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Abstract 

More and more people have realized that the Internet has become an indispensable 

part of their lives. They rely more and more on the Internet for searching information, 

listening to music, watching videos, sending and receiving email, locating friends and 

families, playing interactive games, as well as doing business etc. The diverse require-

ments from the customers promote the proliferation of applications on the Internet, such 

as WWW, IP telephony, VOD and e-commerce etc.. The Internet has evolved gradually 

into a global commercial infrastructure to support these versatile applications. Most of 

the technologies in current IP network, designed at a the early stage of Internet mainly 

for the academical research usage, are not sufficient to face the challenge of emerging 

applications and customers. 

The first challenge comes from the congestion, a state in which performance degrades 

due to the saturation of network resource such as link bandwidth, buffer and proces-

sor cycles. Congestion is adverse to the network performance in that it may lead to 

packet loss, increase the end-to-end delay, and in the worst case results in congestion 

collapse. Over the past decade, there has been intense research towards controlling the 

congestion on the network. Two classes of solution have been proposed: host-based 

mechanisms that make control decision at the end host with the end-to-end measure-

ment, and router-based mechanisms that monitor network state at network core and 

provide congestion notification to end hosts. In this thesis, we first investigate the fairness 

issue of TCP Vegas, a TCP protocol employs a host-based congestion control mecha-

nism, in the network with multiple congested gateway. We find that TCP Vegas fails to 

achieve the fair allocation of network resource to flows passing through different number 

of congested gateway. This unfairness is rooted in the cumulative nature of round trip 

time (RTT), the metric that TCP Vegas relies on. With the understanding that host-

based mechanism cannot provide reliabel congestion control function, we then propose a 

scheme called Joint Congestion Control(JCC) for TCP/IP networks. JCC uses probing 

packet to collect the up-to-date congestion information from routers along the path and 

with which to adjust the sending rate from the end host in a proactive way. JCC is 

proved to be able to achieve higher utilization of network resource, lower fluctuation of 

‘ flow throughput and packet loss, and fair allocation of network resource among different 

users. 

The IP network also faces the challenge to provide quality of service guarantee to 

satisfy the diverse requirements of applications and users. Today's Internet provides 

only best-effort service, which treats all the packets as the same and forwards them with 

the same service level. The emerging applications such as IP telephony and e-commerce 

require a powerful services guarantees. The existing solutions include integrated services, 

differentiated services, etc., which aims to provide flow isolation and protection according 
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to the requirement of applications and customers. In this thesis, we propose Shifted Wait-

ing Time Priority(SWTP) as a scheduling algorithm for delay differentiated services. We 

focus on the computational complexity and effectiveness of this algorithm in high speeds 

network environment. Using simulation experiments, we show that SWTP achieves a 

comparable functionalities with lower computational costs than existing algorithms. 
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摘 要 

越來越多的人已經意識到互聯網已逐漸成爲他們生活中不可或缺的一部分.他們越來越 

多的依賴于互聯網來搜索信息、欣賞音樂、觀看電影、收發電子郵件、聯絡朋友和家人、玩網 

絡交互游戲以及進行商業活動等等。用戶多樣化的要求推動了互聯網上應用程序的興旺發 

展，例如萬維網、IP電話、視頻點播也及電子商務等等。互聯網已經逐步演變爲一個全球性 

的商業架構，以滿足這些日益多樣的應用程序的要求。現有的IP技術大多設計于二十年前且 

主要用于于科研用途，現在已經難以應付日益涌現的應用程序及用戶群的挑戰。 

首先的挑戰來自于網絡擁塞。這種狀態下，網絡性能隨著網絡資源例如帶寬、緩衝 

區、處理器的耗盡而顯著下降。網絡擁塞對網絡性能危害頗深，它會導致大量的數據包丢 

失、增加端到端的時延，最差的情况下會導致擁塞崩潰。在過去的幾年裏，已經有大量的硏究 

致力于解决網絡的擁塞問題。目前的解决方案主要有兩類。一種是基于終端主機的措施’即 

所有的控制决策都是在終端基于端到端的測量數據做出。另一種是基于網絡路由器的，即路 

由器本身通過對網絡內部的狀態狀態的監視，提供相應的擁塞預警給終端用戶進行擁塞控制。 

本論文中，我們首先硏究TCP Vegas (―種基于主機擁塞控制的TCP協議）在有多網關出現 

擁塞的網絡中的不同數據流之間的公平問題。我們發現TCP Vegas無法公平的分配資源給經過 

不同數目的擁塞鏈路的數據流。這種不公平源自于TCP Vegas所采用的往返行程延遲（RTT) 

的累積特性。理論分析和計算機仿真的結果都證實了這一問題。基于這樣的認識即基于主機的 

機制難以提供有效和準確的擁塞控制功能，我們提出了一個新的解决方案即Joint Congestion 

Control (JCC). JCC利用探測數據包去搜集當前網絡的擁塞信息，幷反饋到終端節點進行早期 

速率調整于應對網絡中可能出現的擁塞狀况。JCC能够有效地利用網絡資源、降低流量抖動 

和數據包丟失，幷能够公平地分配資源給不同地用戶。 

IP網絡同時也面臨著這樣地挑戰即根據應用程序和用戶的不同要求提供不同地服務質 

量保障。目前的IP網絡只提供盡力型服務，這種模型下，所有的數據包都是在同樣的服務水 

平下進行轉發。一些新興的應用程序比如IP電話和電子商務要求有較高的服務質量保障。現 

有的解决方案包括Integrated Services、Differentiated Services等等’它們都是致力于根據應用 

程序和用戶的要求提供數據流隔離和保護。本論文中，我們提出一種面向delay differentiated 

• service的調度算法:Shifted Waiting Time Priority (SWTP).我們特別關注算法在高速網絡下的計 

算複雜度和有效性。計算機仿真結果顯示，相對于現有的算法，SWTP算法能够以較低的計算 

代價提供相當的功能。 
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Chapter 1 

Introduction 

Congestion has long been recognized as an important problem in IP networks. Conges-

tion occurring in the core network may lead to packets loss, increase queue delay, and in 

the worst case result in congestion collapse, a state that an increase of the offered load 

leads to a decrease of throughput in the network. Another problem having accompanied 

the growth of the IP network is to provide quality of service guarantee to satisfy the di-

verse requirements of applications and customers in IP networks. This thesis addresses 

some aspects of these challenging problems and tries to find solutions to improve the 

performance IP networks. 

1.1 Congestion Control in the IP Network 

Congestion is a state in which performance degrades due to the saturation of network 

resource such as link bandwidth, buffers, and processor cycles. The IP network has 

suffered from the congestion problem for a long history as for the uncoordinated resource 

share nature of the packet switching network. The packet switching network employs 

the statistical multiplexing mechanism to schedule the packet forwarding at the routers. 

It is possible for several IP packets to arrive at the router simultaneously, waiting for 

forwarding on the same output link. Obviously, not all of them can be forwarded at the 

same time. In this case, the buffer space in the router offers the first level of protection 

against the burst of traffic. However, the buffer space can be exhausted if the burst 

size is larger than the capacity. In this case, the router has no choice but dropping the 

packets. Adverse effects resulting from congestion include the packet loss, longer delay of 

packet delivery, wasting of network resource, and possible network collapse{oT “network 

meltdown")； 

The studying on congestion control has long been a hot topic in IP networks. A large 

number of congestion control algorithms and strategies have been reported in literature. 

Earlier works mainly followed the end-to-end approach[8] where the congestion control 
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CHAPTER 1. INTRODUCTION 2 

mechanisms were mainly designed at the end hosts. For example, the slide-window 

mechanism in TCP protocol adjust the sending rate by detecting the packet loss event 

at the end host. In 1984，Nagle [27] discussed the congestion collapse problem in the IP 

network. This promoted the initial QoS provision for end host system which addressed 

the problem of TCP protocol on wide-area network (WAN). Nagle algorithm is now 

supported by all IP host implementations. Two years later, Van Jacobson proposed a set 

of mechanisms to improve the congestion control functionalities for end system, which 

are well known as slow start and congestion avoidance. These mechanisms, together 

with other two additional mechanisms-fast retransmit and fast recovery, form the basis 

of current Internet congestion control practice. 

However, due to the limited information collected at the end hosts, this kind of host-

based end-toend congestion control may be not effective in preventing congestion when 

the traffic concentrates at some network hot spots. In recent years, the understanding 

that network core should participate to control the congestion in the network has led to an 

intensive studying on a router-based approach called active queue management(A QM). 

AQM monitors the network state and allows routers to control which packets to drop 

and when this should be done in a proactive way. By dropping packets(the traditional 

method of congestion notification) or marking the packet, the router notifies the source 

about the congestion and reduce the rate accordingly. RED[15] and ECN[13] are two of 

the most prominent and widely studied active queue management mechanisms. The goal 

of active queue management is to detect congestion at a earlier time and to convey con-

gestion notification to source before queue overflow and packet loss occur. By decoupling 

.. congestion notification from packet and using active queue management mechanism, it 

is expected the packet loss rates in the IP network can be reduced. 

1.2 Quality of Service in the IP network 

From the birth day of the Internet, providing QoS has been envisioned and a Type of 

Service (ToS) field was allocated in the IP header. The purpose of ToS byte is to pro-

vide an indication of the abstract parameters for the desired quality of service. These 

parameters are mapped to the actual service parameters of the particular networks and 

used to schedule the packet forwarding as datagram traverses through the network [30]. 

But at the early day of Internet, ToS support was of little use due to the limited applica-

tions and traffics in the network. Almost all IP implementations ignored this field. This 

situation remained unchanged until the late 1980s. The interest of providing QoS in IP 

network grows gradually with the evolution of the Internet from its academic roots to 

commercial usage. 

From the early 1990s, in order to better meet the needs of emerging real-time ap-

plications, a number of architectures were proposed and developed to enhance the IP 
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network infrastructure. Integrated Service (IntServ)[?^2^ 9] aimed to provide the means 

for the application to express end-to-end resource requirement with support mechanisms 

in network core. In this model, the end host initiates a request prior to packet transmis-

sion. This request is carried by resource reservation protocol{RSV'P). Once this request is 

accepted, the network will maintain per-flow state to guarantee such QoS request in the 

network during the transmission. The IntServ faces the scaling problem as it is required 

to keep per-flow states in routers along the path. Differentiated Service (DiffServ)\4, 28] 

was proposed to address this problem. DiffServ provides traffic differentiation by classi-

fying traffic into a few classes, with relative service priority among the traffic classes. It 

uses a newly standardized DSCP [28] filed in the IP header to mark the QoS required by 

the packet, and a DiffServ-enabled network delivers the packet with a PHB indicated by 

the DSCP field. Traffic is policed and marked appropriately at the edge of the DiffSer-

enabled network. The core network is responsible for the forwarding of packets according 

to the per-hop behavior. 

