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Abstract 
With identity fraud in our society reaching unprecedented proportions and with 

an increasing emphasis on the emerging automatic personal identification 

applications, biometrics-based verification or identification is receiving a lot of 

attention. Biometrics, which refers to automatic personal identification based on 

distinctive physiological (e.g., fingerprints, face, retina, iris) or behavioral (e.g., 

gait, signature) characteristics, relies on "something that you are or you do" to 

make a positive personal identification with a high degree of confidence. It is 

inherently more reliable and more capable in distinguishing between an 

authorized person and a fraudulent imposter than traditional token-based or 

knowledge-based methods. Among all the biometric technologies, fingerprint-

based identification system has received the most attention because of the long 

history of fingerprints and their extensive use in forensics. 

Fingerprint minutiae are essentially ridge endings and ridge bifurcations that 

constitute a fingerprint pattern. Accurate automatic fingerprint minutiae extraction 

is critical for minutiae matching in an automatic fingerprint identification system. 

Primarily, there are two major approaches to fingerprint minutiae extraction: 

skeleton-based method and gray scale image-based method. The former approach 

extracts the minutiae from the skeleton of the fingerprint image. The skeleton is 

computed by thinning the binary image, which is obtained by adaptive 

thresholding of the input gray scale fingerprint image. The latter approach extracts 

the minutiae directly from the gray scale fingerprint image based on a ridge line 

following algorithm that follows the ridge lines in the fingerprint image until an 

ending or a bifurcation occurs. In this thesis, our objective is to develop a novel 

skeleton-based fingerprint minutiae extraction method. 

We propose to use the fingerprint valley instead of ridge for the binarization-

thinning process to extract fingerprint minutiae. We first use several 

preprocessing steps on the binary image in order to eliminate the spurious lakes 

and dots, and to reduce the spurious islands, bridges, and spurs in the skeleton 

image. By removing all the bug pixels introduced at the thinning stage, our 
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algorithm can detect a maximum number of minutiae from the fingerprint 

skeleton using the Rutovitz Crossing Number. This allows the true minutiae 

• preserved and false minutiae removed in later post-processing stages. Finally, 

using the intrinsic duality property of fingerprint image we develop several post-

processing techniques to efficiently remove the spurious minutiae. Especially, we 

define an //-point structure to remove several types of spurious minutiae including 

bridge, triangle, ladder, and wrinkle all together. 

The performance of our proposed skeleton-based fingerprint minutiae 

extraction algorithms has been quantitatively evaluated in terms of "goodness 

index", which compares the automatically extracted minutiae with the minutiae 

obtained from the same fingerprint by a human expert. Experimental results 

clearly demonstrate the effectiveness of the new algorithms. 
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摘 女 

隨著身份詐騙現象日益嚴重’人們越來越看中 新出現的自 

動身份識別系統在日常生活中的應用，尤其是基於生物特徵的驗 

證或識別。所謂生物識別，是指基於人體所獨具的生理特徵〔譬 

如：指紋，人臉’視網膜’虹膜等〕或行爲特徵〔譬如：步態， 

簽名等〕的自動身份識別，它依賴於人體所具備的或所做的’提 

供可靠的身份識別。在分辨合法用戶和非法入侵者的有效性方 

面’生物識別比傳統的基於符號或基於認知的識別方法更加可 . 

靠。在所有的生物技術中’指紋識別系統越來越受到人們的重 

視，因爲指紋有着悠久的應用歷史’並且被廣泛用於司法鑒定° 

指紋圖案主要由端點和交叉點兩種特徵構成。在自動指紋識 

別系統中，精確地自動提取指紋特徵對於指紋匹配尤爲重要°目 

前，主要有兩種指紋特徵提取的方法：基於細化圖的方法及基於 

灰度圖的方法°前一種方法從指紋的細化圖中提取特徵°此方法 

利用自適應二値化方法由指紋的灰度圖計算其二値化圖’然後由 

二値化圖得到指紋的細化圖。後一種方法從指紋的灰度圖中直接 

提取特徵，此方法利用ndge l ine跟蹤算法跟蹤指紋灰度圖中 

的 n d g e line，直至遇到端點或交叉點，即指紋特徵點°在此論 

文中’我們的目標是設計一種新的基於細化圖的指紋特徵提取方 

法。 

與眾不同的是’我們用指紋中的v a l l e y代替n d g e進行二 

値化和細化操作來提取指紋特徵°我們首先對指紋的二値化圖進 

行預處理’以便去掉細化圖中的假特徵點，如lakes ’ dots，同 
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時去掉另外一些假的特徵點 ’ $n i s l a n d s ’ b r i d g e s 和 s p u r s 

,等°然後，我們去掉細化過程中導致的一些bug p i x e l s �接着， 

我們用Rutov i tz Crossing Number槪念’從細化圖中 大可能 

地提取指紋特徵。此舉使得真正的特徵點得以保留’並使錯誤的 

特徵點在其後的post-processing階段得以有效去除° 後’利 

用指紋固有的二元性特性，我們設計了一些post-processing的 

算法用來有效地去除假的特徵點°尤其値得一提的是，我們定義 

了一種H - p o m t結構’以便去除几種類型的錯誤特徵，包括 

b r i d g e ‘ t r i a n g l e ‘ l a d d e r 禾• w r i n k l e � 

.我們通過比較由算法自動提取的指紋特徵和由手工標出的特 

徵，得到其性能指標�goodness i n d e x ] ’對我們所提出的基於 

細化圖的指紋特徵提取算法進行性能評估°實驗結果表明我們的 

新算法行之有效。 
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Chapter 1 
Introduction 

1.1 Automatic Personal Identification 
• Is this person who he or she claims to be? 

• Is this person authorized to enter this facility? 

• Is this individual entitled to access the privileged information? 

• Is the given service being administered exclusively to the enrolled users? 

• Has this applicant been here before? 

• Does this employee have authorization to perform this transaction? 

Questions such as these are asked millions of times every day by hundreds of 

thousands of organizations in financial service, health care, electronic commerce 

(e-commerce), government, etc. All these questions are dealing with the same 

security issue — how to correctly and reliably identify an individual. 

With the advent of electronic banking, e-commerce, and smart cards, with 

identity fraud in our society reaching unprecedented proportions and with an 

increasing emphasis on the privacy and security of information stored in various 

databases, automatic personal identification has become a very important topic. 

Automatically associating an identity with an individual is called automatic 

personal identification. It is now needed in a wide range of civilian applications 

involving the use of passport, cellular telephone, automatic teller machine (ATM), 

and driver license, etc. 

Traditionally, automatic personal identification approaches have been widely 

used in two major types [1, 2, 3, 8]: (i) knowledge-based, (ii) token-based. The 

former approaches use "something that you know" such as password and personal 

identification number {PIN) to make a personal identification; the latter 

approaches use "something that you have" such as passport, credit card, ID card, 

and key to make a personal identification. These traditional personal identification 

approaches are very simple and can be easily integrated into different systems 
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with a low cost. However, they are prone to fraud because PINs may be forgotten 

or guessed by the impostors and tokens may be lost or stolen. Moreover, these 

traditional approaches cannot distinguish between an authorized person and an 

impostor who fraudulently acquires the "token" or "knowledge" of the authorized 

person. Therefore, they are not sufficiently reliable to satisfy the security 

requirements of our increasingly electronically interconnected information 

society. 

1.2 Biometrics 
Biometrics, which refers to automatic personal identification based on 

distinctive physiological (e.g., fingerprint, face, retina, iris) or behavioral (e.g., 

gait, signature) characteristics [1, 4, 5, 6], relies on "something that you are or you 

do" to make a positive personal identification with a high degree of confidence. It 

is inherently more capable and more reliable in distinguishing between an 

authorized person and a fraudulent imposter than traditional token-based and 

knowledge-based methods, because the biometric characteristics cannot be easily 

misplaced, forgotten, stolen, or forged. Moreover, the person to be identified 

needs to be physically present at the point of identification. Thus, biometrics 

provides us a solution for the security requirements of our increasingly 

electronically interconnected information society and will become the dominant 

automatic personal identification technique in the near future [1, 2, 3, 8]. So what 

does this mean? It means that in the very near future, passwords, PINs, and keys 

will disappear and be replaced by biometric identifiers like your fingerprints. 

1,2.1 Objectives 
The objectives of biometrics are: 

• User convenience (e.g., money withdrawal without A TM cards and PINs); 

• Reliable security (e.g., difficult to fraudulent access); 

• Higher efficiency (e.g., lower overhead for computer password 

maintenance). 

2 



1.2.2 Operational Mode 
On the one hand, a biometric system can be operated in two modes: (/) 

verification mode (one-to-one) and (if) identification mode (one-to-many). A 

biometric system operating in verification mode either accepts or rejects a 

person's claimed identity (Am I whom I claim I am?) by comparing the captured 

biometric characteristics with his or her own biometric template stored in the 

system database or on the cards such as the smart card. While a biometric system 

operating in identification mode establishes an individual's identity (Who am I?) 

without a claimed identity by searching the entire template database. 

On the other hand, a biometric system can be either (/) an online system or ("•) 

an offline system. An online system requires that a verification or identification 

should be performed quickly and need an immediate response; an offline system 

usually does not require that a verification or identification should be performed 

immediately and allows a relatively long response. 

1.2.3 Requirements 
What biological measurements qualify to be a biometrics? Any human 

physiological or behavioral characteristic can be used as a biometric characteristic 

to make personal identification provided that it has the following desirable 

properties [1, 2, 8]: 

• Universality, which means that each person should have the characteristic; 

• Uniqueness, which indicates that no two persons should be the same in 

terms of the characteristic; 

• Permanence, which means that the characteristic should be invariant with 

time; 

• Collectability, which indicates that the characteristic can be measured 

quantitatively. 

In a practical biometric system, there are some other important issues that 

should be considered [2, 8], including: 

• Performance, which refers to the achievable identification accuracy, speed, 

robustness, the resource requirements to achieve the desired identification 

accuracy and speed, as well as the working or environmental factors that 

affect the identification accuracy and speed; 
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• Acceptability, which indicates to what extent people are willing to accept a 

particular biometrics in their daily life; 

• Circumvention, which refers to how easy it is to fool a biometric system 

by fraudulent techniques. 

A practical biometric system should satisfy the following requirements [2, 8]: 

An acceptable identification accuracy and speed with a reasonable 

resource requirements; 

V Not be harmful to the subjects; 

V Be accepted by the intended population; 

V Be sufficiently robust to various fraudulent techniques. 

1.2.4 Performance Evaluation 
Primarily, the performance of a biometric system is specified in terms of two 

error rates: 

• False acceptance rate {FAR), which is defined as the probability that an 

impostor is accepted as a genuine user; 

• False reject rate (FRR), which is defined as the probability that a genuine 

user is rejected as an impostor. 

Clearly, FAR and FRR are dual of each other. A smaller FAR usually leads to a 

larger FRR, and vice versa. There is a trade-off between the two error rates and 

both of them cannot be reduced simultaneously based on the operating point 

(threshold in the decision rule) alone. The performance of a biometric system in 

performing automatic personal identification is usually specified in terms of its 

FAR. Therefore, the decision scheme should establish a decision boundary, which 

minimizes the value of FRR for a desired value of FAR. Different biometric 

applications dictate different FAR and FRR requirements. For example, access to a 

secure military installation requires a very low FAR at the expense of a higher 

FRR, but access to an ATM terminal desires a very low FRR. 

