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ABSTRACT 

Video-on-demand (VoD) systems have traditionally been built around the 
client-server architecture, where a video server stores compressed video for delivery 
to clients connected by a network. With increasing demand for large-scale VoD 
systems, researchers have spent considerable effort in designing scalable, reliable, 
and cost-effective video servers. Nevertheless, a video server can only have finite 
capacity. As the system scales up, the server will need to be upgraded and this 
becomes increasingly expensive as the system scales beyond thousands of users. In 
this thesis, we investigate a radically different architecture where the bottleneck — 
video server, is eliminated altogether. Specifically, this peer-to-peer, server-less 
architecture relies on the client machines for distributed data storage and delivery. A 
client initiating a new streaming session will first locate other clients where the 
requested stream is stored, and then requests delivery of the stream directly from 
those clients instead of from a central server. This fully distributed architecture is 
inherently scalable as the storage and delivery capacity grows with the number of 
clients in the system. Additionally, we develop fault-tolerance algorithms for the 
system so that stream delivery can be maintained even if some of the clients fail. Our 
results show that the system can be scaled up to over 1000 nodes with reliability even 
exceeding those of dedicated video servers. 
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摘要 

傳統的視頻點播(VoD)系統是採用伺服器對用戶端(client-server)的結構，當中 

伺服器將視像資料透過網路傳送到用戶端播放。在對大規模的視頻點播系統的 

需求不斷增加下，已有不少的硏究去設計高升級性的、可靠的、及高成本效益 

的視頻伺服器。但是伺服器的容量始終是有限的。當系統的規模不斷擴大，伺 

服器便需要升級來增加容量。特別是當用戶數目達至數以千計時，伺服器升級 

所需的成本更是十分昂貴。在本論文中，我們硏究一種突破性的結構，將傳統 

系統中的容量限制——伺服器移除。更具體的說，這種端點對端點 

(peer-to-peer)�無伺服器（server-less)的結構是使用用戶端的電腦作爲分散式 

(distributed)視像資料的儲存及傳送。當用戶端要求播放視像時，用戶端首先需 

要找出系統中其他儲存視像的用戶端，並且要求其他用戶端將視像資料傳送過 

來播放，而並非對伺服器提出要求。由於系統的儲存及傳送容量會隨着用戶端 

數目的增長而提升，所以這分散式結構擁有十分高的可升級性。除此之外，透 

過我們提出的容錯(fault-tolerance)機制，即使部分用戶端離線，這系統仍可維 

持視像資料的傳送。我們得出的數値結果顯示這系統的規模可擴大至超過一千 

個用戶端，並且系統的可靠性更可超越專業的視頻伺服器。 
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Chapter 1 
INTRODUCTION 

Current video-on-demand (VoD) systems are commonly designed around the 
client-server architecture. Under this architecture, a client sends a request to a video 
server for a video title and then the server transmits video data to the client for 
playback. As the number of user increases, the server will eventually reach its 
capacity limit. To further increase the system capacity, one can add more servers and 
distribute the requests to them, such as distributed server [1-2] and parallel server [3-7: 
architectures. As the system load is shared among multiple servers, the total system 
capacity can then be extended when more servers are added to the system. 

Nevertheless, the cost of upgrading servers can be substantial, as video servers 
typically require high-end server hardware with high I/O bandwidth, large memory 
capacity, as well as storage capacity. Even in the best case，such as parallel server and 
distributed server architectures that do not require data replication, the server cost will 
still increase at least linearly with the traffic demand. Moreover，apart from server 
cost, the distribution network will also need to be upgraded with more bandwidth to 
carry the vast amount of video traffic to the users. Given the high cost of long-distance 
backbone networks, it is no wonder why metropolitan-scale VoD services are still 
uncommon in practice. 

1 



In this study, we take a radically different approach to building large-scale, 
scalable, reliable, and cost-effective VoD systems. In particular, we turn our attention 
to an often neglected element in a VoD system — the client-side device or commonly 
called the set-top box (STB). 

Developments of STB have continued for many years and current STBs not 
only are low cost, but also are relatively powerful due to the rapid technological 
development and the economy of scale achieved by the personal computer industry. 
While early generations of STB are very limited in function and capability, the current 
trend in STB development is towards evolving from a simple video-receiving and 
decoding device into a home entertainment center with functions like VoD, 
TV-over-Intemet, harddisk-based personal video recorder, messaging center, web 
browser, CD player, DVD player, digital audio jukebox, or even game console. This 
evolution not only greatly enhances the usefulness of a STB, but also opens a radically 
new way to build VoD systems. 

This motivates us to take advantage of the increased storage and processing 
capability of STBs to build a completely distributed VoD system that does not require 
dedicated server at all. We call this a server-less architecture for obvious reason. In 
this server-less architecture, all STBs, or called nodes in this thesis, in the system 
serve both as a client and as a mini-server. Video data are distributed among the nodes 
and multiple nodes work together to serve video streaming requests from other nodes. 
The beauty of this architecture is that the system is inherently scalable, i.e., when new 
users are added to the system, they add both streaming load and streaming capacity to 
the system. Moreover, network costs can also be reduced because the nodes are likely 
to be clustered together, reducing the need for costly long-distance network backbone. 
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However, building a server-less VoD system is not without challenges. First, 
the nature of a distributed architecture calls for a data distribution and placement 
policy. Even more challenging is the fact that the system not only needs to correctly 
deliver data from distributed hosts, but also needs to deliver them in time to ensure 
continuous, jitter-free video playback. Second, in a distributed system with 
potentially thousands or more autonomous nodes, node failures will become the norm 
rather than the exception. Therefore a fault tolerant mechanism to sustain node 
failures becomes an essential part of the system. Third, as nodes join and leave the 
system, we need to redistribute the data and load to ensure load balance (nodes joining) 
and to maintain system reliability (nodes leaving). Fourth, in practice nodes in the 
same cluster themselves may not be homogenous in terms of capability (e.g. different 
storage capacity, network bandwidth) and/or load (e.g. multi-user nodes). Finally, to 
address the needs of commercial service providers, one will also need a content 
protection mechanism to prevent ordinary users from pirating the video contents in a 
bit-for-bit manner. 

Obviously there are many more challenges in addition to the above five for 
such a radically different architecture. Our goal in this study is to establish the 
feasibility of the server-less architecture and to investigate its basic properties such as 
resource requirement and system performance. So we address the first two of the 
above-mentioned challenges in this study. The remaining challenges involve further 
extending the architecture to adapt to dynamic reconfiguration, heterogeneous nodes 
and content protection, so they are left for future work. 

In this thesis, we show the feasibility of building VoD systems based on the 
server-less architecture. We present a complete system design, including a data 
placement policy, a retrieval and transmission scheduler, and a fault tolerant 
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mechanism, and analyze the system's resource requirements and performance. Our 
results show that it is feasible to build a VoD system using the server-less architecture 
with resources available in current STBs or ordinary PCs, such as buffer and storage 
capacity. Moreover, the system can achieve system-level reliability using the 
proposed fault tolerance mechanism, comparable to or even exceeding those of 
dedicated high-end video servers. 

The rest of the thesis is organized as follows: Chapter 2 reviews related works 
on large-scale video-on-demand systems and large-scale distributed file systems; 
Chapter 3 presents the proposed server-less VoD architecture; Chapter 4 presents a 
performance model for the architecture; Chapter 5 studies system reliability issues; 
Chapter 6 evaluates performance of the architecture using numerical results; Chapter 
7 investigates a multiple parity groups architecture to enhance scalability; and 
Chapter 8 concludes the thesis. 
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Chapter 2 
RELATED WORKS 

In this chapter, we first review in section 2.1 a number of previous related works and 
then compare them with our approach in section 2.2. 

2.1 Previous Works 
Current VoD architectures can be classified into centralized [8] and distributed [1-7: 
9-10] architectures. In centralized architectures, only the central server serves user 

requests and so it becomes the system's primary bottleneck assuming the network 
bandwidth is sufficient. By contrast, requests are shared by multiple servers in 
distributed server architectures such that capacity can be scaled up to beyond that of a 
single server by adding more servers to the system. 

