with Schmitt trigger [46] is chosen as the delay 

element in the ring oscillator as it produces longer delay. The CMOS structure of the 

transmission gate with Schmitt trigger is shown in Figure 4.10 
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Figure 4.10 - Delay element, transmission gate with Schmitt trigger 
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Figure 4.11 - (a) a voltage controlled inverter, (b) part of the voltage controlled ring oscillator 
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In order to further increase the delay, the minimization of the charging and 

discharging currents (Figure 4.8) are required. As mentioned previously in this 

section, the smaller the current, the longer the charging/discharging time and thus a 

longer period can be achieved. The minimization of current can be done by adding 

small transistors in the VDD and GND paths, which is shown in Figure 4.11(a). By 

providing the control voltage near to the threshold to the added transistors, the 

charging and discharge currents can be adjusted to a very small value as both 

currents are limited by the added transistors. The method of providing the controlled 

voltage is shown in Figure 4.11(b). As a result, a frequency of 38.5 KHz (period of 

26us) is achieved in this ring oscillator. 

4.4.4 Counter, Latch and Comparator 

Counter is connected to the ring oscillator in order to record its number of period. 

As mentioned before, the time for a logic error occurring at the floating node due to 

charge leakage is in the order of milli-seconds. Therefore, the dynamic logic should 

be refreshed every several or tens of milli-seconds. This constrain indicates that the 

timer should be able to record the time in the order of milli-seconds. 

As the ring oscillator is constructed at 38.5KHz，a ten-bit counter is enough the for 

recording the time as 

Recordable Time = Clock Period x 2驗�ofBitofCo她r . Equation 4.1 
=26usx2io 
=26usx 1024 
=26.6 ms 

The latch is used to record the number of clock period required to carry out the 

refresh process for the first time. The input of the latch is connected to the output of 
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the counter. When the first refresh is required, the refresh request signal from the 

voltage sensor will trigger the latch and causes the latch to record the value of the 

counter. This value is meaningful as it indicates the number of clock period required 

to have a refresh. Afterwards, the voltage sensor can be turned off, and the refresh 

process is controlled by the comparator. The comparator is used to compare the 

output values of the counter and latch all the time. When their values are the same, 

this means that the dynamic logic reaches the time to carry out the refresh process, 

the comparator will send out a signal to request a refresh. 

4.4.5 Recalibrate Circuit 

The amount of leakage current is highly related to the temperature [44]. The higher 

the temperature, the larger the leakage current flows out from the floating node. As a 

result, the time required to carry out a refresh process is varied with the temperature. 

In the real world, the temperature of the chip may vary with time, therefore the 

circuit should have a recalibrate function such that the refresh time is recalculated 

after certain time. 

The recalibrate circuit is actually a five-bit counter. It counts the number of refresh 

processes has been taken and controls the ON and OFF of the voltage sensor. 

Initially the refresh counter starts counting from zero, and the voltage sensor is 

enabled. After the first refresh took place, the refresh counter is incremented to one 

and the voltage sensor is disable afterward. After 2 ^ - 1 refresh processes, the 

refresh counter counts back to zero and the voltage sensor is enabled again. As a 

result the latch will record a new counter's value by the trigger of the refresh request 

signal from the voltage sensor and thus the recalibration can be made. 
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4.4.6 Operation Monitoring Circuit 

When the actual system is operating, i.e. there is a transition of the clock signal 

synchronous circuit or there is a request signal in asynchronous circuit, the voltage 

sensor is not required to detect the floating node voltage as the charge in the floating 

node will be retained during the normal Precharge phase. Under this situation, the 

voltage sensor is not necessary to be turned on and thus power can be saved. 

Therefore the operation monitoring circuit helps to detect when the system is 

operating, and it will disable the voltage sensor and reset the counter if necessary. 

4.4.7 Overall Circuit 

By combining all the necessary units, the Refresh Control Circuit is formed as shown 

in Figure 4.12. 

I Timer I 
I 1\ I 
I data out ) i 

I n 1/ I 
Counter , . ] 

I ； (10 bits) Latch j 

I OcsiStor n n j N Z X I data out / l̂aich {—— 
'. ( 2 5 US) / L K / 广 \ 1 

I _ _ I 

I Matched , 

/ O ^ I 丨 Refresh 
S r ^ Request 

Refresh Signal ^ . Refresh Signal | | | Signal 

to Actual Circuit 嘱 | 
w Dummy Internal 
^ Dynamic Cell Node Voltage Voltage 

1 Sensor 
(2-stage 

Operation Monitoring | | Sense 
Circuit I Amplifier) 

I T I Enable / 
I I Disabe 

“ Enable / 

Refresh Counter Disabe 

(5 bit) 

Figure 4.12 — Block diagram of the Refresh Control Circuit 
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Figure 4.13 - Timing diagram of the Refresh Control Circuit 

The timing diagram of the operation of the Refresh Control Circuit is shown in 

Figure 4.13. Initially the voltage sensor is enabled and the voltage of the floating 

node of the dummy dynamic logic cell decreases with time. When the voltage meets 

the pre-defined minimum level, the voltage sensor generates the refresh request 

immediately. This signal will first trigger the latch to record the value of the counter. 

Also the refresh request signal will be passed out to reset the counter, increment the 

refresh counter and refresh the dummy dynamic cell and the actual circuit. 

Due to the increment in the refresh counter, the voltage sensor is disabled. However, 

the timer is now enabled and is able to generate the refresh signal by comparing the 

value of the counter and latch. It continues until the refresh counter returns to zero, 

then a recalibration is required and the voltage sensor is enabled again. The whole 

process will then be repeated afterwards. 

The performance of the Refresh Control Circuit will be shown in chapter 7. Also, 

multipliers are constructed to test and compare the performance of this new 
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technique with the traditional technique. The result will be shown in chapter 7 as 

well. 

As the Refresh Control Circuit is still in the schematic level design, this technique is 

not applied on the implementation of programmable DSP processor and dedicated 

DCT/IDCT processor. 
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Chapter 5 

DCT Implementation on Programmable DSP 

Processor 

5.1 Overview 

As the number of transistors is increasing, it becomes attractive to build design 

system in asynchronous style as it has benefits of no clock skew, lower power 

consumption and low electromagnetic noise. Several asynchronous processors have 

been built [11][48][49][50], and the AMULETS [50] has been used commercially. 

This indicates that asynchronous designs are plausible alternative to synchronous 

designs. 

In this chapter, a pipelined dataflow [10] [51] micro-coded DSP asynchronous 

processor will be discussed. The architecture of this DSP processor was developed 

by our research group, and I have made some modifications, and I am responsible for 

the DCT implementation and layout generation of the whole processor. The 

programming technique and the implementation of DCT will also be given at the end 

of this chapter. 
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5.2 Processor Architecture 

The design of this DSP processor follows the dataflow architecture. In other word, 

this is a data-driven system. The dataflow architecture naturally fits the 

asynchronous design. The combined architecture allows the data to be sent into the 

system continuously without external control or clock, and the presence of data 

triggers the operation of the asynchronous system automatically. 

In order to realize the pipelined dataflow architecture in an asynchronous system, a 

pipelined processor is developed. The target of this processor is to implement some 

simple DSP operations such as Infinite Impulsive Response (IIR) filter, Fast Fourier 

Transform (FFT) and DCT, where addition, subtraction and multiplication with 

constant are required. 

• ‘ Instruction 
F i r o I I Input 

Memory 1 ^ | N 

零 I Instruction 
^ I , p Memory 

Memory 2 I | 

I r i I Data 
L - ^ I Output 

Data Input ； Switching ！ > 
K Network ^ 

T p 霸 

"m̂  < I 

r a ^ < ^ 

�s u b ^ 

Figure 5.1 - Dataflow architecture of the programmable DSP processor 
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The architecture of the processor with the necessary functional blocks is shown in 

Figure 5.1. The processor includes an adder, a subtracter, a multiplier, two FIFO 

memories, a switching network, and an instruction memory. It the following 

sections, each part of the processor will be discussed. 

5.2.1 Arithmetic Unit 

In this processor, the adder, subtracter and multiplier are all pipelined and are 

designed in DCVSL structure in order to maximize the performance. Multiplier is 

based on the bit-parallel architecture. In this architecture, the multiplier core can be 

built by an array of a Product Full Adder (PFA)，which is shown in Figure 5.2. Each 

PFA carries out four functions, which are given by 

Aout = Ain - Equation 5.1 
Bout = Bin - Equation 5.2 

Pout = (Ain • Bin) Q (Pin Q Cin) - Equation 5.3 
Cout = Ain .Bin • Cin + Pin • (Ain •Bin + Cin) - Equation 5.4 

Pin iBin 
.鑫 ‘ A ！ 

. ； . 

• 5 • 
• 5 • • 

• • ‘ 
Ain ~——• 4 Cin 

Product  
: ,%s. Full Adder  
：Bout M - • Aout 
： ：p r " 

Y I T I 
Cout ； Pout 

t , 
Figure 5.2 - Product Full Adder (PFA) of the multiplier 

All the signals in the PFA have their own handshake signals, except B shares the 

handshake signal of P as they propagate to the same direction. The overall structure 

of the multiplier core is shown in Figure 5.3. 
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Figure 5.3 - The 8x8 multiplier core 

In Figure 5.3, A and B are the inputs while P is the product of A and B. The number 

behind the inputs and output represent the bit position, where bitO is the least 

significant bit (LSB). Since the data format of this processor is a 1-bit sign bit with 

8-bit magnitude, the sign bit of the final product is just the XOR result of the two 

inputs' sign bit. As a result, buffers are added in the multiplier core so that the sign 

bits of both inputs are shifted to the right-bottom block to perform the XOR 

operation, and the sign bit of the final product can be obtained. 

Unlike the synchronous version, the asynchronous bit-parallel multiplier requires 

different bits of the inputs arriving at different time. This is because within the 

multiplier core the next PFA can only start operation when the results, C and P, of 

the previous PFAs are ready. In the current architecture, (AO, B7) will be calculated 

first, the next operation will be started at (AO, B6) and (Al, B7), and so on. Due to 

this requirement, a ladder-shape input buffers are used at two inputs in order to 
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schedule the arrival time of different bits. The structure of the input buffer is shown 

in Figure 5.4. 
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Figure 5.4 - Input buffer of multiplier 

Similarly, different bits of the output P come out at different time, and bitO will come 

out first in this configuration. As a result, a ladder-shape output buffer is also 

required at the output side. 

The adder is based on the Carry Look-ahead (CLA) architecture [52] [53]. This 

architecture provides a faster computation time by reconstructing the Sum and Carry 

of the addition by 2 new values, which are Propagate P and Generate G. The new 

formulae are given as the followings, 

Gi = Ai • Bi - Equation 5.5 
Pi = Ai QBi - Equation 5.6 

Ci = Gi + Pi • Ci.i - Equation 5.7 
Si = Ci.i QPi - Equation 5.8 
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By computing several Ps and Gs in parallel, the Sum and Carry of several bit 

locations can be obtained simultaneously. As a result, the addition can be carried out 

in a faster way. 

In this processor, the subtracter is actually another Carry Look-ahead adder with an 

inversed input as A-B=A+(-B). 

5.2.2 Switching Network 

In some designs, data transfer is done via a common data bus. However, it is 

difficult to be implemented in an asynchronous dataflow system as large 

handshaking overhead and long delay will be introduced. For example, there is a 

common data bus shared by one receiver and three transmitters. When the data 

exists in the data bus, the handshake cell in the receiver is required to communicate 

with all the three transmitters in order to know which the source is. The time 

required must be longer than a normal handshaking time in the pipeline stage. If the 

number of the receivers and transmitters is increased, the time required for 

handshaking will be increased exponentially and a longer delay will happen. 

Instead of using common data bus, a multi-stage switching network is used to 

connect the different units. There are several advantages for using multi-stage 

switching network in an asynchronous system. Firstly, the network allows 

parallelism. In other words, data from different inputs can be sent to different 

outputs simultaneously. Secondly, the network is pipelined resulting in higher data 

transfer rate via the network. Lastly, the switching network distributes the 
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handshake signals to the corresponding destination only and thus the large handshake 

overhead is avoided. 

The basic component of the multi-stage switching network is a two-to-two 

programmable switch cell. It can perform six modes of connection according to a 3-

bit instruction. The structure and the modes of connection are shown in Figure 

5.5(a). 

~ Six modes of 
% connection 
一 - > 一 - > v 

-I ,、+ \ 今 
± m o d e 0 mode 1 mode 2 

inO outO 
• ^ ~ ~ • ~ I I ~ I I 

i n j _ J “ _ — — • > - • � • • "•乙 
^ ^ m o ^ 3 mWe 4 mode 5 

( a ) 
g L decoded 

instruction ^ '-6 "2 ii^tmction 厂 

— 1 < k 

——i 丨 I >D~~ out 

dataO w I , L/ 
• � outO 1 1 

I ^ • 
• h b h ^ b b i ^ 乏 codO - C0d4 - cod1 — cod5 -

X dataO- data1 -

— — ^ CNj 0Ut1 \ 
^ ^  

d a t a ^ ^ ^ J • I 

( b ) ( c ) 
Figure 5.5 - (a)2-to-2 programmable switch and its six modes of connection, (b)block diagram of 

the internal structure of switch, (c)CMOS structure of basic multiplier cell of the MUX 1 

The design of the switch cell follows the dataflow architecture. It uses the same 

communication protocol and handshake cell as the one presented in the previous 

chapter. The switch is basically built up by an instruction decoder and two two-to-

one multiplexers. During operation, the instruction decoder receives and decodes the 

instructions from the instruction memory. It translates the 3-bit instruction into a six-
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bit decoded word, which is shown in Table 5.1，and then passes it to the two 

multiplexers. Each bit of the decoded word corresponds to one mode of connection. 

It helps to have a simpler design of multuplexer cell for faster operation. The 

multiplexer is built in the form of sum-of-product structure and domino style, which 

as shown in Figure 5.5(c). It receives the decoded instruction and detects the 

presence of the input data. Once the corresponding input data has been ready, the 

data is copied to the output of the multiplexer, and thus the transmission of data can 

be done. 

Instruction Function / Connection Mode Decoded Word (COD� 

000 - inQ^outO/modeO 000001 
001 inl->outQ / mode 1 000010 
010 inO->outl / mode 2 000100 
011 i n l ^ o u t l / mode 3 001000 
110 In0~>out0&outl/mode4 010000 
111 Inl~^outO&outl/mode5 100000 

Table 5.1 - Instructions of switch 

FIF01 out1 ——•TZI •irn •[Tl——• ADD in1 
ADD out——{^K A �h v ^ 赛 • SUBinI 

FIF01 out2 ——•fTTI y ——• FIF01 
INPUT ~ ~ • ！ • MUL in1 

MUL out ——• CO - ^ y H •j"̂ "]——• OUTPUT 

FIF02 out2 ——•上八•上、~~^ FIF02 
SUB out ——•ITK M ^ T ^ ^ — — • ADD in2 

^ J T— 

FIF02 out1 •饥 •山 \ § ——\ SUB in2 
Figure 5.6 — 8-to-8 switching network 

In this programmable DSP processor, the switching network is a matrix of 3x4 

switch cells allowing eight-to-eight connections, as shown in Figure 5.6. The 

position of the inputs and outputs is tuned and optimized to allow maximal 

concurrency and efficient resources assignment. 
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5.2.3 FIFO Memory 

There are two FIFO memories within the processor, which are responsible for 

temporary data storage during the operation. The structure of the FIFO memory is 

shown in Figure 5.7. It is organized in four short FIFO sets (FIFO A to D, each 

stores 4 data) and one long FIFO set (FIFO E, stores 16 data). Demultiplexers, 

which have similar structure as the switch, are placed at the input and output of the 

FIFO memory for controlling the data flow to/out from the corresponding FIFO set. 

I I 
丄 , b̂ ration"̂ DEMUX 一 ] 

FIFO 0UT1 < J = I ！ I 
N 6 H FIFOC N-r§>-t- s f-tj~ I ^ ^ ^ ^��� r厂 r | 

" k r i F o ^ j U ^ i " n j ’ <̂ =1::::/、、)：：<)4=1̂  I 
FIFO 0UT2 FIFOE \i Data IN 〔 6 ^ 2 ^ ^J^-IJ^-^ | 

Figure 5.7 一 Structure of FIFO memory 

The basic building unit of the FIFO set cell is the basic FIFO cell, which is shown in 

Figure 2.13(b) in chapter 2. The basic FIFO cell captures the input data in the 

Evaluation phase and retains it in the Hold phase. A parallel connection of n FIFO 

memory cells to a handshake cell can form a single n-bit FIFO memory stage. If 

several FIFO pipeline stages are cascaded, a FIFO set will be formed. The input data 

will queue and be held inside the FIFO set until the switching network is ready for 

accepting the data from the FIFO block. 

The input of the FIFO memory is connected to a three-stage demultiplexing network. 

Inside the FIFO memory, the instruction and data are first merged to be a single data 

which is in the form of [instruction] + [data]. When it arrives at the input of the 

demultiplexer, the most significant bit (MSB) of the instruction will be extracted and 
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acts as the controlling signal for switching, and the rest of the bits will pass through 

the demultiplexers. This combination of instruction and data reduces the 

handshaking overhead in the demultiplexer and thus a faster transfer speed can be 

achieved inside the demultiplexing network. Also, the use of three-stage 

demultiplexing network prevents the fan-out and the large handshaking overhead 

problems occurred in a single one-to-five switch. Also the data can be transferred to 

the long FIFO set in shorter latency such that the data in long FIFO set can be reused 

in shorter time. The four-to-one mulitplexer is used at the output of the FIFO block. 

Its structure is similar to that of the switch cell, which is shown in the previous part. 

5.2.4 Instruction Memory 

The inclusion of the instructions allows the processor to be programmable and to 

perform different operations. In this processor, the instruction is used to control the 

connections of the switches and multiplexers in the switching network and FIFO 

memories, and also used for the multiplicand for the multiplier. The instructions are 

all stored in the instruction memory. 
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Figure 5.8 - Instruction memory, (a) block diagram of the instruction memory, (b) the structure 

of cyclic FIFO, (c) structure of the instruction decoding network 

There are two mains parts in the instruction memory which are the instruction 

decoding network and the cyclic FIFOs, as shown in Figure 5.8(a). An instruction is 

in the format of [address] + [data]. After receiving the instruction, the instruction 

decoding network, as shown in Figure 5.8(c), decodes the address by demultiplexing, 

which is similar to the demultiplexing network in the FIFO memory, and sends the 

data to the corresponding FIFO or the multiplier. 

The FIFO in here has a cyclic feature, which is shown in Figure 5.8(b). Besides from 

sending to the corresponding destination, the outputted instruction is fed back to the 

FIFO as well. This feature permits the instructions to be recycled and thus the 

application can be run repeatedly without further programming. During 

programming, the switch at the input is connected to the instruction decoding 

Page 61 



Chapter 5 - DCT Implementation on Programmable DSP Processor 

network for collecting the instructions, and then it will be switched to another end for 

recycling the instructions. 

5.3 Programming 

In this dataflow processor, programming is just the organization of the flow of data. 

In other words，the switches are programmed to perform a connection from one unit 

to another unit. For example, there are 2 inputs A and B. In order to perform an 

addition of A and B in this processor, 2 cycles are required to send the inputs to the 

adder and a third cycle is needed to send the adder's output to the processor's output. 

Step 1 : A (from input) Adder Input 1, 
Step 2 : B (from input) —Adder Input 2 
Step 3 : Adder Output Output 

In the actual programming, the following switches are required to be programmed as 

follows, 

For step 1 : sw2 mode 1, sw6 mode 0, sw9 mode 1, 
For step 2 : sw2 mode 3, sw8 mode 2，swJ2 mode 0, 
For step 3 : swl mode 3，sw7 mode 0，swll —> mode 0 

Therefore, an addition requires 3 cycles. However, for example, if the two inputs are 

sent from the internal FIFO memories 1 and 2, only 2 cycles are required for an 

addition as no switch is shared between both the input paths (referred to the 

switching network in Figure 5.6). Therefore the data from FIFO memories 1 and 2 

can be sent to adder input 1 and input2 respectively within the same cycle. Similarly, 

data can be sent to different arithmetic units or FIFO memories in the same cycle 

provided that their paths do not share the same switch. Programming which can fully 

utilize the parallelism of the switching network maximizes the concurrency of the 

Page 62 



Chapter 5 - DCT Implementation on Programmable DSP Processor 

arithmetic operations and thus the greatest performance of the processor can be 

achieved. 

5.4 DCT Implementation 

As mentioned in chapter 3, the implementation of DCT in the processor is based on 

the algorithm proposed by Jeong et. al. [40]. The DCT programme can be divided 

into four stages, which is in shown from Figure 5.9 to Figure 5.12. 

In A 1 B1 C1 D1 E1 A 2 B2 C 2 D 2 E 2 a^d add add sub sub sub 巾 ⑴ ！ 謂 1 mul 
1 2 0 1 2 O coeff O 

� 
Xi \ \ \ K i 乂 ⑤ 

繁::::::::::::::::::::::=::::::::= ..........知 

i 
/ / \  

� Z _ K ::::::::::::::::::::::::::::::::::::二::::::::::^(^^^^^"^(^^^~^^ 

Figure 5.9 - Flow diagram of the first stage of DCT implementation 

In A1 B1 C I D1 E l A 2 B2 C 2 D 2 E 2 add add sub sub sub ⑴^丨丨 mul mul 
1 2 O 1 2 O coeff O 

. . . . . . . . . . . ® \ 

Figure 5.10 - Flow diagram of the second stage of DCT implementation 
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In A1 B1 C1 D1 E1 A2 B2 C2 D2 E2 臼如 add add sub sub sub mul mul 
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Figure 5.11 - Flow diagram of the third stage of DCT implementation 

In A1 B1 C1 D1 E1 A2 日 2 C2 D2 E2 add add sub sub sub mul mul 
1 2 0 1 2 O coeff O 

® • . . . . . . . " . ‘ ‘ ® ..... 

M, © ^ Y� . . . . 霸 
© ^ Y, / ... .../ / \ .. ..:/ 

© -Y. /.:;< ； \ / X®'®^© 
© -Y, \ I 

i w/ /： 

lf, If 
© v @ ( @ . 

# � 

、：... 

