
A Study of two Problems in Data Mining -
Projective Clustering and Multiple Tables

Association Rules Mining

Ng Ka Ka

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science k Engineering

©The Chinese University of Hong Kong

August, 2002

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or the whole of the materials in this thesis

in a proposed publication must seek copyright release from the Dean of the

Graduate School.

A Study of two Problems in Data
Mining 一 Projective Clustering and
Multiple Tables Association Rules

Mining
submitted by

Ng Ka Ka

for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract

With a large data pool, data mining techniques become essential in uncover-

ing the implicit and potentially useful high-level knowledge hidden in the data,

which is previously unknown to the users. Both the effectiveness and efficiency

of these data mining techniques are crucial, since users are expecting to have

accurate mining results within a reasonable time. In this thesis, we study

two problems and related techniques in data mining, namely projected clus-

tering, and multiple tables association rules mining. We also propose various

algorithms to tackle the problems, and verify the results with experiments.

Clustering has been studied in statistical and database research for a long

time. This technique is useful in getting insight into the distribution of a data

set. However, traditional clustering techniques are not suitable to be applied to

data with high dimensionality. We study the causes of this so called "curse of

dimensionality" phenomenon. With high dimensional data, it is observed that

natural clusters seldom exist in the full dimensional space. Instead, different

natural clusters exist in different subspaces, formed by a set of correlated

dimensions with respect to each cluster. Discovering the correlated dimensions

ii

s
i
r
m
f
t
s
 i
f
i
i
-
i
-
u
l
p

一

•

顯

 m割
---1,--
 i
r
r

 i
n
 二
「i
j
-

„
 -，：..

 —：.：：in

 .

 —

中

一

體
 n
n

 j
i

_

as well as the location of clusters is known as the projective clustering problem.

We propose a new algorithm EPC (Efficient Projective Clustering) to de-

tect clusters when the data of high dimensionality is projected to different

subspaces (formed by sets of correlated dimensions). This algorithm uses a

1-d histogram to model data densities when the objects are projected to each

dimension. Compared to the best previous method to our knowledge, EPC

has the following advantages: (1) It does not require the input of the number

of natural clusters, and the average cardinality of the subspaces. (2) It can

discover clusters of irregular shapes. (3) From our experimental results, it pro-

duces better clustering quality. (4) It is scalable to a very large database, and

faster than previous method.

We further extent and generalize EPC to develop a framework which makes

use of multidimensional histogram. In particular, we implement EPC2, an

enhanced version of EPC to model data distributions by 2-d histograms. Ex-

periments show that EPC2 produces better clustering result than EPC in data

sets, in which projections of data objects are distributed along directions not

parallel to original axes. The trade-off is the increases in time and space com-

plexity.

Association rules mining is useful in planning for marketing programs and

strategies. Various efficient mining algorithms for association rules have been

proposed. However, most of them are based on a single table in market-basket

database, in which a record typically consists of different items purchased in a

transaction. In relational database, data can be stored in multiple Dimension

Tables related by a Fact Table in star schema. Data need not to be in binary

representation (which is assumed in market-basket database, an item whether

purchased or not in a transaction) in these Dimension Tables, and previous

approaches cannot be applied in these multiple-table scenario.

One straightforward approach is to join the Dimension Tables globally into

a single large table before performing the mining. However, multi-fold increase

iii

in both size and dimensionality in this large table presents a huge overhead to

the already expensive frequent itemset mining step. Therefore, we propose a

”mining-then-joining” approach, which applies various techniques to combine

results obtained from mining the rules individually from each tables locally.

From our experimental results, this approach produces the same result with

much less computational time.

iv

有關數據採掘的兩項硏究：尋找投影叢集的方法，及於多個數據表中尋找關聯規則

作者：吳家嘉

修讀學位：哲學碩士

香港中文大學計算機科學及工程學部

論文摘要

數據採掘技術是用於發現隱含於大量數據當中的高階知識。所採掘的知識存有應

用價値，並於被採掘前不爲用者所知道。效用及效率是這些數據採掘技術的關鍵，

用i期望這些技術可以合理之時間內找出準確的解答。在這論文中，我們硏究兩項

數據採掘中的有關技術-尋找投影叢集的方法，及於多個數據表中尋找關聯規

則°我們並提出多個計算法’以及利用實驗去驗證這些計算法得出的解答是否準

確。

尋找叢集這個問題已於統計學及數據庫處理兩個範籌中硏究已久°這種技術多用於

洞察數據的分佈特性。但傳統之尋找叢集技巧往往不適用於高—數據。我們硏究

這種被稱爲”高維度之災害” (curse of dimensionality)的現象。於高維度數據中，我

們察覺到叢集極少出現於全維度空間。相對地’不同之叢集會出現於不同的子空

間，而不同的子空間是由不同組合而有相互關系的次元所組成。投影¥集問題就是

去發現這些由不同組合而有相互關係的次元組成的子空間，及存在於這些子空間中

的叢集。

我們提出一項新的算法，名爲EPC，去探出這些由高維度數據投影於不同子空間

而影成的叢集0這新算法採用一次元柱狀圖去表現當數據投影於不同次元後的分佈

特性。與我們所知中以往最佳的算法去比較，EPC有以下之優勝處:1.這算法不需

要用者輸入叢集的數量，及組成子空間之次元的數量。2.這算法可以探出不規則形

狀的叢集�3.這算法提供的解答更準確�4.這算法可應用於大型數據庫及比之前的

算法需要更短之計算時間。

我們擴展EPC所採用的方法，以應用多次元柱圖去處理更複雜的數f|�當中，我
們完成了 EPC2的計算程式0 EPC2是EPC的擴展版本。它利用二次元柱狀圖去表
現數據的分佈。實驗結果顯示，當數據分佈的方向並不平衡於原軸—寺，EPC2能
計算出比較準確的解答。相對地計算時間與所需空間的複雜性也較高°

X

採掘關聯規則是一項可應用於市場推廣之計畫與安排的技術。多年來有i項快速的

關聯規則採掘方法被提出及發展。可是，大部份提出的S;f；算法是應用於市場籃數據

庫(market-basket database)的單一數據表中。這些數據庫裏，每一項單一資料雙存

了一宗交易中含有的項目。在關係數據庫中，數據經常被分散儲存於多次元數據

表(dimensiontable)，並由一個事件數據表(facttable)儲存當中的關係：這存模

式被稱爲星狀格式(star schema)�數據未必需要以二元代表法存在於這些次元數據

表中(因以往市場籃數據庫中，每一項目在一交易中以二^代表法記錄有購買與

否），而以往的計算法亦不適用當數據分散存放於多個次元數據表0

於多個次元數據表中採掘關聯規則的最直接方法，是首先把各次元數據表結合(join)
成一個大的單一數據表後，才運用其他採掘關聯規則的計算法。可是，這結合的操

作需要長的運算時間及大的記憶空間。而對於這結合後的大的單一數據表，採掘

所需的時間亦相對應地較長。所以，我們提出了數個技巧，首先對各單一數據表各

自進行採掘’然後把各單一數據表得出的關聯規則聯合而得到所需的關聯規則°比

較起先把單一數據表結合的方法，”採掘後結合”可於更少的時間，得出一樣的關聯

規則。

vi

Acknowledgment
I would like to express my grateful thank to my supervisor, Prof. Ada Wai-

chee Fu. Without her warm care and support, I may not be able work with

excitement, cheerfulness, keep up my spirit and motivation all the time on

different research problems in database and data mining fields within these

two years. With her supervision and encouragement, I could have various

chances and practises to improve the writing and presentation skills, which I

think would be very useful in my whole life. She also gives many valuable

suggestions for my future career.

Many thanks go to Prof. Man Hon Wong and Prof. Irwin King as my

thesis markers. Their advices given during term presentations help me to

further enhance my research work. In addition, with the enlightening and

interesting discussions with Prof. Ke Wang, I can have the opportunity to

work with him in the problem of mining association rule. I would also like to

thank him for his graciously consent to be my external marker.

It's also a pleasure for me to thank my fellow colleagues: Yin-ling Cheung,

who provides me many useful resources and discussions in the problem of

mining association rules, and unselfish helps for the experiments; Lai Mei

Chill，who gives assistances and helps in generating the data in the problem

of clustering; Chi Ho Lam and Chi Kan Cheung, who work with me as TA in

the Database course. Certainly, there are many others whom I cannot thank

all here, but definitely their words and sharing with me in these two years will

always ring in my mind and warm my heart.

vii

Contents

• •

Abstract u

• «

Acknowledgement vii

I Projective Clustering 1

1 Introduction to Projective Clustering 2

2 Related Work to Projective Clustering 7

2.1 CLARANS - Graph Abstraction and Bounded Optimization . . 8

2.1.1 Graph Abstraction 8

2.1.2 Bounded Optimized Random Search 9

2.2 OptiGrid - Grid Partitioning Approach and Density Estimation

Function ^

2.2.1 Empty Space Phenomenon 10

2.2.2 Density Estimation Function 11

2.2.3 Upper Bound Property 12

2.3 CLIQUE and ENCLUS - Subspace Clustering 13

2.3.1 Monotonicity Property of Subspaces 14

2.4 PROCLUS Projective Clustering 15

2.5 ORCLUS - Generalized Projective Clustering 16

2.5.1 Singular Value Decomposition SVD 17

viii

2.6 An "Optimal" Projective Clustering 17

3 EPC : Efficient Projective Clustering 19

3.1 Motivation 19

3.2 Notations and Definitions 21

3.2.1 Density Estimation Function 22

3.2.2 1-d Histogram 23

3.2.3 1-d Dense Region 25

3.2.4 Signature Q 26

3.3 The overall framework 28

3.4 Major Steps 30

3.4.1 Histogram Generation 30

3.4.2 Adaptive discovery of dense regions 31

3.4.3 Count the occurrences of signatures 36

3.4.4 Find the most frequent signatures 36

3.4.5 Refine the top 3m signatures 37

3.5 Time and Space Complexity 38

4 EPCH: An extension and generalization of EPC 40

4.1 Motivation of the extension 40

4.2 Distinguish clusters by their projections in different subspaces . 43

4.3 EPCH: a generalization of EPC by building histogram with

higher dimensionality 46

4.3.1 Multidimensional histograms construction and dense re-

gions detection 46

4.3.2 Compressing data objects to signatures 47

4.3.3 Merging Similar Signature Entries。。，。. 49

4.3.4 Associating membership degree 51

4.3.5 The choice of Dimensionality d of the Histogram 52

4.4 Implementation of EPC2 53

ix

4.5 Time and Space Complexity of EPCH 54

5 Experimental Results 56

5.1 Clustering Quality Measurement 56

5.2 Synthetic Data Generation 58

5.3 Experimental setup 59

5.4 Comparison between EPC and PROCULS 60

5.5 Comparison between EPCH and ORCLUS 62

5.5.1 Dimensionality of the original space and the associated

subspace 65

5.5.2 Projection not parallel to original axes 66

5.5.3 Data objects belong to more than one cluster under fuzzy

clustering 67

5.6 Scalabmty of EPC 68

5.7 Scalability of EPC2 69

6 Conclusion ^^

II Multiple Tables Association Rules Mining 74

7 Introduction to Multiple Tables Association Rule Mining 75

7.1 Problem Statement 77

8 Related Work to Multiple Tables Association Rules Mining 80

8.1 Aprori — A Bottom-up approach to generate candidate sets . . . 80

8.2 VIPER - Vertical Mining with various optimization techniques . 81

8.2.1 Vertical TID Representation and Mining 82

8.2.2 FORC 83

8.3 Frequent Itemset Counting across Multiple Tables 84

X

9 The Proposed Method 85

9.1 Notations 85

9.2 Converting Dimension Tables to internal representation 87

9.3 The idea of discovering frequent itemsets without joining 89

9.4 Overall Steps 91

9.5 Binding multiple Dimension Tables 92

9.6 Prefix Tree for FT 94

9.7 Maintaining frequent itemsets in Fl-trees 96

9.8 Frequency Counting 99

10 Experiments 102

10.1 Synthetic Data Generation 搬

10.2 Experimental Findings 106

11 Conclusion and Future Works 112

Bibliography 114

xi

List of Tables

3.1 Symbols used in EPC 21

5.1 Confusion matrix of good and bad clustering result 57

5.2 Confusion matrix obtained for PR-Set with 6000 data objects

from (a)EPC, (b)PROCLUS 61

5.3 Summary of the comparison of results obtained from EPC and

PROCLUS for PR-Set 61

5.4 Dominant and Coverage ratios of results obtained from EPC

and PROCLUS with data sets varying N 62

5.5 Average Dominant and Coverage ratios for AP-Set, APD-Set,

APN-Set and PR-Set 63

5.6 Dominant and Coverage ratios for data sets with 50000 data

objects, 20 dimensions and increasing percentage of outliers . . . 64

5.7 Dominant and Coverage ratios for APN-Set with N 二 20000

and / = 6 65

5.8 Dominant and Coverage ratios for APN-Set with N 二 20000

and D = 20 66

5.9 Dominant and Coverage ratios for AP-Set with varying e and / . 67

10.1 Parameters used in synthetic data generation in single Dimen-

sion Table 皿

10.2 Parameters used for generating FT 104

10.3 Parameter Table 108

xii

List of Figures

1.1 Projected clusters on subspace X Y and X Z 5

1.2 Cases that distance-based clustering algorithms do not work well 6

2.1 Example of empty space phenomenon, d 二 3 10

2.2 Kernel estimator showing individual kernels, h 二 0.4 12

2.3 Multivariate density estimator for observations from bivariate

normal mixture 12

3.1 2-d hyper-rectangle contains irregular shaped clusters 20

3.2 The influence of a data object in the 1-d histogram 24

3.3 Example of an 1-d histogram 25

3.4 Discovering dense region with a given threshold 26

3.5 Histograms for 3-d data objects projected on each dimension. • . 27

3.6 The EPC Algorithm 29

3.7 (a) 1-d projection of the cluster is uniformly distributed across

the whole dimension, (b) density of the 1-d projection is higher

than background noise for cluster oriented in the direction not

parallel to the axis 30

3.8 Bell shape cluster and flat cluster 32

3.9 Setting the appropriate threshold value 33

3.10 Adaptive approach to locate dense regions 36

4.1 Subspaces detected by different algorithms 41

xiii

4.2 A data object falls into more than one cluster under different

projections 43

4.3 Projections overlap on subspaces with lower dimensionality. . . . 44

5.1 Running time against N for EPC and PROCLUS 62

5.2 User CPU time of EPC against a)varying number of data ob-

jects, b)varying original dimensionality, c)varying number of

natural clusters 68

5.3 User CPU Time against a)varying number of data objects, b)varying

original dimensionality, c)varying dimensionality of associated

subspaces 69

7.1 ER Diagram modelling relationship among teachers, courses,

students 77

7.2 Star Schema with 3 Dimensional Table (teachers, courses, stu-

dents) and 1 Fact Table 78

8.1 4 different data representations for market-basket database . . . 82

9.1 Convert the input Dimension Tables to hil representation on-

the-fly 88

9.2 Example for discovering frequent itemsets across dimension tables 89

9.3 An example of "binding" order 93

9.4 Concatenating tids after ”binding，’ 93

9.5 Prefix Tree structure representing FT 95

9.6 Collapsing the prefix tree 95

9.7 An Fl-tree 97

10.1 Idea of generating transactions with itemset in a Dimension Table 103

10.2 Constructing FT •

10.3 Running time for (A,B) related and (A,B,C) related datasets . . 110

xiv

10.4 Running time for mixture datasets I l l

11.1 Snowflake Structure 113

XV

Part I

Projective Clustering

1

Chapter 1

Introduction to Projective

Clustering

Clustering is often an important initial step, in the data mining process. It is

being applied to many practical problems such as image segmentation, pat-

tern recognition, trend analysis etc. Here, we state the problem of traditional

clustering as in [16] : Given a number of objects, each of which is described

by a set of numerical measures, devise a scheme for dividing the objects into a

number of groups such that objects within the same group are similar in some

respect and unlike those from other groups. The number of groups and the

characteristics of each group are to be determined.

Extensive surveys on traditional clustering techniques and concepts can be

found in [25]. Traditional clustering algorithms are different in their terminolo-

gies, cluster representations, assumptions for the components of the clustering

process and the contexts in which clustering is used. They are often be clas-

sified as hierarchical clustering, partitional clustering, optimization techniques

and density search techniques. However, most of them are originally aimed for

tackling clustering problem with low dimensional data.

However, with the advances of technology, we are collecting more and more

data everyday. We see a growing number of attributes for data objects (typi-

cal relational database contains twenty up to hundreds of attribute), some of

2

Chapter 1 Introduction to Projective Clustering 3

which make the data objects more informative, but some of which may add

unnecessary details and thus "hide" the valuable information. For example,

for a customer file, we may include many attributes of each customer, such

as sex, age, income, address, family information, job information, purchase

orders, etc. However, correlation or patterns typically exist in small subsets of

these attributes. If we consider numerical attributes and treat each attribute

as a dimension, each data record is a data vector in a high-dimensional space.

Then Patterns can only be discovered when we consider projections of the

data vectors in different subspaces, instead of the vectors in the full dimen-

sional space.

In addition to the application needs, recent theoretical results [8] have also

shown that in high dimensional space, distances between every pair of data

objects are almost the same for a wide variety of data distributions and distance

functions. Empirical results show that this can occur for as few as 10 to 15

dimensions. As a consequence, the concept of proximity and neighborhood can

hardly be applied in high dimensional space, the farthest neighbor of a point

is expected to be almost as close as its nearest neighbor [22], and thus natural

cluster does not exist in the full dimensional space.

Clearly, the traditional understanding of clustering problem is not suffi-

cient to meet the challenges as described above, where patterns typically exist

in small subsets of attributes. Feature selection techniques [32] or methods

such as Principal Component Analysis (PCA) [29, 17, 30] are proposed to re-

duce the dimensionality of the data, by projecting all the data objects on a

subspace which minimize the information loss. However, in real life applica-

tions, correlations between dimensions are often localized to different clusters.

Different patterns can only be uncovered when we consider projections of the

data objects on different subspaces. In such case, any attempt to reduce the

dimensionality of the whole database would bring substantial information loss.

Chapter 1 Introduction to Projective Clustering 4

Therefore, we study the problem of projective clustering originally sug-

gested by [2] , which would be stated as the following:

A projected cluster is a subset C of data objects together with a subset

D of dimensions, which we call a subspace，such that the data objects in C

are closely clustered in the subspace of dimensions in D. For the projected

clustering algorithm, it outputs a (k + l)-way partition {Ci,Ck, 0}, so that

the data objects in each partition except the last form a projected cluster, while

the last partition contains outliers. Each cluster (7^,1 <i<k, is associated

with a possibly different subspace Di, so that data objects in Ci are correlated

with respect to dimensions in Di. |A| denotes the cardinality (number of

dimensions) of the corresponding subspace, and it need not be the same for

different cluster. In our approach, each partition would be represented as an

n-dimensional hyper-rectangle, where n 二 The hyper-rectangle locates

the cluster in the corresponding subspace.

Figure 1.1 [2] shows a simple example which illustrates the idea of pro-

jective clustering. Consider the case for a 3-dimensional space X Y Z . The left

hand side of Figure 1.1 is a projection of the data set on the cross section

on X-Y plane, and the right hand side is the one on the cross section on X-Z

plane. We can find a projected cluster in subspace X Y , and another projected

cluster in subspace X Z . The regions within the dotted lines are the 2-d hyper

rectangles that contain the clusters in the corresponding subspace. However, if

we consider the full dimensional space X Y Z , we can not discover any clusters,

as data objects in pattern 1 spread along Z axis, and data objects in pattern 2

spread along Y axis. If we do a feature selection and consider dimension pairs

X Y or X Z only, either one of the patterns cannot be discovered, since each

dimension is relevant to at least one of the patterns.

The difficulties of projective clustering lies in the fact that there are two

dependent sub-problems embedded in the original problem, namely discover-

ing the subspaces of each projected clusters, and finding the locations of them.

Chapter 1 Introduction to Projective Clustering 5

h h X
X X

Y axis X pauemi Z axis 口站,2 \
III! i f ! \

X � —— V
X X I—: • •

X axis X axis

Figure 1.1: Projected clusters on subspace X Y and X Z .

Given the sets of data objects belonging to the same cluster, the corresponding

subspaces can be discovered by examining which of the dimensions the data

objects within the same clusters are located close together. On the other hand,

given the subspaces, we can apply traditional clustering techniques on different

known associated subspaces. However, without knowing the subspaces and the

cluster locations, there is no simple way to solve these two sub-problems at the

same time. PROCLUS [2] uses a k—mean like approach to iteratively solve

these two sub-problems. However, it requires the user to know the number of

clusters, the average cardinality of each subspaces, and various parameter set-

ting before applying the clustering algorithm. Detail description can be found

in Chapter 2. Furthermore, other than pattern discovery, projective cluster-

ing techniques have also been successfully used for indexing high dimensional

data. [10

Other than the curse of dimensionality, clustering itself is not a well-defined

problem despite its long history in statistics literatures, pattern recognition

and database communities. Different clustering algorithms assume different

definitions of clusters, and thus result in clusters with different properties and

shapes. For example, methods based on minimizing distances between data

points and their belonging cluster representative object, such as K-mean ,

CLARANS [37], BIRCH [54], tend to return clusters in convex shape. How-

ever, they would face difficulties in locating clusters of irregular shape, as well

Chapter 1 Introduction to Projective Clustering 6

/：：̂' --：；̂
•:••/• ：；： 、，••《：

V-c：- ;=；

•:••‘:.••••:•::.: _•••••:••

•::••?.•••••.•:：•.

Figure 1.2: Cases that distance-based clustering algorithms do not work well

as the situation when one small cluster is located closely to another large

cluster. In such case, some of the data objects belonging to the large cluster

would be wrongly recognized as belonging to the small cluster, since these

data objects are located nearer to the representative object of the small clus-

ter. Figure 1.2 shows example where these algorithms cannot produce correct

clustering result.

Chapter 2

Related Work to Projective

Clustering

A survey on traditional clustering methods can be found in [21, 16, 27, 26 .

•25, 18] also provides reviews and analysis of recent work on clustering. A lot

of good clustering methods have been identified in the past. However, most of

them do not aim at clustering high-dimensional data. They become computa-

tionally expensive and also ineffective with growing dimensionality. Recently

there are various enhanced clustering approaches, including DBSCAN [14, 15

and OPTICS [34], which use W Tree to efficiently perform region queries

and order the data objects to represent its density-based clustering structure;

BIRCH [54], which is based on the Cluster—Feature-tree, and STING [53],

which uses a quadtree-like structure containing additional statistical informa-

tion. They give promising results for low dimensional data. However, because

of the performance degeneration of R* tree for high dimensionality, and inef-

fectiveness for condensation-based approaches [23] (BIRCH and STING) in

high dimensional space, none of them are able to produce satisfactory cluster-

ing result for high-dimensional data. As as pointed out by [23], the curse of

dimensionality has a severe impact on their resulting clustering quality, and

continues to pose a challenge to clustering algorithms at a fundamental level.

Here, we review some of the most remarkable researches on clustering in recent

7

Chapter 2 Related Work to Projective Clustering 8

years.

2.1 CLARANS - Graph Abstraction and Bounded

Optimization

The study of CLARANS [37], which is based on PAM and CLARA developed

previously [31], views the clustering problem as a graph abstraction. For k-

medoids based methods, after we can determine the best set of medoids, we can

cluster the data points to different partitions by a single scan of the database.