1.2.5 Biometric Technologies 
Currently, a number of biometric technologies have been either widely used or 

under intensive investigation include the following [1, 2, 8, 9, 10, 11, 12, 13, 14, 

15]: 
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1. Physiological characteristics: 

> Face; 

> Fingerprint; 

> Hand geometry; 

> Hand vein; 

> Iris; 

> Retina; 

> Ear shape; 

> Body odor; 

> DNA; 

> Facial thermogram. 

2. Behavioral characteristics: 

. > Signature; 

> Gait; 

> Keystroke dynamics; 

> Voice. 

Each biometric technology has its own advantages and disadvantages. No 

single biometrics is expected to effectively meet the needs of all the verification 

and identification applications [2]. A brief comparison of these fourteen different 

biometric technologies mentioned above is provided hi Table 1.1. 

Table 1.1 Comparison of biometric technologies [4]. 
B i o m e t r i c s U n i v e r s a l i t y Uniqueness Permanence Collectability Performance Acceptability Circunweiition 

i l i i h L ^ Medium Migli Low High Low 

F i n g e r p r i n t M e d i u m Hi ih Hi ih Medium High Medium High 

� id Medium Medium Medium High Medium Medium Medium 
geometry 

Hand Vein Medium Medium Medium Medium Medium Medium High 

" l i l i High H i ^ High Medium High Low High 

Retina Higii Hiil i Medium L ^ High Low lligli 

Ear shape Medium Medium High Medium Medium High Medium 

Body odor Higli Higli H i ^ L ^ Low Medium Low 

DNA Higii Higii L ^ High Low Low 

FncinI 
High High Low High Medium High High 

tliermogram 

Signature L t w Low L w High Low High Low 

Medium Low Low High Low High Medium 

Keyslioke 匕。… 匕。、、， Low Medium Low Medium Medium 
dynamics 

Voice Medium Low Low Medium Low High Low 
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To a certain extent, all these biometric technologies satisfy the requirements 

mentioned in section 1.2.3 and have been used in practical biometric systems [2, 8’ 

9, 15] or have the potential to become a valid biometric technique [2], But most of 

them are not accepted in forensics as indisputable evidence of identity. In fact, the 

only legally acceptable, readily automated, and mature biometric technology is the 

fingerprint identification technique. 

Among all the biometrics (e.g., face, fingerprint, hand geometry, hand vein, iris, 

retina, ear shape, body odor, DNA, facial thermogram, signature, gait, keystroke 

dynamics, voice, etc.), the fingerprint-based identification is one of the most 

reliable and proven mature technologies. 

1.3 Fingerprint 
Fingerprints are graphical flow-like ridges and valleys present on the surface of 

human fingers [4], as illustrated in Figure 1.1. They have been widely used for 

personal identification for over one hundred years [7]. The validity of fingerprint 

identification has been well established. In fact, fingerprint technology is so 

common in personal identification that it has almost become the synonym of 

biometrics [9]. 

1.3.1 Applications 
Tremendous success of the fingerprint-based identification technique in various 

law enforcement departments around the world, the availability of cheap and 

compact solid-state fingerprint scanners [17, 18], the availability of inexpensive 

computing power, the availability of robust fingerprint matchers, and the 

increasing identity fraud have all ushered in an era to use fingerprints for 

automatic personal identification in a number of commercial, civilian, and 

financial applications, involving: 

1. Network access 

> Electronic banking, e-commerce, and securities trading; 

> Electronic shopping (retail point-of-sale authentication); 

> Information and service access (e.g., web, internet, intranet); 

> Computer network security; 

2. Physical access 
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> High security areas; 

> Authorities; 

‘ > Access control (e.g., building, office, home); 

3. Device access 

> Cellular phone; 

> PC, laptop computer log-in; 

> Car (driver licenses); 

> TV access; 

> Smart card; 

> ATMcm-d-

> Weapon; 

4. Identification 

. > Identification systems; 

> Social security benefits (welfare office, employment office); 

> Immigration (passports); 

�r Airport check-in; 

> Law enforcement (criminal identification, prison security). 

—Wherever you use a key or a password, your fingerprint can replace it. 

Figure 1.1 A sample fingerprint image (black areas: ridges; white areas: valleys). 

1.3.2 Advantages of Fingerprint Identification 
The advantages of using fingerprints are as follows: 

• Fingerprint identification is one of the most reliable and well-

understood personal identification technologies; 
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• The validity of fingerprint identification has long been established and 

justified; 

• Fingerprint is the most commonly used biometric technology which has 

the potential to become the dominant biometric technology in the very 

near future. 

Fingerprints also have a number of disadvantages, including: 

• Approximately 4% of the population does not have fingerprints of good 

quality due to postnatal marks (e.g., scratches, cuts) or occupational 

marks (e.g., manual workers); 

• The commercially available fingerprint sensors cannot properly scan 

fingerprints from dirty fingers; 

• Fingerprints are not suited for certain applications (e.g., surveillance) 

. s i n c e they cannot be captured without the user's knowledge. 

1.3.3 Permanence and Uniqueness 
Fingerprints are fully formed at about seven months after the fetus was born 

and do not change throughout the life of an individual except due to accidents 

such as bruises and cuts on the finger tips. This shows that the fingerprint details 

are permanent. 

Ill 1893, the Home Ministry Office, UK, accepted' the discovery that no two 

individuals have the same fingerprints (i.e., the fingerprints of human beings are 

unique) [7]. The uniqueness of a fingerprint can be determined by the overall 

pattern of ridges and valleys (global information) as well as the local anomalies 

called minutiae, which will be described in Section 2.4. 

1.4 Thesis Overview 
The rest of this thesis is organized as follows. Chapter 2 presents an extensive 

overview on fingerprint identification. Chapter 3 introduces our live-scan 

fingerprint database obtained by four commercially available fingerprint sensors. 

Chapter 4 reviews the fingerprint minutiae extraction techniques and presents our 

preprocessing techniques for the skeleton-based fingerprint minutiae extraction 

method. A very efficient post-processing algorithm is described in Chapter 5. 

Chapter 6 contains the conclusions of our research. 
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1.5 Summary 
Accurate automatic personal identification is now needed in a wide range of 

civilian applications involving electronic banking, e-commerce, access control, 

and the use of passports, smart cards. Biometrics, which refers to identify an 

individual based on his or her distinctive physiological or behavioral 

characteristics, relies on "something that you are or you do，，to make a positive 

personal identification with a high degree of confidence. It is inherently more 

capable and more reliable in distinguishing between an authorized person and a 

fraudulent imposter than traditional token-based and knowledge-based methods. 

Among all the biometric technologies, fingerprint-based identification is one of 

the most reliable and proven mature techniques. A critical step in automatic 

fingerprint identification is reliably extracting minutiae from the input fingerprint 

image. In this thesis, our objective is to develop a novel skeleton-based fingerprint 

minutiae extraction method. 

9 



Chapter 2 
Fingerprint Identification 

2.1 History of Fingerprints 
Fingerprint identification is one of the most reliable and proven mature 

technologies and fingerprints have been widely used for personal identification for 

over one hundred years [7], Scientific studies on fingerprint technology were first 

initiated at the end of sixteenth century [7], English plant morphologist, Nehemiah 

Grew, was the first fingerprint pioneer. In 1684, he published the first scientific 

paper reporting his systematic study on the details of ridges, valleys, and pores in 

fingerprints [7]. From then on, more and more researchers have engaged in 

studying on fingerprints. Starting in 1809, Thomas Bewick began to use an 

engraving of his fingerprint as his trademark in a few books (see Figure 2.1). It is 

believed to be one of the most important milestones of the scientific study on 

fingerprint identification [7], In 1823, Joannes Evanelista Purkinje illustrated and 

described nine fingerprint patterns (arch, tented arch, left loop, right loop, and five 

types of whorls) in his thesis [7]. It is the first fingerprint classification scheme. In 

1880，Henry Faiilds wrote a letter to Nature, first scientifically suggested the 

individuality of fingerprints based on his own observation [7]. He recognized that 

fingerprint patterns were variable, but concluded that ridge details were permanent 

and unchangeable. He was believed to be the first person to identify fingerprints 

found at crime scenes. At the same time, William Herschel asserted that he had 

been experimenting with fingerprints for about twenty years [7]. 

The foundations of modern fingerprint identification were established by the 

studies of Sir Francis Gallon and Sir Edward Henry in the late nineteenth century. 

Golton's study extensively examined the details that reside in fingerprints and he 

introduced the concept of minutiae for fingerprint identification in 1888 [5, 7]. 

Gallon drew two fundamentally important conclusions: (z) the fingerprint of a 

person is permanent, i.e., it preserves its characteristics and shape throughout 
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one's life; (//) the fingerprints of individuals are unique. According to the 

experimental evidence, it was proven that no two persons have the same 

fingerprints; even identical twins have different fingerprints despite signs of 

similarity. These two conclusions were the building blocks of research in the field 

of fingerprints over the last 90 years. Henry's study examined the global structure 

of fingerprints, and in 1899，he (actually his two Indian employees Khan Bahadur 

Aziziil Haque and Rai Bahadur Hem Chandra Bose) established the famous 

"Henry System" of fingerprint classification [5, 7], which was introduced at 

Scotland Yard in 1901. This classification method is a very effective method for 

fingerprint indexing and is still in use in most identification systems nowadays. 

By using the ideas presented above, fingerprints are first classified by the Henry 

classification system and exact matching is carried out by comparing Galton 

minutiae. 

纖： 
^yruyrk 

Figure 2.1 Trademarks of Thomas Bewick [7]. 

In the early twentieth century, fingerprint was formally accepted as a valid sign 

of identity by law enforcement agencies and fingerprint identification became a 

standard procedure in forensics [7]. Fingerprint identification agencies were setup 

worldwide and criminal fingerprint database were established [7]. They developed 

various fingerprint identification techniques, including latent fingerprint 

acquisition, fingerprint classification, and fingerprint matching. However, manual 

fingerprint identification is tedious, time-consuming, and expensive, as it needs to 
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be performed by professional fingerprint experts. With the rapid expansion of 

fingerprint database, manual fingerprint identification became infeasible, even a 

team of over 1,300 professional fingerprint experts was not able to provide timely 

response. Therefore, in the early 1960's, the Federal Bureau of Investigation {FBI) 

Home Office (UK) and the Paris Police Department initiated studies on automatic 

fingerprint identification systems {AFIS) [39]. They made great progress so that 

many commercial AFISs are currently in operation in law enforcement agencies 

all over the world. These systems have greatly improved the efficiency of these 

agencies and successfully reduced the cost of hiring and training professional 

fingerprint experts. 

With the advent of live-scan fingerprinting and the availability of cheap 

fingerprint sensors, AFIS has been highly utilized in civilian and commercial 

applications for positive personal identification besides forensic applications. 

Therefore, automatic fingerprint identification technology is in great demand. A 

number of commercially available AFISs [16, 17, 18] have been developed and 

tested on large databases. 

2.2 AFIS Architecture 
An AFIS can be operated in either verification mode (one-to-one) or 

identification mode (one-to-many). The AFIS operating in verification mode 

either accepts or rejects an individual's claimed identity (Am I whom I claim I 

am?)； while the AFIS operating in identification mode establishes the identity of 

an individual without claiming his or her identity information (Who am I?). An 

ATM application is a typical example for an AFIS operating in verification mode, 

while a police application is a typical example for an AFIS operating in 

identification mode. Sometime, the AFIS can operate in an intermediate mode: 

one-to-few mode. "One-to-few" is essentially a "one-to-many" situation with a 

small database, for instance, a building access control system for a 100-person 

company. 