Serpanos, et al. [8] compared the performance of centralized and distributed 
architectures for video servers. They concluded that in general a centralized 
architecture is preferable in terms of performance and management, but at the expense 
of higher cost. To improve cost effectiveness, distributed [1-2] or parallel [3-7] server 
architectures are commonly employed. For example, one can replicate video data to 
multiple servers to share the load. To reduce the storage overhead incurred in video 
replication, one can limit replication to the more popular video titles. For example, On, 
et al. [1] studied replication assignment and update frequency in relation to the 
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desired data availability, consistency, and QoS requirement. Serpanos, et al [2 
proposed a MMPacking video assignment algorithm based on video popularity to 
achieve load and storage balance. 

Another approach is the use of parallel server architectures studied by Lee 
'3-4], Bernhardt, et al. [5], Wu and Shu [6], and Tewari, et al. [9] that employ 
server-level data striping. Compared to replication and caching, parallel server 
architectures eliminate the need for data replication and are inherently load balanced. 
Moreover, one can introduce data and hardware redundancies into the system to 
achieve server-level fault tolerance [7] [9-10], making the system even more reliable 
than central-server systems. 

Another area related to our study is the peer-to-peer (P2P) architecture 
popularized by software systems such as Napster [11] and Gnutella [12]. These P2P 
systems are primary designed to function as a large distributed storage system [13-14: • 
In a P2P system, a user shares data with a group of other users. A user can search for 
the desired data by submitting a query to its neighbors or to a directory server. Once 
the desired data are located, the user downloads the data directly from the other user's 
computer. As the data are selectively replicated among user nodes, this structure 
allows sharing of data by a large community at low cost, as a dedicated server is no 
longer needed. The main challenge comes from the complexity in distributing 
replicated data to achieve load balance and fault tolerance [14]. As hosts in a P2P 
system have varying network bandwidth and processing capability, quality-of-service 
cannot be guaranteed, and slow or even broken connections are not uncommon. 
Nevertheless, the ease of setting up and participating in a P2P system and the need for 
a decentralized data-sharing platform has outweighed these limitations. 
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Other distributed file systems such as Coda [15], Farsite [16] and OceanStore 
[17]，have also been proposed and studied over the years. Coda is developed by 
Satyanarayannan et al. [15] to provide a highly available file system for distributed 
workstation environment. It employs the client-server architecture and uses 
server-level replication to achieve high availability with tradeoffs in data consistency. 
A client connects to the server upon user requests and caches locally the needed data 
to provide continued access during temporary failures such as network failure. Farsite 
is developed by Bolosky, et al. at Microsoft as a distributed file system [16]. Farsite 
does not assume mutual trust among the client machines and their research focus is to 
provide security, availability，and reliability by distributing multiple encrypted 
replicas among the client machines. Bolosky, et al. concluded that Farsite is feasible 
on the current desktop infrastructure in the commercial environment based on 
measurements of file-system space, machine availability, and machine load of the 
client machines at Microsoft. Finally, Kubiatowicz et al. [17] developed OceanStore 
as a distributed storage system built from untmsted machines to achieve global-scale 
persistent storage. Data in OceanStore are protected through redundancy and 
cryptographic techniques. Data replicas are free to migrate among geographically 
distributed servers so as to achieve global file availability in case of regional failures. 

2.2 Contributions of this Study 
Compared to traditional client-server architectures, our approach decentralizes and 
distributes the server functions to the clients. This server-less architecture eliminates 
the primary bottleneck — video server, from the system. This not only improves the 
scalability of the system, but also eliminates the costs of the expensive video servers. 
Moreover, despite the fact that nodes in a server-less VoD system have significantly 
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lower reliability, we can achieve system-level reliability exceeding even that of 
dedicated video servers by means of erasure-correcting codes and fault tolerant video 
streaming techniques. 

Compared to current P2P systems such as Naptser and Gnutella, and 
distributed file systems such as Coda, Farsite and OceanStore, the architecture 
investigated in this study serves completely different applications, i.e. 
video-on-demand versus file sharing. Compared to file sharing, in addition to the 
challenge of data availability and content search/retrieval, a VoD system must be 
capable of guaranteeing stringent performance requirements that are essential to the 
correct operation of the system. The server-less VoD architecture investigated in this 
study is specifically designed to address these challenges for building VoD services 
comparable to or even better than existing client-server VoD systems. 

This study, to the best of our knowledge, provides the first result to clearly 
demonstrate the feasibility of building VoD systems based on the server-less 
architecture. We present a complete system design, including a data placement policy， 

a retrieval and transmission schedulers, and a fault tolerant mechanism, and analyze 
the system's resource requirements and performance. The results show that it is 
indeed feasible to build VoD systems without video servers using today's computing 
and networking hardware, and more significantly, achieve comparable or even better 
performance and reliability than traditional VoD architectures with dedicated video 
servers. 
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Chapter 3 
ARCHITECTURE 

In this chapter, we present the details of the server-less architecture, including the data 
placement policy, the retrieval and transmission schedulers, and the fault tolerant 
mechanism. A server-less VoD system comprises a pool of user nodes connected by a 
network as shown in Figure 3.1. Each node has its own CPU, memory, and disk 
storage. Inside each node there is a mini video server software that serves a portion of 
each video title to other nodes in the system. Unlike conventional video server, this 
mini server streams a much lower aggregate bandwidth and therefore can readily be 
implemented in today's STBs and PCs. For large systems, the nodes can be further 
divided into clusters where each cluster forms an autonomous system that is 
independent from other clusters. The system designer can take advantage of clustering 
to group nodes according to their geographical locations or network topology to 
localize network traffic. Many other potential applications and optimizations are also 
possible and further research is warranted to investigate the challenges and 
opportunities of clustering in a server-less VoD system. In the rest of this study, we 
will focus on a single, independent cluster. 
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Figure 3.1. Architecture of a server-less VoD system. 

3.1 Data Placement Policy 
As discussed in section 2.1, distributed systems often employ data replication and 
caching to improve scalability. However, unlike video servers where storage capacity 
is usually large, a node in the form of a STB or a PC will have relatively limited 
storage capacity. Therefore we propose the use of data striping instead of replication 
to reduce the storage requirement. Another advantage of striping over replication is 
the amount of redundancy needed to achieve the same level of reliability. In particular, 
Weatherspoon et al. [18] concluded that systems based on striping and 
erasure-correcting codes use an order of magnitude less bandwidth and storage to 
provide similar system reliability as replicated systems. 

Under the striping-based data placement policy, a video title is first divided 
into fixed-size striping units (or called blocks) of Q bytes each. And we will discuss in 
chapter 6.4 about the system parameters for determining the striping size Q. These 
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Figure 3.2. A striping-based data placement policy. 

blocks are then distributed to all nodes in the cluster in a round-robin manner as 
shown in Figure 3.2. 

Strictly speaking, small storage imbalance can still exist if one always starts 
placing the first block of a video title to the same node (e.g. node 0). This is because 
the total number of blocks for a video title may not be exact multiples of the number 
of nodes in the system and therefore, the last striping group may have fewer blocks 
than the number of nodes in the system. This leads to a small storage requirement 
difference of one stripe unit among nodes in the cluster as shown in the example in 
Figure 3.3. 

To tackle this storage imbalance problem, we can decrease the block size of the 
last stripe of a video to evenly distribute data to all the nodes in the cluster. Let N be 
the number of nodes in the cluster. Suppose there are L (L<N) blocks in the last stripe 
of a video title, then we simply reduce the block size of the last stripe from Q to 
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Figure 3.3. An example of storage imbalance of 5 nodes with 18 striping blocks. 

& = � Q (3.1) 
bytes so that the remaining data will be evenly distributed to all nodes as shown in 
Figure 3.4. 