Figure 5.12 — Flow diagram of the forth stage of DCT implementation 
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The flow diagrams show the data flow in the DCT algorithm. In the flow diagram, 

/« means the input, A, B, C, D and E mean the FIFO sets in the two FIFO memories. 

add 1, add 2 and add O are referring to the input 1, input 2 and the output of the 

adder respectively. Subtracter and multiplier also have the similar representations. 

Due to the parallelism and concurrency of the switching network, two or more data 

are always controlled to transfer simultaneously in order to increase the throughput 

of the switching network, and thus more operations can be carried out by the 

arithmetic units and the performance can be increased. Also in order to avoid data 

queuing, it is necessary to send the data to FIFO memories for temporarily storage in 

sometime. 

The detailed steps of this programme (includes the instructions of each switches) are 

shown in appendices, and the performance of the DCT implementation is given in 

the chapter 7. 
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Chapter 6 

DCT Implementation on Dedicated DCT Processor 

6.1 Overview 

As the demand of the high quality signal, the computation requirement of the video 

and image applications nowadays becomes higher and higher. For the application of 

the discrete cosine transform such as the MPEG2 (640x480, 30 fps, 4:2:0, 13.82 

Mpixel/sec) or High Definition Television (HDTV) (74.23MHz in luminance signal 

for baseband HDTV), a very high processing rate of a 2D DCT/IDCT design is 

required. Although the processing power of a general purpose processor is high, it is 

still difficult to provide a real-time processing on these signals. On the other hand, 

dedicated processor for specific application can provide an effective solution. It 

always provides a cost effective and higher performance solution for these 

applications. By further applying the asynchronous pipelined architecture on these 

designs, a higher performance may be achieved. 

In this chapter, a dedicated 8x8 2D DCT/IDCT asynchronous processor is 

introduced. The processor has a fully pipelined in the architecture, and provides a 

very high transform rate which is capable of real-time processing on high quality 

signal. The architecture of the 2D DCT/IDCT processor will be introduced at the 

beginning. Since the architecture is based on the row-and-column decomposition Page 66 
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method, the design of the ID DCT core and the transpose memory will be given 

afterwards. 

6.2 DCT Chip Architecture 

As discussed in chapter 3, the 2D DCT design is based on the row-and-column 

decomposition method which provides a simpler implementation and is more 

suitable for the asynchronous architecture. Figure 6.1 shows the dataflow in the 2D 

DCT by using the row-and-column decomposition method. In the row operation, ID 

DCTs are applied on each row of data, and then the results are stored in the transpose 

memory row-wise immediately. For the column operation, the ID DCTs are applied 

on the data stored in the transpose memory in column-wise, and the resultant values 

of the column operation are the 2D DCT result. 
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Figure 6.1 - Dataflow diagram in 2D DCT by row-and-column decomposition method 
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From the dataflow diagram, it is shown that it requires eight DCT operations in both 

of the row and column operations. It means there are totally 16 DCT operations in 

the whole 2D DCT operation. However in the physical realization of the row-and-

column decomposition method, it is not necessary to use 16 independent ID DCT 

cores to perform the row and column operations. This is because the data is entering 

the processor serially. A single ID DCT core can be shared for the eight ID DCTs 

by each operation. As a result, only one ID DCT core is required in row and column 

operation, and the block diagram of the 2D DCT architecture is shown in Figure 6.2. 

Since the architecture of both the ID DCT core can be the same, it saves the time of 

designing. 

data (pxel) \ 1DDCT \ Transpose \ 1DDCT K 2D DCT 
input Core Memory ^ Core ^ output 

Figure 6.2 一 Block diagram of 2D DCT processor 

The detailed architecture of the ID DCT core will be discussed in next section of this 

chapter. For the transpose memory, it is built by an ordinary Static Random Access 

Memory (SRAM) with an address generator to control the write and read processes. 

The detailed architecture of the transpose memory will be discussed in section 6.3. 

6.2.1 1D DCT Core 

The implementation of the ID DCT core is based on Equation 3.5 and Equation 3.6 

shown in chapter 3. By dividing the equations into two parts, Equation 6.1 to 

Equation 6.3 can be obtained. 
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Figure 6.3 - Block diagram of the ID DCT core 

Figure 6.3 shows the basic architecture of the ID DCT core [32][33][34], which is 

constructed by a pre-processor and a multiplier-accumulator. The pre-processor is 

responsible for the operation described by Equation 6.1. It collects the input data 

and performs the addition and subtraction, according Equation 6.1. Since only 

simple addition and subtraction are required, the pre-processor includes an adder and 

subtracter. 

In this processor, the Binary Look-ahead Carry (BLC) adder [30] [54] is used. 

Compared to the Carry Look-ahead (CLA) adder, each processing block of the BLC 

adder handle two sets of Propagate and Generate only. This simplifies the operation 

within the basic block and thus the speed can be increased. However, the drawback 
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is the silicon area and longer latency. A 8-bit version of the BLC is shown in Figure 

6.4 
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Figure 6.4 一 Structure of the 8-bit BLC adder 

The second part of the ID DCT core is the multiplier-accumulator. It is responsible 

for the matrix multiplication described by Equation 6.2 and Equation 6.3. The 

matrix multiplication can be done by multiply-and-add. It receives the output from 

the pre-processor and performs 16 multiplications with the DCT coefficients, and 

then adds the results according to the order. As a result, the multiplier-accumulator 

is constructed by multipliers and adders. 

Besides from directly using the multipliers and adders, distributed arithmetic (DA) 

[55] method is used to implement the multiplier-accumulator in some designs 

[32] [33]. The principle of the DA is to use a Read Only Memory (ROM) based look-

up table (LUT) to replace the multiplier. Since the DCT coefficients are fixed, the 
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result of the multiplication can be pre-calculated and stored in the ROM. In this way, 

the input data acts as an address to read the data which is stored in the ROM. Since 

the ROM based LUT can be built very compactly, the advantage of DA is saving 

silicon area as a general dedicated multiplier is avoided. However, the DA does not 

fit the style of the asynchronous architecture, and the read operation on ROM cannot 

be pipelined. As a result, a general pipelined multiplier based on the bit-parallel 

algorithm is used in this ID DCT core as it can be pipelined and run very fast, but the 

trade-off is the size. 

Basically the architecture of this bit-parallel multiplier is the same as the one used in 

the programmable processor, which has been described in Chapter 5. However, it 

cannot be used directly in this DCT core. This is because the bit-parallel architecture 

is primary designed for the multiplication of two unsigned value, but it is two 

complement data format in the DCT core. As a result, a conversion of a two 

complement data into a unsigned value with a sign bit is required. This conversion is 

done in the input buffer, and the converted output can be used in the multiplier core. 

The mechanism of conversion can be illustrated in the following example. For a 9-

bit data having a the binary representation of 111110101, the conversion can be done 

by 

Original 2-complement binary value 1 1 1 1 1 0 1 0 0 

Step 1 : Inversion 0 0 0 0 1 0 1 1 
Step 2 : add 1 to the result + 1 

0 0 0 0 1 1 0 0 

The resultant binary number shows a decimal value of 12, so the original value 

represents a value of -12. 
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In this implementation, the conversion is divided into 2 stages. The first stage is the 

step 1, which will invert the input bit if the input data is a negative value. This can 

be done by the XOR gates which XOR all the data bits with the sign bit. The second 

stage is the step 2 which can be performed by an adder. As the conversion is handled 

at the input buffer part, a ripple adder is used as it fits the ladder structure of the input 

buffer. Figure 6.5 shows the modified input buffer used in the 2-complement 

multiplier. 
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Figure 6.5 - Modified input buffer for 2 complement input 

A similar conversion is required at the output as the unsigned product result is 

required to be converted back to a two complement data format. The conversion is 

merged into the output buffer and its structure is similar to the input buffer shown in 

Figure 6.5. For the conversion at output, the sign bit of the result must be ready at 

the same time as the bitO in order to perform the conversion at once. Therefore the 
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sign bits path in the multiplier core is modified in order to calculate the output sign 

bit first. The resultant structure of the multiplier core is shown in Figure 6.6. 

Together with the modified input and output buffers, a two complement bit-parallel 

multiplier is formed. 
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Figure 6.6 — Multiplier core of 2 complement multiplier 
I 

For the accumulator part, some of the design uses an adder with an output feedback 

to perform the accumulation of the multiplier's outputs. However, this structure is 

very slow as the second addition cannot be performed until the previous addition is 

finished and fed back to the input. Also, it wastes the pipeline architecture as only 

one addition can be carried out at anytime. Therefore several BLC adders are used in 

this design in order to achieve a better performance. 
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6.2.1.1 Core Architecture 

For the asynchronous architecture, simpler and direct dataflow allows easier 

implementation and better performance as it reduces the handshaking overhead and 

fits the asynchronous pipeline architecture. In order to develop a simple dataflow, 

Equation 6.2 is further decomposed to Equation 6.4, 
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Based on Equation 6.1 and Equation 6.4 to Equation 6.10, the architecture of the ID 

DCT core is formed as shown in Figure 6.7. It is a fiilly pipelined design and the 

datapath is simple and in single direction without any feedback. In this architecture, 

the pre-processor is constructed by one adder and subtracter, the multiplier-

accumulator consists of two general purpose multipliers and three adders. 
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Figure 6.7 - Architecture of ID DCT core 

It should be noticed that only two multipliers are used in this design. In order to 

achieve a high performance, some other designs require parallel input of data or 

require four or more multipliers or LUTs [32] [34]. In this way, several 

multiplications can be processed in parallel such that a higher throughput can be 

achieved. Another reason is that they are synchronous designs, they need to maintain 

a constant data rate throughout the datapath. Otherwise, some clock cycles may be 

wasted for waiting the input data. However it is not necessary in this design as it is 

based on an asynchronous architecture. Different units in the asynchronous design 

can operate at different rates as their operations based only on the local handshake 

signals rather than the global clock signal. Also, the asynchronous pipelined 
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architecture is applied on the design of the multipliers such that the multiplier can be 

run very fast. As a result, the multipliers can be adjusted to run faster than the other 

units，then a similar or better performance can still be achieved by this design even 

less multipliers are used. Furthermore, it does not require parallel input of data as the 

operation will only be started when all the inputs are ready, no operation (no power 

is consumed) will occur while waiting the input data. 

6.2.1.2 Flow of Operation 

The dataflow of the ID DCT core can be explained by Equation 6.1 and Equation 6.4 

to Equation 6.10. Figure 6.7 can be divided into four stages. 

Stage 1: 

Stage 1 is the operation of the pre-processor, represented by Equation 6.1. Firstly it 

receives the input data in the order [xO, x7, xl , x6, x2, x5, x3，x4], and then the one-

to-two demultiplexer will send the data to input 1 and input2 of the adder and 

subtracter alternatively, that means the odd-th input data will be sent to input 1 of the 

adder and subtracter, and the even-th input data will be sent to the lower path input 2 

of the adder and subtracter. As a result, the output sequence of the adder 1 is 

[x0+x7, xl+x6, x2+x5, x3+x4] or [Zq, Zi, Z2, Z3] (refer to Equation 6.1) and the 

output sequence of the subtracter is [x0-x7, xl-x6, x2-x5, x3-x4] or [Z4, Z5, Ze, Z7] 

(refer to Equation 6.1) 

Since the addition and subtraction can only be carried out when both inputs are 

ready, the output rate of the adder and subtracter is half of the input data rate. 
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Stage 2: 

The multiplications with DCT coefficients are performed at stage 2. At this stage, 

data is split into two paths, which are the upper and lower path. Both of the paths are 

totally identical, and the upper path is responsible for Equation 6.5 while the lower 

path is responsible for Equation 6.8. 

By considering Equation 6.5, there are totally sixteen multiplications, in which each 

input data needs to multiply with four different DCT coefficients. Therefore, a data 

replicator is used to duplicate the input data four times and then send to the 

multiplier. Therefore, the output sequence of the data replicator at the upper path is 

[Zo, Zo，Zo, Zo, Zi, Zi, Zi, Zi, Z2, Z2, Z2，Z2, Z3, Z3, Z3, Z3]. Similarly, the output 

sequence of the data replicator at the lower path is [Z4, Z4, Z4，Z4, Z5，Z5, Z5, Z5, Ze, 

Z6，Z6, Zs, Z7, Z7, Z7，Z7]. 

The DCT coefficients are stored in the DCT coefficients memory, and they are 

arranged and sent out to the multipliers in the sequence of [A, B, A, C, A, C, -A, -B, 

A, -C, -A, C, A, -B, A, -C] in the upper path and [D, E, F, G, E, -G, -D, -F, F, -D, G, 

E, G, -F，E, -D] in the lower path. As a result, Equation 6.5 and Equation 6.8 can be 

performed and the output sequence of the multiplier 1 is [iV, Ui ,̂ iV] while the 

output sequence of multiplier 2 is [U/, Uŝ , Uê , iV]. The output data rate of each 

multiplier is two times of the input data rate as the data replicator increases the 

output data rate of the first stage by four times. 
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Stage 3: 

The output of the multiplier will go through the one-to-two demultiplexer at stage 3. 

Its operation is similar to that of stage 1, but the outputs of the demultiplexer are 

alternating every 4 times in order to perform the addition shown in Equation 6.7 and 

Equation 6.10. For example in the upper path, Uô  and i V will connect to the first 

input of the adder 2, U , and Uŝ  will connect to the second input of adder 2. 

Therefore the output sequence of adder 2 is [Uoi\ U23I and that of adder 3 is [Loî , 

L23I. For the output data rate, it is reduced to be the same as the input data rate. 

This is because an addition can only be performed when both inputs are ready, it is 

reduced to half of the output data rate of the multipliers. 

Stage 4: 

Stage 4 is responsible for performing Equation 6.6 and Equation 6.9. Originally two 

adders are required for each equation. However, data rate after stage 3 is halved, a 

single adder can be shared by both equations. Therefore a two-to-two switch is 

inserted at the beginning of this stage. It is used to collect data from upper and lower 

paths and distribute them to adder 3. Finally the output sequence of stage 4 is [Yo, 

Yi, Y2, Y3, Y4, Y5, Y6, Y7]. 

In this stage, the output data rate can be maintained at the input data rate as it 

combined the data from the upper and lower paths. As a result, the final output of 

the ID DCT core has the same data rate as the input. 

Table 6.1 shows the summary of data rate at different stages of the ID DCT core. It 

shows that the critical part of the design is in stage 2, where the multiplications are 
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performed. As a result the throughput of the whole design is limited to the half of 

the speed of the multiplications in stage 2. 

Stage 1 Stage 2 Stage 3 Stage 4 
Input Input data rate 1/2 x Input data 2 x Input data Input data rate  

^ ^  

Output 1/2 X Input data 2 x Input data Input data rate Input data rate 
rate rate  

Table 6.1 一 Data rate at different stages of the ID DCT core 

6.2.1.3 Data Replicator 

The purpose of the data replicator is used to keep a single operand for the multiplier 

to perform four multiplications. In synchronous design, a latch can be used to hold a 

data for four clock cycles. However, it is not possible in asynchronous design as data 

will be lost after used due to the Precharge phase of the domino logic. A simple way 

which uses a buffer with a feedback output can perform a cyclic function and the 

data can be reused. However, the resultant speed is slow and the pipeline 

architecture is destroyed due to the feedback. As a result, a dedicated circuit is 

constructed in order to duplicate a single data four times, and thus four 

multiplications on a single data can be done. 
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( a ) ( b ) 
Figure 6.8 - (a) block diagram parallel-to-serial shift register in synchronous design, (b) block 

diagram of data replicator 
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The idea of the data replicator is similar to that of the parallel-to-serial shift register 

in synchronous design, which is shown in Figure 6.8(a). However, it is not suitable 

to implement the parallel-to-serial shift register in asynchronous design. The first 

reason is that flip-flop does not fit the style of the new asynchronous architecture. 

Also the single stage parallel-to-serial structure requires more difficult control. 

In the data replicator, which the shown in Figure 6.8(b), multiplexers are used 

instead of flip-flops and the structure is divided into two stages. Since the 

multiplexers can only handle one of the two inputs every time, buffers are also 

included for temporarily storage purpose. In this structure, data in the four input 

paths will quickly be transferred to the next stage by the multiplexers or stored in the 

buffers, and then the next data can be inputted. However, it is necessary to ensure 

that all data must be sent out in the single stage parallel-to-serial shift register before 

next data comes in. Therefore, the control of the data replicator is simpler and has 

less overhead, and thus allows faster duplication on data. 

6.2.1.4 DCT Coefficients Memory 

As mentioned in the previous section about the distributed arithmetic, ROM is not 

suitable to be used in asynchronous design. In order to pre-store the DCT 

coefficients for the multiplication, a new logic cell is used, which is shown in Figure 

6.9(b). 
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Figure 6.9 - (a) normal basic FIFO cell, (b) modified basic FIFO cell, (c) basic DCVSL structure 

of pre-storing data 

The main difference between the new cell and the normal basic FIFO cell, which is 

shown in Figure 6.9(a), is the addition of transistors Ml and M2. Initially when the 

system is being resetted, the reset signal is high and the acknowledgement signal 

becomes low. For the normal basic FIFO cell, it enters the Precharge phase and the 

output becomes logic low. After the reset has finished, it will go into the Enable 

phase and wait for the input data. Since charge is still kept at the floating node, the 

output of the normal basic FIFO cell is still kept low. 

However for the modified basic FIFO cell, although the acknowledgement input is 

low, it is not in the Precharge phase as transistor Ml is turned off and M2 is turned 

on by the delayed reset signal. As a consequence, a pull-down path is created and 

the output is kept in high. When reset is finished, the next stage will go to the Enable 

phase but the output of the modified basic FIFO cell is still kept high due to the 

delayed reset signal. As a result, this high output, which presents having a data of 

logic one, requests the next stage to receive the data. As a result, a data of logic one 

can be sent out. Owing to this feature, the modified basic FIFO cell can be treated as 

a memory cell of either pre-storing logic high or low, as shown in Figure 6.9(c). By 

connecting N memory cells in parallel with a handshake cell, it forms a single FIFO 
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Stage in which a N-bit data is pre-stored. The DCT coefficients memory is 

constructed from these FIFO stages with pre-stored DCT coefficients according to 

the required sequence listed in section 6.2.1.2. An example of the DCT coefficients 

memory in the upper path is shown in Figure 6.10. 

j -1 
I Handshake ' 
I Cell I 

從 微 鄉 你 y 嫩 •渊 鄉 \ 轮 I 

I FIFO stages built | | 
j n r i by modified basic 1 I 

I / FIFO cell f： < 4 < I 
I 芒 Z c 芒 芒 

[V I ® * .g .g ® . 
| — ^ i I - U - I - U I ~ • I �t o multiplier 

I O O O O I I I- h" 丨 I o • o o j 
I Q Q Q Q ‘ 
I ^ zTzi. _ _ r r _ _ J 

Figure 6.10 - DCT coefficients memory in upper path 

When the delayed reset signal becomes zero, then transistor Ml is always turned on 

while M2 is always turned off. As a result, the modified basic FIFO can be treated as 

a normal basic FIFO cell Therefore by applying the cyclic feature in this DCT 

coefficients memory as shown in Figure 6.10，the DCT coefficients can be recycled 

and can be used repeatedly. 

6.2.2 Combination of IDCT to 1D DCT core 

Similar to the ID DCT, the ID IDCT can also be implemented by similar 

architecture. Referring to Equation 3.7 and Equation 3.8, they can be divided into 

two stages as the following equations, 

X I p B ^ C 1 p q r ^ J I'D E F G ] 
•Si =丄乂 C -A -B Y^ and — 1 五-G -D -F Y, 
S , A - C - A B * Y , S , ^ 2 F - D G E * Y , ‘ Equation 6.11 

A -B A -C Y, S, G -F E -D K 
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- ~ | 「 p -1 「 _ ! 「 

+ 'J 4 Sq -S^ 
= ^ ^ i + S s and 一 

X, 一 X ^ = A - 民 -Equation 6.12 

3 �k + A � UJ k - v 

Referring to Equation 6.11 and Equation 6.12，the operations of the ID IDCT are 

similar to that of ID DCT, but different in order. The ID IDCT first requires a 

matrix multiplication, and then followed by addition and subtraction. Therefore for 

IDCT, the pre-processor is eliminated while a post-processor is added after the 

multiplier-accumulator, which is shown in Figure 6.11. This post-processor is 

responsible for the operation according to Equation 6.12, and it consists of an adder 

and subtracter which is the similar as the pre-processor. 

11D IDCT CORE I 
I u . I 
I I- O I 

Data (pixel) , [ A . f l — \ 1 ^ ^ K DCT 
i叩Ut I ^ I 1 - V ^ I ^ ^ output 

I CD o ！ 
I Q. I 

Figure 6.11- Block diagram of the IDCT 

By comparing Equation 6.11 to Equation 6.2 and Equation 6.3, their structures are 

the same and thus both the multiplier-accumulators can share on the same hardware. 

Therefore, the ID IDCT can also be performed on the ID DCT core by adding a 

post-processor at the end of the original ID DCT core. Switches are also inserted 

inside the core so as to select the path for performing DCT or IDCT. As a result, the 

overall architecture of the ID DCT/IDCT processor is shown in Figure 6.12 
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Figure 6.12 - Overall architecture of the ID DCT/IDCT processor 

One more modification is made on the DCT coefficients memory. The DCT 

coefficients of DCT and IDCT are different in the upper path as the matrix 

multiplications are different, which is shown in Equation 6.2 and Equation 6.11. 

Therefore the content of the DCT coefficient memory needs to be changed when 

performing IDCT. As the pre-storage of the modified basic FIFO cell only depends 

on the delayed reset signal, it is not necessary to use an additional DCT coefficients 

memory to store the additional IDCT coefficient. The change of the DCT 

coefficients can be done by adding some logic gates to control the presence of 

delayed reset signal in the memory cell, which is shown in Figure 6.13. As a result, 

the pre-storing data can be changed for DCT and IDCT. 

^ d c t reset reset dct/idct 

Y y y Y 
I V 1 I 1 r 1 

, modified 丨丨 modified 丨丨 

I basic FIFO 丨丨 丨 basic FIFO | ； 

I 坊 “ i - h ^ OUt_p 丨 糾 ^ out_p 

M M 
j modified | | modified •丨一 

basic FIFO I I basic FIFO i 

I out_n 丨 械 out n 

I ！ L J “ 

'1' is pre-stored in DCT '0' is pre-stored in DCT 

'0' is pre-stored in IDCT T is pre-stored in IDCT 

Figure 6.13 - Modification of memory cell of pre-storing different data in DCT and IDCT 
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In performing the IDCT, the order of the input and output sequence is changed too. 