There is quite a significant difference between verification and identification in 

terms of search and match routines. Verification only requires a match against one 

reference template, so the computation time is much shorter. On the other hand, 

identification requires a very efficient matching routine, as a search within 
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millions of fingerprints has to be performed in a short period of time. Generally, 

more time is spent in the stages of minutiae extraction and post-processing in 

order to assure that the survived minutiae are true minutiae. Otherwise, the 

probability of false matches is higher. 

A typical block schema of an AFIS is shown in Figure 2.2. It mainly consists of 

five components: (i) input module, {ii) preprocessing module, {Hi) enrollment 

module, (/v) authentication module, and (v) system database. Here, authentication 

means either verification or identification. 

Enrollmenf Module 

p M - 尚 
r̂ . . . Database 

• , :J Fingerprint Minutiae _ _ — — 

P i e - Image Extraction • \ • 

^ E l i f l ^ 卡 processing •:•: ... • 
^ ^ ^ ^ f * V : 

Iiipiit . 
Fingerprint Minutiae Minutiae ^ 
Image Extraction Matching M n t c l i i i l g 

Authentic ntio 11 Module Result 

User ID 

Figure 2.2 The block schema of an automatic fingerprint 

verification/identification system. 

The input module consists of a high-resolution fingerprint sensor which 

captures the fingerprint images from the user. It also provides a mechanism for the 

user to indicate his or her identity (user ID). Typically, for the fingerprint sensor, 

the AFIS specifications require a resolution of 500 dpi (dot per inch), 8 bits per 

pixel (256 gray levels) for the acquired fingerprint images. 

The acquired fingerprint image is subject to the preprocessing module which 

consists of general image enhancement and segmentation. 

The enrollment module enrolls the fingerprint image of the user into the system 

database. When a fingerprint image is fed to this module, the minutiae extraction 

algorithm is applied to the input fingerprint image. The extracted minutiae can be 
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stored as a template on computer server, cellular phone, ID card, or ATM card. 

Minutiae extraction is a critical step, especially for enrollment. Subsequent 

matching will only be effective if the original reference minutiae template is clean 

and true, so special attention must be taken during enrollment. 

The authentication module authenticates the identity of the user who intends to 

access the system. It can be organized into three steps: image acquisition, 

minutiae extraction and matching. During the authentication process, the user 

places his or her finger on the fingerprint sensor, thus a fingerprint image is 

scanned. Minutiae is extracted from the scanned fingerprint image and fed to the 

matching algorithm. If he or she claimed his or her user ID, the system operates in 

verification mode. The extracted minutiae are compared with the stored minutiae 

template of the claimed identity. If a match is made, the user is granted access; 

otherwise, the user will be rejected. If the user doesn't claim his or her user ID, 

the system operates in identification mode. The extracted minutiae are matched 

against all the minutiae templates stored in the system database and the matching 

result is a short list of the most likely candidates. The human expert makes the 

final decision of correct match by visual verification of this short list. 

The system database consists of a collection of minutiae templates, each of 

which corresponds to an authorized user. 

In an AFIS, you have to voluntarily touch the fingerprint sensor to show your 

actual agreement, which is quite different from face recognition. For example, you 

may be recognized without your approval. However, it is still possible to fool a 

fingerprint sensor. Since you leave your fingerprints everywhere (latent 

fingerprints), it is possible for some optical fingerprint sensors to be fooled by a 

copy of the latent fingerprint acquired using simple techniques, thus reducing the 

overall security of an AFIS system. To increase the security, several methods can 

be developed: 

V Three-dimensional imaging technology; 

/ A sensor to detect a "living" effect such as electrical conductivity of the 

skin; 

A sensor that reads blood pressure through infrared sensors could detect 

that a finger is alive; 

^̂  Multiple fingers can be required even in a specific sequence, and a 

specific finger can be used to initiate a silent alarm; 
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V Several biometrics can be combined to increase the security. 

2.3 Fingerprint Acquisition 
Fingerprint acquisition is one of the critical processes in an APIS and the 

quality of the acquired fingerprint images determines the performance of the 

entire system. The quality [20] refers to the clarity of ridges and valleys in the 

fingerprints. Distinct and well-separated ridges and valleys indicate a fingerprint 

of good quality. There are two primary methods of acquiring a fingerprint image: 

(/) inked (off-line process), (//) live-scan (on-line process). An inked fingerprint 

image is typically acquired by scanning the impression of an inked finger on 

paper using a flat bed document scanner. The live-scan (inkless) fingerprint image 

is directly obtained from a finger by using a live-scan fingerprint sensor. In 

forensics, a special kind of inked fingerprints is called latent fingerprint (chance 

print), which is captured from the crime scene by dying the impression left by the 

suspect due to the presence of sweat pores in the fingertips, and then scanning the 

fingerprint. In this thesis, we concentrate only on live-scan fingerprints. 

The inked fingerprints have the largest area of valid ridges and valleys with 

larger nonlinear deformations due to the inherent nature of the acquisition process. 

Acquisition of inked fingerprints is slow and cumbersome which is not feasible 

for an online AFIS and socially unacceptable. The live-scan fingerprints have a 

smaller fingerprint area with smaller nonlinear deformations because the sensor of 

small size only captures the ridges and valleys that are in contact with the 

acquisition surface. Both of them are scanned at a high resolution of 500 dpi. 

Latent fingerprints are partial fingerprints and are of poor quality. Figure 2.3 

shows some fingerprint images acquired by different techniques. 

The most popular sensing mechanism to obtain a live-scan fingerprint image is 

based on the optical frustrated total internal reflection {FTIR) technology [16]. 

When a finger is placed on one side of the prism, the ridges of the finger are in 

contact with the glass platen, while the valleys of the finger are not in contact with 

the glass platen. The rest of the imaging system essentially consists of an 

assembly of an LED light source and a CCD placed on the other side of the prism. 

The laser light source illuminates the glass at a certain angle and the camera is 

placed such that it can capture the laser light reflected from the glass. The light 
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that is incident on the plate at the glass surface touched by the ridges is randomly 

scattered, while the light incident on the glass surface corresponding to valleys 

suffers total internal reflection. Consequently, portion of fingerprint image formed 

on the imaging plane of the CCD corresponding to ridges are dark, and to valleys 

are white. Optical sensors are too large to be readily integrated in a number of 

applications (e.g., ID card, smart card, cellular phone). More recently, a number of 

different types of compact solid-state fingerprint sensors based on differential 

capacitance have become popular [17, 18]. The capacitance-based fingerprint 

sensors essentially consist of an array of electrodes. The fingerprint skin acts as 

the other electrode, thus to form a miniature capacitor. The capacitance from the 

ridges is higher than that from the valleys, which forms the basis of the 

capacitance-based sensors. The quality of the images acquired using these solid-

state sensors is comparable to that of the images acquired using the optical 

sensors. These solid-state sensors are very small in size and they will become 

inexpensive in the very near future if manufactured in a large quantity. Another 

kind of fingerprint sensors is based on thermal sensing of temperature difference 

across the ridges and valleys in the fingerprint images [19]. 

(a) (b) 
Figure 2.3 Examples of different types of fingerprints: (a) an inked fingerprint from 

NIST special database 4 {NIST-4); (b) a live-scan fingerprint captured by an 

optical fingerprint sensor ("StarTek FMIOO" by StarTek, Taiwan). 

2.4 Fingerprint Representation 
Fingerprints can be represented either by global information [21,22] or by local 

minutiae [10, 23]. The global representation of fingerprints is generally used for 
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indexing fingerprints (fingerprint classification). Two special types of features 

related to global representation are the singularity points (cores and deltas) [42]， 

as illustrated in Figure 2.4. The core point is defined as the topmost point on the 

innermost recurving ridge and the delta point is defined as the center of a 

triangular region where three different direction flows meet. 

Delia point 

M M B B i I"... i 

Figure 2.4 Illustration of the singularity points in a fingerprint image from NIST-4. 

The most common representation used in fingerprint identification is the 

minutiae, because of the following reasons: 

> Minutiae capture most of the individual information; 

> Minutiae-based representation is storage efficient; 

> Minutiae-based representation reduces the fingerprint matching problem 

to a point- or graph-matching problem. 

Typically, there are two prominent types of minutiae (ridge endings and ridge 

bifurcations), as illustrated in Figure 2.5. A ridge ending is defined as the ridge 

point where a ridge ends abruptly. A ridge bifurcation is defined as the ridge point 

where a ridge forks or diverges into branch ridges. 

Generally, a fingerprint is represented by the minutiae locations, minutiae 

types, and some attributes like minutiae orientation. Over one hundred years of 

study on fingerprints guarantees the uniqueness of minutiae-based representation 

for a large population of humans. A good quality fingerprint image typically has 
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about 40 to 100 minutiae [24], but a dozen of minutiae are considered sufficient to 

identify a fingerprint pattern [25]. 

• 
Figure 2.5 Illustration of fingerprint minutiae (“x,,: ridge bifurcations; 

"o": ridge endings). 

A less commonly used fingerprint feature is pores on the ridge surfaces that are 

also claimed to satisfy the uniqueness requirement [40, 41]. They can be used as 

auxiliary features in minutiae-based systems. A fingerprint is represented by the 

locations of pores and the local directions of the ridges at the pores locations. The 

pores-based representation also reduces the fingerprint matching problem to a 

point matching problem. The extraction of pores requires that the fingerprint 

image should be obtained at a high resolution of 1000 dpi. 
2.5 Fingerprint Classification 

Fingerprint classification refers to categorize a given fingerprint into one of the 

pre-specified categories based on the global ridge and valley structures. 

Fingerprint classification essentially provides us an indexing mechanism and 

plays an important role in fingerprint matching. This indexing mechanism 

significantly reduces the search time and computational complexity because the 

given fingerprint will only be matched against a subset of the fingerprints of the 

same class in the database, which may consists of millions of fingerprints. Since it 

is impossible for two fingerprint images of different classes to match with each 

other, fingerprint classification is viewed as fingerprint matching at a coarse level. 
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Generally, fingerprints are classified into five distinct classes, namely, arch (y )̂, 

tented arch (T), left loop (L), right loop (R), and whorl (fV), as illustrated in Figure 

2.6. The natural distribution of these five classes is 0.037, 0.029 0.338, 0.317, and 

0.279 for the classes A, T, I , R, W, respectively [36], which shows that the loop 

and whorl classes are very popular in our populations. Fingerprint classification is 

only effective in an AFJS operating in identification mode and is not an issue in an 

AFIS operating in verification mode. m m m 
� (b) - (c) 

_圓• 
(d) it] (f) 

Figure 2.6 A coarse-level fingerprint classification of six categories: (a) Arch, (b) 

Tented arch, (c) Left loop, (d) Right loop, (e) Whorl,- and (f) Twin loop. (Twin 

loop images are labeled as whorl in NJST-4.) 

