
A R E A L - T I M E AGENT ARCHITECTURE AND 
ROBUST TASK SCHEDULING 

B Y 

ZHAO LEI 

SUPERVISED B Y ： 

PROF. JIMMY H . M . LEE 

A THESIS SUBMITTED IN PARITAL FULFILMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF PHILOSOPHY 

IN 

COMPUTER SCIENCE & ENGINEERING 

• T H E CHINESE UNIVERSITY OF HONG KONG 

AUGUST, 2002 

The Chinese University of Hong Kong holds the copyright of this thesis. Any 

person(s) intending to use a part or whole of the materials in the thesis in a 

proposed publication must seek copyright release from the Dean of the Graduate 

School. 



/ / •‘ . / , 、• \ 人 ’ \ \ 

二二二乂 d 
擎.0 ] • • 丨 j 



A Real-Time Agent Architecture and 
Robust Task Scheduling 

submitted by 

Zhao Lei 

for the degree of Master of Philosophy 

at the Chinese University of Hong Kong 

Abstract 

The task at hand is the design and implementation of real-time agents that 

are situated in a changeful, unpredictable, and time-constrained environment. 

Based on Neisser's human cognition model, we propose an architecture for real-

time agents. This architecture consists of three components, namely perception, 

cognition, and action, which can be realized as a set of concurrent administrator 

and worker processes. These processes communicate and synchronize with one 

another for real-time performance. The design and implementation of our archi-

tecture are highly modular and encapsulative, enabling users to plug in different 

components for different agent behavior. In order to verify the feasibility of our 

proposal, we construct a multi-agent version of a classical real-time arcade game 

"Space Invader" using our architecture. 

We also study the issues and propose a multiple method approach to task 

scheduling in our real-time agent architecture. To be able to respond to requests 

in a timely manner while maintaining sufficient scheduling quality, the proposed 

hybrid method consists of both a greedy algorithm and an advanced algorithm. 

The greedy algorithm aims at catering for urgent events but sacrificing quality, 

while the advanced algorithm opts for optimal (or sub-optimal) solution sched-

ii 



ules. By giving a scheduling model of the architecture, we conduct an analysis 

of the bounds of the competitive ratio of the hybrid method. The validity of the 

analysis is verified empirically. Further experimental results confirm the robust-

ness, efficiency, and quality of the proposed approach. 

iii 



实时代理体系结构及任务排序 

赵雷 

论文摘要 

如何设计并实现能够在复杂的、不可预测的、并有实时限制的环境中工作的实 

时代理已经是一个迫在眉睫的问题。以人类认知模型为基础，我们设计了一个实时 

代理体系结构。这个体系结构包含了感知、认知、动作三个子系统，每个子系统都 

由一组并行的管理者和工人进程组成。这些进程使用消息传递来通信并保持同步以 

满足实时要求。这个体系的设计和实现是非常模块化和封装化的，用户可以通过更 

动不同的模块来实现实时代理不同的行为。为了验证此体系的可行性，我们用其实 

现了 一个多代理系统的实时射击游戏。 

在这篇论文里，我们也讨论并设计了一个应用在我们的实时代理体系里面的多 

方法任务排序功能。为了能够在保持系统的效率同时还可以及时的响应各个要求， 

我们设计了一个同时包含了贪变算法与先进算法的混合方法。贪婪算法可以在牺牲 

系统效率的情况下保证系统的响应性，而先进算法则是以响应性为代价去获得最优 

的（或者是次优的）排序结果。我们建立了这个方法的模型，并以此为基础分析了 

这个混合方法的上限。测试的结果证明了我们的分析的正确性，也证实了我们体系 

的鲁棒性及高效性。 



Acknowledgments 

I would like to thank my parents for providing me with their endless support 

and love in the past 22 years. I love them forever. 

I would like to thank Prof. Jimmy H.M. Lee, my supervisor, for his guidance 

and patience. My research could not have been done reasonably without his 

insightful advice. For the past two years, he gave me encouragement, support, 

and guidance on my research. 

My gratitude goes to Prof. Leung Ho Fung and Prof. Ng Kam Wing who 

marked my term paper and gave me valuable suggestions. 

Finally, I thank to my fellow colleagues. They helped me in solving a lot of 

problems of my research and gave me a happy and wonderful university life. 

iv 



Contents 

• • 

Abstract u 

Acknowledgments iv 

1 Introduction 1 

2 Background 5 

2.1 Agents 5 

2.1.1 Deliberative Agents 7 

2.1.2 Reactive Agents 8 

2.1.3 Interacting Agents 9 

2.1.4 Hybrid Architectures 10 

2.2 Real-time Artificial Intelligence 10 

2.3 Real-Time Agents 12 

2.3.1 The Subsumption Architecture 13 

2.3.2 The InterRAP Architecture 15 

2.3.3 The 3T Architecture 16 V 



2.4 On-line Scheduling in Real-Time Agents 18 

3 A Real-Time Agent Architecture 20 

3.1 Human Cognition Model 20 

3.1.1 Perception 22 

3.1.2 Cognition 22 

3.1.3 Action 23 

3.2 Real-Time Message Passing Primitives and Process Structuring . 24 

3.2.1 Message Passing as IPC 25 

3.2.2 Administrator and Worker Processes 28 

3.3 Agent Architecture 29 

3.3.1 Sensor Workers and the Sensor Administrator 30 

3.3.2 The Cognition Workers 32 

3.3.3 The Task Administrator, the Scheduler Worker and Ex-

ecutor Workers 32 

3.4 An Agent-Based Real-time Arcade Game 34 

4 A Multiple Method Approach to Task Scheduling 37 

4.1 Task Scheduling Mechanism 37 

4.1.1 Task and Action 38 

4.1.2 Task Administrator 40 

4.1.3 Task Scheduler 43 

vi 



4.2 A Task Scheduling Model 44 

4.3 Combination Rules and Special Cases 46 

4.4 Scheduling Algorithms 49 

5 Task Scheduling Model: Analysis and Experiments 53 

5.1 Goodness Measure 53 

5.2 Theoretical Analysis 54 

5.3 Implementation 59 

5.3.1 Task Generator Implementation 59 

5.3.2 Executor Workers Implementation 61 

5.4 Experimental Results 62 

5.4.1 Hybrid Mechanism and Individual Algorithms 63 

5.4.2 Effect of Average Execution Time 65 

5.4.3 Effect of the Greedy Algorithm 65 

5.4.4 Effect of the Advanced Algorithm 67 

5.4.5 Effect of Actions and Relations Among Them 68 

5.4.6 Effect of Deadline 71 

6 Conclusions 

6.1 Summary of Contributions 73 

6.2 Future Work 75 

vii 



List of Tables 

2.1 Intrinsic Agent Characteristics 7 

2.2 Extrinsic Agent Characteristics 7 

5.1 The average scheduling time of tasks (ms) in different algorithms 

and different overload states, tavg 二 500ms 63 

viii 



List of Figures 

2.1 Anytime Algorithms and Multiple Methods 11 

2.2 Implementation of subsumption architecture 14 

2.3 Dynamic subsumption architecture 15 

3.1 The Perpetual Cycle 21 

3.2 States involved in send-receive-reply transaction 27 

3.3 Process A sends a message to process B 28 

3.4 Real-Time Agent Architecture 30 

3.5 Architecture of the Demonstration Game 34 

4.1 Different Relations among Actions 40 

4.2 The Task Administrator and the Scheduler Worker 41 

5.1 Task scheduling time and task performing time 56 

5.2 Implementation of the Simulation System 60 

5.3 Hybrid Mechanism v.s. Individual Algorithms 64 

5.4 Hybrid Mechanism with Different tavg 66 

ix 



5.5 Hybrid Mechanism with Different c.r.g 67 

5.6 Hybrid Mechanism with Different c.r.a 68 

5.7 Different Relations Among Actions 69 

5.8 Different Action Number per Task 70 

5.9 Effect of Different Deadline 72 

X 



Chapter 1 

Introduction 

With the advent of distributed computing and distributed artificial intelligence 

(DAI), the efficient design and implement of distributed software has assumed an 

important role in computer science research. The object-oriented design method 

has been successful for non-distributed applications, but it also causes problems 

when it is applied to specific distributed applications [37]. It is difficult to ap-

ply the object-oriented model in open environments or heterogeneous systems 

effectively. 

The rapid development of agent-based technologies started from the begin-

ning of the 1990s [66]. This new discipline has emerged from many research areas, 

such as symbolic artificial intelligence, control theory, and distributed artificial 

intelligence. Software agents, which can be defined as autonomous intelligent 

software entities, is a new software design method with a great level of decen-

tralization, an important characteristic for distributed environment. The agent-

oriented method also has the following additional advantages for distributed 

environment. First, the autonomy of agents, which means the ability to make 

decisions based on an internal representation of the world, allows more efficient 

communication and management of distributed resources. Second, agents are 

flexible and responsive, which provide great benefit for real-time applications. 

1 



Chapter 1 Introduction 

Third, the deliberation of agents allows them solving problems efficiently by 

making decisions in a goal directed manner. 

The distributed and real-time nature of real world applications urge us to 

design and implement real-time agents, such as those used in military training 

systems, flexible transport systems, and industrial control systems. Such systems 

are situated in a changeful, unpredictable, and time-constrained environment. 

We define real-time agent as a proactive software entity that acts autonomously 

under time-constrained conditions by means of real-time AI techniques. The 

requirement of real-time AI provides the agent with the ability of making quality-

time tradeoff, either discretely or continuously. 

There have been other approaches towards real-time agents, such as Brooks's 

Subsumption architecture [6], Muller's InterRAP model [49], and Bonasso's 3T 

architecture [3], etc. Most of them are layered architecture and have been used 

in robot control applications. Their advantages and disadvantages are discussed 

in the following chapters. 

In this dissertation, we develop a real-time agent architecture from Ulric 

Neisser's human cognition model [51]. In our architecture, a real-time agent is 

composed of a set of concurrent components. These components communicate 

and synchronize with one another for real-time performance. Our architecture 

has two distinct features: pluggability and dedicated task scheduling. First, com-

ponents in our architecture are highly encapsulated with well-defined interfaces, 

so that components of different characteristics, functionalities, and implementa-

tions can be plugged in to form real-time agents for specific real-time applications. 

Second, our architecture is meta in the sense that we can plug in some existing 

agent architecture X , such as the subsumption architecture [6], to make X more 

real-time respondent while maintaining the characteristic behavior of X, espe-

cially in overload situation. This is achieved by the task scheduling component, 

which is designed to deal with tasks and requests arriving at unexpected time 



Chapter 1 Introduction ^ 

points and being of various urgency and importance. 

Our on-line task scheduling mechanism, relying on the cooperation of a greedy 

and an advanced scheduling algorithms, take the multiple method approach for 

quality-time tradeoff. The greedy algorithm aims at catering for urgent events 

but sacrificing quality, while the advanced algorithm can provide optimal (or 

sub-optimal) solutions. To demonstrate the effectiveness and efficiency of our 

proposal, we construct a multi-agent version of a classical real-time arcade game 

"Space Invader" using our architecture. In addition, we also test the competitive 

ratio, a measure of goodness of on-line scheduling algorithms, of our implementa-

tion against results from idealized and simplified analysis. Results confirm that 

our task scheduling algorithm is both efficient and of good solution quality. 

This thesis is structured as follows. 

Chapter 2 introduces the backgrounds of our research. We give a brief 

overview of agent theory, and survey real-time AI technologies. Related work 

is also discussed and evaluated with respect to its scope and limitations. Disci-

plines of on-line scheduling are presented at the end of this chapter. 

Chapter 3 describes a real-time agent architecture. Based on the human cog-

nition model, we give an agent model which is composed of three subsystems. 

We introduce Gentleman's [31] message passing method, a communication mech-

anism which satisfies the architecture's requirements, and give the agent archi-

tecture based on this special inter-process communication mechanism. We also 

show a real-time arcade game as a demonstration of our agent. 

Chapter 4 illustrates the on-line task scheduling mechanism used in our agent. 

We describe the scheduling mechanism in details, and give a scheduling model 

of this problem. Some rules and special cases in scheduling are also given. At 

the end of this chapter, we introduce various scheduling algorithms which can 

be used in this mechanism. 



Chapter 1 Introduction £ 

Chapter 5 evaluates the task scheduling mechanism described in the previ-

ous chapter. We first introduce the theoretical analysis of this mechanism, and 

describe a simulation system implemented for testing. We give a series of exper-

imental results and indicates how these results verify our analysis. 

Chapter 6 summarizes the results of this thesis. We also identify topics for 

future research. 



Chapter 2 

Background 

In this chapter, we introduce some background of our research. Section 2.1 intro-

duces principles of agents theory and describes various kinds of agents. Section 

2.2 explains current research of real-time AI technologies and compares two main 

types of approximate algorithms: Anytime Algorithms and Multiple Methods. 

Section 2.3 introduces and evaluates approaches towards real-time agents. On-

line scheduling problem is described in Section 2.4. 

2.1 Agents 

We apply agents in real-world applications not only because these applications 

are complicated, but also because the problems we met are physically distributed. 

For example, an industrial control system that is used on assembly lines is nat-

urally distributed. Such an assembly line requires the intervention of a large 

number of specialists, who have only a local view of all the problems in the sys-

tem. To create a know-all system is almost impractical. A more natural way 

is to create a set of subsystems. Every subsystem can work independently in 

its special area. And all these subsystems can communicate with each other 

for cooperation. We call such a subsystem an Agent, and the whole system a 

5 



Chapter 2 Background ^ 

Multi-Agent System (MAS). 

While it is true that a basic definition for an agent is hard to give [66], we 

can use a list of agent properties to illustrate agents. Wooldridge and Jennings 

66] define agent as a hardware or software-based computer system that enjoys 

the following properties: 

• Autonomy: agents operate without the direct intervention of humans or 

others, and have some kind of control over their actions and internal state 

10]. Some researchers also define autonomy in software agents as a process 

or a set of processes running as separate threads [35 • 

• Social Ability: agents interact with other agents (and possibly humans) via 

some kind of agent communication language [30 . 

• Reactivity: agents perceive their environment, which may be the physical 

world, a user via a graphical user interface, a collection of other agents, the 

Internet, or perhaps all of these combined, and respond in a timely fashion 

to changes that occur in it. 

• Pro-activeness: agents do not simply act in response to their environment, 

but they are able to exhibit goal-directed behavior by taking the initiative. 

These properties provide a possible description of an agent. Huhns and Singh 

37] also lists the intrinsic properties of an agent and how an agent should react 

and cooperate with the environment and other agents in Table 2.1 and Table 

2.2 respectively. These tables define a finite set of characteristics that a generic 

agent possesses. 