1.3 Structure of Thesis 

This rest of this thesis is organized as follows. In Chapter 2’ we first review the existing 

TCP protocols and their congestion control mechanisms. We then describe some works 

on active queue management. Lastly, We describe the IntServ and DiffServ architecture 

and discussed the latter one in detailed. 

In Chapter 3，we investigate the fairness problem of TCP Vegas in networks with 

.. multiple congested gateways. Our analysis shows that the congestion control mechanism 

used in TCP Vegas may lead to unfair throughput for flows that traverse through multiple 

congested gateways. We then verify the analytical results through a series of simulation 

experiments. 

With the understanding that network core can play a more active role in controlling 

the congestion in the network, in Chapter 4 we propose a mechanism to incorporate the 

efforts of the network routers and the end hosts to take effective and accurate action to 

avoid congestion. Simulation results show that this approach is very effective. 

In Chapter 5’ we study the delay differentiated services and scheduling algorithm for 

this service model. We propose a scheduling algorithm that reduce the complexity of 

delay differentiated services. 

Finally, In Chapter 6 we summarize the work of this thesis and discuss the future 

directions of this research. 



Chapter 2 

Background 

This chapter reviews some important technologies on congestion and as well as current 

progress on quality of service provision in the IP networks. In Section 2.1 we first discuss 

TCP protocols and their congestion control mechanisms. In section 2.2 we then describe 

the active queue management mechanisms. In section 2.3 we discuss the integrated 

services and differentiated services. 

2.1 TCP and Congestion Control 

Transmission Control Protocol(TCP) is currently the dominant transport protocol used 

in the IP networks. TCP is a connection-oriented protocol and uses a congestion win-

.. dow (cwnd) to control the flow rate. Currently, most TCP implementations employ a 

series of congestion control mechanisms, including slow start, congestion avoidance, fast 

retransmit and fast recovery[16, 17, 36]. 

2.1.1 Slow Start 

When a TCP connection starts up, it first enters slow start stage which help it to 

increase the congestion window rapidly from the cold start. Each time an ACK is 

received, the congestion window is increased by one segment. The sender can transmit 

, up to the minimum of its congestion window and the advertised window of the receiver. 

The congestion window is controlled by the sender based on the sender's assessment of 

perceived network state; The advertised window is controlled by the receiver depending 

on the amount of available buffer space at the receiver for this connection. 

In slow start, the TCP source starts by initializing the congestion window to one 

segment, it then transmits one segment and waits for the ACK. When the packet is 

acknowledged, the congestion window is incremented from one to two, and two segments 

can be sent. When those two segments are acknowledged, the congestion window is 

4 



CHAPTER 2. BACKGROUND 5 

doubled to four, then four segments can be sent. In this manner, the congestion window 

size grows exponentially. As a result,the sending rate of a TCP source can quickly 

approach the available network bandwidth. 

2.1.2 Congestion Avoidance 

The endless exponential increment of congestion window may lead to excessive packet 

losses when the sending rate is beyond the available network bandwidth. TCP employs 

a congestion avoidance mechanism to stop this exponential increase at a proper time. 

Each connection is required to maintain a parameter called slow start threshold (ssthresh). 

ssthresh is used as an estimation of the bandwidth-delay produce for the TCP connection. 

When the congestion window size exceeds ssthresh, TCP enters the congestion avoidance 

stage and the congestion window increases linearly (by 1/cwnd) per acknowledgement 

received. This provides a slow increment rate at one packet per round trip time instead 

of the exponential increase as in slow start. 

2.1.3 Fast Retransmit, Fast Recovery and Timeout 

Either in slow start or in congestion avoidance stage, the congestion window size may 

increase to a level beyond the network capacity, eventually leading to packet loss. When a 

packet is dropped in the network. TCP should be able to detect this event and retransmit 

the dropped packet. This is done with duplicate ACK. Specifically, when a packet is lost, 

the following packets arriving at the receiver are treated as out-of-order segments and 

duplicate ACKs(ACKs with the same sequence number as the lost packet) are sent back 

to the source immediately. When the duplicate ACKs are received by the TCP source, 

it responds with fast retransmit and fast recovery mechanisms to retransmit the lost 

packet. They work as follows: 

1. When the third duplicate ACK is received, it sets ssthresh to one-half of the current 

congestion window size, cwnd. It retransmits the lost segment and sets cwnd to 

ssthresh plus 3. This inflates the congestion window by the number of segments 

that have left the network and the other end has received as out-of-order segments. 

‘ 2. Each time another duplicate ACK arrives, it increases cwnd by one. This inflates 

the congestion window for the additional segment that has left the network. It 

may transmit a packet if allowed by the new value of cwnd. 

3. When the next ACK arrives and acknowledges the segment, set cwnd to ssthresh 

" (the value set in step 1). This ACK should be the acknowledgment of the retrans-

mitted packet in step 1，one round-trip time after the retransmission. In addition, 

this ACK should acknowledge all the intermediate segments sent between the lost 
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packet and the receipt of the first duplicate ACK. This step is congestion avoidance, 

since TCP is down to one-half the rate it was at when the packet was lost. 

If the network is so congested that the packet loss cannot be detected with dupli-

cated ACKs, TCP relies on a separate retransmission timeout mechanism to trigger the 

retransmission of lost packets. The TCP source starts a retransmission timer when it 

sends a packet. When the retransmission timer is expired but the corresponding ACk is 

still not received, the TCP source assumes that this packet has lost in the network and 

reduces its window size to one segment, and retransmits the lost packet. To prevent con-

tinual retransmissions in times of severe congestion, TCP uses an exponential back-off 

algorithm to extend the retransmission time interval. Specifically, if the sender contin-

ually sends the same packet but never receives the corresponding ACK, it doubles the 

retransmission timeout interval. When the ACK for this packet is eventually received, 

the timeout interval is reset to the default value. 

Figure 2.1 illustrates the congestion control behavior of TCP with the collaboration of 

these algorithms. As this figure show, TCP continually increases the congestion window 

until a packet loss is detected, the congestion window size is then cut down and increased 

again until another packet loss occurs. This process leads to a saw-tooth like behavior 

to TCP. 

“ congestion packet loss 
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0 / J ^ timeout 
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1 J T 乙 
/ fast retransmit / 
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Figure 2.1: TCP congestion control behavior 

Although these mechanisms help TCP to utilize the network bandwidth, it also leads 

to extensive packet loss. Tri-S [40] and Vegas [23] tried to improve the performance of 

TCP by monitoring the variation of round trip time. They take the increase of round 

trip time as a signal of congestion in the network. If the round trip time is detected to be 
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larger than a specific threshold, TCP source will decrease the congestion window size to 

slow down the sending rate. Otherwise it increases the window size to seize the available 

network bandwidth. The details of TCP Vegas will be discussed in the Chapter 3. 

2.2 Active Queue Management 

The congestion control mechanisms employed in the end hosts is activated only when a 

packet is lost or the round trip time has increase beyond a limit. This will cause some 

problem since it needs considerate amount of time to take effects. While during this 

time, there may already have considerable packets lost in the network. 

Active queue management [5] algorithms address this problem by detecting the in-

cipient congestion at an early stage and notifying the sources to reduce their sending 

rates before a large number of packets are piled up at the router. One of the prominent 

active queue management algorithm is Random Early Detection(RED)[l5]. RED main-

tains three parameters mirith, maxth and max p. Each time a packet arrives, the router 

computes a dropping probability according to a function as shown in Figure 2.2. In this 

figure, the x-axis is the average queue size, the y-axis is the dropping probability. The 

probability of dropping an arriving packet is determined by the current average queue 

length. When the average queue length is less than mirith, no packet is dropped. When 

average queue length is between mirith and maxth, the arriving packet is dropped with 

a probability proportional to the average queue length with a maximum value of max p. 

While if the average queue length is larger than maxth, all arriving packet are dropped. 
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Figure 2.2: RED algorithm 
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In RED, the router conveys the congestion information to the end host by dropping 

the packets. This can be improved using the Explicit Congestion Notification (ECN)[13]. 

Instead of dropping the packet, ECN marks the packet by setting a congestion experi-

enced bit (CE) in the packet header and uses it to inform the receiver that congestion 

has occurred. The receiver then sends this information with the ACK back to the sender 

to adjust the congestion window. 

2.3 Integrated Services and Differentiated Services 

QoS provision in IP network have long been discussed by researchers. In recent years, 

two classes of mechanisms have been proposed to enhance the service offered by the 

Internet, one is known as integrated services(IntServ)[32, 9], the other is differentiated 

service (DiffServ)[4, 28]. 

In the IntServ model, the end host requests network to reserve an amount of network 

resource( link bandwidth, buffer etc.) using the Resource Reservation Protocol(RSVP). 

Once the request is admitted, the router provides a per-flow QoS guarantee to the users. 

IntServ provide two type of services: guaranteed and controlled load services. Guaranteed 

service provides deterministic delay guarantees, whereas controlled load service provides 

a network service close to that provided by a best-effort network under lightly loaded 

condition. 

IntServ model needs to maintain per-flow information in the routers and to perform 

a complicated call admission control before the transmission. With the vast number of 

.. flows on the Internet today, the amount of state information required in the routers is 

enormous. This leads to scaling problem since the state information increases with the 

number of flows. This make IntServ hard to deploy on the Internet. 

Differentiated Service uses a different approach. It provides traffic differentiation by 

classifying the traffic into a number of classes with relative service priorities assigned. A 

user can choose the performance level on a packet-by-packet basis by simply marking the 

packet's Differentiated Services Code Point(DSCP) field to a specific value. The routers 

forward the packet with a per-hop behavior (PHB) according to the DSCP of the packet. 

Typically, each user is associated with a service level agreement (SLA), which is used to 

, negotiate between the user and the Internet Service Provider (ISP) for the forwarding 

service the user expects. Traffics submitted out of the profile are not provided with any 

kind of service assurance. 

Currently, the DiffServ architecture only specifies the basic mechanisms as how packet 

should be treated. The service provider can choose to build a variety of services by 

using these mechanisms as building blocks. A service is defined by some characteristics 

of packet transmission, such as throughput, delay, jitter, and packet loss rate. After 

that, a PHB is specified at all the nodes of the network offering the service (DiffServ-
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enabled domain), and a DSCP is assigned to the PHB. A PHB is an externally observable 

forwarding behavior given by a network node to all packets carrying the corresponding 

DSCP value. The packet tells the network about a specific service level by carrying the 

associated DSCP field in its packets. 