The input sequence of the IDCT is [Yo, Yi, Y2, Y3，Y4, Y5, ¥5, Y7] and the output 

sequence is [xo, X7, xi, X6, X2, X5, X3，X4:. 

6.2.3 Accuracy 

According to the IEEE specification [56], the 2D IDCT should achieve certain 

accuracy in order to prevent the quality degradation in the reconstructed signal after 

the inverse transform. Therefore in this design, the bit length of the different parts 

should be considered in order to achieve the specified accuracy. 

By considering different combinations of the bit length of the DCT coefficient, 

transpose memory and multiplier's output with the verification of the C program, 

Table 6.2 shows the bit length of the different parts of the DCT/IDCT processor. 

The architecture is shown in Figure 6.14. According to this result, truncations are 

needed at the outputs of the multipliers and the ID DCT/IDCT core. Truncation on 
I 

the multiplier's output can be merged inside the multiplier as the last stage of the bit-

parallel multiplier is an adder, only a little modification is required. However for the 

output of the DCT/IDCT core, a dedicated circuit for the truncation is added in order 

to truncate and round up the result. 

Bit length 
Input 一 9/12(DCT/IDCT) 
Output 12/9(DCT/IDCT) 
Multiplier's output in the row operation 19 
Transpose Memory 15 
Multiplier's output in the column operation 20 

Table 6.2 - Bit length in different parts of the 2D DCT/IDCT processor 
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Figure 6.14 一 Bit length in different parts of the 2D DCT/IDCT processor 

Table 2 shows the IDCT error produced by using the architecture shown in Figure 

6.12 with the bit length provided in Table 6.3. It shows that the precision meets the 

IEEE specification. 

Error Error Error 
- Spec. [-256, 2551 [-5, 51 [-300.3001 

Maximum Pixel Error 1 1 j J 
Overall Mean Error 0.0015 "~0.Q00777 ~~0.0Q0856 0.000675 
Overall Mean Square Error 0.02 —0.009842 “ 0.009237 0.008331 
Maximum Pixel Mean Error 0.015 1 .004300 ~ 0.004400 0.004700 
Maximum Pixel Mean Square Error 0.06 0.012300 0.012600 飞010600  

Table 6.3 — Accuracy of the 2D DCT/IDCT processor 

In the VLSI implementation of the 2D DCT/IDCT processor, in order to reduce the 

cost, the ID DCT/IDCT core and the transpose memory are separated into two chips. 

The structure of the ID DCT/IDCT core for the row and column operation is unified 

such that a single ID DCT/IDCT core can be used for both operations, and the 2D 

DCT can be done by cascading the ID DCT/IDCT core with the transpose memory, 

and then connect to another ID DCT/IDCT core again. As a result the bit length is 

further modified in the ID DCT/IDCT core as shown in Figure 6.15. In this new 

configuration, the unified DCT/IDCT core can perform four different mode of 

operation, which is listed in Table 6.4. The unused bits at the input are needed to fill 

with zero while the unused output bits can be ignored. 
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DCT / Row/Column Number of lUsed Range of iNumber of lUsed Range of 
IDCT Operation Input Bit Input Data Bus Output Bit Output Data Bus 

^ 9 Datainr 14:61 15 Dataoutr 14:01 
DCT Column 15 Datain[14:01 12 —Dataout[ 14:31 
IDCT Row n Datain[14:31 |l5 ~Dataout[14:Q1 
IDCT iColumn |l5 |Datain�14:01 19 |Dataoutri4:61 

Table 6.4 一 Four different operation modes of the unified ID DCT/IDCT core 

I L ^ ^ ^ l ^ 爾 DCT I I 1 
r V r>Add \ CotmcLnt. ~ » % J \ 
S \ J \ M«mory1 | 5 _ ^ 

- v i t X < ra —— 
•啊 r Y ^ ( k d I t J . " ^ V - i ^ p s ^ ^ 衝 

K “ 、 :薬丨 P output 

吟 i i k — 一 ^ i ^ l l ^ k P ： ^ 11-^4 
•？ E / ISbJIDCT i ~ » J Q S ? 2 b l t _ 
r g / Cotfflclinti ~ * ^ X ^ ^ \ r Sub  

I / 、义 

Figure 6.15 - Unified structure of ID DCT/IDCT core 

The result and performance of this ID DCT/IDCT core will be given in chapter 7. 

6.3 Transpose Memory 

The purpose of the Transpose Memory is to store the result of the row operation, 

then re-order the data and send them out for the column operation. The name 

"transpose" means that the re-ordering is similar to the transpose of matrix, in which 

the data in the rows and columns are exchanged. In order to be used in the 2D 8x8 

DCT/IDCT operation, the transpose memory should be capable of storing 64 15-bit 

data, and re-ordering the data for the column operation. 

In order to fit the architecture of the ID DCT/IDCT core, the transpose memory is 

required to have two different modes of operation. This is because the input and 

output sequences are different in the DCT and IDCT operation in the proposed ID 

DCT/IDCT core, which has been mentioned in section 6.2.1.2 and 6.2.2. The 
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transpose memory should be able to rearrange the data in two different orders such 

that the rearranged data sequence fits the corresponding operation. 

To avoid changing both the write and read order at the same time, the write order of 

the transpose memory in both operations are set to be the same. The output data of 

the ist stage ID DCT/DCT core (row operation) is configured to be written into the 

transpose memory in row-wise order, which is shown in Figure 6.16. 

rCNICO 寸 l O C O N O O 
c c c c c c c c 
E E E E E E E E 
o o o o o o o o 

O O O O O O O O 

row 1 irii 丨门2 丨门3 in̂  ing in̂  iOg 
row 2 iPg iHio �i n , ^ in,3 in,̂  in̂ g 
row 3 in̂ g  
row 4 
row 5 

row 6 -

row 7 - - inssings 

row 8 |丨》157卜58丨丨门59丨丨门60丨丨门61|丨〜2|丨门63|丨‘ 
Figure 6.16 - Write order of the transpose memory 

As the write order is fixed, the read order of the data from transpose memory should 

be altered according DCT or IDCT operation. No matter in which mode of 

operations, the data are outputted in column-wise order from the transpose memory. 

However, their orders are not the same as shown in Figure 6.17. 
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Figure 6.17 一 Read order of (a) DCT operation, (b) IDCT operation 

6.3.1 Architecture 

Figure 6.18 shows the block diagram of the transpose memory. It consists of a 

write/read address generator, two RAM blocks and two multiplexing networks. 

Although it is only required to store 64 data, two 64x15-bit RAM blocks are used in 

this design. This is because if a single 64x15-bit RAM is used, the second row 

operation cannot be started immediately after the first row operation as data are still 

stored inside the RAM for the column operation, data cannot be written into the 

RAM until the column operation is completed. As a result row and column operation 

cannot be carried out simultaneously and thus the performance is poor. If two RAM 

blocks are used, the result of the second row operation can be written into the RAM 

block 1, and the data stored in RAM blockO is used for the column operation. Since 

the computation time of the row and column operation are the same, the roles of the 

RAM blocks can be exchanged after the current row and column operation are 
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completed. As a result, both operations can be run simultaneously and the whole 2D 

DCT/IDCT operations can be run non-stopping. 

, \| 
K ^ ——^ 64x15bit 乂 

data 〉 o _ _ K RAM _ _ K ^ 
K I > BlockO \ I 

I 1 W \ 
Write/Read k ^ ^ / 

Address f ^ t 

Generator i ^ 言 

Figure 6.18 - Block diagram of transpose memory 

The multiplexing networks are built by multiplexers and demultiplexers. The first 

multiplexing network is responsible for scheduling the flow of data and address to 

the two RAM blocks, and thus the write and read operations of the two RAM blocks 

can be controlled. The second multiplexing network is responsible for detecting and 

collecting output data from RAM. 

In order to ftirther improve the performance of the Transpose Memory, the 

architecture of the RAM block is further modified as shown in Figure 6.19. 

____RAjyi_^qckO  

K — — N 32x15bit 丨 

Z I S 32X15bit ^ j — l / I K 

I ^ I I 
Write/Read k 1. N ~ ^ 32x15bit | -| 

Address " W r ^ ^ § ^ RAM b x ' _ _ f \ f 

Generator E ^ ^ ' X " ^ 〕 | ) | 

^ 1 / 1 g 32x15bit ^ I 

Z I ^ RAM H I 
‘ ^ M Bibckl ‘ 

Figure 6.19 - New structure of the transpose memory 
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In this modification, an interleaving technique is used. The single 64x15bit RAM 

blocks is replaced by two 32x15bit RAM block with a multiplexer and 

demultiplexer. In write operation, the demultiplexer delivers the write address and 

data to two 32x 15bit RAM blocks alternatively. As a result, the time allowed for the 

write operation is doubled due to the interleaving policy, and thus the performance 

requirement of the 32x15bit RAM block is relaxed. However, area is the trade off of 

this modification. 

6.3.2 Address Generator 

The address generator is composed of two units, which are the write address 

generator and the read address generator. Besides from generating address for the 

write and read operations in the RAM blocks, they also control the switching of the 

multiplexing networks. 

Since 64 data can be stored in a RAM block, 6-bit RAM address is required as 

26=64. The structure of the address generator is similar to the DCT coefficients 

memory, it uses memory cell to pre-store the RAM address. Instead of directly 

storing the 64 6-bit addresses, the address is split into 2 parts and pre-stored by two 

cyclic FIFO memories. An example of the write address generator is shown in 

Figure 6.20. 
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address MSB 丨 LSB 
0 000 I oW 
1 — 0 0 0 I 0 0 1 

2 "OOO ； 010 JriB— K 
3 000 丨 011 kI p i ^ U q ^ 3-bit _ | \ 6-bit 
4 [ j V l 三 5 — g — — — [ > > 
5 000 I 101 I ！ ^ / 
6 - 000 1 110 丨 M I 1 ^ 
1 000 I 111 MSB t 

_ ？ _ 001 i 000 . ' " n “ n ~ n F rn ~rn~ ̂  , Data ； 
9 001 I 001 l — N E - - - § > o > o > § > 8 > b z ^ Replicator Z z L 

I 丨 I I I 丨 I _ 
I I I  
I I I 
I I I I I I 

62 111 I 110 
63 111 丨 111一 

Figure 6.20 - Write address generator 

In this configuration, the number of data needed to be stored in the address generator 

can be reduced and thus the area can be reduced too. Read address generator also 

has the same architecture as the write address generator. However, the addresses 

stored in the read address generator are different for the DCT and IDCT operation as 

their input and output sequences are different, as described in section 6.2.2. The 

change of the pre-stored addresses uses the same method as the one used in DCT 

coefficients memory. 

Figure 6.21 shows the operation of the transpose memory. Initially the row operation 

is required to be carried out first, i.e. a write operation on the RAM is required. As a 

result, the write address generator controls the multiplexer to send the write address 

to RAM blockO. At the same time, it blocks the read address from entering RAM 

blockO and switches the input data to RAM blockO, which is shown in Figure 

6.21(a). 
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Figure 6.21 - Operation of the transpose memory 

After the first row operation is completed, the second row (write) operation and the 

first column (read) operation are started at the same time. By changing the 

controlling signal in the multiplexing network, the read and write addresses are 

transmitted to RAM blockO and blockl respectively, and the output data can be 

collected at the output side. This is shown in Figure 6.21(b). As a result, both row 

operation and column operation can be run concurrently. After these two operations 

are completed, the controlling signals are altered such that the flow of the addresses 

is changed and the role of the RAM blocks is also changed, as shown in Figure 

6.21(c). The controlling signals are altering after every row and column operations, 

and thus the roles of the RAM blocks are alternating repeatedly. This allows the 2D 

DCT/IDCT runs continuously and simultaneously without any user's control. 
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6.3.3 RAM Block 
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^ — data 

address ^^Mdaia  

Figure 6.22 - Block diagram of the RAM block 

The RAM Block is basically a SRAM. Its structure follows the traditional design 

which consists of a column address decoder, a row address decoder and 2 SRAM 

banks. Each RAM bank is capable of storing 16x15 bit data. The structure of the 

RAM block is shown is shown in Figure 6.22. 

There is one difficulty in using SRAM in asynchronous design, which is the 

completion detection. It may have no problem in the read operation as the presence 

of the data at the output representing the completion of the read operation. However, 

there is no related signal representing the completion of the write operation. As a 

result, additional circuits are required so as to detect the completion. 

There are several methods to detect the completion in SRAM. One of the methods is 

the use of delay element [57]. In this approach, it is assumed that the write operation 

must be finished within a certain period of time. Therefore a delay element can be 

used to delay the write request signal, and the delayed write request signal can be 

acted as the completion signal. Although this method is simple, it provides a worst 
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case performance. Another method is the use of current sensing technique 

[57][57][59]. Since the current drawn will be decreased after the operation, the 

completion can be known by sensing the current drawn from the power supply in 

RAM block. However, this technique is difficult to implement and the result may 

not be accurate. In our design, a monitor cell is used to detect the completion of the 

write operation. 

The structure of the monitor cell is shown in Figure 6.23(b). It is treated as an 

additional SRAM basic cell and placed inside the bit column of the SRAM. By 

comparing with the normal SRAM cell structure, which is shown in Figure 6.23(a), 

the monitor cell is actually composed of two SRAM basic cells with two additional 

pMOSs. The purpose of the additional pMOSs is forcing the two SRAM basic cells 

to store complementary values when the monitor cell is not yet enabled. 

e n a b l e j - J Z X - . 

^ I I I  
I p~~| I _J_ monitor 

data_p I I ~ I； ‘ ~ I ^—•data_n  

p i U i S R A M I 
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~r ‘bas ic cell 一’ 

>-| |—C 3—— 

data_p«|——I“_厂 一 ^ 厂 I~I——pdata_n ^̂丨 I I 
h U ~ U r = 丨 li 
^ ^ "- done ！ 

H f 丄 ,一 SRAM I , 
_J—lZzLT — 1 门 丨 M basic cell 厂 

^ f f i f ^ 个 个 
^ ^ data_p data_n 

( b ) ( c ) 
Figure 6.23 - (a) SRAM basic cell, (b) monitor cell, (c) monitor cell in a bit column of SRAM 
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When there is a write operation, the monitor will be enabled and will perform the 

write operation. Since the write operation causes both of the SRAM basic cells 

inside the monitor cell to store the same value, either one of the values in the SRAM 

basic cell will change and thus the change can be detected by the NOR gate. This 

signal will be sent out to indicate the completion of the write operation. Due to 

geometrical reason, the monitor cell is placed at the top of the bit column of the 

SRAM, as shown in Figure 6.23(c), in order to prevent the monitor cell from being 

written before the normal SRAM basic cell. Also due to the same reason, the 

detection of completion is only required on bitO and bit 14 of the SRAM banks as 

their write operation is the slowest among all the bits. 

The advantage of this method is that the monitor cell can be treated a normal SRAM 

cell which is simply placed in the bit column, it will not cause a large modification in 

the traditional architecture of RAM block design. Also it directly monitors the write 

operation, and the completion signal is immediately generated after the write 

operation is done. As a result, the average case performance can be achieved. 

The result and performance of the transpose memory will be given in chapter 7. 
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Chapter 7 

Results and Discussions 

7.1 Overview 
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Transistor Count 
Ring Oscillator  
Timer - Counter ^ 
Timer - Latch 
Timer - Comparator 142 
^cal ibrate Circuit 124 
Operation Monitoring Circuit 90 
Voltage Sensor ^ 
iTotal 917 

Table 7.1 - Transistor count on different units of Refresh Control Circuit 
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Figure 7.1 - Simulation result of ring oscillator 
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Figure 7.2 - Simulation result of the Refresh Control Circuit 

Furthermore, the power consumptions of different parts are estimated from the 

simulation result, which is shown in Table 7.2. The average current drawn by the 

whole Refresh Control Circuit is about 15 uA when the voltage sensor is not 

activated, and is about 3.6 mA when the voltage sensor is enabled. Since the voltage 

sensor is not operating all the time, the percentage shown in Table 7.2 is not directly 
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proportional to the average current, but is proportional to the current drawn through 

the whole process. 

Average current Percentage 
Ring Oscillator 12.5053 uA~~ 10.06% 
Timer - Counter 0.4901 u A一 0 . 3 9 %一 

Timer - Latch 0.6007 u A一 0 . 4 8 % — 
Timer - Comparator 0.2541 uA~~ 0.14% 
Recalibrate Circuit 0.1685 uA 0.20% 
Operation Monitoring Circuit 0.2662 uA 0.21% 
Voltage Sensor* 3.5204 mA 88.5078% 
^Average current of voltage sensor when it is enabled  

Table 7.2 - Current drawn by the each parts of the Refresh Control Circuit 

Figure 7.1 shows the simulation result of the ring oscillator. It shows that the ring 

oscillator can oscillate with a period of around 26 us. Figure 7.2 shows the 

simulation result of the Refresh Control Circuit and its function verified. 

The purpose of developing the Refresh Control Circuit is to reduce the performance 

degradation due to the pull-up path. In order to investigate the performance 

improvement from the traditional technique, three multipliers were built so as to 

provide a comparison. All the multipliers were built in the asynchronous pipeline 

architecture and based on the bit-parallel algorithm. The first multiplier uses the 

normal domino logic without any pull-up path. The second one uses the domino 

logic which a pull-up path as shown in Figure 4.2(b). The last one is using the 

technique of the Refresh Control Circuit, and its logic structure is shown in Figure 

4.4(b). 

Three multipliers were simulated by HSPICE under 5V supply voltage. Since they 

all are asynchronous circuits, the simulations were done by sending inputs to the 
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multipliers continuously, and their intrinsic throughputs and latencies are then 

measured. 

Throughput Latency — 
Without pull-up path 2.8721 ns 18.7925 ns 
With pull-up path(traditional) 3.0306 ns (+5.819%) 20.3573 ns (+8.326%) 
Refresh Control Circuit |2.9090 ns (+1 • 105%) 19.0668 ns (+1.459%) 

Table 7.3 - Performance of multipliers by different techniques 
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Figure 7.3 一 Output signals of different multipliers 

Table 7.3 shows the throughput and latency of the three multipliers and Figure 7.3 

shows the signal outputs from the different multipliers. 

7.2.2 Discussion 

From Table 7.1, it shows that the new proposed technique provides a better 

performance than the traditional technique. It provides less than 2% performance 

degradation compared with the multiplier using the ordinary domino logic, while the 

traditional technique degrades the throughput by 5.8% and latency by 8.3%. It 

indicates that the goal of the Refresh Control Circuit is achieved. It provides a self-

timed and reliable method for solving the problem of the charge leakage. 
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Regarding the power consumption of the circuit, voltage sensor consumes near 90% 

of the total power. This is because the differential amplifier and sense amplifiers 

always allow current to flow through. Future work can be focused on minimizing the 

power consumption of the voltage sensor by using other architectures which have 

lower power consumption, or using other technique to detect the charge leakage on 

the floating node of the dynamic logic. 

Although all the discussion on the refresh control system is based on the dynamic or 

domino logic and the comparison is done on the asynchronous circuits, it is not 

restricted to be used this technique on this area only. Other logic types or circuits 

which also encounter the charge leakage problem can employ the Refresh Control 

Circuit technique. However, the method of sensing may need to be modified so as to 

suit the application. 

The disadvantage of this technique is the inclusion of the Refresh Control Circuit in 

the design, and one or two more transistors are added on each logic cell. As a result 

the area of the whole system will be increased and the compact property of the 

dynamic logic is somewhat degraded. It is not suitable to apply the Refresh Control 

Circuit technique on a compact system with which the area is concerned. However, 

for a large system and the speed of the operations are concerned, this technique can 

be employed. 
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7.3 Programmable DSP Processor 

7.3.1 Implementation Results and Performance 

In chapter 5, it has shown the dataflow of ID DCT program on the programmable 

DSP asynchronous processor. It requires 50 steps for the processor to perform the 

whole ID DCT operation. Since the size the processor is very large, it cannot be 

simulated by HSPICE. On the other hand, all the basic cells were simulated in 

HSPICE under different loading conditions, and the parameters were extracted to 

construct a Verilog HDL model for each logic cells. The performance of the DCT 

implementation is estimated by using the Verilog models to simulate a 9-bit version 

of the proposed processor. Table 7.4 lists the bit length information of the 9-bit 

processor. 

External  
Primary 10 of the programmable 9 bits 
DSP processor  
Instruction Input 10 bits 
Internal Functional Units  

"Adder 9 bits 
"^btractor ~9bits 
Multiplier 9 bits (output is truncated to 9 b i t ^ 
FIFO Memory 9 bits 

Table 7.4 - Bit length information of the 9-bit programmable DSP processor 
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Figure 7.4 - Simulation result of the programmable DSP processor 

From the simulation result, the latency between the 8 pixel inputs and the 8 outputs is 

around 400ns. Since the processor is pipelined, the next DCT operation can be 

started even the current one is still processing. As a result, the 8-point DCT 
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throughput can reach 352ns, as shown in Figure 7.4. Also, the input frequency is 

around 130MHz(7ns). Figure 7.5 shows the timing diagram of the DCT operation 

and Table 7.5 shows the comparison of the ID DCT core performance with other 

VLSI implementations. 

