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Abstract

Future communication networks will carry many WDM channels at very high bit
rate. Thus, it is desirable to avoid electronic switching at the core. The all-optical
backbone network can be interconnected by optical cross-connects at strategic
locations to allow for flexible capacity provisioning and fault-tolerant rerouting.
Such an all-optical core layer nicely decouples the long-term capacity planning
problem from the short-term dynamic bandwidth allocation problem which can
be better tackled in the electronic domain. An essential requirement for the
all-optical core layer is that it must be fully fault-tolerant, otherwise, a single
failed link can cause a disaster for the entire network.

We consider two all-optical network design problem in this thesis. The first one is
the problem of how to allocate the spare capacities on a given all-optical core
network topology with working capacity planned, so as to make the network fully
single-fault (or multi-faults) tolerant. The objective function is minimizing the
total cost of the spare fibers. This problem is NP-complete. We have developed
an algorithm called "SCAPE" to tackle this problem and obtain results that are
comparable to those obtained by integer programming but with a much smaller
complexity. Extensive numerical results are shown. SCAPE can also tackle
non-linear objective functions while integer programming cannot efficiently
tackle.

The second problem is the extension of the first problem to arbitrary topology.
This problem is also NP-complete. We have developed two efficient heuristics,
the Modified Drop Algorithm (MDA) and the Genetic Algorithm (GA), to tackle
this problem based on the previously developed algorithm SCAPE. Joint
optimization for the topology design, working capacity and spare capacity
planning is shown for the first time, and either MDA or GA can result in a
solution that is 14% to 16% better than the ones obtained without joint
optimization. GA can give results that are a few percent better than MDA in
general but the computational complexity is about 300 times higher than that of
MDA for a ten-node network. Summarizing, a basic framework of how to design
a survivable all-optical network is presented in this thesis.
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Chapter 1 Introduction

1.1 Overview

The demand for an ever-increasing bandwidth in telecommunication services is
ever-expanding. Services include video on demand, high-resolution medical
image archiving and retrieval, multimedia document distribution and many to
come. Such communication applications abound that require the high bandwidths
are available only with optical fibers. In this way, the high-bandwidth optical
network has become the core of the telecommunication networks both currently

and in the foreseeable future.

Since future communication networks will carry many WDM channels at very
high bit rate, it is desirable to avoid electronic switching at the core. The
all-optical backbone network can be interconnected by optical cross-connects
(OXCs) at strategic locations to allow for flexible capacity provisioning and
fault-tolerant rerouting. Such an all-optical core layer nicely decouples the
long-term capacity planning problem from the short-term dynamic bandwidth
allocation problem which can be better tackled in the electronic domain. Owing
to the rapid advance of dense wavelength division multiplexing (DWDM)
technology and the cost reduction of optical components, all-optical backbone
network has already begun to appear at the core of many telecommunication
networks. Therefore, it is important to consider the network architecture design
problem. Even though the hardware technology is advancing so fast, the question
of how to lay out the most cost effective network with these components is still a

wide open problem [1].



A network architecture design problem involves combining the building blocks
such as the optical components in an optical network in a specific way to fulfill
the traffic demands and other requirements of that network. One essential
requirement for an all-optical core layer is that it must be fully fault-tolerant. A
network which is single-fault-tolerant should be at least 2-connected and
sufficient spare capacity on the links should be available for alternate-route
routing.  For the high-capacity all-optical network, the high capacity of fiber
facilities enables each link to carry larger amounts of traffic. In the event of a link
or node failure, the service loss could be very severe. Several highly publicized
outages have illustrated that disruption of communication services is very costly
to business, governments and the general public. One example is what happened
in 1987 when a link that belonged to a major backbone carrier facility was
severed, more than 125,000 trunks were put out of service and an estimated
100,000 connections were lost 2 seconds after the cut. With a cost of millions of
dollars and time of more than 2 hours, the services were restored manually with
the use of some of the capacity on physically diverse routes [1]. That shows that
survivability is definitely needed during the network architecture design and the

spare capacity planning becomes an important problem at the same time.

Another important requirement is the cost. If the network cannot be planned
cost-effectively, this will waste a lot of network resources. Therefore, a
reasonable network architecture design of the all-optical core network should
combine the building blocks cost-effectively with the fulfillment of the traffic

requirements as well as the fault-tolerant requirement.



Obviously, a ring typed network topology with an automatic protection scheme,
shown in figure 1.1, is an attractive solution for this network architecture design
problem. This approach enables fast reaction on a failure with simple
implementation. However, a fundamental limitation is that survivable ring
technology is unable to exploit the very low redundancy levels that are
theoretically sufficient for full survivability. As a specialized form of 1:1
protection switching systems, rings fundamentally require a minimum of 100%
duplication of working and spare capacities [2]. This is not a cost effective

design.

Another possible choice is the mesh typed network with a restoration scheme,
shown in figure 1.2. Such kind of network architecture can yield full survivability
with redundancy that is proportional to the average nodal degree (n) of the
network. For real networks, which are generally mesh networks with 3<n<5,
there is the prospect of full survivability with as little as 30% to 50% redundancy
[2]. This is because in meshed networks, rerouting strategies can be applied more
efficiently. That is, the spare capacity on any link is not really dedicated to protect

the working capacity of that particular link, but is shared among several working

I y “N. I
Figure 1.1 Aring typed network Figure 1.2 A mesh typed network
topology with protection scheme. topology with restoration scheme.



entities. Theoretically, this network architecture solution not only maintains the
survivability but also achieves a cost-effective use of the network resources.
However, the planning of an optimized survivable mesh network is a very
complex combinatorial optimization problem, as it involves topology design,
routing, planning of working capacity, rerouting and planning of spare capacity.
These sub-problems are all very complex individually. Even when the topology,
routing scheme and work capacity assignment of a network are given, the optimal
spare capacity planning of mesh network with a restoration scheme alone is
NP-complete. It can be imagined how complex the survivable network design
problem for an arbitrary topology mesh network will be. Therefore, many

researchers have developed heuristics for solving the problem.

Until now some research works available handle the sub-problem of spare
capacity planning only [3-10,12], some others handle the sub-problem of working
and spare capacity planning jointly [10] and still some handle the sub-problem of
topology design and working capacity planning jointly [3]. However, up to my
best knowledge, no research work has addressed the whole survivable mesh
network design problem which handles the topology design, working capacity
planning and spare capacity planning altogether, as the problem is too complex to

tackle. An efficient heuristic for solving this kind of problems is essential.

Summarizing, the network architecture design will be an important issue in the
development of the all-optical core communication network. One essential
requirement is the survivability. That makes the spare capacity planning an

important problem. Another essential requirement is cost optimization. The mesh



type network with a suitable restoration scheme is a potential solution for the
network architecture design that satisfies both survivability and cost requirements.
However, the designing of a cost-optimized survivable mesh type networks is a
very big and complex combinatorial optimization problem that involves the
topology design, routing, planning of working capacity, rerouting and planning of

spare capacity. This requires an efficient heuristic to solve.



1.2 Thesis Objectives

The objective of this thesis is to build up a generic framework for designing mesh
topology survivable network with optimal cost and to provide some insights for
designing efficient heuristics in dealing with these problems. The first problem to
be studied is the spare capacity planning problem: given a mesh network
topology which is at least 2-connected, the normal traffic demand (more
accurately, the peak traffic demand), and the capacity allocation to meet the
traffic demand, how much spare capacity should be provisioned and where it
should be located in order for the network to tolerate a single link failure with a

minimal total network cost?

Mathematical programming methods have been used to formulate the spare
capacity planning problem for link and path restoration schemes such as the
Integer Programming (IP) approaches [3,5,7-10]. The objective function adopted
is to minimize the spare capacity required for achieving restoration from a
specific failure condition. However, the resulting IP formulation is NP-hard and

in order to solve the problem, sub-optimal heuristic approaches have been tried.
In recent years, many heuristics have been proposed for finding a reasonable
spare capacity assignment that meets the fault-tolerance requirement in
polynomial time [3-10,12]. It is widely believed that the best approach is to
approximate the IP model by a Linear Programming (LP) model, which is
polynomial-time bounded and then round the solution to integer values [3,5,7-10].
However, the limitation of this approach is that the complexity of this approach
scales with the exponential form of the number of links and nodes of the network.

Therefore, the size of the problem has to be reduced by limiting the path sets.
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However, it is still an open problem in how to pick the path sets in order to
achieve good results. Another open problem is that when considering the real
situation in the design of the whole survivable network, nonlinear variables such
as nonlinear capacity cost function or quality of service (QoS) variables may be
introduced. This problem is not yet tackled. This thesis aims at building a
framework for tackling the spare capacity planning problem first and then
develop insights to design efficient heuristics which can handle the nonlinear

survivable network design problem.