A number of approaches to fingerprint classification have been developed and 

can be categorized into the following categories: 

• Knowledge-based approach [22], which performs the classification 

based on the number and relative locations of the detected singularity 

points; 

• Structure-based approach [29], which employs both the geometric 

grouping and the global geometric shape analysis of fingerprint ridges 

to accomplish the classification; 

• Neural network-based approach [36], which classifies the fingerprint 

images by a multilayer perceptron (MLP) network using the K-L 

transformed direction vectors as the input features; 
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• Frequency-based approach [30], which uses the frequency spectrum of 

the fingerprints obtained from the hexagonal Fourier transform for 

classification; 

• Syntactic approach [31], which converts the fingerprint into a string of 

primitives and make classification based on this string; 

• Statistical approach [21, 43], which uses a novel statistical 

representation (FingerCode) to make classification based on a two-stage 

classifier; 

• Hybrid approach [32, 33, 34, 35], which combines more than two 

classifiers for fingerprint classification in order to improve the overall 

performance. 

The FBI requirement of fingerprint classification is 1% error rate with a 

maximum of 20% reject rate. A state-of-the-art fingerprint classification algorithm 

[21] reports the following accuracies on 4,000 images in the NlST-4 database: 

A classification accuracy of 90% is achieved for the five-class problem and an 

accuracy of 94.8% for the four-class problem (arch and tented arch are merged 

into one class) after 1.8% of the fingerprint images are rejected during feature 

extraction stage. By incorporating a reject option at the classifier, the 

classification accuracy can be increased to 96% for the five-class classification 

task, and to 97.8% for the four-class classification task after a total of 32.5% of 

the images are rejected. 

2.6 Fingerprint Matching 
Fingerprint matching refers to use a similarity measure to determine whether or 

not two fingerprints are from the same finger. The similarity is determined based 

on the concept of correspondence in minutiae-based matching. A minutia m, in the 

input fingerprint is considered as "corresponding" to the minutia m, in the stored 

template if they represent the identical minutia scanned from the same finger. If 

the similarity (matching score) is greater than a certain predetermined threshold T, 

the input fingerprint matches the stored template fingerprint in the database; 

otherwise, they are not from the same finger. 

Generally, a fingerprint matching process consists of three stages: 
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1. Two fingerprints to be matched are compared to determine whether or 

not they belong to the same class. If yes, go to stage 2, otherwise, it is 

. impossible that these two fingerprints are from the same finger; 

2. All alignment process is conducted in which several salient minutiae are 

first located and then an approximate alignment of the minutiae pattern 

is performed; 

3. A matching process is applied in which the sum of the similarity 

between the corresponding minutiae pairs is evaluated, and finally, a 

decision is made based on the similarity. 

Fingerprint matching has been approached from several different strategies: 

The most commonly used matching approach is minutiae-based matching, 

which first locate the minutiae, and then match their relative placement between 

the input fingerprint and the stored template. There are two major approaches in 

minutiae-based matching: (/) point pattern-based matching and {ii) graph-based 

matching. The point pattern-based approaches [10, 28] consider the minutiae as a 

two-dimensional {2-D) point pattern. Two sets of minutiae are aligned and the 

sum of the similarity between the matched minutiae is calculated. Alignment 

plays an important role in point pattern-based matching and corresponds to 

enrollment (registration) in most of the AFISs. The graph-based approaches [26, 

27] first construct a nearest neighbor graph from the fingerprint minutiae pattern, 

which codes the relative locations of minutiae, and then use an inexact graph-

matching algorithm for matching. Alignment is not needed is graph-based 
matching. 

Another matching approach is filterbank-based matching [44], which uses a 

bank of Gabor filters to capture both the local and global details in a fingerprint 

image as a compact fixed length FingerCode, and the matching is based on the 

Euclidean distance between the two corresponding FingerCodes. 

2.7 Challenges 
A number of commercial fingerprint identification systems [16, 17, 18] have 

been developed and tested on large databases, but most of them are still not able 

to meet the rigid performance requirements in many emerging civilian 
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applications. Fully automatic fingerprint identification is still a challenging 

problem. It currently faces the following challenges: 

. > Some information is lost when the three-dimensional fingerprint is 

scanned into a two-dimensional digital gray scale image; 

> Different placements and pressures of the fingers on the fingerprint 

sensor may cause different fingerprint impressions and different 

deformations; 

> In practice, due to variations in skin conditions (postnatal and 

occupational masks such as cuts, bruises on the fingers), fingerprint 

sensors, and non-cooperative attitude of subjects, a large number of 

scanned fingerprint images (about 10%) are of very poor quality. This 

leads to a significant number of spurious minutiae as well as missing 

.minu t i ae , which greatly degrades the performance of fingerprint 

matching; 

> It is difficult to develop an enhancement algorithm to robustly improve 

the quality of the fingerprint images of poor quality, thus to make it 
more suitable for minutiae extraction; 

> It is difficult to design a reliable minutiae extraction algorithm to extract 

a robust representation due to the noise present in the fingerprint image; 

> Fingerprint classification still remains a very hard task for both the 

human experts and the automatic systems. For example, approximately 

170/0 of the fingerprint images in NIST-4 belong to two different classes. 

On the other hand, only several fingerprint categories have been 

identified and the distribution of fingerprints into these categories is not 

uniform; 

> It is difficult to propose a matching algorithm to reliably perform 

matching with a large number of fingerprints in real time. Quantitatively 

defining a reliable match measurement between two minutiae sets is still 

a difficulty. 

2.8 Combination Schemes 
Different approaches to the given task (e.g., fingerprint classification, 

fingerprint matching) may offer rather complementary information. This indicates 
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that a combination scheme is likely to improve the overall performance and 

applicability of a fingerprint identification system. The outputs of various 

approaches can be combined to obtain a decision which is more accurate than the 

decision made by any of the individual approach. 

In addition, combination of multiple biometric characteristics has been shown 

to be very effective in improving the overall system performance [37]. For 

example, fingerprint verification is reliable but inefficient in database retrieval, 

while face recognition is fast but less reliable. A prototype biometric system 

which integrates face and fingerprint have been developed to overcome the 

limitation of fingerprint verification systems as well as face recognition systems 

[38]. The integrated system operates in the identification mode with an admissible 

response time and the identity established by the integrated system is more 

reliable than the identity established by the face recognition system. Thus, the 

integrated system meets both the response time and the accuracy requirements. 

2.9 Summary 
Among all the biometrics, fingerprint-based identification is one of the most 

reliable and proven mature technologies. Fingerprints are widely used for personal 

identification. The validity of fingerprint identification has been well established. 

In this chapter, we provide an overview of fingerprint identification including its 

long history. An AFIS is described along with the basic concepts involving 

fingerprint acquisition, fingerprint representation, fingerprint classification, and 

fingerprint matching. Various approaches to fingerprint classification and 

fingerprint matching have also been reviewed. In practice, fully automatic 

fingerprint identification is still a challenging problem. At the end of this chapter, 

we point out that the overall system performance can be improved by the 

combination schemes. Combination of multiple biometrics will be a very 

promising research topic. 
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Chapter 3 
Live-Scan Fingerprint Database 

3.1 Live-Scan Fingerprint Sensors 
Four different fingerprint databases (hereinafter DBl, DB2, DB3, DB4) were 

collected by using the following live-scan sensors (see Figure 3.1): 

• DBl: Optical sensor "StarTek FMIOO" by StarTek, Taiwan [16]; 

• DB2: Capacitive sensor "Precise lOOSC" by Precise Biometrics, 

Sweden [17]; 
• DB3: Solid-state sensor "Veridicom" by Veridicom, CA [18]; 

• DB4: Thermal sensor "FingerChip™ FCD4B14" by ATMEL, CA [19]. 

-S t a rTek FM100 Precise lOQSC Veridicom FingerChip 
Figure 3.1 Four different fingerprint sensors. 

These commercially available live-scan fingerprint sensors are based on several 

different sensing mechanisms: (/) the StarTek FMIOO is based on the optical 

frustrated total internal reflection (FTIR) technology, (//) the Precise lOOSC and 

the Veridicom are based on differential capacitance, (Hi) FingerChip^^ FCD4B14 

is based on thermal sensing of temperature difference across the ridges and 

valleys in the fingerprint images. The sensing mechanisms have been described in 

Section 2.3. 

3.2 Database Features 
Totally, our fingerprint database (CUHK_DB) currently consists of over 30,000 

fingerprint images and we are still in the process of enlarging it which will surely 

be a pretty large and practical fingerprint database. Table 3.1 summarizes the 

24 



global features of the four fingerprint databases and Figure 3.2 shows a sample 

image from each of them. 

Table 3.1 The fingerprint database: CUHK_DB (15x15 mm = 0.6"x0.6", 

0.4x14 mm = 0.02" X 0.55") 

Data- S e n s o r “ S e n s o r S e n s i n g Image Gray Image Resolution Database 
hnc;e Nnme Type Area Size Levels Type ^ _ 

P ^ l o o Optical ^ l l l ^ 256x256 256 .bmp 500 dpi 14,220 

DB2 Capaci t ive 丨 5x15 300x300 256 .png 500 dpi 11,000 
loose [ mm 

DB3 Ver id icom Solid-state 丨̂】〕二5 300x300 256 .tif 500 dpi 4 ,500 

DB4 FingerChip T h e r m a l 。 . 二 440x440 256 .bmp 500 dpi 500 

HJSS] 
"PBI (256x256) DB2 (300x300) DB3 (300x300) D ^ T ^ S ^ f “ 

Figure 3.2 Examples of fingerprint images from DBl, DB2, DB3 and DB4. The four 
images are displayed at the same scale factor (35%) to demonstrate the different 
image size of each database. ‘ 

To summarize, DBl has the following features: 

• The fingerprints were collected from 113 untrained volunteers; 

• The subjects mainly consist of undergraduate and postgraduate students 

at the Chinese University of Hong Kong, and also their friends and 

relatives; 

• Approximately 38% of the subjects are female, 80% of the subjects are 

under 25 years of age, 20% of the subjects are between the ages of 25 

and 50; 

• Up to ten fingers were collected for each volunteer (namely, right thumb, 

right index, right middle, right ring, right little, left thumb, left index, 

left middle, left ring, and left little in this order); 

• For the first 31 volunteers, each finger was scanned in three directions 

including the vertical direction, left rotation between 0 to 15", right 
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rotation between 0 to 15", 10 fingerprint images for each direction 

(totally 31*10*3*10=9300 fingerprints); For the subsequent 82 

volunteers, each finger was only scanned 6 times in the vertical 

direction (totally 82*10*6=4920 fingerprints); 

• The volunteers were asked to lift their fingers between image 

acquisitions; 

• The fingerprint core in each image was apparent, while the presence of 

deltas was not guaranteed due to the small sensing area of the sensor; 

• The glass window of the sensor was systematically cleaned between 

image acquisitions; 

• The acquired fingerprints were manually checked in order to assure that 

the maximum rotation is approximately in the range [-15", 15"] and that 

• each pair of impressions of the same finger has a noniuill overlapping 

area. 
DB2 and DB3 were collected as follows: 

• The fingerprints in DB2 were collected from 70 untrained volunteers; 

• The fingerprints in DB3 were collected from 25 untrained volunteers; 

• The subjects mainly consist of undergraduate and postgraduate students 

at the Chinese University of Hong Kong, and also their friends and 

relatives; 

• Approximately 38% of the subjects are female, 80% of the subjects are 

under 25 years of age, 20% of the subjects are between the ages of 25 

and 50; 

• Up to ten fingers were collected for each volunteer; 

• In DB2, ten fingerprints in the vertical direction were collected for the 

first 20 volunteers (totally 20*10*10=2000 fingerprints); and for the 

subsequent 50 volunteers, each finger was scanned in three directions 

including the vertical direction, left rotation between 0 to 15", right 

rotation between 0 to 15。，6 fingerprint images for each direction (totally 

50*10*3*6=9000 fingerprints)； 

• In DB3, 18 images of each finger in three directions (i.e. vertical, left 

rotation and right rotation) were collected for 25 volunteers (totally 

25* 10*3*6=4500 fingerprints); 
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• The volunteers were asked to lift their fingers between image 

acquisitions; 

• The presence of the fingerprint cores was guaranteed while the presence 

of deltas was not guaranteed; 

• The sensor plate was not systematically cleaned between image 

acquisitions; 

• The acquired fingerprints were manually checked in order to assure that 

the maximum rotation is approximately in the range [-15", 15"] and that 

each pair of impressions of the same finger has a nonnull overlapping 

area. 