Data points are assigned to cluster where their nearest medoid located. The

most difficult part is how we can find the best set of medoids which can cluster

data points well. CLARANS models the problem of finding the sub-optimal

set of k medoids as the following:

2.1.1 Graph Abstraction

Given n data points, there are nCk ways to choose k data points as the set of

medoids. Each selection can be represented as a node in a graph Gn,k- There

are totally JJk nodes in the graph Gn,k. Two nodes are neighbors (connected

by an arc) iff their sets differ by only one data point. For each node, there

are k{n — k) neighbors, and each move of a node to its neighbor represents a

replacement of one selected medoid in the set with another data point.

Since each move (replacement) can be quantified by how much the result-

ing clustering quality could be improved, a cost function can be computed

according to some pre-defined rules. If we choose a negative value of the cost

function to indicate a better choice, the clustering problem can now be viewed

as searching for a minimum on the graph Gn,k •

Although examining every node in the graph guarantees that the best clus-

tering could be found, it would become computationally expensive as the total

Chapter 2 Related Work to Projective Clustering 9

number of nodes are rXh. Therefore, CLARANS employs a bounded optimized

random search to the graph Gn,k to find the sub-optimal solution.

2.1.2 Bounded Optimized Random Search

Instead of inspecting every neighbors, CLARANS selects a number of neighbors

to be examined, in which the number is bounded by the parameter maxneigh-

bour. Although this greatly reduces the computational complexity, the search-

ing would thus be easily trapped in local minima. Therefore, once the search-

ing reaches a local minima, another arbitrary chosen point would be chosen

to start the searching again. The number of searches is bounded by another

parameter numlocal

This represents a random search in the graph, which tries to optimize the

resulted clustering quality by continuously replacing bad medoid with a better

data point. This optimization is not complete and it is bounded by the two

parameters, maxneighbour and numlocal, for the gain in better efficiency.

Although this algorithm can cluster data set with a large number of data

points efficiently, it does not address the problem for high dimensional data.

Nevertheless, the modelling of the clustering problem as optimization (mini-

mization) gives a good direction for further studies and investigations.

2.2 OptiGrid - Grid Partitioning Approach and

Density Estimation Function

Another commonly used approach for clustering is to divide the whole space

into cells using some cutting planes. Grid cells containing dense regions are

located and connected in order to form clusters. However, if the cutting planes

cut across the clusters, the natural neighborhood would be lost. This problem

would become more severe when the number of dimensions is high.

Chapter 2 Related Work to Projective Clustering 10

^ | Z � j _

I I

I I I 2 I
{ “>•_-—-•_-—----—-丨—----jj-̂- ---- -— — — — — ^ ^

t：：：：̂ t：：^

Figure 2.1: Example of empty space phenomenon, d = 3.

2.2.1 Empty Space Phenomenon

Consider a cluster formed by normally distributed data points in [0 , w i t h

(0.5,…，0.5) as center point, where d is the number of dimensions. Suppose we

do the splitting at 0.5 in each dimension. The number of different directions

from the center point would be directly proportional to the number of grid

cells partitioned, which is exponential in d (that is 2^). Although the distances

between data points and the center follow a Gaussian curve, since the choice

of direction is totally random, as a consequence, most data points fall into

separate grid cells. Especially for high dimensional data, even though the data

points form a spherical cluster, they are unlikely to be located very near to the

center point, and most of them fall into separate grid cells. As a result, those

adjacent grid cells can hardly be discovered because none of them are dense

enough. Figure 2.1 [23] shows the scenario for (i 二 3.

The main reason for the poor performance and the ineffectiveness of grid-

based clustering when the dimension is high is mainly caused by cutting planes

which partition natural clusters into a number of grid cells. Therefore, the

main objective of OptiGrid [23] is to construct an optimal grid-partitioning,

such that they partition data in low density region and discriminate clusters

as much as possible. To achieve this, OptiGrid employs concept of Density

Estimation Function which can be found in statistics literature. [48 .

Chapter 2 Related Work to Projective Clustering 11

2.2.2 Density Estimation Function

Consider the density function f for a Random Variable X.

rb
P{a<X <b)= / f{x)dx.

J a

Given this density function of a data distribution, we can calculate how

many data points are located in a specific region. However, during clustering,

we do not know the density function of the data set in advance. Therefore, we

employ an inverse process to estimate the underlying data distribution when

we are given a set of n observed data points with position Xi ,X2 , ...，Xn, by

constructing the following density estimation function.

1 n Y- — T

t —丄

where K(x) satisfying f : K(x) dx = 1’ is the kernel function, and h is

called the smoothing factor.

Intuitively, we can consider each data observations give its influences to

the underlying data density distribution. The amount of influences received

in each position is determined by the kernel function K, and the distance to

the observations. Figure 2.2 [48] illustrates this idea. Here each influence is

in a "bump" shape, and the density estimator is the summation of "bumps"

placed at every data observation. The kernel function K determines the shape

of the estimated distribution, while the width of the "bump" determines the

smoothness level.

When we are given a set of n observed data points 而,X2,...，凡 and each

data points is a d-dimensional vectors Xi 二 (X , t h e univariate

density estimator can be generalized to multivariate density estimator as the

following function

Chapter 2 Related Work to Projective Clustering 12

0,5 r

-4 -2 0 2 J, *
l}=OA

Figure 2.2: Kernel estimator showing individual kernels, h 二 0.4.

Figure 2.3: Multivariate density estimator for observations from bivariate nor-
mal mixture.

1 几 X- — X

Figure 2.3 [48] gives the picture of this multivariate density estimator. In

OptiGrid [23], clusters is defined as subset of data points density-attracted

by X*, where density-attracted is defined by the gradient, and x* is the local

maxima of the density function which are above a certain noise level.

2.2.3 Upper Bound Property

A cutting plane is a (d-l)-dimensional hyperplane which partitions 尺^ into

two half spaces. Many grid-based clustering algorithm uses cutting planes

to partition the whole space into a number of grids, and detect clusters by

Chapter 2 Related Work to Projective Clustering 13

discovering dense grids. However, when the dimensionality is high, those algo-

rithms suffer from the fact that the natural clusters could be easily partitioned

into different grids by cutting planes, and thus lose the natural neighborhood.

OptiGrid [23] first define a contracting projection for a given d-dimensional

data space S and an appropriate metric ||.|| as a linear transformation P de-

fined on all points xeS, such that P{x) = Ax with ||A|| = m a X y ^ s C ^) < 1.

With certain definitions of clusters, it is found that the density at any point

in the contracting projection serves as an upper bound for the density on the

original space. OptiGrid [23] applies this idea to safely put the cutting planes

at locations where their density on the contracting projection is lower than a

certain threshold, because it guarantees that the corresponding density in the

original full dimensional space cannot be higher. This upper bound property is

actually a generalization of the Monotonicity Lemma, as stated in the paper

discussing CLIQUE [6] which we will discuss next.

OptiGrid makes use of the upper bound property of the projection of data.

Specifically, it constructs density estimation function with lower dimension-

ality, and places the cutting plane in low density region. The upper bound

property ensures that the density in the full dimensionality where the cutting

plane is placed would be no higher than the density in that lower dimension-

ality, and thus avoiding the lose of natural neighborhood.

2.3 CLIQUE and ENCLUS - Subspace Clus-

tering
The automatical discovery of interesting subspace is first studied as the sub-

space clustering problem in CLIQUE [6]. Because natural clusters seldom exist

in the full dimensional space as data points are usually sparsely distributed,

CLIQUE aims to identify subspaces which allow better clustering of the data

Chapter 2 Related Work to Projective Clustering 14

points. At the same time, CLIQUE also maximizes the dimensionality of the

identified subspace, since clustering on subspaces with higher dimensionality

would give us more information then with lower dimensionality.

CLIQUE employs a bottom-up approach similar to Apriori [5] algorithm for

mining association rules. It first partitions the data space into non-overlapping

rectangular units. A unit is dense if the fraction of data points it contains ex-

ceeds a certain density threshold. A cluster is defined as a maximal set of

connected dense units in k—dimensions. This approach bases on the follow-

ing monotonicity property to discover higher dimensionality subspaces which

contain clusters.

2.3.1 Monotonicity Property of Subspaces

If a collection of data points S is a cluster in k-dimensional space, S must also

be part of a cluster in any (k-1) dimensional projections of this space.

In other words, space ABC can form clusters only if all of its subspace,

that is A, B, C, AB, AC, BC can form clusters. If one of these subspaces fails to

form cluster, it is guaranteed that no cluster could exist in the original space

ABC. As a consequence, we can consider only higher dimensional spaces

where all of its subspaces form clusters. Using bottom-up approach, we can

prune out a lot of subspaces once we know any of their subspaces cannot form

cluster. Examining all the possible subspaces requires 0(2几)where n is the

dimensionality, and the pruning can thus saves a lot of computational time. It

is a special case of Upper Bound Property Lemma as mentioned in 2.2.3.

Following that, ENCLUS [12] extends the idea of subspace clustering by

using entropy to further prune away uninteresting subspaces. However, these

approaches do not aim to partition the data set. Rather, they report "dense"

regions in each discovered interesting subspace. The large overlap among the

Chapter 2 Related Work to Projective Clustering 15

reported dense regions makes these approaches not very suitable for applica-

tions which need a clear partition of data objects [2].

2.4 PROCLUS Projective Clustering

PROCLUS [2] is developed to produce a clear partition of data objects, based

on their corresponding subspaces. PROCLUS employs Manhattan Segmental

Distance as similarity measurement to quantitatively describe how good a

projected cluster is. Specifically, for any two (/-dimensional data points Xi 二

(>i，i,...，Ti,d) and X2 = (>2,i,...,Z2，d), and for any subset S of the set of

dimensions, \S\ < d, the Manhattan segmental distance between Xi and X2

relative to S is given by c/sOi,工2) 二 (D力广巧…).T h i s distance metric is

useful when comparing points in two different clusters that are associated with

subspaces with varying number of dimensions.

With this distance metric, PROCLUS tries to minimize the intra-cluster

distance, which is the sum of distances between data objects in a cluster and

the centroid of the cluster. It works like a k—mean like algorithm, extended

with the idea of projective clustering. First, a greedy approach is applied to

select a set of potential medoids (the centers of the clusters). With the set of

medoids, it estimates the correlated subspace for each cluster. To do this, the

locality of a medoid is examined. Locality is defined as the set of data objects in

a neighborhood region in the full dimensional space. The projections of these

data objects on different dimensions are examined to find those dimensions that

have closer average distances to the corresponding medoids. These are chosen

as the dimensions of the correlated subspace. After the estimation of subspaces,

data objects are assigned to its closest medoid with the distance measured with

respect to the corresponding subspace. The quality of clustering, which is the

sum of intra-cluster distance, is evaluated. Medoids are replaced in a hill-

climbing approach, which targets to give an improvement on the clustering

Chapter 2 Related Work to Projective Clustering 16

quality.

This approach tackles the two sub-problems, namely discovering the sub-

spaces and locating the position of clusters, iteratively until no further improve-

ments can be made. One problem we can see is that the full dimensionality

is used in forming the locality. This may not include the real neighbors in

the correlated subspace and may include unrelated points in terms of the sub-

space. In fact, according to [8] it makes little sense to look for neighbors in

the high-dimensional space. Another problem is that it may not be accurate

to use the average distance of data points in the locality from the medoid on

each dimension in finding the subspace, since the average distance can hide

information about multiple clusters. PROCLUS takes the value of k, that is

the number of projected clusters, and the average cardinality I of subspaces

as input. Both parameters can greatly influence the quality of the clustering

results. These pose some limitations when users do not have a good idea of k

or I.

2.5 ORCLUS - Generalized Projective Clus-

tering
ORCLUS [3] further extends and generalizes the idea of projective clustering.

The difference between PROCLUS and ORCLUS is that PROCLUS is targeted

to find clusters with subspaces formed by axis-parallel vectors, while ORCLUS

is to find clusters existing in arbitrarily oriented subspaces. Often the data

points may tend to get aligned along arbitrarily skewed and elongated shapes

in lower dimensional space. ORCLUS can discover clusters with these kinds

of data points, and also the hidden subspaces, which exist because of inter-

attribute correlations.

Chapter 2 Related Work to Projective Clustering 17

2.5.1 Singular Value Decomposition SVD

ORCLUS makes use of Singular Value Decomposition (SVD), which is a well

known technique to transform high dimensional data into a lower one, with

the least loss of information. SVD transforms the data to a new coordinate

system in which the correlations in the data are minimized.

First, covariance matrix of the data set is constructed, and the correspond-

ing eigenvalues are calculated. The eigenvectors for which the corresponding

eigenvalues are the largest can define the subspace in which the data will be

projected. Because the data does not show much variance if the corresponding

eigenvalue is large, the projection to the resulting subspaces would incur the

least loss of information.

On the contrary, ORCLUS chooses the eigenvectors with minimum spread

to do the projection, so that the greatest amount of similarity among the data

points in the clusters can be detected.

Although ORCLUS solves a more general problem, the computation in-

volved is more complex. In its merging stage, the eigenvectors with least

spread for each pairs of the remaining clusters have to be computed, which

takes 0{d^) by using ECF (Extended Cluster Feature Factor), where d is the

dimensionality of the original space. This would be prohibitively expensive for

very large database and high dimensionality.

2.6 An ”Optimal” Projective Clustering

There are two objectives at odd with each other in the projective clustering

problem. We would like to discover clusters with as many data objects as

possible, so that the discovered patterns are strongly relevant. On the other

hand, we also want the dimensionalities of uncovered associated subspaces to

be as high as possible, so that it captures more amount of correlations among

dimensions.

Chapter 2 Related Work to Projective Clustering 18

However, these two objectives are conflicting to each other. Consider if

one associated subspace contains all the dimensions, in such high dimensional

subspace, according to [8]，data objects tend to be very sparse, there should

be only few data objects which are close together to form cluster. On the

other hand, if we group all the data objects into a single cluster, we cannot

find any dimensions where all the data objects are closely located, and thus

the dimensionality of the subspace would tend to be 0.

Recently, [35] propose a concept of an "optimal projective cluster". Specif-

ically, it first defines an a-dense projective cluster as a set of data objects, such

that the number of data objects exceeds aN, where N is the total number of

data objects, and the maximum distance on a related dimension between any

pair of data objects in this set is less than another parameter cj. The quality

of a projected cluster is defined as \V\), where \C\ is the number of data

objects, \V\ is the dimensionality of the subspace, and p is a monotonically in-

creasing function. With this function, more number of data objects and higher

dimensionality of the associated subspace indicates a better cluster.

To measure the trade-off between the two objectives of increasing the num-

ber of data objects being included, and increasing the dimensionality of asso-

ciated subspace, it employs a so called "/^-balanced" to restrict the function

… / i is /^-balanced if /i(a, b) 二 6 + l)Va > 0 , 6 < 0 . One example of such

function is b + 1).

We did not follow this definition of "optimal" projective cluster, because

both the parameters a and lu are difficult for user to estimate. Furthermore,

clusters are often with varying spanning area, number of data objects being

included, and thus the density. Using a fixed values of a and � restricts the

spanning area and number of data objects being included of the discovered

clusters. However, the objectives of increasing number of data objects and

dimensionality of associated subspaces in each cluster, as well as the balancing

between these two odd objectives are strongly relevant.

Chapter 3

EPC : Efficient Projective

Clustering

3.1 Motivation

In the high dimensional space, not all dimensions are equally important. For

some dimensions, data is just randomly distributed and does not exhibit any

special patterns. These dimensions are considered not important, and not

interesting to the users. In the clustering process, we want to find these kinds

of dimensions as soon as possible, so that we need not to consider them. This

does not only help to speed up the process, but at the same time helps to

remove impurities.

When a natural cluster exists in certain subspace, for example subspace

X Y Z , the density within the area spanned by this cluster, with respect to

subspace X Y Z , should be higher than its neighbor area. In many cases, the

projection of this cluster on each dimension X , Y , Z would also demonstrate

a higher density. From this observation, if we consider projections parallel to

the original axis, in this example, that is subspaces formed by any subset of

X Y Z , density of the area spanned by the projected cluster in these subspaces

should also be higher than area with no projected clusters.

19

Chapter 3 EPC : Efficient Projective Clustering 2 0

Projection to subspaces of lower dimensionality may incur loss of infor-

mation. For example, we may not be able to locate the boundary of the

cluster in the original subspace. Consider Figure 3.1, there are 3 reported

hyper-rectangles containing irregular shaped clusters. We can know from the

hyper-rectangles where the clusters are located in its associated subspace, but

we may not outline the exact shape of the cluster. For example, in hyper-

rectangle 1, we can not tell whether point A belongs to the cluster enclosed

in this hyper-rectangle, and in hyper-rectangle 3, it includes two projected

clusters with the same associated subspace.

::—, l^ f ？ 乂
i X I hyper-rectangle 2 x

！ ̂ ^^ point A I
穩 卜 X X

i- X hyper-rectangle 3 ^

hyper-rectangle 1 「 - y i

i f •丨
X X 丨 丨

絕 I

Figure 3.1: 2-d hyper-rectangle contains irregular shaped clusters.

However, since we are mostly interested in solving the more difficult prob-

lem of finding the associated subspaces of each cluster, and in which area the

clusters roughly locate, the loss of information actually helps to remove the

unnecessary details. Detail shape of the original cluster can be found later, by

feeding data objects within the hyper-rectangle together with the discovered

subspace, to other clustering algorithm which works in the full dimensional

space, such as OPTICS [34 .

Therefore, we propose a technique of projective clustering called EPC. EPC

makes use of equi-width histograms to model and represent the data distribu-

tion in database system. Histogram is a commonly used technique in current

Chapter 3 EPC : Efficient Projective Clustering 2 1

RDBMS to approximate distribution of values in the attributes of relations.

These domain knowledge can help to estimate query result sizes and access

plan costs[24]. Many RDBMS keeps updating the histograms frequently, in

such case the histograms are always ready to be used by our method with-

out additional computation. If the histograms have not been constructed in

apriori, (as in our experiments), they can be built quickly in real time. This

property enable us to develop very fast projective clustering algorithm scalable

to very large database.

3.2 Notations and Definitions

N number of data objects
D dimensionality of the original space
K number of natural clusters
m maximum number of clusters that user is interested to find out

—I~~ Average Dimensionality of the associated subspaces of clusters

Table 3.1: Symbols used in EPC.

Definition 1 A data object Xi is a single data item. It is represented by a

vector of D measurements in the D-dimensional space : Xi = {xi^i, •,£)),

where Xij is an attribute of Xi.

Definition 2 A subspace Si with dimensionality di is defined by a set of di

orthogonal vectors, where di < D.

Definition 3 A dense region DR^ associated with subspace Si is an inter-

section of intervals from the dimensions in Si, in which the data density inside

the intersection area is larger than a certain threshold. This is intended to

contain the projection from one or more projected clusters on the subspace.

m is the dense一region id of the dense region.

Chapter 3 EPC : Efficient Projective Clustering 22

Notice that we do not require the user to specify the threshold value, it

will be derived from the data set.

Definition 4 A projected cluster, or simply a cluster, Ci associated with

subspace Si is a set of data objects, which are closely clustered when projected

in the subspace Si.

Definition 5 We call the subspace of a projected cluster the associated

subspace of the cluster. We call the dimensions being included in the as-

sociated subspace the bounded dimensions of the cluster, and others as

unbounded dimensions. Similarly, we call any subset of the associated sub-

space bounded subspace. We would use A, B, C etc. to denote dimension,

and A B , B C etc. to denote subspace.

EPC first models the density of data objects along each dimension. A most

commonly used method in statistics ([48], [51]) is by means of the density

estimation function.

3.2.1 Density Estimation Function

We shall adopt the concept of density estimation functions in statistical liter-

ature.

Suppose we are given a set of 1-dimensional N data points Oi, O2, .. •, ON

with positions X i , X2, Xn. The density estimation function f can be

constructed by [48]:

/ » = • £ / 《 ¥) (3-1)
"i—丄

where K{x) satisfying JZo ^^ = 1, is the kernel function, and h is

called the smoothing factor. A simple K function is

(
0.5 %j X < \

K{x)=
0 otherwise

\

Chapter 3 EPC : Efficient Projective Clustering 2 3

In computing / (x) , this definition of K gives a weight of 0.5 to the data

points within a distance of h from x, and zero weights to all other data points.

Therefore, the value of f{x) is influenced only by the values of 几

that are at a neighborhood of x.

Intuitively, every data object has its influence to the overall density esti-

mation function. In general, we can set different K and h, the shape of the

influence of data on f would be determined by the kernel function, while the

width is determined by the smoothing factor. Typically data points at a closer

neighborhood would have a higher influence.

3.2.2 1-d Histogram

One simple way to construct the density estimation function on every dimen-

sion is by using histograms, which could help us to identify regions where

the data objects are densely located. To build the histogram, we divide each

dimension into a number of equi-width intervals. Let i be the number of inter-

vals, Iau . . . , lAi denote the . . . , i认 intervals of dimension A，and

h be the width of the equi-width intervals. If the domain range of dimension

A is and there are i intervals, then IAI is the interval of [x.XI- h), IA2

is[x-\rh,x + 2h),." Iai is [x ^ {i - 1)"’ x i h .

With the equi-width intervals on dimension A we can determine the den-

sity estimation function for dimension A as

/^ (x) 二 心 d + H\^A{i+l)\ + I心(“1)1) + 2(|AU(i+2)| + I心(“2)1)+

where the value of x is located in interval lAi, and is the number of

data objects whose projection on dimension A are located in lAi. This equation

can be understood as adding up the influences of data objects. The interval

Chapter 3 EPC : Efficient Projective Clustering 24

containing x would have more influences on and neighboring intervals

farther away from x would have less influences. Note that this definition follows

the concept of influences as defined by the Kernel function and the smoothing

factor but does not follow the format of the Kernel function.

Example 1 In a give data set, suppose the domain of dimension A ranges

from -100 to 100, and the value of h for interval width is 1 for this dimension.

Consider a data object O with a projection on dimension A equal to 5.57. O

is located in the 106认 interval on A. The influences of O on the neighborhood

in the 1-d histogram is shown in Figure 3.2.

103 104 105 106 107 108 109

Figure 3.2: The influence of a data object in the 1-d histogram.

The function effectively defines the values in the 1-d histogram for

dimension A. In the 1-d histogram, we need to define the a value TiAihi) for
A .

each interval I a“ The value of ？ { 办 i) is set to be the value of for any

data point x that lies within the interval I a,- We shall refer to the histogram
as 1~LA.

Example 2 Consider a data set with 10 data objects, four of them fall on

the 5认 interval on dimension A, another four of them fall on the 6力"interval

on dimension A, the last two falls within the 14认 interval. The histogram on

A can be built as in Figure 3.3. Let us examine the influences of the first 8

data objects. For ？ (h i s t o g r a m value at interval 4)，influences of data

objects located in the interval is x4) = 0.075, and influences of data

objects located in the interval is x 4) = 0.05. Therefore, TIa(Ia4)

is 0.075 + 0.05 二 0.125. Values in other intervals can be calculated similarly.

Chapter 3 EPC : Efficient Projective Clustering 2 5

X X X
influences of objects in interval 5 x x x

X Xx X

I influences of objects in interval 6
0.175 0.175

influences of objects in interval 14
0.125 0.125

0-075 _ _ ？ _
0.0375,___, 0.0375

0.025 0.025 … … 0 . 0 2 5 1 H —— 1 0.0125|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.3: Example of an 1-d histogram.

