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ABSTRACT 

The coupling effect of an electric field with a mechanical deformation makes 

piezoelectric materials feasible for sensing or actuating functions in structural 

applications. Recently, a self-sensing actuator for controlling a structure is proposed. 

It uses a single piece of piezoelectric element to serve as both sensor and actuator 

simultaneously. This technique achieves truly sensor-actuator collocation and 

reduces the weight of the structural system. However, the self-sensing configuration 

inherently contains a feed forward dynamics. In order to achieve self-sensing 

actuation, the feed forward signal due to control input must be separated so that the 

sensing signal is resulting from the mechanical response only. The feed forward 

dynamics is related to the equivalent capacitance of the piezoelectric material and 

subjected to change in the ambience. In addition, due to the relatively high 

amplitudes of the control signal to the mechanical response, sensing signal can be 

corrupted with a small capacitance variation. For closed loop applications, this 

corruption would degrade the system performance or lead to instability. In this 

research, a self-tuning adaptive algorithm is proposed to compensate for the 

capacitance variation. The adaptive compensation is applied for structural control. A 

cantilever beam bonded with a single piezoelectric patch is used to demonstrate the 

effectiveness of self-sensing actuation. The proposed adaptive algorithm is used to 

separate the mcchanical response from the total response. Concurrently，control input 

IS generated based on the compensated sensing signal to actively damp out the 

vibration of the cantilever beam. The usefulness of the proposed technique is 

demonstrated by suppressing the vibration of the structure in both simulations and 

experimental studies. 
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摘要 

壓電材料的機電偶合特性使它既可以用作感知元件，也可用作驅動元件。最近 

提出了一種自感知主動控制技術，在這種控制中，壓電材料既做傳感器，也做 

驅動器，真正實現了傳感和驅動的共存（collocation)，並且還減輕了結構的重 

量。然而，自感知技術具有自身固有的前饋特性（feed forward)，爲了實現自感 

知驅動，由控制輸入而引起的前饋信號必須被分離出來，以辨識感知信號只是 

來自機械響應。而前饋特性與壓電材料片的等效電容有關，並隨周邊環境而改 

變。另外，在機械響應中產生的信號對比起控制輸入有較小的相對幅値。因 

此，微細的電容變化往往可使感知信號失真。在閉環控制中，這種損耗可影響 

控制的整體表現，並或導致失穩。在本文的硏究中，提出了一種自調節（self-

tumng)技術，用以補償壓電片電容的改變。這種自調節補償技術將應用于結構 

控制中。當中一個貼上壓電片的懸臂梁將用來顯示自感知驅動技術于振動控制 

中之效能。本文提出的自調節技術將用來從整個響應信號中，將機械響應的部 

分分離出來°同時，控制輸入也是基于這補償後的感知信號而產生。最終，本 

文提出的技術將通過模擬和實驗來驗證其主動控制結構振動之有效性。 
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Chapter 1 - Introduction 

Chapter 1 

Introduction 

1.1 Background 

1.1.1 Piezoelectric Materials 

Piezoelectricity was firstly discovered by Curie brothers in 1880. They formulated 

the coupling effect between electric field and mechanical deformation. This 

electromechanical coupling property has been leading to numerous sensing or 

actuating applications. From direct piezoelectric effect, signal is induced due to 

material deformation. Since piezoelectric material has the advantage of high strain 

sensitivity, it can measure strain as low as 10 ^ and makes piezoelectric material 

suitable to be used as a sensor with high resolution. On the other hand, because of the 

converse piezoelectric effect, piezoelectric material can be deformed by an electric 

field in a controlled manner. In addition, its quick response time, high efficiency and 

large force authority also make the piezoelectric materials feasible in various 

actuating applications. 

The major limitation of piezoelectric ceramics is their brittle nature. Also, 

piezoelectric material exhibits certain degree of hystersis nonlinearity with large 

applied field. In any case, piezoelectric material cannot be used in measuring DC 

signal and thus limits its usage in AC applications. 

The fast growing field of smart materials and structures is experiencing demands for 

high precision transduction devices. In recent years, the piezoelectric materials have 

been used extensively as active control elements. Because the piezoelectric materials 
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Chapter 1 - Introduction 

can be directly bonded to or embedded into a structure, it has been applied in the 

field of aerospace, micro-positioning, structural monitoring, optics and computer 

engineering. It has been shown that the performance is significant and there exists 

less effect on the original dynamics of the coupled structure. 

1,1,2 Self-sensing Actuation 

The technique of self-sensing actuation was originated in 1960s and it was proposed 

to control the electro-magnetic mechanisms of an ordinary speaker. Recently the 

concept of using a piezoelectric element as a self-sensing actuator has attracted much 

interest due to the advantages of collocation and system component reduction. 

Traditionally piezoelectric materials have been used extensively as sensors or 

actuators to perform a single transducer function. Because of the dual functions of 

piezoelectric materials that relate electric charge to mechanical stress and mechanical 

strain to electric field, a piezoelectric element can be used concurrently as a sensor 

and actuator. The self-sensing configuration achieves perfect sensor-actuator 

collocation. When comparing with a structure using separated sensor-actuator pairs, 

self-sensing actuation can reduce the mass added to the overall structure and this can 

increase the control efficiency with less mass and space. 

2 



Chapter 1 - Introduction 

1.2 Literature Review 

Since early 1990, piezoelectric materials have been increasingly used as sensors and 

actuators. The technique of using a single piece of piezoelectric element as both 

sensor and actuator concurrently in a closed loop system was firstly proposed by 

Dosch et al. [5]. They applied collocated control to suppress vibration of a smart 

structure and experimentally verified the effectiveness of their proposed self-sensing 

actuation (SSA). Anderson and Hagood [1] applied the SSA technique to a truss 

structure in which an active piezoelectric strut functioned as a transducer and 

experimental results showed the strain measurement through SSA agreed closely to 

that using the conventional stmt with an attached strain gauge. Jones and Garcia [12, 

9] demonstrated the use of SSA technique to control a piezoelectric-actuated 

micropositioner and verified the step response performance. Main et al. [16] 

developed a charge driven control instead of the conventional voltage driven control 

to study the hysteresis effect and demonstrated that the charge feedback design 

indeed reduces the hysteresis effect even under the application of a high control gain. 

Because the self-sensing actuation configuration inherently contains a feedforward 

dynamics, the success of SSA relies on the compensation of this feed through 

dynamics such that only the signal induced from the structural deformation is used 

for generating the control input. As the feedforward dynamics depends on the 

equivalent capacitance of the piezoelectric material, which is sensitive to varying 

ambience, Tani et al. [23] demonstrated that the variation of the equivalent 

piezoelectric capacitance has critical effects on SSA-based closed loop systems. 

Yang and Jeng [26] demonstrated that the use of SSA would destabilize the closed 

loop system when it is failed to compensate the feed forward dynamics. 

3 



Chapter 1 - Introduction 

In order to take the variation of the piezoelectric capacitance into account, Takigami 

et al. [22] used // synthesis approach to design a robust controller and applied it to 

suppress the vibration of a cantilever beam. The closed loop performance showed the 

designed controller has good robustness and performance with respect to the 

capacitance variation. Vipperman and Clark [24] presented an adaptive 

compensation technique to deal with the piezoelectric capacitance variation and 

applied collocated feedback control to suppress structural vibration. The capabilities 

of both vibration suppression and compensation of capacitance variation had been 

experimentally verified. Clark et al. [4] extended the above work by using adaptive 

filtering to compensate the feed through dynamics in an open loop configuration. 

Pourboghrat and his associates [19, 20] also designed a similar controller 

incorporating adaptive compensation technique and experimentally verified their 

design by showing the step responses and vibration suppression capabilities. 
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Chapter 1 - Introduction 

1.3 Motivation 

In a closed loop self-sensing configuration, the electrical feedforward dynamics 

associated with the piezoelectric capacitance and control input have to be separated 

so that the control is generated based on the structural deformation. In the previous 

researches, it was achieved by using a static design. Because of the ambience 

dependence of the piezoelectric capacitance, the static design is shown to be 

insufficient. Although some adaptation techniques have been proposed to deal with 

the capacitance uncertainty, the vibration controller is only applicable for low 

frequencies (<100Hz) [24] or the adaptation is designed for open loop structural 

monitoring, i.e. no concurrent control action is applied [4]. In this thesis, we will 

develop an adaptive compensation technique to separate the feedforward dynamics 

and concurrently control the structural vibration such that the modified design could 

be applied for broad frequency band and simultaneously suppress higher vibration 

modes even with the variation of piezoelectric capacitance. 
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Chapter 1 - Introduction 

1.4 Thesis Organization 

In this thesis the problems of modeling, control and implementations of the designed 

controller to a smart structure are studied. The rest of the thesis is organized as 

follows: 

• Chapter 2 presents the modeling of a smart beam structure using Hamilton's 

principle. Galerkin's method is applied to discretize the equation of motion to 

standard state space representation. External sensing circuit is integrated to 

the beam structure to yield an electromechanical system. 