This node-level striping scheme does not require data replication and at the 
same time can balance the storage requirement equally among all nodes in the cluster. 
However, the system will need to coordinate all nodes in the cluster to participate in 
each and every video streams. We address this challenge in the next section. 
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Figure 3.4. Storage imbalance solved by decreasing block size to Q ’ bytes in the final 
assignment round. 

3.2 Retrieval and Transmission 
Scheduling 

To initiate a video streaming session, a receiver node will first locate the set of sender 
nodes carrying blocks of the desired video title, the striping policy and other 
parameters (format, bitrate, etc.) through the directory service. The receiver node then 
sends requests directly to the sender nodes, using a reliable multicast transport 
protocol for example. The sender nodes upon receiving the request will begin 
retrieving video data for transmission to the receiver node. Assume all video titles are 
constant-bit-rate (CBR) encoded and share the same bitrate R^ bytes per second. Then 
a sender node will serve up to TV video streams, of which N-\ of them are transmitted 
while the remaining one played back locally. As each video stream is served by all N 
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nodes concurrently, a sender node only needs to deliver a bitrate of RJN for each 
video stream. 

As a sender node is similar to a mini video server, we can adopt existing video 
server schedulers for use in the sender nodes. Many existing video server designs 
employ round-based schedulers such as SCAN [19] and its variants. A more general 
version is the Grouped Sweeping Scheme (GSS) proposed by Yu, et al [20]. 
Compared to the more common SCAN scheduler that maximizes throughput at the 
expense of buffer overhead, GSS allows one to control the tradeoff between disk 
efficiency and buffer requirement. This is a useful feature because a node will have 
relatively limited buffer capacity and GSS allows us to tradeoff between buffer 
requirement and disk throughput. 

In GSS，streams are divided into g groups in which retrievals within a group 
are scheduled using SCAN. The groups are served in a round-robin manner as shown 
in Figure 3.5 for a GSS with three groups. We call the period of serving a group a 
micro round and the period of serving all groups once a macro round. If one set 
and g=N then GSS reduces to SCAN (higher throughput, larger buffer requirement) 
and FCFS (lower throughput, smaller buffer requirement) respectively. Intermediate 
values of g can be used to tradeoff between disk efficiency and buffer requirement. 

Given a data block size of Q bytes, up to Nig data blocks will be retrieved in a 
micro round. These retrieved data blocks will then be transmitted at a rate of RJN for 
a duration equals to g micro rounds (i.e. a macro round). Let Tg and 7}be the micro 
round and macro round lengths respectively. We can then obtain them from 

『/=《[,=学 (3.2) 
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Figure 3.5. The Grouped Sweeping Scheme (shown with three groups, transmission is 
like fluid flow). 

However, a problem arises when we employ the GSS scheduler in a distributed 
system. Specifically, as nodes run independently from each other in the system, their 
clocks are not precisely synchronized. Although there are distributed 
clock-synchronization protocols [21] that can be used to synchronize their internal 
clocks, slight deviation, called clock jitter, is inevitable. This may cause different 
nodes in the system to admit a video stream to different micro rounds in the GSS 
scheduler and eventually leads to inconsistent schedules and load balance problems. 
This problem has been previously investigated in the context of parallel video server 
[4]. Let d be the maximum transmission time for a request. Assuming the clock jitter 
between any two nodes in the cluster is bounded by a constant, say r, then we can 
prevent inconsistent scheduling by delaying the admission of all new video streams 
by 

^ - — — + 1 (3.3) Tf 
micro rounds. Please refer to Appendix A for the proof and interested readers are 
referred to [4] for details of the original problem and the solution in the context of a 
parallel video server. 
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Figure 3.6. The GSS with transmission blocks for transmission. 

Reconsidering the GSS model as depicted in Figure 3.5, there is an underlying 
assumption that masks another potential problem. In particular, the depicted model 
assumed that data are transmitted continuously like fluid flow. In practice, this is 
clearly not the case as data are usually transmitted in discrete units, i.e. packets, 
complete with header and other control information embedded. In the packetized 
transmission model, each retrieved block is divided into packets, or called 
transmission blocks, of size t/bytes for transmission. That is, 

Q = bU (3.4) 
where b is an integer. Figure 3.6 redraws the GSS scheduler incorporating this 
packetized transmission model with b=3. This packetized transmission model also 
reveals a challenge and an opportunity. We first consider the opportunity. 

Specifically, as striping is done in units of Q bytes, a client receiving the 
t/-bytes packets cannot playback the data until the block of b packets is completely 
received and this translates into buffer requirement. The packetized transmission 
model, however, suggests that we can reduce this buffer requirement simply by 
striping video data in units of t/bytes instead of Q bytes as shown in Figure 3.7. In 
this case, the client can playback video data immediately after receiving packets 0 to 4 
instead of having to wait until packets 0 to 14 are all received, thereby reducing the 
buffer requirement and startup latency accordingly. 
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Figure 3.7. The video data is striped across the transmission block of size f/bytes. 

On the other hand, this packetized transmission model also creates a new 
challenge. In particular, if the nodes in the cluster transmit packets to the same 
receiver simultaneously, the resultant traffic burst will likely cause congestion when it 
reaches the client node as shown in Figure 3.8. To avoid this problem, we can stagger 
the transmission of packets destined to the same client node within a micro-round as 
depicted in Figure 3.9. The resultant traffic will then be smoothed out. 
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Figure 3.8. The receiver encounter traffic burst if all nodes transmit data packets at the 
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3.3 Fault Tolerance 
In a server-less VoD system, fault tolerance becomes an essential capability as 
reliability of STBs and PCs is significantly lower than dedicated video servers located 
in a data center run by professional operators around the clock. Moreover, given the 
relatively large number of nodes, the system needs to expect and prepare to recover 
from not a single, but multiple simultaneously node failures. 

When a node fails, all data stored in that particular node becomes unavailable. 
In communications terminology this is called data erasure. To recover from data 
erasures, erasure-correcting codes such as the Reed-Solomon Erasure Correcting 
(RSE) Code [22-23] can be used. Specifically, a (n, A)-RSE codeword comprises n 
symbols of which (n-h) of them are message symbols (i.e. data) and the remaining h 
are redundant symbols. One can recover all {n-h) message symbols as long as any 
(n-h) out of the n symbols are correctly received. Another paper of Rizzo [24' 
implemented the software erasure code encoder and decoder that can achieve the 
processing rate of several MB per second running on a Pentium 133 machine. With 
the current machines commonly equipped with Pentium III or 4 processors, they can 
provide sufficient processing power to perform erasure correction for playback. 

By extending the striping-based placement policy in section 3.1 with a (N, 
/z)-RSE code, the system will have sufficient redundant data for a receiver node to 
recover all video data with up to h simultaneous node failures in the cluster. To 
accommodate the RSE-code, we need to modify the placement policy and the 
schedulers. For the placement policy, an additional encoding step will be needed to 
compute the h redundant blocks for each group of (N-h) video data blocks. Moreover, 
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as now only (N-h) of the stored data are playable data，we will need to increase the 
striping block size from Q bytes to 

f N ^ Qr=Q\-^ (3.5) VN-hJ 
bytes to maintain the same amount of playable video data in a striping group. Hence 
the transmission block size also increases from U to U” bytes. 

O ( N � = U (3.6) ‘ b [N-hJ 
For the disk scheduler, the retrieval block will be increased from Q bytes to Qr 

bytes. Transmission rate will increase from R^ to 
f N ^ 
{N-hJ 

to maintain the same video bitrate. Therefore incorporating redundancy incurs 
overhead in both disk retrieval and network transmission. We investigate in chapter 5 
the amount of redundancy required to achieve a given system reliability. 