Based on the framework built up, we can tackle the second network design
problem for an arbitrary network topology. The problem is stated as follows:
given the physical node locations and the normal traffic demand, how to create a
mesh network topology and allocate capacity to the links to meet the given traffic
condition that can tolerate a single link failure with minimal total network cost?
This problem is not yet tackled previously. This thesis will investigate this
problem and find an efficient heuristic that can give a good result in a reasonable

time.



1.3 Outline of Thesis

The overall structure of the thesis is as follows. Chapter 1gives an overview of
the problems. In Chapter 2, the spare capacity planning problem (the first
problem stated) will be tackled. Mathematical model and the optimization
techniques used are explained. Simulation for both link restoration and path
restoration and the results are presented. The heuristic will be evaluated with a
comparison with other heuristics. The influence of this heuristic is discussed too.
Chapter 3 describes the second problem. The mathematical model and the
optimization technique used are suggested. Simulation results are presented and
the performance will be discussed. Finally, in Chapter 4, the future work will be

described and a conclusion will be drawn.



Chapter 2 The Spare Capacity Planning Problem

In this chapter, we investigate the spare capacity planning problem for survivable
networks. The need for reliable communication service has become extremely
important for high capacity networks. In order to provision for network
survivability, spare capacity must be provided on the existing built-up network
under a chosen restoration strategy. There are two main restoration strategies:
Link restoration and Path restoration. In link restoration, the broken traffic is

rerouted between the end nodes of the failed link. In path restoration, the origin

\ I 00 /
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. ‘rerouting path ) : rerouting path
Figure 2.1 Link Restoration Figure 2.2 Path Restoration

destination node pairs (OD pairs) whose traffic traversed the failed device are
responsible for restoration and reroute over the entire path set between each
affected origin destination pair. The two restoration strategies are shown in Figure

2.1 and Figure 2.2.

If the spare capacity planning is not optimally done, it will cause a wasteful and
inefficient use of resources. However, optimal spare capacity placement in a
mesh restorable network has shown to be NP-hard [4]. Based on this reason,

many researchers have attempted other approaches to solve this problem [5-11].



Grover suggested the Spare Link Placement Algorithm (SLPA) heuristic for
solving the spare capacity placement problem in a mesh network with link
restoration [6]. The SLPA is a heuristic approach with polynomial time
complexity, and has been implemented in some telecom network for spare
capacity planning. In this approach, the spare capacity allocation with full
restorability is achieved by iterative link addition in the phase of "forward
synthesis" and then the spare capacity will be reduced while maintaining the

network restorability in the phase of "design tightening".

Sakauchi, Herzburg and Venables attempted an IP approach based on max-flow
min-cut considerations to solve the spare capacity placement problem [5,7,8].
This approach uses cut sets in the IP formulation and populates the constraint sets
with cut sets iteratively until the solution provides a spare capacity placement
which is 100% link restorable and minimizes the total spare capacity of the
network. This approach can lead to a better spare capacity planning than SLPA
while the complexity is higher. However, both of these approaches can be used

for link restoration only.

A more recent and advantageous approach is still an IP approach but with flow
constraints based on a suitable set of predefined routes over which restoration
path sets may be implemented [9]. This is referred to as the flow-based approach.
In this approach, the IP is based on eligible restoration routes between each pair
of nodes terminating a link. This IP flow-based approach is preferred over the IP
cut set approach because only a single IP execution is needed to obtain the spare

capacity assignment. The same process also yields the exact routing used to

10



restore each link failure. This approach has been extended to path restoration and
a good result was achieved [10]. However, the IP-based approaches cannot
provide any insight in how to pick the path set within a general setting in order to
achieve good results while maintaining a computational feasible problem that
scales. An additional limitation of the IP-based approaches is that there is still no
efficient algorithm for finding the optimal solution when the objective function or

constraints are nonlinear [15].

All these studies were interested only in determining the minimum capacity
requirements of a given mesh type network topology with the capacity allocation
already given to meet the normal traffic demand, under the failure scenario of
single link break. Even though they specified the cost parameter in the objective
function, they did not take the distance and link cost metric into account.
However, in reality there will always be some networks that have more total
spare capacity but are less expensive than some others. Without taking into
consideration of the distance and link cost metric, the problem-solving model is
not complete and cannot represent the real situation. So far, none of the published

researches evaluate the effect of cost and distance metric.

In this thesis, the distance and link cost metric will be taken into account in
minimizing the total spare capacity cost for the capacity planning with full
restoration for a given working mesh network. Here, an efficient polynomial time
complexity heuristic for solving this problem under both link restoration and path

restoration schemes is provided.

11



2.1 Mathematical Model of the Spare Capacity Planning

Problem

First, the problem is defined in the following mathematical model. Given a mesh
type network topology, the normal traffic demand, and the capacity allocation to
meet the traffic demand, how much spare capacity should be assigned for each
link so that the network can tolerate a single link failure? The goal of the
optimization is to select the best set of restoration routes under link restoration
scheme or path restoration scheme, and assign each route a specific flow to
survive a single link failure, such that the least expensive network can be found

within a reasonable time.

In this problem, it is assumed that the initial given topology is at least
two-connected. The normal traffic demand between each node pair is assumed to

be symmetrical and the same route is used for both directions.

2.1.1 Variable Definitions:

The mathematical model for this problem and notation, based on [10] are as
follows:

N number of nodes in a network;

E  number of links in a network;
C/ cost function of a capacity unit assigned to link j;
Pi cost of a unit capacity assigned to linkj per unit length;

Lj length of linky;

T  total number of nonzero traffic demand pairs in the normal traffic demand
12



matrix;

T] total number of traffic demand pairs affected by link cut i;

d' normal traffic demand between origin-destination(O-D) pair t\

Q' total number of working routes available to satisfy the normal traffic
demand between 0-D pair |

g U ghe working flow required on the q" - working route for satisfying the demand
between node pair t;
7 takes the value of 1 if the g™ working route for demand pair t uses linkj;
otherwise,

w. working capacity on linky;

X' [ normal traffic demand affected by 0-D pair t upon the failure of link /;

P'i total number of possible eligible restoration routes for rerouting the normal
traffic demand between 0-D pair t upon the failure of link /;

f 0 'the restoration flow through the p™ restoration route for 0-D pair r upon the
failure of link /;

S'rJ takes the value of 1 if the p™ restoration route for 0-D pair t after the failure
of link I uses linkj, and O otherwise;

s e spare capacity on link /;

The network shown in Figure 2.3 is used to illustrate the above notations:

13



avorking path for O-D pair #1=A-B

:restoration path for O-D pair #1=A-B
:working path for O-D pair #2=C-D
:restoration path for O-D pair #2=C-D

Figure 2.3 An Example Network used to illustrate notations

This network is represented by a graph G(N,E) = G(6,8).
The total number of nonzero traffic demand pairs in the normal traffic demand
matrix is 2. One is the OD pair #1:A-B. Another one is the OD pair #2:C-D.

Therefore T = 2.

Traffic demand for both of OD pair #1 and OD pair #2 is 2 units, i.e. cf=2,

"2=2.

One working route is available to satisfy the normal traffic demand between OD

pair #1 and #2 respectively. They are shown in Figure 2.1, i.e. Q'=I, Q'=lI.

The working flow required on the  working route for satisfying the demand

between OD pair #1 and OD pair #2 is 2 units respectively, i.e. g —2> g™ =2.

The working route for demand OD pair #1 uses link 1,4 and 7’ so =1,

C=1 and | =1.

The  working route for demand OD pair #2 uses link 3 and 4, so (/] =1 and

14



In this way, the working capacity is assigned with
w, =2, W3 =2, WA =2+2=4, W/ =2 and others are 0.

Assume Link 4 is cut then.

Both of traffic demand OD pairs #1 and #2 are affected, so T\ = 2.

The normal traffic demand affected by both of OD pair #1 and OD pair #2 after
link 4 failure is 2 units, i.e. JT[=2X; =2.

Assume that one restoration path is chosen for rerouting the traffic lost, i.e.

The restoration flow through the  restoration route for 0-D pair #1 and #2 upon

the failure of link 4 is 2 units then, i.e. [ =25 [ =2.

The | restoration route for demand OD pair #1 upon link 4 failure uses link 2, 5
and 8, so and N1

The | restoration route for demand OD pair #2 upon link 4 failure uses link 5

and 6> so and’

In this way, the spare capacity is assigned with 5, =2 » =2+2=4 > sEF2,0 =2

and others are 0.