Chapter 2 Background ^ 

Table 2.1: Intrinsic Agent Characteristics 

Property Range of Values 
Lifespan Transient to Long-lived 
Level of cognition Reactive to Deliberative 
Construction Declarative to Procedural 
Mobility Stationary to Itinerant 
Adaptability Fixed to Teachable to Autodidactic — 
Modelling Of environment, themselves, or other agents 

Table 2.2: Extrinsic Agent Characteristics 

Property Range of Values 
Locality Local to Remote 
Social autonomy Independent to controlled 
Sociability Autistic, Aware, Team Player 
Friendliness Cooperative to Competitive to Antagonistic 
Interactions Style/Quality/Nature with agents/world/both 

Semantic level: declarative or procedural communications 
Logistics: direct or via facilitators 

2.1.1 Deliberative Agents 

Some agent models are based on Simon and Newell's physical symbol system 

hypothesis [52]. They assume that agents maintain an internal representation of 

the world, and can be modified by symbolic reasoning. These agents are called 

deliberative agents. Some interesting research approaches have discussed the 

modelling of agents based on beliefs, desires, and intensions. Architectures fol-

lowing this paradigm are known as Belief, Desire, Intension architectures (BDI). 

Since Bratman first introduced BDI architecture in 1987 [5], it had become 

an interesting research area [54, 55]. The BDI architecture describes the internal 

processing state of an agent as a set of mental categories, and defines a control 

architecture to choose actions rationally. The mental categories are belief, desire, 

and intentions (or goals and plans). 



Chapter 2 Background ^ 

describes its expectations about the current state of the world and the 

effects achieved from different actions. Beliefs are modelled by possible worlds 

semantics, where a set of possible worlds is associated with each situation, de-

noting the worlds that the agent believes to be possible. More details of belief 

can be found in other references [33, 65 . 

Desire specifies future world states or actions. An agent is allowed to have 

inconsistent desires, but it does not need to believe these desires are achievable. 

Intension describes how an agent to select a certain goal to commit to. In-

tensions determine the agent's actions, and feedback into the agent's future rea-

soning. 

2.1.2 Reactive Agents 

Researchers such as Brooks [6，7], Chapman and Agre [1], Kaelbling [38], and 

Maes [46] develop new agent architectures that are behavior-based, situated, or 

reactive. Based on limited amount of information and simple situation-action 

rules, these agents make their decisions during runtime. 

Some researchers, such as Brooks, deny the need of any symbolic represen-

tation of the world. Reactive agents make decisions directly based on sensory 

input. The design of reactive agent architectures is based on Simon's hypoth-

esis in which the complexity of the behavior of an agent is a reflection of the 

complexity of environment. Reactive agents focus on achieving robust behavior 

instead of correct or optimal behavior. 



Chapter 2 Background ^ 

2.1.3 Interacting Agents 

Distributed Artificial Intelligence (DAI) [4, 27] deals with coordination and co-

operation among distributed intelligent agents. Main topics in agent interaction 

and related works are introduced in the following: 

• Communication. Communication among agents is important in interaction 

among agents. Some researchers have established standard agent commu-

nication languages. The Knowledge Query and Manipulation Language 

(KQML) [21] model (which is based on Speech Act theory [2, 58]) consists 

of three layers. The communication layer describes the lower-level commu-

nication parameters. The message layer forms the core of the language. 

It identifies the underlying protocol and supplies a performative which is 

attached to the message content. The content layer contains the actual 

contents of the message in an agreed-upon language, for example, KIF 

29 . 

• Game theory and agent interaction. Rosenschein and Zlotkin design a game 

theoretic analysis of interaction among rational agents [56, 68, 57 . 

• Distributed Problem-Solving (DPS). DPS deals with the performance in a 

given task by using a set of distributed problem solvers. It focuses on the 

mechanisms for task decomposition, and discusses the protocols for the 

allocation of tasks to these problem solvers, for example, the Contract Net 

Protocol [16] and its various extensions [24]. Based on DPS, many research 

approaches has been done towards to the exploration of conflict resolution 

and cooperation based on negotiation [13, 40, 41 . 

• Multi-Agent Planning. Multi-agent planning is related to distributed prob-

lem solving closely. This work focuses on coordination mechanisms among 

agents, for example, relationships among plans of multiple agents [47 . 



Chapter 2 Background ^ 

2.1.4 Hybrid Architectures 

Different kind of agents have different shortcomings. Purely reactive systems 

have a limited scope that it is hard to implement goal-directed behaviors on them. 

Most deliberative systems are based on general purpose reasoning mechanisms 

which are not tractable, and less reactive. Layered architecture can help us to 

overcome these shortcomings. It has become very popular over the past few 

years [38, 7, 8，19, 23，45, 14, 3，59, 50]. Layered architecture is a powerful tool 

for structuring, controlling, and designing systems with some desired properties 

like reactivity, deliberation, cooperation, and adaptability. The key idea is to 

structure the functionalities of an agent into two or more hierarchically organized 

layers that interact with each other to achieve coherent behaviors. 

2.2 Real-time Artificial Intelligence 

Traditionally, artificial intelligence (AI) techniques have not been utilized in real-

time environments due to their highly unpredictable performance. This is a result 

of the types of difficult problems that AI research has focused on which often 

involve searching as a component of the solution method. Complex algorithms 

that incorporate searching are unpredictable mainly because it is never analyt-

ically clear how much of the search space must be seen in order to compute an 

answer [26 . 

A major step forward in real-time AI research begins with the concept of 

approximate processing and approximate algorithms. To date, real-time AI re-

search has been interested in two main types of approximate algorithms: Anytime 

Algorithms and Multiple (Approximate) Methods [15 . 

An anytime algorithm is an iterative refinement algorithm where a "default" 

answer is first generated and then refined through multiple iterations. It is also 



Chapter 2 Background ^ 

m 
！3 
0 : 
hm 

1 : 

•Z -
/ ——Any lime algorithm 

I ： ^__— 
Time 

Figure 2.1: Anytime Algorithms and Multiple Methods 

true that the quality of the solution increases proportional to the amount of time 

the algorithm executes. In addition, anytime algorithms always produce a result 

regardless of when they are interrupted [26, 25, 15. 

The multiple method approach does not rely upon continuous processing 

to solve a problem. A set of available methods is used to solve a task. Each 

method has different characteristics that make it more or less appropriate given 

the current conditions. Every method solves the same problem, but different 

in the amount of time it needs to find the result and the quality of the result. 

There is a quality-time tradeoff between methods where a shorter execution time 

is achieved through reducing the quality of the answer [25, 26 . 

Figure 2.1 illustrates the major difference between an anytime algorithm and 

a multiple method algorithm. Both approaches provide tremendous flexibility. 



Chapter 2 Background ^ 

The advantage of using anytime algorithm is that they can fit into any avail-

able time slots whereas the multiple method approach allows for multiple, yet 

discrete, execution times. Garvey and Lesser [26] give two potential advantages 

of the multiple method approach over an anytime algorithm approach. First, 

the multiple method does not rely on the existence of iterative refinement al-

gorithms that produce incrementally improving solutions as the time increases. 

Some problems may not have a solution that can be implemented by an anytime 

algorithm. A second advantage to the multiple methods approach is that the 

methods may be completely different approaches to solving the problem. These 

approaches can have different characteristics depending on particular environ-

mental conditions. An additional challenge to the anytime algorithm approach 

is developing an algorithm whose performance is independent of environmental 

variables. 

2.3 Real-Time Agents 

We define real-time agent as a proactive software entity that acts autonomously 

under time-constrained conditions by means of real-time AI techniques. The 

requirement of real-time AI provides the agent with the ability of making quality-

time tradeoff, either discretely or continuously. Besides sharing all common 

characteristics of intelligent agents, real-time agents also have specific features 

for survival in real-time environments, listed as follows: 

• Real-Time AI: Real-time agents must be able to consider time's effect in 

the system. From knowledge or experience, agents must know how to con-

trol resources to meet various hard and soft timing-constraints and perform 

quality-time tradeoff. This calls for real-time AI techniques, which are ap-

proximate processing and algorithms of two main types: anytime algorithm 

and multiple (approximate) methods [15 . 



Chapter 2 Background ^ 

• Perception: Because of the data distribution of environments, real-time 

agents must be able to collect data from environments as correctly and 

completely as possible. Any data may be useful. The extent that this can 

be achieved is greatly influenced by the agents' sensory capability and the 

buffer size we set. 

• Selectivity: Since agents try to perceive as much data as they can, they 

sometimes cannot process all data in time (data glut). Agents must be 

able to select useful data (or data which the agents think useful) from 

received data. Unprocessed data can remain in buffer, and can be flushed 

by new arriving data. Depending on the application and environment, 

different agents can have different control of selectivity. 

• Reaction: Agents must be able to react to different events in the environ-

ment. The more urgent a situation is, the more quickly the agent should 

respond to it, even if the event is unexpected. 

There has been a scattering of work towards real-time agents over the years. 

Most of them are layered system and have been used in robot control applications 

7 . 

2.3.1 The Subsumption Architecture 

One of the earliest real-time agent design is the subsumption architecture given 

by Brooks [6]. The basic idea of the subsumption architecture can be character-

ized as follows: 

1. Each module is connected in parallel between input and output. 

2. Modules form layers in which higher layer can subsume lower layer func-

tions. 



Chapter 2 Background ^ 

3. Lower layers control basic behaviors and higher layers add more sophisti-

cated behavior. 

4. The total behavior of the system can be changed by adding a new layer at 

the top without changing existing layers. 

When a new layer is added at the top, it is sometimes necessary to change the 

behavior of existing layers. An implementation of the subsumption architecture 

is depicted in Figure 2.2, in which higher layers send bias signals to lower layers 

to deceive their inputs. 

• higher level 

> i 
> 

— subsume 
output 

> f 
> 

> lower level • 
Output 

Input 

Figure 2.2: Implementation of subsumption architecture 

A shortcoming of the subsumption architecture is the inflexibility. If the ap-

plication changes, the architecture must be reconstructed from scratch. Another 

shortcoming is that the circuit is fixed and cannot be easily reconfigured to adapt 

new situation. 

Nakashima's dynamic subsumption architecture [50] extends the original sub-

sumption architecture to meet these problems. Figure 2.3 illustrates the dynamic 

subsumption architecture. 

The dynamic subsumption architecture consists of the following elements. 



Chapter 2 Background ^ 

I 丨 process cell > subsumption 

Figure 2.3: Dynamic subsumption architecture 

• Processes: which execute programs. Each process combines some cells to 

perform some coherent behavior. 

• Cells: which store fragment of programs. Various cells represent various 

modalities or behaviors of the agent. They may differ from one to another. 

These cells are also divided into different functional layers. Cells farther 

from the processes (lower in figure) are used to implement lower-level func-

tions, and cells closer to the processes are used for high-level functions. 

• Subsumption: which connects cells among layers. These combinations can 

be dynamically changed during runtime. Through choosing different com-

bination of cells, a process can realize various behaviors. 

2.3.2 The InterRAP Architecture 

In the InterRAP model [49], an agent is composed of three interacting control 

and knowledge layers: 



Chapter 2 Background ^ 

• Behavior-hased layer controls the reactivity and procedural knowledge for 

routine tasks. 

• Local planning layer provides the facilities for means-ends reasoning for the 

achievement of local tasks and produces goal-directed behavior. 

• Cooperative planning layer enables agents to reason about other agents and 

supports coordinated action with other agents. 

These layers and the control architecture defined for them combine reactive and 

deliberative reasoning, and incorporate the ability to interact with other agents. 

InterRAP architecture is a BDI architecture [54]: the informational, motiva-

tional, and deliberative state of an agent [55] is described by means of beliefs, 

desires, and intentions. 

The components of the mental state of an InterRAP agent are layered. Beliefs 

are split into three models: a world model, a mental model, and a social model. 

The world model contains object level beliefs about the environment. The mental 

model controls meta-level beliefs the agent has about itself. The social model 

holds beliefs about other agents. 

The InterRAP architecture extends the planner-reactor architecture (Bresina 

and Drummond [17]) by adding a cooperation layer. Such a combination is 

feasible and has been realized in the FORKS application both as a simulation 

and as a physical system in real robots [49 . 

2.3.3 The 3T Architecture 

Bonasso's 3T architecture [3] is an intelligent robot control architecture. This ar-

chitecture separates the general robot intelligence problem into three interacting 

layers or tiers (that is why it is called 3T): 



Chapter 2 Background ^ 

• A dynamic reprogrammable set of reactive skills that is coordinated by a 

skill manager [67 . 

• A sequencing capability that can activate and deactivate sets of skills to cre-

ate networks, which change the state of the world and accomplish specific 

tasks. For this 3T architecture use the Reactive Action Packages (RAPs) 

system [22 • 

• A deliberative Planning capability that reasons in depth about goals, re-

sources and timing constraints. This 3T architecture uses a system known 

as Adversarial Planner (AP) [18 • 

The 3T architecture uses several levels of abstraction and description languages. 

A robot can be realized with just the first or the first and second layers. Skills 

can be robot specific, the RAPs and APs are generalized among different manip-

ulators and platforms. 

An advantage of the 3T architecture is that the programmer does not need 

to explicitly process the data coming to and from a skill, since the skill manager 

framework can coordinate it. For example, there are skills for avoiding obstacle 

and tracking moving objects. By simply feeding the output of the tracking mov-

ing objects skill to the input of the avoiding obstacle skill, the robot could follow 

people while still avoiding obstacles. Another advantage is that the 3T architec-

ture allows for modifications without having to reinitialize the robot controllers. 

The 3T architecture is very similar to ATLANTIS [28], which embodies the 

"sequencer in control" approach to coherent behavior. 3T also shares many 

aspects of Cypress [63 . 

A variety of useful software tools can be used to help implement this ar-

chitecture on multiple real robots. This architecture has been implemented on 

some robot systems using a variety of processors, operating systems, effectors 



Chapter 2 Background ^ 

and sensor suites [48, 36, 64 . 

2.4 On-line Scheduling in Real-Time Agents 

As stated by Tanenbaum [60], real-time scheduling algorithms can be character-

ized by the following parameters: 

1. Hard real-time versus Soft real-time. 

2. Preemptive versus Non-preemptive scheduling. 

3. Dynamic versus Static. 

4. Centralized versus Decentralized. 

These algorithms attempt to schedule a set of tasks for either a single proces-

sor or multiple processors. Every task will have a deadline before which it must 

be executed. 

Hard real-time systems require all tasks to be finished before their deadlines. 

Soft real-time systems are more lax. Soft real-time is generally characterized by 

"as close as possible" algorithm. 

Preemptive and non-preemptive algorithms differ in their handling of task 

execution. A preemptive scheduling algorithm has the ability of suspending a 

running task so that a more important task can be performed, after which the 

execution of the suspended task is resumed. The importance of a task can be 

defined by a higher priority, a shorter execution time, or a better profit. Non-

preemptive scheduling algorithms do not have this suspension-resume ability. 