21 



Chapter 4 
PERFORMANCE MODELING 

In this chapter, we derive a performance model for the server-less architecture. In 
particular, we derive three key system requirements - storage requirement, bandwidth 
requirement, and buffer requirement; and one performance metric — system response 
time. We choose response time as the performance metric because it is the most 
visible performance metric while compared to storage, bandwidth and buffer 
requirement from the end-user perspective. For simplicity, we ignore network 
transmission delay and loss for new stream requests. In the case that the network 
transmission delay and loss cannot be ignored, we can increase the receiver buffer to 
tolerate the delay once the maximum and minimum delay are known, and increase the 
system redundancy level h to compensate for the transmission loss. Moreover, as 
discussed in chapter 3.3, today's machines can provide sufficient processing power to 
perform erasure correction for playback, so we also ignore the processing delay for 
simplicity. 

4.1 Storage Requirement 
Storage requirement measures how much disk storage per node is required to 
accommodate a given number of video titles. Under the striping-based placement 
policy presented in section 3.1, video data are striped across all nodes in the cluster 
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and so the storage requirement is divided equally among all nodes. It is also easy to 
see that the storage requirement is inversely proportional to the cluster size. Therefore 
in terms of storage requirement, larger cluster size is desirable. 

Let Sa be the combined size of all video titles to be stored in the cluster, then 
the storage requirement per node, denoted by Sn will be given by 

� = 1 (4.1) 
If a (N, Z^-RSE code is employed in the placement policy, then additional storage will 
be needed to store the redundant data and the storage requirement increases to 

N-h N-h 
Given a set of video titles to be served in a cluster and the storage capacity of the 
nodes, the storage requirement then determines the lower limit on the cluster size. 

4.2 Network Bandwidth Requirement 
Network bandwidth usage reaches maximum when all nodes in the cluster stream 
videos simultaneously. Without redundancy, each node transmits video data to (A^-1) 
other nodes in the cluster, with each stream consuming a bitrate of Ry/N bps. 
Therefore the aggregate network bandwidth requirement for a node without 
redundancy is 

c J ^ R v (4.3) 

If a � N , /z)-RSE code is employed in the placement policy, then additional 
network bandwidth will be needed to send the redundant data and the per-node 
aggregate network bandwidth requirement increases to 

N N-\ = (4.4) N-h N-h 
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With the node bandwidth requirement obtained, the network switching 
capacity then determines the upper limit on the cluster size because the required 
network switching capacity increases linearly with the cluster size. 

4.3 Buffer Requirement 
Two types of buffers are required in a node. First, sender buffers are required to store 
data being retrieved from the disk and for data being transmitted through the network. 
Second, receiver buffers are required for receiving data for video playback. 

We first consider the sender buffer requirement. From the GSS study [20], we 
know that the sender buffer requirement is 

f 0 1 + - NQ (4.5) V gJ 
For the case of using a (N, h)-RSE code, the retrieval block size is increased 

from Q bytes to Qr bytes. So replacing the Q with Qr in the above expression, the 
sender buffer requirement for (TV, h)-RSE code is given by, 

f N Kr = l + _ m 
r n # � （4.6) 

= 1 + p 

[ g ) i N - h ) 乂 

Next, we derive the receiver buffer requirement. Using the approach similar to 
that in [4], we can obtain the receiver buffer requirement for the case of no 
redundancy. Interested readers may refer to Appendix B for the derivations. 

及 N U (4.7) 
I if ) 

For the case with a {N, /z)-RSE code employed for redundancy, an additional 
erasure correction step will need to be performed before data are ready for playback. 
With reference to section 3.3, one can recover all video data as long as at least (N-h) 
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out of the N blocks in a striping group are correctly received. This erasure correction 
process has two properties that affect buffer management. First, a client node cannot 
perform erasure correction until at least (N-h) blocks in a striping group are available. 
Second, having more than (N-h) blocks in a striping group offers no advantage to the 
erasure correction process. 

Because of these two properties, we can use the same buffer size as in the case 
of no redundancy. To see why, first consider the buffer for receiving data from the 
network. The two properties imply that the client node only needs to receive (N-h) 
blocks for each striping group. Once (N-h) blocks are available, additional arriving 
blocks from the same striping group can be discarded because the erasure correction 
process will recover the original (N-h) blocks of video data regardless of which (N-h) 
blocks out of the striping group are received. 

Now recall from (3.6) that the transmission block size under redundancy is 
increased to Ur. Then the buffer requirement will become 

万"=2 1+ 夢 { N - h ) U ^ (4.8) I "J 
Substituting Ur with Uin (3.6) gives 

, � "I� 
1+ — � N - h � ^ ^ U ’ T f , N-h 

；「，、 (4.9) 
bT 

二 2 1+ — NU I Tf ) 

which is the same as the case without redundancy. 
To obtain the total buffer requirement, we sum up the sender and receiver 

buffer requirement. However, as only (TV-l) data streams are transmitted through 
network and the remaining one data stream is used for local playback, the buffer for 
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this local stream is double counted if it is considered separately in both sender and 
receiver buffer. Hence, b buffer blocks of size U bytes are subtracted from the 
receiver buffer to optimize the buffer requirement for the case without redundancy. 

~ / r _ 
hT 

= 2 \+ — N-b U (4.10) 
L V f̂ J _ 

For the case with redundancy, subtracting b buffer blocks of size U” from (4.8) 
gives, 

厂广 r 1 
二 2 1+ — {N-h)-b U, 

_ V ^f J _ 
=2卜尝 j{N-h)-b -^U (4.11) 

_ I J 叫 

Combining (4.5) and (4.10), we can then obtain the total buffer requirement 
/ .A �f � / ^ 一 

Bt 二 1 + - NQ+ 2 1 + — N-b U 
h J I J 
「「广 w r 1 ) 1 1 ( 4 . 1 2 ) 

= 1 + - + - 1+ — N-l Q 
丄L g J 4 T 丨 J j f 

for the case with no redundancy; and combining (4.6) and (4.11), we can obtain the 
total buffer requirement 

一广 r "1� -
万 + 丄 2 1+ b丄-丄 N U ’ I r, N-h 

� … W 1 V (4.13) N r n 2f br 1 = 7 r 1 + — + - 1+ NO gj b[ r, J (N-h) ^ 
for the case with a (N, h) RSE code as redundancy. 
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4.4 System Response Time 
System response time, denoted by Ts, comprises two components: scheduling delay, 
denoted by A , and prefetch delay, denoted by Dp: 

Ts 二D,Dp (4.14) 

Scheduling delay is defined as the average time from a client node requesting a 
new video session to the time data retrieval starts. Prefetch delay is defined as the 
average time from the start of data retrieval to the time when the prefetch buffer in the 
client node is filled with data ready for playback. 

Under GSS with g groups, an arriving request may be admitted to the next 
upcoming micro round provided that it is not yet fully occupied, i.e., fewer than N/g 
streams are being served in that micro round. Otherwise it will need to scan through 
the upcoming list of micro rounds until it finds one that is available. Clearly the 
scheduling delay depends on the occupancy of the micro rounds, which in turn 
depends on the system utilization. This problem has been studied previously by Lee [4] 
in the context of parallel video server, who derived the average scheduling delay 
using an um model. The equations are relatively lengthy and so will not be repeated 
here. Interested readers can find the complete derivation in Lee's work [4]. Summing 
up this average waiting time and the artificial delay (Q) mentioned in section 3.2, we 
can then obtain the average scheduling delay under a given system utilization. 

Now we consider the prefetch delay. Intuitively, the client needs to receive a 
stripe of transmission packets before performing erasure-correction to reconstruct the 
video data for playback. In practice, additional delay will be incurred due to clock 
jitter among nodes in the cluster. Incorporating this clock jitter into the model, it can 
be shown (see Appendix B) that the prefetch delay is given by 
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f ( � ] � � (4.15) =Mi+Mk u 4 Tf JJ f Summing Ds and Dp will then give the system response time as shown in Figure 4.1. 
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Chapter 5 
SYSTEM RELIABILITY 

In section 3.3，we presented the use of a � N , /z)-RSE code to implement node-level 
fault tolerance for the server-less VoD architecture. In this chapter we formulate a 
Markov chain model for the reliability of the system (Section 5.1). Next we 
investigate the amount of repair capability the system needs to achieve the target 
reliability with minimum redundancy (Section 5.2). Finally we determine the required 
redundancy level (i.e. parameter h) to meet the target reliability (Section 5.3) using 
conservative assumptions for the system parameters. 