3.2.3 1-d Dense Region

We shall find the regions where data objects are densely located along each

dimension, since these regions are potentially the 1-d projections of some nat-

ural clusters. We would next define what we mean by a "dense region". Given

a 1-d histogram HA, The set of 1-d dense regions of dimension A, denoted

by DRA, is defined as a list of ordered pair (p, q) satisfying:

(1) nA{iAip-i)) < C

(2) - H ^ I W d) < C

(3) nA{IA^) > c for all p < i < ^

Therefore p and q represent lower and upper boundary equi-width intervals,

such that the densities in between intervals are higher than a given threshold (

for dimension D. There can be more than one such pair of boundary intervals

on a dimension. We denote D R f as the 一" such ordered pair for the dense

regions on dimension A.

Example 3 Consider dimension A with 10 equi-width intervals, its histogram

is shown in Figure 3.4. The dotted line represents the value of C, based on the

previous definition,
D R f is (2,4) and D R ^ is (7,9).

Chapter 3 EPC : Efficient Projective Clustering 2 6

r n r

1 2 3 4 5 6 7 8 9 10

Figure 3.4: Discovering dense region with a given threshold.

3.2.4 Signature Q

When we have uncovered sets of dense regions for all dimensions, we can

determine for each data point, whether it is in the scope of each of such a

region. In each dimension, a data point p can lie inside one or zero dense region.

When we combine this information for all dimensions, we get a signature for

the data point p.

Given the dense regions D R ^ , the signature of a data object, denoted by

Q, is an ordered list of k entries, where the 产 entry represents the dense

region, if any, where the data object is located in dimension j. Specifically,

Q = [Qi, ©2, • • • ,Qd,

0 if the object does not fall into any region in D W in dimension j ,
where Q‘ 二 � • .

1 if the object is located in DR- in dimension j .
V

Each Qi in the above is called a component of the signature. Each data

object can be assigned a signature according to the generated D R a . The

signature can be interpreted as the compressed form of the representation

of the data object and it helps to remove the unnecessary details of each

individual object when we are targeted to discover the underlying clustering

structure.

Data objects within the same projected cluster, which probably are located

in the same dense region on the correlated dimension, would most likely be

Chapter 3 EPC : Efficient Projective Clustering 27

assigned the same signature. We keep an object count for each signature,

which is the number of data objects that are assigned to the signature. There-

fore, by identifying the signatures with high object counts, we can find the

corresponding subspaces and locations of the clusters.

Example 4 Suppose there are 1000 data objects located in a 3 dimensional

space, ranging from -100 to 100 in the coordinates. Each of the three dimen-

sions, A , B, and C, consists of 10 equi-width intervals. Figure 3.5 shows the

1-d histograms for each of the dimensions.

DR\ DR^ DR\ DR»2 DRC�

�LJL一i^i ri~i L — ： ^ 」 — ： 一 一 」 一 —一—LI

Dimension A Dimension B Dimension C

Figure 3.5: Histograms for 3-d data objects projected on each dimension.

From these histograms and the given threshold (the dotted line), the dense

regions are

DRB 二 ((1,5),(7,9))

D R C = ((5，7))

Consider 5 data objects: Oi - (-100, 70, -80), (h 二（50, 10, 40), Os = (-80,

80, 40), O4 = (30, -50, 20), O5 = (-60, 50, -50). Their corresponding signatures

would be [1,2,0], [0,0,0], [1,2,0], [2,1,1], [1,2,0]. From their signatures, object

Oi,03, and O5 probably belong to the same projected cluster, in subspace

AB. Object O2 should be an outlier as it does not fall into any dense regions

in all dimensions.

Chapter 3 EPC : Efficient Projective Clustering 2 8

3.3 The overall framework

EPC models the densities of the data objects on each dimension by construct-

ing 1-d histograms, and determines the dense regions where data objects are

located closely together. Signature of each data object can be derived from the

discovered dense regions. With a high chance, objects in the same projected

cluster would also be in the same dense regions along each axis-parallel l-d

projections of its associated subspace. Data objects with the same and "sim-

ilar" signatures are grouped together. Thus, a signature group with a large

number of data objects corresponds to certain combinations of dense regions

in each dimension, which help us to locate a projected cluster. When we have

a signature with a large object count, the non-zero entries in the signature

correspond to the correlated dimensions in a cluster, and the exact values of

these entries help to determine the location of the cluster in its associated

subspace.

EPC needs only one input, max.no.cluster, which we denote as m. In case

the number of natural clusters is smaller than m, the algorithm will return only

the discovered clusters. Otherwise, it will return the top m clusters with the

largest object counts. EPC always output the discovered projected clusters

according to the order of the corresponding object counts. From experiments,

this is the same as the ordering of natural projected clusters in descending

number of data objects in most of the cases.

The output of EPC would be the number of discovered clusters, the asso-

ciated subspace for each cluster, as well as the hyper-rectangle regions which

contain the clusters.Figure 3.6 shows the pseudo code of the algorithm EPC.

Chapter 3 EPC : Efficient Projective Clustering 2 9

Algorithm 3.1 Pseudo Code of EPC
1 /*Histogram Generation*/
2 for each data object
3 for each dimension
4 add influence of the data object to the corresponding interval
5
6 /*Adaptive discovery of dense region*/
7 for each dimension
8 repeat until (no more dense regions are discovered or m dense regions have

been discovered)
9 scan the histogram to set the new threshold value
10 scan the histogram to locate and store the identified dense regions in a

linked list structure
11 remove the identified dense regions as well as their densities from the

histogram
12 end until
13
14 /*Derive and update signature*/
15 for each data object
16 for each dimension
17 derive the signature component from identified dense regions
18 search the entry of the signature by a hash function
19 if found
20 update the object count
21 else
22 add a new entry with an initial object count of 1
23
24 /*Find the most popular signatures*/
25 sort all the derived signatures in descending order according to their object count
26 keep 3m signatures with the largest counts and discard the remaining
27
28 /*Refine the top 3m signatures*/
29 for each pair of different signatures
30 count the number of differing components in the signatures
31 if (the number of differing components < 藉）

32 merge the signatures by discarding the one with less count and add its
count to the other one

33 discard any signature if all the components are 0, or the object count <
34 transform the remaining signatures to their corresponding subspaces and hyper-

rectangles
35
36 "Partition the data objects*/
37 for each data object
38 assign it to clusters or outliers based on the subspaces and hyper-rectangles
39 return the subspaces, hyper-rectangles and partitioning

Figure 3.6: The EPC Algorithm.

Chapter 3 EPC : Efficient Projective Clustering 3 0

i k

X ^ ^ Jf cluster oriented

^ — ^ ~ •

density uniformly distributed dense region

Figure 3.7: (a) 1-d projection of the cluster is uniformly distributed across the
whole dimension, (b) density of the 1-d projection is higher than background
noise for cluster oriented in the direction not parallel to the axis.

3.4 Major Steps

There are various technical details that are important for the efficiency or the

quality of the results. They are discussed in this subsection.

3.4.1 Histogram Generation

This step can be understood as compressing the information about all the data

objects to D 1-dimensional histograms, which enables us to discover the in-

teresting subspace very quickly. This compression introduces information loss.

Clusters that is not dense enough in any one of dimensions could not be dis-

covered. For example, when the the 1-d projection of the cluster spans across

the whole dimension, as shown in Figure 3.7 (a) where the 1-d projection is

uniformly distributed across the whole dimension. In general, even the cluster

is oriented in the direction not parallel to the axis, it can still be discovered

providing that its densities of its 1-d projection is higher than background

noise. Figure 3.7 (b) shows this case.

One important parameter of a histogram is the bin width h, which is the

width of the equi-width interval introduced in Section 3.2.2. It controls the

trade-off between undersmoothing or over smoothing the true distribution. In

Chapter 3 EPC : Efficient Projective Clustering 3 1

statistics literatures, there are several rules suggesting how to set an appropri-

ate value of h, or the number of equi-width interval. Sturges' rule [51] suggests

that if the data follows a normal distribution, the number of equi-width inter-

val for an ideal frequency histogram should be 1 + logiN. If the data are not

normal, but are skewed or kurtotic, additional bins may be required. Further-

more, it was proposed to increase the number of bins to W 2 (l + 7 / 1) , where

7 is an estimate of the standardized skewness coefficient.

In addition, it has been shown [50] that the optimal histogram bin size

VF can be obtained when W 二 3.49o"A^-i/3, where a is the standard deviation

of the distribution. However, we usually do not know the values of 7 and

a before constructing the histogram; we cannot have an accurate estimation

without data analysis with high complexity. Therefore, we have used a greater

number in Sturges' rule, since we would like to cater for other kinds of data

distributions. In the experiments, we set the number of equi-width interval

to be 200 for dimension ranges from -100 to 100. Since the computational

complexity is linear to this number, using a greater number is highly feasible.

3.4.2 Adaptive discovery of dense regions

The main challenge of the discovery of dense regions is how we can determine

the best threshold value to locate the projections of natural clusters, such that

(1) it does not require the user to input, (2) it can distinguish two kinds of

equi-width interval] those contains the projection of clusters, and those con-

tains only random noise. We allow values of the thresholds along different

dimensions to be different，which is driven by the data set distribution. Clus-

ters vary with their underlying distribution, spanning area, and number of

data objects being contained.

We explain with the help of a single cluster projection. Often a cluster

is more dense in its center, and less dense in the boundary, in where the

Chapter 3 EPC : Efficient Projective Clustering 3 2

Bell Shape Projection , ~ v .

/ \ Threshold 1

[^ Flat Shape Projection

Figure 3.8: Bell shape cluster and flat cluster.

density approaches random noise. Consider two extreme cases in Figure 3.8.

One projection of the cluster establish a "bell" shape which is denser in the

center, while another one form a "flat cluster" in which density inside the

cluster is constant. Even though the two clusters contain the same number of

data objects, the latter is more difficult to be discovered by a single threshold

value. Threshold 1 can detect the "bell" cluster, although missing some data

objects in the boundary, but will miss the ”flat，，cluster. In general projections

with uniform density are more difficult to be detected, since there are no peak

regions with the highest density in the projection. Therefore, we use cluster

in "flat" shape in the following analysis.

Consider Figure 3.9，the total number of data objects is N, and the total

number of histogram intervals in the subspace is H. There is a projection

in the subspace which contains F of N data objects, where 0 < -F < 1.

The projection spans f of H histogram intervals, where 0 < / < 1. We

establish a lemma which can tell us how to set the appropriate value of the

threshold to detect dense projections, based on the mean standard deviation

a of the data distribution, and the users' expectation on how large a cluster's

projection would span. Suppose the 1-d histogram for a dimension D is given

by A' = {Xi ,X2, . . . , Xp}. Let the mean value (告 E L i 足) b e fJ,. The standard

deviation cr is given by ^^ TA=i{Xi - j i f . The density of a projection is

defined as number of data objects falling onto the projection divided by number

Chapter 3 EPC : Efficient Projective Clustering 3 3

Projection from FN
data objects

Projection from (l-F)N
data objects

fH

H

Figure 3.9: Setting the appropriate threshold value,

of intervals the projection spans.

Lemma 1 If i / is the number of histogram intervals on a subspace and a

projection on this subspace consists of an uniform high density region spanning

f of H, and a low density region spanning (1 - /) of H, let p be the higher

density of the projection, /i be the mean, a be the standard deviation of the

distribution, 二 /i + ŷ y - Icr.

Proof: Without loss of generality, we move the region covered by the

projection with the highest density to the right, leaving all remaining random

noise to the left of the histogram, as in Figure 3.9. Let (Xi, be the

histogram values. Mean of the histogram values p = f . For the high density

region, 二 f f , since there are fH intervals with high density. For the low

density region, its density is since there are (1 — f)H intervals with

the low density. The square of the standard deviation a can be expressed in

terms of f, F, N, H as follows:

2 —斤
“ = — H

— [(發 - 丑 + (纖 - f) 2 (l - /)丑]
二 -

= (F - fY
= I p f { I - f)

Chapter 3 EPC : Efficient Projective Clustering 3 4

Now, we can derive a relationship of p with respect to fi, a as follows:

(� 2 (FN N , .
[P-N 二、西-J^)

F �

— I P � f ‘

— I P � f)

i P - f ^ f - A j - ^)
"二 + \jj -

I

Hence p can be expressed as /i + ccr, and value of c depends on the spread

of the high density region in the histogram projection. Note that the high

density occurrence can be in multiple intervals, i.e. if there are a number of

clusters and their projections in the histogram are not continuous, the lemma

still applies.

With this lemma, we can set the threshold to be lower than /i + ccr to

detect the projections with the highest density in the subspace. The value of c

is set according to the users' expectation on the number of intervals the most

spreading projections, that is the projections spanning the largest number of

histogram intervals on the subspace, should span. For example, if the most

spreading projections should span at most | of the total number of intervals

on the dimension, we can set c < y / j — 1 二 - 1 = 1. If it should span at

most I of intervals, we can set c < y/j^ = V^.

In the case when there are multiple projections on the subspace, we adopt

Chapter 3 EPC : Efficient Projective Clustering 3 5

an adaptive approach to iteratively lower the threshold value until no more

dense regions are discovered.

Specifically, we set the initial threshold value to be /x + ccr according to

lemma 1. In the first iteration, projections with densities lower than the thresh-

old would be treated as random noise. After detecting projections with the

highest density, their densities would be removed from the histogram. The new

and threshold would be calculated . This process is repeated until either

no more dense regions are discovered, or at most m time, since the user expects

to find at most m projected clusters. This method can effectively detect the

peak values and extract the corresponding dense regions, without pre-defining

the threshold. This idea is illustrated in Figure 3.10. In the figure, the dotted

lines indicate the threshold values used in the iterations.

In the example, we can also see another detail in the algorithm where

adjacent dense regions are merged to form bigger dense regions. For example

in Iteration 1，the 5th interval is considered dense, in Iteration 2, intervals 3,

4, and 6, 7 are considered dense. So in Iteration 2, a bigger dense region of

DRl is formed which ranges from interval 3 to interval 7.

We aim to find no more than m dense regions in each dimension. If at the

last iteration, totally more than m dense regions are found, we shall keep only

the m regions with the greatest number of data points.

Lemma 1 helps to explain why our method works very well in many cases.

A natural cluster typically does not span the entire domain when projected to

some low dimensional subspace. Lemma 1 shows that when projected to one

dimension, as long as the cluster does not span more than half the domain,

the density threshold of + cr is able to detect it. If the cluster spans less of

the domain, a higher threshold can be set accordingly.

Chapter 3 EPC : Efficient Projective Clustering 3 6

iteration 2
iteration 1 d r i d r 2 d r 3 d r 4

DRl DR2 h r — ^ , ~ ^

鬥「 _

— r t-H
t "I n . - f - S =n r - p - • ••

� 圓 丨 hmJI I w r J i 111 R k i 1111 k d i u l l h n r h l l l W f > J l l l l l l h P i
„ iteration 4 …

I t e r a t e s ^^^ DR3 d r 4 DRI DR2 DR3 ^

r — ^ r—1 , ~ ‘ ~ . ‘ ‘ ‘ “ �

di ^ 隱 … 彻

iteration 5 no more discovered dense region
DRl DR2 DR3 DIU

(‘ 1 (‘ > I ‘ I (^

dU ML frrrfln 函 Wc^

Figure 3.10: Adaptive approach to locate dense regions.

3.4.3 Count the occurrences of signatures

Given a data object, after generating its signature, we have to efficiently search

if the signature has been recorded, and if so update the object count. If

the number of dense intervals in each dimension is small, we can simply use

'Qi,...,Qd] as the index. In other cases, to speed up this searching we use a

hash funct ion to map the signatures to the memory buckets. Suppose we

have a signature Q = [Qu Q2,--'Qd] the hash function will map this to a bucket

with an address of Qi + (̂ 2 + … + Qd. If two signatures are hashed to the same

address, then a linked list is used to keep the overflowing buckets.

When there exists an underlying clustering structure, many data objects

should share the same signatures. Thus there should only be a small number

of distinct signatures compared with the total number of data objects.

3.4.4 Find the most frequent signatures

All the signatures can be ranked in descending order of object counts, by a

classical quick sort algorithm. Those top ranked signatures tell us the locations

and the associated subspaces of clusters containing the largest number of data

Chapter 3 EPC : Efficient Projective Clustering 3 7

objects. We are only interested in discovering at most m clusters, so it seems we

need only keep m signatures. However, some of the signatures can be，similar’，

and they may actually refer to the same projected cluster (this relationship

would be discussed in the following subsection). Therefore we have to keep

more than m signatures. From experiments, it is sufficient to keep 3 x m of

the top ranked signatures and discard the remaining ones.

3.4.5 Refine the top 3m signatures

If we find a signature Q with a large object count, and there are occurrences of

some similar signatures with smaller counts, we may want to merge the similar

signatures to Q and hence their counts. The reason for this can be explained

with an example. Suppose in a 3-dimensional space A B C , we have a projected

cluster with subspace A B , and C is an unrelated dimension. As expected, most

data objects should have the same signature, say [1,2,0]. Occasionally, as data

in the cluster are randomly distributed in dimension C, some objects may fall

in some other dense regions in this dimension, which is contributed by other

projected cluster with C as a correlated dimension. As a result, some data

objects in this cluster may have signatures [1,2,2], [1,2,5], etc. We observe that

if signature [1,2,0] has a high object count, while signatures [1,2,2], [1,2,5] have

lower object counts, probably [1,2,2] and [1,2,5] refer to the same cluster as

[1,2,0].

The question is how we can determine if two signatures are ,similar，. Cur-

rently we employ the heuristic that two signatures are similar if their number

of differing components < 告.

There may be cases where two clusters are located closely in the common

set of correlated dimensions, and would be merged as a single cluster. We

can identify such cases by post-processing using other traditional clustering

methods. However, for large data set with sparsely distributed objects and

Chapter 3 EPC : Efficient Projective Clustering 3 8

high dimensionality, this case rarely occurs.

3.5 Time and Space Complexity

Let s be the number of different signatures generated. Let p be the number of

equi-width intervals at each dimension. For time complexity, it takes 0{DN)

time in the first step for histogram generation (Lines 1—4 in Algorithm 3.1),

since it sums influences of each data object for each dimension. In the second

step adaptive discovery of dense region (Lines 7 - 12 in Algorithm 3.1)，it takes

0{mpD) time as it takes at most m iterations, and in each iteration, each of

the D 1-d histogram is scanned twice. By the way we uncover dense regions,

the number of dense regions at each dimension is 0{m).

In the third step for deriving and updating signatures (Lines 15 - 22 in

Algorithm 3.1)’ for each data object, it needs to check 0(m) dense regions on

each of the D dimensions, and thus it takes 0{mND) time for generating all

signatures. Once a signature is generated, the address of the bucket storing

this signature entry is calculated by a hash function, which takes constant

time.

Let s be the number of remaining signatures. To find the most popular

signatures (Lines 25-26 in Algorithm 3.1), it takes 0[slogs) time on the average
for using a quick sort.

For signature merging (Lines 29 — 34 in Algorithm 3.1), we need to com-

pare every pair of signatures to determine whether they are "similar", this

takes D) time. To remove the outlier groups and transform the remaining

signatures to corresponding subspaces and hyper-rectangle, it takes at most

0{sD) time. Finally, to partition the data objects (Lines 37 - 39 in Algo-

rithm 3.1, we have to check each data object against all cluster configurations,

it takes 0{mND).

Since we can assume N » p, the total running time would be 0{mND) +

Chapter 3 EPC : Efficient Projective Clustering 3 9

0{s'^D). We can also assume that mN > so that the running time is

dominated by 0(mND). Therefore the time complexity is linear in the number

of data objects, the number of dimensions and the number of clusters.

For space complexity, storage needed to store the D 1-d histograms is

0{pD). The linked list used to store all discovered dense regions needs 0{mD)

space, since there are 0{m) dense regions for each dimension. We use a hash

table to keep signatures and their object counts. Since at each dimension we

uncover 0 (m) dense regions, so the number of possible values for Qi, I <i <

D is 0 (m) , for a signature Q = [Qi, O2,…，Qd]. We need 0{s) space for

handling overflowing buckets. Hence the space needed to store the hash table

for signatures with the counts is 0{mD + 5).

Chapter 4

EPCH: An extension and

generalization of EPC

4.1 Motivation of the extension

EPC outperforms PROCLUS in terms of clustering quality and actual running

time, from the experimental results presented in Chapter 5. However, when we

exam data sets with more complicated data distribution, we observe that there

are three types of associated subspaces, as shown in Figure 4.1. Type I is the

set of subspaces formed by axes parallel vectors, and the spreading directions

of data objects are also parallel to original axes. Type II is a superset of Type

I，which includes subspaces formed by axes parallel vectors, but we relax the

restriction that the spreading of data objects can be in arbitrary directions

on the corresponding subspace. Type III is the most relax one, it includes

subspaces formed by any sets of orthogonal vectors, in which the vectors need

not to be parallel to the original axes. For example, for a data set in the

3-d space ABC, there exists a projected cluster with 2-d subspace, composed

by 2 orthogonal vectors = 0.5A + 0.2B + 0.4(7 and v) 二 0.2A + 0.55 —

0.5(7. Neither vi nor V2 is parallel to the original axes. Notice that even the

subspace is formed by 2 vectors, both vectors are contributed by all the three

dimensions..

40

Chapter \ EPCH: An extension and generalization of EPC 4 1

‘ l O 1 ^J %
Spread direction\^^

Spread direction � ,
• • •

Type I: Subspaces formed by J^P® Subspaces formed Type HI: Arbitrary subspaces
a L s parallel vectors, with by axes parallel vectors, with formed by vectors not

axes parallel spreading 虹bitrary spreading direction parallel to original axes
on the subspace

Figure 4.1: Subspaces detected by different algorithms

Both PROCLUS and EPC is good in uncovering the Type I subspaces, in

which the data objects are located closely together in each of the bounded

dimensions. PROCLUS uses Manhattan segmental distance as measurement

of whether two data objects are close in the corresponding subspace, and EPC

uses 1-d histogram to model data projections on any single dimension. In both

cases, they favor in discovering clusters which contain data objects spreading

along certain directions parallel to original axes.

ORCLUS solves the most general problem. It can detect arbitrarily ori-

ented subspaces formed by any set of orthogonal vectors, which is the Type III

subspace. In some problem domains, applications need to uncover arbitrarily

oriented subspace. However, as pointed out in [35], in many real life appli-

cations, original coordinate axes do have special meaning. Patterns naturally

exist in subspaces formed by axes parallel vectors. For example, a customer

database contains three attributes: age, income and number of family mem-

bers. We may discover one projected cluster in the subspace [age, income], and

another projected cluster in the subspace [age, number of dependent], with the

following interpretation: a typical group of customers with age in range A, in-

come with range B and independent of number of dependent is interested in

the new product; an interesting buying behavior and correlation exist between

age in range C and number of dependent in range D. Furthermore, when the

Chapter \ EPCH: An extension and generalization of EPC 4 2

dimensionality is growing to very high, pattern typically exists with a small

subset of dimensions, i.e. subspaces where patterns exist are commonly formed

by a small subset of axes parallel vectors, but not vectors contributed by all

dimensions.

As a consequence, we target to discover patterns which can be observed

after projecting onto Type II subspace. The vectors forming the subspace

are only related to a small subset of bounded dimensions, but not all dimen-

sions. Certain correlations exist among the bounded dimensions, such that the

spreading direction may be arbitrary. EPC may miss some of these kinds of

patterns, as the arbitrary spreading may not produce dense projection on any

single dimension, as in Figure 3.7. Also, EPC would combine two projected

clusters, if their projections on a single dimension are overlapping.

Furthermore, all PROCLUS, ORCLUS and EPC are hard clustering tech-

niques, which assign a class label k to each data object Xi, identifying its class.