2.1.2 Objective Function and Constraints:
When the problem is transformed to mathematical model, the objective function
is:

‘E .
Min\YCys. (2.1)

where C. =P. L.

15



For link restoration:

The constraints to be satisfied are:

LI)Restoration flow meets 100% restoration level for each 0-D pair t:

jii’P >w, V,=12.7:.. V=12 ¢ (2.2)
@l

L2)Link/s spare capacity is sufficientto meet the simultaneous demands of all

node pairs affected by any one link failure:

<s. V,=1,2,..,78% j) =\2".Ei 7] (2.3)

L3)The flows on restoration paths, f /' ,are hon-negative integers.

L4) Spare capacities, 5., and working capacities, w., are non-negative integers.

It should be noted that the origin and destination of all working paths cut by a

link failure are designated as the immediate end-nodes of the severed link (i.e.,
T.=1,and X.=w.).
For, path restoration:

The constraints to be satisfied are:

Plrestoration flow meets 100% restoration level for each 0-D pair t.
p!

YAfit > X\ yt =1.2,..78 .V/ =12,.. £ (2.4)
Al

16



P2) The total demand lost by OD-pair t upon the failure of link i is the sum of

the flows over all working routes traversing link /:

P
YACit-g't =X VIi=R .. 7:.. VI=12...°&- (2.5)

P3)Link /"s spare capacity is sufficient to meet the simultaneous demands of all

node pairs affected by any one link failure:

ilx:f.rQO0 . /+iic<; ", N (2.6)
L

- = g=\

P4)The flows on restoration paths, //’" > and working paths, g'’", are

non-negative integers.

P5) Spare capacities, , and working capacities, w. > are non-negative integers.

2.1.3 Complexity

E 7
The problem under study requires F variables and IE constraints
(SIN=]
for link restoration scheme. For path restoration, the mathematical model consists
E /s E
of XiZ | '"+2FA variables and ~7; .+E constraints. The variable T] will be
i=\ t=\ i=\

1 for link restoration and scales with the number of nodes of o[n~ ) in the
network. It can be seen that the number of variables and constraints scales with
the number of links and nodes in the network. Furthermore, the number of

variables also scales with the number of restoration routes considered.

17



Considering that the number of distinct routes in a network of E links is 0(2").

Finally, the complexity of the whole mathematical model is as follows:
for link restoration, the problem requires o[e ¢ ) variables and
constraints; and
for path restoration, the problem requires variables and
constraints.
This shows that the problem is NP-hard. In order to solve this NP-hard problem,
we have developed an efficient insightful heuristic. The heuristic will be

described in the next section.

18



2.2 Greedy Algorithm - Spare Capacity Allocation and

Planning Estimator (SCAPE)

As the spare capacity planning problem is NP-hard, many researchers has
attempted different heuristics for solving the problem. Among these heuristics,
the most common one is that transforming the spare capacity planning problem to
IP formulation and solving with the use of Integer Programming technique, such
as Branch and Bound (B & B ) algorithm. Theoretically, in order to obtain the
global optimal solution, all distinct restoration routes, between link end-nodes for
link restoration or OD pairs for path restoration, must be present in the constraint
system of the IP model. However, by doing these, the complexity will be
exponential with the total number of link in the network, as shown in the previous

subsection.

In order to reduce the complexity and make the integer programming heuristic to
be applicable to practical problem, the general approach is to restrict the number
of distinct routes entered as constraints with the use of "hop-limited" approach
or similar techniques. In this way, it can be expected that Integer programming
heuristic no longer ensure the optimality. At the same time, it does not provide

any insight for choosing the path set. What makes integer programming worse to

apply to solving spare capacity planning problem is that until now, there is no
efficient algorithm for solving the nonlinear integer programming problem
optimally [15]. That means that the IP heuristic can be effective in optimization
only when the objective function and the constraint system of the problem are
restricted to be linear function then. However, it can be expected that it is

necessary to include some nonlinear variables and constraints, such as QoS
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constraints, for the spare capacity planning problem. Therefore, ideally, we need
to develop some fairly insightful heuristic which can tackle the above drawbacks
while achieving near-optimal or even optimal solution in a reasonable time.

With this motivation, we investigate this problem and develop an efficient
heuristic to achieve a near-optimal or optimal solution for this NP-hard problem.
It is called "Spare Capacity Allocation and Planning Estimator" (SCAPE). In this
subsection, the working principle and the implementation of SCAPE will be

introduced.

2.2.1 Working Principle of SCAPE
In order to understand the basic working principle of the SCAPE, let's first look
at the following simple example. Figure 2.4 shows an example network with 6

nodes and 10 links.

2)] 4 1)

mmmmi*mmmAMMA Y mm N e s MM MM ~AMhm~Am MM
Rpath_A Rpath_B Rpath_C
Figure 2.4 An Example Network for Working Principle of SCAPE.
In this example network, the distance and cost parameters of each link are
assumed to be 1unit. The numbers in the parentheses represent the spare capacity
assigned to the link at some time. Assume that for link (3,5), which has a normal
traffic demand of 2 units passing through it, is broken. By the link restoration

strategy, 2 traffic demand units need to be rerouted through other restoration

paths between the end-node pair (3,5). Among these restoration paths, 3 paths are
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shown in the figure as example. They are Rpath—A, Rpath—B and Rpath—C
respectively. Among these 3 restoration paths, Rpath—A and Rpath_B are the
shortest one. If we choose any single one of them for rerouting, then either of
them should provide the least cost. However, under the condition that some spare
capacities already existed on the links, the restoration path set for rerouting will
be changed. If Rpath—A is chosen, 4 spare capacity units will need to be added.
For Rpath—B - 2 spare capacity units need to be added. But for Rpath—C, just 1
spare capacity units need to be added. Thus, Rpath C which is the longest path
among these 3 paths turns out to be the least costly route because of the spare
capacity that already existed. This example gives us the first key idea of the
SCAPE that the placement of new spare capacity on the links to achieve full
restorability based on the previous spare capacity placement will lead to the more
economical spare capacity planning. We call this the "incremental assignment

effect".

Let's look at the previous example again. If we use just Rpath_C for restoration
only, 1 more spare unit will need to be added. However, if we split the traffic that
need to be rerouted into two portions, each of which is one traffic demand unit.
Then if we reroute one unit through Rpath—C and one unit through Rpath—B, we
can see that no new spare capacity is needed. This fact gives us another key idea
that rerouted traffic splitting can help to lower the spare capacity requirement.
Since path restoration is similar to link restoration but with more OD pairs to be
rerouted each time a link is broken, it can be expected the incremental assignment
effect and reroute traffic splitting effect will help both restoration strategies.

Based on the above reasoning, we develop the SCAPE to solve the spare capacity
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planning problem with the goal of achieving the most economical spare capacity

placement in the network.

2.2.2 Implementation of SCAPE

Two procedures are used in the heuristic: the Dijkstra and Update procedure.
Procedure Dijkstra(QA,B > n > P) takes the network structure G, and two nodes A
and B of the failed link and the affected traffic n as input and then compute out
the set of shortest path P as well as the flow for these paths as solution. The
Update procedure will replace the spare capacity in the network for the

corresponding link flow through by the set of paths P.

The Procedure Dijkstra(G,A,B,n,P) in fact is a modified Dijkstra algorithm for
our heuristic. As we know that after the first iteration of the algorithm, there will
be some spare capacity in some links. For the second iteration of the algorithm,
the network has been changed, and those links with spare capacity in the previous
failure cases will be a zero cost link in the current iteration. Hence the Dijkstra
procedure is based on this principle to find out the shortest path until the spare
capacity assigned in the previous cases cannot satisfy the affected traffic in the
current iteration. The network structure G will be updated. Then a new set of
paths will be chosen for assigning the spare capacity of the affect traffic not yet
handled in the current iteration. This is the traffic splitting principle and the
incremental assignment effect in our heuristic. In the case of paths' length tied,
the path will be chosen according to the Dijkstra algorithm. The pesudo code is as

follow:
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Begin
{G=Load_Netowrk_Information();
n=All_The_Traffic_Information_For_Each_Link();
for each failed link case
{ Modified Dijkstra(G,A,B,n,P);
Updatejhe Network(G);

}

End;

It can be seen that as the procedure mainly depends on the Dijkstra algorithm
which is of the complexity o{n~ )where N is the number of node in the network.
Assume that the edge number of the network is E. The maximum number of
shortest paths split for each case is k, which can be expected to be a small
constant. Then the complexity will be o[k-E-N*).  This is a very efficient
method when compare to the integer programming approach which is of the

complexity in exponential form of E and N.