• Chapter 3 presents two types of vibration controller: strain rate feedback and 

positive position feedback control. An adaptive compensation is proposed 

and combined with the strain sensing circuit to deal with the PZT capacitance 

variation. The combined design is investigated by simulations. 

• Chapter 4 presents the hardware implementation of the designed controller to 

the smart beam structure via a digital signal processor. Several experiments 

are conducted to test the combined adaptive compensation for closed loop 

systems under different conditions. 

• Chapter 5 draws the conclusion of this thesis. Several problems for future 

work are also suggested. 
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Chapter 2 

Structural Modeling and Formulation 

A dynamic model of a smart structure composed of a cantilever beam and a 

piezoelectric patch will be derived in this chapter. The derived model will be 

integrated with an external circuit in which sensing and actuation can be functioned 

simultaneously. The overall electromechanical model will be validated through 

experiment. 

2.1 Overview of Piezoelectricity 

The direct piezoelectric effect is the production of a potential difference across the 

material when it is stressed. Conversely, the material strains upon an application of 

an electric field. The constitutive equations derived from linear theory of 

piezoelectricity are as follows [4]: 

(2.1) 

(2.2) 

where D is electric charge, S is strain, T is stress, E is electric field, s is elastic 

compliance, e is permittivity and d is piezoelectric constant. The superscripts E 

and T denote the conditions of constant electric field and constant stress, respectively. 

The subscripts i , j , k and I take the values of 1, 2 or 3 to specify the direction. 

Equation (2.1) states that the total electric charge is proportional to both the stress 

and applied electric field, which is known as the direct piezoelectric effect. The 

converse piezoelectric effect is stated in (2.2) that the total strain is proportional to 

both the applied stress and applied electric field. 
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Chapter 2 一 Structural Modelinf^ and Formulation 

For isotropic piezoelectric materials, the constitutive equations are reduced to: 

Di 二 dJi+4Ek (2.3) 

Sj 二 sp]+dkjEk (2.4) 

2.2 Modeling of the Beam Structure 

In this study, we consider a structure composed of a cantilever beam and a single 

piece of piezoelectric element as shown in Figure 2.1. The dynamics equation of the 

structural transverse vibration (Z-direction) will be derived. As the structure vibrates, 

the piezoelectric element will be stressed or compressed longitudinally (X-direction). 

Owning to the piezoelectricity, signal will be induced across the piezoelectric 

element. Concurrently, external electric field (Z-direction) is applied to control the 

structure. From (2.3) and (2.4)，the constitutive equations for this beam structure are: 

A + 4 五3 (2.5) 

(2.6) 

Piezoelectric 
A 7 "fe i ia l Beam 

f . / / 

I 工 1 I X 

Figure 2.1 Schematic diagram of the smart beam structure 

2.2.1 Electromechanical Conversion 

From the constitutive equation (2.6)，the strain induced by an applied electric field 

£•3 is "31^3. 
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The induced force F, (in X direction) due to the applied voltage is: 

/ \ 

Vp J 

where E^，b^ and t^ are the Young's modulus, width and thickness of the 

piezoelectric element respectively. 

The virtual work due to this applied voltage is 

代 = 

where the virtual displacement of the mid plan of the piezoelectric element in 

the u direction as shown in Figure 2.2. 

、丁 
\ 
\ u 

o x 

Figure 2.2 An infinitesimal element of the composite beam 

Let the transverse displacement of the beam be w{x,t). 

Since Su^ = s [ ^ A d x and u = 
[ ^ ^ j P [ 2 Jdx dx 

where t^ is the thickness of the beam, a = ^ ^ ^ and 0 =— 
2 dx 
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The virtual work due to the applied voltage V̂  can be expressed as: 

FA : - f £：々 
1 J 

'L (3 ^ W r̂ 
二— . ） — [H(x-x,)-H(x-x^)]dx (2.7) 

J 

where and x: are the locations of the piezoelectric element bonded on the beam, 

L is the length of the beam and H is the Heaviside-step function defined as: 

H{x-x,) = \ (2.8) 
[1 if x>x^ 

2•丄2 Model Derivation Using Hamilton's Principle 

Let be the disturbance of the structure. The virtual work due to disturbance 

is: 

^d ^ [fci C^，t)Sw{x, t)dx (2.9) 

Since the external applied voltage and the disturbance f^ are the only non-

conservative forces of the structure, total virtual work due to non-conservative forces 

is: 

(2.10) 

The potential energy of the beam and the piezoelectric element are respectively: 

Vb=l、EbIb y cLx 

= 7 r V " ^ ^ J [ “ (-V - A-, ) — H (a- - A-, )]dx 

where E is Young's modulus and I is area moment of inertia. The subscripts h and 

P denote the corresponding values of beam and piezoelectric element. 
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For simplicity, let H ( x , ^ H{x-x,) - H{x-x^). 

^ 1 rL — 

So， = H(x,x,,x,)dx 

The kinetic energy of the beam and the piezoelectric element are respectively: 

rj. 1 . f dw^ , 
二 少 " H i ” 

1 f^ f — 
^ \ot J 

where p is density and A is cross sectional area. 

The Lagrangian of the composite structure is the difference of the total kinetic energy 

to the total potential energy, i.e. 

(2.11) 

From (2.10) and (2.11), using extended Hamilton's principle yields: 

+ = 0 (2.12) 

Sw{xj,) = Sw{x,t^) = 0 (2.13) 

Substituting the potential and kinetic energies into (2.12) yields: 

SLdt 
‘ 1 

=y(Tb+TrV�Vp)dt 

_ f^ ojl . J I CL fdwY- � 

� J I 乂乂 
J 

. 、 乂 乂 ax J 
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Chapter 2 一 Structural Modelinf^ and Formulation 

一 .1 丄 ‘ ) ~ i- i 人 [ i J 义 ^ j H ( x , x , , x , ) d x d t (2.14) 

Using integration by parts with respect to t , 

' \ d t J {dt J 

二 . ） d x - J I PpAp — H(x,x”xOSwdxdt 
、 ） h 1 J 

From (2.13): dw{x,t,) = Sw{x,t^) = 0 . Hence, 

( J ^ 

i P p �丁 0 丁 H�x,x”x2�dxdt 
1 \<jt J \ot J 

/ 、 

_ ^ o W — 

=—J J, ^P^P H{x,x^,x^)Swdxdt (2.15) 
1 V y 

Substituting H(x,x„x^) = l and replacing the subscript p in (2.15) by b for the 

beam: 

i.丄广办 X i J l i J — 二 一 f I ^ A ^ y J — ( 2 . 1 6 ) 

Using integration by parts with respect to x 

/ -NO � / -A? \ 
f2 0 w d w —^ 

_ f ^ � / 3 w ) \ f^. (L ^^w^— 
- - E I —- dt+ ‘ EI — S — H(x x x ^dxdt 

t- f^ J7 r ( J . 
J) p p T ix,x^,x^)dxdt 

‘ y \ ox J 

where H \ x , = x , ) - H ( x - x , ) 
dx 

12 



Chapter 2 一 Structural Modeling and Formulation 

Since H { L , = 0 (2.17) 

/ -NO \ / - N ? � 
fi e^ o w U d w — 

-• I Epip "VY o —Y H{x,x^,x^)dxdt 
1 dx J �d x J 

f \ / 1 N 
f2 d w J ow]—. . - , 

二 . .）P p TT ^ H{x,x^,x^)dxdt 
1 OX J 义 ox J 

f � / \ f2 rL d w f ow]—, 
• .) Epip y r 3 I H (x,x„x^)dxdt (2.18) 
1 V c/Jt y K. ox J 

Using integration by parts with respect to ;c again, (2.18) becomes: 

1*2 d w ^ a w — 
一 �bplP "TT ^ H{x,x^,x^)dxdt 
•‘！ rjx nx 

V �•^ J V ^̂  y 
^ ^ f ^ 、。 ， el. rL (34沙、一 

=EpIp dt- ‘ E I ^― H(x,x.,x,)Swdxdt 
, ^dx J � J 

..(L f d^w)- (f. fd^w)- L 
一 i ^p^p VT ^ {x,x,,x^)dwdxdt+ - Eplp ^^ H\x,x„x^)Sw dt 

‘ 〈办」 V 7 � 

pL v v ^ — w J f沙、— 

— — 人 H {x,x,,x^)Swdxdt- - E I — H\x,x,,x^)Swdxdt 
‘ J " ^ 丨 y o x J 

By (2.17) and using the fact H\0,x,,x,) = - 0 (2.19) 

f \ / ->,0 \ 
t- & T? 1 \ d"w —̂  

一 、Lpip ^T"^ ^ -：—r lHx,X\,x,�dxdt 
V J V UA J 

(•： f'- „ . (� (t. ((. f 一 

二— �EpIp — - EpI — H\x,x,,x,)Swdxdt 
, VcU y J) ^ dx-； -

^ f 3 vv ̂ —, 
_2J, J ) � "- J T H\x,X\”x:)SwcL\dt (2.20) 