For many applications in customer segmentation and trend analysis, a parti-

tion of data objects is required. Partition also provides clearer interpretability

of the results. However, consider figure 4.2. Unlike traditional cluster, a data

object can be fallen into more than one cluster under different projections. In

such case, it would be difficult to assign a single class label to it. Even in the

synthetic generated data set, a data object is targeted to be generated from

projected cluster A can be actually nearer to projected cluster B. Therefore,

in the context of projective clustering, fuzzy clustering is more prefer. Fuzzy

clustering can assign to each data object Xi a fractional degree of membership

fij in each output cluster j.

Therefore, we extend EPC to uncover Type II subspace, as well as to pro-

vide fuzzy clustering result. EPC is generalized to use multi-dimensional his-

tograms to model the data distribution, with the trade-off between increasing

clustering quality and increasing time and space complexity. In this chapter,

we present the idea in the generalized framework, which we denote as EPCH

Chapter \ EPCH: An extension and generalization of EPC 4 3

C 丨丨丨I

Z f f l / B
I / A s ingle data object can n a t u r a l l y

/ / / jC I ' f a l l s into more than 1 pro jected

囊—
：D subspace d e f i n e d M y 2 orthogpna^ _ {

vectors / I I > V

/ � ： 弘
/ 2D subopace de f ined by 2 orthogonal

Z vectors

~ 7 A

Figure 4.2: A data object falls into more than one cluster under different
projections

(Efficient Projective Clustering using Histogram). We denotes d as the dimen-

sionalities of the histograms that we construct. In particular, we describe an

implementation of EPC2, which we set d 二 2. In the following discussion, We

follow the general notations used in Chapter 3.

4.2 Distinguish clusters by their projections

in different subspaces

In the discussion of EPC in Chapter 3, we consider projections of data objects

on each dimension, which we can consider as l-d subspace. A dimension is

bounded with respect to an associated subspace if it is included in the sub-

space. With histograms in higher dimensionality, we can examine densities of

projections on subspaces with higher dimensionality. The subspace is bounded

Chapter \ EPCH: An extension and generalization of EPC 4 4

/ 們
c f-r \

i i I i B P
S i n g l e p r o j e c i o n ^ / / Y '

• I I I : / j

s i n g l e p r o i ^ ^ i o n T / 广

on { / / 。 j

/ • A
/ P r o j e c t i o n s o v e r l a p on s u b s p a c e A

Figure 4.3: Projections overlap on subspaces with lower dimensionality.

with respect to an associated subspace if it is a subset of the associated sub-

space. Two projected clusters can be differentiated if l)they produce non-

overlapping projections on a bounded subspace, or 2)they produce projections

on different bounded subspace. In real data set, projections of clusters often

overlap on some subspaces with lower dimensionality, as in figure 4.3. Ci is

associated with subspace A C , Cj is associated with subspace A B . They share

a common subspace A. When we examine subspace A , because their projec-

tions are over-lapping, we cannot distinguish two clusters and will merge them

together. In subspace B or C, we can distinguish these two clusters, because

Ci would not produce dense projection on B as it spread along B, Cj would

not produce dense projection on C.

Therefore, if there are some subspaces which contain only one projection,

these subspaces can help us to identity the corresponding projected cluster.

Consider example 5:

Example 5 There are four dimensions, A, B, C, D, five clusters with sub-

spaces 二 AC, = AB.Ss = BC,54 二 BD,55 = A D respectively. If we

Chapter \ EPCH: An extension and generalization of EPC 4 5

construct 5 1-d histogram to model the data density, histogram on A may not

help to identify any cluster, since Si,S2,Ss may produce overlapping projec-

tions. Similarly, histogram on B, C, D may not be able to identify any cluster,

since subspace B , C, D may contain overlapping projection from more than

one cluster.

However, if we construct 2-d histogram, histogram on A C , B C , B D can

identify 5\，&3,5^4 respectively, since these subspace would contain projection

from only one cluster.

In general, a subspace can identify a cluster if it is the bounded subspace

of only one cluster, and it is the unbounded subspace of other clusters. As-

sume the associated subspace of each cluster is independent to each other, the

probability of a d-dimensional subspace to be the bounded subspace of exactly

one cluster is :

- 与 f - i (4.1)

Did D^d

Let N{D,d) 二D Cd be the number of d-dimensional subspaces, P be the

probability obtained from Equation 4.1. The probability of at least K d-

dimensional subspaces to be the bounded subspace of exactly one cluster is

N{D,d)

E (N(D， cO以巧计卜•） （4.2)
i=K

By Equation 4.2, building histograms with higher dimensionality gives us

a higher probability that more subspaces are the bounded subspace of exactly

one cluster. In general, histogram with higher dimensionality helps us to un-

cover cluster more easily, with the expense of increasing complexity.

Chapter \ EPCH: An extension and generalization of EPC 4 6

4.3 EPCH: a generalization of EPC by build-

ing histogram with higher dimensionality

4.3.1 Multidimensional histograms construction and dense

regions detection

Given a set of n observed data points Xi,X2,…，Xn and each data points is a

d-dimensional vectors Xi 二 (X , - ^ , w e can model the data density in

the multivariate case by extending the univariate density estimation function

and kernel function as stated in Equation 3.1 to d-dimensional space as the

follows:

f �= 华 … ， (4 . 3)

where K{x) satisfies /丑d K{x)dx 二 1.

To approximate 户(>)efficiently, we first divide each of the d dimensions

into a number of equi-width intervals with length h. A histogram cell is a

single unit formed by an intersection of the intervals. Then, we construct

multidimensional histogram in d-dimensional space as the follows:

{"^(x) = - ^ (n o . of Xi in same histogram bin as x) (4.4)
J ^ ̂

The number of d-dimensional histograms we have to construct is DCU, in-

stead of D comparing to 1-d histogram in Chapter 3. Now, each d-dimensional

histogram corresponds to the estimation of data distribution in the d-dimensional

subspace.

Density of the projection on the d-dimensional subspace would be approx-

imated by the number of data objects located inside the projection estimated

by the histogram, over the number of cells spanned by the projection. Dense

Region is the group of connected cells with densities above a certain threshold.

Chapter \ EPCH: An extension and generalization of EPC 4 7

As similar to Chapter 3, we use D R ^ to denote the dense region on subspace

Si with dense id equals to m. We apply similar adaptive dense region discov-

ery as described in Section 3.4.2, by iteratively recording and removing cells

that have been detected as dense, and calculate the new [x, a and threshold as

H ca for the next iteration.

4.3.2 Compressing data objects to signatures

Each D-dimensional data objects would be compressed to signature Q with

DCd entries. The 产 entry represents the dense region, if any, where the data

object is located in subspace Sj. Specifically,

Q 二 [Qi，仏’…，Qi/.

0 if the object does not fall into

any region in subspace Sj,
where Qj = \ g.

m if the object is located in DRm

in subspace Sj.

Each non-zero entry corresponds to a bounded subspace, and each zero

entry corresponds to an unbounded subspace.

From the signature, we can estimate the associated subspace of the pro-

jected cluster, in which the corresponding data object is likely to belong to.

Here we call the estimated associated subspace as derived subspace, and

the actual subspace of cluster the data object should belong to as associated

subspace. Consider example 6.

Example 6 Suppose there are four dimensions A , B , C, D, and we have

constructed 4C2 = 6 2-d histograms.- The signatures should contain 6 entries,

where the first, second ... entries corresponds to subspace A B , A C , A D , B C ,

BD，CD respectively. Consider Oi, its signature is [2 0 0 1 0 0]. Its bounded

subspace is A B and B C . We estimate the associated subspace of cluster the

Chapter \ EPCH: An extension and generalization of EPC 4 8

data object belongs to (the derived subspace) as A B C . However, if the asso-

ciated subspace is A B C , all A B , B C , A C should be the bounded subspace.

There are two possible reasons. 1. B C is not the bounded subspace, Oi just

occasionally fall into some dense regions in BC. In such case, the associated

subspace should be A B . 2. A C should also be the bounded subspace, but Oi

is located in the boundary of the projection on AC, in which the location is

not considered as dense.

Consider Ch, its signature is [2 3 0 2 0 0]. Its bounded subspace is A B ,

A C and BC. Its derived subspace is A B C . This time, since all 2-d subsets

of A B C are bounded subspace, we are quite sure that the derived subspace

should match the associated subspace. Comparing these 2 cases, we call the

derived subspace A B C is of high confidence level for O2, and it is of lower

confidence level for Oi.

We estimate the derived subspace of a signature, by union all corresponding

bounded subspace. Here, we define the confidence level of a derived subspace

with Ij dimensionality, estimated by d-dimensional histograms for data object

Oi as:

number of bounded subspaces in signature of Oi 旬

ijCd

This corresponds to the ratio between the number of bounded subspace in

the signature of the data object, and the number of all possible d-dimensional

subsets of the derived subspace. When this ratio approaches 1, the derived

subspace should be an accurate estimation of the associated subspace.

Two signatures having the same derived subspace can be in two different

projected clusters, if they are in different projection in some bounded subspace.

Consider example 6, dense id of bounded subspace A B , B C of Oi is 2, 1

respectively; dense id of bounded subspace A B , A C , B C of O2 is 2, 3, 2

respectively. Both two data objects Oi, O2 have the same derived subspace

Chapter \ EPCH: An extension and generalization of EPC 4 9

ABC. However they should be in two different projected cluster, since they

share a common bounded subspace BC but with different dense id — Oi is

in D R f c while O2 is in D 間 � . W e call the common bounded subspace of

two data objects conflicting if they have different dense id in this bounded

subspace.

To compress the original data set, we derive signatures of every data object.

Their derived subspace, dense id of bounded subspaces and the corresponding

confidence level are then inserted into a signature list. Every entry in the

signature list records the derived subspace, dense id of bounded subspaces

from data objects contributing to this entry, and a weighting. Signatures with

the same derived subspace and no conflicting bounded subspaces would be

combined and inserted into the same entry of the list, where the weighting of

the entry would be calculated as the summation of the confidence level of the

data objects contributed to this entry.

4.3.3 Merging Similar Signature Entries

Each entry in the signature list corresponds to a group of data objects with the

same derived subspace and sharing no conflicting bounded subspaces. Most

likely, this group of data objects are from the same projected cluster. However,

there are often cases that data objects from the same projected cluster would

have different derived subspace, and thus contribute to different entry in the

signature list. Consider Example 7.

Example 7 Suppose there are four dimensions A, B, C, D. The signatures

contain 6 entries, where the first, second ... entries corresponds to subspace

A B , AC, A D , BC, BD, CD respectively. Consider Oi, O3, O4, their

signature are [2 0 0 2 0 0], [2 0 0 1 0 0], [2 0 1 0 3 0] and [2 0 1 0 3 2]

respectively, and their derived subspace are ABC, A B C , A B D , ABCD.

Although Oi and O2 have the same derived subspace, they are inserted into

Chapter \ EPCH: An extension and generalization of EPC 5 0

different entry in the signature list because they have the conflicting subspace

BC. Oi and O2 are totally dissimilar.

O3 and O4 have different derived subspaces and are in different entries,

but they share many common bounded subspaces. They can be in the same

projected cluster if O3 fall in the boundary of the projection on CD, or O4

occasionally fall in the projection on CD. We consider O3 and O4 are similar.

O2 and O4 have different derived subspaces, and they share only one com-

mon bounded subspace in the total of 5 bounded subspaces. O2 and O4 are

not similar.

We want to merge ”similar” signature entries, as they may correspond to

group of data objects locating in the same projected cluster. We define the

similarity between two signature entries as

� number of common bounded subspaces , �
SIO- O) : ~ — (4.6)

” total number of different bounded subspaces

Signature entries sharing large proportion of common bounded subspaces

would have a high similarity value and can be considered as similar. We keep

only kxm top ranked signature entries to speed up the merging process, where

signatures with low weighting would be pruned away (in current implementa-

tion, we set k to be 50). Similarity of every pair of the remaining signature

entries would be computed according to Equation 4.6. We continually combine

the pair of signature entries with the highest similarity until reaching a ter-

mination criteria. One termination criterion is when the number of signatures

reaches m. However, if the signatures are quite different before we reach m,

then the merging is stopped when we see a sudden drop of the highest similar-

ity among the signature, or the highest similarity is already less than a lower

bound threshold (in current implementation, we use a threshold of 0.3). We

do a final sorting in descending order of weighting. The remaining signature

entries correspond to the clusters and subspaces detected by the algorithm.

Chapter \ EPCH: An extension and generalization of EPC 51

At most max.no.cluster signature entries with the highest weighting would

be kept after merging: if there are max jno.cluster or more signature entires

then the top max .no.cluster signature entries are kept, otherwise all the sig-

nature entries are kept. Each signature entry corresponds to a projected clus-

ter, where its derived subspace represents the associated subspace, and the

recorded dense_region id locates the cluster on the subspace.

4.3.4 Associating membership degree

As illustrated in figure 4.2, because the nature of projective clustering does

not produce clear partitioning, in which a data object can be contained in two

or more different projected clusters, we apply the concept of fuzzy clustering.

Each data object is associated a membership degree for each discovered pro-

jected clusters. When comparing the clustering quality with other projected

clustering algorithms in chapter 5, an data object would be assigned to output

cluster with the largest degree of membership, or as outlier if no membership

degrees exceeds a certain threshold.

We define a membership function for data object Om with cluster Cn,

using the signature of Om and the dense id in the bounded subspaces recorded

in the signature entry corresponds to Cn:

no. of matched bounded subspaces
member{Om, Cn) 二 no. of bounded subspaces in the signature list of Cn

(4.7)

Equation 4.7 measures the degree of membership in terms of similarity be-

tween the signature of the data object and the cluster. If this measurement

approaches 1, that means the data object is located in all dense regions pro-

jected by the cluster. Thus, it has the strongest membership degree. On the

other hand, if this approaches 0, that means the data object is not located in

any dense regions projected by the cluster.

Chapter \ EPCH: An extension and generalization of EPC 52

For hard clustering, we first compute the membership functions, then an

data object would be assigned to output cluster with the largest degree of

membership, or as outlier if no membership degrees exceeds a certain threshold.

We can also identify outliers if the membership degrees of the data object

to all discovered cluster are low, (e.g. in current implementation we use 0.1), or

we can specify an expected percentage of outliers and such an amount of data

with the lowest degrees of membership will be considered outliers, or criterion

formed by a combination of outlier percentage and the membership values.

4.3.5 The choice of Dimensionality d of the Histogram

As shown in Section 4.2, when increasing the dimensionality of the histogram

we build, chances for successfully detecting the projected clusters would be

increased, with the trade-off of higher complexity. For different data set with

different subspace property and distribution, appropriate value of d varies.

User may not be able to choose the value which give satisfactory cluster result

and acceptable computational time. Here we propose a framework in which

user do not need to select the d value.

First we perform a very fast clustering using l-d histograms. If the 1 - d

histograms cannot detect and distinguish clusters well, data objects would be

associated with low degree of membership, in which many of them would be

outputted as outliers. We record the detected clusters and partitioned data

objects. The unpartitioned data objects (which are outputted as outliers in

this run) would be input to the next run, in which we do clustering using 2-d

histograms. We continue this approach with higher dimensionality histograms,

until the number of outliers remained is less than a certain fraction of data

objects (e.g. 5% of the whole data set), which are actually random noise.

Chapter \ EPCH: An extension and generalization of EPC 5 3

4.4 Implementation of EPC2

This section describes the implementation of EPC2, which chooses 2 to be the

dimensionality of the histograms d to be constructed. The same approach can

be applied for other values of d.

The overall algorithm consists of five phases. Histogram Building phase

builds o C d histograms, each corresponds to one c/-dimensional subspace. First,

we divide each of the d dimensions in the subspace into 400 equi-width inter-

vals. For each data objects, we identity the cell where the object locates in

each subspace, and update the corresponding histogram.

Dense Region Detection phase works iteratively to identify all dense

regions. In each iteration, for each histogram, we calculate the mean fi and

standard deviation a of the distribution, and set the threshold 7 to be p =

cr + c7. (In EPC2, we set c 二 5.) Cells with density above 7 are recorded

and removed. All the adjacent recorded cells are connected by a recursive

algorithm, the connected cells are labelled as a dense region. The new /i,(J

and 7 are updated, and start the next iteration. Iteration would be terminated

when 7 does not change after one iteration, or at most max.no.cluster dense

regions have been detected.

Signature List Construction phase examines each data object, derive

its signature according to the id of the dense regions the object locates in

each subspace. If the object does not fall into any detected dense region

in a subspace, its corresponding entry in its signature would be zero. From

the signature, we find the derived subspace by union all bounded subspaces,

and its confidence level according to Equation 4.5. These information would

be inserted into the signature list, where signatures with the same derived

subspace would be combined into a single entry. The weighting of a single entry

would equal to the summation of confidence levels of signatures composing it.

Merging similar Signatures phase sorts the signature entries in the list

Chapter \ EPCH: An extension and generalization of EPC 54

according to descending order of their weighting, where signature entry with

higher weighting corresponds to cluster with more number of data objects and

clearer associated subspace. We keep only 50 x maxjno.cluster top ranked

signature entries, where signatures with low weighting would be pruned away.

(From experiments, 50 x max.no.cluster should be a number large enough

to hold relevant signature entries. We also try using 40 X max.no.cluster

or 60 X maxjio.duster, but the results does not vary too much.) Similar-

ity of each two remaining signature entries would be computed according to

Equation 4.6. We continuously merge two signature entries with the greatest

similarity until the greatest similarity is less than 0.3. We do a final sorting in

descending order of weighting. The remaining signature entries correspond to

the clusters and subspaces detected by the algorithm. In case if the number

exceeds max.no.cluster, only top max.no.cluster would be kept and reported

to the user.

Membership Degree Assigning phase associates each data object and

discovered cluster a degree of membership according to Equation 4.7. Hard

clustering result can be produced by assigning data object to cluster with

largest degree of membership. Outliers can be detected if the membership

degree of all clusters are lower then a 0.1.

4.5 Time and Space Complexity of EPCH

In this subsection, we let m 二 max jno.cluster, and h be the number of equi-

width intervals. In the Histogram Building phase, we need to scan the

database once, and build DCU histograms. The time complexity is O (iVZ)�.

The space needed to store the histograms would also depend on the number

of equi-width intervals h, which is

In each iteration in Dense Region Detection phase, we have to scan

each histogram twice to calculate the new threshold and detect dense regions,

Chapter \ EPCH: An extension and generalization of EPC 5 5

which takes time. Since the number of iteration is upper bounded by

m, the total time complexity in this phase is thus We do not need

additional space complexity in this phase.

In Signature List Construction phase, we scan the database once and

derive signatures for each data object based on the oCd histograms. The time

complexity is 0{ND'^). For each signature, on average it corresponds to iCd

bounded subspace. The time for finding the derived subspace and confidence

level is If the signature list is kept in a hash table, the expected time for

insertion into the signature list is OiJMl巧.Thus, the total time complexity is

The space complexity for storing the signature list is 0{NDI'^).

Sorting in Merging Similar Signatures phase while keeping only the

top km signature entries takes 0{Nlog{k'm)) time. Since we keep only top

km signature entries, computation of similarities between each pair takes to-

tally 0((A;m)2/勺 time. The merging takes at most km iterations. The total

time complexity is 0{Nlog{km) + {kmfl'^). We can also record the similari-

ties between each pair of signature entries, and update only the values of the

newly merged entry in each iteration. This can reduce the complexity to be

0{Nlog{km) + {kmfl^), with the additional space complexity of 0{{kmf) for

storing the similarity values.

In Membership Degree Assigning phase, it takes 0{Nml'^) to assign

degree of membership between each data object and cluster pair. The space

complexity for this is 0{Nm).

Thus, the total time complexity is 0�ND^+mhD"^N(/+D^�+NIog�km�+

+ Nmia), if we consider log{km) small, this can be simplified to

+ rnh^) + l\{kmf + Nm). The space complexity is

Nm). In particular, in current implementation of EPC2, we set a fixed value of

h, and d is fixed to be 2, the time complexity is thus 0{N{D'^ + Pm) + {kmf)).

For 1-d histograms, d=l, the time complexity is 0{N{D + Im) + l{kmY).

Chapter 5

Experimental Results

We present several experimental results and their analysis in this section. We

have implemented PROCLUS, ORCLUS, EPC [36] , and EPC2 (EPCH with

2-d histograms), and would like to compare their performance differences in

terms of clustering quality and running time.

5.1 Clustering Quality Measurement

There are three different quality measurements that we shall use:

• Confusion Matrix is often used to evaluate the clustering result of

synthetically generated data. Specifically, it is a p x p matrix, where

p is the number of natural clusters. Entry records the number

of data objects belonging to the natural cluster i, that is assigned to

the output cluster j . Obviously, if we can observe a clear one-to-one

mapping between each output cluster to a natural cluster, the clustering

quality is good. The left hand side of Table 5.1 shows an example of

good clustering result, in which we can find clean one-to-one mappings

between each pair of output and natural clusters. The right hand side

represents a bad clustering result, e.g. output cluster 1 and 2 split natural

cluster 1, and output cluster 3 merges natural cluster 2 and 3.

56

Chapter 5 Experimental Results 5 7

oSyutli 叫 0 11 12 13 pgqoutli 叫 0 11 卩卩
Outlier 154 " " “ ~ Outliei 198 101 ^
0 0 0""“04^0""“ 0 45 W W A9 25
1 0 9Qo"o""“00”“" 1 yi W m T i o
2 1 io~~0""“0W 2 Tl 6 " " “ 0 " " “
T 0 3 12”"8“TT~5frwr

Table 5.1: Confusion matrix of good and bad clustering result

• Dominant Ratio: [4] suggested a measurement dominant ratio to

evaluate the quality of the clustering. This is the average fraction of data

objects in each output cluster which are populated by the most dominant

natural cluster. For each output cluster, we identify the natural cluster

which contains the largest number of data objects. Then, we calculate

the percentage of data objects in the output cluster which was populated

by this natural cluster. Averaging this value over all output clusters yield

the dominant ratio. A good clustering should have the dominant ratio

close to one.

Here, we argue that this single measurement may not be able to justify

a good clustering when the number of natural clusters may not match

the output clusters (either by inappropriate estimation by users, or by

wrong estimation by the clustering algorithm) . Consider an extreme

case where there are many output clusters so that each natural cluster

becomes a number of output clusters. The inappropriate splitting of

natural clusters could still produce a dominant ratio of 1.

• Coverage ratio: Therefore, in addition to dominant ratio, we propose

another measurement called the coverage ratio, which in a way comple-

ments the dominant ratio. This is the average fraction of data objects

in each input cluster which are covered by the most dominant output

cluster. For each natural cluster, we identity the output cluster which

Chapter 5 Experimental Results 5 8

contains the largest number of data objects. The percentage of data ob-

jects in the natural cluster which are populated by their dominant output

cluster is calculated, which would be averaged over all natural clusters to

yield the coverage ratio. Similarly, there would be cases where an output

cluster combines several natural clusters and still give rise to a coverage

ratio close to 1.

We can evaluate the effectiveness of a clustering algorithm by the result-

ing dominant and coverage ratio. A good clustering result should yield both

dominant ratio and coverage ratio close to 1. In this case, all output clusters

can cleanly map to natural clusters, no output clusters combine several nat-

ural cluster; at the same time, no natural clusters are split by several output

clusters. For clustering algorithm which often splits natural clusters, the dom-

inant ratio would be much higher than the coverage ratio. On the other hand,

if the coverage ratio is significantly larger than dominant ratio, the clustering

algorithm often combines natural clusters.

5.2 Synthetic Data Generation

We generate data sets with different properties.