Once a task is started, the system must finish it before perform other tasks. 



Chapter 2 Background ^ 

Dynamic and static algorithms are different upon when they make decisions 

about scheduling. Dynamic algorithms make the decisions "on the fly" during 

execution. Static algorithms make all scheduling decisions before runtime. 

A centralized system uses a single machine to collect information and to 

perform decision-making. In a decentralized system, more than one processor 

are available, decisions are made at the processor level. 

In the real-time agent architecture we describe in this thesis, tasks are arriving 

over time. In offline problems, an algorithm is allowed to know the entire list 

of inputs and all the details of tasks in order to compute the optimal solution 

without time constraint. But in our architecture, at each time, we only know 

tasks which have arrived. All the futures are unknown. The algorithm we used 

must be able to find solutions of the current state on time. Such a problem is 

called on-line problem. 

A common on-line scheduling algorithm is Earliest Deadline First (EDF) 

scheduling. An EDF algorithm maintains a list of waiting tasks to be executed 

which is always sorted by deadline with the first having the earliest deadline. 

When a new task enters the system, it is inserted into the list of waiting tasks. 

When the system resource is free, the first task in the list is removed and exe-

cuted. 



Chapter 3 

A Real-Time Agent Architecture 

This chapter introduces our real-time agent architecture. Using a human cog-

nition model, we first explain the three subsystems in our agent architecture in 

Section 3.1. Section 3.2 introduces message passing method, an inter-process 

communication mechanism, and defines two kind of useful processes: adminis-

trators and workers. Based on message passing, we design our agent as a group 

of concurrently and synchronously running processes. The details of these pro-

cesses are given in Section 3.3. The implementation of an agent based real-time 

arcade game is given in Section 3.4. 

3.1 Human Cognition Model 

Since human is the best example of real-time agents, we first introduce the prin-

ciples of human cognition. Neisser [51] views human cognition as a perpetual 

process, which keeps working as long as we are awake. Figure 3.1 illustrates 

different parts and their relations in human cognition. In this model, human 

acquires samples by exploring outer environment (Exploration). These samples 

bring useful information of the world (Object available information). By modify-

ing the information, human makes decisions and plans (Schema), which guide us 

20 



Chapter 3 A Real-Time Agent Architecture ^ 

\ available / 
\ in fo rmMfo 门 / 

mdm& Samples 

V . Y 
Figure 3.1: The Perpetual Cycle 

to explore the new world and obtain further information. These three parts work 

concurrently, and function the same from neonatal children to world leaders. 

In the wake of Neisser's model, we develop a real-time agent architecture 

which is composed of three subsystems: perception, cognition, and action. These 

three subsystems work concurrently and synchronously to acquire from and re-

spond to the environment via real-time AI reasoning. These subsystems work 

autonomously and individualistically. None of them have the superiority to con-

trol the other two subsystems. 

These subsystems are connected with predefined communication protocols. 

Keeping its protocol unchanged, a subsystem can be arbitrarily rewritten with-

out affecting other two subsystems. The flexibility of this architecture is much 

higher than other real-time architectures we introduced in Chapter 2. We also 

design an on-line task scheduling mechanism to improve the efficiency. In other 

architectures, tasks are not specially scheduled. 



Chapter 3 A Real-Time Agent Architecture ^ 

3.1.1 Perception 

Similar to the object-available-information part in Neisser's model, the perception 

subsystem observes the environment and collects all possible information. The 

scope of this information is decided by the techniques of observation. 

In a real-time environment, a serious problem is data glut—the environment 

feeds more data than an agent can process [43]. The perception subsystem is thus 

responsible for information selection/filtration in addition to preprocessing and 

summarizing raw signals into semantically meaningful events, which describe the 

states of the environment and are for subsequent consumption by the cognition 

subsystem. 

3.1.2 Cognition 

The cognition subsystem is the kernel of a real-time agent. It makes decisions or 

plans from the events collected by the perception system. These decisions and 

plans are dispatched in the form of tasks, which consist of a recipe of actions 

and their corresponding sequencing constraints. A task is sent to the action 

subsystem once generated. 

Various cognitive mechanisms can be used in the cognition subsystem. If we 

are more interested in reactive behavior, we can use the subsumption architecture 

6]，the dynamic subsumption architecture [50], or even simply a set of reaction 

rules for mapping events to tasks directly and efficiently; if intelligence is more 

important, we can use a world model with a set of goal directed rules (or logical 

formulae) [62 . 



Chapter 3 A Real-Time Agent Architecture ^ 

3.1.3 Action 

As the exploration part in Neisser's model, the action subsystem dispatches and 

performs tasks to explore and react to environment. The knowledge of how to 

perform these tasks is owned by the action subsystem. Neither the perception nor 

the cognition subsystem need to know this knowledge. The cognition subsystem 

needs only to generate tasks with digested information which can be understood 

by the action subsystem. 

The action subsystem also stores and manages tasks, and chooses the most 

important and urgent task to perform first. An efficient on-line scheduling algo-

rithm is thus central in the functioning of the action component. 

Some simple rules can be used in the action subsystem and the perception 

subsystem to guide them to process external information or perform tasks. For 

this we can use the Reactive Action Packages (RAPs) system [22 • 

While these subsystems have individual responsibilities and goals, they must 

cooperate to act as a collective whole. A good inter-process communication (IPC) 

mechanism is needed. We also note that such a mechanism can also be used for 

effective synchronization purposes. The following characteristics are desirable 

for a good communication mechanism: 

• Simple: a complicated mechanism may increase the complexity of the agent 

architecture, making the agents harder to understand and construct. 

• Efficient the volume of data exchanges among these subsystems is high 

in practice, demanding extreme efficiency especially in a real-time environ-

ment. 

• Autonomous: the communication must be performed without central mon-

itoring or supervision. 



Chapter 3 A Real-Time Agent Architecture ^ 

• Robust message transmission should incur little errors. 

In the following, we study a particular inter-process communication mecha-

nism and the operating system in which this IPC mechanism is embedded in, 

before giving a process structure design of an implementation of our real-time 

agent architecture. 

3.2 Real-Time Message Passing Primitives and 

Process Structuring 

Message passing is a method of synchronizing and communicating among se-

quential processes. We choose message passing in our agent architecture because 

of not only the obvious interpretation for distributed systems but also its other 

advantages. The semantics for message passing is easy to deal with and easy 

to get right. The structure of processes, via the viewpoint of server (or an ob-

ject), is simple and natural. It is also easy to understand the abilities to control 

processes, queue work requests, do load balancing, or other decentralized control 

actions based on message passing. 

A set of message passing primitives are first designed by Gentleman [31] with 

special blocking semantics for efficient inter-process communication and process 

synchronization. Based on these primitives, different processes, each class with 

different functionalities, can be defined, enabling the design and implementation 

of deadlock-free and efficient real-time systems. 

QNX [34] is an operating system designed by QNX Software Systems. As a 

real-time operating system, QNX is ideal for embedded realtime applications. It 

provides almost all essential ingredients of an embedded realtime system. 

QNX is a multi-process operating system. It consists of a small group of 



Chapter 3 A Real-Time Agent Architecture ^ 

cooperating processes. QNX is the first commercial operating system of its kind 

to make use of message passing as the fundamental means of IPC. In QNX, a 

message is a parcel of bytes passed from one process to another. The operating 

system attaches no special meaning to the content of a message - the data in a 

message has meaning for the sender of the message and for its receiver, but for 

no one else. 

In the following section, we first introduce the details of message passing 

primitives and use an example to explain them. Based on the message passing 

mechanism, we define two kinds of useful processes: administrators and workers, 

which will be used to construct our agent architecture. 

3.2.1 Message Passing as IPC 

Three primitives of message passing are defined in QNX: 

• Send(): for sending messages from a sender process to other processes. The 

sender process must specify the process ID of the process that is to receive 

the message. A process ID is the identifier by which the process is known 

to the operating system and other processes. 

• ReceiveQ: for receiving messages from other processes. The receiver process 

do not need to specify the sender process, it receives any messages send to 

it. 

• Reply0： for replying to processes that have sent messages. After received 

a message, the receiver process knew the process ID of the sender process. 

Using this process ID, reply message can be sent back. 

In a collaborating relationship, agents cannot work away without synchroniz-

ing with partners' progress. Communication is a means for informing others of 



Chapter 3 A Real-Time Agent Architecture ^ 

work progress, but a properly designed protocol can be used to effect synchro-

nization behavior. In many occasions, a process must suspend its execution to 

wait for the results/response of a partner process. We say that that the waiting 

process is blocked. Semantics of blocking in a communication protocol must be 

carefully designed so that good programming style can be defined to avoid dead-

lock behavior. A process will be blocked in one of the following three conditions: 

• Send-blocked-, the process has issued a SendQ request, but the message sent 

has not been received by the recipient process yet. 

• Reply-blocked: the process has issued a SendQ request and the message has 

been received by the recipient process, but the recipient process has not 

replied yet. 

• Receive-blocked: process has issued a ReceiveQ request, but no message is 

received yet. 

Figure 3.2 shows the states involved in a typical send-receive-reply transac-

tion. More details can be found in QNX manual [44 . 

Suppose process A sends a message to process B, they would undergo the 

following steps. This example is come from QNX manual [44 . 

1. Process A sends a message to process B by issuing a Send() request to 

the kernel. At same time, process A becomes Send-blocked, and must be 

blocked until B finishes processing the message. 

2. Process B issues a Receive() request to the kernel. 

(a) If there has been a waiting message from process A, then process B 

receives the message without block. Process A changes its state into 

Reply-blocked. 



Chapter 3 A Real-Time Agent Architecture ^ 

厂 s e n d ) 

Receive \ 7 f̂ eady 翻() 
I Blocked I \ / \ 
\ y H^cei^O 

R 2 p i y ( ) \ / Reply � 
L Blocked j 

SendO： This Process \ / 
SendQ: Other Process 

Figure 3.2: States involved in send-receive-reply transaction 

(b) If there are no waiting messages from process A, then process B 

changes its state into Receive-hlocked, and must wait until a mes-

sage from A arrives, in which case process A becomes Reply-blocked 

immediately without being Receive-blocked. 

3. Process B completes processing the received message from A and issues a 

ReplyO to A. The Reply() primitive never blocks a process, so that B can 

move on to perform other tasks. After receiving the reply message from B, 

process A is unblocked. Both process A and process B are ready now. 



Chapter 3 A Real-Time Agent Architecture ^ 

� P r o c e s s A ) � Pmcess B J 
, I 
I I 
I I 
• I 
J I 
, I 

SendO # 1 
I 
I 

tiiue 一 senddaiatmnsmii^d > ‘ ReceiveO 
I 
I 
I 
I 

V • 一 —i 嫩 。 

i i 

Figure 3.3: Process A sends a message to process B 

3.2.2 Administrator and Worker Processes 

The message passing example we described above illustrates the most common 

use of message passing: in which a server process is normally receive-blocked for 

a request from a client in order to perform some task. This is called send-driven 

messaging: the client process initiates the action by sending a message, and the 

action is finished by the server replying this message. 

We use another messaging in this thesis: reply-driven messaging, in which 



Chapter 3 A Real-Time Agent Architecture ^ 

the action is initiated with reply(). Under this method, a "worker" process sends 

a message to the server indicating that it is available for work. The server does 

not reply immediately, but "remember" that the worker is ready for work. At 

some future time, the server may decide to initiate some action by replying to 

the available worker process, the worker process will do the work, and finish the 

action by sending a message containing the results to the server. 

Reply-driven messaging enables us to define two kinds of useful processes: 

administrators and workers. An administrator process owns one or more worker 

processes. Administrator stores a set of jobs and workers perform them. Once a 

worker finishes a job, it issues SendQ to its administrator to report the result of 

last job and require for a new job. Administrator receives this request for work 

and reply to the worker with a new job assignment. Administrators do only two 

thing repeatedly: Receive() and Reply�. Thus administrators are never blocked, 

since they never issue Send() messages, allowing administrators to handle to 

various events and requests instantly. This is in line with the behavior of top 

management officials in a structured organization: a manager must be free of 

tedious routine work, and allowed time to make important decision and making 

job allocations to her inferiors. On the other hand, low-level workers can only 

be either performing job duties or wait for new assignments. 

3.3 Agent Architecture 

We propose an implementation of our architecture on the QNX platform. In 

our definition, an agent is composed of a set of workers and administrators. 

They work concurrently and synchronously, communicating with each other and 

cooperating to react to the environment. Figure 3.4 reveals also the detailed 

implementation of the architecture. A real-time agent consists of the following 

components: the sensor administrator, sensor workers, cognition workers, the 



Chapter 3 A Real-Time Agent Architecture ^ 

task administrator, the task scheduler worker, and executor workers. We describe 

each component in the rest of this section. 

Environment 

Real-time Agent 、 ^ 

Perception 

f ~ \ ！ ^ ~ \ f \ Subsystem 

\ Sensor Vorkers / 

Sensor 
Administrator Cognition 

Subsystem 

> i > f > ‘‘ Q Q Q 
Action Subsystem .. 

I Cognition Vorkers 

Scheduler | ^ 
Worker ^ | 
0 _ Task r Subsume Output 

~ ^ Administrator ~ 

d E x e c u t o r Workers \ , 
Environment 

^ Digested message Worker 
in agent \ _ _ / 

I 〉Env i ronment I/O Administrator 

Figure 3.4: Real-Time Agent Architecture 

3.3.1 Sensor Workers and the Sensor Administrator 

The sensor administrator and sensor workers constitute the perception subsys-

tem. The sensor administrator receives messages from other agents and envi-

ronment signals detected via the sensor workers. The administrator also prepro-



Chapter 3 A Real-Time Agent Architecture ^ 

cesses the input messages and signals, and translate them to events which can be 

utilized by the cognition subsystem. The administrator contains an event queue 

for storing received events, just in case the cognition subsystem is busy. When 

the cognition subsystem requests for new events, sensor administrator can reply 

with events in this queue. If there are no new events, the cognition subsystem 

simply blocks. An event stored in the sensor administrator will be removed if 

this event is past its deadline, or has been viewed by all cognition workers in the 

cognition subsystem. 

The sensor administrator owns more than one sensor workers to detect differ-

ent kinds of environment signals. In some cases, sensor workers are not necessary. 

For example, an agent only receives messages from other agents. In that case, 

we have specially designed couriers, a type of workers, for delivering messages 

between administrators. Sensor workers are designed to monitor particular en-

vironment signals and report them to the sensor administrator. A sensor worker 

may contain some particular resources, such as a keyboard or a communication 

port. Other processes do not need to know the details of the resource. 