DB4 has the following features: 

• The fingerprints were collected from 8 laboratory members between the 

‘ a g e s of 22 to 28 (one female); 

• Up to ten fingers were collected for each member; 

• Ten fingerprints in the vertical direction were collected for the first two 

members, and for the subsequent 6 members, each finger was scanned 5 

times in the vertical direction (totally 2*10*10 + 6*10*5=500 

fingerprints); 

• FingerChip™ FCD4B14 is a sensor with silicon chips based on the 

thermal sensing technology and it may be the smallest sensor in the 

world. The volunteers only need to sweep their fingers along the sensor, 

a burst of slice images are captured and the complete fingerprint image 

is then reconstructed by mosaicking the multiple slices using proprietary 

software; 

• The presence of the fingerprint cores and deltas was not guaranteed 

since no attention was paid on checking the correct finger position on 

the sensor; 

• The sensor plate was not systematically cleaned between image 

acquisitions for no fingerprint mark left on the sensor; 

• The acquired fingerprints were manually checked in order to assure that 

each pair of impressions of the same finger has a nonnull overlapping 

area; 
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• There are some fingerprint images with large distortion and 

reconstruction error due to the sweeping speed of the finger; 
« 

• There are some images with very low contrast due to the sensor's 

temperature close to the finger's temperature, i.e., the chip is sensitive 

to the temperature difference; 

• Some images are captured by sweeping the finger in a reverse direction 

along the sensor, thus badly reconstructed. 

Figure 3.3 and 3.4 show some sample images taken from DBl, DB2, DB3 and 

DB4, respectively. 

_國覽肩 
I 一 . ID003V16:bmp j ID0S3V26:bmp… i ID003V33.bmp ！ I D _ 3 . b m p 

_圓劇m 
I iDOOmi.brnp 1 iD6o3V62.bnip ID0(iv71.bmp IDMiSVM.bmp i iDCi03V92.bmp 

Figure 3.3 Examples of fingerprint images from DBl. The top row is the sample 

images of right thumb, right index, right middle, right ring, and right little; the 

bottom row is the sample images of left thumb, left index, left middle, left ring, 

and left little, respectively, which are all taken from the same person. 
3.3 Filename Description 

The following is the description of the filename of the fingerprint images stored 

in the databases: 
I D i i n n D F I . F M T M I I M I I I I I 
I I I I I I I I * * image format (".bmp", ".png", and “ tif，)’ 
I I I I I I 1 image number for the same f inger ( 0 - 9 , 0: first sample, . . . 9: tenth sample) , 
I I I I I I f inger number for the same person (0:right thumb, 1: right i n d e x , . … 9 : left little), 
I I I I I acquisit ion direction (V: vertical, L: left rotation, R: right rotation), 
I I * * individual number (one for each person, 000: first person, . . . 999: thousandth person) , 
* identif icat ion. 

For example, ID031V01.bmp means that this fingerprint image is the Second sample of the First finger (right thumb) of the 32"̂ ' person in Vertical direction. 

28 



Another example (ID032L83.bmp): 

ID032 L 8 3.bmp 
‘ I 1 丨 丨 I 

33' (I person Left Rotation finger ‘ sample 

Generally, fingerprint images of all the fingers in the same direction have been 

stored in a specific directory. As all the fingerprint images have a different name, 

it is possible to put them all in the same directory without problem. 

[1MB 
ID034L64.png ID034V62.png IDQ34R64.png 

Wwil 
ID115VPtif ID057V75.tif ID039V91.tif mmm 
ID116V0lTmp ID116V61.bmp IDllWOQ.bmp 

Figure 3.4 Examples of fingerprint images from DB2, DB3, DB4. The first row is the 

sample images in DB2 from the same finger in different directions. The second 

and the third rows are the sample images in DB3 and DB4 from different fingers 

and are roughly ordered by quality (left: high quality, middle: moderate quality, 
and right: low quality). 
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Chapter 4 
Preprocessing for Skeleton-
Based Minutiae Extraction 

Primarily, there are two kinds of techniques for fingerprint recognition: (/) 

filterbank-based method [43, 44] and (//•) minutiae-based method [10, 23, 45, 46]. 

The filterbank-based algorithm uses a bank of Gabor filters to capture both the 

global and local information in a fingerprint as a compact fixed length FingerCode. 

The fingerprint matching is based on the Euclidean distance between the two 

corresponding FingerCodes. The widely used minutiae-based method first locates 

the minutiae points, and then matches their relative placement between the input 

fingerprint image and the stored template in the database. 

In an automatic fingerprint identification system (AFIS), there are two most 

prominent types of minutiae which are used for their stability and robustness: (/•) 

ridge endings and (//：) ridge bifurcations. A ridge ending is defined as the ridge 

point where a ridge ends abruptly. A ridge bifurcation is defined as the ridge point 

where a ridge forks or diverges into branch ridges. 

Generally, a fingerprint pattern is represented by the minutiae locations, 

minutiae types, and some attributes like minutiae orientation. The minutiae-based 

representation is compact, amenable to matching algorithms, robust to noise and 

distortions, and easy to compute. Over one hundred years of study on fingerprints 

guarantees the uniqueness of minutiae-based representation for a large population 

of humans. In a fingerprint image of good quality, there are about 40 to 100 

minutiae [24], but a dozen of minutiae are considered sufficient to identify a 

fingerprint pattern [25]. 

A good minutiae extraction algorithm should be both reliable and efficient. 

Reliability means that the minutiae extraction algorithm should (/) not create 

spurious minutiae, (if) not miss true minutiae, and (Hi) be precise in locating 

minutiae and computing minutiae orientation. However, reliable extraction of 
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minutiae from fingerprint images is a very hard task. Efficiency means that the 

minutiae extraction algorithm should be able to operate in "real-time" in the 

online applications such as ATM card security, smart card security, and access 

control. However, there is a trade-off between efficiency and reliability. In 

practice, the design strategy is to select a set of operations that are efficient in both 

speed and reliability. 

4.1 Review of Minutiae-based Methods 
Reliable extraction of minutiae from fingerprint images is a very difficult 

problem. Various approaches to automatic minutiae extraction have been 

proposed in the literature. Most of the techniques [10’ 20, 45, 46, 47] extract the 

minutiae from the skeleton of the input fingerprint image. The skeleton is 

computed by thinning the binary image, which is obtained by adaptive 

thresholding of the gray scale fingerprint image. 

An original technique based on a ridge-line following strategy is proposed in 

[23] to extract the minutiae directly from the gray scale fingerprint image. The 

minutiae are located by finding the intersection and excessive bending during the 

following. Although they claimed that the algorithm could perform better on noisy 

and low contrast images, it faces a problem on how to determine the thresholds of . 

growing step and bending angle, which hinders its application for an automatic 

identification system. In addition, the robustness of this method with respect to 

image quality is questionable due to the fact that the gray-level ridge-line 

following algorithm may behave unpredictably when ridges and valleys are not 

well defined. 

Besides, neural network-based approaches can be found in [48,49]. The neural 

network-based minutiae extraction algorithm extracts the minutiae from the 

fingerprint images via a multilayer perceptron (MLP) classifier. The back-

propagation learning technique is used for its training, and the input to the MLP is 

a set of selected feature vectors. Unfortunately, the performances of these 

approaches have not been established. 

In this thesis, we focus our attention on the skeleton-based minutiae extraction 

method. 
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4.2 Skeleton-based Minutiae Extraction 
,The skeleton-based minutiae extraction algorithm generally consists of the 

following main steps: 

1. Use an adaptive thresholding algorithm to compute the binary image 

from the input gray scale fingerprint image; 

2. Use a thinning algorithm to compute the fingerprint skeleton from the 

binary image; 
3. Use Rutovitz crossing number to extract minutiae from the skeleton of 

fingerprint image; 

4. Post-processing the minutiae set according to some heuristic rules. 

There are two types of minutiae, ridge endings and ridge bifurcations. Ridges 

are generally used for minutiae extraction, since most previous researches assume 

that the ridges and valleys in the fingerprint have a similar width and are equally 

spaced. In fact, this may not always be true for various fingerprints collected by 

different scanners. For example, the fingerprint images we collected using an 

optical scanner (DBl, as described in Chapter 3) show that the average ridge 

width (typically 6 pixels) is larger than the average valley width (typically 3 to 4 

pixels), as illustrated in Figure 4.1. Since a thinner binary image is easier for 

skeleton computation, we propose to use the valley instead of ridge for minutiae 

extraction. Accordingly, we use valley endings and valley bifurcations as 

fingerprint minutiae due to the intrinsic duality property of fingerprints [5]. 

In our algorithm, we first use several preprocessing steps on the binary image in 

order to eliminate the spurious lakes and dots, and to reduce the spurious islands, 

bridges, and spurs in the skeleton image. After the valley skeleton is extracted 

from the binary image, ideally, the width of the skeleton should be strictly one 

pixel. However, this is not always true, especially at the intersection points, thus 

producing spurious minutiae points. Therefore, we use a new algorithm to remove 

such pixels to improve minutiae extraction. By removing all the bug pixels 

introduced at the thinning stage, our algorithm can detect a maximum number of 

minutiae from the fingerprint skeleton using the Rutovitz Crossing Number. 

Finally, a very efficient post-processing algorithm is proposed to eliminate a 

significant number of spurious minutiae. 
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垂 _ 
Figure 4.1 Fingerprint images acquired using the StarTek FM100 sensor 

(White areas: valleys; Black areas: ridges. The ridges are thicker than valleys.). 
4.2.1 Preprocessing 

By observation, most of the misconnections in the fingerprint skeleton images 

are introduced by the diagonal pixels in the binary image, as shown in Figure 4.2. 

ID003V52.bmp ID081V05.bmp IDOlOVlO.bmp 

IDOS3VOO.bmp IDlOOVOO.bmp ID010V04.bmp 

ID081Vll.bmp E)083V55,bmp n)083V55.bmp 
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Figure 4.2 Examples of black diagonal pixels which introduce miscomiected 

structures in the thinning image (Black: valley; white: ridge). 

The diagonal pixels and the isolated regions, as illustrated in Figure 4.3 and 

Figure 4.4, introduce ridge lakes and valley lakes in the ridge skeleton image and 

valley skeleton image, respectively. 

1 I L I 
• • • “ . F 1 M 

H i ^ i ； J \ \ \ 

mm 
Figure 4.3 Examples of the isolated regions consisting of black pixels and the black 

diagonal pixels which introduce ridge lakes in the ridge skeleton images. 
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S I ® 
Figure 4.4 Examples of the isolated regions consisting of white pixels and the black 

diagonal pixels which introduce valley lakes in the valley skeleton images. 