In DiffServ model, the network nodes on the DiffServ domain's boundary are re-

sponsible for conditioning the traffic entering the domain. Traffic conditioning involves 

functions such as packet classification and traffic policing. Traffic conditioning plays 

are essential to delivering differentiated services in DiffServ architecture. The boundary 

nodes rely on it to meter all the traffic entering the network against the customer's traffic 

profile. Inside the network, the core-routers are responsible for forwarding the packet 

according to the specified PHB. They carry the important function of resource alloca-

tion and packet scheduling with such algorithm as RIO[7], WRED[37] etc.. Figure 2.3 

illustrates the architecture of the differentiated services with a single DiffServ domain. 
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Figure 2.3: DiffServ Architecture 



Chapter 3 

The Fairness of TCP Vegas in 

Networks with Multiple 

Congested Gateways 

In this chapter we investigate the performance of TCP Vegas in the network with mul-

tiple congested gateways. Our work focuses on the fairness between the multiple-hop 

connections and the cross traffic connections at each gateway. We find that TCP Vegas 

tends to bias against the multiple-hop connections. By analysis and computer simu-

lations, we show that this bias is rooted in Vegas's RTT-based congestion avoidance 

mechanism. In other words, it uses the variation of round trip time as the tuning knob 

,• to adjust the congestion window. Due to the cumulative nature of round trip time, the 

congestion status of a connection cannot be correctly inferred from the measurement 

of round trip time. It is possible for the connection passing through multiple-hop path 

to receive a degraded throughput as a result of the wrong response to the congestion. 

We show that it is not easy to solve this unfairness problem solely by the end hosts, 

collaborative efforts from both end hosts and the network itself should be considered. 

The rest of this chapter is organized as follows. Section 3.1 gives a general description 

of the problem. Section 3.2 describes the congestion control algorithm of TCP Vegas 

and some related works. In 3.3 we then give an approximate analysis of the TCP Vegas 

. in a network with multiple congested gateways. In section 3.4 simulation results are 

presented to verify the analytical results. Finally, we summarize this chapter in Section 

3.5. 

3.1 Introduction 

In today's Internet, it is common for data flows starting from a source to go over many 

hops before arriving at the destination. These multiple-hop flows need to compete with 

10 
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the cross traffic at each gateway and are often treated unfairly due to their higher packet 

loss rate and longer end-to-end delay. 

Several researchers have studied the bias against connections passing through multiple 

congested gateways in TCP/IP network. In [25], Mankin measured the traffic in a 

network with several congested gateways. He remarked that the longer connections are 

more likely to have a higher packets loss rate at the gateway and degraded throughput. 

In [10], similar result was obtained in a network with three congested gateways: longer 

connection receives just half of the available throughput at each gateway. In [35], it 

was found that as a connection passes through a path with n congested gateway, its 

throughput is limited by M x p, where M is the maximum possible throughput in each 

congested gateway, p is the packet dropping probability given by p = y-^. 

The earliest studies on this multiple congestion problem were conducted on TCP 

Taheo/Reno(and their variants) with emphasis on the packets loss statistics and its 

impact on the throughput of the connections. TCP Taheo and Reno are well known 

for their congestion control mechanisms based on packet loss detection: they adjust 

the congestion window using a AIMD-based (Additive-Increase Multiplicative-Decrease) 

algorithm triggered by the packet loss. The analytical and simulation results in [35] also 

revealed that the bias in Reno comes from its loss based congestion control scheme: the 

overall loss probability of a connection is inversely proportional to the number of the 

congestion gateways passed. 

TCP Vegas [23] employs a more sophisticated end-to-end congestion avoidance algo-

rithm known as delay-based congestion avoidance (DCA). In this paper we investigate the 

fundamental factors affecting the performance of TCP Vegas in multiple-hop networks. 

Our work shows that TCP Vegas has a bias against the multiple-hop flows and this bias 

problem is rooted in TCP Vegas’s RTT-based congestion control mechanism: the cumu-

lative nature of RTT makes it difficult for the Vegas source to adjust the window size 

correctly. In other words, it is reliable to judge whether the multiple-hop connection is 

undergoing multiple mild congestion or a single severe congestion with the measurement 

of end-to-end delay variance. As a result, the multiple-hop flows tend to be wrongly 

penalized even when the network is still under moderate congestion level, resulting in a 

. degraded throughput and poor utilization of network resource. 

V 

3.2 TCP Vegas and related works 

TCP Vegas augments the TCP Reno by employing a more sophisticated bandwidth 

estimation mechanism. It measures the round trip time and computes the difference 

between the expected and actual flows rates to estimate the available bandwidth in the 

network. The underlying idea is that when the network is not congested, the actual 

flow rate should be close to the expected rate. Under congestion, the actual rate should 
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be smaller than the expected rate due to the packet loss and increase of end-to-end 

delay. TCP Vegas uses this difference to estimate the congestion level in the network 

and adjusts the window size accordingly. The details of the algorithm are as follows: 

1. TCP source computes the expected throughput, which is given by: 

Expected = W/haseRTT (3.1) 

where W is the current window size and baseRTT is the minimum of all measured 

round trip time. 

2. TCP source estimates the actual flow rate using the current round trip time RTT: 

Actual = W / R T T (3.2) 

3. The difference between actual and expected flow rate is 

A = {Expected — Actual) x baseRTT (3.3) 

A can be interpreted as the packet backlog in the path, which is a measure of path 

congestion level. 

4. Based on A, TCP source adjusts the congestion window size as follows 

' W + 1 if A < a 

W if a < A < (3.4) 

W - l if A > 

where a and /5 are two constant parameters. In this way, TCP Vegas tries to keep at 

least a packets but no more than (5 packets in the queue. It tries to detect and utilize 

the extra bandwidth without congesting the network. This mechanism is fundamentally 

different from TCP Reno. Reno always increases the congestion window size as high as 

possible until packet loss. TCP Vegas, on the other hand, tries to avoid packet loss by 

adjusting the congestion window at a early time by measuring the variance of round trip 

time. The congestion window of TCP Vegas are much more stable than that of TCP 

Reno, which help TCP Vegas to utilize the network resources more efficiently. 

. Many researchers have studied the performance of Vegas from different aspects. Ahn 

et.al. [2] confirmed the claims in [23] that Vegas can achieve higher throughput than 

Reno with a lower packet loss rate. They also found that Vegas's higher throughput 

and lower delay come from its RTT based congestion avoidance mechanism. In [34] the 

problem of rerouting and persistent congestion and their impacts on the performance 

TCP Vegas were investigated. In [3] Mo showed that TCP Vegas does not discriminate 

against connection with long propagation delays. It shares the available bandwidth 

evenly between connections, regardless of their propagation delay. 



CHAPTER 3. THE FAIRNESS OF T C P VEGAS IN NETWORKS WITH MULTIPLE CONGESTED GATEWAYS 13 

In spite of the many results in favor of TCP Vegas, there are also many studies 

on the effectiveness of Vegas's RTT-based congestion sampling algorithm in predicting 

future packet loss events. Paxson [38] looked at the correlation between one way packet 

delay variation and loss. He concluded that loss is weakly correlated to the rise of 

packet delay and conjectured that the linkage between the two is weakened by routers 

with large buffer space. In [26] the study is on the delay-based congestion avoidance 

algorithm. They found similar results and presented a set of conjectures to explain their 

measured results. They also explored the effect of this algorithm on the throughput of 

TCP with the use of the little correlation between the increment of delay and packet 

loss. Their conclusion was that RTT-based congestion avoidance may not be reliably 

deployed incrementally. 

3.3 Analysis 

For a multiple-hop network, the round trip time of a connection is the accumulation 

of the propagation and queueing delays of all gateways along the path. Consider a 

connection with N gateways in its path(forward and reverse path). Assume that d is the 

round-trip propagation delay between the source and the destination, U is the average 

queueing delay in the ith gateway, then the round trip time RTT of this connection is 

RTT = d + ̂ U (3.5) 

i=l 

To quantify the relation between the round trip time and backlog in each gateway, let m 

be the average number of packets backlogged in the ith gateway, and n be the average 

service time for a packet in this gateway. Then we have 

N 
RTT = d + Y .{n , + l ) n (3.6) 

i=l 

The second term above is the total time spent in the gateways by a packet, which is the 

sum of its waiting time and service time. Since the service time n is not relevant to the 

. congestion status, we introduce a new term d that combines the propagation delay d and 

the total service time, as follows 

N 
d = (3.7) 

i=l 

Substitute it into 3.6, we have 

N 

RTT = (3.8) 
1=1 
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Suppose that at some time, the source obtains a backlog measurement A as defined in 

3.3 where haseRTT = d (For simplicity, we do not consider the overestimation of the 

propagation delay). Then from (3.1),(3.2),(3.3) and (3.8), we obtain 

V ly 1 -

upon simplification, we obtain 

N A 

1=1 

If = T2... = Tn = T, the total backlog M along the path IS JUST 

N A 7 
, , v ^ A d 

(3.10) 
i=l 

We now consider two cases: 

• Case 1: single gateway congestion. Without lose of generality, assume that packets 

are mainly backlogged at the first gateway, so n2 w ns.. w nyv « 0. In this case 

A d 

" " ' ^ W ^ r (3.11) 

• Case 2: multiple gateway congestion. If gateways have different level of congestion, 

.. there is no uniform expressions for riiS. All we can be sure is the backlog that is 

bounded by 

A d A d 

For the case where the backlogs are distributed uniformly in each gateway, we have 

二 1 工.N (3.13) 

Prom the perspective of individual gateway, the situation of case 1 is more serious than 

• that of case 2. If the congestion is concentrated in a single gateway, a large backlog 

、 will be piled up in this gateway. If the burst of traffic is beyond the capacity of the 

buffer, it will lead to packet loss. It is therefore necessary for the senders to slow down 

their sending rates to relieve the congestion. While for the second case, the backlogs are 

distributed to all gateways. Even if M is very large, the backlog in individual gateways 

may not. Therefore, it may not be necessary to reduce the sending rates as it may leave 

the network under-utilized. In other words, the reduction of traffic is necessary in single 

congestion case but not in multiple congestion case. 
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If congestion status, i.e. case 1 or case 2，in the network can be determined, the 

source can response properly. Unfortunately, as shown by (3.10), the TCP Vegas source 

can only measure the cumulative backlog M. If the source finds that A is larger than 

the upper threshold /5, it will reduce the sending rate regardless whether the connection 

passes through “multiple mildly congested “ path or "single severely congested" path. 

As a result, these multiple-hop connections are more likely to be wrongly treated. 