2.2.3 Improved SCAPE

Although the original SCAPE can achieve a good solution with low complexity,
it can be expected that such kind of greedy algorithm cannot achieve the optimal
solution in the forward synthesis phase. This is because the interactive effect
between the path sets, the spare capacity assignment on each links and the traffic
demand has been ignored. The spare capacity planning problem is such a
complex combinatorial optimization problem that the interaction between the
variables needs to be considered in order to achieve a better result.

To make the SCAPE an optimal or a nearer optimal solution for the spare

capacity planning problem, we develop the following improvements.
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A. Run SCAPE with sorted order

Based on the traffic splitting and incremental assignment effect, we form the
basic SCAPE. However, there must be a starting point for the algorithm to run
through. If the algorithm starts with a bad choice, it will lead to a low quality

solution. It is important to choose a good starting point that leads to a high quality

solution.

As the SCAPE is based on the incremental assignment effect, it is reasonable to
expect that the starting point should be the OD pair that lead to the least
incremental assignment effect. By this assumption, if the algorithm runs with a
sorted incremental assignment effect, SCAPE should lead to a high quality
solution. However the incremental assignment effect depends on the total path
cost and the traffic demand. But the path we need to choose is not known yet for
all OD-pair and if we try to search out all possible paths for all OD-pair and then
do sorting, it will be a complex problem. Hence, we try to sort the traffic demand
that is already known for all OD pair and then start the SCAPE from the

least-load OD-pair. This is the first enhancement.

B. After the SCAPE implementation, perform backtracking
Backtracking has long been a standard method in computer search problems
when everything else fails. After backtracking procedure, the solution will be

usually improved [13].

The backtracking procedure is very simple in the SCAPE. After getting the

solution from the basic SCAPE, reduce the spare capacity unit of each link in the
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network and see whether it is still a feasible solution. If yes, then update the
network and then use that network for another iteration of backtracking until
there is no further improvement. The pesudo code of the backtracking is as

follows:

do {
set improvement (imp) to zero
For each link (A B)in network (G)

{

if spare capacity exists in link (A B)

decrement the spare capacity of link (A,B) by one
if network (G) is still a feasible configuration ™

{

increment (imp) by one
update the network (G)

}

else

{ restore spare capacity of link (A,B)

}
}

} while (imp) is non-zero

Again, for both link and path restoration, the backtracking procedure are the same.
From the pesudo code, it can be seen that most of the processing time in the

above procedure is consumed in line (*), the part "check feasibility”. The way for
the "check feasibility" part for link restoration is simpler. As it isjust a single
commodity maximum flow (SCMF) problem which can be solved by the
maximal-flow algorithm with complexity 0{k < E) where k is the maximum
flow value and E is the edge number [14]. However, as the simplicity of the link

restoration, we decide to use shortest path for checking feasibility then.
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The "check feasibility" part for path restoration is not so simple, because each
link failure will cause several OD-pair traffic to be rerouted, and each OD-pair
will have several possible paths for supporting its traffic demand. That means we
cannot choose any single path of any OD-pair for checking so easily, as we need
to consider all the other traffics which are affected by the "check feasibility"
procedure. However, this is not an easy task, as this will involve another integer
programming problem, the integer multicommodity maximum flow (MCMF)
problem. So we try to use the interference heuristic proposed by Iraschko which
is an efficient heuristic for solving MCMF problem [11]. This heuristic is of
complexity where N is the node number. With this heuristic, we solve the
"check feasibility" procedure of path restoration quite successfully and make
backtracking procedure work for the path restoration scheme. Both the

maximal-flow algorithm and interference heuristic are given in Appendix A.
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2.3 Experimental Results and Discussion

This section reports experimental results exploring the suitability of the SCAPE
for spare capacity planning design. Firstly, we will do an experiment to show that
SCAPE we developed can work accurately and optimally for spare capacity
planning. Although SCAPE tries to minimize the network cost, many
experiments are done to show the result of minimizing the total spare capacity in

order to compare the result with those in the literature.

In another set of experiment, we will show that our algorithm can achieve the
purpose of minimizing the network cost, which is not shown by other researchers
in their own experiments. Finally, from these two sets of experiment, we hope to
draw a conclusion that SCAPE is a generic and robust heuristic for spare capacity

planning.

2.3.1 Experimental Platform
The SCAPE was written with C++ language and executed on Pentium Il 733

MHz PC with 128 MB RAM running Windows 2000 Professional.

2.3.2 Experiment about Accuracy of SCAPE
In order to test the accuracy and the ability of SCAPE in solving the spare
capacity planning problem, a small experiment is designed for this purpose. The

experiment performed is as follows:

A 4-node network topology and its traffic demand matrix is shown in Figure 2.5.

The number on the link represents the working capacity obtained with the
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OD-pair, that means Q =1 for all cases in our mathematical model.

Number of Number of Average Number of

Network ) I3 ] network
nodes links node degree O-D pairs
load
1 n B 3.54 78 156
2 15 n 3.60 105 210
3 n A 3.65 136 h
4 I 20 I 3 I 370 190 n

Table 2.4 General information of the four test networks for experiment 2.3.3

Al-Rumaih has done the experiments on these four networks with the use of three

methods from the literature: (1) the Spare Link Placement Algorithm (SLPA)
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[6]; (2) Link restoration using Integer Programming (Link IP) [9]; and (3) Path
restoration with link disjoint routes using Integer Programming (Path IP) [10]. All
of these methods are used with the objective to minimize the total spare capacity
in the network and with hop count limit at 7. The result of simulation for the
above four networks by the 3 heuristics just introduced is adopted from
Al-Rumaih as he claimed that the implementation of the three methods above is
validated by reproducing published results from the literature [12]. We will then
use SCAPE with link restoration to compare with the result from method 12 and
use SCAPE with path restoration to compare with the result from method 3. For
SCAPE, in order to minimize the spare capacity of each network, the link cost
parameter and distance parameter for each link in each network is taken to be
equal to 1unit. The results are shown in Table 2.5 and Table 2.6. The running
time of the SCAPE for spare capacity planning of these four network is shown in

Table 2.7.

For link restoration:
In Table 2’ the total spare network capacity for 100% restoration for any single

link failure as determined by different algorithms is given.

Total Spare Capacity

Working Improved Improved

Network ALPA Link IP  HEE SCAPE SCAPE
SCAPE w/o with

backtracking backtracking

1 324 230 199 241 A A
2 464 322 264 332 n n
3 640 444 353 483 n
4 | 966 | 684 535 756 A A

Table 2.5 Total Spare Capacity for Link Restoration
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For path restoration:

Total Spare Capacity
Working )

Network ] ) Improved SCAPE with
Capacity Path IP Basic SCAPE

backtracking

1 N 135 160 128
2 n 176 208 170
3 640 236 281 249
4 I 966 I 350 437
Table 2.6 Total Spare Capacity for Path Restoration
Running time of Link Restoration Running time of Path Restoration
<, (ms) (ms)
Network
n . o..nr? Improved . ImRroved
Basic SCAPE Basic SCAPE
SCAPE SCAPE
1 A no 100 2054
2 40 m 170 A
3 50 2M 271 6440
4 I 60 | 461 561 25296

Table 2.7 The running time of the SCAPE

From the result shown in Table 2.5, Table 2.6 and Table 2.7, we observe the

following:

1. When we compare the result obtained in Basic SCAPE and Improved SCAPE,
we see that Improved SCAPE can outperform Basic SCAPE from 15% to
30% in all the cases. It provides the strong base that the incremental
assignment sorting and backtracking procedure can bring a high quality
solution with great improvement.

2. From the running time table, we can see that, the backtracking procedure is
about 5 times as complex as the basic SCAPE. It can be seen that even with
the backtracking procedure, the running time is very short for a 20-node
network, that means the SCAPE is overall an algorithm with low complexity.

3. For link restoration strategy, when compared to the SLPA results, it can be
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seen that even the Improved SCAPE without any backtracking procedure
performed, can bring up to 6% improvement. It should be noted that the SLPA
is based on the cut-based procedure, which cannot provide any routing and
flow information while SCAPE can. And SLPA is itself a forward synthesis
and backward tightening heuristic which will be more complex than

Improved SCAPE without backtracking.