Therefore, we propose several preprocessing steps before thinning of the binary 

image: 

1. Use a morphological operator to separate some linked parallel valleys, 

thus to eliminate some spurious bridges and spurs in the skeleton image; 

2. Fill in the small holes with an area (number of pixels) below a threshold 

Tai, thus to eliminate the spurious lakes in the skeleton image; 

3. Remove the dots (isolated pixels) and the islands (short lines) with an area 

below a threshold 7̂ 2’ thus to eliminate the spurious lakes, dots, and some 

islands in the skeleton image. 

The morphological operator does separate some misconnected valleys due to 

the binarization artifacts, as illustrated in Figure 4.5. The image "ID081V05.bmp" 

will be used for all the preprocessing effects illustration. 

mm 
Grayscale image (ID081V05.bmp) Zoom in grayscale image 
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_ 彻 
Binary valley image (BW) Zoom in 

BW after morphological operation Zoom in BWi 
(BWi) 

Figure 4.5 An example showing the effect of the morphological operation on 

the binary image. 

The results of step 2 and step 3 are shown in Figure 4.6 and Figure 4.7. 

Zoom in BWj 

_ m 
BWI after filling small holes {BW2) Zoom in BW2 

Figure 4.6 An example showing the effect of filling in the small holes in 
the binary image BWi (red dots represent the filled black pixels). 
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Zoom in BW2 

ms^ 
BW2 after removing the isolated black Zoom in BW3 

regions (BW3) 
Figure 4.7 An example showing the effect of removing the isolated black 

regions in BW2 (red circles: removed black pixels). 

• 

Figure 4.8 Preprocessing results at different processing steps. (Red cross: 

eliminated diagonal pixels; Red dots: filled pixels; Red circles: removed pixels). 
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The thresholds should be selected appropriately, if Tai and Tai are too small, the 

above spurious minutiae in the skeleton image will not be eliminated completely, 

if they are too large, the skeleton will be distorted. In our experiments, we set 

r«/=ll and r«2=9. Figure 4.8’ 4.9 show the preprocessing results on the binary 

image and on the skeleton image, respectively. Some more examples illustrating 

the effects of the preprocessing steps are shown in Figure 4.10. 

_ 

Figure 4.9 The valley skeleton image obtained from the binary image after 

preprocessing. Black curves represent the eliminated false minutiae structures 

(e.g., red rectangle: removed bridge; magenta rectangle: removed lake; and blue 

rectangle: removed island.) 

From the results, we see that the morphological operation on the binary image 

separates the misconnections efficiently. Accordingly, without separating the 

misconnected valleys, the spurious minutiae such as triangle, bridge and ladder 

may not be removed by later post-processing algorithms which is based on the 

duality property of fingerprint images [5], because the bifurcation pairs have no 

dual ending pairs, as illustrated in Figure 4.11. 
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Figure 4.10 Examples showing the effects of the preprocessing steps. (Upper 

row. original skeleton images; lower row: skeleton images after preprocessing.) wmm 
i f t B 
薩議概 
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Figure 4.11 An example showing the effects of separating the misconnections for 

spurious triangle, bridge, and ladder, respectively. Row by row from top-left to 

bottom right: f,) original valley skeleton; fi) valley skeleton overlaying on the 

grayscale image; fs) original valley skeleton (black) and its dual ridge skeleton 

(red); f4�6) zoom in fs) for spurious structures: triangle, bridge, and ladder, 

respectively; f?�12) corresponding images to fi~6 after preprocessing. The 

remaining spurious bridge in f n will be removed in later post-processing stage 

using the duality property of fingerprint images. 

4.2.2 Validation of Bug Pixels and Minutiae 

Extraction 
The concept of Crossing Number (CN) is widely used for extracting the 

minutiae [10, 20, 45, 46, 47]. Riitovitz's definition [50] of crossing number for a 

pixel P is: 

P4 P3 尸2 1 8 
T^Tl^ 二 厂尸…I 

Z 
P6 P? Ps 

where P, is the binary pixel value in the neighborhood of 尸 with P, = (0 or 1) and 

Pl=P9-

The skeleton image of fingerprint is scanned and all the minutiae are detected 

using the following properties of CN, as illustrated in Figure 4.12. 

CN Property 
0 Isolated point 
1 Ending point 
2 Connective point 
3 Bifurcation point 
4 Crossing point 

o | o | o | o | o | o | o | o | Oj乂 o T i r 

I 迈 王 王 援 王 王 爾 0 i i ! AXaaI^^A-XS 0 _ o _ _ o _ 

~0 I/O I 0 I 0 I 0 I 0 I 0 I I 0 I 0" 
广 ^ 、 丨 ？ 丨 

I 0 1 0 I 0 I I 0 I 0 I 0 K ri 0 I 0 I 0 I1 H Q I 0 I ‘ K fj H Q I ' H 
i m i i m工丨 工 0 1 工 彳 f 工 迈 I 彳 f i S i S 
l i l 1 0 1 0 1 0 p ij 0 1 0 1 0 p 0 10 M r VI H 0 M r 

Isolated point Ending point Connect ive point B i fu rca t ibn^o i i i t C r ^ n g T 5 ^ ) i n t 

(c/v-0) (cyv=i) (cyv=2) (cw=3) (cw=4) 
Figure 4.12 Illustration of Crossing Number properties (1: black pixels; 

0: white pixels in the fingerprint skeleton image). 
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Ideally, the width of the skeleton should be strictly one pixel. However, this is 

not always true. Figure 4.13 shows some examples, where the skeleton has a two-

pixel width at some bug pixel locations. 

We define a bug pixel as the one with more than two 4-connected neighbors 

(marked by bold-italic 1 and 0). These bug pixels exist in the fork region where 

bifurcations should be detected, but they have CN =2 instead of CN >2. The 

existence of bug pixels may (/) destroy the integrity of spurious bridges and spurs, 

(//) exchange the type of minutiae points, and (Hi) miss detecting of true 

bifurcations, as illustrated in Figure 4.14. Therefore, before minutiae extraction, 

we develop a validation algorithm to eliminate the bug pixels while preserve the 

skeleton connectivity at the fork regions. By scanning the skeleton of fingerprint 

image row by row from top-left to bottom-right, we delete the first bug pixel 

encountered and then check the next bug pixel again for the number of 4-

connected neighbors. If the number of 4-connected neighbors after the deletion of 

previous bug pixel is still larger than two, it will also be deleted; otherwise, it will 

be preserved and treated as a normal pixel. Some examples are shown in Figure 

4.13. After this validation process, all the pixels in the skeleton satisfy the CN 

properties. Thus we can extract all the minutiae including true minutiae and false 

minutiae. The false minutiae can be eliminated at the post-processing stage. 

_ _ I 1 I I 1 I I I 1 丨 I 
I 1 I = I 工 =一 _ 1 丄丄 

工 I 工 = 工 工 = = 工 1 一 
I 1 I 1 I 1 I I 1 I I 1 I 

I 1 I I 1 I I 1 
I 111 I = 工 = = = I J 

工 1 工 = = 1 1 工 = 工 1 一 
二 工 I 工 工 工 工 = 0 \1 1 

111 I I 111 111 
Figure 4.13 Examples of bug pixels and their validation. (Bold-italic 0: deleted bug 

pixels, bold-italic 1: preserved bug pixels that are changed to normal pixels.) 

f ^ J J . 
Y y 

o X o Wo vX 
^ , J 
M Z J:: / 

I 蒙 ^ ̂  
(a) (b) (c) 
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Figure 4.14 Without validating the bug pixels, we may have: (a) four bifurcations ("x") 

are missed; (b) two bifurcations are misdetected as two endings (“o，，）； (c) two 

bifurcations are missed including one true bifurcation. 

4.3 Experimental Results 
To evaluate the performance of our proposed skeleton-based minutiae 

extraction algorithm, we randomly select 35 fingerprint images of medium quality 

from our fingerprint database (as described in Chapter 3). In the experiments, the 

scanned fingerprint images (256 x 256, 256 gray level, 500 dpi) are cropped into 

170 X 180 in size in order to remove the very noisy border areas. One benefit of 

reducing the fingerprint area is that there is less chance of spurious minutiae 

information. 

The valley skeleton and ridge skeleton are first obtained from the valley image 

and its dual ridge image, respectively. The valley skeleton agrees rather well with 

the original valley image, while the ridge skeleton introduces a large number of 

spurious lakes and bridges. Consequently, the ridge skeleton will produce more 

spurious minutiae. Figure 4.15 shows a typical example. _ • 
(a) (b) 

Figure 4.15 (a) Valley skeleton, (b) ridge skeleton (The skeleton is overlaid 

on the original gray scale fingerprint image). 

The accuracy rates of applying the minutiae extraction algorithm on ridge 

skeleton and valley skeleton before and after preprocessing are reported in Table 

4.1 and Table 4.2, respectively. In the tables, the total rate is calculated using the 

following formula: 
E, +B, 

Total rate 二 
Ee + Be 
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Where Et and Bt are the number of true endings and true bifurcations, Ee and Be 

are the number of extracted endings and bifurcations. 

Table 4.1 Accuracy rates for ridge minutiae extraction. 

Before preprocessing After preprocessing 

Ending 10.84% 10.92% 

Bifurcation 20.24 % 51.32% 

Total rate 13.54% 17.08% 

Table 4.2 Accuracy rates for valley minutiae extraction. 

Before preprocessing After preprocessing 

Ending 12.39% 12.87% 

Bifurcation 16.35% 26.58 % 

• Total rate 13.27% 16.57% 

From the results, we can see that after preprocessing the accuracy rate of 

bifurcation is improved significantly, especially for the ridge skeleton. It 

demonstrates that the preprocessing algorithm does eliminate a large number of 

spurious lakes, bridges, spurs, which introduce false bifurcations. However, the 

accuracy rate of endings is only increased slightly since the preprocessing 

algorithm only eliminates some spurious islands that introduce false endings. In 

fact, the spurious dots also introduce false endings and are eliminated efficiently 

in the preprocessing stage. However, there are only a small number of dots in the 

skeleton image. The improvement of the accuracy rate of ridge bifurcation is 

greater than that of valley bifurcation. This shows that the ridge skeleton 

introduces more spurious minutiae. Some typical results of preprocessing are 

shown in Table 4.3 and Table 4.4. In addition, the computation speed for valley 

thinning is much faster than ridge thinning. 

Table 4.3 Examples showing the number of extracted ridge minutiae. 

Before preprocessing After preprocessing 
Endings Bifurcations Endings Bifurcations 

157 37 152 4 — 
167 39 163 9 
58 51 — 58 20 
89 — 34 80 10 

.93 75 87 27 
152 I 60 I 146 I 8 
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Table 4.4 Examples showing the number of extracted valley minutiae. 

, Before preprocessing After preprocessing 
—Endings Bifurcations Endings Bifurcations 

77 — 52 56 — 44 
12,1 1 15 89 65 
78 142 64 110 
^ 186 62 110 
80 112 77 55 
68 163 55 123 | 

Table 4.5 shows some typical results of validating the bug pixels. From the 

results, we can see that the bug pixels exist in the fork region where bifurcations 

should be extracted. Some fingerprint skeletons may have more bug pixels and 

some may have none. 

Table 4.5 Number of minutiae before and after validating the bug pixels. 