3.4 Simulation Results 

—0——-

O ^ ^ ^ • ~ ~ • — 0 ~ • - ^ ^ ？ ― 1 1 H ^ 〇 
'…、-、.…-、,'"、•、、 / 1 \ / 9 、、 / o 、、 / 、、、 

/ 1 \ ！丄 \ ！ 3 、、， i N-r. 
‘ t ‘ t > « » 1， 上 》 6 6 6 6 6 0 

Q Host 2 Mbps 

] G a t e w a y lo Mbps 

Figure 3.1: Network model 

Figure 3.1 shows a network with N gateways and N connections. The link bandwidth 

is 10 Mbps between the host and the gateway and 2 Mbps between the gateway pairs. 

The dotted lines show the routing of these connections: 

• connection 0 is a multiple-hop connection passing through all links 

• connection 1 through iV — 1 are cross traffic connections passing through only one 

link 

We assume that the propagation delay and transmission time are the same for all con-

. nections. This assumption is necessary to isolate the effects of queueing delay from the 

、. traffic phase effects as discussed in [14]. All the simulation experiments are run on NS-2 

[1]. In the simulation each flow starts a FTP type traffic with unlimited data. The 

number of flows in each connection are varied in different simulation sessions to produce 

different congestion level at the gateways. 
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Figure 3.2: Throughput with different number of active cross connections 

3.4.1 Throughput for different number of active cross connec-
tions 

The first simulation is done using the network in Figure 3.1 with N = 11. The con-

.. nections are either idle (no flows) or active (with ten flows). A series of simulation 

experiments are performed, each with n active cross connections (n varies from 1 to 10). 

Connection 0 is always active in all of these simulation experiments. All cross links have 

exactly 20 flows passing through, so the fair share of bandwidth for each flows is 2/20 

Mbps (100 kbps). Figure 3.2 shows the measured throughput of all the flows in connec-

tion 0 (marked by "x") and connection 1 (marked by "+") for different number of active 

cross connections. The throughput of other cross connections (2 to 10) are similar to that 

of connection 1 and are therefore not shown. The solid line is the average throughput 

of these flows in each connection. It can be seen that when n= l , both connection 0 and 

‘ connection 1 can achieve their fair share of bandwidth. But when n is larger, connection 

0 needs to compete with the cross connection traffic at every gateway, so its throughput 

drops rapidly. Meanwhile, connection 1, being a FTP type traffic, can easily takes up 

the rest of the cross link bandwidth. 



CHAPTER 3. THE FAIRNESS OF T C P VEGAS IN NETWORKS WITH MULTIPLE CONGESTED GATEWAYS 17 

1000f 1 1— 1 1 1 1 1 1  

900 A -

800 - \ -

百 700 - \ -

t \ 
I 6。。- \ -

8. 500 - V 

I 400 - ^ Connection 1 

1 V ^ \ 

1 0 0 - -

Connection 0 ^ 1__. 2 I 丨 

o' 1 1 — 1 1 1 1 1 T 一 

1 2 3 4 5 6 7 8 9 10 
Number of flows in each connection — m 

Figure 3.3: Throughput with different number of flows 

3.4.2 Throughput for different number of flows in each connec-
tion 

For the same network, we next consider the case where all connections are active and 

have the same number of flows m. We run the simulation ten times with m = 1,2,3...10 

and show the throughput of flows in connection 0 and connection 1 in Figure 3.3. The 

dotted lines show the fair share of bandwidth for each flow, which decreases with the 

increase of number of flows m. It can be seen from the figure that when the network is 

lightly loaded (small m), connection 0 can achieve a comparable throughput as connection 

1 even though it has to pass through more gateways than connection 1. This is because 

the queueing delay in each gateway is small and so the round trip time is dominated by 

propagation and transmission delay. Since this is the same for all connections, connection 

0 can achieve similar throughput as the cross connections. But when the network load 

‘ increases (increasing m), the throughput of connection 0 quickly drops below its fair share 

‘ value. 

3.4.3 Multiple congestion vs Single congestion 

In the previous simulation experiments, we demonstrate the bias problem of TCP Vegas 

in the network with multiple congested gateways. The simulation results show clearly 

that the number of congested gateways and the traffic load in the gateway have a strong 

effect on the throughput of the multiple-hop connections. The analysis in section 3.3 
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Figure 3.4: Throughput of connection 0 in two cases 

shows that the sender of the multiple-hop connection cannot distinguish the multiple con-

gestions from single congestion. As a result, the throughput of multiple-hop connection 

is reduced significantly. 

We use the network with N=4 to illustrate this phenomenon. We consider the fol-

•• lowing two cases as discussed in section 3.3. 

• Case 1: Only connection 0 and connection 1 are active. Connection 0 and con-

nection 1 consists of m and 3m flows respectively, m varies from 1 to 10 in the 

simulation. This is the case of single gateway congestion. 

• Case 2: All connections (0,1,2 and 3) are active and all have the same number of 

flows m. This is the case of multiple gateway congestion. 

Figure 3.4 compares the average throughput of connection 0 in these two cases. The 

‘ solid lines are the measured throughput in the simulation and the dotted lines are the 

‘ fair share of bandwidth of each flow. The figure shows that in single gateway congestion, 

connection 0 can always receive its fair share of bandwidth under different traffic load 

conditions. But in multiple gateway congestion, the throughput of connection 0 drops 

below its its expected value with the increase of flows in the network. In fact the 

throughput of connection 0 in multiple congestion case falls to the same level as that in 

single congestion case. 

To show this more clearly, Figure 3.5 shows the average queue length of three gateways 
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in these two cases. In multiple congestion case, three gateways have the similar queue 

length, while in single congestion case, only the first gateways has a large queue. An 

interesting result is, although the individual queue length under these two situations 

is different, the sum of these three queues are quite close in these two cases. In other 

words, the sender sees a similar accumulation of packet backlog along the path under 

two situations, so it takes similar actions to respond to the congestion. This explains 

why connection 0 achieves a similar throughput under two situations. 

The results of Figures 3.4 and 3.5 confirm the analytic results in section 3.3: TCP 

Vagas is not able to distinguish the single gateway congestion from multiple gateway 

congestion. As multiple mild congestion is more likely to occurs than single severe 

congestion, the multiple-hop connections tend to be treated unfairly. 

3.5 Summary 

In this chapter we investigate the fairness problem of TCP Vegas in the network with 

multiple congested gateways. Using both analysis and simulation, we have shown that 

when TCP Vegas uses the round trip time to estimate the backlog in the path, it fails 

to distinguish the multiple mild congestion case from the single severe congestion case. 

As a result, it tends to degrade the throughput of multiple-hop connections by guiding 

the source to reduce the sending rates unnecessarily. 

Due to the cumulative nature of end-to-end delay, the discrimination against multiple-

hop connections is a common problem in all delay-based congestion avoidance schemes 

.. for which TCP Vegas is just one of the examples. We believe that it is not easy to solve 

this problem solely by the end hosts. The intermediate nodes in the network should also 

participate for a collaborative congestion control. 
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Chapter 4 

The Joint Congestion Control 

for TCP/ IP Networks 

In the previous chapter we have studied the fairness issue of TCP Vegas in the network 

with multiple congested gateways. TCP Vegas employs the host-based congestion con-

trol mechanism and responds to congestion with the measurement of end-to-end delay 

variance. It has long been discussed as how much control this kind of host-based conges-

tion control mechanisms can achieve with the limited information collected from the end 

host. In recent years, it is realized that the participation of routers will help to achieve a 

more effective control on the congestion. This understanding leads to much interesting 

on the research of router-based congestion control mechanisms. In this chapter, we pro 

" pose a Joint Congestion Control (JCC) scheme for TCP/IP networks. JCC seamlessly 

unifies the efforts from routers (IP layer) and end hosts (TCP layer). It can provide 

more effective and accurate management in case of congestion in the network. 

The rest of this chapter is organized as follows. Section 4.1 presents the motivation 

of JCC and describes the existing mechanisms. Section 4.2 describes the algorithm of 

JCC in details. Sction 4.3 presents the simulation results and compares the performance 

of JCC with other TCPs. Section 4.4 summarizes the work of this chapter. 

4.1 Background 
« 

The Internet was originally designed following the concept that all flow-related states 

should be kept at the end host[8]. As a result, most of the earlier congestion control 

mechanisms were implemented at the end hosts. In the absence of explicit informa-

tion from the network, the end hosts treat the network as a black box and infer the 

network states from the flow's throughput, end-to-end delay, and packet loss statistics. 

Depending on the metrics used, the congestion control mechanism can be classed into 

two categories: "Loss-based Congestion Avoidance (LCA)" and "Delay-based Congestion 

21 
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Avoidance (DCA)". TCP Tahoe, Reno and NewReno are LCA based mechanisms which 

take the packet loss as indication of network congestion. In case of packet loss, the TCP 

source backoff the congestion window to reduce the sending rate. It then increases the 

window until the next packet loss. DCA mechanism was firstly introduced by Jain [18] 

and adopted in TCP Vegas. It measures the variation of round trip time (RTT) at the 

source and adjusts the congestion window accordingly. 

Host-based congestion control mechanisms are easy to implement as they do not 

need the support from routers. All the work are done at the end hosts with some sim-

ple measurements. This facilitates the decentralized resource allocation among different 

hosts and users. However, the accuracy and effectiveness of these mechanisms are lim-

ited by the information obtained from the end hosts. In recent years, with Internet 

evolving into the multi-purpose commercial infrastructure, it was found that host-based 

congestion control mechanisms were not sufficient to prevent the packet loss as a huge 

volume of traffics are injected into the network. It was recognized that the proper place 

to tackle the congestion problem is at routers: they know exactly how congested they 

are and can therefore perform more drastic resource management. This understanding 

leads to several router-based congestion control approaches, known collectively as Active 

Queue Management. Random Early Detection (RED)[lb] is one of this kind of mecha-

nisms. RED works by dropping packets before buffer overflow and allows router to decide 

when and how many packets to drop. Similar schemes such as BLUE [39] depends on 

packet loss and link idle events to manage congestion. Explicit Congestion Notification 

(ECN)[13, 31] promoted the interaction between hosts and intermediate nodes in a more 

explicit way. Here, instead of dropping packets, the router marks the packet with an 

ECN bit in the header and in this way conveys the congestion information to the end 

host for congestion control. 

Active queue management mechanisms allow the routers to play a more active role 

in controlling the congestion in the network. In RED,ECN or other AQM mechanisms, 

the router measures the congestion level and decides whether drop (or marks) a packet 

to notify the source of the congestion. All of these mechanisms follow the same way in 

which the routers just tell the source that the network is "congested" or "not congested". 