) > time 
i~•——a H 

in Processing | out i b ^ i s t o c i operation 

i b • in Processing out 2nd DCT operation 

a : latency ~ P r o c e s s i n g ” 
b : 8-point DCT throughput  
in: 8 pxiel inputs �������� 

out: 8 DCT outputs � � � � -
Figure 7.5 - Timing diagram of the DCT operation 

Operating 
frequency Pixel throughput 

Design Year Tech. Processing Unit (MHz) (Mpixel/sec) 
Cheng et. al. 2000 0.6u 9 MUL, 21 ADD T ^ T ^ 

Hsiao et. al. 1999 0.6u 3 MUL, 5 ADD 40 40 
m  
Jang et. al. [33] 1994 0.8u 4 MUL, 1 100 100 

Accumulator, 1 pre-
and post processor  

This DSP 0.6u 1 MUL, 2 7 2Z7* 
processor | ADD/SUB  
Note : [1] and [3] are 2D DCT chips which use ID DCT cores and transpose RAM to handle the 2D 
transform by using the row-and-column decomposition method[8][9]. Normally, the critical path 
exists in the ID DCT core as it consists of many arithmetic and control units. Therefore, the speeds 
of the ID DCT cores are assumed to be the same as their 2D transform. 
*Average result (352ns / 8 = 44 ns/pixel, 1/44 ns = 22.7Mpixel/sec)  

Table 7.5 - Performance comparison of different ID DCT implementations 

The layout of the 9-bit version of the processor is shown in Figure 7.6. It has 153k 

transistors and is designed by using standard cells based on AMS 3M IP 0.6u CMOS 

technology. The core dimension is 4.7mm x 4.2mm. 
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Figure 7.6 - Layout of the 9-bit programmable DSP processor 

7.3.2 Discussion 

By the comparison with other dedicated designs as shown in Table 7.5, a worse 

throughput and latency obtained by the general purpose processor with only 3 

arithmetic units is understandable as this is a tradeoff of the flexibility. As all the 

internal arithmetic units are occupied for the current DCT operation, the next 8 pixels 

can only be sent to the processor nearly at the end of the current operation. This is 

the reason explaining the slowness of the 8-point DCT throughput. Moreover, there 

are two main reasons for the large latency. First, the limited number of arithmetic 

units causes more data queuing. Second, the results from the arithmetic units are 

required to be fed back to the switching network for the next operation, while in 

other VLSI implementations, the arithmetic units are directly connected to the next 

arithmetic units of the following stage. Unfortunately, this cannot be avoided in a 

general purpose processor. A better latency and throughput of the DCT operation 
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can be achieved if two or more processors are cascaded serially，or more arithmetic 

units are connected to the switching network. Both changes allow more operations 

to process concurrently and reduce the data queuing problem. In addition, further 

improvement can be made in the switch cell in order to reduce its latency. 

On the other hand, the high input rate shows that this processor is capable of 

operating over lOOMHz, and it is competitive with other VLSI designs. Also, this 

frequency indicates the high throughput rate of the switching network. Furthermore, 

an asynchronous-to-synchronous 10 conversion interface is included in this design 

for the purposes of testing and measuring. If this interface is removed, the 

performance of the processor can be further improved. 

Due to the size of the FIFO memories, the 2D DCT cannot be implemented in this 

processor. On the other hand, if the size of the FIFO memories is increased or an 

additional memory unit is added, the 2D DCT can be implemented. Based on this 

assumption, the performance of the 2D DCT implementation was estimated. By 

using the row-and-column decomposition method, the 2D DCT can be decomposed 

into sixteen ID DCT operations. Therefore, the computation time for 2D DCT 

operation on this programmable DSP processor can be obtained by Equation 7.1. 

2D DCT computation time 二 8-point DCT throughput x 16 - Equation 7.1 

=352ns X16 
=5632 ns 

Therefore, the average pixel throughput is 

Average Pixel throughput = 2D DCT computation time 
^ number of pixel - Equation 7.2 

二 5632ns +64 
=11.3 Mpixel/sec 
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Processing unit Clock I Pixel throughput 
Design Year Tech. (MHz) (M pixel/sec) 
TI C6201「381 7 7 "2 MUL, 6 ALU 2 0 ^ 56.63 
u p d 7 7 0 1 6 [611 1993 0 . 8 u " H ^ C ， 1 A L U ^ 2 . 6 
V830 [62] 1995 / RISC with 1 

MAC  
Chang et. al. [381 2000 "q.6 T a L U 33 一 1.7  
This DSP processor ^ 1 MUL, 2 7 T l 3  

I ADD/SUB  
Table 7.6 - Performance comparison of 2D DCT implementation on different programmable 

processors 

Under the same condition of having limited resources for computing, the results 

shown in Table 7.6 indicate that this programmable DSP asynchronous processor has 

a good performance when compared with other general purpose processor designs. 

This result shows the dataflow architecture and the use of switching network favour 

the asynchronous processor design, and a competitive performance can be achieved. 

Future development on this processor can be focused on the 2D DCT operation, or 

other complex DSP algorithms. Although the estimated 2D DCT performance is 

good, it still cannot meet the requirement of processing the MPEG=2 or HDTV signal 

in real-time. 

Obviously, this 9-bit processor will introduce a large error and cannot achieve a 

reasonable accuracy in the DCT operation. A better accuracy can be obtained easily 

by increasing the word length of the processor. Increase in word length on the 

switching network and FIFO memory will not cause a performance degradation as 

they just pass the data without processing. For the arithmetic units which are adder, 

subtracter and multiplier, increase in the word length causes extra pipeline stages as 

they are implemented by the carry-look-ahead and bit-parallel algorithm and 

constructed in the asynchronous pipelined architecture. Thus the throughput will not 

be affected but the latency will increase. As a result, the increase in word length will 
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not directly affect the throughput of the processor, but the trade-off is the latency and 

chip size. 

7.4 ID DCT/IDCT Core 

7.4.1 Simulation Results 

Similar to the case of the programmable DSP processor, the whole ID DCT/IDCT 

core was failed to be simulated by the HSPICE due to the size problem. As a result, 

the whole core was simulated by using the Verilog models and the correctness of the 

operation on the core is verified. 

In order to have a more accurate performance analysis on the processing units in the 

ID DCT/IDCT core，all the processing units were simulated separately by HSPICE 

under 5V supply voltage. Due to the limitation of processing power of workstation 

and HSPICE, only the parasitic within the standard cells is considered while the 

parasitic information of the routing is not included in the simulation. The simulated 

performance of different processing units are listed in Table 7.7. 

Tested frequency Required frequency 
(MHz) (MHz) 

15-bit adder 250 98 一 
15-bit subtracter 250 98 
16-bit data replicator 400* — 196 
DCT coefficient memor}^ 196.07** 一 196 
Multiplier 220*** 196 
20-bit adder 250 96 
21-bit adder 250 96 
22-bit adder 250 96  
22-bit subtracter 250 一 96 
Truncation unit 250 % 
* The output rate of the data replicator 
** Self-generated frequency 
*"^^Transistor-level simulation only  

Table 7.7 — Performance of different processing units on the ID DCT/IDCT core 
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Figure 7.7 - Simulation result of the DCT coefficients memory 

All the processing units, except the multiplier, data replicator and the DCT 

coefficients memory, were simulated at 250MHz of the data input rate. This is 

because according to the architecture of the ID DCT/IDCT core shown in Figure 6.9 

in chapter 6 and discussed in section 6.2.1.2, the throughput of the ID DCT/IDCT 

core is greatly depended on the speed of the multiplication as it is the bottleneck of 

the whole operation. From the simulation results, the DCT coefficients memory only 

generates the DCT coefficients at the maximum frequency of 196MHz, as shown in 

Figure 7.7. As a result, the maximum rate of multiplication can only be 196MHz, 

and thus all other units are only required to work equal to or less than 196MHz in 

actual processing. To ensure the processing units can meet the requirement, a higher 

frequency which is 250MHz is chosen to verify the their operations. For the 

multiplier, it is found that it can work at 220MHz. However it is only the simulation 

result in the transistor-level simulation in which the all parasitic information is not 

taken into account. This is because the circuit is very large. The simulator HSPICE 

and workstation were unable to handle the simulation if the parasitic information is 

included. The rest of the simulation results show that other units are working 

properly at or below 250MHz without error. Based on this simulation result, the 

throughput of the whole ID DCT/IDCT core should be able to work at 98 

Mpixel/sec, which is half of the multiplication rate. 
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Figure 7.8 一 Layout of the ID DCT/IDCT core processor 

The layout of the unified ID DCT/IDCT processor is shown in Figure 7.8. It has 

334k transistors and is designed using standard cells based on A M S 3 M IP 0.6u 

C M O S technology. The core dimension is 6.8mm x 7.5mm. 

7.4,2 Measurement Results 

The testing equipments of the DCT/IDCT core include the IMS XL-60 IC Tester, HP 

Infinium Oscilloscope and HP E3631A Triple Output D C Power Supply. The 

functionality of the chip was tested by IMS tester, and all the functions (row and 

column operation, D C T and IDCT) were verified and the chip is working properly. 

Page 109 



Chapter 7 - Results and Discussions  

Figure 7.9 shows part of the captured Input and Output waveforms of D C T row 

operation. Table 7.8 shows part of the input, measured and calculated data sets. 
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Figure 7.9 - (a) input waveform of the DCT/IDCT core, (b) measured output waveform of the 
DCT/IDCT core in DCT row operation 
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Input Data Set Input Data((Re-ordered) | Measured Result | Calculated result —  
Set 1 255,0,0,0,0,0,0,0 90.125, 125.0625, 90.1561，125.0501， 

117.8125, 106, 117.7946，106.0124， 
90.125，70.8125， 90.1561，70.8352, 
48.8125，24.875 48.7921，248740 

M 2 0,0,0,0,0,0,0,0 0，0，0，0,0，0，0，0 0̂ 0,0,0,0,0,0 
Sets 1,2,3,4,5,6,7,8 12.75, -6.4375 12.7279, -6.4423, 

0，-0.6875, 0，-0.6735, 
0，-0.1875， 0，-0.2009, 
0，-0.0625 0，-0.0507 

Set 4 180,0,0,0,0,0,0,0 63.75，88.4375, 63.6396,88.2707, 
83.3125，74.9375， 83.1492, 74.8323, 
63.75, 50.0625， 63.6396，50.0013， 
24.5，17.5625 34.4415，17.5581 

Set 5 255,255,255,255,255,255,2 721.25, 0, 721.2489，0, 
55,255 0,0， 0,0, 

0,0, 0,0， 
1 m 1 M  

Table 7.8 — Input data, measured result and calculated result of the DCT row operation 

During the measurement, the actual Input Acknowledgement was not measured as 

it's duration is short and causes difficulty in the measurement. Instead of Input 

Acknowledgement, a signal Done was measured. The signal Done is created by a 

toggle flip-flop which input is the Input Acknowledgement. As a result, the signal 

Done is toggled in every Input Acknowledgement and it makes the measurement 

easier. Figure 7.10(a) shows the creation of the signal Done from the Input 

Acknowledgement while Figure 7.10(b) shows the timing relationship of the Input 

Acknowledgement and the signal Done. 

Q Done I叩ut 1 \ I \ / \ / 
Toggle ack W W W W 

Input V FF  
A C K D o n e � ^ • ^ 

( a ) ( b ) 
Figure 7.10 一 (a) construction of the Done signal, (b) timing diagram of the Input Request, 

Acknowledgement and Done signal 

The measurement shows the maximum frequency (throughput) of the DCT/IDCT is 

around 76MHz. Figure 7.11 shows the measured Output Request of the DCT/IDCT 

Page 111 



Chapter 7 - Results and Discussions  

chip by the HP Infinium Oscilloscope. The average current of the DCT/IDCT core 

chip is about 1.43A under 5V power supply, so the average power consumption of 

the chip is about 7.15W. Table 7.9 shows the performance comparison of the 2D 

DCT/IDCT processor with other VLSI implementations. 
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Figure 7.11 - (a) measured waveforms of the Output Request (lower) and Acknowledgement 
(upper) signal, (b) zoomed waveforms which shows the average throughput is 76MHz 
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Clock Pixel throughput 
Design Year Tech. Processing unit (MHz) (Mpixel/sec) 
Cheng et. al. [351 2000 a 6 u ~ 9 M U L , 21 A D D 100 100* 
Kim et. al. [641 1999 / “ 80 26.6 
Johnson et. al. 1998 1.2u 7 7 
[63]** 

Jang et. al. [ 3 3 ] 1 9 9 4 0.8u 8 MUL(DA)，2 T ^ W 

accumulator, 2 pre- and 
post processors  

Uramoto et. al. 1992 0.8u 8 M U L and T ^ T ^ 
[32] accumulators, 2 pre- and 

post processors  
This processor** |o.6u 14 M U L , 14 ADD/SUB |/ 176 
*Transistor-level simulation result 
**Asynchronous design  

Table 7.9 - Performance comparison of different 2D DCT implementations 

7.4.3 Discussion 

From the measurement result and Table 7.9, they indicate that the performance of 

this 2D DCT/IDCT processor is competitive to other designs. Since there were only 

few dedicated DCT/IDCT processors developed in asynchronous way previously, 

one of the recent asynchronous design which is developed by Johnson [63] is chosen 

for the comparison as it has similar architecture and the best performance among the 

others. By comparing with his asynchronous design, our design can run faster at 

about 36.9%. However, it should be noted that a more advanced technology has 

been used in our design, a certain portion of the superior performance may be caused 

by the benefits gained in the advanced technology. Although a direct comparison 

cannot be carried out, this comparison can be treated as a reference that this 

processor, the latest asynchronous DCT/IDCT processor, has improved performance 

and superior than previous asynchronous designs. 
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In comparison with the other similar synchronous DCT/IDCT designs, this 

DCT/IDCT processor has better performance than [64], while worse than [35], [33； 

and [32]. Although the performance is not as good as that of these synchronous 

designs, this processor has less operation units while a similar performance can still 

be achieved. This is because the operation units in an asynchronous system are not 

required to work on the same frequency. If a certain operation unit has better 

performance than other units, it can be scheduled to perform more operations by 

sending more input data to it. However, this cannot be done in synchronous design 

as all units must work in the same global clock frequency. This result explores the 

benefit of using the asynchronous architecture in system design as it can utilize every 

operation units in the system, and thus the number of operation units can be reduced. 

However, the measurement result shows a performance deviation from the 

simulation result, where the difference is about 22%. This deviation is properly 

caused by two factors which are the temperature and the multiplier. For the 

environment setting in the HSPICE simulation, the temperature was set to be the 

room temperature. However in the actual measurement, it was found that the ID 

DCT/IDCT core chip was very hot during the operation, and thus the temperature 

was much higher than room temperature. The increase in the temperature is due to 

the fact of high power consumption of this DCT/IDCT processor chip. As the design 

of current chip's package is not good for the heat dissipation, temperature cannot be 

cooled down effectively even a heat sink was added on the top of the chip. This 

causes a large amount of heat generated from the chip but cannot be dissipated, and 

thus the performance degradation is as a result. By setting the temperature at 90 

degree and re-simulating the D C T memory coefficient memory again, the new result 
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shows that the maximum operating frequency is lowered to around 168MHz (such 

the multiplication rate is 84MHz). In this case, the difference between the simulation 

and measurement result is more reasonable. The rest of the difference may be due to 

extra delay caused by the parasitic of the routing, which is not included in HSPICE 

simulation, and the difference between the parameters of the HSPICE models and the 

actual fabrication process. 

Another possible reason of causing large performance deviation is the multiplier. 

Since the all parasitic information was not taken into account in the HSPICE 

simulation, the actual performance of the multiplier may be much lower than 

220MHz if parasitic was considered as well. However, this cannot be verified by 

neither the simulation nor measurement. 

In order to improve the performance of the current design, the modification of the of 

the D C T coefficient memory and the multiplier must be considered. The limiting 

factor on the speed of the D C T coefficients memory is the output feedback path. The 

D C T coefficients memory is not only required to transmit the output to the 

multipliers, but also send the output to the input of the D C T coefficients memory 

simultaneously. This split-path introduces a large handshaking overhead and thus its 

performance is limited. The reducing of the handshaking overhead can be 

investigated in future, and thus the performance of the D C T coefficient memory, as 

well as the whole D C T processor can be improved. For the multiplier, the 

performance can be improved by building a PFA as a single standard cell. The 

current implementation uses several basic logic standard cells to build the PFA. This 

causes a large parasitic in the auto-placement and auto-routing process. Since many 
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identical PFAs are used in the multiplier core, building the PFA as a single standard 

cell can minimize the parasitic due to the routing, and also the silicon area can be 

saved as well since the PFA can be built more compactly in this way. 

For further analyzing the practicality of the asynchronous design, a comparison can 

be made on the asynchronous and synchronous implementations of this ID 

DCT/IDCT core. In the synchronous implementation, the bottleneck should no 

longer be the D C T coefficients memory but in the multiplier. This is because D C T 

coefficients memory can be implemented easily in synchronous design by using 

R O M or counters, both can be run very fast as not many computations are required. 

In the multiplier, the critical path is inside the carry generation, which is given by 

Equation 7.3(same as Equation 5.4) 

Cout = A* B • Cin + {Cin + A. B) - Equation 7.3 

The implementation of the Equation 7.3 in domino logic is shown in Figure 7.12(a). 

For the synchronous implementation, Equation 7.3 is modified to Equation 7.4 as the 

inverting static C M O S logic provides a faster response than the non-inverting logic. 

Cout = A*B*Cm + P. {Cin + 

= Cin •尸 • (Cin + A*B) - Equation 7.4 

According to Equation 7.4, the synchronous implementation of the carry generation 

is shown in Figure 7.12(b). From the information provided in the 0.6u standard cell 
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databook [65], the delay which is under 25。C and 5V supply voltage of each logic 

cell is extracted for the performance estimation. 

CLK - C 

—̂—•~ 
Cin- -Cin ^ V 0.30ns 

1 A J F H L A 0,3qns_  

叫 t j 卜 B ^ 

B ~ h - 厂 I reset 

CLK -J r 一 AN21_| 
\ L ^ 0.29ns 2.48ns 

( a ) ( b ) 
Figure 7.12 — (a) carry generation in domino logic, (b) carry generation in static logic 

Operating Frequency = 1 / (longest delay) - Equation 7.5 

=1 /(0.3 + 0.3 + 2.48)ns 
=1/3.08ns 
=325 MHz 

The result of Equation 7.5 shows that the synchronous multiplier could run at about 

325 MHz. However, this estimation doesn't include the worst case temperature, 

supply voltage and clock skew. In practical, a margin of 50% or more is required in 

the global clock frequency when compared with its performance in typical condition 

due to worst case performance assumption in synchronous design. Therefore, the 

performance of the synchronous multiplier should be around 216MHz (for 50% 

margin), which should be similar to that of the asynchronous performance in typical 

condition. And in overall, as the synchronous multiplier is limited to 216MHz, the 

synchronous implementation of the whole ID DCT/IDCT core may be able to run 

faster than the asynchronous implementation described in this thesis, but the 

difference may not be so great. This result indicates that asynchronous design is 

practical and the performance can be similar to synchronous design. 
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Although the performance of this processor is good, the tradeoffs are the area and 

power. In order to maximize the performance, D C V S L structure is used inside all 

the processing units. This causes nearly a double of size to perform the same logic 

function as other designs. Also, all operation units within the ID DCT/IDCT core 

are deeply pipelined, especially the bit-parallel architecture of the multiplier. The 

deeply pipeline structure decomposes all the complex functions into simple logics 

with several stages. As a tradeoff of speed, this causes more area are required to 

implement the design. Furthermore, the handshake cell in the asynchronous circuit 

also causes an additional size overhead to the synchronous circuit. 

For the power consumption, the measurement result shows that the average power 

consumption of the dedicated DCT/IDCT processor is about 7.15W under 5V supply 

voltage, which is an extremely high value compared with other designs. In order to 

verify the correctness of the power consumption, each of the functional units was 

simulated separately by HSPICE under 5V supply voltage. The simulation results 

are listed in Table 7.10. 

Used in Current Current 
DCT / Operating Current Drawn in Drawn in 
IDCT / Frequency Drawn DCT IDCT 
Both Number (MHz) (mA) operation operation 

15-bit adder DCT 1 76/2 9.32 — 9.32 0 
15-bit subtracter DCT 1 76/2 9.85 9.85 0 
16-bit data replicator Both 2 76x2 28.33 56.66 56.66 
DCT coefficient memory" Both 2 “ 76x2 125.83 251.66 251.66 
Multiplier Both 2 76x2 —478.00 ~^6.0Q 956.00 
20-bit adder Both —— 2 76 32.45 ~64.9Q 64.90 
21-bit adder Both “ 1 76 " ^ . 8 2 ~ K n 33.82 
22-bit adder IDCT 1 76/2 ~l8.04 " o ~ ~ 18.04  
22-bit subtracter — IDCT— 1 76/2 18.05 ~0 18.05 
Truncation unit Both | 1 | 76 15.00 ~ 15.00 15.00 

Total 
Power 1397.21 1414.13 

Table 7.10 一 Simulation results of power consumption of different operation units in the ID 
DCT/IDCT core 
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From the simulation results, the total power consumption of the ID DCT/IDCT core 

is about 6.986W (1397.21mA x 5V) and 7.071W (1414.13mA x 5V) in the D C T and 

IDCT operation respectively. This results show that the power consumption is 

consistent in both the simulation and measurement result. Therefore the power 

consumption in the measurement is correct. 

The main reason of large power consumption is due to the use of D C V S L structure. 

Since both the true and complement value are presented in the D C V S L structure, 

either one of the true or complement logic block must be discharged in each 

Evaluation phase. Therefore every logic functional block must consume power in 

each Evaluation cycle, which causes a constant and high discharge current. However 

in single-rail design, which uses the true logic block only, there is no discharge 

current if the pull-down path is not conducted during the Evaluation phase (the 

output kept at logic zero in the domino logic). Since the pull-down path is conducted 

occasionally，a single-rail design consumes less power than the D C V S L design in 

average when performing the same logic function. In order to verify this, a single-

rail 15-bit adder is constructed for the comparison. Both circuits are simulated by 

HSPICE under 5V supply voltage. Three different input patterns which are random 

number, all zeros and all ones patterns are fed into the inputs of the adder at a 

frequency of 76MHz to investigate the current drawn in different conditions. The 

simulation results are shown in Table 7.11. 

Average current Average current Average current 
drawn at random drawn at all zeros drawn at all ones 
input (mA) input (mA.) input (mA)  

D C V S L adder 20.69 20.34 20.59 
Single-rail adder 19.58 +4.33 18.90 — 

Table 7.11 - Comparison of power consumption on DCVSL and single-rail adder 
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Although the power consumption of this dedicated DCT/IDCT power is high, if there 

is no data input, this processor consumes less power than other designs as no 

transition will be occurred in asynchronous design when there is no request of 

operation. 

Future work can be focused on reducing the power and size of the processor. As 

mentioned before, D C V S L structure is the main reason of the high power 

consumption of this design. In order to reduce the power consumption while not 

affecting the current performance, single-rail design or conventional asynchronous 

structure should be used in the non-critical parts, such as the adders and subtracters. 