‘ V y 

Similarly, 

/ ^ 2 \ 
J, J) �ox- J -

13 



Chapter 2 一 Structural Modelinf^ and Formulation 

f Epd^^abpV^H\x,x^,)dwdxdt (2.21) 

Hence, the virtual work due to total non-conservative forces is: 

^Swdxdt (2.22) 

Using integration by parts twice with respect to x , 

- j 卞 " H 計 財 • ^ 论 

d^w^ J \ ^ r f �L ， 
二 — EJ, s — dt+ EJ, — Sw dt 

‘ (如 J 、如人 j � 

O W 

—.1 i 五 严 越 (2.23) 

Substituting (2,15), (2.16)，（2.20)，(2.22) and (2.23) into (2.12) yield, 

- ) " " 八 d w d x d t - p A H(x,x,,x^)Swdxdt 

一 EJb ^ ^^ — dt+ EJb ~ Sw dt- [ e J , ^ Swdxdt ‘ I 如 J k 如入 , J � J. -b \dx ' ) 

jf, ^ f 34 一一 , fd^w) — 
V J ‘ y ox y 

‘ V dx J 

+ f f { / , (A', r) - E ^ H \ x , A- , )}Swdxdt = 0 (2.24) 

Since (2.24) holds for arbitrary S\v, rearranging (2.24), the equation of motion can 

be expressed as: 

14 
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. a w . d w ^ , d w , f d w )— 

J V y I J ^dt 人 

f 一ff f 一 

J J 

二 -Epd^iabpVaH\x,+ (x,t) (2.25) 

with boundary conditions: 

( o f n . ( o L ^ 
S — =0 and — Sw =0 (2.26) 

J { d x j ^ [ d x ' ) � 

For a cantilever beam, the boundary conditions are constrained at both ends. At the 

fixed end, the displacement and slope of the beam are zero. Hence, 

w(0,0 = 0 (zero displacement) 

3w(Q,r) _ 0 (zero slope) 
ox 

At the free end, the bending moment and shear force are zero. Hence, 

d'w(L,0) n ( … . � 
~ ~ ^ — = 0 (zero bending moment) 

3 二 = 0 (zero shear force) 
ox 

2.3 Discretization of Equation of Motion 

In the previous section, the equation of motion of a smart cantilever beam 

undergoing transverse vibration is derived. Its dynamics is found to be governed by a 

forth order partial differential equation (PDE). In most cases, PDE systems do not 

admit closed form solution. Hence, in this section, an approximation technique will 

be employed to convert the original PDE to ordinary differential equation (ODE) 

system. 
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Using Galerkin's discretization technique, the approximate solution of (2.25) takes 

the form of space-time separable functions: 

n 

= (2.27) 

where q.{t) is a time function, (/)人x) is a set of independent trial spatial functions 

satisfying all boundary conditions and n is the number of modes of interest. In this 

study, the set of trial function ( p . � is chosen to be the eigenvectors of the plain 

cantilever beam, i.e., 

<t>i M = Q + C, sinh(y^.x) + C3 cos(j^.x) + Q sin(y^.jc) (2.28) 

with 钱 ( 0 ) =钱⑴ ( 0 ) =钱⑵ ( L ) =钱⑶ ( L ) = 0 (2.29) 

where j^. are the solution of: 

/ ? , L c o s h(糾+ 1 = 0 (2.30) 

and (0^,02,03,04) can be determined from the boundary conditions. 

Since the approximate solution (2.27) does not exactly satisfy the partial differential 

equation (2.25) and incurs some error e , substituting (2.27) into (2.25) and the 

incurred error e is found to be: 

EJb E 说 ⑷ 丨 ( 0 + {x)q^ (t) 
'=1 (=1 

+ E p f j ) 广 � �q 人 t � + PpApfj人xyi人t) H(x,x„x,) 
— '=1 /二丨 J 

+ 2 V p i 钱 ⑶ ��H U x ” x � ( 2 ) (义从⑴反义 ,义 1 , 义 2 ) 
' = 1 1=1 

+ E p H \ x , X , ， ) — f , (x,t) = £ 
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The error is minimized in the directions defined by the set of eigenvectors. Setting 

the inner product of the error and each eigenvector to zero yields: 

� f = 0 for j = l,2”",n 

- f " (L ) f n r — y 
^ AA � �2 ] f > , W A ( x ) ^ ( x , X i ， x 2 M x 么(0 

_ V y V /=i J � 

- f “ ) 卜 义 _ y 
+ Ebib ；Ef钱(4)(x地.(xMx ；钱⑷⑶⑶所X,Xi，X2MX 仏.(0 

- V '•=! J V /=1 力 

- 卜 li^ — V 
+ 叫 P ； 钱 ⑶ ⑶ 代 ⑶ 互 仏 ⑴ 

_ V 2=1 J_ 

- 卜 — V 
+ Epip 仏(0 

L V J_ 

+ t H\x, X,, x^�(l)]dx ) - [ f^ (x, . (x)dx = 0 (2.31) 

Using integration by parts twice and (2.29) 

伞 ？ {X�中人x�dx 二 f 钱 ( 2 ) � ⑴ 办 (2.32) 

Using integration by parts and (2.17), 

(l)，、x)(l)人 X)W�X 

0 •O J 1 Zr 

=-.>广“6(力豆(义’〜4办—『钱(3)代(1)(力可义，〜义2)办 (2.33) 

Similarly, using integration by parts and (2.19), 

^^ H\x, X,, )(t).{x)dx = H\x, X,, X,)(/). (x) ‘ -
0 •O J 

=—互 Oc, ，文 2 ypr (幻�+ f X,，2) {x)dx 
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= H (X, X,, X2 )({>• 2) {x)dx •0 j 

二 ^ ^ 广 ⑷ - ^ ^ ‘ ⑷ (2.34) 

Again, by (2.17), (2.19) and integration by parts, 

= 0 / 2 )� A ⑴ 互 - [>/3)0#7(；0互飞义,义”义2)办 

-•〔钱(2)⑶代⑴⑶豆 

二 — ⑶代.{x)H{x, X,，义2)|: + I " 资⑷⑶代 . ( X ) H ( X , X,, x^)dx 

+ f � ^ )A � 钱 ( 2 ) ⑶ ^ ) ⑶ - ( 义 ， 〜 又 2 

+ r 钱 ⑶ ⑶ ⑶ 所 f 钱 ⑵ ⑶ ^ ？ ^ 尸 ⑶ 所 义 〜 又 � ) ^ 

= ⑴ … 幻 + 2 钱 ⑶ ⑵ 代 ⑴ ⑶ + 钱 ⑵ ⑶ ⑶ ] ^ ( 义 ， 〜 义 2 ) " 又 (2.35) 

Substituting (2.32), (2.33)，(2.34) and (2.35) into (2.31), it gives: 

_ 卜 [ C A f n — y 
_ V i=l J V i=l 力 

+ 柳 , ( 2 )⑶办 y J^钱⑷⑴A⑶所；〜义2)办仏.(0 L V<=i J 刀 

- 2 V p S f k �⑶ 代 . � +w ^ ^ i ) �A ， 又 2 ) 办 k (0 
J 

+ Z f k (4) ⑴ + 钱⑵ ( X ) 卢 / 2 ) (又 ) ] ^ (义 , A ，又 2 ⑴ I /=1 J 
(n — 、 

僅pip ⑶⑶代⑴⑶互 ( A 〜义 q i ( t ) 
V i=i y 

+ (x,)-(/}j (x,)]- tfA^^O(/>j(x)dx = 0 
V y 
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- ( “ f � (“ V 
_ V/=1 ； V/=1 ‘ J_ 

+ EzAfl： 1 ^ 2 )⑶代 ( 2 )⑶ +五 / f 钱(2)(；0^^2)«一]仏.(广） 
_ y v/=i I J_ 

( , f \ J 
+ U i ) - � L � x , t y i )納 d x 二 Q (2.36) 

V J J 

Here, assume the disturbance is of the form of a discrete force, i.e., 

where 5{x-x^) is the Dirac delta function: S{x-x^) = \ —" 
[0 for X ^ x^ 

Hence, the disturbance term appearing in the equation of motion can be expressed as: 

fa (r, Mdx = fd {t)5{x — Xd、中】(x)dx 

=f^(t)(/>jix,) (2.37) 

Using the following substitutions: 

Mij = p^A^ ^.{x)(l)j{x)dx (2.38) 

Kij = EJ, f 钱 ⑵ ( x ) d x + Eplp 钱 ⑵ 代 ( 2 ) ⑶ 办 (2.39) 

厂广， z � / / / 
P = Uj (x^)-(p, ( x , ) ] … ( X i ) (2.40) 

LA / V J _ 

L = � … ( 2 . 4 1 ) 

^ = k … ^ r J (2.42) 

The equation of motion can be expressed as: 

Mm + Kqit) = -PV^ + Lfd (0 (2.43) 

Further, the structural damping is included via Rayleigh damping: 

C = cM + PK (2.44) 
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where a and P can be determined from experiments. 