• . After validating bug 
After preprocessing pixels 

Endings Bifurcations Endings Bifurcations 

^ 4 7 67 47 

^ 2 7 87 27 

^ 1 2 3 55 125 

~ 6 2 1 1 0 62 118 

T l ~ 5 5 75 . 57 

106 20 93 27 

Some examples are illustrated in Figure 4.16 showing the results of minutiae 

extraction. From the results, we can see that a maximum number of minutiae are 

extracted from the skeleton images including both genuine and spurious minutiae. 

This allows the true minutiae preserved and false minutiae removed in later post-

processing stages. 

4.4 Summary 
In this chapter, we first review the most popular approaches to minutiae 

extraction from the fingerprint images. After that, we present a skeleton-based 

minutiae extraction method which uses the valley instead of ridge for minutiae 

extraction. In our method, we propose several simple and efficient preprocessing 

techniques on the binary image in order to eliminate the spurious lakes and dots, 
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and to reduce the spurious islands, bridges, and spurs in the skeleton image. Our 

minutiae extraction algorithm can detect all the minutiae, including both true and 

false minutiae, using the simple Crossing Number on the skeleton images after 

validating all the bug pixels introduced at the thinning stage. This allows the true 

minutiae preserved and false minutiae removed in later post-processing stages. 
O o o r^-^ O. o o o 丨 O o 
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Figure 4.16 Examples showing the results of minutiae extraction before post-

processing ("o": endings; "x": bifurcations). 
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Chapter 5 
Post-Processing 

Initially, a large number of spurious minutiae are extracted due to small ridge 

segments, ridge breaks, noisy links between parallel ridges, etc. Thus, it is 

necessary to scrutinize and validate the minutiae initially extracted and this is 

called post-processing. 

Post-processing plays an important role in fingerprint minutiae extraction and 

fingerprint matching processes, but it is a very difficult problem. 

5.1 Review of Post-Processing Methods 
Most of the current post-processing algorithms [51, 52] eliminate the false 

minutiae by evaluating the statistical characteristics within an M x M matrix 

moving along the image pixel by pixel. Xiao and Raafat [53] develop a new post-

processing algorithm using both the statistical and structural information to 

eliminate the false minutiae. However, the method relies heavily on pixel 

connectivity computation, which is very time-consuming. A neural network-based 

minutiae filtering technique, which operates directly on the gray scale images is 

proposed by Maio and Maltoni [54]. Each minutia, as detected by the algorithm 

[23] is normalized and then analyzed through a three-layer neural network 

classifier. This method can only eliminate false and type-exchanged minutiae, and 

the number of dropped (missing) minutiae is increased at the same time. In 

addition, the method relies greatly on the type and quality of training data. 

In order to eliminate the spurious lakes, Kim et al. [55] propose a classical but 

complicated method based on a graph construction to detect the closed paths that 

form the lake. Farina et al. [47] propose to clean bridge based on ridge positions 

instead of directional maps used by conventional methods. They argue that 

evaluation of the directional maps is very time-consuming. Xiao and Raafat [53] 

remove bridge, triangle, and ladder by calculating the number of "connected" 

minutiae and their structural relations. Stosz and Alyea [41] propose to eliminate 
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wrinkle by analyzing the spatial relationship of the consecutive minutiae on the 

wrinkle. Hong et al. [59] define an objective function to detect wrinkle based on 

the observation that the spurious minutiae existing in a wrinkle are anti-aligned 

and the region between them is brighter than the average brightness of the image 

region. All these approaches rely extensively on pixel connectivity analysis one 

way or the other. 

5.2 Post-Processing Algorithms 
After preprocessing on the binary and skeleton images [56], we extract 

minutiae from the fingerprint skeleton image. However, due to various noise in 

the fingerprint image, the extraction algorithm produces a large number of 

spurious minutiae such as break, spur, bridge, merge, triangle, ladder, lake, island, 

and wrinkle, as shown in Figure 5.1. Therefore, reliably differentiating spurious 

minutiae from genuine minutiae in the post-processing stage is crucial for 

accurate fingerprint recognition. The aim of the post-processing stage is to 

eliminate these spurious minutiae. The more spurious minutiae are eliminated, the 

better the matching performance will be. In addition, matching time will be 

significantly reduced because of the reduced minutiae number. This is very 

important since the execution time is a critical parameter in an automatic 

fingerprint identification system (AFIS). 

Taking full advantage of the duality property of fingerprint image [5], we 

develop several post-processing techniques to efficiently remove spurious 

minutiae. Especially, we define an //-point structure [58] to remove several types 

of spurious minutiae including bridge, triangle, ladder, and wrinkle all together. 

Experimental results clearly demonstrate the effectiveness of the new algorithms. 

5.2.1 H-Point 
For the various types of false minutiae illustrated in Figure 5.1, we use 

preprocessing algorithms [56] to eliminate lakes, dots, and a number of islands 

and spurs. For the rest of the false minutiae types, we observe that there is at least 

one bridge structure in such spurious minutiae as bridge, triangle, ladder and 

wrinkle. For the various types of breaks, there are also corresponding bridge 

structures in the duality image. We define a bridge structure and its corresponding 
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dual break in the duality image collectively as an //-point. If we can successfully 

remove the //-points in the image, we can eliminate most of the spurious minutiae. 

I I / I z I 
Break Spur Merge Triangle 

> 7 夕 
Multiple breaks Bridge Break & merge Ladder 

/ ,/ w 广 

Lake Island Wrinkle Dot 
Figure 5.1 Examples of false minutiae (Black dots) [58:. 

5.2.2 Termination/Bifurcation Duality 
To further explain the //-point definition, we need to first understand the 

duality definition. In a fingerprint image, for each ridge ending, there is generally 

a corresponding valley bifurcation and vice versa [5], with the only exception at 

the singularity points (cores and deltas) [57]. This is called the 

termination/bifurcation duality, as illustrated in Figure 5.2 a). Around a bridge 

structure, such a duality takes on the form of a bridge in the ridge (or valley) 

skeleton image and its corresponding dual break in the valley (or ridge) skeleton 

image, as shown in Figure 5.2 b). We define such a structure with two 

bifurcations and two corresponding endpoints (endings) as an //-point. In the 

following, we will present a simple procedure utilizing the duality property to 

eliminate the //-point. 
• 讓 ； _ I - 議 、观灘 

O f I * ^ i o 
I、： 1 \ < 1 X \ \ \ \ > % : o m ^ 夥 冬 m • i. ， . . X � ij. p -f o * -„ • m ^ » ^ * …… _ 八 s mi f ' 余 ™ o I 客 霸 % X ^ ：— I * '1 t ^ (a) (b) Figure 5.2 Illustration of ridge and valley duality. The solid gray squares represent the valley skeleton, and the solid gray diamonds represent the ridge skeleton, (a) The termination/bifurcation duality; (b) //-point examples: a valley bridge corresponds 
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to a ridge break in the dual skeleton image and vice versa ("o": endings; "x": 

,bifurcations). 

5.2.3 Post-Processing Procedure 
Since any particular processing step will affect the performance of later steps, 

we have to be very careful of the processing order. To efficiently remove the 

spurious minutiae while retaining the true minutiae, we design several algorithms 

to remove the spurious minutiae in the following order: 

Short B re ales ^ Spurs ^ 

j^-polilts ^ Close Minutiae ^ 

Validation ^ Border Minutiae 

In the first stage, we remove some short breaks based on the conventional 

definition of a break. If the endpoints of a break satisfy all the following 

conditions, they will be removed: 

1. The distance between two endpoints is belovy a threshold 7/； 

2. The difference between the orientation angles of two endpoints {Angi, 

Angi) is within an interval of [Oj, 2̂]； 

3. The difference between the orientation angle of the line connecting the two 

endpoints (An幻)and either angle of Ang/ or Ang? is within an interval of 

[^3, O4I 

In order to calculate the orientation angle of an endpoint, we look for the 8-

connected neighbors around the endpoint. During the tracing procedure, our 

algorithm keeps going forward even after encountering a bifurcation point so that 

the orientation of endpoint 2 is estimated as the "dashed" line instead of the 

"solid" line as illustrated in Figure 5.3. Thus the endpoints orientations satisfy the 

above orientation angle rules 2 and 3 (i.e., two endpoints almost face to each 

other). Otherwise, endpoints 1 and 2 cannot be connected. If that is the case, the 

bifurcation and endpoint 2 will be removed in the following spur elimination stage. 

As a result, the true bifurcation will be detected as an endpoint which results in 
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the type-exchanged error. Therefore, this strategy mainly helps to decrease the 

.type-exchanged error due to the poor valley connectivity. 
— ：截 

1 麵I » 

、 
\ I 

'；^ g 
Ans2 � < 

穩 I - i 

Figure 5.3 Keep tracing when meets a bifurcation point. (“。，，： endings; 

. “X，，： bifurcation.) 

In the second stage, we first label the connected pixels in the skeleton image. If 

the distance (D) between a bifurcation point and an endpoint is below the 

threshold T2 and their labels are the same (i.e., they are connected), we again label 

the connected pixels within a small window (2D+7 x 2D+1) centered around the 

bifurcation point or the endpoint. If their labels are still the same, we remove both 

of them for they form a genuine spur. Otherwise, they are retained (see Figure 

5.4). • 
Q 0 9 严 . D 0 \ . O O � 

‘ 〜 , . 、 、 ： 各 、 、 

.少 Z “ „ \ \ \ \ 
^ \ " \ 、 \ 。 
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Figure 5.4 Examples showing the elimination of spurs. After relabeling the connected 

. p ixe l s within the square, the bifurcation and the endpoint inside square 1 still have 

the same labels, while those within square 2 have different labels. 

In the third stage, the //-points are detected and eliminated. If a bridge in the 

ridge (or valley) skeleton image and a break in the valley (or ridge) skeleton 

image satisfy the following conditions, they form an //-point (see Figure 5.5): 

1. The intersecting point lies between the two endpoints and the two 

bifurcation points; 

2. The distance between the bridge midpoint M] and the break midpoint M/ is 

within a threshold Ts; 

3. The intersecting angle 0 is within an interval of [仏-’ . 

( - • • • , V . / : 

• 一 • 赞 、 … 
• 哪 1 
錄 、 

P 
‘ 

My. t v 1 2 � � " X 务 
# / 

im^ -

4 • h 
i 

Figure 5.5 An example showing the elimination of //-point. 

After eliminating those minutiae that are too close to each other, we further 

validate the remaining minutiae according to the duality property [5]. It is true that 

a true miiuitia has only one dual minutia in the dual skeleton image except for the 

singularity points which have no dual minutiae. Hence, we remove the minutia if 

it has more than one neighboring minutiae in the dual skeleton image, as 

illustrated in Figure 5.6. Finally, all the minutiae within a certain distance 

threshold T4 from the image border are removed. 

After post-processing, a large percentage of the spurious minutiae are 

eliminated, the remaining minutiae are treated as true minutiae which are used for 

later fingerprint matching. 
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warn 。 m -
(a) (b) 

Figure 5.6 (a) Valley skeleton (gray) and its dual ridge skeleton (black), (b) Zoom in 

the rectangle. (Alter removing the spur (“+,’ and ‘‘•”)’ the remaining bifurcation 

("x") is also eliminated for it has two neighboring endpoints in its dual skeleton 

image.) 
5.3 Experimental Results 

To evaluate the performance of our post-processing algorithms, we randomly 

select 35 fingerprint images of medium quality from our fingerprint database 

(DBl, as described in Chapter 3). In the experiments, the scanned fingerprint 

images (256 x 256, 256 gray level, 500 dpi) are cropped into 170 x 180 in size in 

order to remove the very noisy border areas. The valley skeleton and ridge 

skeleton are then obtained from both the valley image and its dual ridge image, 

respectively. 