5.1 System Failure Model 
We use mean time to failure (MTTF), defined as the average time between two 
consecutive occurrences of system failure, as the measure of the system's reliability. 
With the use of a (TV, h)-RSE code, a system failure occurs when more than h out of 
the TV nodes in the cluster fail. We assume nodes in the cluster fail independently with 
a node MTTF exponentially distributed with mean A. A node, once failed, will be 
repaired immediately and independently. The repair time is also exponentially 
distributed with mean We further define the redundancy level as the proportion of 
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Figure 5.1. The Markov chain model for evaluating the system's mean time to failure. 

nodes serving redundant data, i.e. {hIN). Our goal is to derive the relationship between 
the redundancy level and the system MTTF. 

We model the system using a continuous-time Markov chain model as shown 
in Figure 5.1. Let state i be the system state where i out of the Â  nodes have failed. For 
example, state 0 means all nodes are operational, state 1 means one of them has failed, 
and so on. System failure occurs when the system enters state h+1, where the {JSf, 
/z)-RSE code can no longer recover all (N-h) data blocks. We assume that once a 
system failure occurs, the system will be shutdown with all failed nodes repaired 
before the system is restarted. 

In this Markov chain model, the system MTTF is equivalent to the expected 
time for the system to transit from state 0 to state h+\, or called the first passage time. 
Let Xi be the rate at which the system transits from state i to state z+1 and jm be the rate 
at which the system transits from state i to i-\. We can obtain and jm from 

(5.1) 
… (5.2) 

Let Ti be the expected time the system takes to reach state h+1 from state i. 
Starting from state 0, the expected time to reach state h+1 is equal to the expected time 
to reach state 1 from state 0, i.e., equal to I/Aq, plus the expected time to reach state 
/z+1 from state 1, i.e., 7\ by definition. Thus we can obtain the following relation: 
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r o + 7 ； (5.3) 
乂0 

Next we consider state 1. The system may either transit to state 2 with 
probability (/li/(2i+//i)), or transit to state 0 with probability {pi\l{X\+iJ,\)). The 
combined transition rate is equal to {Xx+fii) and so the expected time until transition 
occurs is equal to l/(义 1+//1). Using argument similar to the case of state 0, we can 
obtain another relation: 

T, = y ^ + + T ^ r � (5 .4) 

Repeating this procedure for Ti to 7\+\. We can obtain the following set of 
equations: 

A + /A A + A 
: 1 ； (5.5) 

Substitute (5.3) into (5.4), we can eliminate the term To and express 7] in terms 
of Ti only. Repeating this substitution recursively, we can simplify the above 
equations into the following equations: 

7 ； = 丄 + 1 + 7； A A^o 

义2 义2 4 义 2 ^义 0 

『3 - 1 I I 秘 1 I Ih 秘 I J 

； (5.6) 
f ./-I ^ 

+7；+, 

V k=o J 

r力+丨=0 
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As Th+\ is zero, we can obtain the value of To by backward substitution: 
f 7-1 A 

(5-7) 
V k=0 

which is the MTTF of the system. 

5.2 Minimum System Repair Capability 
The failure model in the previous section assumes that the repair capability of the 
system is unlimited. In other words, all failed nodes are repaired immediately and 
simultaneously. In practice, the repair rate is usually limited. For example, if repairs 
are done manually by repairmen, then the number of repairmen is likely to be limited 
and also much smaller than the number of nodes in the cluster. To account for this 
constraint, we extend the failure model in the previous section to model bounded 
repair rate. 

Let m be the system repair rate limit such that all repair rates in the Markov 
chain model are bounded by mju. Using the repairmen example, this represents a total 
of m repairmen available for repairing failed nodes in the cluster. The repair rate for 
state i is then changed to 

iii i < m 

"H � (5.8) 
m/u I > m 

We call the ratio mIN the system's repair capability, which can range from 0 
(i.e., no repair available) to 1 (i.e. no constraint on maximum repair rate). Substituting 
the repair rate in (5.8) into (5.6) and (5.7), we can then obtain the corresponding 
system MTTF with limited system repair capability. Clearly, in this case we will need 
to increase the redundancy level to achieve the same target system MTTF. 
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Figure 5.2. The redundancy level required to achieve a system MTTF of 10000 hours 
under different repair rate limit. 

Figure 5.2 plots the redundancy level required to achieve system MTTF of 
10,000 hours versus system repair capability ranging from 0.02 to 0.2. We observe 
that there is a turning point in the curves, approximately around a system repair 
capability of 0.1. Below which the redundancy overhead increases with lower system 
repair capability; and above which the redundancy overhead stays relatively constant 
even when the system repair capability is increased. The reason leading to this turning 
point is the ratio between node MTTR and node MTTF. 

In particular, we have used a node MTTR of 24 hours and a node MTTF of 256 
hours in computing the results in Figure 5.2. This MTTR/MTTF ratio is equal to 
0.09375, close to the system repair capability at the turning point in Figure 5.2. These 
system parameters imply that a node repairs itself around ten times faster than the 
tendency to fail. Hence with a system repair capability of 0.1，or Wm二N, the 
aggregate repair rate of 0. Wnodes will be comparable to the aggregate failure rate of 
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Figure 5.3. The minimum system repair capability required versus the node MTTF at 
fixed cluster sizes. 

all TV nodes. In other words, beyond this turning point the system will be able to repair 
nodes faster than they fail. 

A consequence of this result is that it will not be necessary to increase the 
system repair capability far beyond the turning point as the reduction in redundancy 
overhead will be negligible. Figure 5.3 plots such turning points versus node MTTF 
ranging from 256 hours to 1,024 hours. The turning points, labeled minimum system 
repair capability in Figure 5.3, is obtained by increasing the system repair capability, 
i.e., increasing m, until the redundancy overhead reduces to equal to the case of 
unlimited system repair capability. 

The results show that a system repair capability ranging from 38.67% to 
161.33% over than MTTR/MTTF ratio will be sufficient. Moreover, the additional 
repair capability needed decreases with increases in cluster size. For example, the 
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additional repair capability needed is 92% for a 100-node cluster with node MTTF 
and MTTR equal to 256 hours and 24 hours respectively, but decreases to 38.67% for 
a 500-node cluster. Increasing the cluster size further will make the needed additional 
repair capability asymptotically approaches the MTTR/MTTF ratio. 

5.3 Redundancy Configuration 
In this section, we investigate the minimum redundancy configuration needed to 
achieve server-grade MTTF. Client-size devices such as STBs and PCs are inherently 
less reliable. Therefore while servers typically have MTTF over 10,000 hours, we 
assume conservatively a node MTTF of 256 hours only. Once a node fails, repair will 
be performed immediately. In practice, the repair time will depend on the type of 
failure occurred. For example, a power surge may cause a node to reboot itself and the 
repair time will be in minutes. However, if the failure is due to component failure such 
as a harddrive failure or memory failure, then the repair time will be much longer. As 
no data exists for the repair rate of STBs, we assume that the node MTTR is 24 hours. 
Using results from the previous section, we configure the system with the minimum 
system repair capability such that redundancy overhead is minimized. In case the 
system has lower repair capability, it can still achieve the target system MTTF with 
the use of additional redundancy (cf. Section 5.2). 