• PR-Set: follows the data generation in [2] (PROCLUS), where both the

vectors forming the subspace and the spreading directions of the clusters

are parallel to the original axes, (as shown in Figure 4.1a.) Associated

subspaces of clusters are with varying dimensionality. Data objects follow

normal distribution in bounded dimensions with small variance. Clusters

in this data set should be easier to be detected, as its projections to any

single bounded dimension is very dense.

• AP-Set: models clusters associated with arbitrary subspaces (as shown

in Figure 4.1b). It follows the data generation described in [3] (ORCLUS)

Chapter 5 Experimental Results 5 9

with some modification so that the bounded subspaces are not deter-

mined by all of the original dimensions. Specifically, dimensionalities of

all associated subspaces are set to a fixed value I. For each cluster, we

choose randomly I dimensions as its bounded dimension, and then gener-

ate I orthogonal vectors randomly in the subspace formed by the bounded

dimensions (by finding eigenvectors in a randomly generated symmetric

matrix). We select e vectors randomly from the I eigenvectors to form

the orientation of the cluster. Anchor point of each cluster would be

randomly chosen. Data objects distribute along e vectors defining the

orientation in its associated subspace, following normal distribution with

their mean at the anchor point. In other unbounded dimensions, they

distribute randomly. We set I and e to be 6 in the base case.

In real life application, data often contains outliers (data object do not

belong to any cluster, or random noise), and dimensionalities of different asso-

ciated subspaces need not be the same. Therefore, we generate two variations

on the AP-Set.

1. APN-Set is the same as AP-Set which includes a certain percentage

of outliers, (we use 5 % of noise in the base case.)

2. APD-Set contains clusters with associated subspaces with varying di-

mensionality. In particular, for data set with 5 clusters, we set the di-

mensionalities of associated subspaces of clusters to be 4, 5, 6, 7, 8.

We use these two data sets to evaluate performances of different algorithms on

data with these two properties.

5.3 Experimental setup

All the experiments have been performed on a 12 UltraSPARC-II 400 MHz

machine with 8GB RAM, running Solaris 7. The algorithms are implemented

Chapter 5 Experimental Results 6 0

using C language and gcc compiler v2.7 without code optimization. For PRO-

CLUS implementation, we set the number of seed points to be 2% of data

objects, and number of iterations allowed for no quality improvement to be

20. For ORCLUS implementation, we use the parameter values suggested

in [3], except that we set the reduction factor a of the number of clusters in

each iteration be 0.8 instead of 0.5 to obtain a more accurate clustering result.

For data set with outliers, we follow suggestions in [3] to add outlier han-

dling implementation, and name it as ORCLUS .outlier. For implementation

of EPC2, we set the threshold to detect the dense regions to be ^ + 5cr, and

the number of top ranked signatures we would like to keep be 50 x m, where

m represents the number of clusters users are interested to find. We report

here some special properties of each clustering algorithm and general trends.

5.4 Comparison between EPC and PROCULS

Since both PROCLUS and EPC are targeted to discover clusters in PR-Set,

and both can report the bounded dimensions of the associated subspace, we

evaluate their clustering qualities, accuracy of identification of subspaces, and

running time in this data set. We vary N from 3000 to 200000, and set D 二 20.

In EPC we set the number of bins in each histogram to 200, which is much

greater than 1 + logiN. In order to evaluate how many clusters are correctly

discovered, and the number of correctly uncovered bounded dimensions in the

corresponding associated subspaces, we set the criteria of clear ”one-to-one”

mapping in the resulted confusion matrix as follows:

Output cluster X has a clear ” one-to-one，，mapping to natural cluster Y,

if more than 60% of data objects from Y are reported to belong to X, and X

contains no more than 20% of data objects from other natural clusters. Based

on this criteria, a natural cluster is said to be correctly discovered if we can

find a clear "one-to-one" mapping between this cluster and an output cluster

Chapter 5 Experimental Results 6 1

；:;;;rt^j0utlier|0 11 12 13 14 |;; ; ;^'|0utlier|0 11 |2 |3 14 ——
Outlier ~ ~ T 2 Q ~ l 5 6 ~ " 8 3 1 2 ^ " 3 5 " “ Outlier 6 l 4 0 0 ^ _ _ 1 2 _ _ _
0 0 0 0 0 a l68 0 0 25 0 0 810 0 207
1 0 0 0 6 0 8 1 9 " 1 55 34""”624 0 0 102
2 0 0 0 " " “ 0 2 33 "3 0 0 0 267
3 0 0 0 0 3 1 0 3 " “ “ 6 7 0 0 122 215
4 |o |o |o |o |o |o 14 |25 |l2 |o |o |3099 丨51

(a) (b)

Table 5.2: Confusion matrix obtained for PR-Set with 6000 data objects from
(a)EPC, (b)PROCLUS.

lEPC [PROCLUS
Data Set Correctly Percentage Correct Correctly Percentage Correct

discovered of coirectly dimension/ discovered of conectly dimension/
clusters partitioned Total clusters partitioned Total

data objects dimension in data objects dimension in
the correct the correct

clusters clusters
3000 _ 4 86 19/19 2 72 6 / 1 0 ~
6000 — 4 ~~9l~~~ 18/18— 2 ‘ 65 —7/10
10000— 5 84 25/25 — 3 88 7 / 1 4 ~
20000 4 ~ ~ n ~ 20/20 0 0 — 0/0
30000 一 5 ~ E ~ 25/25 ~ 2 ‘ 39 —10/12
50000 ~ 3 94 15/15 2 81 6 / 1 0 ~
65000 ~ 4 94 19/19 3 91 11/1厂
80000 ~ 4 94 17/19 — 4 88 16/26~
100000— 3 78 13/13 0 0 0/0 一

200000 I 5 I 90 I 25/25 | 2 | 75 | 8 / 1 2 ~

Table 5.3: Summary of the comparison of results obtained from EPC and
PROCLUS for PR-Set

from the confusion matrix. Due to the limited space, we show in detail only

one of the results obtained from a data set with N = 6000 in Table 5.2. Other

data sets show similar trends. The shaded field corresponds to the correctly

discovered clusters. In this data set, EPC can discover 4 clusters. One of the

good property of EPC is that it always returns clusters containing the largest

number of data objects first. It is not surprising that EPC cannot discover

the smallest cluster, as it contains less than 5% of data objects, which may be

considered as random noise. For PROCLUS, it can discover only 2 clusters.

We calculate the percentage of correctly partitioned data objects, and also

compare the reported dimensions in the associated subspaces of the output

clusters, with the associated subspace of the corresponding matching natural

clusters. Table 5.3 compare the results obtained from EPC and PROCLUS in

PR-Set

Table 5.4 shows the dominant and coverage ratios of these two algorithms.

Chapter 5 Experimental Results 6 2

EPC PROCLUS
Data Set dominant ratio coverage ratio dominant ratio coverage ratio
3000 — 1.000 0.908 0.812 — 0.717
6000 一 0.998 0.864 Tn6A 0.763
10000 1.000 “ 0.505 _ 0.755 0.668
20000 — 1.000 0.912 0.316

TOOOO “ 1.000 0.902 "0838 0.469 —
loOOO 1.000 “ 0.745 0.764 0.715
65000 — 1.000 0.906 "0^9 0.739

"80000 - 1.000 0.783 "0863 0.838 —
TOOOOO - 0.993 0.736 "0930 0.163 —
"200000 1.000 I 0.912 0.732 0.316 _

Table 5.4: Dominant and Coverage ratios of results obtained from EPC and
PROCLUS with data sets varying N

1咖[‘ ‘ • Ek 一
PROCLUS ——K…；

z . :
1 0 0 - / -

！ /
I /

O 20000 40000 60000 80000 100000
No. of data objects

Figure 5.1: Running time against N for EPC and PROCLUS

We can see that EPC produces more accurate result than PROCLUS in nearly

all cases. Figure 5.1 compares their running time with varying N. Both

methods scale about linearly with N, EPC is much faster than PROCLUS.

For example, for the data set with N = 10000, EPC takes 20 seconds and

PROCLUS takes about 10 minutes to compute. Since EPC is more accurate

and efficient than PROCLUS, in the following discussions, we mainly compare

EPC2, ORCLUS, and EPC.

5.5 Comparison between EPCH and ORCLUS

We compare the differences between clustering qualities of the AP-Set, APD-

Set, APN-Set and PR-Set. We observe that varying the number of data

Chapter 5 Experimental Results 6 3

“ EPC2 EPC ORCLUS/ORCLUS outlier —
Dominant Coverage Dominant Coverage Dominant Coverage

ratio ratio ratio ratio ratio ratio
Average over 0.829 0.736 0321 0.776 0.836 0.855

AP-Set
Average over O ^ 0722 032 0.945 0.766 “ 0 . 6 5 2

APD-Set
Average over 0806 O ^ 0 3 ^ 0891 0832

APN-Set
Average over 0.914 0.936 1 0.828 0.800 0.585

PR-Set

Table 5.5: Average Dominant and Coverage ratios for AP-Set, APD-Set, APN-
Set and PR-Set

objects would not have significance change on the clustering quality. We ran

experiments for different datasets with N ranged from 3000 to 60000, and ob-

tain similar general trend for dominant and coverage ratios. Table 5.5 shows

the average of the dominant and coverage ratios over data sets with varying N.

Histograms with different dimensionalities: Both EPC and EPC2

perform very well in PR-Set. For other data sets where the spreading direc-

tions of clusters may not parallel to original axes, EPC2 clearly outperforms

EPC. 1-d histogram can help to detect and distinguish projections from clus-

ters with axes parallel spreading. For clusters with arbitrary spreading direc-

tion, using histograms with higher dimensionality can significantly improve the

clustering quality, in which overlapping of projections to lower dimensionality

often occurs.

Associated subspaces with varying dimensionality: Comparing AP-

Set and APD-Set, ORCLUS performs better in the AP-Set, because it

assumes the associated subspaces are with the same dimensionality, where

APD-Set contains subspaces with varying dimensionality. In such case, for

associated subspaces with lower dimensionality, ORCLUS would include addi-

tional unbounded subspaces and retain some of the noise from the data. For

the same reason, ORCLUS does not perform well in PR-Set , which contains

Chapter 5 Experimental Results 6 4

EPC2 ORCLUS-Outlier
% of outliers Dominant Coverage Dominant Coverage

ratio ratio ratio ratio
T o O ^ 0.838 “ 0.904 0.902

15 ~ 0 9 1 3 0.855 ~ 0 . 8 0 6 _ 0 . 8 5 5
"20 O ^ 0.511 - 0.806 0.844
25 0.774 0.855 ~ 0 . 6 9 4 _ 0 . 7 6 6

~ 0.880 0.952 - 0.575 0.806

Table 5.6: Dominant and Coverage ratios for data sets with 50000 data objects,
20 dimensions and increasing percentage of outliers

associated subspaces with varying dimensionalities. In contrast, EPC2 does

not make this assumption. It gives satisfactory result in the APD-Set. The

clustering quality of APD-Set is even slightly better than AP-Set, because

the more variant of the dimensionalities of the associated subspaces, the easier

for the merging "similar" signatures phase to distinguish different signatures

corresponding to different associated subspaces.

Presence of outliers: Presence of outliers would affect accuracy of the

clustering results. ORCLUS presented in [3] does not include the clustering

results when the data contains outliers. From Table 5.5，qualities of clustering

results from EPC2 and ORCLUS-Outlier does not vary too much between A P -

Set and A P N - S e t . We increase the percentage of outliers in the dataset, and

compare its effect on EPC2 and ORCLUS-Outlier, as shown in Table 5.6

When the percentage of outliers is larger than 10%, the accuracy obtained

from clustering result of ORCLUS一outlier significantly decreases. This is be-

cause even the outlier handling can remove most of the outliers, remaining

few of them can change the positions of intermediate centroids of the clusters

and the estimated eigen vectors forming the associated subspace. Comparing

to ORCLUS, the decrease in accuracy of EPC2 is not so significant. EPC2 is

more outliers-resistant because outliers are often located in non-dense regions,

Chapter 5 Experimental Results 6 5

EPC2 ORCLUS outlier
D Dominant Coverage Dominant Coverage

ratio ratio ratio ratio
"T0~ 0.882 一 0.819 一 0.750 0.768

15 0.688 0.323 0.768 一 0.785
"20~ 0.888 一 0.692 0.817 0.843

25 0.873 ~ 0.575 0.655 0.743
l o ~ 0.843 一 0.631 0.662 _ 0.647

1 5 O J ^ 0.748 — 0.564 — 0.588
" W 0.941 一 0.920 0.537 — 0.593
"IT" 0.932 一 0.889 一 0.560 — 0.595
"50~ 0.724 一 0.551 一 0.475 一 0.496

Table 5.7: Dominant and Coverage ratios for APN-Set with N 二 20000 and
/ = 6

in which most of them have been pruned already in the dense region detec-

tion phase. Signature entries corresponding to outliers are with low weighting,

because there should be few other data objects falling into the same set of

dense regions on different subspaces as the. outlier. Signature entries with low

weighting would also be pruned away.

5.5.1 Dimensionality of the original space and the asso-

ciated subspace

We observe an interesting phenomenon that ORCLUS has advantages when the

difference between the dimensionality of the original space and the dimension-

ality of the associated subspace is small, i.e. the dimensionality of associated

subspaces approach dimensionality of the original space. In contrast, perfor-

mance of ORCLUS degrades when the difference is large. On the other hand,

accuracy of EPC2 does not vary much with different dimensionality of the

original space, and different dimensionality of the associated subspaces. This

happens in both AP-Set and APN-Set . Table 5.7 shows the dominant and

coverage ratio with different values of D for a APN-Set with N = 20000 and

I — 6. Table 5.8 shows the dominant and coverage ratio with different values

of I for a APN-Set with N = 20000 and D = 20.

From Table 5.7, we observe that ORCLUS produces good clustering quality

Chapter 5 Experimental Results 6 6

EPC2 ORCLUS_outlier
1 Dominant Coverage Dominant Coverage

ratio ratio ratio ratio
~ ~ 0.821 _ 0.763 0.525 — 0.468

4 0.842 0.63 0.627 _ 0.622
6 0.846 一 0.811 0.830 _ 0.739
8 0.878 0.817 0.942 0.985

"To 0.959 0.967 0.692 0.855

Table 5.8: Dominant and Coverage ratios for APN-Set with N = 20000 and
D = 20

when D <= 20. However, as D increases, the accuracy of ORCLUS decreases.

Also, as shown in Table 5.8, ORCLUS can produce good clustering quality

only when I > = 6. This is because the number of iterations in ORCLUS is

determined by the ratio between number of seeds and number of clusters, and

a reducing factor. When these two values are fixed it takes too few steps to

reduce the dimensionality of the associated subspaces if the difference between

dimensionality of the associated subspace and the original space is large. This

decrease the accuracy in uncovering the subspaces. EPC2 is not affected by

this factor. Therefore, EPC2 shows more advantages when the dimensionality

of the original space is very high, and at the same time the dimensionality of the

associated subspaces is much lower. Many real data sets have such property, as

the database can contain up to hundreds of attributes, but patterns typically

exist within a different small subset of attributes.

5.5.2 Projection not parallel to original axes

In the AP-Set, we can vary the parameter e and I. If e < /, the projection

would not be perpendicular to subspaces formed by subset of bounded dimen-

sions. In such case, the projection would span larger area, where the density

inside the spanning area would be lower. In setting the threshold (JL ccr for

detecting dense region, we have to use a smaller value of c, which reflects the

expectation that projections would span larger area. We compare clustering

result for EPC2 and ORCLUS in some of this scenario. We test on AP-Set

Chapter 5 Experimental Results 6 7

EPC2 (c=4) ORCLUS
e I dominant ratio coverage ratio dominant ratio coverage ratio

0.69 0.547 0.266 0.252
T " 1 0.842 - 0.593 0.447 0.42
~ ~ 0.634 - 0.383 0.329 0.291

0.783 — 0.566 0.434 0.428
~ ~ 0.669 — 0.686 0.537 0-524
1 ~ 1 0.603 — 0.613 0.707 0.717

0.518 _ 0.643 ~ 0.706 0.705
|6 0.669 0.521 0.993 0.994

Table 5.9: Dominant and Coverage ratios for AP-Set with varying e and I

with D = 20 and varying e and and set c = 4 for EPC2. Table 5.9 shows

the result.

As explained in Section 5.5.1, ORCLUS does not perform well when e is

small (e.g. when e < 5). In these cases, EPC2 perform better. We observe

that when e > 6, ORCLUS produces better clustering result when e < I.

5.5.3 Data objects belong to more than one cluster un-

der fuzzy clustering

From the fuzzy clustering result, we investigate the percentages of data objects

that can belong to the projections of more than one cluster. We consider a data

object belongs to more than one projected clusters if its membership degree

is larger than 0.6 for these clusters. We examine the APN-Set with D 二 20,

/ = 6 for varying N, the results show that there can be 0 up to 16% of data

that belong to 2 clusters, and 0 up to 13% of data that belong to 3 clusters.

In some synthetic data sets, even though the data object from each cluster is

generated independently, there is more than 10% of data objects are reported

as belong to more than 1 projected cluster. We can expect this ratio would

be higher for some real data sets, in which data object can exhibit multiple

properties of different patterns, in different subsets of attributes.

Chapter 5 Experimental Results 6 8

5.6 Scalability of EPC

The scalability of EPC is tested by varying 3 factors, the number of data

objects(7V), the number of dimensions(D), and the number of natural clusters.

Each data point in figure 5.2 represents the result obtained from a single exper-

imental trial with the corresponding data configuration. Figure 5.2(a) shows

the user CPU time against the number of data objects (AQ for different data

configuration. We can see that the computation time grows approximately

linearly with increasing number of data objects for data set with different di-

mensionality. We can obtain a set of similar linear curves for different data

configuration, when we vary the number of dimensions (D) or the number of

natural clusters, (see Figure 5.2(b) and Figure 5.2(c))

(a) varying number of data objects (b) varying number of dimensionality (c) varying number of natural clusters

棚 I ‘ ‘ 40' dimer^ions 5 natural clusters — 鄉 | ‘ ' 20000 data obieds 5 natural clusters'—i— I | ‘ ‘ 20000 data obiects 40 dimensions —
40 dimensions 10 natural clusters —x— 50000 data ob|ec<s 5 natural clusters —k— . ^ dimensions —x—
40 dimensions 20 natural clusters …••… 100000 data ob ects 5 natural clusters … * … 100000 data objects 40 dimensions …

300000 data ob ects 5 natural clusters —e— 300000 data objects 40 dimensions —
600000 data objects 5 natural clusters — » • / 500000 data objects 40 dimensions

200 - - / Z 200 - , , � � \ � -

Z / / �.��..
. , 200- / / — — ‘

广 ，//• I / i - / -
I / / y i 150 - / i . 7
1 / / / i / \

j

- “ Z
- -

z--..-•.---------
Z 『：-二:：;;；̂：：：̂；̂ ：̂!：̂^ - - r—:———

Q i ^ • I I • I I 1 1 1 * I I I • ... - I • • • i 1 1 0 < •••*— 1 ‘ ‘ ‘ I I
0 50 100 1 50 200 250 300 350 400 450 500 10 20 30 40 50 60 70 80 6 8 1 0 12 14 16 18 20

No. of Data Objects (in K) Dimensionality of the original space No. ci Natural Clusters

Figure 5.2: User CPU time of EPC against a)varying number of data objects,
b)varying original dimensionality, c)varying number of natural clusters.

From the above results, we see that EPC grows approximately linearly

with all these 3 factors. This scalability makes EPC applicable for clustering

very large data sets in high dimensionality, especially when the users need to

understand the underlying projective clustering structure within a short period

of time.

Chapter 5 Experimental Results 6 9

5.7 Scalability of EPC2

We compare the user CPU time on the EPC2, EPC and ORCLUS in A P N -

Set in Figure 5.3. We input the correct values of parameters (dimensionality

of subspaces and number of clusters for ORCLUS, number of clusters users

interested to discover in EPC2 and EPC). Each data point represents the

experimental result obtained from one single dataset. Figure 5.3(a) plots time

in log scale against varying N with D = 20 and L = 6. Figure 5.3(b) plots

time in log scale against varying D with N — 50000 and L = 6. Figure 5.3(c)

plots time in log scale against varying L with N = 50000 and D = 20.

varying N for APN Data Set varying D for APN varying I lor APN Dala Set

‘ ‘ ‘ ‘ ^PC2 - A - "1 I ‘ ‘ ‘ ‘ ‘ ‘ ‘ E P C 2 - 4 — 1 I ‘ ‘ ‘ EPC2 — t — “

EPC —X— EPC —X— EPC —X™
ORCLUS ••.«••• ORCLUS •"«••. 1000 . ORCLUS • -
,一 • *

1000 • ： , ,
M••‘ 1000 - •

Z , ,Z……“

I 5 * § 10 - .
1 - • 1 - • I

X ^ � � � 1 . -
1 • 尸 一 - - 1 - 一 . - 一 - Z ^ - “ ‘

0 1 I I I 1 1 « _I 0,1 I 1 ” ‘ “ 1 ‘ 1 1 « 1 0.1 I « ‘ ‘ ‘

• 0 10 20 30 40 50 60 0 5 10 15 20 25 30 35 40 45 50 0 2 4 6 8 10
No. 0} Data Ot^ecis (In K) Dimensionaiity of the original space Dimensionality of the associated subspaces

Figure 5.3: User CPU Time against a)varying number of data objects,
b)varying original dimensionality, c)varying dimensionality of associated sub-
spaces

We observe that EPC is extremely fast comparing to ORCLUS and EPC2

in all cases, (e.g. for the largest data set, EPC requires about 2 user CPU

seconds, while EPC2 requires about 300s and ORCLUS takes about 1500s.)

We examine the user CPU time of different phases in EPC2, and observe that

it is dominated by the signatures merging phase. The theoretical running time

complexity of this phase is 0{Nlog{km) + (km)V), where m is the number of

clusters the user binterested to discover. We set km the number of top ranked

Chapter 5 Experimental Results 7 0

signatures we would keep to be 50m, and d 二 2 for EPC2.

With fixed value of m, I and varying N, however, we do not observe a

clear trend of the running time. This happens even we do a number of tri-

als in different datasets, or average the results obtained from different trials.

Although the worst case should be bounded by N, the average running time

greatly depends on the similarity among data objects. The more dissimilarity

among the objects, the less time required for the merging process to reach the

termination criteria. Therefore, the curve of EPC2 in figure 5.3(a) cannot be

smoothed by taking a number of experiment trails. In any cases, EPC2 is more

efficient than ORCLUS when N is up to 65000.

With varying D, ORCLUS scales superlinearly, which agrees with the run-

ning time analysis that ORCLUS is 0{D^) in [3]. It is not very feasible to

apply ORCLUS to database with high dimensionality. EPC is about linear

with D. EPC2 scales quadratically with D, which matches the analysis that

the time complexity is 0{D'^) in Section 4.5.

With varying I, both EPC and ORCLUS scales linearly. EPC2 scales

quadratically with I, which matches the analysis that the time complexity

is 0{P) in the case of EPC2.

Chapter 6

Conclusion

Projective clustering is often preferable compared to traditional clustering for

high-dimensional data. Based on the definition of projective clustering, we

propose an efficient algorithm EPC, with a very different approach from the

previous methods of PROCLUS and ORCLUS. EPC satisfies the following

desirable properties for clustering algorithm.

(1) It needs minimum domain knowledge of the user. Many other clustering

algorithms, which takes many input parameters that may not be known by

the user in advance, and different setting of parameters can greatly impact

the results. EPC only takes one input parameter, max.no.cluster. In addition,

different setting of this parameter would not affect the correctness of the output

clustering result.