This modification not only helps to reduce the power consumption, but also helps to 

reduce the area required to implement the design. For the area, since around 30% of 

the area is consumed by the multipliers, as shown in Figure 7.8，minimizing the size 

of the multiplier can greatly reduce the size of the whole design. This can be done 

by using Booth coding [66] or common sub-expression elimination [67] to reduce the 

complexity of the multiplier design, and thus its size can be reduced. Also，grouping 

the PFA into a single standard cell, which has been mentioned before, can also 

reduce the overall area too. Moreover, the adders and subtracters are not the limiting 

factor of the performance of the processor, area-saved or power-saved algorithm, for 

example ripple adder, can be used in the implementations of adder and subtracter 

instead of the size-consuming fast BLC algorithm. 
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From the result shown in Table 7.11, it indicates that the power consumptions of the 

D C V S L adder are nearly the same in three input patterns, while those of the single-

rail adder are depended on the input patterns. Also the single-rail adder consumes 

not more than half of the power of D C V S L adder in any patterns. This result shows 

that the D C V S L structure consumes more than a double of power when compared 

with usual structure, and this causes our design to have an extremely high power 

consumption. 

This result also shows the disadvantage of the domino logic (or dynamic logic), 

which is the high dynamic power consumption. Although the single-rail adder has 

relatively low power consumption design than the D C V S L design, it consumes 

higher power than the static logic. In the design which uses the static logic with latch 

or flip-flop, the power consumption should be relatively low and nearly the same in 

constant input patterns (all zeros and all ones patterns). This is because for a 

constant input pattern, the output of the logic gate will not change and thus there is 

no switching during the operation. Therefore it consumes very little or even no 

dynamic power under this situation. However in the domino logic, the requirement 

of the Precharge phase causes the output to be precharged to logic zero in every 

Precharge phase. As a result, if a logic block has an output of logic one in 

Evaluation phase, it will consume power in the Precharge phase. This explains that 

even having a constant input pattern, the domino logic still has switching during 

operation, and it causes a relatively high power dynamic power consumption 

compared with using static logic and latch or flip-flop in conventional architecture. 
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7.5 Transpose Memory 

7.5.1 Simulated Results 

Due the size of the whole design, different units of the transpose memory were 

simulated separately by HSPICE under 5V supply voltage in order to obtain the 

estimated throughput. 
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Figure 7.13 一 Simulation result of the write and read operation 

Tested Frequency(MHz) 
Write address generator 276* 
Read address generator 276* 
Multiplexing network 276 
32x16bit S R A M block 182.22/230.31 一 
"^Self-generatedfrequency  

Table 7.12 - Performance of different units in the transpose memory 

Since the interleaving technique is applied on the write operation, the performance of 

the transpose memory is now limited by the read operation of the S R A M block. As a 
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result, the minimum operating speed of the whole transpose memory should be 

230MHz. 

The layout of the transpose memory is shown in Figure 7.14. It has 11 Ik transistors. 

The S R A M Blocks are full custom designs and other parts are designed by using 

standard cells based on A M S 3 M IP 0.6u C M O S technology. The core dimension is 

3.9mm x 4.2mm. 

i f M B T l P i i 
MJi •: .Mwafflaa ‘ ：!!<" Ill-l ..nl I'Llll̂  ir：：：̂̂  wJ a： V 

!_國鳳 

_圖_ 
n n s s s 滅 

1 &2. Column address generator 3. Input buffer 
4 & 5. Read address generator 6, 8 and 9. Multiplexing network 
7. Output buffer 10，11’ 12’ 13. 32xl6bit SRAM block 

Figure 7.14 - Layout of the transpose memory 

7.5.2 Measurement Results 

The testing equipments of the transpose memory include the IMS XL-60 IC Tester, 

HP Infinium Oscilloscope and HP E3631A Triple Output D C Power Supply, which 

are the same of those of the DCT/IDCT chip. The functionality of the transpose 

memory chip was tested by IMS XL-60 IC tester, and all the functions (DCT and 
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IDCT) were verified and the chip is working properly. Figure 7.15 shows part of the 

captured Input and Output waveforms of T R A M . 
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Figure 7.15 - (a) input waveform of the transpose memory, (b) measured output waveform of 

transpose memory in DCT operation mode 
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Although the simulation result showed that the transpose memory could be operated 

at 230MHz, there is no method to verify this. This is because that there is a 

limitation of the IMS XL-60 IC Tester that test vectors can only be generated at a 

maximum rate of lOOMHz. As a result, the transpose memory can only be verified 

that it is working properly at lOOMHz input rate. However, the transpose memory is 

supposed to be worked with the DCT/IDCT core chip which is operated at 76MHz 

only. This result at least can prove that the transpose memory can work well with the 

ID DCT/IDCT chips. Figure 7.16 shows the Output Request of the transpose 

memory at lOOMHz. The average current drawn of the transpose memory at 

lOOMHz under 5V power supply is around 350mA, which means that the average 

power consumption is about 1.75W. 
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Figure 7.16 - (a) measured waveforms of the Output Request (upper) and Acknowledgement 
(lower) signal, (b) zoomed waveforms which shows the average throughput is lOOMHz 

7.5.3 Discussion 

From the result shown in Table 7.12 and by the help of the interleaving technique, 

the transpose memory can be operated continuously at 230MHz. And from the 

measurement result, it indicates that the chip has no problem in operating at 

lOOMHz. As a result, the read/write operation at 76MHz in the transpose memory 

was fulfilled and thus the whole 2D DCT/IDCT processor can provide a throughput 

at 76 Mpixel/sec. 

Considering the R A M block alone, its performance is restricted by the write 

operation. The poor speed of the write operation is due to the slow detection of the 

completion of write operation. Although the monitor cells are used to provide a fast 
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detection of completion of the write operation, overhead exists on collecting all the 

done signals from different monitor cells. 

2 done signals is generated 
from each 15bit word column 
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Figure 7.17 - Done signals generated from the 3 2 x l 5 b i t R A M block 

Figure 7.17 shows the done signals generated from the monitor cells in a 32x15bit 

R A M block. It is required to handle a total of 8 done signals and thus the overhead is 

introduced. If the detection method can be improved, a better performance in the 

write operation can be achieved. 

Although the goal of the transpose memory is achieved in this implementation, it has 

limitations and the design still can be further improved. In the current architecture, 

an interleaving technique is used so as to achieve a higher operating speed in the 

transpose memory. However, the actual speed requirement of the 2D DCT/IDCT is 

now limited by the ID DCT/IDCT core, which is 76 MHz, the transpose memory is 

not necessary to be run at such a high frequency. Therefore, the interleaving 

technique is not necessary and can be removed from the transpose memory. In this 

case, the maximum operating speed of the transpose memory will be lowered to 
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about 182MHz but is still capable of handling the 2D DCT/IDCT operation. In this 

way, the area of the additional multiplexers and demultiplexers can be saved. 

In order to realize the whole 2D DCT/IDCT processor design in asynchronous 

pipeline architecture, the address generator and the multiplexing networks are all 

built according to the methodology introduced in chapter 2. The simulation shows 

that they can be operated in a very high frequency. However, they are not required 

to work at such high frequency as the operation is limited to 76MHz, and thus the 

benefit the asynchronous pipeline architecture cannot be gained in this 

implementation. On the other hand, the address generator and the multiplexing 

networks consume over 50% of the whole design, it causes the transpose memory to 

be not cost effective. Therefore other approaches should be applied to the design of 

transpose memory. 

First for the address generator and the multiplexing network, the conventional 

micropipeline structure can be used. As latch is used in the micropipeline, a counter 

can be easily implemented and can be used to replace the area-consuming address 

generator. Also, as the multiplexing network is not the critical unit regarding the 

performance of the transpose memory, DCVSL structure is not necessary to be used. 

As a result, the area of the transpose memory can be largely reduced. Also the 

removal of DCVSL structure can help to reduce the power consumption which have 

been discussed in section 7.4.3, the discussion part of ID DCT/DCT core. 

Another possible approach is the replacement of the R A M block with an array of 

shift registers, or storage elements. Since the sequences of the D C T and IDCT are 
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fixed, the flow of the data in the transpose memory can be pre-determined. 

Therefore hardwired connections with some multiplexers on the array of shift 

registers may be able to perform the same function of the R A M blocks. Also it can 

eliminate the address generator and multiplexing, thus the area can be reduced. 

Therefore future improvement or development of the transpose memory can be based 

on the above suggestions, then a more cost effective implementation can be 

achieved. 
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Chapter 8 

Conclusions 

In this thesis, several asynchronous methodologies have been discussed, and a new 

asynchronous pipelined architecture is then presented. This new architecture uses a 

novel, simple but fast handshake cell which adopts a more relaxed handshaking 

protocol than in the traditional architecture. Furthermore, this new architecture 

employs the D C V S L structure in logic design, and thus the complex latch can be 

removed and the completion can be directly detected by the handshake cell. With the 

new asynchronous pipelined architecture, the circuit developed has a simpler 

architecture and has higher performance than the traditional methodologies. The 

performance of the new asynchronous pipelined architecture has been proven by the 

programmable DSP processor and the dedicated D C T processor 

Since the dynamic logic is used in the new asynchronous pipelined architecture, a 

new technique called Refresh Control circuit is introduced in this thesis to solve the 

charge leakage problem. The new technique is a self-timed, self-calibrated and self-

operating circuit, it monitors the charge leakage in the dynamic logic and controls the 

refresh process effectively in order to reduce the pull-up current. From the result, it 

is shown that this technique causes less performance degradation than the traditional 

technique, it is suitable to apply to a large system which requires a high performance. 

Moreover, the Refresh Control circuit uses a general purpose monitoring scheme and 
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thus it can be applied to other circuits which also encounter the charge leakage 

problem. 

Based on the new asynchronous pipelined architecture, a programmable DSP 

processor and a dedicated 2D DCT/IDCT processor have been constructed. 

Although the performance of the D C T implemented in the programmable processor 

is not as good as other dedicated designs, it still has a reasonable performance of 

22.7Mpixel/sec with a small number of operation units. And the impressive result 

shown in the estimation of 2D D C T operation demonstrates the advantages of the 

combination of asynchronous pipeline and dataflow architecture in circuit design, 

and the use of switching network and parallelism in the processor architecture. This 

result encourages the further development of the processor and the use of the 

asynchronous pipelined architecture. 

Finally, the development of the dedicated 2D DCT/IDCT processor is shown in the 

thesis. This processor is fully pipelined and the throughput is 76Mpxiel/sec, which is 

competitive with other high performance synchronous designs when considering the 

number of operation units used. Also, this dedicated 2D DCT/IDCT processor fully 

satisfies the IEEE specification and is capable of real-time processing on the MPEG-

2, or even the more computational demanding H D T V signals. The result indicates 

that the asynchronous design with the new pipelined architecture can perform as 

good as other synchronous designs，and the proposed DCT/IDCT architecture is 

suitable for the asynchronous implementation. Furthermore the benefit of the 

asynchronous approach in system design has been demonstrated, in which operation 
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units can be fully utilized and the number of operation units can be reduced in the 

whole system. 

Both of the results of the programmable DSP processor and the dedicated 

DCT/IDCT processor imply the high performance of the new asynchronous 

pipelined architecture. In other words, the use of the new asynchronous pipelined 

architecture favours the asynchronous approach in system implementation, especially 

for the DSP applications. 

However, it is found that there are area and power penalties in these designs. The 

use of the D C V S L structure not only causes a large increase in the silicon area, but 

also causes a high dynamic power consumption. Also, the inappropriate 

architectures used in different operation units cause unnecessary area overhead and 

cause the whole design to be inefficient in term of area. Designers should consider 

different approaches in the implementation of different operation units in a system in 

order to minimize the penalties, and further development of the new asynchronous 

pipelined architecture can be focused in these two areas. 
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Appendix 

Operations of switches in DCT implementation of programmable DSP 

processor 

Note: 
Switch 1 to 12 are located at the switching networking, their instructions can be 
referred to Table 5.1. Switch 13 and 14 represents the input demultiplexing networks 
of the FIFO memory 1 and 2 respectively, while Switch 15 and 16 represents the 
four-to-one multiplexers of FIFO memory 1 and 2 respectively. For switch 13 to 16， 
the register name means the FIFO set that the demultiplexing networks and four-to-
one multiplexers connecting to. 

Switches ~|l II I 

# In 15 I 16 II 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 j 10 I 11 I 12 II 13 I 14 Coef Outpll Operation I  
f ut 

1 XO I 1 I I 0 I I 7 I input X0-> Ail, Sil 
2 X7 3 2 7 input X 7 - > A i 2 , Si2 
3 XI 1 0 7 input XI -> A i l , Sil 
4 X6 3 2 7 “ — input X 6 - > A i 2 , Si2 
5 X3 1 g 7 inputX3->Ail，Sil 
6 X 4 3 2 7 input X 4 - > A i 2 , Si2 
7 X 2 1 0 7 ‘ input X 2 - > A i l , Sil 
8 X5 3 2 7 “ ^ ^ input X 5 - > A i 2 , Si2 ~ 
9 1 6 0 3 1 ~ 6 3 3 A ^ T I A o ( K O ) - > A i l , S i l ,  

So(K4) ->regA2, Muli 
10 1 2 0 1 6 3 A o ( K l ) - > A i l , S i l，  

So(K5) -> regB2 
11 3 2 2 1 3 ~~6 ^ Ao(K2) -> Ai2, Si2, • 

So(K6) -> regC2 
12 3 2 2 1 3 6 ^ Ao(K3) -> Ai2, Si2, 

So(K7) -> regC2 
_13 ^ 1 1 1 RegA2(K4) -> Ai l 

14 B2 3 7 3 1 B2 RegB2(L5) -> RegB2，Ai2 
g 3 7 B l CO So(L2) -> RegBl , Muli 

1 6 6 3 1 3 3 A2 CO So(L3) -> RegA2, Muli 
17 C2 3 1 1 0 1 0 D2 RegC2(K6) -> A i l ,  

Ao(LO) -> RegD2 
18 C2 3 7 1 0 0 1 0 1 D2 RegAl(K7) -> A i l , Ai2,  

Ao(Ll ) -> RegD2 
1 9 B2 3 3 1 RegB2(K5) -> Ai2 
2 0 D 2 1 1 7 R e g D 2 ( L 0 ) - > A i l , S i l 

D2 3 3 7 RegD2(Ll) -> Ai2, Si2 
2 2 1 2 6 ^ CO Ao(L5) -> RegAl , Muli 
2 3 7 2 0 2 2 B2 CO ^ ^ Ao(L6) -> RegB2, Muli 
2 4 1 2 2 ^ ^ C2 ^ ^ Ao(L7) -> Muli 
2 5 1 5 2 ^ ^ Ao(MO) -> Muli 
2 6 g 3 0 C I Mo(cl*Z4)->RegCl 

27 A2 0 3 1 3 2 3 RegA2(L3) -> Si2, •“ 
Mo(cO*LO) -> Sil 

28 B l 0 2 0 3 0 ~ 0 RegBl (L2) -> A i l ,  
Mo(cO*L3) -> Ai2 

29 B2 0 3 1 3 2 3 RegB2(L6) -> Si2,  
Mo(cO*L5) -> Sil 

30 A l 0 2 0 3 " O 0 R e g A l ( L 5 ) - > A i l ,  
Mo(cO*L6) -> Ai2 

3 1 0 3 3 “ C4 S o ( M l ) - > M u l i 
3 2 g 3 3 C5 So(M2) -> Muli 
3 3 0 3 3 ^ ^ H c T Ao(M3) -> Muli 
34 CI 0 2 0 3 6 ~ 6 RegCl(M4)-> Ai l , Si l ,  

Mo(M7) -> Ai2, Si2 
3 5 2 3 1 一 So(M5) -> Ai2, Si2 
3 6 3 2 ~ 6 ~ — Ao(M6) -> Ai2, Si2 
3 7 0 1 7 . ^ ^ So(M4-M7)-> Ai l , Sil 
3 8 1 g 6 — Ao(M4+M7) -> Ai l , Sil 
39 I 0 I I 3 I I 3 I I r ^ l So[(M4-M7)-M5] -> Mi ！ 
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1 2 I 2 I C7 II A o _ - M 7 ) + M 5 1 - > Mi 
_ i l I 2 2 C8 Ao[(M4+M7)+K6] -> Mi — 

0 3 ” ~ 3 ~ C9 So[(M4+M7)-K6] -> Mi 
_ 4 3 2 1 “ " ~ 0 ~ ^ ^ Z I I H Z DO Mo(c3*M0) - > Out 
_ 4 4 2 1 “ “ ~ 0 ~ D1 M o ( c 4 * M l ) - > O u t 

2 1 0— “ D2 Mo(c5*M2) - > Out 
2 1 0 D3 - Mo(c5*M3) - > Out 

47 2 1 0 D4~ Mo(c6*[(M4-M7)-M5])  
- > O u t  

48 2 i 0 D5 Mo(c7»[(M4-M7)+M5])“  

- > O u t  
49 2 ~ 0 D ^ Mo(c8*[(M4+M7)+M6])  

- > O u t  
50 2 0 D7 Mo(c9*[(M4+M7)-M6]) 

II II I il I I I I I I I I I I I II I II II II - > Out 
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C Program for evaluating the error in DCT/IDCT core 

Generation of data set 
# i n c l u d e < s t d i o . h > 

# i n c l u d e < s t d l i b . h > 

# i n c l u d e < s t r i n g . h > 

# i n c l u d e < m a t h . h > 

d o u b l e p i ； 

d o u b l e o n e d c t r e s u l t [ 8 ] ； 

d o u b l e t w o d c t r e s u l t [ 6 4 ] ； 

u n i o n h e x c o n t e n t { 

l o n g h a l f [ 2 ] ； 

d o u b l e f u l l ； 
}； 

/ / D e f i n e F u n c t i o n 2-D DCT 

v o i d t w o d c t ( l o n g t w o i n p u t [ ] ) 

{ 
i n t i , j , u , v ; 

d o u b l e i n p u t 8 x 8 [ 8 ] [ 8 ] ； 

d o u b l e temp； 

f o r ( i = 0 ; i < = 7； i + + ) 

{ f o r ( j = 0； j < = 7； j + + ) 

{ 
i n p u t 8 x 8 [ i ] [ j ] = t w o i n p u t [ 8 * i + j ] ； 

} 
} 
/ / D i r e c t 2D 

f o r (u=0； u<=7； U + + ) 
{ f o r ( v=0；v<=7；V++) 

{ 
t emp = 0； 

f o r { i = 0； i < = 7； i + + ) 

{ f o r ( j = 0； j < = 7； j + + ) 

{ 
t emp += 

i n p u t 8 x 8 [ i ] [ j ] * c o s ( ( 2 * i + l ) * u * p i / 1 6 ) * c o s ( ( 2 * j + l ) * v * p i / 1 6 ) ； 

} 
} 
t emp = 0 . 2 5 * t e m p * ( ( u = = 0 ) / p o w ( 2 , 

0 . 5 ) + ( u ! = 0 ) ) * ( { v = = 0 ) / p o w ( 2 , 0 . 5 ) + ( v ! = 0 ) ) ; 

i f ( t emp > 2047 ) 

t emp = 2 0 4 7 ; 

i f ( t emp < -2048 ) 

t emp = - 2 0 4 8 ; 

t w o d c t r e s u l t [ u * 8 + v ] = temp； 

} 
} 

} 

/ / D e f i n e F u n c t i o n I n v e r s e 2-D DCT 

v o i d t w o i d c t ( l o n g t w o i n p u t [ ] ) 

{ 
i n t i , j , u , v ; 

d o u b l e i n p u t 8 x 8 [ 8 ] [ 8 ] ； 

d o u b l e temp； 

f o r ( i = 0； i < = 7； i + + ) 

{ f o r ( j = 0； j < = 7； j + + ) 

{ 

i n p u t 8 x 8 [ i ] [ j ] = t w o i n p u t [ 8 * i + j ] ； 
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} 
} 
/ / D i r e c t 2D 

f o r ( i = 0 ; i < = 7； i + + ) 

{ f o r ( j = 0； j < = 7； j + + ) 

{ 
t emp = 0； 

f o r (u=0； u<=7； U++) 
{ f o r (v=0； v<=7； V++) 

{ 
t emp += 

i n p u t 8 x 8 [ u ] [v] * c o s ( ( 2 * i + l ) * u * p i / 1 6 ) * c o s ( ( 2 * j + l ) * v * p i / l 6 ) * { ( u = = 0 ) / p o w ( 2 , 

0 . 5 ) + ( u ! = 0 ) ) * ( ( v = = 0 ) / p o w ( 2 , 0 . 5 ) + ( v ! = 0 ) ) ; 

} 
} 
t emp = 0 . 2 5 * t e m p； 

i f ( t emp > 255 ) 

t emp = 2 55； 

i f ( t emp < -256 ) 

t emp = -256； 

/ / t w o d c t r e s u l t [ i * 8 + j ] = 0 . 2 5 * t e m p； 

t w o d c t r e s u l t [ i * 8 + j ] = temp； 

} 
} 

} 

1 o n g r a n d n u m ( L , H ) 
l o n g L , H ; 
{ 

s t a t i c l o n g r a n d x = 1； " l o n g i s 32 b i t s * / 

s t a t i c d o u b l e z= ( d o u b l e ) O x V f f f f f f f ； 

l o n g i , j ; 

d o u b l e X； " d o u b l e i s 64 b i t s * / 

r a n d x = ( r a n d x * 1 1 0 3 5 1 5 2 4 5 ) + 1 2 3 4 5； 

i = r a n d x & O x V f f f f f f e ； 

X = { ( d o u b l e ) i ) / z ； 

X = X * ( L + H + 1 )； 

j = X； 

r e t u r n ( j - L ) ； 

} 
l o n g r o u n d u p ( d o u b l e t e s t n u m b e r ) 
{ 

d o u b l e r e m i n d e r ； 

l o n g r e s u l t ； 

r e s u l t = t e s t n u m b e r ； 

r e m i n d e r = t e s t n u m b e r - r e s u l t ； 

i f ( r e m i n d e r >= 0 . 5 ) 

r e s u l t += 1； 

e l s e i f ( r e m i n d e r <= - 0 . 5 ) 

r e s u l t 1； 

r e t u r n r e s u l t ； 

} 
m a i n ( ) 
{ 

l o n g L , H； 

i n t l o n g r e s u l t [64]； 

i n t k k , 11 , m, n； 
l o n g i d c t c o e f f [64]； 

c h a r f i l e n a m e [ ] = " d a t a O O . d a t " ； 

/ / c h a r o d c t — f i l e [ ] = " o d c t O O . d a t " ； 

c h a r i d c t : f i l e [ ] = " i d c t O O . d a t " ； 

c h a r f d c t : f i l e [ ] = " f d c t O O . d a t " ； 

/ / d o u b l e temp； 

u n i o n h e x c o n t e n t u p p e r b o u n d； 

F I L E * r e s u l t _ i d , * d c t _ i d 2 , * d c t — i d 3 ; / / * d c t _ i d , 

p i = a t a n ( 1 ) * 4 ； 

u p p e r b o u n d . h a l f [ 0 ] = 0 x 0 0 0 0 0 0 0 1 ； 

u p p e r b o u n d . h a l f [ 1 ] = 0 x 4 0 a f f 0 0 0 ； 
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p r i n t f ( " P l e a s e e n t e r t h e L o w e r B o u n d . . . . \ n " ) ； 

s c a n f ( " % d " , &L )； 

p r i n t f ( " P l e a s e e n t e r t h e U p p e r B o u n d . . . A n " ) ; 

s c a n f ( " % d " , &H)； 

f o r (m=0； m<=9； m++) 