Figure 5.4 plots the redundancy level required to achieve a system MTTF of 
1,000, 10,000 and 100,000 hours versus cluster size. There are two observations. First, 
the redundancy level required to achieve a given system MTTF decreases with larger 
cluster size, implying that larger cluster sizes are desirable from a reliability point of 
view. Second, we observe that the redundancy level required to achieve a MTTF of 
10,000 hours (i.e. over one year) or even 100,000 hours (i.e. over eleven years) are 
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relatively modest, at 0.132 and 0.142 respectively for a 500-node cluster. Despite the 
modest redundancy, this level of system MTTF already exceeds those of dedicated 
video servers. In the next chapter, we study other resource requirements and the 
scalability of the server-less architecture. 
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Chapter 6 
SYSTEM DIMENSIONING 

In system dimensioning, we study how large we can scale up a cluster in the system 
and what is the limiting factor to scalability. Under the server-less architecture, we 
obviously no longer have the dedicated server to become the bottleneck of the system. 
Hence, the limiting factor either arises from the nodes, or the network that links up the 
nodes. We consider the storage limit in section 6.1, network limit in section 6.2, and 
then investigate node-related bottlenecks in section 6.3-6.5. The system parameters 
are listed in Table 1. 

Table 1. System parameters used in chapter 6. 

Parameters Symbol Value 
Node mean time to failure l/A 256 hours 
Node mean time to repair 1/ju 24 hours 
Video bitrate R^ 4 Mb/s 
Disk fixed overhead a 0.176 ms 
Disk rotational latency FT^ 5.99 ms 
Worst-case disk transfer rate 18.68 MB/s 
Transmission time of notification packet S 54.4|is 
Clock jitter T 100 ms 
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6.1 Storage Capacity 
Under the striping-based placement policy, all nodes in the cluster equally share the 
storage requirement. Hence, the more nodes in a cluster, the less storage is required at 
each node to store the same amount of video data. Therefore the storage requirement 
imposes a lower limit on the scale of a cluster. 

For example, assuming a video bitrate of 4 Mbps (e.g. MPEG-2 video) and a 
video length of 2 hours (e.g. movies), the total storage for 100 videos is 351.6 GB. 
Given that today's harddisks have at least several tens of gigabytes of storage capacity, 
even if each node only allocates 2 GB for video storage, the minimum cluster size 
needed is still only 209 nodes with redundancy level of 0.158 to achieve a system 
MTTF of 10,000 hours. 

6.2 Network Capacity 
One way to connect nodes together to form a cluster is to use a switch-based network 
such as switched Ethernet. Today's medium-range Ethernet switches typically has 
switching capacity of 32 Gbps or more while carrier-class switches easily exceeds 
192 Gbps. Assuming a video bitrate of 4 Mbps and ignoring protocol overhead, a 
node will consume 3.98 Mbps both upstream and downstream without redundancy, 
and 4.73 Mbps with a redundancy level of 0.158 for a cluster size of 209 nodes to 
achieve a system MTTF of 10,000 hours. For larger cluster sizes, the per-node 
network bandwidth requirement will decrease as less redundancy is required to 
achieve the same system MTTF (cf. Section 5.3). Suppose we use 4.73 Mbps as the 
upper bound on bandwidth consumption for cluster size larger than 209 nodes. Then 
with a 32 Gbps switch running at 60% utilization, this translates into a maximum 
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cluster size of 2,029 nodes. Upgrading it to a 192 Gbps switch will extend the limit to 
12，174 nodes. 

On the other hand, the server-less architecture does require more bandwidth for 
the last-mile access network. In particular, the architecture requires more upstream 
bandwidth than traditional client-server-based VoD systems, which require little to no 
upstream bandwidth. This requirement will rule out some access network with 
asymmetric bandwidth such as ADSL or cable modem. Nevertheless, the emerging 
metropolitan networks built upon Ethernet-based networks running at 10Mbps or 
even 100Mbps full-duplex will provide more than sufficient bandwidth to 
accommodate a server-less VoD system. 

6.3 Disk Access Bandwidth 
A node obviously will have finite resources, including memory and disk access 
bandwidth. We first investigate the disk access bandwidth issue as it determines the 
configuration of the disk scheduler (GSS), which in turn determines the buffer 
requirement. 

The disk scheduler has two configurable parameters, namely block size Qr and 
the number of groups g in GSS. Increasing the block size or decreasing the number of 
groups in GSS results in higher disk efficiency, at the expense of larger buffer 
requirement. Therefore in terms of buffer requirement, it is desirable to reduce the 
block size g,. and to increase the number of groups gin GSS. 

Now consider the disk model. The time for serving a request retrieval, denoted 
by trequesti is composed of four components [20], namely fixed overhead (e.g. 
head-switching time) denoted by a, seek time denoted by tseek, rotational latency 
denoted by Uatency and a transfer time equal to g / r , where r is the disk transfer rate: 
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t 一 (a) = + � + ( 6 . 1 ) 
Under GSS, retrieval requests are divided into g groups, each served in a micro 

round using the SCAN scheduler. Under the worst-case scenario, the maximum time 
to retrieve k requests in a micro round can be computed from 

troun, (k, Q )̂ = ka + a W + (6.2) 
f V min J 

where /二二 {k) is the worst-case combined seek time for k requests, W^ is the time for 

one complete round of disk platter rotation, and Vmin is the minimum disk transfer 
ratei. 

To ensure continuous video streaming, retrievals for these k requests must be 
completed within the duration of a micro round [25]. Therefore the following 
condition must be satisfied: 

(N \ T, 
t酬nd & 么丄 (6.3) 

U J g 
where tround represents the worst-case disk service round length. 

For simplicity, we assume that the disk is reserved for use by the VoD 
application and is not shared with other applications. The disk model can be extended 
to support other concurrent disk accesses, for example, by reserving disk bandwidth 
in each micro round for such applications. Using this disk model, we compute the 
buffer requirement and system response time in the following sections. 

1 Modem disks commonly use disk zoning, i.e., varying track size, to increase storage capacity. This 
results in varying disk transfer rate depending on the zone. refers to the lowest transfer rate among 
all zones. 
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6.4 Buffer Requirement 
To determine the buffer requirement and the system response time (Section 6.5), we 
have to first determine the retrieval block size (Qr), the transmission block size (Ur), 
the redundancy level (h), and the number of GSS groups (g). As the sender buffer 
requirement is directly proportional to the retrieval block size (4.6), we should reduce 
the retrieval block size (Qr) as long as the continuous streaming condition is still 
satisfied (6.3). We use an off-the-shelve harddisk — Quantum Atlas lOK [26] as an 
example for computing numerical results. 

For the transmission block size (Ur), a smaller transmission block size can 
reduce the receiver buffer requirement at the expense of increased header overhead. 
To maintain header overhead to a small level, we set the transmission block size to be 
not smaller than 8KB. We then find the minimum system response time achievable 
and the corresponding buffer requirement by evaluating all combinations of Qr, Ur 
and g. 

Table 2 lists the minimum system response time, the corresponding buffer 
requirement, and the optimized system configurations. Redundancy is already 
included to maintain a system MTTF of 10,000 hours (cf. Section 5.3). A surprising 
finding is that the optimized retrieval block size is equal to the transmission block size, 
at the minimum size of 8KB. This is in sharp contrast to the conventional video server 
design principle that makes use of large retrieval block size to increase disk efficiency. 
In other words, disk bandwidth is more than sufficient in a server-less VoD system 
due to the distribution of streaming bandwidth requirement to all nodes in the cluster. 

41 



Table 2. System configurations optimized for minimum system response time. 

Cluster Block Size Macro-round Buffer Sys Resp 
Size Redundancy Group (Qr bytes) (sec) (MB) Time (sec) 
25 8 5 9216 0.2988 0.8525 0.8965 
50 12 10 8192 0.5938 1.6094 1.5141 
75 16 25 8192 0.9219 2.4453 2.1242 
100 19 20 8192 1.2656 3.3438 2.8929 
125 23 25 8192 1.5938 4.1953 3.5508 
150 26 50 8192 1.9375 5.0625 4.1846 
175 29 35 8192 2.2813 5.9609 4.9386 
200 32 40 8192 2.6250 6.8438 5.6332 
225 35 75 8192 2.9688 7.7109 6.2542 
250 38 50 8192 3.3125 8.6094 7.0135 
275 41 55 8192 3.6563 9.4922 7.7008 
300 44 100 8192 4.0000 10.3594 8.3244 
325 47 65 8192 4.3437 11.2578 9.0791 
350 50 70 8192 4.6875 12.1406 9.7698 
375 52 125 8192 5.0469 13.0391 10.4205 
400 55 200 8192 5.3906 13.9141 11.0946 
425 58 85 8192 5.7344 14.8203 11.8658 
450 61 225 8192 6.0781 15.6797 12.4707 
475 63 95 8192 6.4375 16.6172 13.2745 
500 66 250 8192 6.7813 17.4766 13.8786 

Figure 6.1 plots the sender, receiver, and total buffer requirements for cluster 
size up to 500. The results show that the buffer requirements all increase with the 
cluster size but the receiver buffer requirement dominates the total buffer requirement. 
Nevertheless, given the current cost of memory, the total buffer requirement, while 
not insignificant, should be practical for STBs and ordinary PCs. 
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Figure 6.1. Buffer requirements versus cluster size. 