(2) It has a high efficiency on a large database. As shown from the exper-

iments, EPC scales approximately linearly with the number of data objects,

dimensions and natural clusters. This is especially useful, when the user want

to quickly identify the underlying clustering structure.

(3) The returned subspaces and the corresponding hyper-rectangles in the

high dimensional space can be easily interpreted by the end-users, and gives an

insight to the user about which features are important to a particular cluster,

and where it roughly locates. With the partitioning result and the associated

71

Chapter 6 Conclusion 72

subspace, the cluster shape can be refined by feeding only the related dimen-

sions and the group of data objects to other traditional clustering algorithm.

(4) It is insensitive to the ordering of the data objects, and the presence of

outliers.

Compared with PROCLUS, the running time of EPC is significantly faster

while giving a better clustering result. It does not need many parameter

setting, and the returned hyper-rectangles contain more useful information to

the user.

Based on EPC, we further generalize the approach to estimate data density

by histograms with higher dimensionality. We name this class of approaches

as EPCH (Efficient Projective Clustering using Histogram). In particular,

we describe and implement EPC2, which construct 2-d histograms to do the

clustering. Empirical results show that EPC2 can give comparable results as

ORCLUS, for datasets that contain clusters associated with subspaces formed

by axes parallel vectors, with much less actual computational time. In some

scenario, e.g. 1) data set contains outliers, 2) the dimensionality of associated

subspaces is varying, 3) the dimensionality of associated subspaces is low,

the clustering quality given by EPC2 outperforms ORCLUS. In any data set,

running time of EPC2 is significantly faster than previous approaches.

Signatures of data objects can be conceptually understood as a transaction

database. Each signature corresponds to a transaction, where each ”entry-

denseid" pair in the signature corresponds to an item. A group of signatures

sharing common set of "entry-denseid" pairs identifies a projected cluster and

its associated subspace. Therefore, the projective clustering problem can be

transformed to the problem of mining frequent itemsets in the transaction

database. The frequent itemset mining problem is well established and vari-

ous fast algorithms have been proposed. However, most of these algorithms

are developed for mining frequent itemsets with relatively low support (e.g.

less than 5%), and the sizes of the maximal frequent itemsets would not be

Chapter 6 Conclusion 7 3

too large. By maximal, we mean no supersets of the itemset are frequent.

In the context of projected clustering, we want to discover itemsets with rel-

atively high support (e.g. if the cluster contains 20% of data objects, the

support would be 20%) and the sizes of maximal frequent itemsets should be

iCd, where I is the dimensionality of the associated subspace, d is the dimen-

sionality of histograms we constructed. This is a large number comparing to

other mining frequent itemsets problems. Because of these two properties, the

mining step requires much longer computational time than current approach.

New algorithm which can do the mining efficiently with these two properties

can be developed, so that it can be plugged into current approach to enhance

the clustering quality and shorten the running time of the clustering process.

Part II

Multiple Tables Association

Rules Mining

74

Chapter 7

Introduction to Multiple Tables

Association Rule Mining

The problem of mining association rules over basket data was introduced in

•7]. Basket data consists of a set of transactions, each transaction consists

of a set of products purchased. The task is to discover interesting association

rules, such as "65% of customers who buy milks would also buy bread". In this

example, the association rule ""milks bread''' represents a useful knowledge

users are interested to find out for products promotion, shelf placement, store

layout etc. In general, the rules are interesting only if they have a high support

and high confidence.

Here, we give the definitions of frequency (also known as support), fre-

quent itemsets, association rule, and confidence of the rule for a database

D containing a set of transactions, where each transaction contains a set of

items. The frequency of a set of items Z (we denote as support[Zy) is the

number of occurrences of Z in D, or in other words, the number of transactions

in D that contain Z, Frequent itemsets are sets of items that have frequencies

above a threshold minsup. An association rule has the form oi X ^Y where

X and Y are sets of items. In such a rule, we require that X\JY (we would

denote as XY) is a frequent itemset, i.e. support{XY) > minsup. The confi-

dence of the rule is the probability of Y given X, i.e. ：二 (f f)) . For a rule to

75

Chapter 8 Related Work to Multiple Tables Association Rules Mining 7 6

be "interesting", we also require that its confidence is above another threshold

minconf.

The mining process can be divided into two main steps. In the first step, all

frequent itemsets are identified. In the second step, from the sets of discovered

frequent itemsets, we can generate the association rule. However, the genera-

tion of frequent itemsets is a more difficult problem, which has been shown to

be NP-hard. Since the search space is exponential with the number of items,

with millions of database objects, I /O minimization would become critical as

this step contributes to the major portion of the computational time.

There has been a lot of research work [46, 39, 9, 49, 33, 38, 13, 40, 52, 41；

in association rule mining in recent years. Although the first applications

were found in supermarket data, the technique has been extended to work

on numerical data and categorical data in more conventional databases [43,

44], some researchers have noted the importance of association rule mining in

relation to relational databases [45]. Tools for association rule mining are now

found in major products such as IBM DB2 Intelligent Miner [1], and SPSS's

Clementine.

Many efficient algorithms have been proposed and developed in recent years

to generate frequent itemsets. However, most previous frequent itemsets dis-

covery algorithms assume items appearing as binary representation in trans-

actions from a single table. An item is either purchased or not purchased in

an transaction. In RDBMS, an attribute can take categorical values or con-

tinuous values (where continuous values can be partitioned into ranges and

transformed to categorical). More importantly, data are often decomposed

and stored in multiple tables in RDBMS [42]. Previous frequent itemsets min-

ing algorithm cannot be directly applied in this scenario. Therefore, we are

motivated to propose algorithms and data structures to efficiently mine fre-

quent itemsets from multiple relational tables. In particular, we investigate

relational database in a star schema [11 .

Chapter 7 Introduction to Multiple Tables Association Rule Mining 77

Teacher Student

Course

Figure 7.1: ER Diagram modelling relationship among teachers, courses, stu-
dents

7.1 Problem Statement

Consider a relational database in a star schema. There are multiple Dimen-

sion Tables, which we would denote as A , B, C, each of which contains

only one primary key as transaction id, some other attributes and no foreign

keys. We denote tid(A) as the transaction id of table A. Among the multiple

Dimension Tables, there is one Fact Table, which we denote as FT. It stores

the tid(A), tid(B), tid(C), ... (which we denote as a“ 6“ q) as foreign keys from

Dimension Tables A , B , C，...，and possibly some other optional attributes

Oi, O2,.... In an ER model, Dimension Tables typically corresponds to an en-

tity set, and Fact Table corresponds to a relationship set We do not restrict

the key constraints of the relationship to be many-to-many, many-to-one, or

one-to-one. Figure 7.1 illustrates an example of an ER diagram modelling

the entity sets teachers, courses, students, and a relationship set relating to

these 3 entities. Figure 7.2 shows the corresponding tables in star schema. An

example of the discovered rule could be "students with age > 25 and taking

some course at the advanced level, would have a great chance to choose the

teachers with age > 40".

In order to mine association rules across multiple dimension tables, we have

to discover some sets of “attribute-value" pairs, which occur frequently in the

table resulting from a natural join of these dimension tables. To do so, we can

Chapter 8 Related Work to Multiple Tables Association Rules Mining 7 8

FT
A (Student) B (Course)

r > .y.—./c， >.....{.

V i \ 2 V.?. a i b i O i vi.V2...V3...

a"i 瓦 R̂n "R,……* 'ai bi ^ ^ R, ^ K
^ Rq RQ ai b2 Ci 102 bi R,……..Ra…….R,……
a3 |RI R, X h5.1. 02...., bs RQ.......Ra...........

C (Teacher)
jvi.........y2........Vs........J

ci |R, i
cz'...................R, K......!
C 3 I R ; I R ; | R i I

Figure 7.2: Star Schema with 3 Dimensional Table (teachers, courses, students)
and 1 Fact Table

represent each “ attribute-value" pair as an item. With this association, we

are interested to mine frequent itemsets containing items across the multiple

Dimension Tables, where the frequency of the itemsets are counted by the oc-

currence in the table resulting from the natural join of the multiple Dimension

Tables and the Fact Table.

At first glance it may seem easy to join the tables and then do the mining

process on the joined result. However, when multiple tables are joined, the

resulting table will increase in size many folds. There are two major problems.

Firstly, in large applications, often the join of all related tables cannot be

realistically computed because of the many-to-many relationship blow up, large

dimension tables, and the distributed nature of data.

Secondly, even if the join can be computed, the multi-fold increase in both

size and dimensionality presents a huge overhead to the already expensive

frequent itemset mining step:

(1) The number of columns of the joined table will be close to the sum of the

number of columns in the individual tables. As the performance of association

rule mining is very sensitive to the number of columns (items), the mining

on the resulting table can take much longer computation time compared to

mining on the individual tables.

(2) If the join result is stored on disk, the I/O cost will increase significantly

for multiple scanning steps in data mining.

Chapter 8 Related Work to Multiple Tables Association Rules Mining 7 9

(3) For mining frequent itemsets of small sizes, a large portion of the I /O

cost is wasted on reading the full records containing irrelevant dimensions.

(4) Each tuple in a dimension table will be read multiple times in one scan

of the joined table because of duplicates of the tuple in the joined table.

Therefore, instead of "joining-then-mining", we can exploit the charac-

teristics of relational tables in star schema, and apply “mining-then-joining"

strategy in which the "joining" part is much less costly. We are motivated to

mine association rules from the start schema, using the ”mining-then-joining，，

approach.

Specifically, given three different kinds of input, namely

• Dimension Tables A , B, C, ..., where we assume attributes in the di-

mension tables are unique and will not appear in two different tables,

• a Fact Table FT, where we assume the optional attributes do not appear

in any of the dimension tables,

• minswp, which specifies the minimum number of occurrence of ” attribute-

value" pairs in order to be frequent, in the natural join of all the given

tables (FT N A N ^ N C…),where the joining conditions are given as

FT. Tid(A) = A.tid，FT.Tid(B) 二 B.tid，F.Tid(C) 二 C.tid，."

we would like to mine all frequent itemset in the table {FT N A N B N (7...),

without performing the actual joining.

Chapter 8

Related Work to Multiple

Tables Association Rules Mining

8.1 Aprori - A Bottom-up approach to gener-

ate candidate sets

For n items, there can be potentially frequent itemsets. The computational

time would become exponential if we search for every possibilities. Therefore,

the Apriori algorithm is proposed [5], which is a bottom-up approach to gen-

erate a sizek candidate itemsets given all mined frequent itemsets with size

k-l. Specifically, all size - 1 frequent itemsets are found by simply counting

the occurrences. Each subsequence pass k is divided into two phases. In the

first phase, the previous mined itemsets with size A; - 1 is given. Any two size

k — 1 mined itemsets which are different from only the last item is combined

to form a potential candidate itemset with size k. For example, X1X2X3 can be

combined with X1X2X4 to form potential candidate a: 1 a ; 2 • After that, any

potential candidate size k itemsets are deleted if some of its (k-l)-subset is

not the size k — l frequent itemset. For example, If any of the size-2-subset of

that is (actually we do not need to check these two),

X2X3X4 is not frequent, can be pruned away. In the second phase,

80

Chapter 8 Related Work to Multiple Tables Association Rules Mining 8 1

the supports of all remaining size k candidates are counted by one scan of the

database. Candidates with enough support would become the size k frequent

itemsets.

Aprori makes use of the monotonicity property of itemsets, which is similar

to the monotonicity property of subspace as discussed in section2.3.1. For a

given itemset, its support is higher than a certain threshold only if all of its

subsets have enough support. In other words, if the support of an itemset is

lower than the threshold, all of its supersets must not have enough support.

This serves as a powerful pruning in two different ways. (1) We only need to

do a counting for a candidate if all of its subsets are frequent. (2) When a

itemset is not frequent, we need not to consider any of its superset in the future

passes. In doing so, the searching time for.frequent itemset which number is

potentially exponential could be greatly reduced.

However, the disadvantages of Apriori is that it requires multiple database

scans, as many as the longest frequent itemset. And thus, various optimization

techniques are proposed to minimize the number of database scans, and so as

the I /O time.

8.2 VIPER - Vertical Mining with various op-

timization techniques

Apriori and most other association rules mining algorithms are designed for use

with horizontal database layout. In such representation, each row corresponds

to a transaction with unique tid in terms of the items that were purchased in

that transaction. Alternatively, VIPER [47] uses the vertical data represen-

tation where each item is associated with a column of values representing the

transactions that contain the item.

Chapter 8 Related Work to Multiple Tables Association Rules Mining 8 2

III) Itcinl D Tlt> IlenilDs
I I 2 3 4 5 —

1 I I 0 1 » <) — I 1 1 1 3 7 S) I
2 I O 1 0 O 0 — I 2 I 2 8 1 5 I

I 0 1 } 0 0 — I 3 1 2 3 7 S i l l

4 I 1 0 1 0 J — I 4 I I 3 5 I 0 " |

(t i) H I V (t .) I l l L

Tll> llomlOs lte.m�l:)s
I 2 3 4 — I 1 2 4 —

1 n r»l rn H rn ra rn =
2 O I O O 已 | _ 4 j | _ j J 3

3 O J I O 4

4 1 o | I o |

(c) VTV (d) vn..

Figure 8.1: 4 different data representations for market-basket database

8.2.1 Vertical TID Representation and Mining

There are four different ways for representing the market-basket database,

namely HIV (Horizontal item-vector), HIL (Horizontal item-list), V T V (Ver-

tical tid-vector), and VTL (Vertical tid-list), as shown in Figure 8.1 [47.

HIV Each row corresponds to a transaction with an unique tid. For n items,

there would be n entries in each row. Each entry represents whether the

corresponding item is present in the transaction (1)，or absence (0).

HIL Similar to HIV, except for each row, it records only the iid (item iden-

tifier) of the corresponding items that are present in the transaction.

V T V Each column corresponds to an item with unique iid. For m transac-

tions, there would be m entries in each column. Each entry represents

whether the corresponding transaction contains the item (1), or not (0).

VIL Similar to VIL, except for each column, it records only the tids corre-

sponding to the transactions which contain the item.

VIPER proposed to apply vertical mining instead of horizontal. When

the database is represented in vertical layout, supports of itemsets need not

to be counted by scanning the whole database. Instead, it involves only the

intersection of tid-lists or tid-vectors. Furthermore, only the tid-lists of the

Chapter 8 Related Work to Multiple Tables Association Rules Mining 8 3

interested itemset need to be stored in memory and accessed from disk, where

in horizontal layout, all information of a transaction, including the uninterested

items, need to be processed.

8.2.2 FORC

One of the optimization used in VIPER is FORC (Fully ORganized Candidate-

generation). It is based on the technique called equivalence class, which groups

all size — k itemsets sharing a common prefix of length k - I. For each class,

the common prefix is stored in a hash table, and the last elements is stored in

a lexicographically ordered list, called extList.

Similar to Apriori, FORC generates size - k candidate frequent itemsets

given size k-1 itemsets. They both prune away candidates in which some of

its subsets are not frequent. The main difference is that Apriori determines the

subset status on a sequential (one candidate after another) basis, and FORC

optimizes it by a simultaneous search. For example, ABCD and ABCE is

generated and we have to check whether all of their subsets are frequent. In

particular, ABC, ABD, ACD, BCD are checked for ABCD, and ABC, ABE,

ACE, BCE are checked for ABCE. We totally need to check whether a given

itemsets are frequent for 8 times. However, after grouping previous frequent

itemsets into equivalence classes, actually ABC, ABD, ABE are from the

same equivalence class prefixed with AB, ACD, ACE are from the same class

prefixed with AC, BCD, BCE are from the same class prefixed with BC. In

FORC, while examining class prefixed with AC, both ACD and ACE could be

checked, and thus candidates ABCD and ABCE can be checked for pruning

simultaneously.

Chapter 8 Related Work to Multiple Tables Association Rules Mining 8 4

8.3 Frequent Itemset Counting across Multi-

ple Tables

Recently, [28] proposes an algorithm for mining frequent itemsets in decentral-

ized data. Their work is closely related to our proposed solution, in which the

joined table T is computed but without being materialized. When each row

of the joined table is formed, it is processed and thereby storage cost for T

is avoided. In the processing of each row in the table, an array that contains

the frequencies for all candidate itemsets is updated. As pointed out by the

authors, all itemsets are counted in one scan and there is no pruning from one

pass to the next as in the apriori-gen algorithm in [5]. Therefore there can be

many candidate itemsets and the approach is expensive in memory costs and

computation costs. The empirical experiments in [28] compare their approach

with a base case of applying the apriori algorithm on a materialized table for

T. It is shown that the proposed method needs only 0.4 to 1 times the time

compared to the base case. However, there are new algorithms in recent years

such as [20, 47] which are shown by experiment to often run many times faster

than the apriori algorithm. Therefore, the approach in [28] may not be as

efficient as our proposed method.

Chapter 9

The Proposed Method

9.1 Notations

• A, B, C denotes the Dimension tables. Xi,yi,Zi denotes the items from

table A , B, C correspondingly. XiXj denotes the itemset composed of

item Xi.Xj, which are from the same Dimension Table, xiyi denotes the

itemset composed of item xi, m from different Dimension tables. We

assume an ordering of Dimension tables and an ordering of items which

is adopted in any transactions and itemset. to facilitate our algorithm.

E.g. xi would always appear before X2 if they exist together in any

transactions or itemset. X2 would always appear before yi in an itemset.

• X denotes an itemset composed of item from A only. Similarity, Y, Z

denotes an itemset composed of items from B, C only. We call the size

of X is i, if X contains i items from A. XY denotes itemset composed

of items from A and B.

• ai,hi,Ci denote the transaction id {tid) of A, B, C respectively.

• tidJist is a data type that we shall use in our algorithm. It is an ordered

list of elements of the form tid{count), where tid is a transaction ID, and

count is a non-negative integer.

85

Chapter 9 The Proposed Method 86

• Given two tidJists Li,L2, the union Li U 丄2 is the list of tid{count),

where tid appears in either Li or L2, and the count is the sum of the

counts of tid in Li and L2.

The intersection of two tidJists Li, L2 is denoted by Li fl L2，which is

a list of tid{count), where tid appears in both Li and L2 and the count

is the smaller of the counts of tid in Li and L2.

• tidA{xi) : a tidJist for a;,- where xi is an item in A . In each element

tid{count) in the list, tid is the transaction in A that contains Xi, and

count is the number of occurrence of the tid in FT. If the tid of the

transaction that contains xi does not appear in tidA{xi), the count of it

is 0 in FT.

E.g. tidAixs) = {ai(5),a3(2)}. Transactions containing X3 in A are a!

and as； ai appears 5 times in the FT, and as appears 2 times.

• tidA[X) where X is an itemset with items from , A , it is similar to

tidA^Xi) except Xi is replaced by X . If X is XiXj, tidA^XiXj) can be

obtained by tidA{xi) f! UdA(Xj).

• B.key{an)： Given a tid a^ from A, B.key{an) denotes a tid-list of

tid{count). For each entry of tid{count), tid is a tid from B and count

is the number of occurrences of tid together with a^ in FT.

E.g. B.key{ai) 二 {63(4)’ 65(2)}. It means that “163 occurs 4 times in

FT, and aih occurs 2 times.

• BJid{xi): Given an item Xi in A , BJid{xi) denotes a tid-list, oftid{count).

For each entry tid{count), tid is a tid of B, and count is the number of

times the tid appears together with any tid CLj of A such that transaction

dj contains Xi in A.

E.g. Suppose in A, only transactions a: and as contain X3. Let bi be

Chapter 9 The Proposed Method 87

a tid of B. If in FT, “261 occurs 4 times, and ash occurs 2 times, and

there are no other occurrences of a飞 and as, then B-tid{x3) =

• BJid{X): similar to BJid{xi) except item Xi is replaced by an itemset

X from A.

• F^ denotes the set of frequent itemsets with items from A, denotes

the set of frequent itemsets with items from tables A and/or B. F^^^

denotes the set of frequent itemsets of the form XY, where X is either

empty set or an itemset from A , and Y is either an empty set or an

itemset from B with size k.

E . g . 产 二 E.g. F^^' = {yiy2,

• F^k denotes the set of frequent itemsets of size k from A . F"^兩 denotes

the set of frequent itemsets in which the subset of items from A has size

i and subset of items from B has size j.

E . g . F ^ ^ S i 二 { x i X 2 ! / i , X 3 X 4 P 2 } -

9.2 Converting Dimension Tables to internal

representation

Here we assume attributes in the input Dimension Tables take categorical

values, where numerical values can be partitioned and transformed to cate-

gorical,the domains for each attributes are known, and same attribute will

not appear in two different tables. (If initially two tables have common at-

tributes, renaming can make them different.) We will transform the input

Dimension Table to HIL representation as in 8 on-the-fly. Specifically, for

each "attribute-value" pair in the original Dimension Tables, we will associate

an item to represent it. For example, consider dimension table A in Figure 9.1,

ai,a2,a3 are tid, vi,v2,vs are attributes names, and the value of attribute Vi

Chapter 9 The Proposed Method 88

A (Student) |vi=Ro|vi:=Ri |vi=rI V2二 Ro V2=Ri V3=Ro ̂ 3=Ri
I Vi 丨 V2 I V3 I Xi X2 X3 X4 X5

E 五 互 【 _ _ K ；¥ 0 0 1 1 0 I X I _ J _
‘ ^ 1 0 0 1 0 0 L_

百互互 [c o n v e r s i o n [as I o | l | o | o | l | l | 0
Figure 9.1: Convert the input Dimension Tables to hil representation on-the-
fly

for transaction ai is R2. In the conceptual HIL representation, we associate

this pair with the item X3. In our remaining discussion, we base on this HIL

representation and associate an item for each "attribute-value" pair. We call

each row of the Dimension Tables in the HIL representation as a transaction.

In implementation, we do not actually compute and store the conceptual HIL

representation. We have two implementations which adopt a modified VTL

and VTV representations respectively as in 8, in which we can retrieve the

tidJist of a given item easily, where tidJist is defined in Section 9.1. Specifi-

cally, suppose there are TA,TB,TC transactions in table A , B, C respectively.

In VTL implementatino, for each frequent item x in A, we store a tidJist

which records the transactions in A that contains x. In VTL implementation,

we store a column of Ta bits, the i仇 bit is 1 if item x is contained in transaction

i � a n d 0 otherwise. We also keep an array of Ta entries where the entry

corresponds to the frequency of tid i in FT.

We aim to mine frequent itemsets composed of items from individual Di-

mension tables as well as across multiple Dimension tables. We apply the same

threshold minsup to itemsets from single or multiple Dimension Tables. The

frequency of an itemsets is counted from the occurrence of the corresponding

transactions that contain the items in FT.

Chapter 9 The Proposed Method 89

9.3 The idea of discovering frequent itemsets

without joining

We present a simple example to show the idea of discovering frequent item-

sets across multiple Dimension tables without actually performing the join

operation.

Example 8 Suppose we have a star schema for a number of dimension tables

related by a fact table FT. Figure 9.2 shows 2 of the Dimension tables A and

B, and the projection of FT on the two columns that contains transaction

id 's for A , B, but without removing duplicate tuples. We do not assume any

ordering in the FT, and some of the tid from the Dimension tables may not

appear in FT (e.g. a?, bi).

Suppose minsup is set to 5. We first mine frequent itemsets from A and B

individually. The itemset are frequent if they appear at least 5 times in FT.

For example, Xi and X3 appear together in ai,a3, and their total count in FT is

6. Hence, X1X3 is a frequent itemset. Next we check if a frequent itemset from

A can be combined with another frequent itemset from B to form a frequent

itemset of greater size.