With this coarse information, the TCP source simply back-off the sending window when 

、 it receives the "congested" notification. The congestion window of the TCP still exhibits 

the sawtooth behavior, which leads to a fluctuation in throughput. In this chapter, 

we propose the Joint Congestion Control (JCC) scheme for TCP/IP networks. JCC is 

designed to unify the efforts of both end hosts and network routers. With the close coop-

eration from network and end hosts, JCC can provide effective and accurate congestion 

control in a proactive way, eventually improve the utilization of network bandwidth with 

a lower packet loss and fair share of resource among different users. 
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4.2 The Joint Congestion Control 

As for the burst nature of Internet traffic, the offered load on a link fluctuates from time 

to time. The congestion state of the link, therefore, varies in a wide range depending on 

the traffic load and capacity of the link. JCC aims to collect and use the quantitative 

information of the congestion level of the network. In JCC, special probing packets are 

sent out periodically from the source to the destination. The probing packet carries 

a congestion state field in the header. When the routers along the path detects these 

probing packet, they update the congestion state field of these packet with the local 

congestion information. As the probing packet arrives at the destination, this information 

is sent back to the source with the ACK. The source then uses this information to adjust 

the congestion window accordingly. 

4.2.1 Path Load Reduction Factor 

The congestion state information collected by the probing packet is the congestion level 

of the link. In JCC, the congestion level is defined as the packet dropping probability of 

the link, which is widely used in many active queue management mechanisms. Consider a 

path consisting of a set of links P, let r̂  be the dropping probability of the ith link of this 

path. The congestion measure of this entire path should be a function of the congestion 

level of individual link along the path. We choose Path Load Reduction Factor R as 

measure of the path congestion leve, which is defined as 

^ = (4.1) 

This definition comes from the understanding that when a flow adjusts the sending 

rate, it will affect the state of all the links it traverses. In case of congestion, the flows 

should reduces their rates according to the requirement of the most congested link in 

order to reduce the traffic load of other links of the path as a side effect. Take the path 

consisting of five links as shown in Figure 4.1 as an example. The congestion level of 

each link is shown beside the link. It can be seen that currently the third link is the 

bottleneck link ( 厂 3 = 0 . 1 ) of this path, so R = rs = 0.1 according to 4.1. Therefore if 

all flows at the source node reduce their rates by 10%, the congestion of the entire path 

‘ can relieved. While if the source reduce the rates according to other link's state, the 

‘ reduction ratio is not enough to relieve the congestion problem on the third link. 

R is collected by the probing packet in a distributed way. At the source, R is initialized 

to zero. As the probing packet traverses through the network, the router updates R as 

follows 

切= max{ir 记’ r} (4.2) 

As the probing packet arrives at the destination, R is copied into the next outgoing 

ACK (denoted as probing ACK) and sent back to the source. The source then adjusts 
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Figure 4.1: An example of a path with five links 

the congestion window according to current state with the congestion control algorithm 

as discussed in the follows section. 

4.2.2 The Congestion Control Algorithm 

JCC still uses slows start and congestion avoidance as the congesiton control mechanism 

and incorporates the Path Load Reduction Factor R into the these algorithms. Besides 

cwnd and ssthresh, JCC maintains two other parameters a and (3 for each connection 

as the lower and upper thresholds of R. The congestion control algorithm operates 

according to the stage that JCC is undergoing. 

Slow Start Stage 

If the current window size cwnd is below the slow start threshold ssthresh, JCC is in 

the slow start stage. In this case, the congestion window increases exponentially as the 

.. other TCP protocol. This process continues until the source receives an R value (from 

the probing ACK) that is larger than the upper threshold (3. As this happens, the source 

set ssthresh to the current window size and JCC enters the congestion avoidance stage. 

Congestion Avoidance Stage 

In the congestion avoidance stage, JCC adjusts the congestion window with a Additive-

Increase Exponential-Decrease(AIED) algorithm, which is defined as 

cwnd + 1 ii R< a 

• cwnd = cwnd x exp[-/n2 x if a < i? < (4.3) 

、cwnd/2 li R > l3 

The adjustment ratio as a function of R is shown in Figure 4.2. This algorithm 

operates at three different phases according the value of R 

• congestion free phase: If < a, the path is in good condition. The congestion 

window is increased by one in each round trip time. This additive increment allows 

the flow to obtain the available bandwidth as much as possible. 
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Figure 4.2: Reduction ratio of AIED algorithm 

• congestion avoidance phase: li a < R < P, the path is suffering moderate con-

gestion and may have packet loss. In this case, the window size undergoes a mild 

exponential decrease as shown in Figure 4.2 

.. • congestion control phase :If i? > , it strongly indicates that the path is in serious 

congestion and there is high probability of packet loss. In this case, the window 

size is simply cut to half to reduce the sending rate. 

Figure 4.3 depicts the expected behavior of congestion window of JCC and TCP 

Reno. As the dashed line shows, TCP Reno increases the congestion window until the 

packet loss, then reduces the congestion window to half and increases again until another 

packet loss. This saw-tooth behavior leads to a large variation of the congestion window, 

as a result the throughput of TCP Reno fluctuates drastically. JCC, on the other hand, 

. decreases the congestion window exponentially at an earlier time before the network is 

、 overwhelmed, so it can avoid the packet loss. When the network becomes available, the 

congestion window is increased linearly. In this way, JCC should be able to stabilize 

around the expect rate with less fluctuation than TCP Reno. This potentially reduce 

the total packet loss and help to improve the network utilization. 
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Figure 4.3: Congestion window behavior of JCC and Reno 

4.2.3 Probing Interval 

The probing interval is the time between two subsequent probing packets. It determines 

the frequency of window adjustment. The optimal probing interval should consider both 

the stability of JCC flow and the effectiveness of the congestion control. If adjusted too 

frequently, it may lead to oscillation of the congestion window and eventually adverse the 

performance. On the other hand, infrequent probing may lead to unresponsive behavior 

•• in case of congestion and unnecessary packet loss. It is especially harmful to short life 

flow such as HTTP traffic. As a trade-off, it was suggested that the adjustment should 

not be more than once per round trip time [24]. JCC follows this recommendation and 

set the probing interval to one round trip time. 

In JCC, it is recommended that routers should not drop the probing packets due 

to their special function in JCC's congestion control mechanism. But in case of severe 

congestion, this may occur occasionally. Whenever this happens, the source simply cut 

the congestion window to half. The important thing here is to differentiate the probing 

packet loss from the normal packet loss. This can be done by recording the sequence 

、. number of the probing packets when they are sent out. In case of packet loss, the source 

can check whether sequence number of the lost packet coincides with the probing packet. 

4.2.4 Parameter Setting 

a and (3 are two important parameters that control the performance of JCC. The setting 

of these two parameters depends on the dropping probability function used in the routers 

and also on the desired aggressiveness of JCC. In our simulation experiments, we use 
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a modified RED algorithm where a is set to zero, and (3 is initialized to max p. These 

correspond to the lower and upper thresholds of the dropping probability in RED. a is 

a fixed parameter. (5 is dynamically updated in run time. i.e. each time a packet is 

detected lost, (3 is set to the latest value of R from the probing ACK. In this way, (3 can 

always reflect the network congestion level corresponding to recent packet loss event. It 

is then used as a reference to control the upper bound of R until the next packet loss 

occurs. 

4.2.5 Encoding of R 

R is computed from the dropping probability riS, which is a real numbers between 0 

and 1. In practice, it is undesirable to carry such a real number with the packet as for 

the scare space in the IP packet header. JCC solves this problem by quantizing to a 

number of scales and encoding it with some bits. Assume that m bits can be allocated 

for R in the header, with the binary coding, m bits can represent the number from 0 to 

- 1. 

>1 
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•Q 
0 
M 
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tJ> 
•H max_I  

.. Ci 
a  
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Average Queue Length 

Figure 4.4: Modified RED algorithm 

To work with this encoding scheme, we modify RED algorithm to provide scaled 

‘ dropping probability. Figure 4.4 shows the modified algorithm. The original dropping 

probability in RED ranges from 0 to maxp, and then 1，In the modified algorithm, the 
m 

, 八 s 
probability of 1 is encoded as 1111...11. The probability from 0 to maxp is quantized 

m m 
^ 八 s , 八 

to 2爪、-1 scales and encoded from 0000...00 to 1111...10. The computation of dropping 
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probability is as follows 

— 1 if avQq > maxth 

r = \ [ 二 X - 1)] i im in tH<avg ,<maxtH (4.4) 

0 if avQq < mirith 

where avQq, mirith, maxth are the same variables as in RED which represent the average 

queue size, minimum threshold and maximum threshold for avQq respectively. [.] is the 

function rounding a real number to the next integer. Accordingly, a and j3 are also set 

with this quantized value in the range of ( 0 , — 1). 

4.3 Simulation Results 

i ^ s  

Figure 4.5: Simulation network 

In this section we present simulation results to illustrate the performance of JCC 

from different aspects. As a comparison, we also provide the results of TCP Reno under 

the same conditions. All the simulation experiments are conducted on the network as 

shown in Figure 4.5 using NS-2[1]. All the flows in simulation use FTP type traffic with 

unlimited data. 

4.3.1 Congestion Window Behavior 

* Figure 4.6 shows the congestion window of JCC and TCP Reno. Unlike the congestion 

window of Reno that fluctuates drastically in a wide range(from 0 to 20), JCC stabilizes 

its congestion window in a narrow range (between 5 and 10). To show the behavior of 

congestion window more clearly, Figure 4.7 shows the microscopic view of Figure 4.6 in 

the time interval between 150s and 200s. It is can be seen that the congestion window 

of TCP Reno clearly exhibits the saw-tooth behavior. It aggressively increases until the 

packet loss, then drop down and increase again up to the next packet loss. While JCC, 
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Figure 4.8: Throughput of four flows starting at different time 
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Figure 4.9: Throughput of four flows with different round trip time 
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4.3.2 Throughput Stability 

Figure 4.8 shows the throughput of four flows competing at an 1Mbps link. These flows 

have the the same round trip time and start at t = 0,50,100 and 150 seconds respectively. 

As a new flow joins in the network, the existing ones cut down their sending rates and 

obtain roughly the fair share of the bandwidth. Eventually, all four flows stabilize around 

250 kbps, exploiting the full bandwidth of the link. As we have expected, with the fine-

grained window adjustment, JCC flows interact better than the Reno flows and suffer 

from little variation of throughput after the stabilization. 

Figure 4.9 shows the throughput of four flows with a round trip time of 50ms, 100ms, 

150ms and 200ms respectively and starts at the same time t = 0. As this figure shows, 

JCC is still "unfair" to the flows with longer round trip time in the same way as TCP 

Reno, a problem reported in [24]. The flow with shorter RTT are more aggressive and 

obtains more bandwidth than its fair share, while the long-RTT flows are slow to respond 

to the congestion and fail to seize the available network bandwidth as the shorter ones. 