Once we assign a sensor worker to monitor some signals, we do not need to 

control this sensor worker any more. This sensor worker automatically repeats 

monitoring signals and issuing reports to the sensor administrator, which only 

needs to wait for new requests/reports. 

Ideally a sensor administrator may have many sensor workers. As long as 

the sensor administrator knows how to preprocess these messages and signals 

captured by the workers, we can add/drop any workers without reprogramming 

the administrator. If we want to add some workers for new signals, we only need 

to add some new preprocessing rules in the administrator. 



Chapter 3 A Real-Time Agent Architecture ^ 

3.3.2 The Cognition Workers 

The cognition workers are responsible for mapping events to tasks. Suppose we 

want to adopt Brooks's subsumption architecture [7] in the cognition component. 

We can use more than one cognition worker, connected in parallel between input 

and output. Every cognition worker can be seen as a set of rules or a finite 

state machine implementing a layer, with the lower layers governing the basic 

behavior and the upper layers adding more sophisticated control behavior. If a 

cognition worker is free, it sends a request to the sensor administrator for new 

events. After receiving a reply message, the cognition worker maps the received 

event to a set of tasks, which are sent to the task administrator, and moves on 

to process other events, if any. 

The cognition workers determine the cognition level of an agent. If reaction 

rules are used for mapping events, then we get a reactive agent. We can also 

design a rational agent by building a world model in these cognition workers 

(or some of them) and perform reasoning on them. However, there is time 

consideration in deciding the level of reasoning that the cognition workers should 

perform. 

3.3.3 The Task Administrator, the Scheduler Worker and 

Executor Workers 

The action subsystem consists of the task administrator, the scheduler worker 

and executor workers. These components cooperate with one another to dispatch 

and execute tasks as efficiently as possible, while adhering to the timing and pri-

ority constraints. In many real-time applications, tasks have different priorities, 

which indicate how important a task is. If an agent is also in overload state, 

which means it is impossible to finish all tasks in time, the agent must be able 



Chapter 3 A Real-Time Agent Architecture ^ 

to handle and complete as many high priority tasks as possible. To achieve this 

end, we employ on-line scheduling algorithms for task dispatching. 

The task administrator receives tasks generated by the cognition workers 

and stores them in a task queue. The administrator contains also a greedy 

scheduling algorithm to schedule the received tasks. This greedy algorithm must 

have the following two characteristics. First, the algorithm must be efficient, 

since an administrator cannot afford to perform heavy computation, deterring its 

response to important events. Second, the algorithm should be able to produce 

reasonable quality, albeit sub-optimal, schedules. When the scheduler worker 

cannot respond in time with a better scheduling result, the action subsystem will 

have to rely on results of this greedy algorithm to ensure continuous functioning 

of the subsystem and also the agent as a whole. 

The scheduler worker maintains a task queue which is synchronized with that 

in the task administrator. This worker should employ an advanced scheduling 

algorithm to try to achieve global optimal scheduling results, and sends the result 

back to task administrator. While efficiency is still a factor, the more important 

goal of the worker is in producing good quality scheduling result, perhaps, at 

the expense of extra computation time. Once the task administrator receives 

results from the scheduling worker, it will combine the results with those of its 

own greedy algorithm and allocate the queued tasks to the executor workers 

for actual deployment. More details of the combined scheduling mechanism are 

introduced in following section. 

An agent can have one or more executor workers, each in charge of a different 

execution duty. Similar to the sensor workers, executor workers enjoy full auton-

omy in terms of task execution without intervention from the task administrator. 

After finishing a task, an executor worker sends a request to report to the task 

administrator and wait for new assignment. Executor workers can encapsulate 

resources, such as a printer or the screen. The task administrator does not need 



Chapter 3 A Real-Time Agent Architecture ^ 

to know the details of these resources and how they are handled. The adminis-

trator allocate tasks according to only the task nature (and which executor work 

can handle such tasks) and the priority (including deadline). Thus we can easily 

add/drop executor workers. 

3.4 An Agent-Based Real-time Arcade Game 

To demonstrate the viability of our proposal, we construct a multi-agent imple-

mentation of the real-time arcade style game "Space Invader." In this game, a 

player uses the keyboard to control a laser gun on the ground to defend against 

flying space invaders. The game implementation consists of five real-time collab-

orating agents: input agent, game environment agent, game administrator agent, 

timer agent, and screen agent. Figure 3.5 illustrates the system architecture of 

the demonstration game. 

System I [S Timer Agent J Environme- J 
Clock ^ ^ 

> ‘ 

Keyboard , 〉 i n p u t Agent ) 严 Administra- I 
Input k \ tor Agent j 

�r 

Screen \ N. Screen 
V Display 

Figure 3.5: Architecture of the Demonstration Game 



Chapter 3 A Real-Time Agent Architecture ^ 

The input agent controls the keyboard input, the timer agent controls time 

events, and the screen agent controls output to screen. These are system agents 

responsible for common game tasks (low level I /O and devices). They can be 

reused in all real-time game implementations. 

The game administrator agent stores the world model and determines the 

interactions in the world. The game environment agent controls all time-triggered 

events in the world, such as the movement of enemies. 

We build these agents as reactive agents. The cognition subsystem of every 

agent is controlled by a set of reaction rules. 

The rules in the input agent: 

• Rule 1: if keyboard input received then send user input message to the 

game administrator agent. 

• Rule 2: if game end message received then end all components in this agent 

and release resources. 

The rules in the timer agent: 

• Rule 1: if system timer signal received then send time message to the game 

environment agent. 

• Rule 2: if game end message received then end all components in this agent 

and release resources. 

The rules in the game environment agent: 

• Rule 1: if time received then check time-triggered events. 

• Rule 2: if time-triggered event found then send time-triggered event mes-

sage to the game administrator. 



Chapter 3 A Real-Time Agent Architecture ^ 

• Rule 3: if model change message received then update time-triggered events. 

• Rule 4: if game end message received then end all components in this agent 

and release resources. 

The rules in the game administrator agent are: 

• Rule 1: if user input received then update the model 

• Rule 2: if time-triggered event message received then update the model. 

• Rule 3: if model updated then check its rationality. 

—Rule 3.1: if laser beam hits the enemy then the enemy and the laser 

beam vanished, model changed. 

—Rule 3.2: if bomb hits the laser gun then the laser gun and the bomb 

vanished，model changed, and game ends. 

-Rule 3.3: if laser beam and bomb hit each other then laser beam and 

bomb vanished, model changed. 

• Rule 4: if model changed then send model change message to the game 

environment agent. 

• Rule 5: if model changed then output new model to screen agent. 

• Rule 6: if game ends then send game end message to the input agent, game 

environment agent, timer agent, and screen agent, end all components in 

this agent and release resources. 

The rules in the screen agent: 

• Rule 1: if new model received then update screen display. 



\ 

Chapter 3 A Real-Time Agent Architecture 37 

• Rule 2: if game end message received then end all components in this agent 

and release resources. 

These sets of if-then rules is enough for a simple game. In more complicated 

applications, user may need a finite state machine or a set of reasoning rules to 

control the cognition of agents. 



Chapter 4 

A Multiple Method Approach to 

Task Scheduling 

Task scheduling is an important issue in our agent architecture. In real world 

applications, an agent may be in overload state, which means it is impossible to 

finish all tasks in time. Agents must be able to handle and complete tasks as 

quickly and many as possible. Efficient task scheduling is essential for real-time 

response. 

This chapter is organized as follows. Section 4.1 introduces the task schedul-

ing mechanism in detail and gives the pseudocode of the task administrator and 

task scheduler. Section 4.2 models the task scheduling problem formally. Section 

4.3 introduces some combination rules used in combining the results of the two 

algorithms and special cases during runtime. Section 4.4 describes algorithms 

which can be plugged into this mechanism. 

4.1 Task Scheduling Mechanism 

Our approach combines two different on-line algorithms for task scheduling. The 

greedy scheduling algorithm, usually simple and fast, used in the task administra-

38 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

tor opts for efficiency, but there is no guarantee on the quality of the scheduling 

results. An example is the Earliest-Deadline-First (EDF) algorithm. The com-

plexity of greedy algorithms are usually linear in nature, so that they work well 

also in heavy load situation. 

On the other hand, the advanced algorithm in the scheduler worker opts for 

solution quality. An example is local search algorithm [9] for finding a suboptimal 

performing tasks order. These algorithms, however, usually suffer from at least 

a quadratic complexity. They might not be able to respond in a timely manner 

in a heavily loaded real-time environment. The idea is to combine the greedy 

and the advanced algorithms so that they can supplement each other. 

With the combination, we obtain the best of both worlds. When the time 

constraint is not strict, the mechanism should be able to produce high quality 

solutions; when the system is in heavily loaded state, however, the mechanism 

would ignore complicated and time-consuming scheduling computation when ef-

ficiency is needed most. That is when the greedy algorithm comes into place. 

4.1.1 Task and Action 

A task consists of a set of jobs that the agent needs to do, such as printing a 

set of documents on printer, sending a message to other agents, etc. Tasks are 

independent of one another. Since tasks are generated by cognition worker and 

arrived at the task administrator in succession. If a task in task administrator 

is related with other tasks which are still not arrived yet, this task is hard to 

schedule. Task administrator cannot predict when the successive tasks arrive 

and the result of performing this task without consider its successors. 

For example, there are two tasks Ti and T2 in a system. Ti has arrived at the 

task administrator and T2 has not. Ti and Ts have alternative relation, which 

means that only one of them needs to be performed. Once or T2 has started 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

execution, the other can be abandoned. 

In this case, the task administrator cannot decide if it should perform Ti 

immediately or wait for T2. If the task administrator performs Ti and T2 arrives 

soon after, which requires only much less time and resources, the performance 

of the system is dropped from this wrong decision. On the other hand, the 

task administrator may choose waiting, but when T2 finally arrives, the task 

administrator may sadly discover that besides the waiting time, T2 requires even 

more performing time and resources. 

We require tasks to be independent of one another to avoid unpredictability. 

In real world applications, relations among different jobs are common. To de-

scribe these relations, we define a task to be composed of a set of actions. An 

action can be viewed as the atomic unit of jobs. Once an action starts perform-

ing, it cannot be interrupted. It is non-preemptable. Actions in the same task 

may depend on one another, but not on actions in other tasks. Three kind of 

relations among actions are defined {Ai and A2 are actions in the same task): 

• Parallel (^1,^2). Ai and A2 have parallel relation if and only if both Ai 

and A2 need to be performed and they can be performed in any order. Ai 

and A2 do not affect each other. 

• Sequential {Ai -< A2). Ai and A2 have sequential relation if and only if 

both Ai and A2 need to be performed and A2 can start only after Ai is 

finished. 

• Alternative {Ai | A2). Ai and A2 have alternative relation if and only if 

the system can choose only either one (and exactly one) to perform. 

Complicated tasks can be defined using these relations. For example, an user 

may want to print a set of documents (Doci, D0C2, D0C3) on two available printers 

(_Pi, P2). He hopes that these three documents can be printed in the same printer 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

(so that he does not need to go to two locations to gather the output), and a 

notification indicating which printer is used can be sent to the user after these 

documents are printed (so he knows the output is ready for collection). In this 

task, the actions can be defined as following: 

Task 二（((An, A3I) | (A12, A 2 2 ,似）< � 

Where Aij means printing document Dod on print Pj, and A4 means issuing the 

final notification. 

This task also can be represented as figure 4.1. 

Q Q " Q H Q Q Q 

© 
j i Parallel ^ N Alternative • Sequential 

Figure 4.1: Different Relations among Actions 

4.1.2 Task Administrator 

The task administrator stores and manages tasks generated by the cognition 

worker. The administrator consists of a task queue, a greedy scheduling algo-

rithm, next-ready-action-places (NRAP), and a scheduling result buffer (shown 

in Figure 4.2). 

When new tasks arrive, the greedy algorithm, usually linear in nature, inserts 

the new tasks into the task queue according to a set of particular criteria, such 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

Cognition Worker 

Task Administrator 

Task Scheduler Worker / 
Greedy \ 

Scheduling ) 
Algorithm I 

^ ^ Task Queue 

/ Advanced \ 
Scheduling ) 

W i g o r i t h m / scheduling 

^ Result 
^ ^ ^ ^ ^ ^ ^ Buffer Combination 

Scheduling Result Buffer ^ ^ 

> f 
NRAP 

Executor Workers 

Figure 4.2: The Task Administrator and the Scheduler Worker 

as the associated deadlines of the tasks. This maintenance of sortedness allows 

the task administrator to dispatch the next available task almost instantly. 

NRAP, next-ready-action-places, is a buffer for storing the next ready task for 

each executor worker, which has an associated slot in NRAP. Once an executor 

worker finishes a task, the worker reports to the task administrator, which replies 

with the ready task in the corresponding slot in NRAP, if available, to the worker. 

If the slot for the worker in NRAP is empty, the task administrator makes this 

executor worker idle, and searches for the next ready task from the scheduling 

result buffer to fill the slot in NRAP. If there are no task in the scheduling result 

buffer for the executor worker, search proceeds to the task queue. 

The scheduling result buffer stores the scheduling result given by the scheduler 

worker obtained using the advanced algorithm. This result, supposingly of higher 

quality, always subsumes that of the greedy algorithm. That is why the task 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

administrator always searches this result buffer for the next available task first, 

before resorting to the task queue. 

initialization; 
while running do 

receives any messages; 
if message sender is the cognition worker then 

run the greedy algorithm to sort and store the newly arrived task; 
update executor workers and NRAP; 
if the scheduler worker is blocked then 

unblock the scheduler worker; 
reply to the scheduler worker with all new information; 

end 
end 
if message sender is executor worker Wi then 

store the result; 
if the ith slot of NRAP is not empty then 

reply to Wi with actions in the i slot of NRAP; 
end 
block Wi； 

if the scheduler worker is blocked then 
unblock the scheduler worker; 
reply to the scheduler worker with all new information; 

end 
update executor workers and NRAP; 

end 
if message sender is the scheduler worker then 

record the new scheduling result in the result buffer; 
if nothing happened from last scheduling then 

block task scheduler; 
end 
update executor workers and NRAP; 

end 
end 

Algorithm 1: Pseudocode of the Task Administrator 

Both new task arrival and new result from the scheduler worker can trigger 

the task administrator to update NRAP and reply to blocking executor workers 

(and reply to blocking scheduler worker, if it is blocked). More special cases 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

in scheduling are illustrated in the following section. Algorithm 1 gives the 

pseudocode of the task administrator. 

4.1.3 Task Scheduler 

The scheduler worker is quite simple, consisting of only three main components: 

a task queue, an advanced scheduling algorithm, and a scheduling result buffer. 

Figure 4.2 illustrates these components and communication among them. 