X1X3 is one of the frequent itemsets from A, yiye is another frequent item-

sets from B {yiye appear together in 62, k, whose count in FT is 5). We want

to check if X1X3 can be combined with yi^e to form a frequent itemset, the

steps are outlined as follows:

Tid litems ^ ™ |ltems
Xj y X3 5 . . .

a2......冗巧:i:::: ai b2 ^__ yi，y3' ye
^. XI7'X37X6 as :..... hj h__ y2’ y4，ye
i..........xi7x7,x6 as • bs ….....Xk�i’.�5

ai bs bs.........….Yi，.!i，...X«5.

Figure 9.2: Example for discovering frequent itemsets across dimension tables

Chapter 9 The Proposed Method 90

1. tidAixiXs) = tidA{xi) fl tidAixs) = {ai(4), “3(2)}，tidB{yiy6)tidB{yi) H

tidB{ye) = {b2{2)Am-

2. B.key{a,) = {62(1), 63(1), 65(2)}, B-key(as) = {62(1), M l) } .

3. Bjid{xixs) = B.key{ai) U B.key{a^) = {62(2)，63(1),�(3)}.

4. Bdid[x^x^) n tid^yiyo) 二 {62(2), 65(3)}.

5. The combined frequency 二 total count in the list {62(2), &5(3)} 二 5.

Hence the itemset XiXsyiye is frequent. •

In general, to examine the frequency for an itemset S that contains items

from two dimension tables A and B, we do, the following.

We examine table A to find the set of transactions T\ in A that contain

the A items in S.

Next we determine the transactions T2 in B that appear with those transac-

tions in Ti in FT. Note that this is similar to the derivation of an intermediate

table in a semi-join strategy, where the result of joining a first table with the

key of a second table are placed, the key of the second table is a foreign key

in this intermediate table.

In the mean time, the set of transactions T3 in B that contain the B items

in X are identified. Finally T2 and T3 are intersected, and the resulting count

is obtained. Note that when we utilize BJidQ and B-key{) for the above

computation, we are using the primary key of table B as a foreign key for

an intermediate semijoin table where A is “joined” with FT for the particular

itemsets X .

The use of tidJist is a compressed form of recording the occurrence of tid's

in the fact table. Multiple occurrences of transaction id's such as ai or aib] in

FT are condensed as one single entry in a tidJist with the count associated.

Chapter 9 The Proposed Method 91

Initial Step: In order to do the above, we need to have at least some

initial information about tidA{xi) for each item Xi in each Dimension Table A.

One scan of a dimension table can give us the list of transactions for all items.

In one scan of FT we can determine all the counts for all transactions in all

the dimension tables. In the same scan, we can also determine B-key(ai) for

each tid ai in each Dimension Table.

9.4 Overall Steps

For simplicity, let us first assume that there are 3 Dimension Tables A, B , C.

The overall steps of our method are:

Step 1 : Preprocessing

Read the Dimension Tables, covert them into VTV or VTL representation

with counts as described in Section 9.2.

Step 2 : Local Mining

Perform local mining on each dimension table.

Step 3 : Global Mining

Step 3.1 : Scan the Fact Table

Scan the Fact Table FT and record the information in some data structures.

We set an ordering for A, B , C. First we handle tables A and B with the

following 2 steps:

Step 3.2 : Mining size-two itemsets

This step examines all pairs of frequent items x and y, which are from the two

different Dimension Tables.

Step 3.3 : Mining the rest for A and B

Repeat the following for A; = 3,4,5..... Candidates are generated by the union

of pairs of mined itemsets of size k-1 differing only in the last item. The tech-

nique of generation would be similar to FORC [47]. Next count the frequencies

of the candidates and determine the frequent itemsets.

Chapter 9 The Proposed Method 92

After Steps 3.2 and 3.3, the results will be all frequent itemsets formed

from items in tables A and/or B. This can be seen as the frequent itemset

mined from a single dimension table A B . Similar steps as Steps 3.2 and 3.3

are then applied for the tables A B and C to obtain all frequent itemsets from

the star schema.

9.5 Binding multiple Dimension Tables

In general there can be more than 2 dimension tables in the star schema. We

can easily generalize the overall steps above from 3 Dimension Tables to N

Dimension Tables. Suppose there are totally N dimension tables and a fact

table FT in the star schema. We start with two of the Dimension Tables, say

A and B. We apply Steps 3.2 and 3.3 above to mine all frequent itemsets with

items from A and/or B without joining the tables with FT to find We

call Steps 3.2 and 3.3 a binding step of A and B. After binding, we treat A

and B as a single table A B and begin the process of binding A B with another

table, this is repeated until all N dimensions are bound.

After performing ”binding”，we can treat the items in the combined item-

sets as coming from a single Dimension Table. For example, after ”binding” A

and B, we virtually combine A and B into a single Dimension Table A B , and

all items in are from the new Dimension Table A B . We always "bind" 2

Dimension Tables at each step, and iterate for iV - 1 times if there are totally

N Dimension Tables. At the end all frequent itemsets will be discovered.

Figure 9.3 shows a possible ordering of the "bind" operations on four di-

mension tables: A , B , C, D.

We need to do two things to combine two Dimension tables: (1) To assign

each combination of tid from table A and tid from table B in FT a new tid,

and (2) to set the tid in the tidJists for items in A B to the corresponding

new tid.

Chapter 9 The Proposed Method 93

pABCD

A\\
pA pB Ĵ pD
10 12 15 16

Figure 9.3: An example of "binding" order

1 C |Tid(A)|Tid(B)|ne'̂ 丨 Tid(A)丨 Tid(B)丨 Tid(C)丨 Tid(D)
X. X, X3 I Z2 Z3 ZiiZ^i kZ /I ——^ ^——^

、(2) a,(2) a,© 。3(0) c,(0) a, ba b ^ ^ h L
a � � asCl) c,(0) a3 U az hi C2 d2

teJ D ~ ^ ~ ~ a3 b4 c, di
B |Wi W2 w^ I I 34 I b3 I C2 I d2

丨 yi ya d,(3) d,(3) d,(3) FT
b,(3) d3(0) d;(0)

� (1) b3(l) Tid(AB) Tid(C) Tid(D)
幽 I -ir~ c. d.~

务 t2 C2 dz
AB Tid(AB) Tid(C) new_tid~[_ C j d ^ _

X2 X3 y i y ^ y g] D — t T " — k £2 ^
网 网 网 网 网 网 ^ ^ ^ q z i : ^ 不 ^ 女
t,(l) t,(l) t,(l) t,(l) ^ I t3(2) rara d,(3) _ _ t3——C,——15 I 二 I 2 I t,(l) tjCl) t/l) 63(0)1 d3(0) t3 C2 t4
t jd) d,(0) U Ci fs C ts I C2 丨 t'6

Z3 T
c,(3) Ci(3) c,(3)
C3 想 �3(0) I |Tid(ABC)|Tid(D)
刚 + f. d.

ABC D ——1!2 ^
X, X3 y, y, Ys z, ZT]|W, W, w�! ——

f 1 t. (l) t .� t ,� � t,3(l) t,3� t,3(l) d3 0 •歷 f - d T f/D^fsCl) t,:(l) t.4(l) t,5(l) t'(l) ^ 經 ^ ^ t'.q) ——“ ^ ^ FT"

Figure 9.4: Concatenating tids after "binding"

Consider an example in Figure 9.4，for a FT relating to 4 Dimension Tables

A , B , C , D, after "binding" A and B, the columns storing tid(A) and tid(B)

would be concatenated. Each combination of tid(A) and tid(B) would be

assigned a new tid. A and B would be combined into A B . For example,

before "binding", item Xi appears in transactions ai^as and tzJ^l^ i)=

{ai(2) ,a3(l) , a4(l)}. After "binding", since ai corresponds to new tid ti and

t2, as corresponds to new tid U, /H corresponds to new tid U. Therefore

tidA{xi) is updated to tidAB(xi) = {“(1),,2(1)，“(1),力5(1)}. In this example,

tidJist{xi) becomes longer, but the total count is 4’ which is the same as

before.

Chapter 9 The Proposed Method 94

Similarly, when is then ”bound，，with AB is combined with C

and FT would be updated again.

Note that in Figure 9.4, the tables with attribute newJid and the multiple

fact tables are not really constructed as tables, but instead stored in a structure

which is a prefix tree.

We always bind a given Dimension Table with the result of the previous

binding because the tid of the Dimension Table allows us to apply the technique

of a foreign key as described in the previous section. The ordering can be based

on the estimated result size of natural join of the tables involved, which can

in turn be estimated by the Dimension Table sizes. A heuristic is to order the

tables by increasing table sizes for binding.

9.6 Prefix Tree for FT

In Step 3.1 of the overall steps, the fact table FT is scanned once and the

information is stored into a data structure which can facilitate the mining

process. The data structure is in the form of a prefix tree. Each node in the

prefix tree has a label (a tid) and also a counter.

We need only scan FT once to insert each tuple into the prefix tree. Sup-

pose we have 3 dimensions A, B, C, and a tuple is as, 62,02- First, we enter

at the root node and go down a child with label as, from as we go down to

a child node with label 62, from 62 we go to a child node labelled C2. Every

time we visit a node, we increment the counter there by 1. If any child node

is not found, it is created, with the counter initialized to 1. Hence level n

of the prefix tree corresponds to tid's of the n认 Dimension table that would

be "bound". When searching for a foreign tidJist, we can go down the path

specified by the prefix. In this way, the foreign key and the global frequency in

the i仇 iteration can be efficiently retrieved from the i + 1 认 level of the prefix

tree. Figure 9.5 shows how a fact table is converted to a prefix tree.

Chapter 9 The Proposed Method 95

order of join
Tid(A)|Tid(B)|Tid(C)|Tid(D)| l e v e l 1 a , (2
^__________cj___iL. 八 T 丁

b9 CI dl K level 2 0 V T
level 3 ^

aj. bn C2 d2
" " " d (l) (1(1 ĉ DcVDd̂ U d,(l)

level 4 丄 _ ~
Figure 9.5: Prefix Tree structure representing FT

Tid(ABiTid(C)|Tid(DTj c o l l a p s e

i t t i ^ i ^ 於 、 (w

_ J t 3 C] _ _ _ _ d L ^ l e v e l 1 9 Y A

U C I _ _ ^ l e v e l 2

I t5 I C2 LiiJ c\(i)cVi如）
l e v e l 3 ^ ― < 1) O — ^ - ^ - X b

Figure 9.6: Collapsing the prefix tree

Use of the prefix tree - the foreign key: The prefix tree is a con-

cise structuring of FT which can facilitate our mining step. When we want

to ”bind” F^ with we have to check whether an itemset (e.g. Xi) in

FA can be combined with an itemset in F^ (e.g. yi). We need to obtain

the information of a foreign key in the form of tidJist (e.g. BJid{xi)). Let

tidA{xi) = {ai(2),a2(l)} . We can find B.key{ai) by searching the children

of ai which are labelled 6i(l), 62(1), similarly let B.key{a2) = {62(2)}. As a

result, BJid(xiyi) = B_key[ai) UB_key[a2) = {6i(l) , 62(3)}.

Collapsing the prefix tree: Suppose A and B are bound, AB is the

derived dimension. If B is not the last dimension to be bound, we can collapse

the prefix tree by one level. A new root node is built, each node at the second

level of the original tree becomes a child node of the new rootnode. The subtree

under such a node is kept intact in the new tree. Figures 9.5 and 9.6 illustrate

the collapse of one level in a prefix tree.

To facilitate the above, we create a horizontal pointer for each node in the

same level so that the nodes form a linked list. A unique ABJid is given to

Chapter 9 The Proposed Method 96

each of the nodes in the second level, which corresponds to the bound table

AB. These unique tids at all the levels can be assigned when the prefix tree

is first built.

Updating tid: We need to do the following with the collapse of the prefix

tree. After binding two tables A and B, a “derived dimension" A B is formed,

we would update the tidJists stored with the frequent itemsets and items that

would be used in the following iteration, so that all of them are referencing

to the same (derived) Dimension Table. For example, tidA{X) or UCIBOO are

updated to t idAsi^) or tidABiX).

9.7 Maintaining frequent itemsets in Fl-trees

In both local mining and global mining (Steps 2 and 3), we need to keep

frequent itemsets as they are found from which we can generate candidate

itemsets of greater sizes. We keep all the discovered frequent itemsets of the

same size in a tree structure which we call an Fl-tree (FI stands for Frequent

Itemset). Hence itemsets of F^讽 is mixed with itemsets of FA讽,the first

one belongs to 产、the second belongs to F^B�Let us call the Fl-tree for

size k itemsets Hk.

In the Fl-tree, we also keep the relevant tidJists for the frequent itemsets

at the leaf nodes. Figure 9.7 shows an Fl-tree. An itemset such as XiX2y2y3

is kept in a path from the root node to a leaf node (recall that we assume

an ordering on the items, so the items follow this order in the path). The

corresponding tidJist for xix2y2y^ is kept at the leaf node. Itemsets with the

same prefix share the same path. If the number of items is large, an hash

function can be applied at each node to allow mapping of multiple items to

the same child. This will be similar to the hash tree structure in [5]. The Fl-

tree will also be used in the generation of candidate itemsets. The technique

Chapter 9 The Proposed Method 97

of generation would be similar to FORC [47] so that the same leaf node and

tidlist in the Fl-trees need not to be examined rep eat ly.

Let us examine the overall steps again. In Step 2, we find the set of frequent

itemsets for each A. This mining can be based on any existing algorithm

with a slight modification that the single count of each transaction a,- is re-

placed by the count of it in FT, which is kept in the prefix tree for FT. We

store each frequent itemsets X of size k together with tidA{X) into Fl-tree T/,.

depth = 1

depth = 2 d e p t h = 2 depth = 2

depth = 3 n d ^ h = 3 ~1 [depth = 3 depth = 3 ~

吐上4 Jy2 上3 1>；3 M
一 | ^ > | t i d (x i Ys)! YiYsy4)| [£|Htid(x2y2y3y4)| [t i d c y T ^ ^ ^ - y s � 6 —
…--yi y2—… yg _1tid(x2y2y3y5)|

y3 y4 _卜“

…，- y4 Ys -一 I II

Figure 9.7: An Fl-tree

In Steps 3.2 and 3.3, in each iteration, we generate candidate itemsets in

an order of increasing itemset sizes, starting with size 2. In each case, we first

generate a size k candidate by joining 2 {k - l)-itemsets with similar prefix.

After this joining step we prune the candidates if any subset of them is not

frequent. For example, for candidate if XiXalhys is not frequent,

this candidate have to be removed.

Suppose we have found the frequent size 2 itemsets of F^S F^^ and ,

we can generate 山 , p M B ^ ^ and 先仏.Let us examine each of the four

cases. For 如，we can generate the candidate sets by joining from and

the pruning is also by examining 山.For F^^ the case is also very similar.

Chapter 9 The Proposed Method 98

For we first generate the itemsets by joining two itemsets with similar

prefix in F^^^K Then we prune the itemsets by examining both 山执 and

F B � F o r we first generate the itemsets by joining two itemsets with

similar prefix, one from and the other from Then we prune the

itemsets by examining both and 山.To perform the above candidate

generation, we look up the size two frequent itemsets of 山,F^^ and 山月丄

all together in the Fl-tree H2, and if a candidate is found and the frequency

is above the threshold minsup, it is stored in H3. This will be similar for

itemsets of larger sizes.

Example 9 XiX2yiy2 and XiX2ym (from 山召2) are frequent itemsets in 丑4.

These two can be used to generate new candidate ociXimihys (candidate for

F山丑3). In order to determine whether XiX2yiy2y3 is frequent or not, we look

up FA2B2 and 山丑3 to check whether ocio:飢ys, and ociy他y3 exist

in these sets or not (from H4). If they are and the frequency of XiX2yiy2y3 is

above the threshold minsup (the frequency count methods would be described

in Section 9.8), the new candidate XiX2yiy2y3 is inserted into Ih.

In the Fl-tree, we try to maintain the boundaries between say F 風 and

FAB\ We assume an ordering of tree nodes in terms of the Dimension Tables.

For example among the child nodes of any given node, the nodes corresponding

to values of table A always appear before those of table B. We record in the

parent node a pointer to the first child node that is for table B.

In this way, when we want to find elements for F^^^, we go to the level

above leaf node level and for each node, find the first child node that corre-

sponds to B, the following child nodes are also of interest.

Chapter 9 The Proposed Method 99

9-8 Frequency Counting

In the overall Step 3.3, after a set of candidate itemsets from two tables A and

B is generated, the frequencies of the itemsets are counted in order to identify

the frequent itemsets. We consider two itemsets Xi and Yj containing items

from two different Dimension Tables respectively. Here we examine some al-

gorithms for counting the frequency of the itemset Xi U Yj.

Frequency Counting: Algorithm 10.1

Assume that we have found the values of tidA{xi) for all items Xi, and

B.key{aj) for all tid,s aj in A. The first mechanism of checking the frequency

of itemset Xi U Yj is outlined in Algorithm 9.1.

Algorithm 9.1 count_global_support(X爪，Yn)
1 Let Xi be the i力八 item in Xm, for 1 < i < m
2 yj be the 产 item in Yn, for 1 < j < n
3 Let Xm contain items of table A, Yn contain items from table B.
4 tid(Xm) = tid(xi);tid(Yn) = tid{yi);BJid{Xm) 二 {};
5 for (i = 2 to m)
6 tid{Xm) 二 tid^Xm) fl tid{xi)]
7 for { j 二 1 to n)
8 tid{Yn) 二 tzd(Yn)ntzd(yj)；

9 for (i 二 1 to size of tid(Xm))
10 BJid(Xm) = BJzd(Xm) U B-key{^ tid of the i认 entry of tid(X讯))
11 tlist{Xm:Yn) = BJid{Xm)r\tid{Yn)]
12 return (count � 肌 , Y n))) ;

The steps in the algorithm are similar to those in Example 8. One can

examine the example to see how it works. The correctness of the above al-

gorithm can be established by the following lemma but we skip the proof for

interest of space.

L e m m a 2 Let T be the table resulting from a natural join of all the Dimension

Tables and FT. Suppose that X UY appears in the set of tuples TXY in T.

tlist{X, Y) at the end of Algorithm 9.1 gives us the tid's of B in TXY in a

Chapter 9 The Proposed Method 100

compressed form, meaning multiple appearances of the same tid's are recorded

by the tid with a count.

Proo f : With the for-loop at Lines 5,6, we generate t id^Xj) which is the

tid-list that contains all the A tids for tuples that contains X ^ in A together

with the count of such tids in the fact table. With the for-loop at Lines 7,8, we

generate tid{Yn) which is the tidJist that contains all the B tids for tuples that

that contains Yn in B together with the count of such tids in the fact table.

These correspond to the B tid values at tuples Ty in T where K occurs. At

Lines 9,10, for each A tid in tid[Xm), we find the B tids in the fact table which

corresponds to the B tid values at tuples Tx in T where X^ occurs, resulting

in Btid(Xm). At Line 11, tid{Yn) Pi Btid{Xm) is computed. Since Xm and K

both occurs in T iff X爪 occurs (in Tx) and K occurs (in Ty), the result at

Line 11 corresponds to the B tid values for exactly the tuples TXY in T where

both Xm and Ym occurs. •

Frequency Counting: Algorithm 10.2

Algorithm 9.1 suffers from repeated intersection of tidJists when comput-

ing the support, that is, tid{xix2t3) is computed from scratch though tid{xix2)

has been computed at an earlier time. In our second algorithm we try to elim-

inate this.

Suppose we need to count the support of XY, where X is an itemset from

A and Y is an itemset from B. We assume that BJid{X) is kept for all frequent

itemsets X , where X is from table A. We assume tid{Y) is kept for all frequent

itemsets Y, where Y is from table B (this is kept in an Fl-tree)

Algorithm 9.2 count—global—support(X肌,K)

1 tlist(Xm,Yn) = BJid{Xm)r]tid{Yn)\

2 return (count {tlist{Xm,yn)))\

We can determine BJid{X) when X is created. B-tid{X) is obtained from

B.key{ai) for a,- G X. B_key(ai) is obtained from the prefix tree for FT.

Chapter 9 The Proposed Method 101

BJid{X) is then recorded in a linked list structure.

Frequency Counting: Algorithm 10.3

Algorithm 10.3 is applicable if the tidJists associated with the subsets that

generate a candidate are related to the same “derived” dimension, such as AB.

For example, if x is from A, y is from B, we update tidA{x) to tidAB[x�, and

tidB{y) is updated to tidABiv)- The support of candidate xy is computed by

intersecting the tidJists (力ic^sO) and tidABiv) in this case) associated with

the two parents that generate the candidate.

Applying Algorithms 10.2 and 10.3

In our mining steps, if dimension tables A, B, and C are bound in that

order, we apply Algorithm 10.3 for the binding step of A and B, and Algo-

rithm 9.2 for the binding of A B and C.

Chapter 10

Experiments

10.1 Synthetic Data Generation

We generate synthetic data sets in a similar way as the generator in [19] to

test our proposed methods. First, we generate each Dimension Table individ-

ually, in which each record consists of a number of attribute values within the

attribute domains, and model the existence of frequent itemsets. Specifically,

We have the following parameters:

D number of dimensions
n number of transactions in each Dimension Table
m number of attributes in each Dimension Table
s largest size of frequent itemset

1 l a r g e s t number of transactions with a common itemset
d domains of attributes (we assume same for all attributes)

probability of attributes sharing common values in transactions con-
taining frequent itemset

Table 10.1: Parameters used in synthetic data generation in single Dimension
Table

The domain size d of an attribute is the number of different values for

the attribute, which is the number of items derived from the attribute-value

pairs for the attribute. We can imagine the generation process as placing a

102

Chapter 10 Experiments 119

number of rectangles ^ with widths within the range from 1 to 5, and heights

within the range from 1 to t in the Dimension Table, such that attributes in

the transactions within the rectangles would very likely share common values.

That is, frequent itemsets exist within the rectangle. Each attribute in the

rectangle in those transactions contain the same value with probability p, where

p should be set near to 1. Outside the rectangles, values of attributes are

chosen randomly, (see Figure 10.1). Parameter p, which is the inverse of the

corruption level described in [5], models the situation that all the items in a

frequent itemset do not always appear together. The algorithm for generating

transactions in a single Dimension Table is outlined in algorithm 10.1.

m Attributes

r••画_•_•••_••••__•••_••，

.2 at most s attributes sharing
common values on a

2 c r

at most t
transactions

k]r_-:--:--:--------:“---i-
Attributes in transaction Attributes outside the rectangle have random

sharing common values with vaules
probability p

Figure 10.1: Idea of generating transactions with itemset in a Dimension Table

A lgor i thm 10.1 gen—dimension(n, m, s, t, p, q)

1 /c = 0;

2 nojrect = 0;

iNote that the "rectangles" may not look like rectangles: the attributes in a rectangle
may not be consecutive in the relation layout, and the rows also may not be consecutive

Chapter 10 Experiments 104

R No. of Related Dimensions
Br Branching Factor
sup target frequency of the association rules
\L\ number of maximal potentially frequent itemsets
N number of noise transactions

Table 10.2: Parameters used for generating FT

3 repeat

4 height[nojrect] — rand{) * t;

5 width = randQ * s;

6 select Xi^,..., randomly from xi, .