{ f i l e n a m e [ 4 ] = f i l e n a m e [ 4 ] + m; 

" o d c t — f i l e [4] = o d c t _ f i l e [4] + m; 

i d c t _ f i l e [ 4 ] = i d c t _ f i l e [4] + m; 

f d c t _ f i l e [ 4 ] = f d c t " f i l e [ 4 ] + m； 

f o r (n=0； n < = 9 ; n + + ) 
{ 

f i l e n a m e [ 5 ] = f i l e n a m e [ 5 ] + n； 

/ / o d c t _ f i l e [ 5 ] = o d c t _ f i l e [ 5 ] + n； 

i d c t _ f i l e [ 5 ] = i d c t — f i l e [ 5 ] + n； 

f d c t _ f i l e [ 5 ] = f d c t = f i l e [ 5 ] + n； 

r e s u l t 一 i d = f o p e n ( f i l e n a m e , " w " )； 

" d c t — i d = f o p e n ( o d c t _ f i l e , " w " ) ; 

d c t — i d 2 = f o p e n ( i d c t — f i l e , " w " )； 

d c t _ i d 3 = f o p e n ( f d c t _ f i l e , " w " )； 

f o r " ( 1 1 = 0 ； 11<=99； 1 1++ ) 
{ 

f o r ( k k=0； k k < = 6 3； k k + + ) 

{ r e s u l t [ k k ] = r a n d n u m { L , 
H ) ; 

f p r i n t f ( r e s u l t i d , 
" % l d \ n " , r e s u l t [ k k ] ) ； — 

} 
t w o d c t ( r e s u l t ) ； 

f o r ( k k=0； k k < = 6 3； k k + + ) 
{ 

/ / f p r i n t f ( d c t — i d , 

" % 2 0 . 1 5 l f \ n " , t w o d c t r e s u l t [ k k ] ) ； — 

i d c t c o e f f [ k k ] = r o u n d u p ( t w o d c t r e s u l t [ k k ] ) ； 

f p r i n t f ( d c t _ i d 2 , "%d\n", 

i d c t c o e f f [ k k ] ) ； 一 

} 
t w o i d c t ( i d c t c o e f f ) ； 
f o r ( k k=0； k k < = 6 3； k k + + ) 
{ 

/ / f p r i n t f ( d c t — i d 3 , 

" % 2 0 . 1 5 l f \ n " , t w o d c t r e s u l t [ k k ] ) ； — 

i d c t c o e f f [ k k ] = r o u n d u p ( t w o d c t r e s u l t [ k k ] ) ； 

f p r i n t f ( d c t _ i d 3 , "%d\n", 

i d c t c o e f f [ k k ] ) ； 一 

} 
} 
f c l o s e ( r e s u l t _ i d ) ； 

/ / f c l o s e ( d c t _ i d ) ； 

f c l o s e ( d c t _ i d 2 ) ； 

f c l o s e ( d c t _ i d 3 ) ； 

f i l e n a m e [ 5 ] = ' 0 ' ； 

" o d c t 一 f i l e [5] = ' 0 •； 

i d c t _ f i l e [ 5 ] = ' 0 ' ； 
f d c t _ f i l e [ 5 ] = • 0 ' ; 

} 一 
f i l e n a m e [ 4 ] = ' 0 '； 

/ / o d c t _ f i l e [4] = ' 0 •； 

i d c t 一 f i l e [ 4 ] = • 0 ' ； 
f d c t : f i l e [4] = • 0 '； 

} _ 

r e t u r n 0； 

} 
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Testing of DCT/IDCT architecture 
II 
II This is program is used to generate a Inverse DCT result 
II from Forward DCT coefficients . 
// 
II The input files "idctXX.dat" contain 12-bit DCT coeffiecients . 
II The output files 'nfdctXX.dat" contain 9-bit reconstrcuted 
II pixel values . 
II 

#incliide <stdio.h> 
#include <stdlib.h> 
#include <math.h> 

long trunvalue[7]； 
long mul__product [4] [8]； 
long dctresult一i[8]； 
double dctresult-f[8]; 

void mul_coeff(int bit_length) 

double value[7]； 
int i ； 
long roundup； 

value[0]=cos(atan (1))； 
value[1]=cos(atan (1)/2)； 
value[2]=sin(atan (1)/2)； 
value[3]=cos(atan(1)/4)； 
value[4]=cos(3*atan(1)/4); 
value[5]=sin(3*atan(l)/4)； 
value[6]=sin(atan (1)/4)； 

for (i=0；i<=6；i++) 
{ 

trunvalue[i] = value[i]*pow(2,28)； 
//Round up 
roundup = (trunvalue[i] >> (28 - bit—length)) & 

0x00000001； -
//create the coeff. at given bit length 
trunvalue[i] = (trunvalue[i] >> (28 - bit—length 

+ 1)) + roundup； 

} 

} 
void mul—matrix(long inputl[4], long input2[4], int coeff_length, int trun—length) 

long matrixl [4] [4] , inatri;x:2 [4] [4], roundup； 
int i, j ; 

//Form the coeff. Matrix 
matrixl[0] [0] =trunvalue [0]； 

matrixl [0] [1] = trunvalue [1]； 
matrixl [0] [2] = trunvalue [0]； 

matrixl [0] [3] =trunvalue [2]； 
matrixl[1][0]=trunvalue[0]； 

matrixl[1] [1]=trunvalue[2]； 
matrixl[1] [2]=-1*trunvalue [0] ； matrixl [1] [3] 

l*trunvalue [1]； 
matrixl [2] [0] = trunvalue [0] ； matrixl [2] [1] 

1*trunvalue[2]； 
matrixl[2][2]=-l*trunvalue[0]； 

matrixl [2] [3] =trunvalue [1]； 
matrixl [3] [0] = trunvalue [0] ； matrixl [3] [1] 

1*trunvalue[1]； 
matrixl [3] [2] =trunvalue [0] ； matrixl [3] [3]=-

1*trunvalue [2]; 

matrix2 [0] [0] = trunvalue [3]； 
matrix2 [0] [1] = trunvalue [4]； 

matrix2[0][2]^trunvalue[5]； 
matrix2[0][3]=trunvalue[6]； 
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matrix2 [1] [0]=trunvalue [4] ； matrix2[1] [1]=-
l*trunvalue [6]； 

matrix2[1] [2]=-l*trunvalue [3] ； matrix2 [1] [3]=-
l*trunvalue [5]； 

matrix2 [2] [0] =trunvalue [5] ； matrix2 [2] [1]=-
l*trunvalue [3]； 

matrix2[2][2]=trunvalue[6]； 
matrix2[2][3]=trunvalue[4]； 

matrix2 [3] [0]=trunvalue [6] ； matrix2 [3] [1] 
l*trunvalue [5]； 

matrix2 [3] [2] =trunvalue [4] ； matrix2 [3] [3] 
l*trunvalue[3]； 

//Matrix Multiplcation 
for (i = 0 ； i< = 3；i + + ) 
{ 

for (j=0；j<=3；j++) 
{ 

mul_product[j] [ i ] = m a t r i x l [ j ] [幻 • 
input 1 [i]； 

mul_product[j][4+i]=matrix2[j][i] • 
input2 [i]； 

} 
} 
//Truncation 
for (i=0;i<=3;i++) { 

for (j=0;j<=7;j++) 

if (trun_length 二= 0) 

mul_j)roduct [i] [ j ] = (mul_product [i] [j] >> trun 一 length); 

else 
{ 

roundup = (mul_product[i][j] >> 
(trun_length-l)) & 0x00000001； 

mul ̂ product [i] [j] = (mul_product[i] [j] >> trun_length) + roundup； 
} 一 

} 

) 
void onedct(long input: [8] , int input_length, int coeff—length, int mul—trun—length, 
int final一length, int second) 
{ “ 

long half 1 [4] , half2 [4]； 
int i ； 
long stage31[4] , stage32[4] , stage33 [4] , stage34 [4] , stage41 [4], 
stage42 [4]； 
long result [8] , reduce_length, roundup； 
long temp； 

//First Stage 

for (i=0;i<=3;i++) 

( 
half 1 [i]=input[2 * i]； 
half2 [i]-input[(2*i)+1】； 

} ‘ 

//Second Stage 
mul_macrix(half 1, half2, coeff_length, 

mul_trun_length)； 

for ( i = 0 ； i< = 3 ； i + + ) 
{ 

stage31 [i] =nul_product (i) [0】-nul_product: [i] (1)； 
stage32 [i] =nul_produc:: ： i] [2] +nul_product [i] [3]； 
stage33 [i】二nul_produc:: [i] [4 ] • r n u l _ p r o d u G t : [i] [5]； 
stage34 [i】=nul_product [i】[6】+nul_produc-： [i] [7]； 
stage41[i]=stage31[i】+stage32 "T 
s:age42 [ij =st:aae33 ii] + stage3-； :i】； 

} ‘ 

//Third Stage 
for (i = 0;i< = 3;i-t- + ) 
{ 
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result[i] = stage41[i]+stage42[i]； 
} result[7-i] = stage41 [i]-stage42[i]； 

//Round up and Truncation 
reduce—length = input—length+coeff_length-

mul_trun_length+2-final_length-second- 3 ； — _ 

for (i=0;i<=7;i++) 
{ 

roundup = (result[i] >> (reduce—length-1)) & 
0x00000001; -

temp = (result[i] >> reduce一length)+ roundup； 
if (second == 1) 

{ if (((temp & 0x80000000) == 0x00000000) 
&& ( (temp Sc 0x00000100) == 0x00000100)) 

temp = 255； 
if (((temp & 0x80000000) == 0x80000000) 

&& ( (temp 5c 0x00000100) == 0x00000000)) 

temp = -256； 

} 
dctresult一i[i] = temp； 
d c t r e s u l t : f [ i ] = 

dctresult_i [i] /pow (2, final一length-input一length-~^ + l+second)； 
) “ 一 } “ 

main() 
{ 

int input [8] [8]； 
int inputfile [64]； 
long temp[8]； 
long result [8] [8]； 
double result_f[8][8]； 
int input-length, coeff_length, mul—trun—length, 
final—length; — 
int i, j, kk, 11, m, n, test; 
char idct_file[]="idctOO.dat"； 
char fdct:file[]="nfdctOO.dat"； 
FILE *idct_id, *fdct—id; 

coeff-length = 15; 
mul一coeff(coeff—length)； 

for (m=0； m<=9； m++) 

{ idct_file[4] = idct_file[4] + m； 
fdct:file[5] = fdct=file[5] + m； 

for (n=0； n<=9； n++) 

{ idct_file [5] = idct—file[5] + n; 
fdct~file[6] = fdct~file[6] + n； 

idct一id = fopen(idct_file, "r")； 
fdct—id = fopen(fdct_file, "w"); 
//Read lOOtimes, 64 element in each time 
for (kk=0;kk<=99;kk++) 
{ for (11=0;11<=63;11++) 

fscanf(idct—id, "%d\n", 
&inputfile[11]); — 

//Reorder the input vector into 
8x8 matrix 

for (i=0;i<=7;i++) 
{ 

for (j = 0;j< = 7；j++) 
input [i][j] = 

inputfile [i*8+j]； 

} 
input—length = 12; 
tnul_t run—length = 7; 
final_length = 15； 

for (i=0,i< = 7,-i + + ) 
{ 

for (j=0； j< = 7； j+ + ) 
temp [ j ] = 

input [j] [i]; 
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onedct(temp, 
input一length, coeff—length, mul一trun一length, final一length, 0)； 

for (j=0；j<=7；j++) 
{ 

result [j] [ i ] = 
dctresult_i[j]； 

result_f [j] [ i ] = 
dctresult_f[j]； — 

if 
(abs(dctresult—i[j]) >= pow(2, final一length-1)-1) 

一 { 

printf("Excess Limit, x=%d, %08x\n", dctresult—i[j], dctresult_i[j])； 

scanf ("%d", Sctest); 

} 
} 

} 
input_length = 15; 
mul_trun一length = 9; 
final_length = 9； 

for (i=0;i<=7;i++) 
{ 

for (j=0；j<=7；j++) 
temp [ j ] = 

result [i] [j]； 

onedct(temp, 
input-length, coeff—length, mul_trun_length, final一length, 1)； 

for (j=0；j< = 7；j+ + ) 
{ 

result [i] [ j ] = 
dctresult-i[j]； 

一 } 

} 
for (i=0;i<=7;i++) 
{ 

for (j=0；j<=7；j++) 
fprintf(fdct_id, 

"%d\n", result [i] [j] ) ； _ 

} 
} 
fclose(idct—id)； 
fclose(fdct:id)； 
idct一file[5] = •0'； 
fdct~file[6] = •0'； 

} “ 

idct_file[4] = '0'； 
fdct一file[5] = '0•； 

} 一 

return 0； 

} 
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Pin Assignments of the Programmable DSP Processor Chip 

P i n I IN/ I 
Number Pin Name OUT Description  

I request IN Input data request signal  
— 2 V D D I N ~ 
— 3 G N D IN 

4 s ^ IN Input data start signal  
5 in reset IN Input data buffer reset signal  
6 empty O U T Input data buffer empty signal  
7 done O U T Input data acknowledgement signal  

— 8 V D D ~ I N _ 
9 一 G N D IN 一 

1 0 instr—done IN Instruction acknowledgement signal  
I I instr rq O U T Instruction request signal  
12 一 instr<0> “ IN ^struction bitO 
1 3 instr<l> IN Instruction bitl  

— 1 4 V D D ""“IN “ 
_ 15 G N D IN _ 

16 instr<2> IN Instruction bit2 
17 instr<3> IN Instruction bit3 
1 8 instr<4> IN Instruction bit4  

一 19 V D D IN “ 
_ 20 G N D IN _ 

2 1 instr<5> IN Instruction bit5  
2 2 instr<6> IN Instruction bit6  
23 instr<7> IN fostruction bit? 
24 — instr<8> “ IN Instruction bitS 
25 — instr<9> _ IN fostruction bit9 

一 26 V D D ~ I N “ 
“27 G N D — IN 

28 cmplt clr instr IN Clear the instruction input buffer  
29 mode IN Switch of the cyclic FIFO in instruction memory.  

0=cyclic, l=receive instruction from user  
30 get_output IN Output mode 1 : Get the output handshaking 

signal  
— 3 1 V D D IN “ 

32 一 G N D IN 
33 open cmplp IN Output mode 1 : Get the output handshaking  

signal  
34 out full “ O U T O ^ u t mode 0 : Output buffer full signal 
3 5 out ready O U T Output mode 0 : Output request signal  
36 out buf in<(> O U T Output mode 0 : Output data bitO 
37 "^t buf in<l〉OUT Output mode 0 : Output data bitl 

“38 “ V D D IN 一 

_ 39 G N D IN 一 

40 out buf in<2> O U T Output mode 0 : Output data bit2 
41 |out_buf in<3>| O U T [Output mode 0 : Output data bit3 
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一 42 out buf in<4> O U T Output mode 0 : Output data bit4 
43 out buf in<5> O U T Output mode 0 : Output data bit5  
44 out buf in<6> O U T Output mode 0 : Output data bit6  
45 out buf in<7> — O U T O ^ u t mode 0 : Output data bit? 

— 4 6 _VD—D IN~~ 
— 4 7 G N D " " “ I N — 

48 o^buf in<8> — O U T Ou^ut mode 0 : Output data bitS 
49 cmplt out O U T Output mode 1 : Output request signal  
50 cmplt out d O U T Output mode 1 : cmplt out + 4 

51 out_sel IN Output mode selection : mode 0 for data  
verification, mode 1 for speed measurement 

— 5 2 V D D I N -
— 5 3 G N D IN""“ 

54 out—aki IN Output mode 0 : Output acknowledgement signal 

“55 一inl<0> “ IN I ^ t data bitO 
一 56 — i n l < l > _ IN i^tdata bitl 

57 一 inl<2> IN Input data bit2 
_ 58 一inl<3> 一 IN I ^ t data bit3 
—59 V D D ~ ~ m ~ “ 
— 6 0 G N D ~ I N ~ “ 

61 reset IN Global reset signal  
62 — inl<4> IN Input data bit4 

_ 63 一inl<5> “ IN to^tdata bit5 
64 — inl<6> IN ^put data bit6 
6 5 inl<7> IN Input data bit?  

“66 V D D — I N 一 

67 一 G N D — IN 
- 6 8 in<8> IN [input data bitS 
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Pin Assignments of the ID DCT/IDCT Core Chip 

@ © @ ® © ® ® ® ® N 

@ @ @ @ @ @ 0 @ @ @ @ @ @ M 

© @ ®@@ @@ L 

@ ® @ @ K 

®® @@ J 

© ® © ® @ ® H 

® @ ® Bottom View @ ( J ) G 

0 ® © @ @ @ F 

© 0 @ ® E 

0 © Ext. P. ® ® D 

① © 〇 @ ® ® @ © c 

© O ® ® @ ® ® ® ® ® @ ® ® B 

^ ^ ® ® @ ® @ @ @ @ @ @ @ @ A 

1 2 3 4 5 6 7 8 9 10 11 12 13 

^ ^ n 
Number Pin Name In / Out Description  

I 一VDD — I N —  

— 2 G N D IN 一 

3 — In<5> IN Input data bit5 
4 In<4> IN Input data bit4 
5 — In<3> IN ^ u t data bit3 
6 In<2> IN Input data bit2 
7 V D D ~ I N ~ 
8 G N D ~ I N ~ 
9 In<l> IN Input data bitl 
10 — ln<0> IN ^ u t data bitO 
II V D D IN 

一 12 G N D ~~IN 一 

1 3 test6 O U T Testing signal from D C T coefficients memory 2 
1 4 tests O U T Testing signal from data replicator 2 
1 5 test 10 O U T Testing signal from multiplier 2 

- 1 6 V D D IN — 
— 1 7 G N D I N ~ 

1 8 testl4 O U T Testing signal from 22bit subtractor 
19 —testis — O U T Testing signal from 22bit adder 

- 2 0 V D D ""“IN — 
- 2 1 G N D IN — 

22 output—rq O U T | Output mode 0 : Output request signal 
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2 3 Ckin IN Output mode 0 : Output acknowledgement signal 
24 — V D D 一 IN  

一 25 G N D I N ~ 
Out<14> ~ O U T Output mode 0 : Output data bitl4 

_ _ 2 7 _ _ ^ u t < 1 3 > ~ O U T Output mode 0 : Output data bitl3 
_ _ 2 8 _ ^ O u K 1 2 > ~ 0U T ~ Output mode 0 : Output data bitl2 _ 

29 V D D ~ ~ I N “ 
30 G N D IN~~ - 

— 3 1 Out<ll> Output mode 0 : Output data bitl 1 — 
^Qut<10> "~OUT Output mode 0 : Output data bitlO 

33 ~~Out<9> "~OUT Output mode 0 : Output data bit9 
34 V D D I N -

— 3 5 G N D IN — 
36 Out<8> — O U T Output mode 0 : Output data bitS 

— 3 7 ~~Out<7> ~ O U T Output mode 0 : Output data bit? 
3 8 Out<6> O U T Output mode 0 : Output data bit6 

— 3 9 V D D — I N 
— 4 0 G N D — I N 

41 ~~Out<5> O U T Output mode Q : Output data bit5 

“42 Out<4> — O U T Output mode 0 : Output data bit4 
43 Out<3> — O U T Output mode 0 : Output data bit3 

“44 ^^Out<2> — O U T Output mode 0 : Output data bit2 
— 4 5 V D D ^ ^ I N “ 
— 4 6 G N D I N ~ -

47 ~ O u t < l > — O U T Output mode 0 : Output data bitl 
48 — 0ut<0> O U T ^tput mode 0 : Output data bitO 
49 open cmplp IN Output mode 1 : Get the output handshaking signal 
50 out sel IN Output mode selection : mode 0 for data 

verification, mode 1 for speed measurement  
— 5 1 V D D ~ I N 一 

— 5 2 G N D ~ I N ~ 
5 3 test 17 O U T Testing signal from truncation unit  
54 — testl6 O U T Testing signal from DCT/IDCT switch 5 
5 5 test 13 O U T Testing signal 21 bit adder  

— 5 6 V D D IN 一 

— 5 7 G N D IN 
58 complt out O U T Output mode 1 : Output request signal  
59 cmplt out d O U T Output mode 1 : cmplt out + 4 
60 V D D I N ~ 

— 6 1 G N D I N ~ 
62 get—out IN Output mode 1 : Get the output handshaking signal 

“63 testl2 — O U T Testing signal from 2Qbit adder 2 
6 4 testl 1 O U T Testing signal from 2Qbit adder 1 
65 V D D IN~~ 

- 6 6 G N D ~ I N 一 

6 7 test9 O U T Testing signal from multiplier 1 
6 8 test? O U T Testing signal from data replicator 1 
69 test5 O U T |Testing signal from D C T coefficients memory 1 
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~ 7 0 V D D IN 

一 71 G N D ""“IN~~ — 
72 block2 IN Set for the column operation  

— 7 3 Idct IN for IDCT operation 
74 V D D — I N 

— 7 5 G N D ~~IN~~ _ 
76 Reset — IN Reset 
7 7 Start IN Input data start signal  
7 8 test4 O U T Testing signal from 15bit subtractor  

test3 Testing signal from 15bit adder “ 
80 V D D IN""“ -

— 8 1 G N D ~ I N ~ ~ “ 
“82 test2 ~ O U T Testing signal from l-to-2 M U X 1 

8 3 testl O U T Testing signal from input buffer  
8 4 Done O U T Input data acknowledgement signal  
8 5 input—rq IN Input data request signal  
86 一VDD — I N — 

— 8 7 G N D I N ~ “ 
— 8 8 ~In<14> — IN Input data bitl4 
— 8 9 In<13> IN"”~ Input data bitl3 “ 
— 9 0 In<12> ""“INInput data bit 12 “ 
— 9 1 V D D ~ ~ I N ~ 
— 9 2 G N D ~~IN~~ 
— 9 3 In<ll> ~~IN Input data bitll 一 
— 9 4 In<10> ~ I N Input data bit 10 
— 9 5 In<9> IN Input data bit9 一 

96 一VDD — I N — 

一 97 G N D ~ I N ~ 
— 9 8 In<8> ~ I N Input data bitS 一 
“99 In<7> — IN Input data bit? 