The task queue in the scheduler worker are kept synchronized with that in 

the task administrator. Using this task queue as input, the advanced algorithm 

in the scheduler worker outputs and stores the scheduling result in the scheduling 

result buffer. Once the advanced algorithm finishes, the scheduler worker sends 

the content of the result buffer to the task administrator. This message contains 

a sequence of tasks which indicates the task performing strategy suggested by 

the task scheduler. Upon receiving the result, the task administrator stores it, 

and replies to the scheduler worker with information of new tasks, if any. The 

scheduler Worker then updates its task queue and starts the scheduling cycle 

again. 

The task administrator replies a message which contains updated task queue 

to the task scheduler. For minimizing the data transmission, this message only 

contains following components: 

• For newly arrived tasks which are not contained in the task queue of the 

task scheduler, the message contains their task ID, actions, position in the 

task queue, and other information which is necessary for scheduling, for 

example, priority, deadline, etc. 

• For tasks which has been included in the task queue of the task scheduler 

but has changed since last scheduling, the message only contains their task 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

ID and the updated information. 

• For tasks which has been included in the task queue of the task scheduler 

and has not changed since last scheduling, the message does not contain 

their information. 

• The message also contains the current states of NRAP and the executor 

workers. 

Algorithm 2 gives the pseudocode of the scheduler worker. 

initialization; 
while running do 

send new scheduling results to task administrator; 
use the replied message to update task queue; 
run the advanced scheduling algorithm; 
store new results in scheduling result buffer; 

end 
Algorithm 2: Pseudocode of the Scheduler Worker 

4.2 A Task Scheduling Model 

We model the hybrid scheduling mechanism as a quadruple (T, A, S, W), where 

T describes the task list, A provides details of the task administrator, S contains 

description of the scheduler worker, and W is the set of executor workers. Task 

list T is comprised of a sequence of tasks (Ti , . . . , T几).A task in turn consists of 

a set of actions, which are the actual jobs that must be completed by the agent. 

Each executor worker can be responsible for one or more types of actions. There 

can be precedence constraints among actions in a task, but tasks are independent 

of one another. 

Each task Ti has the following attributes: 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

• The arrival time represents when task 7] first reaches the task administra-

tor. In real-time environments, events occur with a certain distribution, 

so do tasks which are usually generated as a result of some events tak-

ing place. Once a task Ti arrives, the task administrator and the scheduler 

worker take over to schedule and dispatch Ti for execution by corresponding 

executor workers. 

• The deadline specifies the time by which a task must be finished. Com-

pleting a task after its deadline is non-fruitful and wasteful of computation 

resources. The arrival time and the deadline defines the lifespan of task Ti. 

• The priority (or weight) of a task represents the importance of the task 

relative to the other tasks in the agent. The profit of a task is usually a 

measure of the utility of completing the task. 

• Every task contains a set of actions which are atomic in 

nature. Thus, in our model, we allow preemption at the task level, but 

not at the action level. Within the same task, actions can depend on 

one another. We allow three kinds of relation Parallel, Sequential, and 

Alternative among actions, which we have defined in Section 4.1.1. Each 

action Aj is associated with the following attributes: 

—The execution time is the estimated time to complete Aj. 

—The execution worker responsible for Aj. 

一 The possible relations (parallel, sequential, and alternative) with other 

actions within the same task as Aj helps to define complex tasks. 

The A field describes the task administrator. Different real-time agent in-

stances can have different task administrators, but these administrators share 

essentially similar structure and components. The only difference is the greedy 

scheduling algorithm they employ. This greedy algorithm also represents a task 



Chapter 4 A Multiple Method Approach to Task Scheduling 

administrator's attitude towards tasks. A task administrator using the EDF 

algorithm thinks that urgent tasks should be handled first, but while another 

administrator using the HPT {highest-priority-first) algorithm gives way to more 

important tasks. 

The S field contains description of the scheduler worker. Similar to the case 

of the task administrator, the advanced scheduling algorithm can give rise to the 

only possible difference among various scheduler workers. An agent may use an 

extremely complex algorithm for optimal results, or just use a relatively simple 

algorithm for a lower complexity. 

The W field defines the set {VFi,...，Wm} of available executor workers. Each 

executor worker is capable of performing one or more kinds of action. These 

workers work concurrently. The more workers an agent has, the more actions 

can be performed at the same time. 

4.3 Combination Rules and Special Cases 

In this section, we introduce the combination rules used in the hybrid mechanism 

and discuss the special cases during scheduling. These rules are used to decide 

which task will be assigned to executor workers or NRAR 

First, we introduce what happens when a new task Tnew arrives into the task 

administrator. In this case, the task administrator tries to use this task to suffice 

free executor workers and NRAP first, then stores this task in the task queue: 

1. The task administrator first checks if there exists blocking executor worker 

or empty NRAP. 

• Blocking executor worker: If there exists blocking executor worker Wj 

,the task administrator checks if actions in the newly arrived task can 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

be assigned to this worker. If there 3 action A , A G Tnew and the 

execution worker responsible for Ai (we present it as Wnew,i) is Wj, Wj 

is blocking, then the task administrator allocates this action Ai to the 

executor worker Wj. 

• Empty NRAP: Similarly, the task administrator tries to allocate ac-

tions in this task to the empty NRAP. If there A ^ 丁謂 and 

Wnew,i = Wj, NRAPj 二 0，then NRAPj 二 

2. Afterwards, the task administrator checks non-empty NRAPs and tries to 

use the newly arrived task to update them. If there 3Ai, Ai G Tnew and 

Wnew,i 二 and the original action in NRAP is Aou, Aoid e Toid, and 

PM < Pne^ (assuming Pi is the priority of task 7]), Aoid is not chosen from 

the scheduling result buffer, then NRAPj = Ai (condition Poid < Pnew 

also can be replaced by tdeadUneoid > tdeadHnenew. It is depending on which 

scheduling strategy we use). 

3. Run the greedy algorithm, insert the new task into the task queue. 

4. Finally, check if the task scheduler worker is blocking. If the scheduler 

worker is blocking, the task administrator unblocks the scheduler worker 

and replies it with the updated task queue. 

Second, when an executor worker Wi finishes its job, it issues Send() to 

send a report to the task administrator. After receiving this report, the task 

administrator knows the result of the last action performed by Wi and Wi is 

ready for new action: 

1. The task administrator first checks if the corresponding NRAP is empty. If 

NRAPi = 0, then Wi blocks. Otherwise, the task administrator allocates 

action in NRAPi to NRAPi = 0. 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

2. If NRAPi 二 0, search the scheduling result buffer to find a new action for 

NRAPi. 

3. If NRAPi = 0, search the task queue to find a new action for NRAPi. 

4. Unblock the task scheduler worker and reply it with the updated task queue 

if one or more following conditions are satisfied. 

• New tasks arrived since the latest communication with the task sched-

uler worker. 

• Actions finished since the latest communication with the task sched-

uler worker. 

• Any other changes in task queue. 

Third, when the scheduler worker finishes scheduling tasks, it sends new 

scheduling results to the task administrator: 

1. The task administrator stores the new result in the scheduling result buffer 

and replaces the old result. Some special cases during the replacing are 

listed as following: 

• Tasks in the new result have been finished. Due to various mech-

anisms, it is possible that a task which is re-scheduled by the task 

scheduler worker has been finished before the new result returns. In 

this case, the task administrator removes this task from the new re-

sult. Similarly, if a task is partly finished - some actions in this task 

has been performed - the task administrator also modifies the new 

result by removing these actions. 

• Content of tasks changed from last scheduling. Since the task sched-

uler worker only returns a name sequence but not the complete task 

list with their content, any change to the content of tasks in the task 

queue is also efficient to this result. 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

2. If there is no new task arrived or action finished or other changes in the 

task queue since last scheduling, the scheduler worker blocks. Otherwise, 

the task administrator replies the scheduler worker with the updated task 

queue. 

3. Uses the newly received scheduling result to reply blocking executor work-

ers. 

4. Use the newly received scheduling result to update all NRAP, includes 

these actions selected from the old scheduling result buffer and the task 

queue. The task administrator always believes that the newly result given 

by the task scheduler worker is the most appropriate result. 

4.4 Scheduling Algorithms 

Various scheduling algorithms can be plugged into this on-line scheduling mech-

anism. In this section, we introduce some basic algorithms that can be used in 

the architecture. 

From the strategy of the on-line scheduling algorithms, we can classify them 

into following types [32 . 

1. FIFO. The FIFO algorithm does not make sense in most real-time envi-

ronments. This algorithm approach to control the order in which tasks is 

performed completely works without consider any efficiency issues: FIFO 

serves tasks in the order of appearance. 

The disadvantage of FIFO algorithm is obvious. Although the FIFO algo-

rithm is almost the poorest scheduling algorithm, it also has some advan-

tages. First, FIFO algorithm does not cost time in scheduling. It is one of 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

the fastest scheduling algorithms. Second, in some real world applications, 

such as the producing line, the first come first serve strategy does work. 

2. Greedy. An scheduling algorithm is “greedy” means this algorithm always 

makes a "locally most promising" decision. Greedy algorithms do not take 

into account the possible future and the global sight. For example, a greedy 

algorithm only decides upon the next request to be served, it does not plan 

into the future or does not consider the system state after the service. 

Although the above greedy algorithm is very shortsighted and the result 

maybe sub-optimal it is very popular because it has following advantages: 

• Easy to implement 

• Usually real-time compliant 

• It produces a stable, predictable behavior since no decision is revised 

Here we introduce some typical greedy algorithms. These algorithms also 

been used in following implementation. 

• EDF. The Earliest Deadline First (EDF) is one of the most famous 

scheduling algorithms. In EDF algorithm, when a request is received, 

the algorithm chooses the task that has the earliest deadline in all 

tasks to serve the request. 

• HPF. In Highest Priority First (HPF)，the algorithm always uses the 

task which has the highest priority in all tasks to serve request. 

3. Replan. The Replan algorithms for an on-line problem compute an opti-

mal (or almost optimal) solution to the static optimization problem (the 

current state of the on-line problem) at a specific point in time. 

While the greedy algorithms acts as locally as one think, replan algorithms 

are another extremes case: at any time replan algorithms try to find a 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

solution which is as globally optimal as possible, with the information it 

has at that time. 

Replan algorithms maintain a “plan，，containing the result of scheduling 

the already known tasks. This result is followed as long as no relevant event 

happens. Whenever a relevant event happens, such as a new task arriving, 

the algorithms need to reschedule all current tasks. At any point in time, 

replan algorithms keep an optimal solution that is globally optimal at that 

particular moment. 

Replan algorithms have the following disadvantages. First, to find an op-

timal scheduling result is an NP problem. It is a time-consuming strategy. 

Second, replan algorithms may completely revise all results, which was still 

possible a short time ago. This will lead to unpredictable behavior over 

time. 

4. Ignore. Ignore algorithms assume that we have a way of computing opti-

mal (or suboptimal) solutions of the off-line version of the problem. The 

main idea of this method is to make sure that every step of the on-line 

solution is part of the solution of off-line problem. 

Ignore algorithms also contain a plan. Unlike replan algorithms, ignore 

algorithms do not rebuild the plan but finish it. All new arrived tasks 

were stored and ignored. Until this plan is finished, the ignore algorithm 

computes a new plan with all stored tasks. 

Although the final solution may be not the optimal solution, this solu-

tion is also sub-optimal in every particular step. Comparing with replan 

algorithms, ignore algorithms can save lots of system resources used on 

scheduling. 

Both FIFO and greedy scheduling algorithms have short response time. In 

our architecture, we can use them in the task administrator. Replan and ignore 



Chapter 4 A Multiple Method Approach to Task Scheduling ^ 

algorithms have good solution quality but long response time; we can use them 

in the task scheduler. 



Chapter 5 

Task Scheduling Model: Analysis 

and Experiments 

In this chapter, we introduce the theoretical analysis and experimental results of 

the hybrid task scheduling mechanism. Section 5.1 introduces the measurement 

of the quality of on-line mechanisms. Section 5.2 explains the theoretical analysis 

of the hybrid mechanism and gives the estimated bounds. In Section 5.3，we 

present the simulation system implemented to test the scheduling mechanism. 

Section 5.4 gives the experimental results and discussions. 

5.1 Goodness Measure 

For any scheduling problems, suppose we know future in advance, we can easily 

determine how to achieve the maximal profit and/or the minimal cost. This is the 

off-Une problem. The solution to the off-line problem is called the optimal solution 

and the cost/profit of the optimal solution is called the optimal cost/profit [53 . 

Scheduling is difficult in general. The added complexity to on-line schedul-

ing is that there is no way to know the exact arrival patterns of the tasks in 

advance. Tasks arrive independently over time, and the existence of a task is 

54 



Chapter 5 Task Scheduling Model: Analysis and Experiments ^ 

not known until its arrival If the future is known, the problem is reduced to 

off-line scheduling, in which a globally optimal solution can be computed. A 

well adopted measure of the goodness of on-line scheduling algorithms is compet-

itive ratio, which is a ratio between the off-line optimal solution and the on-line 

solution: 
Profit of On-line Solution 

厂 二 Profit of Off-line Solution (Optimal Solution) 

In this definition, the higher the competitive ratio an algorithm has, the 

better the algorithm is. The upperbound of r is 1. When r = 1, this on-line 

algorithm is an optimal algorithm. 

In our simulation system, we assign a profit value px for every task Tx. 

Once an agent successfully finishes a task, it receives the profit as a reward for 

performing this task. The object of agent is to achieve the maximal profit. 

This profit value also can be viewed as the priority of a task. The higher the 

profit value a task has, the more profit the agent gets. Agent is apt to perform 

these tasks as they are more "important" than other tasks. 

We also can assign all tasks with the same profit. In this case, agent is 

inclined to finish as many tasks as possible. 

5.2 Theoretical Analysis 

We identify the following main factors affecting the performance of our proposed 

scheduling mechanism. 

參 Actions: Longer average execution time of the actions gives more room 

for the advanced scheduling algorithm to complete its computation. 

• The Advanced Scheduling Algorithm: An algorithm of too high a 



Chapter 5 Task Scheduling Model: Analysis and Experiments 68_ 

complexity can seriously degrade the performance of the agent in terms of 

scheduling result quality. 

• Overload Factor (J�雷load). The overload factor is defined by: 

Total Execution Time 
九 — = T o t a l Available Time 

where “Total Execution Time" is the sum of all tasks' execution time, and 

“Total Available Time" is the during between the earliest arrival time and 

the latest deadline. The factor indicates if the agent is overloaded with 

tasks. If foverioad > 1, the system is overloaded; otherwise, the system is in 

non-overload state. 

• Competitive Ratio of Greedy Algorithm (c.r.g). This parameter 

describes the competitive ratio of the greedy algorithm used in the task 

administrator. 