7 for (Z 二 0 to height[no-rect])

8 if {k > n)

9 break;

10 end if

11 for Attrihute^^^,..., Attribute^训jth, assign a common value with proba-

bility p
12 for other Attributes, randomly select a value

13 +

14 end for

15 nojrect + +；

16 until {k > n);
17 return {height[{)],... hei g ht[no—r e cf] ,tupl e�,... ,tuplen-i)]

After generating transactions for each Dimension Table, we generate FT

based on the following parameters:

In constructing FT, there can be correlations among two or more Dimen-

sion Tables so that some frequent itemsets contain items from multiple di-

mensions. For the case of two dimensions, we want the tids associated with

the same “rectangle，，from one Dimension Table to appear at least sup times

Chapter 10 Experiments 121

together with another group of tid sharing common frequent itemsets from an-

other dimension table. In doing so, frequent itemsets across dimensions from

these 2 groups would appear with a frequency count greater than or equal to

sup, after joining the two Dimension Tables and FT. We repeat this pro-

cess for |L| times, so that |L| maximal potentially frequent itemsets would be

formed (by maximal, we mean that no superset of the itemset is frequent).

The parameters R and Br model the situation where frequent itemsets

composed of items from only a subset of all the Dimension Tables. There

are different degree of correlations among different Dimension Tables. For

example, we have table A, B and C. A and B are strongly related, and C

is not related to A and B. In such case, frequent itemsets may contain items

only from A and B but not C.

Parameter R specifies the number of related Dimension Tables, which can

be equal or smaller than D. Parameter Br specifies for each pair of tid

that contains frequent itemsets from A and B, how many transaction from

C it would be related to in FT. For example, Xiyi form a frequent itemset.

tidJist{xi) = {ai},tidJist{yi) = {62}. We set sup as 5 and Br as 3. That

means we generate at least 5 pairs of {“162} in FT, For each of such pair, it

would be related to any 3 tids from C in FT. If all the dimension tables are

related, we set Br to 1.

In order to generate some random noise, transactions which do not contain

frequent itemset are generated. N rows in FT are generated, in which each tid

from the dimension tables is picked randomly. The algorithm for constructing

FT is outlined in algorithm 10.2.

Suppose as in Figure 10.2 we want to generate FT with 2 dimension tables,

A and B. A has 3 groups of transactions sharing common frequent itemsets,

A[0], A[l], A[2] with size 3, 3，4 respectively. B has 2 groups of transactions,

B[0], B[l] with size 2, 5 respectively. If we want frequent itemsets to exist in

A[0]B[0], A[l]B[l], and A[2]B[l], with support near 52, 53 respectively, we

Chapter 10 Experiments 106

Algorithm 10.2 gen_ft(D, R, Br, sup, \L\)
1 for (i = 0 to |L|)
2 for {k = Oto R)
3 randomly select one group Gk from dimension table k
4 {Gk is a set of transactions corresponding to a rectangle in table k)
5 for (r = 0 to Br)
6 for = 0 to sup)
7 for (/c 二 0 to R)
8 randomly select a tid from Gk and store it in a tuple t
9 for = Rto D)
10 randomly select a tid from dimension table k
11 write the tuple t to FT
12 for (i 二 0 to N)
13 for { j = 0to D)
14 randomly select a tid from dimension table k

can select randomly 5i tid from A[0], 5i tid from B[0] and put them in FT.

We repeat similar processes for A[l]B[l], A[2]B[l .

A B FT
, -, ticl(A) tid(B)

i A[o] i ...Ml.} 11
丨一…；:-：丄…丨 i 1 綱 BtO{ 卜

J • I ̂ ^ H H i
• Bm j ,

A[2]

Figure 10.2: Constructing FT

10.2 Experimental Findings

We compare our proposed method with the approach of applying FP-tree

algorithm [20] on top of the joined table. We call the result of joining all the

tables in the star schema the joined table. We assume the joined table T is

kept on disk and hence requires I /O time for processing. FP-tree requires two

scanning of the table T during the FP-tree itemsets mining. The I /O time

required is up to 200 seconds in our experiments. It turns out that the table

Chapter 10 Experiments 123

join time is not significant compared to the mining time.

All experiments are carried out on a SUN Ultra-Enterprise Generic_106541-

18 machine with SunOS 5.7 and 8192MB Main Memory. The average disk I /O

rate is 8MB per second. Programs are written in C + + . We calculate the total

execution time of mining multiple tables as the sum of required CPU and I /O

times, and that of mining a large joined table as the CPU and I /O times for

joining and FP-tree mining.

In the experiments, we compare the running time of masl (our proposed

method, implementing tidJist as a linked list structure in VTL represen-

tation), masb (our proposed method, implementing tidJist as a fixed-size

bitmap and an array of count in VTV representation), and fpt (the join-before-

mine approach with FP-tree) with different, data setting in 3 Dimension Tables

A , B, C and a FT. In most cases, masb runs slightly faster than masl, but

needs about 10 times more memory.

Dataset 1

In the first dataset, we model the situation that items in A and B are

strongly related, such that frequent itemsets contain items across A and B,

while items in C are not involved in the frequent itemsets. In such cases,

transactions containing frequent itemsets from A and B can be related to

Br transactions in C randomly. Br is set to 100 in all of our experiments

reported here. (We have varied the value of Br and discovered little change in

the performance.) The default values of other parameters used in generating

the dataset are :

When we increase the number of attributes, the running time of fpt in-

creases steeply, while that of both masl and masb would increase almost lin-

early. Running time of FP-tree grows exponentially with the depth of the tree,

which is determined by the maximum number of items in a transaction. In

this case, performance of our proposed method outperforms FP-tree, especially

when the number of items in each transaction is large, (see Figure 10.3(a))

Chapter 10 Experiments 108

Parameter Default Value
number of transactions in the joined table 50K
number of attributes in each dimension table —
size of each attribute domain ^
total number of items in all tables 300
random noise 10%
max. size of potentially maximal frequent itemset 8

Table 10.3: Parameter Table

When the number of transactions in the joined table increases, running

time of both methods would increase greatly, masl and mash are about 10

times faster than fpt (see Figure 10.3(b)). We also vary the percentage of

random noise being included in the datasets, (see Figure 10.3(c)), both masl

and mash are faster than fpt.

Dataset 2

In the second group of dataset, we model the case that A, B, C are all

strongly related, so that maximal frequent itemsets always contain items from

all of A , B and C. Compared with the previous group of data set, performance

of our approach does not vary too much, while the running time of fpt is faster

in some cases (Figures 10.3(b) and (c)). The reason is that with the strong

correlation, there would be less different patterns to be considered and the

FP-tree will be smaller. However, we believe that in real life situation such a

strong correlation will be rare. Our approach still has advantages when the

number of items in each transaction in the joined table is large, which happens

when we "join" more tables together, (see Figure 10.3(a))

In real life application, there are often mixtures of relationships across

different dimension tables in the database.

Dataset 3

In the third group of dataset, we present data with such mixture. In

Chapter 10 Experiments 109

particular, 10% of transactions contain frequent itemsets from only A, B, C,

respectively, 15% contain frequent itemsets from A B , BC, A C respectively,

10% contain frequent itemsets from A B C , and 15% are random noise. We

investigate how the running times of masl and fpt vary against increasing

number of items in each transaction, and increasing number of transactions in

the joined table.

In Figure 10.4(a), we vary the number of transactions from 20K to 60K,

while keeping the number of attributes in each dimension table to be 30 (do-

main of attributes has size 10). In Figure 10.4(b), we vary the number of

attributes in each dimension table from 10 to 60 (domain of attribute has size

10)，and keep the number of transactions to be 30K. In this case, running time

of fpt grows much faster than our approach. This demonstrates the advantage

of applying our method. This advantage will be even more significant when

we have more dimension tables so that the number of items in the joined table

will be large.

Chapter 10 Experiments 110

varying number of attributes varying number of transactions in FT
4500 ~ 丨 masl(A,BVelated)̂ 誦。mas他 re|a产二！一
如nn masb (A,B related) • masb (A,B re a ed -4000- fpt A,B related)“…-.…, fpt (A,B re a ed ."“*“…

masi (A’B，C related)-日-/ „ 80000 - masi A,B,C re ated - « - -% 3500 - masb (A，B,C related) - --• - - /- | masb A,B,C re a ed -§ fpt (A,B,C related) - - • -/ o fpt (A,B,C related) g 3000 - / • o ,
� / c 60000 - / •
i 2500 - / - / g / E
i 誦 - / - i 40000 - / -
I 1500 - / - i /
§ / § / y ^ 1000 • • 20000 • ^^ -

5 0 0 - 乂Z ,,--，，

0 5 10 15 20 25 30 0 200 400 600 800 1000
number of Attributes in each dimension number of transactions (K)

(a) (b)
varying percentage of noise

…n [masi (A,b'related) — ^ ^ 1400 - masb (A,B related) fpt (A,B related) •.…*…"
iPnn - masi (A.B.C related)日一--S masb (A,B’C related)---,--§ fpt (A,B,C related) •…-�.

g 1000 -

0) 8 0 0 -
•i
f 600 - -
CO ,

I . . / 乂 ’
200 - ‘

Q . , 1
0 5 10 15 20 25 30

% of noise
(c)

Figure 10.3: Running time for (A,B) related and (A，B，C) related datasets

Chapter 10 Experiments 111

varying number of transactions in FT

(/) 12000 1 1 1 1 1 ;i ‘
-o masi ” I ~
§ 10000 - fpt - - - - X - - - - z j :
①

c 8 0 0 0 - z 乂 ; ^ ^ _

(D '''''
E 6000 - -

1 4000 - 'Z；；；^^^ -

g 2000 ' -o
D . Q I I L _ _ ^ J 1 1 1

20 25 30 35 40 45 50 55 60

number of transactions (K)

(a)

varying number of attributes in the dimension table

w 8000 ——I—I—I—I—I—I——I—
•D masI ~ I
§ 7000 - fpt …-X---- 3： 0 / g 6000 - / -

5000 - / -0 /
E 4000 - / • •
g 3000 - / -.

1 2000 - -
§ 1000 - ̂ ^̂ -r：：：^ -
Q . Q - I — " T 丨 丨 丨 I I I 1 1 1

10 15 20 25 30 35 40 45 50 55 60
number of attributes in each dimension table

(b)

Figure 10.4: Running time for mixture datasets

Chapter 11

Conclusion and Future Works

The problem of mining association rules across multiple tables is studied. Cur-

rently, there are few research works on developing algorithms for this problem.

We propose methods to combine frequent itemsets mined locally from indi-

vidual tables to avoid the expensive joining operations and mining from the

large resulting table. In particular, we assume the input tables form a star

schema.

These methods employ the ideas of vertical tidJist mining, where frequency

of itemsets from different Dimension Tables can be counted by simple tidJist

intersections. We also make use of the monotonicity property of frequent item-

sets, which prune unfrequent itemsets at the earlier stage, and thus we do not

need to consider any supersets of the pruned itemsets. Various data structures

are designed to mine and retrieve itemsets across multiple Dimension Tables
efficiently.

Synthetic data generator is used to generate data sets with various parame-

ters. Extensive experiments have be carried out, and it has been shown that in

many scenarios, the newly proposed method can greatly outperform a method

based on joining all tables even when the naive approach is equipped with a

state-of-the-art efficient algorithm.

Our proposed method can be generalized to be applied to a snowflake

structure, where there is a star structure with a fact table FT, but a Dimension

112

Chapter 11 Conclusion and Future Works 113

Table can be replaced by another fact table FT' which is connected to a set of

smaller Dimension Tables. We can consider mining across Dimension Tables

related by FT' first. We then consider the mined result as from a single derived

dimension, and continue to process the star structure with FT. This means

that we always mine from the ”leaves，，of the snowflake.

Suppose there are five Dimension Tables, namely A i , A2, B, C, D.

Tid{B),tid{C),tid{D) form a candidate key in FT. We can relate B, C, D by

a new FT', and assign a id 彻 for each combination of tid{B),tid{C),tid{D)

in FT. Then we can use g^ to replace the corresponding combination of

tid{B),tid{C),tid{D) in the original FT. In this case, B, C, D is related by

FT', and we can treat them as a single entity and this single entity related

with A i , A2 in FT by the key 彻，as shown in Figure 11.1. We mine dimen-

sions B, C, D with FT' first. After we have computed the frequent itemsets

FBCD, we then consider the result as a single derived dimension, and continue

to process the star structure with FT, A i and A2.

Treat it as a single
dimension table G

B C

— T ^ - I ~
FT'

AI D

FT

A2

Figure 11.1: Snowflake Structure

Bibliography

1] IBM software: Database and data management: Intelligent miner family:

Overview. In http://www-3.ihm.com/software/data/iminer/.

2] Cham C. Aggarwal, Cecilia Procopiuc, Joel L. Wolf, Philip S. Yu, and

Jong Soo Park. Fast algorithms for projected clustering. In Proceedings of

ACM SIGMOD International Conference on Management of Data, pages

61-72, 1999.

3] Cham C. Aggarwal and Philip S. Yu. Finding generalized projected clus-

ters in high dimensional space. In Proceedings of ACM SIGMOD Inter-

national Conference on Management of Data, pages 70-81, 2000.

4] Charu C. Aggarwal and Philip S. Yu. Redefinig clustering for high-

dimensional applications. In IEEE Transactions on knowledge and Data

Engineering，Vol 14, No. 2, 2000.

•5] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.

In Prvccaiirigs of International Conference of Very Large Data Bases，

VLDB, 1994.

6] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar

Raghavan. Automatic subspace clustering of high dimensional data for

data mining application. In Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 94-105, 1998.

114

http://www-3.ihm.com/software/data/iminer/

7] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining asso-

ciation rules between sets of items in large databases. In Proceedings of

ACM SIGMOD International Conference on Management of Data, pages

207-216, 1993.

8] Goldstein J. Beyer K., Ramakrishnan R., and Shaft U. When is nearest

neighbor meaningful? In Proceedings of ICDT Conference, 1999.

9] Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market bas-

kets: generalizing association rules to correlations, pages 265-276. SIG-

MOD Record (ACM Special Interest Group on Management of Data),

1997.

10] K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A new

approach to indexing high dimensional spaces. In Proceedings of Interna-

tional Conference of Very Large Data Bases，VLDB, pages 89-100, 2000.

11] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap

technology. In ACM SIGMOD Record，Vol.26 No.l, pages 65-74, March

1997.

12] Chung-Hung Cheng, A. Fu, and Yi Zhang. Entropy-based subspace clus-

tering for numerical data. In Proceedings of Internationl Conference on

Knowledge Discovery and Data Mining (KDD,99), pages 84-93, 1999.

13] Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr In-

dyk, Rajeev Motwani, Jeffrey D. Ullman, and Cheng Yang. Finding in-

teresting associations without support pruning, volume 13，pages 64-78,

2001.

14] M. Ester, H-P. Kriegel, J. Sander, and X.Xu. A density-based algorithm

for discovering clusters in large spatial databases with noise. In Proceed-

ings of ACM SIGKDD, 1996.

115

15] M. Ester, H-P. Kriegel, J. Sander, and X.Xu. Density-connected setsand

their application for trend detection in spatial database. In Proceedings

of ACM SIGKDD, 1997.

16] Brian Everitt. Cluster analysis, second edition. Halsted Heinemann, 1980.

17] C. Faloutsos and K.-L Lin. A fast algorithm for indexing, data-mining

and visualization of traditional and multimedia datasets. In Proceedings of

ACM SIGMOD International Conference on Management of Data, 1995.

18] D. Fasulo. An analysis of recent work on clustering algorithms. In Tech-

nical Report UW-CSE-01-03-02, University of Washington, 1999.

19] Jiawei Han, Jian Pei, Guozhu Dong, and Ke Wang. Efficient computation

of iceberg cubes with complex measures. In Proceedings of ACM SIGMOD

International Conference on Management of Data, pages 1—12，2001.

20] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without

candidate generation. In Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 1—12, 2000.

.21] John A. Hartigan. Clustering algorithms. Wiley, 1975.

[22] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the nearest

neighbor in high dimensinoal spaces? In Proceedings of International

Conference of Very Large Data Bases, VLDB, pages 506-515, 2000.

23] Alexander Hinneburg and Daniel A. Keim. Optimal grid-clustering: To-

wards breaking the curse of dimensionality in high-dimensional clustering.

In The VLDB Journal, pages 506-517, 1999.

24] Yannis E. loannidis and Viswanath Poosala. Balancing histogram opti-

mality and practicality for query result size estimation. In Proceedings

116

of the ACM SIGMOD International Conference on Management of Data,

1990.

25] A. K. Jain, M. N. Murty, and P.J. Flynn. Data clustering: A review. In

ACM Computing Surveys, Vol.31, No.3, 1999.

.26] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Pren-

tice Hall, 1988.

.27] M. Jambu and M-0. Lebeaux. Cluster analysis and data analysis. North-

Holland, 1983.

28] V.C. Jensen and N. Soparkar. Frequent itemset counting across multiple

tables. In Proceedings of Pacific-Asia Conference on Konwledge Discovery

and Data Mining (PAKDD), pages 49-61, 2000.

29] 1. T. Jolliffe. Principal component analysis. Springer—Verlag, New York,

1986.

30] K. Ravi Kanth, D. Agrawal, and A. Singh. Dimensionality reduction

for similarity searching in dynamic databases. In Proceedings of ACM

SIGMOD International Conference on Management of Data, 1998.

.31] L. Kaufman and P. Rousseeuw. Finding groups in data: An introduction

to cluster analysis. John Wiley and Sons, 1990.

32] R. Kohavi and D. Sommerfield. Feature subset selection using the wrapper

method: Overfitting and dynamic search space topology. In The First In-

ternational Conference on Knowledge Discovery and Data Mining, pages

192-197. AAAI Press, Menlo Park, California, August 1995.

33] D. Lin and Z.M. Kedemt. Pincer-search: A new algorithm for discovering

the maximum frequent set. In Proceedings of Conference on Extendnig

Database Technology (EDBT), 1998.

117

34] Ankerst M., Breunig M. M., Kriegel H-P., and Sander J. Optics: Or-

dering points to identify the clustering structure. In Proceedings of ACM

SIGMOD International Conference on Management of Data, pages 46—49,

1999.

35] Cecilia M., Michael J, Pankaj K, and T. M. Murlali. A monte carlo

algorithm for fast projective clustering. In Proceedings of ACM SIGMOD

International Conference on Management of Data, 2002.

36] Eric Ka Ka Ng and Ada Wai chee Fu. An efficient algorithm for projected

clustering. In Proceedings of International Conference of Data Engineer-

ing (ICDE), 2002 (poster paper).

37] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial

data mining. In 20th International Conference on Very Large Data Bases，

September 12-15，1994, Santiago, Chile proceedings, pages 144—155, 1994.

38] R. T. Ng, L. V. S. Lakshmanan, J. Han, , and A. Pang. Exploratory

mining and pruning optimizations of constrained associations rules. In

Proceedings of ACM SIGMOD International Conference on Management

of Data, pages 13-14, 1998.

39] J.S. Park, M. S. Chen, and P.S. Yu. An efficient hash based algorithm for

mining association rules. In Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 175-186, 1995.

40] J. Pei and J. Han. Can we push more constraints into frequent pattern

mining? In Proceedings of ACM SIGKDD, pages 350-354, 2000.

41] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets with

convertible constraints. In Pvoc忧dings of International Conference of

Data Engineering (ICDE), 2001.

118

42] Raghu Ramakrishnan and Johannes Gehrke. Database management sys-

tem, second edition. McGRAW-HILL International Editions, 2000.

43] Rakesh Agrawal Ramakrishnan Srikent. Mining quantitative association

rules in large relational tables. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 1-12, 1996.

44] R. Rastogi and K. Shim. Mining optimized association rules with cate-

gorical and numeric attribute. In Proceedings of Internatinoal Conference

on Data Engineering，ICDE, pages 503-512, 1998.

45] R. Agrawal S. Sarawagi, S. Thomas. Integrating association rule mining

with relational database systems: Alternatives and implications. In Pro-

ceedings of the ACM SIGMOD International Conference on Management

of Data, pages 343-354, 1998.

[46] A. Savasere, E. Omiecinski，and S. Navathe. An efficient algorithm for

mining association rules in large databases. In Proceedings of Inernational

Conference of Very Large Data Bases，VLDB, pages 432—444, 1995.

47] Pradeep Shenoy, Jayant R. Haritsa, S. Sudarshan, Gaurav Bhalotia,

Mayank Bawa, and Devavrat Shah. Turbo-charging vertical mining of

large databases. In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, 2000.

.48] B. W. Silverman. Density estimation for statistics and data analysis.

Chapman and Hall, 1986.

49] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item

constraints. In Proceedings of ACM SIGKDD, pages 67—73, 1997�

50] Scott D. W. On optimal and data-based histograms. Biometrika, 66:605-

610, 1979.

119

51] Scott D. W. Multivariate density estimation. Wiley k Sons, 1992.

52] K. Wang, Y. He, and J. Han. Fusing support constraints into frequent

itemset mining. In Proceedings of Inernational Conference of Very Large

Data Bases, VLDB, 2000.

•53] Wei Wang, Jiong Yang, and Richard Muntz. Sting: A statistical informa-

tion grid approach to spatial data mining. In Proceedings of Inernational

Conference of Very Large Data Bases, VLDB, pages 186-195, 1997.

54] WT. Zhang, R.Ramakrishnan, and M. Livny. Birch: An efficient data

clustering method for very large databases. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, 1996.

120

：•
 ‘

.
.

-
r

丨

•

,

：

.
‘

‘
.、

.

！

_
••
：

；

.

.
1

..
..
.

「知
:

‘
。

.
”

.
.

‘
•

.
.

、
…

：
.
=

•

.
....

..
.

•..
-,-

.-"
::>

•;’
:

^
：：
3

"
•

.
.

i —

‘
•
-...•

•
.•

‘:
..-.-‘

..
 ：

 ：
：、

J

'
..

L
-.••

•
：

•
 •

•

Vf
 J、

-
：

•••::..,-..:、
-.:—

[
..

.'i
/

I
c'

〜
.

.
.

-
••

T^

—
-

.•
.

.
’

：：

-
1

-7；
：

.

.'.
.f.
 ；

Ci；
：
'：

.，
，
」
.:广

;.

•

.
丫

攻
r«

•

—

：

”
-

K
—

.
‘

.
、

‘
‘

：

a
〜
二
：̂

.
^

…

…
.
：

-<

 V

.
•

•

‘

-
；

-
.

；
S

•
3

-
r

•
-

.
-二

‘

-
-

-
a

^

一
-

>•
？

y

.：
,.-•

-
‘

.
‘

•
“

、

、
”

..
:

•
…

.
：
|

•

.
'

:
.

.
.

.
•

 -

'：
：

-I

、
.

.
p

‘S::.•
、
：

V:..
 ,

-
‘

.
^

‘
’

--
<

r
\

-
•

,
^.

i

-‘
-

产
-

-
：
’

-

••

:,.
:•
--.
.:.
:-.
、
（

-

,
.

.:
,‘

::
.:
"：

：
-'
麵
麻

-：
.V
 ；
.

V

‘
,

.
-

4
•

-

•
..
.•
•.
..
. 一

、
、

...
)
 •.-

-
-

yy
 ：

k二
:

“

-
-

•
〜

.
•

…

/
左
""
与
二

一

.
,

.
.

,
.

j.

•

；

；

.

X^
’

i
^

；

、

.
.

广
」

、
/

-
-

.
.
\

.
‘

。
’

.

•

,
-
；

-
：

、
…
⑶

i

•.•

’
...

.
.

•
....

“
.

.
.

.
.。

〜

^
^

•

〜
•

‘
丨
..

-

.
^

^

W

I
_

：

.
：

 ：

:.

”

“

::
::
:

：
.

_

‘
截

-
.

：

.
.

：

-
：

M

hTiSSbEDD

saLjejqn >lHn3