100 In<6> IN [input data bit6 
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Pin Assignments of the Transpose Memory Chip 

© © @ 0 @ 0 ® 0 @ @ © L 

®@@@@®®®@@@ K 
® @ @@@ @ @ J 

® © ® ® H 

® ® ® © @ © G 

® ® © Bottom V i ew @ @ @ F 

© 0 © © 0 © E 

0 © @ @ D 

0 © @@® @@c 
© 0 @ @ © @ @ @ @ @ @ B 

^@@@@@@@@@@ A 
1 2 3 4 5 6 7 8 9 10 11 

Pin 
Number Pin Name In/Out Description  

1 testl O U T Testing signal for LSB generator in write address  
generator  

2 test2 O U T Testing signal for M S B generator in write address  
generator  

3 test3 O U T Testing signal for in write address generator  
- 4 V D D ~ I N 一 

— 5 G N D I N ~ 
6 test4 O U T Testing signal for LSB generator in read address  

generator  
7 test5 O U T Testing signal for M S B generator in read address  

generator  
8 test6 O U T Testing signal for in read address generator  
9 — idct - IN Set for the IDCT operation  
1 0 data—rq IN Input data request signal  

_ 11 V D D ~ I N 
_ 12 G N D IN 
“13 一1<0> IN Input data bitO 

14 I<1> - IN Input data bitl 
15 — I<2> - IN Input data bit2 
16 I<3> IN Input data bit3 — 
1 7 I<4> IN Input data bit4 

一 18 V D D ~"“IN 
— 1 9 G N D ~ I N 

20 I<5> IN llnput data bit5 
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— 2 1 I<6> IN [Input data bit6 

— 2 2 I<7> I N I n p u t data bit? _ 
一 23 I<8> ~ I N ~ ~ Input data bitS _ 
— 2 4 I<9> ~~IN~~ Input data bit9 — 
— 2 5 V D D IN — 
— 2 6 G N D — I N 
— 2 7 I<10> ~ I N I n p u t data bitlQ — 
— 2 8 I<11> Input data bitll “ 
— 2 9 I<12> IN — Input data bit 12 
— 3 0 I<13> ~ ~ W ~ Input data bit 13 “ 
— 3 1 I<14> IN~~ Input data bitl4 “ 
— 3 2 V D D ^ ^ I N ~ “ 

33 — G N D — I N — 
3 4 Start IN Input data start signal  
3 5 Done O U T Input data acknowledgement signal  
3 6 tests O U T Testing signal from input multiplexing network 
3 7 test9 O U T Testing signal from input multiplexing network 
3 8 test 10 O U T Testing signal from input multiplexing network 

— 3 9 V D D I N ~ -
— 4 0 G N D IN — 

4 1 testl 1 O U T Testing signal from input multiplexing network 
4 2 test? O U T Testing signal from input data buffer  
4 3 testl 5 O U T Testing signal from input multiplexing network 
4 4 testl 6 O U T Testing signal from input multiplexing network 

“45 —testl? — O U T Testing signal from R A M blockO 
46 V D D m ~ “ 
47 — G N D — I N — 
4 8 testl2 O U T Testing signal from input multiplexing network 
4 9 test 13 O U T Testing signal from input multiplexing network 

- 5 0 —testl4 — O U T Testing signal from R A M blockl 
51 testis ~ O U T -
52 "^ataout<14> O U T ^tput mode 0 : Output data bitl4 

— 5 3 V D D IN 
— 5 4 G N D I N ~ 

55 "bataout<13>~ O U T Output mode 0 : Output data bitl3 — 
56 "^ataout<12> O U T Output mode 0 : Output data bitl2 
57 "PataouKl 1 〉 O U T ^tput mode 0 : Output data bitl 1 
58 "^ataout<lQ> O U T ^tput mode 0 : Output data bitlO 
59 "^ataout<9> O U T Output mode 0 : Output data bit9 

“60 V D D ~~IN 一 

61 G N D IN 
62 ~Dataout<8>~ O U T Output mode 0 : Output data bitS 
63 ~Dataout<7> O U T Output mode 0 : Output data bit? 
64 Dataout<6> O U T Output mode 0 : Output data bit6 
65 ~Dataout<5>~ O U T Output mode 0 : Output data bit5 
66 Dataout<4> O U T Output mode 0 : Output data bit4 
67 V D D ~ ^ ~ 

“68 G N D I IN I — 
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— 6 9 Dataout<3> O U T [Output mode 0 : Output data bit3 
70 下ataout<2> — O U T Output mode 0 : Output data bit2  
71 Dataout<l> ~ O U T Output mode 0 : Output data bitl 
72 DataoutO ~ O U T Output mode 0 : Output data bitO 
73 dataout rq O U T Output mode 0 : Output data request signal  

— 7 4 V D D IN — 
— 7 5 G N D IN 一 

7 6 Ckin IN Output mode 0 : Output acknowledgement signal 
77 Reset 一 IN Reset 
78 output—sd IN Output mode selection : mode 0 for data  

verification, mode 1 for speed measurement  
79 cmplt一out—d O U T Output mode 1 : cmplt out + 4 

80 cmplt out O U T Output mode 1 : Output request signal  
— 8 1 V D D ~ I N ~ -
— 8 2 G N D IN — 

83 open—cmplp IN Output mode 1 : Get the output handshaking signal 
84 get—output IN [Output mode 1 : Get the output handshaking signal 
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Appendix  

Measured Waveforms of ID DCT/IDCT Chip 

Waveforms of DCT row operation 
！：) • TfwIwg&laBrwffly'lwy ’ ̂  ‘"‘ 

微於欺.. . . . 

• I 1 ZO.OQns 0 

：^̂ Error … - . . … ” … ’ • • ‘ ； dct \ ：？)col 、 ； 
i 聰巧? ^ ^̂^ i 
； ^ r\r\r\j\r\r\ AA /\A AA A/V A,： 

i > r\ r\r\r\f\ r\j\r\r\ : 
i ^ — A A A A /\A A A A A / \ A : 

！巧 ^ r\ ^ r\j\j\f : 
；dinos > AAAA 八八八  :din06 N r\ r\ r\r\ r\ ^\A/VWWWW__/V\/\/\ 丨 
；din07 N A /VWN /\AAA/\/\/\AA/\ r\r\ i 
；din08 > A r\ /\/\/\r\ /\/\ r\/\ r\ f\/\/\ f\/\ f\ /\ r. | 
： a i n 0 9 > f\ r\ f\r\r\/\r\r\r\f\/\r\r\ a a ； i dinio \ r\ A ^WVWWWN r\ A i i dinll N r\ r\ AAAAAAAAAA AAA ； 
； N A A A A A A A A A A A A ； 1 N r\ r\r\r\r\f\r\r\/\ 八 八 a ； 
；done ^—/ ； 
i doOO A A AA A r 
\ doOi r\ A A i I do02 r\ r\j\r\ r\ r i i doO? r\ r\j\r\ r\j\_ ； 
:do04 /\i\ A r \ i doos A A 八/\ r \ \ do06 — r\r\ A A r \ 
I do07 r\r\r\r\ r\ r\j\_r \ 
\ ao08 A A A A A A A , ； i r\J\J\ A f \ doio r\j\r\r\j\r\ r\_r \ \ doll A r \ \ dol2 rv r \ ! dol3 A r \ \ dol4 ； r\ r 
\ 0 rq /W\/̂ ÂAAAAAA/V\AAAAAA/ : 

i 丨 cJcin 、 ^WWNyVWWWWWWVX ； 
.. 20.0Qns 

Start Sy&tem| Stop Systemf 

H. , 二 - , Timing Ptagrams - \ms   

：tmfmî't  
i.丨丨：丨.:•.“.「....： Total 0 Sequence 50 

‘ I 1 20.00ns 228 
‘ ……冷……二 •………•………•………•… 丄…"…令 .•………+ …“…………寺… 

.Error ‘idct ： coL ； 

',dinOO r\r\f\i\r\_r\_r\_r\_r\_r\_r\_r\_f\_a_a__a_r\_a_r\___i\_a_a_/v 八 八 八 八 八 八 " 八 八 , ： 

；dinOl r\f\J\J\r\f\ A/N l\r\ aa r\r\ r\J\ 八a aa a/\ AA aa /\A aa /\a 八八 A / i rdin02 r\r\i\r\ f\f\rsf\ f\r\r\j\ f\r\f\r\ f\j\i\r\ rsj\j\r\ r\j\r\r\ r\r\j\r\  /din03 r\I\J\J\ ^VWWWN /"WXAAAA/N r\r\r\r\r\r\r\r\ r\r\r\r \ 'din04 r\A/N_f\ T^A/WVAAA/WWVWA /XA/VVXA/VVVW : dinOS /WWWN ^WVVA/WWWWVV^V/WWWV/^AAA/ 丨 dinOS \/\/\/\/\/\/\/\ /\f\/\r\ ： 

‘din07 \/\r\/\/\r\/\ / \ a i 'din08 \AA/VVV\—A— ； ''din09 \AAAAAAA—A/\ i dinlO WW\A/> (\ A ； 
dinll \AA/\A AA /\AA  

: d i n l 2 \ A A A A A A A i 

(1—3 WWN_r\ A/N i 
n r a i doOO r\r\ r\r\ A r\ A A /\A/\ A A r\ r\j\ : doOl A A A r\_r\_r\ A a A 八； 

do02 r\ / w a r\ r\_f\_/w\aa/n r\ a a a a a a i 'do03 A AAA r\r\ A AA AA AA AA A /\A A A A ； 
'doCI4 f\r\ r\_r\_r\_a/\ r\ a / \ a /\ r\ r\ 八 A /V- I 
do OS /\ r\r\j\ A._ w f\r\ f\/\/\r\/\ 八八 八八 ； 
doos (\r\ a a r\r\__r\j\ r\ a a a a a a a a a : do07 rsj\AA r\ r\r\_r\_r\_r\r\r\_f\r\ r\r\r\ /\a a /v.: 

,do08 r\r\j\-j\—j\r\ r\ aa a : do09 r\r\r\ r\ _r\_r\j\ !\r\r\ A A A A ： '.dolO AAAAA/N A 八 A ： 
doll r\_r\ r\_r\ r\ r\ r\ /v : 
jdoi2 r\_r\_r\_r\ r\   doi3 r\ A A /\ ； 

i ： dol4 r\ r\ r\ f\ /\ (\ f\_ ： ；io rq A/WVWWWWWWXAA/WXA/VWN/XA/VWWVAA/WWWWVA/VA/WWWWW : ；ickin /\/WWW\/\/\/WVVV\/W\A/WWW\/V\A/WWWW\/W\/WW\AA/WW\/W\/W\ : 

20.0Qns 

jtart Systemj Stop Systemj 
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Waveforms of DCT column operation 
r 过，'.：>. ,I. ""《I A:, ,"' ̂ f.； :、 II I I:..':.. ( Tlmlna Dlagrami -• Itns 、…. ’..‘，’.. ‘ ：“ 

凝 ToUl 0 Saqu«nc« 0 

I I 20.0Qn9 0 C……… 、，• • • ； 4 • • • ..,+•,..,‘，，、•,“.，，，"•�，，�’•," 

；Error 
.^idct N  
丨 ĉol >   
為，巧 > 
、 ， > a / v x a a / n r \ r \ a a a a a a a , 
'DIN02 N r\ r\j\f\r\ AA/\A A/\A A  

V r\r\j\j\ nywvvwN  
din04 N r\ r\j\r\j 
d i n O S > A A A A A A A  din06 N r\ A _ A / V _ y \ i\/\r\f\f\r\r\/\r\i\r\ r\r\f\r\  
din07 n r\ r\r\j\/\ _ / w \ / \ a / w \ / w _ / v \  
dinOS >— r\ r\ f\r\r\/\ /\/\/\r\ r\r\ f \ f \ i\ /\ /\ ^  
dx i l 09 V r\ A A . / \ A A A A A / \ A / \ A A A  

dinlo > r \ r\ a a a a a a a / \ a a / \ a  
d i n l l N A A A A A A A A A A A A A A / \  

d i n l 2 > — A A A / \ A / \ A A A A / \ A  

dlixl3 > A A A / V A A A A A A A 八八 
dinl4 � / \ / \ a  

in_rq _^j^^JJIJI^I^ 一 10^^_14_1144_|_|_|«山4444_|_||_|_|_誦4_山_圓_||_|_|_|_|_14_||4_||_1_14 JJ444UUJJJ_IJJ_ 
doOO A r\ r\ r doOl r\ r\ f\ do02 r\r\„/wv> r\ r 
>do03 f\ A A A a a 
do04 A/\ r\ r 
doOS f\ r\r\j\ r \ 
do06 a . a 八 八 / ： do07 r\j\u\r\ r\ r\j\_r 
;do08 A A A A A A 八 r 
do09 a a a a r : 
： dolo r\f\r\f\f\r\ r\ r 
：doll A r ： 

：doi2 r\ r 
：dol3 A r .dol4 a r 

0 r q ^ V V W W W V X A A A A A A A A A / 

丨 ckin V A / W W W W V W W W W W ： 

20.0(ki3 

'"XJ ' 7 , . Tlmitig Diagraats -* Ims 

totaut 0 Sequence 80 
1 20.0Qns 228 

C *��.，.+ + + + + • + • + • … 

Error 
idct 
•<coL ： 

dinoo r\r\r\r\r\_r\_r\_r\_r\_r\_r\r\a__r\_r\__r\_f\_r\_r\__r\_r\_r\_r\_f\_r\_r\__ 
dinOl r\f\r\r\r\r\ r\j\ f\J\ r\j\ r\r\ f\f\ a a r\r\ /\r\ r\f\ a a a a f\r\ A八 r\r \ din02 r\r\i\r\ r\f\j\j\ r\f\f\r\ rsj\f\r\ r\i\r\r\ a/vv\ r\f\f\r\ aaaa 丨 

',din03 r\r\r\r\ r\r\i\f\nj\/\r\ / v w w v x a r\j\r\j\r\j\r\r\ r\j\r\r 
' ' d i n 0 4 A A A / V W \ A A A / W \ A A / \ / ^ V A / W V W W W '.dinos rsj\r\r\r\f\r\ i\r\j\r\r\i\i\r\/\j\i\r\j\j\/\r\r\r\r\j\j\r\j\f\j\i\j\r /dinOG WWVW\_ 
,din07 \i\r\f\i\i\i\ r\r\ ： ;din08 WVVWWN_r\r\ ； d̂in09 \f\r\r\r\f\j\j\^j\r\  
. d i n l O W W W N r \ „ r \ ： 
^'dinll V W V W V « A / V \ : 
dinl2 \ A A A / \ A A A ； 

' 'dira3 \ / \ a a / \ r\ r \ f \ ； 

Srq ixiiiiita^ltmiipoxiimpiiixipiiiiiiiiiiixiiiiiiimmmmmpnrammnpiimixi：: 
；d o n e ； 
；,doOO r\_a r\ r\ r\j\ r \ r \ f \ f \ f \ r\f\r\r\ a /\ a a a a 丨 
；她01 r\ r\ a / v \ a - _ y \ / n r\ a a a 八 a a a a a a a a a ； 
、do02 八 R\ R\R\/\/\ R\ a a a a a a a a a a a a  
do03 /\ A A A A A A A A A A A A ； 
？do04 r\f\ /\ A. /\ A i\/\r\ f\f\ r\ r\j\r\ : 

；经doOS A r\r\r\ r\___A r\_r\J\r\J\r\ f\f\r\/\ /\ \ 
\ »do06 I\r\ A A A A /\ Ps r\i\f\r\r\  

'^do07 /\A r\r\ a _ j \ j \ _ r \ A r\ j\_ r\r\ A A /\ A  ''do08 A/v\_w_A/\ r\_A r\ r^j\r\—r\r\—r\r\  
'do09 A/\/\ A A A /\ A r\r\r\ r\/\J\^J\  

；udoiq f \ r \ j \ r j \ r \ a a a a a a a ： -doll r\ 丨 
i idoi2 : 
I idoi3 r\_r\_A A ; 
':doi4 r \ _ r \ r \ i ；。rq /VWWWVXAAA/W/VA/WWWWWWV/WWWWWWWWWWWWWXANyW : ；|clcin ^ W W X A A / W W W W V / W W W W W W W A / W W W W W W W W W W W W W W X ； 
1 

20.0Qns 

』St^ Systcmj Stop Systemf 
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Waveforms of IDCT row operation 
‘ T i m i n s Diagrams - ims 

. • • , • , • • , . .... • . „ „ , • , ,, . „ . 二 ..了 — ...- :   
£ » » S^creens Sttfe-Screens flptkms a t i l l t l es Herp j 

IfotaX 0 0 
I 1 20.0Qn3 0 

；议 0 / * ‘ •+‘ • ‘4 ,,••*,•‘，•‘，>.*•/,, ^ ^ . ’，.，*+ + + +,’， ， 

；这Error 
； j 专 i d c t * ； 

coL > i 

dinoo > r\f\r\f\r\_r\_A_r\_r\___\ 
dinOl > ^\AAAA/\ r\r\ A A A A A A A , i 

> A A A A / N FMMMS R\R\J\J\ ： din03 > r\f\j\f\ r\j\j\r\j\/\j\r\ : 
d i n 0 4 、 A A /\ A r\ ^ V W ； 

dinos � a / w w v n : 
dinos > r\ r\r\ r\ / ^ a a a a a a / W V > ^ W V V N i 
din07 > a a a a / \ _ a a a a a a a a a a a a ； din08 > —A r\.^r\j\r\r\ : 
d i n 0 9 、 A f\ A A A A / \ A A / \ A A A A A : 

d i n i o N A A A A A A A A / \ A A A A A ； 

dinll A r\ /̂ AAAAAAA/W-AA/N ： dinl2 > A ^WVWWN_A r\f\ ： 
dinl3 > A Z V V V V V V \ / X _ V X _ _ A A ： 

done ^ / \ _ 丨 

doOO r\ : 
doOl r\J\f -do02 /\/WWW> \ 
do03 A A : 
do04 A / N / W V W N  
do05  
do06 ： r 
do07 r \ 
do08 r\j\r\j\r\j\r\j\ \ 
do09 r\ r \ r \ 
dolO A A A A A A A / N fX/XTJ \ 
doll A A A A A A / V N ^ W ： 
dol2 / W ； 
doi3 /^wvwwN r\j\r \ 
dol4 r\j\j \ 

：O rq / V A / X A / W X A A / W W W W W 
i clcin � ' ^ V V V V V V W W W V W V W V X ； 

20.0Qns 

产 鄉 对 s t o g s ^ 画 驟 添 骤 爾 . : 彌 爾 攀 : 釋 ： 顯 ； 

Z f — ； ^ ： “ ‘ t l rn l i ig D i a g r a m s i m s ‘ 

t o u l 0 Sflquenco 80 

I 20.0Qns 228 
；K C … • … • … … … ‘ … … … + … … … • … … … " I S … … • … … … • … … … … … … • … … … • … 
；SError  
； 终 i d c t ； ；̂col ： 

dinoo A/v\/\/v-.7V_A_»A A r\ A _ A A _ A _ ； 
dinoi r\j\r\j\r\r\ r\r\ r\r\ r\r\ a / n r\r\ r\r\ r\r\ r\r\ r\f\ a / \ / \ / \ / \ a / \ a a a a , 
din02 r\r\r\r\ a a a a a a a a a a a a r\r\j\r\ i\r\r\r\ r\r\r\j\ r\r\/\r\  
din03 r\j\/\r\ f\f\r\r\r\f\r\j\ / w v w v w a a a a / w v n r\r\r\r 
din04 / \ A / V V \ A A A A A A A A / \ / \ A / V W W X A / W W 
dinos r\r\r\r\i\j\r\ a / w w w w w w w w v a / w w v x a a / 
din06 \ A A A A A A / ^ ^ - / W \ / \ 
d i n 0 7 \ / \ A / \ A / \ A A A  

din08 y \ _ / N  din09 \AAAAAA/>̂ W\  
dinlO W W W N r\ r\  
dinll \ / V V V V X A _ / X A / >  
d i r x l 2 \ / \ A A / \ A A A  dinl3 \AAA/\ A /\A  
^q IU14-l-IUI4XiUi4-l •睡• •匪• • • •面 I I I I 11 I I I I I I 11 II 114一l_IUUI_ia_ll_l—l_IULI_l_IUI_l_IUUUI一l_IUI_i_l_aJUiJJU 
done 

hdooo r\ r\J\r\ r\f\r\ i\r\/\r\ a a / \ / \ r\r\r\r\ 
；doOl r\J\r\r\r\ r\r\r\ r\ AAA A /\AA AAAA  do02 AA/WWW - rsj\ A/W 八 AA A AA A AA A 八 r\f 
'：•.do03 A A a r\r\ r\r\/\f\r\ a / \ a 
i； do 04 A A / W V W N J \ _ r \ A A / \ / \ / \ / \ 八 r \ r \ A 八/\ 八八八 
-doOS r \ 八八A/V八A八八/\ / \ A 八 A A 八八 A A 八 八 
do06 上 A A A / X Z \ A A / V \ A A _ y \ A _ _ A / \ A / \ A / \ A / \ A 