When compared with Link IP method for link restoration strategy, if with the
backtracking procedure, SCAPE can perform within 1.5% of the result
obtained for Link IP. However, we can find that for the network size to
become larger and larger, SCAPE can even outperform the Link IP up to
1.30/0 for the largest network. It is because in order to reduce the complexity
and running time of the Link IP procedure, there is a limit on the size of the
restoration paths with hop limit, and some long paths which may be helpful in
the optimization process are excluded. While for SCAPE, it tries to assign the
flow and the routing information based on the previous iteration until all the
traffic demand is routed or rerouted, so the problem in limiting the path size
in the execution does not exist. Hence, SCAPE can cover a large search space
and produce a better result for larger networks.

For path restoration strategy, when compared to the Path IP results, the
SCAPE still can perform well, within 5.5% of the result obtained by Path IP.
In the smaller network, SCAPE performs better. For the smallest network,
SCAPE even outperform the Path IP by 5%. It is because for the path
restoration strategy, a single link failure will cause several OD pair traffic
demand to be rerouted, that means more interaction effort needs to be

considered between these OD pair traffic in order to achieve the optimal
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solution, which is not the case for link restoration. So path size was not a
dominant factor then. In this way, Path IP will perform better than SCAPE,
because SCAPE is not so strong in handling the interactive effect between the
assignment. However, SCAPE can provide the insight of choosing the Path
Set and with further software development, it can achieve real-time

processing with good result.

Through the experiment results, it can be concluded that the principles of traffic
splitting effect and incremental assignment effect work and form the basic
SCAPE. With the sorting of incremental assignment effect and a simple
backtracking procedure, improved SCAPE can outperform the SLPA and have a
similar performance with integer programming but with a much lower complexity.
What SCAPE contribute is the insight for choosing the path set while providing
the flow and routing information directly. This is still an open question and

cannot be obtained by the integer programming approach. The SCAPE is also

useful in developing real time processing software for spare capacity planning.

2.3.4 Experiment about Minimization of Network Spare Cost

As said before, the SCAPE is developed to optimize the selection of the best
routes according to the dimensioning in order to find the least cost network
within a reasonable time. In the first set of experiments, it has been shown that
SCAPE can achieve optimization of a single dimension, i.e. the spare capacity.
Here we show that SCAPE can also handle the distance and cost metrics and we

perform the second set of experiments to test the SCAPE performance.
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Unlike the first set of experiment, until now and to the best of our knowledge, no
research work exists that handles these two metrics and produce a guideline for
reference even though the researchers try to include the cost parameter in the
objective function. Therefore, we develop our own experiments and guidelines to
show that SCAPE can be used for cost minimization as well as the spare capacity

assignment.

The experiment is simple. We apply a set of distance and cost metrics to the same
network topologies and then use the SCAPE heuristic to find the capacity
assignment and then compare with the assignment based on the other heuristic to

see whether the SCAPE heuristic can lead to a more economical result.

The network we use for the second set of experiment is from Hasegawa [9]. The
network topology is shown in Figure 2.12. We assign a distance metric that scales
with the drawing distance of the network and a cost metric to the network. They
are shown in Figure 2.13 and Figure 2.14 respectively. The spare capacity
assignment (S.C.A.) by Herzberg [7], Grover [6] and SCAPE are shown in Figure
2.15, Figure 2.16 and Figure 2.17. Table 2.8 gives the total cost for the spare

capacity planning by these different sets of assignment.
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Figure 2.12 Topology Figure 2.13 Distance Metric Figure 2.14 Cost Metric of
of Hasegawa Network of Hasegawa Network Hasegawa Network
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Figure 2.15 S.C.A by Figure 2.16 S C.A by Figure 2.15 S.C.A by

Herzberg Grover SCAPE
Herzberg Grover SCAPE
Total Spare Capacity 625 625 A
Total Spare Cost 10708 10404 10396

Table 2.8 Result of Experiment 2.3.4

From the results shown in Table 2.8, we can find that even though the total spare
capacity found by SCAPE is more than those found by the Herzberg and Grover,
the total cost is less than either of them. This shows that SCAPE is better than
other heuristics in the way that it can handle the cost metric and distance metric
successfully for obtaining the lowest cost network. Based on the adaptive
property during the execution of SCAPE, it can be expected that it can handle an
adaptive cost function too. This is better than Link IP and Path IP which need to
keep the cost parameter constant during the iteration to ensure linearity due to

their inability to handle nonlinear integer programming problem.
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2.4 Conclusions

It can be seen that SCAPE is a generic and robust heuristic for the spare capacity
planning with both link restoration and path restoration strategies. Not only can it
achieve the optimization of the total spare capacity, it also minimizes the total
cost in a reasonable time. From the experimental results, it can be seen that the
SCAPE performance is almost as good as all existing heuristics in the literature
while SCAPE contributes to the insight of choosing the path set as well as its

capability in handling nonlinear cost function based on its adaptive property.
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Chapter 3 Survivable Ail-Optical Network Design

Problem

All optical networks will play a key role in the future worldwide
telecommunication infrastructure due to the advances in fiber optic technology
and the cost reduction of the corresponding optical components. The high
capacity of fiber enables each link to carry large amounts of traffic that make
various broadband services available. However, it also means that service loss
due to link failures is more probable and severe. A fully survivable fiber optic

communication network is definitely needed.

The most probable failure is a single link failure. To make a network fully
survivable, the network must be at least two-connected (or N-connected) and

there must also be enough spare capacity to guarantee the level of survivability.
However, if the design is not done well, it will waste a lot of resources. Therefore,
the main objective of this chapter is to design a cost-effective survivable

all-optical communication network against a single link failure.

In Chapter 2, it was assumed that a two-connected network existed and we
concentrated on the spare capacity allocation and planning problem. That means
only part of the network design problem was tackled. In this chapter, we will
tackle a more general problem - the design of the least cost survivable all optical
mesh network with arbitrary topology where only the traffic demand matrix is
given. For the generalized problem, there will be more conflicting,

inter-dependent constraints that need to be met, such as the connectivity
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constraints, working capacity constraints, routing consideration and topology
arrangement etc. These additional constraints increase the design complexity, thus
requiring multi-constraint combinatorial optimization. That is, the network
topology, the routing assignment and the link capacity assignment need to be
optimized together. No doubt that such a problem is NP-complete, and we must

use heuristics to handle the complexity and solve practical problems.

Many heuristics have been proposed for designing survivable fiber optic
communication network of both SONET [23,24] and mesh network. Groetschel
et.al. employed a cutting plane method to obtain the solutions [16]. Koh and Lee
proposed a tabu search method for optimization and generating an effective
solution [17]. However, all the above studies just concentrated on the
connectivity constraint without considering the routing and capacity assignment,
which are also important factors when designing an optimal and cost-effective

network.

Recently, Van Caenegem et.al. [3] provided a method for designing a survivable
WDM network and considering the connectivity constraints, routing and capacity
planning together. A branch and bound (B & B) procedure was provided and a
heuristic based on simulated annealing (SA) was proposed for solving the
problem. However, the spare capacity planning problem was not considered in
the design process. From our point of view, the spare capacity planning should be
considered in the whole design. Without it, the design is incomplete and the result

obtained may not be the most cost-effective.
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Based on the above reasons, we try to map the problem into a mathematical
model that jointly consider the topology design, routing, capacity assignment, and
rerouting and spare capacity assignment under a single fault situation and develop
a number of heuristics to find the lowest cost network in a reasonable time. In
fact, there are many possible heuristics proposed for data networks. Inspired by
these methods, we develop two heuristics here, namely, the modified drop

algorithm and genetic algorithm.

The Drop Algorithm [20] is a simple and rather standard design method for data
networks. We modify the algorithm to handle the constraints in our problem and
develop a suitable and efficient heuristic for solving the survivable fiber optic

network design problem.

The Genetic Algorithm is a global optimization technique that has attracted much
attentions in recent years. Due to its ability in handling the multi-constraint
problem, nonlinear function and discrete value, it appears to be a very suitable
method for solving the network design problem. Many researchers have proposed
to apply genetic algorithms for solving the design problem in data network and
even in ATM ring network [18,19]. Here we apply the genetic algorithm to design
survivable fiber optic mesh network and show that it can solve the design

problem quite well.
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3.1 Mathematical Model of the Survivable Network

Design Problem

First, we define the problem in a mathematical model. We consider the problem
of designing a survivable fiber optic communication network. In this problem, the
geographical information (the location of nodes), the predicted traffic
requirement matrix as well as a cost structure which is dependent on the distance
and capacity among the nodes are given. The goal of optimization is to select the
overall best set of routes and restoration routes, with proper dimensioning, to
result in the least cost survivable network that is at least two-connected, and

which can be found within a reasonable computation time.

In this problem, the normal traffic demand between each node pair is assumed to

be symmetrical and both directions follow the same route.