Table 5.1 gives the overall performance of the proposed post-processing 

algorithms. We can see that the false minutiae rate drops 56.5% after post-

processing. The false and dropped minutiae rates are not as good as those reported 

in [23] (false = 8.52%, dropped = 4.51o/o)，but the type-exchanged minutiae rate is 

much lower than that reported in [23] (exchanged = 13.03%). 

Table 5.1 Post-processing performance (False minutiae rate for valley 

skeleton) 

‘ ！ After post-processing 
Before post-processing paise Dropped [ Type-excl^^；^ 

一 83.4% 15.2 % 7.01 % 4.69 % — 

To further quantitatively evaluate the performance of our minutiae extraction 
algorithm we adopt the "goodness index" (G/) measurement, which compares the 
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extracted minutiae with the minutiae obtained from the same fingerprint by a 

. h u m a n expert [45]. The goodness index is defined as: 

T 

where P is the total number of paired minutiae, D is the number of deleted 

spurious minutiae (false and type-exchanged), I is the number of inserted missing 

minutiae (dropped), and 7 is the number of true minutiae. An extracted minutia m 丨 

is said to be paired with the true minutia m] marked by the human expert if w/ lies 

within an 8x8 tolerance box centered around m_). The maximum value of G1 is 1, 

which means that all the extracted minutiae are paired with the true minutiae, and 

no spurious minutiae and missing minutiae are detected {P=T, D=/=0). A high 

value of GI indicates high quality of the extracted minutiae. The larger the value 

of G1 is, the better the minutiae extraction algorithm will be. Table 5.2 presents 

the GI values for a representative subset of 10 scanned fingerprint images. The 

maximum and minimum values of GI for this dataset are 0.75 and 0.18, 

respectively. The average value is 0.50. The results outperform those presented in 

[45] and are comparable to those reported in [60]. 

Table 5.2 GI values for a dataset of 10 fingerprint images. (Parameters used 

ill our experiments: 丁丨,丁2, Tj, T4, 6'/, (h’ O3. O4. 65，are 9, 6, 2.5, 7 pixels, 145", 

225。，-25。，25", 65�and l lS" . ) 

Fingerprint \ P \ D \ I \ T \ GI 
01 ~ T r ~ 1 1 12 0.75 
02 一 18 1 19 0.68 
03 21 3 3 28 —0.54 
04 — 13 2 2 17 “ 0.53 
05 3 3 18 —0.50 
06 19 3 4 24 0.50 
07 15 7 1 16 0.44 
08 — 12 5 1 0.43 
09 12 3 17— 0.41 
10 I 8 I 3 I 3 I 11 I 0.18 

Figure 5.7 shows several typical results of our minutiae extraction and post-

processing algorithms. As can be seen from the results, the survived minutiae after 

post-processing agree rather well with the minutiae marked by the human expert 

in regions where the valley structures are clear. False minutiae and dropped 
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minutiae generally occur in the noisy regions near the border or on the scars, and 

.type-exchanged minutiae occur in the areas where the valley connectivity is poor. 

5.4 Summary 
Due to different properties of fingerprint sensors and different conditions under 

which a fingerprint is scanned, the quality of a fingerprint image can vary greatly. 

For a fingerprint image of low quality, a large number of false minutiae may be 

extracted. Post-processing algorithms are generally needed to reduce the high 

false alarm rate. In this chapter, we review the current approaches to post-

processing. All these approaches rely extensively on pixel connectivity analysis 

one way or the other, which is computationally expensive. In this work, using the 

duality property of fingerprint image we develop several post-processing 

techniques to efficiently remove spurious minutiae. Especially, we develop an 

efficient //-point elimination method to remove several types of spurious minutiae 

including bridge, triangle, ladder, and wrinkle all at once. The performance of our 

proposed algorithms has been evaluated in terms of "goodness index" (G/), which 

compares the automatically extracted minutiae with the minutiae obtained from 

the same fingerprint by a human expert. The high values of goodness index (GI) 

illustrate the effectiveness of our proposed post-processing method. 
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Figure 5.7 Minutiae extraction example results: (a) Minutiae marked by a human 

expert; (b) Automatically extracted minutiae; (c) Post-processing results at 

different processing stages (Diamond (•): eliminated spurs; Plus (+): eliminated 

//-points; Solid down triangle ( • ) : eliminated close minutiae; Solid up triangle 

( • ) : eliminated minutiae by validation; Square (•): eliminated border minutiae; 

Circle (o)： survived endings; X-mark (x): survived bifurcations.). 
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Chapter 6 
Conclusions and Future Work 

In this chapter, we will summarize the work we have done, and discuss the 

limitations of our current approaches. 

6.1 Conclusions 
In this thesis, we concentrate on the fingerprint minutiae extraction techniques, 

which is a core technology in the automatic fingerprint identification systems. 

Fingerprint minutiae extraction is very important, but to design a reliable and 

efficient minutiae extraction algorithm, which is robust to various fingerprint 

quality is still a challenging problem. 

In this work, we develop a novel skeleton-based fingerprint minutiae extraction 

method. The main contributions of our research are: 

• We propose to use the fingerprint valley instead of ridge for 

binarization-thinning process to extract minutiae from the fingerprint 

image; 

• We develop several simple and efficient preprocessing techniques for 

minutiae extraction. It eliminates the spurious lakes and dots and a 

number of spurious islands, bridges, and spurs in the skeleton image; 

• In order to improve the performance of minutiae extraction, we propose 

a new algorithm to remove the bug pixels existing in the fork regions 

where bifurcations should be detected. The bug pixels are introduced at 

the thinning stage; 

• Our minutiae extraction algorithm can detect a maximum number of 

minutiae, including both genuine and spurious minutiae, using the 

simple Crossing Number (CN) on the skeleton images. This allows the 

true minutiae preserved and false minutiae removed in later post-

processing stages; 
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• Taking full advantage of the intrinsic duality property of fingerprint 

. image, we develop several post-processing techniques to efficiently 

remove the spurious minutiae in the skeleton image; 

• Especially, we define an //-point structure to remove several types of 

spurious minutiae including bridge, triangle, ladder, and wrinkle all at 

once; 

• A number of type-exchanged errors are corrected by connecting the 

short breaks based on the conventional definition of a break; 

• The spurs and //-points are efficiently removed without using the time-

consuming tracing algorithm, which is needed in most of the current 

approaches in the literature; 

• Some false minutiae are further validated due to the duality property of 

fingerprint image. The fact is that a true minutia has only one dual 

miiuitia in the dual skeleton image except for the singularity points 

(cores and deltas) which have no dual minutiae. The spurious minutiae 

has more than one neighboring minutiae in the dual skeleton image; 

• The performance of the proposed algorithms has been evaluated in 

terms of "goodness index" ifil), which compares the results of 

automatic extraction with manually extracted minutiae. The high values 

of goodness index (GI) illustrate the effectiveness of our proposed post-

processing algorithms. 

6.2 Problems and Future Works 

6,2.1 Problem 1 
In the preprocessing stage, although the morphological operator can correctly 

separate the misconnected parallel valleys, it may separate some truly connected 

valleys. Some of these valleys can be reconnected in later post-processing stages, 

but some of them will not be linked, and thus result in type-exchanged error, as 

illustrated in Figure 6.1. However, by observation, we see that most of these 

errors are due to the low quality of the fingerprint images, especially for the poor 

valley connectivity. 
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• • 
(a) Valley skeleton image (black curves: (b) Extracted minutiae overlaying on 
eliminated structures in preprocessing) the gray scale fingerprint image. 

J / t i i / \ I \ *i \ I I 

』 j f t ( f I I 

丨 n 「 . 袖 丨 丨 / ) ' / f / ‘ ‘ . 
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\ \ ^ \ a � D � O 口 

(c) Post-processing results 
Figure 6.1 An example showing the separated valleys which should not be separated. 

The valley skeleton within the solid rectangle is separated, thus the true 

bifurcation is detected as an ending which results in type-exchanged error; while 

the separated valley skeleton within the dashed rectangle is reconnected in the 

post-processing stages. 
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6.2.2 Problem 2 
For the fingerprint images of poor quality, the binarization-thinning process 

may introduce some artifacts. Figure 6.2 shows some examples that result in type-

exchanged errors. 

圓圓圓 
(a) grays cale fingerprint images (b) preprocessed binary images (c) preprocessed valley skeletons 

Figure 6.2 Examples showing the artifacts introduced at the binarization and thinning 

stages. (Top row: the true bifurcation is detected as a spurious ending; bottom row: 

the true ending is detected as a spurious bifurcation. Notice columns (b) and (c) 

that the preprocessing has no effect on the regions inside the cyan rectangles 

which result in type-exchanged errors.) 
6.2.3 Problem 3 

Another kind of artifact introduced at the thinning stage is illustrated in Figure 

6.3. Due to the poor image quality, the very short ridge (black ridge within the 

cyan rectangle in Figure 6.3 a)) is eliminated during the thinning process (see 

Figure 6.3 c)). For the spurious ladder in the valley skeleton is not separated at the 

preprocessing stage (see Figure 6.3 e))，it has no dual ridge ending pairs (see 

Figure 6.3 f)), thus, it cannot be eliminated in later post-processing stages based 

on the duality property (see Figure 6.3 g)). Finally it introduces three spurious 

bifurcations (see Figure 6.3 h)). 
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, � 广 , » • . , o- . , (c) Ridge skeleton overlaying on 
(a) Gray scale fingerprint image (b) Binary ridge image �he gray scale fingerprint image 

_ 圓 _ 
(d) Original valley skeleton (black) (e) Valley skeleton after (f) Preprocessed valley skeleton 

and its dual ridge skeleton (red) preprocessing and its dual ridge skeleton 

_ _ _ _ 

_讓豳 
* O O O • B o o O ® ® B do HBO 

, � n , , (h) Extracted minutiae overlaying (i) Minutiae marked by a human (g) Post-processing results , . ‘‘ ® , K b on the gray scale image expert 
Figure 6.3 An example showing the artifact introduced at the thinning stage. 
6.2.4 Future Works 

Problem 1 and problem 2 may introduce type-exchanged error, and problem 3 

may introduce spurious minutiae. All these problems are due to the low quality of 

fingerprint images. To a certain extent, problem 1 and problem 3 are because of 

the preprocessing techniques. We notice that in Figure 6.3 e), the difference 

between the local orientation of the shorter edge and those of the two longer edges 

of an //-point is prominent, almost ninety degrees. In future work, we will first 

temporarily remove all the bifurcations in the //-points in order to separate the 

shorter edges from the longer edges, then apply the principle component analysis 
{PCA) method to compute the local orientations. If the difference between the 
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local orientations satisfies the predefined conditions, both of the two bifurcations 

• belonging to an //-point will be removed. In this case, we may need to compute 

the valley skeleton image only, thus we believe that this new approach can 

eliminate the //-points more efficiently. Due to this new method, the 

morphological operations at the preprocessing stage may not be needed. Then 

problem 1 will be solved as well. In order to solve problem 2, we will investigate 

new adaptive thresholding and thinning algorithms or integrate the image 

enhancement algorithms to improve the quality of the fingerprint images. 

In order to evaluate the robustness of the proposed algorithms, we will test our 

algorithms on a much larger dataset containing data from different sensors. 
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