6.5 System Response Time 
To compute the response time, we assume a maximum request packet transmission 
time (cf. Section 3.2) of <5=54.4 jis. This is computed from the assumption of sending 

� a 68-byte request packet using UDP over 10Mbps Ethernet, with 26 bytes of Ethernet 
frame header, 20 bytes of IP header, 8 bytes of UDP header and 14 bytes of protocol 
header (including 4 bytes of movie id, 2 bytes of receiver reception port, 4 bytes of 
scheduled group number and 4 bytes of control message). 

Assuming 90% system utilization and using values of Qr and g that minimize 
system response time, we plot in Figure 6.2 the system response time, the scheduling 
delay, and prefetch delay for cluster sizes up to 500. The results clearly show that the 
system response time is dominated by the prefetch delay, which increases near 
linearly with cluster sizes while the scheduling delay stays relatively constant. 
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Figure 6.2. System response time, scheduling delay, and prefetch delay versus cluster 
size (90% utilization). 

Another observation is that the system response time can become the 
performance bottleneck at larger cluster sizes. For example, a 500-node cluster has a 
system response time of 13.88 seconds, bordering on unacceptable for interactive 
VoD applications. We tackle this problem in the next chapter by a simple yet effective 
solution. 

\ 
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Chapter 7 
MULTIPLE PARITY GROUPS 

The results in the previous chapter reveals that the primary limit on the scalability of a 
cluster is, surprisingly, the system response time. Reconsidering Figure 6.2，we can 
observe that the prefetch delay is the key bottleneck. Prefetch delay in turn, depends 
on the amount of data a client node must receive before playback can begin. Due to 
the use of erasure-correction code, a client node must receive a minimum number of 
transmission packets from a parity group before erasure correction can be performed, 

\ 

and the corrected video data can be played back. In a TV-node cluster with a 
redundancy level of h, this minimum number is equal to {N-h), which clearly 
increases with the cluster size N. 

This motivates us to investigate breaking down the cluster into multiple 
smaller parity groups that are independently erasure-coded. In this way, the minimum 
number of transmission packets a client must receive before playback will be reduced. 
Specifically, we divide the cluster into p parity groups with each group containing Nip 
nodes2. Each parity group i, (i=0,l,.. .,p-l), is then independently coded using an 
erasure-correction code with a redundancy level of hi. For the case that N is divisible 

^ I f / / i s indivisible by p, then (TV mod p) out ofp groups contain 丨；?] nodes while the remaining 
groups contain ! p � n o d e s . 
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Figure 7.1. An example of two parity groups. 

by p, the redundancy levels of all parity groups are same and we denote it by hp. 
One surprising property with this multiple parity group scheme is that it can be 

implemented without modification to the retrieval and transmission scheduler. As 
shown in Figure 7.1, the parity groups happen to be time-staggered in the transmission 
schedule due to the packet-staggering scheme originally introduced in section 3.2 for 

\ 

preventing network congestion. In this way, the client can immediately begin 
playback after receiving {NIp-hp) transmission packets from parity group 0 and thus 
significantly reducing the prefetch delay. 

There is, however, one tradeoff with the multiple parity group scheme -
redundancy overhead. Recalling Figure 5.4 in section 5.3, we need more redundancy 
to maintain the same system MTTF in smaller clusters (i.e. smaller parity groups). 
Therefore dividing a large parity group into multiple smaller parity groups will 
increase the redundancy overhead. We formulate in the next section a new system 
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failure model incorporating multiple parity groups and then evaluate the impact on 
buffer requirement, system response time, and ultimately scalability in the subsequent 
sections. 

7.1 System Failure Model 
In cluster with a single parity group, a system failure occurs when more than h out of 
the N nodes in the cluster fail simultaneously. In cluster with multiple parity groups, 
the system fails when any one of the p parity groups fails. We assume the system will 
be shutdown with all failed nodes repaired whenever a system failure occurs. 

Let Tp be the target MTTF of all parity groups, which can be computed from 
(5.1 )-(5.7) with the cluster size Nand the redundancy h replaced by the corresponding 
parity group size and group redundancy hi respectively. Then the system MTTF, 
denoted by r勢 is given by 

Tsys (7.1) p 
as the system failure rate is p times the failure rate of a parity group. The system 
redundancy level is then the sum of the redundancy level of all parity groups: 

力 = & , (7.2) 
/=0 

We investigate the performance impact of this new system failure mode in the 
following sections. 

7.2 Buffer Requirement 
Derivation of the sender buffer requirement is the same as in section 4.3 as the 
retrieval and transmission scheduler is not changed. Following the sender buffer 
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requirement equation in (4.6), we can obtain the new sender buffer requirement for a 
/?-parity-group cluster: 

f n 1 + - — Q (7.3) 

For the receiver buffer requirement for a />-parity-group cluster, we note that 
the minimum number of transmission packets that must be received before playback 
is reduced from (A -̂/z) to {NIp-hp), and the time to receive these {N/p-hp) transmission 
packets is equal to Tjibp. Thus, the new receiver buffer requirement is given by 

r 厂 r iv̂ v ) 
1 + ^ — - - h U ^ 

’丨(Tflbp Jt；. y，J 
/ � —1\ 

=2 1+ - 4 - f M 丄 " (7.4) t Tflhp Jl P jN-h JlJ'-^]]^ [^f I P 
Summing up the sender and receiver buffer requirement, we can then obtain 

the total buffer requirement: 

V S ) � N - h � T p 
「 … 广 「 1 、 1 ( 7 . 5 ) 

s){N-h) [ r, JJ ；. 

For the case that N is indivisible by p, the maximum number of nodes for a 
parity group i s � t V / p ] and the minimum transmission time of packets for a parity 

group is \_NIp\QlbR\’ , so the total buffer requirement is changed to: 

取,广[I+IY^^+K 〃 虐 今 （ 7 . 6 ) 

I L / Lp�办凡 J P 

Note that the buffer sharing technique discussed in section 4.3 from video 
blocks that are retrieved for local playback cannot be applied here because a node 48 



belongs to only one of the p parity groups. Therefore buffer sharing cannot be used for 
all but the group that the node belongs to. 

7.3 System Response Time 
With reference to section 4.4, system response time is the sum of scheduling delay 
and prefetch delay. Scheduling delay is not affected by the multiple parity group 
scheme. Prefetch delay is the sum of data retrieval time and the time to receive the 
first parity group. The former is not changed but the latter is reduced by a factor o f p 
by the multiple parity group scheme. Using derivations similar to (4.15) we can obtain 
the prefetch delay as 

, � "I� 
乃 7 ； + 1 + 迎 i 
“ g 7} bp 

� , �1 � 1 
=丄 

印L Tf JJ ‘ 
For the case that N is indivisible by p, the minimum number of nodes for a 

parity group is |_#/ />�and the minimum transmission time of packets for a parity 
group is [_N/p\Q/bRv , so the prefetch delay is changed to: 

7.4 Redundancy Configuration 
In this section, we investigate the tradeoff between system response time, buffer 
requirement, and redundancy level. The previous sections have shown that by 
dividing a cluster into multiple parity groups, we can reduce the system response time 
and the buffer requirement. The tradeoff is an increase in the redundancy level needed 
to maintain the same system MTTF. 
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Figure 7.2. System response time and total buffer requirement versus redundancy 
level under the multiples parity groups scheme (AM 500, System MTTF= 10,000 

hours). 