This problem basically follows the same mathematical model presented in the last
chapter but with a different objective function. In addition, some variables and

constraints are added for this design problem. The added variables are as follows:

aCj fixed installation cost per unit length assigned to link j;
8i takes the value of 1if linky is included in the network, and O otherwise;

takes the value of 1 if linky is incident to node /i, and O otherwise.

The objective function becomes:
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m. X . L/ +5.)l 3.)

where C. =p . L.

The following constraints need to be satisfied:

Al) the total capacity on the working routes allocated to any OD traffic pair t can

carry all the demand of the OD pair t\
v
=d"' VI =12,..r; (3.2)
A ;

A2) linky's working capacity is sufficient to meet the pre-failure demands of all

OD pairs which cross it:

. Q
yl- =12, (3.3)
=] <=l

A3) the node degree must be at least two to assure recovery from any single link

failure:

Z"M \fn =\X:.N (3.4)
A

As before, the formulation can be adapted to a link-restorable network by adding
the constraints L1-L4 and by designating the origin and destination of all working

paths cut by a link failure as the immediate end-nodes of the severed link (i.e.,

7; = 1,and X/ —_ w.). For path-restorable network, the constraints P1 -P5 should

be added to form the complete model.
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3.2 Optimization Algorithms for Survivable Network

Design Problem

E X
The problem under study requires * * P ' +2E + T g™ +N -E variables
F F H

and 3E +N constraints for the link restoration scheme. For path restoration, the

£ Q'
mathematical model consists of YjYj*"  + +Te +N -E variables and

#1 1=\ ﬁ

constraints. The variable T- and will be 1 for link restoration.

Tand T. scale with the number of nodes, i.e.,
in the network. It can be

seen that the number of variables and constraints scales with the number of links
and nodes in the network. Furthermore, the number of variables also scales with

the number of working routes and restoration routes considered. The number of
distinct routes in a network of E links is 0(2”. That means the variable P/

and Q' scale with 0(2” in this problem.

Finally, the complexity of the whole mathematical model is as follows:
For link restoration, the problem requires @0 [ & + A™ -2”) variables and

constraints.

« For path restoration, the problem requires o[ e- N -2”™) variables and
oe-m) constraints.
Since the problem is NP-complete, we develop two more heuristic techniques for
SCAPE to handle the complexity and solve the practical problems. They are the

Modified Drop Algorithm and the Genetic Algorithm.
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3.2.1 Modified Drop Algorithm (MDA)

3.2.1.1 Drop Algorithm Introduction

The Drop Algorithm is a low complexity algorithm for designing cost-effective
mesh network. Starting with a fully connected network, all links are marked
"deletable". Then the "deletable" link with the highest cost is chosen and
temporarily deleted. The capacity then is reassigned by redistributing the traffic.
If the resulting network is improved, then the link will be actually deleted. If not,
the link will be marked "undeletable" and will become a component of the final
network. This process will be repeated until all the links are either marked

Lindeletable or deleted [20].

3.2.1.2 Network Design with MDA
From Section 3.2.1.1, it can be seen that the drop algorithm cannot be directly
applied to solve our problem. Therefore, we modify the drop algorithm and

develop it as an efficient method for building a survivable network.

As the design problem we are handling is very big and complex, the general
approach is to break the big problem into several small sub-problems for
insightful optimization respectively and then recombine the results together to get
the overall result. This can solve the problem efficiently but the trade off is a less
than optimal solution. Our approach here is based almost on the same principle
by decomposing the design problem into three sub-problems: a) topology design,
b) routing with working capacity planning, and c) rerouting with spare capacity
planning. The main difference is that after dealing with the three sub-problems,

we recombine the solutions to get the total network cost and use the total cost for
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optimization. This approach intuitively takes advantage of the efficient handling

of small sub-problems to result in an effective joint optimization

The modified drop algorithm is as follows:
First - we tackle the network topology problem. We start by assuming that the
network is a fully connected mesh network. Then we repeat to choose the most

expensive link by the objective function a ..5.¢L. +C .-(w. +s.) and

determine whether a link is deleted according to the cost reduction resulted

provided that the constraints of connectivity is not violated.

In order to reduce the complexity of the problem, we assume that the traffic
demand between each OD pair is routed by one single path. We do the routing

and working capacity planning using the single shortest path. That means the
working capacity planning is performed by the shortest path routing algorithm.
Finally after the topology is formed and the working capacity of the whole
network is planned by choosing the shortest path for each OD traffic demand pair,
we use the efficient SCAPE to solve the spare capacity planning problem.

In this way, the topology, the working and spare capacity plan of the whole
network can be found. The whole algorithm will be repeated until the lowest cost

network is achieved. The following is the pseudo code :

Step 1: Create a fully connected network.
Step 2:  All the links are marked "deletable"
Step 3: Initialize the algorithm by performing the working capacity planning

with the shortest path routing once and then the spare capacity planning
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Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

with SCAPE.
Get the total cost and mark it "old cost".

Temporarily delete the most expensive "deletable"” link with cost
function a .-S.-L. +C,..(w, + s.).

If the connectivity constraint is violated, recover the network, mark the
link "undeletable" and then go to Step 5 - else go to Step 7.

Do the working capacity planning with the shortest path routing and
spare capacity planning with SCAPE again.

Get the total cost and marked as "new—cost> > .

If "new cost" is less than “old—cost”@ thenpdate the network and
update the "old_cost" with “new_cost”® elseecover the network and
mark the link as "undeletable".

If all the links are either marked as "undeletable™ or deleted, calculate
the total improvement and marked as “imp”@ thego to Step 11, else
go back to Step 5.

Repeat Step 2 to Step 10 until no improvement can be made (i.e.

"imp" is equal to zero).

3.2.2 Genetic Algorithm (GA)

3.2.2.1 Genetic Algorithm Introduction

The Genetic Algorithm (GA) is a simple global optimization technique for

complex multi-dimensional search spaces. GAhas attracted growing interest in

recent years for solving complex problems in many fields, such as resources

allocation, scheduling and telecommunication [22]. GA is a stochastic search

techniques that mimic the survival of the fittest (or best) paradigm observed in
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nature [21]. In GA, each possible solution in the form of a set of parameters is
treated as an individual which is usually encoded as a string of binary or real
numbers. A set of individuals forms a population. GA will implement the genetic
operators, which are selection, crossover and mutation, to the parent population to
form offspring for the next generation. GA then evolve successive generations of
a population in a manner such that only the best solutions survive from
generation to generation while the initial population can be generated randomly
or by some other efficient heuristics. The evaluation of the solution quality is
done by a fitness function, which is generally the objective function of the
problem. GA will repeat the process of evolution until they reach a desired
termination criterion, such as the number of iteration. In fact GA is problem
dependant. The solution encoding method and the fitness function will depend on
the problem and which GA operators are suitable are also problem dependant.
How to solve the problem with GA, and what the operators and parameters

should be will be the main area to be investigated next.

3.2.2.2 Network Design with GA

Before we can apply GA to our problem, we must find an efficient method to
encode the solution in an appropriate form. We again take the divide-and-conquer
approach to break the big problem into three smaller sub-problems for insightful
optimization and then recombine the result to get the overall result with some

some minor changes. The GA design approach is as follows:

We start with a fully connected network, assuming that the fixed node locations

and the traffic demand between the node pairs are given. We assume only one
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routing path is used for the working capacity planning. With this simplification,
we can concentrate on handling the routing and working capacity planning
sub-problem first. We then use GA for optimization of this sub-problem. The
possible eligible routes for routing the normal traffic demand between the node
pairs are found and stored with an index assigned to the routes for each node
pairs. Then we encode the individual R={ri,r2,...@ “hdtte @" yepresents the
index of the working route used for the traffic requirement between the node pair
N The working capacity for each link will then be assigned from the routing
scheme represented by the individual R. The routing and working capacity

planning sub-problem can then be locally optimized.

After handling the routing and working capacity planning problem, we can use
the previous developed SCAPE for handling the rerouting and spare capacity
planning problem efficiently to obtain a high quality solution. However, if
SCAPE is used for each individual during each generation, the running time for
converging to the optimal solution will be very long. Based on the property that
poor solutions appear in the beginning of the genetic algorithm, we can
selectively apply SCAPE to find the overall optimal solution only in the last few
steps of the iteration. Intuitively this can reduce the convergence time while

maintain the joint optimization concept.

Finally, depending on whether there are working capacity or spare capacity on a
link, as well as whether the connectivity constraint will be violated, we can
decide whether to eliminate the link or not. After the elimination, the final

topology will be formed. After all the three sub-problems are solved, we obtain
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the total network cost by calculating the fixed cost, the working capacity cost and
the spare capacity cost. The total network cost will then be used for evaluating the

fitness to get the best solution in this generation.