It has been suggested that this is an unavoidable problem in all "RTT self-clocked" 

congestion control mechanisms based on the feedback of ACK. We leave this for future 

discussion for improvement of JCC performance. 

4.3.3 Packet Loss Ratio 
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、 Figure 4.10: Packet loss with different number of flows 

Figure 4.10 shows the packet loss ratio for different number of flows in the network. 

Although the packet loss ratio of both JCC and Reno increases gradually with the number 
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of flows in the network, JCC sees a much lower packet loss rate then Reno. For example, 

when there are 40 flows in the network, the high competence can result in as high as 

10 percent packet loss in Reno, while this is just about 2 in JCC. This shows the main 

advantage of JCC over Reno in controlling the packet loss rate. 

4.3.4 Fairness Index 

One observation in previous simulation experiment is that the JCC flows can fairly 

share the bandwidth. In this example we illustrate this property using the fairness index 

defined by Chiu and Jain [6]. Specifically, if Xj is the resource allocated to flow i, the 

fairness index f is defined as: 

” • (4.5) 

f ranges from 0 to 1 and is maximum when all users receive the same allocation of 

resource. 

Figure 4.11 shows the fairness index of four flows starting at time t=0. As seen from 

the plot, JCC maintains fairness much better than Reno. 
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、 Figure 4.11: Fairness index of competing flows 

4.3.5 Fairness in Multiple-hop Network 

The path load reduction factor R reflects the congestion level of the most congested node 

along the path instead of the cumulative statistics of the entire path as TCP Vegas or 

TCP Reno. Using it as the tuning knob for the congestion control, JCC is expected 

to improve the fairness for flows passing through multiple-hop network. To show this 
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property, we use the same multiple-hop network as shown in Figure 3.1 and the same 

simulation experiments with JCC. Figure 4.12 shows the throughput of connection 0 

and connection 1. Compared with the Vegas performance as shown Figure 3.3, JCC can 

achieve a fairer throughput between multiple-hop flows and single-hop flows. In addition, 

the throughput of the multiple-hop flows is insensitive to the number of hops it passes. 
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Figure 4.12: Throughput for different number of active cross connections 

4.3.6 Parameter Sensitivity 

a R(mean) Packet Loss Ratio (%) 

0 0.0057 0.2574 

0.02 0.0235 1.4004 

Table 4.1: Average R and total packet loss for different a 

• a and (3 control the performance of JCC . As we have explained before, (3 can be 

、 updated in real time, so in this sub-section we focus on JCC'S sensitivity on a. According 

to (4.4), when R is smaller than a, the congestion window increases linearly. When R 

is larger than a, the congestion window decreases exponentially. So in the steady state, 

JCC should control R around a. In this sense, a determines JCC's aggressiveness and 

packet loss tolerance degree. 

Figure 4.13 and 4.14 illustrate the behavior of JCC for two cases where a is set to 

0 and 0.02 respectively. In these two figures, the top curve shows the throughput of 
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four flows, the bottom one shows the value R collected by the probing packet. Table 

4.1 shows the average value of R and total packet loss ratio in these two cases. It can 

be seen that the throughput and the packet loss ratio of JCC flow is largely affected by 

the value of a. With a larger a, JCC becomes more aggressive, leading to more bursty 

throughput and higher packet loss rate. 
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Figure 4.13: Throughput and Path Load Reduction Factor {a = 0) 
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Figure 4.14: Throughput and Path Load Reduction Factor {a = 0.02) 
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4.3.7 Interaction between JCC and Reno flows 
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Figure 4.15: Throughput of mixed JCC and Reno flows 

In a homogeneous environment where there are just JCC flows in the network, it is 

better to set a smaller a value to avoid burst throughput and high packet loss rate. But 

in a heterogeneous environment where JCC and Reno flows co-exist in the network, as 

JCC's congestion control scheme is more conservative then that of Reno, it is necessary 

.. to tune the value of a of JCC to avoid the bias problem between JCC and Reno flows. 

Figure 4.15 shows the case that two JCC and two Reno flows compete for the same 

bottleneck link. The top figure is the case that a = 0 and the bottom one with a = 0.02. 

It can seen that as o; is set 0, JCC flows fail to get their share of bandwidth as this 

setting is too strict. But if a is set to 0.02, JCC achieve a similar aggressiveness as Reno 

and can compete with Reno in a fair way. 

The simulation results in this section show that we can tune the parameter to make 

JCC and Reno interact well in a heterogenous environments. But in practice, the proper 

choice of a is different depending on the environments and needs further investigation. 

4.4 Summary 

In recent years, many people have realized that the participation of network routers will 

help to increase the accuracy and effectiveness of congestion control mechanism. In this 

chapter we propose the Joint Congestion Control scheme to unify the effort of end hosts 

and intermediate nodes to provide cooperative congestion control. JCC uses the probing 

packet to collect the congestion state from the routers along the path. The source then 
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uses this information to adjust the congestion window with fine-grained scale. With 

proactive tuning, JCC can make efficient bandwidth usage with a lower level of packet 

loss rate. Our simulation results show that JCC achieves better performance than Reno 

in terms of stability, loss rate and fairness. 

V 



Chapter 5 

5-WTP : Shifted Waiting 

Time Priority Scheduling for 

Delay Differentiated Services 

The Delay Differentiated Service has been proposed as a DiffServ model to provide 

quality of service (QoS) on the Internet. In this model, the scheduler schedules the 

packet transmissions according to some specific delay metrics. Waiting Time Priority 

(WTP) is one of this kind of scheduling algorithms that uses the waiting time of the 

packet as the priority value to schedule the packet transmission. But due to the compu-

tational complexity, it is impractical to implement the WTP algorithm in high speeds 

•• network. In this chapter, we propose a modification algorithm based on WTP called 

Shifted Waiting Time Priority (S-WTP). S W T P preserves the fundamental properties 

of WTP and reduces the computational complexity from 0(n) to 0(log(n)). Simulation 

results illustrate that S-WTP preserves most of the functionalities of WTP. 

The rest of chapter is organized as follows. The next section gives a brief description 

of Delay Differentiated Services model. Section 5.2 introduces some previous works on 

scheduling algorithms that aim to provide Delay Differentiated Service. In section 5.3, 

we describes the details of S-WTP and discuss its computational complexity. In section 

5.4, the performance of S-WTP is reported with computer simulations from different 

aspects. Section 5.5 summarizes this chapter. 

5.1 Introduction 

To support quality of service over the Internet, the Differentiated Services (DiffServ)[4, 

28] model has been proposed by IETF. In this model, flows with similar qualities of 

service (QoS) requirements are aggregated into classes. Rather than providing end-to-

end performance guarantee for individual flows as in InterServ model, DiffServ aims at 

37 
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differentiating different classes of traffic using per-hop packet forwarding mechanisms. 

Two popular approaches for realizing DiffServ are absolute differentiated services and 

relative differentiated services. 

The goal of absolute differentiated service is to achieve a performance similar to those 

used in the Integrated Service model without keeping per-flow state in the routers. For 

example, Expedited Forwarding Service [29] aims to offer users a performance level that 

is similar to a leased line, as long as the user's traffic is within the scheduled profiles. In 

Assured Forwarding Services [7], packets are separated into four classes (AFlx-AF4x), 

each class has three drop precedence levels(e.g. AF11-AF13). As congestion occurs, 

packets of higher drop precedence level are dropped with a higher probability than the 

lower precedence one. This is a way to provide some level of absolute service to different 

classes. 

Relative differentiated service, on the other hand, attempts to guarantee that the 

performance of the higher classes will be better or at least no worse than lower classes with 

fixed quality spacing. A prominent scheme for relative differentiated service is proposed 

in [11] called Proportional Differentiated Service, which aims to provide proportional 

performance spacing between classes rather than absolute spacing. Two principles were 

also proposed for both users and network operators to design and evaluate the service 

model. First, a model must be predictable, i.e, the differentiation should be consistent 

(the service received by higher classes should be better or at least no worse than that 

of lower classes) and the differentiation should be independent of class loads. Second, 

the mode must be controllable, i.e. the network operator should be able to control the 

appropriate level of spacing between classes. 

Depending on the quality metrics used, the differentiated service model also can be 

classified as Delay Differentiated Service(DDS) or Loss Differentiated Service(LDS). The 

Delay Differentiated Services is suitable for some delay-sensitive applications such as IP-

telephony and video-conferencing. In this model, the router schedules the forwarding of 

the packet according to the specific delay metrics of different classes. Loss Differentiated 

Service, on the other hand, focuses on the packet loss statistics and aims to provide 

different level of packet loss guarantee to different classes. The work in this chapter 

focus on the Delay Differentiated Service. 

V 

5.2 Scheduling Algorithms for Delay Differentiated 

Services 

Scheduling algorithms that aim to provide relative delay differentiated service have been 

studied extensively in literature. In [22] the authors proposed a dynamic packet trans-

mission priority discipline called head-of-line with priority jumps(HOL-PJ), the funda-
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mental principle of HOL-PJ is to give transmission priority to the packet having the 

largest queueing delay in excess of its delay requirement. An explicit priority is assigned 

to each traffic class. The server always chooses the packet for service at the head of the 

highest priority nonempty queue. Unlike HOL, however, the priorities of the packet is 

increased using priority jumping(PJ) mechanism as their queuing delay increase relative 

to their delay requirement. The limitation of this scheme is that delay differentiation 

function may become invalid under heavy traffic load condition, as most of the packet 

from the low priority may jump to the higher class when they have been delayed for a 

sufficient longer time than it expect. As a result, the differentiation between classes is 

weaken when most of the packets have jumped to the same queue. 

Weighted fair queueing(WFQ) is a generic service discipline that widely used to 

distribute the link bandwidth between classes. In [21] a dynamic WFQ was proposed 

which adjusts the weight of each class dynamically according to the arrival rate and 

experienced queue delay of each class so that the delay difference between classes can be 

well controlled. However, the main difficult of this scheme is to determine the optimal 

interval to measure the arrival rate and queue delay, so it may fail to provide consistent 

differentiation in relatively short timescales, because the forwarding resource allocated 

to each classes may not be able to catch up with the class load variations. 

Backlog-Proportional Rate(BPR) scheduler is proposed in [11]. The basic idea of 

BPR is that the traffic load and service rate can be deduced from the backlogs of each 

class. In other words, if a certain class has received a small amount of service relative to 

the amount of arrivals in the recent time interval, then that class tends to have a relatively 

•• larger backlog. So the scheduler can adjust the scheduling parameters according to the 

backlog. It is observed that BPR exhibits a sawtooth-type of variations in the queuing 

delay which make it deviate quite often from the delay differentiation ratio in short 

timescale. 