If a state vector ；c is defined as: 

^ = … Q n Qx … q n X (2.45) 

The equation of motion can be expressed in the form of state equation: 

i 二 FX + G 义 + G 丄 (2.46) 

where 

F = K 
-M-'K -M-'C (2.47) 

^ 一 

- | o _ M-']p (2.48) 

(2.49) 

2.4 Sensing Model of the Piezoelectric Sensor 

From structural mechanics, the stress 7] at the mid plane of the bending piezoelectric 

element and its radius of curvature R are related by [15]: 

aE 
(2.50) 

where a is the distance from the mid plane of the piezoelectric element to the 

beam's neutral axis, as shown in Figure 2.3 

For small deflections, the radius of curvature can be approximated as: 

1 d^w 
(2.51) 

Hence, the stress can be expressed as: T = aE 
1 P dx^ 

20 



Chapter 2 一 Structural Modelinf^ and Formulation 

k̂  Mid plane ofPZT 

Beam neiitiRl axis / 

/ R 
/ 

/ 
Y 

Figure 2.3 Side view of beam under bending 

From the constitutive equation (2.5), the electrical charge generated due to 

mechanical deformation on the piezoelectric element per unit area is: 

Therefore, the total charge Q deposited on the piezoelectric element is: 

2 二 J ; Z V A = J；、々〜 
=五 一 p [冰 ，0 - , t)] (2.52) 

2.4.1 Strain Sensing Model 

Once the piezoelectric element is charged, it can be considered as a parallel plate 

capacitor. We adopt an electrical equivalent model proposed by Dosch et al. [5] as 

shown in Figure 2.4. Let C^ be the equivalent capacitance of the piezoelectric 

element and V̂  be the voltage source induced from the mechanical deformation. 

Thus using (2.52), the voltage induced across the piezoelectric element is found to be: 

Q E d^^ab 

^P = - ~ ~ - [ w J (2.53) 

Since the approximate transverse displacement of the structure takes the form: 

n 

i=\ 
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'I / II / 

n r / / 
钱 U , ) 仏 ( 0 

/=i L -

2 � 

Figure 2.4 Electrical equivalent model of a piezoelectric element 

Hence, 

E d dl) n � / / I 

Vp = 钱（义 2) — ( ^ i ) qi � ( 2 . 5 4 ) 

where x is defined as in (2.45) and 

J = [P" O j (2.55) 

From the structure of matrix J , the induced voltage is proportional to the 

generalized coordinate q，so the measurement of V̂  is equivalent to the strain 

sensing. The strain sensing can be realized by using the circuit as shown in Figure 

2.5 in which V； is an external (control) voltage applied to the structure and the output 

is defined as . Using Kirchhoff law, the output is found to be: 

(2.56) 
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_Beain model 

Ik I 旧 
6 

厂2 ^ 

Figure 2.5 Strain sensing circuit 

The effective voltage applied across the piezoelectric element is: 

" " 今 叙 - 击 乂 ^ ^ (2.57) 

Therefore, substituting (2.57) into (2.46), the overall dynamics of the composite 

beam with the self-sensing actuator is: 

/ � � 1r n 
义 = F GcJ ~ ^ G G, K (2 58) 

I J k + C i �叫 U J ( ) 

2.4.2 Strain Rate Sensing Model 

From (2.52), Q = E 

The current induced by the piezoelectric element is: 

dQ 

n r / / -

sEpduCibpY^ ( x , ) - ^ , (x ,)々人 t ) 二了X (2.59) 
/=i L -

where 

^ = (2.60) 
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From the structure of 7 , the induced current is proportional to the rate of change of 

the generalized coordinate q . Hence, the measurement of induced current is 

equivalent to strain rate sensing. The strain rate sensing is achieved by using the 

circuit as shown in Figure 2.6. Similarly, is the control voltage and the output is 

defined as V .̂ Using Kirchhoff law, the output is: 

f \ 
K (2.61) 

、乙CR J 

where Z^^ = is the resultant impedance of the series C^R^ configuration 

and is the Laplace variable. 
^dm jRi^ 1 厂 

Figure 2.6 Strain rate sensing circuit 

Since = 缺 + � ? :/ � (2.62) 

Let V, 二 and 77 = 

Then the output Vj can be expressed as: 

(2.63a) 

+ (2.63b) 
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Similar to the strain sensing circuit, the effective applied voltage is found to be: 

(2.64) 

Therefore, substituting (2.63) and (2.64) into (2.46), the overall dynamics of the 

combined mechanical structure to the strain rate sensing circuit is: 

0 - J v J l , 0 i / J 

In addition, for the frequency band of interest: 

C^R,s«l (2.66) 

such that the high pass RC circuit behaves close to a pure differentiator. The 

dynamics can be approximated as: 

i 二 (F — R f i j ) x + G 义 + GJ, (2.67a) 

Vi - + (2.67b) 

2.5 Model Validation 

The derived model of the composite structure is verified experimentally. In the 

experiment, there is no external voltage applied into the structure (V^ = 0 ). A 

hammer is used to hit near the fixed end of the beam. The tip displacement of the 

beam is recorded by a laser vibrometer (Polytec OFV-303). The applied force (input) 

and the measured displacement (output) were fed into a FFT analyzer (Ono-Sokki 

CF-3400) to generate the open loop frequency response of the structure. The 

parameters used in the simulation are listed in Table 2.1. The piezoelectric element 

used throughout this study is lead zirconium titanate (PZT). Both the simulation and 

experiment results are shown in Figure 2.7. 
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Table 2.1 System parameters 

Number of modes Location of Beam Young's PZT Young's 
modeled {n) disturbance acting modulus (E^) modulus ( £ ) 

^ ( � )8 [mm] 7 . 5 * 1 0 �[ N / m ' ] 6 . 2 ^ 0 " [N/m'l 
PZT constant (^Z,,) Beam length (L ) Beam density ( ) PZT density (p^J 
-175*10-12 [m/V] 0.34 [m] 2700 [kg/m^] 7600 

Location of PZT bonded (Xj, x^) Beam width ( b �) PZT width {b^) 
(17, 89.5) [mm] 25 [mm] 23 [mm] 

Rayleigh damping { a , P ) Beam thickness PZT thickness  
(0.62,0.9*10-6) ( r J 3 [ m m ] (r J 0.528 [mm] 

2。I ‘ ！ ！ 1 ！ 丨 , , , 

Simulation 
； ：•" Experiment -

0 — • • • • ； 

丨 : 敲 ： 爐 ： ： i l l ： 

： 丨 丨 丨 珊 丨 

务丨 j 丨 丨 W 
-70 I 1 i 1 i i I i i j  

0 50 100 150 200 250 300 350 400 450 500 
frequency [Hz] 

Figure 2.7 Comparison of open loop response 

The frequency response function of the derived model was compared with the actual 

structural response. It shows the model matches closely to the actual system. The 

results also indicate that the first resonant mode has the highest peak amplitude and 

the peak amplitudes decrease with increasing modes. 
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Chapter 3 

Control of Smart Structures 

This chapter will give an overview of some control techniques that are widely used 

in the self-sensing smart structures, including strain rate feedback control and 

positive position feedback control. The second part of this chapter will present an 

adaptive algorithm based on online estimation to compensate the time varying 

uncertainties of the piezoelectric structure. 

3.1 Strain Rate Feedback Control 

Generally, a vibrating structure can be modeled by a set of ordinary or partial 

differential equations. For a system described by PDE, some approximation 

techniques could be applied to convert it into an ODE system, for example, 

Rayleigh-Ritz method, assumed-modes method, and Galerkin method, etc. As a 

result, the dynamics of the structure is governed by a set of second order differential 

equations. In scalar case, the open loop of such a system can be written as: 

mx + cx + hc = b^u + b^d (3.1) 

where m is mass, c is damping, k is stiffness, b�and b^ are the control and 

disturbance input gains respectively. 

If the rate of change of state x is measurable, the proportional control law 

^ = (3.2) 

results in the following closed loop system: 

mx + {c-^b^g)x + kx = b^d (3.3) 
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If g is chosen such that b(.g is positive, the damping is increased. Further, The 

stability of the closed loop system is guaranteed by the condition: 

and k>Q (3.4) 

In the above discussion, only the structural dynamics is under consideration while 

those from sensors and actuators are neglected. As the control is generated based on 

the structural velocity, it is named as strain rate feedback control. 

The strain rate feedback control can be extended to structure with multiple degree-of-

freedom (DOF). Recalling the motion equation of the composite beam derived in 

chapter two: 

i = (F - R f i j ) x + G 义 + Gd fd (2.67a) 

+ (2.67b) 

where the circuit is shown in Figure 2.6, the output V̂  is the sum of the signals due 

to the structural velocity and the rate of change of the control input. A bridge circuit 

is introduced to separate the control input from the circuit output. Define the bridge 

circuit output as: 

(3.5) 

Referring to Figure 2.6，if the time constants of both arms of the bridge circuit are 

equal, i.e., C^R, = C^R, (3.6) 

V � = R j x = R ^ P i � i (3.7) 
i=i 

Here is the sensing voltage that depends on the structural velocity only. Base on 

this sensing voltage, strain rate feedback control can be applied and the control input 

is found to be: 

K = -BV^ = -BRjx = -BR.^P^q^ (3.8) 
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where B is a positive scalar feedback gain. The closed loop dynamics becomes: 

=>x = ( f - ( 1 + B)Rfij)x + GJ, (3.9) 

Obviously, the feedback gain can affect the pole location of the closed loop system. 