In our GA, we will generate the initial population of individuals randomly. Then
at each generation, the population will undergo tournament selection, uniform
recombination and real value mutation to form a new set of offsprings for the
next generation. After the fitness evaluation and the elitist reproduction scheme, a
new population of the next generation will be formed from the parent population
and offspring population. The GA and corresponding procedure will be repeated
until a specific number of iterations has been reached. The pesudo code is as

follows:

Step 1: Create a fully connected network.

Step 2: Find the k-shortest paths for routing traffic between all the OD pairs
and index the paths for each OD pair.

Step 3: Generate an initial population of M individuals randomly, where each
individual is R={r,,r2,....,r,(n-i)/2} where represents the index of the
working route used for the traffic requirement between the node pairx.

Step 4: Do the genetic operator "selection” with the binary tournament
selection scheme and select out 2 parents.

Step 5: Do the genetic operator "crossover" with the uniform recombination
scheme for the 2 parents and form 2 offspring.

Step 6: Do the genetic operator "mutation™ with the random mutation scheme

for m—rate portion of the whole population.
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step 7:  If the number of generations reaches a specific level s, apply SCAPE to
find the spare capacity planning for the network formed.

Step 8: Under the constraint of two-connectedness, find the total cost of the
network formed by each individual with the objective function

E

H

Step 9: Repeat Step 4 to Step 8 until a specific number of the generations N is

reached.

3.2.3 Complexity of MDA and GA

For both MDA and GA, the main processing time is used by SCAPE which is of
complexity in the order of for link restoration and of complexity in the
order of O(N” for path restoration. The overall complexity of MDA and GA
depends on the number of iteration then. For MDA, it depends on the total edge
number which is of order @(l’. For GA, the iteration depends on the number
of generation and the population size. We do believe that they should be with
order of complexity of @{W ) respectively in order to achieve a high quality

solution with GA. Then the number of iteration of our GA will be of complexity

of 0("”.0("2)=0("4).
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3.3 Experimental Results and Discussion

The experimental results comparing the Modified Drop Algorithm and the
Genetic Algorithm for the whole network design problem is shown here. First, we
perform an experiment to show the accuracy of the MDA and GA in solving the
network design problem. Then a second experiment is performed to demonstrate
the concept of joint optimization of the rerouting and spare capacity planning.
Finally a set of experiments is performed to compare the performance of MDA

and GA. We then draw some insightful conclusion through these sets of

experiments.

3.3.1 Experimental Platform
Both of the MDA and GA were written with C++ language and executed on a

Pentium 11 733 MHz PC with 128 MB RAM running Windows 2000

Professional.

3.3.2 Experiment about Accuracy of MDA and GA
In order to test the accuracy and the ability of MDA and GA in solving the
network design problem, a small experiment is designed for this purpose. The

experiment done is as follows:

A 4-node network with an arbitrary topology and traffic demand matrix is shown

in Figure 3.1. The number on the link represents the distance. The fixed cost a
for each link is assumed to be 50 units and the cost for adding a unit of capacity

P for each link is assumed to be 4 units. The design is performed for single link

failure protection with link restoration. We assume that only one working path is
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Design by C program Design by MDA Design by GA
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Planning A A

Total
Spare
A " 108 112 108
Capacity

cost

Total

network 688 692 6388
cost

Table 3.2 Result and comparison of Experiment 3.3.2.

From this result, it can be seen that both MDA and GA work successfully and
accurately in designing a small survivable network. MDA does not perform as
well as GA because MDA only uses the shortest path for working capacity

planning, so the result may not be as good. We perform two more experiments
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below to show that our designing principle is right and MDA and GA are
excellent in solving the design problem of survivable network with a reasonable

size.

3.3.3 Experiment about Principle of Survivable Network Design
As we have mentioned, in designing a survivable network, the topology design,
the working capacity planning and the spare capacity planning should be jointly
considered together. However, up to the best of our knowledge, there is no
published work for such an approach. At the same time, the problem of joint
optimization is so big and complex that it is very difficult to handle. Here we
perform an experiment to show that the principle we developed before is
appropriate for designing survivable networks under joint optimization and we
show that the design can be handled with a low complexity for a reasonable size

network.

First, we assume that the geographical information, the cost parameters a and

P > as well as the traffic demand matrix for a 10-node network are given. All
these information is shown in Figure 3.2 to Figure 3.5. The lowest cost survivable
network is designed under the conditions of one working path for routing the
normal traffic demand and single fault-tolerance. We consider only link
restoration as path restoration can also be solved by the same approach but its

higher complexity is not necessary for demonstrating the concept.

After we have obtained a design of the network with the optimized topology and

working capacity, we can perform SCAPE for this optimized network to get the
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final network. We use this approach to jointly consider the routing, working
capacity planning and the spare capacity planning. Finally, we show a
comparison to demonstrate that this point of view is appropriate in designing a

survivable network. The results and the running time are shown in Table 3.3.

|
-

0232524332
2024211226
3202232242
2420232325
52220121%*42
21331 02321
Ul22220243
3223432022
3242424205
2625212250 L J
Figure 3.2 Distance Matrix Figure3.3 Matrix

for Experiment 3.3.3
for Experiment 3.3.3

0 50 50 50 50 50 50 50 50 Sol [0222222222
50 0 50 50 50 50 50 50 50 50 2022222222
50 50 0 50 50 50 50 50 50 50 2202222222
50 50 50 0 50 50 50 50 50 50 2220222222
50 50 50 50 0 50 50 50 50 50 2222022222
50 50 50 50 50 0 50 50 50 50 2222282222
50 50 50 50 50 50 0 50 50 50 2222220222
50 50 50 50 50 50 50 0 50 50 2222222022
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Figure 3.4 a" Matrix Figure 3.5 Traffic Matrix

for Experiment 3.3.3
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Without joint optimization With joint optimization

MDA GA MDA GA

AVA

Total
topology 1000 1300 1400 1400

mi

1232 1064 1016 1032

Total

working

capacity
cost

' N

EE [H )RR [

Total

Spare
Capacity 00 . 728

cost

Running

time(ms) %l 61338 1011 243269

Total
.network 3864 3676 3224 3160

cost A
Table 3.3 Comparison of network costs with or without joint optimization.

From the results shown in Table 3.3, we observe that no matter which method
(MDA or GA) was used, when jointly considering the spare capacity planning

during the design process, either method can result in a solution that is 14% to
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16% better than the ones obtained by separately considering the topology,
working capacity planning and spare capacity planning. Based on this, we arrive
at the following insight. If one only considers the topology design and working
capacity planning, the design will try to restrict the topology and working
capacity planning to as low a cost as possible. This will limit the possible choices
of routes for restoration and cause the spare capacity planning to concentrate on
only a few links that may result in higher spare cost. From Table 3.3, both cases
cause almost a double increase in spare capacity cost which result in a more
expensive survivable network overall. Hence, it is necessary to jointly optimize
the topology design, working capacity planning and spare capacity planning
altogether during the design process. From the table, even for a 10-node network,
the running time for MDA is only 1second and 4 minutes for GA. It shows that
both MDA and GA can achieve the joint optimization design objective in a

reasonable time.

3.3.4 Experiment about Performance of MDA and GA
After showing the design principle and capability of MDA and GA in solving the

survivable design problem, we now perform another experiment to evaluate the
performance of MDA and GA and get some insight on the problem of survivable

network design.

We use the same 10-node network and the geographical information, as well as
the traffic demand matrix given in the last experiment. We vary the cost
parameters a and p to compare the performance of MDA and GA, as well as

the effect of the cost parameters during the design process. The result of this
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experiment is shown in Table 3.4 and the average results are shown in Table 3.5.

. ) Link Restoration Path Restoration
MDA GA MDA GA
4 4 1812 1392 1360 1296
4 8 2912 2524 2472 2368
4 20 6944 5856 5836 5520
4 40 13664 11364 11376 10820
4 200 67424 55896 55696 52852
5 4 2344 1616 1576 1508
20 4 3056 2184 2088 1988
4Q 4 3496 2936 2712 2644
. I 4 7064 7288 6648 6928

Table 3.4 Comparison of MDA and GA with respect to various cost parameters

Link Restoration Path Restoration
Average Average running *“ Average running
— + R A Average cost 0
A time (ms) time (ms)
MDA 12079 A
GA 10117 276805 — A 602319

Table 3.5 The average result and running time for all the cases in Table 3.4.