Hdo07 A A A A A / \ A A / \ / \ / \ A / \ A A / \ A A A A A A A A /\ 

:;do08 Z V X Z X / W V V \ _ r\ / \ A / \ / \ _ A / V W \ / W \ f \ A f \ A A / \ A A  
do09 r\_f\J\_f\r\_AAAAAA/\/\ r\ r\ r\r\i\ A A A r\r\ A dolO /\AAAA/V\A 八 AAA AA /\ A/\/\/\ A A/\ AA AAA A A A/\ A A A 

” DOLL ^ V W W W \ /V/WV 八八 Y\/\7\/\A/\/\/\ A A A A A A A A A A A  

d o l 2 A A A A / \ A A / \ / \ A A / \ / \ A A A /\ /\ A / \ A A A A A doi3 r\r\r\r\r\j\f\j\ r\j\r\-j\r\ 八 /\/\ 八 八 a/\ a/\ a 
dol4 r\f\f\_r\r\ 八 r\r\r\ a a a a / \ a 
0 rq / W W W W W W \ / \ y V \ / ^ / W V \ A / V \ A / \ / W \ / W \ A / V W W \ A A / \ / W \ / \ / \ / \ A ^ V / \ / \ / \ / \ A / \ / \ / \ / V c5iii\ A/WVWXAA/WWWWWWWVWWWWWWWWVX/VVA/WWWWVA/V/WW 
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Waveforms of IDCT row operation 

^ ；J… _ ™ _ ""“̂  Timing DIafirams - ims … 

f i le |il1t Screens Su挺一Screens Options 进" i t ios ” Help \ 

？ 
；I 、、、、- ：、物tail - 0 “ 

参、、 • … 1 - 20.0Qn3 .::..。,;： 0 

、 C … … … . • … … • … … … 4 s * … … … • … … … • s … h … • … … … • … … … • « ‘ … … ， • • … … … • … 

；杉Error 我 “‘• ‘ 
；idct > ： S 

‘ ： 
:dinOO > f\f\r\r\f\ f \ r \ r \ f \ f \ / \ r \ r \ r \ r \ 
-dinOl > r\l\r\r\r\J\ a a / \ / \ / \ a r\r \ 
� > r\ r\j\j\f\ r\j\r\r\ r\f\r\f\ ； 

> — ： A A A A A A / \ / W W > 丨： 
� d i n 0 4 > r \ a a a a i \ j \ j \ r \ 
^ dinos > r\r\r\j\j\r\f\ ? 
din06 > r\ r\ A A A ^ \ A A A A A / V V V V \ - - A A A / N 穿 
din07 > r\ a / \ a / \ a a / \ a / \ a / \ / \ a a a a ;； 

、、din08 V r\ f\^j\r\r\j\ i： 
din09 > r\ A AAAA /VVV\AAA_ y\/\ 妄 
dinio V r\ r\ / \ a a / \ a a a / \ / \ a r\ A 穿 
d in l l N A A— ^V\A/VA/\/VVV\_/^VV\ ？ 
dinl2 > f\ AA/\AA A/\A A f\r\ ji 

V R\ - A A A A A A A A A A A A 善 

done ^ • \ _ I ： 
dooo r \ r \ j \ r \ j \ j \ j \ j \ a a i； 
doOl A A/\ A A A A A A A ,；; 
do 02 A 5 
do03 A A 笑 
do04 a / W v y V W N \ 
doOS A / W W X A / S i； 
do06 r ；: 
do07 r \ do08 r\̂ r̂ \ 
do09 A r\r \ ‘dolo r\r\r\r\j\j\j\/\ r\r\f\r ;; 
doll (\i\i\r\j\r\j\r\ A A / 香 
,doi2 r\r\r \ 
dol3 A / V A A A / W N r\J\r \ 
do 14 r\r\j ；: 
0 rq < ^ V V V V V V V \ A A A A A A A A / V \ A / ii 

；clcin 、 ； / W W W W W W W W V W V 丨 

aO.OQns 

, 刑 ? y 绅 s t o p Systymj 

「二 Timing Diagrams - ims 

File tdk Screens Sub-Screeits Options UtiliUes Help ； 

一 ‘ ；職Total • 0 Set̂ [U<mc» 90 

I / I 20.00ns 228 

‘ C“'”,…•>K 二……•….……* • + •….、…‘••̂… + +………•… 

Error 
idct ： 
col 1： 

''dinoo _ _ ( \ — r \ _ r \ _ r \ _ 丨 ； 
dinOl r\J\r\J\f\r\ 八/\ a / \ / \ / \ a / \ a a a a a a i\/\ I\f\ r\r\ i\r\ i\/\ / \ a a a i\r \ 
d i n 0 2 r\j\r\j\ r\f\j\r\ r\j\j\i\ /\/w\ r\j\r\r\ r\f\j\r\ f\r\f\r\ r\j\r\r\ : 
din03 r\r\r\r\ / ^ A A A A A A A A / w w w n r\j\f\f\j\f\j\r\ A / W i： 
din04 ^\A/V\A/VAAA/UV\AAA/\ ^ V W W W W W ii 
dinOS A A A A A A A A A A A A A A A A / V V V V V V V V W V 《 
din06 V \ A A A A A A _ - A A A / \ :: 
din07 \t\r\r\r\r\r\ / \ a ji din08 \r\j\r\f\/\j\..u\—r\—r\ i； 
'din09 W X A A A / V N _ r \ f \ :: 
dinlO \i\r\r\r\r\i\ a a i： 
din l l W W W U V X A / N i： 
dinl2 V V V W W _ A A !： 
dinia W W N _ r \ rsj\ i； 

S iPilXipCtaQttanilXOXiXiXOXiXiXiXinilllimiXiXOrillXilXiXimilXQXilimmmiX ( 
done % 
doOO A / W W W X A_A_f\J\J\_AAAAAA/\/\ A / \ A A A/\/\ /\/\ 八 A A A f \ 

doOl A A A A / W \ A A/\__r\J\f\ AAA/\/\ A/\ A. A A/\ A A r\ r\/\ r\ r\/\/\ r\ r\ r\ r\ /\r\ r \ 
do02 r\ -^XAA /VVVVVVVN A J\ AA AA/\ AA/\ r\r\ ；: 
do03 A A A /\/\r\r\r\r\r\r\r\r\ /\ f\ /\/\r\ i\i\ /\r\/\i\ r\j\ A ii 
do04 r\j\r\/\r\r\r\f\ r\_a a/\/\/\aa/\aaa aa /\/\ r\ /\ /\ 八 八八 a > 
DOOS A Y V W W V N A _ A A A/\/\/\/\ A A A A /\AAA/\/\/\A /\ 八 八 A ; 

do06 r\ A / \ / \ A / \ / \ A A A A i\ r\r\r\ f\ A / \ r\ r\ A i: 

do07 /\ A A A / \ A / \ A / \ / V A A / \ A A A / \ r\r\/\/\ A f\ { 

do08 ^ W W W V X A — A A A / ^ ^ \ A A A A / W \ /\ A A A /\ \ 
do09 A A A _ r \ r \ _ A A A A / \ / \ / \ / \ A A / \ A A f\ A / \ A A 八丨： 

、dolO A / W W W N a a a a a a a a a / \ / \ a / \ a a a a a a a / \ / \ i 
doll ^ W W W V N r\fSJ\_•/V/\y\/\AAA/\AA a . a a / \ a /\A J\ \ 
d o l 2 A A / \ /\/\ A. /\/\/\AA/\/\/\A/\ A /\ /\ r\j\ J\ \ 

do 13 / \ A A / W \ A A R\I\/\ a a a a a R\ a /v.； 
dol4 r\J\/\_r\f\ A A A-； 

；0 rq ^ W W X A A y ^ A / W W W W W W X A A / W ^ / W W W V W W W W V W W W X A A / V W W W ; 
；cKin A / W W W W V W W W W W W W W W W W W W W V W W W W W V W V / X / W X / W V ：； 

20.00hQs •• 
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Appendix  

Measured Waveforms of Transpose Memory Chip 

Waveforms of DCT operation mode 
广 1) 次 W N \ …Timing MMRMS 厂厂“”，:厂 

� �… \ 如 teftl 0 S«quence Q 
；严.-:.、 、、、…、 1 20.0Qns 0 

！ § C>*、,\。•}<»、、〖•• i »、••,、kOK • IliîOliilttiiiiiiillî̂^ ； 
i ^Error  

I iidct 、 ； 

；终 ：； 
�doo s _ / \ — A — r \ — r \ — r \ — A _ r \ _ r \ _ A _ r \ _ r \ _ r \ _ ； ； 
卿 N f \ r \ / V N _ - A A A A r \ r \ r \ I \ /\A /\/\ A A r \ r \ r \ r \ A A /\A i \ r \ A A A A A , : 

� 2 > f\i\r\r\—— (\r\r\r\ r\r\f\j\ r\j\r\j\ r\r\j\r\ r\j\j\r\ r\r\f\j\ /vww ^ d04 > AAAAAAAAAAAAAA/v\ r\j\j\j\j\/\r\r\r\j\i\r\/\i\f\r\j\r \ 
、dOS N ^V W W X A / W W W W X A A A / W W W W W W W 丨 
:d06 N f\f ； 
；<107 > r\r \ 
、d08 > f\f i 
V d09 N f\r r dio N r\f \ dll > ^ ；: 
dl2 > i\r ；: 

• di3 N r\r\ 
dl4 > rsj\ 

—q UJJ-UJJJJIJJ-IUIJ-IIJUJ-IUUIJ-
doOO 营 
doOl ; 
do02 i： 
do03 ^ 
do04 i： 
doOS ii 

AOOS ？ 
do07 ^ 
do08 娶 
do09 ;； 
d o l O ii 

doll  
'dol2 ： 
dol3 ii 
dol4 ；: 

:«outrq i; 
ckin 、 r i； 

20. OQns •• I 

Start Sŷemj Ston System) I 

「二I Timing Diagrams - ims 

Htk icreens Sub-Screens fiptlons ut i l i t ies Help《 

Tdtal 0 Sequence 120 
1 20.OQns 276 

C - J ： X.' . ：丨丨丨::::(:::̂；(:丨:::::::::丨:丨:::::::::丨:::::::::::::丨:®::::；；̂̂: . ：：：：：：：：̂̂；：：：；>：：：>：：；：：：：：；；；：；：；：；：-；：：：>；；：：；；：；̂ ：>•；：：•：：：：：：：：：；：：：：：：；：；：：̂：.：；：：：：：；：；：-：>：0：：：：：：：：：：：：：<̂ fi 
：1Error 

i 钱idct ：丨 

-doo _ r \ _ r \ _ a _ r \ _ a _ a _ r \ r \ _ _ a _ a _ r \ _ r \ _ a _ r \ _ r \ _ a _ a _ r \ _ r \ _ a _ 

doi \ i\r\ /\r\/\/\ r\r\ aa f\r\ i\i\ r\r\ r\r\ r\r\ r\j\ f\r\ aa aa a/\ aa a,丨： 
d02 N ^WXAAAAA /̂AA/̂  /WVN ^̂ VWN A/W> ŴVN i： d04 WWWWWVA/VWWX/WWWN /Ŵ L/̂ AAAAAAAAAAAŷ  ii 
d05 W W W W X A A A A A / W W W X / W X A / W X A / V ^ V V A / ^ / ^ V A A A A / V A ；; 
:d06 / W W W V A A / X A / V r v y V W V W W W V W W W W W W W W W V A / W W W X A / V W V A V / W W i： ,d07 r\j\f\r\/\i\r\r\r\j\r\r\r\f\j\j\r\j\r\r\r\i\r\i\/\r\r\j\/\j\i\/\f\r\j\r\f\j\r\f\f\r\f\j\j\j\i\r\j\j\r\j\r\r\/\r\f\f\j\r\r\j \ d08 A/\/WW\A/V/^VA/VWV\A/V\A/WWW\A/WWWWWW\A/WW\/\/WWWWWVW 丨； '-dlO A/NyVWWWWVVWXAAAAAAAAAAAA/WWVWWW^^A/VA/WWNL/VWWWWWW 1 
"dll 丨 'di2 f\r\/\r\r\r\f\j\r\r\j\r\r\r\r\j\j\j\r\j\j\j\j\r\r\r\r\f\j\j\r\j\i\r\nj\r\r\j\r\j\r\r\j\j\j\r\f\i\r\r\r\j\r\j\f\j\r\j\f\/\r \ ‘di3 i\r\j\r\f\nj\{\r\r\r\j\r\r\j\j\i\r\r\i\i\r\r\r\j\r\r\r\r\r\i\f\j\r\r\j\j\j\r\f\j\j\r\j\r\j\i\r\j\r\j\r\j\r\j\r\j\r\j\r\j\f \ 
in.rq fflJ_B_UJUUUyjJ-IIJIUIlJI JJJJJ-iJJJÎ ^̂  
done ~ \ U ~ \ J ~ \ J ~ \ 1 ~ V ^ T W ^ ^ ^ A / “ ~ ； 

dooo r\i\r\f\i\j\f\r\ / w v w w n r\r\j\f\j\j\i\r\ f\j\r\f\\ 
doOl A/NL/XAA/VVVVVVVVVVN AA/WWWVX/VX i: 
,do02 r\j\r\r\r\i\r\r\j\j\r\j\j\j\j\r\i\j\j\j\j\j\r\j\r\r\r\iK \ 
‘do03 A A A A A A A/\ /\/\ r\/\ /\ /\ A l\r\ A A /\A A A A A A A/\ A A ； 
‘DO04 R\_R\R\_R\ R\_R\R\_R\ R\_R\R\_A A A A A A A/\ A A A/\ A A A i： 

do06 i： 
do07 ：； 
.do08  
do09 ：： 
dolO  
doll : 
dol2 ：： 
dol3 丨 
dol4 ；： outrq /^/N/syVWVA/VWWWWWWWWWVAA/V/^VA/WVWW^AAAA/WWWVA/WWWX ckin / ^ V W W W W W W X A y V X / W W W W W W X / ^ / W W W W W W W X / W W W W W W W 

20.0Qki9 
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:i ÎZÎẐIZIIZẐẐIIIZZZIIẐIÎZÎ^̂ÎIẐIZÎIZÎZIZiẐIZIIZIIIIIIIZZZIZIZIZIIII 60op 
丨 800p::； 
丨 LOO? 
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；；;^[；[[；[[；[；;[；[；；;;[；[；;[；；;^eoop ：； 30叩.： 
； ooop ； 

：：-rrrrinniirrrrrrinrii-ii-ririr«-|-rnm ^ b̂-ux 
：/V � VXP ： \ 
；/V 、 eip:； i n � stp 
：� � TTP i 
..^ � otp 

、 60P ：：/V � 80P 
� iop 

/v ^ 90p 
/WVWWWWWWWWWWWWVWVW ^ SOP 
/WWWWWWWWV ^̂^̂^̂^̂^̂^ WWXAAAAAAA/WW v 时p、 
/\/ww v/wv syvw \j\f\j\j \j\r\f\j \j\r\j\i v/wv \f\j\f\i ^ 30"P 经 /VW \J\J \J\1 \J\I \J\l \J\1 \J\J \J\J \J\J \J\i \J\J \J\J \f\J \J\I \J\J \f\j V XOP-
~W~\J~\J\J~\J\J~\J“\J~\J\J~\J~\J~\J~\J\J\J\J\J\J\J~\J~\J\J\J\J~\J~\J\J\J~\J~\J~\J V OOP 衫 

f JOJJ3 

* ' • •丨 • •..��•«�‘*•«�，’••,  •……�X•…….、，• ，、，•……，，•………•………0 
0 BUOO 0Z t I 
0溫丨:丨丨opuoTnb«s 0 .. 邀。 .. 

- -—二r-:< —.….-‘� 
dpoul uoiivuddo XDGI fo siuuqfdAVj^ 

xipu^ddy 



g
 

？
 

t 
n 

I?
 

^ 
g

- 
^ 

3
e
n

o
d

<
9

:0
>
 

p
e

rl
o

d
<

9
:2

>
 

^
 

m
 

？
 

dou
K9

:0>
 M

~a
^^

^M
^H

 jot
o<7

:0>
 q<

7:05
 

S 
R

 
^ 

M
 

a
 

S
 

？
{•

 

/
|

X 
Co
mA
er
 

La
tc
h 

，
 

__
^^
__
 

经
 
gi
 

[R
in
g"
 
J 

.
 ,
 
，
 

>C,
. 
„ 

I 
ope
rat
ion
 

g 
q 

t
 O
sc
il
la
to
r 

. 
j 

I 
I 

>3
 

% 
\
丄

 
J 

I 
p
 

“ 
• 

r 
、

 
c

ir
c

u
it

 
. 

^
^
 

V 
^

^ 
A

 
I 

II 
牙

 
« 

T 
？
 I 

1 
3 

。
 

r
—

L
_ 

^ 
？
 

§ 
Co
mp
ar
at
or
 

JJ
 

Oi
 

S 
I 

5-
 

e
n
o

b
lt
 
—

• 
1
 

^
^
 

^
r

r
^ 

I 
'I 

i 
9 

广
 

es
h_

d3
 

；
V

^
 

re
fr袖

一
 d
2
 

^
^
 

re
tre

sh
.d

l 
ft
 

^ 
re

rre
sh

_c
 

^
^ 

g
. 

m
  

: 
•
。
丨
 

s
 

M
 

h 
^ 

• 
,v

 
^

^ 
V

fi
y 

m
on

_f
lo

ot
 

• 
，

 
• 

m
on

_f
lo

al
 

T 
s 

d
u

m
m

y 
m

on
_r

o 
• 

m
 

m
on

_r
o 

t7>
s 

ifi
? 

 
广

 
1 

n<
ftW

Lf
lo
ot

 
•
—

^
 n
or
m

oL
fto

ot
 

^ 
^ 

no
rm

oL
ro

 
• 

^ 
no

rm
aL

ro
 

pu
U

up
_f

lo
at

 
—

—
•^

pu
llu

p.
flo

ot
 

D
if

fe
re

nt
ia

l 
$e

ns
e 

[ 
• 

re
fr

es
h 

pu
llu

p.
ro

 
•~

p
u

ll
u

p
.r

o 
A

m
pl

if
ie

r 
A

m
pl

if
ie

r 
ril

 
•—

—
ri

l 
te

st
.f

lo
ot

 
•

~
~

^ 
te

st
.f

lo
ot

 
, 

一
 

vo
ut

.n
qd

e 
. 

, 
^ 

^ 
rl2

 »
 

ri2
 

te
st

.r
o 

~
.

—
^ 

te
st

.r
o 

, 
vo

ut
_n

od
< 

—
•—

•—
,m

1 
vo

ut
 

—
r

e
f

r
e

s
h

.
d 

re
fr

es
h-

si
gn

al
« 

1
—

 
* 

i 
1 

vo
uL

re
 丨

—
•—

'
丨

 n2
 

vo
ut

. 
—

• 
en

ob
le

 
| 

en
ob

le
 

14
 

do
ut

<4
i0

> 
• 

re
co

lib
rg

te
^n

 

5̂-
bi
t 

^e
^^
 

C
o
u
n
t
e
r 

\ 
r
e
c
o  
li
b
 r
o
t
e 

•
"么

 
5 ®

  
I 



^ 
§ 

••
 

••
 

I 
I 

0 
《
 

^
^ 

圣
 i 

12
 

10
 

II
 v

dd
! 

vd
d!

||
 

乏
 

nn
Hi
 

•
 v
dd
!
 

II
 

vd
dl
 •
 

•_
ga
dJ
_^
 

Ci
 

11
2 

w
|t

ot
=5

.2
0u

 •
 

• 
• 

w
!o

t =
 5

.2
0u

 
S 

v
d

d
! 

II
 

1
-0

.6
0

U
 

^ 
^ 

1 
= 

0
.6

0
U
 

名
 

n
g

 =
 2

 •
bu

t_
re

f 
vo

ut
_

n�
”en

g 
=

 2
 

en
ab
le
 •

丨
* 

"
"
"
^
i
A
O
u 

f 
^ 

1 
= 
0.
E0
U 

II
 

2 

ne
t2

9
'̂ 

ng
 =

 (,
 

••
 

^
 

^ 
[2
6々

 
V 

(g
 

ne
t2
4 

^ 
^
-
r
H
h 
Wt
ot
t7
.6
0û
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Appendix  

Schematic of asynchronous bit-parallel multiplier 
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Appendix  

Schematics of Programmable DSP Processor 

Schematic of programmable DSP processor 
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Appendix  

Schematic of switch network 
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Appendix 

Schematic of multiplexer cell used in switch cell 
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Schematic FIFO memory 
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Schematic of Instruction Memory (instruction decoding network and cyclic FIFOs) 
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Schematic of cyclic FIFO 
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Schematic of Product Full Adder (PFA) in multiplier core 
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Schematic of handshake cell hM (calling h4in) used in FPA 
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Appendix 

Schematic of the shift cell (calling cll) 
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Schematic of stage Product (true value) generation cell PP 
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Schematic of Carry (true value) generation cell CARRY一P 
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Schematic of r^ stage Product (true value) generation cell FAB_P (A AND B) 
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Appendix  

Schematic of r^ stage Product generation (true value) cell FPC P (P XOR C) 
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Schematic of r^ stage Product generation (complement value) cell FPC P (P XNOR 
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Schematics of ID DCT/IDCT Core 

Schematic of ID DCT/IDCT core 
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Appendix  

Schematic of memory pipeline stages in DCT coefficient memory 
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Appendix  

Schematic of modified basic FIFO cell 

</dd 

MP 

wtA 5 f—^ cKfn 
vdd I nĝ =:Z 
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Appendix  

Schematics of Transpose Memory 

Schematic of transpose memory 
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Appendix  

Schematic of 32x15bit RAM block 
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Appendix  

Schematic of monitor cell 
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Design Libraries 一 CD-ROM 

The C D contains the design libraries of the Refresh Control Circuit, programmable 

DSP processor, dedicated DCT/IDCT process and other necessary libraries. All the 

libraries are designed in the A M S C M O S CUP 0.6u 3M1P technology using the 

Cadence 4.4.1. 
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