As long as the feedback gain is chosen such that all the eigenvalues of the matrix 

F -{l + B)Rfi J have negative real part, the closed loop system is asymptotically 

stable. 

The simple configuration of the strain rate feedback controller has the advantage of 

easy implementation, which makes it popular in self-sensing applications. The 

effectiveness of the strain rate feedback control will be demonstrated in the following 

simulations. 

Using the smart beam model derived in chapter two, an impulse disturbance near the 

free end is input to actuate the beam. The strain rate feedback controller (3.8) is 

applied to suppress the beam vibration. The bridge circuit and controller parameters 

are listed in Table 3.1. The open loop beam tip displacement is shown in Figure 3.1a 

while the sensing voltage is shown in Figure 3.1b. 

25r , , , , 

2 

3厂 . 
IS ! , , ：. 

I I 丨 I 丨 、！ 2 j [ 

_ | i：I 
: 1丨 _ 1丨 | |丨丨丨” ： : 1丨丨 "丨丨 "丨 " '’ 

•2 5' J . 
0 0 5 t IS 2 •> 5 、 —V« “ A ‘* ‘ 1 i  

_丄1 0 05 , ’， 2 25 ：> „ i 
t.melvec} 

Figure 3.1a Open loop tip displacement Figure 3.1b Open loop sensing voltage 

The closed loop tip displacement is shown in Figure 3.2a. It shows that there is a 

significant reduction in settling time. The 10% settling time is decreased from 3.9 to 
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1.2 sec. The sensing and actuating voltage are shown in Figure 3.2b and 3.2c 

respectively. The control voltage magnitude is less than 30V and the closed loop 

eigenvalues are -1002.8 土 7418.1i, -431.6 土 4643.9i, -19.5 土 2325.8i, -2.0 士 138.9i， 

and -8.0 土 859.3i. 

2.5| , , , , , ^  

‘ ll 

1 I ——_— I ^  
—�||l'l : : - .1 

•15 -2 I -

“ �� 5 ‘ 二 2 , … … ‘ 。 S 「 卞 丄 i 3� 

Figure 3.2a Closed loop tip displacement Figure 3.2b Closed loop sensing voltage 

Table 3.1 Bridge circuit and strain rate 
20 feedback controller parameters 

I ^r 52 nF ‘ 

•15 A 

3 ,__J R^ 10 
0 05 1 15 2 25 3 J5 4 二 

lime (sec) 

B 
Figure 3.2c Control voltage 

The strain rate feedback control can be considered as a special case of state feedback 

control. In the standard state feedback control, when the full state is measurable, the 

feedback gains can be individually assigned for each mode. On the other hand, strain 

rate feedback control directly amplifies the measured output by one feedback gain, 

i.e. unifying the feedback gains for all modes. In view of implementation, it is 

undesirable. Since the controller will also amplify the high frequency measurement 

noise. If the feedback gain is too large, the amplified noise will excite the high 

frequency dynamics of the structure. In addition, the strain rate sensing is based on 
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the high pass RC circuit. Noise amplification also decreases the signal to noise ratio 

of the sensing signal. To solve the high frequency gain problem, a low pass filter can 

be used to attenuate the high frequency signal from the sensor. This allows a higher 

feedback gain to be implemented to result in a better performance without exciting 

the high frequency dynamics. But this limits the controller to function at low 

frequency band only. Further, in order to achieve self-sensing actuation using strain 

rate feedback control, the frequency band of interest has to satisfy (2.66). But only 

the first resonant frequency of the smart beam satisfies this constrain, the self-sensing 

technique using strain rate feedback control can only be applied to suppress the first 

vibration mode of the structure. 

3.2 Positive Position Feedback Control 

Recalling the scalar vibrating system: 

/V 

mx + cx-\-hc = h^u + b^d 

y = hx 

where ；y is a measurable output. 

When the structure is connected to an auxiliary system described by: 

^f =kfgy (3.10a) 

u 二 Xf (3.10b) 

where c” k, and g are damping, stiffness and input gain of the auxiliary system. 

The closed loop system becomes: 

「丄 o l r ^ c i � 1 � & / 
V + + + m m Y 二 m (3.11) 

L"^-,�0 c了 1 3 " �一 k f g h kf 0 
L 」 L. •‘ J J L 一 
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It is asymptotical ly stable il、and only if all the eigenvalues of the matrix: 

0 0 丨 （）’ 

0 0 0 1 
, / , / / ^ have negative real part (3.12) -kjin hjm -c+m 0 ‘ , 

k f gli - k f. 0 — c j. 

By choosing a positive damping coefficient and spring constant of the auxiliary 

system, the controller gain can be determined according to (3.12). As the controller 

(auxiliary system) uses the measured position signal to generate the control and feed 

back to the structure positively, it is named as positive position feedback control. 

When the smart beam structure is integrated with the self-sensing circuit as shown in 

Figure 2.5, in term of state variable, the motion equation takes the form: 

f � � 1r "1 
小 ; T ^ G r G d � (2.58) 

V 卞 L 1 �LJrf_ 

Using the following substitutions: 

MPi ... P,J (3.13) 

L = … K J (3.14) 

The equivalent motion equation, in term of generalized coordinate, can be expressed 

as: 

f T \ 

q + M-'Cq + M-' K - - — q = - ‘ M‘‘PV^ + M L f , (3.15a) 

V C p + C i J S 

+ （3.15b) 

Similar to the strain rate configuration, the output of the strain sensing contains a 

direct transmission from the control input. A bridge circuit is used to cancel the 

influence of the control from the output. When the reference capacitance in the 

bridge circuit is equal to the equivalent capacitance of the PZT patch, 
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(3.16) 

and the output of the bridge circuit is defined as: V̂’ = - V2, hence, 

1 pT 
V^ = Jx 二 q (3.17) 

Therefore, the sensing output is only proportional to the strain of the structure. 

A positive position feedback controller described by: 

•义 c + DcX, + KcXc = KcGVs (3.18a) 

K = huno^c (3.18b) 

is used to suppress the vibration of the structure. Where nc is the number of 

structural modes to be suppressed, which is smaller than or equal to the number of 

modeled structural modes. /(!縦）denotes a unity row vector of nc column and G is 

a n^ x l gain vector. The damping and stiffness matrices of the controller are chosen 

to be diagonal with positive elements. Hence, the closed loop system becomes: 

[ m - ' C 0 T ^ I 
3c, 0 D^ i , 

」 L L J I— L 一 

KcGP丁 ^ xc - 0 (3.19) 
K ^ � 

Since the structural mass and stiffness matrices can be diagonalized by modal 

transformation, the combined damping matrix can be considered as diagonal with 

positive elements (positive definite). Hence, the stability of the closed loop system 

depends on the controller gain vector G and controller stiffness matrix K�. 

The performance of the positive position feedback controller (PPF) is verified by 

simulation. The smart beam is modeled up to the first five vibration modes and a PPF 
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controller is designed to suppress the first three modes of vibration. The bridge and 

controller parameters are listed in Table 3.2. 

The open loop responses of the tip displacement and sensing voltage are shown in 

Figure 3.3a and 3.3b. When comparing to the open loop strain rate sensing, the tip 

displacement of strain sensing decays slower. It can be explained by the energy-

dissipating element of the strain rate sensing circuit. Since the resistor dissipates part 

of the induced electric energy, it provides an additional damping effect on the overall 

structure. 

‘ i i ‘ . > 8 , , , , ^ , , 

J j 

i:lln|| l i i i 
！.�:y|| III 丨!l 丨 
-15 j I • _ 丨丨 i I j: 
-2 . -6 I 

Figure 3.3a Open loop tip displacement Figure 3.3b Open loop sensing voltage 

The closed loop performances are shown in Figure 3.4. The 10% settling time of the 

vibration amplitude decreases from 6.5 to 1.2 sec. The maximum control voltage is 

about 80V, which is lager than that of the strain rate feedback controller. 

’：丨 1 � 
！ ！, 

‘I “ ‘ i'l 
fo. M!| 丨， 

卜̂^ ： li： -

- ‘ i!丨 j 
.:L_ . - ^ I 
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:»<cl CS t 15 ？ 3 15 t 

Figure 3.4a Closed loop tip displacement Figure 3.4b Closed loop sensing voltage 
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m , , Table 3.2 Bridge circuit and PPF 
controller parameters 

1： j|. ^ ~ 52 nF 

I � — — 一 … — — — — Cr 52 nF 
H _ i … 一 ~ ~ C 52 nF 

-40 Ii I [ ' . [ 

J I Dc diag (45.9，670, 1809) 

:t̂ ,̂̂ ,___,___: - ： . I F diag (153^ 11172, 30162) 
0 0 5 1 1.5 2 2 5 3 3 5 4 C 。\ 7 7 / 

time (sec) •-• • • 丨_ _ -

G [3 3 2 f 
Figure 3.4c Control voltage 

In view of filtering property, positive position feedback controller can be regarded as 

a set of low pass filters connected in parallel. Unlike strain rate feedback control, the 

roll off property of PPF has the advantage of guaranteed performance without 

exciting the high frequency dynamics. Therefore, PPF control can be applied to 

suppress higher vibration modes. The PPF controller design is based on the structural 

resonant frequencies and can be carried out without knowing the structural damping. 