• Competitive Ratio of Advanced Algorithm (c.r.a). This factor is 

the competitive ratio of the advanced algorithm in the scheduler worker. 

When the system is in non-overload state, foverioad < 1, the scheduling mech-

anism is insignificant. In non-overload state, even a simple greedy algorithm 

can achieve the optimal solution. For example, the EDF algorithm is optimal in 

non-overload state [42]. In the following discussion, we focus only on situations 

in which the system is in overload state. 

Suppose tscheduiing IS the time used by the scheduler worker to run the ad-

vanced algorithm and t̂ erforming IS the time used by the task administrator to 

finish all tasks ordered by the scheduler worker. As shown in the left-hand graph 

in Figure 5.1, iitscheduling < tperforming, then the task administrator always utilize 

results from the advanced algorithm. Our proposed multiple method approach 

takes effect only when tscheduUng > t per forming, as shown in the right-hand graph 

in Figure 5.1. 



Chapter 5 Task Scheduling Model: Analysis and Experiments 69_ 

Schedulinĝ  time of the advanced aigorlthm； 

；^^^^ jm pmfmnmg time of idvanced •隨m tasks 

；：!：;|;；;：；：| Tasfe performing： time of greedy algorithm scheduled tasks 

Figure 5.1: Task scheduling time and task performing time 

Suppose tscheduiing > ^performing and task list T is stored in the 

task queues of both the task administrator and the scheduler worker. We can 

thus partition T into To = {Tg , , . . . and Ta = {Ta,^ where 

tasks in Tg are dispatched and executed as a result of the greedy algorithm and 

tasks in Ta are executed as a result of the advanced algorithm. 

Given c.r.g and c.r.a as the competitive ratio of the greedy algorithm and 

the advanced algorithm respectively. For task Tx, we use px to denote the profit 

of Tx. The goal of any scheduling algorithm is to achieve as high a profit as 

possible. We can then define the competitive ratio of our mechanism c.r. as 

follows: 
Sa SG 
> : I 〉 : p 

on-line profit — i二 i ‘ j=i ^ 一 Sa . c.r .a. + Sp • c.r.g. (5 工） 

c'r. optimal profit Sa + Sq ^a + Sg 

The greedy algorithm only works when the advanced scheduling algorithm 

cannot give a scheduling result in time. Once the scheduler worker gives new 

scheduling results, the task administrator stops running the greedy algorithm 

and uses these results. In this case, the scheduler worker repeats running the 

advanced algorithm without any delay. It also means that the time used by the 

task administrator to perform all tasks given by the greedy algorithm and the 



Chapter 5 Task Scheduling Model: Analysis and Experiments 70_ 

advanced algorithm should be equal to the time used by scheduler worker in 

scheduling. We define to be the total execution time of task Tx. 

S Sq 
E “ - e + E = Scheduling Time of T^ (5.2) 
i=i j=i 

For a given scheduling algorithm and task list, it is possible to estimate 

the time the algorithm used in scheduling this task list. For example, if we 

use an algorithm which has the complexity of O(nlogn) to schedule a task set 

TAI，... then we can estimate the upper bound of the scheduling time as 

Sa log Sa- Let a = log5U, so we have: 

Scheduling Time of Ta < Sa^ (5.3) 

Similarly, we can define a for any given scheduling algorithm and task list. So 

(5.3) is valid in all cases. 

For Ta and TG, we define tavgA and t肌gG as the average execution time of 

tasks in Ta and Tg respectively. From (5.2) and (5.3)，we have: 

Sg . W + Sa . � < (5.4) 
^avgG 

Combining (5.1) and (5.4), we get 

„ I c 5 ^ ( c . r . a + c . r . g " ) —SA-c.r.a+SG-c.r.g _ ^avgG 
c•厂.二 她 — 

(5.5) 

y r T a一c r a . c.r,a—c/r.g 
< 1; 二二 + c.r.g 二 c.r.a — 一 / 

十 tawG ^-t-avgA 

From (5.5), we can see the parameters that can affect the performance of the 

system. The chosen greedy and advanced algorithms determines c.r.a and c.r.g 

respectively. The advanced algorithm fixes also a. The quantities tavgA and tavgc 

depend on the distribution of the execution time of tasks. Simplifying this model 



Chapter 5 Task Scheduling Model: Analysis and Experiments ^ 

further, we assume that tavgA = tavgC = tavg-

c.r. < c.r.a - = c.r.a - (c.r.a. - c.r.g)^ 

+ “ 一 (5.6) 

=c.r.g + (c.r.a. — c.r.gY-^ 

While (5.5) gives the upper bound of the system's competitive ratio, the lower 

bound of the system is determined by c.r.a and c.r.g. 

c.r. > Min{c.r.a, c.r.g) 
(5.7) 

The entity a can be viewed as the average scheduling time per task. For a 

given task list and advanced scheduling algorithm, we can estimate the upper 

bound of a. Suppose the number of tasks is n, and we choose an algorithm 

of order 0(几2) from the Ignore [32] family of algorithms as the advanced algo-

rithm. In an Ignore algorithm, every task is scheduled once and the results are 

committed. Thus the scheduler worker always appends newly scheduled tasks to 

old results. During processing, since tasks arrive over time, the task list may be 

partitioned and handled as m sublists. Assuming the number of tasks of these 

subsets are TVi,..., iVm，we have 

+ + = > l , n > l , m > 1 

The total scheduling time of these task sublists is 

Thus 
= a < n (5.8) 

n — 

Given the fact that most scheduling algorithms, except perhaps FIFO, have an 

order of at least 0(n). Actually, for any Ignore algorithm of order 0{n'),i > 1, 

we have 
N � i + … = a < n “ i (5.9) 

n — 



Chapter 5 Task Scheduling Model: Analysis and Experiments ^ 

The time used by the advanced algorithm reaches its upper bound only when all 

tasks arrive together and are scheduled in one go. 

Members of the Replan [32] family of scheduling algorithms reconsider sched-

uled tasks when new tasks arrive. For a Replan algorithm of order O(n^), we 

can estimate the upper bound as (assuming tasks are partitioned into m sublists, 

and sublist s has Ng tasks) 

N ? + (iVi + iV2)2 + . . . + (ATi + . . . + Nmf < (5.10) 

Thus a < *(n + l)(2n + l). 

5.3 Implementation 

The hybrid task scheduling mechanism described in Chapter 4 has been imple-

mented as a simulation system on QNX. This prototype is based on the agent 

architecture described in Figure 4.2. This system is composed of the following 

components: a task generator, a task administrator, a task scheduler, and execu-

tor workers. Figure 5.2 illustrates the implementation of the simulation system. 

Each component is implemented as a process which uses message passing as the 

IPC mechanism. 

This section introduces some details in the implementation. Section 5.3.1 

explains the implementation of the task generator. The implementation of the 

executor workers is given in Section 5.3.2. 

5.3.1 Task Generator Implementation 

We use the task generator to replace the perception and the cognition subsystems 

in the agent architecture. The task generator generates the entire task list before 



Chapter 5 Task Scheduling Model: Analysis and Experiments 73_ 

P S 
( Task 
y^G^eratoi^ 

I — — ^ — — I 
I 。 p, Task Administrator 
\ Scheduler 

/ Executor 

Figure 5.2: Implementation of the Simulation System 

scheduling, and release the tasks in the list to the task administrator in real-

time according to the generated arrival time of these tasks during runtime. The 

basic characteristics of the generated task list are parameterized by the following 

characteristics. 

• Average execution time. This parameter defines the average execution time 

of actions. 

• Deadline. This parameter defines the length of deadline comparing with 

the execution time of a task. The deadline of a task Ti is: 

Arrival Time of Ti + Execution Time of Ti. Deadline 

• Action number. This parameter defines action number in each task. 

• Action relations. This parameter indicates the relations among actions. 

• Overload factor. This parameter determines the interval among tasks. The 

higher the overload factor, the shorter the interval is, thus the task admin-

istrator needs to process more tasks in the same period. 



Chapter 5 Task Scheduling Model: Analysis and Experiments 74_ 

The task generator randomly generates a task list which satisfies the specified 

characteristics. A task may contain more than one action, but we restrict the 

number of actions in a task up to eight for ease of implementation. For the same 

reason, we assume the number of executor workers in each agent is also up to 8. 

Every task is assigned a unique task ID as the "name" of this task when it is 

generated. 

These generated tasks are ordered and stored according to the generated 

arrival times. The task generator maintains a system timer which fires off re-

peatedly. In each pulse, the task generator checks the first task in the task list. 

If the current time is great or equal to the arrival time of this task, the task 

generator sends a message which contains this task to the task administrator. 

The task administrator replies with an empty message as soon as the message is 

received. After receiving the reply message, the task generator removes the first 

task in the task list and waits for the next pulse. 

Another function of the task generator is to compute the optimal cost of the 

given task list. After generating the entire task list, the task generator knows 

the arrival times and the performing time of all tasks. It is straight forward then 

to compute the optimal solution of this offline problem. This optimal solution is 

used to compute the competitive ratio of various on-line scheduling algorithms. 

5.3.2 Executor Workers Implementation 

The task administrator allocates actions to the executor workers. Once an ex-

ecutor worker acquires an action, this worker also knows the exact performing 

time of this action. In our simulation system, the executor workers do not actu-

ally perform the actions but only idle for the duration of the execution time of 

the current actions. The executor workers do not share resources with the task 

administrator and the task scheduler. 



Chapter 5 Task Scheduling Model: Analysis and Experiments ^ 

We assume that the executor workers always finish actions successfully. An 

executor worker sends message to the task administrator to report the result 

(if any) of the newly finished action. After receiving this message, the task 

administrator removes this action from the task queue. 

In our implementation, the number of executor workers is restricted up to 

8. Every action has an ActionType data field to indicate the type of this action. 

For example, an action may has ActionType as SendMessage, which means the 

content of this action is sending messages to other agents. Every executor worker 

has the ability of performing one or more kind of actions. After being generated, 

an executor worker registers its ID and ActionType of actions it can perform 

for the task administrator. For every action, the task administrator scans this 

information to select executor workers that can be used to perform it. 

5.4 Experimental Results 

This section details the tests suites we used and the test results. These results are 

based on the simulation system we described in Section 5.3, and run on Pentium 

III 850 MHz machine running QNX Neutrino. 

In the following experiments, we choose EDF of order 0(n) as the greedy 

algorithm and an Ignore algorithm [32] of order 0(n^) as the advanced algorithm. 

We use foverioad to measurG how overloaded a system is. The higher the overload 

factor is, the longer time the algorithm takes to schedule the tasks. 

Table 5.1 gives the average scheduling time (in ms) for different states. 

We can see that although the advanced algorithm can give better quality 

scheduling results in general, its efficiency worsens dramatically when there are 

too many tasks in the system. Assuming an average performing time 500ms, the 

advanced algorithm would fail to respond in time. On the other hand, the greedy 



Chapter 5 Task Scheduling Model: Analysis and Experiments 76_ 

Table 5.1: The average scheduling time of tasks (ms) in different algorithms 
and different overload states, t 判 = 5 0 0 m s 

Overload 1.0 2.0 3.0 4.0 5.0 6.0 

EDF 9 1 6 25 37 4 7 ^ ^ 
Ignore 41 170 366 672 1102 1503 
Combined 13 181 380 446 325 230 

algorithm works well within the timing constraint; so is the hybrid algorithm. 

5.4.1 Hybrid Mechanism and Individual Algorithms 

Here we verify our upper bound and lower bound analysis empirically. Fig-

ure 5.3 compares the competitive ratio of the hybrid mechanism against those 

of the individual algorithms. The test suites are generated from the following 

parameters. 

• Average execution time: 500ms. 

• Deadline: 4. 

• Action number: 8. 

參 Action relations: all. 

• Overload factor: 1 to 8. 

The estimated theoretical upper bound of the mechanism, according to (5.6), 

is also displayed in the figure. The theoretical lower bound is the minimum of 

the individual algorithms. 

When foverioad < 1-0, the system is in non-overload state, all algorithms are 

optimal. When Uerioad > 1-0, the quality of the algorithms begins to drop, 



Chapter 5 Task Scheduling Model: Analysis and Experiments 77_ 

1 。 。 ^ ^̂ ^̂ ^̂ ^̂ -n 
� X ； ^ 

— — 

^ - • y . — . 

60 V̂̂  ^ 

4 0 — ： - 擊 ~ 

. : \ . .1 
20 V" 

\ . . . . . 
Q I i I I 1——^ ‘ ^ ‘ • 

1 2 3 4 5 6 7 8 

Ignore Estimated Upperbound - ^ H y b r i d EDF 

Figure 5.3: Hybrid Mechanism v.s. Individual Algorithms 

most noticeably that of the EDF algorithm as expected. It is important to note 

that the curve of the hybrid algorithm stays very close to that of the estimated 

theoretical upper bound, which is in turn very close to the curve of the advanced 

algorithm when foverioad < 4.9. The Ignore algorithm begins to break down 

when foverioad 二 4.9, whlle our hybrid algorithm continues to perform at only 

slightly sub-optimal level of quality. The hybrid algorithm is also always above 

the theoretical lower bound, except when 4.1 < foverioad < 4.6 The hybrid algo-

rithm performs way better than EDF when foverioad < 3.8, degrading only slowly 

after foverioad 二 3.8. First, our theoretical analysis agrees with the experimen-

tal results. Second, our hybrid algorithm is robust and only slight sub-optimal, 

demonstrating a good time-quality tradeoff. 



Chapter 5 Task Scheduling Model: Analysis and Experiments ^ 

5.4.2 Effect of Average Execution Time 

Prom (5.5) and (5.6), we can see these parameters which can affect the perfor-

mance of the system are: t啊a, and tavgC, c.r.a, and c.r.g. We testify on 

these parameters in the following experiments. The test suites are based on the 

following characteristics. 

• Average execution time: 500ms, 750ms, 1000ms. 

• Deadline: 4. 

• Action number: 8. 

• Action relations: all. 

• Overload factor: 1 to 8. 

Figure 5.4 illustrates how different t肌g affect the system performance. In this 

result, we assume that t— 二 t肌gG 二 ta耶 and use three task lists with the same 

number of tasks and same arrival time, but different performing time to test our 

system. Form (5.6), we can see if the performing time is longer, more task can 

be scheduled by the scheduler worker. It also means we can acquire a better 

performance. In the case t — + Uv^g. the relation between average time and 

performance can be determined from (5.5). If t � — increases, more tasks can be 

scheduled, and the quality of the result also increases. So does tavgc-

5.4.3 Effect of the Greedy Algorithm 

We use the following test suites to testify the effect of c.r.g. 

• Average execution time: 500ms. 

• Deadline: 4. 