Another algorithm proposed in [11] is Waiting Time Priority (WTP), which was 

originally studied by L. Kleinrock [19] under the name of Time Dependent Priorities. 

WTP is a non-preemptive scheduling algorithm with a set of parameters {6i,62, ...6iv}, 

where N is the total number of class, br is the priority weight of class r. For a tagged 

packet of class r arriving at time r, its priority value at time t{t > r is its weighted 

、 waiting time qr{t), which is calculated from 

Qr{t) = br{t — r ) (5.1) 

Figure 5.1 shows the priority function of WTP in the case of two classes. Whenever 

the server is ready to transmit a packet, the scheduler computes the priority value the 

HOL (head-of-the-line) packet of all classes and chooses the packet with the highest 

priority value for transmission 
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Figure 5.1: Priority function of WTP. 

One of the desirable properties of WTP is that it is able to provide effective delay 

differentiation between classes in short timescales. But it is also found that this delay 

spacing depends not only on the parameter sets {6i,62, but also on the offered 

traffic load. Analytical and simulation results have suggested that only in heavy load 

condition can WTP scheduler approximate the proportional delay differentiation model 

according to the configured parameters. How to tune the brS to cope with the dynamics 

of traffic load is a complicated problem. In [20], an algorithm was presented for finding 

•• WTP control parameters to realize a set of specified queuing delay spacing. In [12], 

an iterative procedure to optimize the scheduling parameters was proposed. Although 

both algorithms can achieve the desired performance, they are computational intensive 

and both need to track the frequent change of traffic load and adjust the parameters 

accordingly. As for the burst nature of Internet traffic, these schemes are often not 

feasible. 

In our work, we focus on the computation cost of WTP. We find that in WTP, the 

priority value of the HOL packet in each class is computed at the time of each transmis-

sion. So for a scheduler with N priority classes, N subtractions and N multiplications 

、 are needed to compute the priority of the HOL packet of all classes, then another N -I 

comparisons are needed to find the highest priority class. So totally it needs 3iV com-

putations to determine the candidate for each transmission. Even though the number of 

class may not be too large (4 to 8 in practice), so many computations are still a burden 

to the router especially in high speeds network where efficient forwarding is important. 

Our work aims to address this problem. We propose a modified algorithm based on 

WTP which reduces the computational complexity of WTP without losing the basic 

functionalities of WTP. 
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5.3 Shifted Waiting Time Priority Scheduling 

S-WTP still uses the waiting time of the packet as the priority value. It differs from 

WTP in that the priority of the HOL packet can be determined in advance instead of at 

the time of transmission. 

Before explaining the details of S-WTP, let's take a look at the packet transmission 

sequences of a class in WTP. Let 丁1：々 be the arrival time of the ith packet cj^。in class 

r. Then at time t, according to (5.1), its priority value is q i = 6”(<-7>⑷）.The priority 

value of the HOL packet is computed in this way upon the time of transmission, and the 

class with the largest value is chosen to transmit the packet. 

It can be seen that WTP has two characters in its scheduling procedure. First, the 

transmission candidate can not be determined in advance, as the priority value of the 

HOL packet depends on its actual waiting time, which can just be determined at the 

time of transmission. Second, for a scheduler with N class, the computation efficiency 

is just •jj, as each time just one class is chosen for transmission. For other N - 1 failed 

classes, their computation results are obsolete at the next transmission and need to 

be computed again. These characters are not desirable in high speeds networks where 

efficient scheduling is needed. 

S-WTP solves this problem using a simple modification to WTP. Instead of computing 

the priority value of all the classes on each transmission, S-WTP uses the departed 

packet's actual waiting time as the priority value of the next HOL packet of its class. In 

other words, as packet C^) is chosen for transmission, its actual weighted waiting time 

•• qr^ is computed. This value is then "shifted" as the priority value of the next packet 

Cf+i) of the same class. Similarly, when Cr'^^^ leaves, g^^i) is used as the priority of 

(7广+2)，etc. The underlying idea of this scheme is, if a packet from a class has waited 

longer than it should, that class is compensated by awarded a higher priority value to the 

next packet in queue. On the other hand, if a packet from has a shorter than expected 

waiting time, in order to preserve the average waiting time ratio, the next packet in 

the same class is given a smaller priority value(hence a longer delay). Another desirable 

feature of this scheme is that a departed packet's actual waiting time is a measured value, 

therefore the shifted priority value of next packet, once assigned, remains unchanged, 

、 the repeated priority computation is not needed. 

In S-WTP, packets are timestamped upon their arrival and put into the corresponding 

class. Two operations are performed independently to update the priority value of each 

classes. 
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5.3.1 Local Update 

Local Update is triggered whenever a packet departs. The scheduler computes the exact 

weighted waiting time of this packet according to (5.1). This value serves as the priority 

value of the next packet in the same class, called shifted priority Pg. Next time when 

the rourter is ready to send packet, the scheduler chooses the class with the largest Ps 

to transmit. Then same procedure is perform for the transmitted class. 

5.3.2 Global Update 

Using Local Update scheme, the priority value of the HOL packet remains unchanged 

until the departure of the packet. This may cause starvation in some special situations. 

Suppose that a packet in class C is forwarded very quickly, as a result, the next packet in 

class C will receive a very small priority value. Then regardless of how long this packet 

has waited, its priority value is never updated. If at the same time, there are a burst 

of packets arriving in other classes, their priority values are larger than that of class C, 

this will force the packets in class C to wait for an unnecessary long time than it should 

do until its priority value is larger than any others. This starvation can persist for a 

arbitrary long time depending on the size of the bursts in other classes. In the end it 

will lead to large deviation of delay ratio between the classes. 

This starvation can be avoided if the class C gets updated at a proper time. S-WTP 

employs Global update to achieve this by refreshing the priority value of each class in a 

round robin way. Specifically, after each Local update, the scheduler selects one of other 

class and update its shifting priority Pg with the exact waiting time of its current HOL 

packet. In other words, let P。be the current weight waiting time of the HOL packet, 

if Pc is larger than P^, then substitute Pg with P。. The underlying reason is that Pg 

reflects the waiting time of the previous departed packet, if current packet has waited a 

longer time than its precedent, then we should use its actual waiting time as the priority 

value to make it more competitive. The Global update is independent of Local update as 

the updating class is chosen in a round robin order. 

5.3.3 Computational overhead 

« In terms of computational complexity, S-WTP requires one subtraction and one multi-

plication to compute the shifted priority value in each Local Update. This shifted priority 

value can be stored in a sorted array. A new shifted priority value should be inserted into 

the proper position of the list, this can be done using binary insertion with a computa-

tional： complexity of log? N . The computational overhead of Global Update is the same as 

Local Update, so for S-WTP, the total computation requirement is 2 • (2 + log? N) oper-

ations for each transmission. More importantly, unlike WTP that computes the priority 
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value of each class at the time of transmission, all these computations have been done 

before the decision of transmission candidate, no extra computation delay is involved at 

the time of transmission. 

5.4 Simulation Results 

XE) 

Figure 5.2: Simulation network 

S-WTP inherits the fundamental scheduling principle from WTP, we expect it to 

approximate the functionality of WTP as close as possible. In this section, we conduct 

a sets of simulations to examine the effectiveness and efficiency of S-WTP. Our simu-

lations are conducted with NS-2 using the network as shown in Figure 5.2: a number 

of connections share the link between R1 and R2. Each connection consists of several 

flows which belong to different classes. The packets in each classes are mixed with the 

similar rules: 40% of 100 bytes, 40% of 500 bytes and 20% of 1000 bytes. Each flow 

generates the packets following a Pareto distribution with a shape parameter a = 1.9. 

The scheduling algorithm (S-WTP and WTP) are implemented in R1 to scheduling the 

packets on the link between R1 and R2. 

In these simulation experiments, the delay ratios between classes are measured in 

successive time windows of every K packet departures. K determines the timescale in 

which we measures the class delays and compute their ratio, which varies from tens to 

‘ thousands packet units depending the situation. 
V 

5.4.1 Microscopic View of Individual Packet Delay of S-WTP 
and WTP 

Figure 5.3 shows an instance of packet transmissions with three classes. Each mark in 

this figure is the queueing delay of an individual packet in the unit of packet transmission 

time at the time of its departure from the queue. As observed in this figure, there is 

no notable difference between these two scheduling algorithms in achieving the delay 
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differentiation at the packet level. Similar to WTP, S-WTP also guarantees that the 

higher classes always get smaller delay than the lower classes. The queueing delay of 

individual packet ranges from tens to hundreds of packet transmission time from lower 

class to higher class. 

5.4.2 Delay Ratios in Different Timescales 

Figure 5.4 compares the achieved delay differentiation with S-WTP and WTP in differ-

ent timescales. The delay ratios are measured in four different timescales, corresponding 

to K=500,1000,5000, and 10000 respectively. The figure shows five percentiles of the dis-

tribution of delay ratios between consecutive classes, which are median delay ratio(50th 

percentile), the 25th and 75th percentiles, as well as two tail delay ratios(5th and 95th 

percentiles). The target ratio is 2.0 and offered traffic load is 95%. As this figure shows, 

the distribution of achieved delay ratios with S-WTP are quite close to that of WTP. 

In the short timescale, the delay ratios fall in a wide range from 1.6. to 2.3. With the 

increase of measurement timescale, the delay ratios converge gradually to a narrow range 

from 1.8 and 2.0 in case of K=10000，which are quite close to the target ratios. 

5.4.3 Effects of aggregate traffic and class load distribution on 
delay ratio 

Figure 5.5 shows the overall delay ratios of three classes under different traffic load 

condition. The effects of traffic load distribution in each class are also taken into the 

,, consideration. We test three typical cases: the heaviest traffic in the lowest priority class 

(pi ： P2 ： P3 = 60 : 20 : 20), uniform traffic load in three classes (pi : p2 ： p3 ^― 33*3 : 33.3 : 

33.3) and the heaviest traffic in the highest priority class {pi ： P2 ： P3 = 20 : 20 : 60). 