In contrast to state feedback design in which both structural stiffness and damping 

have to be precisely known, the PPF controller offers a more flexible design. 

However, it is lacking of systematic method to design PPF controller parameters. 

Although some optimization techniques had been proposed to yield maximum closed 

loop damping, those approaches attempt to tune a single PPF controller only. In the 

above simulation, the controller damping ratios are chosen from 0.01 to 0,3 and the 

natural frequencies are 1 to 1.3 times greater than the corresponding structural 

natural frequencies. 
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3.3 Unbalanced Bridge Effect on Closed Loop Stability 

To successfully implement self-sensing actuation using strain rate or positive 

position feedback control, the bridge circuit has to satisfy the balancing condition 

(3.6) (or (3.16)). In either case, this can be achieved if the equivalent capacitance of 

the PZT patch is exactly known. Since it has been reported [23] that the PZT 

capacitance varies with the ambience, using a fixed reference capacitor in the bridge 

circuit could not completely remove the direct transmission of control from the 

sensing output. In this section, the problem of an unbalanced bridge to the closed 

loop stability will be formulated. 

Consider the strain rate sensing circuit with an unbalanced bridge and let 

(3.20) 

Since the outputs of the two arms are: 

= RJX + and = C.R^V^ 

the bridge output is: V�. ^Vj -V^ = R^Jx-hcry^ (3.21) 

Using strain rate feedback, the control voltage is found to be: 

K :-BRjx-a风 (3.22) 

The closed loop system becomes: 

「； n � F -尺 i G j G, 1r n � � . n 

r —M —丄 V + 0 (3.23) 

L d L CTr c r , � L (’」！_。」 

Since the feedback gain B is positive, the closed loop system is stable if and only if 
~F-R,Gj Gc _ 

a厂 2 0 and the eigenvalues of — R ^ have negative real part ( 3 . 2 4 ) 

_ � ⑶ 

Obviously, the system becomes unstable when cr̂  < 0 . This instability only depends 

on the bridge parameters and it shows the system has poor robustness with respect to 
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the bridge balancing. Further, it is impractical to exactly cancel the control from the 

bridge output. When the bridge is exactly balanced, a tiny decrement of the PZT 

capacitance immediately destabilizes the closed loop system. In the implementation, 

it always uses a promising capacitor to ensure cr̂  > 0 . 

Consider the unbalanced strain sensing circuit and let 

。 务 知 。 （3.25) 

Hence, the output of the bridge circuit is: 

丁 

K = [ 伙 (3.26) 

Similar to the unbalanced strain rate sensing, the sensor output is corrupted with the 

control. Positive position feedback is applied to yield the closed loop system as: 

�n � 1 W i K - - ^ ] CiM-�—) ~ 
' ' + L � r . i j o j 
Xc 0 Dc X̂  KfGpT NX 0 

小 G/(一 a , . ) L c � L � 

The effect of the unbalanced bridge circuit appears in the lower right partition of the 

combined stiffness matrix. The system remains stable as long as all the closed loop 

eigenvalues have negative real part. The overall stability depends on the controller 

parameters, K^ and gain vector G , as well as the bridge parameter C”. Specifically, 

consider the scalar system of the controller dynamics: 

•义c + DcK Go-s k = 二 。 G P q (3.28) 
�p + Ci 

When q is bound (assuming bound disturbance), the controller states are bound if 

and only if 

^c > 0 and cr, < G'' (3.29) 
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It shows a tradeoff between the controller gain to the mismatch parameters. A high 

gain decreases the system robustness to the unbalanced bridge. This stability 

constraint differs from that of the strain rate sensing in the sense that complete 

cancellation of control is practical and the system remains stable for a little variation 

of the PZT capacitance. 

The characteristics of the strain rate feedback and PPF control are summarized in 

Table 3.3. 

Table 3.3 Comparison of strain rate feedback and PPF control 

Advantages Disadvantages  
• Easy implementation • Application limited to low 

Stain Rate • Additional damping frequency band 
Feedback effect from RC circuit • Highly sensitive to 

unbalanced bridge  
• Wider frequency band • Lack of systematic method 

Positive application to determine controller 
Position • Inherent robustness to parameters. 

Feedback unbalanced bridge  
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3.4 Self-Compensation of Capacitance Variation 

Since the bridge-balancing problem is critical to self-sensing actuation, an adaptive 

scheme is proposed to compensate for the capacitance uncertainty. As shown in last 

section that the strain rate sensing has high sensitivity to unbalanced bridge and the 

limitation on the frequency band of application, in order to suppress higher structural 

vibration modes, the adaptation scheme is combined with the positive position 

feedback controller which uses compensated strain signal. The adaptive mechanism 

is driven by an online estimator in which signals from a modified bridge circuit are 

used to identify the balancing condition. 

Consider the circuit shown in Figure 3.5 and let 

告 （3.31) 

Instead of choosing a reference capacitor to balance the bridge, an adaptable gain is 

introduced and replaces the second arm of the bridge circuit. Let 6 be an estimate of 

e. 

When there is no mechanical vibration, i.e. , 

C 八 

= : M； 二彻 and (3.32) 
L p + 

Hence, the bridge is balanced when 

(3.33) 

When the bridge loses balance, define the estimation error as: 

^ = (3.34) 
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Figure 3.5 Modified bridge circuit 

Therefore, the bridge-balancing problem is equivalent to design a gain adaptation to 

drive the estimation error to zero. 

Define a cost function as: 

(3.35) 

The cost function S{0) can be considered as a weighted sum of the estimation error 

of the past data. The parameter a determines the weight of the data at a specific time 

instant. In order to increase the estimation accuracy during the capacitance variation, 

the most recent data are assigned the highest weight to reflect the importance of the 

current estimation error. On the other hand, those old data are assigned a lower 

weight and thus being forgetting by the cost function. The forgetting property is 

motivated by the fact that those old data are generated by old parameters and thus 

they should be discounted. Therefore, this technique is very effective in dealing with 

the estimation of varying parameters. 

The cost function is minimized with respect to the estimated parameter. Hence, 

differentiating both sides of (3.35) with respect to 6 and set the derivative to zero 

yields: 

A 

^ ^ = 0 2[广('-”(厂1 (r) - w{r)6){-w{T))dT = 0 
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=> j y V i � w � 4 (3.36) 
•0 Jb 

Since the minimization has the effect of fitting all past data, it also has the advantage 

of averaging out the measurement noise over time. 

Taking time derivative on both sides of (3.36) yields: 

• � —I 
[e""'(W{T)YdT +树广(w(0)2 

e = w(rMO� ly""—” {w{T)fdT \ 1 
•0 

^ 一 

Define T(t)= ( 卜 ” ( w � ! (3.37) 
^ 一 

Hence, the parameter update law is found to be: 

^ = w(t)e(t)T(t) (3.38) 

T(0 has the physical meaning of amplifying the parameter adaptation and it is 

known as the adaptation gain. In order to achieve computational efficiency, instead 

of evaluating the adaptation gain by integrating (3.37) at every time instant, taking 

time derivative on both sides of (3.37) gives: 

= 仆 - 一 ) ( w ⑴叫—1 - ( w ( 0 ) 2 [ | 产 , ⑴ 叫 ― 2 

= QT(t)-[w(t)T(t)f (3.39) 

Hence, the adaptation gain T(t) can be recursively computed using (3.39). 

The dynamics of the estimator is governed by (3.38) and (3.39). To analyze the 

condition for parameter convergence, define the parameter error as: 

召二 谷 ( 3 . 4 0 ) 
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and consider the time derivative of the product : 

d I 1 7 • � 厂 二 
—IT - = -T'^TO + {d — 6) 

二 —r-2 {6^(0 - [w{t)T{t)f ^-T'' w{t)e{t)T{t) 

Integration both sides yields: 

6{t) = T(t)T-\0)6{0)e'^ (3.41) 

In the above analysis, it is assumed that the rate of the parameter variation is 

negligible such that 6 = Hence, the parameter error 0 converges to zero provided 

that the adaptation gain T is upper bounded. It shows that the training signal plays 

an important role in the estimation. 

Besides the upper bounded condition on T , it should be noted that there is no 

disturbance acting and control applying in the above analysis (Vp=V^=0) . The 

estimation is used to identify the open loop variation of 0 only. For closed loop 

application, the bridge's first arm is no longer driven by training signal only. In 

addition, control signal and signal from structural deformation (result from 

disturbance) also appear at the first arm. Yet the self-compensation technique can be 

extended its application to closed loop system by using filters and choosing an 

appropriate training signal. For the vibration suppression problem, it assumes that the 

composite beam is generally subjected to low or mid frequency excitation 

(disturbance). Filter is designed based on the frequency band of application. 