Chapter 5 Task Scheduling Model: Analysis and Experiments 79_ 

n S O ^ . . I 
5H 60 
OJ > 

• H 

'B 40 — 
(U 

o o ^ 
20 ： — "F 

： 丨 ： 丨 : > ； ： : : : : : : : : 、 . : . : : £ : : : . : ： ： --.r '^iillS 
ijjgjlllli；；：! :_::丨;:::#丨:丨:::::::1:::£@:.:1:丨ĴfSP' ；•！SS：SS ::;::;:�:；辟:•• ：；,••： •Pi 
i i i l M \ ill鏞 

Q 1 I 1 i ‘ ‘ ‘ ^ 
1 2 3 4 5 6 7 8 

Overload factor 

50Qids 750ins -^ IQQO ids 

Figure 5.4: Hybrid Mechanism with Different tavg 

• Action number: 8. 

• Action relations: all. 

• Overload factor: 1 to 8. 

Figure 5.5 shows shows how different c.r.g’s affect the result. In this example, 

we choose three different greedy algorithms: FIFO, EDF, and HPF (highest-

profit-first, choose the task with highest profit-time ratio to perform) to combine 

with the same Ignore advanced algorithm. The advanced algorithm is again an 

Ignore algorithm. From the graph, we can see when the system is not overloaded 

too much, which means the advanced algorithm still work in time, the results 

are similar. When the system is heavily loaded and the advanced algorithm 

cannot give results in time, the hybrid algorithm with a better greedy algorithm 

gives better results. HPF is the best since it optimizes the profit, hence also the 



Chapter 5 Task Scheduling Model: Analysis and Experiments 68 

100 .̂̂̂：：：：：;;;;;̂̂  """""""——、. 

i 
系 80 V i 
g 60 — — : . 4 

40 i 

I _ _ _ 1 _ _ _ 圓 ^ 

2 0 ； 

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 

1 2 3 4 5 6 7 8 

Over!oad factor 

- ^ HPF +EDF ~^ FIFO 

Figure 5.5: Hybrid Mechanism with Different c.r.g 

competitive ratio. 

5.4.4 Effect of the Advanced Algorithm 

The test suites we used to testify the effect of c.r.a are based on the following 

characteristics. 

• Average execution time: 500ms. 

• Deadline: 4. 

• Action number: 8. 

• Action relations: all. 

• Overload factor: 1 to 8. 



Chapter 5 Task Scheduling Model: Analysis and Experiments 

1 2 0 「 — … … - — 一 - — - - •‘ 

1 0 0 • ； 一 “ 一 

0 ‘ ‘ ： 、：、 
H 80 一 • � � " " ^ , ‘ - . — 

in � ’ \ � “ ^ ^ 

5 60 
.H ____i_i__i麵 

liilllillM 
<u . A 
！ 40 
o 1__1__11 圓̂  

0 IIIIIIIIIIŜ ^ 
2 0 ： ” — ； 

iiiilillillililililiiilliilillilllllllilllilliilil̂  
園 iii讓li__ll_liii_̂ l___i!li_ll_i_iii___i議 ___ 顧圓 i__ 讓 _1議_ 

Q I I 1 1 ‘ ‘ ‘ ‘ 

1 2 3 4 5 6 7 8 

Overload factor 

Figure 5.6: Hybrid Mechanism with Different c.r.a 

We compare also the effect of different advanced algorithms. Figure 5.6 illus-

trates how different c.r.a's affect the performance. Here we combine EDF with 

two different advanced algorithms respectively. The first algorithm Ai is of order 

O(n^), while the other A2 is of order 0(n!). Given enough time, A2 has a higher 

c.r.a than that of A2, but then a higher complexity also implies a higher a for 

A2. As we can see from the graph, the hybrid algorithm with A2 produces better 

results initially when foverioad is small. As foverioad grows, the performance of A2 

degrades more rapidly than that of Ai since A2 fails to respond in time. 

5.4.5 Effect of Actions and Relations Among Them 

Here we show how various actions and relations affect the system performance. 

Our theoretical analysis is a simplified analysis which does not include all possible 



Chapter 5 Task Scheduling Model: Analysis and Experiments ^ 

parameters. We testify these unadopted parameters in this and the following 

sections. 

^ 2 Q — ‘ — — — ‘ 

10 0 I 

二 ^ 

> 6 0 趣 〜 、 ， — . . . . . . 1 ^ ^ 

• H 〜 洛 一 — — 一 辦 ^ 
餓韓麗ii丨丨丨i靈丨丨§丨丨權IB圍靈靈i丨丨i丨躍丨i彳籍键I趕ppii丨靈韓丨；攀 

I 40 — ― ― — 1 
0 IIIIIIIIM 

2 0 ； 

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 

1 2 3 4 5 6 7 8 

Overload factor 

—^Parallel Sequental - ^ Alternative All 

Figure 5.7: Different Relations Among Actions 

Figure 5.7 illustrates the effect of the relations among actions. The test suites 

we used are based on the following parameters. 

• Average execution time: 500ms. 

• Deadline: 4. 

• Action number: 8. 

• Action relations: parallel, sequential, alternative, or all the three relations. 

• Overload factor: 1 to 8. 

One task list only has parallel relation among actions, another has all three 

relations generated randomly. The result shows that the more complicated the 



Chapter 5 Task Scheduling Model: Analysis and Experiments 71_ 

tasks are, the more time is needed in scheduling and performing them. The 

performance is lower when the task list has different kinds of relations among 

actions. As we can see from the result, the difference is not obvious when foverioad 

is small. As foverioad giows, the difference becomes more obvious since more time 

is spent on scheduling actions with complicated relations. The sequential relation 

is the most complicated relation in scheduling, since actions in the same task only 

can be performed one by one. On the other hand, the alternative relation is the 

simplest relation in scheduling, especially when foverioad is large. It is because 

that only one action needs to be executed in a task. The parallel relation is also 

simple than the combination of all the three relations. 

I 
二 8 � 

！ 60 
(D 
> 

• H 

40 — 
cu 

& o 
。 2 0 

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 

1 2 3 4 5 6 7 8 

Overload factor 

1 action -»— 4 action —-̂t— 8 action 

Figure 5.8: Different Action Number per Task 

Figure 5.8 illustrates how different action number per task affect the perfor-

mance. The test suites are like the following. The total number of actions in 

these test suites are the same. The suite with 1 action per task has 8 times more 



Chapter 5 Task Scheduling Model: Analysis and Experiments 12_ 

tasks than the suite with 8 action per task. 

• Average execution time: 500ms. 

• Deadline: 4. 

• Action number: 1 action per task, 4 actions per task, and 8 actions per 

task. 

• Action relations: parallel relations. 

• Overload factor: 1 to 8. 

The relations among actions are parallel relation, since we compare these 

suites with test suites in which every task only has 1 actions and tasks are 

independent with one another. The more actions each task has, the more flexible 

it is in doing preemption, which helps the system to acquire better performance. 

As we can see from Figure 5.8, there is not really significant difference among 

these results. It is because that although preemption produces better results, 

larger action number also makes the scheduling complicated, which reduces the 

performance of the system. 

5.4.6 Effect of Deadline 

Figure 5.9 illustrates the effect of different deadlines. In this test, we use task 

suites with parameters as the following. 

• Average execution time: 500ms. 

• Deadline: 2, 4, 8. 

• Action number: 8 actions per task. 

• Action relations: All. 



Chapter 5 Task Scheduling Model: Analysis and Experiments ^ 

• Overload factor: 1 to 8. 

； : r ^ ^ ^ z z z z : 
忘 ⑶ \ 、 — — 一 一 一 寺 ^ _ 一 

U 60 — . 
^ 4 0 ——— ： ^ 

& 
0 : : 靈 難 瀵 ； 隱 議 I 識 藝 » 羅 議 讓 冒 _ : : 變 隱 鎮 o ： 

20 — 

Q I I 1 - I 1 ‘ ‘ 

1 2 3 4 5 6 7 8 

Overload factor 

deadline 二 2 --«-deadline = 4 -A -deadl ine 二 8 

Figure 5.9: Effect of Different Deadline 

The later the deadline is, the more time the system has to schedule and 

perform tasks. As we can see from the result, as the overload factor grows, the 

effect of deadline becomes more and more obvious. The deadline also determines 

if a task can be successfully finished (in our assumption, only successfully finished 

tasks can be counted in the system performance). A task with early deadline is 

likely to be not finished on time, especially when the overload factor is large. On 

the other hand, the effect of deadline decreases as the deadline becomes later. 



Chapter 6 

Conclusions 

In this chapter, we summarize our contributions and discuss possible future work. 

6.1 Summary of Contributions 

Our real-time agent architecture contains a set of administrators and workers. 

These components rely on specially designed communication primitives to main-

tain inter-process communication and synchronization. The details of knowledge 

are hidden in individual processes, which communicate via a well-defined mes-

sage interface. For example, if an agent wants to send a message to another 

agent, the cognition subsystem only needs to know the identifier of the recipient. 

The cognition worker do not need to know where the recipient is or how to send 

a message to it. This knowledge is maintained by the particular executor worker 

which will perform this task. Thus we can modify a component without chang-

ing another component, as long as the original functionality and communication 

interface are retained. 

Our agent architecture has high flexibility. By changing the cognition meth-

ods in the cognition subsystem, we can realize different kinds of real-time agents. 

Since every component has its fixed function, it is possible to generate an agent 

74 



Chapter 6 Conclusions ^ 

from a set of rules and data structures automatically. What we have essentially 

designed is a template for real-time agents. By instantiating the components 

with different algorithms and data, such as the scheduling algorithms, we can 

get real-time agents of particular characteristics. 

We have introduced other approaches towards real-time agents in Chapter 2. 

The subsumption architecture consists of parallel layers which higher layer can 

subsume lower layer functions. User can change the behavior of the system by 

adding a new layer at the top without changing other layers. The subsumption 

architecture has a shortcoming: inflexibility. It does not allow users to rewrite a 

lower layer with out changing other layers. In our architecture, every component 

can be rewritten without affecting other components. 

The 3T architecture and the InterRAP architecture are similar. Both of them 

use three layers: one layer for reaction, one layer for reasoning, and one layer for 

cooperation or higher level reasoning. They can be used to design agents which 

have both intelligence and reactivity. Their disadvantages are also similar. First, 

both of them are designed as robot control system, not for software real-time 

agents. Second, none of them provides task scheduling mechanisms, this lack 

will become more apparent when they work in heavy overloaded environments. 

Our architecture meets these problems well. 

We also study the task scheduling mechanism in our real-time agent in details. 

The task scheduling problem in our architecture is similar to on-line open shop 

scheduling problem [12, 11]. In other words, the on-line open shop scheduling 

problem is a special case of our scheduling problem (if we define our agent has 

8 executor workers, each task in the task list also has 8 actions in sequential 

relation, and these 8 action requires different executor workers one another, then 

this scheduling problem is equivalent to open shop scheduling problem with 8 

machines). As far as we know, only a few approaches has been done about open 

shop scheduling with more than two machines [20]. We adopt the real-time AI 



Chapter 6 Conclusions ^ 

multiple method approach and combine two different scheduling algorithms: a 

greedy scheduling algorithm used in the task administrator and an advanced 

algorithm used in the scheduler worker. We give a scheduling model of the 

architecture, and present a theoretical analysis on the bounds of the competitive 

ratio of the proposed hybrid algorithm. 

A simulated system is implemented to test the task scheduling mechanism. 

The validity of the analysis is verified empirically. Experimental results also 

confirm the robustness, efficiency, and quality of the proposed algorithm. 

In summary, the contribution of this thesis is an architecture for real-time 

agents which can work well in real-time environments, even in heavy overload 

state. This architecture has high flexibility, and provides a pluggable template 

which supports to be initialized with different algorithms and data structures to 

acquire real-time agents with particular characteristics. Since we use a hybrid on-

line task scheduling mechanism in our architecture, it works well under various 

conditions. This mechanism has been implemented in a test system which we 

have presented and evaluated in this thesis. We expect that this work should 

help us to understand problems in the design and implementation of real-time 

software agent systems. It is our hope that the research presented in this thesis 

will contribute to the goal of constructing robust, flexible, and efficient softwares 

for future's decentralized, large-scale computer-controlled or intelligent systems. 

6.2 Future Work 

Our research has provided a promising approach towards real-time software 

agents and on-line task scheduling issues, but more work around this topic still 

exists. Here we provide a list of possible extensions and future research topics. 

• Real-time agent demonstrations 



Chapter 6 Conclusions 

The real-time arcade game we described in Section 3.4 is simple. To verify 

our agent architecture, we need to apply it in more complicated real time 

demonstrations, such as RoboCup Soccer [39]. The real-time requirements 

in this application are more demanding than the arcade game we imple-

mented. It will be challenging to evaluate whether our agent architecture 

actually performs well in this scenario or not. 

• Agent builder platform 

The high flexibility of our architecture makes it is possible to build a real-

time agent builder platform based on our architecture. As we introduce 

in this thesis, our architecture consists of a set of processes with fixed 

functions. Given a set of predefined rules and data structures, an agent 

can be generated automatically. Our goal is to design a platform which 

allows developers to quickly implement software agents and agent-based 

applications such as AgentBuilder [61 . 

• More performance analysis 

The theoretical analysis in this thesis only includes the most important 

parameters in the task scheduling problem. Parameters such as the action 

numbers per task, the relations among actions, the deadline distribution, 

task arriving distribution are not considered in the estimated bounds. Al-

though the experimental results illuminate that these parameters may not 

be as important as the parameters we have discussed, they still affect the 

performance of the system to a certain extent. In the future, it is necessary 

to give a more detailed theoretical analysis which include these parameters 

and explain how these parameters affect the performance. 



Bibliography 

1] p. Agre and D. Chapman. Pengi: An implementation of a theory of activity. 

In In Proceedings of the Sixth National Conference on Artificial Intelligence, 

pages 268-272, 1987. 

2] J.L. Austin, editor. How To Do Things With Words. Oxford University 

Press, 1962. 

3] R.P. Bonasso，D. Kortenkamp, D. Miller, and M. Slack. Experiments with 

an architecture for intelligent, reactiveagents. Intelligent Agents II, Lecture 

Notes in Artificiallntelligence, pages 187-202，1995. 

4] A.H. Bond and L. Gasser, editors. Readings in Distributed Artificial Intel-

ligence. Morgan Kaufmann, 1988. 

5] M. E. Bratman, editor. Intentions, Plans, and Practical Reason. Harvard 

University Press, 1987. 

6] R.A. Brooks. A robust layered control system for a mobile robot. IEEE 

Journal of Robotics and Automation, 2(l):14-23, 1986. 

7] R.A. Brooks. Intelligence without reason. In Ray Myopoulos, John; Reiter, 

editor, Proceedings of the 12th International Joint Conference on Artificial 

Intelligence, pages 569-595, Sydney, Australia, 1991. Morgan Kaufmann. 