From the results shown in Table 3.4 and 3.5, we observe the following:

1. GA performs better than MDA in almost all cases. The main reason is that
MDA only considers the shortest path for routing the normal traffic while GA
fmd the combination of all the possible working paths for the working
capacity planning phase. Therefore, it has a larger search space and can find a

better solution. However, as the search space increases in size, the
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convergence time to a better solution will also increase rapidly. This is why
we need a large number of population size and number of generation to
achieve a high quality solution, that make average running time for GA is
much larger than that of MDA. That is a trade off.

From Table 3.4 > when a =200 and =4, MDA can outperform GA for both
link restoration and path restoration. It gives us the insight that MDA is a
better tool for designing optimal cost survivable network when the installation
cost is much larger than the bandwidth cost. As MDA iteratively chooses the
most expensive link to delete until the network cannot satisfy the
two-connectedness constraint, it means that it concentrates on optimizing the
topology design first. Under this situation, MDA can perform better than GA
which always tries to jointly optimize the topology, the working and spare
capacity planning and does not concentrate on achieving the optimal cost for
a specific topology.

For link restoration, GA can outperform MDA by 16% on average. For path
restoration, GA just outperform MDA on average by 4%. While at the same
time the running time of GA is about 300 times than that of MDA, much
larger than that of MDA with order of O{N') > as estimated in the previous
section. This is because GA has a better route diversity which is more suitable
for the joint optimization to obtain the least cost survivable network. However,
as the path restoration scheme tries to diversify the use of network resources
to achieve a more economical spare capacity planning, this scheme then
compensates for the more focus effort of MDA and can make it a better
algorithm. Therefore, MDA together with path restoration is a cost-effective

and efficient tool for designing survivable network because of its low
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complexity.

From this experiment, we can say that GA is a better tool for achieving the least
cost survivable network in general due to its strong jointly optimization capability.
At the same time, MDA is also a very efficient tool for designing survivable
networks under the path restoration scheme or when the installation cost is the

determining factor due to its lower complexity and better performance under

these situations.

Although the experiment is done with constant a., and constant » both GA

and MDA can tackle problems with a., and p.. change from link to link.
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3.4 Conclusions

We have shown that a better optimization can be achieved when the topology
design, working capacity planning and spare capacity planning can be optimized
simultaneously during the design process. However, the joint optimization
problem is a very big and complex problem so two heuristics have been
developed for solving this problem. The first one is the Modifies Drop Algorithm
(MDA), and the second one is the Genetic Algorithm (GA).

Both GA and MDA perform very well but GA generally outperforms MDA by a
small amount with the trade off that the run time is much longer than that of
MDA.

We can also see that MDA performs very good or even better when compared
with GA under the path restoration scheme or when the determining factor is the
link installation cost.

In summary, both GA and MDA are efficient and useful tools for designing the

least cost survivable network.
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Chapter 4 Conclusions and Future Work

It can be foreseen that all-optical networks will become the foundation of the
future telecommunication infrastructure due to the rapid advancement of the
optical technology and rapid cost reduction of the corresponding optical
components. The main issue that needs to be considered is the network
architecture. Another important issue is the survivability. This motivates us to

develop a framework for the design of all-optical survivable network.

In this thesis, we first investigate survivability issue. The spare capacity planning
problem has been shown to be NP-complete. Many heuristics have been proposed
to solve the problem and the most common one up to now is integer
programming. For this method, we have shown that the complexity is very large
for large size networks as the number of variables and constraints scales with the
exponential form of the number of nodes and edges of the network. Other
drawbacks are that it cannot provide any insight of how to choose the restoration
path set for planning, and that there is no effective method for handling nonlinear

objective functions or constraints for integer programming.

We have developed an efficient, generic and robust heuristic called SCAPE for
solving the spare capacity planning problem in a way that can provide the insight
for choosing real-time path set and it can be expected to solve the nonlinear
problems due to its adaptive property. From the experimental result, it has been
shown that SCAPE works well in both link restoration and path restoration. This

means that SCAPE is a useful, efficient and generic tool for the spare capacity
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planning problem.

After tackling the survivability issue, we have also investigated the big complex
network design problem for arbitrary network topology. Intuitively, the most
economical design should jointly consider the topology, the working capacity
planning and spare capacity planning altogether. However, the existing approach
for designing such kind of survivable network is to tackle only the topology
design, or at most handle the topology and working capacity planning together.
This is understandable as each of these three sub-problems is NP-complete. It can
be imagined that the complexity of this design problem is so big that it is very

difficult to jointly optimize them.

With the help of a low complexity heuristic SCAPE, we can handle the joint
optimization problem easily and we develop two heuristics MDA and GA based
on SCAPE for solving the joint optimization problem. From the experimental
results, it can be shown that the design principle for the joint optimization of
topology, working capacity planning and spare capacity planning produces a
better result and is the right way to go. Both GA and MDA are shown to be
efficient and useful tools for designing the least cost survivable networks. GA is
especially good for producing the best cost-optimized design of survivable
network with a slightly higher complexity while MDA is a very good, low
complexity design tool in combination with the path restoration scheme and

where the installation cost is the determining factor.

As the Wavelength Division Multiplexing (WDM) technique seems to be the
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most probable technique for the transmission of data in the future all-optical
network, the present work needs to be further developed to handle the wavelength
continuity problem in both spare capacity planning and network design. This

poses a great challenge.

Another important issue is the internetworking problem. When internetworking
with IP networks, the design objective will need to include the QoS variables, and
this will further increase the complexity of the design problem. These two

problems will be investigated in the future.

Finally > what we have handled up to now is limited to one single link failure with
symmetric traffic. If asymmetric traffic is introduced and multiple failures are
considered, the problem will involve more constraints and become more complex,
it would be interesting to see how the present algorithms can be modified to

tackle these problems in the future.

In conclusion, this thesis has provided a framework for tackling the future
all-optical network architecture design and we hope that the tools SCAPE, MDA
and GA developed can provide a strong foundation for the future development of

fault-tolerant all-optical networks.
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Appendix A The Interference Heuristic for the

path restoration scheme

We have adopted the interference heuristic in SCAPE for backtracking purpose
with path restoration scheme. In this appendix, the interference heuristic for the
path restoration scheme will be introduced. This interference heuristic is proposed

by Iraschko.

Given a survivable network of the form GN-E>s) where N is the set of nodes,

E is the set of edges, and s is the vector of spare capacities where s.

represents the spare capacity of edge (or link) j. The path restoration routing

problem is defined in the following mathematical model:

Max f~fjr VIi=I.E-

subject to =X; > V/=

[ /oo f 5. O Vvi=1"..,E;
:{ i

—~

X
s

A0, integer, V/= \fr=Y,""D /[ ,Vp=1I"..ly;
where
Di  the number of affected OD pair after link i is failed;
P'i  the total number of eligible restoration routes for affected OD pair r if link i

is failed;
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fi''"" flow assigned to the  restoration route for the affected OD pair r if link i
is failed;
A7 the number of traffic demand needed to be rerouted for the affected OD
pair r if link/is failed;

J 1if linky is used by the  restoration route for the affected OD pair r if

link i is failed, else 0.

From this model, it can be seen that the path restoration routing problem is the
integer multicommodity maximum flow (MCMF) problem. This is a complex
combinatorial optimization problem. Iraschko proposed an Interference Heuristic
for solving this problem with O[ff log TV). Most of the material in this appendix

is adopted form [10].

The principle of this heuristic is simple. Given a network with spare capacity
assignment for each link, the restoration is maximized when the particular
restoration path chosen causes the minimum interference to the other restoration
paths. If a particular restoration path chosen would cause many other restoration
paths not useable under the spare capacity planned network, it means that this
path could become more costly than others and have the least effect in
maximizing the use of the spare capacity in the network. Hence the less

interference a path caused, the higher priority the path should be chosen for path

restoration.

Based on this principle, the Interference Heuristic is constructed for solving the

MCMF problem. The pesudo code is as follows:
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for (failed linkiGE) do
{ release the working capacity portions of all failed paths under link i failure,
while (restoration paths are feasible for any unrestored affected OD pair r under

link i failure) do
{ for (every unrestored affected OD pair r under link i failure) do

{ find the set of k-isolated-shortest restoration paths for affected OD
pairr ;

}

for (every unrestored affected OD pair r under link i failure) do
{ for (every pathp in the k-isolated-shortest restoration path set for

affected OD pair r) do

{Compute interference number I'r" of pathp caused.

}

find the path p,,, with minimum /'J7 and implement,

remove the spare capacity on all the links used for the path p,,,.

More details can be found in [10].
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