Specifically, for the smart beam system, a pair of band pass filters is used to generate 

the signals for the estimator. The filters pass band is 1000-1100 Hz, which lies 

between the forth and fifth resonant modes of the beam structure. A low power band 

limited random signal is used as training signal. Hence, those low frequency signals, 
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the induced signal due to deformation and the control signal, will be filtered and left 

only the training signal input to the estimator. In implementation, the level of the 

random signal is chosen as low as possible but higher than the background 

measurement noise to obtain a satisfactory estimation. 

The effectiveness of the estimator combined with a PPF controller for closed loop 

application will be verified through simulations. Figure 3.6 shows the detailed 

configuration of the combined design. The conventional bridge circuit is replaced by 

an estimator having the capability of self-balancing the bridge while concurrent 

control input is applied to suppress the beam vibration. 

^__ PPF I V, n + 
I controller、 M 

disturbance 
, ， 

I Beam model 

H — H h 
Adaptable P � 

“ 即 in • 

〉Band pass Exponential iBaiid passL 
filto forgeltiiig eshiiiaror filter 

Figure 3.6 Combined adaptive design for closed loop application 

In the simulation, the PZT capacitance is modeled as: 

1- 仏哪(1 + 0.5 sin(0.05r)) 

2. + 严 ） 

where C � "d e n o t e s the nominal value of PZT capacitance. 

The parameters of the initial estimated gain, initial adaptation gain, forgetting factor 

and the value of Q are listed as follows: 
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Simulation 1 
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Figure 3.7d Sensing voltage Figure 3.7e Control voltage 

In the simulation, the beam is initially subjected to an impulse disturbance. Figure 

3.6a shows that the estimated gain can track closely to the true gain variation. The 

sharp initial convergence is due to the selection of a high initial adaptation gain. 

Figure 3.7b shows the adaptation gain is upper bound and this guarantees the 

convergence of the estimated parameter to the true value. The performance of the 
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combined design is illustrated in Figure3.6c. It shows that the PPF controller can 

suppress the vibration during the parameter estimation. 
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The second simulation results are shown in Figure 3.7. Basically, the convergence of 

the estimated gain is verified as the previous simulation. In this case, the high initial 

adaptation gain results an overshoot of the estimated parameter. But in the second 

simulation, the performance of the controller seemed to be better while the same 

controller is used in both simulations. This can be explained by the initial condition 
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of the bridge circuit. In the first case, (9(0) = o•�’ < 0. From (3.28), this is equivalent 

to increase the controller stiffness (or decreasing the effective gain of the controller). 

So the controller performance worse than the case of balanced bridge. On the other 

hand, for the second case, (9(0) = cr�’ > 0 . The effective gain of the controller is 

increased provided that 尤 — 孤is positive definite. Hence the controller 

appears to outperform the first case. It also indicates the implication of the bridge 

condition to the controller performance. 
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Chapter 4 

Experimental Studies 

In this chapter, the self-sensing control combined with adaptive compensation is 

implemented for the smart cantilever beam. The performance of the closed loop 

system will be evaluated under the conditions of changing bridge parameter and 

temperature. Also the performance of the system with and without adaptive 

compensation would be compared. 

4.1 Experiment Setup 

— ~ ~ ^ ^ ^ P o w e r 

\ r — ! \ 1 
I / I - U a ^ j B n i K l p n s d |Baiidpass-| J , 

J 1 1 n filter filter f ' 

Z / I 山 丄 I I 
j I Exponential | 

J I foi£;ettiiig estimator • 

^ _ l i y + : / _ _ _ I 
广 I A^- Adaptable ^ Training I 

i saiii ^ siMl 狄 • J 2 ^ 
I ^ P P F V , X  
I 乡 controller >pM-U-J 
I 1 

DSP 
Figure 4.1 Experiment Setup 

The complete configuration of the system is shown in Figure 4.1. The composite 

beam is connected to an external circuit. The circuit outputs a strain signal, which is 

due to the mechanical deformation of the structure, mixed with the control input. 

Both the control input and the signal from the external circuit are discretized by an 
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A/D converter and fed into a digital computer. The two signals are filtered and input 

to the estimator. Concurrently, the strain signal is extracted from the total response 

(Vi) using the estimated parameter {§). The compensated strain signal is used to 

generate control input via the positive position feedback controller. The designed 

control input is summed with a low power training signal, which is used for 

parameter estimation, and converted into continuous time signal and then amplified 

by an external amplifier. 

The bridge circuit, filters, estimator, training signal and control law implementations 

are all realized with a digital signal processor (DSP) as shown in the dashed box of 

Figure 4.1. They are programmed by Matlab / Simulink and downloaded into the 

DSP (dSPACE DSP 1102) through the supporting software. A band limited random 

signal is used as training signal. The A/D and D/A converters are sampled at 2.5 kHz. 

The filters are designed in discrete time domain while the controller are designed in 

continuous time domain and then discretized using Tustin's method: 

I L T T T ^ J (4.1) 

where T is the sampling period of the controller. 

The discretized controller and all other digital components realized in the DSP are 

sampled with the same frequency of the A/D and D/A converters. 

4.2 Experiment Results 

4.2.1 Open Loop Response 

A disturbance is input near the tip of the beam to excite the structure. A laser 

vibrometer is used to measure the tip displacement and the sensing voltage is 

recorded by computer. The results are presented in Figure 4.2a and 4.2b. 
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Figure 4.2a Open loop tip displacement Figure 4.2b Open loop sensing voltage 

4.2.2 Closed Loop Response with Balanced Bridge 

In this experiment, positive position feedback control is applied to suppress the beam 

vibration. The PZT equivalent capacitance C" has a nominal value 52nF at room 
temperature. The capacitor Q in the external circuit is chosen to have the same value 

C 
such that the bridge can be balanced by a fixed gain: § = 已 = 0 5 

This configuration is equivalent to the conventional bridge circuit. The beam is 

excited by an impulse disturbance near the free end and the closed loop response is 

shown in Figure 4.3. The performance of the PPF controller can be recognized in the 

reduction of the settling time. 
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Figure 4.3a Closed loop tip displacement Figure 4.3b Closed loop sensing voltage 

(balanced bridge with fixed gain) (balanced bridge with fixed gain) 
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Figure 4.3c Closed loop control voltage 

(balanced bridge with fixed gain) 

The same experiment is conducted with the fixed gain replaced by the adaptive 

compensation. An initial gain value ^(0) = 0.5 is assigned to the estimator. The 

performance of the PPF controller combining the adaptive compensation is shown in 

Figure 4.4. Comparing to the previous experiment in which fixed gain is used, results 

show that there is slightly reduction in settling time from about 1 sec to 0.7 sec. It 

may be due to a tiny deviation of the real PZT capacitance from its nominal value 

and cause a slightly unbalanced effect. 
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Figure 4.4a Closed loop tip displacement Figure 4.4b Closed loop sensing voltage 

(with self compensation) (with self compensation) 
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Figure 4.4c Closed loop control voltage 

(with self compensation) 

4.2.3 Closed Loop Response with Unbalanced Bridge 

In this experiment, the capacitor Q is chosen to be 65nF while the fixed gain 

S = 0.5 is kept unchanged so that the bridge is intended to be unbalanced. This is 

equivalent to a 20% decrement of the PZT capacitance. The performance of the 

closed loop system is shown in Figure 4.5. The vibration amplitude decays slower 

than the ideal case in which the bridge is balanced. 
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Figure 4.5c Closed loop control voltage 

(with unbalanced bridge) 

The results can be explained by the corrupted sensing signal. From the bridge 

parameter, =-0.056 (from (3.25)), hence the sensing signal is weakened by the 

control input. But it is worth noting that the closed loop system is still stable. This 

verifies both the degradation of performance and the inherent robustness of the strain 

sensing circuit with respect to slightly unbalanced bridge. 

The same value of C, (65nF) is used and the adaptive compensation, with an initial 

gain 吞(0) = 0.5, is applied instead of using a fixed gain. The results are shown in 

Figure 4.6. The effectiveness of the adaptive compensation is verified. From Figure 

4.6a, the tip displacement decays much faster than the results in section 4,2.2 in 

which Q = 52nF. 
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Figure 4.6a Closed loop tip displacement Figure 4.6b Closed loop sensing voltage 

(with self compensation) (with self compensation) 
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(with self compensation) 

The performance improvement is due to the increase of effective gain of the 

controller results from the increase of Q • Hence the performance of the combined 

design is experimentally verified and the results show that the closed loop 

performance is guaranteed when the bridge is slightly unbalanced. 

4.2.4 Closed Loop Response upon Sudden Change in Bridge Parameter 

In this section, experiments were conducted by suddenly changing the bridge 

parameter of the closed loop system under the disturbance free condition {V^ = 0 ) . 