In each case, the total traffic load varies from 0.65 to 0.95 while the distribution in each 

class remains unchanged. The target delay ratio is still 2.0. Seen from these figures, 

S-WTP achieves close results as WTP under almost all situations. Although in some 

cases with moderate traffic load, the achieved delay ratios with S-WTP have a little 

deviation from that of WTP. But this deviation decreases gradually with the increase 

of the traffic load. Under heavy traffic load condition, the achieved delay ratios with 

‘ S-WTP and WTP both approach to the target ratio. 
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1 . 5 -  ĥ - . - h . - r  -

P  “ ： .  ： ： T l ^ ^ . . : . : . . . : ; : : . : :  

A  0 . 5  -
o n  1  1  _  i  1  1  I   

0 . 6  0 , 6 5  0 . 7  0 7 5  0 . 8  0 . 8 s  0 . 9  0 . 9 5  1  

L i n k  u t i l i z a t i o n  

-  _  ^  _  .  _  

s  2 . 5  -  o  I  . 1  :  … .  

r   

町 拟  ^  L P   

M  ̂  1 , 5  -  ^  t  . M — •  ® .  - V I X A ^ . ^   

I  胁  a  - 2  \  \  一  

| i  T  一  

0 _  _  _  _  1  1  I  - .  

0 . 6  0 . 6 5  0 7  0 . 7 5  0 . 8  0 . 8 5  0 . 9  0 , 9 5  1  

U n k  U t i l i z a t i o n  

( a )  p i  :  p 2  :  P 3  =  6 0  :  2 0  :  2 0  

« T i - _  ̂  ！  _  _  _  _  I  

2  5  I  e  I   

" I  -  ^ I v t l t —  

曰 —  —  ； r : . . t - ^ I n r u m r T H ^ .  :  •  

= 1  
0 , 5  .  •  

。 一  1  1  1  -  -

s  O S  0 7  0 . 7 S  0 . 8  0 . 5  0 . 9  s ^  1  

U n k  U t i l i z a t i o n  

2 . S J i  I  .  

^ ^  «  y v l  ， … …  

二  ：  ， . "  ： t  •  一  —  

-  . _ : . : :  : .  . :  -  •  • .  

o . w  I  圓  I  

_  _  _  1  -

s  0 . 6 5  0 . 7  0 . 7 5  s  0 , 8 5  0 , 9  0 . 9 5  1  

U n k  U t i l i z a t i o n  

( b )  p i  :  P 2  :  P 3  =  3 0  :  4 0  :  3 0  

o l l t - i - l  _  -  -  _  _  1  

9 ” ， 边  ^  I  

»  M  w  L  1  . :  . .  

.  � ， ： . ： ： ： ： 一 . \ t l l  -

,  I ” "  ^ T h h L ^ n ^ h M i i l } ^ :  

&  J  1  -

_  
s  -  . . .  .  .  •  

0 _  1  _  1  

s  0 - 6 5  0 . 7  0 7 5  o . s  0 . 8 5  0 . 9  0 . 9 S  1  

U n k  U t i l i z a t i o n  

w l l - ^  s l i - j  -  ^  _  -  _  _  1  

5 ”  一  e  p  

s  w . w  I  

咖 ？ ，  

I  微  ^  - : v v v f t b  -

二 〒  6  n : : …  .  

I I  1  -  .  

! <  

A  s -  ,  

0 _  _  _  u  I  -  -

s  0 . 6 s  0 . 7  0 . 7 5  0 . 8  o . s  0 . 9  o . s  1  

U n k  i s t i o n  

( c )  P i  :  P 2  :  P 3  =  2 0  :  3 0  :  5 0  

F i g u r e  5 . 5 :  D e l a y  r a t i o s  w i t h  d i f f e r e n t  t r a f f i c  l o a d  a n d  d i s t r i b u t i o n s ( 带 = 2 . 0 )  



CHAPTER 5. S - W T P SCHEDULING FOR DELAY DIFFERENTIATED SERVICES 4 8 

5.4.4 Delay Ratios with More Classes 

In the previous simulation experiments, we just investigated the performance of S-WTP 

in the case of three classes. In this part, we investigate the effectiveness of S-WTP when 

more traffic classes are involved. We test three cases with 4 classes, 5 classes and 6 

classes respectively. The achieved delay ratios between classes are shown in Tables 5.1 

and 5.2 for the cases that target ratios are 2.0 and 1.5 respectively. For all of these 

cases, it is seen that S-WTP is as effective as WTP even a larger number of classes 

are introduced. Although it is difficult to show the efficiency of these two schedulers, 

but for the analytical results previous section, it is obvious that more classes, the more 

computations are saved with S-WTP than WTP. 

Delay ratio 4 classes 5 classes 6 classes 

SWTP W f ^ SWTP WTP " ^ T P WTP 

class-l/class-2 1.9843 2.0093 ~L9644 2 .00151 .96072.0092 

class-2/class-3 1.9776 1.9919 1.9892 1.9817 1.94731.9822 

class-3/class-4 1.9639 1.9620 1.9499 1 .97391.98341.9847 

class-4/cla5s-5 - - 2.0053 1.9880 1.94311.9553 

class-5/class-6 | - | - - - 1.95671.9617 

Table 5.1: Average delay ratios between c l a s s e s = 2.0’ U = 95%) 

•“ Delay ratio 4 classes 5 classes 6 classes 

SWTP WTP SWTP WTP ~SWTP WTP 

class-l/class-2 1.4370 1.4443 1 . 4 2 ^ 1.4118 1.48981.5185 

class-2/class-3 1.4645 1.4888 1.5327 1 .54961 .48371 .4953 

class-3/cla5s-4 1.4694 1.4993 ~4757 1 .48971 .50331 .4780 

class-4/class-5 - - 1.5459~ 1 .50521 .50771 .5037 

class-5/class-6 | - | - | - - ^ 1.46931.5069 

• Table 5.2: Average delay ratios between classes = 1.5, U = 95%) 

5.5 Summary 

In current DiffServ architecture there are no any standardized mechanisms as the schedul-

ing algorithms in the core network, and even for the DiffServ model itself, there are still 

many open problems. In this chapter, we propose the Shifted Waiting Time Priority (S-

WTP) for delay differentiated services. S-WTP derives the basic scheduling principles 
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from WTP and uses the packet's waiting time as the priority metric. S-WTP reduces 

the computational complexity and is more efficient than WTP. We also conduct a series 

of simulation experiments to show that S-WTP is as effective as WTP in a wide range of 

environments and achieves close performance as WTP in most cases. This make S-WTP 

an idea scheduling algorithm for deployment in high speeds network environments to 

provide delay differentiated services. 



Chapter 6 

Conclusions 

The Internet has grown exponentially in the past few years in both the number of appli-

cations and the number of users. Facing the challenge to meet the diverse requirements 

from both applications and users, the Internet evolves gradually towards a global com-

mercial infrastructure which calls for new technologies and solutions to provide high 

performance guarantee to customers. In this thesis, we address some aspects of the most 

challenging works as avoiding congestion and providing quality of service guarantee in 

IP networks. 

6.1 Congestion Control 

、• TCP is the dominate transport protocol in current IP networks. It employs a host-based 

congestion control mechanisms which respond to the network state dynamic by moni-

toring the network state with a end-to-end measurement, such as packet loss, variance 

of round trip time, or fluctuation of flow's throughput. The weakness of this host-based 

mechanism has long been discussed. In this thesis, we firstly investigated the performance 

of TCP Vegas, a TCP protocol employing the round trip time(RTT) as the metric for 

congestion control, in the network with multiple congested links. We analyzed the con-

gestion control algorithm of TCP Vegas and found that it may lead to unfairness to 

• these flows that pass through multiple-hop path. This unfairness is unacceptable from 

、 the perspective of users. We also conduct a series of simulation experiments to verify 

our analytical results. Our work, as well as many studies by other researchers, revealed 

that the host-based congestion control is not reliable for providing accurate and effective 

control as congestion occurre in the network. 

Under the belief that the participant of routers in the network can contribute to 

the congestion control and improve the performance of TCP protocol, we then propose 

the Joint Congestion Control for TCP/IP networks. JCC is a scheme in which routers 

can provide detailed congestion information of the link via the probing packet from the 

50 
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end hosts. We propose Additive-Increase Exponential-Decrease (A IED ) algorithm 

which can make full use of the path load reduction factor, a metric defined to describe the 

congestion level of a path, to adjust the congestion window smoothly in a proactive way. 

We also propose a modified RED algorithm to provide the scaled dropping probability 

as the congestion level in the router, which make it possible to implement the JCC 

scheme in practice. We also conducted extensive simulation experiments to illustrate the 

performance of JCC from different aspects and proved that JCC can provide satisfied 

performance in terms of throughput stability, packet loss rate and fairness comparing to 

other version of TCP. 

6.2 Quality of Service Provision 

The DiffServ architecture provides a framework within which services providers can offer 

customers a range of network services, each differentiated based on desired quality of 

service level. Currently it only specifies the basic mechanism as how the packets should 

be treated. Much freedom are left for discussion of performance metrics and scheduling 

algorithms for the building block. In this thesis, we focused on the Delay Differentiated 

Services, a model proposed to provide relative quality of services to delay sensitive ap-

plication. We studied WTP, an algorithm that is designed for packet scheduling in this 

model. We suggested that the high computational complexity make it difficult for this 

algorithm to be deployed in the high speeds network environments. We then proposed 

S-WTP based on the WTP algorithm. S-WTP derives the basic scheduling principle 

•• from WTP but reduces the computational complexity of WTP from 0(n) to 0(log(n)). 

Simulation results suggested that S-WTP preserves the basic functionalities of WTP 

in a wide range of environments, which make it an idea scheduling algorithm for delay 

differentiated services in high speeds network. 

6.3 Final Remarks 

Congestion control and quality of service provision in IP networks are important but 

difficult t朋ks. While this thesis has examined several problems and has provided a 

、 number of solutions, there are undoubtedly still many issues which need to be addressed 

in the future. 

One of the problem in congestion control is the control of unresponsible traffic. Cur-

rently, most of the real-time applications are based on UDP protocol, which is well known 

as a connection-less protocol without any congestion control schemes. So UPD traffic is 

said to be unresponsible traffic as it does not make cooperative action in ca^e of con-

gestion. Currently the router-based congestion avoidance schemes are not effective to 

handle this kinds of unresponsible traffics. Some people have discussed possible solutions 
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to make them "TCP-friendly"[24, 33], i.e, respond to congestion in the similar way as 

TCP does. Our JCC scheme, although is proposed for TCP protocol, can be extended 

to incorporate into UDP protocol to make it responsible as TCP does. 

For the provision of quality of service in the Internet, current interests in both aca-

demical research and industry are focused on DiffServ model. At present, the DiffServ 

only specific the basic mechanism on ways as how to treat packets. Variety of service 

can be built into this model by using these mechanisms. In this sense, there is still much 

space on the discussion of the scheduling algorithm and measurement metrics. This 

thesis just touch a small piece of this work by studying the S-WTP algorithm for delay 

differentiated services. More works can be done in this direction. 
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