78 



8] H. Burxhert and J. Muller. Ratman: Rational agents testbed for multi-

agent networks. In Decentralized A.L 3 - Proceedings of MAAMAW'91, 

pages 243-257, 1991. 

9] M.R. Carey and D.S. Johnson, editors. Computers and Intractability: A 

Guide to the Theory of NP-completeness. W.H. Freeman and Co., San 

Francisco, Calif., 1979. 

10] C. Castelfranchi. Guarantees for autonomy in cognitive agent architecture. 

In M. J. Wooldridge and N. R. Jennings, editors, Intelligent Agents: ECAI-

Workshop on Agents Theories, Architectures, and Languages, pages 56-

70, Berlin, 1995. Springer-Verlag. 

11] B. Chen, P.A. Vestjens, and G.J. Woeginger. On-line scheduling of two-

machine open shops where jobs arrive over time. Journal of Combinatorial 

Optimization, l(4):355-365, 1998. 

12] B. Chen and G.J. Woeginger. A study of on-line scheduling two-stage shops. 

In D.Z. Du and P.M. Pardalos，editors, Minimax and Applications, pages 

97-107. Kluwer Academic Publishers, 1995. 

13] S.E. Conry, K. Kuwabara, V.R. Lesser, and R.A. Meyer. Multistage negoti-

ation for distributed constraint satisfaction. IEEE Transactions on Systems, 

Man, and Cybernetics, 21(6): 1462-1477, 1991. 

14] V.G. Dabija. Deciding Whether to Plan to React PhD thesis, Stanford 

University, Department of Computer Science, 1993. 

15] B. D'Ambrosio. Resource bounded-agents in an uncertain world. In Proceed-

ings of the Workshop on Real-Time Artificial Intelligence Problems (IJCAI-

89, Detroit), 1989. 

16] R. Davis and R.G. Smith. Negotiation as a metaphor for distributed problem 

solving. In A.H. Bond L. Gasser, editor, Readings in Distributed Artificial 

79 



Intelligence, pages 333-356, San Mateo, CA, 1988. Morgan Kaufman Pub-

lishers. 

17] M. Drummond and J. Bresina. Anytime synthetic projection: Maximizing 

probability of goal satisfaction. In Proc. of 8th National Conference on 

Artificial Intelligence (AAAI 90), pages 138-144, Boston, MA., 1990. AAAI 

Press / MIT Press. 

•18] C. Elsaesser and M. Slack. Integrating deliberative planning in a robot 

architecture. In the AI A A/NASA Conference on Intelligent Robots in Field, 

Factory, Service, and Space (CIRFFSS pages 782-787, Houston, TX, 

1994. 

19] LA. Ferguson. Touring Machines: An Architecture for Dynamic, Rational, 

Mobile Agents. PhD thesis, UK, 1992. 

20] A. Fiat and G.J. Woeginger. Online Algorithms: the State of Art Springer, 

1998. 

21] T. Finin and R. Fritzson. Kqml - a language and protocol for knowledge 

and information exchange. In the 13th International Distributed Artificial 

Intelligence Workshop, pages 127-136, Seattle, WA, USA, 1994. 

22] R.J. Firby. Adaptive execution in complex dynamic worlds. Technical Re-

port RR-672, 1989. 

231 R.J. Firby. Building symbolic primitives with continuous control routines. In 

Proc. of the First Int. Conf. on AI Planning Systems, pages 62-29, College 

Park, MD, 1992. 

24] K. Fischer, J.P. Muller, M. Pischel, and D. Schier. A model for cooperative 

transportation scheduling. In Proceedings of the First International Confer-

ence on Multiagent Systems., pages 109-116, Menlo park, California, 1995. 

AAAI Press / MIT Press. 

80 



25] A. Garvey and V. Lesser. Design to time real-time scheduling. In COINS 

Technical Report 91-72, University of Massachusetts, 1991. 

26] A. Garvey and V. Lesser. A survey of research in deliberative real-time 

artificial intelligence. In Journal of Real-Time Systems, 1994. 

27] L. Gasser and M.N. Huhns. Distributed artificial intelligence. In Research 

Notes in Artificial Intelligence, San Mateo, CA, 1989. Morgan Kaufmann. 

28] E. Gat. Integrating planning and reacting in a heterogeneous asynchronous 

architecture for controlling real-world mobile robots. In AAAI-92, pages 

809-815, 1992. 

.29] M.R. Genesereth and R.E. Fikes. Knowledge Interchange Format, Version 

3.0 Reference Manual. Technical Report Logic-92-1, 1992. 

30] M.R. Genesereth and S.P. Ketchpel. Software agents. Communications of 

the ACM, 37(7):48-53, 1994. 

31] W.M. Gentleman. Message passing between sequential processes: the reply 

primitive and the administrator concept. Software-Practice and Experience, 

11:435-466, 1981. 

32] M. Grotschel, S.O. Krumke, J. Rambau, T. Winter, and U. Zimmermann. 

Combinatorial online optimization in real time. In Martin Grotschel, Sven O. 

Krumke, and Jorg Rambau, editors, Online Optimization of Large Scale 

Systems—Collection of Results in the DFG-Schwerpunktprogramm Echtzeit-

Optimierung groser Systeme (803 pages). Springer, 2001. 

33] J.Y. Halpern and Y. Moses. A guide to completeness and complexity for 

modal logics of knowledge and belief. Artificial Intelligence, 54:319-379, 

1992. 

81 



34] D. Hildebrand. An architectural overview of QNX. In Proceedings of the 

Usenix Worshop on Micro-Kernels & Other Kernel Architectures, Seattle, 

U.S.A., April 1992. 

35] E. Hodys. A scheduling algorithm for a real-time multi-agent system. In 

M.PHIL Thesis, Deaprtment of Computer Science, University of Rhode Is-

land, 2000. 

36] E. Huber and D. Kortenkamp. Using stereo vision to pursue moving agent 

with a mobile robot. In Proceeding of IEEE International Conference on 

Robotics and Automation, pages 2340-2346, 1995. 

37] M.N. Huhns and M.P. Singh. Readings In Agents. Morgan Kauffman Pub-

lishers, Inc., SanFrancisco, 1998. 

38] L. P. Kaelbling and S. J. Rosenschein. Action and planning in embedded 

agents. In P. Maes, editor, Designing autonomous agents，pages 35-48, 

Cambridge, MA, 1990. MIT Press. 

39] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara. 

Robocup: A challenge problem for ai and robotics. In H. Kitano, editor, 

RoboCup-97: Robot Soccer World Cup I，volume 1395 of Lecture Notes in 

Artificial Intelligence, pages 1-19. Springer-Verlag, Berlin, Heidelberg, New 

York, 1998. 

40] M. Klein. Supporting conflict resolution in cooperative design systems. 

IEEE Transactions on Systems, Man, and Cybernetics (Special Section on 

DAI), 21(6), / 1991. 

41] S. Kraus, K.P. Sycara, and A. Evenchik. Reaching agreements through 

argumentation: A logical model and implementation. Artificial Intelligence, 

104(l-2):l-69, 1998. 

82 



42] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in hard 

real time environment. Journal of the ACM, 20(1):46-61, 1973. 

43] J.W.S. Liu, editor. Real-Time Systems. Prentice-Hall, 2000. 

44] QNX Software Systems Ltd. QNX Operating System: System Architecture. 

1993. 

45] D.M. Lyons and A.J. Hendriks. A practical approach to integrating reac-

tion and deliberation. In J. Hendler, editor, Artificial Intelligence Planning 

Systems: Proceedings of the First International Conference, pages 153-162, 

1992. 

.46] P. Maes, editor. Designing Autonomous Agents. The MIT Press, 1990. 

47] F.V. Martial. Interactions among autonomous planning agents. In Proceed-

ings of the First European Workshop on Modelling Autonomous Agents in 

a Multi-Agent World, pages 105-119, 1989. 

48] D.P. Miller and M.G. Slack. Increasing access with a low-cost robotic 

wheelchair. In Proceedings of IROS'91 pages 1663-1667, 1994. 

49] J.p. Muller, editor. The Design of Intelligent Agents: A Layered Approach. 

(LNAI Volume 1177). Springer-Verlag: Berlin, Germany, 1997. 

50] H. Nakashima and I. Noda. Dynamic subsumption architecture for pro-

gramming intelligent agents. In Proceedings of the International Conference 

on Multi-Agent Systems, pages 190 — 197. AAAI Press, 1998. 

.51] U. Neisser. Cognition and Reality: Principles and Implications of Cognitive 

Psychology. W.H. Freeman, 1976. 

52] A. Newell and H. Simon. Computer science as empirical enquiry: Symbols 

and search. Communications of the Association for Computing Machinery, 

19:113-126, 1976. 

83 



53] S. Phillips and J. Westbrook. On-line algorithms: Competitive analysis and 

beyond. In Algorithms and Theory of Computation Handbook, CRC Press, 

1999. 1999. 

54] A.S. Rao and M.P. Georgeff. Modeling rational agents within a BDI-

architecture. In James Allen, Richard Fikes, and Erik Sandewall, editors, 

Proceedings of the 2nd International Conference on Principles of Knowledge 

Representation and Reasoning, pages 473-484. Morgan Kaufmann publish-

ers Inc.: San Mateo, CA, USA, 1991. 

55] A.S. Rao and M.P. Georgeff. BDI-agents: from theory to practice. In Pro-

ceedings of the First Intl. Conference on Multiagent Systems, San Francisco, 

1995. 

56] J.S. Rosenschein. Rational interaction: Cooperation among intelligent 

agents. Phd thesis, Computer Science Department, Stanford University, 

1985. 

57] J.S. Rosenschein and G. Zlotkin. Rules of Encounter - Designing Conven-

tions for Automated Negotiation Among Computers. MIT Press, 1994. 

58] J.R. Searle. Speech Acts. Cambridge University Press, New York, 1969. 

59] A. Sloman and R. Poli. SIM AGENT: A toolkit for exploring agent designs. 

Intelligent Agents Vol. II (ATAL-95), pages 392-407, 1996. 

60] A.S. Tanenbaum. Distributed Operating System. Prentice-Hall, Inc., New 

Jersey, 1995. 

61] A. Web. Agentbuilder - an integrated toolkit for constructing intelligence 

software agents, 1999. 

62] G. Weiss, editor. Multiagent Systems: A Modern Approach to Distributed 

Artificial Intelligence. The MIT Press, 1999. 

84 



63] D.E. Wilkins, K丄.Myers, J.D. Lowrance, and L.P. Wesley. Planning and 

reacting in uncertain dynamic environments. In Journal of Experimental an 

Theoretical AI, 7, 1995. 

64] C. Wong, D. Kortenkamp, and M. Speich. A mobile robot that recognizes 

people. In IEEE International Conference on Tools and Artificial intelli-

gence^ 1995. 

65] M.J. Wooldridge. On the Logical Modelling of Computational Multi-Agent 

Systems. PhD thesis, Manchester, UK, 1992. 

66] M.J. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. 

In Knowledge Engineering Review, 1995. 

67] S. Yu, M. Slack, and D. Miller. A streamlined software environment for 

situated skills. In the AIAA/NASA Conference on Intelligent Robots in 

Field, Factory, Service, and Space (CIRFFSS'94), 1994. 

68] G. Zlotkin and J.S. Rosenschein. A domain theory for task oriented negoti-

ation. In Ruzena Bajcsy, editor, Proceedings of the Thirteenth International 

Joint Conference on Artificial Intelligence, pages 416-422, San Mateo, Cal-

ifornia, 1993. Morgan Kaufmann. 

85 



.
•

 ..

 
,

 
•
 

、

、

‘

 
•

 
，

 .
.
.
、

 
.

、
广
多
 

：：

 
.

 
.

 
.

 

•
 

.

.

 
二

 
；

 ？
i
 

卜

-

-

 .

 L

 U

 k
 

.
 ：
.

 

.

“

 .

 .

 J
i
 

’

 
：

 

4
丄
 

.

 
.

 
,

 
-
二
 

.

 “
 

•
—
.
：
.
•
-
,
-
•
.
 -

 5
 i

 ̂

 ̂

 

.
二
 

.

 V
.

 -

 ̂

 V
 

：
 -

 .

 .

 T
<

 “
 

.

.

.
：
.
.
-
 .
-
.
-
r

 ̂

 ̂
^
 

-
 
〉

 
：

 -

 •

 .

 •

 J
 

:
.
.
-
.
:
.
,

、
-
A
-

 .

 t
，
 

.

 
-

 
,

 
•

 
•

 
二
〕
 

--
 •

 -

 •

 ,

 ‘

 .

 I
 

.
 

,

-

 M
.

 .

 
.

 
^

 
•

 
.

 
；

 L
 

‘
 .

 -

 .

 .

 -

 ,

 ‘

 ̂

 ̂
^
 

.
•
.
:
;
.
-
;
，
 

.

.

.

.

.

‘

.

.

 
.

 
.

 
一

 
.

 
.

 
-

 
^
 

，....r、n
 ••

 -

 -

 -

 

^
 

•

 „

 .

 ,

 l
、
r
1
 

.

 .

 

,
 

.
 

•
 

.

 
r
-
.
.

 V
M
 

-
 •

 .

 =•

 •

 t
:
 

:
」
/
.
、
.
，
.

 

"

.

.

.

 .

 -
•
•
,

—
—
.
 

、“

 .

 *

 .

 :
 

,

 .

 ,

 .

 .

 ;

 

r
 

臓
變
.
：
.
 
•

 
•

 
:

 
.

 
.

 
•

 
P
M
 

-
 

,

-

 .
.

 

-
I
.
 .f
e
 

f

 ,

 •

 

1

1

 

’
 •

々
/
 /

 f
.
.

】
、
 

场
趣〔「.V:.,-
:
,
.
.
.
」
：
.
&
.
•••

 
....

 .

 ..

 t

 -

 
-

 
-

 ...

 
.

 -..

 ？
‘

 「
二
.
，
.
碌
，
〒
；
小
-
^
-
德
缀
 

、
 T

 .

 .

 
....

 1
.

 .

 U

 ̂

 

.

 
.

.

 
：

 ，：

 
”

 
>
 

P
，
，
.
 ：：

 
•
 
.

 ’
_

 ：
、
：
.
.
：
皇
 

i
 ̂

 1
1
5

 

J
 f
 

J
^
!

 f
 

n
.
 
^
i
.

 „

 、

 .
"
.
,
.
-
.
•
-
-
_
.
’
_

 I
:
-

 

-
>

 c

 .

 .4.

 1

 
.

掩
 I
-

 ？，

 ̂

 f
 

t
L
y
 L
r
l

 t

 ̂

 I

 4
 



- — — - • - - _ _ -- ！ 

C U H K L i b r a r i e s 

i l 酬 ^ ^ 
••3TSETMS 