Consider the circuit as shown in Figure 4.7, an additional capacitor C^ is used to 

change the equivalent parameter of the bridge by closing the switch. 

Beam model „ 
I 1 n 厂 — — 

I 1 ^ 

l A d a p t a b l e l  
g a i n ° 

() 

Figure 4.7 Circuit for changing bridge parameter 
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In the experiment, C^ = 25nF, Q = 52nF and the gain is fixed at 0.5. This 

configuration is equivalent to 35% decrement of the nominal PZT capacitance. The 

results of the sensing and control voltage are shown in Figure 4.8. 

：卜 
--ol 」 ： 

[se:] .’ 4 . 1 [丄丨 3 4 
Figure 4.8a Sensing voltage Figure 4.8b Control voltage 

Since the system is disturbance free, initially both sensing and control voltages are 

nearly zero (but corrupted with measurement noise). When the switch is closed, the 

bridge is unbalanced and both signals gradually diverge. 

The same experiment is conducted with the fixed gain replaced by the adaptive 

compensation. The results are shown in Figure 4.9. It appears that the sensing and 

control signals are kept near zero. In addition, the estimated gain is plotted versus 

time in Figure 4.9c. This shows the capability of the adaptive compensation to drive 

the estimated parameter to the true value after the switch is closed. It should be 

pointed out that the non-zero level of the sensing and control signals is the sum of the 

measurement noise and the training signal used by the estimator. 
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Figure 4.9c Gain adaptation 

If the value of is further increased to 50nF, which is equivalent to 49% change of 

the PZT capacitance, the results of using fixed gain and adaptive compensation are 

shown in Figure 4.10 and 4.11, respectively. For the case of fixed gain compensation, 

the sensing and control signals diverge rapidly after closing the switch. This 

experiment illustrates the result of violating the stability condition staled in (3.30). 

Theoretically, Both signals would be unbounded. However, the output saturation of 

the DSP and the op-amp of the interface circuit limit the magnitude of the control 

voltage. As shown in Figure 4.10b, the saturation is about 70V. Hence, the sensing 

and control signals appear fluctuation within the saturation limits. 
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Figure 4.10a Sensing voltage Figure 4.10b Control voltage 

The result of adaptive compensation is presented in Figure 4.11. As shown in Figure 

4.1 la and l i b , there is a beat after the switch is closed. Simultaneously, from Figure 

4.1 Ic’ the estimated gain converges to a new value to compensate for the parameter 

changc. 
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Figure 4.1 Ic Gain adaptation 
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In last experiment, it appears unrealistic to consider about 50% change in PZT 

capacitance, yet it should be emphasized that the system is disturbance free. The 

closed loop system using fixed gain compensation would be more likely to become 

unstable with a smaller capacitance variation. Hence, it is worth testing the capability 

of the adaptive compensation upon such amount of uncertainty. 

4.2.5 Closed Loop Response upon Temperature Variation 

In this experiment, the adaptive scheme is tested under temperature variation. As it 

has been reported that the PZT capacitance is related to the ambient temperature, in 

contrast to those experiments conducted by changing the bridge parameter, this 

experiment provide a realistic variation of the actual PZT capacitance. 

In the experiment, the adaptive scheme and the controller are set active. Concurrently, 

hot air was blown onto the PZT patch. The surface temperature of the PZT patch is 

recorded by a laser thermometer (MINOLTA). Figure 4.12a shows the steady state of 

the estimated gain, which is about 0.45. The capacitor Ĉ  is chosen to be 52nF. 

Hence the calculated value of PZT capacitance is 42.5nF. Figure 4.12b shows the 

surface temperature variation of the PZT patch when the hot air is being blown onto 

the patch. 

1 

1 
I 
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1 

0 
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Figure 4.12a Steady state of the estimated gain 
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Figure 4.12c Gain adaptation during heating 

The estimated gain during heating is shown in Figure 4.12c. It shows that the 

estimated gain gradually increases from its old steady state to a new value. It verifies 

that the adaptive scheme is responsive to the temperature variation. The new 

estimated value is about 0.51 and the percentage change of the PZT capacitance is 

about 27%. 

4.2.6 Frequency Response 

In this experiment, a hammer is used to hit near the fixed end of the beam to excite 

the vibration. The input force and the tip displacement are used to generate the 

frequency response. The closed loop and the open loop response of the system are 

compared. The first, second and third modes of the frequency response are shown in 

Figure 4.13a, b and c respectively. The results indicate that the PPF controller has the 
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highest vibration suppression capability at the first mode. The first mode peak 

magnitude approximately decreases 20dB. 
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Figure 4.13a Frequency response 一 mode Figure 4.13b Frequency response 一 mode 
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Figure 4.13c Frequency response - mode 

The PPF controller has a relatively weaker vibration suppression effect at the second 

and third mode. The peak magnitude of second mode decreases about 6dB and the 

third mode decreases about lOdB. Since the damping effect of the controller depends 

on the location of the PZT bonded, as the PZT is bonded near the fixed end and the 

first mode has a relative larger strain there, the controller has a lager damping effect 

for the first mode and weaker for the others. 

A simulation study on the open loop and closed loop frequency response is shown in 

Figure 4.14. It verifies that the controller has the highest vibration suppression 
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capability for the first mode. The damping ratios for both experiment and simulation 

closed loop and open loop systems are listed in Table 4.1. 
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Figure 4.14 Simulation of open and closed loop frequency response 

Table 4.1 Damping ratio of experiments and simulations 

First mode Second mode Third mode 
Experiments Open loop 0.59 % ~ 0.11% — 0.16 % 

Closed loop 5.96 % 0.20 % 0.41 % 
Simulations Open loop 0.49 % — 0.13 % 0.16%  

Closed loop 4.88 % 0.18 % 0.29 % 
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Chapter 5 

Summary 

5.1 Conclusion 

In this thesis, a study on the structural vibration control using self-sensing 

piezoelectric actuators is presented. The findings of this thesis are summarized as 

below: 

• Modeling. The dynamic modeling of a smart beam structure with a surface 

bonded piezoelectric element undergoing transverse vibration is derived 

using Hamilton's principle. Owning to the continuous nature, its equation of 

motion is approximated to a standard state space representation using 

Galerkin's method. An external circuit for both senor and actuator functions 

is integrated to the piezo-based structure to yield an electromechanical system. 

The overall system is validated by experiments and the results show the 

derived model matches closely to the actual system. It should be noted that 

the mechanical properties of the structural system, the mass, damping and 

stiffness 

matrices, could be determined trom a simpler frecjuency response 

approach. Particularly the Rayleigh damping is usually determined from 

experiment. However, as the present of the varying piczoelcclric capacitance 

and the feed forward dynamics, it is insufficient to evaluate the structural 

input and output matrices using frequency approach. 

• C o n t r o l l e r d e s i g n . Two controllers are designed using strain rate feedback 

and positive position feedback control. The effectiveness of both controHers 
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is verified through simulations. The effect of unbalanced bridge to close loop 

stability is formulated and it has been found that the strain sensing circuit has 

certain degree of robustness with respect to unbalanced bridge while the poor 

robustness of strain rate sensing has been proved. An adaptive compensation 

is proposed by combining the strain sensing circuit with the PPF controller 

for closed loop applications. The effectiveness of the combined design is 

verified through simulations and the results show the capability of concurrent 

self-compensation and vibration suppression. 

• Implementation. The combined design is implemented to the smart beam 

structure via a digital signal processor. Several experiments are conducted to 

test the combined adaptive compensation for closed loop applications. 

Experiment results show that the adaptive design can self-tune the bridge 

circuit to maintain the balanced condition. The performances of the system by 

using fixed compensation and adaptive compensation are compared and it has 

been found that self-compensation keeps the high performance under an 

unbalanced bridge. Further, the self-compensation is tested under temperature 

variation and experiment results show the capability of the adaptive 

mechanism to respond under a realistic capacitance variation. 

5.2 Future Work 

Finally, some possible extensions of the current study are suggested in the following: 

• Because of the fixed structural configuration, the designed controller is found 

to have higher vibration suppression capability for some particular modes 

than others. Thus it is worth analyzing the parameters such as size and 

location of the PZT bonded to optimize the controller performance. Further, 
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for complex structures like truss structures in which multiple self-sensing 

actuators are required, the current study could be extended to investigate the 

problem of controlling large complex structures using distributed self-sensing 

actuators and decentralized controllers. 

• The passive vibration control of the piezo-based structure has been 

extensively studied recently. Also, as pointed out in this thesis, circuit 

elements would provide additional damping effect to the overall structure. 

Hence, in addition to actively suppress the vibration using the designed 

controller, a well-designed shunt circuit could be integrated, in which acts as 

an energy absorber to dissipate part of the energies, to yield an active-passive 

hybrid vibration controller. 

• As hystersis nonlinearity of piezoelectricity become significant with large 

applied electric field, only low power application is considered in this thesis. 

In order to extend the current work to more high performance applications, 

further research on nonlinear piezoelectric models and nonlinear control 

methods should be explored. 
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