Figure 7.2 plots the inter-play between these three system parameters for a 
1,500-node cluster achieving a system MTTF of 10,000 hours. As expected, both 
system response time and buffer requirement decrease with more redundancy (i.e. 
more parity groups). The improvement levels off for redundancy level over 0.2. 

Surprisingly, configuring the system with too much redundancy (i.e. too many 
parity groups) can be counter-productive, and results in increased system response 
time and buffer requirement. This observation is explained by the fact that at high 
redundancy levels, the playable video data transmitted in each round decreases. Thus 
to compensate, the macro round length will need to be shortened, resulting in reduced 
disk efficiency. Finally, to guarantee sufficient disk throughput, the GSS scheduler 
will need to be configured with fewer groups, resulting in larger rounds with more 
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Figure 7.3. System response time and redundancy level versus cluster size under 
buffer constraint (System MTTF=10,000 hours). 

video blocks retrieved in each round. Consequently, this increases the retrieval buffer 
requirement (cf. Equation (7.3)) and lengthens the scheduling delay. 

7.5 Scalability 
The multiple parity group scheme provides an effective tool to combat the primary 
system bottleneck - the system response time. However, whenever one bottleneck is 
removed, another one is revealed. The question is where the new bottleneck is and 
what is the effect on the system's scalability. 

To investigate this issue, we plot in Figure 7.3 the redundancy level required 
and the system response time versus cluster size up to 1,500 nodes. Two sets of results 
are presented, one for a buffer constraint of 8MB and the other 16MB. The number of 
parity groups is configured such that the system response time stays within 5 seconds 
and the system MTTF stays above 10,000 hours. 

51 



We first consider the case of 16MB buffer constraint. The results show that as 
the cluster size increases, the system response time also increases, but quickly levels 
off and stays below the 5-seconds constraint. The redundancy level, on the other hand, 
stays relatively constant as the increased cluster size results in improved redundancy 
efficiency (cf. Figure 5.4) that compensates for the increased redundancy overhead 
incurred by the multiple parity group scheme. 

Next we consider the case with only 8 MB buffer requirement. For small 
cluster sizes (below 400) the results are similar but beyond that the response time 
decreases and the redundancy level increases dramatically. This surprising result is 
due to the small buffer size available and the fact that the transmission buffer 
requirement increases linearly with cluster size (cf. Equation (7.3)). Therefore when 
the cluster size is increased, the system is forced to configure with increasingly more 
parity groups to reduce the receiver buffer requirement to stay within the 8MB buffer 
constraint. As a result, the redundancy overhead is sharply increased and the system 
response system is sharply reduced. Eventually, even the multiple parity group 
scheme cannot compensate for the increasing transmission buffer size and the system 
scalability is limited to 900 nodes. Hence the system scalability bottleneck has shifted 
to the buffer requirement 

Nevertheless, comparing Figure 7.3 with Figure 6.2, it is clear that the multiple 
parity group scheme has already extended the system scalability significantly. 
Moreover, today's clients such as STB and PCs can support far more than 8MB buffer, 
thus further extending the system scalability. In the extreme case where the scalability 
ceiling is reached, one can always divide the system into multiple independent 
clusters to further extend the system scale. 
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Chapter 8 
CONCLUSIONS AND FUTURE WORKS 

In this thesis, we proposed a server-less architecture for building scalable, reliable, 
and cost-effective VoD systems without the need for dedicated video servers. We 
presented designs for the data placement policy, the retrieval and transmission 
scheduler, and a scalable fault tolerance mechanism based on multiple parity groups. 
Based on these designs, we derived the performance models to quantify the storage 
requirement, network bandwidth requirement, buffer requirement, and the system 
response time. We further modeled the system reliability using a continuous-time 
Markov chain model to obtain the system MTTF and introduced a multiple parity 
group scheme to extend the scalability of the architecture. Results show that we can 
build server-less VoD clusters as large as 1,500 nodes with system response time less 
than five seconds, system MTTF over 10,000 hours, redundancy overhead less than 
20%, and per-node buffer requirement less than 16MB. These figures compare 
favorably to even dedicated high-end video servers despite that fact that the 
server-less architecture does not need a dedicated server at all. Moreover, we can 
further scale up the system scale by forming additional autonomous clusters and there 
is no inherent limit to the scalability of the system. 
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This study is a first step taken to establish several fundamental properties of a 
server-less VoD architecture. There are many other possibilities and challenges in the 
design of a server-less VoD system. For example, this study assumes that clusters are 
autonomous and independent. Relaxing this assumption to allow clusters to 
communicate with one another will open many more design choices for data 
placement policy, fault tolerant mechanism, and so on. Within a cluster, one can also 
use different striping policies for different video titles. For example, it may be 
desirable to use smaller striping group for more popular video titles to increase their 
availability and also at the same time to reduce response time. Again, more 
investigations are needed to quantify the performance gain and the tradeoffs. 
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APPENDIX 

A. Derivation of the Artificial 
Admission Delay 
Let the client node request a new video session at time t during the group k= tg jTj.. 

Then due to the clock jitter (T) and the maximum transmission time of the request 
packets, the working group at other nodes after receiving the packet can range from 

{t-\-S)glTj. to {t + T + {N -\)S)glT^ .To avoid uneven group assignment among 

nodes which can result in increased receiver buffer requirement, the new session 
should always be assigned a group that has not started in any nodes in the cluster. This 
can be done by assigning the new session to the group 

k = {t-^T + {N-\)S)g +1 
L Tf _ 

tg � ( r + (" —1)句/ ^ ^ + ^ T ) +1 (A.1) 

Tf 

This is equivalent to delaying the admission by an artificial delay of 

— +1 groups. 
h 
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B. Derivation of the Receiver Buffer 
Requirement 
Recall that macro round duration is the time required for each node sends b 
transmission blocks of t/bytes {Q=hU) to the receiver. From (3.2), 

M (A .2 ) b bRv K 
The receiver buffer is divided into two parts. The first one is pre-fetch buffer, 

the video playback starts only when this pre-fetch buffer is filled up. This buffer is 
used for preventing data underflow while the second part of receiver buffer is used for 
preventing data overflow. Consider the buffer is arranged in groups of TV blocks of U 
bytes in size, suppose group zero consists of transmission block zero to (JSf—l), group 
one consists of block N to (2A/-1) and so on. We consider the buffer as a circular 
buffer of total I groups, in which y groups are pre-fetch buffer and z groups are for 
preventing overflow (ie. /二少+ z). Let the transmission starts at time 广o, and F(j) be 
the time for group j to be completely filled up, 

NU NU 
^ T 民 (A3) 
b b 

The playback begins after the pre-fetch buffer is filled up (ie. F{y-\)), and the 
playback time P{j) for group j is, 

NU 

P(j) = Fiy-\) + J ^ (A.4) 
o 

To avoid buffer underflow, we must ensure the requirement that the playback 
time of group j buffer to be later than the fill-up time, 
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F{j)<P{j) 
FU)<F(y-\) + j ^ ( A . 5 ) 

b 

b b b 

Rearranging, we can obtain the minimum requirement on pre-fetch buffer, 

y…字 (A.6) 
� If 

Under the situation of circular buffer, we need to ensure the playback time of 
group j buffer to be earlier than the fill-up time of group (/+/—2) to avoid buffer 
overflow, because we must have at least one free group available for receiving data at 
any time. 

P(j)<FU + l-2) 

F(y-l) + j^<F(j + l-2) 
b 

Tf Tf r , (A. 7) 
h b b 

b 、 ” b 

Substituting z = (I-y), we can obtain the minimum requirement to prevent buffer 
overflow: 

+ ̂  (A.8) Tf 
Combining the two results, we obtain the receiver buffer requirement from 

, r 1 � 
字 NU (A.9) 

V V J 
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